

 Product Design for the Web
Principles of Designing & Releasing Web Products
Randy J. Hunt
Creative Director, Etsy

Product Design for the Web
Principles of Designing & Releasing Web Products
Randy J. Hunt
New Riders
www.newriders.com
To report errors, please send a note to errata@peachpit.com.
New Riders is an imprint of Peachpit, a division of Pearson Education.
Copyright ©2014 by Randy J. Hunt
Acquisitions Editor: Nikki Echler McDonald
Production Editor: Tracey Croom
Development Editors: Bob Lindstrom, Cathy Fishel-Lane
Copy Editor: Catherine Oliver
Proofer: Jan Seymour
Indexer: Jack Lewis
Interior and Cover Design: Randy J. Hunt
Composition: Kim Scott/Bumpy Design
Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in any form by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. For information on getting permission for reprints and excerpts, contact permissions@peachpit.com.
Notice of Liability
The information in this book is distributed on an “As Is” basis without warranty. While every precaution has been taken in the preparation of the book, neither the author nor Peachpit shall have any liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the instructions contained in this book or by the computer software and hardware products described in it.
Trademarks
The word “Etsy” and other Etsy graphics, logos, designs, page headers, button icons, scripts, and service names (together, the “Etsy Marks”) are registered trademarks, trademarks or trade dress of Etsy, Inc. in the U.S. and/or other countries. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book and Peachpit was aware of a trademark claim, the designations appear as requested by the owner of the trademark. All other product names and services identified throughout this book are used in editorial fashion only and for the benefit of such companies with no intention of infringement of the trademark. No such use, or use of any trade name, is intended to convey endorsement or other affiliation with this book.
ISBN-13: 978-0-321-92903-7
ISBN-10: 0-321-92903-9
9 8 7 6 5 4 3 2 1
Printed and bound in the United States of America

For Mom and Dad.
You always trusted that I’d figure things out.

Acknowledgments
I owe a huge amount of thanks to my patient fiancée Kelsey Taylor Weireter. Her encouragement and enthusiasm for this book have been unparalleled. I couldn’t have made it these many months without her support.
Thanks to New Riders/Peachpit Press and Nikki McDonald for the trust and faith in me for this first book. Bob Lindstrom and Cathy Fishel-Lane offered feedback, assistance, insight, and fresh perspective to help give ideas focus and direction. Catherine Oliver, Tracey Croom, Jan Seymour, Kim Scott, and Charlene Charles-Will helped keep me, my words, and my designs on track.
Thanks to leaders from Etsy for allowing me the opportunity to learn, explore, and apply these principles in an environment that also holds a deep purpose: to Rob Kalin for trusting and empowering me to do what I thought was best, with room to fail; and to Chad Dickerson and Marc Hedlund, both of whom have been incredible cheerleaders, confidantes, and sources of perspective and optimism.
A special thanks to all of the designers at Etsy who have trusted me to serve them well. They believe that the Etsy community is worth investing their hearts and souls; and they do incredible, incredible work with joy and warmth. Jay Carlson, thanks from the start for being an awesome companion in this adventure. A special nod to Kim Bost who introduced the idea of Problems, Solutions, and Tenets into our design process.
Many of the concepts, lessons, and approaches discussed in this book were directly based on experiences I had at Etsy between January of 2010 and June of 2013. A grateful thanks to the engineers and product managers who were willing to embrace an approach to design that looked different from what they’d seen in the past, and who made our Web product much stronger with their input and support: Kellan Elliot-McRae, Wil Stuckey, Dan McKinley, Erik Kastner, Frank Harris, Eric Stephens, Eric Fixler, and Nicholas Cook.
And a final thanks to Steven Heller for his encouragement and support.

Contents
Acknowledgments
Introduction
On Product Design
Chapter 1 What Product to Design?
Chapter 2 There’s Work To Be Done
Think Like a Product Designer
Chapter 3 Story First
Chapter 4 No Dead Ends
Chapter 5 Remember the Invisible Features
Chapter 6 Effective Over Clever
Chapter 7 Carrots, Not Sticks
Chapter 8 Ship Early. Ship Often.
Chapter 9 Rinse and Repeat
Chapter 10 People Matter Most
Get It Built
Chapter 11 Change and Happiness
Chapter 12 Use Whatever Works
Chapter 13 Listen and Learn
Chapter 14 Design Together
The Product is Never Done
Chapter 15 Nothing Is Precious
Index

Introduction
“People think that design is styling. Design is not style. It’s not about giving shape to the shell and not giving a damn about the guts. Good design is a renaissance attitude that combines technology, cognitive science, human need, and beauty to produce something that the world didn’t know it was missing.”

—PAOLA ANTONELLI, MOMA’S SENIOR CURATOR OF ARCHITECTURE & DESIGN + DIRECTOR OF R&D

In January of 2010, I stepped into a job I’d never had before, in a situation I’d never been in before. It had been years since I’d done anything other than work for myself and at businesses I’d started. The job was Interaction Designer for Etsy, the global marketplace for unique goods. The situation? Well, at the time, Etsy was a 50-person company.
Etsy was started in 2005. In 2009, it had sold $180 million worth of merchandise. Some people considered it a design-centric brand, but to say the design team was small would be an understatement. As a platform that enables artists and designers to sell the physical products they’ve created, Etsy doesn’t employ or need physical product designers. As a software product, it does need Web product designers. As the New Year began, there were zero Web designers on staff. My first week at Etsy was also the first week for the only other Web designer on the team. We had our work cut out for us. As time would pass, I’d learn just how my experience up to that point would help me figure out how to approach design at Etsy. For the time being, however, everything felt new.
There wasn’t much of what you’d call “hallway conversation” because we didn’t really have hallways. Still, I would pick up on conversations about this mysterious thing called the “product.”

Our CEO at the time, Etsy’s founder, was a “product guy.” Designers, along with “product managers,” were on the “product team.” I honestly had no idea what “product” meant, and I was tasked with growing it! I’d been building another Web product for three years before joining Etsy, and had always called the process “building a website,” or if I was talking to a savvy person, I’d say I was “building a Web application.”
Over time, through lots of question-asking, frequent guessing (and getting it wrong), and absorbing, I arrived at an understanding of what “product” meant. The “product” was this thing we were building: the Web application, mobile apps, and the API (application programming interface). Many people hear “product” and think of a toothbrush or a toaster. At Etsy, the product was (and is) software.
Moving forward, I was able to understand the relationship between “design” and “product.” I started referring to the team as the “product design team” because every other moniker seemed as ill-fitting as a cheap suit. Etsy is all about being one-of-a-kind, so we arrived at a bespoke answer for a unique situation. Or so we thought.
It turns out that our answer wasn’t unique at all. Other software companies had been referring to “product design” as a discipline for quite some time. As many startups and other companies began developing software products, I realized that we needed a common language for our big, shared, and influential discipline. Web products have a fundamental impact on the day-to-day lives of billions of people.
Through trial and error, I came to an understanding of what product design is and how it works. I wrote this book because I wanted to define product design and share that understanding. More important, though, I wanted to share what I believe are fundamental principles of product design. What does it take to build and release a Web product?
After reading this book, you’ll have a much more complete understanding of what’s involved in designing digital products, how that design process works, and how to do it well.
Anyone working in the field of product design, Web design, online media, entrepreneurship, software development, or management and leadership will find value in what follows.
I hope you enjoy learning about the principles of product design as much as I enjoyed discovering them.

Section One: On Product Design

Chapter 1. What Product to Design?
What are all of those bookmarks in your browser? What are all of those apps on your phone? So many websites, mobile apps, services, and tools are already available on the Web—and yet, you have an idea for a new product. You imagine an experience that’s yet to be designed. You have a problem that needs to be solved, along with a vision of the Web product that solves it. You identified unmet needs shared by a group of people, and you know how a product can help meet those needs.
How do you create an app that is noticed and a service that keeps people coming back again and again? Furthermore, how do you devise a way of working that allows you, your collaborators, and your product to keep up with changes in your audience, your marketplace, and the world at large?
This book will guide you in exploring the principles of designing and releasing Web products. You’ll learn how to conceive and implement design decisions that can support the full arc of a person’s experience with a product. You’ll learn what types of product can engage and serve the people you’re building for. You’ll also learn how the product can shape their responses and meet their goals (and yours) as they use it.
We’ll make awesome designs and adopt a mindset for start-to-end(less) design—from product discovery, to user acquisition, to the use of the product, and beyond.
First, let’s ask what is a Web product? What makes a product a product?
A Website Is Not a Product
Imagine a fabulous restaurant called Bella’s. It’s known for its delicious New York–style pizza pies. They’re so good, in fact, that you end up ordering from Bella’s once a week. Fantastico!
Bella’s has a website, and you go there from time to time to get their phone number, see how late they’ll deliver, find out about the daily special, or copy the address to send to a friend who’s meeting you for dinner. For you, Bella’s website works like a brochure.
But a “brochure site” isn’t really a product. It’s mostly static content—and your interaction is largely limited to browsing that content. Other than signing you up for an email newsletter, Bella’s “brochure site” doesn’t offer you much in the way of visitor input, content contribution, or interactive participation.
It’s pretty easy to recognize two things about Bella’s website:
• It’s a good fit for Bella’s business needs.

• It’s a brochure, not a product.

So Bella’s website is not a product—but it might be using a product.
Imagine you’re the owner of Bella’s. Each morning you arrive at the restaurant two hours before lunch. Some of your staff is already there, delivery trucks have been dropping off the day’s orders, and you start your daily duties.
You learn that some extra mushrooms were delivered, and you haven’t enough room to store them for the week. “Ah ha!” you think, “We’ll run a funghi pizza special today so we can sell those mushrooms while they’re still delicious.” Wow, you’re good at the restaurant business!
You sit down in your office, start your laptop, and open the admin dashboard of Bella’s website. Here you can see all of the pages you have on the Bella’s site: homepage, menu, reservations, history, and blog.
In the blog section, you click the “New Post” button and start a new entry to list the special: two-for-one funghi pizzas featuring four varieties of delicious mushrooms, available today only, delivery or dine-in. Before saving, you choose the “Daily Special” category for your post. When you click Save, the post appears on Bella’s site.
Upon saving, the system also automatically posts an update to Twitter, creating a link to the blog post, so that all of Bella’s Twitter followers are alerted to the news of the funghi special.
Just as we thought! Behind the scenes, Bella’s “brochure website” uses a product. As the owner of Bella’s, you’ve been using a Web product every day to manage how you present your business online, how you communicate specials, and how you build your business’s reputation and relationship with customers.
The management, promotion, and communication of your business are facilitated by something that’s much more than a website. The Web product you use may look like a website on the surface; but upon further inspection, you’ll find that its features, functionality, intent, and design are very different. You might be using the same Web-browsing devices—computer, tablet, or cell phone—to access a website and a Web product, but there are profound and powerful differences that should influence how you design.
Attributes of a Product
Let’s take a look and see what makes a product a product and how that differs from a website. Following are some general areas where we can start to distinguish a product from a website.
Frequency of Use
While users may visit a website occasionally (perhaps the most frequent use would be visiting a news site), a user may visit a Web product over and over again.

Direction of Data and Content
Whereas a website typically passes content (text, photos, video, or audio) in only one direction—from site to visitor—a Web product will both deliver and receive content. In other words, a website is often a consumption-only experience, whereas a Web product is a creative or participative experience. A website may read from a database. A product reads from and writes to a database.

Navigation vs. Participation
A website interface is tailored for the consumption of content. A product interface includes more complex and multi-state interface elements that enable user input. Website navigation solicits user interaction only to browse media. Product navigation solicits browsing interaction, but also encourages users to add content, vote, enter ratings, connect to other users, group content, and use other products and services.

Presence of Accounts
In general, websites are accessible without logging into user accounts. Products often incorporate experiences and services that require unique user accounts. As a result, products can store information from and for an individual user, and create a unique experience with data that persists and evolves over time.

Pages or Flows
Website content may change over time, but the views and presentation are relatively static. It’s common to refer to these views as “pages” because they’re like the unchanging printed pages of a book. A Web product is highly dynamic and includes many views. Each view often contains many states (such as a default state, a recently changed state, an error state, and an empty state), any one of which might be displayed to a user. Products often spread features and functionality over a sequence of views (typically called a “flow”).

Beyond the Browser
While the website experience is limited to content browsing, a product may extend to other services, such as sending emails to your inbox, routing text messages to your phone, or communicating with an installed app on your computer or mobile device. As products grow, they may acquire features you never imagined initially, such as customer support and real-world interactions.
Web products are complex systems. That’s where much of the challenge in design resides. They involve many devices, many people, and many features. They are certainly different from websites that feel simple by comparison; but you’ll see later that your Web design skills are a great foundation for building Web products.
Some Products Are Loners; Some Products Need Friends
Thinking about the characteristics of a product, you’ve probably started to imagine many kinds of products with a staggering variety among them. While the possibilities are infinite, those possibilities can be grouped into a few categories to help you consider a product design strategy. Not all Web products are the same. Some products are fully experienced as stand-alone products. Other products are best experienced as part of a suite of products, and still other products are created as platforms upon which other products are built.
Stand-Alone Products
Stand-alone products are simply that: a product that provides its full intended experience and value when you use on its own. Each morning when I first look at my phone, I tap a raindrop icon, wait a few moments, and check out a pop-up weather forecast. Sunny, no chance of rain, seventy degrees. Perfect. (Yeah, right; I live in NYC!)
With this simple tap, I “passively” shared my location information with the weather app by allowing it to access the GPS data on my phone. I’ve also done a little active input, so I get unique data sent every time I open the app. Because this app works very well for my personal needs, it’s a great example of a stand-alone product. But not all products are so simple or involve such straightforward use cases.
Ecosystem Products
Sometimes a product may provide some value and functionality by itself, but provides much more value when paired with other products, services, or people, like a suite of products. Ecosystem products are products that require more than one “connection point,” a term I use to describe “stuff” that’s more than me and my information at any one moment in time. Examples of these other connection points are other people, products or services, and third-party apps that allow me to use the product at many times, in many locations, or on various devices. Let’s look at various connection points and how they relate to a Web product.
Other People
Ecosystem products often need friends. They import lists of people, connect to your other online accounts, allow you to search for people, and proactively suggest other people you might connect with.
By virtue of connecting to other people, the ecosystem product not only includes information that you input (or is generated for you by the software), but also includes information and experiences that come from other people within the ecosystem and are automatically pushed to you. This multiuser/multisource attribute of an ecosystem is often highly desirable for encouraging frequent usage. The more people you are connected to, the more likely it is that their actions will create reasons for you to increase your use of the product. And your interaction with the product will similarly increase those people’s frequency of use.
A messaging service is a great example of an ecosystem product that relies on users’ connecting to other people. As a communication tool, its core product concept requires at least two people, both connected, to communicate.
Other Products or Services
In addition to connecting to other people, an ecosystem product may initiate connections to other products or services. A great example of this is a product called IFTTT (If This Then That), which launched in 2010 to help people “put the Internet to work.” This product creates an easy way to connect one product’s API (application programming interface) to another product’s API by using an instruction set that it calls “recipes.”
An example IFTTT recipe might look like this: Whenever a user clicks the Favorite button on a Tumblr post, it publishes a link to that post on the user’s Facebook wall. In this recipe, two products—Tumblr and Facebook—are connected via IFTTT, a third product.
Multiple Clients
Ecosystem products often have connection points that are Web products and native apps. Sometimes even third-party apps become important connection points because, for example, they provide native apps for a product that is primarily Web based and lacks a native app experience. This multitude of connection points allows you to interact with the product in many places and at many times, fluidly and easily—effectively, these are “anytime, anywhere, any device” products.
Evernote is a note-taking product that allows you to create, edit, organize, and search text notes, along with embedded images and audio. A key feature of Evernote is that its notes are available from anywhere and on any device, so it’s a Web-based product that also has iPhone, iPad, Android, Mac OS X, and Windows versions. In the background, the product has a syncing service that ties all of these clients together. It’s a great example of a single product that is actually multiple products (Web app, mobile apps, desktop apps) that interoperate in a connected ecosystem.
Platform Products
Platform products support and enable features and functions for other products and are frequently invisible to the general user. However, most of the major Web services, social networks, and Internet brands have one or more platform products tucked inside their visible product offerings.
A great example is Amazon Payments, a product intended to simplify online purchases. By itself, checking out isn’t much of a product experience. It becomes a product only when integrated with some other shopping experience. In this case, Amazon offers a platform product that works “inside” other product experiences.
Evolving Products
The lines between these different product types aren’t always clear cut, and products may change over time. As they become more sophisticated and full featured, many products evolve from stand-alone products to ecosystem products to platform products. Many of the most mature products become all three product types. Sometimes they evolve because the people who use the products change or use them in new ways. At other times, the products change for business reasons.
Let’s look at Facebook as an example of a product experience that touches all of these product types.
Although this scenario is uncommon, it is possible to use Facebook primarily as a stand-alone product. For instance, you can upload photos that you’ve taken throughout the year, and return to your Facebook Timeline to see a photographic history of your recent activities. If you keep your photos private, Facebook is functioning as a stand-alone product that serves you and only you via your Facebook account.
What’s more common is to use Facebook as part of an ecosystem product that connects with other people and other services and products. For example, we may connect another product to our Facebook account and allow it to publish Facebook comments about what we’re doing. I just listened to Red Hot Chili Peppers on Rdio. There, did you see that show up on my Facebook wall?
In addition, Facebook exists as a platform upon which tens of thousands of other products have been built. One of the best-known examples is Zynga’s popular Farmville game, which built an entire business “on top of” the Facebook platform.
Native Apps as Web Products
“What about apps that run on iOS or Android?” you ask. That’s a great question. Apps that you run directly on your device, rather than within a Web browser, are often referred to as “native apps.” For example, Twitter for iPhone is specifically programmed for iOS, the operating system that powers iPhone and iPad devices. As such, Twitter for iPhone is said to be “native” to the iOS platform.
We’ve all used native apps for years on our desktops. “Desktop apps are old school,” you say? Think again. Popular Web products such as Evernote have apps that run natively on every platform you can imagine, including Mac OS X and Windows. Because Evernote is available everywhere, you can use it easily and frequently. It’s part of what makes the product useful and retains active users.
After using apps for a few years, I’ve come to believe that we should think about apps as we think about Web products. Sure, there are inherent differences (some of which make apps feel more like boxed software), but there are also similarities. Let’s examine the differences and similarities, and consider how viewing apps through that Web-product lens can help you make better products and processes.
What Makes Apps Different from Browser-based Web Products?
Web products never have to be installed. Rather, they simply “exist” at a particular URL. Because of this, they are available to every browser everywhere (assuming that some reasonable attempt is made to address any cross-browser programming quirks).
Because the product code lives in one place, rather than being installed on every individual user’s device, a browser-based product can be changed instantly and updated for every user in the world. That’s pretty incredible. A Web product has a single point of distribution to every user, and users only have to visit the product online to experience the latest and greatest features that you’ve developed.
While Web products can be realized (for the most part) with a single body of code, app development requires knowledge of multiple programming languages, UI (user interface) assumptions and conventions, and other details. Furthermore, to create an app that is native to an operating system, you generally have to reprogram the app for each one of those operating systems—Android, iOS, Mac OS X, Windows, Linux, whatever. Even if you are developing a “clone” of a product for multiple platforms, a significant amount of unique design and engineering effort is often necessary.
If this is all sounding like reasons not to develop native apps, then you’ll likely find good company among the school of product designers who believe that Web apps are the only way to go. So, why would you develop a native app?
One of the most obvious reasons native apps may be preferred is that a native app has deeper access to the hardware of mobile and native devices (resources such as memory chips, attached storage devices, cameras, microphones, GPS data, and so on).
Although this assertion is often contested, it’s generally true that native apps perform faster and are more responsive to user input. In other words, they often “feel” better. Also, native apps can more easily be built so they don’t require a data/Internet connection to work. This aspect can be important for users who commute underground, who live in areas with spotty data connections, or who control costs by limiting their data use.
Finally, in some cases your audience may prefer native apps to Web apps for any of the reasons above, or for less understandable reasons rooted in the perceptions of your target audience. They may prefer to buy software and have a sense of ownership, in which case a native app may be a great fit.
Why Think of Apps as Web Products?
Even though building and distributing Web apps is different from building and distributing native apps, and they don’t have identical capabilities, your customers are likely using both. The type of app a person is using is ultimately secondary to the overall product experience that you provide. If your product serves them well on its own, they’ll be satisfied. If they expect an experience that extends across many types of products, then you’ll be challenged to meet or exceed their expectation.
Allowing Web products and native-app products to drift too far apart in your mind can compromise a well-considered product experience. This result would likely be bad for the continuity of your brand and image.
In many cases, some of the same people will be making Web and native products. The release, distribution, and installation constraints of native apps force a development process that is somewhat of a regression to less fluid working methods. You could accept this process and let it be, but I prefer reframing your thinking and treating native apps—as much as possible—as if they were Web products. This reframing can help you think about making your apps easy to change, fast to evolve, and iterating at a natural pace that coincides with how you build a Web product. We’ll visit all of these ideas in more detail later in the book.
While apps may have some unique constraints, challenges, and opportunities, let’s think of them as being the same as Web products. That’s how we’ll be approaching them throughout the rest of this book.
A Unique Opportunity
Web product design is a unique intersection of skills applied to a unique intersection of opportunities. Never before have so many people had access to tools and distribution that allow them to identify and solve problems, and then build such widely-available solutions.
While the proliferation of Web products can make it a challenge to cut through the noise, the opportunity is there for you. People need your perspective. You’ll need to evolve your thinking to accommodate a world of design that is constantly changing and increasingly flexible.
You’ll wear many hats as you learn to make quick design decisions and then test them with your collaborators and audience. You’ll learn to let the output be seen as a means to an end—an ever-changing product experience in which your work is never done.
Therein lies the challenge. Let’s tackle it.

Chapter 2. There’s Work To Be Done
Product design is an intersection point of many principles. Part of its power is that it adds clarity and anchors many disciplines into something people can see, touch, and use. Part of its magic is that these intersection points—the overlapping, weaving, and blurring—are where great product design insights happen.

While most of this book takes a long, hard look at the places where various disciplines meet, it’s helpful to look at each of these independently so that we can imagine the challenges and opportunities they create for product design. In this chapter, we look at the breadth of skills and range of work that can help you create Web products.
Usually when a product designer is working solo, she’s doing most, if not all, of this work, herself. She might be wearing all of these hats and not even realize it.
Of course, there are other possible scenarios. For instance, some disciplines might not be related to the development of the product. In such cases, the overview that follows is useful as a checklist of areas to consider.
And if a product, business, or initiative grows, the designers will probably need to work with other professionals to solve even more complex problems, and they will likely be following many of the principles discussed next.
Create a Meaningful and Understandable Experience
UX, UI, IxD. It all sounds like BS! Let’s look at these abbreviations, the work they represent, and the way they relate to product design.
UX stands for “user experience.” In the world of product design I’ve come to know, “user experience” is about as misused and misunderstood as “brand.” User experience design implies a design of a user’s total experience. In that sense, product design is UX design; however, the inverse is not true. UX design, as it’s commonly understood, does not include the expertise of engineering or marketing. For me, product design is broad and blurry. Still, within its blurry borders are certainly core skills that are common to UX design.
The U is a user or, as I prefer, a person. The X is that person’s experience. It’s the sum of all of her interactions with and feelings about the situations created or enabled by what’s been designed.
Product design tries to create an experience that is both understandable and meaningful. A thoughtful designer looks at the experience from beginning to end over a period of time. He might decide, for example, what is both displayed to and hidden from a person at any given point. He might decide what is asked for and how it is asked. For example, does a person choose from a menu of options or type text into a form input field? The designer might also determine if, how, and when one feature relates to another or connects to other parts of a product.
One piece of the product is the interface that people interact with directly. Even though I prefer “person” over “user,” let’s accept the established terminology of “user interface,” or UI. People responsible for the interface are often referred to as “visual designers” or “UI designers.” However, when the interface involves sound or movement that occurs without the user’s touching a button or screen, the descriptive accuracy of “visual” breaks down.
Interaction design (IxD) is the design of the behaviors and events that compel a person to interact with the product and determine how the product responds. The interface design involves such decisions as the placement of buttons and whether they even look like buttons. The interaction is the behavior of those buttons when pressed.
As our products become more advanced, the separation of these design roles from one another becomes questionable. To illustrate, imagine an audio-only interface that reveals itself only when you interact with it: “Hello, tablet.” “Hi, Randy, what can I do for you?” “Can you turn on the air conditioner ten minutes before I arrive home?” “Of course.” There’s nothing visual about that interface, and the understandability of the interface is intertwined with the person’s expectations of the interaction.
The responsibility to make an experience understandable requires that expectations are appropriately set: the interface elements must accurately reflect their intended purpose. When a person interacts with those elements, the result should fulfill the person’s expectations. So, a superior product design includes behaviors that are either familiar to the person or appropriate to the content at hand—often both.
The understandable experience is one that:
• Sets the right expectations

• Lives up to those expectations

The meaningful experience is one that:
• Solves a problem or helps a person accomplish a goal

• And also delights (if we’re lucky)

Organize Complex Information
IA, another of the initialisms I love to hate, stands for “information architecture.”
The information architecture process involves observing and analyzing complex sets of information, and then designing a system in which they can be better organized, better programmed, and better understood.
Product design often deals with complex sets of information, so providing an organizing principle for that information can—for better or worse—affect the overall product experience. Imagine that you have a wide and varied body of editorial content, comprising both text and images that people submit as part of your product’s use. The way you choose to organize that information—the architecture you build around it—can influence your product in a number of ways, including:
• The user’s understanding of the intended experience

• The user’s access to all parts of the product

• The user’s focus on specific parts of the experience

• The way data is stored in a database

• Which parts of the product need to be optimized for speedy performance

• The perception of a product’s ability to follow through on the promise of its value proposition

Some parts of the product experience are buckets or “containers” for content created by other people. Other parts of the product experience are explicitly designed and generated in full by the product creators. The terminology, grouping, and hierarchy of this information are important to the experience of the product. Creating a suitable taxonomy for this information is important for ensuring that the product is easy to use and evokes positive responses from first-time users.
Balance User, Technical, and Business Needs
Creating products can be a complex endeavor with many different influences to balance. Product management is the glue of the product development process. It tends to stick together all of the disciplines and relate them to each other. I remember once seeing a job ad from a company seeking a product manager who would not only ensure the trains ran on time, but also would help build the track. That’s a perfect metaphor for summing up the role and scope of product management.
Product Management vs. Project Management
Don’t confuse product management with project management, the latter being the process of coordinating tasks and meeting deadlines as part of the actual development workflow. At Etsy, we like to say that “Project management comes for free.” That means that the best engineering managers or designers or product managers are also very good project managers, so it becomes important not to confuse product management with project management.
You see, product managers balance at least three things, and in doing so can help guide the path the product takes. These three things are:
• The business needs of the product—What’s the revenue model, or why is this product important for the strategic goals of the company?

• The technical constraints—These are the development realities that engineers communicate to the product manager or the team. These constraints might be database storage challenges, the time it takes to program, the running speed of the product, the complexity of integrating the code base with other systems, or simply the amount of work that is involved from a software engineering standpoint.

• The person’s experience of using the product—The product manager needs to walk in the users’ shoes, empathize with the users, and balance their many needs. It’s in that role that the product manager is closest to product design, but the product manager is still acting as an overall advocate, whereas the product designer is often acting as the user’s perspective.

There’s some inherent tension between these concerns. The user rarely is aware of, or cares about, engineering constraints. Nor does the user prioritize the business needs of the product’s creators. The product manager does, though, and for good reason. The product needs to be engineered to be reliable and dependable. When it makes its way into the world, it must be compelling to use and able to satisfy the business objectives that will support its ongoing development and refinement.
Create Interfaces and Interactions that Shape Behavior
Next we come to the UI, the user interface, and the visual designer and/or interaction designer who creates it. Within this territory, we design interfaces and interaction patterns that suggest and shape the behavior of the user.
In my mind, UI is synonymous with visual design. It’s what the product looks like. How are the buttons designed? What text is inside those buttons? Is the form input field a square-corner rectangle or a rounded-corner rectangle? Does the navigation bar at the top include a colored background that is brand appropriate, or does it include a neutral background that looks more like the operating system?
Interaction design is more concerned with the behavior of those interface elements. When I click that button, what happens? When I click a similar button, does it trigger a similar behavior? Can I encourage a specific user behavior by placing certain elements of the product interface in different places?
Write Code, and Make It Work
Engineer. Programmer. Developer. All of these terms kind of mean the same thing. This person’s primary role is to write the code to make the product work.

In the same sense that one of the designer’s nuts-and-bolts tasks is to choose the typeface used in the form fields’ labels, the engineer chooses the code implementation strategy to make the product work, and her knowledge about how best to do that is essential in determining the ultimate form of the product. She has likely run into problems and challenges and has formed ideas about how the product can be better, faster, and smarter. In some cases, her comprehensive knowledge of available technology might lead to solutions that a designer or a product manager may never have considered.
Explain Ideas with Language
Writing is an extremely important and often highly underrated aspect of product design. As much as a “show, don’t tell” mindset is the core of product design, some things still need explanation. And that need for explanation can extend throughout the design process to yourself, your collaborators, your bosses, your product testers, and your users.
Additionally, there is a lot—let me emphasize that: A LOT—of writing inside a product. Interface design often relies on text to communicate. For example:
• Navigation elements

• Button text

• Feature names

• Form input labels

• Error messages

Sometimes the best design change isn’t a visual or interaction design change; it’s the improvement of a button’s text or a form input’s label.
Be a Marketer
You have this cool new feature. It’s well engineered and looks great. It elegantly balances business, technical, and user experience constraints. The text within the product makes sense. A person understands what the product is intended to do. The user interface is consistent with your expectations, and it behaves in a way that is true to the product. So what? You need people to use the product or it simply sits there, untouched.
How do people find out about it? You’ve got to be a marketer. You need to make people aware that your product exists and help them understand why they should give it some of their precious time. Driving that awareness and understanding is what we call product marketing.
Product marketing assesses the features, attributes, and positioning of the product and delivers that message to its audience. That audience may be the direct user, media outlets, or other channels that help spread the message of your product. It all depends on the nature of your product.
Product marketing is about the thing itself, the actual software. Product marketing is related to but more specific than general marketing, where you might be talking about the overall promise a brand makes.
Product marketing is about what a specific feature—or set of features or flow or some other aspect of the product—can do, why it’s valuable to people, why they should care, and why they should use it. It involves identifying and exploiting the mediums, channels, and formats that are best for getting that message out.
Do Your Research
Research, in one form or another, is always part of the product design process. At the most instinctual level, you’re designing for yourself, so get introspective and try to understand how you feel about what you’re making. Even if you were designing a product just for yourself, you would still need to understand what your needs are and what problems you’re trying to solve.
Most likely, you’re not designing for yourself. In that case, you investigate, ask questions, and pore over information to acquire a better understanding of whom you’re designing for, what you’re designing, and how to do it. Let’s acknowledge this research as a valuable part of the process. As part of designing, you choose when and how much research to do.
Let’s also acknowledge that research can, and likely should, happen before, during, and after you’ve built a product. What you can learn at different stages of your product design is best served by different types of research. The range of possibilities here is quite wide. Your needs might lead you to:
• Market research

• User research

• Usability research

• Data analytics

The key here is to be asking questions ... often. Chances are you’re never going to get your product perfect. In fact, you’re probably going to get it partially wrong. By asking questions and listening for answers, you’ll stand a better chance of going from wrong to less wrong. And perhaps from less wrong to even-less-wrong. If you’re lucky, you’ll even get some things right.
Value research. Try it, learn from it, and apply it.
Forget Unicorns
I’d like to debunk the unfortunately persistent perception that you can’t wear all of these hats. You can. In fact, in some cases, you must! What about that first product you’re building at your kitchen table on nights and weekends? I assure you, you’ve taken on every one of these concepts. If you’ve already had that experience of launching a Web product, you know what I’m talking about. It’s not easy, but it’s not impossible, either. When you’re able to wear many hats—even if you don’t need to each day—you and your product design will be better for it.
There’s also a persistent notion that designers with a particular combination of skill sets are impossible to find. Usually it’s “designers who program” or “UX & UI design” or some silly bucketing of a subset of knowledge areas that are clearly related and integral to most successful Web products.
The people who think this multi-talent is impossible to find call these mysterious multi-talented designers “unicorns”: the designer as mythical creature running in the enchanted forests, never to be found.
Please erase that limited view from your mind.
Designers with a combination of skill sets and experiences, with deep knowledge of many different disciplines, do exist in the world. I’ve seen them with my own eyes (and built teams of them). This school of design is growing rapidly. What may seem like a shortage will one day be the powerful engine of the design profession.
Why this insistence that such and such combinations of skills are impossible to find or, worse, inappropriate? I’d chock it up to fear (“Do I have to learn all these new skills?”) and uncertainty (“I don’t understand how this works, so I don’t like it.”).
As I see it, we all have many interests. While some fall further outside our professional responsibilities (say, cooks and bakes), others might be related (designs websites, draws typefaces, writes Python code to program OpenType font features). It’s these clustered sets of skills and interests that are powerful in product design. It’s not impossible (as the term unicorn would imply) to find a talented designer capable of sitting comfortably at an intersection point, ready to enthusiastically create digital products that are well planned, beautifully designed, soundly built, and smartly marketed.

Section Two: Think Like a Product Designer

Chapter 3. Story First
Your product, your business, and you are all part of a larger story.
It’s the story of a world in constant change—a story of increasing distraction, ease of communication, concerned citizens, powerful governments, political unrest, and the constant reinvention of the world around us. It’s also a story of human beings and their desire to love, be loved, better themselves, and better the world around them. Somewhere between your audience/customers/users and your product is a story of problems solved, dreams fulfilled, life made easier, or moments made more enjoyable.
Lead with the narrative of your product and never stop telling it, whether you’re talking to your audience, your team, yourself, your investors, or your friends and family (they’re your investors, too). Your story is a clarifying and galvinizing force. Your biggest ideas require it, and even the smallest of design changes deserves it. Like you and me, a little line of code, a tweak to a UI, or an email to a user longs to be part of something larger than itself.

Crafting, telling, and sticking to a story can help you build your product with a sense of direction and purpose. By creating a narrative, you develop a context in which you must understand the end of the story, which can help you write the beginning. In other words, by defining the impact you want your product to have as you first begin working on it, you’re more likely to understand the choices you can make. You can ask yourself, “Am I designing to reach the end of our story?” By sticking to that story, you can maintain a consistency of vision and intent throughout the design process—and across your story arc.
In this chapter, we’ll look at a technique for using stories when designing products. This technique is more than a template. It contains the following attributes that will help you build a product:
• A sense of direction

• Clearly described benefits

• A focus on people over technology

Write the Press Release First
One product development technique that has become quite popular is the exercise of writing the press release for a product as the initial expression of the product idea. The concept is that before you’ve made a sketch, written a line of code, or created specs, you go through this thinking and writing exercise to clarify your idea, step outside of the tiny details, and think about how your product could be described in a compelling way to a person who has never heard of it before.
I’m not suggesting that every good product or every project idea or every business idea is created to satisfy the press or conceived to be buzzworthy and headline friendly. Instead, the intention is that in the course of writing a press release, you will focus your thinking and distill the product concept down to its most important parts.
Why a Press Release?
A press release is a widely understood document. It’s an ideal form for an exercise, even if you’re never planning to have a traditional publicity plan as part of your product launch. To understand why this exercise is beneficial, let’s start by considering what a press release does in normal use.
A press release is an official announcement that’s sent to media outlets such as blogs and newspapers. It contains the basic news facts that allow a media outlet to share the news directly with its audience or motivate the outlet to further research the topic. It’s not uncommon to see press coverage of software announcements that repeat a press release nearly verbatim. Even when this isn’t the case, as with more in-depth coverage, the press release may still be the starting point for anyone who publicizes the news. These basic facts in the release are essentially the who, what, where, when, why, and how components of the product’s story:
• Who is the product for, and who has designed it?

• What does the product do, and what is it called?

• Where will it be used, and where can someone get it to use it himself?

• When should it be used, and when will it be available?

• Why is it notable, and why does it matter to its intended audience?

• How does it fullfill a need, or how does it solve a problem?

Let’s look at a short sample press release for a home automation product. Take note of the presence of the elements listed above.
Today (when), Robohome (who) released String (what) to the relief of forgetful homeowners. String is a state-of-the-art product/service suite that turns any lighting fixture in your home (where) into a programmable, Internet-connected device (what) simply by plugging a String node into a common electrical outlet. You can turn any light on or off from any location (where)—and not only when you’re at home.
Using the String mobile app (how), you can program any light to turn on or off based on virtually any criteria you can dream up. You’ll never again accidentally leave a light on, and you’ll always know when a light is on, even when you can’t see it yourself (why).
String node wall units are available for purchase, now with free next-day shipping, at the String website. The mobile app is available free for all major platforms.
Putting this exercise in the context of a press release makes it more accessible to its writer. Imagine saying to someone, “I want you to write a story.” If the person doesn’t consider himself much of a writer, that sounds like a seriously daunting creative challenge. Now, imagine saying to him, “You need to write a press release.” That’s a bit more tangible. While the result may or may not be brilliantly written, the value of this thinking and writing exercise cannot be underestimated.
The press release makes tangible the who, what, where, when, why, and how of your product. These are essential components to articulate as you make trade-offs and choices that will realize an end result: Does the design serve the “who”? Is the audience prepared to understand the “why” and be familiar with the “what”?
Outcome-Oriented Thinking
The exercise of writing a press release channels your thinking into a form that is outcome oriented. In other words, it forces you to focus initially on the end result of what you’re creating rather than getting mired in the details. Call it the development of a goal, call it creating a vision. I’ll call it smart thinking.
A press release would never say, “We’ve released a new product description page. It has an orange button on the right-hand side that sits just below the name of the product.” What the press release would say is, “We’ve made it easier than ever before to preview the contents of a product’s package and made it faster for you to check out.” There’s no specific design detail described in the release because those details are behind-the-scenes design problems to be solved. To the user, those hidden solutions are framed by this more general, outcome-focused description. Every element of your design should be aimed at realizing that outcome.
Consistency of Vision
Now that we have our story, it functions as a structure on which our product can be built. We must make a product that fullfills the promise we said it would, that offers the value we knew it would. We can’t do that only at the beginning of the product design process. We must do it throughout the design and development process.
Developing a clear narrative, as outlined in a press release, is a way to keep yourself and your team tuned into the idea that you initially wanted to realize. Consistency of vision is difficult to maintain, and simple tools such as a narrative can have a profound effect on the quality and focus of your product.
Describing Benefits and Value
When designers and developers are raring to leap into the process of creation and development, this preliminary step of writing may seem like unnecessary busy work. However, in addition to distilling your concept and simplifying it to its most important parts, creating that press release also forces the writer to think about the value proposition of the product, the why.

Who will care that this product exists, why is it important for them, what does it do for them, and how does it do it? When it comes time to explain your product idea to its potential users, this preliminary focusing of the concept will help you determine what to emphasize in your communications, your marketing, and the initial user experience of the product.
Explain It for the Uninitiated
Press releases are usually written with an uninitiated audience in mind—either the general public, or a press that will detail the story for a general public. This is precisely what we want to achieve with this press release exercise: simple language, concepts distilled into their basics, and verbal brevity. These attributes, too, will help your product along its way when you must explain it to customers, collaborators, investors, and colleagues.
The Elements of a Story
Every story needs a beginning, a middle, and an end. Your articulation of the narrative—in the previous example, a press release—is your beginning. The consistency of product vision is your middle—the meat of your story—which carries you throughout a journey of twists and turns. The outcome is your end product.
At that point, another story is told as your audience of users and potential users become the protagonists, and your product guides them through a new story arc based on the experience they have with your product.
Every aspect of your design should take your protagonists through the story arc that you’ve chosen for them. If you’re delivering information, that arc is going from uninformed, to learning-motivated, to gaining a final answer. If you’re selling a product, that arc goes from curiosity and browsing, to locating a desired item, to final purchase.
Design is storytelling: beginning, middle, and end.

Chapter 4. No Dead Ends
From the earliest days of the Internet, we saw everything presented there as a “page.” Of course, that terminology springs from the printed page that everyone knew so well. The problem with applying this familiar concept to Web product design is that digital products aren’t experienced in a single linear sequence, one static rectangle at a time.
Even today, without realizing it, we often accept an ill-fitting framework for Web products. If we pin our design to an out-of-date model, we’re unlikely to create an experience that feels consistent with the medium for which we’re designing.
Every experience that people have with digital products involves interactions over time, choices between multiple actions, user feedback, presentation of information, requirements for input, and demands on attention. It’s important for us to consider exactly what we are creating when we design a digital product: how it is experienced, how it is constructed, how it works, and the connection between those three factors.
Go With the Flow
Let’s accept a new model for our thinking: instead of a page, we design a flow, a word that implies a looseness of movement and, perhaps, an unpredictable pathway. Think of how water moves in a stream. It may run to the right or to the left of a rock. It may move faster in narrow areas or slower in wide areas. In some locations it may move so slowly that you can’t perceive its movement. Eventually, it reaches a natural destination, its inevitable home, at the bottom of the hill.

Flow as a model also implies the passage of time. Movement doesn’t happen in a single moment. As we learned in our story framework in Chapter 3, an experience has a beginning, a middle, and an end. People don’t experience a digital product in a single instant. People pass in and out of the flow, with each interaction leading to a new part of the experience. If the creator has done his job correctly, flow should ideally go on and on and on, offering more and different experiences over time.

The elements that can appear or occur within a flow aren’t limited to its presence on a specific medium, device, or screen. A person may interact with the flow through an app or online shopping site, but she is also interacting when she tells her friend about her experience or sees a printed ad in a favorite magazine. Each interaction helps that person understand what the product looks and feels like, how to use it, and whom it is for. Each of those moments is part of a larger flow that easily moves from online interaction to offline activity and back. A flow has the potential to go in a variety of directions, change its pacing, and be subject to manipulation and multiple interpretations. Knowing this, a designer can thoughtfully and creatively craft an experience that never reaches a dead end. A dead end is a missed opportunity.
Create New Opportunities
Finding moments to extend flows demands broader thinking. In fact, it demands that you embrace uncertainty and accept that you will not really know where your flow should go next. Often, the next possible destination for a flow will reveal itself only as you’re actually developing the product from your design.
Take a simple sign-up flow that has reached its natural resting place: a completed user sign-up. Where you take that user will depend on what part of the experience you want him to engage with immediately after signing up. You might offer multiple possibilities. You might prefer that he perform Action A if he arrived at the sign-up from Source A, or that he have a choice of Actions B or C if he arrived from Source B.
When you are refining a part of a product experience design, you must always be looking for opportunities to extend its flow. A user should never experience steps one, two, and three successfully, and then get to step four and discover that the flow ends with “Have a nice day; see you later.”
For example, a customer at a shopping site has just placed an order. The natural product flow would seem to be complete and concluded. What was expected was fulfilled. Now what? Ideally, that flow should have the opportunity to continue. But how might that work? Your product could present other items that this person might be interested in. It could display links to articles about the item the customer just purchased. It could direct the customer to a community of like-minded people. The possibilities are as wide as your mind is open.
When you’re dealing with an unpredictable flow, the key to finding new opportunities is simply to open up to the entire world of possibilities. You could present information, ask for input, or prompt interaction. What kind of interaction? You could solicit feedback by asking a person to share her experience, or you could offer the customer a choice of several possible next steps. By presenting those possibilities, you can encourage the customer’s next action in any number of ways.
Once you start to see the breadth of potential options, you can take the design of your product in almost any direction.
Connect One Experience to Another
We know that focus and continuity of outcome are important to the design of a strong product experience. But if you have limitless possibilities for the direction of any one flow, how do you generate focus by choosing a subset of those “limitless possibilities”? The previous checkout-to-recommendation scenario is a good example. If you’re looking to turn a dead end into a not-dead notend, consider connecting it to other key flows—those essential flows that make up the core of your product and already exist in the experience.
Think about filling a glass to the very top with water. Just at the point when the glass will overflow, you put another glass below it to catch the water, then fill that glass, and then fill another and another. That’s what your flow should be like. How can you continually extend the experience so that it remains beneficial for you and the customer?

Some digital experiences do have logical ends. After you sign up for a new service by creating a personal account, that job is done. When you buy an item online and check out, that transaction is finished. Water has finished flowing into the glass. Its path has reached its natural conclusion.
However, you should start to look at these natural conclusions simply as touch points in the ongoing flow. Grab another glass, and start a new flow to pour into the next natural conclusion.
What if the glass has water in it but isn’t completely filled? As mentioned above, you could direct someone who just made a purchase to other products or information. Ask what else you could offer at that point to fill and overflow the glass. How could connecting one experience to another enhance the experience, making it more valuable by combining experiences? You could offer to send a mobile update when the customer’s order ships, or provide a discount for a future purchase, or send tips on how to better use the purchased item.
All of these options extend the flow. The flow’s timeline has been extended by connecting multiple experiences. In so doing, you keep that person in the flow even when she is not actively involved with your product. It adds value for the user and value to your product.
Flows Can Be Long
If we understand that a flow is a set of experiences that people have over time while interacting with your product, we should recognize that “over time” can mean a very long time, indeed. The length, breadth, and depth of an experience are also variables that we can design for. Typically, we tend to think of digital products enabling “fast” or “instant” results, and it is all too common to wrap things up quickly. But what if the experience was slow? What if you could not only design the “now” part of the experience, but also shape future experiences that the person will have while using your product?
If you are creating a shopping experience, for example, the flow may begin with a very quick checkout. But that person now has a relationship with your product, along with an opinion about it. You could come back to him after a week, a month, or a year to get additional feedback. Was the product he purchased durable? How is he using it? You can capture a lot of valuable information over time.
Also consider that you are working on a product that lets people start an experience now that might conclude in the future. Those events could happen now or a decade from now. The user experience can become very long. You have to think differently about how you would create that flow so you don’t accidently create a dead end later.
For instance, I might choose very different tools if I’m planning on accommodating an experience that can unfold over a long period of time. I might choose a very simple technology that seems to be stable and has been around for a long time, rather than take a risk with the newest, unproven technology. I might set up the product with a proven technology for its infrastructure, giving it a better chance of being serviceable and able to easily evolve many years from now.
The important thing is to open up your thinking for everything that might happen between now and the end of what could be a very long experience.
Connect the Dots
Sometimes as you work you will see the connection points between parts of the product experience, and sometimes they will not appear for a long time. The design process is always one of discovery. When we design a product for the Web, discovery is an important part of how we determine what the product actually is. When you reach the end of a flow—the edge of the product—imagine a dot, a connection point. Now it’s time to discover another dot, and so on. There are no ends, only new opportunities to explore. Once you have connected a series of dots, you have a flow without an end. You can design an experience to connect the end point of one key as to another.

When you’ve identified which dots to connect, you need to guide the person across that connection point. It’s up to the designer to help the user to understand, “What am I going to get out of this?” Why should the user continue on?
There has to be a reason for that person to continue with the experience. Whether it’s informative, useful, or just plain fun, the ongoing path you create makes it more likely that the user will stay with you on the journey through your product.

Chapter 5. Remember the Invisible Features
When a user first experiences a product you’ve designed, that person can easily see the colors you’ve chosen, the letterforms of the typography, and the crop of a photograph. She sees a thoughtfully placed button that encourages action and suggests the benefit she will receive by interacting with the button. These elements are visible. They’re obvious.
However, some other elements of a product design can’t be seen. I call them invisible features. They aren’t easily detected, but they are essential to the success of your product and the quality of its user experience. Invisible features are as important as those features you can see—sometimes more so—because of the emotional impact they have on users. As a result, these features must be considered as you design and plan your product.
When a user sees the colors, icons, and text that represent a set of features, she’s experiencing more than the graphic style of the text or the speed of a transitional animation. She is subconsciously forming perceptions and judgments about the quality and reliability of that product and ultimately the people behind it. Her sense of ease or unease, trust or mistrust, is developing. At this stage, her reactions are based on minimal experience, but those early impressions quickly start to cement her opinion of the product. Invisible factors can be steered by your design, thereby improving your chances for success.

Consider a product experience from your own perspective. We all want feelings of safety and trust, excitement and enthusiasm. We want to believe that our expectations will be met and nothing will go wrong. But those aren’t desires that we consciously think about or voice. Imagine walking into a store and asking for a shirt that felt trustworthy. If you buy a shirt and you find out later that it was made in a sweatshop that mistreated its employees, that invisible factor could become very important to you. You might stop wearing that shirt, stop buying that brand, and tell your friends that they shouldn’t buy that brand of shirt either. For another brand with invisible features that would be positive attributes, they’d be smart to make them known. If you were concerned about the manufacturing process behind a shirt, you might check the label inside the shirt for information. This would be a great place for the brand to make the invisible visible.
In this chapter, you’ll learn how to build invisible features such as performance, community, support, and security into your design. Each of these ideas is discreet and distinct, but each is also interdependent and connected to the others. If you can improve performance, for instance, you will stand a good chance of increasing a user’s sense of security. If you fail to achieve adequate performance, you risk losing trust.
Performance
Performance speaks to the product’s quality.
Performance is measured by how people expect the product to work. Users usually come to your product with a set of expectations. Think of the situation like this: If you had the opportunity to drive a high-performance car, you would expect it to spring into motion at the touch of the gas pedal and quickly respond to a touch of the steering wheel. You might not know anything about vehicles or engines, but you would expect this car to operate with a powerful ease and effortlessness, making the driving experience unique, fun, and even exhilarating. If the test drive did not meet every single one of those expectations, you’d probably be disappointed.
The same is true for Web products. A slow website or app doesn’t feel “right.” The user will assume that something is missing or broken or that the product isn’t as good as other products she’s already used. If your software must be downloaded, the speed at which it arrives might be your user’s first experience of the product’s performance. If that download is unbearably slow, that user may instantly form a negative opinion about it, even if your product is flawless in all other ways. Also, if the product is so large in file size or other needs that it causes a device to freeze or display a “no more space” message, the user will become unhappy before she even tries the product.
Speed
Speed is a major factor when customers gauge performance, and it can cut both ways. Speed represents the power behind the product. As you design, you need to consider hardware and software requirements. For instance, you need to be certain that the product publisher will have the server capabilities necessary to respond to requests from many people, and the people using the product will have enough power and memory on their own computer or device to render the graphics, process data, and support the overall demands of the product. You need to be thinking about the range of devices that your product may appear on. Can each of them deliver the hardware performance you need? Then there is the matter of software performance: Is the software engineered to a degree of quality that it will perform well enough to meet user expectations?
Following are some issue to consider, as they can affect the speed of your product and the resulting user experience.
In your design, you can manipulate the elements that affect speed:
• Optimize image, video, and sound assets for size, file format, resolution, and so on.

• Implement animations and transitions in ways that use the fewest processor resources.

• Limit the number of unique elements in your product to improve speed.

In the product’s code, you can find opportunities to increase speed. For example:
• Make conditionals and calculations more efficient.

• Remove redundant database calls.

• Reduce load and wait times by eliminating data requests and processing routines that were part of inactive or discarded features.

• Remember that requiring a client-side code library to fully load before displaying anything in a browser can make a product feel slower to respond because the user waits longer to see something. By displaying your product as it loads, you can improve the perceived speed even if the overall load time remains the same.

• Optimize the app’s ability to recover from unpredictable circumstances, such as intermittent network connectivity problems or the sudden loss of battery power.

On the device a person is using to interact with your product, some local issues can affect speed:
• Storage capacity limitations can make a product feel sluggish. If your product pushes a local device to its storage limits, the slowness, or even bugginess, that can occur will be first experienced in your product and will be attributed to it, correctly or not.

• Insufficient processor power can compromise the app’s ability to perform calculations or render computationally complex graphics.

• The choice of software used to display your product can also influence speed. Have you ever used a site that seemed sluggish in one browser, but much faster when you tried it in a different browser? The browser, not the site, was the culprit, but users almost always blame the site.

The server hardware can have limitations similar to those of the user’s local device:
• Inadequate storage availability affects capacity, retrieval speed, and the database’s ability to address search demands.

• Low memory compromises temporary storage and quick retrieval.

• Limited processing power slows response to the demands of multiple user requests.

Problems on the network connecting the user’s device and the server can impose constraints on such factors as:
• The ability to handle incoming and outgoing requests.

• The availability of cellular data or high-speed data.

• The connection capacity to handle many users making requests at the same time.

Your product may have additional issues based on other product-specific concerns. For example, imagine that your product allows a user to scan a common UPC code with a phone or laptop camera. The quality of that camera and the way it handles lighting conditions might affect the recognition speed for that UPC code.
When you think about planning for speed, consider such questions as:
• Have you cached information that doesn’t change frequently in your database, so you don’t have to make repeated database calls to access that information?

• Should you be using a Content Delivery Network (CDN)? This system of servers in multiple data-center locations is specifically designed to efficiently deliver information to end-users. Because a CDN uses multiple computers in multiple locations—along with many other highly technical efficiency techniques—it is superior to a centrally located server for delivering content to locations around the globe.

• Did your team review images for appropriate optimization for various delivery formats? For example, are you confident that you’re not trying to deliver high-definition assets to a device that has only a standard-resolution screen?

• How could you reduce the number of database requests on each load of heavily used views, while not negatively affecting the product experience?

• If you quickly hacked together an idea, and learned from your audience that it works, should you refactor the implementation to be more efficient?

All of these issues and questions have everything to do with fast, efficient delivery—you want that as much as your customers do. Yet it is very common to design without these factors in mind. In some ways, that’s only natural because early in the design process you’re probably more focused on just getting the product features to work. Or you may be testing the product only on your in-office Wi-Fi network and neglecting to try it on an overworked cellular network. But to guarantee a fast, positively perceived user experience, you must test your creation in as many varied and difficult conditions as you can dream up. No matter how much you optimize, there are always more ways to accelerate your product.
I mentioned earlier that speed can cut two ways. A product that is too fast can generate as much user unease as a slow product. Imagine that you are making a big purchase online, and you click the button to confirm your purchase. If the purchase is completed instantly and there’s not enough visual feedback, you might not have a lot of confidence that the transaction actually took place. The act of waiting in an experience like this helps create the impression that a more complex action took place than a lightweight product interaction.
In general, the heavier the importance of the exchange, the more carefully the pacing should be considered. When people are dealing with money, health, and other weighty issues, speed can be eased off a bit. I recommend a simple exercise. If the interaction is something you’d take a deep breath before completing, then take that breath! Use that breath as your measurement for a reasonably paced response time. Click. Deep breath. Response.
How can you make speedy performance visible? From time to time, you might tell your users how quickly your product works—any quantifiable value can work. You can gather endorsements from outside parties that speak well of your product’s performance (such as with a quote about how quick it is). Or you can render speed metrics that are relevant to your audience, such as “this search took 1.872 seconds.”
Reliability
Reliability is another important part of performance. It’s characterized by a product that functions consistently, is free of bugs, doesn’t crash, and fully loads every time. Its buttons respond each time you click them, and any gestures on a touch screen feel natural and appropriately responsive. That is, they accept your input but do not capture accidental actions.
Addressing these issues means fixing software bugs, and it’s best if the fixes are made before the release. If bugginess is reported after release, you must be able to respond to it quickly. (Customer support is another component of reliability that we’ll discuss shortly.)
Another aspect of performance and reliability is consistency over time. Your product must be able to accommodate change. However, understand how change feels to the user: a product that changes too often may convey unreliability. Users want to do tomorrow what they did today, and do it without fuss or confusion. Constant change can be upsetting. At the same time, the longer the product has been around and the longer the time between changes, the more upsetting a change can be.
Change may also make the user believe that something was previously amiss. Without an explanation, the user does not understand what you are doing—even if the change was a big improvement. We’ll talk more about communicating the value of change in Chapter 11.
Community
Increasingly, there can be an unspoken assumption that when a lot of people are using a product, and/or the product has been around for some time, it is more reliable, efficient, and supported. It’s like seeing a long line outside a restaurant: The food inside must be fantastic. This may or may not be true, but that’s the perception.
An established, enthusiastic community gives new users a sense of security, assuring them that they are making the right choice. It also reinforces a sense of belonging for longtime customers. So you need to find a way to make the concept of “community” visible to your users.
Community actually has two parts. One part is your internal community. It can include customer service, industry and business partners, and the people who build the product (that’s you!). Consider who and what you can assemble to demonstrate your collective powers, and then promote the benefits of those collective powers to the people that use or might use your product. Can you find authentic ways of calling attention to your internal community in the product experience? For example, you might send a reminder email for the user to try a feature but have the email signed by an actual member of the team that worked on creating the product feature.
The other part of community is the external community. This community develops over time and is probably the one “invisible”feature that you have the least control over, as it tends to grow organically. The biggest source of this external community is your growing pool of customers. Find ways to show them getting involved with your product, such as by blogging about using it or talking about it on social media.
For example, if your product tracks footsteps and other physical activities for the user, in addition to providing personal reports, you could total all of the steps walked by everyone in the community: “We walked 142,000 steps today!” Sharing the positive reports with everyone encourages the group to walk even more, and the amount of success you can share tomorrow and the next day visibly grows and grows.
Another source of external community is the forums—created by people not connected with your company—in which your product is warmly reviewed. Direct people to view these complimentary forums. Also, make a lot of noise about events or articles where your product will be featured. Capture and promote what your community is saying about your product in social media, on blogs, and in conversation (if you can). The idea is to create the perception that a lot of people are already talking about and using your product.
Consider, too, that different people have different feelings about community. For instance, some people feel more secure having their money in a big bank. Some people get more security as a member of a small credit union. So remember that a big community is not what everyone is looking for. A solid, welcoming, trustworthy community will work for everyone, though.
Support
Support is the availability of resources, people, and/or information that can address a problem if it occurs. The support you offer needs to be solid and easily available. Think about how it feels when you get great customer service—when the clerk says, “It’s OK if you don’t have your receipt. We can offer you store credit or a refund; which would you prefer?” That moment feels great! How can your business create that same feeling for your customers?
Support is necessary in a host of situations. The product might be buggy, the customer may not have understood instructions, or she might want to order something different. Support can help resolve product misuse or abuse, inaccurate transactions, unwanted or unexpected messages, or a thousand other problems. It’s tough to plan a support system that is comprehensive enough to address everything, but if a responsive system is not in place, customers will definitely feel it. Consider this: If a user is having a problem and then finds your support inadequate or unavailable, her unhappiness quotient didn’t just double; it probably multiplied many times. And if you are having any other product problems—with performance, community, or security (which we’ll talk about next)—bad support just amplifies your troubles.
Support can take conventional forms, such as a toll-free phone number, a website, or an online chat. But you can also provide video tutorials (or direct customers to third-party vendors who produce tutorials on using your product), participate in forums, or contribute to blogs. You can be available to answer support queries on social media, or even actively monitor social media and offer support proactively. You might schedule real-time events and workshops to support your community in person.
It’s not enough just to have great support, though; you also have to make it visible through your marketing and in your product. A simple way to do that is to offer it frequently. Perhaps your main screen includes a blurb that reads, “Need support? Just ask!” Even if users never take you up on the offer, just knowing that support exists builds their confidence in your product. Consistent support builds a good reputation over time.
Customer satisfaction reports provide a metric that is widely respected. Track these reports and share them with customers. Other metrics may be trackable and sharable. Wouldn’t you be proud to say, “Ninety-nine percent of customer support inquiries are resolved within 15 minutes”?
Security
We want people to feel confident using our products. We want them to know that we have their best interests in mind and that we respect users and any access we have to their information.
But the invisible feature of security goes beyond that. It also means providing the confidence that we can prevent and police fraudulent behavior, such as hacking, theft, and so on, and that customers’ credit card numbers and other personal information is stored safely. This factor is hugely important for any products that deal with financial or medical records—anything private, for that matter. People also want to feel secure from bugginess, and when they do have a problem, they want to talk about it with a human being. They do not want to feel that product security is on auto-pilot.
Security relates directly to a sense of control. If a user feels that things are out of his control, he will not enter into a relationship with your product.
The absence of security can quickly lose current users and severely limit new users. Any gaffs in security, however small, can have significant ramifications. I may have a product that I really love, but if my information does not seem secure, I may quit using the product I prefer and switch to a lesser one that has better security.
Several visual cues can be used to imply security. You’re surely familiar with seeing an icon of a lock or a safe on a checkout page. Although they are not required, don’t underestimate the potential power of such cues. However, when misused, a cue like this (suggesting security for a product that is later revealed as insecure) can instantly destroy trust, which might never be regained.
Invisible No More
Because performance, community, support, and security are invisible, they are easily overlooked. But when they become visible by their absence, their importance becomes too clear, too late. Each of these invisible features should be designed as carefully as the visual elements of your product. If you fail to address even one of them, be sure that you made a conscious choice to do so and that the omission was not made out of ignorance or disregard for the customer.
A side note: The more positive emotional connection between the user and your product, the more forgiving that user is prone to be. For instance, a leading social media outlet may suffer a security breach, and although users are momentarily alarmed and annoyed, they are unlikely to drop the service because the desire for that product doesn’t go away. For a newer product, one that does not yet have that emotional connection, the relationship with users is much more fragile.
You build trust equity over time. If you do a very good job most of the time, customers will cut you some slack when you do make a mistake. But you can’t do that very often, and when it happens, you have to rebuild. You can recover gracefully only so many times, especially if you have a competitor trying to lure away your users.
Certain unanticipated situations can cause you to miss the advantages provided by well-designed invisible features:
• Designers moving from website design to Web product design can tend to underestimate and under-design support and security features because they haven’t previously had to deal with these features.

• Load can be underestimated, thereby making your product seem buggy.

• Customer support has to be timely. If it is not, the slow (or lack of) response multiplies the user’s negative experience many times over.

Look at your product through the eyes of a person who is frustrated when things are slow, stops using an app that crashes, or doesn’t trust a site with a publicized security breach; also look at your product as a customer who responds to a feeling of community with your product as well as feels like a responsible user of customer support. Make design decisions to create an exciting—and dependable—product experience for that person, so she can use your product without ever worrying about the invisible features. That’s your job.

Chapter 6. Effective Over Clever
The key word for this chapter is intent. What is your intention for a product, and what is your user’s intention for it? Every other consideration is secondary.

In every Web product you create, you should prioritize effective over clever. As you probably already know, sometimes the equation gets reversed. During the design process, you can easily want to surprise and delight the user. So you create a design element—an interaction pattern, a naming scheme, a symbol, and so on—that is fresh and extremely inventive. However, the cleverness of your creation obscures the intent of the product. And the cleverness of that first impression doesn’t hold up over time—and I don’t mean over years; I mean over only the first few moments of use. After that first rush of newness, if the intended value of the product is not clear, or the functional intent isn’t obvious, the novel idea means nothing.
Imagine this moment. A new app you’ve installed promises an elegant and easy way to capture simple notes as text. You’re presented with a blank white screen and a keyboard, and you start typing. So far, so good. But when you finish typing, now what? How do you save your note? How do you create a new note?
In this example, suppose that the designer associated the Save action with an upward swipe from the bottom of the screen—the same gesture used to scroll through a list of items! It’s a clever intention, but perhaps too clever. Clever solutions have their place—and we’ll get to that—but they should always serve the effective use of the product.
This chapter will help you focus on intent and evaluate it as a prioritization filter. You will learn how to edit out the creative clutter that gets in the way of user understanding and product functionality. You will also discover that you can create products that are both effective and clever.
Recognizing Clever
What cleverness factors work against the intent of a design?
Unclear Naming
Typically, when you are introducing a new product or trying to attract new users to an existing product, clever language just puts more hurdles in the way of potential users. Every conceptual leap that you ask users to make reduces a product’s potential for success. Understanding should be the result of one cognitive process, not several. That is, any language or naming scheme within the product should be descriptive rather than suggestive or metaphoric, especially when you are describing core features and elements.
Sometimes designers create new terminology for a product that isn’t easily understood without explanation. For example, imagine a product that allows you to send a message to many people at the same time, and it’s called Signal. That name does not convey the product’s intent; better to call it Broadcast, which immediately makes the product’s intent clear.
Over time, with any product, it is possible to apply a vocabulary that is based on the experiences people have with your product and allows them to acquire a deeper understanding of that product. A great example of new vocabulary that emerges from product use is retweet: the action of sharing a tweet that you’ve seen in your Twitter timeline. The term was started by the Twitter community and later incorporated into the application itself. In this case, an invented word was integrated into the product, but it wasn’t confusing. Its use had already been established by the product’s users.
Does this mean that designers must produce dull, pedestrian work? Of course not. But the cleverness or “extras” that you add to a product should be like a little salt and pepper sprinkled on a well-prepared dish. They can add to and even improve the recipe, but the seasoning should not be a main ingredient.
Newness for Newness’s Sake
Consider again the earlier example of using a swipe action to save a note. This kind of design excess is common in many programs and apps. What if a designer, in an effort to create something fresh, instead renames that Save action as Done? “Done” may describe a state of being, but it does not specifically describe what the user wants to do. When you’re done, are you exiting, saving, saving and closing, or doing something else entirely?
It’s natural when a creative person wants to invent something new. But what he can miss in that inventive moment is the opportunity to build on the knowledge that users already have. Part of a product design strategy is bringing the user farther down your current trail, not returning him all the way back to the trailhead to begin again.
For example, consider the concept of radio buttons in an app or program. Most users already understand that by pressing one button, they are making a single, exclusive choice. If you abandon that experiential knowledge and introduce a dial or some other selection gizmo, your product must work even harder to help the user understand its intention. The clever design choice works against intent.

Pressure to Create a Marketable Product
The need to creatively market an updated product sometimes pushes designers toward overly clever choices. It is possible to wave around phrases like “new and improved” to cut through the noise of the marketplace, but once your product has the user’s attention, its “new and improved” features must absolutely support the product’s intent. Otherwise, they will simply challenge and frustrate the user by making a familiar product confusing and unnecessarily complicated. Your “improved” product will be seen as gimmicky, not valuable.
Personality Mismatches
Every design feature must consistently fit the personality of the product. Consider a first-of-its-kind app that helps you understand prescription drug interactions, a very serious topic. If the designer, in an effort to convey healthiness in her color and type choices, instead inadvertently creates a childlike feeling, the app’s intent is derailed. A very straightforward, simple design would be a better choice, serving to convey the seriousness of the topic and the straightforward intention of the product.
Now consider a weather app. There are lots of them out there already. The weather reports presented via various media are very familiar to most people. It’s a commodity product, so differentiation through style may be possible as well as strategically desirable.
It would be safer to add a new personality or twist to a familiar domain like weather, as long as the novel personality will resonate with the intended audience.
Correct Action, Wrong Application
The ability to make swipe gestures on touch screens is a good example of a novel or clever product feature. The idea of dragging a map from side to side or up and down with your finger is totally intuitive. You do it once and understand it completely. That sort of design feels like no design at all—it just feels inevitable. Those moments are when a design is most effective.
However, that swipe gesture does not translate to every application feature. It would be confusing to assume that a user would intuit that she should swipe her finger to the left to stop a file from loading, for instance. In that context, the swipe doesn’t match up with any previous user experience.
Problems arise when interface designs:
• Look like they should behave one way, but behave in another way.

• Are so new that they create more work than would a more standard interface.

• Become difficult to explain with language. (Imagine a friend trying to tell another friend how to use your product but being unable to describe it.)

• Solve for every single possible thing someone could want to do, at the expense of doing any simple action well.

• Rely on unclear symbols or text.

For example, some time ago at Etsy, we were building a feature that would allow members to connect with one another by following another user’s interests and activities on the site. This relationship would enable users to view items that another user liked, along with all of her activity. The language and the conceptual framework for describing those features came down to two possible directions:
• We could name it for the action: Following. You would be a follower of other people whose taste interested you, and you would have a following of people interested in your taste.

• We could explain what you would see or create, and call the result Circles. (This idea predated Google’s product with a similar name.) You could place someone in your circle, or other people could place you in their circles. The action was “to circle.”

We ended up launching a product that we called Circles, and with that name, it turned out to be quite confusing. We should have focused on the core activity—following—with which people were already very familiar.
We tried, unsuccessfully, to change people’s mental model. The distinctiveness that we were trying to create by using a unique feature name was already present in our product: that is, Etsy content is unique, and giving a feature a unique name may actually prevent a user from getting to that unique content. Software that allows you to connect with other people is important, but it is not unique. Following is what happens. We just needed to accept that. Eventually, we renamed the feature and the actions associated with it.
Turning On Your Filter
The designer’s role is to reduce a product design solution to an idea that’s as familiar and understandable as it can possibly be and still ensure that the product works as intended. Your goal should be to make sure that your design is usable and, therefore, is used by its intended audience. Products shouldn’t be epically creative, or try to break perceptions, or ask a user to consider a whole world of new.
Your usability filter should be turned way up as you design. Every design choice you make should be viewed through that strict filter. Does this choice help the user? Does that choice improve her experience? Does it throw elements in her path that waste time and energy? (If so, the feature also wastes your time and energy.) Stay focused on your primary intent.
Sometimes the very best design answer is no design answer at all. Have you ever worked with a writer on a project and, when you were done, felt that the project had too much text? That’s because writers tend to solve problems with words.
Designers are inclined to do the same. They tend to solve problems by over-designing features. It takes a selfless, critical eye to avoid over-designing your product. Just let it be what it wants to be.
Obviously, you shouldn’t settle for bad typography or poor design. But if you are designing a screen that offers the user three choices and then expects them to click a Submit button, you needn’t create a completely new design for this common activity. Start by designing what is already familiar to the user (a picture of that scenario probably popped into your mind as I described it), and before you try any other design solution, see if the standard solution will work for your product. In other words, un-design the experience before you design it.
Always remember that the cleverness should be in the product’s concept, not in its execution.
Backward Satisfaction
But what about creative satisfaction and the joy of being innovative? When you’re designing products for the Web, a lot of the pleasure you will receive will be in the form of the reverse satisfaction that comes when a product is successful and hordes of people use it. For me, it is exciting to see people successfully using a dashboard that I designed, for example, and I’m proud of how well it works. We become more satisfied with our design choices as the product matures and as everyone—users and designer alike—gets to know it better.

The creative joy isn’t in the cleverness of the product; it’s in the use of the product.
Such feedback doesn’t occur in just one moment. It continues throughout the product’s flow. Web products are never done, so nothing is precious and everything is subject to change. This constant need for change means that we are always getting new feedback, performing new testing, and getting opportunities to devise new, creative ideas.
There is a massive body of work that you and your collaborators build when designing and executing Web products. You make something and test it and throw it away and build it again. Part of your ongoing satisfaction will also come from your cumulative learning.
Is Clever Ever Good?
When all of the nuts and bolts that execute the design are in place, and when everything is operating properly, then you might consider adding an element that feels clever, or fun, or different, or whatever you would like to call it. For that feature to be effective, though, your user shouldn’t even notice it. It has to support the intent of the product, not battle with it for attention.
Look back at the first illustration in this chapter.

“Let’s do it!” was too clever for its own good in this case. So where might an interesting choice like that work?

When the context around the clever UI is made clear, it’s better set up for the user’s success and understanding. It is safer to apply it when voice and personality are least off-putting (in this example, as part of a marketing message and at the beginning of a flow). It is reasonable to expect that most people would not be confused by it there. In contrast, a similar solution in the context of a complex view with many other interface elements would probably be inappropriate at best.
From time to time, a novel interaction (which also serves the product’s intent) may inspire an entire class of other products. The initial learning curve may be overcome by many users because the ultimate utility of the interaction is sound.

Chapter 7. Carrots, Not Sticks
It may sound obvious, but it’s essential that we, as designers, respect the people who use our products. If you’re not solidly on their side, you’re designing wrong and doing wrong by them. You might say that this shouldn’t have to be said. But unless your design choices reward people for using your product in the way you intended—and in a way that benefits them—you are not their true advocate. In fact, you might be punishing them, which is unlikely to make them love your product.
As you’ve learned, designing products for the Web is very much about designing the experience. Our design decisions shape how users behave, how they go from inaction to action. Their perceptions, emotional responses, and decisions are guided by the information and structure we provide. We want to lead users down the desired path toward a good experience for them and a profitable experience for us. Our product will be at its best when everyone’s goals are aligned and mutually beneficial.
The carrot-and-stick metaphor is old but apt. You can make a donkey move by hitting it with a stick, but that negative motivation does not make the donkey want to move. In fact, he might want to kick you! However, if you tie a carrot to that same stick and hold it in front of the animal, it will move forward of its own accord. Even if that carrot is always held just out of reach, the perception or anticipation of that reward is positively motivating.
Our designs need to provide goals that users can aspire to and understand how to attain; those are our carrots. Anything that gets in the way of a user’s success is more punishing than encouraging.
Shaping Behavior
Training is all about shaping behavior. When you train a dog, he might get a treat for a desired behavior—say, stopping and sitting at an intersection. If he does not stop and sit, a common technique is to switch to another command that he consistently obeys, reward that success to get him back on track, and then repeat the stop-and-sit command. This technique switches the animal back into positive reinforcement mode.
People are not donkeys or dogs, of course! However, the point is that you are in charge of their experience with your product. If you want people to love your product and recommend it to others, you must always be offering positive reinforcement. Each of the following strategies will increase the chances of your success and the success of your customers. Test your product early and often, and use your design discretion to determine what’s best for your product and the people who use it.
Encourage the Intended
Remember to keep those carrots out in front. Lead people to the answers they want. At the start of their experience, show them examples of what you want them to do. Remember that at the beginning, the user hasn’t yet had the opportunity to be rewarded, and she doesn’t yet know her goal.
Imagine that I download an app for my tablet and get a brief overview of the product. It immediately tells me three things that I need to do to use the product successfully. Let’s say that the app will organize my photo library by person. The overview might display a plus-sign button that allows me to select the people I want to identify. Then another button appears that, once pressed, will give the product access to my photo library. Finally, the product allows me to look at its suggestions to verify that it has correctly identified and organized my photos.
I don’t need to know anything else about the product to achieve success. That’s an important goal for the product designer: to reward the user with success from the earliest possible interactions. If the app had only shown written instructions on the screen, I might not have understood them or might have thought they were too time-consuming to read. Or maybe I just couldn’t see where the experience was taking me. The designer would be inadvertently punishing me after I took the time to download his product. I would get no benefit, and he wouldn’t get a customer.
Make Implicit What Is Intended
Instead of (or in addition to) explaining your product, your design choices can also imply what is intended. Maybe the button for adding people in my new photo app pulses. That draws my attention and encourages me to interact with that button first.

Consider how you can carve out a clear path for your users. The cues you set out depend greatly on the sophistication of your audience, so you may need to be both implicit and explicit. Explicit cues might take the form of emphasizing through design and language what action is desired. Implicit cues might include removing all possible actions other than the desired action.
Make Explicit What Is Intended
Another option is to show explicit examples of the goal. Rather than staging the experience, you might start the user experience by showing how other users have achieved their goals. With the photo app, you could share the photo libraries of a few people so that the new user can experience the product through models of how it can be used. It’s always good to offer a number of examples so that the new user can compare and contrast, as well as see how the technology can be used in different ways. Singular examples can be challenging, particularly if there is demographic diversity among the people who use your product. You don’t want your examples to feel exclusionary.
Be Nurturing and Be Encouraging
All along the way, offer encouragement and feedback when the user does what you want him to do. With multi-step processes especially, we can reward success at each step. For example, maybe a status bar could show the user’s progress through the setup process.

Or maybe simple messages appear: “You have now finished Step 1” or “Almost done!”

Or a feedback loop with positive reinforcement from a network of other people could encourage the next intended action.

Little rewards along the way orient the user in his progress.
Studies have shown that dopamine releases occur when our brains experience a reward. That chemical release gives us a feeling of satisfaction and elation. Though the feeling might be short-lived, you’re likely to subconsciously remember its effect and crave it again. Have you ever refreshed your email inbox or revisited a social-media activity stream, hoping that a new message would arrive? If so, you know the power of these small bursts of satisfaction.
Discourage Unintended Behavior
Some people will intentionally try to misuse your product (see “When Sticks Are Appropriate,” in this chapter), but there will be times when a user will unintentionally head down a wrong path. The easiest way to prevent this is to remove the opportunity for error in your design. If you want a user to select only A, then gray out choices B and C, or better yet, don’t make them visible at all.

You can also show examples of what is not intended (although positive examples usually work better). For instance, you might show what happens when someone tries to add a snapshot of his pet to the photo library, when the software is designed to recognize only human faces. Perhaps an error message or sad face appears.
You can also describe what the product will not do. Say the app can also identify photos by where they were shot. If the user is supposed to add the city and state or ZIP code, you could show an example—“New York City, NY” or “10010”—next to an example of what won’t work—“NYC,” for example.
Reward Intended Behavior
When a task is successfully completed, you want to use simple rewards to encourage people to repeat that behavior again and again. If your product’s social network page wants users to share photos, and your user complies, he might be rewarded with a notification every time someone comments on his photos. The smart designer will send that notification but not include the comment’s content. In that way curiosity is likely to drive the recipient back to the network site, where he might comment on that comment, which will in turn cause his friend to revisit, and so on. It’s all about positive reinforcement.
Once rewarded, behavior becomes learned over time and repeated. So reward what you want repeated.

You can also reward good behavior through game mechanics, which basically use rules to encourage people to become engaged with gameplay. The airline industry has been using game mechanics for a long time, offering aspirational perks for customers who select their “game.”
For instance, airlines may reward frequent flyers for their status or their amount of use—normal member, advanced member, or expert member—resulting in corresponding benefits (free drinks, additional checked baggage, free trips, and so on). Instinctually, a person at a lower level will want to move to a higher level and receive better benefits. The airline might offer interim and immediate rewards for people between stages to keep them moving up and using its products more often.

Another way to reward users is to give them access to information that is inaccessible to others. With our photo app, I might be allowed to unlock additional features, such as sharing private photos with others, or be given a code that unlocks additional storage. Perhaps I’d gain the ability to edit my photos or fine-tune facial-recognition features. You can also offer customers priority treatment, processing their files faster or giving them 24-hour customer support. You might publish the names of top users—praising them in the public square, so to speak. As you can see, this is an area where you can get very creative by offering perks that are attractive to your specific customers.

But it’s not enough just to offer these pluses; you should also make these advantages publicly visible to other customers. Doing so introduces a social component to your product—as well as a subtly competitive element—so that others can see that you offer benefits to people who use features to the fullest.

Revealing to a person her current status compared to the status of others—and then pairing that with an immediate action she can employ to change her status—makes for a powerful information-to-action design. Foursquare does a great job of delivering this kind of feedback in context. Check in at a location, and Foursquare will show you who is “mayor” of that location, how many times he’s checked in, and how many times you’ll need to do so in order to become “mayor” yourself. They reveal a status that you don’t yet have but make it clear what you would need to do to attain it.

When Sticks Are Appropriate
From time to time, you will have to contend with users who are intentionally misusing your product. Ideally, your product should be designed in such a way that misuse is impossible. But when misuse happens, aside from providing great feedback for improving the design of the product, it needs to be dealt with right away.
When people use your product incorrectly, it can create a less-than-ideal experience for other users. Let’s say you’ve created a product experience based on vintage portraits. Users can upload and share images of old photographs they’ve found—full images, details, restoration notes, and so on. Say a user starts to upload photos of vintage bicycles instead of portraits. What should you do?
Unintentional Misuse
Consider first what that person’s motives might be. Perhaps he did not fully understand your rules for use. In that case, your instructions may need to be improved. Alternatively, you might just contact that person and ask him to take the photos down. Or you could just take down the photos yourself.
You might also consider developing a more agnostic view: Maybe users would enjoy seeing photos of other vintage objects. But that choice can become a slippery slope, and one that you will have to police almost constantly. Better perhaps to require users to stick to the rules, unless you are prepared to amend them.
Wrong Audience
In these cases, the misuser isn’t trying to be malicious but has accidentally come to the wrong party. If you created an app for doctors to exchange information, and somehow, a non-doctor gained membership, thinking it was a health-information site, you simply need to remove that member. The app will not at all be what that layperson wants, and her presence might create a bad experience for your core users.
Bad Actors
These are people who are intentionally misusing your product, sometimes for illegal gain. Anticipate that this will happen, and have strong policies in place to foil such efforts. These people may interact with your legit members in unhealthy ways, harassing or even cheating them. This situation needs to be resolved right away, so have a plan in place.
It all goes back to your choices: How can you design out such break-ins? Fixes can be internal—the product code could be strengthened, for instance—or external—a feature could be added that allows users to flag inappropriate content or to report a bad user.
Specific Sticks
When a user simply refuses to comply with your rules of use, you can:
• Revoke membership or use privileges.

• Suppress features or limit access to features. This is a user time-out, so to speak. That person might not be able to post messages or send texts for a specific amount of time.

• Revoke features or the opportunity to receive premium features.

• Show all customers how bad users are handled. This is a powerful stick and should be used with caution. The idea is to create a sense of safety within your product, not fear.

As a preventive measure, perhaps you can periodically communicate to users some relevant points of your policies (which most people never read, anyway). Breaking the policies down into single points, or phrasing them in simpler ways, is a proactive way to prevent bad behavior, intentional or not.
Stay Positive
If you remember one thing from this chapter, it should be this: stay positive. Using direct and indirect means, explanation and exposition, and reward and incentives, encourage the kinds of actions that will make the product experience fun and productive for the people using it. They’ll be inclined to use the product more and to tell other people about it, and they’ll become valuable contributors to the experience you create as you build a successful Web product.

Chapter 8. Ship Early. Ship Often.
Creators traditionally spend as much time as necessary to create the best possible product. Then, only when it is completely finished, will they share it with others. As with a bust on a plinth, the intention is to unveil a flawless, fully realized artifact to the world. This attitude grew out of the non-malleability of the resources that produced tangible products.

But with product design for the Web, we have almost complete malleability. Changes can be made, and they can be made frequently. We can adjust our ways of thinking to become more flexible creators, and creators of flexible systems. We can build on the strength of the medium and embrace early, frequent, and repeated changes for the benefit of the people using the products we design.
The reason for building with frequent changes is simple: We create living products. The world that surrounds them is constantly changing, the people who use them live in that world, and our products need to change along with them.
One of the design books that most influenced me is Practices of an Agile Developer by Venkat Subramaniam and Andy Hunt (The Pragmatic Bookshelf). I suggest that you spend some time with it. Replace “developer” with “designer” and the book holds up like concrete.
In our malleable world of product creation, we’re often encouraged to “ship early, ship often,” a concept that is derived directly from so-called “agile development.” This strategy has taken on a life—and developed into an industry—all its own. It is best expressed in the “Manifesto for Agile Software Development”—a document published in 2001 that is as relevant now as when it was written, perhaps more so. (See www.agilemanifesto.org for the full text.)
This manifesto urges us not to jump from the starting blocks directly to a completely designed product and then walk away without first getting user feedback. The time, resources, and energy expended to work like this are wasted, no matter how careful or skilled the designer is if human feedback is not at all part of the process.
Instead, we should create designs and share them with peers and customers, consider their feedback, adjust and redesign, and repeat the process over and over again on the way to developing a whole product. We should build quickly but responsively.
In other words, ship early and often. There’s much to gain from doing so.

Manifesto for Agile Software Development
We are uncovering better ways of developing software by doing it and helping others do it. Through this work we have come to value:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more.

http://agilemanifesto.org © 2001, The authors of this manifesto have stated that this declaration may be freely copied in any form, but only in its entirety through this notice.

Small Changes, Large Impact
A large quantity of lead bullets has a greater impact than one silver bullet—that is, many smaller gestures have a much greater cumulative effect than one grand gesture. Who knows if that one grand idea is any good? What if it fails? Then what do you do? Do you have other possibilities at hand and ready to launch?
Very early in the design and thinking process, we should be making things frequently, presenting our designs to peers and customers, and then tweaking and rethinking to create more designs. The creative process is not a static exercise in which we work alone. It is a living, breathing process that, over time, grows the best products because it directly benefits your ability to make creative decisions and collaborate.

The Rewards of Frequent Collaboration
When you constantly collaborate with peers and customers, you receive gifts in the form of feedback. Don’t treat ideas as precious commodities that you must save for the big reveal. Ideas are cheap and easy; it’s making them happen that’s valuable and difficult. Input from other people makes those ideas even more valuable.
Sharing should happen often—as often as every few hours. Pursuing this mindset ultimately creates an environment in which you and the people you are working with are all in a state of continuous collaboration. The need for many interim deliverables is gone. You reduce the number of situations in which a large mass of work is created over a long period of time, and then needs to be approved all at once. For people who have never worked this way, it can be a challenge. When you practice a frequent-sharing way of working, the benefits of fewer disagreements, betting communication, and faster progress will outweigh the burden of altering your working patterns. It will, with practice, feel normal.
Everyone’s efforts should be directed at making the product better. You want to ensure that design skills and creative energy are all going into the product, not into unnecessary—and unnecessarily fancy and polished—presentations.
Saving Time and Energy
Make the least possible investment in communicating an idea. Don’t suffocate the process with Photoshop renderings or laboriously detailed sketches. Invest just enough time in your sketches or descriptions to communicate the essence of what you are trying to do. When you are trying to validate an idea, the simplest method is always best.
If you spend two weeks laboring over a pixel-perfect rendering of a new tablet, for example, and you show it to the engineer and she tells you one minute later that such a design is impossible, you’ve just lost 14 days during which you could have been collaborating with her and improving your original idea or generating new concepts. A five-minute pencil sketch shared with the same engineer would have gotten you to the same place much sooner.
Remember that at this stage your goal is functionality, not polish. Share the idea, use it yourself, take it apart, and put it back together, over and over again—and do it quickly.
Getting Early Feedback
Getting early feedback on your designs validates your efforts. If a new app feature doesn’t make sense or isn’t wanted by your customers, early feedback stops you from wasting time and energy developing it. Also, asking sooner rather than later keeps you from getting off track, and it immediately brings other people into your process.

There’s an interesting marketing technique called false doors that can help you test a product idea and gauge the interest of customers. You share your idea (in a semi-concrete way) with potential customers and collect their feedback. Say that you want to test your idea for opening a pizza parlor in a certain location. Will there be enough traffic and interest? To find out, you create a simple sign that reads, “Pizza: $2.50 per slice,” and for two weeks, post it in the window of the storefront where you would like to locate. If people enter the vestibule, they will see a “coming soon” notice and be able to leave their email address so that you can contact them when you do open.
You haven’t made any pizza dough, employed anyone, or made any significant investment; all you have done is gather interest. If after two weeks, only 20 people entered, you know that this might not be the best location, at least for this type of business. If 200 people came in every day, you know that your idea is valid.
You can do the same thing with product design for the Web. Imagine that you have a new mobile application that allows people to keep track of their favorite pizzerias. You might want to introduce a new button that reads, “Publish to my profile.” You can create a false door so that when someone clicks the button, he or she sees a “coming soon” or “notify me when available” pop-up notice. The feedback you can collect when people click this false door will help you determine how many people might be interested in your new idea.
With an actual pizza parlor, you could lower the price or offer different food to discover if that changes customers’ interest levels. With the app, you could fine-tune how you share. Share only with friends? Let other people know your favorites? People will tell you what they want, and that information can guide your decisions.
Small Course Corrections
By getting feedback early and often, you can make regular (and much less painful) corrections to your plans rather than pushing out large and often demoralizing changes. Small changes mean less work for you and less adjustment for the customer. Plus, they set up a pattern in which you learn to learn regularly. You develop the ability to balance output and input in a constant and meaningful exchange.
These changes need to be very small, or your customers may start to feel that you are arbitrarily moving things around. Changes should be so small as to be almost undetectable. Users should never feel as though they are having one experience today and a completely different one tomorrow.
An example: Think of a Web-based email product. The primary means of navigating the site is a series of buttons across the top or down the side—Inboxes, Folders, Sent, Addresses, and Settings, in that order. Say the product’s designer has a new concept that will surface the most important messages for the user. He would like to place that “most important” button above the regular inbox, as that is where most people click first, but that might disrupt his customers’ experience too dramatically. So instead, he could put the new button in the second or third position. At that point, he has designed the code to make it work, but he has not yet asked the user to change her muscle memory.
Over time, if this addition does create a better experience for the user, the designer may decide to move the new button to the top slot. This move prevents people from using the product as they did before, but the incremental change has (you hope) made them comfortable with the switch.
From a goodwill standpoint, it’s crucial not to break the customer’s trust. When you work this way—in tiny, tiny steps forward—you improve the customer’s experience with a minimum of fuss. But, if after the slow introduction, your new feature proves confusing or not as useful as expected, it takes just another tiny step to resolve the problem or remove the feature.
Change as the New Normal
The spirit of working, sharing, and exchanging is fuel for the product design process. The pattern of constant change starts to feel so normal that peoples’ hackles are much less likely to be raised. A constant state of change becomes the norm for the designer. Many users no longer expect a software product to be static or fixed. Consider what an enormous improvement this situation is over previous years and product cycles, when people bought boxed software at the mall and had to wait years for a future edition that would fix bugs.
Today, the status quo is typically a very long release cycle. But this new business model, with more frequent releases and updates, does raise an interesting question: If I buy an app for $5 and have learned to expect constant improvement, how does the maker support that strategy financially? He certainly isn’t taking in any more money. It’s something that definitely needs to be considered.
Uncalcifying Code
When changes are incorporated early and frequently, features and code can be added to or removed from the product with much less effort. The entire package needn’t be redesigned; only very small pieces need to be, and these can be addressed one at a time.

Nicholas Negroponte, founder and Chairman Emeritus of Massachusetts Institute of Technology’s Media Lab, once said that we should pay developers for the number of lines of code they remove, rather than for the lines they write. Software products have a tendency to become very complex because we just add and add to them. Inside their DNA, entropy takes root, and eventually chaos grows because we are not constantly tending the garden. Every fix, every change, every removal, every test to improve flow—they are all tending the garden.
Isolating the Causes of Success and Failure
If something goes extremely well or poorly, you can pinpoint exactly which change caused the success or failure and likely even have parameters enough to measure the extent of the success or failure. This information is crucial for the success of not only the product at hand, but for the success of all future products, too, so you need to correlate changes with results. If you change lots of things at once, it’s impossible to understand which of those changes prompted the positive or negative response.
Imagine this: I want to confirm my customers’ email addresses. So I send each person a link that he or she can click to confirm, but only 50 percent of my customers actually follow through. I can move the link to the top of the message, turn it into a button, and change the wording, all in an effort to improve response. But now I’ve changed three things, and even if I do get a dramatically improved response, I have learned nothing. Which change created the effect I wanted? What knowledge have I gained for future products?

If instead I make just one of these changes at a time, the positive or negative response will be evident. Then if more improvement is needed, I can make another change, and so on. It’s all about identifying and isolating the successful changes.
Let’s return to our email example. We look at our original design. We think that moving the button up will probably get more people to click it.

We move the link up, but there’s no change. Hmm, that’s weird. It’s a good thing that we first tried that out by itself.
So, we return the link to the bottom, but we change its size. Our click-through rate goes up. Very interesting. Maybe the problem wasn’t sequencing (where the button appeared) but noticeability (people didn’t see it). Perhaps we’ve discovered a way to drive even more click-through with better messaging.
Now we’re able to see that a different call to action had a slight improvement on our click-through rate. Had I made all of these design changes together, I’d not have learned about the positive (or negative) impact of each one.

Risk Reduction
Making small changes is a form of damage control and a corollary to the previous point. If something goes wrong as a result of a small change, the result is likely to be similarly small, as will the fix. It’s easier to fix glitches than to recover from catastrophes.
Dealing with Problems
So we changed our product and people are using it less. Ugh. Or maybe certain views hang and don’t finish loading.
Problems will arise with any product, no matter how many times it is tested. The ship-early-and-often method of product development can also help us more easily solve these problems. Here’s why:
• Problems are easy to detect when changes are made incrementally. We know exactly when a given problem emerged and we probably know what caused it.

• Problems are easy to attribute to a certain source. Instead of sifting through the work of everyone involved in the project, you can easily isolate the problem source.

• Problems are easier to fix if we know what or who the source is, what that source did, and why he/she did it. The solution is also likely to be small. Just go back to where you were previously. This solution requires less work as well.

Easier to Detect
Let’s say our product is moving along swimmingly. Every day we get about 1000 new sign-ups, so our sign-up graph looks like this:

Then today, we see a change in the pattern:

We’ve detected a problem; something is definitely wrong. Since we know we’re making regular changes, we have confidence that we can identify the changes that occurred just before that problem began.
Easier to Identify
We shipped changes about ten times that day before the problem happened. And look—a few changes were made just before the problem began.
Now it’s time to ask, what were those changes? Because everyone working on the product ships changes frequently and those changes are relatively small, it’s easier to see when changes happened and who might know about the problematic ones.
Ah, ha! It looks like Steve released a change to the registration view about 15 minutes before the problem started. Now we know whom to talk to about the problem and what changes were likely to have caused it.
Easier to Fix
Because we’ve been able to easily identify the changes that appear to have caused the problem, we know where to investigate.
That negative change was relatively small—just a small interface change, a little bit of logic, and some language. All in all, it was a mere 15 lines of code across three files. Wow! This set of changes was so small that I could view them all on my laptop screen at the same time. If you’ve ever been hunting around, scanning code to look for problems, you’ll understand what a luxurious situation we’ve created for ourselves.
And because we have our working process, tools, and methodologies optimized for making changes, we can release our fix to the world right away. In fact, we can spend our time fixing the problem rather than first retreating to the old, previous design (though if we really needed to, we could do that, too).
How long does it take for you to detect a problem and fix it? Valuing small frequent changes sets you up to have a reduced time for both and to have a lower pain quotient for everyone involved.
Early. Often. Better.
Work fluidly, freely, and openly to generate ideas, make changes, and learn what might work. Ship those changes as early in the process as possible, and as frequently as possible.
Doing so will allow you to validate assumptions, identify opportunities, and try out new solutions. When problems happen, you’ll be able to detect them and respond to them more quickly and with less effort.
That’s better for you, that’s better for your business, and that’s better for the people using your product. That sounds like good design.

Chapter 9. Rinse and Repeat
This chapter is meant to challenge your way of thinking about what a “solution” is. In previous chapters, we’ve talked about making constant, small improvements to a product and about how that product—or solution—is really never completed. This chapter discusses something like that, but different.
Think about why you might go on an annual vacation: to relax, to see friends or family, to explore, to expose yourself to new experiences. Whatever the reasons might be, let’s call them your goal. This year, you plan to go on a wonderful vacation and accomplish that goal. Great!
Now, does that mean you’ll never go on a vacation again? Goal accomplished—done! Of course not! Next year you’ll want to vacation again ... and the year after that. Each year, you’ll have similar goals—to relax, to explore—but it’s unlikely that you’ll repeat that same trip in exactly the same way. Your income may have changed, you may have to travel at a different time of year, or you might want to travel with different people. The context for your planning is now different. You throw out your old route, budget, and plans, and you pull together completely new plans to reach your vacation goal in bigger, better, or deeper ways. In other words, you reach a goal, then rinse away all of the plans and ideas you made to accomplish that goal.
But instead, let’s say you make a new plan to repeat the same goal, this time from a different direction. You don’t have to throw out everything just for the sake of change. Instead, you pause, take a deep breath, reset, and then restart—rinse and repeat, over and over again.
You’re never really “done” with the goal. It’s a constant pursuit.
Apply this idea to product design. Your design may be released to customers who are happily using it. Now it’s time to look at it again with fresh eyes.
Why would we want to “rinse clean” when we’ve been building up all of this product knowledge through testing, experimenting, and research? Because it’s a thought exercise—sort of a brain-bender—that can force you to arrive at design solutions that aren’t possible within another problem-solving process. It’s about pursuing the same goals, but redefining the problem each time to force yourself into creative problem solving. Our brains are designed to follow patterns and to do things the same way over and over. If we want a different answer, we have to jog our thoughts out of deeply worn tracks.
Have you ever tried to fit too much copy onto one screen and found that it has ruined your design? You reduce the type size, change the style, and mess with the line breaks without much success. Then someone walks up and asks why you couldn’t split the copy into two screens. In one second, that person accomplished what you could not: She removed the constraint of one screen, thereby opening up new and better possibilities.
That is the sort of opportunity we’re trying to set up for ourselves. The previous constraints are washed away, allowing us to start fresh.
Even if you changed a product only yesterday, you need to look at it through the lens of today. An example: Say you want to increase the number of people who register for a product. So you add a video tour that explains its benefits. If your new or returning visitors see the recently added video, the context for your product is now different than it was previously. Now you want to increase registrations for people who are viewing the video.
There are definitely benefits to learning from the past and building on your knowledge. It’s just that for this part of the design process, the benefit is somewhere else, perhaps found in a different part of your brain. To renew our thought processes, we are hitting the reset button to learn more and different things.
Know the Goal
Before we delve too far into this technique, note this: It is clarifying to know from the start what your goal is and to maintain that goal throughout your design process. These goals might be numeric and quantitative, but they don’t have to be. A goal could simply be completing the addition of a new feature and making it available to your audience.
Some example goals might be:
• Increase registrations.

• Decrease bounce rates on a specific landing page.

• Have people add more content on their first use.

• Get more people to connect to their social networks.

• Create a first-use experience that explains the product in less than ten seconds.

• Create a mobile experience to complement a desktop browser product experience.

Let’s revisit the registration scenario. Assume that you are getting 100,000 views on a product marketing page, but only 1 percent of those visitors are choosing to register—not a great number. You’d prefer that number to be 5 percent, which is slightly above the standard you set based on the performance of similar products. You should ask: Why are people not registering? Are they not interested in the product or the features it offers, or is it because the product hasn’t captured their imaginations? Or maybe they don’t care for the value proposition. Why are they not taking the intended action?
You shouldn’t default to guessing to get answers (unless you know your audience very, very well, or you are your audience). Your first task should be to simply ask people about their decision by delivering a simple questionnaire. Ask about both sides: those who register and those who do not.
Perhaps you discover that people understand the product’s intent (what it’s for), but they don’t understand how easy it is to use. You can address that issue through demos and testimonials. You decide to add a video that plays automatically and shows the ease of use, and you redesign the landing experience to incorporate it. The new Web page is released for view, and registrations go up to 1.5 percent. That is an improvement, but not as much of an improvement as you wanted. Remember, we’re aiming for 5 percent here.

Now you can see that you’re in a brand new situation. Your goal is the same (increase registrations to 5 percent of the people visiting the view), but the user’s experience has changed. Whereas they used to see a static marketing image, now the 1.5 percent of the people who register (and, more importantly for our problem, the 98.5 percent of the people who don’t) are seeing a video demonstration of the product’s ease of use.
It’s time to take a deep breath and start again, asking more and different questions, exploring new designs, and looking for new insights that allow you to fine-tune the product yet again.
Say you find that 10 percent of the people are letting the demo video play through to the end. They could be motivated by the music or the content or the production values, but people are choosing to engage with it. They are allowing themselves to be exposed to the full content you have provided, even though they have the option of turning it off. That is an interesting bit of info, but you’re not sure how to act on that.
Why else is the registration rate not as good as it could be? You just learned that people like seeing how easy the product is. What if you could design a solution with which they could experience how easy it is?
You could deliver the same information in the same order (what is essentially a linear tour in your video), but permit people to try the product for themselves. Once they’ve touched it and felt how easy it is, you might lead them to become invested in some way. If they enter information or use the tools you’ve provided, and actually experience first-hand how easy your product is to use, they may be more inclined to register and continue using the product.

Rinse... Repeat

Rinse... Repeat

A caution: As you rethink and redesign, force your brain not to be limited by what you just did. The common response to working in small iterations—making many small changes over time—is to steer toward working in a very linear direction. The rinse-and-repeat way of thinking gives you freedom to be responsive in new directions.
Over and Over
Methodically repeating a process, with gradual improvements each time, is like using a whetstone to sharpen a blade. Patience and constant refinement sharpen the product into something more powerful and effective than it could have been in one singular design that was released and left in its initial state.

Chapter 10. People Matter Most
The desires and needs of the people who already use or who will use your product are the most important considerations in your creative process. It’s very easy to forget, when you are constantly focused on the tasks at hand, that you must also keep in mind the larger context of your work.
A specific product may have quality, styling, and an excellent feature set, but unless it matches people’s desires, their social nature, their intellectual levels, and their experiences, the product will not succeed. At the end of the day, people will be using your product. So you must put their needs first.
You might feel intimidated by the idea that design success requires you to be a sociologist and behavioral scientist, in addition to understanding software design, engineering, graphic design, marketing, and more. But actually, it’s exciting that these aspects of product design can allow you to improve people’s lives.
Consider this: When you are in line at the grocery store or waiting for a friend to meet you, you might pass the time by checking the feeds in your favorite social media products to see what friends have shared. Imagine if suddenly no friends were on the other end; your social media would become pretty worthless. Everything that is valuable to you about that product has to do with the people involved with it. Email and communication products are other clear examples of products that are essentially social; what good are they if there is no access to other people?
Other products are even more personal, and they, too, can have a great impact on people’s lives. Imagine a product that tracks your progress as you bike or run or lose weight. The entire product is about your relationship with it. If you don’t find the product useful or easy to use or relevant, it has no worth. But if the designer carefully considered your needs and interests as she worked, the product could become fundamental to your lifestyle, even shaping your behavior. In the best case, you might make healthier decisions or reach a goal that you’ve set for yourself. That’s awesome!
The point here is that a product that maps your running isn’t about maps or data; it’s about people and what they do.
Another very personal product is a diary that encourages you to write every day. As the designer of that product, you could easily just start with the general concept of a daily writing diary and launch right into the design and engineering of something that captures and presents writing organized by days. Perhaps you’d include some prompts for what to write, and you’d design an interface for looking back at what you’ve written previously.
But when you charge directly into building and don’t ask who will be using a product and how they will use it, you miss half of the equation. What time of day are people most interested in writing: in the morning or in the evening? Why would people choose a daily interval instead of writing whenever they felt compelled? For what reasons do people write daily without the help of a product to encourage them? What do they do with their writing when they’re done?
Some products, such as weather apps, provide a more passive user experience, and when you’re designing one, it would be simple (and obvious) to just present information in an elegant and organized way.
But it’s possible to give the product much more value by tying the information to the user’s daily experience. What if a weather report was delivered just after a person woke up and started getting ready for work each morning?
What if it notified the person of weather warnings in other states where loved ones live?
What if it pinpointed low-humidity days in the next week that would be better for outdoor activity?
Could a weather product display reports on current conditions and forecasts in the context of a person’s calendar of events?
You must imagine the needs of the user. What would be interesting to that person? Useful? Fun? Essential?
How to Discover What People Want
So how exactly do you find out what makes products valuable to people? You can just ask them (more on that in Chapter 13), but even before you get to that point, you need to answer some very basic questions:
• Who would use this product?

• What do they want to know?

• When would they want to know it?

• Where would they use it?

• Why would they use this product instead of any other similar products?

• How would they use the product?

Always start with the people part of your design. You will rarely know all of the answers to all of these questions. But there are ways to search out everything you need to know.
Talk to Your Customers
Working as a sociologist, you can gain a great deal of information from the people you are serving. Talk to them. Engage with them. They are a valuable resource that is right at your front door! Ask them what can make the product better, what works well for them, and if and how they talk about the product with others. If people are not using your product, ask them about their perceptions of the product, what they would like it to do, and what other products they are currently using.
Watch Carefully
Watch and observe people because what they say they do may be vastly different from what they actually do. It’s not that they’re deceitful or contrary. That’s just how people are. See what is happening in their lives. Try to understand where the product can work in their lives and where it might not. What other products are they using at the same time? What other products could benefit them?
Always Be Listening
Listen to your customers and to your potential customers as well. You will be lucky if they come to you with unsolicited feedback, positive or negative. Listen to their stories about what they would like the product to be. What are people saying when they blog about your product? What does Customer Support note that people are saying? What are they saying about competing products and related problems?
Be Inspired by Customers
Look to your customers for inspiration. This is not just hearing that someone wished the product had a certain feature. Instead, it is observing how people use your product in ways you might never have anticipated. Those observations can be real gifts.
A classic example of this is the hashtag. Chris Messina, at the time a regular Twitter user, created the hashtag simply as an expedient way to enable searches among Tweets. This extended use of the product was created on the fly and was quickly adopted by other users, and ultimately by Twitter itself. Twitter has since created other ways that hashtags can be used and made them an official part of the product.
The same thing has happened with Retweets: Users developed a behavior of preceding reposts with “RT,” simply as a way to tell others that they are sharing someone else’s info. Twitter has also built RT into the product by adding a share button.
These real-world examples underscore how people who are not engineers or software designers can lead you into new features and functionality. They can show you how to make the product better, but only if you are paying attention.
People Are Part of the Process
More than designing answers or engineering solutions or creating marketing plans, the one thing you have to remember in developing a new product is the people who will use it. Ultimately, everything goes back to them. The better you understand this and the more it remains top of mind, the better your products will be.
If you ask people for product ideas, their ideas may be limited by what they already know. But if you ask people for people ideas, they will tell you exactly what you need to know. What are you trying to do? What problems do you have?
People must be part of the design process; if they are not, the process is incomplete.

Section Three: Get It Built

Chapter 11. Change and Happiness
Until this point in the book, we’ve been thinking about the product design challenges we face. Now we’re going to get the work done; we’re sitting at the keyboard, ready to get started. Now what?
If you have read all of the preceding chapters, you understand that it is important to share, test, and measure and to frequently change products in small ways. The objective is not only to improve the product but also to validate your assumptions, mitigate risk, and establish a pattern of evolution.
These patterns of ship-early-and-often, rinse-and-repeat, and share-constantly have a very marked influence on your happiness, as well as that of your entire team. Because the product is constantly improving, you also have the opportunity to make the people who use your product happier, too.
Everyone wants to feel that the work they are doing is valuable. They want to see that it is useful, that it helps people. No work models can guarantee this. Previous work models didn’t even try to make it happen. For a long time, people worked behind closed doors, hammering away on a single idea until it was time to make the big presentation to the client or the public. If, by some miracle, the product was perfect, the process moved ahead. If not, people retreated behind their closed doors and began again on a new idea and presentation. The freshness of the creative process was gone, replaced by a sense of menial repetition.

With the old model, the product couldn’t easily or quickly be made better because the process was in the way. People weren’t working on exciting ideas; they were working on PowerPoint presentations and slide shows and flow charts and all of the other trappings that make meetings dreadful. It’s as if a chef had to spend all of her time creating the plates that her food was presented on rather than focusing on cooking. There’s no joy in that. Let’s spend our time on the delicious main course.
With a different work model, you maximize all of the essential, productive activities and minimize unproductive off-ramps. If you and your colleagues are enjoying the creative process, then your energy is maintained, even when things don’t work out exactly as planned. You feel fresh ... and refreshed. When the working process is healthy and enjoyable, without tons of roadblocks, you and everyone else on your team will derive more satisfaction from the process and create more satisfying products.
Of course, not doing presentations will be a huge mind shift for some people. After all, that’s how most formally trained designers were taught: Create dozens of sketches and then present them to the instructor. It’s also how much of traditional graphic design works: Material is created in the designer’s office and not presented to the client until the big reveal.
Adopting an alternative way of working may take some time. Try to inspire yourself and others to aim for the goal of arriving at a shared picture and traveling together all of the time. After a designer has been through this process a few times and seen the value of constant collaboration, he starts to appreciate how it cuts through the political process of getting approvals from those who probably weren’t even involved in the creative process. Eventually, he’ll want to abandon formalized presentations forever.
With the weight and burden of established ways of working cast aside, you’re ready to get iterative. You’re ready to accept that change is inherent in your process. You’re ready to start designing, start changing, with purpose and certainty—particularly the certainty that you’ll be designing and designing again.
You’ll be doing similar work and processes in sequence. Through repetition, you’ll be honing and refining. You’re not toiling, but building and strengthening.
You Can Start Anywhere
If you have established an iterative process and are committed to designing, sharing, testing, measuring (as described in Chapter 13), and designing again, you truly can begin at any step in that process. Start wherever it makes sense to start today, and be aware that the starting point may change for each project.

For example, if I start with measuring, by the time I am halfway through the process, I will begin testing. Yes, you may be working with an incomplete idea if you start with measuring, but not much time will have passed; and since you will go through your iterative process many times, the project will quickly gain shape and tighten up.
What happens when you have an idea and want to act on it? It might look like this:
1. Have the idea.

2. Test the idea informally by sharing it in a low-fidelity form.

3. Start to engineer it so that you have a functional thing to try to use.

4. Design a UI for the functional idea so that it’s more approachable and understandable.

And then you proceed into a second iteration:
1. Start by sharing the idea again. How does that more “real,” designed version feel?

2. Do some more design to improve and explore based on that quick assessment.

3. Engineer any changes in functionality and data.

4. Share the product.

5. Test it.

Then you start to get into a solid cycle, which might look more like this:
1. Design

2. Build

3. Test

4. Design

5. Build

6. Test

It’s perfectly okay, and in fact it is encouraged, that your earliest steps in the process are incomplete, out of order, and otherwise rough. As you can see, completing a few cycles of iteration and exploration will get you into a groove: a pattern of designing, building, and testing your ideas in quick succession.
Identify Needs and Opportunities
Identify where the problems and opportunities are, and write them down. This is a statement of intent for the next phase of your design process. You start with the story: Imagine a product experience in which A-B-C happens and, most important, how people are affected for the better.
For example:

People are overwhelmed by the number of links and recommendations they get from friends and colleagues—watch this video, read this article, check out this photo. We’re going to allow people to capture those in a queue so they can view them another time at their leisure, and then respond to the recommenders as they choose.

Then you state the current strengths and weaknesses in this scenario, and the principles you intend to uphold when addressing them. You might simply call this phase “weaknesses, strengths, and approach.” At Etsy we have a similar scheme, introduced by one of our product designers, called PSTs—problems, strengths, and tenets. Identify each component, and you have the information in hand to start a thoughtful design exploration, while keeping the following in mind:
• The problem or weakness can be big or small. For example, people don’t know what to do at a certain screen, they are dropping out of the flow, or conversion rates are down.

• A strength could be a solution that solved an earlier problem and could be reapplied, a part of the existing product experience you could build upon, an enthusiastic user base, or another step in the process that is being redesigned and might help this situation.

• A tenet or approach is your statement of what you believe to be your intent as you start the design. You have only a limited amount of time in which to work. You know that any images you use will have to be small. Maybe you decide that you will present all of your plans in quick pencil sketches.

The way you organize this phase isn’t particularly important. What’s important is that you develop a sense of thoughtfulness and intent for yourself and your collaborators.
Validate
How do you know that your idea is going to work? The short answer is: you don’t! But you can go through some quick and easy exercises to gain a little more information and confidence moving forward. This phase is more like validation with a lowercase “v.”
Sometimes that validation may be conceptual. Is what I am trying to create actually going to solve the problem? You might be able to be simpler here. You are not trying to figure out how to solve the problem (via steps 1, 2, 3), but you’re analyzing the validity of the idea—Will your idea solve the problem?
In our current example, you believe that people are overwhelmed by content suggestions and would benefit from time-shifting the consumption of that content. How can you find out if your product idea would resonate with them? Can you ask? Can you do some research? In this case, you’re trying to quickly validate that there’s a market for this idea. This is idea validation.
In other cases, you might be trying to validate certain behaviors or interactions. Let’s say you had an idea to add a little bookmarker to the browser bar that would allow people to save content to your product for later reading. You need to decide if your users would actually take advantage of this new feature. This is solution validation.
If your informal validation says that the idea doesn’t have traction with your users, but you feel strongly about it, consider the simplest way to take it a little further with the lowest research investment. Maybe users need to see and feel it. Of course, you could also forget the idea and just move on to your next idea. Nothing is precious, nor should it be. Aim for forward momentum and don’t hang on to any one answer too tightly.
It can be difficult to validate some ideas by only describing them or showing sketches or pictures. You may have to actually build something to get it as close to real as possible. That’s often called a prototype, and we value a certain kind of prototype most.
Prototype
One of my strongly held beliefs is that there should not be much difference between prototypes and the end product itself. You might sketch things out on paper very quickly, just to capture your idea, and show it to others for input. But the very next step should be prototyping, during which you try to use the exact same tools (software, platforms, code) that you would use to build the actual product. Don’t get lost in choosing colors or typestyles too early. They may affect the experience of the end product, but they have little effect on the function of the product initially. Work quickly: Nothing has to be clean and perfect.
What you will create is definitely not releasable. It’s still just a model on which you will base the real thing. But because you are using the same code and materials as you would for the real product, the switch from producing the prototype to producing the product will be relatively simple.
Build
Once the prototype has progressed through small and constant changes to the point where it can be released, the final building can take place. This is when you make the product work as you intend it to, ensuring that it behaves as you want it to behave and looks as you intend it to look. And this phase is executed with the degree of quality that reflects the experience you want people to have with your product.
Because your product is already close to being “production ready” when it’s in our prototype phase, the idea of a “build” phase that’s been established in the past is now simply an access milestone; it puts your product in a form in which more people can productively use it and see it.
Communicate
We should prepare what we need to say when we’re ready to share our changes with our customers. You can prepare just after the product change is completed or during the product change’s development. You could create an announcement, press release, blog post, or email newsletter. Any and all channels are available—tweets, email messages, articles in the press—to tell people that a newly completed version of the product is available and to explain why they should use it. Choose the channel that is most relevant for your product and the people who use it (or whom you want to use it).
Communication planning should happen before you release the product because you need to determine when best to release. Perhaps you plan to send out a marketing email on Friday, then realize it’s the Friday of a holiday weekend when many people won’t be checking their email. This might be fine if you’re planning a quiet release of a minor update, but it might be disastrous if you want to motivate many people to use your all-new product at the same time.
Say you have created an app that helps people find bargains in brick-and-mortar stores. The best time to release this app, if you consider its use and when people would want it, would be just before a gift-giving holiday weekend, and not immediately after.
You also need to have preemptive communication in place before you release a product so that you are prepared to:
• Answer any questions that people may commonly ask.

• Inform customer service teams about changes and how to communicate and provide support for them.

• Provide information to the press.

This sort of information is especially important when you already know that some aspects of your product are incomplete or not completely perfected. For instance, your shopping app may support a limited number of stores when you first release it. You need to tell people that you will soon be including support for other stores.
Test
Next, let’s consider testing your software product so you can be confident that it’s free of bugs and technical problems. (Note that you’re not testing your basic idea, which was vetted earlier in your validation phase. This time it’s all about the software.)
There are two primary ways to test:
• Manual testing assigns a person or people to use the product, interact with all of its changed or new parts, and in effect, try to break it. A tester can also discover any bugginess, find out if it is difficult to understand, or see if it causes other bad things to happen (freezing or slowing down the device, for example). People who perform manual testing will try to use the product the wrong way as well as the right way. Their feedback will be invaluable in improving your design. In larger organizations, it is common for this role to be called Quality Assurance (QA).

• Automated testing uses software (that you can create yourself—it’s just another product) to locate failure points. If any are discovered, you can create a log of bugs and issues to resolve before you release your product.

The process of manual testing is pretty self-explanatory, but if you haven’t experienced automated testing, you might wonder what it’s all about. How do you automate using a product? Let’s say you created a test to make sure the address form in your checkout process functioned correctly. Your automated test might have sample information for 100 test users, with some information complete and some incomplete and with different lengths, address formats, and so on. When the automated test runs, it attempts to fill out the form with every one of those test users and logs whether or not it was successful with each one. That log would allow you to find errors and pinpoint where difficulties might arise.
Every time you release a new product or any revision to an existing product, it should be tested.
Release
This is perhaps the most obvious step: You make your product available to the general audience. There’s a whole range of possibilities for launching your product.
In some cases, you might turn on your new product all at once. Ta da! We generally try to avoid actually doing that, but it might look or feel that way depending on how we communicate the release.

In many cases, we slowly release our product. If your tooling and infrastructure are sophisticated, you might even release to only a percentage of the people using your product. Or you might release a feature on one platform (say, mobile Web) and release it later on other platforms.

Once you’re confident that your product is working as expected, and that it doesn’t have any surprise problems, you can release it more widely. This approach is common for large and complex products.
As you first start product development, it may be premature to use approaches like partial releases, though you can start thinking about it early and be prepared to take advantage of it when the time is right.
If you’re ready for some mind-bending perspective, consider this: At the point of release, the build actually becomes a prototype. It becomes the canvas on which future changes are applied. You never revert to creating a completely new prototype. You always move forward.
Measure, Evaluate, and Learn
Once your product is in use, and people are interacting with your design, it’s time to start observing again by collecting information, evaluating that information, and learning from it.
First, you want to make sure that everything works okay. (Is the product still working? Is the server up?)
Then you want to know about some basic health metrics. How many people are using the product each day? How many games were played? How many posts do people read in one sitting?
The degree to which you can collect information will probably vary based on the maturity of your product. What you can learn will certainly depend on how much tooling you’ve implemented to monitor your product. You might rely on an off-the-shelf monitoring tool in the early days of your product’s use. As you learn to ask specific questions and assess certain needs unique to your product, you may ultimately build your own monitoring tools. We’ll be talking about this in more detail in Chapter 13.
For qualitative information, you might conduct user research by using a variety of methods, both informal (interview over video chat) and formal (recruiting people for in-person interviews and observation in a testing facility).
Evaluating means carefully considering what you have learned and interpreting those findings. What worked and what didn’t? What’s happening that you didn’t expect?
All of this helps inform your plan for the future. What should you do given the information you have received? Has it changed the dynamic of how people will use the product, and what is your response to that?
Iterate
Repeat all of these steps again and again and again, ad infinitum.
As most people know, change for change’s sake is worthless and irritating. But change that brings clear benefits makes everyone happier. As the creator/designer, you gain a greater sense of self-worth. Your enthusiasm for further improving the product increases. And, of course, the product users are also satisfied and happy. Just by accepting the notion that the product can always be made better, everyone benefits.

But what about the assumption that if something isn’t broke, don’t fix it? For product designers, this is true only in a very narrow sense. Sure, the product may work just fine. But the context for viewing it must necessarily be very wide. It can have more or different features that further improve the experience. Or perhaps the product could be rethought to reduce its resource strain. While it may not appear “broken” to the user, the product can always be refined.
Let me leave you with three key points that can help to maintain happiness:
• Always be listening to your customers. There will be compliments and complaints, and both can serve as valuable input.

• Most customers don’t yet know what they want, or at least they can’t verbalize it. It’s your job to be looking out for them.

• People aren’t comfortable with change, but the whole world is about constant change. As designers, we need to help people experience change as comfortably as possible.

Chapter 12. Use Whatever Works
In this chapter, we will be considering tools—ours, theirs, anybody’s. In the world of product design, you can use existing design tools, create your own, or borrow what you need from other disciplines. It’s a world where being tool-agnostic is crucial, if for no other reason than that new and potentially better tools are being developed all the time: You have to remain open and receptive to their emergence. All the while, some tools are timeless and continue to serve us well.
It’s important to have a point of view regarding tools because they shape the way you work. You’ve probably had the experience of trying to draw something on a computer while fighting the software because it just isn’t allowing you to do what you want. So you just revert to drawing on paper because of its simple expediency.
That’s what it means to be tool-agnostic. You can stay focused on the product when you aren’t worried about your choice of tool.
It stands to reason that solutions are also shaped by our choice of tools. If you have a hammer, you tend to solve problems with nails. But tools should always be secondary. I would never rigidly commit to one or another tool. All tools should be considered equally. The best one for the job at hand is... well... the best one for the job at hand.
Tools in Every Step
Tools can either help or hurt your workflow. If you have a tree to cut up for firewood, a small hacksaw and a chainsaw could work, but a chainsaw might change your workflow. You’ll need gas, safety equipment, and perhaps a helper and safety training.
Alternatively, you might choose a larger manual saw, or you may hire someone to do the job. The point is, choose the tool that allows you to follow the process you want. Don’t let the tool dictate how you work.
Here’s a simple example from product design: A graphics program asserts that as your first step you should use the program to create an image of the product. There’s nothing inherently wrong with that; however, if you start there, then you’re working in an environment that places appearance over structure. You can always overcome this—and the more experience you have, the more likely you’ll be able to do that—but you’ll always be working with an ill-fitting tool.
If you’d prefer to first decide how the content is structured in, say, an HTML document, then start there. Use an HTML (or plain text) editor to create the structure and organization of your content in HTML before worrying about what it looks like. Once you have that structure defined in a simple document, you may find that it’s easier, faster, and more flexible to “style” that structure with CSS and view it in a browser than it is to use a graphics editor to decide what it should look like.
Be One with the Product
When possible, use tools that are as close as possible to your product. This goes back to the idea of not making mock-ups or anything else that keeps you from efficiently reaching a functioning product.
Suppose you are trying to sketch out a concept quickly and easily, but the tool you’ve selected uses a JavaScript library different from the one that you will use in the actual product. That is not a good choice: It starts you down a path that diverges from the ultimate goal.
Another common (bad) example is designing a print piece using software meant to provide RGB output. It’s a fundamental mismatch. Find tools close to your product whenever possible. When you do, less will be lost in translation as you fill in the gaps between what the tool is intended for and how your product is actually built.
The Tools You Build with Are the Tools You Use
Pulitzer Prize–winning photojournalist Barry Staver gave a wonderful answer to the question, “What is the best camera?” “It’s the one you have with you,” he said.
The actual tools don’t matter that much as long as you use them regularly and become skillful with them. If you have chosen a tool and found it frustrating to work with, then it is probably the wrong tool. Ditch it. Try another. Bored of this one? Ditch it. Try another. The tool that allows you to work quickly, confidently, and comfortably is the best tool for you.
An example: When programmers edit code, it’s often a very personal thing. Each programmer may use a different application to edit code, according to his or her preference. If you were to ask twelve people about their favorite text editor, you’d get twelve distinct opinions. Whichever one you like is the right one to use—the cool one, the new one, the old standby, or whatever. Just don’t waste energy fretting about which is the “right” one.
Duct-Tape It Together
Hack it together. The tools you use do not have to be fancy. Any infrastructure will work. One tool may not solve all of your problems, so you may find yourself using hacky ways to pull things together—that’s perfectly OK. If a single tool will do all jobs, but you aren’t comfortable with it, it really isn’t worth your time. With relatively little effort, you can build new tools or assemble a kit of existing tools that get the job done just as well as a jack-of-all-trades tool.
However, if you’re uncertain, do try using a tool designed for the job you’re trying to complete. For editing code, use a code editor. If you want to see what a product looks like in a certain browser, use that browser whenever possible. Don’t simulate it if you don’t have to. If you want to test how something works on a particular device, try to get it on that device and use it.
Beg, Borrow, and Steal
As I mentioned at the start of this chapter, use tools from many places. Some of my favorite design tools, namely text editors, were never created to be design tools. They were created for software engineers. So be it!
If another person is using a process that looks like it will work for you, just use it. There is no shame in modeling your tool setup or your process after a solution that is already working for someone else. (Don’t copy product ideas, of course.) Someone else likely has solved the same tool problem or a very similar one. What you’re trying to figure out may be unique to your situation, but it’s probably not unique to the world of product design. Stand proudly on the shoulders of other designers. It’s your product that demands uniqueness, not the tools that you use to create it.
Good answers and examples can be found in many places—on forums, at in-person meetups, on Q&A sites, and on personal and company blogs. People like to talk about their own good ideas, so sharing is common. Open-source software products and their creators can also be fertile sources of solutions.
Invent Your Own Tools
One of the great things about being a product designer is that you can design tools customized for your exact needs. Don’t be afraid to create your own solutions. As part of the product deployment process, moving from initial designs through testing and into production, lots of things have to happen in the background. You can write software, or create a different interface, or do whatever you need. You can create an automated test that examines your design and returns a performance report with the simple touch of a button. Just think about what would make your work easier, and then create it. If you’re not sure how to make it, share your thinking with your team, colleagues, and friends. They just might be willing to help.
Designing your own tools goes back to the very first point in this chapter: that tools support the work. The tool and the process are intimately connected, so tools also shape the way you work. Don’t choose tools that force you to work in ways you don’t like.
The Product Designer’s Toolkit
The following tools are common to most product designers. You may not use some of them now (or ever), but it’s important to be aware of their usefulness and your ability to add them to your kit if they can help you work better and more efficiently.
Some of these tools are simple; some are very complex. Use as few as you possibly can, and only when they are really needed. Every project is different, and you may need to use different tools for different projects.
Text Editors
These are an essential, core tool for product designers. You will use text editors to write and edit code, whether it’s HTML, CSS, Java-Script, C++, or any number of other possibilities.

Text editors come in a whole range of sophistication levels, from a very plain text editor that comes with your operating system, such as TextEdit on your Mac, to more specialized tools whose primary job is still text editing.
Vim is a popular editor that’s distributed with most UNIX systems. It is highly configurable and very powerful, though its learning curve for designers may be higher than average. Vim and its siblings don’t have the GUI that a designer would expect to see in desktop software. In some cases, as when you need to access files remotely on a server or in specific technical environments, you may have to learn how to use these products. They are powerful tools, so it’s to your advantage to know them.
In many cases, text editors fall between these two areas. Current examples that are easier to learn include Sublime Text, Text-Mate, and Coda, with other examples coming into popular use all the time. These editors aren’t full of steep learning curves but do have features that are specialized for code editing. Most will offer common features such as auto-completion of standard code tags, syntax highlighting, color coding of specific portions of code, and auto-formatting. These visually oriented features can be convenient for designers who aren’t fully adept at reading code. You can use them for editing any kind of text file, and you will commonly use them for HTML, CSS, and JavaScript editing.
Less common are language-specific text editors. Their application is obviously more limited since they can edit only one kind of text file, but they can still be helpful tools. I recall using a specialized CSS editor, aptly named CSSEdit, when I was first learning CSS. Because its GUI was designed specifically around CSS, I found that CSSEdit helped me learn how to write the actual CSS syntax. Later, when I’d more fully mastered CSS syntax, I took the step of using a simpler and more direct tool without a GUI.
The most advanced and complex text editors are called Integrated Development Environments (IDEs). These are not simply text editors. IDEs also understand the logic and relationships within code, have features to check for bugs in your logic, and can suggest ways of refactoring code. IDEs tend to be specific to a particular programming language. Xcode, the primary tool for authoring iOS and Mac OS X software, is an IDE.
In general, people tend toward the simpler tools, unless special needs demand otherwise.
Graphics Editors
These include photo-editing, vector illustration, and motion graphics tools. They can be used for producing screens and mock-ups, although, as stated earlier in this book, it’s best not to be producing mock-ups. But from time to time, you will find that you do need one.
Sometimes you need these tools to produce media—such as motion graphics, video, edited photos, and illustrations—for the product you are creating. In addition to knowing how to produce such media, you must understand the proper output formats to use. Output formats have enormous implications for your product and its performance in terms of quality, size, and color space. For example, the right graphics editor can help you discover the format sweet spot for saving a photo file that provides adequate visual quality and still allows your product to load quickly.
Previewers
These tools allow you to see or use your product while you’re designing it. They are very helpful when you have to design for multiple screen sizes, browsers, and other variables. And as I’ve mentioned previously, it’s always preferable to look at the product in the real world, and sometimes it may be faster to do that using a previewer.
These Web-based tools simulate different environments. Some tools let you see the product on your own desktop, while others send results to multiple mobile devices so you can see your work there.
Some previewers are even more specialized. A great example of specialized previewers are those that show how email messages will render in a variety of environments. Email design is difficult because there are so many tools, platforms, and devices used to read email, each with its unique quirks and capabilities. An email previewer will allow you to see how your email renders with far more variety than you could ever expect to see without the tool’s help.
Mock-up Tools
These are different from the graphics editors described earlier. They include specialized tools for creating wireframes, simulating interface behaviors, or mocking-up transitions in animations. As with any side street that takes you away from the main development path, you should prefer not to use them, but from time to time, they may be necessary. Consider them an ad hoc member of your kit.
Code Management and Version Control Tools
These identification tools structure some of your work methods and store what you are creating as you proceed. Git, Subversion, and Mercurial are common examples. While you work, your code changes along with other assets that needn’t be stored on your local computer. In fact, for the sake of redundancy and backups, it’s often a best practice to store your code and assets remotely. When you’re working with many people on the same project, these tools become essential. They allow many people to collaborate on a single set of code, without the risk of harming or overwriting each other’s work.
Code management tools record who is doing what to which part of the code. They track every change that was made since the start of a project, which makes it relatively easy to back up and evaluate previous versions and make changes. These tools are fundamental to the precept of shipping products early and often, as well as being tremendous aids to making small and frequent changes. There’s plenty to learn about code management and version control, but completing some basic tutorials online will get you started from a design standpoint. Once you learn how powerful and helpful code management is, you’ll find yourself using it on every project, large and small.
Tracking and Monitoring Tools
These help you see how your product is performing, providing quantitative feedback on how people are using your product. You can search results, make queries, produce graphs and charts, and more, so that you can always be aware of status changes or anomalies.
The most common and readily accessible of these tools is Google Analytics, but there are many other competing products, simpler tools, and more specialized tools available. Depending on your needs, you may choose one over another.
Communication Tools
These allow people creating a product to exchange information. They can be as simple as email or a sticky note, or they can be as complex as a large-scale project management tool. Some tools are structured around collecting feedback, including monitoring online conversations about your product.
A Means to an End
The tools you choose to use can make your work easier... or more difficult. Start with simple tools and prefer simple tools. Don’t get too clever about them, or opt for complexity in anticipation of what you might need in the future. Use what works for you right now.
Add new tools when your current tools aren’t sufficient for addressing new problems. Replace your tools if they aren’t working, you don’t enjoy them, or you discover something better.
The tools you choose are a means to an end, so stay focused on that end and let the tools take on the supporting role they’re meant to have.

Chapter 13. Listen and Learn
Whenever we design a product, we want to know if it had its intended effect. We also want to understand all aspects of what happens to it once it leaves the nest. Learning what happens requires feedback. When we learn how people feel about their experiences, it can be motivating or inspiring or educational or even humbling. We can also find out that our creation is being used in ways we never imagined.
Feedback—positive or negative—is very valuable. With Web product design, we can create scenarios in which getting feedback is not a one-way or one-time event. Instead, through feedback loops, we can receive more and more reactions over time and through repeated contacts, all along the way, and all of that input can be used to improve the product, identify problems, and take advantage of new opportunities. It’s not enough to sit back and watch what happens. Acquiring useful, pertinent feedback requires proactive information gathering. In addition, there are ways to build the tools and infrastructure for feedback into the product itself.
In this chapter, let’s discover what kinds of things you can learn from regular observation and user inquisitive engagement. It’s worth your time.
Quantitative and Qualitative
The forms of collecting feedback—research—can be categorized into one of two buckets: quantitative research and qualitative research.

Quantitative Research
Quantitative research is research that you can measure with numbers. For example:
• How many people registered?

• How many people downloaded the app?

• How far did people scroll down the page?

• On average, of the people who searched, how many search results matched their queries?

• What percentage of people check out immediately after adding an item to their cart? What percentage of people come back and check out another time? What percentage add an item to their cart, but never check out?

• How many people visit your product every day because of links sent via email?

Because quantitative research is inherently numeric, it also means that the results can be presented in graphs and charts. Images of data can be pretty, but that’s not our concern.

Quantitative data made visual allows you to see patterns and anomolies. You can use your visual skills to identify elements that aren’t working well. If you see a pie chart showing that many people leave immediately after visiting your product’s marketing page, that chart probably makes you want to address that problem and improve that page.
Qualitative Research
Qualitative research gathers feedback on the kinds of things that you can’t easily count and put into numerical form—feelings, tastes, unstructured observations, and responses to open-ended questions.

For example:
• What’s your favorite part of the product?

• How did you feel after seeing that the blog post was written by a college student?

• Why did you decide to use the product?

• How would you describe this experience to a friend?

• Why didn’t you buy the item after you added it to your cart?

Qualitative research ususally requires subject area experts to help craft questions and interpret results. Without some expertise in market research, it can be easy to ask leading questions or misinterpret information. It’s great to ask and research; just be sure to not inadvertently over- or undervalue the information you gather.
Sources of Feedback in Early Development
You can collect each kind of feedback in many ways, and each method provides a different learning opportunity. It is important to understand that you don’t need to gather every kind of feedback for every iteration of every project. Some kinds of research will be more valuable than others for specific projects, and likely, you will form a hybrid approach, applying different levels of research to the same project. As you explore various information-gathering techniques, you’ll assemble a useful kit of tools, and you should strive to understand how and when to use each one. Let’s look at how to get feedback while you’re creating your product and how to get it after that product is out in the world.
Feedback from You
As stated in previous chapters, the sooner you can get to an operable product, the better. Then you and your team can actually use it and gather perceptions about it. That is your first feedback loop—from yourself and your team. It’s a readily available source of information, which you can gather quickly and inexpensively, it’s constantly incoming, and it will be very useful in the development stage.
But you will be getting feedback from only a limited group of people who may be biased toward seeing only positives. Also, you are not dealing with cold users; your team members already know what the intended outcome should be, and that knowledge inevitably colors their opinions. Another shortfall of this source of feedback is that it doesn’t open your mind to possibilities you may not have anticipated. You get information only on what is already there, not on what could be there.
Dogfooding
The phrase “eat your own dog food” is usually used in business to refer to a company that publicly uses its own products to demonstrate confidence and transparency to customers. In product design, it has a slightly different meaning: Get the product operable as soon as possible and start using it so as to develop immediate feedback loops.
A good example would be a communication product. If the developer immediately begins to use it, the team is forced to work out annoying features, refine speeds, and evaluate its appearance. The team enters the flow right away and begins to understand (and act on) the product’s benefits and challenges.
Some products may not be constant-use creations. If that’s the case with your product, you need to find ways to use it as frequently as possible. High-volume use yields the most fruitful feedback loops.
Casual Feedback
To acquire casual feedback, you might ask co-workers and other people who are not directly related to the project—friends, family, and acquaintances—to review early trials. You can directly observe and question these people, ideally through regularly scheduled interactions (perhaps once per week) with your product. This loop is frequent but not constant.
The value of this sort of collection is that it is within reach, it’s generally accessible, it doesn’t take a lot of time, and it’s inexpensive. You will gain broader perspectives than you would if you queried only the project team, especially because these other people come to the project without preconceived notions.
But you can improve the quality of information you gather by targeting people who can give you specifically informed feedback. I’m a sushi aficionado, so let’s say I want to create an app that helps people find the nearest sushi restaurant and look at its menu. I’ll gather the most useful feedback about my app by asking other people who know and appreciate sushi to try using it.
The narrower the product’s appeal is—just sushi fans, in this case—and the closer it is to your own experience, the more likely it is that this sort of casual feedback can work well. But you may be able to improve the value of the feedback even more.
Assume that you are a designer who has created a project management product for designers. You might just ask other designers to test your product. But if you bring in other creative professionals—writers, videographers, photographers, and the like—then you will receive more and more varied feedback that you can use to broaden your product’s use and appeal.
Formalized Feedback
At the most formalized end of the feedback-gathering spectrum is user testing, conducted by professionals. This is the sort of testing in which two-way mirrors are used to observe customers being asked questions written by trained researchers to eliminate bias and inadvertent steering.
This feedback returns the most objective information—bias is neutralized—so it’s usually very actionable information. Also, the selection of people providing the feedback is more targeted, so you should be able to find people reflecting the demographics you want for your product. Finally, the people who conduct the research can also help interpret the data.
The expense of this level of research often puts it out of reach for bootstrapped operations. Even for projects with healthy budgets, the price tag of this type of research may make it an infrequent option.
Sources of Feedback Following Release
You’ve released your product into the world. Now, the feedback will follow. User feedback arrives in a variety of forms. It’s good to be able to anticipate all of the possible forms, some being more obvious than others, so that you’re prepared to look for (or motivate) them.
Incoming Comments
If your product is already out in the world and has a following, the avenues are open for a constant feedback loop, but you need to plan for ways to receive that feedback. You may have inbound support or commenting through email, and it’s probable (as people are much more likely to complain than to compliment) that you will get input on those aspects of your product that people find buggy, confusing, or inadequate. This sort of information, although sometimes discouraging, is essential, especially if received in any volume. Find a way to formalize its receipt, perhaps through a dedicated staff or an email address that is checked constantly. You’ll often get a sense of how serious a given issue is through the repetition of similar comments. Conversely, if, out of a lot of feedback, you receive only one comment on an issue, it might not be a major issue.
Community Feedback
Informal communities such as forums may make your product a topic of discussion. Perhaps there are Q&A sites or even actual events where customers—current and prospective—are gathering. None of these were created with the express purpose of gathering feedback for you, but they can allow you to see what people think about your product, sometimes compared to other competitive products.
Data Collection
This is a constant and very powerful feedback loop. Every connection with a customer is another opportunity to mine feedback, not in what he says, but in how the product performs for him. How long does new content take to load? What screens or instructions are ignored? Where does flow slow down?
You can also collect behavioral data. How does the customer interact with the product? What does he look at first? How much time does he spend with the product each day? How often does he load his own content? The possibilities here are endless.
As with incoming comments, the best learning usually comes via a large volume of information. Contact with 100 users over 100 days is more valuable than contact with 10 users over 10 days. You can string together these behavioral metrics, aggregate them, and come to definite conclusions. Perhaps people who scroll all the way to the bottom of a page are shown to make more purchases than those who tap out of the opening screen immediately. What can you do to encourage those who tap out to scroll instead?
Furthermore, you can compare similar customers. If you have two people who both created a new account on the same day, you can compare their behaviors, or onboarding flow, over time. How long does it take each person to find the material that interests her most, and how does she find it? Does she use the “most popular content” button, or search on her own? By studying comparative behaviors over time, you may find ways to give the product more value for everyone.
Steps of the feedback collection process
1. Decide what to ask. What do you want to learn?

2. Through verbal inquiry, observation, or data collection, collect the information.

3. Listen to and carefully consider all information. Don’t cherry-pick just what you want to hear.

4. Interpret what you have learned and derive conclusions from it. The answers may not be immediately actionable, so you need to translate the information into a future plan.

5. Decide what to do with the answers.

Everything you learn in this process is strong input into another iteration of feedback collection. The more frequently these loops happen, the more iterations you can achieve. Small, frequent iterations hold real value.
Don’t Forget to Listen
The worlds of research, user studies, data visualization, and feedback interpretation are deep, complex, and nuanced. They’re also extremely powerful. Hopefully, if you’re not already a hungry feedback feeder, your appetite has been whetted.
Our approach of shipping early and frequently is only half of the product design equation. The other half is finding out what happened. Were all assumptions true? Did the design help or hurt? Are there any new or previously unrevealed dynamics you should be aware of? Feedback and research are the only ways you’ll know.

Chapter 14. Design Together
No matter where you are located, and no matter what the nature of your product is, you are unlikely to be a team of one individual. Even if you conceptualize, design, and produce a product by yourself, it’s likely that you’ll have designers, engineers, marketers, business advisors, and even more people as part of an extended team. The number of people will vary over time, and folks will come and go, but the fact is, you have to plan for the involvement of others.
Working with teams creates circumstances that can make the product design process easier, or if you aren’t prepared for them, more complicated.
First, accept that you will benefit from being inclusive rather than exclusive. Open yourself and your process to the ideas, experience, and intuition of others. You stand to benefit from a collaborative effort in many things you do, particularly in those parts of the design process you haven’t previously experienced. Collaboration, however, doesn’t happen by default. It happens by choice. Plan for it, and encourage it.
Let’s look at three team sizes: a team of one, a small team, and a large team. The lines between them are arbitrarily chosen (a small team doesn’t need to be fewer than five people), but I’ve organized them this way to provide general buckets that will help frame your understanding. The intention is that you will learn about the similarities and differences between teams of various sizes. Understanding the strengths and weaknesses of each team size will help you choose an initial team for your product and chart the trajectory for team involvement as your product grows.
You can apply large-group principles to smaller groups and vice versa. It’s all about design teamwork, even when you’re a team of one.
A Team of One
Working by yourself is, in some ways, the designer’s condition. Designers picture a grumpy Paul Rand (designer of numerous influential twentieth-century corporate logos) or a focused Dieter Rams (famed designer of many Braun products) alone in their studios, burning the midnight oil, seeing through a singular design vision. If you’re an art-school-trained designer, you might have a similar image of the designer-as-artist.
Working alone can be great for focus. We know that constraints can create benefits for creative problem-solving that would be otherwise unavailable. We also know that it can be easy to get caught in one’s common ruts without the jolt offered by other people to challenge our conventional thinking.

Characteristics of Working Alone
• What you say goes. You have full agency to make all of the decisions.

• You are the representative of all of the information and points of view.

• You have no one else to answer to.

Strengths of Riding Solo
• You needn’t communicate with others, so you can spend a maximum amount of time designing.

• You don’t need to balance or compromise your thoughts with other perspectives or opinions, so you can work faster and more smoothly.

• You are wholly responsible. When things go well, you can take full credit.

Challenges of Riding Solo
• You have no other perspectives or experiences to add to your product.

• You are wholly responsible for what goes wrong.

• You are not forced to examine your ideas and processes carefully.

• It’s less likely that you will have serendipitous discoveries or surprises.

Working by Yourself
The hardest part about working by yourself is you! You’re going to be stuck with that voice in your head, both encouraging and nagging, so you’d best learn how to work productively with it. Even if you do, you may want a surrogate team to help you have new insights and different perspectives. Find a community of people, in the real world and online, whom you can connect with, and lean on them. Identify a mentor, someone who has been there before, and query him or her frequently.
The Small Team
Many products are designed and built by small teams of people. Small in this example is what I might also call optimal: four to seven people. Why is that size optimal? With fewer members, you don’t have much more than several solo contributors. It’s less a team, and more a gang. With more members, you’ll spend a significant amount of your time coordinating, communicating, and ... gasp ... managing. (I can say it like that because I’m a manager.) Within small teams, especially well-composed ones, you’re going to have many minds, diverse perspectives, and the potential magic that occurs when they intersect. Ever heard the phrase “productive tension”?

Characteristics of a Small Team
• Various perspectives are present.

• It’s likely that many and varied skills will be available.

• Every conversation will have multiple voices, as well as multiple communication paths among members.

Strengths of a Small Team
• You benefit from diverse points of view and skill sets.

• Other team members will have interests and expertise different from your own.

• The group’s combined mental and emotional capacity means that you are more resilient. Others can take the lead when necessary, and responsibilities can shift to make the group more adaptable and responsive.

• Team members can work in parallel so that the group can work on many different things at the same time.

Challenges of a Small Team
• The small team requires a framework so that everyone understands his or her position. Who is leading? Who has the final say? Does the group need to reach consensus? Is it a democracy?

• Coordinating the process to completion can be difficult when even a few more people are involved.

• The more people who are involved, the more overhead you have. Personnel will likely be your largest single cost, so you have to either have more money at the ready or make your operation more efficient to support the team.

Working in a Small Team
The sooner the group agrees that the most important goal is to repeat, as often as possible, the make-release-make-it-again process, the better. This agreement underlines the fact that nothing is precious and incontrovertible, which in turn removes the dynamic of having to be “right.” Actually, being “wrong” creates more learning and progress.
Committing to an iterative design process also means that collaboration points and compromises are temporary, not calcified. The group will spend more time learning and making, and less time selling, politicking, and pontificating. Of course, it’s impossible to completely remove that tendency from a human equation, but in general, this approach produces a more positive team.
Another thought: When you develop a small team, it’s best to have a business plan in place from day one. Developing a product can take a long time (really, it never ends when you are making small and frequent changes), so it’s best to map out a safe path in advance to reduce risk.
The Team of Teams
If you’re working in a big team or are growing into one, know this: Big teams don’t work. There, I said it! So, how do you work in a big team if big teams don’t work? You need to break big teams into smaller teams, and subdivide big projects into smaller ones. Turn your team of twenty into smaller, more focused teams, working in groups of four to seven members, ten at the most. Work hard to lessen the overhead of communication and coordination that can obscure the value that the group offers. Accomplishing this requires a coordinator of the small teams who is trusted and respected. This may be the single most difficult challenge in a large team: finding and maintaining the right kind of team leadership.

Characteristics of a Team of Teams
Large teams are large. They tend to astound or confound with the number of people. Some people work well in these environments, and some people don’t. Management, leadership, and communication become even more important within large teams. This is precisely why breaking a large group into smaller and more nimble, manageable, and communicative teams is a recommended approach.
Strengths of Large Teams
• You can more easily relate to a large set of needs.

• You can do many things in parallel and handle more complex processes. As a result, you can often get more done in less time.

• You can serve more people.

• You can break down problems into separate parts and assign different people to all of those parts.

Challenges of Large Teams
• The bigger the team of teams is, the more complex it is.

• The more complex the team gets, the greater a struggle it is to keep things human and focus on putting people first.

• It’s more difficult to keep project values in view.

• You can’t be overly committed to the continued relevance of any one person’s efforts.

• A team of teams requires careful and constant management. An unmanaged team tends to work too much on justifying its existence and less on getting the hard work done.

Working with a Team of Teams
Look back to the ways of working with a small team. Now, how can you make those dynamics happen with a team of teams? It may require a torch-bearer—a believer in the process, mindset, and methodologies—who will help make the product design principles visible and mutually valued. It might seem like a thankless role, but it will be empowering for everyone involved.
When you have a team of teams, focus subteams on meaningful parts of the product. Because we know that people using the product will define the success of the product, it may be beneficial to organize your subteams around the demographics or activities of those people. That might mean a different team for different audiences (core users, advertisers), different use-cases (shopping, selling), or different products entirely (your commerce product, your content product).
Product Design Principles as Product Team Principles
The same principles we use to guide our thinking and designing when creating products are excellent principles to remember when thinking about your product design team and how it works.
If you’re looking to build a team, think of simple, small changes. The same goes for evolving from a small team into a larger team. Drastic changes can shock the system. Unless that’s your intent, work hard to make sure that doesn’t happen. If you develop a team, test your ideas to see if they work. Look for data that indicates whether or not your team is working at its best. Ask for feedback from team members.
As we discussed in Chapter 10, people matter most. The team you design will impact the product you design.

Section Four: The Product is Never Done

Chapter 15. Nothing Is Precious
I came into the profession of creating Web products even before understanding what Web products were—at least, not in the sense that their design, process, tooling, and most importantly, the mindset they require, is different from standard software. It wasn’t until I looked back on my work that I realized just how different my thinking and my output had become.
Designing Web products, particularly your own product, is drastically different from designing on demand for clients. When I was designing for clients, a known end was always in sight. At some point the project would conclude, final payments would be made, and the design would be out of your hands. If you were lucky (or unlucky, depending on the client), the contract might include some ongoing maintenance or a chance to revisit the product later, but most likely, it wouldn’t.
I’m not sure about you, but the first version of a design I send out in the world is rarely the best version of it. As soon as it reaches its audience, I realize there are things I could and should have done better. More importantly, I begin to hear reactions, see how it’s working, and determine if and how it was successful. When you’re working with a client, you usually don’t have the opportunity to do anything about those discoveries because the product is no longer yours. The most you can do is internalize those lessons for the next project and the next client.
Designing Web products is also quite different from creating physical products. Because Web products are software-based digital products, they are fluid and changeable; it’s easier to evolve digital products. But a physical product, once reproduced, is economically and logistically difficult to incrementally evolve, particularly small, frequent changes delivered to someone that already has your product. That’s not to say that iterating digital products is simple or painless. It requires the same personal, intellectual, and creative struggles as any design. However, the digital form is adaptable, and the environment is supportive of change.
Perhaps the most important of my realizations was that Web products are never finished. The product can, should, and will change. The choices that were made initially and the design decisions that were implemented are not precious. They must be seen through a critical lens and never stay the same simply because the design team isn’t willing to improve them with new knowledge.
The world is changing all around us, so our products and processes also have to change or be left behind. Thankfully, this obligation is also an opportunity: the medium and the culture surrounding the use of digital products is one of the most direct and powerful ways we can affect lives.
I had to learn to avoid a static point of view and to treat any product that I create as a living organism. It’s a different way of thinking, but one that actually translates across design disciplines. Constant change can mean constant improvement, a benefit no matter what world of design you are working in. Today you’re starting to see the ethos and spirit of iterative software development and Web product design appear in increasingly wider and varied applications.
While I was working on large, multifaceted products that serve wide audiences in an ever-changing world, the principles in this book slowly revealed themselves to me. I did not discover them. These revelations happened over time, and in truth, they continue to evolve, much like the products we are creating. The development of any product is not a destination but a journey, in which improvement is made in small, constant steps. Along the way, we balance forward movement and critical evaluation. This also happens to be an ideal analogy for my development as a product designer.
Product design is inherently a question-asking process. Each answer introduces a new question. We learn from our last answer, look around for opportunities to create a better answer, then get to work again, designing better each time.
Take It Away
I hope you have learned what a product designer actually is, and which Web design skills best complement your current skills, in addition to those skills that you need to develop. And hopefully you’ve learned how to think like a product designer and how to get your product out to the public. I also hope you know:
• The principles outlined in this book are designed to serve you well for a long time. It’s important to recognize that they aren’t married to the present. Don’t just learn them, try them once, check them off, and move on. Revisit them often, especially when you are not sure how to handle a particular situation. They can help you make better decisions. Also, as user expectations and technology evolve, so will these principles. You will certainly discover some of your own.

• The product you create is characterized most of all by the expectations of the people who use it. People are the most important consideration in the design process. Users understand the product through the narrative you create. This narrative isn’t necessarily a story, but it certainly has a clear beginning, and an end through which users gain greater understanding.

• Dead ends hurt your product experience. Avoid them.

A user should never feel that an experience ended before she wanted it to or that she was pushed out of an experience. And when that person decides for herself that she is done with the experience, you have to design in such a way that she is compelled to come back time after time after time for new experiences.

• It is crucial to be reductive, straightforward, and simple in your design, and waiver from that approach only when a digression is a central part of a high-quality experience. Everything else is a distraction. A product should be usable first, and magical second. Spirit without utility doesn’t last. Utility without spirit isn’t memorable or compelling.

• Any well-designed product has many underlying features that may not be apparent on the surface. Speed, reliability, and user support—these and many other factors may not be evident even after you have thousands of users, but their absence can spell disaster for a product.

• It is possible, through design, to shape people’s behavior, to motivate them to take the actions that you want, and to prevent them from doing what you don’t want. Be explicit in defining what you hope users will do with your product. Articulate those changes as goals, and research and measure results to determine if your designs are successful at effecting behavioral change.

• Large problems and challenges should be broken down into smaller ones. When we reach solutions, it’s important to test and validate our assumptions to see if we truly understand the results. If we don’t, then because we are dealing with smaller solutions rather than a single large one, any risk of failure is reduced and the steps toward a better solution are more quickly and easily implemented.

• We learn from small changes. Small repetitive cycles grow the product and constantly improve it (and as designers, we grow and improve as well).

• The tools we choose to design with dramatically affect our processes, so select them wisely. Change tools when needed. Use tools in ways they were intended, or in ways that suit you. Choose the simplest tools, or invent your own.

• There are myriad ways to evaluate iterative design decisions, validate those decisions, and discover things we would not have otherwise known about the product and its users.

• It is possible to seek out data that can be quantified in addition to data that cannot. Both kinds of data contribute to a more complete understanding of your design’s impact.

• Greater team and customer satisfaction is improved by constant design-test-release-evaluate-learn-and-repeat cycles.

• Product design can be done by an individual as well as by small and large teams. Each strategy has its strengths and challenges.

Make It Happen
Build Web products with these principles in mind and you’ll produce great work that you’re proud of. You’ll gain satisfaction, not just from a job well done but from a job that can be well done again and again and again.
Products designed for the Web are immensely influential. It’s a space with a ton of momentum and no sign of slowing. That opportunity for a design professional or entrepreneur is increasing, and will continue to increase, with the volume of available digital products. Even physical products blur with your services now: Because digital products are so integrated into our lives, physical products that already are (or would like to be) integrated with our lives need to acknowledge and integrate with Web products and services.
This is where the future is. It can happen to you, or you can make it happen.
More at: randyjhunt.com/product-design

Index
A
Agile development, 108–109
Amazon Payments, 16
Automated software tests, 156
B
Behavior
carrot-and-stick metaphor for, 92
discouraging unintended, 97–98
encouraging intended, 93
making explicit what is intended, 95
making implicit what is intended, 94
nurturing and encouraging, 95–97
positive reinforcements for, 91–92, 105
preventative measures for non-compliance, 104–105
rewarding intended, 98–102
shaping through design, 30–31, 92–93, 207
unintentional/intentional misuse of product, 102–104
validation of, 152
Blogs
always be listening to, 139
communicating changes to customers, 154
offering support via, 71
online businesses using Web product for, 7–8
Brochure site, Web product vs., 6–7
Browsers
native apps vs. Web products, 19–20
websites vs. Web products, 12
Build phase, 149, 153–154
Business
product managers and needs of, 28–30
small team planning for, 195
C
Caching, and speed, 65
Carrot-and-stick metaphor, 92. see also
Behavior
Casual feedback, 183–184
CDN (Content Delivery Network), for speed, 66
Change and happiness
build phase, 153–154
communication, 154–155
identifying needs and opportunities, 150–151
iterations, 160–161
measuring, evaluating and learning, 159–160
overview of, 145–147
prototypes, 153
release, 157–159
starting anywhere in design process, 147–150
testing, 155–157
validating, 151–153
Changes
build with frequent, 107–108
constant, 205
early feedback on, 112–113
helping people experience, 161
isolating causes of success and failure, 117–120
as new normal, 115
problems with, 121–125
reliability and, 68
rewards of frequent collaboration, 110–111
risk reduction, 120
saving time and energy, 111–112
ship early, ship often and, 108–109
small corrections, 109–110, 114–115, 208
summary of, 125
uncalcifying code, 116–117
Cleverness. see
Intent of design
Coda, 170
Code
management tools for, 173
speed affected by, 63–64
uncalcifying a piece at a time, 116–117
Collaboration. see also
Sharing
change as new normal, 115
large teams and, 196–198
of product design teams, 189–190, 199
rewards of frequent, 110–111
saving time and energy with, 111–112
small teams, 192–195
working individually and, 190–192
Communication
challenges of large teams, 196–198
planning before release of product, 154–156
tools for, 174
Community
feedback following release, 186
finding when working individually, 192
invisible feature of, 69–70
Connection points, 14–16, 57–58
Connectivity, native apps vs. browser-based products, 20
Consistency of vision
press releases, 46–47
reliability from, 68
Content, websites vs. Web products, 9–10
Content Delivery Network (CDN), for speed, 66
Control, security and, 73
Creative process
change in, 146–147
collaboration in, 110
people using product and, 135
CSSEdit, 170
Customers
building trust equity over time, 74
discovering what people want, 138–140
importance of satisfying, 72
lack of security creating loss of, 73
listening to, 161
offering support to, 71–72
as source of external community, 70
D
Dead ends
connecting dots, 56–57
connecting one experience to another, 53–55
creating long flows, 55–56
creating new opportunities, 52–53
going with the flow, 50–52
product experience hurt by, 49, 206–207
Design
invisible features, 73–75
of own tools, 168
relationship between product and, 3
style vs., 1–2
Developer, primary role of, 31
Development, sources of feedback in early, 181–185
Devices, speed issues for, 64
Digital products, iterative, 204
Dogfooding, 182–183
E
Ecosystem products, 14–18
Effectiveness over cleverness. see
Intent of design
Email
getting feedback via, 113, 185
isolating causes of success and failure in, 117–120
power of rewarding intended behavior, 96
previewers, 172
sharing changes with customers, 154
small course corrections example, 116
to your internal community, 69
Energy, saving, 111–113
Engineer, primary role of, 31
Etsy, 1–3
Evaluation, of product information, 159–160
Evernote, 16, 18
Evolving products, 17–18
Expectations, setting, 26
Experience. see
UX (user experience)
Explicit cues, 94–95
External community, 69–70
F
Facebook, 15, 17–18
Failure, isolating causes of, 117–120
False doors marketing, 112–113
Feedback
casual, 183–184
collection process, 186–188
in early development, 181–185
following release, 185–188
formalized, 184–185
frequent collaboration giving, 110–111
getting early and often, 112–113
from incoming comments, 185
nurturing clients with positive product, 96
overview of, 177–178
small course corrections from, 114–115
strengths of small teams, 194
through qualitative research, 180–181
through quantitative research, 179–180
as weakness when working alone, 191–192
from you, 182–183
Filtering, for over-design of features, 85
Fixes, software bug, 68
Flow
connecting dots, 56–57
extending by connecting multiple experiences, 53–55
extending length over time, 55–56
extending through new opportunities, 52–53
going with the, 50–52
never reaching dead end, 49–52
pages vs., 11–12
Formalized feedback, 184–185
Forums, 70, 71
Foursquare, 101–102
G
Gameplay, 99
Git, 172
Goals
creative problem solving for pursuing, 127–128
example of, 130
knowing, 129–134
Google Analytics, 174
Graphics editors, 171
H
Hardware, and speed, 62–63, 65
Hashtags, Twitter, 139–140
I
IA (information architecture), 27–28
Ideas
starting anywhere with, 149
validation of, 151–153
IFTTT (If This Then That) product, 15
Image optimization, for speed, 66
Implicit cues, implying intent via, 94
Incoming comments, feedback after release, 185
Individual product design, 208
Information
collecting, evaluating and learning from, 159–160
explaining ideas with language, 32
rewarding good behavior with special, 100
Information architecture (IA), 27–28
Inspiration, customer, 139–140
Integrated Development Environments (IDEs), 171
Intent of design
backward satisfaction in, 86–87
cleverness working against, 79
correct action and wrong application in, 82–84
filtering, 84–85
identify needs and opportunities, 150–151
newness for newness’s sake, 80–81
personality mismatches, 82
positive reinforcement of behavior for. see
Behavior
pressure to create marketable product, 81
prioritizing effectiveness over cleverness, 77–78
unclear naming, 79–80
when cleverness is good, 87–89
Interaction design (IxD), 25–26, 30–31
Interactions
inspiring other products through novel, 89
shaping behavior with interfaces and, 30–31
validation of, 152
Internal community, 69
Invisible features
building into design, 59–61
community, 69–70
importance in well-designed product, 73–75, 207
performance, 61–62
reliability, 68
security, 72–73
speed, 62–67
support, 71–72
visual elements vs., 59
Iterative design process. see also
Change and happiness
repeating ad infinitum, 160, 203–209
small team commitment to, 195
starting anywhere in, 147–150
team and customer satisfaction with, 208
IxD (interaction design), 25–26, 30–31
L
Language-specific text editors, 170
Launching product, 157–159
Leadership, finding team, 196
Learning
information about product, 159
listening and. see
Feedback
Listening
to customers, 139, 161
learning and. see
Feedback
Load
displaying product on, 64
reducing to affect speed, 63, 66
underestimating, 74
M
Management, product vs. project, 28–30
“Manifesto for Agile Software Development” (2010), 108–109
Manual software tests, 156
Market research, 34
Marketing
false doors technique, 112–113
overly clever choices for, 81
overview of, 32–33
support through, 72
Measures
product health, 159–160
quantitative research numeric, 179–180
Mercurial, 172
Messaging service, 15
Messina, Chris, 139–140
Mock-up tools, 172–173
Monitoring tools, 174
Motion graphic tools, 171
Multi-step processes, 95
Multi-talented designers, availability of, 35–36
N
Naming schemes, descriptive vs. unclear, 79–80
Native apps
browser-based Web products vs., 19–20
defined, 18
ecosystem products connecting to, 15–16
as Web products, 18, 20–21
Navigation, websites vs. Web products, 10
Needs, iterative process identifying, 150–151
Negroponte, Nicholas, 117
Networks, speed issues, 65
Newness, overly-clever design for sake of, 80–81
No dead ends. see
Flow
Normal, change as new, 115
Nurturing success, at each step, 95
O
Observation, of people, 139
Online chats, 71
Opportunities
extending flows through new, 52–53
identifying in iterative process, 150–151
P
Pages, websites vs. Web products, 11–12
Partial releases, 157–159
Participation, websites vs. Web products, 10
People
in design process, 206–207
discovering what they want, 138–140
ecosystem products connecting to, 14–15
inspiration from customers, 139–140
listening to and observing, 139
overview of, 135–137
as part of process, 140
talking to, 138
Performance
quality and, 61–62
reliability and, 68
speed and, 62–67
underdesigning, 73–75
Personality mismatches, intent of design, 82
Photo-editing tools, 171
Platform products, 16
Positive reinforcement. see
Behavior
Practices of an Agile Developer (Subramaniam and Hunt), 108
Preemptive communication, 155
Press releases
consistency of vision, 46–47
describe benefits and value in, 47
explain for the uninitiated, 48
outcome-oriented thinking of, 46
reasons for, 44–46
sharing changes with customers, 154
write first, 43
Previewers, 172
Problems
breaking down into smaller ones, 207–208
from changes, 121
in design exploration, 150–151
ease of detecting, 122–123
ease of fixing, 124–126
ease of identifying, 124
pursuing goals by rethinking and redesigning, 130–134
Product management, 28–30
Programmer, primary role of, 31
Programming languages, Web products vs. native apps, 19
Prototype, building, 153–154, 158–159
Q
Qualitative research, 180–181
Quality, performance and, 61–62
Quantitative research, 179–180
R
Recovery, speed of, 64
Redundant database calls, and speed, 63
Release
feedback following, 185–188
product, 157–159
Reliability, 68–70
Repetitive cycles
improving product through small, 134, 208
knowing goals from the start, 129–134
rinse and repeat cycle, 127–129
Reputation, building, 72
Research
in product design process, 33–34
qualitative, 180–181
quantitative, 179–180
Reverse satisfaction, from usability of product, 86–87
Rewards
of frequent collaboration, 110–111
for intended behavior, 98–102
nurturing and encouraging with, 95–97
Rinse and repeat. see
Repetitive cycles
Risk, small changes reducing, 120
Rules of use, 102–105
S
Satisfaction, from usability of product, 86–87
Security
invisible feature of, 72–73
sense of community and, 69–70
underdesigned, 73–75
Services, 15
Sharing. see also
Collaboration
change as the new normal, 115
information about tools, 167
inventing own tools, 168
rewards of frequent, 110–111
Ship early, ship often. see
Changes
Skill
availability of multi-talented designers, 35–36
with tools, 166
Small changes
improve customer experience, 114–115
isolating causes of success and failure, 117–120
large impact of, 109–110
Small teams, 192–195
Social media products, 136
Software
reliability, 68
requirements for speed, 62–63
Web products as digital-based. see
Web products
Sound, speed and, 63
Speed, 63–67
Stand-alone products, 13
Status bars, 95
Story first
creating narrative of your product, 41–43
elements of, 48–49
writing press releases. see
Press releases
Style, design vs., 1–2
Subject area experts, qualitative research, 181
Sublime Text, 170
Subversion, 172
Success, isolating causes of, 117–120
Support
available and responsive, 71
definition of, 71
invisible feature of, 71–72
underdesigning, 73–75
T
Taxonomy, organizing, 28
Teams, product design
individually working, 190–192
large, with subteams, 196–198
principles of, 199
small, 192–195
strengths and challenges of, 208
Technology, balancing constraints of, 28–30
Tenet (approach), as intent of design, 150–151
Terminology, product naming and, 79–80
Testing
ideas, 149
software, 155–157
solutions to problems, 208
speed, 66–67
team, 198
Text editors, 169–171
Third-party apps, 15–16
Time, saving, 111–113
Tools
choosing, 166–167
code management and version control, 173
communication, 174
develop skill and use regularly, 165–166
finding close to your product, 165
graphics editors, 171
influence on workflow, 164–165
inventing own, 168
from many places, 167
as means to an end, 174–175
mock-up tools, 172–173
overview of, 163–164
previewers, 172
product designer’s toolkit, 168–174
text editors, 169–171
tracking and monitoring, 174
Tracking tools, 174
Training, shaping behavior with, 92–93
Twitter, 18, 79–80, 139–140
U
UI (user interface) design
designers, 25
explaining ideas with language, 32
for interactions, 25–26
problems and confusion in, 83–84
shaping behavior with interactions, 30–31
simulating behaviors, 172
of Web products vs. native apps, 19
Usability
as first product requirement, 207
research on, 34
UX (user experience)
as meaningful and understandable, 24–26
organizing complex information, 27–28
positive reinforcement of. see
Behavior
in product design process, 34
product managers balancing, 28–30
V
Validation, of your idea, 151–153
Value of product, in press release, 47
Vector illustration tools, 171
Version control tools, 173
Video, manipulating to affect speed, 63
Visual design
security cues in, 73
shaping behavior with, 30–31
of user interface, 25
Vocabulary, emerging from product use, 79–80
W
Wait times, reducing for speed, 63
Weather apps, 137
Web products
native apps as, 18–21
as never finished, 203–209
Web products vs. websites
attributes of products. see
Web products vs. websites
beyond browser, 12
direction of data and content, 9–10
frequency of use, 8–9
navigation vs. participation, 10
overview of, 6–8
pages vs. flows, 11–12
presence of accounts, 11
Web products, what to design
ecosystem products, 14–16
evolving products, 17–18
native apps as Web products, 18–21
overview of, 5–6
platform products, 16
stand-alone products, 13
unique opportunity, 21–22
Wireframes, 172
Work to be done
balancing user, technical and business needs, 28
become a marketer, 32–33
do research, 33–34
explain ideas with language, 32
forget unicorns, 35–36
for meaningful/understandable experience, 24–26
organizing complex information, 27–28
overview of, 23–24
product vs. project management, 28–30
shaping behavior, 30–31
Workflow, and tools, 164–165
Working alone, 190–192
Writing, explaining ideas with, 32
X
Xcode, 171

Table of Contents
Title Page
Copyright Page
Dedication Page
Acknowledgments
Contents
Introduction
Section One: On Product Design
Chapter 1. What Product to Design?

A Website Is Not a Product

Attributes of a Product

Some Products Are Loners; Some Products Need Friends

Native Apps as Web Products

A Unique Opportunity

Chapter 2. There’s Work To Be Done

Create a Meaningful and Understandable Experience

Organize Complex Information

Balance User, Technical, and Business Needs

Create Interfaces and Interactions that Shape Behavior

Write Code, and Make It Work

Explain Ideas with Language

Be a Marketer

Do Your Research

Forget Unicorns

Section Two: Think Like a Product Designer
Chapter 3. Story First

Write the Press Release First

The Elements of a Story

Chapter 4. No Dead Ends

Go With the Flow

Connect the Dots

Chapter 5. Remember the Invisible Features

Performance

Community

Support

Security

Invisible No More

Chapter 6. Effective Over Clever

Recognizing Clever

Turning On Your Filter

Is Clever Ever Good?

Chapter 7. Carrots, Not Sticks

Shaping Behavior

When Sticks Are Appropriate

Stay Positive

Chapter 8. Ship Early. Ship Often.

Small Changes, Large Impact

Dealing with Problems

Early. Often. Better.

Chapter 9. Rinse and Repeat

Know the Goal

Over and Over

Chapter 10. People Matter Most

How to Discover What People Want

People Are Part of the Process

Section Three: Get It Built
Chapter 11. Change and Happiness

You Can Start Anywhere

Identify Needs and Opportunities

Validate

Prototype

Build

Communicate

Test

Release

Iterate

Chapter 12. Use Whatever Works

Tools in Every Step

The Product Designer’s Toolkit

A Means to an End

Chapter 13. Listen and Learn

Quantitative and Qualitative

Sources of Feedback in Early Development

Sources of Feedback Following Release

Chapter 14. Design Together

A Team of One

The Small Team

The Team of Teams

Product Design Principles as Product Team Principles

Section Four: The Product is Never Done
Chapter 15. Nothing Is Precious

Take It Away

Make It Happen

Index

images/00029.jpg
READ EOVT
WATCH SAVE

LISTEN SHARE

images/00028.jpg

images/00031.jpg

images/00030.jpg

images/00035.jpg
VisiTs PER DAY

g
WEgs\TE WE® PRoDuCT

images/00034.jpg
WHAT 1$ “PRoDVLT ?

cover.jpeg
Prin ples of Designing
& Releasing Web Products

nd J. Hunt
Creative Director, Etsy

images/00026.jpg
@ FELBMNK Ot CELDBALK Oe®

images/00025.jpg
GOIINAS LMOULIM GVAYOM IWIL

images/00027.jpg

images/00018.jpg

images/00020.jpg

images/00019.jpg
ALTION => REWARD
ACTN > REWARLD
ALTRN => REWARD

images/00022.jpg

images/00021.jpg
THE NEXT LevEL
SomeTIN G O WANT

images/00024.jpg
o——m/o-—oJo—-o-/.—-u/

images/00023.jpg

images/00015.jpg

images/00014.jpg
MULTIPLE STATES

images/00017.jpg
OKM' Bwesomg

8AD

images/00016.jpg
43

W\m‘?“

images/00049.jpg

images/00048.jpg
o OPTHND oNE

@ OPTION “TWO

O OPTION THREE

images/00051.jpg

images/00050.jpg

images/00009.jpg

images/00053.jpg

images/00008.jpg

images/00052.jpg
OPTWISTIL

images/00011.jpg

images/00055.jpg
TesT

\/&HLD

/ Desten 3

images/00010.jpg
va
h\—u
[+]
[

images/00054.jpg

images/00013.jpg

images/00057.jpg

images/00012.jpg
{ MAKE 1T Wokk)
GooD \DEA
< / MAKE T WORK >

images/00056.jpg
NUMBER OF USERS

SENSE OF SATISPALTIDN

images/00047.jpg
ACTRN = Lewdrp
STATvS INFo

ACToN > RewhARD
STAIUS INFo

ACTION <5 RewARD
VP 6rADE

STATVS INFO
ALTION > REWARD

images/00038.jpg
<SBICGIEXD

images/00040.jpg
HicH Five!
yov Postes A PWoTO,

images/00039.jpg
You've PosTED one PHoTo,
Now, POST Two MORE ...

images/00042.jpg
ON

images/00041.jpg
Post ANOTWR PieTo

images/00044.jpg

images/00043.jpg
o6 7

\ON

images/00046.jpg

images/00045.jpg

images/00037.jpg

images/00036.jpg

images/00002.jpg
Gre D @3 D

Which GUTION Looks L\ke
1T WILL SMWE YoiR WeuT ?

images/00001.jpg
CHANGE Z feaR

CRANGE = HAPPINESS

images/00004.jpg

images/00003.jpg
ConfRM

AETER

images/00006.jpg

images/00005.jpg
$90-8N S huva

R

MoN TUE WED TWY

images/00007.jpg
$90-00S huiva

R

Mon TUE WED TWY

