
        
            
                
            
        

    
[image: cover]
 


  


Unix® and Linux® System Administration Handbook
 

FOURTH EDITON
 

Evi Nemeth
Garth Snyder
Trent R. Hein
Ben Whaley
 

with Terry Morreale, Ned McClain,
Ron Jachim, David Schweikert, and Tobi Oetiker
 

[image: Image]

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City
 
  


Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals.
 

Red Hat Enterprise Linux and the Red Hat SHADOWMAN logo are registered trademarks of Red Hat Inc., and such trademarks are used with permission.
 

Ubuntu is a registered trademark of Canonical Limited, and is used with permission.
 

SUSE and openSUSE are registered trademarks of Novell Inc. in the United States and other countries.
 

Oracle Solaris and OpenSolaris are registered trademarks of Oracle and/or its affiliates. All rights reserved.
 

HP-UX is a registered trademark of Hewlett-Packard Company. (HP-UX®)
 

AIX is a trademark of IBM Corp., registered in the U.S. and other countries.
 

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein.
 

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus, and branding interests. For more information, please contact:
 

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

 

For sales outside the United States, please contact International Sales (international@pearson.com).
 

Visit us on the Web: informit.com/ph
 

Library of Congress Cataloging-in-Publication Data
 

UNIX and Linux system administration handbook / Evi Nemeth … [et al.]. —4th ed.
 

p. cm.

 

Rev. ed of: Unix system administration handbook, 3rd ed., 2001.
Includes index.
ISBN 978-0-13-148005-6 (pbk. : alk. paper)

 

1. Operating systems (Computers) 2. UNIX (Computer file) 3. Linux.
 

I. Nemeth, Evi. II. Unix system administration handbook.
 

QA76.76.O63N45 2010
005.4’32—dc22

 

                                                                                2010018773
 

Copyright © 2011 Pearson Education, Inc.
 

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, write to:
 

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

 

ISBN-13: 978-0-13-148005-6
 

ISBN-10: 0-13-148005-7
 

Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor, Michigan.
 

First printing, June 2010
 
  


Table of Contents
 

FOREWORD

 

PREFACE

 

ACKNOWLEDGMENTS

 

SECTION ONE: BASIC ADMINISTRATION

 

CHAPTER 1 WHERE TO START
 

Essential duties of the system administrator

 

Account provisioning

 

Adding and removing hardware

 

Performing backups

 

Installing and upgrading software

 

Monitoring the system

 

Troubleshooting

 

Maintaining local documentation

 

Vigilantly monitoring security

 

Fire fighting

 

Suggested background

 

Friction between UNIX and Linux

 

Linux distributions

 

Example systems used in this book

 

Example Linux distributions

 

Example UNIX distributions

 

System-specific administration tools

 

Notation and typographical conventions

 

Units

 

Man pages and other on-line documentation

 

Organization of the man pages

 

man: read man pages

 

Storage of man pages

 

GNU Texinfo

 

Other authoritative documentation

 

System-specific guides

 

Package-specific documentation

 

Books

 

RFCs and other Internet documents

 

The Linux Documentation Project

 

Other sources of information

 

Ways to find and install software

 

Determining whether software has already been installed

 

Adding new software

 

Building software from source code

 

System administration under duress

 

Recommended reading

 

System administration

 

Essential tools

 

Exercises

 

CHAPTER 2 SCRIPTING AND THE SHELL
 

Shell basics

 

Command editing

 

Pipes and redirection

 

Variables and quoting

 

Common filter commands

 

cut: separate lines into fields

 

sort: sort lines

 

uniq: print unique lines

 

wc: count lines, words, and characters

 

tee: copy input to two places

 

head and tail: read the beginning or end of a file

 

grep: search text

 

bash scripting

 

From commands to scripts

 

Input and output

 

Command-line arguments and functions

 

Variable scope

 

Control flow

 

Loops

 

Arrays and arithmetic

 

Regular expressions

 

The matching process

 

Literal characters

 

Special characters

 

Example regular expressions

 

Captures

 

Greediness, laziness, and catastrophic backtracking

 

Perl programming

 

Variables and arrays

 

Array and string literals

 

Function calls

 

Type conversions in expressions

 

String expansions and disambiguation of variable references

 

Hashes

 

References and autovivification

 

Regular expressions in Perl

 

Input and output

 

Control flow

 

Accepting and validating input

 

Perl as a filter

 

Add-on modules for Perl

 

Python scripting

 

Python quick start

 

Objects, strings, numbers, lists, dictionaries, tuples, and files

 

Input validation example

 

Loops

 

Scripting best practices

 

Recommended reading

 

Shell basics and bash scripting

 

Regular expressions

 

Perl scripting

 

Python scripting

 

Exercises

 

CHAPTER 3 BOOTING AND SHUTTING DOWN
 

Bootstrapping

 

Recovery boot to a shell

 

Steps in the boot process

 

Kernel initialization

 

Hardware configuration

 

Creation of kernel processes

 

Operator intervention (recovery mode only)

 

Execution of startup scripts

 

Boot process completion

 

Booting PCs

 

GRUB: The GRand Unified Boot loader

 

Kernel options

 

Multibooting

 

Booting to single-user mode

 

Single-user mode with GRUB

 

Single-user mode on SPARC

 

HP-UX single-user mode

 

AIX single-user mode

 

Working with startup scripts

 

init and its run levels

 

Overview of startup scripts

 

Red Hat startup scripts

 

SUSE startup scripts

 

Ubuntu startup scripts and the Upstart daemon

 

HP-UX startup scripts

 

AIX startup

 

Booting Solaris

 

The Solaris Service Management Facility

 

A brave new world: booting with SMF

 

Rebooting and shutting down

 

shutdown: the genteel way to halt the system

 

halt and reboot: simpler ways to shut down

 

Exercises

 

CHAPTER 4 ACCESS CONTROL AND ROOTLY POWERS
 

Traditional UNIX access control

 

Filesystem access control

 

Process ownership

 

The root account

 

Setuid and setgid execution

 

Modern access control

 

Role-based access control

 

SELinux: security-enhanced Linux

 

POSIX capabilities (Linux)

 

PAM: Pluggable Authentication Modules

 

Kerberos: third-party cryptographic authentication

 

Access control lists

 

Real-world access control

 

Choosing a root password

 

Logging in to the root account

 

su: substitute user identity

 

sudo: limited su

 

Password vaults and password escrow

 

Pseudo-users other than root

 

Exercises

 

CHAPTER 5 CONTROLLING PROCESSES
 

Components of a process

 

PID: process ID number

 

PPID: parent PID

 

UID and EUID: real and effective user ID

 

GID and EGID: real and effective group ID

 

Niceness

 

Control terminal

 

The life cycle of a process

 

Signals

 

kill: send signals

 

Process states

 

nice and renice: influence scheduling priority

 

ps: monitor processes

 

Dynamic monitoring with top, prstat, and topas

 

The /proc filesystem

 

strace, truss, and tusc: trace signals and system calls

 

Runaway processes

 

Recommended reading

 

Exercises

 

CHAPTER 6 THE FILESYSTEM
 

Pathnames

 

Absolute and relative paths

 

Spaces in filenames

 

Filesystem mounting and unmounting

 

The organization of the file tree

 

File types

 

Regular files

 

Directories

 

Character and block device files

 

Local domain sockets

 

Named pipes

 

Symbolic links

 

File attributes

 

The permission bits

 

The setuid and setgid bits

 

The sticky bit

 

ls: list and inspect files

 

chmod: change permissions

 

chown and chgrp: change ownership and group

 

umask: assign default permissions

 

Linux bonus flags

 

Access control lists

 

A short and brutal history of UNIX ACLs

 

ACL implementation

 

ACL support by system

 

POSIX ACLs

 

Interaction between traditional modes and ACLs

 

Access determination

 

ACL inheritance

 

NFSv4 ACLs

 

NFSv4 entities for which permissions can be specified

 

Access determination

 

ACL inheritance

 

NFSv4 ACL viewing in Solaris

 

Interactions between ACLs and modes

 

Modifying NFSv4 ACLs in Solaris

 

Exercises

 

CHAPTER 7 ADDING NEW USERS
 

The /etc/passwd file

 

Login name

 

Encrypted password

 

UID (user ID) number

 

Default GID number

 

GECOS field

 

Home directory

 

Login shell

 

The /etc/shadow and /etc/security/passwd files

 

The /etc/group file

 

Adding users: the basic steps

 

Editing the passwd and group files

 

Setting a password

 

Creating the home directory and installing startup files

 

Setting permissions and ownerships

 

Setting a mail home

 

Configuring roles and administrative privileges

 

Final steps

 

Adding users with useradd

 

useradd on Ubuntu

 

useradd on SUSE

 

useradd on Red Hat

 

useradd on Solaris

 

useradd on HP-UX

 

useradd on AIX

 

useradd example

 

Adding users in bulk with newusers (Linux)

 

Removing users

 

Disabling logins

 

Managing users with system-specific tools

 

Reducing risk with PAM

 

Centralizing account management

 

LDAP and Active Directory

 

Single sign-on systems

 

Identity management systems

 

Recommended reading

 

Exercises

 

CHAPTER 8 STORAGE
 

I just want to add a disk!

 

Linux recipe

 

Solaris recipe

 

HP-UX recipe

 

AIX recipe

 

Storage hardware

 

Hard disks

 

Solid state disks

 

Storage hardware interfaces

 

The PATA interface

 

The SATA interface

 

Parallel SCSI

 

Serial SCSI

 

Which is better, SCSI or SATA?

 

Peeling the onion: the software side of storage

 

Attachment and low-level management of drives

 

Installation verification at the hardware level

 

Disk device files

 

Disk devices for Linux

 

Disk devices for Solaris

 

Disk devices for HP-UX

 

Disk devices for AIX

 

Formatting and bad block management

 

ATA secure erase

 

hdparm: set disk and interface parameters (Linux)

 

Hard disk monitoring with SMART

 

Disk partitioning

 

Traditional partitioning

 

Windows-style partitioning

 

GPT: GUID partition tables

 

Linux partitioning

 

Solaris partitioning

 

HP-UX partitioning

 

RAID: redundant arrays of inexpensive disks

 

Software vs. hardware RAID

 

RAID levels

 

Disk failure recovery

 

Drawbacks of RAID 5

 

mdadm: Linux software RAID

 

Logical volume management

 

LVM implementations

 

Linux logical volume management

 

Volume snapshots

 

Resizing filesystems

 

HP-UX logical volume management

 

AIX logical volume management

 

Filesystems

 

Linux filesystems: the ext family

 

HP-UX filesystems: VxFS and HFS

 

AIX’s JFS2

 

Filesystem terminology

 

Filesystem polymorphism

 

mkfs: format filesystems

 

fsck: check and repair filesystems

 

Filesystem mounting

 

Setup for automatic mounting

 

USB drive mounting

 

Enabling swapping

 

ZFS: all your storage problems solved

 

ZFS architecture

 

Example: Solaris disk addition

 

Filesystems and properties

 

Property inheritance

 

One filesystem per user

 

Snapshots and clones

 

Raw volumes

 

Filesystem sharing filesystem through NFS, CIFS, and iSCSI

 

Storage pool management

 

Storage area networking

 

SAN networks

 

iSCSI: SCSI over IP

 

Booting from an iSCSI volume

 

Vendor specifics for iSCSI initiators

 

Exercises

 

CHAPTER 9 PERIODIC PROCESSES
 

cron: schedule commands

 

The format of crontab files

 

Crontab management

 

Linux and Vixie-cron extensions

 

Some common uses for cron

 

Simple reminders

 

Filesystem cleanup

 

Network distribution of configuration files

 

Log file rotation

 

Exercises

 

CHAPTER 10 BACKUPS
 

Motherhood and apple pie

 

Perform all backups from a central location

 

Label your media

 

Pick a reasonable backup interval

 

Choose filesystems carefully

 

Make daily dumps fit on one piece of media

 

Keep media off-site

 

Protect your backups

 

Limit activity during backups

 

Verify your media

 

Develop a media life cycle

 

Design your data for backups

 

Prepare for the worst

 

Backup devices and media

 

Optical media: CD-R/RW, DVD±R/RW, DVD-RAM, and Blu-ray

 

Portable and removable hard disks

 

Magnetic tapes in general

 

Small tape drives: 8mm and DDS/DAT

 

DLT/S-DLT

 

AIT and SAIT

 

VXA/VXA-X

 

LTO

 

Jukeboxes, stackers, and tape libraries

 

Hard disks

 

Internet and cloud backup services

 

Summary of media types

 

What to buy

 

Saving space and time with incremental backups

 

A simple schedule

 

A moderate schedule

 

Setting up a backup regime with dump

 

Dumping filesystems

 

Restoring from dumps with restore

 

Restoring entire filesystems

 

Restoring to new hardware

 

Dumping and restoring for upgrades

 

Using other archiving programs

 

tar: package files

 

dd: twiddle bits

 

ZFS backups

 

Using multiple files on a single tape

 

Bacula

 

The Bacula model

 

Setting up Bacula

 

Installing the database and Bacula daemons

 

Configuring the Bacula daemons

 

Common configuration sections

 

bacula-dir.conf: director configuration

 

Catalog resources

 

Storage resources

 

Pool resources

 

Schedule resources

 

Client resources

 

FileSet resources

 

Job resources

 

bacula-sd.conf: storage daemon configuration

 

The Director resource

 

The Storage resource

 

Device resources

 

Autochanger resources

 

bconsole.conf: console configuration

 

Installing and configuring the client file daemon

 

Starting the Bacula daemons

 

Adding media to pools

 

Running a manual backup

 

Running a restore job

 

Backing up Windows clients

 

Monitoring Bacula configurations

 

Bacula tips and tricks

 

Alternatives to Bacula

 

Commercial backup products

 

ADSM/TSM

 

Veritas NetBackup

 

EMC NetWorker

 

Other alternatives

 

Recommended reading

 

Exercises

 

CHAPTER 11 SYSLOG AND LOG FILES
 

Finding log files

 

Files not to manage

 

Vendor specifics

 

Syslog: the system event logger

 

Syslog architecture

 

Configuring syslogd

 

Config file examples

 

Stand-alone machine

 

Network logging client

 

Central logging host

 

Syslog debugging

 

Alternatives to syslog

 

Linux kernel and boot-time logging

 

AIX logging and error handling

 

Syslog configuration under AIX

 

logrotate: manage log files

 

Condensing log files to useful information

 

Logging policies

 

Exercises

 

CHAPTER 12 SOFTWARE INSTALLATION AND MANAGEMENT
 

Installing Linux and OpenSolaris

 

Netbooting PCs

 

Setting up PXE for Linux

 

Netbooting non-PCs

 

Using Kickstart: the automated installer for Red Hat Enterprise Linux

 

Setting up a Kickstart configuration file

 

Building a Kickstart server

 

Pointing Kickstart at your config file

 

Using AutoYaST: SUSE’s automated installation tool

 

Automating installation with the Ubuntu installer

 

Installing Solaris

 

Network installations with JumpStart

 

Network installations with the Automated Installer

 

Installing HP-UX

 

Automating Ignite-UX installations

 

Installing AIX with the Network Installation Manager

 

Managing packages

 

Managing Linux packages

 

rpm: manage RPM packages

 

dpkg: manage .deb packages in Ubuntu

 

Using high-level Linux package management systems

 

Package repositories

 

RHN: the Red Hat Network

 

APT: the Advanced Package Tool

 

apt-get configuration

 

An example /etc/apt/sources.list file

 

Creation of a local repository mirror

 

apt-get automation

 

yum: release management for RPM

 

Zypper package management for SUSE: now with more ZYpp!

 

Managing packages for UNIX

 

Solaris packaging

 

HP-UX packaging

 

Software management in AIX

 

Revision control

 

Backup file creation

 

Formal revision control systems

 

Subversion

 

Git

 

Software localization and configuration

 

Organizing your localization

 

Testing

 

Compiling locally

 

Distributing localizations

 

Using configuration management tools

 

cfengine: computer immune system

 

LCFG: a large-scale configuration system

 

Template Tree 2: cfengine helper

 

DMTF/CIM: the Common Information Model

 

Sharing software over NFS

 

Package namespaces

 

Dependency management

 

Wrapper scripts

 

Recommended reading

 

Exercises

 

CHAPTER 13 DRIVERS AND THE KERNEL
 

Kernel adaptation

 

Drivers and device files

 

Device files and device numbers

 

Device file creation

 

Naming conventions for devices

 

Custom kernels versus loadable modules

 

Linux kernel configuration

 

Tuning Linux kernel parameters

 

Building a Linux kernel

 

If it ain’t broke, don’t fix it

 

Configuring kernel options

 

Building the kernel binary

 

Adding a Linux device driver

 

Solaris kernel configuration

 

The Solaris kernel area

 

Configuring the kernel with /etc/system

 

Adding a Solaris device driver

 

Debugging a Solaris configuration

 

HP-UX kernel configuration

 

Management of the AIX kernel

 

The Object Data Manager

 

Kernel tuning

 

Loadable kernel modules

 

Loadable kernel modules in Linux

 

Loadable kernel modules in Solaris

 

Linux udev for fun and profit

 

Linux sysfs: a window into the souls of devices

 

Exploring devices with udevadm

 

Constructing rules and persistent names

 

Recommended reading

 

Exercises

 

SECTION TWO: NETWORKING

 

CHAPTER 14 TCP/IP NETWORKING
 

TCP/IP and its relationship to the Internet

 

Who runs the Internet?

 

Network standards and documentation

 

Networking road map

 

IPv4 and IPv6

 

Packets and encapsulation

 

Ethernet framing

 

Maximum transfer unit

 

Packet addressing

 

Hardware (MAC) addressing

 

IP addressing

 

Hostname “addressing”

 

Ports

 

Address types

 

IP addresses: the gory details

 

IPv4 address classes

 

Subnetting

 

Tricks and tools for subnet arithmetic

 

CIDR: Classless Inter-Domain Routing

 

Address allocation

 

Private addresses and network address translation (NAT)

 

IPv6 addressing

 

Routing

 

Routing tables

 

ICMP redirects

 

ARP: the Address Resolution Protocol

 

DHCP: the Dynamic Host Configuration Protocol

 

DHCP software

 

How DHCP works

 

ISC’s DHCP software

 

Security issues

 

IP forwarding

 

ICMP redirects

 

Source routing

 

Broadcast pings and other directed broadcasts

 

IP spoofing

 

Host-based firewalls

 

Virtual private networks

 

PPP: the Point-to-Point Protocol

 

Basic network configuration

 

Hostname and IP address assignment

 

ifconfig: configure network interfaces

 

Network hardware options

 

route: configure static routes

 

DNS configuration

 

System-specific network configuration

 

Linux networking

 

NetworkManager

 

Ubuntu network configuration

 

SUSE network configuration

 

Red Hat network configuration

 

Linux network hardware options

 

Linux TCP/IP options

 

Security-related kernel variables

 

Linux NAT and packet filtering

 

Solaris networking

 

Solaris basic network configuration

 

Solaris configuration examples

 

Solaris DHCP configuration

 

ndd: TCP/IP and interface tuning for Solaris

 

Solaris security

 

Solaris firewalls and filtering

 

Solaris NAT

 

Solaris networking quirks

 

HP-UX networking

 

Basic network configuration for HP-UX

 

HP-UX configuration examples

 

HP-UX DHCP configuration

 

HP-UX dynamic reconfiguration and tuning

 

HP-UX security, firewalls, filtering, and NAT

 

AIX networking

 

no: manage AIX network tuning parameters

 

Recommended reading

 

Exercises

 

CHAPTER 15 ROUTING
 

Packet forwarding: a closer look

 

Routing daemons and routing protocols

 

Distance-vector protocols

 

Link-state protocols

 

Cost metrics

 

Interior and exterior protocols

 

Protocols on parade

 

RIP and RIPng: Routing Information Protocol

 

OSPF: Open Shortest Path First

 

EIGRP: Enhanced Interior Gateway Routing Protocol

 

IS-IS: the ISO “standard”

 

Router Discovery Protocol and Neighbor Discovery Protocol

 

BGP: the Border Gateway Protocol

 

Routing strategy selection criteria

 

Routing daemons

 

routed: obsolete RIP implementation

 

gated: first-generation multiprotocol routing daemon

 

Quagga: mainstream routing daemon

 

ramd: multiprotocol routing system for HP-UX

 

XORP: router in a box

 

Vendor specifics

 

Cisco routers

 

Recommended reading

 

Exercises

 

CHAPTER 16 NETWORK HARDWARE
 

Ethernet: the Swiss Army knife of networking

 

How Ethernet works

 

Ethernet topology

 

Unshielded twisted pair cabling

 

Optical fiber

 

Connecting and expanding Ethernets

 

Hubs

 

Switches

 

VLAN-capable switches

 

Routers

 

Autonegotiation

 

Power over Ethernet

 

Jumbo frames

 

Wireless: ethernet for nomads

 

Wireless security

 

Wireless switches and lightweight access points

 

DSL and cable modems: the last mile

 

Network testing and debugging

 

Building wiring

 

UTP cabling options

 

Connections to offices

 

Wiring standards

 

Network design issues

 

Network architecture vs. building architecture

 

Expansion

 

Congestion

 

Maintenance and documentation

 

Management issues

 

Recommended vendors

 

Cables and connectors

 

Test equipment

 

Routers/switches

 

Recommended reading

 

Exercises

 

CHAPTER 17 DNS: THE DOMAIN NAME SYSTEM
 

Who needs DNS?

 

Managing your DNS

 

How DNS works

 

Resource records

 

Delegation

 

Caching and efficiency

 

Multiple answers

 

DNS for the impatient

 

Adding a new machine to DNS

 

Configuring a DNS client

 

Name servers

 

Authoritative and caching-only servers

 

Recursive and nonrecursive servers

 

The DNS namespace

 

Registering a second-level domain name

 

Creating your own subdomains

 

Designing your DNS environment

 

Namespace management

 

Authoritative servers

 

Caching servers

 

Hardware requirements

 

Security

 

Summing up

 

What’s new in DNS

 

The DNS database

 

Commands in zone files

 

Resource records

 

The SOA record

 

NS records

 

A records

 

PTR records

 

MX records

 

CNAME records

 

The CNAME hack

 

SRV records

 

TXT records

 

IPv6 resource records

 

IPv6 forward records – AAAA

 

IPv6 reverse records – PTR

 

SPF records

 

DKIM and ADSP records

 

SSHFP resource records

 

DNSSEC resource records

 

Glue records: links between zones

 

The BIND software

 

Version determination

 

Components of BIND

 

Configuration files

 

The include statement

 

The options statement

 

The acl statement

 

The (TSIG) key statement

 

The trusted-keys statement

 

The server statement

 

The masters statement

 

The logging statement

 

The statistics-channels statement

 

The zone statement

 

Configuring the master server for a zone

 

Configuring a slave server for a zone

 

Setting up the root server hints

 

Setting up a forwarding zone

 

The controls statement for rndc

 

Split DNS and the view statement

 

BIND configuration examples

 

The localhost zone

 

A small security company

 

The Internet Systems Consortium, isc.org

 

The NSD/Unbound software

 

Installing and configuring NSD

 

Fundamental differences from BIND

 

NSD configuration example

 

NSD key definitions

 

NSD global configuration options

 

NSD zone-specific configuration options

 

Running nsd

 

Installing and configuring Unbound

 

Updating zone files

 

Zone transfers

 

BIND dynamic updates

 

Security issues

 

Access control lists in BIND, revisited

 

Open resolvers

 

Running in a chrooted jail

 

Secure server-to-server communication with TSIG and TKEY

 

Setting up TSIG for BIND

 

TSIG in NSD

 

DNSSEC

 

DNSSEC policy

 

DNSSEC resource records

 

Turning on DNSSEC

 

Key pair generation

 

Zone signing

 

The DNSSEC chain of trust

 

DLV: domain lookaside validation

 

DNSSEC key rollover

 

DNSSEC tools

 

ldns tools, nlnetlabs.nl/projects/ldns

 

Sparta tools, dnssec-tools.org

 

RIPE tools, ripe.net

 

Vantages tools, vantage-points.org

 

Debugging DNSSEC

 

Microsoft and DNS

 

Testing and debugging

 

Logging in BIND

 

Channels

 

Categories

 

Log Messages

 

Sample BIND logging configuration

 

Debug levels in BIND

 

Logging in NSD/Unbound

 

Name server control programs

 

Using BIND’s rndc

 

Using NSD’s nsdc

 

Using unbound-control

 

Name server statistics

 

Debugging with dig

 

Lame delegations

 

DNS sanity checking tools

 

Performance issues

 

Vendor specifics

 

Specifics for Linux

 

Specifics for Solaris

 

Specifics for HP-UX

 

Specifics for AIX

 

Recommended reading

 

Mailing lists and newsgroups

 

Books and other documentation

 

On-line resources

 

The RFCs

 

Exercises

 

CHAPTER 18 THE NETWORK FILE SYSTEM
 

Introduction to network file services

 

Issues of state

 

Performance concerns

 

Security

 

The NFS approach

 

Protocol versions and history

 

Transport protocols

 

State

 

File system exports

 

File locking

 

Security concerns

 

Identity mapping in version 4

 

Root access and the nobody account

 

Performance considerations in version

 

Disk quotas

 

Server-side NFS

 

The share command and dfstab file (Solaris, HP-UX)

 

The exportfs command and the exports file (Linux, AIX)

 

Exports in AIX

 

Exports in Linux

 

nfsd: serve files

 

Client-side NFS

 

Mounting remote filesystems at boot time

 

Restricting exports to privileged ports

 

Identity mapping for NFS version 4

 

nfsstat: dump NFS statistics

 

Dedicated NFS file servers

 

Automatic mounting

 

Indirect maps

 

Direct maps

 

Master maps

 

Executable maps

 

Automount visibility

 

Replicated filesystems and automount

 

Automatic automounts (V3; all but Linux)

 

Specifics for Linux

 

Recommended reading

 

Exercises

 

CHAPTER 19 SHARING SYSTEM FILES
 

What to share

 

Copying files around

 

The NFS option

 

Push systems vs. pull systems

 

rdist: push files

 

rsync: transfer files more securely

 

Pulling files

 

LDAP: the Lightweight Directory Access Protocol

 

The structure of LDAP data

 

The point of LDAP

 

LDAP documentation and specifications

 

OpenLDAP: the traditional open source LDAP server

 

Directory Server: alternative open source LDAP server

 

LDAP instead of /etc/passwd and /etc/group

 

LDAP querying

 

LDAP and security

 

NIS: the Network Information Service

 

The NIS model

 

Understanding how NIS works

 

NIS security

 

Prioritizing sources of administrative information

 

nscd: cache the results of lookups

 

Recommended reading

 

Exercises

 

CHAPTER 20 ELECTRONIC MAIL
 

Mail systems

 

User agents

 

Submission agents

 

Transport agents

 

Local delivery agents

 

Message stores

 

Access agents

 

So many pieces, so little time

 

The anatomy of a mail message

 

Reading mail headers

 

The SMTP protocol

 

You had me at EHLO

 

SMTP error codes

 

SMTP authentication

 

Mail system design

 

Using mail servers

 

Mail aliases

 

Getting aliases from files

 

Mailing to files

 

Mailing to programs

 

Aliasing by example

 

Building the hashed alias database

 

Using mailing lists and list wrangling software

 

Software packages for maintaining mailing lists

 

Content scanning: spam and malware

 

Spam

 

Forgeries

 

Message privacy

 

Spam filtering

 

When to filter

 

Greylisting/DCC

 

SpamAssassin

 

Blacklists

 

Whitelists

 

Miltering: mail filtering

 

SPF and Sender ID

 

DomainKeys, DKIM, and ADSP

 

MTA-specific antispam features

 

MailScanner

 

amavisd-new

 

How amavisd works

 

amavisd installation

 

Basic amavisd configuration

 

amavisd-new tools

 

Tests of your MTA’s scanning effectiveness

 

Email configuration

 

sendmail

 

The switch file

 

Starting sendmail

 

Mail queues

 

sendmail configuration

 

The m4 preprocessor

 

The sendmail configuration pieces

 

A configuration file built from a sample .mc file

 

sendmail configuration primitives

 

Tables and databases

 

Generic macros and features

 

OSTYPE macro

 

DOMAIN macro

 

MAILER macro

 

FEATURE macro

 

use_cw_file feature

 

redirect feature

 

always_add_domain feature

 

access_db feature

 

virtusertable feature

 

ldap_routing feature

 

Masquerading features

 

MAIL_HUB and SMART_HOST macros

 

Client configuration

 

Configuration options

 

Spam-related features in sendmail

 

Relay control

 

User or site blacklisting

 

Throttles, rates, and connection limits

 

Milter configuration in sendmail

 

amavisd and sendmail connection

 

Security and sendmail

 

Ownerships

 

Permissions

 

Safer mail to files and programs

 

Privacy options

 

Running a chrooted sendmail (for the truly paranoid)

 

Denial of service attacks

 

SASL: the Simple Authentication and Security Layer

 

TLS: Transport Layer Security

 

sendmail performance

 

Delivery modes

 

Queue groups and envelope splitting

 

Queue runners

 

Load average controls

 

Undeliverable messages in the queue

 

Kernel tuning

 

sendmail testing and debugging

 

Queue monitoring

 

Logging

 

Exim

 

Exim installation

 

Exim startup

 

Exim utilities

 

Exim configuration language

 

Exim configuration file

 

Global options

 

Options

 

Lists

 

Macros

 

ACLs (access control lists)

 

Content scanning at ACL time

 

Scanning for viruses

 

Scanning for spam

 

Authenticators

 

Routers

 

The accept router

 

The dnslookup router

 

The manualroute router

 

The redirect router

 

Per-user filtering via .forward files

 

Transports

 

The appendfile transport

 

The smtp transport

 

Retry configuration

 

Rewriting configuration

 

Local scan function

 

amavisd and Exim connection

 

Logging

 

Debugging

 

Postfix

 

Postfix architecture

 

Receiving mail

 

Managing mail-waiting queues

 

Sending mail

 

Security

 

Postfix commands and documentation

 

Postfix configuration

 

What to put in main.cf

 

Basic settings

 

Use of postconf

 

Lookup tables

 

Local delivery

 

Virtual domains

 

Virtual alias domains

 

Virtual mailbox domains

 

Access control

 

Access tables

 

Authentication of clients and encryption

 

Fighting spam and viruses

 

Blacklists

 

Spam-fighting example

 

SpamAssassin and procmail

 

Policy daemons

 

Content filtering

 

Content filtering with amavisd

 

Debugging

 

Looking at the queue

 

Soft-bouncing

 

Testing access control

 

DKIM Configuration

 

DKIM: DomainKeys Identified Mail

 

DKIM miltering

 

DKIM configuration in amavisd-new

 

DKIM in sendmail

 

DKIM in Exim

 

Signing outgoing messages

 

Verifying incoming signed messages

 

A complete example

 

DKIM in Postfix

 

Integrated email solutions

 

Recommended reading

 

General spam references

 

sendmail references

 

Exim references

 

Postfix references

 

RFCs

 

Exercises

 

sendmail-specific exercises

 

Exim-specific exercises

 

Postfix-specific exercises

 

CHAPTER 21 NETWORK MANAGEMENT AND DEBUGGING
 

Network troubleshooting

 

ping: check to see if a host is alive

 

SmokePing: gather ping statistics over time

 

traceroute: trace IP packets

 

netstat: get network statistics

 

Inspecting interface configuration information

 

Monitoring the status of network connections

 

Identifying listening network services

 

Examining the routing table

 

Viewing operational statistics for network protocols

 

Inspection of live interface activity

 

Packet sniffers

 

tcpdump: industry-standard packet sniffer

 

Wireshark and TShark: tcpdump on steroids

 

The ICSI Netalyzr

 

Network management protocols

 

SNMP: the Simple Network Management Protocol

 

SNMP organization

 

SNMP protocol operations

 

RMON: remote monitoring MIB

 

The NET-SNMP agent

 

Network management applications

 

The NET-SNMP tools

 

SNMP data collection and graphing

 

Nagios: event-based service monitoring

 

The ultimate network monitoring package: still searching

 

Commercial management platforms

 

NetFlow: connection-oriented monitoring

 

Monitoring NetFlow data with nfdump and NfSen

 

Setting up NetFlow on a Cisco router

 

Recommended reading

 

Exercises

 

CHAPTER 22 SECURITY
 

Is UNIX secure?

 

How security is compromised

 

Social engineering

 

Software vulnerabilities

 

Configuration errors

 

Security tips and philosophy

 

Patches

 

Unnecessary services

 

Remote event logging

 

Backups

 

Viruses and worms

 

Trojan horses

 

Rootkits

 

Packet filtering

 

Passwords

 

Vigilance

 

General philosophy

 

Passwords and user accounts

 

Password aging

 

Group logins and shared logins

 

User shells

 

Rootly entries

 

PAM: cooking spray or authentication wonder?

 

System support for PAM

 

PAM configuration

 

A detailed Linux configuration example

 

Setuid programs

 

Effective use of chroot

 

Security power tools

 

Nmap: network port scanner

 

Nessus: next-generation network scanner

 

John the Ripper: finder of insecure passwords

 

hosts_access: host access control

 

Bro: the programmable network intrusion detection system

 

Snort: the popular network intrusion detection system

 

OSSEC: host-based intrusion detection

 

OSSEC basic concepts

 

OSSEC installation

 

OSSEC configuration

 

Mandatory Access Control (MAC)

 

Security-enhanced Linux (SELinux)

 

Cryptographic security tools

 

Kerberos: a unified approach to network security

 

PGP: Pretty Good Privacy

 

SSH: the secure shell

 

Stunnel

 

Firewalls

 

Packet-filtering firewalls

 

How services are filtered

 

Stateful inspection firewalls

 

Firewalls: how safe are they?

 

Linux firewall features

 

Rules, chains, and tables

 

Rule targets

 

iptables firewall setup

 

A complete example

 

IPFilter for UNIX systems

 

Virtual private networks (VPNs)

 

IPsec tunnels

 

All I need is a VPN, right?

 

Certifications and standards

 

Certifications

 

Security standards

 

ISO 27002

 

PCI DSS

 

NIST 800 series

 

Common Criteria

 

OWASP

 

Sources of security information

 

CERT: a registered service mark of Carnegie Mellon University

 

SecurityFocus.com and the BugTraq mailing list

 

Schneier on Security

 

SANS: the System Administration, Networking, and Security Institute

 

Vendor-specific security resources

 

Other mailing lists and web sites

 

What to do when your site has been attacked

 

Recommended reading

 

Exercises

 

CHAPTER 23 WEB HOSTING
 

Web hosting basics

 

Resource locations on the web

 

Uniform resource locators

 

How HTTP works

 

Content generation on the fly

 

Embedded interpreters

 

FastCGI

 

Script security

 

Application servers

 

Load balancing

 

HTTP server installation

 

Choosing a server

 

Installing Apache

 

Configuring Apache

 

Running Apache

 

Analyzing log files

 

Optimizing for high-performance hosting of static content

 

Virtual interfaces

 

Using name-based virtual hosts

 

Configuring virtual interfaces

 

Linux virtual interfaces

 

Solaris virtual interfaces

 

HP-UX virtual interfaces

 

AIX virtual interfaces

 

Telling Apache about virtual interfaces

 

The Secure Sockets Layer (SSL)

 

Generating a Certificate Signing Request

 

Configuring Apache to use SSL

 

Caching and proxy servers

 

Using the Squid cache and proxy server

 

Setting up Squid

 

Reverse-proxying with Apache

 

Scaling beyond your limits

 

Cloud computing

 

Co-lo hosting

 

Content distribution networks

 

Exercises

 

SECTION THREE: BUNCH O’ STUFF

 

CHAPTER 24 VIRTUALIZATION
 

Virtual vernacular

 

Full virtualization

 

Paravirtualization

 

Operating system virtualization

 

Native virtualization

 

Cloud computing

 

Live migration

 

Comparison of virtualization technologies

 

Benefits of virtualization

 

A practical approach

 

Virtualization with Linux

 

Introduction to Xen

 

Xen essentials

 

Xen guest installation with virt-install

 

Xen live migration

 

KVM

 

KVM installation and usage

 

Solaris zones and containers

 

AIX workload partitions

 

Integrity Virtual Machines in HP-UX

 

Creating and installing virtual machines

 

VMware: an operating system in its own right

 

Amazon Web Services

 

Recommended reading

 

Exercises

 

CHAPTER 25 THE X WINDOW SYSTEM
 

The display manager

 

Process for running an X application

 

The DISPLAY environment variable

 

Client authentication

 

X connection forwarding with SSH

 

X server configuration

 

Device sections

 

Monitor sections

 

Screen sections

 

InputDevice sections

 

ServerLayout sections

 

xrandr: not your father’s X server configurator

 

Kernel mode setting

 

X server troubleshooting and debugging

 

Special keyboard combinations for X

 

When X servers attack

 

A brief note on desktop environments

 

KDE

 

GNOME

 

Which is better, GNOME or KDE?

 

Recommended reading

 

Exercises

 

CHAPTER 26 PRINTING
 

Printing-system architecture

 

Major printing systems

 

Print spoolers

 

CUPS printing

 

Interfaces to the printing system

 

The print queue

 

Multiple printers and queues

 

Printer instances

 

Network printing

 

Filters

 

CUPS server administration

 

Network print server setup

 

Printer autoconfiguration

 

Network printer configuration

 

Printer configuration examples

 

Printer class setup

 

Service shutoff

 

Other configuration tasks

 

Printing from desktop environments

 

kprinter: print documents

 

Konqueror and printing

 

System V printing

 

Overview

 

Destinations and classes

 

A brief description of lp

 

lpsched and lpshut: start and stop printing

 

lpadmin: configure the printing environment

 

lpadmin examples

 

lpstat: get status information

 

cancel: remove print jobs

 

accept and reject: control spooling

 

enable and disable: control printing

 

lpmove: transfer jobs

 

Interface programs

 

What to do when the printing system is completely hosed

 

BSD and AIX printing

 

An overview of the BSD printing architecture

 

Printing environment control

 

lpd: spool print jobs

 

lpr: submit print jobs

 

lpq: view the printing queue

 

lprm: remove print jobs

 

lpc: make administrative changes

 

The /etc/printcap file

 

printcap variables

 

sd: spool directory

 

lf: error log file

 

lp: device name

 

rw: device open mode

 

af: accounting file

 

mx: file size limits

 

rm and rp: remote access information

 

of, if: printing filters

 

printcap variables for serial devices

 

printcap extensions

 

What a long, strange trip it’s been

 

Printing history and the rise of print systems

 

Printer diversity

 

Common printing software

 

Printer languages

 

PostScript

 

PCL

 

PDF

 

XPS

 

PJL

 

Printer drivers and their handling of PDLs

 

PPD files

 

Paper sizes

 

Printer practicalities

 

Printer selection

 

GDI printers

 

Double-sided printing

 

Other printer accessories

 

Serial and parallel printers

 

Network printers

 

Other printer advice

 

Use banner pages only if you have to

 

Fan your paper

 

Provide recycling bins

 

Use previewers

 

Buy cheap printers

 

Keep extra toner cartridges on hand

 

Pay attention to the cost per page

 

Consider printer accounting

 

Secure your printers

 

Troubleshooting tips

 

Restarting a print daemon

 

Logging

 

Problems with direct printing

 

Network printing problems

 

Distribution-specific problems

 

Recommended reading

 

Exercises

 

CHAPTER 27 DATA CENTER BASICS
 

Data center reliability tiers

 

Cooling

 

Electronic gear

 

Light fixtures

 

Operators

 

Total heat load

 

Hot aisles and cold aisles

 

Humidity

 

Environmental monitoring

 

Power

 

Rack power requirements

 

kVA vs. kW

 

Remote control

 

Racks

 

Tools

 

Recommended reading

 

Exercises

 

CHAPTER 28 GREEN IT
 

Green IT initiation

 

The green IT eco-pyramid

 

Green IT strategies: data center

 

Application consolidation

 

Server consolidation

 

SAN storage

 

Server virtualization

 

Only-as-needed servers

 

Granular utilization and capacity planning

 

Energy-optimized server configuration

 

Power-saving options for Linux

 

Filesystem power savings

 

Cloud computing

 

Free cooling

 

Efficient data center cooling

 

Degraded mode for outages

 

Equipment life extension

 

Warmer temperature in the data center

 

Low-power equipment

 

Green IT strategies: user workspace

 

Green IT friends

 

Exercises

 

CHAPTER 29 PERFORMANCE ANALYSIS
 

What you can do to improve performance

 

Factors that affect performance

 

How to analyze performance problems

 

System performance checkup

 

Taking stock of your hardware

 

Gathering performance data

 

Analyzing CPU usage

 

How the system manages memory

 

Analyzing memory usage

 

Analyzing disk I/O

 

xdd: analyze disk subsystem performance

 

sar: collect and report statistics over time

 

nmon and nmon_analyser: monitor in AIX

 

Choosing a Linux I/O scheduler

 

oprofile: profile Linux systems in detail

 

Help! My system just got really slow!

 

Recommended reading

 

Exercises

 

CHAPTER 30 COOPERATING WITH WINDOWS
 

Logging in to a UNIX system from Windows

 

Accessing remote desktops

 

X server running on a Windows computer

 

VNC: Virtual Network Computing

 

Windows RDP: Remote Desktop Protocol

 

Running Windows and Windows-like applications

 

Dual booting, or why you shouldn’t

 

Microsoft Office alternatives

 

Using command-line tools with Windows

 

Windows compliance with email and web standards

 

Sharing files with Samba and CIFS

 

Samba: CIFS server for UNIX

 

Samba installation

 

Filename encoding

 

User authentication

 

Basic file sharing

 

Group shares

 

Transparent redirection with MS DFS

 

smbclient: a simple CIFS client

 

Linux client-side support for CIFS

 

Sharing printers with Samba

 

Installing a printer driver from Windows

 

Installing a printer driver from the command line

 

Debugging Samba

 

Active Directory authentication

 

Getting ready for Active Directory integration

 

Configuring Kerberos for Active Directory integration

 

Samba as an Active Directory domain member

 

PAM configuration

 

Alternatives to winbind

 

Recommended reading

 

Exercises

 

CHAPTER 31 SERIAL DEVICES AND TERMINALS
 

The RS-232C standard

 

Alternative connectors

 

The DB-9 variant

 

The RJ-45 variant

 

Hard and soft carrier

 

Hardware flow control

 

Serial device files

 

setserial: set serial port parameters under Linux

 

Pseudo-terminals

 

Configuration of terminals

 

The login process

 

The /etc/ttytype file

 

The /etc/gettytab file

 

The /etc/gettydefs file

 

The /etc/inittab file

 

getty configuration for Linux

 

Ubuntu Upstart

 

Solaris and sacadm

 

Special characters and the terminal driver

 

stty: set terminal options

 

tset: set options automatically

 

Terminal unwedging

 

Debugging a serial line

 

Connecting to serial device consoles

 

Exercises

 

CHAPTER 32 MANAGEMENT, POLICY, AND POLITICS
 

The purpose of IT

 

Budgeting and spending

 

IT policy

 

Service level agreements

 

Scope and descriptions of services

 

Queue management policies

 

Roles and responsibilities

 

Conformance measurements

 

The structure of an IT organization

 

The foundation: the ticketing and task management system

 

Common functions of ticketing systems

 

Ticket ownership

 

User acceptance of ticketing systems

 

Sample ticketing systems

 

Ticket dispatching

 

Skill sets within IT

 

Time management

 

The help desk

 

Scope of services

 

Help desk availability

 

Help desk addiction

 

The enterprise architects

 

Make processes reproducible

 

Leave a trail of bread crumbs

 

Recognize the criticality of documentation

 

Customize and write code

 

Keep the system clean

 

The operations group

 

Aim for minimal downtime

 

Document dependencies

 

Repurpose or eliminate older hardware

 

Maintain local documentation

 

Standardized documentation

 

Hardware labeling

 

Network documentation

 

User documentation

 

Keep environments separate

 

Automate, automate, automate

 

Management

 

Leadership

 

Personnel management

 

Hiring

 

Firing

 

Mechanics of personnel management

 

Quality control

 

Management without meddling

 

Community relations

 

Management of upper management

 

Purchasing

 

Conflict resolution

 

Mediation

 

Rogue users and departments

 

Policies and procedures

 

The difference between policies and procedures

 

Policy best practices

 

Procedures

 

Disaster recovery

 

Risk assessment

 

Disaster management

 

Staff for a disaster

 

Power and HVAC

 

Internet connection redundancy

 

Security incidents

 

Compliance: regulations and standards

 

ITIL: the Information Technology Infrastructure Library

 

NIST: the National Institute for Standards and Technology

 

Legal issues

 

Privacy

 

Policy enforcement

 

Control = liability

 

Software licenses

 

Organizations, conferences, and other resources

 

Recommended Reading

 

Exercises

 

INDEX

 

A BRIEF HISTORY OF SYSTEM ADMINISTRATION

 

IN DEFENSE OF AIX

 

COLOPHON

 

ABOUT THE CONTRIBUTORS

 

ABOUT THE AUTHORS

 
  


Foreword
 

Twenty-seven years ago, in 1983, I wrote what may have been the first system administrator’s guide for the UNIX operating system. I’d been hired as a contractor to write documentation at a UNIX workstation company called Massachusetts Computer Company (MASSCOMP for short). When I finished the graphics programming manuals I’d been hired to write, I was casting around for something else to do there. “When any of us have system problems, we go to Tom Teixeira,” I said. “What are our customers going to do?”
 

The answer was quick: “Uh, oh! We really need a manual.” I was soon rehired to extract as much information as I could from Tom Teixeira’s head and put it onto paper.
 

That book covered the basics: the root account, account addition, permission management, backup and restore, a bit about networking with UUCP, and so on. It was oriented toward System V, one of the two dominant flavors of UNIX at the time (the other being Berkeley UNIX).
 

All things considered, I did a pretty good job of extracting information from Tom and other members of the then rare caste of elite system administrators. But there was no question in my mind that when the UNIX System Administration Handbook (USAH) came out in 1989, the bible of the field had arrived—captured not by an amanuensis, but direct from the keyboards of the masters.
 

By then, O’Reilly had become a publisher. Recognizing that many of my technical writing customers were adopting UNIX, I had begun retaining the rights to the manuals I wrote so that I could resell them to other companies. In late 1985, we introduced our first books that were sold to the public rather than licensed to companies. We focused first on small books about individual topics such as vi, sed and awk, termcap and terminfo, and the UUCP networking system. We called them “Nutshell Handbooks” because we wanted to capture everything “in a nutshell.”
 

We didn’t really know anything about publishing. Our books had no spines (they were stapled), indexes, or ISBNs. We sold them by mail order, not through bookstores. But bit by bit, we learned. And eventually, we came into competition with the existing world of computer book publishers.
 

General UNIX administration was an obvious subject for us, but we didn’t tackle it till years later. Why not? I am a big believer in filling unmet needs, not competing for the sake of it. And it was so clear that there was already a book on the topic that was not just good but GREAT! I could imagine neither the need to compete with such a comprehensive book nor the possibility of success in doing so.
 

Eventually, as our business matured and we entered the retail computer book market, we realized that competition can actually help grow the market. People see one book, and it’s an outlier. They see more than one, and, to quote Arlo Guthrie, “they may think it’s a movement.” Besides, in that first edition of USAH, the authors had a clear bias toward BSD-based systems, and we thought there was room for a book with more of a System V bias.
 

In 1991, we published our own comprehensive book on UNIX system administration, Æleen Frisch’s Essential System Administration.
 

As an author, editor, and publisher, I never paid much attention to the competition—except in a few cases. This is one of those cases. The UNIX System Administration Handbook is one of the few books we ever measured ourselves against. Could we be as good? Could we be better? Like the NBA duels of Magic Johnson and Larry Bird, the competition brought out the best in us.
 

Uh, oh again! Fourth edition? Æleen had better get back to work! :-)
 

Tim O’Reilly
June 2010
 
  


Preface
 

When we were writing the first edition of this book in the mid-1980s, we were eager to compare our manuscript with other books about system administration. To our delight, we could find only three. These days, you have your choice of hundreds. Here are the features that distinguish our book:
 

• We take a hands-on approach. You already have plenty of manuals; our purpose is to summarize our collective perspective on system administration and to recommend approaches that stand the test of time. This book contains numerous war stories and a wealth of pragmatic advice.

 

• This is not a book about how to run UNIX or Linux at home, in your garage, or on your PDA. We describe the management of production environments such as businesses, government offices, and universities.

 

• We cover networking in detail. It is the most difficult aspect of system administration and the area in which we think we can be of most help.

 

• We cover the major variants of UNIX and Linux.

 

The Organization of this Book
 

This book is divided into three large chunks: Basic Administration, Networking, and Bunch o’ Stuff.
 

Basic Administration presents a broad overview of UNIX and Linux from a system administrator’s perspective. The chapters in this section cover most of the facts and techniques needed to run a stand-alone system.
 

The Networking section describes the protocols used on UNIX systems and the techniques used to set up, extend, and maintain networks and Internet-facing servers. High-level network software is also covered here. Among the featured topics are the Domain Name System, the Network File System, electronic mail, and network management.
 

Bunch o’ Stuff includes a variety of supplemental information. Some chapters discuss optional features such as those that support server virtualization. Others give advice on topics ranging from eco-friendly computing to the politics of running a system administration group.
 

Each chapter is followed by a set of practice exercises. Items are marked with our estimate of the effort required to complete them, where “effort” is an indicator of both the difficulty of the task and the time required. There are four levels:
 

[image: Image]
 

Some of the exercises require root or sudo access to the system; others require the permission of the local sysadmin group. Both requirements are mentioned in the text of the exercise.
 

Our Contributors
 

We’re delighted that Ned McClain, David Schweikert, and Tobi Oetiker were able to join us once again as contributing authors. With this edition, we also welcome Terry Morreale and Ron Jachim as new contributors. These contributors’ deep knowledge of a variety of areas has greatly enriched the content of this book.
 

Contact Information
 

Please send suggestions, comments, and bug reports to ulsah@book.admin.com. We do answer mail, but please be patient; it is sometimes a few days before one of us is able to respond. Because of the volume of email that this alias receives, we regret that we are unable to answer technical questions.
 

To view a copy of our current bug list and other late-breaking information, visit our web site, admin.com.
 

We hope you enjoy this book, and we wish you the best of luck with your adventures in system administration!
 

Evi Nemeth
Garth Snyder
Trent R. Hein
Ben Whaley
 

June 2010
 
  


Acknowledgments
 

Many people contributed to this project, bestowing everything from technical reviews and suggested exercises to overall moral support. The following folks deserve special thanks for hanging in there with us:
 

[image: Image]
 

Our editor at Prentice Hall, Mark Taub, deserves not only our thanks but also an award for dealing patiently with flaky authors and a supporting cast that sometimes seemed to run to thousands of contributors.
 

We’ve had outstanding technical reviewers. Two in particular, Jonathan Corbet and Pat Parseghian, deserve special mention not only for their diplomatic and detailed comments but also for their willingness to stick with us over the course of multiple editions.
 

Mary Lou Nohr once again did an exceptional job as copy editor. She is a car crushing plant and botanical garden rolled into one.
 

This edition’s awesome cartoons and cover were conceived and executed by Lisa Haney. Her portfolio is on-line at lisahaney.com.
 

Linda Grigoleit, Terry Hoffman, and John Sullivan helped us negotiate the IBM network and obtain equipment for evaluation.
 

Thanks also to Applied Trust (appliedtrust.com), which contributed laboratory space and a variety of logistical support.
 

Finally, we were unable to reach an agreement that would allow us to publicly acknowledge one of our distinguished contributing authors. His contributions and support throughout the project were nonetheless appreciated, and we send him this palindrome for his collection: “A man, a plan, a canoe, pasta, Hero’s rajahs, a coloratura, maps, snipe, percale, macaroni, a gag, a banana bag, a tan, a tag, a banana bag again (or a camel), a crepe, pins, Spam, a rut, a Rolo, cash, a jar, sore hats, a peon, a canal—Panama!”
 
  


Section One: Basic Administration
 

[image: Image]
 
  


1. Where to Start
 

[image: Image]
 

An awful lot of UNIX and Linux information is available these days, so we’ve designed this book to occupy a specific niche in the ecosystem of man pages, blogs, magazines, books, and other reference materials that address the needs of system administrators.
 

First, it’s an orientation guide. It reviews the major administrative systems, identifies the different pieces of each, and explains how they work together. In the many cases where you must choose between various implementations of a concept, we describe the advantages and drawbacks of the major players.
 

Second, it’s a quick-reference handbook that summarizes what you need to know to perform common tasks on a variety of common UNIX and Linux systems. For example, the ps command, which shows the status of running processes, supports more than 80 command-line options on Linux systems. But a few combinations of options satisfy 99% of a system administrator’s needs; see them on page 130.
 

Finally, this book focuses on the administration of enterprise servers and networks. That is, serious system administration. It’s easy to set up a single desktop system; harder to keep a virtualized network running smoothly in the face of load spikes, disk failures, and intentional attacks. We describe techniques and rules of thumb that help networks recover from adversity, and we help you choose solutions that scale as your site grows in size, complexity, and heterogeneity.
 

We don’t claim to do all of this with perfect objectivity, but we think we’ve made our biases fairly clear throughout the text. One of the interesting things about system administration is that reasonable people can have dramatically different notions of what constitute the most appropriate policies and procedures. We offer our subjective opinions to you as raw data. You’ll have to decide for yourself how much to accept and to what extent our comments apply to your environment.
 

1.1 Essential Duties of the System Administrator
 

See Chapter 2 for more information about scripting.

 

The Wikipedia page for “system administrator” includes a nice discussion of the tasks that system administration is generally thought to include. This page currently draws a rather sharp distinction between administration and software development, but in our experience, professional administrators spend much of their time writing scripts. That doesn’t make system administrators developers per se, but it does mean that they need many of the same analytical and architectural skills.
 

The sections below summarize some of the main tasks that administrators are expected to perform. These duties need not necessarily be carried out by a single person, and at many sites the work is distributed among a team. However, at least one person must understand all the components and make sure that every task is being done correctly.
 

Account provisioning
 

The system administrator adds accounts for new users, removes the accounts of users that are no longer active, and handles all the account-related issues that come up in between (e.g., forgotten passwords). The process of adding and removing users can be automated, but certain administrative decisions (where to put a user’s home directory, which machines to create the account on, etc.) must still be made before a new user can be added.
 

See Chapter 7 for more information about adding new users.

 

When a user should no longer have access to the system, the user’s account must be disabled. All the files owned by the account should be backed up and then disposed of so that the system does not accumulate unwanted baggage over time.
 

Adding and Removing Hardware
 

When new hardware is purchased or when hardware is moved from one machine to another, the system must be configured to recognize and use that hardware. Hardware-support chores can range from the simple task of adding a printer to the more complex job of adding a disk array.
 

See Chapters 8, 13, and 26 for more information about these topics.

 

Now that virtualization has arrived in the enterprise computing sphere, hardware configuration can be more complicated than ever. Devices may need installation at several layers of the virtualization stack, and the system administrator may need to formulate policies that allow the hardware to be shared securely and fairly.
 

Performing Backups
 

Performing backups is perhaps the most important job of the system administrator, and it is also the job that is most often ignored or sloppily done. Backups are time consuming and boring, but they are absolutely necessary. Backups can be automated and delegated to an underling, but it is still the system administrator’s job to make sure that backups are executed correctly and on schedule (and that the resulting media can actually be used to restore files).
 

See Chapter 10 for more information about backups.

 

Installing and Upgrading Software
 

When new software is acquired, it must be installed and tested, often under several operating systems and on several types of hardware. Once the software is working correctly, users must be informed of its availability and location. As patches and security updates are released, they must be incorporated smoothly into the local environment.
 

See Chapter 12 for more information about software management.

 

Local software and administrative scripts should be properly packaged and managed in a fashion that’s compatible with the native upgrade procedures used on systems at your site. As this software evolves, new releases should be staged for testing before being deployed to the entire site.
 

Monitoring the System
 

Large installations require vigilant supervision. Don’t expect users to report problems to you unless the issues are severe. Working around a problem is usually faster than taking the time to document and report it, so users often follow the path of least resistance.
 

Regularly ensure that email and web services are working correctly, watch log files for early signs of trouble, make sure that local networks are properly connected, and keep an eye on the availability of system resources such as disk space. All of these chores are excellent opportunities for automation, and a variety of off-the-shelf monitoring systems can help sysadmins with this task.
 

Troubleshooting
 

System failures are inevitable. It is the administrator’s job to play mechanic by diagnosing problems and calling in experts if needed. Finding the problem is often harder than fixing it.
 

Maintaining Local Documentation
 

As a system is changed to suit an organization’s needs, it begins to differ from the plain-vanilla system described by the documentation. Since the system administrator is responsible for making these customizations, it’s also the sysadmin’s duty to document the changes. This chore includes documenting where cables are run and how they are constructed, keeping maintenance records for all hardware, recording the status of backups, and documenting local procedures and policies.
 

See page 1200 for suggestions regarding documentation.

 

Vigilantly Monitoring Security
 

The system administrator must implement a security policy and periodically check to be sure that the security of the system has not been violated. On low-security systems, this chore might involve only a few basic checks for unauthorized access. On a high-security system, it can include an elaborate network of traps and auditing programs.
 

See Chapter 22 for more information about security.

 

Fire Fighting
 

Although helping users with their various problems is rarely included in a system administrator’s job description, it claims a significant portion of most administrators’ workdays. System administrators are bombarded with problems ranging from “It worked yesterday and now it doesn’t! What did you change?” to “I spilled coffee on my keyboard! Should I pour water on it to wash it out?”
 

In most cases, your response to these issues affects your perceived value as an administrator far more than does any actual technical skill you might possess. You can either howl at the injustice of it all, or you can delight in the fact that a single well-handled trouble ticket scores as many brownie points as five hours of midnight debugging. You pick!
 

1.2 Suggested Background
 

We assume in this book that you have a certain amount of Linux or UNIX experience. In particular, you should have a general concept of how the system looks and feels from the user’s perspective since we don’t review this material. Several good books can get you up to speed; see the reading list on page 27.
 

Even in these days of Compiz-powered 3D desktops, the GUI tools for system administration on UNIX and Linux systems remain fairly simplified in comparison with the richness of the underlying software. In the real world, we still administer by editing configuration files and writing scripts, so you’ll need to be comfortable with both a command-line shell and a text editor.
 

Your editor can be a GUI tool like gedit or a command-line tool such as vi or emacs. Word processors such as Microsoft Word and OpenOffice Writer are quite different from text editors and are nearly useless for administrative tasks. Command-line tools have an edge because they can run over simple SSH connections and on ailing systems that won’t boot; there’s no need for a window system. They are also much faster for the quick little edits that administrators often make.
 

We recommend learning vi (now seen most commonly in its rewritten form, vim), which is standard on all UNIX and Linux systems. Although it may appear a bit pallid when compared with glitzier offerings such as emacs, it is powerful and complete. GNU’s nano is a simple and low-impact “starter editor” that has on-screen prompts. Be wary of nonstandard editors, though; if you become addicted to one, you may soon tire of dragging it along with you to install on every new system.
 

One of the mainstays of administration (and a theme that runs throughout this book) is the use of scripts to automate administrative tasks. To be an effective administrator, you must be able to read and modify Perl and bash / sh scripts.
 

For new scripting projects, we recommend Perl or Python. As a programming language, Perl is admittedly a bit strange. However, it does include many features that are indispensable for administrators. The O’Reilly book Programming Perl by Larry Wall et al. is the standard text; it’s also a model of good technical writing. A full citation is given on page 27.
 

See Chapter 2 for more information about scripting.

 

Many administrators prefer Python to Perl, and we know of sites that are making a concerted effort to convert. Python is a more elegant language, and Python scripts are generally more readable and easier to maintain. (As Amazon’s Steve Yegge said, “The Python community has long been the refuge for folks who finally took the red pill and woke up from the Perl Matrix.”) A useful set of links that compare Python to other scripting languages (including Perl) can be found at python.org/doc/Comparisons.html.
 

Ruby is an up-and-coming language that maintains many of the strengths of Perl while avoiding some of Perl’s syntactic pitfalls and adding modern object-oriented features. It doesn’t yet have a strong tradition as a scripting language for system administrators, but that will likely change over the next few years.
 

We also suggest that you learn expect, which is not a programming language so much as a front end for driving interactive programs. It’s an efficient glue technology that can replace some complex scripting. expect is easy to learn.
 

Chapter 2, Scripting and the Shell, summarizes the most important things to know about scripting for bash, Perl, and Python. It also reviews regular expressions (text matching patterns) and some shell idioms that are useful for sysadmins.
 

1.3 Friction Between Unix and Linux
 

Because they are similar, this book covers both UNIX and Linux systems. Unfortunately, mentioning UNIX and Linux together in the same sentence can sometimes be like stepping into a political minefield, or perhaps blundering into a large patch of quicksand. But since the relationship between UNIX and Linux seems to engender some confusion as well as animosity, it’s hard to avoid staking out a position. Here is our perspective and our short version of the facts.
 

See the section starting on page 1264 for more of the history of UNIX and Linux.

 

Linux is a reimplementation and elaboration of the UNIX kernel. It conforms to the POSIX standard, runs on several hardware platforms, and is compatible with most existing UNIX software. It differs from many—but not all—variants of UNIX in that it is free, open source, and cooperatively developed. Linux includes technical advances that did not exist in UNIX, so it is more than just a UNIX clone. At the same time, traditional UNIX vendors have continued to refine their systems, so there are certainly areas in which commercial UNIX systems are superior to Linux.
 

Whatever the relative merits of the systems, Linux is a legally, developmentally, and historically distinct entity that cannot properly be referred to as “UNIX” or as a “version of UNIX.” To do so is to slight the work and innovation of the Linux community. At the same time, it’s somewhat misleading to insist that Linux is “not UNIX.” If your creation walks like a duck and quacks like a duck, you may have invented a duck.
 

Schisms exist even within the Linux camp. It has been argued, with some justification, that referring to Linux distributions simply as “Linux” fails to acknowledge the work that went into the software that runs outside the kernel (which in fact constitutes the vast majority of software on an average system). Unfortunately, the most commonly suggested alternative, GNU/Linux, has its own political baggage and has been officially endorsed only by the Debian distribution. The Wikipedia entry for “GNU/Linux naming controversy” outlines the arguments on both sides.1 Interestingly, the use of open source software is now predominant even on most UNIX systems, but no one seems to be pushing for a GNU/UNIX designation just yet.2
 

Linux software is UNIX software. Thanks largely to the GNU Project, most of the important software that gives UNIX systems their value has been developed under some form of open source model.3 The same code runs on Linux and non-Linux systems. The Apache web server, for example, doesn’t much care whether it’s running on Linux or Solaris. From the standpoint of applications and most administrative software, Linux is simply one of the best-supported and most widely available varieties of UNIX.
 

It’s also worth noting that Linux is not the only free UNIX-like operating system in the world. OpenSolaris is free and open source, although its exact licensing terms have earned suspicious looks from some open source purists. FreeBSD, NetBSD, and OpenBSD—all offshoots of the Berkeley Software Distribution from UC Berkeley—have ardent followers of their own. These OSes are generally comparable to Linux in their features and reliability, although they enjoy somewhat less support from third-party software vendors.
 

UNIX and Linux systems have both been used in production environments for many years, and they both work well.4 At this point, the choice between them has more to do with packaging, support, and institutional inertia than any real difference in quality or modernity.
 

In this book, comments about “Linux” generally apply to Linux distributions but not to traditional UNIX variants. The meaning of “UNIX” is a bit more fluid, as we occasionally apply it to attributes shared by all UNIX derivatives, including Linux (e.g., “UNIX file permissions”). To avoid ambiguity, we usually say “UNIX and Linux” when we mean both.
 

1.4 Linux Distributions
 

All Linux distributions share the same kernel lineage, but the ancillary materials that go along with that kernel can vary quite a bit. Distributions vary in their focus, support, and popularity. There continue to be hundreds of independent Linux distributions, but our sense is that distributions based on the Debian, Red Hat, and SUSE lineages will continue to predominate in production environments over the next five years.
 

The differences among Linux distributions are not cosmically significant. In fact, it is something of a mystery why there are so many different distributions, each claiming “easy installation” and “a massive software library” as its distinguishing features. It’s hard to avoid the conclusion that people just like to make new Linux distributions.
 

Many smaller distributions are surprisingly competitive in terms of fit and finish. All major distributions, including the second tier, include a relatively painless installation procedure, a well-tuned desktop environment, and some form of package management. Most distributions also allow you to boot from the distribution DVD, which can be handy for debugging and is also a nice way to take a quick look at a new distribution you are considering.
 

Since our focus in this book is the management of large-scale installations, we’re partial to distributions such as Red Hat Enterprise Linux that take into account the management of networks of machines. Some distributions are designed with production environments in mind, and others are not. The extra crumbs of assistance that the production-oriented systems toss out can make a significant difference in ease of administration.
 

When you adopt a distribution, you are making an investment in a particular vendor’s way of doing things. Instead of looking only at the features of the installed software, it’s wise to consider how your organization and that vendor are going to work with each other in the years to come.
 

Some important questions to ask are
 

• Is this distribution going to be around in five years?

 

• Is this distribution going to stay on top of the latest security patches?

 

• Is this distribution going to release updated software promptly?

 

• If I have problems, will the vendor talk to me?

 

Viewed in this light, some of the more interesting, offbeat distributions don’t sound quite so appealing. But don’t count them out: E*Trade, for example, runs on Gentoo Linux.
 

The most viable distributions are not necessarily the most corporate. For example, we expect Debian Linux (OK, OK, Debian GNU/Linux!) to remain viable for a long time despite the fact that Debian is not a company, doesn’t sell anything, and offers no formal, on-demand support. Debian itself isn’t one of the most widely used distributions, but it benefits from a committed group of contributors and from the enormous popularity of the Ubuntu distribution, which is based on it.
 

Table 1.1 lists some of the most popular mainstream distributions.
 

[image: Image]
 

Table 1.1 Most popular general-purpose Linux distributions
 

A comprehensive list of distributions, including many non-English distributions, can be found at linux.org/dist, lwn.net/Distributions, or distrowatch.com.
 

1.5 Example Systems Used in this Book
 

We have chosen three popular Linux distributions and three UNIX variants as our examples to discuss throughout this book: Ubuntu Linux, openSUSE, Red Hat Enterprise Linux, Solaris, HP-UX, and AIX. These systems are representative of the overall marketplace and account collectively for an overwhelming majority of the installations in use at large sites today.
 

Information in this book generally applies to all of our example systems unless a specific attribution is given. Details particular to one system are marked with the vendor’s logo:
 

[image: Image]
 

These logos are used with the kind permission of their respective owners. However, the vendors have not reviewed or endorsed the contents of this book. The paragraphs below provide a bit more detail about each of these example systems.
 

Example Linux Distributions
 

[image: Image] Information that’s specific to Linux but not to any particular distribution is marked with the Tux penguin logo shown at left.
 

[image: Image] The Ubuntu distributions maintain an ideological commitment to community development and open access, so there’s never any question about which parts of the distribution are free or redistributable. Ubuntu currently enjoys philanthropic funding from South African entrepreneur Mark Shuttleworth.
 

Ubuntu is based on the Debian distribution and uses Debian’s packaging system. It comes in two main forms, a Desktop Edition and a Server Edition. They are essentially similar, but the Server Edition kernel comes pretuned for server use and does not install a GUI or GUI applications such as OpenOffice.
 

[image: Image] SUSE, now part of Novell, has taken the path of Red Hat and forked into two related distributions: one (openSUSE) that contains only free software; and another (SUSE Linux Enterprise) that costs money, includes a formal support path, and offers a few extra trinkets. Nothing in this book is specific to one SUSE distribution or the other, so we simply refer to them collectively as “SUSE.”
 

[image: Image] Red Hat has been a dominant force in the Linux world for most of the last decade, and its distributions are widely used in North America. In 2003, the original Red Hat Linux distribution was split into a production-centered line called Red Hat Enterprise Linux (which we refer to as RHEL or Red Hat in this book) and a community-based development project called Fedora. The split was motivated by a variety of technical, economic, logistic, and legal reasons.
 

The distributions were initially similar, but Fedora has made some significant changes over the last five years and the two systems aren’t currently synchronized in any meaningful way. RHEL offers great support and stability but is effectively impossible to use without paying licensing fees to Red Hat.
 

The CentOS Project (centos.org) collects source code that Red Hat is obliged to release under various licensing agreements (most notably, the GNU Public License) and assembles it into a complete distribution that is eerily similar to Red Hat Enterprise Linux, but free of charge. The distribution lacks Red Hat’s branding and a few proprietary tools, but is in other respects equivalent. CentOS aspires to full binary and bug-for-bug compatibility with RHEL.
 

CentOS is an excellent choice for sites that want to deploy a production-oriented distribution without paying tithes to Red Hat. A hybrid approach is also feasible: front-line servers can run Red Hat Enterprise Linux and avail themselves of Red Hat’s excellent support, while desktops run CentOS. This arrangement covers the important bases in terms of risk and support while also minimizing cost and administrative complexity.
 

Example Unix Distributions
 

[image: Image] Solaris is a System V derivative with many extensions from the company formerly known as Sun Microsystems, now part of Oracle.5 Sun UNIX (as it was called in the mid-80s) was originally the progeny of Berkeley UNIX, but a (now historic) corporate partnership between Sun and AT&T forced a change of code base. Solaris runs on a variety of hardware platforms, most notably Intel x86 and SPARC.
 

In Sun’s hands, Solaris was free to download and use. However, Oracle has changed this policy, and current downloads are labeled as 90-day free trial editions. The existence of OpenSolaris, an explicitly free and open source version of Solaris, complicates the picture as well. At this point (mid-2010), Oracle’s exact plans for Solaris and OpenSolaris remain unclear.
 

The release of Solaris 11 is expected some time this year, and every indication so far is that it will hew closely to OpenSolaris. In this book, the composite system we refer to as “Solaris” is based on production Solaris 10 and OpenSolaris releases, adjusted with guidance from our network of deep-cover spies within Oracle. In a few cases, we note specifics for Solaris 10 or OpenSolaris.
 

[image: Image] HP-UX is based on System V and is tied to Hewlett-Packard’s hardware platforms. It’s closer to the ancestral source tree than either Solaris or AIX, but HP has kept pace with developments in the OS world and has added a variety of its own enhancements. Now that HP has begun supporting Linux as well, the future of HP-UX is somewhat less clear.
 

[image: Image] IBM’s AIX started as a variant of Berkeley’s 4.2BSD, but as of version 4 in 1994, most parts of the system migrated to System V. At this point, AIX has drifted rather far from both origins.
 

In general, we have the impression that AIX has enjoyed less cross-pollination from other systems than most UNIX variants. It also seems to have fallen under the Svengali-like influence of some of IBM’s mainframe and AS/400 operating systems, from which it inherits conventions such as the Object Data Manager (see page 432), the use of configuration commands rather than configuration files, and the SMIT administrative interface. Over time, one might charitably say, it has grown to be more and more like itself.
 

IBM has been pursuing an interestingly OS-agnostic approach to marketing its hardware for most of the last decade. IBM continues to develop and promote AIX, but it’s also engaged in partnerships with Red Hat and Novell to ensure that their respective Linux distributions run smoothly on IBM hardware. It will be interesting to see how this approach plays out in the years ahead.
 

1.6 System-Specific Administration Tools
 

Modern systems include a variety of visually oriented tools and control panels (such as SUSE’s YaST2 and IBM’s SMIT) that help you configure or administer selected aspects of the system. These tools are useful, especially for novice administrators, but they also tend to be relatively incomplete reflections of the underlying software. They make many administrative tasks easier, but most fall short of being authoritative.
 

In this book, we cover the underlying mechanisms that the visual tools manipulate rather than the tools themselves, for several reasons. For one, the visual tools tend to be proprietary (or at least, system-specific). They introduce variation into processes that may actually be quite consistent among systems at a lower level. Second, we believe that it’s important for administrators to have an accurate understanding of how their systems work. When the system breaks, the visual tools are often not helpful in tracking down and fixing problems. Finally, manual configuration is often faster, more flexible, more reliable, and easier to script.
 

1.7 Notation and Typographical Conventions
 

In this book, filenames, commands, and literal arguments to commands are shown in boldface. Placeholders (e.g., command arguments that should not be taken literally) are in italics. For example, in the command
 

cp
file directory
 

you’re supposed to replace file and directory with the names of an actual file and an actual directory.
 

Excerpts from configuration files and terminal sessions are shown in a fixed-width font.6 Sometimes, we annotate sessions with italic text. For example:
 

[image: Image]
 

Outside of these specific cases, we have tried to keep special fonts and formatting conventions to a minimum as long as we could do so without compromising intelligibility. For example, we often talk about entities such as the daemon group or the printer anchor-lw with no special formatting at all.
 

We use the same conventions as the manual pages for command syntax:
 

• Anything between square brackets (“[” and “]”) is optional.

 

• Anything followed by an ellipsis (“…”) can be repeated.

 

• Curly braces (“{” and “}”) mean that you should select one of the items separated by vertical bars (“|”).

 

For example, the specification
 

bork [ -x ] { on | off } filename …
 

would match any of the following commands:
 

[image: Image]
 

We use shell-style globbing characters for pattern matching:
 

• A star (*) matches zero or more characters.

 

• A question mark (?) matches one character.

 

• A tilde or “twiddle” (~) means the home directory of the current user.7

 

• ~user means the home directory of user.

 

For example, we might refer to the startup script directories /etc/rc0.d, /etc/rc1.d, and so on with the shorthand pattern /etc/rc*.d.
 

Text within quotation marks often has a precise technical meaning. In these cases, we ignore the normal rules of U.S. English and put punctuation outside the quotes so that there can be no confusion about what’s included and what’s not.
 

1.8 Units
 

Metric prefixes such as kilo-, mega-, and giga- are defined as powers of 10: one megabuck is 1,000,000 dollars. However, computer types have long poached these prefixes and used them to refer to powers of 2. For example, one “megabyte” of memory is really 220 or 1,048,576 bytes. The stolen units have even made their way into formal standards such as the JEDEC Solid State Technology Association’s Standard 100B.01, which recognizes the prefixes as denoting powers of 2 (albeit with some misgivings).
 

In an attempt to restore clarity, the International Electrotechnical Commission has defined a set of numeric prefixes (kibi-, mebi-, gibi-, and so on, abbreviated Ki, Mi, and Gi) based explicitly on powers of 2. Those units are always unambiguous, but they are just starting to be widely used. The original kilo-series prefixes are still used in both senses.
 

Context helps with decoding. RAM is always denominated in powers of 2, but network bandwidth is always a power of 10. Storage space is usually quoted in power-of-10 units, but block and page sizes are in fact powers of 2.
 

In this book, we use IEC units for powers of 2, metric units for powers of 10, and metric units for rough values and cases in which the exact basis is unclear, undocumented, or impossible to determine. In command output and in excerpts from configuration files, we leave the original values and unit designators. We abbreviate bit as b and byte as B. Table 1.2 shows some examples.
 

[image: Image]
 

Table 1.2 Unit decoding example
 

The abbreviation K, as in “8KB of RAM!”, is not part of any standard. It’s a computerese adaptation of the metric abbreviation k, for kilo-, and originally meant 1,024 as opposed to 1,000. But since the abbreviations for the larger metric prefixes are already uppercase, the analogy doesn’t scale. Later, people became confused about the distinction and started using K for factors of 1,000, too.
 

The Ubuntu Linux distribution is making a valiant attempt to bring rationality and consistency to this issue; see wiki.ubuntu.com/UnitsPolicy for some additional details.
 

1.9 Man Pages and Other on- Line Documentation
 

The manual pages, usually called “man pages” because they are read with the man command, constitute the traditional “on-line” documentation. (Of course, these days all the documentation is on-line in some form or another.) Man pages are typically installed with the system. Program-specific man pages come along for the ride when you install new software packages.
 

Man pages are concise descriptions of individual commands, drivers, file formats, or library routines. They do not address more general topics such as “How do I install a new device?” or “Why is this system so damn slow?” For those questions, consult your vendor’s administration guides (see page 18) or, for Linux systems, the documents available from the Linux Documentation Project.
 

Organization of the Man Pages
 

All systems divide the man pages into sections, but there are minor variations in the way some sections are defined. The basic schema used by our example systems is shown in Table 1.3.
 

[image: Image]
 

Table 1.3 Sections of the man pages
 

Some sections may be further subdivided. For example, Solaris’s section 3c contains man pages about the system’s standard C library. There is also considerable variation in the exact distribution of pages; some systems leave section 8 empty and lump the system administration commands into section 1. A lot of systems have discontinued games and demos, leaving nothing in section 6. Many systems have a section of the manuals called “l” (lowercase L) for local man pages.
 

The exact structure of the sections isn’t important for most topics because man finds the appropriate page wherever it is stored. You only need to be aware of the section definitions when a topic with the same name appears in multiple sections. For example, passwd is both a command and a configuration file, so it has entries in both section 1 and section 4 or 5.
 

Man: Read Man Pages
 

man
title formats a specific manual page and sends it to your terminal through more, less, or whatever program is specified in your PAGER environment variable. title is usually a command, device, filename, or name of a library routine. The sections of the manual are searched in roughly numeric order, although sections that describe commands (sections 1, 8, and 6) are usually searched first.
 

The form man
section title gets you a man page from a particular section. Thus, on most systems, man sync gets you the man page for the sync command, and man 2 sync gets you the man page for the sync system call.
 

[image: Image] Under Solaris, you must preface the section number with the -s flag, for example, man -s 2 sync.
 

man -k
keyword or apropos
keyword prints a list of man pages that have keyword in their one-line synopses. For example:
 

[image: Image]
 

The keywords database can become out of date. If you add additional man pages to your system, you may need to rebuild this file with mandb (Ubuntu, SUSE), makewhatis (Red Hat), or catman -w (Solaris, HP-UX, AIX).
 

Storage of Man Pages
 

nroff input for man pages is usually kept in directories under /usr/share/man. Linux systems compress them with gzip to save space. (The man command knows how to uncompress them on the fly.) The man command maintains a cache of formatted pages in /var/cache/man or /usr/share/man if the appropriate directories are writable, but this is a security risk. Most systems preformat the man pages once at installation time (see catman) or not at all.
 

[image: Image] Solaris understands man pages formatted with SGML in addition to the traditional nroff. The SGML pages have their own section directories underneath /usr/share/man.
 

The man command can search several man page repositories to find the manual pages you request. On Linux systems, you can find out the current default search path with the manpath command. This path (from Ubuntu) is typical:
 

[image: Image]
 

If necessary, you can set your MANPATH environment variable to override the default path:
 

export MANPATH=/home/share/localman:/usr/share/man
 

Some systems let you set a custom system-wide default search path for man pages, which can be useful if you need to maintain a parallel tree of man pages such as those generated by OpenPKG. If you want to distribute local documentation in the form of man pages, however, it is simpler to use your system’s standard packaging mechanism and to put man pages in the standard man directories. See Chapter 12, Software Installation and Management, for more details.
 

GNU Texinfo
 

Linux systems include a sort of supplemental on-line man page system called Texinfo. It was invented long ago by the GNU folks in reaction to the fact that the nroff command to format man pages was proprietary to AT&T. These days we have GNU’s own groff to do this job for us and the nroff issue is no longer important, but Texinfo still lumbers along like a zombie in search of human brains.
 

Although the use of Texinfo seems to be gradually fading, a few GNU packages persist in documenting themselves with Texinfo files rather than man pages. You can pipe the output of the Texinfo reader, info, through less to evade info’s builtin navigation system.
 

Fortunately, packages that are documented with Texinfo usually install man page stubs that tell you to use the info command to read about those particular packages. You can safely stick to the man command for doing manual searches and delve into info land only when instructed to do so. info info initiates you into the dark mysteries of Texinfo.
 

1.10 Other Authoritative Documentation
 

Man pages are just a small part of the official documentation. Most of the rest, unfortunately, is scattered about on the web.
 

System-Specific Guides
 

Major vendors have their own dedicated documentation projects, and many continue to produce useful book-length manuals. These days the manuals are usually found on-line rather than in the form of printed books. The extent and quality of the documentation vary widely, but most vendors produce at least an administration guide and an installation guide. Table 1.4 shows where to look for each of our example systems.
 

[image: Image] The standout in this crowd is IBM, which produces a raft of full-length books on a variety of administration topics. You can buy them as books, but they’re also available for free as downloads. The downside to IBM’s completeness is that many of the documents seem to lag a version or two behind the current release of AIX.
 

[image: Image]
 

Table 1.4 Where to find OS vendors’ proprietary documentation
 

[image: Image] Red Hat is the unfortunate laggard in the documentation race. Most of its documents relate to its proprietary value-added systems rather than to Linux administration generally.
 

Package-Specific Documentation
 

Most of the important software packages in the UNIX and Linux world are maintained by individuals or by third parties such as the Internet Systems Consortium and the Apache Software Foundation. These groups write their own documentation. The quality runs the gamut from embarrassing to spectacular, but jewels such as Version Control with Subversion from svnbook.red-bean.com make the hunt worthwhile.
 

UNIX vendors and Linux distributors always include the appropriate man pages in their packages. Unfortunately, they tend to skimp on other documentation, mostly because there really isn’t a standard place to put it (check /usr/share/doc). It’s often useful to check the original source of the software to see if additional materials are available.
 

Supplemental documents include white papers (technical reports), design rationales, and book- or pamphlet-length treatments of particular topics. These supplemental materials are not limited to describing just one command, so they can adopt a tutorial or procedural approach. Many pieces of software have both a man page and an article. For example, the man page for vi tells you about the command-line arguments that vi understands, but you have to go to the in-depth treatment to learn how to actually edit a file.
 

Books
 

The best resources for system administrators in the printed realm (aside from this book :-)) are the O’Reilly series of books. The series began with UNIX in a Nutshell over 20 years ago and now includes a separate volume on just about every important UNIX and Linux subsystem and command. The series also includes books on the Internet, Windows, and other non-UNIX topics. All the books are reasonably priced, timely, and focused.
 

Tim O’Reilly has become quite interested in the open source movement and runs a conference, OSCON, on this topic as well as conferences on other trendy techie topics. OSCON occurs twice yearly, once in the United States and once in Europe. See oreilly.com for more information.
 

RFCs and Other Internet Documents
 

The Request for Comments document series describes the protocols and procedures used on the Internet. Most of these documents are relatively detailed and technical, but some are written as overviews. They are absolutely authoritative, and many are quite useful for system administrators. See page 449 for a more complete description of these documents.
 

The Linux Documentation Project
 

Linux systems have another major source of reference information: the Linux Documentation Project at tldp.org. This site hosts a huge array of user-contributed documentation ranging from FAQs to full-length guides. The LDP also centralizes efforts to translate Linux-related documents into additional languages.
 

Unfortunately, many of the LDP documents are not well maintained. Since Linux-years are a lot like dog-years in their relation to real time, untended documents are apt to go out of date quickly. Always check the time stamp on a HOWTO or guide and weigh its credibility accordingly.
 

1.11 Other Sources of Information
 

The sources discussed in the previous section are generally the most reliable, but they’re hardly the last word in UNIX and Linux documentation. Countless blogs, discussion forums, and news feeds are available on the Internet.
 

It should go without saying, but Google is a system administrator’s best friend. Unless you’re looking up the details of a specific command or file format, Google should be the first resource you consult for any sysadmin question. Make it a habit; if nothing else, you’ll avoid the delay and humiliation of having your questions in an on-line forum answered with a link to Google.8
When stuck, Google.
 

We can’t enumerate every useful collection of UNIX and Linux information on the Internet, but a few of the most significant ones are shown in Table 1.5.
 

Another fun and useful resource is Bruce Hamilton’s “Rosetta Stone” page at bhami.com/rosetta.html. It contains pointers to the commands and tools used for various system administration tasks on many different operating systems.
 

If you’re a Linux site, don’t be shy about accessing general UNIX resources. Most information is directly applicable to Linux.
 

[image: Image]
 

Table 1.5 Sysadmin resources on the web
 

1.12 Ways to Find and Install Software
 

Chapter 12, Software Installation and Management, addresses software provisioning in detail. But for the impatient, here’s a quick primer on how to find out what’s installed on your system and how to obtain and install new software.
 

Modern operating systems divide their contents into packages that can be installed independently of one another. The default installation includes a range of starter packages that you can expand according to your needs.
 

Add-on software is often provided in the form of precompiled packages as well, although the degree to which this is a mainstream approach varies widely among systems. Most software is developed by independent groups that release the software in the form of source code. Package repositories then pick up the source code, compile it appropriately for the conventions in use on the systems they serve, and package the resulting binaries. It’s usually easier to install a system-specific binary package than to fetch and compile the original source code. However, packagers are sometimes a release or two behind the current version.
 

The fact that two systems use the same package format doesn’t necessarily mean that packages for the two systems are interchangeable. Red Hat and SUSE both use RPM, for example, but their filesystem layouts are somewhat different. It’s best to use packages designed for your particular system if they are available.
 

Major Linux distributions provide excellent package management systems that include tools for accessing and searching Internet software repositories. Distributors aggressively maintain these repositories on behalf of the community, so there is rarely a need for Linux administrators to step outside the bounds of their systems’ default package manager. Life is good.
 

UNIX systems show more ambivalence about package management. Solaris, HP-UX, and AIX all provide packaging software that works at the level of individual machines. However, the vendors of these systems don’t maintain repositories of open source software, so the user communities are mostly left to fend for themselves.9 Unfortunately, one of the main pieces of glue that holds a packaging universe together is a way for packages to reliably refer to other packages in order to express dependency or compatibility information. Without some central coordination, the whole ecosystem can quickly fall apart.
 

In the real world, results have varied. Solaris has an add-on system (pkgutil from blastwave.org) that provides for easy software installation from an Internet repository, much like the native systems found on Linux distributions. HP-UX has a nice Internet repository in the form of the HP-UX Porting and Archiving Centre at hpux.connect.org.uk, but packages must be manually and individually downloaded. At the more dismal end of the spectrum, the availability of prepackaged software for AIX is somewhat scattershot.
 

Administrators without access to prepackaged binaries must install software the old-fashioned way: by downloading a tar archive of the source code and manually configuring, compiling, and installing it. Depending on the software and the operating system, this process can range from trivial to nightmarish.
 

In this book, we generally assume that optional software is already installed rather than torturing you with boilerplate instructions for installing every package. If there’s a potential for confusion, we sometimes mention the exact names of the packages needed to complete a particular project. For the most part, however, we don’t repeat installation instructions since they tend to be similar from one package to the next.
 

Determining Whether Software has Already Been Installed
 

For a variety of reasons, it can be a bit tricky to determine which software package contains the component you actually need. Rather than starting at the package level, it’s easier to use the shell’s which command to find out if a relevant binary is already in your search path. For example, the following command reveals that the GNU C compiler has already been installed on this machine:
 

[image: Image]
 

If which can’t find the command you’re looking for, try whereis; it searches a broader range of system directories and is independent of your shell’s search path.
 

Another alternative is the incredibly useful locate command, which consults a precompiled index of the filesystem to locate filenames that match a particular pattern. locate is part of the GNU findutils package, which is included by default on most Linux systems but must be installed by hand on UNIX.
 

locate is not specific to commands or packages but can find any type of file. For example, if you weren’t sure where to find the signal.h include file, you could try
 

[image: Image]
 

locate’s database is updated periodically by the updatedb command, which runs out of cron. Therefore, the results of a locate don’t always reflect recent changes to the filesystem.
 

If you know the name of the package you’re looking for, you can also use your system’s packaging utilities to check directly for the package’s presence. For example, on a Red Hat or SUSE system, the following command checks for the presence (and installed version) of the Python scripting language:
 

See Chapter 12 for more information about package management.

 

[image: Image]
 

Adding New Software
 

If you do need to install additional software, you first need to determine the canonical name of the relevant software package. For example, you’d need to translate “I want to install locate” to “I need to install the findutils package,” or translate “I need named” to “I have to install BIND.” A variety of system-specific indexes on the web can help with this, but Google is usually just as effective. For example, a search for “locate command” takes you directly to several relevant discussions. If you’re on a UNIX system, throw in the name of the operating system as well.
 

Once you know the name of the relevant software, you can download and install it. The complete installation is usually a single command on Linux systems and on Solaris systems that have pkgutil installed. For HP-UX and AIX you’ll have to download either a prebuilt binary package or the project’s original source code. If the latter, try to locate the project’s official web page through Google and download the source code from one of the project’s mirrors.
 

The following examples show the installation of the wget command on each of our example systems. It’s a nifty GNU utility that turns HTTP and FTP downloads into atomic commands—very useful for scripting. wget is installed by default on each of our example Linux systems, but the commands shown below can be used for both initial installation and later updates.
 

[image: Image] Ubuntu uses APT, the Debian Advanced Package Tool:
 

[image: Image]
 

[image: Image] The SUSE version is
 

[image: Image]
 

[image: Image] The Red Hat version is
 

[image: Image]
 

[image: Image] On a Solaris system with pkutil already installed (see blastwave.org for instructions on setting this up)
 

[image: Image]
 

[image: Image] For HP-UX, we found an appropriate binary package on hpux.connect.org.uk and downloaded it to the /tmp directory. The commands to unpack and install it were
 

[image: Image]
 

The package depot on the swinstall command line must be specified as a full path starting with /; otherwise, swinstall tries to find the file on the network. The wget at the end tells swinstall which package to install from within the depot file.
 

Unfortunately, the installation is not really as easy as it first appears. The installed version of wget won’t actually run because several of the libraries on which it depends have not been installed:
 

[image: Image]
 

swinstall does have some dependency management built in, but its abilities unfortunately do not extend to Internet repositories. You’ll have to read the fine print and install all the appropriate prerequisite packages (in this case, six more) to make things right.
 

Building Software from Source Code
 

There is in fact at least one binary wget package available for AIX in RPM format. A Google search for “aix wget rpm” should turn up some good leads. After downloading, the installation command would be a simple
 

aix# rpm --install wget-1.11.4-1.aix5.1.ppc.rpm
 

But just for illustration, let’s build the AIX version of wget from the original source code.
 

Our first chore is to find the code, but that’s easy: the first Google result for “wget” takes us right to the project page at GNU, and the source tarball is just a link away. After downloading the current version into the /tmp directory, we unpack, configure, build, and install it:
 

[image: Image]
 

This configure/make/make install sequence is common to the majority of UNIX and Linux software and works on all systems as long as you have the development environment and any package-specific prerequisites installed. However, it’s always a good idea to check the package’s INSTALL or README file for specifics.
 

In this case, the --disable-ssl and --disable-nls options to configure omit some wget features that depend on other libraries that haven’t been installed. In real life, you’d probably want to install the prerequisites. Use configure --help to see all the configuration options. Another useful configure option is --prefix=directory, which lets you put the software somewhere other than /usr/local.
 

1.13 System Administration Under Duress
 

System administrators wear many hats. In the real world, they are often people with other jobs who have been asked to look after a few computers on the side. If this is your situation, tread carefully and be aware of how this scenario tends to play out over the long term.
 

The more experienced you become at system management, the more the user community comes to depend on you. Networks invariably grow, and administrative work tends to accumulate over time as your administration system becomes more sophisticated and you add additional layers. You will soon find that you are the only person in your organization who knows how to perform a variety of important tasks.
 

Once coworkers come to think of you as the local system administrator, it is difficult to extricate yourself from this role. That is not necessarily a bad thing, but we know several people who have changed jobs to escape it. Since many administrative tasks are intangible, you may also find that you’re expected to be both a full-time administrator and a full-time engineer, writer, or analyst.
 

There is a common tendency for unwilling administrators to fend off requests by adopting a surly attitude and providing poor service.10 This approach usually backfires; it makes you look bad and creates additional problems.
 

Instead, consider keeping detailed records of the time you spend on system administration. Your goal should be to keep the work at a manageable level and to assemble evidence that you can use when you ask to be relieved of administrative duties. In most organizations, you will need to lobby the management from six months to a year to get yourself replaced, so plan ahead.
 

On the other hand, you may find that you enjoy system administration and that you prefer it to real work. Employment prospects remain good. Unfortunately, your political problems will probably intensify. See Chapter 32, Management, Policy, and Politics, for a preview of the delights in store.
 

1.14 Recommended Reading
 

ROBBINS, ARNOLD. UNIX in a Nutshell (4th Edition). Sebastopol, CA: O’Reilly Media, 2008.
 

SIEVER, ELLEN, AARON WEBER, AND STEPHEN FIGGINS. Linux in a Nutshell (5th Edition). Sebastopol, CA: O’Reilly Media, 2006.
 

GANCARZ, MIKE. Linux and the Unix Philosophy. Boston: Digital Press, 2003.
 

SALUS, PETER H. The Daemon, the GNU & the Penguin: How Free and Open Software is Changing the World. Reed Media Services, 2008.
 

This fascinating history of the open source movement by UNIX’s best-known historian is also available at groklaw.com under the Creative Commons license. The URL for the book itself is quite long; look for a current link at groklaw.com or try this compressed equivalent: tinyurl.com/d6u7j.
 

RAYMOND, ERIC S. The Cathedral & The Bazaar: Musings on Linux and Open Source by an Accidental Revolutionary. Sebastopol, CA: O’Reilly Media, 2001.
 

System Administration
 

LIMONCELLI, THOMAS A., CHRISTINA J. HOGAN, AND STRATA R. CHALUP. The Practice of System and Network Administration (Second Edition). Reading, MA: Addison-Wesley, 2008.
 

This is a good book with particularly strong coverage of the policy and procedural aspects of system administration. The authors maintain a system administration blog at everythingsysadmin.com.
 

FRISCH, ÆLEEN. Essential System Administration (3rd Edition). Sebastopol, CA: O’Reilly Media, 2002.
 

This is a classic all-around guide to UNIX system administration that is sadly somewhat out of date. We hope a new version is in the works!
 

Essential Tools
 

ROBBINS, ARNOLD, ELBERT HANNAH, AND LINDA LAMB. Learning the vi and Vim Editors. Sebastopol, CA: O’Reilly Media, 2008.
 

POWERS, SHELLY, JERRY PEEK, TIM O’REILLY, AND MIKE LOUKIDES. UNIX Power Tools (3rd Edition). Sebastopol, CA: O’Reilly Media, 2003.
 

MICHAEL, RANDAL K. Mastering UNIX Shell Scripting: BASH, Bourne, and Korn Shell Scripting for Programmers, System Administrators, and UNIX Gurus. Indianapolis, IN: Wiley Publishing, Inc., 2008.
 

ROBBINS, ARNOLD AND NELSON H. F. BEEBE. Classic Shell Scripting. Sebastopol, CA: O’Reilly Media, 2005.
 

WALL, LARRY, TOM CHRISTIANSEN, AND JON ORWANT. Programming Perl (3rd Edition). Cambridge, MA: O’Reilly Media, 2000.
 

CHRISTIANSEN, TOM, AND NATHAN TORKINGTON. Perl Cookbook (2nd Edition). Sebastopol, CA: O’Reilly Media, 2003.
 

BLANK-EDELMAN, DAVID N. Automating System Administration with Perl (2nd Edition). Sebastopol, CA: O’Reilly Media, 2009.
 

PILGRIM, MARK. Dive Into Python. Berkeley, CA: Apress, 2004.
 

This book is also available for free on the web at diveintopython.org.
 

FLANAGAN, DAVID, AND YUKIHIRO MATSUMOTO. The Ruby Programming Language. Sebastopol, CA: O’Reilly Media, 2008.
 

This book, optimistically subtitled Everything You Need to Know, is unfortunately a bit on the dry side. However, it covers the Ruby 1.9 release and includes a wealth of detail that only the language designer is really in a position to know. Best for those who already have a working knowledge of Perl or Python.
 

1.15 Exercises
 

E1.1 What command would you use to read about the terminal driver, tty (not the tty command)? How would you read a local tty man page that was kept in /usr/local/share/man?

 

E1.2 Does a system-wide config file control the behavior of the man command at your site? What lines would you add to this file if you wanted to store local material in /doc/man? What directory structure would you have to use in /doc/man to make it a full citizen of the man page hierarchy?

 

[image: Image] E1.3 What is the current status of Linux kernel development? What are the hot issues? Who are the key players? How is the project managed?

 

[image: Image] E1.4 Research several UNIX and Linux systems and recommend an operating system for each of the following applications. Explain your choices.

 

a) A single user working in a home office

 

b) A university computer science lab

 

c) A corporate web server

 

d) A server cluster that runs the database for a shipping company

 

[image: Image] E1.5 Suppose you discover that a certain feature of Apache httpd does not appear to work as documented on Ubuntu.

 

a) What should you do before reporting the bug?

 

b) If you decide that the bug is real, whom should you notify and how?

 

c) What information must be included to make the bug report useful?

 

[image: Image] E1.6 Linux has made dramatic inroads into production environments. Is UNIX doomed? Why or why not?

 
  


2. Scripting and the Shell
 

[image: Image]
 

Good system administrators write scripts. Scripts standardize and automate the performance of administrative chores and free up admins’ time for more important and more interesting tasks. In a sense, scripts are also a kind of low-rent documentation in that they act as an authoritative outline of the steps needed to complete a particular task.
 

In terms of complexity, administrative scripts run the gamut from simple ones that encapsulate a few static commands to major software projects that manage host configurations and administrative data for an entire site. In this book we’re primarily interested in the smaller, day-to-day scripting projects that sysadmins normally encounter, so we don’t talk much about the support functions (e.g., bug tracking and design review) that are needed for larger projects.
 

Administrative scripts should emphasize programmer efficiency and code clarity rather than computational efficiency. This is not an excuse to be sloppy, but simply a recognition that it rarely matters whether a script runs in half a second or two seconds. Optimization can have an amazingly low return on investment, even for scripts that run regularly out of cron.
 

For a long time, the standard language for administrative scripts was the one defined by the shell. Most systems’ default shell is bash (the “Bourne-again” shell), but sh (the original Bourne shell) and ksh (the Korn shell) are used on a few UNIX systems. Shell scripts are typically used for light tasks such as automating a sequence of commands or assembling several filters to process data.
 

The shell is always available, so shell scripts are relatively portable and have few dependencies other than the commands they invoke. Whether or not you choose the shell, the shell may choose you: most environments include a hefty complement of existing sh scripts, and those scripts frequently need to be read, understood, and tweaked by administrators.
 

For more sophisticated scripts, it’s advisable to jump to a real programming language such as Perl or Python, both of which are well suited for administrative work. These languages incorporate a couple of decades’ worth of language design advancements relative to the shell, and their text processing facilities (invaluable to administrators) are so powerful that sh can only weep and cower in shame.
 

The main drawback to Perl and Python is that their environments can be a bit fussy to set up, especially when you start to use third-party libraries that have compiled components. The shell skirts this particular issue by having no module structure and no third-party libraries.
 

This chapter takes a quick look at bash, Perl, and Python as languages for scripting, along with regular expressions as a general technology.
 

2.1 Shell Basics
 

Before we take up shell scripting, let’s review some of the basic features and syntax of the shell. The material in this section applies to all major shells in the sh lineage (including bash and ksh, but not csh or tcsh), regardless of the exact platform you are using. Try out the forms you’re not familiar with, and experiment!
 

Command editing
 

We’ve watched way too many people edit command lines with the arrow keys. You wouldn’t do that in your text editor, right?
 

If you like emacs, all the basic emacs commands are available to you when you’re editing history. <Control-E> goes to the end of the line and <Control-A> to the beginning. <Control-P> steps backward through recently executed commands and recalls them for editing. <Control-R> searches incrementally through your history to find old commands.
 

If you like vi, put your shell’s command-line editing into vi mode like this:
 

$ set -o vi
 

As in vi, editing is modal; however, you start in input mode. Type <Esc> to leave input mode and “i” to reenter it. In edit mode, “w” takes you forward a word, “fX” finds the next X in the line, and so on. You can walk through past command history entries with <Esc> k. Want emacs editing mode back again?
 

$ set -o emacs
 

Pipes and redirection
 

Every process has at least three communication channels available to it: “standard input” (STDIN), “standard output” (STDOUT), and “standard error” (STDERR). The kernel sets up these channels on the process’s behalf, so the process itself doesn’t necessarily know where they lead. They might connect to a terminal window, a file, a network connection, or a channel belonging to another process, to name a few possibilities.
 

UNIX has a unified I/O model in which each channel is named with a small integer called a file descriptor. The exact number assigned to a channel is not usually significant, but STDIN, STDOUT, and STDERR are guaranteed to correspond to file descriptors 0, 1, and 2, so it’s safe to refer to these channels by number. In the context of an interactive terminal window, STDIN normally reads from the keyboard and both STDOUT and STDERR write their output to the screen.
 

Most commands accept their input from STDIN and write their output to STDOUT. They write error messages to STDERR. This convention lets you string commands together like building blocks to create composite pipelines.
 

The shell interprets the symbols <, >, and >> as instructions to reroute a command’s input or output to or from a file. A < symbol connects the command’s STDIN to the contents of an existing file. The > and >> symbols redirect STDOUT; > replaces the file’s existing contents, and >> appends to them. For example, the command
 

$ echo "This is a test message." > /tmp/mymessage
 

stores a single line in the file /tmp/mymessage, creating the file if necessary. The command below emails the contents of that file to user johndoe.
 

$ mail -s "Mail test" johndoe < /tmp/mymessage
 

To redirect both STDOUT and STDERR to the same place, use the >& symbol. To redirect STDERR only, use 2>.
 

The find command illustrates why you might want to handle STDOUT and STDERR separately because it tends to produce output on both channels, especially when run as an unprivileged user. For example, a command such as
 

$ find / -name core
 

usually results in so many “permission denied” error messages that genuine hits get lost in the clutter. To discard all the error messages, you can use
 

$ find / -name core 2> /dev/null
 

In this version, only real matches (where the user has read permission on the parent directory) come to the terminal window. To save the list of matching paths to a file, try
 

$ find / -name core > /tmp/corefiles 2> /dev/null
 

This command line sends matching paths to /tmp/corefiles, discards errors, and sends nothing to the terminal window.
 

To connect the STDOUT of one command to the STDIN of another, use the | symbol, commonly known as a pipe. Some examples:
 

[image: Image]
 

The first example runs ps to generate a list of processes and pipes it through the grep command to select lines that contain the word httpd. The output of grep is not redirected, so the matching lines come to the terminal window.
 

The cut command in the second example picks out the path to each user’s shell from /etc/passwd. The list of shells is then sent through sort -u to produce a sorted list of unique values.
 

To execute a second command only if its precursor completes successfully, you can separate the commands with an && symbol. For example,
 

$ lpr /tmp/t2 && rm /tmp/t2
 

removes /tmp/t2 if and only if it is successfully queued for printing. Here, the success of the lpr command is defined as its yielding an exit code of zero, so the use of a symbol that suggests “logical AND” for this purpose may be confusing if you’re used to short-circuit evaluation in other programming languages. Don’t think about it too much; just accept it as a shell idiom.
 

Conversely, the || symbol executes the following command only if the preceding command fails (produces a nonzero exit status).
 

In a script, you can use a backslash to break a command onto multiple lines, helping to distinguish the error-handling code from the rest of the command pipeline:
 

[image: Image]
 

For the converse effect—multiple commands combined onto one line—you can use a semicolon as a statement separator.
 

Variables and quoting
 

Variable names are unmarked in assignments but prefixed with a dollar sign when their values are referenced. For example:
 

[image: Image]
 

Do not put spaces around the = symbol or the shell will mistake your variable name for a command name.
 

When referencing a variable, you can surround its name with curly braces to clarify to the parser and to human readers where the variable name stops and other text begins; for example, ${etcdir} instead of just $etcdir. The braces are not normally required, but they can be useful when you want to expand variables inside double-quoted strings. Often, you’ll want the contents of a variable to be followed by literal letters or punctuation. For example,
 

[image: Image]
 

There’s no standard convention for the naming of shell variables, but all-caps names typically suggest environment variables or variables read from global configuration files. More often than not, local variables are all-lowercase with components separated by underscores. Variable names are case sensitive.
 

Environment variables are automatically imported into bash’s variable namespace, so they can be set and read with the standard syntax. Use export
varname to promote a shell variable to an environment variable. Commands for environment variables that you want to set up at login time should be included in your ~/.profile or ~/.bash_profile file. Other environment variables, such as PWD for the current working directory, are maintained automatically by the shell.
 

The shell treats strings enclosed in single and double quotes similarly, except that double-quoted strings are subject to globbing (the expansion of filename-matching metacharacters such as * and ?) and variable expansion. For example:
 

[image: Image]
 

Back quotes, also known as back-ticks, are treated similarly to double quotes, but they have the additional effect of executing the contents of the string as a shell command and replacing the string with the command’s output. For example,
 

[image: Image]
 

Common filter commands
 

Any well-behaved command that reads STDIN and writes STDOUT can be used as a filter (that is, a component of a pipeline) to process data. In this section we briefly review some of the more widely used filter commands (including some used in passing above), but the list is practically endless. Filter commands are so team oriented that it’s sometimes hard to show their use in isolation.
 

Most filter commands accept one or more filenames on the command line. Only if you fail to specify a file do they read their standard input.
 

cut: separate lines into fields
 

The cut command prints selected portions of its input lines. It’s most commonly used to extract delimited fields, as in the example on page 32, but it can return segments defined by column boundaries as well. The default delimiter is <Tab>, but you can change delimiters with the -d option. The -f options specifies which fields to include in the output.
 

For an example of the use of cut, see the section on uniq, below.
 

sort: sort lines
 

sort sorts its input lines. Simple, right? Well, maybe not—there are a few potential subtleties regarding the exact parts of each line that are sorted (the “keys”) and the collation order to be imposed. Table 2.1 shows a few of the more common options, but check the man page for others.
 

[image: Image]
 

Table 2.1 sort options
 

The commands below illustrate the difference between numeric and dictionary sorting, which is the default. Both commands use the -t: and -k3,3 options to sort the /etc/group file by its third colon-separated field, the group ID. The first sorts numerically and the second alphabetically.
 


 

[image: Image]
 

uniq: print unique lines
 

uniq is similar in spirit to sort -u, but it has some useful options that sort does not emulate: -c to count the number of instances of each line, -d to show only duplicated lines, and -u to show only nonduplicated lines. The input must be presorted, usually by being run through sort.
 

For example, the command below shows that 20 users have /bin/bash as their login shell and that 12 have /bin/false. (The latter are either pseudo-users or users whose accounts have been disabled.)
 

[image: Image]
 

wc: count lines, words, and characters
 

Counting the number of lines, words, and characters in a file is another common operation, and the wc (word count) command is a convenient way of doing this. Run without options, it displays all three counts:
 

[image: Image]
 

In the context of scripting, it is more common to supply a -l, -w, or -c option to make wc’s output consist of a single number. This form is most commonly seen inside backquotes so that the result can be saved or acted upon.
 

tee: copy input to two places
 

A command pipeline is typically linear, but it’s often helpful to tap into the data stream and send a copy to a file or to the terminal window. You can do this with the tee command, which sends its standard input both to standard out and to a file that you specify on the command line. Think of it as a tee fixture in plumbing.
 

The device /dev/tty is a synonym for the current terminal. For example,
 

$ find / -name core | tee /dev/tty | wc -l
 

prints both the pathnames of files named core and a count of the number of core files that were found.
 

A common idiom is to terminate a pipeline that will take a long time to run with a tee command so that output goes both to a file and to the terminal window for inspection. You can preview the initial results to make sure everything is working as you expected, then leave while the command runs, knowing that the results will be saved.
 

head and tail: read the beginning or end of a file
 

Reviewing lines from the beginning or end of a file is a common administrative operation. These commands display ten lines by default, but you can include a command-line option to specify how many lines you want to see.
 

For interactive use, head is more or less obsoleted by the less command, which paginates files for display. But head still finds plenty of use within scripts.
 

tail also has a nifty -f option that’s particularly useful for sysadmins. Instead of exiting immediately after printing the requested number of lines, tail -f waits for new lines to be added to the end of the file and prints them as they appear— great for monitoring log files. Be aware, however, that the program writing the file may be buffering its output. Even if lines are being added at regular intervals from a logical perspective, they may only become visible in chunks of 1KiB or 4KiB.2
 

Type <Control-C> to stop monitoring.
 

grep: search text
 

grep searches its input text and prints the lines that match a given pattern. Its name is based on the g/regular-expression/p command from the old ed editor that came with the earliest versions of UNIX (and still does).
 

“Regular expressions” are text-matching patterns written in a standard and well-characterized pattern matching language. They’re a universal standard used by most programs that do pattern matching, although there are minor variations among implementations. The odd name stems from regular expressions’ sordid origins in theory-of-computation studies. We discuss regular expression syntax in more detail starting on page 48.
 

Like most filters, grep has many options, including -c to print a count of matching lines, -i to ignore case when matching, and -v to print nonmatching (rather than matching) lines. Another useful option is -l (lowercase L), which makes grep print only the names of matching files rather than printing each line that matches. For example, the command
 

[image: Image]
 

shows that log entries from mdadm have appeared in two different log files.
 

grep is traditionally a fairly basic regular expression engine, but some versions permit the selection of other dialects. For example, grep -p on Linux selects Perl-style expressions, though the man page warns darkly that they are “highly experimental.” If you need full power, just use Perl or Python.
 

2.2 Bash Scripting
 

bash is great for simple scripts that automate things you’d otherwise be typing on the command line. Your command-line skills carry over to bash scripting, and vice versa, which helps you extract maximum value from the learning time you invest in bash. But once a bash script gets above a hundred lines or you need features that bash doesn’t have, it’s time to move on to Perl or Python.
 

bash comments start with a hash mark (#) and continue to the end of the line. As on the command line, you can break a single logical line onto multiple physical lines by escaping the newline with a backslash. You can also put more than one statement on a line by separating the statements with semicolons.
 

A bash script may consist of nothing but a series of command lines. For example, the following helloworld script simply does an echo.
 

[image: Image]
 

The first line is known as the “shebang” statement and declares the text file to be a script for interpretation by /bin/bash. The kernel looks for this syntax when deciding how to execute the file. From the perspective of the shell spawned to execute the script, the shebang line is just a comment. If bash were in a different location, you would need to adjust this line.
 

To prepare the file for running, just turn on its execute bit (see page 156).
 


 

[image: Image]
 

You can also invoke the shell as an interpreter directly:
 

[image: Image]
 

The first command runs helloworld in a new instance of bash, and the second makes your existing login shell read and execute the contents of the file. The latter option is useful when the script sets up environment variables or makes other customizations that apply only to the current shell. It’s commonly used in scripting to incorporate the contents of a configuration file written as a series of bash variable assignments.4
 

If you come from the Windows world, you may be accustomed to a file’s extension indicating what type of file it is and whether it can be executed. In UNIX and Linux, the file permission bits indicate whether a file can be executed, and if so, by whom. If you wish, you can give your bash scripts a .sh suffix to remind you what they are, but you’ll then have to type out the .sh when you run the command, since UNIX doesn’t treat extensions specially.
 

See page 152 for more information about permission bits.

 

From commands to scripts
 

Before we jump into bash’s scripting features, a note about methodology. Most people write bash scripts the same way they write Perl or Python scripts: with a text editor. However, it’s more productive to think of your regular shell command prompt as an interactive script development environment.
 

For example, suppose you have log files named with the suffixes .log and .LOG scattered throughout a directory hierarchy and that you want to change them all to the uppercase form. First, let’s see if we can find all the files.
 

[image: Image]
 

Oops, it looks like we need to include the dot in our pattern and to leave out directories as well. Type <Control-P> to recall the command and then modify it.
 

[image: Image]
 

OK, this looks better. That .do-not-touch directory looks dangerous, though; we probably shouldn’t mess around in there.
 

[image: Image]
 

All right, that’s the exact list of files that need renaming. Let’s try generating some new names.
 

[image: Image]
 

Yup, those are the commands we want to run to perform the renaming. So how do we do it for real? We could recall the command and edit out the echo, which would make bash execute the mv commands instead of just printing them. However, piping the commands to a separate instance of bash is less error-prone and requires less editing of the previous command.
 

When we type <Control-P>, we find that bash has thoughtfully collapsed our mini-script into a single line. To this condensed command line we simply add a pipe that sends the output to bash -x.
 

[image: Image]
 

The -x option to bash prints each command before executing it.
 

We’ve now completed the actual renaming, but we’d still like to save this script so that we can use it again. bash’s built-in command fc is a lot like <Control-P>, but instead of returning the last command to the command line, it transfers the command to your editor of choice. Add a shebang line and usage comment, write the file to a plausible location (~/bin or /usr/local/bin, perhaps), make the file executable, and you have a script.
 

To summarize this approach:
 

• Develop the script (or script component) as a pipeline, one step at a time, entirely on the command line.

 

• Send output to standard output and check to be sure it looks right.

 

• At each step, use the shell’s command history to recall pipelines and the shell’s editing features to tweak them.

 

• Until the output looks right, you haven’t actually done anything, so there’s nothing to undo if the command is incorrect.

 

• Once the output is correct, execute the actual commands and verify that they worked as you intended.

 

• Use fc to capture your work, then clean it up and save it.

 

In the example above, we printed command lines and then piped them to a sub-shell for execution. This technique isn’t universally applicable, but it’s often helpful. Alternatively, you can capture output by redirecting it to a file. No matter what, wait until you see the right stuff in the preview before doing anything that’s potentially destructive.
 

Input and output
 

The echo command is crude but easy. For more control over your output, use printf. It is a bit less convenient because you must explicitly put newlines where you want them (use “\n”), but it gives you the option to use tabs and enhanced number formatting in your the output. Compare the output from the following two commands.
 

[image: Image]
 

Some systems have OS-level echo and printf commands, usually in /bin and /usr/bin, respectively. Although the commands and the shell built-ins are similar, they may diverge subtly in their specifics, especially in the case of printf. Either adhere to bash’s syntax or call the external printf with a full pathname.
 

You can use the read command to prompt for input. Here’s an example:
 

[image: Image]
 

The -n in the echo command suppresses the usual newline, but you could also have used printf here. We cover the if statement’s syntax shortly, but its effect should be obvious here. The -n in the if statement evaluates to true if its string argument is not null. Here’s what the script looks like when run:
 

[image: Image]
 

Command-line arguments and functions
 

Command-line arguments to a script become variables whose names are numbers. $1 is the first command-line argument, $2 is the second, and so on. $0 is the name by which the script was invoked. That could be something strange such as ../bin/example.sh, so it’s not a fixed value.
 

The variable $# contains the number of command-line arguments that were supplied, and the variable $* contains all the arguments at once. Neither of these variables includes or counts $0.
 

If you call a script without arguments or with inappropriate arguments, the script should print a short usage message to remind you how to use it. The example script below accepts two arguments, validates that the arguments are both directories, and displays them. If the arguments are invalid, the script prints a usage message and exits with a nonzero return code. If the caller of the script checks the return code, it will know that this script failed to execute correctly.
 

[image: Image]
 

We created a separate show_usage function to print the usage message. If the script were later updated to accept additional arguments, the usage message would only have to be changed in one place.5
 

[image: Image]
 

Arguments to bash functions are treated much like command-line arguments. The first argument becomes $1, and so on. As you can see in the example above, $0 remains the name of the script.
 

To make the previous example a bit more robust, we could make the show_usage routine accept an error code as an argument. That would allow a more definitive code to be returned for each different type of failure. The next code excerpt shows how that might look.
 

[image: Image]
 

In this version of the routine, the argument is optional. Within a function, $# tells you how many arguments were passed in. The script exits with code 99 if no more-specific code is provided. But a specific value, for example,
 

show_usage 5
 

makes the script exit with that code after printing the usage message. (The shell variable $? contains the exit status of the last command executed, whether used inside a script or at the command line.)
 

The analogy between functions and commands is strong in bash. You can define useful functions in your ~/.bash_profile file and then use them on the command line as if they were commands. For example, if your site has standardized on network port 7988 for the SSH protocol (a form of “security through obscurity”), you might define
 

[image: Image]
 

in your ~/.bash_profile to make sure ssh is always run with the option -p 7988.
 

Like many shells, bash has an alias mechanism that can reproduce this limited example even more concisely, but functions are more general and more powerful. Forget aliases and use functions.
 

Variable scope
 

Variables are global within a script, but functions can create their own local variables with a local declaration. Consider the following code.
 

[image: Image]
 

The log below demonstrates that the local version of $a within the localizer function shadows the global variable $a. The global $a is visible within localizer until the local declaration is encountered; local is in fact a command that creates the local variable at the point when it’s executed.
 

[image: Image]
 

Control flow
 

We’ve seen several if-then and if-then-else forms in this chapter already; they do exactly what you’d expect. The terminator for an if statement is fi. To chain your if clauses, you can use the elif keyword to mean “else if.” For example:
 

[image: Image]
 

Both the peculiar [] syntax for comparisons and the command-line optionlike names of the integer comparison operators (e.g., -eq) are inherited from the original Bourne shell’s channeling of /bin/test. The brackets are actually a shorthand way of invoking test and are not a syntactic requirement of the if statement.6
 

Table 2.2 shows the bash comparison operators for numbers and strings. bash uses textual operators for numbers and symbolic operators for strings, exactly the opposite of Perl.
 

[image: Image]
 

Table 2.2 Elementary bash comparison operators
 

bash shines in its options for evaluating the properties of files (again, courtesy of its /bin/test legacy). Table 2.3 shows a few of bash’s many file-testing and file-comparison operators.
 

[image: Image]
 

Table 2.3 bash file evaluation operators
 

Although the elif form is useful, a case selection is often a better choice for clarity. Its syntax is shown below in a sample routine that centralizes logging for a script. Of particular note are the closing parenthesis after each condition and the two semicolons that follow the statement block to be executed when a condition is met. The case statement ends with esac.
 

[image: Image]
 

This routine illustrates the common “log level” paradigm used by many administrative applications. The code of the script generates messages at many different levels of detail, but only the ones that pass a globally set threshold, $LOG_LEVEL, are actually logged or acted upon. To clarify the importance of each message, the message text is preceded by a label that denotes its associated log level.
 

Loops
 

bash’s for…in construct makes it easy to take some action for a group of values or files, especially when combined with filename globbing (the expansion of simple pattern-matching characters such as * and ? to form filenames or lists of filenames). The *.sh pattern in the for loop below returns a list of matching filenames in the current directory. The for statement then iterates through that list, assigning each filename in turn to the variable $file.
 

[image: Image]
 

The output looks like this:
 

[image: Image]
 

The filename expansion is not magic in this context; it works exactly as it does on the command line. Which is to say, the expansion happens first and the line is then processed by the interpreter in its expanded form.7 You could just as well have entered the filenames statically, as in the line
 

for script in rhel.sh sles.sh; do
 

In fact, any whitespace-separated list of things, including the contents of a variable, works as a target of for…in.
 

bash also has the more familiar for loop from traditional programming languages in which you specify starting, increment, and termination clauses. For example:
 

[image: Image]
 

The next example illustrates bash’s while loop, which is useful for processing command-line arguments and for reading the lines of a file.
 

[image: Image]
 

Here’s what the output looks like:
 

[image: Image]
 

This scriptlet has a couple of interesting features. The exec statement redefines the script’s standard input to come from whatever file is named by the first command-line argument.8 The file must exist or the script generates an error.
 

The read statement within the while clause is in fact a shell built-in, but it acts like an external command. You can put external commands in a while clause as well; in that form, the while loop terminates when the external command returns a nonzero exit status.
 

The $((counter++)) expression is an odd duck, indeed. The $((…)) notation forces numeric evaluation. It also makes optional the use of $ to mark variable names. The ++ is the familiar postincrement operator from C and other languages. It returns the value of the variable to which it’s attached, but has the side effect of incrementing that variable’s value as well.
 

The $((…)) shenanigans work in the context of double quotes, so the body of the loop could be collapsed down to one line.
 

[image: Image]
 

Arrays and arithmetic
 

Sophisticated data structures and calculations aren’t bash’s forte. But it does at least offer arrays and arithmetic.
 

All bash variables are string valued, so bash does not distinguish between the number 1 and the character string “1” in assignments. The difference lies in how the variables are used. The following code illustrates the distinction:
 

[image: Image]
 

This script produces the output
 

[image: Image]
 

Note that the plus sign in the assignment to $c does not even act as a concatenation operator for strings. It’s just a literal character. That line is equivalent to
 

c="$a+$b"
 

To force numeric evaluation, you enclose an expression in $((…)), as shown with the assignment to $d above. But even this precaution does not result in $d receiving a numeric value; the value is still stored as the string “3”.
 

bash has the usual assortment of arithmetic, logical, and relational operators; see the man page for details.
 

Arrays in bash are a bit strange, and they’re not often used. Nevertheless, they’re available if you need them. Literal arrays are delimited by parentheses, and the elements are separated by whitespace. You can use quoting to include literal spaces in an element.
 

example=(aa ‘bb cc’ dd)
 

Use ${array_name[subscript]} to access individual elements. Subscripting begins at zero. The subscripts * and @ refer to the array as a whole, and the special forms ${#array_name[*]} and ${#array_name[@]} yield the number of elements in the array. Don’t misremember these as the more logical-seeming ${#array_name}; that is in fact the length of the array’s first element (equivalent to ${#array_name[0]}).
 

You might think that $example[1] would be an unambiguous reference to the second element of the array, but bash parses this string as $example (a shorthand reference to $example[0]) plus the literal string [1]. Always include the curly braces when referring to array variables—no exceptions.
 

Here’s a quick script that illustrates some of the features and pitfalls of array management in bash:
 

[image: Image]
 

Its output is
 

[image: Image]
 

This example seems straightforward, but only because we’ve constructed it to be well behaved. Pitfalls await the unwary. For example, replacing the for line with
 

for elt in ${example[@]}; do
 

(without quotes around the array expression) also works fine, but instead of four array elements it yields five: aa, bb, cc, dd, and ee.
 

The underlying issue is that all bash variables are still essentially strings, so the illusion of arrays is wobbly at best. Subtleties regarding when and how strings are separated into elements abound. You can use Perl or Python, or google for Mendel Cooper’s Advanced Bash-Scripting Guide to investigate the nuances.
 

2.3 Regular Expressions
 

Regular expressions are supported by most modern languages, though some take them more to heart than others. They’re also used by UNIX commands such as grep and vi. They are so common that the name is usually shortened to “regex.” Entire books have been written about how to harness their power, and they have been the subject of numerous doctoral dissertations.
 

The filename matching and expansion performed by the shell when it interprets command lines such as wc -l *.pl
is not a form of regex matching. It’s a different system called “shell globbing,” and it uses a different and simpler syntax.
 

Regular expressions are powerful, but they cannot recognize all possible grammars. Their most notable weakness is that they cannot recognize nested delimiters. For example, it’s not possible to write a regular expression that recognizes valid arithmetic expressions when parentheses are allowed for grouping.
 

Regular expressions reached the apex of their power and perfection in Perl. In fact, Perl’s pattern matching features are so elaborate that it’s not really accurate to call them an implementation of regular expressions. Perl patterns can match nested delimiters, recognize palindromes, and match an arbitrary string of As followed by the same number of Bs—all feats beyond the reach of regular expressions. However, Perl can process vanilla regular expressions as well.
 

Perl’s pattern matching language remains the industry benchmark, and it has been widely adopted by other languages and tools. Philip Hazel’s PCRE (Perl-compatible regular expression) library makes it relatively easy for developers to incorporate the language into their own projects.
 

Regular expressions are not themselves a scripting language, but they’re so useful that they merit featured coverage in any discussion of scripting; hence, this section.9 Here, we discuss them in their basic form with a few of Perl’s refinements.
 

The matching process
 

Code that evaluates a regular expression attempts to match a single given text string to a single given pattern. The “text string” to match can be very long and can contain embedded newlines. It’s often convenient to use a regex to match the contents of an entire file or HTML document.
 

For the matcher to declare success, the entire search pattern must match a contiguous section of the search text. However, the pattern can match at any position. After a successful match, the evaluator returns the text of the match along with a list of matches for any specially delimited subsections of the pattern.
 

Literal characters
 

In general, characters in a regular expression match themselves. So the pattern
 

I am the walrus
 

matches the string “I am the walrus” and that string only. Since it can match anywhere in the search text, the pattern can be successfully matched to the string “I am the egg man. I am the walrus. Koo koo ka-choo!” However, the actual match is limited to the “I am the walrus” portion. Matching is case sensitive.
 

Special characters
 

Table 2.4 shows the meanings of some common special symbols that can appear in regular expressions. These are just the basics—there are many, many more.
 

[image: Image]
 

Table 2.4 Special characters in regular expressions (common ones)
 

Many special constructs, such as + and |, affect the matching of the “thing” to their left or right. In general, a “thing” is a single character, a subpattern enclosed in parentheses, or a character class enclosed in square brackets. For the | character, however, thingness extends indefinitely to both left and right. If you want to limit the scope of the vertical bar, enclose the bar and both things in their own set of parentheses. For example,
 

I am the (walrus|egg man)\.
 

matches either “I am the walrus.” or “I am the egg man.”. This example also demonstrates escaping of special characters (here, the dot). The pattern
 

(I am the (walrus|egg man)\. ?){1,2}
 

matches any of the following:
 

• I am the walrus.

 

• I am the egg man.

 

• I am the walrus. I am the egg man.

 

• I am the egg man. I am the walrus.

 

Unfortunately, it also matches “I am the egg man. I am the egg man.”. (What kind of sense does that make?) More importantly, it also matches “I am the walrus. I am the egg man. I am the walrus.”, even though the number of repetitions is explicitly capped at two. That’s because the pattern need not match the entire search text. Here, the regex matches two sentences and terminates, declaring success. It simply doesn’t care that another repetition is available.
 

It is a common error to confuse the regular expression metacharacter * (the zero-or-more quantifier) with the shell’s * globbing character. The regex version of the star needs something to modify; otherwise, it won’t do what you expect. Use.* if any sequence of characters (including no characters at all) is an acceptable match.
 

Example regular expressions
 

In the United States, postal (“zip”) codes have either five digits or five digits followed by a dash and four more digits. To match a regular zip code, you must match a five-digit number. The following regular expression fits the bill:
 

^\d{5}$
 

The ^ and $ match the beginning and end of the search text but do not actually correspond to characters in the text; they are “zero-width assertions.” These characters ensure that only texts consisting of exactly five digits match the regular expression—the regex will not match five digits within a larger string. The \d escape matches a digit, and the quantifier {5} says that there must be exactly five digit matches.
 

To accommodate either a five-digit zip code or an extended zip+4, add an optional dash and four additional digits:
 

^\d{5}(-\d{4})?$
 

The parentheses group the dash and extra digits together so that they are considered one optional unit. For example, the regex won’t match a five-digit zip code followed by a dash. If the dash is present, the four-digit extension must be present as well or there is no match.
 

A classic demonstration of regex matching is the following expression,
 

M[ou]’?am+[ae]r ([AEae]l[- ])?[GKQ]h?[aeu]+([dtz][dhz]?)+af[iy]
 

which matches most of the variant spellings of the name of Libyan head of state Moammar Gadhafi, including
 

• Muammar al-Kaddafi (BBC)

 

• Moammar Gadhafi (Associated Press)

 

• Muammar al-Qadhafi (Al-Jazeera)

 

• Mu’ammar Al-Qadhafi (U.S. Department of State)

 

Do you see how each of these would match the pattern?
 

This regular expression also illustrates how quickly the limits of legibility can be reached. Many regex systems (including Perl’s) support an x option that ignores literal whitespace in the pattern and enables comments, allowing the pattern to be spaced out and split over multiple lines. You can then use whitespace to separate logical groups and clarify relationships, just as you would in a procedural language. For example:
 

[image: Image]
 

This helps a little bit, but it’s still pretty easy to torture later readers of your code. So be kind: if you can, use hierarchical matching and multiple small matches instead of trying to cover every possible situation in one large regular expression.
 

Captures
 

When a match succeeds, every set of parentheses becomes a “capture group” that records the actual text that it matched. The exact manner in which these pieces are made available to you depends on the implementation and context. In Perl, you can access the results as a list or as a sequence of numbered variables.
 

Since parentheses can nest, how do you know which match is which? Easy—the matches arrive in the same order as the opening parentheses. There are as many captures as there are opening parentheses, regardless of the role (or lack of role) that each parenthesized group played in the actual matching. When a parenthesized group is not used (e.g., Mu(‘)?ammar when matched against “Muammar”), its corresponding capture is empty.
 

If a group is matched more than once, only the contents of the last match are returned. For example, with the pattern
 

(I am the (walrus|egg man)\. ?){1,2}
 

matching the text
 

I am the egg man. I am the walrus.
 

there are two results, one for each set of parentheses:
 

I am the walrus. walrus
 

Note that both capture groups actually matched twice. However, only the last text to match each set of parentheses is actually captured.
 

Greediness, laziness, and catastrophic backtracking
 

Regular expressions match from left to right. Each component of the pattern matches the longest possible string before yielding to the next component, a characteristic known as greediness.
 

If the regex evaluator reaches a state from which a match cannot be completed, it unwinds a bit of the candidate match and makes one of the greedy atoms give up some of its text. For example, consider the regex a*aa being matched against the input text “aaaaaa”.
 

At first, the regex evaluator assigns the entire input to the a* portion of the regex, because the a* is greedy. When there are no more a’s to match, the evaluator goes on to try to match the next part of the regex. But oops, it’s an a, and there is no more input text that can match an a; time to backtrack. The a* has to give up one of the a’s it has matched.
 

Now the evaluator can match a*a, but it still cannot match the last a in the pattern. So it backtracks again and takes away a second a from the a*. Now the second and third a’s in the pattern both have a’s to pair with, and the match is complete.
 

This simple example illustrates some important general points. First, greedy matching plus backtracking makes it expensive to match apparently simple patterns such as <img.*></tr> when processing entire files.10 The.* portion starts by matching everything from the first <img to the end of the input, and only through repeated backtracking does it contract to fit the local tags.
 

Furthermore, the ></tr> that this pattern binds to is the last possible valid match in the input, which is probably not what you want. More likely, you meant to match an <img> followed by a </tr> tag. A better way to write this pattern is <img[^>]*></tr>, which allows the initial wild-card match to expand only to the end of the current tag because it cannot cross a right-angle-bracket boundary.
 

You can also use lazy (as opposed to greedy) wild card operators: *? instead of *, and +? instead of +. These versions match as few characters of the input as they can. If that fails, they match more. In many situations, these operators are more efficient and closer to what you want than the greedy versions.
 

Note, however, that they can produce different matches than the greedy operators; the difference is more than just one of implementation. In our HTML example, the lazy pattern would be <img.*?></tr>. But even here, the.*? could eventually
 

grow to include unwanted >’s because the next tag after an <img> might not be a </tr>. Again, probably not what you want.
 

Patterns with multiple wild-card sections can cause exponential behavior in the regex evaluator, especially if portions of the text can match several of the wildcard expressions and especially if the search text does not in fact match the pattern. This situation is not as unusual as it might sound, especially when pattern matching with HTML. Very often, you’ll want to match certain tags followed by other tags, possibly separated by even more tags, a recipe that may require the regex evaluator to try many possible combinations.
 

Regex guru Jan Goyvaerts calls this phenomenon “catastrophic backtracking” and writes about it in his blog; see regular-expressions.info/catastrophic.html for details and some good solutions.
 

A couple of take-home points from all this:
 

• If you can do pattern matching line-by-line rather than file-at-a-time, there is much less risk of poor performance.

 

• Even though regex notation makes greedy operators the default, they probably shouldn’t be. Use lazy operators.

 

• All instances of.* are inherently suspicious and should be scrutinized.

 

2.4 Perl Programming
 

Perl, created by Larry Wall, was the first of the truly great scripting languages. It offers vastly more power than bash, and well-written Perl code is quite easy to read. On the other hand, Perl does not impose much stylistic discipline on developers, so Perl code written without regard for readability can be cryptic. Perl has been accused of being a write-only language.
 

Here we describe Perl 5, the version that has been standard for the last decade. Perl 6 is a major revision that’s still in development. See perl6.org for details.
 

Either Perl or Python (discussed starting on page 66) is a better choice for system administration work than traditional programming languages such as C, C++, C#, and Java. They can do more, in fewer lines of code, with less painful debugging, and without the hassle of compilation.
 

Language choice usually comes down to personal preference or to standards forced upon you by an employer. Both Perl and Python offer libraries of community-written modules and language extensions. Perl has been around longer, so its offerings extend further into the long tail of possibilities. For common system administration tasks, however, the support libraries are roughly equivalent.
 

Perl’s catch phrase is that “there’s more than one way to do it.” So keep in mind that there are other ways of doing most of what you read in this section.
 

Perl statements are separated by semicolons.11 Comments start with a hash mark (#) and continue to the end of the line. Blocks of statements are enclosed in curly braces. Here’s a simple “hello, world!” program:
 

[image: Image]
 

As with bash programs, you must either chmod +x the executable file or invoke the Perl interpreter directly.
 

[image: Image]
 

Lines in a Perl script are not shell commands; they’re Perl code. Unlike bash, which lets you assemble a series of commands and call it a script, Perl does not look outside itself unless you tell it to. That said, Perl provides many of the same conventions as bash, such as the use of back-ticks to capture the output from a command.
 

Variables and arrays
 

Perl has three fundamental data types: scalars (that is, unitary values such as numbers and strings), arrays, and hashes. Hashes are also known as associative arrays. The type of a variable is always obvious because it’s built into the variable name: scalar variables start with $, array variables start with @, and hash variables start with %.
 

In Perl, the terms “list” and “array” are often used interchangeably, but it’s perhaps more accurate to say that a list is a series of values and an array is a variable that can hold such a list. The individual elements of an array are scalars, so like ordinary scalar variables, their names begin with $. Array subscripting begins at zero, and the index of the highest element in array @a is $#a. Add 1 to that to get the array’s size.
 

The array @ARGV contains the script’s command-line arguments. You can refer to it just like any other array.
 

The following script demonstrates the use of arrays:
 

[image: Image]
 

The output:
 

[image: Image]
 

There’s a lot to see in just these few lines. At the risk of blurring our laser-like focus, we include several common idioms in each of our Perl examples. We explain the tricky parts in the text following each example. If you read the examples carefully (don’t be a wimp, they’re short!), you’ll have a working knowledge of the most common Perl forms by the end of this chapter.
 

Array and string literals
 

In this example, notice first that (…) creates a literal list. Individual elements of the list are strings, and they’re separated by commas. Once the list has been created, it is assigned to the variable @items.
 

Perl does not strictly require that all strings be quoted. In this particular case, the initial assignment of @items works just as well without the quotes.
 

@items = (socks, shoes, shorts);
 

Perl calls these unquoted strings “barewords,” and they’re an interpretation of last resort. If something doesn’t make sense in any other way, Perl tries to interpret it as a string. In a few limited circumstances, this makes sense and keeps the code clean. However, this is probably not one of those cases. Even if you prefer to quote strings consistently, be prepared to decode other people’s quoteless code.
 

The more Perly way to initialize this array is with the qw (quote words) operator. It is in fact a form of string quotation, and like most quoted entities in Perl, you can choose your own delimiters. The form
 

@items = qw(socks shoes shorts);
 

is the most traditional, but it’s a bit misleading since the part after the qw is no longer a list. It is in fact a string to be split at whitespace to form a list. The version
 

@items = qw[socks shoes shorts];
 

works, too, and is perhaps a bit truer to the spirit of what’s going on. Note that the commas are gone since their function has been subsumed by qw.
 

Function calls
 

Both print and printf accept an arbitrary number of arguments, and the arguments are separated by commas. But then there’s that join(…) thing that looks like some kind of function call; how is it different from print and printf?
 

In fact, it’s not; print, printf, and join are all plain-vanilla functions. Perl allows you to omit the parentheses in function calls when this does not cause ambiguity, so both forms are common. In the print line above, the parenthesized form distinguishes the arguments to join from those that go to print.
 

We can tell that the expression @items[0,1] must evaluate to some kind of list since it starts with @. This is in fact an “array slice” or subarray, and the 0,1 subscript lists the indexes of the elements to be included in the slice. Perl accepts a range of values here, too, as in the equivalent expression @items[0..1]. A single numeric subscript would be acceptable here as well: @items[0] is a list containing one scalar, the string “socks”. In this case, it’s equivalent to the literal ("socks").
 

Arrays are automatically expanded in function calls, so in the expression
 

join(" and ", @items[0,1])
 

join receives three string arguments: “ and ”, “socks”, and “shoes”. It concatenates its second and subsequent arguments, inserting a copy of the first argument between each pair. The result is “socks and shoes”.
 

Type conversions in expressions
 

In the printf line, $#items + 1 evaluates to the number 3. As it happens, $#items is a numeric value, but that’s not why the expression is evaluated arithmetically; "2" + 1 works just as well. The magic is in the + operator, which always implies arithmetic. It converts its arguments to numbers and produces a numeric result. Similarly, the dot operator (.), which concatenates strings, converts its operands as needed: "2". (12 ** 2) yields “2144”.
 

String expansions and disambiguation of variable references
 

As in bash, double-quoted strings are subject to variable expansion. Also as in bash, you can surround variable names with curly braces to disambiguate them if necessary, as with ${items[2]}. (Here, the braces are used only for illustration; they are not needed.) The $ clues you in that the expression is going to evaluate to a scalar. @items is the array, but any individual element is itself a scalar, and the naming conventions reflect this fact.
 

Hashes
 

A hash (also known as an associative array) represents a set of key/value pairs. You can think of a hash as an array whose subscripts (keys) are arbitrary scalar values; they do not have to be numbers. But in practice, numbers and strings are the usual keys.
 

Hash variables have % as their first character (e.g., %myhash), but as in the case of arrays, individual values are scalar and so begin with a $. Subscripting is indicated with curly braces rather than square brackets, e.g., $myhash{‘ron’}.
 

Hashes are an important tool for system administrators. Nearly every script you write will use them. In the code below, we read in the contents of a file, parse it according to the rules for /etc/passwd, and build a hash of the entries called %names_by_uid. The value of each entry in the hash is the username associated with that UID.
 

[image: Image]
 

As in the previous script example, we’ve packed a couple of new ideas into these lines. Before we go over each of these nuances, here’s the output of the script:
 

[image: Image]
 

The while ($_ = <>) reads input one line at a time and assigns it to the variable named $_; the value of the entire assignment statement is the value of the right-hand side, just as in C. When you reach the end of the input, the <> returns a false value and the loop terminates.
 

To interpret <>, Perl checks the command line to see if you named any files there. If you did, it opens each file in sequence and runs the file’s contents through the loop. If you didn’t name any files on the command line, Perl takes the input to the loop from standard input.
 

Within the loop, a series of variables receive the values returned by split, a function that chops up its input string by using the regular expression passed to it as the field separator. Here, the regex is delimited by slashes; this is just another form of quoting, one that’s specialized for regular expressions but similar to the interpretation of double quotes. We could just as easily have written split ’:’ or split ":".
 

The string that split is to divide at colons is never explicitly specified. When split’s second argument is missing, Perl assumes you want to split the value of $_. Clean! Truth be told, even the pattern is optional; the default is to split at whitespace but ignore any leading whitespace.
 

But wait, there’s more. Even the original assignment of $_, back at the top of the loop, is unnecessary. If you simply say
 

while (<>) {
 

Perl automatically stores each line in $_. You can process lines without ever making an explicit reference to the variable in which they’re stored. Using $_ as a default operand is common, and Perl allows it more or less wherever it makes sense.
 

In the multiple assignment that captures the contents of each passwd field,
 

($name, $pw, $uid, $gid, $gecos, $path, $sh) = split /:/;
 

the presence of a list on the left hand side creates a “list context” for split that tells it to return a list of all fields as its result. If the assignment were to a scalar variable, for example,
 

$n_fields = split /:/;
 

split would run in “scalar context” and return only the number of fields that it found. Functions you write can distinguish between scalar and list contexts, too, by using the wantarray function. It returns a true value in list context, a false value in scalar context, and an undefined value in void context.
 

The line
 

%uids_by_name = reverse %names_by_uid;
 

has some hidden depths, too. A hash in list context (here, as an argument to the reverse function) evaluates to a list of the form (key1, value1, key2, value2, …). The reverse function reverses the order of the list, yielding (valueN, keyN, …, value1, key1). Finally, the assignment to the hash variable %uids_by_name converts this list as if it were (key1, value1, …), thereby producing a permuted index.
 

References and autovivification
 

These are advanced topics, but we’d be remiss if we didn’t at least mention them. Here’s the executive summary. Arrays and hashes can only hold scalar values, but you will often want to store other arrays and hashes within them. For example, returning to our previous example of parsing the /etc/passwd file, you might want to store all the fields of each passwd line in a hash indexed by UID.
 

You can’t store arrays and hashes, but you can store references (that is, pointers) to arrays and hashes, which are themselves scalars. To create a reference to an array or hash, you precede the variable name with a backslash (e.g., \@array) or use reference-to-array or reference-to-hash literal syntax. For example, our passwd-parsing loop would become something like this:
 

[image: Image]
 

The square brackets return a reference to an array containing the results of the split. The notation $array_ref->[2] refers to the UID field, the third member of the array referenced by $array_ref.
 

$array_ref[2] won’t work here because we haven’t defined an @array_ref array; $array_ref and @array_ref are different variables. Furthermore, you won’t receive an error message if you mistakenly use $array_ref[2] here because @array_ref is a perfectly legitimate name for an array; you just haven’t assigned it any values.
 

This lack of warnings may seem like a problem, but it’s arguably one of Perl’s nicest features, a feature known as “autovivification.” Because variable names and referencing syntax always make clear the structure of the data you are trying to access, you need never create any intermediate data structures by hand. Simply make an assignment at the lowest possible level, and the intervening structures materialize automatically. For example, you can create a hash of references to arrays whose contents are references to hashes with a single assignment.
 

Regular expressions in Perl
 

You use regular expressions in Perl by “binding” strings to regex operations with the =~ operator. For example, the line
 

if ($text =~ m/ab+c/) {
 

checks to see whether the string stored in $text matches the regular expression ab+c. To operate on the default string, $_, you can simply omit the variable name and binding operator. In fact, you can omit the m, too, since the operation defaults to matching:
 

if (/ab+c/) {
 

Substitutions work similarly:
 

[image: Image]
 

We sneaked in a g option to replace all instances of “etc.” with “and so on”, rather than just replacing the first instance. Other common options are i to ignore case, s to make dot (.) match newlines, and m to make the ^ and $ tokens match at the beginning and end of individual lines rather than only at the beginning and end of the search text.
 

A couple of additional points are illustrated in the following script:
 

[image: Image]
 

The output:
 

[image: Image]
 

This example shows that variables expand in // quoting, so the regular expression need not be a fixed string. qq is another name for the double-quote operator.
 

After a match or substitution, the contents of the variables $1, $2, and so on correspond to the text matched by the contents of the capturing parentheses in the regular expression. The contents of these variables are also available during the replacement itself, in which context they are referred to as \1, \2, etc.
 

Input and output
 

When you open a file for reading or writing, you define a “filehandle” to identify the channel. In the example below, INFILE is the filehandle for /etc/passwd and OUTFILE is the filehandle associated with /tmp/passwd. The while loop condition is <INFILE>, which is similar to the <> we have seen before but specific to a particular filehandle. It reads lines from the filehandle INFILE until the end of file, at which time the while loop ends. Each line is placed in the variable $_.
 

[image: Image]
 

open returns a true value if the file is successfully opened, short-circuiting (rendering unnecessary) the evaluation of the die clauses. Perl’s or operator is similar to || (which Perl also has), but at lower precedence. or is a generally a better choice when you want to emphasize that everything on the left will be fully evaluated before Perl turns its attention to the consequences of failure.
 

Perl’s syntax for specifying how you want to use each file (read? write? append?) mirrors that of the shell. You can also use “filenames” such as "/bin/df|" to open pipes to and from shell commands.
 

Control flow
 

The example below is a Perl version of our earlier bash script that validated its command-line arguments. You might want to refer to the bash version on page 41 for comparison. Note that Perl’s if construct has no then keyword or terminating word, just a block of statements enclosed in curly braces.
 

You can also add a postfix if clause (or its negated version, unless) to an individual statement to make that statement’s execution conditional.
 

[image: Image]
 

Here, the two lines that use Perl’s unary -d operator to validate the directory-ness of $source_dir and $dest_dir are equivalent. The second form (with -d at the start of the line) has the advantage of putting the actual assertion at the beginning of the line, where it’s most noticeable. However, the use of or to mean “otherwise” is a bit tortured; some readers of the code may find it confusing.
 

Evaluating an array variable in scalar context (specified by the scalar operator in this example) returns the number of elements in the array. This is 1 more than the value of $#array; as always in Perl, there’s more than one way to do it.
 

Perl functions receive their arguments in the array named @_. It’s common practice to access them with the shift operator, which removes the first element of the argument array and returns its value.
 

This version of the show_usage function accepts an optional error message to be printed. If you provide an error message, you can also provide a specific exit code. The trinary ?: operator evaluates its first argument; if the result is true, the result of the entire expression is the second argument; otherwise, the third.
 

As in bash, Perl has a dedicated “else if ” condition, but its keyword is elsif rather than elif. (For you who use both languages, these fun, minute differences either keep you mentally nimble or drive you insane.)
 

As Table 2.5 shows, Perl’s comparison operators are the opposite of bash’s; strings use textual operators, and numbers use traditional algebraic notation. Compare with Table 2.2 on page 44.
 

[image: Image]
 

Table 2.5 Elementary Perl comparison operators
 

In Perl, you get all the file-testing operators shown in Table 2.3 on page 44 except for the -nt and -ot operators, which are available in bash only.
 

Like bash, Perl has two types of for loops. The more common form iterates through an explicit list of arguments. For example, the code below iterates through a list of animals, printing one per line.
 

[image: Image]
 

The more traditional C-style for loop is also available:
 

[image: Image]
 

We’ve shown these with the traditional for and foreach labels, but those are in fact the same keyword in Perl and you can use whichever form you prefer.
 

Versions of Perl before 5.10 (2007) have no explicit case or switch statement, but there are several ways to accomplish the same thing. In addition to the obvious-but-clunky option of cascading if statements, another possibility is to use a for statement to set the value of $_ and provide a context from which last can escape:
 

[image: Image]
 

The regular expressions are compared with the argument stored in $_. Unsuccessful matches short-circuit the && and fall through to the next test case. Once a regex matches, its corresponding do block is executed. The last statements escape from the for block immediately.
 

Accepting and validating input
 

The script below combines many of the Perl constructs we’ve reviewed over the last few pages, including a subroutine, some postfix if statements, and a for loop. The program itself is merely a wrapper around the main function get_string, a generic input validation routine. This routine prompts for a string, removes any trailing newline, and verifies that the string is not null. Null strings cause the prompt to be repeated up to three times, after which the script gives up.
 

[image: Image]
 

The output:
 

[image: Image]
 

The get_string function and the for loop both illustrate the use of the my operator to create variables of local scope. By default, all variables are global in Perl.
 

The list of local variables for get_string is initialized with a single scalar drawn from the routine’s argument array. Variables in the initialization list that have no corresponding value (here, $response) remain undefined.
 

The *STDIN passed to the readline function is a “typeglob,” a festering wart of language design. It’s best not to inquire too deeply into what it really means, lest one’s head explode. The short explanation is that Perl filehandles are not first-class data types, so you must generally put a star in front of their names to pass them as arguments to functions.
 

In the assignments for $fname and $lname, the uc (convert to uppercase) and get_string functions are both called without parentheses. Since there is no possibility of ambiguity given the single argument, this works fine.
 

Perl as a filter
 

You can use Perl without a script by putting isolated expressions on the command line. This is a great way to do quick text transformations and one that largely obsoletes older filter programs such as sed, awk, and tr.
 

Use the -pe command-line option to loop through STDIN, run a simple expression on each line, and print the result. For example, the command
 

[image: Image]
 

replaces /bin/sh at the end of lines in /etc/passwd with /bin/bash, emitting the transformed passwd file to STDOUT. You may be more accustomed to seeing the text substitution operator with slashes as delimiters (e.g., s/foo/bar/), but Perl allows any character. Here, the search text and replacement text both contain slashes, so it’s simpler to use # as the delimiter. If you use paired delimiters, you must use four of them instead of the normal three, e.g., s(foo)(bar).
 

Perl’s -a option turns on autosplit mode, which separates input lines into fields that are stored in the array named @F. Whitespace is the default field separator, but you can set another separator pattern with the -F option.
 

Autosplit is handy to use in conjunction with -p or its nonautoprinting variant, -n. For example, the commands below use perl -ane to slice and dice the output from two variations of df. The third line then runs join to combine the two sets of fields on the Filesystem field, producing a composite table that includes fields drawn from both versions of the df output.
 

[image: Image]
 

A script version with no temporary files would look something like this:
 

[image: Image]
 

The truly intrepid can use -i in conjunction with -pe to edit files in place; Perl reads the files in, presents their lines for editing, and saves the results out to the original files. You can supply a pattern to -i that tells Perl how to back up the original version of each file. For example, -i.bak backs up passwd as passwd.bak. Beware—if you don’t supply a backup pattern, you don’t get backups at all. Note that there’s no space between the -i and the suffix.
 

Add-on modules for Perl
 

CPAN, the Comprehensive Perl Archive Network at cpan.org, is the warehouse for user-contributed Perl libraries. Installation of new modules is greatly facilitated by the cpan command, which acts much like a yum or APT package manager dedicated to Perl modules. If you’re on a Linux system, check to see if your distribution packages the module you’re looking for as a standard feature—it’s much easier to install the system-level package once and then let the system take care of updating itself over time.
 

On systems that don’t have a cpan command, try running perl -MCPAN -e shell as an alternate route to the same feature:
 

[image: Image]
 

It’s possible for users to install Perl modules in their home directories for personal use, but the process isn’t necessarily straightforward. We recommend a liberal policy regarding system-wide installation of third-party modules from CPAN; the community provides a central point of distribution, the code is open to inspection, and module contributors are identified by name. Perl modules are no more dangerous than any other open source software.
 

Many Perl modules use components written in C for better performance. Installation involves compiling these segments, so you need a complete development environment including the C compiler and a full set of libraries.
 

As with most languages, the most common error found in Perl programs is the reimplementation of features that are already provided by community-written modules.12 Get in the habit of visiting CPAN as the first step in tackling any Perl problem. It saves development and debugging time.
 

2.5 Python Scripting
 

As projects become larger and more complex, the benefits of object-oriented design and implementation become clearer. Perl missed the OO boat by about five years, and although it paddled furiously to keep up, Perl’s version of object-oriented programming still feels a bit hackish.
 

This section describes Python 2. Python 3 is in the works and is likely to be released during the lifetime of this book. But unlike Perl 6, it appears likely to be a relatively incremental update.
 

Engineers with a strong OO background usually like Python and Ruby, both scripting languages with a pronounced OO inflection. Python seems to be well onto the downhill side of the adoption curve at this point, so it’s a relatively easy sale for management. Several operating systems, including OpenSolaris, are making major investments in Python scriptability. Ruby, by contrast, is still primarily associated with web development and is rarely used for general scripting.
 

Python was created by Guido van Rossum. It’s easier to code and more readable than Perl. Python offers a simple-to-understand syntax that is easy to follow even if you didn’t develop the code. If you’re tired of remembering which comparison operators to use, you’ll appreciate Python’s unified approach. Python also offers additional data types that some system administrators find useful.
 

If Python is not already on your system, check your vendor’s or distributor’s list of available packages. It’s an extremely common package and should be universally available. Failing that, you can get Python source code from python.org. That is also a central location for finding add-in modules developed by others.
 

For a more thorough introduction to Python than we can give here, Mark Pilgrim’s Dive Into Python is a great place to start. It’s available for reading or for download (without charge) at diveintopython.org, or as a printed book from Apress. A complete citation can be found on page 75.
 

Python quick start
 

As usual, we start with a quick “Hello, world!” script. As it happens, Python’s “Hello, world!” is almost identical to Perl’s.
 

[image: Image]
 

To get it running, set the execute bit or invoke the python interpreter directly:
 

[image: Image]
 

This one-liner fails to illustrate Python’s most scandalous break with tradition, namely, that indentation is logically significant. Python does not use braces, brackets, or begin and end to delineate blocks. Statements at the same level of indentation automatically form blocks. The exact indentation style (spaces or tabs, depth of indentation) does not matter. Python blocking is best shown by example, so here’s an if-then-else statement:
 

[image: Image]
 

The third line imports the sys module, which contains the argv array. The then and else clauses both have two lines, each indented to the same level. The final print statement is outside the context of the if statement. As in Perl, Python’s print statement accepts an arbitrary number of arguments. But unlike Perl, Python inserts a space between each pair of arguments and supplies a newline automatically. You can suppress the newline by including an extra comma at the end of the print line; the null argument tells print not to output the newline character.
 

Colons at the end of a line are normally a clue that the line introduces and is associated with an indented block that follows it.
 

[image: Image]
 

Python’s indentation convention gives you less flexibility in the formatting of code, but it has the advantage of making code written by different people look the same, and it means that there is no need to sprinkle your code with pesky semicolons just to terminate statements.
 

Comments are introduced with a hash mark (#) and last until the end of the line, just as in bash and Perl.
 

You can split long lines by backslashing the end of line breaks. When you do this, only the indentation of the first line is significant. You can indent the continuation lines however you like. Lines with unbalanced parentheses, square brackets, or curly braces automatically signal continuation even in the absence of backslashes, but you can include the backslashes if doing so clarifies the structure of the code.
 

Some cut and paste operations convert tabs to spaces, and unless you know what you’re looking for, this can drive you nuts. The golden rule is never to mix tabs and spaces; use one or the other for indentation. A lot of software makes the traditional assumption that tabs should fall at 8-space intervals, which is really too much indentation for readable code. Most in the Python community seem to prefer spaces and 4-character indentation.
 

However you decide to attack the indentation problem, most editors have options that can help save your sanity, either by outlawing tabs in favor of spaces or by displaying spaces and tabs differently. As a last resort, you can translate tabs to spaces with the expand command or use perl -pe to replace tabs with a more easily seen character string.
 

Objects, strings, numbers, lists, dictionaries, tuples, and files
 

All data types in Python are objects, and this gives them more power and flexibility than they have in Perl.
 

In Python, lists are enclosed in square brackets instead of parentheses. Arrays index from zero, which is one of the few concepts that doesn’t change among the three scripting languages covered in this chapter.
 

New with Python are “tuples,” which are essentially immutable lists. Tuples are faster than arrays and are helpful for representing data that should in fact be unmodifiable. The syntax for tuples is the same as for lists, except that the delimiters are parentheses instead of square brackets. Because (thing) looks like a simple algebraic expression, tuples that contain only a single element need an extra comma to disambiguate them: (thing,).
 

Here’s some basic variable and data type wrangling in Python:
 

[image: Image]
 

This example produces the following output:
 

[image: Image]
 

Variables in Python are not syntactically marked or declared by type, but the objects to which they refer do have an underlying type. In most cases, Python does not automatically convert types for you, but individual functions or operators may do so. For example, you cannot concatenate a string and a number (with the + operator) without explicitly converting the number to its string representation. However, formatting operators and statements do coerce everything to string form. Every object has a string representation.
 

The string formatting operator % is a lot like the sprintf function from C or Perl, but it can be used anywhere a string can appear. It’s a binary operator that takes the string on its left and the values to be inserted on its right. If there is more than one value to insert, the values must be presented as a tuple.
 

A Python dictionary is the same thing as a Perl hash; that is, a list of key/value pairs. Dictionary literals are enclosed in curly braces, with each key/value pair being separated by a colon.
 

[image: Image]
 

In use, Python dictionaries are a lot like arrays, except that the subscripts (keys) can be objects other than integers.
 

[image: Image]
 

Python handles open files as objects with associated methods. True to its name, the readline method reads a single line, so the example below reads and prints two lines from the /etc/passwd file.
 

[image: Image]
 

The trailing commas are in the print statements to suppress newlines because each line already includes a newline character as it is read from the original file.
 

Input validation example
 

The scriptlet below is the Python version of our by-now-familiar input validator. It demonstrates the use of subroutines and command-line arguments along with a couple of other Pythonisms.
 

[image: Image]
 

In addition to importing the sys module, we also import the os module to gain access to the os.path.isdir routine. Note that import doesn’t shortcut your access to any symbols defined by modules; you must use fully qualified names that start with the module name.
 

The definition of the show_usage routine supplies a default value for the exit code in case the caller does not specify this argument explicitly. Since all data types are objects, function arguments are passed by reference.
 

The sys.argv array contains the script name in the 0 position, so its length is 1 greater than the number of command-line arguments that were actually supplied. The form sys.argv[1:3] is an array slice. Curiously, slices do not include the element at the far end of the specified range, so this slice includes only sys.argv[1] and sys.argv[2]. You could simply say sys.argv[1:] to include the second and subsequent arguments.
 

Like both bash and Perl, Python has a dedicated “else if ” condition; the keyword is elif. There is no explicit case or switch statement.
 

The parallel assignment of the source and dest variables is a bit different from the Perl version in that the variables themselves are not in a list. Python allows parallel assignments in either form.
 

Python uses the same comparison operators for numeric and string values. The “not equal” comparison operator is !=, but there is no unary ! operator; use not for this. The Boolean operators and and or are also spelled out.
 

Loops
 

The fragment below uses a for…in construct to iterate through the range 1 to 10.
 

[image: Image]
 

As with the array slice in the previous example, the right endpoint of the range is not actually included. The output includes only the numbers 1 through 9:
 

1 2 3 4 5 6 7 8 9
 

This is Python’s only type of for loop, but it’s a powerhouse. Python’s for has several features that distinguish it from for in other languages:
 

• There is nothing special about numeric ranges. Any object can support Python’s iteration model, and most common objects do. You can iterate through a string (by character), a list, a file (by character, line, or block), an array slice, etc.

 

• Iterators can yield multiple values, and you can have multiple loop variables. The assignment at the top of each iteration acts just like Python’s regular multiple assignments.

 

• Both for and while loops can have else clauses at the end. The else clause is executed only if the loop terminates normally, as opposed to exiting through a break statement. This feature may initially seem counterintuitive, but it handles certain use cases quite elegantly.

 

The example script below accepts a regular expression on the command line and matches it against a list of Snow White’s dwarves and the colors of their dwarf suits. The first match is printed with the portions that match the regex surrounded by underscores.
 

[image: Image]
 

Here’s some sample output:
 

[image: Image]
 

The assignment to suits demonstrates Python’s syntax for encoding literal dictionaries. The suits.items() method is an iterator for key/value pairs—note that we’re extracting both a dwarf and a suit color on each iteration. If you only wanted to iterate through the keys, you could just say for dwarf in suits.
 

Python implements regular expression handling through its re module. No regex features are built into the language itself, so regex-wrangling with Python is a bit clunkier than with Perl. Here, the regex pattern is initially compiled from the first command-line argument surrounded by parentheses to form a capture group. Strings are then tested and modified with the search and sub methods of the regex object. You can also call re.search et al. directly as functions, supplying the regex to use as the first argument. The \1 in the substitution string is a back-reference to the contents of the first capture group.
 

2.6 Scripting Best Practices
 

Although the code fragments in this chapter contain few comments and seldom print usage messages, that’s only because we’ve skeletonized each example to make specific points. Real scripts should behave better. There are whole books on best practices for coding, but here are a few basic guidelines:
 

• When run with inappropriate arguments, scripts should print a usage message and exit. For extra credit, implement --help this way, too.

 

• Validate inputs and sanity-check derived values. Before doing an rm -rf on a calculated path, for example, you might have the script double-check that the path conforms to the pattern you expect. You may find your scripting language’s “taint” feature helpful.

 

• Return an appropriate exit code: zero for success and nonzero for failure. Don’t feel compelled to give every failure mode a unique exit code, however; consider what callers will actually want to know.

 

• Use appropriate naming conventions for variables, scripts, and routines. Conform to the conventions of the language, the rest of your site’s code base, and most importantly, the other variables and functions defined in the current project. Use mixed case or underscores to make long names readable.13

 

• Use variable names that reflect the values they store, but keep them short. number_of_lines_of_input is way too long; try n_lines.

 

• Consider developing a style guide so that you and your colleagues can write code according to the same conventions. A guide makes it easier for you to read other people’s code and for them to read yours.

 

• Start every script with a comment block that tells what the script does and what parameters it takes. Include your name and the date. If the script requires nonstandard tools, libraries, or modules to be installed on the system, list those as well.

 

• Comment at the level you yourself will find helpful when you return to the script after a month or two. Some useful points to comment on are the following: choices of algorithm, reasons for not doing things in a more obvious way, unusual paths through the code, anything that was a stumbling block during development. Don’t clutter code with useless comments; assume intelligence and language proficiency on the part of the reader.

 

• Code comments work best at the granularity of blocks or functions. Comments that describe the function of a variable should appear with the variable’s declaration or first use.

 

• It’s OK to run scripts as root, but avoid making them setuid; it’s tricky to make setuid scripts completely secure. Use sudo to implement appropriate access control policies instead.

 

• With bash, use -x to echo commands before they are executed and -n to check commands for syntax without executing them.

 

• Perl’s -w option warns you about suspicious behaviors such as variables used before their values are set. You can include this option on a script’s shebang line or turn it on in the program’s text with use warnings.

 

• In Python, you are in debug mode unless you explicitly turn it off with a -0 argument on the command line. That means you can test the special __debug__ variable before printing diagnostic output.

 

Tom Christiansen suggests the following five Golden Rules for producing useful error messages:
 

• Error messages should go to STDERR, not STDOUT.

 

• Include the name of the program that’s issuing the error.

 

• State what function or operation failed.

 

• If a system call fails, include the perror string ($! in Perl).

 

• Exit with some code other than 0.

 

Perl makes it easy to follow all five rules:
 

die "can’t open $filename: $!";
 

2.7 Recommended Reading
 

BROOKS, FREDERICK P., JR. The Mythical Man-Month: Essays on Software Engineering. Reading, MA: Addison-Wesley, 1995.
 

Shell basics and bash scripting
 

ALBING, CARL, JP VOSSEN, AND CAMERON NEWHAM. Bash Cookbook. Sebastopol, CA: O’Reilly Media, 2007.
 

KERNIGHAN, BRIAN W., AND ROB PIKE. The UNIX Programming Environment. Englewood Cliffs, NJ: Prentice-Hall, 1984.
 

NEWHAM, CAMERON, AND BILL ROSENBLATT. Learning the bash Shell (3rd Edition), Sebastopol, CA: O’Reilly Media, 2005.
 

POWERS, SHELLEY, JERRY PEEK, TIM O’REILLY, AND MIKE LOUKIDES. Unix Power Tools, (3rd Edition), Sebastopol, CA: O’Reilly Media, 2002.
 

Regular expressions
 

FRIEDL, JEFFREY. Mastering Regular Expressions (3rd Edition), Sebastopol, CA: O’Reilly Media, 2006.
 

GOYVAERTS, JAN, AND STEVEN LEVITHAN. Regular Expressions Cookbook. Sebastopol, CA: O’Reilly Media, 2009.
 

Perl scripting
 

WALL, LARRY, TOM CHRISTIANSEN, AND JON ORWANT. Programming Perl (3rd Edition), Sebastopol, CA: O’Reilly Media, 2000.
 

SCHWARTZ, RANDAL L., TOM PHOENIX, AND BRIAN D FOY. Learning Perl (5th Edition), Sebastopol, CA: O’Reilly Media, 2008.
 

BLANK-EDELMAN, DAVID. Automating System Administration with Perl, Sebastopol, CA: O’Reilly Media, 2009.
 

CHRISTIANSEN, TOM, AND NATHAN TORKINGTON. Perl Cookbook (2nd Edition). Sebastopol, CA: O’Reilly Media, 2003.
 

Python scripting
 

BEAZLEY, DAVID M. Python Essential Reference (4th Edition), Reading, MA: Addison-Wesley, 2009.
 

GIFT, NOAH, AND JEREMY M. JONES. Python for Unix and Linux System Administrators, Sebastopol, CA: O’Reilly Media, 2008.
 

MARTELLI, ALEX, ANNA MARTELLI RAVENSCROFT, AND DAVID ASCHER. Python Cookbook (2nd Edition), Sebastopol, CA: O’Reilly Media, 2005.
 

PILGRIM, MARK. Dive Into Python. Berkeley, CA: Apress, 2004. This book is also available for free on the web at diveintopython.org.
 

2.8 Exercises
 

E2.1 UNIX allows spaces in filenames. How do you find files whose names contain embedded spaces? How do you delete them? Do bash, Perl, and Python handle spaces in filenames gracefully, or do you need to take special precautions? Outline appropriate rules of thumb for scripting.
 

E2.2 Write a simple bash script (or pair of scripts) to back up and restore your system.
 

E2.3 Using regular expressions, write a Perl or Python script to parse a date in the form produced by the date command (e.g., Tue Oct 20 18:09:33 PDT 2009) and determine whether it is valid (e.g., no February 30th, valid time zone, etc.). Is there an off-the-shelf library or module that lets you do this in one line? If so, explain how to install it and recode your script to use it.
 

E2.4 Write a script that enumerates the system’s users and groups from /etc/passwd and /etc/group (or their network database equivalents). For each user, print the user’s UID and the groups of which the user is a member.
 

E2.5 Refine the get_string example on page 63 to accept only integers. It should accept three parameters: the prompt string, a lower limit on the acceptable integers, and an upper limit on the acceptable integers.
 

E2.6 Find an undocumented script that’s used in your environment. Read it and make sure you understand its function. Add comments and write a man page for the script.
 

[image: Image] E2.7 Write a script that displays a one-screen summary of status data related to one of the following categories: CPU, memory, disk, or network. The script should leverage OS commands and files to build an easy-to-understand dashboard that includes as much information as possible.
 

[image: Image] E2.8 Build a menu-driven interface that makes it easy to select command-line options for top, sar, or the performance analysis tool of your choice.
 

[image: Image] E2.9 Write a script to test a server’s network connectivity and the upstream services on which it depends (e.g., DNS, file service, LDAP or other directory service). Have it send you email or a text message if problems are discovered.
 
  


3. Booting and Shutting Down
 

[image: Image]
 

Like most things UNIX, system startup and shutdown have matured into carefully engineered processes that accommodate many possible contingencies. As administrators, we negotiate the intricacies of the boot process to prevent and troubleshoot problems. An effective sysadmin understands the fundamentals first.
 

Bootstrapping has always been somewhat mysterious, but it was simpler in the days when manufacturers controlled every aspect of the system’s hardware and software. Now that we have Linux and Solaris running on PC hardware, the boot procedure has to play by PC rules and deal with many potential configurations. Although we discuss the boot procedure for all our example systems in this chapter, you’ll see that we have quite a bit more to say about the PC-based versions of UNIX than about the “captive” systems.
 

This chapter appears early in the book, but it refers to material that is not discussed in detail until many hundreds of pages later. In particular, familiarity with the material in Chapter 6, The Filesystem, and Chapter 13, Drivers and the Kernel, will prove helpful.
 

3.1 Bootstrapping
 

Bootstrapping is the standard term for “starting up a computer.” The operating system’s normal facilities are not available during the startup process, so the computer must “pull itself up by its own bootstraps.” During bootstrapping, the kernel is loaded into memory and begins to execute. A variety of initialization tasks are performed, and the system is then made available to users.
 

Boot time is a period of special vulnerability. Errors in configuration, missing or unreliable equipment, and damaged filesystems can all prevent a computer from coming up. Boot configuration is often one of the first tasks an administrator must perform on a new system, especially when adding new hardware. Unfortunately, it is also one of the touchiest, and it requires some familiarity with many other aspects of the system.
 

When a computer is turned on, it first executes boot code that is stored in ROM. That code in turn attempts to figure out how to load and start the kernel. The kernel probes the system’s hardware and then spawns the system’s init process, which is always process number 1.
 

Before the system is fully booted, filesystems must be checked and mounted, and system daemons started. These procedures are managed by a series of shell scripts (sometimes called “init scripts”) that are run in sequence by init. The exact layout of the startup scripts and the manner in which they are executed vary among systems. We cover the details later in this chapter.
 

Recovery boot to a shell
 

In normal operation, systems boot themselves independently and are then accessed remotely by administrators and users. However, administrators need a recovery tool they can use if a disk crashes or a configuration problem prevents the system from completing the normal boot process. Instead of shooting for full system operation, UNIX systems can boot just enough to run a shell on the system console. This option is traditionally known as booting to single-user mode, recovery mode, or maintenance mode, all terms that we use interchangeably in this chapter. As its name implies, single-user mode does not allow network operation; you need physical access to the system console to use it.
 

On most systems, you request a boot to single-user mode by passing an argument to the kernel at boot time. If the system is already up and running, you can bring it down to single-user mode with the shutdown or telinit command.
 

Steps in the Boot Process
 

A typical bootstrapping process consists of six distinct phases:
 

• Reading of the boot loader from the master boot record

 

• Loading and initialization of the kernel

 

• Device detection and configuration

 

• Creation of kernel processes

 

• Administrator intervention (single-user mode only)

 

• Execution of system startup scripts

 

Administrators have little interactive control over most of these steps. Instead, admins change most bootstrap configurations by editing config files for the system startup scripts or by changing the arguments the boot loader passes to the kernel.
 

Kernel initialization
 

The kernel is itself a program, and the first bootstrapping task is to get this program into memory so that it can be executed. The pathname of the kernel is vendor dependent, but it has traditionally been something like /unix or /vmunix. On Linux systems, the kernel is usually some variation of /boot/vmlinuz.
 

See Chapter 13 for more information about the kernel.

 

Most systems implement a two-stage loading process. During the first stage, the system ROM loads a small boot program into memory from disk. This program, called the boot loader, then arranges for the kernel to be loaded. This procedure occurs outside the domain of UNIX and so is not standardized among systems.
 

The kernel probes the system to learn how much RAM is available. Some of the kernel’s internal data structures are statically sized, so the kernel sets aside some memory for itself when it starts. This memory is reserved for the kernel and cannot be used by user-level processes. The kernel prints a message on the console that reports the total amount of physical memory and the amount available to user processes.
 

Hardware configuration
 

One of the kernel’s first chores is to scrutinize the machine’s environment to see what hardware is present. As it probes the various system buses and inventories the hardware, the kernel prints out a line of cryptic information about each device it finds. In many cases, the kernel loads device drivers as independent kernel modules. For PC-based operating systems, vendors include kernels that work on most machine configurations and require minimal (if any) customization.
 

Hardware configuration should be a relatively transparent process for administrators, especially under Linux. Kernels distributed by vendors are extremely modular and will automatically detect most hardware. Nonetheless, you may encounter unrecognized hardware at some point. See Chapter 13, Drivers and the Kernel, for help with manual driver configuration.
 

Creation of kernel processes
 

Once basic initialization is complete, the kernel creates several “spontaneous” processes in user space. They’re called spontaneous processes because they are not created through the normal system fork mechanism; see page 123 for details.
 

The exact number of spontaneous processes varies, although init is always PID 1. Most UNIX systems have sched as process 0.
 

[image: Image] Under Linux, there is no visible PID 0. init is accompanied by several memory and kernel handler processes, including those shown in Table 3.1. These processes all have low-numbered PIDs and can be identified by the brackets around their names in ps listings (e.g., [kacpid]). Sometimes the process names have a slash and a digit at the end, such as [kblockd/0]. The number indicates the processor on which the thread is running, which may be of interest on a multiprocessor system.
 

[image: Image]
 

Table 3.1 Some common kernel processes on Linux systems
 

Among these processes, only init is really a full-fledged user process. The others are actually portions of the kernel that have been dressed up to look like processes for scheduling or architectural reasons.
 

UNIX systems create similar kernel processes, but since these processes represent aspects of the kernel implementation, none of the names or functions are necessarily common among systems. Fortunately, administrators never need to interact with these processes directly.
 

Once these processes have been created, the kernel’s role in bootstrapping is complete. However, none of the processes that handle basic operations (such as accepting logins) have been created, nor have most system daemons been started. All of these tasks are taken care of (indirectly, in some cases) by init.
 

Operator intervention (recovery mode only)
 

If the system is to be brought up in recovery mode, a command-line flag passed in by the kernel notifies init of this fact as it starts up. During a single-user boot on sane systems, you are prompted to enter the root password. If you enter the right password, the system spawns a root shell. You can type <Control-D> instead of a password to bypass single-user mode and continue with a normal boot. See page 86 for more details.
 

See Chapter 4 for more information about the root account.

 

From the single-user shell, you can execute commands in much the same way as when logged in on a fully booted system. However, sometimes only the root partition is mounted; you must mount other filesystems by hand to use programs that don’t live in /bin, /sbin, or /etc.
 

See Chapter 6 for more information about file-systems and mounting.

 

In many single-user environments, the filesystem root directory starts off being mounted read-only. If /etc is part of the root filesystem (the usual case), it will be impossible to edit many important configuration files.1 To fix this problem, you’ll have to begin your single-user session by remounting / in read/write mode. In Linux, the command
 

# mount -o rw,remount /
 

usually does the trick. On most other systems, you can run mount / to make mount consult the fstab or vfstab file and determine how the filesystem should be mounted.
 

[image: Image] Red Hat’s single-user mode is a bit more aggressive than normal. By the time you reach the shell prompt, it has usually tried to mount all local filesystems. Although this is usually helpful, it can be problematic if you have a sick filesystem.
 

The fsck command is run during a normal boot to check and repair filesystems. When you bring the system up in single-user mode, you may need to run fsck by hand. See page 259 for more information about fsck.
 

Once the single-user shell exits, the system attempts to continue booting in the normal fashion.
 

Execution of startup scripts
 

By the time the system is ready to run its startup scripts, it is recognizably UNIX. Even though it doesn’t quite look like a fully booted system yet, no more “magic” steps are left in the boot process. The startup scripts are just normal shell scripts, and they’re selected and run by init according to an algorithm that, though sometimes tortuous, is relatively comprehensible.
 

The care, feeding, and taxonomy of startup scripts merits a major section of its own. It’s taken up in more detail starting on page 97. For a quick course in shell scripting itself, see Chapter 2, Scripting and the Shell.
 

Boot process completion
 

After the initialization scripts have run, the system is fully operational. System daemons, such as DNS and SMTP servers, are accepting and servicing connections. Keep in mind that init continues to perform an important role even after booting is complete.
 

See page 1171 for more information about the login process.

 

init defines one single-user and several network-enabled “run levels” that determine which of the system’s resources are enabled. Run levels are described later in this chapter, starting on page 88.
 

3.2 Booting PCs
 

At this point we’ve seen the general outline of the boot process. We now revisit several of the more important (and complicated) steps and discuss the details relevant to Intel systems.
 

PC booting is a lengthy ordeal that requires quite a bit of background information to explain. When a machine boots, it begins by executing code stored in ROMs. The exact location and nature of this code varies, depending on the type of machine you have. On a machine designed explicitly for UNIX or another proprietary operating system, the code is typically firmware that knows how to use the devices connected to the machine, how to talk to the network on a basic level, and how to understand disk-based filesystems. Such intelligent firmware is convenient for system administrators. For example, you can just type in the filename of a new kernel, and the firmware will know how to locate and read that file.
 

On PCs, the initial boot code is generally called a BIOS (Basic Input/Output System), and it is extremely simplistic compared to the firmware of a proprietary workstation. Actually, a PC has several levels of BIOS: one for the machine itself, one for the video card, one for the SCSI card if the system has one, and sometimes components for other peripherals such as network cards.
 

The built-in BIOS knows about some of the devices that live on the motherboard, typically the IDE and SATA controllers (and disks), network interfaces, power and temperature meters, and system hardware. SCSI cards are usually only aware of the devices that are connected to them. Thankfully, the complex interactions needed to make these devices work together have been standardized in the past few years, and little manual intervention is required on current systems.
 

The BIOS normally lets you select which devices you want the system to try to boot from. You can usually specify an ordered list of preferences such as “Try to boot from a DVD, then a USB drive, then the hard disk.” Network booting with PXE (see Netbooting PCs on page 363) is also a common option.
 

Once the BIOS has figured out what device to boot from, it tries to read the first block of the device. This 512-byte segment is known as the master boot record or MBR. The MBR contains a program that tells the computer from which partition to load a secondary boot program, the “boot loader.” For more information on PC-style disk partitions and the MBR, refer to Chapter 8, Storage.
 

The default MBR contains a simple program that tells the computer to get its boot loader from the first partition on the disk. Some systems offer a more sophisticated MBR that knows how to deal with multiple operating systems and kernels. Once the MBR has chosen a partition to boot from, it tries to load the boot loader specific to that partition. This loader is then responsible for loading the kernel.
 

3.3 GRUB: The Grand Unified Boot Loader
 

GRUB, developed by the GNU project, is the default boot loader for most UNIX and Linux systems with Intel processors. GRUB ships with most Linux distributions, and with x86-based Solaris systems since version 10. GRUB’s job is to choose a kernel from a previously assembled list and to load that kernel with options specified by the administrator.
 

There are two branches of the GRUB lineage: the original GRUB, now called “GRUB Legacy,” and the newer GRUB 2. The name GRUB 2 is a bit deceptive since GRUB 2 releases actually have version numbers between 1 and 2. All of our example systems currently use GRUB Legacy, and that’s the version we describe in this book. GRUB 2 is similar in concept but varies in its config file syntax.
 

By default, GRUB reads its default boot configuration from /boot/grub/menu.lst or /boot/grub/grub.conf. GRUB reads the configuration file at startup time (which is a pretty impressive feat in itself), so it allows dynamic changes at each system boot. The menu.lst and grub.conf files are slightly different but have a similar syntax. Red Hat systems use grub.conf, and Solaris, SUSE, and Ubuntu still use menu.lst. Here’s a sample grub.conf file:
 

[image: Image]
 

This example configures only a single operating system, which GRUB boots automatically (default=0) if it doesn’t receive any keyboard input within 10 seconds (timeout=10). The root filesystem for the “Red Hat Enterprise Linux Server” configuration is the GRUB device (hd0,0), which is GRUB-ese for the first partition on the system’s first hard disk (“first” being defined by the BIOS).
 

GRUB loads the kernel from /vmlinuz-2.6.18-92.1.10.el5 and displays a splash screen from the file /boot/grub/splash.xpm.gz when it is loaded. Kernel paths are relative to the boot partition, which is usually mounted in /boot.
 

GRUB supports a powerful command-line interface as well as facilities for editing configuration file entries on the fly. To enter command-line mode, type c from the GRUB boot screen. From the command line, you can boot operating systems that aren’t in grub.conf, display system information, and perform rudimentary filesystem testing. You can also enjoy the command line’s shell-like features, including command completion and cursor movement. Anything that can be done through the grub.conf file can be done through the GRUB command line as well.
 

Press the <Tab> key to obtain a quick list of possible commands. Table 3.2 lists some of the more useful ones.
 

[image: Image]
 

Table 3.2 GRUB command-line options
 

For detailed information about GRUB and its command line-options, refer to the official manual at gnu.org/software/grub/manual.
 

Kernel options
 

GRUB lets you pass command-line options to the kernel. These options typically modify the values of kernel parameters, instruct the kernel to probe for particular devices, specify the path to init, or designate a specific root device. Table 3.3 shows a few examples.
 

[image: Image]
 

Table 3.3 Examples of kernel boot-time options
 

When edited at boot time, kernel options are not persistent. Edit the appropriate kernel line in grub.conf or menu.lst to make the change persist across reboots.
 

Security patches, bug fixes, and features are all regularly added to the Linux kernel. Unlike other software packages, however, new kernel releases typically do not replace old ones. Instead, the new kernels are installed side by side with the old versions so that you can return to an older kernel in the event of problems. This convention helps administrators back out of an upgrade if a kernel patch breaks their system. As time goes by, the GRUB boot menus fill up with all the different versions of the kernel. It’s usually safe to use the default selection, but try choosing another kernel if your system doesn’t boot after patching.
 

Multibooting
 

Since many operating systems run on PCs, it’s fairly common practice to set up a machine to boot several different operating systems. To make this work, you need to configure a boot loader to recognize all the different operating systems on your disks. In the next few sections, we cover some common multiboot stumbling blocks and then review some example configurations.
 

Each disk partition can have its own second-stage boot loader. However, the boot disk has only one MBR. When setting up a multiboot configuration, you must decide which boot loader is going to be the “master.” For better or worse, your choice will often be dictated by the vagaries of the operating systems involved. GRUB is really the only option for Intel-based UNIX and Linux systems. Always use GRUB over the Windows boot loader when dual booting a Windows system.
 

A multiboot GRUB system is much like its single-boot counterpart. Install all the desired operating systems before making changes to grub.conf or menu.lst.
 

[image: Image]
 

The chainloader option loads the boot loader from a the specified location (here, sector 1 on the first partition of the primary IDE drive). The rootnoverify option guarantees that GRUB will not try to mount the specified partition.
 

The grub.conf file below boots Windows XP from the first partition (the default), and Red Hat Enterprise Linux from the second:
 

[image: Image]
 

The fact that GRUB solves many potential multibooting problems doesn’t really alleviate our inherent skepticism of multiboot configurations. See page 1140 for some additional comments.
 

3.4 Booting to Single-User Mode
 

The beginnings of the boot process are system dependent. Systems with non-Intel processors have custom boot loader software, while PCs are mostly standardized thanks to GRUB.
 

Single-user mode with GRUB
 

You don’t need to use the command line to boot single-user mode under GRUB. The GRUB authors realized that boot options should be easily modifiable and decided on the ‘a’ key as the appropriate tool. At the GRUB splash screen, highlight the desired kernel and press ‘a’ to append to the boot options. To boot into single-user mode, add the single (or -s on Solaris) flag to the end of the existing kernel options. An example for a typical configuration might be
 

grub append> ro root=LABEL=/ rhgb quiet single
 

Single-user mode on SPARC
 

[image: Image] To interrupt the boot procedure and enter the OpenBoot PROM on Sun hardware, press the L1 and ‘a’ keys simultaneously. L1 is sometimes labeled STOP on modern Sun keyboards. From the boot PROM, you can type boot -s to boot to single-user mode.
 

To boot an alternative kernel under Solaris, you usually have to type the full Solaris name of the device and the file. The Solaris device name is the long, bizarre string of characters you see when you do an ls -l on the /dev file:
 

[image: Image]
 

To boot the kernel stored as /kernel/backup on this disk, you’d need to enter the following command at the boot PROM monitor:
 

boot /devices/sbus@1f,0/SUNW,fas@e,8800000/sd@0,0:a,raw/kernel/backup
 

Table 3.4 lists some of the more useful commands you can enter from Sun’s boot PROM and a brief description of their functions.
 

[image: Image]
 

Table 3.4 Boot PROM commands on Sun hardware
 

HP-UX single-user mode
 

[image: Image] The procedure for booting single-user on an HP-UX machine seems to depend on the exact type of machine. The following example is from an HP 9000/735.
 

First, interrupt the boot process when prompted to do so. You’ll receive a prompt. At that prompt, type boot pri isl to get to a smarter prompt that will let you boot single-user. This prompt should look something like this:
 

ISL> prompt:
 

The following command selects a kernel and boots the system into single-user mode:
 

ISL> prompt: hpux -iS /stand/vmunix
 

AIX single-user mode
 

[image: Image] AIX refers to single-user mode as “maintenance” mode. Select maintenance mode from the boot menu before the system starts, or use telinit S from the command line if the system has already been booted.
 

3.5 Working With Startup Scripts
 

After you exit from single-user mode (or, in the standard boot sequence, at the point at which the single-user shell would have run), init executes the system startup scripts. These scripts are really just garden-variety shell scripts that are interpreted by sh or bash. The exact location, content, and organization of the scripts vary enormously among vendors.
 

Most systems use an approach in which scripts are numbered and executed in order. Scripts are kept in /etc/init.d, and links to them are made in the directories /etc/rc0.d, /etc/rc1.d, and so on. This organization is clean, and because the scripts are executed in order, the system can accommodate dependencies among services. These “startup” scripts both start and stop services, so this architecture also allows the system to be shut down in an orderly manner.
 

Some tasks that are often performed in the startup scripts are
 

• Setting the name of the computer

 

• Setting the time zone

 

• Checking the disks with fsck

 

• Mounting the system’s disks

 

• Removing old files from the /tmp directory

 

• Configuring network interfaces

 

• Starting up daemons and network services

 

Startup scripts are quite verbose and print a description of everything they are doing. These status messages can be a tremendous help if the system hangs midway through booting or if you are trying to locate an error in one of the scripts.
 

Administrators should not modify startup scripts. The ones that accept configuration information read it in the form of a separate and site-specific configuration file, usually itself a shell script. You can modify the accessory configuration script and have confidence that it won’t be overwritten by updates.
 

init scripts are used to some degree by all six of our example operating systems. Solaris 10’s startup process was rewritten from the ground up and is discussed starting on page 97. Ubuntu uses an init replacement known as Upstart, but we cover it in this section because of its similarities to the traditional init.
 

In the sections below, we first describe the general idea of the system, then cover each OS’s individual quirks.
 

init and its run levels
 

init is the first process to run after the system boots, and in many ways it is the most important daemon. It always has a PID of 1 and is an ancestor of all user processes and all but a few system processes. init implementations vary slightly among systems.
 

init defines at least seven run levels, each of which represents a particular complement of services that the system should be running. The exact definition of each run level varies among systems, but the following points are all generally true:
 

• At level 0, the system is completely shut down.

 

• Levels 1 and S represent single-user mode.

 

• Levels 2 through 5 include support for networking.

 

• Level 6 is a “reboot” level.

 

Levels 0 and 6 are special in that the system can’t actually remain in them; it shuts down or reboots as a side effect of entering them. On most systems, the general default run level is 2 or 3. Under Linux, run level 5 is often used for X Windows login processes. Run level 4 is rarely used.
 

Single-user mode was traditionally init level 1. It shut down all network and remote login processes and made sure the system was running a minimal complement of software. Since single-user mode permits root access to the system, however, administrators wanted the system to prompt for the root password whenever it was booted into single-user mode.
 

The S run level was created to address this need. It spawns a process that prompts for the root password. On Solaris and AIX, S is the “real” single-user run level, but on Linux, it serves only to prompt for the root password and is not a destination in itself.
 

There seem to be more run levels defined than are strictly necessary or useful. The traditional explanation for this is that a phone switch had 7 run levels, so it was thought that a UNIX system should have at least that many. Linux and AIX actually support up to 10 run levels, but most of these are undefined. On AIX, only run level 2 is meaningful in the default configuration. Levels 0 and 1 are reserved for the operating system, and levels 3–9 are open for use by admins.
 

The /etc/inittab file tells init what to do at each run level. Its format varies from system to system, but the basic idea is that inittab defines commands that are to be run (or kept running) when the system enters each level.
 

As the machine boots, init ratchets its way up from run level 0 to the default run level, which is also set in /etc/inittab. To accomplish the transition between each pair of adjacent run levels, init runs the actions spelled out for that transition in /etc/inittab. The same progression is made in reverse order when the machine is shut down.
 

The telinit command changes init’s run level once the system is up. For example, telinit 3 forces init to go to run level 3. telinit’s most useful argument is -q, which causes init to reread the /etc/inittab file.
 

Unfortunately, the semantics of the inittab file are fairly crude, and they don’t mesh well with the way that services are actually started and stopped on UNIX systems. To map the facilities of the inittab file into something a bit more usable, init implements another layer of abstraction. This layer usually takes the form of a “change run levels” command that’s run out of inittab. This command in turn executes scripts from a run-level-dependent directory to bring the system to its new state.
 

[image: Image] This second layer is not well developed in AIX. Instead, AIX systems rely heavily on the inittab file itself to manage services. AIX’s startup scripts are also slightly different from those of other systems.
 

These days, most Linux distributions boot to run level 5 by default, which may not be appropriate for systems that don’t need to run a window server. The default run level is easy to change. This line from a SUSE machine’s inittab defaults to run level 5:
 

id:5:initdefault:
 

System administrators usually don’t have to deal directly with /etc/inittab because the script-based interface is adequate for most applications. In the following discussion, we mostly ignore the inittab file and the other glue that attaches init to the execution of startup scripts. Just keep in mind that when we say that init runs such-and-such a script, the connection may not be quite so direct.
 

Overview of startup scripts
 

The master copies of the startup scripts live in the /etc/init.d directory. Each script is responsible for one daemon or one particular aspect of the system. The scripts understand the arguments start and stop to mean that the service they deal with should be initialized or halted. Most also understand restart, which is typically the same as a stop followed by a start. As a system administrator, you can manually start and stop individual services by running their associated init.d scripts by hand.
 

For example, here’s a simple startup script that can start, stop, or restart sshd:
 

[image: Image]
 

Although the scripts in /etc/init.d can start and stop individual services, the master control script run by init needs additional information about which scripts to run (and with what arguments) to enter any given run level. Instead of looking directly at the init.d directory when it takes the system to a new run level, the master script looks at a directory called rclevel.d, where level is the run level to be entered (e.g., rc0.d, rc1.d, …).
 

These rclevel.d directories contain symbolic links that point back to the scripts in the init.d directory. The names of the links start with S or K followed by a sequence number and the name of the service the script controls (e.g., S34named).
 

When init transitions from a lower run level to a higher one, it runs all the scripts that start with S in ascending numerical order with the argument start. When init transitions from a higher run level to a lower one, it runs all the scripts that start with K (for “kill”) in descending numerical order with the argument stop.
 

This scheme gives administrators fine-grained control of the order in which services are started. For example, it doesn’t make sense to start sshd before the network interfaces are up. Although the network and sshd are both configured to start at run level 3 in Red Hat, the network script has sequence number 10 and the sshd script has sequence number 55, so network is certain to be run first. Be sure to consider this type of dependency when you add a new service.
 

To tell the system when to start a daemon, you must place symbolic links into the appropriate directory. For example, to start cupsd (the printing daemon) at run level 2 and to stop it nicely before shutting down, the following pair of links would suffice:
 

[image: Image]
 

The first line tells the system to run the /etc/init.d/cups startup script as one of the last things to do when entering run level 2 and to run the script with the start argument. The second line tells the system to run /etc/init.d/cups relatively soon when shutting down the system and to run the script with the stop argument. Some systems treat shutdown and reboot differently, so we should really put a symbolic link in the /etc/rc6.d directory as well to make sure the daemon shuts down properly when the system is rebooted.
 

Red Hat startup scripts
 

[image: Image] Startup scripts are one of the areas in which Linux distributions are most distinguished from each other. Red Hat uses a primarily init-script-based approach, with a few twists thrown in just to make life difficult for everyone.
 

At each run level, init invokes the script /etc/rc.d/rc with the new run level as an argument. /etc/rc.d/rc usually runs in “normal” mode, in which it just runs control scripts, but it can also run in “confirmation” mode, where it prompts you for confirmation before running each individual startup script.
 

Startup scripts store lock files in the /var/lock/subsys directory. The presence of a lock file with the same name as a startup script indicates that that service should already be running. Startup scripts create lock files when given a start command and remove them when performing a stop.
 

Red Hat supplies a chkconfig command to help you manage services. This command adds or removes startup scripts from the system, manages the run levels at which they operate, and lists the run levels for which a script is currently configured. See the man page for usage information for this simple and handy tool.
 

Red Hat also has an /etc/rc.d/rc.local script (not directory) that runs at boot time. It’s the last script run as part of the startup process and is a good place to add site-specific tweaks or post-boot tasks.
 

Once you see the “Welcome to Red Hat Enterprise Linux” message during the boot process, you can press the ‘i’ key to enter confirmation mode. Unfortunately, Red Hat gives you no confirmation that you have pressed the right key. It continues to mount local filesystems, activate swap partitions, load keymaps, and locate its kernel modules. Only after init switches to run level 3 does the system actually start to prompt you for confirmation.
 

Interactive startup and single-user mode both begin at the same spot in the boot process. When the startup process is so broken that you cannot reach this point safely, you can use a DVD or USB drive to boot.
 

You can also pass the argument init=/bin/sh to the kernel to trick it into running a single-user shell before init even starts.2 If you take this tack, you will have to do all the normal startup housekeeping by hand, including manually fscking and mounting local filesystems.
 

Much configuration of Red Hat’s boot process can be achieved through manipulation of the config files in the /etc/sysconfig directory. Table 3.5 summarizes the function of some important items in this directory.
 

[image: Image]
 

Table 3.5 Files and subdirectories of Red Hat’s /etc/sysconfig directory
 

Several of the items in Table 3.5 merit additional comments:
 

• The network file contains the system’s default gateway, hostname, and other important settings that apply to all network interfaces.

 

• The network-scripts directory contains additional material related to network configuration. The only things you might need to change are the files named ifcfg-interface. For example, network-scripts/ifcfg-eth0 contains the configuration parameters for the interface eth0. It sets the interface’s IP address and networking options. See page 478 for more information about configuring network interfaces.

 

• The sendmail file contains two variables: DAEMON and QUEUE. If the DAEMON variable is set to yes, the system starts sendmail in daemon mode (-bd) when the system boots. QUEUE tells sendmail how long to wait between queue runs (-q); the default is one hour.

 

SUSE startup scripts
 

[image: Image] SUSE’s startup system resembles that of Red Hat, at least in terms of its general organization. However, SUSE’s scripts are well organized, robust, and well documented. The folks that maintain this part of the operating system get a gold star.
 

As in Red Hat, init invokes the script /etc/init.d/rc at each run level and provides the new run level as an argument. Package-specific scripts live in the /etc/init.d directory, and their configuration files live in /etc/sysconfig. An excellent introduction to the SUSE startup process can be found in /etc/init.d/README.
 

Although both SUSE and Red Hat concentrate their boot configuration files in /etc/sysconfig, the specific files within this directory are quite different. (For one thing, SUSE’s files are generally well commented.) You invoke options by setting shell environment variables, and these variables are then referenced by the scripts within /etc/init.d. Some subsystems require more configuration than others, and those that need multiple configuration files have private subdirectories, such as the sysconfig/network directory.
 

The windowmanager file is a typical example from the sysconfig directory:
 

[image: Image]
 

Each variable is preceded by YaST-readable3 configuration information and a verbose description of the variable’s purpose. For example, in the windowmanager file, the variable DEFAULT_WM sets the desktop window manager used by X.
 

SUSE also includes a chkconfig command for managing startup scripts. It’s entirely different from the version provided by Red Hat, but it’s an effective tool nonetheless and should be used in favor of manual script management.
 

Ubuntu Startup Scripts and the Upstart Daemon
 

[image: Image] Starting with Feisty Fawn in early 2007, Ubuntu replaced the traditional init with Upstart, an event-driven service management system that is also used by some other Linux distributions. Upstart handles transitions in system state—such as hardware changes—more elegantly than does init. It also significantly reduces boot times.
 

Upstart starts and stops services in response to system events such as the addition of a device or the disconnection of a network drive. For compatibility, it also emulates the traditional run levels of init. However, startup and shutdown scripts are processed in a manner that is somewhat different from that used by init.
 

Upstart uses job definition files in the /etc/event.d directory instead of an inittab file. A job is similar in concept to a startup script: it performs a series of commands and then returns control to Upstart. The collection of jobs on an Ubuntu system looks like this:
 

[image: Image]
 

Over time, more startup scripts will be converted into native Upstart jobs. For now, Upstart uses run-level emulation scripts to boot the system. For example, the rc2 script executes /etc/rc2.d/rc, which runs all the startup scripts for run level 2.
 

Because of the need to maintain this compatibility, Ubuntu administrators should use Ubuntu’s update-rc.d command to maintain links to startup scripts within the rc directories. The syntax is
 

update-rc.d
service { start | stop } sequence runlevels
.
 

update-rc.d accepts a sequence number (the order in which the startup script should be run) and the applicable run levels as arguments. Use a terminating dot to end parsing.
 

Services that start later in a run-level transition should stop sooner when the system exits that level. For example, if CUPS starts at a sequence value of 80 during boot, it should stop at a sequence value of around 20, early in the shutdown process. The update-rc.d command to add the appropriate links would be
 

[image: Image]
 

This command adds “start” instances at sequence 80 in run levels 2, 3, 4, and 5, and “stop” instances at sequence 20 in run levels S, 1, and 6.
 

The default run level is controlled by two telinit 2 lines in /etc/event.d/rc-default. Change the run level by editing rc-default with a text editor.
 

Upstart also controls logins on terminals through the jobs named tty*.
 

HP-UX startup scripts
 

[image: Image] Under HP-UX, the actual startup scripts are kept in /sbin/init.d. The run-level directories are also in /sbin. Config files related to startup scripts generally live in /etc/rc.config.d. Their names correspond to the names of the startup scripts in /sbin/init.d. For example, the script
 

/sbin/init.d/SnmpMaster
 

gets its configuration information from
 

/etc/rc.config.d/SnmpMaster
 

and is actually invoked from init by way of the links
 

/sbin/rc2.d/S560SnmpMaster
/sbin/rc1.d/K440SnmpMaster
 

HP-UX saves the output of startup scripts in /etc/rc.log. If one of your startup scripts fails, check /etc/rc.log to see if it contains any relevant error messages or hints as to the source of the problem. This saving of startup script output is a most useful and excellent feature, and it’s simple to implement, too. It’s surprising that other vendors haven’t caught on to it.
 

The config files in /etc/rc.config.d can be rather confusing, although they are generally well commented. Table 3.6 on the next page gives a short explanation of some of the more commonly modified files.
 

The default values in these files are usually OK. The most common files you might need to touch are netconf, netdaemons, and perhaps nddconf.
 

AIX startup
 

[image: Image] AIX takes a cruder approach to the boot process than our other example systems. During startup, AIX runs the /sbin/rc.boot script, which is written in ksh.
 

[image: Image]
 

Table 3.6 Commonly modified HP-UX config files in /etc/rc.config.d
 

rc.boot is a poorly commented script that executes in three phases:
 

• Initialization of system hardware

 

• Mounting of filesystems

 

• Starting /etc/init, which processes entries in the /etc/inittab file

 

AIX relies more heavily on /etc/inittab than do its UNIX relatives. init reads each line of the inittab file and executes the lines in order. In some cases, inittab starts a daemon directly. For example, the following line starts or restarts cron at run levels 2 through 9:
 

cron:23456789:respawn:/usr/sbin/cron
 

Other inittab entries run a series of commands. For example, /etc/rc.tcpip (a bsh script), starts network daemons:
 

rctcpip:23456789:wait:/etc/rc.tcpip > /dev/console 2>&1 # Start TCP/IP daemons
 

Here, output from the script is routed to the system console. init waits for the script to exit before processing the next line in the file.
 

AIX includes a series of four simple commands for managing the inittab file: mkitab, chitab, lsitab, and rmitab. Predictably, these commands add, change, list, and remove entries from the inittab. We don’t see the point and prefer to edit the file directly with a text editor such as vi.
 

3.6 Booting Solaris
 

With the introduction of its Service Management Facility, Sun revamped the boot process for Solaris 10 and OpenSolaris. SMF is a comprehensive and conceptually unique approach to managing services under UNIX. It wraps a new layer of logic around services to handle dependencies and automatically manage configuration errors and software failures.
 

SMF changes the boot procedure quite a bit. The traditional tableau of init and its rc scripts is, in theory, gone. Sun claims that modern applications and their interdependencies have become too complex for the standard scheme. They’re kind of right. On the other hand, the standard architecture is much simpler, and we facetiously wonder how Linux and other popular operating systems could possibly be managing to limp along under the old system.
 

Before discussing the boot process, we need to take a general look at SMF.
 

The Solaris Service Management Facility
 

Sun defines a service as “an entity that provides a list of capabilities to applications and other services, local and remote.” For our purposes, a service is roughly equivalent to a daemon: a web server, the syslogd system logger, or even init. Multiple instances of the same SMF service can exist. For example, you might run several email servers with different configurations and IP addresses. A service can also be defined as a collection of other services. This feature lets SMF subsume the role of init’s traditional run levels.
 

Each instance of a service is uniquely identified by a “fault management resource identifier” or FMRI. For example, the following equivalent FMRIs refer to the SSH service:
 

svc:/network/ssh:default
network/ssh:default
 

The ssh service is in the network category, and this particular FMRI describes the default instance. SMF includes several categories, such as application, device, network, and system. A special category called milestone encapsulates the concept of run levels.
 

You examine the status of services with the svcs command. Use svcs -a to see all services that have been defined, or omit the -a flag to see only services that are currently running. svcs can also examine an individual service. For example, the following command reviews the status of the SSH service:
 

[image: Image]
 

This command line uses the full FMRI, but since there is only one instance of the service, svcs -l ssh would suffice. The state can assume the following values:
 

• online – enabled and successfully started

 

• disabled – not enabled and not running

 

• degraded – enabled but running with limitations

 

• legacy_run – running; used by the few services that haven’t yet been converted to SMF and that still use traditional init.d scripts

 

• uninitialized – starting up and reading configuration

 

• maintenance – reporting that an error requiring administrative attention has occurred

 

• offline – enabled but off-line because the service is waiting on an unsatisfied dependency or cannot start for some other reason

 

In addition to the current service status, svcs -l lists the service’s log file location, dependencies, and other essentials.
 

Dependencies allow the specification of arbitrarily complex relationships among services. This facility essentially replaces the system of numbered startup scripts used by the traditional init system, where a script prefixed with S20 runs before one prefixed with S90.
 

In the example above, SSH requires local filesystems, network interfaces, cryptography services, utmp, and the existence of the sshd_config file. The filesystem automounter is marked as an optional dependency; SSH will run if the auto-mounter is intentionally off-line (as set by the administrator) or if it is on-line and running.
 

The svcadm command changes the status of a service. To disable the SSH server (don’t try this remotely!), use
 

solaris$ sudo svcadm disable ssh
 

This example uses the short FMRI for SSH, since it’s unambiguous. The disabling is a persistent change; use svcsadm -t to disable SSH temporarily.
 

Under the hood, SMF configures services through XML files called manifests and profiles. A manifest describes the properties of a service, such as its dependencies and the instructions for starting and stopping it. Manifest files are stored in the /var/svc/manifest directory. Each instance of a service has its own manifest file.
 

The exec_method lines in a manifest file usually point to scripts that start and stop services, much like the scripts used in the init.d system. For instance, the startup process for the SSH daemon is defined in /var/svc/manifest/ssh.xml as
 

[image: Image]
 

The /lib/svc/method/sshd script that’s referred to is an sh script that starts the service. It looks suspiciously like a script that might formerly have lived in /etc/rc.d—the more things change, the more they stay the same.
 

The service’s profile file determines whether the instance is enabled or disabled. Profiles are kept in /var/svc/profile.
 

The persistent configuration for services is actually stored as a SQLite database in /etc/svc/repository.db. Therefore, you shouldn’t directly modify the contents of the XML files. Instead, you can manage the manifests and profiles with the svccfg command. Use inetadm for services controlled by the inetd daemon. See the man pages for svccfg, inetadm, and svc.configd for more information.
 

One of the most touted features of SMF is the concept of “restarters,” part of Solaris’s much-hyped “predictive self-healing” technology. By contemplating the carefully defined dependency system, SMF can supposedly determine the reason that a service died and restart it if appropriate. The cause of a service failure might be a software bug, a hardware problem, an issue with a dependency, or even administrator error. A designated SMF restarter process, closely tied to the kernel, automatically performs the appropriate recovery actions.
 

A brave new world: booting with SMF
 

The boot process on a Solaris 10 or later system is initially very similar to traditional bootstrapping. SPARC booting is slightly different from booting on Intel systems, but the general concept is that low-level firmware (PROM for SPARC, BIOS for Intel) reads in a boot record, which loads the appointed OS kernel.
 

The kernel scans /etc/system for loadable kernel modules, then spins up init, which immediately starts the svc.startd process. svc.startd is the master SMF restarter and is responsible for starting services in dependency order, as defined in the SMF configuration repository.
 

Unfortunately, the run-level system and the init scripts from previous versions of Solaris are not completely dead. Some services—the ones that show as legacy-run in svcs -a output—still rely on scripts in the /etc/rc.d directories. The collision between SMF milestones and traditional run levels has left behind something of a pile of wreckage.
 

To avoid cutting your fingers on the sharp edges, keep in mind a few key points:
 

• Services in the legacy_run state were started from an rc script.

 

• Solaris defines eight run levels. See the man page for init for details.

 

• To change run levels, use init
n, where n is the new run level. Do not try to use SMF to change milestones, which, according to Sun, “can be confusing and can lead to unexpected behavior.”

 

• The init daemon is controlled through /etc/inittab, much as in Linux.

 

3.7 Rebooting and Shutting Down
 

Traditional UNIX and Linux machines were very touchy about how they were shut down. Modern systems have become less sensitive, especially when a robust filesystem is used, but it’s always a good idea to shut down the machine nicely when possible. Improper shutdown can result in anything from subtle, insidious problems to a major catastrophe. Databases that aren’t halted nicely are notorious for corruption and integrity issues.4
 

On consumer-oriented operating systems, rebooting the operating system is an appropriate first course of treatment for many problems. UNIX problems tend to be subtler and more complex, so blindly rebooting is effective in a smaller percentage of cases.
 

Whenever you modify a startup script or make significant system changes, you should reboot just to make sure that the system comes up successfully. If you don’t discover a problem until several weeks later, you’re unlikely to remember the details of your most recent changes.
 

shutdown: the genteel way to halt the system
 

The shutdown command is the safest, most considerate, and most thorough way to initiate a halt or reboot or to return the system to single-user mode. It dates back to the days of time-sharing systems, so its approach sometimes seems a bit anachronistic on desktop machines.
 

Unfortunately, almost every vendor has decided to tamper with shutdown’s arguments. We discuss the command in general, then tabulate the syntax and arguments you need on each platform.
 

You can ask shutdown to wait awhile before shutting down the system. During the waiting period, shutdown sends messages to logged-in users at progressively shorter intervals, warning them of the impending downtime. By default, the warnings simply say that the system is being shut down and give the time remaining until the event; you can also supply a short message of your own. Your message should explain why the system is being shut down and should estimate how long it will be before users can log in again (e.g., “back at 11:00 a.m.”). Users can not log in when a shutdown is imminent, but they will see your message if you specified one.
 

Most versions of shutdown let you specify whether the machine should halt, go to single-user mode, or reboot. Sometimes, you can also specify whether you want to fsck the disks after a reboot. On modern systems with large disks, a complete fsck can take a long time; you can generally skip the checks if you shut the system down cleanly. (Most systems automatically skip the fsck checks whenever the file-systems were properly unmounted.)
 

Table 3.7 outlines shutdown’s command-line arguments on our example systems.
 

[image: Image]
 

Table 3.7 The many faces of shutdown
 

For example, a Linux shutdown command that reminds users of scheduled maintenance and halts the system at 9:30 a.m. would look something like this:
 

[image: Image]
 

It’s also possible to specify a relative shutdown time. For example, the following command shuts down the system 15 minutes from when it is run:
 

$ sudo shutdown -h +15 "Going down for emergency disk repair."
 

halt and reboot: simpler ways to shut down
 

The halt command performs the essential duties required to shut the system down. It is called by shutdown -h but can also be used by itself. halt logs the shutdown, kills nonessential processes, executes the sync system call (called by and equivalent to the sync command), waits for filesystem writes to complete, and then halts the kernel.
 

halt -n prevents the sync call. It’s used by fsck after it repairs the root partition. If fsck did not use -n, the kernel might overwrite fsck’s repairs with old versions of the superblock that were cached in memory.
 

reboot is almost identical to halt, but it causes the machine to reboot instead of halting. reboot is called by shutdown -r.
 

3.8 Exercises
 

E3.1 Is it really that bad to turn off a UNIX or Linux system with the power button on the computer case? What about unplugging the computer from the wall? Explain your answer. See if you can determine the likelihood of a bad outcome by doing Internet research.
 

E3.2 Use the GRUB command line to boot a kernel that isn’t in grub.conf.
 

[image: Image] E3.3 Explain the concept of run levels. List the run levels defined on one of your local systems, and briefly describe each. Why is Ubuntu’s run-level concept different from that of other Linux distributions?
 

[image: Image] E3.4 Write a startup script to start the “foo” daemon (/usr/local/sbin/foo), a network service. Show how you would glue it into the system to start automatically at boot time.
 

[image: Image] E3.5 If a system is at run level 3 and you run the command telinit 1, what steps will be taken by init? What will be the final result of the command?
 

[image: Image] E3.6 Draw a dependency graph that shows which daemons must be started before other daemons on your system.
 

[image: Image] E3.7 List the steps used to create a working multiboot system that runs both Linux and Windows. Use GRUB.
 
  


4. Access Control and Rootly Powers
 

[image: Image]
 

Access control is an area of active research, and it has long been one of the major challenges of operating system design. Generically speaking, operating systems define accounts for individual users, and they offer those users a smorgasbord of possible operations: editing text files, logging into remote computers, setting the system’s hostname, installing new software, and so on. The access control system is the black box that considers potential actions (user/operation pairs) and issues rulings as to whether each action is permissible.
 

In the case of UNIX and Linux, there isn’t really a single black box that implements access control. In fact, it’s more like a warehouse full of black boxes—and the warehouse is running out of storage space. In this chapter, we first go back to the dawn of UNIX to understand how the access control situation got to be the way it is. We then look at modern UNIX and Linux access control systems in theory and in practice, then review some tools that help make the administration of access control (and especially, the management of the all-powerful root account) relatively painless.
 

Chapter 22, Security, describes how to avoid unwanted and embarrassing superuser access by others. Chapter 32, Management, Policy, and Politics covers the relevant political and administrative aspects.
 

4.1 Traditional UNIX Access Control
 

Even in earliest and simplest versions of UNIX, there was never a single-point access control system. There were, however, some general rules that shaped the system’s design:
 

• Objects (e.g., files and processes) have owners. Owners have broad (but not necessarily unrestricted) control over their objects.

 

• You own new objects that you create.

 

• The special user account called “root” can act as the owner of any object.

 

• Only root can perform certain sensitive administrative operations.

 

There’s no single “black box” of access control because the code that makes access control decisions is scattered about the system. For example, certain system calls (e.g., settimeofday) are restricted to root; the system call implementation simply checks the identity of the current user and rejects the operation if the user is not root. Other system calls (e.g., kill) implement different calculations that involve both ownership matching and special provisions for root. Finally, the filesystem implements its own access control system, one that is more sophisticated than that found anywhere else in the kernel. Only the filesystem uses the concept of UNIX groups for access control, for example.
 

Complicating the picture is the fact that the kernel and the filesystem are intertwined. For example, you control and communicate with most devices through files that represent them in /dev. Since these device files are filesystem objects, they are subject to filesystem access control semantics.
 

See page 150 for more information about device files.

 

Filesystem Access Control
 

In the traditional model, every file has both an owner and a group, sometimes referred to as the “group owner.” The owner can set the permissions of the file. In particular, the owner can set them so restrictively that no one else can access it.1 We talk more about file permissions in Chapter 6, The Filesystem (see page 152).
 

Although the owner of a file is always a single person, many people can be group owners of the file, as long as they are all part of a single group. Groups are traditionally defined in the /etc/group file, but these days group information is more commonly stored on an NIS or LDAP server on the network; see Chapter 19, Sharing System Files, for details.
 

See page 181 for more information about groups.

 

The owner of a file gets to specify what the group owners can do with it. This scheme allows files to be shared among members of the same project. For example, we use a UNIX group to control access to the source files for the admin.com web site.
 

The ownerships of a file can be determined with ls-l
filename.
 

For example:
 

aix$ ls -l /home/garth/todo
 

-rw------- 1 garth staff 1258 Jun 4 18:15 /home/garth/todo
 

This file is owned by the user garth and the group staff. The letters and dashes in the first column symbolize the permissions on the file; see page 154 for details on how to read this information.
 

Both the kernel and the filesystem track owners and groups as numbers rather than as text names. In the most basic case, user identification numbers (UIDs for short) are mapped to usernames in the /etc/passwd file, and group identification numbers (GIDs) are mapped to group names in /etc/group. The text names that correspond to UIDs and GIDs are defined only for the convenience of the system’s human users. When commands such as ls want to display ownership information in a human-readable format, they must look up each name in the appropriate file or database.
 

See page 176 for more information about the /etc/passwd file and page 186 for details on /etc/group.

 

Process Ownership
 

The owner of a process can send the process signals (see page 124) and can also reduce (degrade) the process’s scheduling priority. Processes actually have multiple identities associated with them: a real, effective, and saved UID; a real, effective, and saved GID; and under Linux, a “filesystem UID” that is used only to determine file access permissions. Broadly speaking, the real numbers are used for accounting and the effective numbers are used for the determination of access permissions. The real and effective numbers are normally the same.
 

Saved IDs have no direct effect. They allow programs to park an inactive ID for later use, facilitating the parsimonious use of enhanced privileges. The filesystem UID is generally explained as an implementation detail of NFS and is usually the same as the effective UID.
 

See page 690 for more information about NFS.

 

The Root Account
 

The root account is UNIX’s omnipotent administrative user. It’s also known as the superuser account, although the actual username is “root”.
 

The defining characteristic of the root account is its UID of 0. Nothing prevents you from changing the username on this account or from creating additional accounts whose UIDs are 0; however, these are both bad ideas. Such changes have a tendency to create inadvertent breaches of system security. They also create confusion when other people have to deal with the strange way you’ve configured your system.
 

Traditional UNIX allows the superuser (that is, any process whose effective UID is 0) to perform any valid operation on any file or process.2
 

Examples of restricted operations are
 

• Changing the root directory of a process with chroot

 

• Creating device files

 

• Setting the system clock

 

• Raising resource usage limits and process priorities

 

• Setting the system’s hostname

 

• Configuring network interfaces

 

• Opening privileged network ports (those numbered below 1,024)

 

• Shutting down the system

 

An example of superuser powers is the ability of a process owned by root to change its UID and GID. The login program and its window system equivalents are a case in point; the process that prompts you for your password when you log in to the system initially runs as root. If the password and username that you enter are legitimate, the login program changes its UID and GID to your UID and GID and starts up your user environment. Once a root process has changed its ownerships to become a normal user process, it can’t recover its former privileged state.
 

Setuid and Setgid Execution
 

Traditional UNIX access control is complemented by an identity substitution system that’s implemented by the kernel and the filesystem in collaboration. The system is described in more detail on page 153; the short version is that it allows specially prepared executable files to run with elevated permissions, usually those of root. This mechanism lets developers and administrators set up structured ways for unprivileged users to perform privileged operations.
 

When the kernel runs an executable file that has its “setuid” or “setgid” permission bits set, it changes the effective UID or GID of the resulting process to the UID or GID of the file containing the program image rather than the UID and GID of the user that ran the command. The user’s privileges are thus promoted for the execution of that specific command only.
 

For example, users must be able to change their passwords. But since passwords are stored in the protected /etc/shadow file, users need a setuid passwd command to mediate their access. The passwd command checks to see who’s running it and customizes its behavior accordingly: users can only change their own passwords, but root can change any password. (This, incidentally, is yet another example of UNIX’s ad hoc access control—the rules are written into the code of the passwd command.)
 

4.2 Modern Access Control
 

The preceding discussion leaves out a few details, but no major concepts in the traditional UNIX model have been omitted. Even though the traditional access control system can be summarized in a couple of pages, it has stood the test of time because it’s simple, predictable, and capable of handling the majority of access control requirements at the average site. All UNIX and Linux variants continue to support this model, and it remains the default approach and the one that’s most widely used today. And except when we discuss some specific alternatives, we assume throughout this book that it’s the approach you’re using.
 

Nevertheless, it has some obvious shortcomings:
 

• From a security perspective, the root account represents a potential single point of failure. If it’s compromised, the integrity of the whole system is violated. There is no limit to the damage an attacker can inflict.

 

• The only way to subdivide the special privileges of the root account is by writing setuid programs. Unfortunately, as the Internet’s steady stream of security updates demonstrates, it’s difficult to write truly secure software. Besides, you shouldn’t have to write custom software to express something as basic as “I’d like these three people to be able to perform backups on the file server.”

 

• The security model isn’t strong enough for use on a network. No computer to which an unprivileged user has physical access can be trusted to accurately represent the ownerships of the processes it’s running. Who’s to say that someone hasn’t reformatted the disk and installed their own hacked copy of Windows or Linux, with UIDs of their choosing?

 

• Many high-security environments enforce conventions that simply can’t be implemented with traditional UNIX security. For example, United States government standards require computer systems to forbid privileged users (e.g., those with Top Secret security clearance) from republishing high-security documents at a lower security level. Traditional UNIX security depends on the good will and skill of individual users in this regard.

 

• Because many access-control-related rules are embedded in the code of individual commands and daemons, you cannot redefine the system’s behavior without modifying the source code and recompiling. But that’s not practical in the real world.

 

• There is minimal support for auditing. You can easily see which groups a user belongs to, but you can’t necessarily determine what those group memberships permit a user to do.

 

Because of these shortcomings, UNIX and Linux systems have undergone a variety of interventions over the years to enhance various aspects of the access control system and to help make UNIX systems more acceptable to sites with high security requirements. Some of the adjustments, such as PAM (see page 109), now have nearly universal support. Others are relatively idiosyncratic. The following sections outline the most common extensions.
 

Role-Based Access Control
 

Role-based access control, sometimes known as RBAC, is a theoretical model formalized in 1992 by David Ferraiolo and Rick Kuhn. The basic idea is to add a layer of indirection to access control calculations. Instead of permissions being assigned directly to users, they are assigned to intermediate constructs known as “roles,” and roles in turn are assigned to users. To make an access control decision, the access control library enumerates the roles of the current user and checks to see if any of those roles have the appropriate permissions.
 

You might detect some similarity between roles and UNIX groups, and in fact there is debate about whether these constructs are fully distinguishable. In practice, roles are more useful than groups because the systems that implement them allow them to be used outside the context of the filesystem. Roles can also have a hierarchical relationship to one another, a fact that greatly simplifies administration. For example, you might define a “senior administrator” role that has all the permissions of an “administrator” plus the additional permissions X, Y, and Z.
 

The RBAC model makes it practical to manage large collections of possible permissions. Most of the effort goes into defining the role hierarchy, but that is a onetime project. Day-to-day administration of users is simple. Accordingly, systems that support RBAC normally take advantage of it to split the omnipotent powers of the root account into many different fragments that can be separately assigned.
 

[image: Image] Solaris uses groups (/etc/group), authorizations (/etc/security/auth_attr), profiles (/etc/security/prof_attr), and bindings among users, authorizations, and profiles (/etc/user_attr) to implement roles. Authorizations have names such as solaris.admin.diskmgr, solaris.admin.patchmgr, and solaris.admin.printer. Many authorizations have a specific.read or.write granularity, too. There are 158 of them defined in the auth_attr file. The Solaris commands to manipulate roles are roleadd, rolemod, and roledel.
 

Since build 99 of OpenSolaris in May 2008, Solaris’s RBAC system has been robust enough to allow the system to operate without a root account.
 

[image: Image] HP-UX also uses authorizations to define fine-grained rootly privileges, which are then assigned to roles associated with individual users and groups. The authorizations have names like hpux.admin.process.kill, hpux.admin.network.config, and hpux.admin.device.install. There are 137 authorizations predefined in the file /etc/rbac/auths. You manage roles with the roleadm, authadm, cmdprivadm, privrun, and privedit commands.
 

[image: Image] In AIX, roles have names like DomainAdmin, BackupRestore, AccountAdmin, SysConfig, and SecPolicy. Authorizations are at a similar granularity to those in Solaris or HP-UX. Some examples of authorization names are aix.device, aix.proc, aix.fs.manage.export, and aix.system.config.cron. Roles are tied to screens in the AIX sysadmin tool SMIT. Users can assume up to eight roles at once. AIX’s role-related commands are mkrole, chrole, rmrole, rolelist, and swrole.
 

SELinux: Security-Enhanced Linux
 

[image: Image] SELinux is an NSA project that has been freely available since late 2000. It has been integrated into the 2.6 series of the Linux kernel and so is available on most current distributions. Some distributions ship with it enabled (and often in a somewhat dysfunctional state).
 

The primary focus of SELinux is to enable “mandatory access control,” aka MAC, an access control system in which all permissions are assigned by administrators. Under MAC, users cannot delegate their access or set access control parameters on the objects they own. As such, it’s primarily of interest to sites with specialized requirements.3
 

SELinux can also be used to implement a form of role-based access control, although this was not a primary objective of the system.
 

See page 923 for additional details.
 

POSIX Capabilities (Linux)
 

[image: Image] Linux systems—even those that do not make use of the SELinux extensions—are theoretically capable of subdividing the privileges of the root account according to the POSIX standard for “capabilities.” Capability specifications can also be assigned to executable programs. The programs then acquire the specified capabilities when they are executed. It’s essentially a lower-risk form of setuid execution.
 

For various reasons, including problems with the current implementation, the capabilities facility is not as helpful or as relevant to system administrators as it might initially appear. For more comments on capabilities, see the discussion on page 818.
 

PAM: Pluggable Authentication Modules
 

PAM is an authentication technology rather than an access control technology. That is, rather than addressing the question “Does user X have permission to perform operation Y?”, it helps answer the precursor question “How do I know this is really user X?” PAM is an important component of the access control chain on most systems.
 

In the past, user passwords were checked against the /etc/shadow file (or network equivalent) at login time so that an appropriate UID could be set for the user’s shell or window system. Programs run by the user had to take the UID on faith. In the modern world of networks, cryptography, and biometric identification devices, a more flexible and open system is required. Hence, PAM.
 

PAM is a wrapper for a variety of method-specific authentication libraries. Administrators specify the authentication methods they want the system to use, along with the appropriate contexts for each one. Programs that want to authenticate a user simply call the PAM system rather than implementing their own forms of authentication. PAM in turn calls the specific authentication library specified by the system administrator.
 

More details on PAM can be found in the Security chapter starting on page 908.
 

Kerberos: Third-Party Cryptographic Authentication
 

Like PAM, Kerberos deals with authentication rather than access control per se. But whereas PAM is an authentication framework, Kerberos is a specific authentication method. They’re generally used together, PAM being the wrapper and Kerberos the actual implementation.
 

Kerberos uses a trusted third party (a server) to perform authentication for an entire network. Rather than authenticating yourself to the machine you are using, you provide your credentials to the Kerberos service, and it issues you cryptographic credentials that you can present to other services as evidence of your identity. Read more about Kerberos starting on page 924.
 

Access Control Lists
 

Since filesystem access control is so central to UNIX and Linux, it was an early target for elaboration. The most common addition has been support for access control lists (ACLs), a generalization of the traditional user/group/other permission model that accommodates permissions for multiple users and groups at once.
 

ACLs are part of the filesystem implementation, so they have to be explicitly supported by whatever filesystem you are using. Fortunately, all major UNIX and Linux filesystems now support them in one form or another.
 

ACL support generally comes in one of two forms: an early POSIX draft standard that never quite made its way to formal adoption but was widely implemented anyway, and the system standardized by NFSv4, which is based on Microsoft Windows’ ACLs. Both ACL standards are described in more detail in the filesystem chapter, starting on page 159.
 

See Chapter 18 for more information about NFS.

 

4.3 Real-World Access Control
 

In spite of all the glamorous possibilities outlined in the last few sections, most sites still use the traditional root account for system administration. Many of the grievances lodged against the traditional system have some validity, but there tend to be equally compelling problems with the alternatives. In addition, add-on tools such as sudo (described on page 113) go a long way toward bridging the gap between simplicity and security.
 

Often, you can use a light dusting of POSIX capabilities or role-based access control to handle special circumstances (e.g., a printer or daemon that needs to be resettable by everyone who works in a particular department) while your administrative team continues to rely on sudo and the root account for daily use. The heavy-duty, high-impact systems such as SELinux should be reserved for sites that are required to use them for regulatory or contractual reasons.
 

Since root access is the sine qua non of system administration and also the pivot point for system security, proper husbandry of the root account is a crucial skill.
 

Choosing a Root Password
 

If you use the procedures and tools described in this chapter, you’ll have surprisingly little use for the actual root password. Most of your administrative team won’t need to know it at all.
 

Nevertheless, root does need a password. It should be something that’s secure but also memorable at the infrequent intervals when you might actually use it. You can use a password vault or escrow system to help you “remember” the password, too; see page 117.
 

The most important characteristic of a good password is length. The root password should be at least eight characters long; seven-character passwords are substantially easier to crack. On systems that use DES passwords, it doesn’t help to use a password longer than eight characters because only the first eight are significant. See the section Encrypted password starting on page 179 for information about how to enable MD5 or Blowfish encryption for passwords. These can be longer and are more secure.
 

See page 916 for more information about password cracking.

 

In theory, the most secure type of password consists of a random sequence of letters, punctuation, and digits. But because this type of password is hard to remember and usually difficult to type, it may not be optimally secure if administrators write it down or type it slowly.
 

We like the “shocking nonsense” approach defined by Grady Ward in an earlier version of the PGP Passphrase FAQ:
 

“Shocking nonsense” means to make up a short phrase or sentence that is both nonsensical and shocking in the culture of the user. That is, it contains grossly obscene, racist, impossible or otherwise extreme juxtapositions of ideas. This technique is permissible because the passphrase, by its nature, is never revealed to anyone with sensibilities to offend.4

 

Shocking nonsense is unlikely to be duplicated anywhere because it does not describe a matter of fact that could be accidentally rediscovered by someone else. The emotional evocation makes it difficult for the creator to forget. A mild example of such shocking nonsense might be, “Mollusks peck my galloping genitals.” The reader can undoubtedly make up many far more shocking or entertaining examples for him or herself.

 

On systems that support passwords of arbitrary length, you can use the entire phrase as the password (it then becomes a “passphrase”). Or, you can reduce the phrase to a shorter password by recording only the second letter of each word or by some similar transformation. Password security is increased enormously if you include numbers, punctuation marks, and capital letters, and some systems now require this.
 

If your site has hundreds of computers, should you have hundreds of root passwords? It depends on your environment and risk tolerance, but probably not. A good rule of thumb is that machines that are clones (e.g., desktop workstations) should have the same root password. Servers should have unique passwords. In particular, every major piece of network and routing infrastructure should be separately protected.
 

Make sure you have accurate records that tell you which machines are sharing a root password. It’s also important that you have a structured way to change root passwords on the machines that share them. Left-behinds are a security risk and an administrative headache.
 

Change the root password
 

• At least every three months or so

 

• Every time someone who knows the password leaves your site

 

• Whenever you think security may have been compromised

 

It’s often said that passwords “should never be written down,” but it’s perhaps more accurate to say that they should never be left accessible to the wrong people. Root passwords and other important passwords probably should be written down or stored in a cryptographic vault so that there’s some way for administrators to get to them in the event of an emergency. See page 117.
 

Logging in to the Root Account
 

Since root is just another user, you can log in directly to the root account and work your will upon the system. However, this turns out to be a bad idea. To begin with, it leaves no record of what operations were performed as root. That’s bad enough when you realize that you broke something last night at 3:00 a.m. and can’t remember what you changed; it’s even worse when an access was unauthorized and you are trying to figure out what an intruder has done to your system. Another disadvantage is that the log-in-as-root scenario leaves no record of who was really doing the work. If several people have access to the root account, you won’t be able to tell who used it and when.
 

For these reasons, most systems allow root logins to be disabled on terminals, through window systems, and across the network—everywhere but on the system console.5 We suggest that you use these features. See PAM: cooking spray or authentication wonder? on page 908 to see how to implement this policy on your particular system.
 

Su: Substitute User Identity
 

A marginally better way to access the root account is to use the su command. If invoked without arguments, su prompts for the root password and then starts up a root shell. Root privileges remain in effect until you terminate the shell by typing <Control-D> or the exit command. su doesn’t record the commands executed as root, but it does create a log entry that states who became root and when.
 

The su command can also substitute identities other than root. Sometimes, the only way to reproduce or debug a user’s problem is to su to their account so that you reproduce the environment in which the problem occurs.
 

If you know someone’s password, you can access that person’s account directly by executing su -
username. As with an su to root, you will be prompted for the password for username. The - (dash) option makes su spawn the shell in login mode. The exact implications of login mode vary by shell, but it normally changes the number or identity of the startup files that the shell reads. For example, bash reads ~/.bash_profile in login mode and ~/.bashrc in nonlogin mode. When diagnosing other users’ problems, it helps to reproduce their login environments as closely as possible.
 

On some systems, the root password allows an su or login to any account. On others, you must first su explicitly to root before suing to another account; root can su to any account without entering a password.
 

Get in the habit of typing the full pathname to the su command (e.g., /bin/su or /usr/bin/su) rather than relying on the shell to find the command for you. This precaution gives you some protection against arbitrary programs called su that may have been sneaked into your search path with the intention of harvesting passwords.6
 

On some systems, you must be a member of the group “wheel” in order to use su.
 

We consider su to have been largely superseded by sudo, described in the next section. su is best reserved for emergencies.
 

Sudo: Limited Su
 

Without RBAC or a system such as SELinux, it’s hard to give someone the ability to do one task (backups, for example) without giving that person free run of the system. And if the root account is used by several administrators, you really have only a vague idea of who’s using it or what they’ve done.
 

The most widely used solution to these problems is a program called sudo that is currently maintained by Todd Miller. It runs on all of our example systems and is also available in source code form from sudo.ws.
 

[image: Image] Solaris’s pfexec command implements a facility similar to sudo that is based on Solaris’s own RBAC system.
 

sudo takes as its argument a command line to be executed as root (or as another restricted user). sudo consults the file /etc/sudoers, which lists the people who are authorized to use sudo and the commands they are allowed to run on each host. If the proposed command is permitted, sudo prompts for the user’s own password and executes the command.
 

Additional sudo commands can be executed without the “sudoer” having to type a password until a five-minute period (configurable) has elapsed with no further sudo activity. This timeout serves as a modest protection against users with sudo privileges who leave terminals unattended.
 

sudo keeps a log of the command lines that were executed, the hosts on which they were run, the people who requested them, the directory from which they were run, and the times at which they were invoked. This information can be logged by syslog or placed in the file of your choice. We recommend using syslog to forward the log entries to a secure central host.
 

See Chapter 11 for more information about syslog.

 

A log entry for randy’s executing sudo /bin/cat /etc/sudoers might look like this:
 

[image: Image]
 

The sudoers file is designed so that a single version can be used on many different hosts at once. Here’s a typical example:
 

[image: Image]
 

The first five noncomment lines define groups of hosts and commands that are referred to in the permission specifications later in the file. The lists could be included literally in the specs, but the use of aliases makes the sudoers file easier to read and understand; it also makes the file easier to update in the future. It’s also possible to define aliases for sets of users and for sets of users as whom commands may be run.
 

Each permission specification line includes information about
 

• The users to whom the line applies

 

• The hosts on which the line should be heeded

 

• The commands that the specified users can run

 

• The users as whom the commands can be executed

 

The first permission line applies to the users mark and ed on the machines in the PHYSICS group (eprince, pprince, and icarus). The built-in command alias ALL allows them to run any command. Since no list of users is specified in parentheses, sudo will only run commands as root.
 

The second permission line allows herb to run tcpdump on CS machines and dump-related commands on PHYSICS machines. However, the dump commands can only be run as operator, not as root. The actual command line that herb would type would be something like
 

ubuntu$ sudo -u operator /usr/sbin/dump 0u /dev/sda1
 

The user lynda can run commands as any user on any machine, except that she can’t run several common shells. Does this mean that lynda really can’t get a root shell? Of course not:
 

aix$ cp -p /bin/sh /tmp/sh
 

aix$ sudo /tmp/sh
 

Generally speaking, any attempt to allow “all commands except…” is doomed to failure, at least in a technical sense. However, it may still be worthwhile to set up the sudoers file this way as a reminder that root shells are frowned upon.
 

The final line allows users in group wheel to run lpc and lprm as root on all machines except eprince, pprince, and icarus. Furthermore, no password is required to run the commands.
 

Note that commands in /etc/sudoers are specified with full pathnames to prevent people from executing their own programs and scripts as root. Though no examples are shown above, it is possible to specify the arguments that are permissible for each command as well. In fact, this simple configuration only scratches the surface of the configuration options available in the sudoers file.
 

[image: Image] On AIX systems, you may find it helpful to include the following line in the defaults section of the sudoers file. It prevents sudo from removing the ODMDIR environment variable, which many administrative commands rely on to point them to the Object Data Manager configuration database.
 

Defaults env_keep = "ODMDIR"
 

To modify /etc/sudoers, you use the visudo command, which checks to be sure no one else is editing the file, invokes an editor on it, and then verifies the syntax of the edited file before installing it. This last step is particularly important because an invalid sudoers file might prevent you from sudoing again to fix it.
 

The use of sudo has the following advantages:
 

• Accountability is much improved because of command logging.

 

• Operators can do chores without unlimited root privileges.

 

• The real root password can be known to only one or two people.7

 

• It’s faster to use sudo than to use su or to log in as root.

 

• Privileges can be revoked without the need to change the root password.

 

• A canonical list of all users with root privileges is maintained.

 

• There is less chance of a root shell being left unattended.

 

• A single file can be used to control access for an entire network.

 

There are a couple of disadvantages as well. The worst of these is that any breach in the security of a sudoer’s personal account can be equivalent to breaching the root account itself. There is not much you can do to counter this threat other than caution your sudoers to protect their own accounts as they would the root account. You can also run a password cracker regularly on sudoers’ passwords to ensure that they are making good password selections.
 

See page 916 for more information about password cracking.

 

sudo’s command logging can be subverted by tricks such as shell escapes from within an allowed program or by sudo sh and sudo su if you allow them.
 

If you think of sudo as a way of subdividing the privileges of the root account, it is superior in some ways to the built-in role-based access control systems offered by many versions of UNIX:
 

• You decide exactly how privileges will be subdivided. Your division may be coarser or finer than the off-the-shelf privileges defined for you by an RBAC system.

 

• Simple configurations—by far, the most common—are simple to set up, maintain, and understand.

 

• sudo’s aliases for groups of hosts, users, and commands are functionally similar to the roles in an RBAC system.

 

• sudo runs on all UNIX and Linux systems. You do not need to worry about using different RBAC systems on different platforms.

 

• You can share a single configuration file throughout your site.

 

• You get consistent, high-quality logging for free.

 

The major drawback of sudo-based access control is that the system remains vulnerable to catastrophic compromise if the root account is penetrated.
 

Password Vaults and Password Escrow
 

Five hundred miles north of the Norwegian mainland, on the island of Spitzbergen, a huge vault has been tunneled into the mountainside as a place for the world’s countries to store seed samples against the possibility of future catastrophe. System administrators don’t need a vault that large or that cold for passwords, but they do need a vault.
 

A password vault is a piece of software (or a combination of software and hardware) that stores passwords for your organization in a more secure fashion than “Would you like Windows to remember this password for you?” Several developments have made a password vault almost a necessity:
 

• The proliferation of passwords needed not just to log in to computers, but also to access web pages, configure routers and firewalls, and administer remote services

 

• The increasing need for strong (read “not very memorable”) passwords as computers get so fast that weak passwords are easily broken

 

• Regulations that require access to certain data to be traceable to a single person—no shared logins such as root

 

Password management systems are emerging in the wake of legislation in the United States that attempts to impose accountability and security on various business sectors. In some cases, this legislation requires two-factor authentication; for example, a password or passphrase plus a challenge/response exchange. Password vaults are also a great boon for sysadmin support companies who must securely and traceably manage passwords not only for their own machines but also for their customers’ machines.
 

Several password vault implementations are available. Free ones for individuals (e.g., KeePass) store passwords locally, give all-or-nothing access to the password database, and do no logging. Appliances suitable for huge enterprises (e.g., CyberArk) can cost tens of thousands of dollars. Many of the commercial offerings charge either by the user or by the number of passwords they remember.
 

We use a home-grown web-based system that has several nice features. One of our favorites features is the “break the glass” option, named for the hotel fire alarm stations that tell you to break the glass and pull the big red lever in the event of an emergency.
 

In this case, “breaking the glass” means obtaining a password that you wouldn’t normally have access to. In the event of an emergency, you can go ahead and retrieve the password anyway. The system then notifies a list of other sysadmins and logs what you do with the password. When you have finished dealing with the emergency, you change the password and put the new password back in the vault.
 

A low-tech way to implement password escrow is to store passwords in tamper-evident, serial-numbered baggies of the type used by police to hold crime scene evidence. These bags are readily available on the Internet. As long as a baggie is present and unopened, you know that no one has accessed the password inside.
 

4.4 Pseudo-Users Other than Root
 

Root is generally the only user that has special status in the eyes of the kernel, but several other pseudo-users are defined by the system. You can identify these sham accounts by their low UIDs, usually less than 100. Most often, UIDs under 10 are system accounts, and UIDs between 10 and 100 are pseudo-users associated with specific pieces of software.
 

It’s customary to replace the encrypted password field of these special users in /etc/shadow with a star so that their accounts cannot be logged in to. Set their shells to /bin/false or /bin/nologin as well, to protect against remote login exploits that use password alternatives such as SSH key files.
 

Files and processes that are part of the operating system but that need not be owned by root are sometimes given to the users bin or daemon. The theory was that this convention would help avoid the security hazards associated with ownership by root. It’s not a very compelling argument, however, and current systems often just use the root account for this purpose.
 

On some systems, the user sys owns a number of special files such as the kernel’s memory image in /dev. Few programs access these files, but those that do can run setuid to sys rather than root if this ownership convention is in use. On some systems, a group called kmem or sys is used instead of a sys user account.
 

The Network File System (NFS) uses the nobody account to represent root on other systems. For remote roots to be stripped of their rootly powers, the remote UID 0 has to be mapped to something other than the local UID 0. The nobody account acts as a generic alter ego for these remote roots. In NFSv4, it can be applied to remote users with no valid local account as well.
 

See page 697 for more information about the nobody account.

 

Since the nobody account is supposed to represent a generic and relatively powerless user, it shouldn’t own any files. If nobody does own files, remote roots will be able to take control of them. Nobody shouldn’t own no files!
 

A UID of -1 or -2 is traditional for nobody. The Linux kernel defaults to using UID 65,534, the 16-bit twos-complement version of -2. But really, the number is arbitrary: Red Hat uses 99, which makes more sense than 65,534 now that we have 32-bit UIDs. Solaris uses 60,001, which doesn’t, but at least it’s easy to remember as the 16-bit twos-complement version of -2, truncated—not rounded—to one significant digit, plus one.
 

The only snag with redefining nobody’s UID is that exportfs does not seem to pay attention to the passwd file. You must explicitly tell it with the anonuid option to use a different UID for nobody.
 

4.5 Exercises
 

E4.1 Use the find command with the -perm option to locate five setuid files on your system. For each file, explain why the setuid mechanism is necessary for the command to function properly.

 

E4.2 Create two entries for the sudoers configuration file:

 

a) One entry that allows users matt and lisa to service the printer, unjam it, and restart printer daemons on the machine printserver

 

b) One entry that allows drew, smithgr, and jimlane to kill jobs and reboot the machines in a student lab

 

E4.3 Create three “shocking nonsense” passphrases but keep them to yourself. Run your three passphrases through md5sum and report these results. Based on the current state of cryptographic technology, is it safe to share the MD5 results? Why or why not?

 

[image: Image] E4.4 Enumerate a sequence of commands that modify someone’s password entry, and show how you could cover your tracks. Assume you had only sudo power (all commands allowed, but no shells or su).

 

[image: Image] E4.5 Install sudo configured to send its mail tattling about misuse to you. Use it to test the sudo entries of the previous question with local user-names and machine names; verify that sudo is logging to syslog properly. Look at the syslog entries produced by your testing. (Requires root access; you’ll most likely have to tweak /etc/syslog.conf, too.)

 

[image: Image] E4.6 On a Solaris, HP-UX, or AIX system, set up an RBAC role that allows members to mount and unmount filesystems. Assign this role to two users. (Root access required.)

 

a) What steps are required? Can you limit the permitted operations to certain filesystems or types of filesystems?

 

b) Reimplement your solution as a sudo configuration. Is it more or less complicated to set up than the RBAC solution? Can you limit the permitted operations to certain filesystems or types of filesystems?

 
  


5. Controlling Processes
 

[image: Image]
 

A process is the abstraction used by UNIX and Linux to represent a running program. It’s the object through which a program’s use of memory, processor time, and I/O resources can be managed and monitored.
 

It is part of the UNIX philosophy that as much work as possible be done within the context of processes, rather than handled specially by the kernel. System and user processes all follow the same rules, so you can use a single set of tools to control them both.
 

5.1 Components of A Process
 

A process consists of an address space and a set of data structures within the kernel. The address space is a set of memory pages1 that the kernel has marked for the process’s use. It contains the code and libraries that the process is executing, the process’s variables, its stacks, and various extra information needed by the kernel while the process is running. Because UNIX and Linux are virtual memory systems, there is no correlation between a page’s location within a process’s address space and its location inside the machine’s physical memory or swap space.
 

The kernel’s internal data structures record various pieces of information about each process. Here are some of the more important of these:
 

• The process’s address space map

 

• The current status of the process (sleeping, stopped, runnable, etc.)

 

• The execution priority of the process

 

• Information about the resources the process has used

 

• Information about the files and network ports the process has opened

 

• The process’s signal mask (a record of which signals are blocked)

 

• The owner of the process

 

An execution thread, usually known simply as a thread, is the result of a fork in execution within a process. A thread inherits many of the attributes of the process that contains it (such as the process’s address space), and multiple threads can execute concurrently within a single process under a model called multithreading.
 

Concurrent execution is simulated by the kernel on old-style uniprocessor systems, but on multicore and multi-CPU architectures the threads can run simultaneously on different cores. Multithreaded applications such as BIND and Apache benefit the most from multicore systems since the applications can work on more than one request simultaneously. All our example operating systems support multithreading.
 

Many of the parameters associated with a process directly affect its execution: the amount of processor time it gets, the files it can access, and so on. In the following sections, we discuss the meaning and significance of the parameters that are most interesting from a system administrator’s point of view. These attributes are common to all versions of UNIX and Linux.
 

PID: Process ID Number
 

The kernel assigns a unique ID number to every process.2 Most commands and system calls that manipulate processes require you to specify a PID to identify the target of the operation. PIDs are assigned in order as processes are created.
 

PPID: Parent PID
 

Neither UNIX nor Linux has a system call that initiates a new process running a particular program. Instead, an existing process must clone itself to create a new process. The clone can then exchange the program it’s running for a different one.
 

When a process is cloned, the original process is referred to as the parent, and the copy is called the child. The PPID attribute of a process is the PID of the parent from which it was cloned.3
 

The parent PID is a useful piece of information when you’re confronted with an unrecognized (and possibly misbehaving) process. Tracing the process back to its origin (whether a shell or another program) may give you a better idea of its purpose and significance.
 

UID and EUID: Real and Effective User ID
 

A process’s UID is the user identification number of the person who created it, or more accurately, it is a copy of the UID value of the parent process. Usually, only the creator (aka the “owner”) and the superuser can manipulate a process.
 

See page 180 for more information about UIDs.

 

The EUID is the “effective” user ID, an extra UID used to determine what resources and files a process has permission to access at any given moment. For most processes, the UID and EUID are the same, the usual exception being programs that are setuid.
 

Why have both a UID and an EUID? Simply because it’s useful to maintain a distinction between identity and permission, and because a setuid program may not wish to operate with expanded permissions all the time. On most systems, the effective UID can be set and reset to enable or restrict the additional permissions it grants.
 

Most systems also keep track of a “saved UID,” which is a copy of the process’s EUID at the point at which the process first begins to execute. Unless the process takes steps to obliterate this saved UID, it remains available for use as the real or effective UID. A conservatively written setuid program can therefore renounce its special privileges for the majority of its execution, accessing them only at the specific points at which extra privileges are needed.
 

Linux also defines a nonstandard FSUID process parameter that controls the determination of filesystem permissions. It is infrequently used outside the kernel and is not portable to other UNIX systems.
 

GID and EGID: Real and Effective Group ID
 

The GID is the group identification number of a process. The EGID is related to the GID in the same way that the EUID is related to the UID in that it can be “upgraded” by the execution of a setgid program. A saved GID is maintained. It is similar in intent to the saved UID.
 

See page 181 for more information about groups.

 

The GID attribute of a process is largely vestigial. For purposes of access determination, a process can be a member of many groups at once. The complete group list is stored separately from the distinguished GID and EGID. Determinations of access permissions normally take into account the EGID and the supplemental group list, but not the GID.
 

The only time at which the GID really gets to come out and play is when a process creates new files. Depending on how the filesystem permissions have been set, new files may adopt the GID of the creating process. See page 154 for details.
 

Niceness
 

A process’s scheduling priority determines how much CPU time it receives. The kernel uses a dynamic algorithm to compute priorities, allowing for the amount of CPU time that a process has recently consumed and the length of time it has been waiting to run. The kernel also pays attention to an administratively set value that’s usually called the “nice value” or “niceness,” so called because it tells how nice you are planning to be to other users of the system. We discuss niceness in detail on page 129.
 

[image: Image] In an effort to provide better support for low-latency applications, Linux has added “scheduling classes” to the traditional UNIX scheduling model. There are currently three classes, and each process is assigned to one class. Unfortunately, the real-time classes are neither widely used nor well supported from the command line. System processes use the traditional (niceness) scheduler, which is the only one we discuss in this book. See realtimelinuxfoundation.org for more discussion of issues related to real-time scheduling.
 

Control Terminal
 

Most nondaemon processes have an associated control terminal. The control terminal determines default linkages for the standard input, standard output, and standard error channels. When you start a command from the shell, your terminal window normally becomes the process’s control terminal. The concept of a control terminal also affects the distribution of signals, which are discussed starting on page 124.
 

5.2 The Life Cycle of A Process
 

To create a new process, a process copies itself with the fork system call. fork creates a copy of the original process; that copy is largely identical to the parent. The new process has a distinct PID and has its own accounting information.
 

fork has the unique property of returning two different values. From the child’s point of view, it returns zero. The parent receives the PID of the newly created child. Since the two processes are otherwise identical, they must both examine the return value to figure out which role they are supposed to play.
 

After a fork, the child process will often use one of the exec family of system calls to begin the execution of a new program.4 These calls change the program that the process is executing and reset the memory segments to a predefined initial state. The various forms of exec differ only in the ways in which they specify the command-line arguments and environment to be given to the new program.
 

When the system boots, the kernel autonomously creates and installs several processes. The most notable of these is init, which is always process number 1. init is responsible for executing the system’s startup scripts, although the exact manner in which this is done differs slightly between UNIX and Linux. All processes other than the ones the kernel creates are descendants of init. See Chapter 3 for more information about booting and the init daemon.
 

init also plays another important role in process management. When a process completes, it calls a routine named _exit to notify the kernel that it is ready to die. It supplies an exit code (an integer) that tells why it’s exiting. By convention, 0 is used to indicate a normal or “successful” termination.
 

Before a process can be allowed to disappear completely, the kernel requires that its death be acknowledged by the process’s parent, which the parent does with a call to wait. The parent receives a copy of the child’s exit code (or an indication of why the child was killed if the child did not exit voluntarily) and can also obtain a summary of the child’s use of resources if it wishes.
 

This scheme works fine if parents outlive their children and are conscientious about calling wait so that dead processes can be disposed of. If the parent dies first, however, the kernel recognizes that no wait will be forthcoming and adjusts the process to make the orphan a child of init. init politely accepts these orphaned processes and performs the wait needed to get rid of them when they die.
 

5.3 Signals
 

Signals are process-level interrupt requests. About thirty different kinds are defined, and they’re used in a variety of ways:
 

• They can be sent among processes as a means of communication.

 

• They can be sent by the terminal driver to kill, interrupt, or suspend processes when keys such as <Control-C> and <Control-Z> are typed.5

 

• They can be sent by an administrator (with kill) to achieve various ends.

 

• They can be sent by the kernel when a process commits an infraction such as division by zero.

 

• They can be sent by the kernel to notify a process of an “interesting” condition such as the death of a child process or the availability of data on an I/O channel.

 

A core dump is a process’s memory image. It can be used for debugging.

 

When a signal is received, one of two things can happen. If the receiving process has designated a handler routine for that particular signal, the handler is called with information about the context in which the signal was delivered. Otherwise, the kernel takes some default action on behalf of the process. The default action varies from signal to signal. Many signals terminate the process; some also generate a core dump.
 

Specifying a handler routine for a signal within a program is referred to as catching the signal. When the handler completes, execution restarts from the point at which the signal was received.
 

To prevent signals from arriving, programs can request that they be either ignored or blocked. A signal that is ignored is simply discarded and has no effect on the process. A blocked signal is queued for delivery, but the kernel doesn’t require the process to act on it until the signal has been explicitly unblocked. The handler for a newly unblocked signal is called only once, even if the signal was received several times while reception was blocked.
 

Table 5.1 lists some signals with which all administrators should be familiar. The uppercase convention for the names derives from C language tradition. You might also see signal names written with a SIG prefix (e.g., SIGHUP) for similar reasons.
 

[image: Image]
 

Table 5.1 Signals every administrator should knowa
 

Other signals, not shown in Table 5.1, mostly report obscure errors such as “illegal instruction.” The default handling for signals like that is to terminate with a core dump. Catching and blocking are generally allowed because some programs may be smart enough to try to clean up whatever problem caused the error before continuing.
 

The BUS and SEGV signals are also error signals. We’ve included them in the table because they’re so common: when a program crashes, it’s usually one of these two signals that finally brings it down. By themselves, the signals are of no specific diagnostic value. Both of them indicate an attempt to use or access memory improperly.6
 

The signals named KILL and STOP cannot be caught, blocked, or ignored. The KILL signal destroys the receiving process, and STOP suspends its execution until a CONT signal is received. CONT may be caught or ignored, but not blocked.
 

TSTP is a “soft” version of STOP that might be best described as a request to stop. It’s the signal generated by the terminal driver when <Control-Z> is typed on the keyboard. Programs that catch this signal usually clean up their state, then send themselves a STOP signal to complete the stop operation. Alternatively, programs can ignore TSTP to prevent themselves from being stopped from the keyboard.
 

Terminal emulators send a WINCH signal when their configuration parameters (such as the number of lines in the virtual terminal) change. This convention allows emulator-savvy programs such as text editors to reconfigure themselves automatically in response to changes. If you can’t get windows to resize properly, make sure that WINCH is being generated and propagated correctly.7
 

The signals KILL, INT, TERM, HUP, and QUIT all sound as if they mean approximately the same thing, but their uses are actually quite different. It’s unfortunate that such vague terminology was selected for them. Here’s a decoding guide:
 

• KILL is unblockable and terminates a process at the kernel level. A process can never actually receive this signal.

 

• INT is sent by the terminal driver when you type <Control-C>. It’s a request to terminate the current operation. Simple programs should quit (if they catch the signal) or simply allow themselves to be killed, which is the default if the signal is not caught. Programs that have an interactive command line (such as a shell) should stop what they’re doing, clean up, and wait for user input again.

 

• TERM is a request to terminate execution completely. It’s expected that the receiving process will clean up its state and exit.

 

• HUP has two common interpretations. First, it’s understood as a reset request by many daemons. If a daemon is capable of rereading its configuration file and adjusting to changes without restarting, a HUP can generally be used to trigger this behavior.

 

Second, HUP signals are sometimes generated by the terminal driver in an attempt to “clean up” (i.e., kill) the processes attached to a particular terminal. This behavior is largely a holdover from the days of wired terminals and modem connections, hence the name “hangup.”

 

Shells in the C shell family (tcsh et al.) usually make background processes immune to HUP signals so that they can continue to run after the user logs out. Users of Bourne-ish shells (ksh, bash, etc.) can emulate this behavior with the nohup command.

 

• QUIT is similar to TERM, except that it defaults to producing a core dump if not caught. A few programs cannibalize this signal and interpret it to mean something else.

 

The signals USR1 and USR2 have no set meaning. They’re available for programs to use in whatever way they’d like. For example, the Apache web server interprets the USR1 signal as a request to gracefully restart.
 

5.4 Kill: Send Signals
 

As its name implies, the kill command is most often used to terminate a process. kill can send any signal, but by default it sends a TERM. kill can be used by normal users on their own processes or by root on any process. The syntax is
 

kill [-signal] pid
 

where signal is the number or symbolic name of the signal to be sent (as shown in Table 5.1) and pid is the process identification number of the target process.
 

A kill without a signal number does not guarantee that the process will die, because the TERM signal can be caught, blocked, or ignored. The command
 

kill -9
pid
 

“guarantees” that the process will die because signal 9, KILL, cannot be caught. Use kill -9 only if a polite request fails. We put quotes around “guarantees” because processes can occasionally become so wedged that even KILL does not affect them (usually because of some degenerate I/O vapor lock such as waiting for a disk that has stopped spinning). Rebooting is usually the only way to get rid of these processes.
 

The killall command performs wildly different functions on UNIX and Linux. Under Linux, killall kills processes by name. For example, the following command kills all Apache web server processes:
 

ubuntu$ sudo killall httpd
 

The standard UNIX killall command that ships with Solaris, HP-UX, and AIX takes no arguments and simply kills all the current user’s processes. Running it as root kills init and shuts down the machine. Oops.
 

The pgrep and pkill commands for Solaris, HP-UX, and Linux (but not AIX) search for processes by name (or other attributes, such as EUID) and display or signal them, respectively. For example, the following command sends a TERM signal to all processes running as the user ben:
 

$ sudo pkill -u ben
 

5.5 Process States
 

A process is not automatically eligible to receive CPU time just because it exists. You need to be aware of the four execution states listed in Table 5.2.
 

[image: Image]
 

Table 5.2 Process states
 

A runnable process is ready to execute whenever CPU time is available. It has acquired all the resources it needs and is just waiting for CPU time to process its data. As soon as the process makes a system call that cannot be immediately completed (such as a request to read part of a file), the kernel puts it to sleep.
 

Sleeping processes are waiting for a specific event to occur. Interactive shells and system daemons spend most of their time sleeping, waiting for terminal input or network connections. Since a sleeping process is effectively blocked until its request has been satisfied, it will get no CPU time unless it receives a signal or a response to one of its I/O requests.
 

Some operations cause processes to enter an uninterruptible sleep state. This state is usually transient and not observed in ps output (indicated by a D in the STAT column; see Table 5.4 on page 132). However, a few degenerate situations can cause it to persist. The most common cause involves server problems on an NFS filesystem mounted with the “hard” option. Since processes in the uninterruptible sleep state cannot be roused even to service a signal, they cannot be killed. To get rid of them, you must fix the underlying problem or reboot.
 

Zombies are processes that have finished execution but have not yet had their status collected. If you see zombies hanging around, check their PPIDs with ps to find out where they’re coming from.
 

Stopped processes are administratively forbidden to run. Processes are stopped on receipt of a STOP or TSTP signal and are restarted with CONT. Being stopped is similar to sleeping, but there’s no way for a process to get out of the stopped state other than having some other process wake it up (or kill it).
 

5.6 Nice and Renice: Influence Scheduling Priority
 

The “niceness” of a process is a numeric hint to the kernel about how the process should be treated in relation to other processes contending for the CPU. The strange name is derived from the fact that it determines how nice you are going to be to other users of the system. A high nice value means a low priority for your process: you are going to be nice. A low or negative value means high priority: you are not very nice.
 

The range of allowable niceness values varies among systems. The most common range is -20 to +19. Some systems use a range of a similar size beginning at 0 instead of a negative number (typically 0 to 39). The ranges used on our example systems are shown in Table 5.3 on the next page.
 

Despite their numeric differences, all systems handle nice values in much the same way. Unless the user takes special action, a newly created process inherits the nice value of its parent process. The owner of the process can increase its nice value but cannot lower it, even to return the process to the default niceness. This restriction prevents processes with low priority from bearing high-priority children. The superuser may set nice values arbitrarily.
 

It’s rare to have occasion to set priorities by hand these days. On the puny systems of the 1970s and 80s, performance was significantly affected by which process was on the CPU. Today, with more than adequate CPU power on every desktop, the scheduler does a good job of servicing all processes. The addition of scheduling classes gives developers additional control when fast response is essential.
 

I/O performance has not kept up with increasingly fast CPUs, and the major bottleneck on most systems has become the disk drives. Unfortunately, a process’s nice value has no effect on the kernel’s management of its memory or I/O; high-nice processes can still monopolize a disproportionate share of these resources.
 

A process’s nice value can be set at the time of creation with the nice command and adjusted later with the renice command. nice takes a command line as an argument, and renice takes a PID or (sometimes) a username.
 

[image: Image]
 

Unfortunately, there is little agreement among systems about how the desired priorities should be specified; in fact, even nice and renice from the same system usually don’t agree. Some commands want a nice value increment, whereas others want an absolute nice value. Some want their nice values preceded by a dash. Others want a flag (-n), and some just want a value.
 

To complicate things, a version of nice is built into the C shell and some other common shells (but not bash). If you don’t type the full path to nice, you’ll get the shell’s version rather than the operating system’s. This duplication can be confusing because shell-nice and command-nice use different syntax: the shell wants its priority increment expressed as +incr or -incr, but the stand-alone command wants an -n flag followed by the priority increment.8
 

Table 5.3 summarizes all these variations. A prio is an absolute nice value, while an incr is relative to the niceness of the shell from which nice or renice is run. Wherever an -incr or a -prio is called for, you can use a double dash to enter negative values (e.g., --10). Only the shell nice understands plus signs (in fact, it requires them); leave them out in all other circumstances.
 

[image: Image]
 

Table 5.3 How to express priorities for various versions of nice and renice
 

The most commonly niced process in the modern world is ntpd, the clock synchronization daemon. Since promptness is critical to its mission, it usually runs at a nice value about 12 below the default (that is, at a higher priority than normal).
 

If a problem drives the system’s load average to 65, you may need to use nice to start a high-priority shell before you can run commands to investigate the problem. Otherwise, you may have difficulty running even simple commands.
 

5.7 Ps: Monitor Processes
 

ps is the system administrator’s main tool for monitoring processes. While versions of ps differ in their arguments and display, they all deliver essentially the same information. Part of the enormous variation among versions of ps can be traced back to differences in the development history of UNIX. However, ps is also a command that vendors tend to customize for other reasons. It’s closely tied to the kernel’s handling of processes, so it tends to reflect all of a vendors’ underlying kernel changes.
 

ps can show the PID, UID, priority, and control terminal of processes. It also gives information about how much memory a process is using, how much CPU time it has consumed, and its current status (running, stopped, sleeping, etc.). Zombies show up in a ps listing as <exiting> or <defunct>.
 

Implementations of ps have become hopelessly complex over the last decade. Several vendors have abandoned the attempt to define meaningful displays and made their pses completely configurable. With a little customization work, almost any desired output can be produced. As a case in point, the ps used by Linux is a trisexual and hermaphroditic version that understands multiple option sets and uses an environment variable to tell it what universe it’s living in.
 

Do not be alarmed by all this complexity: it’s there mainly for developers, not for system administrators. Although you will use ps frequently, you only need to know a few specific incantations.
 

[image: Image] On Linux and AIX, you can obtain a useful overview of all the processes running on the system with ps aux. The a option means to show all processes, x means to show even processes that don’t have a control terminal, and u selects the “user oriented” output format. Here’s an example of ps aux output on a machine running Red Hat (AIX output for the same command differs slightly):
 

[image: Image]
 

Command names in brackets are not really commands at all but rather kernel threads scheduled as processes. The meaning of each field is shown in Table 5.4 on the next page.
 

Another useful set of arguments for Linux and AIX is lax, which provides more technical information. The a and x options are as above (show every process), and l selects the “long” output format. ps lax is also slightly faster to run than ps aux because it doesn’t have to translate every UID to a username—efficiency can be important if the system is already bogged down.
 

Table 5.4 Explanation of ps aux output
 

[image: Image]
 

Shown here in an abbreviated example, ps lax includes fields such as the parent process ID (PPID), nice value (NI), and the type of resource on which the process is waiting (WCHAN).
 

[image: Image]
 

[image: Image]
Under Solaris and HP-UX, ps -ef is a good place to start. The e option selects all processes, and the f option sets the output format. (ps -ef also works on AIX and Linux systems; note the dash.)
 

[image: Image]
 

The columns in the ps -ef output are explained in Table 5.5.
 

Table 5.5 Explanation of ps -ef output
 

[image: Image]
 

Like ps lax in the Linux and AIX worlds, ps -elf shows additional gory details on Solaris and HP-UX systems:
 

[image: Image]
 

The STIME and TTY columns have been omitted to fit this page; they are identical to those produced with ps -ef. Nonobvious fields are described in Table 5.6 on the next page.
 

5.8 Dynamic Monitoring with Top, Prstat, and Topas
 

Since commands like ps offer only a one-time snapshot of your system, it is often difficult to grasp the big picture of what’s really happening. top is a free utility that runs on many systems and provides a regularly updated summary of active processes and their use of resources. On AIX, an equivalent utility is topas, and on Solaris the analogous tool is prstat.
 

[image: Image]
 

Table 5.6 Explanation of ps -elf output
 

For example:
 

[image: Image]
 

By default, the display updates every 10 seconds. The most CPU-consumptive processes appear at the top. top also accepts input from the keyboard and allows you to send signals and to renice processes, so you can observe how your actions affect the overall condition of the machine.
 

Root can run top with the -q option to goose it up to the highest possible priority. This option can be very useful when you are trying to track down a process that has already brought the system to its knees.
 

5.9 The /Proc Filesystem
 

[image: Image] The Linux versions of ps and top read their process status information from the /proc directory, a pseudo-filesystem in which the kernel exposes a variety of interesting information about the system’s state. Despite the name /proc (and the name of the underlying filesystem type, “proc”), the information is not limited to process information—a variety of status information and statistics generated by the kernel are represented here. You can even modify some parameters by writing to the appropriate /proc file. See page 421 for some examples.
 

Although some of the information is easier to access through front-end commands such as vmstat and ps, some of the less popular information must be read directly from /proc. It’s worth poking around in this directory to familiarize yourself with everything that’s there. man proc also lists some useful tips and tricks.
 

Because the kernel creates the contents of /proc files on the fly (as they are read), most appear to be empty when listed with ls -l. You’ll have to cat or more the contents to see what they actually contain. But be cautious—a few files contain or link to binary data that can confuse your terminal emulator if viewed directly.
 

Process-specific information is divided into subdirectories named by PID. For example, /proc/1 is always the directory that contains information about init.Table 5.7 lists the most useful per-process files.
 

[image: Image]
 

Table 5.7 Process information files in Linux /proc (numbered subdirectories)
 

The individual components contained within the cmdline and environ files are separated by null characters rather than newlines. You can filter their contents through tr "\000" "\n" to make them more readable.
 

The fd subdirectory represents open files in the form of symbolic links. File descriptors that are connected to pipes or network sockets don’t have an associated filename. The kernel supplies a generic description as the link target instead.
 

The maps file can be useful for determining what libraries a program is linked to or depends on.
 

[image: Image] Solaris and AIX also have a /proc filesystem, but it does not include the extra status and statistical information found on Linux. A group of tools known collectively as the proc utilities display some useful information about running processes. For instance, the procsig command in AIX and its Solaris equivalent psig print the signal actions and handlers for a given process.Table 5.8 shows the most useful proc utilities and their functions.
 

[image: Image]
 

Table 5.8 Commands for reading /proc information in AIX and Solaris
 

[image: Image] HP-UX does not have a /proc filesystem or equivalent.
 

5.10 Strace, Truss, and Tusc: Trace Signals and System Calls
 

It can sometimes be hard to figure out what a process is actually doing. You may have to make educated guesses based on indirect data from the filesystem and from tools such as ps.
 

Linux lets you directly observe a process with the strace command, which shows every system call the process makes and every signal it receives. A similar command for Solaris and AIX is truss. The HP-UX equivalent is tusc; however, tusc must be separately installed.
 

You can even attach strace or truss to a running process, snoop for a while, and then detach from the process without disturbing it.9
 

Although system calls occur at a relatively low level of abstraction, you can usually tell quite a bit about a process’s activity from the output. For example, the following log was produced by strace run against an active copy of top:
 

[image: Image]
 

Not only does strace show you the name of every system call made by the process, but it also decodes the arguments and shows the result code the kernel returns.
 

strace is packed with goodies, most of which are documented in the man page. For example, the -f flag follows forked processes, which is useful for tracing daemons such as httpd that spawn many children. The -e file option displays only file operations, a feature that’s especially handy for discovering the location of evasive configuration files.
 

In this example, top starts by checking the current time. It then opens and stats the /proc directory and reads the directory’s contents, thereby obtaining a list of running processes. top goes on to stat the directory representing the init process and then opens /proc/1/stat to read the init’s status information.
 

Here’s an even simpler example (the date command) using truss on Solaris:
 

[image: Image]
 

Here, after allocating memory and opening library dependencies (not shown), date uses the time system call to read the system time, opens the appropriate time zone file to determine the appropriate offset, and prints the date and time stamp by calling the write system call.
 

5.11 Runaway Processes
 

Runaway processes come in two flavors: user processes that consume excessive amounts of a system resource, such as CPU time or disk space, and system processes that suddenly go berserk and exhibit wild behavior. The first type of runaway is not necessarily malfunctioning; it might simply be a resource hog. System processes are always supposed to behave reasonably.
 

See page 1131 for more information about runaway processes.

 

You can identify processes that use excessive CPU time by looking at the output of ps or top. If it’s obvious that a user process is consuming more CPU than is reasonable, investigate the process. It can also be useful to look at the number of processes waiting to run. Use the uptime command to show the load averages (average numbers of runnable processes) over 1, 5, and 15-minute intervals.
 

There are two reasons to find out what a process is trying to do before tampering with it. First, the process may be both legitimate and important. It’s unreasonable to kill processes at random just because they happen to use a lot of CPU. Second, the process may be malicious or destructive. In this case, you’ve got to know what the process was doing (e.g., cracking passwords) so that you can fix the damage.
 

Processes that make excessive use of memory relative to the system’s physical RAM can cause serious performance problems. You can check the memory size of processes by using top. The VIRT column shows the total amount of virtual memory allocated by each process, and the RES column shows the portion of that memory that is currently mapped to specific memory pages (the “resident set”). On Linux systems, applications that use the video card (such as the X server) get a bad rap because video memory is included in the memory usage computations.
 

Both of these numbers can include shared resources such as libraries, and that makes them potentially misleading. A more direct measure of process-specific memory consumption is found in the DATA column, which is not shown by default. To add this column to top’s display, type the f key once top is running and select DATA from the list. The DATA value indicates the amount of memory in each process’s data and stack segments, so it’s relatively specific to individual processes (modulo shared memory segments). Look for growth over time as well as absolute size.
 

Runaway processes that produce output can fill up an entire filesystem, causing numerous problems. When a filesystem fills up, lots of messages will be logged to the console and attempts to write to the filesystem will produce error messages.
 

The first thing to do in this situation is to determine which filesystem is full and which file is filling it up. The df -k command shows filesystem use. Look for a filesystem that’s 100% or more full.10 Use the du command on the identified file-system to find which directory is using the most space. Rinse and repeat with du
 

until the large files are discovered. If you can’t determine which process is using the file, try using the fuser and lsof commands (covered in detail on page 144) for more information.
 

You may want to suspend all suspicious-looking processes until you find the one that’s causing the problem, but remember to restart the innocents when you are done. When you find the offending process, remove the files it was creating. Sometimes it’s smart to compress the file with gzip and rename it in case it contains useful or important data.
 

5.12 Recommended Reading
 

BOVET, DANIEL P., AND MARCO CESATI. Understanding the Linux Kernel (3rd Edition). Sebastopol, CA: O’Reilly Media, 2006.
 

MCKUSICK, MARSHALL KIRK, AND GEORGE V. NEVILLE-NEIL. The Design and Implementation of the FreeBSD Operating System. Reading, MA: Addison-Wesley Professional, 2004.
 

5.13 Exercises
 

E5.1 Explain the relationship between a file’s UID and a running process’s real UID and effective UID. Besides file access control, what is the purpose of a process’s effective UID?

 

E5.2 Suppose that a user at your site has started a long-running process that is consuming a significant fraction of a machine’s resources.

 

a) How would you recognize a process that is hogging resources?

 

b) Assume that the misbehaving process might be legitimate and doesn’t deserve to die. Show the commands you would use to suspend the process temporarily while you investigate.

 

c) Later, you discover that the process belongs to your boss and must continue running. Show the commands you’d use to resume the task.

 

d) Alternatively, assume that the process needs to be killed. What signal would you send, and why? What if you needed to guarantee that the process died?

 

E5.3 Find a process with a memory leak (write your own program if you don’t have one handy). Use ps or top to monitor the program’s memory use as it runs.

 

[image: Image] E5.4 Write a simple Perl script that processes the output of ps to determine the total VSZ and RSS of the processes running on the system. How do these numbers relate to the system’s actual amount of physical memory and swap space?

 
  


6. The Filesystem
 

[image: Image]
 

Quick: which of the following would you expect to find in a “filesystem”?
 

• Processes

 

• Audio devices

 

• Kernel data structures and tuning parameters

 

• Interprocess communication channels

 

If the system is UNIX or Linux, the answer is “all of the above, and more!” And yes, you might find some files in there, too.1
 

The basic purpose of a filesystem is to represent and organize the system’s storage resources, but programmers have been eager to avoid reinventing the wheel when it comes to managing other types of objects. It has often proved convenient to map these objects into the filesystem namespace. This unification has some advantages (consistent programming interface, easy access from the shell) and some disadvantages (filesystem implementations akin to Frankenstein’s monster), but like it or not, this is the UNIX (and hence, the Linux) way.
 

The filesystem can be thought of as comprising four main components:
 

• A namespace – a way to name things and organize them in a hierarchy

 

• An API2 – a set of system calls for navigating and manipulating objects

 

• A security model – a scheme for protecting, hiding, and sharing things

 

• An implementation – software to tie the logical model to the hardware

 

Modern kernels define an abstract interface that accommodates many different back-end filesystems. Some portions of the file tree are handled by traditional disk-based implementations. Others are fielded by separate drivers within the kernel. For example, NFS and CIFS filesystems are handled by a driver that forwards the requested operations to a server on another computer.
 

NFS, the Network File System, is described in Chapter 18.

 

Unfortunately, the architectural boundaries are not clearly drawn, and quite a few special cases exist. For example, device files furnish a way for programs to communicate with drivers inside the kernel. They are not really data files, but they’re handled through the filesystem and their characteristics are stored on disk.
 

Another complicating factor is that the kernel supports more than one type of disk-based filesystem. In the modern best-of-breed category are the ext3 and ext4 filesystems that serve as many Linux distributions’ default, along with Sun’s ZFS, Veritas’s VxFS, ReiserFS, JFS from IBM, and the still-in-development Btrfs.
 

There are also many implementations of foreign filesystems, such as the FAT and NTFS filesystems used by Microsoft Windows and the ISO 9660 filesystem used on older CD-ROMs. (Linux supports more filesystem types than any other variant of UNIX. Its extensive menu of choices gives you lots of flexibility and makes it easy to share files with other systems.)
 

The filesystem is a rich topic that we approach from several different angles. This chapter tells where to find things on your system and describes the characteristics of files, the meanings of permission bits, and the use of some basic commands that view and set attributes. Chapter 8, Storage, is where you’ll find the more technical filesystem topics such as disk partitioning. Chapter 18, The Network File System, describes the file-sharing systems that are commonly used with Linux. You may also want to refer to Chapter 30, Cooperating with Windows, which discusses software you can use to share filesystems with computers running Windows.
 

With so many different filesystem implementations available, it may seem strange that this chapter reads as if there were only a single filesystem. We can be vague about the implementations because most modern filesystems either try to provide the traditional filesystem functionality in a faster and more reliable manner or they add extra features as a layer on top of the standard filesystem semantics. Some filesystems do both. For better or worse, too much existing software depends on the model described in this chapter for that model to be discarded.
 

6.1 Pathnames
 

The filesystem is presented as a single unified hierarchy that starts at the directory / and continues downward through an arbitrary number of subdirectories. / is also called the root directory. This single-hierarchy system differs from the one used by Windows, which retains the concept of partition-specific namespaces.
 

Absolute and Relative Paths
 

The list of directories that must be traversed to locate a particular file plus that file’s filename form a pathname. Pathnames can be either absolute (/tmp/foo) or relative (book4/filesystem). Relative pathnames are interpreted starting at the current directory. You might be accustomed to thinking of the current directory as a feature of the shell, but every process has one. (Most processes never change their working directory, so they simply inherit the current directory of the process that started them.)
 

The terms filename, pathname, and path are more or less interchangeable—or at least, we use them interchangeably in this book. Filename and path can be used for both absolute and relative paths; pathname usually suggests an absolute path.
 

The filesystem can be arbitrarily deep. However, each component of a pathname (that is, each directory) must have a name no more than 255 characters long. There’s also a limit on the path length you can pass into the kernel as a system call argument (4,095 bytes on Linux, 1,023 bytes on some older systems). To access a file with a pathname longer than this, you must cd to an intermediate directory and use a relative pathname.
 

Spaces in Filenames
 

The naming of files and directories is essentially unrestricted, except that names are limited in length and must not contain slash characters or nulls. In particular, spaces are permitted. Unfortunately, UNIX has a long tradition of separating command-line arguments at whitespace, so legacy software tends to break when spaces appear within filenames.
 

Spaces in filenames were once found primarily on filesystems shared with Macs and PCs, but they have now metastasized into UNIX culture and are found in some standard software packages as well. There are no two ways about it: administrative scripts must be prepared to deal with spaces in filenames (not to mention apostrophes, asterisks, and various other menacing punctuation marks).
 

In the shell and in scripts, spaceful filenames can be quoted to keep their pieces together. For example, the command
 

$ less "My excellent file.txt"
 

preserves My excellent file.txt as a single argument to less. You can also escape individual spaces with a backslash. The filename completion feature of the common shells (usually bound to the <Tab> key) does this for you.
 

When you are writing scripts, a useful weapon to know about is find’s -print0 option. In combination with xargs -0, this option makes the find/xargs combination work correctly regardless of the whitespace contained within filenames. For example, the command
 

$ find /home -type f -size +1M -print0 | xargs -0 ls -l
 

prints a long ls listing of every file in /home over one megabyte in size.
 

[image: Image] Unfortunately, HP-UX supports find -print0 but not xargs -0, and AIX has neither option. However, you can install the GNU findutils package on either system to obtain current versions of both find and xargs. (Alternatively, you can use the -exec option to find instead of xargs, though it’s fussier and less efficient.)
 

6.2 Filesystem Mounting and Unmounting
 

The filesystem is composed of smaller chunks—also called filesystems—each of which consists of one directory and its subdirectories and files. It’s normally apparent from context which type of “filesystem” is being discussed, but for clarity in the following discussion, we use the term “file tree” to refer to the overall layout and reserve the word “filesystem” for the chunks attached to the tree.
 

Most filesystems are disk partitions or disk-based logical volumes, but as we mentioned earlier, they can be anything that obeys the proper API: network file servers, kernel components, memory-based disk emulators, etc. Linux and Solaris even have a nifty “loopback” filesystem that lets you mount individual files as if they were distinct devices. It’s great for developing filesystem images without having to worry about repartitioning your disks.
 

In most situations, filesystems are attached to the tree with the mount command.3
mount maps a directory within the existing file tree, called the mount point, to the root of the newly attached filesystem. The previous contents of the mount point become inaccessible as long as another filesystem is mounted there. Mount points are usually empty directories, however.
 

For example,
 

$ sudo mount /dev/sda4 /users
 

installs the filesystem stored on the disk partition represented by /dev/sda4 under the path /users. You could then use ls /users to see that filesystem’s contents.
 

A list of the filesystems that are customarily mounted on a particular system is kept in the /etc/fstab, /etc/vfstab (Solaris), or /etc/filesystems (AIX) file. The
 

information contained in this file allows filesystems to be checked (with fsck) and mounted (with mount) automatically at boot time. It also serves as documentation for the layout of the filesystems on disk and enables short commands such as mount /usr. See page 260 for a discussion of the fstab file and its brethren.
 

You detach filesystems with the umount command. umount complains if you try to unmount a filesystem that is in use; the filesystem to be detached must not have open files or processes whose current directories are located there, and if the file-system contains executable programs, they cannot be running.
 

[image: Image] Linux has a “lazy” unmount option (umount -l) that removes a filesystem from the naming hierarchy but does not truly unmount it until all existing file references have been closed. It’s debatable whether this is a useful option. To begin with, there’s no guarantee that existing references will ever close on their own. In addition, the “semi-unmounted” state can present inconsistent filesystem semantics to the programs that are using it; they can read and write through existing file handles but cannot open new files or perform other filesystem operations.
 

umount -f force-unmounts a busy filesystem and is supported on all our example systems. However, it’s almost always a bad idea to use it on non-NFS mounts, and it may not work on certain types of filesystems (e.g., those that keep journals, such as ext3 or ext4).
 

Instead of reaching for umount -f when a filesystem you’re trying to unmount turns out to be busy, run the fuser command to find out which processes hold references to that filesystem. fuser -c
mountpoint prints the PID of every process that’s using a file or directory on that filesystem, plus a series of letter codes that show the nature of the activity. For example,
 

[image: Image]
 

The exact letter codes vary from system to system.Table 6.1 summarizes the meanings of the codes, but the details are usually unimportant; the PIDs are what you want.
 

[image: Image]
 

Table 6.1 Activity codes shown by fuser -c
 

To investigate the offending processes, just run ps with the list of PIDs returned by fuser. For example,
 

[image: Image]
 

Here, the quotation marks force the shell to pass the list of PIDs to ps as a single argument.
 

[image: Image] On Linux systems, you can avoid the need to launder PIDs through ps by running fuser with the -v flag. This option produces a more readable display that includes the command name.
 

[image: Image]
 

The letter codes in the ACCESS column are the same ones used in fuser’s nonver-bose output.
 

A more elaborate alternative to fuser is the lsof utility by Vic Abell. lsof is a more complex and sophisticated program than fuser, and its output is correspondingly verbose. lsof is available from people.freebsd.org/~abe and works on all of our example systems.
 

[image: Image] Under Linux, scripts in search of specific information about processes’ use of file-systems can read the files in /proc directly. However, lsof -F, which formats lsof ’s output for easy parsing, is an easier and more portable solution. Use additional command-line flags to request just the information you need.
 

6.3 The Organization of the File Tree
 

Filesystems in the UNIX family have never been very well organized. Various incompatible naming conventions are used simultaneously, and different types of files are scattered randomly around the namespace. In many cases, files are divided by function and not by how likely they are to change, making it difficult to upgrade the operating system. The /etc directory, for example, contains some files that are never customized and some that are entirely local. How do you know which files to preserve during the upgrade? Well, you just have to know…
 

Despite several incremental improvements over the years (such as the designation of /var as a place to store system-specific data), UNIX and Linux systems are still pretty much a disorganized mess. Nevertheless, there’s a culturally correct place for everything. Most software can be installed with little reconfiguration if your system is set up in a standard way. If you try to improve upon the default structure, you are asking for trouble.
 

The root filesystem includes the root directory and a minimal set of files and subdirectories. The file that contains the OS kernel usually lives somewhere within the root filesystem, but it has no standard name or location; under Solaris, it is not really even a single file so much as a set of components.
 

See Chapter 13 for more information about configuring the kernel.

 

Also part of the root filesystem are /etc for critical system and configuration files, /sbin and /bin for important utilities, and sometimes /tmp for temporary files. /dev is usually a real directory that’s included in the root filesystem, but some or all of it may be overlaid with other filesystems if your system has virtualized its device support. (See page 419 for more information about this topic.)
 

Some systems keep shared library files and a few other odd things such as the C preprocessor in the /lib directory. Others have moved these items into /usr/lib, sometimes leaving /lib as a symbolic link.
 

The directories /usr and /var are also of great importance. /usr is where most standard programs are kept, along with various other booty such as on-line manuals and most libraries. It is not strictly necessary that /usr be a separate filesystem, but for convenience in administration it often is. Both /usr and /var must be available to enable the system to come up all the way to multiuser mode.
 

See page 231 for some reasons why partitioning might be desirable and some rules of thumb to guide it.

 

/var houses spool directories, log files, accounting information, and various other items that grow or change rapidly and that vary on each host. Since /var contains log files, which are apt to grow in times of trouble, it’s a good idea to put /var on its own filesystem if that is practical.
 

Home directories of users are often kept on a separate filesystem, usually one that’s mounted in the root directory. Dedicated filesystems can also be used to store bulky items such as source code libraries and databases.
 

Some of the more important standard directories are listed in Table 6.2. (Alternate rows have been shaded to improve readability.)
 

On many systems, a hier man page (filesystem man page on Solaris) outlines some general guidelines for the layout of the filesystem. Don’t expect the actual system to conform to the master plan in every respect, however. The Wikipedia page for “UNIX directory structure” is a good general reference as well.
 

[image: Image] For Linux systems, the Filesystem Hierarchy Standard (pathname.com/fhs) attempts to codify, rationalize, and explain the standard directories. It’s an excellent resource to consult when you’re trying to figure out where to put something.
 

We discuss some additional rules and suggestions for the design of local hierarchies on page 407.
 

[image: Image]
 

Table 6.2 Standard directories and their contents
 

6.4 File Types
 

Most filesystem implementations define seven types of files. Even when developers add something new and wonderful to the file tree (such as the process information under /proc), it must still be made to look like one of these seven types.
 

• Regular files

 

• Directories

 

• Character device files

 

• Block device files

 

• Local domain sockets

 

• Named pipes (FIFOs)

 

• Symbolic links

 

You can determine the type of an existing file with ls -ld. The first character of the ls output encodes the type. For example, the following command demonstrates that /usr/include is a directory:
 

[image: Image]
 

ls uses the codes shown in Table 6.3 to represent the various types of files.
 

[image: Image]
 

Table 6.3 File-type encoding used by ls
 

As Table 6.3 shows, rm is the universal tool for deleting files. But how would you delete a file named, say, -f? It’s a legitimate filename under most filesystems, but rm -f doesn’t work because rm interprets the -f as a flag. The answer is either to refer to the file by a longer pathname (such as ./-f) or to use rm’s -- argument to tell it that everything that follows is a filename and not an option (i.e., rm -- -f).
 

Filenames that contain control characters present a similar problem since reproducing these names from the keyboard can be difficult or impossible. In this situation, you can use shell globbing (pattern matching) to identify the files to delete. When you use pattern matching, it’s a good idea to get in the habit of using the -i option to rm to make rm confirm the deletion of each file. This feature protects you against deleting any “good” files that your pattern inadvertently matches. For example, to delete a file named foo<Control-D>bar, you could use
 

[image: Image]
 

Note that ls shows the control character as a question mark, which can be a bit deceptive.4 If you don’t remember that ? is a shell pattern-matching character and try to rm foo?bar, you might potentially remove more than one file (although not in this example). -i is your friend!
 

To delete the most horribly named files, you may need to resort to rm -i *.
 

Another option for removing files with squirrely names is to use an alternative interface to the filesystem such as emacs’s dired mode or a visual tool such as Nautilus.
 

Regular Files
 

Regular files consist of a series of bytes; filesystems impose no structure on their contents. Text files, data files, executable programs, and shared libraries are all stored as regular files. Both sequential access and random access are allowed.
 

Directories
 

A directory contains named references to other files. You can create directories with mkdir and delete them with rmdir if they are empty. You can delete nonempty directories with rm -r.
 

The special entries “.” and “..” refer to the directory itself and to its parent directory; they may not be removed. Since the root directory has no parent directory, the path “/..” is equivalent to the path “/.” (and both are equivalent to /).
 

A file’s name is stored within its parent directory, not with the file itself. In fact, more than one directory (or more than one entry in a single directory) can refer to a file at one time, and the references can have different names. Such an arrangement creates the illusion that a file exists in more than one place at the same time.
 

These additional references (“links,” or “hard links” to distinguish them from symbolic links, discussed below) are synonymous with the original file; as far as the filesystem is concerned, all links to the file are equivalent. The filesystem maintains a count of the number of links that point to each file and does not release the file’s data blocks until its last link has been deleted. Hard links cannot cross filesystem boundaries.
 

You create hard links with ln and remove them with rm. It’s easy to remember the syntax of ln if you keep in mind that it mirrors the syntax of cp. The command cp oldfile newfile creates a copy of oldfile called newfile, and ln oldfile newfile makes the name newfile an additional reference to oldfile. You can make hard links to directories as well as to flat files, but that’s less commonly done.
 

You can use ls -l to see how many links to a given file exist. See the ls example output on page 154 for some additional detail.
 

Hard links are not a distinct type of file. Instead of defining a separate “thing” called a hard link, the filesystem simply allows more than one directory entry to point to the same file. In addition to the file’s contents, the underlying attributes of the file (such as ownerships and permissions) are also shared.
 

Character and Block Device Files
 

Device files let programs communicate with the system’s hardware and peripherals. The kernel includes (or loads) driver software for each of the system’s devices. This software takes care of the messy details of managing each device so that the kernel proper can remain relatively abstract and hardware independent.
 

See Chapter 13 for more information about devices and drivers.

 

Device drivers present a standard communication interface that looks like a regular file. When the filesystem is given a request that refers to a character or block device file, it simply passes the request to the appropriate device driver. It’s important to distinguish device files from device drivers, however. The files are just rendezvous points that communicate with drivers. They are not drivers themselves.
 

Character device files allow their associated drivers to do their own input and output buffering. Block device files are used by drivers that handle I/O in large chunks and want the kernel to perform buffering for them. In the past, a few types of hardware were represented by both block and character device files, but that configuration is unusual today.
 

Device files are characterized by two numbers, called the major and minor device numbers. The major device number tells the kernel which driver the file refers to, and the minor device number typically tells the driver which physical unit to address. For example, major device number 4 on a Linux system indicates the serial driver. The first serial port (/dev/tty0) would have major device number 4 and minor device number 0.
 

Drivers can interpret the minor device numbers that are passed to them in whatever way they please. For example, tape drivers use the minor device number to determine whether the tape should be rewound when the device file is closed.
 

In the distant past, /dev was a generic directory and the device files within it were created with mknod and removed with rm. A script called MAKEDEV helped standardize the work of creating device files for common pieces of equipment.
 

Unfortunately, this crude system was ill-equipped to deal with the endless sea of drivers and device types that have appeared over the last few decades. It also facilitated all sorts of potential configuration mismatches: device files that referred to no actual device, devices inaccessible because they had no device files, and so on.
 

These days, most systems implement some form of automatic device file management that lets the system take a more active role in the configuration of its own device files. In Solaris, for example, the /dev and /devices directories are fully virtualized. On Linux distributions, /dev is a standard directory, but the udevd daemon manages the files within it. (udevd creates and deletes device files in response to hardware changes reported by the kernel.) See Chapter 13, Drivers and the Kernel, for more information about each system’s approach to this task.
 

Local Domain Sockets
 

Sockets are connections between processes that allow processes to communicate hygienically. UNIX defines several kinds of sockets, most of which involve the use of a network. Local domain sockets are accessible only from the local host and are referred to through a filesystem object rather than a network port. They are sometimes known as “UNIX domain sockets.”
 

Although socket files are visible to other processes as directory entries, they cannot be read from or written to by processes not involved in the connection. Syslog and the X Window System are examples of standard facilities that use local domain sockets.
 

See Chapter 11 for more information about syslog.

 

Local domain sockets are created with the socket system call and removed with the rm command or the unlink system call once they have no more users.
 

Named Pipes
 

Like local domain sockets, named pipes allow communication between two processes running on the same host. They’re also known as “FIFO files” (FIFO is short for the phrase “first in, first out”). You can create named pipes with mknod and remove them with rm.
 

As with local domain sockets, real-world instances of named pipes are few and far between. They rarely require administrative intervention.5
 

Named pipes and local domain sockets serve similar purposes, and the fact that both exist is essentially a historical artifact. Neither of them would exist if UNIX and Linux were designed today; network sockets would stand in for both.
 

Symbolic Links
 

A symbolic or “soft” link points to a file by name. When the kernel comes upon a symbolic link in the course of looking up a pathname, it redirects its attention to the pathname stored as the contents of the link. The difference between hard links and symbolic links is that a hard link is a direct reference, whereas a symbolic link is a reference by name. Symbolic links are distinct from the files they point to.
 

You create symbolic links with ln -s and remove them with rm. Since symbolic links can contain arbitrary paths, they can refer to files on other filesystems or to nonexistent files. Multiple symbolic links can also form a loop.
 

A symbolic link can contain either an absolute or a relative path. For example,
 

$ sudo ln -s archived/secure /var/log/secure
 

links /var/log/secure to /var/log/archived/secure with a relative path. It creates the symbolic link /var/log/secure with a target of “archived/secure”, as demonstrated by this output from ls:
 


 

[image: Image]
 

The entire /var/log directory could then be moved elsewhere without causing the symbolic link to stop working (not that moving this directory is advisable).
 

It is a common mistake to think that the first argument to ln -s is interpreted relative to your current working directory. However, it is not resolved as a filename by ln; it’s simply a literal string that becomes the target of the symbolic link.
 

6.5 File Attributes
 

Under the traditional UNIX and Linux filesystem model, every file has a set of nine permission bits that control who can read, write, and execute the contents of the file. Together with three other bits that primarily affect the operation of executable programs, these bits constitute the file’s “mode.”
 

The twelve mode bits are stored together with four bits of file-type information. The four file-type bits are set when the file is first created and cannot be changed, but the file’s owner and the superuser can modify the twelve mode bits with the chmod (change mode) command. Use ls -l (or ls -ld for a directory) to inspect the values of these bits. An example is given on page 154.
 

The Permission Bits
 

Nine permission bits determine what operations may be performed on a file and by whom. Traditional UNIX does not allow permissions to be set per-user (although all systems now support access control lists of one sort or another; see page 159). Instead, three sets of permissions define access for the owner of the file, the group owners of the file, and everyone else (in that order).7 Each set has three bits: a read bit, a write bit, and an execute bit (also in that order).
 

It’s convenient to discuss file permissions in terms of octal (base 8) numbers because each digit of an octal number represents three bits and each group of permission bits consists of three bits. The topmost three bits (with octal values of 400, 200, and 100) control access for the owner. The second three (40, 20, and 10) control access for the group. The last three (4, 2, and 1) control access for everyone else (“the world”). In each triplet, the high bit is the read bit, the middle bit is the write bit, and the low bit is the execute bit.
 

Each user fits into only one of the three permission sets. The permissions used are those that are most specific. For example, the owner of a file always has access determined by the owner permission bits and never the group permission bits. It is possible for the “other” and “group” categories to have more access than the owner, although this configuration would be highly unusual.
 

On a regular file, the read bit allows the file to be opened and read. The write bit allows the contents of the file to be modified or truncated; however, the ability to delete or rename (or delete and then recreate!) the file is controlled by the permissions on its parent directory because that is where the name-to-dataspace mapping is actually stored.
 

The execute bit allows the file to be executed. Two types of executable files exist: binaries, which the CPU runs directly, and scripts, which must be interpreted by a shell or some other program. By convention, scripts begin with a line similar to
 

#!/usr/bin/perl
 

that specifies an appropriate interpreter. Nonbinary executable files that do not specify an interpreter are assumed to be bash or sh scripts.8
 

For a directory, the execute bit (often called the “search” or “scan” bit in this context) allows the directory to be entered or passed through while a pathname is evaluated, but not to have its contents listed. The combination of read and execute bits allows the contents of the directory to be listed. The combination of write and execute bits allows files to be created, deleted, and renamed within the directory.
 

A variety of extensions such as access control lists (see page 159), SELinux (see page 923), and “bonus” permission bits defined by individual filesystems (see page 158) complicate or override the traditional nine-bit permission model. If you’re having trouble explaining the system’s observed behavior, check to see whether one of these factors might be interfering.
 

The Setuid and Setgid Bits
 

The bits with octal values 4000 and 2000 are the setuid and setgid bits. When set on executable files, these bits allow programs to access files and processes that would otherwise be off-limits to the user that runs them. The setuid/setgid mechanism for executables is described on page 105.
 

When set on a directory, the setgid bit causes newly created files within the directory to take on the group ownership of the directory rather than the default group of the user that created the file. This convention makes it easier to share a directory of files among several users, as long as they belong to a common group. This interpretation of the setgid bit is unrelated to its meaning when set on an executable file, but no ambiguity can exist as to which meaning is appropriate.
 

On some systems, you can also set the setgid bit on nonexecutable plain files to request special locking behavior when the file is opened. However, we are not aware of any common cases in which this feature is used.
 

The Sticky Bit
 

The bit with octal value 1000 is called the sticky bit. It was of historical importance as a modifier for executable files on early UNIX systems. However, that meaning of the sticky bit is now obsolete and modern systems silently ignore it.
 

If the sticky bit is set on a directory, the filesystem won’t allow you to delete or rename a file unless you are the owner of the directory, the owner of the file, or the superuser. Having write permission on the directory is not enough. This convention helps make directories like /tmp a little more private and secure.
 

[image: Image] Solaris and HP-UX are slightly less stringent in their handling of sticky directories: you can delete a file in a sticky directory if you have write permission on it, even if you aren’t the owner. This actually makes a lot of sense, though it makes little practical difference.
 

Ls: List and Inspect Files
 

The filesystem maintains about forty separate pieces of information for each file, but most of them are useful only to the filesystem itself. As a system administrator, you will be concerned mostly with the link count, owner, group, mode, size, last access time, last modification time, and type. You can inspect all of these with ls -l (or ls -ld for a directory; without the -d flag, ls lists the directory’s contents).
 

An attribute change time is also maintained for each file. The conventional name for this time (the “ctime,” short for “change time”) leads some people to believe that it is the file’s creation time. Unfortunately, it is not; it just records the time that the attributes of the file (owner, mode, etc.) were last changed (as opposed to the time at which the file’s contents were modified).
 

Consider the following example:
 

[image: Image]
 

The first field specifies the file’s type and mode. The first character is a dash, so the file is a regular file. (See Table 6.3 on page 148 for other codes.)
 

The next nine characters in this field are the three sets of permission bits. The order is owner-group-other, and the order of bits within each set is read-write-execute. Although these bits have only binary values, ls shows them symbolically with the letters r, w, and x for read, write, and execute. In this case, the owner has all permissions on the file and everyone else has read and execute permission.
 

If the setuid bit had been set, the x representing the owner’s execute permission would have been replaced with an s, and if the setgid bit had been set, the x for the group would also have been replaced with an s. The last character of the permissions (execute permission for “other”) is shown as t if the sticky bit of the file is turned on. If either the setuid/setgid bit or the sticky bit is set but the corresponding execute bit is not, these bits appear as S or T.
 

The next field in the listing is the file’s link count. In this case it is 3, indicating that /bin/gzip is just one of three names for this file (the others are /bin/gunzip and /bin/zcat). Each time a hard link is made to a file, the file’s link count is incremented by 1. Symbolic links do not affect the link count.
 

All directories have at least two hard links: the link from the parent directory and the link from the special file “.” inside the directory itself.
 

The next two fields in the ls output are the owner and group owner of the file. In this example, the file’s owner is root, and the file also belongs to the group named root. The filesystem actually stores these as the user and group ID numbers rather than as names. If the text versions (names) can’t be determined, ls shows the fields as numbers. This might happen if the user or group that owns the file has been deleted from the /etc/passwd or /etc/group file. It could also indicate a problem with your NIS or LDAP database (if you use one); see Chapter 19.
 

The next field is the size of the file in bytes. This file is 62,100 bytes long. Next comes the date of last modification: May 28, 2010. The last field in the listing is the name of the file, /bin/gzip.
 

ls output is slightly different for a device file. For example:
 

[image: Image]
 

Most fields are the same, but instead of a size in bytes, ls shows the major and minor device numbers. /dev/tty0 is the first virtual console on this (Red Hat) system and is controlled by device driver 4 (the terminal driver).
 

One ls option that’s useful for scoping out hard links is -i, which makes ls show each file’s “inode number.” Without going into too much detail about filesystem implementations, we’ll just say that the inode number is an index into a table that enumerates all the files in the filesystem. Inodes are the “things” that are pointed to by directory entries; entries that are hard links to the same file have the same inode number. To figure out a complex web of links, you need both ls -li to show link counts and inode numbers and find to search for matches.9
 

Some other ls options that are important to know are -a to show all entries in a directory (even files whose names start with a dot), -t to sort files by modification time (or -tr to sort in reverse chronological order), -F to show the names of files in a way that distinguishes directories and executable files, -R to list recursively, and -h to show file sizes in human-readable form (e.g., 8K or 53M).
 

Chmod: Change Permissions
 

The chmod command changes the permissions on a file. Only the owner of the file and the superuser can change its permissions. To use the command on early UNIX systems, you had to learn a bit of octal notation, but current versions accept both octal notation and a mnemonic syntax. The octal syntax is generally more convenient for administrators, but it can only be used to specify an absolute value for the permission bits. The mnemonic syntax can modify some bits while leaving others alone.
 

The first argument to chmod is a specification of the permissions to be assigned, and the second and subsequent arguments are names of files on which permissions should be changed. In the octal case, the first octal digit of the specification is for the owner, the second is for the group, and the third is for everyone else. If you want to turn on the setuid, setgid, or sticky bits, you use four octal digits rather than three, with the three special bits forming the first digit.
 

Table 6.4 illustrates the eight possible combinations for each set of three bits, where r, w, and x stand for read, write, and execute.
 

[image: Image]
 

Table 6.4 Permission encoding for chmod
 

For example, chmod 711 myprog gives all permissions to the owner and execute-only permission to everyone else.10
 

For the mnemonic syntax, you combine a set of targets (u, g, or o for user, group, other) with an operator (+, -, = to add, remove, or set) and a set of permissions. The chmod man page gives the details, but the syntax is probably best learned by example.Table 6.5 exemplifies some mnemonic operations.
 

The hard part about using the mnemonic syntax is remembering whether o stands for “owner” or “other”; “other” is correct. Just remember u and g by analogy to UID and GID; only one possibility is left.
 

[image: Image] On Linux and OpenSolaris systems, you can also specify the modes to be assigned by copying them from an existing file. For example, chmod --reference=filea fileb makes fileb’s mode the same as filea’s.
 

[image: Image]
 

Table 6.5 Examples of chmod’s mnemonic syntax
 

With the -R option, chmod recursively updates the file permissions within a directory. However, this feat is trickier than it looks because the enclosed files and directories may not share the same attributes; for example, some might be executable files while others are text files. Mnemonic syntax is particularly useful with -R because it preserves bits whose values you don’t set explicitly. For example,
 

$ chmod -R g+w mydir
 

adds group write permission to mydir and all its contents without messing up the execute bits of directories and programs.
 

If you want to adjust execute bits, be wary of chmod -R. It’s blind to the fact that the execute bit has a different interpretation on a directory than it does on a flat file. Therefore, chmod -R a-x probably won’t do what you intend.
 

Chown and Chgrp: Change Ownership and Group
 

The chown command changes a file’s ownership, and the chgrp command changes its group ownership. The syntax of chown and chgrp mirrors that of chmod, except that the first argument is the new owner or group, respectively.
 

To change a file’s group, you must either be the owner of the file and belong to the group you’re changing to or be the superuser. The rules for changing ownership are more complex and vary among systems. Most systems define some sort of process-specific capability that fine-tunes the behavior of chown.
 

Like chmod, chown and chgrp offer the recursive -R flag to change the settings of a directory and all the files underneath it. For example, the sequence
 

[image: Image]
 

could be used to reset the owner and group of files restored from a backup for the user matt. If you’re setting up a user’s home directory, don’t try to chown dot files with a command such as
 

$ sudo chown -R matt ~matt/.*
 

since the pattern will matcĥmatt/.. and will therefore end up changing the ownerships of the parent directory and probably the home directories of other users.
 

chown can change both the owner and group of a file at once with the syntax
 

chown
user:group file …
 

For example,
 

$ sudo chown -R matt:staff ~matt/restore
 

[image: Image] Linux and Solaris take this syntax to its logical end and let you omit either user or group, thus making the chgrp command superfluous. If you include the colon but no group, chown uses the user’s default group.
 

Umask: Assign Default Permissions
 

You can use the built-in shell command umask to influence the default permissions given to the files you create. Every process has its own umask attribute; the shell’s built-in umask command sets the shell’s own umask, which is then inherited by commands that you run.
 

The umask is specified as a three-digit octal value that represents the permissions to take away. When a file is created, its permissions are set to whatever the creating program requests minus whatever the umask forbids. Thus, the individual digits of the umask allow the permissions shown in Table 6.6.
 

[image: Image]
 

Table 6.6 Permission encoding for umask
 

For example, umask 027 allows all permissions for the owner but forbids write permission to the group and allows no permissions for anyone else. The default umask value is often 022, which denies write permission to the group and world but allows read permission.
 

You cannot force users to have a particular umask value because they can always reset it to whatever they want. However, you can put a suitable default in the sample .profile file that you give to new users.
 

See Chapter 7 for more information about startup files.

 

Linux Bonus Flags
 

Linux’s ext2, ext3, and ext4 filesystems define some supplemental attributes you can turn on to request special semantics—“request” being the operative word, since many of the flags haven’t actually been implemented. For example, one flag makes a file append-only and another makes it immutable and undeletable.
 

Since these flags don’t apply to filesystems other than the ext* series, Linux uses special commands, lsattr and chattr, to view and change them.Table 6.7 lists the flags that currently work (about 50% of those mentioned in the man page).
 

[image: Image]
 

Table 6.7 Ext2 and ext3 bonus flags
 

With the possible exception of the “no backup” flag, it’s not clear that any of these features offer much day-to-day value. The immutable and append-only flags were largely conceived as ways to make the system more resistant to tampering by hackers or hostile code. Unfortunately, they can confuse software and protect only against hackers that don’t know enough to use chattr -ia. Real-world experience has shown that these flags are more often used by hackers than against them.
 

The S and D options for synchronous writes also merit a special caution. Since they force all filesystem pages associated with a file or directory to be written out immediately on changes, they might seem to offer additional protection against data loss in the event of a crash. However, the order of operations for synchronous updates is unusual and has been known to confuse fsck; recovery of a damaged filesystem might therefore be made more difficult rather than more reliable. File-system journaling, as supported by ext3 and ext4, is usually a better option. The j option can force data journaling for specific files, albeit at some performance cost.
 

6.6 Access Control Lists
 

The traditional 9-bit owner/group/other access control system is powerful enough to accommodate most administrative needs. Although the system has clear limitations, it’s very much in keeping with the UNIX traditions (some might say, “former traditions”) of simplicity and predictability.
 

Virtually all non-UNIX operating systems use a more complicated way of regulating access to files: access control lists, aka ACLs. Each file or directory can have an associated ACL that lists the permission rules to be applied to it. Each of the rules within an ACL is called an access control entry, or ACE.
 

In general, an access control entry identifies the user or group to which it applies and specifies a set of permissions to be applied to those users. ACLs have no set length and can include permission specifications for multiple users or groups. Most OSes limit the length of an individual ACL, but the limit is high enough (usually at least 32 entries) that it rarely comes into play.
 

The more sophisticated ACL systems let administrators specify partial sets of permissions or negative permissions; some also have inheritance features that allow access specifications to propagate to newly created filesystem entities.
 

ACL systems are more powerful than the traditional UNIX model, but they are also an order of magnitude more complex, both for administrators and for software developers. Use them only with a degree of trepidation. Not only are ACLs complicated and tiresome to use, but they can also cause problematic interactions with ACL-unaware backup systems, network file service peers, and even simple programs such as text editors.
 

ACLs are entropy magnets. Over time, they tend to become increasingly complex and unmaintainable.
 

A Short and Brutal History of UNIX ACLs
 

The next few sections describe the various ACL systems supported by UNIX and Linux and the multiple sets of commands that manipulate them. Before we dive into those details, however, we should answer the underlying question those details are sure to provoke: “How did this ACL stuff get to be such a train wreck?”
 

As usual, the culprit is a tortured history of politics, money, and code forks. In this case, a basic understanding of the history helps impose some structure on the current reality.
 

A POSIX subcommittee first started work on an ACL facility for UNIX in the mid-1990s. To a first approximation, the POSIX ACL model simply extended the traditional UNIX rwx permission system to accommodate permissions for multiple groups and users.
 

Unfortunately, the POSIX draft never became a formal standard, and the working group was defunded in 1998. Several vendors implemented POSIX ACLs anyway. Other vendors created their own ACL systems. Since there was no clear leader, every implementation looked different.
 

Meanwhile, it became increasingly common for UNIX and Linux systems to share filesystems with Windows, which has its own ACL conventions. Here the plot thickens, because Windows makes a variety of distinctions that are not found in either the traditional UNIX model or its POSIX ACL equivalent. Windows ACLs are semantically more complex, too; for example, they allow negative permissions (“deny” entries) and have a complicated inheritance scheme.
 

The architects of version 4 of the NFS protocol—the standard file-sharing protocol used by UNIX—wanted to incorporate ACLs as a first-class entity. Because of the UNIX/Windows split and the inconsistencies among UNIX ACL implementations, it was clear that the systems on the ends of an NFSv4 connection might often be of different types. Each system might understand NFSv4 ACLs, POSIX ACLs, Windows ACLs, or no ACLs at all. The NFSv4 standard would have to be interoperable with these various worlds without causing too many surprises or security problems.
 

See Chapter 18 for more information about NFS.

 

Given this constraint, it’s perhaps not surprising that NFSv4 ACLs are essentially a union of all preexisting systems. They are a strict superset of POSIX ACLs, so any POSIX ACL can be represented as an NFSv4 ACL without loss of information. At the same time, NFSv4 ACLs accommodate all the permission bits found on Windows systems, and they have most of Windows’ semantic features as well.
 

ACL Implementation
 

In theory, responsibility for maintaining and enforcing ACLs could be turned over to several different components of the operating system. ACLs could be implemented by the kernel on behalf of all the system’s filesystems, by individual filesystems, or perhaps by higher-level software such as NFS and CIFS servers.
 

In practice, only filesystems can implement ACLs cleanly, reliably, and with acceptable performance. Hence, ACL support is both OS dependent and filesystem dependent. A filesystem that supports ACLs on one system may not support them on another, or it may feature a somewhat different implementation managed by different commands.
 

The standard UNIX system calls that manipulate files (open, read, unlink, and so on) make no provision for ACLs. However, they continue to work just fine on systems that have ACLs because the underlying filesystems do their own permission checking. Operations that are not allowed by the relevant ACL simply fail and return a generic “permission denied” error code.
 

ACL-aware programs use a separate system call or library routine to read or set files’ ACLs. When an operating system first adds support for ACLs, it usually upgrades common utilities such as ls and cp to be at least minimally ACL-aware (for example, by making cp -p preserve ACLs if they are present). In addition, the system must add new commands or command extensions to let users read and set ACLs from the command line. Unfortunately, these commands are not standardized among operating systems, either.
 

Because ACL implementations are filesystem specific and because systems support multiple filesystem implementations, many systems end up supporting multiple types of ACLs. Even a given filesystem may offer several ACL options, as in IBM’s JFS2. If multiple ACL systems are available, the commands to manipulate them might be the same or different; it depends on the system.
 

ACL Support by System
 

In general, ACL support under UNIX and Linux is currently something of an ad hoc mess. Here are some particulars:
 

• As of this writing (2010), POSIX-based ACL systems have the lead in implementation and deployment, but NFSv4 ACLs are rapidly gaining ground and will likely become the de facto standard. Currently, only Sun’s ZFS and IBM’s JFS2 have native support for NFS4v4 ACLs.

 

[image: Image] • Under Linux, POSIX-style ACLs are supported by ReiserFS, XFS, JFS, Btrfs, and the ext* family of filesystems. They are usually disabled by default; use the -o acl option to mount to turn them on. The getfacl and setfacl commands read and manipulate POSIX ACL entries.

 

[image: Image] • Solaris supports POSIX ACLs on the older UFS filesystem and NFSv4 ACLs on ZFS. The Solaris versions of ls and chmod have been modified to display and edit both types of ACLs.11 Solaris has setfacl and getfacl commands that are vaguely similar to those found on Linux distributions, but they’re really just there for compatibility and work only for POSIX ACLs.

 

[image: Image] • HP-UX designed its own ACL system for its High-performance File System (HFS). When HP adopted Veritas’s VxFS as its primary filesystem, it also incorporated support for POSIX-style ACLs.12 Unfortunately, the two ACL systems are controlled by different sets of commands. HFS is now deprecated, but the HFS ACL commands remain behind for compatibility. We do not discuss the HFS ACLs in this book.

 

[image: Image] • AIX’s JFS2 filesystem supports a proprietary ACL system known as AIXC. As of AIX 5.3.0, JFS2 also supports NFSv4-style ACLs. AIX uses the same commands (aclget, aclput, and acledit) to manipulate both types of ACLs, and it provides an aclconvert utility to facilitate migration from one format to another. We do not discuss AIXC in this book.

 

POSIX ACLs
 

POSIX ACLs are supported on many Linux filesystems and on HP-UX’s VxFS filesystem port (known as JFS). They are also available under Solaris for the deprecated UFS filesystem only.
 

POSIX ACLs are a mostly straightforward extension of the standard 9-bit UNIX permission model. Read, write, and execute permission are the only capabilities that the ACL system deals with. Embellishments such as the setuid and sticky bits are handled exclusively through the traditional mode bits.
 

ACLs allow the rwx bits to be set independently for any combination of users and groups.Table 6.8 shows what the individual entries in an ACL can look like.
 

[image: Image]
 

Table 6.8 Entries that can appear in an access control list
 

Users and groups can be identified by name or by UID/GID. The exact number of entries that an ACL can contain varies with the filesystem implementation and ranges from a low of 25 with XFS to a virtually unlimited number with ReiserFS and JFS. The ext* filesystems allow 32 entries, which is probably a reasonable limit for manageability in any case.
 

Interaction Between Traditional Modes and ACLs
 

Files with ACLs retain their original mode bits, but consistency is automatically enforced and the two sets of permissions can never conflict. The following example (which uses the Linux command syntax) demonstrates that the ACL entries update automatically in response to changes made with old-style chmod:
 

[image: Image]
 

This enforced consistency allows older software with no awareness of ACLs to play reasonably well in the ACL world. However, there’s a twist. Even though the group:: ACL entry in the example above appears to be tracking the middle set of traditional mode bits, that will not always be the case.
 

To understand why, suppose that a legacy program clears the write bits within all three permission sets of the traditional mode (e.g., chmod ugo-w
file). The intention is clearly to make the file unwritable by anyone. But what if the resulting ACL were to look like this?
 

[image: Image]
 

From the perspective of legacy programs, the file appears to be unmodifiable, yet it is actually writable by anyone in group staff. Not good. To reduce the chance of ambiguity and misunderstandings, the following rules are enforced:
 

• The user:: and other:: ACL entries are by definition identical to the “owner” and “other” permission bits from the traditional mode. Changing the mode changes the corresponding ACL entries, and vice versa.

 

• In all cases, the effective access permission afforded to the file’s owner and to users not mentioned in another way are those specified in the user:: and other:: ACL entries, respectively.

 

• If a file has no explicitly defined ACL or has an ACL that consists only of one user::, one group::, and one other:: entry, these ACL entries are identical to the three sets of traditional permission bits. This is the case illustrated in the getfacl example above. (Such an ACL is termed “minimal” and need not actually be implemented as a logically separate ACL.)

 

• In more complex ACLs, the traditional group permission bits correspond to a special ACL entry called mask rather than the group:: ACL entry. The mask limits the access that the ACL can confer upon all named users, all named groups, and the default group.

 

In other words, the mask specifies an upper bound on the access that the ACL can assign to individual groups and users. It is conceptually similar to the umask, except that the ACL mask is always in effect and specifies the allowed permissions rather than the permissions to be denied. ACL entries for named users, named groups, and the default group can include permission bits that are not present in the mask, but the kernel simply ignores them.
 

As a result, the traditional mode bits can never understate the access allowed by the ACL as a whole. Furthermore, clearing a bit from the group portion of the traditional mode clears the corresponding bit in the ACL mask and thereby forbids this permission to everyone but the file’s owner and those who fall in the category of “other.”
 

When the ACL shown in the previous example is expanded to include entries for a specific user and group, setfacl automatically supplies an appropriate mask:
 

[image: Image]
 

As seen here, the Linux version of setfacl generates a mask that allows all the permissions granted in the ACL to take effect. If you want to set the mask by hand, include it in the ACL entry list given to setfacl or use the -n option to prevent setfacl from regenerating it. (The Solaris setfacl defaults to not recalculating the mask entry; use the -r flag to regenerate it.)
 

Note that after the setfacl command, ls -l shows a + sign at the end of the file’s mode to indicate that it now has a real ACL associated with it. The first ls -l shows no + because at that point the ACL is “minimal.” That is, it is entirely described by the 9-bit mode and so does not need to be stored separately.
 

If you use the traditional chmod command to manipulate the group permissions on an ACL-bearing file, be aware that your changes affect only the mask. To continue the previous example:
 

[image: Image]
 

The ls output in this case is misleading. Despite the apparently generous group permissions, no one actually has permission to execute the file by reason of group membership. To grant such permission, you must edit the ACL itself.
 

Access determination
 

When a process attempts to access a file, its effective UID is compared to the UID that owns the file. If they are the same, access is determined by the ACL’s user:: permissions. Otherwise, if a matching user-specific ACL entry exists, permissions are determined by that entry in combination with the ACL mask.
 

If no user-specific entry is available, the filesystem tries to locate a valid group-related entry that provides the requested access; these entries are processed in conjunction with the ACL mask. If no matching entry can be found, the other:: entry prevails.
 

ACL InheritanceNFSv4 entities for which permissions can be specified 
 

In addition to the ACL entry types listed in Table 6.8, the ACLs for directories can include default entries that are propagated to the ACLs of newly created files and subdirectories created within them. Subdirectories receive these entries both in the form of active ACL entries and in the form of copies of the default entries. Therefore, the original default entries may eventually propagate down through several layers of the directory hierarchy.
 

The connection between the parent and child ACLs does not continue once the default entries have been copied. If the parent’s default entries change, the changes are not reflected in the ACLs of existing subdirectories.
 

NFSv4 ACLs
 

In this section, we discuss the characteristics of NFSv4 ACLs and briefly review the Solaris command syntax used to set and inspect them. AIX also supports NFSv4 ACLs, but it uses different commands (aclget, aclput, acledit, et al.) for this purpose. Rather than belaboring the details of any particular command set, we concentrate here on the theory behind the system. Once you understand basic principles, the system-specific commands are easy to pick up.
 

From a structural perspective, NFSv4 ACLs are similar to Windows ACLs. The main difference between them lies in the specification of the entity to which an access control entry refers.
 

In both systems, the ACL stores this entity as a string. For Windows ACLs, the string typically contains a Windows security identifier (SID), whereas for NFSv4, the string is typically of the form user:username or group:groupname. It can also be one of the special tokens owner@, group@, or everyone@. In fact, these latter entries are the most common because they correspond to the mode bits found on every file.
 

Systems such as Samba that share files between UNIX and Windows systems must provide some way of mapping between Windows and NFSv4 principals.
 

The Windows and NFSv4 permission model is more granular than the traditional UNIX read-write-execute model. The main refinements are as follows:
 

• NFSv4 distinguishes permission to create files within a directory from permission to create subdirectories.

 

• NFSv4 has a separate “append” permission bit.

 

• NFSv4 has separate read and write permissions for data, file attributes, extended attributes, and ACLs.

 

• NFSv4 controls a user’s ability to change the ownership of a file through the standard ACL system. In traditional UNIX, the ability to change the ownership of files is usually reserved for root.

 

Table 6.9 shows the various permissions that can be assigned in the NFSv4 system. It also shows the one-letter codes used to represent them and the more verbose names displayed and accepted by Solaris’s ls and chmod commands.
 

[image: Image]
 

Table 6.9 NFSv4 file permissions
 

Some permissions have multiple names because they are represented by the same flag value but are interpreted differently for files and directories. This kind of overloading should be familiar from the traditional UNIX permission system. (For example, an x in the traditional system indicates execute permission on a plain file and “traverse” permission on a directory.)
 

Although the NFSv4 permission model is fairly detailed, the individual permissions should mostly be self-explanatory. The “synchronize” permission allows a client to specify that its modifications to a file should be synchronous—that is, calls to write should not return until the data has actually been saved on disk.
 

An extended attribute is a named chunk of data that is stored along with a file; most modern filesystems support such attributes, although they are not yet widely used in the real world. At this point, the predominant use of extended attributes is to store ACLs themselves. However, the NFSv4 permission model treats ACLs separately from other extended attributes.
 

NFSv4 Entities for Which Permissions can be Specified
 

In addition to the garden-variety user:username and group:groupname specifiers, NFSv4 defines several special entities that may be assigned permissions in an ACL. Most important among these are owner@, group@, and everyone@, which correspond to the traditional categories in the 9-bit permission model.
 

The NFSv4 specification (RFC3530) defines a few more special entities such as dialup@ and batch@. From a UNIX perspective, they’re all a bit peculiar. We are not aware of any actual real-world application for these entities; most likely, they exist to facilitate compatibility with Windows.
 

NFSv4 has several differences from POSIX. For one thing, it has no default entity, used in POSIX to control ACL inheritance. Instead, any individual access control entry (ACE) can be flagged as inheritable (see ACL inheritance, below). NFSv4 also does not use a mask to reconcile the permissions specified in a file’s mode with its ACL. The mode is required to be consistent with the settings specified for owner@, group@, and everyone@, and filesystems that implement NFSv4 ACLs must preserve this consistency when either the mode or the ACL is updated.
 

Access Determination
 

In the POSIX ACL system, the filesystem attempts to match the user’s identity to the single most appropriate access control entry. That ACE then provides a complete set of controlling permissions for the file.
 

The NFSv4 system differs in that an ACE may specify only a partial set of permissions. Each NFSv4 ACE is either an “allow” ACE or a “deny” ACE; it acts more like a mask than an authoritative specification of all possible permissions.13 Multiple ACEs can apply to any given situation.
 

When deciding whether to allow a particular operation, the filesystem reads the ACL in order, processing ACEs until either all requested permissions have been allowed or some requested permission has been denied. Only ACEs whose entity strings are compatible with the current user’s identity are considered.
 

It’s possible for the filesystem to reach the end of an NFSv4 ACL without having obtained a definitive answer to a permission query. The NFSv4 standard considers the result to be undefined, but most real-world implementations will choose to deny access, both because this is the convention used by Windows and because it’s the only option that makes sense.
 

ACL Inheritance
 

Like POSIX ACLs, NFSv4 ACLs allow newly created objects to inherit access control entries from their enclosing directory. However, the NFSv4 system is a bit more powerful and a lot more confusing. Here are the important points:
 

• Any ACE can be flagged as inheritable. Inheritance for newly created subdirectories (dir_inherit or d) and newly created files (file_inherit or f) are flagged separately.

 

• You can apply different access control entries to new files and new directories by creating separate access control entries on the parent directory and flagging them appropriately. You can also apply a single ACE to all new child entities (of whatever type) by turning on both the d and f flags.

 

• From the perspective of access determination, access control entries have the same effect on the parent (source) directory whether or not they are inheritable. If you want an entry to apply to children but not to the parent directory itself, turn on the ACE’s inherit_only (i) flag.

 

• New subdirectories normally inherit two copies of each ACE: one with the inheritance flags turned off, which applies to the subdirectory itself; and one with the inherit_only flag turned on, which sets up the new subdirectory to propagate its inherited ACEs. You can suppress the creation of this second ACE by turning on the no_propagate (n) flag on the parent directory’s copy of the ACE. The end result is that the ACE propagates only to immediate children of the original directory.

 

• Don’t confuse the propagation of access control entries with true inheritance. Your setting an inheritance-related flag on an ACE simply means that the ACE will be copied to new entities. It does not create any ongoing relationship between the parent and its children. If you later change the ACE entries on the parent directory, the children are not updated.

 

Table 6.10 summarizes these various inheritance flags.
 

[image: Image]
 

Table 6.10 NFSv4 ACE inheritance flags
 

NFSv4 ACL Viewing in Solaris
 

[image: Image] Solaris has integrated its ACL support into ls and chmod, which is a nice approach and a straightforward extension of the commands’ usual functions. Both POSIX and NFSv4 ACLs are supported in this manner, although here we show only NFSv4 examples. The specific flavor of ACLs that you see or set depends on the underlying filesystem.
 

ls -v shows ACL information for filesystem objects. As with -l, you must include the -d option if you want to see the ACL for a directory; otherwise ls -v shows the ACL of every child of the directory. Here’s a simple (!) example:
 

[image: Image]
 

This newly created directory seems to have a complex ACL, but in fact it’s a fake— this ACL is just the nine-bit mode shown on the first line of output translated into ACLese. It is not necessary for the filesystem to store an actual ACL because the ACL and the mode are equivalent. (Such ACLs are termed “trivial.”) If the directory had an actual ACL, ls would show the mode bits with a + on the end (i.e., drwxr-xr-x+) to indicate the presence of the ACL.
 

Each numbered clause represents one access control entry. The format is
 

index:entity:permissions:inheritance_flags:type
 

The index numbers are added by ls for clarity and are not part of the actual ACL. They can be used in later chmod commands to identify a specific ACE to be replaced or deleted.
 

The entity can be the keywords owner@, group@, or everyone@, or a form such as user:username or group:groupname.
 

The type of an ACE is either allow or deny. Theoretically, alarm and audit are allowed as well, but ZFS doesn’t implement these features.
 

Both the permissions and the inheritance_flags are slash-separated lists of options. Strangely, ls omits the inheritance_flags field (and one of the colon delimiters) if the flags are all turned off, but it does not do the same with the permissions.
 

For added confusion, ls displays multiple names for the r (read data/list directory), w (write data/add file), and p (append data/add subdirectory) permission bits, as if they were separate permissions. In fact, they are file- and directory-specific interpretations of the same bits and will always be present or absent together.
 

These quirks, together with the use of a colon as a subdivider within the entity field, make it tricky for scripts to parse ls -v output. If you need to process ACLs programmatically, look first for an existing library (such as the Solaris::ACL Perl module from the Comprehensive Perl Archive Network (CPAN) that facilitates the process. As a last resort, you can use the output of ls -V (described next), since this format is more amenable to parsing.
 

You can obtain a tabular display of ACL entries with ls -V. In this mode, permissions are represented by their one-letter codes as shown in Table 6.9 on page 167. All possible bits are displayed for each access control entry; those that are turned off are represented by dashes (just as ls displays a file’s traditional mode).
 

[image: Image]
 

Interactions Between ACLs and Modes
 

Several aspects of the translation of modes to ACLs merit further discussion. First, note that the group@ and everyone@ ACEs in the example above differ despite the fact that the corresponding clusters in the mode are both r-x. That’s not because the translation rules are different for the group@ and everyone@ categories; rather, it’s because certain permissions can’t really be extrapolated from the traditional mode.
 

These “unspecified” permission bits receive default values through additions to the everyone@ ACEs only. The write_xattr, write_attributes, write_acl, and write_owner permissions are always denied, and the read_xattr, read_attributes, read_acl, and synchronize permissions are always allowed. If you factor out these permissions from the everyone@ set, you can see that the remaining ACEs for everyone@ are in fact the same as those for group@.
 

Of course, these “constant” permissions apply only to trivial ACLs. By editing the ACL directly, you can set the bits in any combination.
 

The mode and the ACL must remain consistent, so whenever you adjust one of these entities, the other updates automatically to conform to it. ZFS does a good job of determining the appropriate mode for a given ACL, but its algorithm for generating and updating ACLs in response to mode changes is rudimentary. The results aren’t functionally incorrect, but they are often verbose, unreadable, and unmaintainable. In particular, the system may generate multiple and seemingly inconsistent sets of entries for owner@, group@, and everyone@ that depend on evaluation order for their aggregate effect.
 

As a general rule, never touch a file or directory’s mode once you’ve applied an ACL. If worse comes to worst, remove the ACL with chmod A-
file and start over.
 

Modifying NFSv4 ACLs in Solaris
 

Because ZFS enforces consistency between a file’s mode and its ACL, all files have at least a trivial ACL (virtual or not). Ergo, ACL changes are always updates. You make ACL changes with chmod. The basic syntax is the same as always:
 

chmod [-R] acl_operation file …
 

Table 6.11 shows the various types of ACL operations understood by chmod. Unfortunately, there is no ACL analog of chmod’s incremental, symbolic syntax for manipulating traditional modes. You cannot add or remove individual permissions from an ACE; you must replace the entire entry.
 

[image: Image]
 

Table 6.11 ACL operations understood by Solaris’s chmod
 

The index numbers referred to in Table 6.11 are those shown by ls -v; they are the ordinals of the access control entries, starting at zero. You can encode the ace fields with either the verbose or one-letter permission names. For example, the command
 

solaris$ chmod A+user:ben:C:allow /var/tmp/example
 

gives the user ben permission to edit the ACL on the /var/tmp/example directory. Remember that access determination is an iterative process that works its way down the ACL, so ben retains any rights he had under the previous version of the ACL. The new access control entry goes at the start of the ACL (at index zero), so the command
 

solaris$ chmod A0- /var/tmp/example
 

removes the ACE that was just added and reverts the ACL to its original state.
 

6.7 Exercises
 

E6.1 What is a umask? Create a umask that would give no permissions to the group or the world.

 

E6.2 What is the difference between hard links and symbolic (soft) links? When is it appropriate to use one or the other?

 

[image: Image] E6.3 What steps would be needed on your system for a Windows NTFS partition to be automatically mounted from a local hard disk? What’s the most appropriate mount point for such a partition according to your system’s conventions and the conventions in use at your site?

 

[image: Image] E6.4 When installing a new system, it’s important to set up the system volumes such that each filesystem (/var, /usr, etc.) has adequate space for both current and future needs. The Foobar Linux distribution uses the following defaults:

 

[image: Image]
 

What are some potential problems with this arrangement on a busy server box?

 

[image: Image] E6.5 Why is it a good idea to put some partitions (such as /var, /home, and swap) on a separate drive from other data files and programs? What about /tmp? Give specific reasons for each of the filesystems listed.

 

[image: Image] E6.6 Write a script that finds all the hard links on a filesystem.

 

[image: Image] E6.7 Give commands to accomplish the following tasks.

 

a) Set the permissions on the file README to read/write for the owner and read for everyone else.

 

b) Turn on a file’s setuid bit without changing (or knowing) the current permissions.

 

c) List the contents of the current directory, sorting by modification time and listing the most recently modified file last.

 

d) Change the group of a file called shared from “user” to “friends”.

 

[image: Image] E6.8 By convention, the /tmp directory is available to all users who care to create files there. What prevents one user from reading or deleting another’s temporary files? What’s to prevent a disgruntled user from filling up /tmp with junk files? What would be the consequences of such an attack?

 
  


7. Adding New Users
 

[image: Image]
 

Adding and removing users is a routine chore on most systems. These tasks are simple, but they are also boring; most administrators tweak the tools provided with the operating system to automate the process and then delegate the actual work to an assistant or operator.
 

These days we are seeing a resurgence of centralized servers with login accounts for hundreds of people in addition to the distributed server with as few as two users. Administrators need a thorough understanding of the user account system in order to manage network services and to configure accounts appropriately for the local computing environment. Often, account management on servers is just one piece of the account-provisioning puzzle for an entire enterprise.
 

Today’s enterprise environments need not just a tool for adding users to specific machines, but also a tool for managing users and their myriad accounts and passwords across the entire computing environment—an identity management system. Directory services such as Microsoft’s Active Directory, OpenLDAP, and Fedora Directory Server are in widespread use, so we’ll detail how these systems affect account management tasks. (As usual, myopic Microsoft does not play well with others unless you let Active Directory be in charge. Sigh.)
 

Some sites’ needs may exceed the capabilities of even these systems. We do not cover the commercial identity management systems but will point you to a few candidates. They are probably the right solution for a very large site, especially where compliance with regulatory regimes such as HIPAA or Sarbanes-Oxley (in the United States) is required. See page 203.
 

Account hygiene is a key determinant of system security. Infrequently used accounts are prime targets for attackers, as are accounts with easily guessed passwords. Even if you use your system’s automated tools to add and remove users, it’s important to understand the changes the tools are making. For this reason, we start our discussion of account management with the flat files you must modify to add users to a single machine.
 

We then examine the automated tools distributed with each of our example operating systems and the configuration files that control their behavior. Surprisingly (or perhaps, confusingly), the user management tools are called useradd, userdel, and usermod on each of our example systems, even though the programs are not necessarily the same. (In addition, AIX achieves this naming conformity by wrapping its native mkuser, rmuser, and chuser tools with driver scripts.)
 

The default useradd tool is actually quite good and should be sufficient for most sites’ needs. Unfortunately, userdel is not always as thorough as we would like.
 

Most systems also have simple GUI tools for adding and removing users, although these tools usually don’t implement a batch mode or advanced localization. They are straightforward enough that we don’t think it’s helpful to review their operation in detail, but we’ll point you to the vendors’ documentation for each tool.
 

In this chapter, we focus specifically on adding and removing users. Many topics associated with user management actually live in other chapters and are only referenced here. For example,
 

• Pluggable authentication modules (PAM) for password encryption and the enforcement of strong passwords are covered in Chapter 22, Security. See the material on page 908.

 

• Password vaults for managing passwords are described in Chapter 4, Access Control and Rootly Powers (see page 117).

 

• Directory services such as NIS and OpenLDAP are outlined in Chapter 19, Sharing System Files, starting on page 728. Some comments on Active Directory can also be found in Chapter 30, Cooperating with Windows, on page 1154.

 

• Finally, policy and regulatory issues are major topics of Chapter 32, Management, Policy, and Politics.

 

That said, the next three sections present an overview of the primary files involved in user management.
 

7.1 The /ETC/PASSWD File
 

The /etc/passwd file is a list of users recognized by the system. It can be extended or replaced by a directory service, so it’s complete and authoritative only on standalone systems.
 

The system consults /etc/passwd at login time to determine a user’s UID and home directory, among other things. Each line in the file represents one user and contains seven fields separated by colons:
 

• Login name

 

• Encrypted password placeholder (see page 179)

 

• UID (user ID) number

 

• Default GID (group ID) number

 

• “GECOS” information: full name, office, extension, home phone

 

• Home directory

 

• Login shell

 

For example, the following lines are all valid /etc/passwd entries:
 

[image: Image]
 

Encrypted passwords used to live in the second field, but that is no longer safe; with fast hardware, they can be cracked (decrypted) in minutes. All versions of UNIX and Linux now hide the encrypted passwords by placing them in a separate file that is not world-readable. The passwd file contains an x in the encrypted password field on Linux, Solaris, and HP-UX and an ! or a * on AIX. (On AIX systems, * as a placeholder disables the account.)
 

The actual encrypted passwords are stored in /etc/shadow on Linux, Solaris, and HP-UX and in /etc/security/passwd on AIX. The formats vary.
 

If user accounts are shared through a directory service such as NIS or LDAP, you might see special entries in the passwd file that begin with + or -. These entries tell the system how to integrate the directory service’s data with the contents of /etc/passwd. This integration can also be set up in the /etc/nsswitch.conf file (/etc/nscontrol.conf on AIX).
 

See page 739 for more information about the nsswitch.conf file.

 

The following sections discuss the /etc/passwd fields in more detail.
 

Login Name
 

Login names (also known as usernames) must be unique and, depending on the operating system, may have length and character set restrictions.Table 7.1 shows the rules for our example systems. Login names can never contain colons or new-lines because these characters are used as field separators and entry separators, respectively. If you use NIS or NIS+, login names are limited to eight characters, regardless of the operating system.
 

See page 728 for more information about NIS.

 

Table 7.1 Rules for forming login names
 

[image: Image]
 

Originally, UNIX systems limited the permissible characters to alphanumerics and imposed an eight-character length limit. Since the rules for each system tend to be different, you should heed the most restrictive limits among your systems to avert potential conflicts. Such conservatism will guarantee that users can have the same login name on every machine. A combination of eight or fewer lowercase letters, numbers, and underscores is universally acceptable.
 

Login names are case sensitive; however, RFC822 calls for case to be ignored in email addresses. We are not aware of any problems caused by mixed-case login names, but lowercase names are traditional and also easier to type. Mail problems would likely ensue if the login names john and John were different people.
 

Login names should be easy to remember, so random sequences of letters do not make good login names. Avoid nicknames, even if your organization is informal. Names like DarkLord and QTPie belong in front of @hotmail.com. Even if your users have no self-respect, at least consider your site’s overall credibility.
 

Since login names are often used as email addresses, it’s useful to establish a standard way of forming them. It should be possible for users to make educated guesses about each other’s login names. First names, last names, initials, or some combination of these all make reasonable naming schemes.
 

Any fixed scheme for choosing login names eventually results in duplicate names or names that are too long, so you will sometimes have to make exceptions. Choose a standard way of dealing with conflicts, such as adding a number to the end. In the case of a long name, you can use your mail system’s aliasing features to equate two versions of the name, at least as far as mail is concerned.
 

It’s common for large sites to implement a full-name email addressing scheme (e.g., John.Q.Public@mysite.com) that hides login names from the outside world. This is a good idea, but it doesn’t obviate any of the naming advice given above. If for no other reason than the sanity of administrators, it’s best if login names have a clear and predictable correspondence to users’ actual names.
 

Login names should be unique in two senses. First, a user should have the same login name on every machine. This rule is mostly for convenience, both yours and the user’s.
 

Second, a particular login name should always refer to the same person. Commands such as ssh can be set up to validate remote users according to their login names. If scott@boulder.colorado.edu and scott@refuge.colorado.edu are two different people, one Scott might be able to log in to the other’s account without providing a password if the accounts are set up with relaxed security.
 

Experience also shows that duplicate names lead to email confusion. The mail system might be perfectly clear about which scott is which, but users will often send mail to the wrong address.
 

If your site has a global mail alias file, each new login name must be distinct from any alias in this file. If it is not, mail will be delivered to the alias rather than the new user.
 

See page 756 for more information about mail aliases.

 

[image: Image] AIX lets you change the maximum login name length with the chdev command. The relevant device is called sys0. You can run lsattr -D -l sys0 to list the device’s default attributes. Among them is the attribute max_logname, which controls the maximum length of login names. The following command shows you only that particular attribute:
 

[image: Image]
 

To adjust the limit, use the following commands. The change takes effect after the next reboot.1
 

[image: Image]
 

The default length is advertised as nine characters, but AIX’s length specification is the size of the buffer and so must accommodate a null character to terminate the string. Hence, the actual default limit is eight characters, and our chdev command sets the limit to 15 characters.
 

AIX supports multibyte characters (for Asian languages, for example) but recommends against their use. The POSIX portable filename character set is the suggested alternative.
 

Encrypted Password
 

Modern systems put a placeholder for the encrypted password in the /etc/passwd file and then prompt the user for a real password on first login. They also support several encryption schemes in addition to the standard UNIX crypt algorithm. The encrypted password is tagged to identify the form of encryption used to generate it. Our example systems support a variety of encryption algorithms: traditional crypt (based on DES), MD5, Blowfish, and an iterative version of MD5 inherited from the Apache web server project.
 

Password length is another important issue and is often determined by the algorithm used for encryption.Table 7.2 shows the default maximum and minimum password lengths and the encryption systems available on our example systems. Some systems let you type in arbitrarily long passwords but silently truncate them to the limit shown in the table.
 

[image: Image]
 

Table 7.2 Password encryption algorithms and length limits
 

If you choose to bypass your system’s tools for adding users and edit /etc/passwd by hand (with vipw, of course—see page 188) to create a new account, put a star or an x in the encrypted password field. This measure prevents unauthorized use of the account until you or the user has set a real password. Never, ever leave this field empty. That introduces a jumbo-sized security hole because no password is required to access the account.
 

MD5 is slightly cryptographically better than the former DES standard used by crypt, and the MD5 scheme allows passwords of arbitrary length. Longer passwords are more secure—if you actually use them. Some cryptographic weaknesses have been demonstrated in MD5, but successful brute-force attacks have been mounted against DES. SHA256 and Blowfish are the current cryptographic strongmen in this arena. See page 906 for some hints on choosing passwords.
 

Encrypted passwords are of constant length (34 characters for MD5, 13 for DES) regardless of the length of the unencrypted password. Passwords are encrypted in combination with a random “salt” so that a given password can correspond to many different encrypted forms. If two users happen to select the same password, this fact usually cannot be discovered by inspection of the encrypted passwords. MD5 passwords are easy to spot because they always start with $1$ or $md5$.2 Blowfish passwords start with $2a$ and SHA256 passwords with $5$.
 

[image: Image] SUSE defaults to Blowfish encryption for new passwords, which is a very reasonable default. Look for the $2a$ prefix.
 

[image: Image] OpenSolaris now defaults to SHA256 (prefix $5$), although previous versions used MD5 by default.
 

UID (user ID) Number
 

The UID identifies the user to the system. Login names are provided for the convenience of users, but software and the filesystem use UIDs internally. UIDs are usually unsigned 32-bit integers.
 

By definition, root has UID 0. Most systems also define pseudo-users such as bin and daemon to be the owners of commands or configuration files. It’s customary to put such fake logins at the beginning of the /etc/passwd file and to give them low UIDs and a fake shell (e.g., /bin/false) to prevent anyone from logging in as those users. To allow plenty of room for nonhuman users you might want to add in the future, we recommend that you assign UIDs to real users starting at 500 or higher. (The desired range for new UIDs can be specified in the configuration files for useradd.)
 

See page 105 for a description of the root account.

 

Another special UID is that of the pseudo-user “nobody”; it is usually assigned a high value such as -1 or -2, which as unsigned integers in the UID field are the highest and next-highest possible UIDs. The “nobody” login is used when the root user on one machine tries to access files that are NFS-mounted from another machine that doesn’t trust the first machine.
 

See page 697 for more information about the nobody account.

 

It’s not a good idea to have multiple accounts with UID 0. While it might seem convenient to have multiple root logins with different shells or passwords, this setup just creates more potential security holes and gives you multiple logins to secure. If people need to have alternate ways to log in as root, you are better off if they use a program such as sudo.
 

Do not recycle UIDs, even when users leave your organization and you delete their accounts. This precaution prevents confusion if files are later restored from backups, where users may be identified by UID rather than by login name.
 

UIDs should be kept unique across your entire organization. That is, a particular UID should refer to the same login name and the same person on every machine that person is authorized to use. Failure to maintain distinct UIDs can result in security problems with systems such as NFS and can also result in confusion when a user moves from one workgroup to another.
 

It can be hard to maintain unique UIDs when groups of machines are administered by different people or organizations. The problems are both technical and political. The best solution is to have a central database or directory server that contains a record for each user and enforces uniqueness. A simpler scheme is to assign each group within an organization a range of UIDs and let each group manage its own set. This solution keeps the UID spaces separate but does not address the parallel issue of unique login names.
 

LDAP is becoming a popular management tool for UIDs and user account information. It is briefly outlined in this chapter starting on page 202 and is covered more thoroughly in Chapter 19, Sharing System Files, starting on page 728.
 

Default GID Number
 

Like a UID, a group ID number is a 32-bit integer. GID 0 is reserved for the group called root or system. As with UIDs, the system uses several predefined groups for its own housekeeping. Alas, there is no consistency among vendors. For example, the group bin has GID 1 on Red Hat and SUSE and GID 2 on Ubuntu, Solaris, HP-UX, and AIX.
 

In ancient times, when computing power was expensive, groups were used for accounting purposes so that the right department could be charged for your seconds of CPU time, minutes of login time, and kilobytes of disk used. Today, groups are used primarily to share access to files.
 

The /etc/group file defines the groups, with the GID field in /etc/passwd providing a default (or “effective”) GID at login time. The default GID is not treated specially when access is determined; it is relevant only to the creation of new files and directories. New files are normally owned by your effective group, but if you want to share files with others in a project group, you must then remember to manually change the files’ group owner.
 

See page 153 for more information about setgid directories.

 

To facilitate collaboration, you can set the setgid bit (02000) on a directory or mount filesystems with the grpid option. Both of these measures make newly created files default to the group of their parent directory.
 

GECOS Field
 

The GECOS field is sometimes used to record personal information about each user. It has no well-defined syntax. Although you can use any formatting conventions you like, the finger command interprets comma-separated GECOS entries in the following order:
 

• Full name (often the only field used)

 

• Office number and building

 

• Office telephone extension

 

• Home phone number

 

The chfn command lets users change their own GECOS information.3
chfn is useful for keeping things like phone numbers up to date, but it can be misused. For example, a user can change the information to be either obscene or incorrect. Some systems can be configured to restrict which fields chfn can modify; most college campuses disable it entirely. On most systems chfn understands only the /etc/passwd file, so if you use LDAP or some other directory service for login information, chfn may not work at all.
 

See page 728 for more information about LDAP.

 

[image: Image] On AIX, chfn accepts a -R
module flag which loads the specified module to perform the actual update. The available modules are in /usr/lib/security and include one that deals with LDAP.
 

Home Directory
 

A user’s home directory is his or her default directory at login time. Be aware that if home directories are mounted over a network filesystem, they may be unavailable in the event of server or network problems. If the home directory is missing at login time, the system prints a message such as “no home directory”4 and puts the user in /. On Linux, if /etc/login.defs sets DEFAULT_HOME to no, the login is not allowed to continue.
 

Login Shell
 

The login shell is normally a command interpreter such as the Bourne shell or the C shell (/bin/sh or /bin/csh), but it can be any program. sh is the traditional default for UNIX, and bash (the GNU “Bourne again” shell) is the default for Linux and Solaris. AIX defaults to ksh, the Korn shell. tcsh is an enhanced C shell with command editing. On Linux systems, sh and csh are really just links to bash and tcsh, respectively.
 

Some systems permit users to change their shell with the chsh command, but as with chfn, this command may not work if you are using LDAP or some other directory service to manage login information. If you use the /etc/passwd file, a sysadmin can always change a user’s shell by editing the passwd file with vipw.
 

[image: Image] Linux supports the chsh command and limits changes to shells listed in the file /etc/shells. SUSE enforces the /etc/shells list, but Red Hat just warns you if the selected shell is not on the list. If you add entries to the shells file, be sure to use absolute paths since chsh and other programs expect them.
 

[image: Image] On AIX systems, users can change their shells with chsh and are given a long list of shells to choose from.5 The file /etc/security/login.cfg is the authoritative list of vetted shells. /etc/shells contains just a subset of these and is used only by the FTP daemon, in.ftpd. Many of the shells in the long list are just hard links to a single binary. For example sh, ksh, rksh, psh, and tsh (both in /bin and /usr/bin) are all the same program—it changes its behavior depending on the name it was called with. As with chfn, chsh takes an -R
module flag to accommodate LDAP and other directory service systems.
 

[image: Image] On Solaris, only the superuser can change a user’s shell (using passwd -e). The file /etc/shells (which doesn’t exist by default, although its man page does) contains a list of permitted shells.
 

7.2 The /Etc/Shadow and /Etc/Security/Passwd Files
 

A shadow password file is readable only by the superuser and serves to keep encrypted passwords safe from prying eyes and password cracking programs. It also includes some additional account information that wasn’t provided for in the original /etc/passwd format. These days, shadow passwords are the default on nearly all systems.
 

IBM calls the file that stores the encrypted passwords /etc/security/passwd, while the rest of the world calls it /etc/shadow. The formats and contents are, of course, different. We’ll look at /etc/shadow first.
 

The shadow file is not a superset of the passwd file, and the passwd file is not generated from it. You must maintain both files or use tools such as useradd that maintain both files on your behalf. Like /etc/passwd, /etc/shadow contains one line for each user. Each line contains nine fields, separated by colons:
 

• Login name

 

• Encrypted password

 

• Date of last password change

 

• Minimum number of days between password changes

 

• Maximum number of days between password changes

 

• Number of days in advance to warn users about password expiration

 

• Linux: Days after password expiration that account is disabled Solaris/HP-UX: Days before account automatically expires

 

• Account expiration date

 

• A reserved field that is currently always empty, except on Solaris

 

Only the values for the username and password are required. Absolute date fields in /etc/shadow are specified in terms of days (not seconds) since Jan 1, 1970, which is not a standard way of reckoning time on UNIX or Linux systems. However, you can convert from seconds to days since the UNIX epoch with
 

solaris$ expr ‘date +%s‘ / 864006
 

A typical shadow entry looks like this:
 

millert:$md5$em5J8hL$a$iQ3pXe0sakdRaRFyy7Ppj.:14469:0:180:14: : :
 

Here is a more complete description of each field:
 

• The login name is the same as in /etc/passwd. This field connects a user’s passwd and shadow entries.

 

• The encrypted password is identical in concept and execution to the one previously stored in /etc/passwd; a fake Solaris MD5 password is shown.

 

• The last change field records the time at which the user’s password was last changed. This field is filled in by the passwd command.

 

• The fourth field sets the number of days that must elapse between password changes. The idea is to force authentic changes by preventing users from immediately reverting to a familiar password after a required change. However, we think this feature could be somewhat dangerous when a security intrusion has occurred. We suggest setting this field to 0.

 

• The fifth field sets the maximum number of days allowed between password changes. This feature allows the administrator to enforce password aging; see page 906 for more information. Under Linux, the actual enforced maximum number of days is the sum of this field and the seventh (grace period) field.

 

• The sixth field sets the number of days before password expiration that login should begin to warn the user of the impending expiration.

 

• Solaris and HP-UX differ from Linux in their interpretation of the seventh field. Under Linux, the seventh field specifies how many days after the maximum password age has been reached to wait before treating the login as expired.

 

The Solaris/HP-UX behavior is as follows: If a user has not logged in within the number of days specified in the seventh field, the account is disabled. Disused accounts are a favorite target of hackers, and this feature attempts to give you a way to take such accounts “off the market.” However, it only works if the user can be found in the /var/adm/lastlog file; users that have never logged in will not be automatically disabled. Ergo, this feature does not really work in a networked environment because each host has its own lastlog file.

 

• The eighth field specifies the day (in days since Jan 1, 1970) on which the user’s account will expire. The user may not log in after this date until the field has been reset by an administrator. If the field is left blank, the account will never expire.

 

On Linux you can use usermod to set the expiration field; it takes dates in the format yyyy-mm-dd. Solaris’s usermod also computes days since the epoch. It accepts dates in about 30 formats specified in /etc/datemsk, but alas, not in the yyyy-mm-dd format used by Linux.

 

• The ninth field is reserved for future use. Linux and HP-UX honor this use, but Solaris uses the last 4 bits to count failed login attempts.

 

Let’s look again at our example shadow line:
 

millert:$md5$em5J8hL$a$iQ3pXe0sakdRaRFyy7Ppj.:14469:0:180:14: : :
 

In this example, the user millert last changed his password on August 13, 2009. The password must be changed again within 180 days, and millert will receive warnings that the password needs to be changed for the last two weeks of this period. The account does not have an expiration date.
 

On Solaris, HP-UX, and Linux you can use the pwconv utility to reconcile the contents of the shadow file to those of the passwd file, picking up any new additions and deleting users that are no longer listed in passwd. On Linux, pwconv fills in most of the shadow parameters from defaults specified in /etc/login.defs.
 

[image: Image] Root on Solaris can use the command passwd -f
username to force a user to change his or her password at the time of next login. This feature is useful if you regularly run crack to discover poorly-chosen (insecure) passwords. (Under Linux, that same -f flag lets users change their finger information.)
 

[image: Image] AIX does not use the term shadow passwords, but it does use the same concept. AIX’s encrypted passwords are stored in the /etc/security/passwd file in a totally different format from that of the /etc/passwd file. Here’s an example from a virgin AIX install, where the password algorithm defaults to crypt:7
 

[image: Image]
 

The format should be self-explanatory. One or more blank lines separates entries. This same format is used for most AIX configuration files in /etc/security, with the username generalized to whatever object is being controlled or logged.
 

AIX provides a zillion knobs to control all aspects of logins and passwords. Some options are user oriented and some are port oriented (to control the TTY ports on which a given user can log in). See the comments in /etc/security/login.cfg and /etc/security/user for details. One handy command is pwdadm, which lets you force a user to change his or her password at next login.
 

7.3 The /Etc/Group File
 

The /etc/group file contains the names of UNIX groups and a list of each group’s members. Here’s a portion of the group file from an AIX system:
 

[image: Image]
 

Each line represents one group and contains four fields:
 

• Group name

 

• Encrypted password or a placeholder

 

• GID number

 

• List of members, separated by commas (be careful not to add spaces)

 

As in /etc/passwd, fields are separated by colons. Group names should be limited to eight characters for compatibility, although many systems do not actually require this. It is possible to enter a group password to allow users not belonging to a group to enter it with the newgrp command, but this is rarely done. Only Linux has real support for group passwords.8 A password can be set with the gpasswd command; the encrypted form is stored in the /etc/gshadow file. Group passwords are rarely, if ever, used.
 

As with usernames and UIDs, group names and GIDs should be kept consistent among machines that share files through a network filesystem. Consistency can be hard to maintain in a heterogeneous environment since different operating systems use different GIDs for the same group names.
 

We’ve found that the best way to deal with this issue is to avoid using a system group as the default login group for a user. Some systems use group ownership together with the permission bits to control the execution of commands. GID inconsistencies among systems play havoc with site-wide systems for updating and installing software.
 

If a user defaults to a particular group in /etc/passwd but does not appear to be in that group according to /etc/group, /etc/passwd wins the argument. The group memberships granted at login time are really the union of those found in the passwd and group files.
 

Some systems limit the number of groups a user can belong to. Eight groups used to be a common limit, but it is now 16 on Solaris, 20 on HP-UX, and seemingly unlimited on AIX and Linux.
 

To minimize the potential for collisions with vendor-supplied GIDs, we suggest starting local groups at GID 500 or higher.
 

The UNIX tradition was originally to add new users to a group that represents their general category such as “students” or “finance.” However, this convention increases the likelihood that users will be able to read one another’s files because of slipshod permission setting, even if that is not really the intention of the files’ owner. To avoid this problem, we prefer to create a unique group for each user. You can use the same name for both the user and the group. You can also make the GID the same as the UID.
 

The useradd utilities on all of our Linux distributions except SUSE default to placing users in their own personal groups. The UNIX systems default to putting all new users in the same group, but their useradds can be configured to support personal groups, too.
 

A user’s personal group should contain only that user. If you want to let users share files by way of the group mechanism, create separate groups for that purpose. The idea behind personal groups is not to discourage the use of groups per se—it’s simply to establish a more restrictive default group for each user so that files are not shared inadvertently. You can also approach this goal through the shell’s umask command (see page 158).
 

Linux, Solaris, and HP-UX all supply commands that create, modify, and delete groups: groupadd, groupmod, groupdel. AIX instead expects you to modify the /etc/group file with a text editor. However, it does provide the grpck command to check the file’s syntax.
 

7.4 Adding Users: The Basic Steps
 

Before you create an account for a new user at a corporate, government, or educational site, it’s important that the user sign and date a copy of your local user agreement and policy statement. (What?! You don’t have a user agreement and policy statement? See page 1215 for more information about why you need one and what to put in it.)
 

Users have no particular reason to want to sign a policy agreement, so it’s to your advantage to secure their signatures while you still have some leverage. We find that it takes more effort to secure a signed agreement after an account has been released. If your process allows for it, have the paperwork precede the creation of the account.
 

Mechanically, the process of adding a new user consists of several steps required by the system, two steps that establish a useful environment for the new user, and several extra steps for your own convenience as an administrator.
 

Required:
 

• Have the new user sign your policy agreement.

 

• Edit the passwd and shadow files to define the user’s account.

 

• Add the user to the /etc/group file (not really necessary, but nice).

 

• Set an initial password.

 

• Create, chown, and chmod the user’s home directory.

 

• Configure roles and permissions (if you use RBAC; see page 190).

 

For the user:
 

• Copy default startup files to the user’s home directory.

 

• Set the user’s mail home and establish mail aliases.

 

For you:
 

• Verify that the account is set up correctly.

 

• Add the user’s contact information and account status to your database.

 

This list cries out for a script or tool, and fortunately each of our example systems provides one in the form of a useradd command.
 

You must be root to add a user, or on AIX, you must have UserAdmin privileges. This is a perfect place to use sudo; see page 113.
 

Editing the Passwd and Group Files
 

If you have to add a user by hand, use vipw to edit the passwd and shadow files. Although it sounds vi-centric, it actually uses your favorite editor as defined in the EDITOR environment variable. More importantly, it locks the file so that your editing and a user’s password change operations do not collide.
 

On Solaris, and Red Hat systems, vipw automatically asks if you would like to edit the shadow file after you have edited the passwd file. SUSE and Ubuntu systems use vipw -s for this function.
 

Both HP-UX and AIX recommend that you not edit the password file by hand, with or without vipw (it is not even installed on AIX), but rather use useradd or their do-it-all sysadmin tools smh and SMIT, respectively. Our detailed coverage of useradd starts on page 191.
 

If the new user should be a member of more groups than just the default group specified in the passwd file, you must edit the /etc/group file and add the user’s login name to each of the additional groups.
 

Setting A Password
 

Never leave a new account—or any account that has access to a shell—without a password. Password complexity can be enforced with configuration files; see the vendor-specific sections toward the end of this chapter to see which files and variables apply to your operating systems. Set a password for the new user with
 

Rules for selecting good passwords are given on page 111.

 

$ sudo passwd
newusername
 

You’ll be prompted for the actual password. Some automated systems for adding new users do not require you to provide an initial password. Instead, they force the user to set a password on first login. Although this feature is convenient, it’s a giant security hole: anyone who can guess new login names (or look them up in /etc/passwd) can swoop down and hijack the accounts before the intended users have had a chance to log in.
 

Creating the Home Directory and Installing Startup Files
 

You can create the new user’s home directory with a simple mkdir. You’ll need to set ownerships and permissions on the new directory as well, but this is best done after you’ve installed any local startup files.
 

Startup files traditionally begin with a dot and end with the letters rc, short for “run command,” a relic of the CTSS operating system. The initial dot causes ls to hide these “uninteresting” files from directory listings unless the -a option is used.
 

We recommend that you provide default startup files for each shell that is popular on your systems so that users continue to have a reasonable default environment if they change shells.Table 7.3 lists some common startup files.
 

[image: Image]
 

Table 7.3 Common startup files and their uses
 

Sample startup files are traditionally kept in /etc/skel (Linux, Solaris, HP-UX) or /etc (all systems). AIX, always a bit different, stashes them in /etc/security. If you customize your vendor’s startup file examples, /usr/local/etc/skel is a reasonable place to put the modified copies. Linux also keeps tidbits of startup files in the /etc/profile.d directory, where shells look for pointers on coloring the output of ls to make it unreadable on a dark background, or the path to Kerberos binaries.
 

Depending on the user’s shell, /etc may contain system-wide startup files that are processed before the user’s own startup files. For example, bash and sh read /etc/profile before processinĝ/.profile and ~/.bash_profile. These files are a good place in which to put site-wide defaults, but bear in mind that users can override your settings in their own startup files. For details on other shells, see the man page for the shell in question.
 

Be sure to set a reasonable default value for umask; we suggest 077, 027, or 022, depending on the friendliness and size of your site. If you do not use individual groups, we recommend umask 077 because it gives the owner full access but the group and the rest of the world no access. See page 158 for details on umask.
 

The startup files and directories listed for the GNOME and KDE desktop environments are just the tip of the iceberg. gconf is a tool that stores application preferences for programs run under GNOME, much like the Windows registry.
 

Setting Permissions and Ownerships
 

Now that the home directory is set up, turn it over to the user and make sure that the permissions on it are appropriate. The command
 

$ sudo chown -R
newuser:newgroup
~newuser
 

should set ownerships properly. Note that you cannot use
 

$ sudo chown
newuser:newgroup
~newuser/.*
 

to chown the dot files because newuser would then own not only his own files but also the parent directory “..” (e.g., /home) as well. This is a common and dangerous mistake.
 

Setting A Mail Home
 

It is convenient for each user to receive email on only one machine. This scheme is often implemented with an entry in the global aliases file /etc/mail/aliases or the sendmail userDB on the central mail server. See Chapter 20 for general information about email.
 

Configuring Roles and Administrative Privileges
 

Role-based access control (RBAC) allows system privileges to be tailored for individual users and is available on many of our example systems. RBAC is not a traditional part of the UNIX or Linux access control model, but if your site uses it, role configuration must be a part of the process of adding users. RBAC is covered in detail starting on page 108 in the Access Control and Rootly Powers chapter.
 

Legislation such as the Sarbanes-Oxley Act and the Gramm-Leach-Bliley Act in the United States has complicated many aspects of system administration in the corporate arena, including user management. Roles may be your only viable option for fulfilling some of the SOX/GLBA requirements.
 

See Chapter 32 for more information about SOX and GLBA

 

Final Steps
 

To verify that a new account has been properly configured, first log out, then log in as the new user and execute the following commands:
 

[image: Image]
 

You will need to notify new users of their login names and initial passwords. Many sites send this information by email, but for security reasons that’s usually not a good idea. Do it in person or over the phone, unless you are adding 500 new freshmen to the campus’s CS-1 machines. Then, punt the problem to the instructor! This is also a good time to point users toward additional documentation on local customs if you have any.
 

If your site requires users to sign a written policy agreement or appropriate use policy, be sure this step has been completed before releasing the account. This check will prevent oversights and strengthen the legal basis of any sanctions you might later need to impose.
 

See page 1227 for more information about written user contracts.

 

Remind new users to change their passwords immediately. If you wish, you can enforce this by setting the password to expire within a short time. Another option is to have a script check up on new users and be sure their encrypted passwords in the shadow file have changed.9
 

In an environment in which you know the users personally, it’s relatively easy to keep track of who’s using a system and why. If you manage a large and dynamic user base, however, you’ll need a more formal way to keep track of accounts. Maintaining a database of contact information and account statuses will help you figure out who someone is and why they have an account once the act of creating the account has faded from memory.
 

7.5 Adding Users with Useradd
 

Each system’s useradd implements the same basic procedure outlined above. However, it is configurable, and you will probably want to customize it to fit your environment. Since each system has its own idea of what you should customize, where you should implement the customizations, and what the default behavior should be, we cover these details in vendor-specific sections.
 

Table 7.4 is a handy summary of commands and configuration files related to managing users. Each of our example systems has a suite of commands for manipulating users, usually at least useradd, usermod, and userdel. Since the commands are all configured similarly, we show useradd as representative of all three and supplement its entry with other system-specific commands.
 

Please note that although each vendor has named its tools useradd, etc., the tools themselves are different from system to system.
 

[image: Image]
 

Table 7.4 Commands and configuration files for user management
 

Useradd On Ubuntu
 

[image: Image] Ubuntu provides two ways to add users: adduser and useradd. adduser is a Perl wrapper for useradd that is a bit more helpful (makes home directories, copies in startup files, etc.).
 

adduser is configured in /etc/adduser.conf, which includes options such as these:
 

• Rules for locating home directories: by group, by username, etc.

 

• Permission settings for new home directories

 

• UID and GID ranges for system users and general users

 

• An option to create individual groups for each user

 

• Disk quotas (Boolean only, unfortunately)

 

• Regex-based matching of usernames and group names

 

Other typical useradd parameters, such as rules for passwords, are set as parameters to the PAM module that does regular password authentication. (See page 908 for a discussion of PAM, aka Pluggable Authentication Modules.) adduser has a twin addgroup and cousins deluser and delgroup.
 

Useradd On SUSE
 

SUSE’s useradd does not create a new user’s home directory or copy in startup files by default. You must request these niceties with the -m flag. (The startup files come from /etc/skel.) Nor does useradd create a mail spool file for new users.
 

SUSE’s useradd also does not create user-specific groups; the default GID in the passwd file is set by the variable GROUP in /etc/default/useradd. New users are also added to the groups specified by the GROUPS variable. By default, these are the groups video and dialout, which allow access to the system’s frame buffer and the dialup IP software pppd.
 

To make up for these deficiencies, SUSE’s useradd calls /usr/sbin/useradd.local, a bash script to which you can add whatever customizations you wish.
 

The /etc/login.defs file on SUSE controls the following types of issues:
 

• Whether to allow logins if a user’s home directory does not exist

 

• Degree of tolerance (delay and lockout) for failed login attempts

 

• Location of the “message of the day” and ttytype (terminal type) files

 

• Restrictions on the use of chsh and chfn

 

• Password aging

 

• Ranges of system and user UIDs and GIDs

 

• Rules for forming valid user and group names

 

• Users’ umasks (the default is 022)

 

• Local scripts that piggyback on the useradd and userdel commands

 

Both the man page for login.defs and the comments in the file itself do a good job of describing the various parameters and their meanings.
 

Useradd On Red Hat
 

[image: Image] The useradd program on Red Hat Enterprise Linux takes its configuration parameters from /etc/login.defs, where issues such as password aging controls, encryption algorithms, mail spool files, and UID/GID ranges are addressed. The comments in the file do a good job of explaining the various parameters.
 

useradd -D displays the defaults that useradd will use for new logins. Those defaults are set in the file /etc/default/useradd. On Red Hat, new users are placed in their own individual groups. The passwd file entry uses “x” as a password placeholder, and the shadow file uses “!!”, a code that disables the login and requires a sysadmin to set a password for the new user. MD5 encryption is the default. A new user’s home directory is populated with startup files from /etc/skel.
 

Useradd On Solaris
 

[image: Image] On Solaris, some of the default parameters related to logins and passwords are stored in /etc/default/login and /etc/default/passwd; others are built into the useradd command itself. useradd -D shows the default values for several parameters. With additional flags, it can be used to reset some of those defaults.
 

The format of the default/login and default/passwd files is similar to that of Linux’s login.defs file in that blank lines and lines beginning with # are ignored, and each noncomment line assigns a value to a variable. However, the syntax is
 

NAME=value
 

rather than
 

NAME <white-space> value
 

The /etc/default/passwd file controls the following:
 

• Minimum password length

 

• Password aging

 

• Required password complexity

 

• Checking for crackable passwords

 

/etc/default/login controls issues such as these:
 

• The time zone

 

• Limits on the size of files a user can create

 

• Whether root can log in only on the console

 

• Whether a password is required for each user

 

• Handling of failed login attempts

 

• Users’ initial search path

 

• Users’ default umask (defaults to 022)

 

• Whether to log root and failed logins through syslog

 

The files /etc/security/policy.conf and /etc/security/crypt.conf determine the encryption algorithms that can be used for passwords.
 

Useradd On HP-UX
 

[image: Image] By default, HP-UX’s useradd command does not create home directories or put the user in an individual group. However, with the -m option, useradd does create home directories and populate them with startup files from /etc/skel.
 

Configuration parameters for useradd are set in the files /etc/default/useradd and /etc/default/security, with the useradd file adopting the Linux-style format of NAME <white-space> value and the security using the Solaris NAME=value style. Geez, HP, make up your mind! The syntax should be clear from other entries in each file, but if you use the wrong form, the variable you tried to set will be silently ignored. No syntax error message is generated.
 

The /etc/default/useradd file controls options such as:
 

• Default group and shell

 

• Root of the home directory tree

 

• Account expiration

 

• Whether to create home directories

 

• Whether to allow duplicate UIDs

 

The file /etc/default/security contains additional configuration parameters, some of which relate to user management:
 

• Whether to allow logins with a missing home directory

 

• Whether to allow null passwords

 

• Minimum password length

 

• Handling of failed login attempts

 

• Handling of inactive accounts

 

• Default umask for new users (default 027)

 

The variable names in this file are long and well-chosen to explain exactly what each variable controls.
 

Useradd On AIX
 

[image: Image] AIX’s useradd is really just a ksh wrapper for its native AIX equivalent, mkuser. Likewise, usermod invokes chuser, and userdel calls rmuser. Man pages exist for these commands under both their original names and their rest-of-the-world-compliant names.
 

Configuration files control numerous aspects of logins and passwords and are kept in the /etc/security directory. There are three relevant files: login.cfg, user, and mkuser.default. The first two use the * as a comment character; the third has no comments. These files are organized in stanzas of the following form:
 

[image: Image]
 

For example, in the /etc/security/user file, the labels are usernames (or the word default); the possible attributes are shown in Table 7.5 on the next page.
 

[image: Image]
 

Table 7.5 User account options in /etc/security/user (AIX)
 

Whew, what a list! Comments in the file often give the default values, which are fairly reasonable for a low-security installation. We recommend changing a few:
 

• Change umask from 022 to 077.

 

• Change loginretries from 0 (unlimited) to a small integer, say 5.

 

• Change minlen from 0 (no password OK) to at least 6 or 7.

 

• Change expires from 0 (never) to a year (only if you have a tool to refresh the expiration dates on valid users periodically).

 

See page 908 for more information about PAM.

 

Unfortunately, that’s just one of the configuration files that controls a new user’s login. The file /etc/security/login.cfg contains parameters to control bad logins (the delay inserted between prompts for the login and password, the number of bad logins allowed before disabling the account, how long to disable the account, when to reinstate it, etc.), the times at which logins are allowed, the prompt to print when requesting the user’s password, a list of valid shells, the maximum permissible number of simultaneous logins, the length of time to wait for a user password, the type of login authorization to use (here is where you would specify PAM10 if you were to use it), and the password encryption algorithm (the default is crypt). Infinitely, perhaps pathologically, configurable. And to confuse you further, some parameters appear in both files, sometimes with the same name (e.g., logintimes) and sometimes with different names (loginretries vs. logindisable). Yikes! Clutter and complexity galore.
 

useradd on AIX does not provide a -D option to show the default values for new users. It puts new users in a single group and does not create their home directories unless invoked with the -m flag (in which case it also copies in a .profile file from the /etc/security directory).
 

Useradd Example
 

To create a new user “hilbert” using the system defaults on a Linux system, you could simply run
 

$ sudo useradd hilbert
 

This command would create the following entry in /etc/passwd:
 

hilbert:x:1005:20::/home/hilbert:/bin/sh
 

useradd disables the account by putting an x in the password field. You must assign a real password to make the account usable.
 

A more realistic example is shown below. We specify that hilbert’s primary group should be “faculty” and that he should also be added to the “famous” group. We override the default home directory location and shell, and ask useradd to create the home directory if it does not already exist:
 

[image: Image]
 

This command creates the following passwd entry:
 

hilbert:x:1005:30:David Hilbert:/home/math/hilbert:/bin/tcsh
 

The assigned UID is one higher than the highest UID on the system, and the corresponding shadow entry is
 

hilbert:!:14322:0:99999:7:0::
 

The password placeholder character(s) in the passwd and shadow file vary depending on the operating system. useradd also adds hilbert to the appropriate groups in /etc/group, creates the directory /home/math/hilbert, and populates it from the /etc/skel directory.
 

7.6 Adding Users in Bulk with Newusers (Linux)
 

[image: Image] Linux’s newusers creates multiple accounts at one time from the contents of a text file. It’s pretty gimpy, but it can be handy when you need to add a lot of users at once, such as when creating class-specific accounts. newusers expects an input file of lines just like the /etc/passwd file, except that the password field contains the initial password in clear text. Oops… better protect that file.
 

newusers honors the password aging parameters set in the /etc/login.defs file, but it does not copy in the default startup files as useradd does. The only startup file it provides is .xauth.
 

At a university, what’s really needed is a batch adduser script that can use a list of students from enrollment or registration data to generate the input for newusers, with usernames formed according to local rules and guaranteed to be locally unique, with strong passwords randomly generated, and with UIDs and GIDs increasing for each user. You’re probably better off writing your own wrapper for useradd in Perl or Python than in trying to get newusers to do what you need.
 

7.7 Removing Users
 

When a user leaves your organization, that user’s login account and files should be removed from the system. This procedure involves the removal of all references to the login name that were added by you or your useradd program. If you remove a user by hand, you may want to use the following checklist:
 

• Remove the user from any local user databases or phone lists.

 

• Remove the user from the aliases file or add a forwarding address.

 

• Remove the user’s crontab file and any pending at jobs or print jobs.

 

• Kill any of the user’s processes that are still running.

 

• Remove the user from the passwd, shadow,11
group, and gshadow files.

 

• Remove the user’s home directory.

 

• Remove the user’s mail spool.

 

• Clean up entries on shared calendars, room reservation systems, etc.

 

• Delete or transfer ownership of any mailing lists run by the deleted user.

 

Before you remove someone’s home directory, be sure to relocate any files that are needed by other users. You usually can’t be sure which files those might be, so it’s always a good idea to make an extra backup of the user’s home directory and mail spool before deleting them.
 

Once you have removed a user, you may want to verify that the user’s old UID no longer owns files on the system. To find the paths of orphaned files, you can use the find command with the -nouser argument. Because find has a way of “escaping” onto network servers if you’re not careful, it’s usually best to check filesystems individually with -xdev:
 

$ sudo find
filesystem
-xdev -nouser
 

Killing the deleted user’s running processes can be tricky in a distributed environment. Shared calendars and room reservation systems may have ongoing items scheduled by the now-defunct user that are suddenly orphaned and need to be cleaned up. There are probably several more places in your environment where the user needs to be removed—make your own list, perhaps in the form of a cleanup script.
 

If your organization assigns individual workstations to users, it’s generally simplest and most efficient to reimage the entire system from a master template before turning the system over to a new user. Before you do the reinstallation, however, it’s a good idea to back up any local files on the system’s hard disk in case they are needed in the future.
 

Each of our example systems has a userdel command that automates the process of removing a user. It will probably not do quite as thorough a job as you might like, unless you have religiously added functionality to it as you expanded the number of places where user-related information is stored.
 

[image: Image] Ubuntu’s deluser is a Perl script that calls the usual userdel; it undoes all the things adduser does. It calls deluser.local, if it exists, to provide for easy localization. The configuration file /etc/deluser.conf lets you set options such as these:
 

• Whether to remove the user’s home directory and mail spool

 

• Whether to back up the user’s files, and where to put the backup

 

• Whether to remove all files owned by the user

 

• Whether to delete a group if it now has no members

 

[image: Image] SUSE supports a set of pre- and postexecution scripts as well as a userdel.local script that assists userdel and helps you make the default tools aware of your local customs. Configure it in /etc/login.defs.
 

[image: Image] Red Hat has the userdel.local script but no pre- and postexecution scripts to automate things like backing up the about-to-be-removed user’s files.
 

[image: Image] Solaris and AIX have some extra crevices in which they stash user info, primarily in the files that control roles and authorization classes. Therefore, these systems’ userdel commands have a bit more work to do to remove all references to a deleted user.
 

For example, in addition to the /etc/passwd and /etc/group file, Solaris’ userdel updates /etc/shadow, /etc/project, and /etc/user_attr. AIX’s userdel touches the following files in the /etc/security directory: user, user.roles, lastlog, environ, audit/config, limits, passwd, and group. Solaris is not as thorough as one might like: its userdel left a test login with a profile configured in user_attr that should have been cleaned up.
 

[image: Image] HP-UX’s userdel is a ho-hum, run-of-the-mill-type guy who removes the changes made by useradd. It touches only the passwd, shadow, and group files.
 

7.8 Disabling Logins
 

On occasion, a user’s login must be temporarily disabled. A straightforward way to do this is to put a star or some other character in front of the user’s encrypted password in the /etc/security/passwd (AIX) or /etc/shadow file. This measure prevents most types of password-regulated access because the password no longer decrypts to anything sensible. Commands such as ssh that do not necessarily check the system password may continue to function, however.
 

[image: Image] On all our Linux distributions, the usermod -L
user and usermod -U
user commands provide an easy way to lock and unlock passwords. They are just shortcuts for the password twiddling described above: the -L puts an ! in front of the encrypted password in the /etc/shadow file, and the -U removes it.
 

[image: Image] Root on Solaris can lock an account with passwd -l
loginname, force a user to change his or her password with the -f flag, or unlock the account with -u. Locking an account adds * LK * to the password field of /etc/shadow. This is also the value set by useradd for new users.
 

[image: Image] HP-UX supports only crypt-encoded passwords. The * character can never belong to a crypt-generated password field, so adding a * to the encrypted password prevents the user from logging in.
 

[image: Image] On AIX, if the password placeholder field of /etc/passwd contains a * instead of an !, the account is locked. AIX’s pwdadm command can force a user to change his or her password, or it can lock the account so that only an administrator can change the password.
 

Unfortunately, modifying a user’s password simply makes logins fail. It does not notify the user of the account suspension or explain why the account no longer works. An alternative way to disable logins is to replace the user’s shell with a program that prints an explanatory message and supplies instructions for rectifying the situation. The program then exits, terminating the login session.
 

This approach has both advantages and disadvantages. Any forms of access that check the password but do not pay attention to the shell will not be disabled. To facilitate the “disabled shell” trick, many daemons that provide nonlogin access to the system (e.g., ftpd) check to see if a user’s login shell is listed in /etc/shells and deny access if it is not. This is the behavior you want. Unfortunately, it’s not universal, so you may have to do some fairly comprehensive testing if you decide to use shell modification as a way of disabling accounts.
 

Another issue is that your carefully written explanation of the suspended account might never be seen if the user tries to log in through a window system or through a terminal emulator that does not leave output visible after a logout.
 

By default, sendmail will not deliver mail to a user whose shell does not appear in /etc/shells. It’s a bad idea to interfere with the flow of mail, even if the recipient is not able to read it immediately. You can defeat sendmail’s default behavior by adding a fake shell named /SENDMAIL/ANY/SHELL/ to the /etc/shells file.
 

7.9 Managing Users with System-Specific Tools
 

HP-UX and AIX provide a comprehensive system administration tool that knows how to manage users, at least in a rudimentary fashion. In AIX it’s SMIT, the System Management Interface Tool, and in HP-UX it’s now called smh, the System Management Homepage. (It was called sam, the System Administration Manager, in earlier HP-UX releases.) Each of these tools has screens for adding and managing users, either with a windows-based GUI or with a terminal interface based on the curses library. If you are a brand new sysadmin or an old hand on a new and different operating system, these tools are a reasonable place to start for many of the common sysadmin tasks.
 

AIX’s smitty has a handy feature: if you hit F6, it shows you the command and arguments that it is planning to execute. It also logs all interactions and keeps a script file of the commands it executed on your behalf. This can be a good learning tool as you become familiar with AIX’s quirks. HP-UX’s smh has nice single-character shortcuts for its curses interface. They are shown on each menu page so you can quickly get to the command you need.
 

7.10 Reducing Risk with PAM
 

Pluggable Authentication Modules (PAM), are covered in the Security chapter starting on page 908. They centralize the management of the system’s authentication facilities through standard library routines so that programs like login, sudo, passwd, and su do not have to supply their own tricky authentication code. PAM reduces the risk inherent in writing secured software, allows administrators to set site-wide security policies, and defines an easy way to add new authentication methods to the system.
 

Adding and removing users doesn’t involve twiddling the PAM configuration, but the tools involved operate under PAM’s rules and constraints. In addition, many of the PAM configuration parameters are similar to those used by useradd or usermod. If you change a parameter as described in this chapter and useradd doesn’t seem to be paying attention to it, check to see if the system’s PAM configuration is overriding your new value.
 

7.11 Centralizing Account Management
 

Some form of centralized account management is essential for medium-to-large enterprises of all types, be they corporate, academic, or governmental. Users need the convenience and security of a single login name, UID, and password across the site. Administrators need a centralized system that allows changes (such as account revocations) to be instantly propagated everywhere.
 

Such centralization can be achieved in a variety of ways, most of which (including Microsoft’s Active Directory system) involve LDAP, the Lightweight Directory Access Protocol, in some capacity. Options range from bare-bones LDAP installations based on open source software to elaborate commercial identity management systems that come with a hefty price tag.
 

LDAP and Active Directory
 

LDAP is a generalized, database-like repository that can store user management data as well as other types of data. It uses a hierarchical client/server model that supports multiple servers as well as multiple simultaneous clients. One of LDAP’s big advantages as a site-wide repository for login data is that it can enforce unique UIDs and GIDs across systems. It also plays well with Windows, although the reverse is only marginally true.
 

See the section starting on page 728 for more information about LDAP and LDAP implementations.

 

Microsoft’s Active Directory uses LDAP and Kerberos and can manage lots of kinds of data including user information. It’s a bit egotistical and wants to be the boss if it is interacting with UNIX or Linux LDAP repositories. If you need a single authentication system for a site that includes Windows desktops as well as UNIX and Linux systems, it is probably easiest to let Active Directory be in control and to use your UNIX LDAP databases as secondary servers.
 

To implement this configuration, you will need Active Directory and Microsoft’s Services for UNIX, or a commercial Active Directory integration platform such as Quest Authentication Services (formerly Vintela Authorization Services). Sun’s Virtual Directory can help to glue together several different authorization/authentication systems.
 

Each of our example systems has LDAP support built in, although sometimes just the client side (HP-UX, for example). LDAP is often coupled with PAM for performing authentication.
 

LDAP is a database, so the information stored there must fit a well-defined schema. Schemas are expressed as XML files, with the field names coming from the relevant RFCs, primarily RFC2307 for user management data. See Chapter 19, Sharing System Files, for the nitty-gritty details.
 

Single Sign-On Systems
 

Single sign-on (SSO) systems balance user convenience with security issues. The idea is that a user can sign on once (to a login prompt, web page, or Windows box) and be authenticated at that time. The user then obtains authentication credentials (usually implicitly, so that no active management is required), which can then be used to access other machines and applications. The user only has to remember one login and password sequence instead of many.
 

This scheme allows credentials to be more complex (since the user does not need to remember or even deal with them), which theoretically increases security. However, the impact of a compromised account is greater because one login gives an attacker access to multiple machines and applications. SSO systems make walking away from a desktop machine while you are still logged in a significant vulnerability. In addition, the authentication server becomes a critical bottleneck. If it’s down, all useful work grinds to a halt across the enterprise.
 

Although SSO is a simple idea, it implies a lot of back-end complexity because the various applications and machines that a user might want to access must understand the authentication process and SSO credentials. Kerberos manages users’ credentials in some SSO systems; it is covered in more detail in the Security chapter, starting on page 924.
 

Several open source SSO systems exist:
 

• JOSSO, an open source SSO server written in Java

 

• CAS, the Central Authentication Service, from Yale (also Java)

 

• Likewise Open, an integration tool that makes Microsoft Active Directory play nice with Linux and UNIX systems

 

A host of commercial systems are also available, most of them integrated with identity management suites, which are covered in the next section.
 

Identity Management Systems
 

“Identity management” is the latest buzzword in user management. In plain language, it means identifying the users of your systems, authenticating their identities, and granting privileges based on those authenticated identities. The standardization efforts in this realm are led by the World Wide Web Consortium and by The Open Group.
 

Commercial identity management systems combine several key UNIX concepts into a warm and fuzzy GUI replete with marketing jargon. Fundamental to all such systems is a database of user authentication and authorization data, often stored in LDAP format. Control is achieved with concepts such as UNIX groups, and limited administrative privileges are enforced through tools such as sudo. Most such systems have been designed with an eye toward regulatory requirements of accountability, tracking, and audit trails.
 

There are many commercial systems in this space: Oracle’s Identity Management, Sun Identity Management Suite,12 Courion, Avatier Identity Management Suite (AIMS), and BMC Identity Management Suite, to name a few. In evaluating identity management systems, look for the following features:
 

• Generation of globally unique user IDs

 

• The ability to create, change, and delete user accounts across the enterprise, on all types of hardware and operating systems

 

• A secure web interface for management that’s accessible both inside and outside the enterprise

 

• The ability to easily display all users who have a certain set of privileges

 

• An easy way to see all the privileges granted to a particular user

 

• The ability to let users change (and reset) their own passwords, with enforcement of rules for picking strong passwords

 

• The ability for users to change their passwords globally in one operation

 

• A workflow engine; for example, tiered approvals before a user is given certain privileges

 

• The ability to coordinate with a personnel database to automatically delete access for employees who are terminated or laid off

 

• Configurable logging of all changes and administrative actions

 

• Configurable reports based on logging data (by user, by day, etc.)

 

• Role-based access control, including user account provisioning by role

 

• An interface through which hiring managers can request that accounts be provisioned according to role

 

• Exceptions to role-based provisioning, including a workflow for the approval of exceptions

 

Consider also how the system is implemented at the point at which authorizations and authentications actually take place. Does the system require a custom agent to be installed everywhere, or does it conform itself to the underlying systems?
 

7.12 Recommended Reading
 

“The Complete Buyer’s Guide for Identity Management.” Sun Microsystems white paper. 2008. sun.systemnews.com/articles/129/4/sec/20930.
 

7.13 Exercises
 

E7.1 How is a user’s default group determined? How would you change it?

 

E7.2 Explain the differences among the following umask values: 077, 027, 022, and 755. How would you set one of these values as a site-wide default for new users? Can you impose a umask standard on your users?

 

E7.3 What is the purpose of the shadow password file?

 

[image: Image] E7.4 Determine what authentication system the login program on your system uses. If it uses PAM, determine what other programs on the system also use PAM.

 

[image: Image] E7.5 List the steps needed to add a user to a system without using useradd. What extra steps are needed for your local environment?

 

[image: Image] E7.6 Determine the naming convention for new users at your site. What are the rules? How is uniqueness preserved? Can you think of any drawbacks? How are users removed?

 

[image: Image] E7.7 Find a list of names (from a local on-line telephone directory, perhaps) and use it as the input to a script that forms login names according to the naming convention at your site. How many users can you accommodate before you have a collision? How many collisions are there overall? Use the data to evaluate your site’s naming convention, and suggest improvements.

 

[image: Image] E7.8 Write a script to help monitor the health of your /etc/passwd file. (Parts b and e require root access unless you’re clever.)

 

a) Find any entries that have UID 0.

 

b)Find any entries that have no password (needs /etc/shadow).

 

c) Find any sets of entries that have duplicate UIDs.

 

d)Find any entries that have duplicate login names.

 

e) Find any entries that have no expiration date (needs /etc/shadow).

 

[image: Image] E7.9 Write a PAM module to perform authentication by randomly generating a PIN code, sending it to the user’s cell phone as an SMS message, and prompting the user to enter the PIN code for verification. Install your module and configure it into the PAM login stack to achieve two-factor authentication.

 
  


8. Storage
 

[image: Image]
 

UNIX storage is looking more and more like a giant set of Lego blocks that you can put together in an infinite variety of configurations. What will you build? A fighter jet? A dump truck? An advanced technology helicopter with air bags and a night-vision camera?
 

Traditional hard disks remain the dominant medium for on-line storage, but they’re increasingly being joined by solid state drives (SSDs) for performance-sensitive applications. Running on top of this hardware are a variety of software components that mediate between the raw storage devices and the filesystem hierarchy seen by users. These components include device drivers, partitioning conventions, RAID implementations, logical volume managers, systems for virtualizing disks over a network, and the filesystem implementations themselves.
 

In this chapter, we discuss the administrative tasks and decisions that occur at each of these layers. We begin with “fast path” instructions for adding a basic disk to each of our example systems. We then review storage-related hardware technologies and look at the general architecture of storage software. We then work our way up the storage stack from low-level formatting up to the filesystem level. Along the way, we cover disk partitioning, RAID systems, logical volume managers, and systems for implementing storage area networks (SANs).
 

Although vendors all use standardized disk hardware, there’s a lot of variation among systems in the software domain. Accordingly, you’ll see a lot of vendor-specific details in this chapter. We try to cover each system in enough detail that you can at least identify the commands and systems that are used and can locate the necessary documentation.
 

8.1 I Just Want to Add a Disk!
 

Before we launch into many pages of storage architecture and theory, let’s first address the most common scenario: you want to install a hard disk and make it accessible through the filesystem. Nothing fancy: no RAID, all the drive’s space in a single logical volume, and the default filesystem type.
 

Step one is to attach the drive and reboot. Some systems allow hot-addition of disk drives, but we don’t address that case here. Beyond that, the recipes differ slightly among systems.
 

Regardless of your OS, it’s critically important to identify and format the right disk drive. A newly added drive is not necessarily represented by the highest-numbered device file, and on some systems, the addition of a new drive can change the device names of existing drives. Double-check the identity of the new drive by reviewing its manufacturer, size, and model number before you do anything that’s potentially destructive.
 

Linux recipe
 

[image: Image] Run sudo fdisk -l to list the system’s disks and identify the new drive. Then run any convenient partitioning utility to create a partition table for the drive. For drives 2TB and below, install a Windows MBR partition table. cfdisk is the easiest utility for this, but you can also use fdisk, sfdisk, parted, or gparted. Larger disks require a GPT partition table, so you must partition with parted or its GNOME GUI, gparted. gparted is a lot easier to use but isn’t usually installed by default.
 

Put all the drive’s space into one partition of unspecified or “unformatted” type. Do not install a filesystem. Note the device name of the new partition before you leave the partitioning utility; let’s say it’s /dev/sdc1.
 

Next, run the following command sequence, selecting appropriate names for the volume group (vgname), logical volume (volname), and mount point. (Examples of reasonable choices: homevg, home, and /home.)
 

[image: Image]
 

In the /etc/fstab file, copy the line for an existing filesystem and adjust it. The device to be mounted is /dev/vgname/volname. If your existing fstab file identifies volumes by UUID, replace the UUID=xxx clause with the device file; UUID identification is not necessary for LVM volumes.
 

Finally, run sudo mount
mountpoint to mount the filesystem.
 

See page 224 for more details on Linux device files for disks. See page 236 for partitioning information and page 251 for logical volume management. The ext4 filesystem family is discussed starting on page 255.
 

Solaris recipe
 

[image: Image] Run sudo format and inspect the menu of known disks to identify the name of the new device. Let’s say it’s c9t0d0. Type <Control-C> to abort.
 

Run zpool create
poolname
c9t0d0. Choose a simple poolname such as “home” or “extra.” ZFS creates a filesystem and mounts it under / poolname.
 

See page 225 for more details on disk devices in Solaris. See page 264 for a general overview of ZFS.
 

HP-UX recipe
 

[image: Image] Run sudo ioscan -fNn -C disk to identify the device files for the new disk; let’s say they are /dev/disk/disk4 and /dev/rdisk/disk4.
 

Next, run the following command sequence, selecting appropriate names for the volume group (vgname), logical volume (volname), and mount point. (An example of reasonable choices: homevg, home, and /home.)
 

[image: Image]
 

In the /etc/fstab file, copy the line for an existing filesystem and adjust it. The device to be mounted is /dev/vgname/volname.
 

Finally, run sudo mount
mountpoint to mount the filesystem.
 

See page 225 for more details on HP-UX disk device files. See page 251 for logical volume management information. The VxFS filesystem is discussed starting on page 256.
 

AIX recipe
 

[image: Image] Run lsdev -C -c disk to see a list of the disks the system is aware of, then run lspv to see which disks are already set up for volume management. The device that appears in the first list but not the second is your new disk. Let’s say it’s hdisk1.
 

Next, run the following command sequence, selecting appropriate names for the volume group (vgname), logical volume (volname), and mount point. (Examples of reasonable choices: homevg, home, and /home.)
 

[image: Image]
 

See page 226 for more details on AIX disk device files, and see page 253 for AIX logical volume management information. The JFS2 filesystem is discussed starting on page 257.
 

8.2 Storage Hardware
 

Even in today’s post-Internet world, there are only a few basic ways to store computer data: hard disks, flash memory, magnetic tapes, and optical media. The last two technologies have significant limitations that disqualify them from use as a system’s primary filesystem. However, they’re still commonly used for backups and for “near-line” storage—cases in which instant access and rewritability are not of primary concern.
 

See page 301 for a summary of current tape technologies.

 

After 40 years of hard disk technology, system builders are finally getting a practical alternative in the form of solid state disks (SSDs). These flash-memory-based devices offer a different set of tradeoffs from a standard disk, and they’re sure to exert a strong influence over the architectures of databases, filesystems, and operating systems in the years to come.
 

At the same time, traditional hard disks are continuing their exponential increases in capacity. Twenty years ago, a 60MB hard disk cost $1,000. Today, a garden-variety 1TB drive runs $80 or so. That’s 200,000 times more storage for the money, or double the MB/$ every 1.15 years—nearly twice the rate predicted by Moore’s Law. During that same period, the sequential throughput of mass-market drives has increased from 500 kB/s to 100 MB/s, a comparatively paltry factor of 200. And random-access seek times have hardly budged. The more things change, the more they stay the same.
 

A third—hybrid—category, hard disks with large flash-memory buffers, was widely touted a few years ago but never actually materialized in the marketplace. It’s not clear to us whether the drives were delayed by technical, manufacturing, or marketing concerns. They may yet appear on the scene, but the implications for system administrators remain unclear.
 

See page 14 for more information on IEC units (gibibytes, etc.).

 

Disk sizes are specified in gigabytes that are billions of bytes, as opposed to memory, which is specified in gigabytes (gibibytes, really) of 230 (1,073,741,824) bytes. The difference is about 7%. Be sure to check your units when estimating and comparing capacities.
 

Hard disks and SSDs are enough alike that they can act as drop-in replacements for each other, at least at the hardware level. They use the same hardware interfaces and interface protocols. And yet they have different strengths, as summarized in Table 8.1. Performance and cost values are as of mid-2010.
 

[image: Image]
 

Table 8.1 Comparison of hard disk and SSD technology
 

In the next sections, we take a closer look at each of these technologies.
 

Hard disks
 

A typical hard drive contains several rotating platters coated with magnetic film. They are read and written by tiny skating heads that are mounted on a metal arm that swings back and forth to position them. The heads float close to the surface of the platters but do not actually touch.
 

Reading from a platter is quick; it’s the mechanical maneuvering needed to address a particular sector that drives down random-access throughput. There are two main sources of delay.
 

First, the head armature must swing into position over the appropriate track. This part is called seek delay. Then, the system must wait for the right sector to pass underneath the head as the platter rotates. That part is rotational latency. Disks can stream data at tens of MB/s if reads are optimally sequenced, but random reads are fortunate to achieve more than a few MB/s.
 

A set of tracks on different platters that are all the same distance from the spindle is called a cylinder. The cylinder’s data can be read without any additional movement of the arm. Although heads move amazingly fast, they still move much slower than the disks spin around. Therefore, any disk access that does not require the heads to seek to a new position will be faster.
 

Rotational speeds have increased over time. Currently, 7,200 RPM is the mass-market standard for performance-oriented drives, and 10,000 RPM and 15,000 RPM drives are popular at the high end. Higher rotational speeds decrease latency and increase the bandwidth of data transfers, but the drives tend to run hot.
 

Hard disks fail frequently. A 2007 Google Labs study of 100,000 drives surprised the tech world with the news that hard disks more than two years old had an average annual failure rate (AFR) of more than 6%, much higher than the failure rates manufacturers predicted based on their extrapolation of short-term testing. The overall pattern was a few months of infant mortality, a two-year honeymoon of annual failure rates of a few percent, and then a jump up to the 6%–8% AFR range. Overall, hard disks in the Google study had less than a 75% chance of surviving a five-year tour of duty.
 

Interestingly, Google found no correlation between failure rate and two environmental factors that were formerly thought to be important: operating temperature and drive activity. The complete paper can be found at tinyurl.com/fail-pdf.
 

Disk failures tend to involve either platter surfaces (bad blocks) or the mechanical components. The firmware and hardware interface usually remain operable after a failure, so you can query the disk for details (see page 230).
 

Drive reliability is often quoted by manufacturers in terms of mean time between failures (MTBF), denominated in hours. A typical value for an enterprise drive is around 1.2 million hours. However, MTBF is a statistical measure and should not be read to imply that an individual drive will run for 140 years before failing.
 

MTBF is the inverse of AFR in the drive’s steady-state period—that is, after break-in but before wear-out. A manufacturer’s MTBF of 1.2 million hours corresponds to an AFR of 0.7% per year. This value is almost, but not quite, concordant with the AFR range observed by Google (1%–2%) during the first two years of their sample drives’ lives.
 

Manufacturers’ MTBF values are probably accurate, but they are cherry-picked from the most reliable phase of each drive’s life. MTBF values should therefore be regarded as an upper bound on reliability; they do not predict your actual expected failure rate over the long term. Based on the limited data quoted above, you might consider dividing manufacturers’ MTBFs by a factor of 7.5 or so to arrive at a more realistic estimate of five-year failure rates.
 

Hard disks are commodity products, and one manufacturer’s model is much like another’s, given similar specifications for spindle speed, hardware interface, and reliability. These days, you need a dedicated qualification laboratory to make fine distinctions among competing drives.
 

Solid state disks
 

SSDs spread reads and writes across banks of flash memory cells, which are individually rather slow in comparison to modern hard disks. But because of parallelism, the SSD as a whole meets or exceeds the bandwidth of a traditional disk. The great strength of SSDs is that they continue to perform well when data is read or written at random, an access pattern that’s predominant in real-world use.
 

Storage device manufacturers like to quote sequential transfer rates for their products because the numbers are impressively high. But for traditional hard disks, these sequential numbers have almost no relationship to the throughput observed with random reads and writes. For example, Western Digital’s high-performance Velociraptor drives can achieve nearly 120 MB/s in sequential transfers, but their random read results are more on the order of 2 MB/s. By contrast, Intel’s current-generation SSDs stay above 30 MB/s for all access patterns.
 

This performance comes at a cost, however. Not only are SSDs more expensive per gigabyte of storage than are hard disks, but they also introduce several new wrinkles and uncertainties into the storage equation.
 

Each page of flash memory in an SSD (typically 4KiB on current products) can be rewritten only a limited number of times (usually about 100,000, depending on the underlying technology). To limit the wear on any given page, the SSD firmware maintains a mapping table and distributes writes across all the drive’s pages. This remapping is invisible to the operating system, which sees the drive as a linear series of blocks. Think of it as virtual memory for storage.
 

A further complication is that flash memory pages must be erased before they can be rewritten. Erasing is a separate operation that is slower than writing. It’s also impossible to erase individual pages—clusters of adjacent pages (typically 128 pages or 512KiB) must be erased together. The write performance of an SSD can drop substantially when the pool of pre-erased pages is exhausted and the drive must recover pages on the fly to service ongoing writes.
 

Rebuilding a buffer of erased pages is harder than it might seem because filesystems typically do not mark or erase data blocks they are no longer using. A storage device doesn’t know that the filesystem now considers a given block to be free; it only knows that long ago someone gave it data to store there. In order for an SSD to maintain its cache of pre-erased pages (and thus, its write performance), the filesystem has to be capable of informing the SSD that certain pages are no longer needed. As of this writing, ext4 and Windows 7’s NTFS are the only common filesystems that offers this feature. But given the enormous interest in SSDs, other filesystems are sure to become more SSD-aware in the near future.
 

Another touchy subject is alignment. The standard size for a disk block is 512 bytes, but that size is too small for filesystems to deal with efficiently.1 Filesystems manage the disk in terms of clusters of 1KiB to 8KiB in size, and a translation layer maps filesystem clusters into ranges of disk blocks for reads and writes.
 

On a hard disk, it makes no difference where a cluster begins or ends. But because SSDs can only read or write data in 4KiB pages (despite their emulation of a hard disk’s traditional 512-byte blocks), filesystem cluster boundaries and SSD page boundaries should coincide. You wouldn’t want a 4KiB logical cluster to correspond to half of one 4KiB SSD cluster and half of another—with that layout, the SSD might have to read or write twice as many physical pages as it should to service a given number of logical clusters.
 

Since filesystems usually count off their clusters starting at the beginning of whatever storage is allocated to them, the alignment issue can be finessed by aligning disk partitions to a power-of-2 boundary that is large in comparison with the likely size of SSD and filesystem pages (e.g., 64KiB). Unfortunately, the Windows MBR partitioning scheme that Linux has inherited does not make such alignment automatic. Check the block ranges that your partitioning tool assigns to make sure they are aligned, keeping in mind that the MBR itself consumes a block. (Windows 7 aligns partitions suitably for SSDs by default.)
 

The theoretical limits on the rewritability of flash memory are probably less of an issue than they might initially seem. Just as a matter of arithmetic, you would have to stream 100 MB/s of data to a 150GB SSD for more than four continuous years to start running up against the rewrite limit. The more general question of long-term SSD reliability is as yet unanswered, however. SSDs are an immature product category, and early adopters should expect quirks.
 

The controllers used inside SSDs are rapidly evolving, and there are currently marked differences in performance among manufacturers. The market should eventually converge to a standard architecture for these devices, but that day is still a year or two off. In the short term, careful shopping is essential.
 

Anand Shimpi’s March 2009 article on SSD technology is a superb introduction to the promise and perils of the SSD. It can be found at tinyurl.com/dexnbt.
 

8.3 Storage Hardware Interfaces
 

These days, only a few interface standards are in common use. If a system supports several different interfaces, use the one that best meets your requirements for speed, redundancy, mobility, and price.
 

• ATA (Advanced Technology Attachment), known in earlier revisions as IDE, was developed as a simple, low-cost interface for PCs. It was originally called Integrated Drive Electronics because it put the hardware controller in the same box as the disk platters and used a relatively high-level protocol for communication between the computer and the disks. This is now the way that all hard disks work, but at the time it was something of an innovation.

 

The traditional parallel ATA interface (PATA) connected disks to the motherboard with a 40- or 80-conductor ribbon cable. This style of disk is nearly obsolete, but the installed base is enormous. PATA disks are often labeled as “IDE” to distinguish them from SATA drives (below), but they are true ATA drives. PATA disks are medium to fast in speed, generous in capacity, and unbelievably cheap.

 

• Serial ATA, SATA, is the successor to PATA. In addition to supporting much higher transfer rates (currently 3 Gb/s, with 6 Gb/s soon to arrive), SATA simplifies connectivity with tidier cabling and a longer maximum cable length. SATA has native support for hot-swapping and (optional) command queueing, two features that finally make ATA a viable alternative to SCSI in server environments.

 

• Though not as common as it once was, SCSI is one of the most widely supported disk interfaces. It comes in several flavors, all of which support multiple disks on a bus and various speeds and communication styles. SCSI is described in more detail on page 216.

 

Hard drive manufacturers typically reserve SCSI interfaces for their highest-performing and most rugged drives. You’ll pay more for these drives, but mostly because of the drive features rather than the interface.

 

• Fibre Channel is a serial interface that is popular in the enterprise environment thanks to its high bandwidth and to the large number of storage devices that can be attached to it at once. Fibre Channel devices connect with a fiber optic or twinaxial copper cable. Speeds range from roughly 1–40 Gb/s depending on the protocol revision.

 

Common topologies include loops, called Fibre Channel Arbitrated Loops (FC-AL), and fabrics, which are constructed with Fibre Channel switches. Fibre Channel can speak several different protocols, including SCSI and even IP. Devices are identified by a hardwired, 8-byte ID number (a “World Wide Name”) that’s similar to an Ethernet MAC address.

 

• The Universal Serial Bus (USB) and FireWire (IEEE1394) serial communication systems have become popular for connecting external hard disks. Current speeds are 480 Mb/s for USB and 800 Mb/s for FireWire; both systems are too slow to accommodate a fast disk streaming data at full speed. Upcoming revisions of both standards will offer more competitive speeds (up to 5 Gb/s with USB 3.0).

 

Hard disks never provide native USB or FireWire interfaces—SATA converters are built into the disk enclosures that feature these ports.

 

ATA and SCSI are by far the dominant players in the disk drive arena. They are the only interfaces we discuss in detail.
 

The PATA interface
 

PATA (Parallel Advanced Technology Attachment), also called IDE, was designed to be simple and inexpensive. It is most often found on PCs or low-cost workstations. The original IDE became popular in the late 1980s. A succession of protocol revisions culminating in the current ATA-7 (also known as Ultra ATA/133) added direct memory access (DMA) modes, plug and play features, logical block addressing (LBA), power management, self-monitoring capabilities, and bus speeds up to 133 MB/s. Around the time of ATA-4, the ATA standard also merged with the ATA Packet Interface (ATAPI) protocol, which allows CD-ROM and tape drives to work on an IDE bus.
 

The PATA connector is a 40-pin header that connects the drive to the interface card with a clumsy ribbon cable. ATA standards beyond Ultra DMA/66 use an 80-conductor cable with more ground pins and therefore less electrical noise. Some nicer cables that are available bundle up the ribbon into a thick cable sleeve, tidying up the chassis and improving air flow. Power cabling for PATA uses a chunky 4-conductor Molex plug.
 

If a cable or drive is not keyed, be sure that pin 1 on the drive goes to pin 1 on the interface jack. Pin 1 is usually marked with a small “1” on one side of the connector. If it is not marked, a rule of thumb is that pin 1 is usually the one closest to the power connector. Pin 1 on a ribbon cable is usually marked in red. If there is no red stripe on one edge of your cable, just make sure you have the cable oriented so that pin 1 is connected to pin 1 and mark the cable with a red sharpie.
 

Most PCs have two PATA buses, each of which can host two devices. If you have more than one device on a PATA bus, you must designate one as the master and the other as the slave. A “cable select” jumper setting on modern drives (which is usually the default) lets the devices work out master vs. slave on their own. Occasionally, it does not work correctly and you must explicitly assign the master and slave roles.
 

No performance advantage accrues from being the master. Some older PATA drives do not like to be slaves, so if you are having trouble getting one configuration to work, try reversing the disks’ roles. If things are still not working out, try making each device the master of its own PATA bus.
 

Arbitration between master and slave devices on a PATA bus can be relatively slow. If possible, put each PATA drive on its own bus.
 

The SATA interface
 

As data transfer rates for PATA drives increased, the standard’s disadvantages started to become obvious. Electromagnetic interference and other electrical issues caused reliability concerns at high speeds. Serial ATA, SATA, was invented to address these problems. It is now the predominant hardware interface for storage.
 

SATA smooths many of PATA’s sharp edges. It improves transfer rates (potentially to 750 MB/s with the upcoming 6 Gb/s SATA) and includes superior error checking. The standard supports hot-swapping, native command queuing, and sundry performance enhancements. SATA eliminates the need for master and slave designations because only a single device can be connected to each channel.
 

SATA overcomes the 18-inch cable limitation of PATA and introduces new data and power cable standards of 7 and 15 conductors, respectively.2 These cables are infinitely more flexible and easier to work with than their ribbon cable predecessors—no more curving and twisting to fit drives on the same cable. They do seem to be a bit more quality-sensitive than the old PATA ribbon cables, however. We have seen several of the cheap pack-in SATA cables that come with motherboards fail in actual use.3
 

SATA cables slide easily onto their mating connectors, but they can just as easily slide off. Cables with locking catches are available, but they’re a mixed blessing. On motherboards with six or eight SATA connectors packed together, it can be hard to disengage the locking connectors without a pair of needle-nosed pliers.
 

SATA also introduces an external cabling standard called eSATA. The cables are electrically identical to standard SATA, but the connectors are slightly different. You can add an eSATA port to a system that has only internal SATA connectors by installing an inexpensive converter bracket.
 

Be leery of external multidrive enclosures that have only a single eSATA port— some of these are smart (RAID) enclosures that require a proprietary driver. (The drivers rarely support UNIX or Linux.) Others are dumb enclosures that have a SATA port multiplier built in. These are potentially usable on UNIX systems, but since not all SATA host adapters support port expanders, pay close attention to the compatibility information. Enclosures with multiple eSATA ports—one per drive bay—are always safe.
 

Parallel SCSI
 

SCSI, the Small Computer System Interface, defines a generic data pipe that can be used by all kinds of peripherals. In the past it was used for disks, tape drives, scanners, and printers, but these days most peripherals have abandoned SCSI in favor of USB.
 

Many flavors of SCSI interface have been defined since 1986, when SCSI-1 was first adopted as an ANSI standard. Traditional SCSI uses parallel cabling with 8 or 16 conductors.
 

Unfortunately, there has been no real rhyme or reason to the naming conventions for parallel SCSI. The terms “fast,” “wide,” and “ultra” were introduced at various times to mark significant developments, but as those features became standard, the descriptors vanished from the names. The nimble-sounding Ultra SCSI is in
 

fact a 20 MB/s standard that no one would dream of using today, so it has had to give way to Ultra2, Ultra3, Ultra-320, and Ultra-640 SCSI. For the curious, the following regular expression matches all the various flavors of parallel SCSI:
 

(Fast(-Wide)?|Ultra((Wide)?|2 (Wide)?|3|-320|-640)?) SCSI|SCSI-[1-3]

 

Many different connectors have been used as well. They vary depending on the version of SCSI, the type of connection (internal or external), and the number of data bits sent at once. Exhibit A shows pictures of some common ones. Each connector is shown from the front, as if you were about to plug it into your forehead.
 

Exhibit A Parallel SCSI connectors (front view, male except where noted)
 

[image: Image]
 

The only one of these connectors still being manufactured today is the SCA-2, which is an 80-pin connector that includes both power and bus connections.
 

Each end of a parallel SCSI bus must have a terminating resistor (“terminator”). These resistors absorb signals as they reach the end of the bus and prevent noise from reflecting back onto the bus. Terminators take several forms, from small external plugs that you snap onto a regular port to sets of tiny resistor packs that install onto a device’s circuit boards. Most modern devices are autoterminating.
 

If you experience seemingly random hardware problems on your SCSI bus, first check that both ends of the bus are properly terminated. Improper termination is one of the most common SCSI configuration mistakes on old SCSI systems, and the errors it produces can be obscure and intermittent.
 

Parallel SCSI buses use a daisy chain configuration, so most external devices have two SCSI ports.4 The ports are identical and interchangeable—either one can be the input. Internal SCSI devices (including those with SCA-2 connectors) are attached to a ribbon cable, so only one port is needed on the device.
 

Each device has a SCSI address or “target number” that distinguishes it from the other devices on the bus. Target numbers start at 0 and go up to 7 or 15, depending on whether the bus is narrow or wide. The SCSI controller itself counts as a device and is usually target 7. All other devices must have their target numbers set to unique values. It is a common error to forget that the SCSI controller has a target number and to set a device to the same target number as the controller.
 

If you’re lucky, a device will have an external thumbwheel with which the target number can be set. Other common ways of setting the target number are DIP switches and jumpers. If it is not obvious how to set the target number on a device, look up the hardware manual on the web.
 

The SCSI standard supports a form of subaddressing called a “logical unit number.” Each target can have several logical units inside it. A plausible example is a drive array with several disks but only one SCSI controller. If a SCSI device contains only one logical unit, the LUN usually defaults to 0.
 

The use of logical unit numbers is generally confined to large drive arrays. When you hear “SCSI unit number,” you should assume that it is really a target number that’s being discussed until proven otherwise.
 

From the perspective of a sysadmin dealing with legacy SCSI hardware, here are the important points to keep in mind:
 

• Don’t worry about the exact SCSI versions a device claims to support; look at the connectors. If two SCSI devices have the same connectors, they are compatible. That doesn’t necessarily mean that they can achieve the same speeds, however. Communication will occur at the speed of the slower device.

 

• Even if the connectors are different, the devices can still be made compatible with an adapter if both connectors have the same number of pins.

 

• Many older workstations have internal SCSI devices such as tape and floppy drives. Check the listing of current devices before you reboot to add a new device.

 

• After you have added a new SCSI device, check the listing of devices discovered by the kernel when it reboots to make sure that everything you expect is there. Most SCSI drivers do not detect multiple devices that have the same SCSI address (an illegal configuration). SCSI address conflicts lead to strange behavior.

 

• If you see flaky behavior, check for a target number conflict or a problem with bus termination.

 

• Remember that your SCSI controller uses one of the SCSI addresses.

 

Serial SCSI
 

As in the PATA world, parallel SCSI is giving way to Serial Attached SCSI (SAS), the SCSI analog of SATA. From the hardware perspective, SAS improves just about every aspect of traditional parallel SCSI.
 

• Chained buses are passé. Like SATA, SAS is a point-to-point system. SAS allows the use of “expanders” to connect multiple devices to a single host port. They’re analogous to SATA port multipliers, but whereas support for port multipliers is hit or miss, expanders are always supported.

 

• SAS does not use terminators.

 

• SCSI target IDs are no longer used. Instead, each SAS device has a Fibre-Channel-style 64-bit World Wide Name (WWN) assigned by the manufacturer. It’s analogous to an Ethernet MAC address.

 

• The number of devices in a SCSI bus (“SAS domain,” really) is no longer limited to 8 or 16. Up to 16,384 devices can be connected.

 

SAS currently operates at 3 Gb/s, but speeds are scheduled to increase to 6 Gb/s and then to 12 Gb/s by 2012.
 

Which is better, SCSI or SATA?
 

In past editions of this book, SCSI was the obvious interface choice for server applications. It offered the highest available bandwidth, out-of-order command execution (aka tagged command queueing), lower CPU utilization, easier handling of large numbers of storage devices, and access to the market’s most advanced hard drives.
 

The advent of SATA has removed or minimized most of these advantages, so SCSI simply does not deliver the bang for the buck that it used to. SATA drives compete with (and in some cases, outperform) equivalent SCSI disks in nearly every category. At the same time, both SATA devices and the interfaces and cabling used to connect them are cheaper and far more widely available.
 

SCSI still holds a few trump cards:
 

• Manufacturers continue to use the SATA/SCSI divide to stratify the storage market. To help justify premium pricing, the fastest and most reliable drives are still available with only SCSI interfaces.

 

• SATA is limited to a queue depth of 32 pending operations. SCSI can handle thousands.

 

• SAS can handle many storage devices (hundreds or thousands) on a single host interface. But keep in mind that all those devices share a single pipe to the host; you are still limited to 3 Gb/s of aggregate bandwidth.

 

The SAS vs. SATA debate may ultimately be moot because the SAS standard includes support for SATA drives. SAS and SATA connectors are similar enough that a single SAS backplane can accommodate drives of either type. At the logical layer, SATA commands are simply tunneled over the SAS bus.
 

This convergence is an amazing technical feat, but the economic argument for it is less clear. The expense of a SAS installation is mostly in the host adapter, backplane, and infrastructure; the SAS drives themselves aren’t outrageously priced. Once you’ve invested in a SAS setup, you might as well stick with SAS from end to end. (On the other hand, perhaps the modest price premiums for SAS drives are a result of the fact that SATA drives can easily be substituted for them.)
 

8.4 Peeling the Onion: The Software Side of Storage
 

If you’re used to plugging in a disk and having your Windows system ask if you want to format it, you may be a bit taken aback by the apparent complexity of storage management on UNIX and Linux systems. Why is it all so complicated?
 

To begin with, much of the complexity is optional. On some systems, you can log in to your system’s desktop, connect that same USB drive, and have much the same experience as on Windows. You’ll get a simple setup for personal data storage. If that’s all you need, you’re good to go.
 

As usual in this book, we’re primarily interested in enterprise-class storage systems: filesystems that are accessed by many users (both local and remote) and that are reliable, high-performance, easy to back up, and easy to adapt to future needs. These systems require a bit more thought, and UNIX and Linux give you plenty to think about.
 

Exhibit B shows a typical set of software components that can mediate between a raw storage device and its end users. The specific architecture shown in Exhibit B is for Linux, but our other example systems include similar features, although not necessarily in the same packages.
 

The arrows in Exhibit B mean “can be built on.” For example, a Linux filesystem can be built on top of a partition, a RAID array, or a logical volume. It’s up to the administrator to construct a stack of modules that connect each storage device to its final application.
 

Sharp-eyed readers will note that the graph has a cycle, but real-world configurations do not loop. Linux allows RAID and logical volumes to be stacked in either order, but neither component should be used more than once (though it is technically possible to do this).
 

Here’s what the pieces in Exhibit B represent:
 

• A storage device is anything that looks like a disk. It can be a hard disk, a flash drive, an SSD, an external RAID array implemented in hardware, or even a network service that provides block-level access to a remote device. The exact hardware doesn’t matter, as long as the device allows random access, handles block I/O, and is represented by a device file.

 

Exhibit B Storage management layers
 

[image: Image]
 

• A partition is a fixed-size subsection of a storage device. Each partition has its own device file and acts much like an independent storage device. For efficiency, the same driver that handles the underlying device usually implements partitioning. Most partitioning schemes consume a few blocks at the start of the device to record the ranges of blocks that make up each partition.

 

Partitioning is becoming something of a vestigial feature. Linux and Solaris drag it along primarily for compatibility with Windows-partitioned disks. HP-UX and AIX have largely done away with it in favor of logical volume management, though it’s still needed on Itanium-based HP-UX systems.

 

• A RAID array (a redundant array of inexpensive/independent disks) combines multiple storage devices into one virtualized device. Depending on how you set up the array, this configuration can increase performance (by reading or writing disks in parallel), increase reliability (by duplicating or parity-checking data across multiple disks), or both. RAID can be implemented by the operating system or by various types of hardware.

 

As the name suggests, RAID is typically conceived of as an aggregation of bare drives, but modern implementations let you use as a component of a RAID array anything that acts like a disk.

 

• Volume groups and logical volumes are associated with logical volume managers (LVMs). These systems aggregate physical devices to form pools of storage called volume groups. The administrator can then subdivide this pool into logical volumes in much the same way that disks of yore were divided into partitions. For example, a 750GB disk and a 250GB disk could be aggregated into a 1TB volume group and then split into two 500GB logical volumes. At least one volume would include data blocks from both hard disks.

 

Since the LVM adds a layer of indirection between logical and physical blocks, it can freeze the logical state of a volume simply by making a copy of the mapping table. Therefore, logical volume managers often provide some kind of a “snapshot” feature. Writes to the volume are then directed to new blocks, and the LVM keeps both the old and new mapping tables. Of course, the LVM has to store both the original image and all modified blocks, so it can eventually run out of space if a snapshot is never deleted.

 

• A filesystem mediates between the raw bag of blocks presented by a partition, RAID array, or logical volume and the standard filesystem interface expected by programs: paths such as /var/spool/mail, UNIX file types, UNIX permissions, etc. The filesystem determines where and how the contents of files are stored, how the filesystem namespace is represented and searched on disk, and how the system is made resistant to (or recoverable from) corruption.

 

Most storage space ends up as part of a filesystem, but swap space and database storage can potentially be slightly more efficient without “help” from a filesystem. The kernel or database imposes its own structure on the storage, rendering the filesystem unnecessary.

 

If it seems to you that this system has a few too many little components that simply implement one block storage device in terms of another, you’re in good company. The trend over the last few years has been toward consolidating these components to increase efficiency and remove duplication. Although logical volume managers did not originally function as RAID controllers, most have absorbed some RAID-like features (notably, striping and mirroring). As administrators get comfortable with logical volume management, partitions are disappearing, too.
 

On the cutting edge today are systems that combine a filesystem, a RAID controller, and an LVM system all in one tightly integrated package. Sun’s ZFS filesystem is the leading example, but the Btrfs filesystem in development for Linux has similar design goals. We have more to say about ZFS on page 264.
 

Most setups are relatively simple. Exhibit C illustrates a traditional partitions-andfilesystems schema as it might be found on a couple of data disks on a Linux system. (The boot disk is not shown.) Substitute logical volumes for partitions and the setup is similar on other systems.
 

In the next sections, we look in more detail at the steps involved in various phases of storage configuration: device wrangling, partitioning, RAID, logical volume management, and the installation of a filesystem. Finally, we double back to cover ZFS and storage area networking.
 

Exhibit C Traditional data disk partitioning scheme (Linux device names)
 

[image: Image]
 

8.5 Attachment and Low-Level management of Drives
 

The way a disk is attached to the system depends on the interface that is used. The rest is all mounting brackets and cabling. Fortunately, SAS and SATA connections are virtually idiot-proof.
 

For parallel SCSI, double-check that you have terminated both ends of the SCSI bus, that the cable length is less than the maximum appropriate for the SCSI variant you are using, and that the new SCSI target number does not conflict with the controller or another device on the bus.
 

Even on hot-pluggable interfaces, it’s conservative to shut the system down before making hardware changes. Some older systems such as AIX default to doing device configuration only at boot time, so the fact that the hardware is hot-pluggable may not translate into immediate visibility at the OS level. In the case of SATA interfaces, hot-pluggability is an implementation option. Some host adapters don’t support it.
 

Installation verification at the hardware level
 

After you install a new disk, check to make sure that the system acknowledges its existence at the lowest possible level. On a PC this is easy: the BIOS shows you IDE and SATA disks, and most SCSI cards have their own setup screen that you can invoke before the system boots.
 

On other types of hardware, you may have to let the system boot and check the diagnostic output from the kernel as it probes for devices. For example, one of our test systems showed the following messages for an older SCSI disk attached to a BusLogic SCSI host adapter.
 

[image: Image]
 

You may be able to review this information after the system has finished booting by looking in your system log files. See the material starting on page 352 for more information about the handling of boot-time messages from the kernel.
 

Disk device files
 

A newly added disk is represented by device files in /dev. See page 150 for general information about device files.
 

All our example systems create these files for you automatically, but you still need to know where to look for the device files and how to identify the ones that correspond to your new device. Formatting the wrong disk device file is a rapid route to disaster. Table 8.2. summarizes the device naming conventions for disks on our example systems. Instead of showing the abstract pattern according to which devices are named, Table 8.2. simply shows a typical example for the name of the system’s first disk.
 

[image: Image]
 

Table 8.2. Device naming standard for disks
 

The block and raw device columns show the path for the disk as a whole, and the partition column shows the path for an example partition.
 

Disk devices for Linux
 

[image: Image] Linux disk names are assigned in sequence as the kernel enumerates the various interfaces and devices on the system. Adding a disk can cause existing disks to change their names. In fact, even rebooting the system can cause name changes.5
 

Never make changes without verifying the identity of the disk you’re working on, even on a stable system.
 

Linux provides a couple of ways around the “dancing names” issue. Subdirectories under /dev/disk list disks by various stable characteristics such as their manufacturer ID or connection information. These device names (which are really just links back to /dev/sd*) are stable, but they’re long and awkward.
 

At the level of filesystems and disk arrays, Linux uses unique ID strings to persistently identify objects. In many cases, the existence of these long IDs is cleverly concealed so that you don’t have to deal with them directly.
 

Linux doesn’t have raw device files for disks or disk partitions, so just use the block device wherever you might be accustomed to specifying a raw device.
 

parted -l lists the sizes, partition tables, model numbers, and manufacturers of every disk on the system.
 

Disk devices for Solaris
 

[image: Image] Solaris disk device names are of the form /dev/[r]dsk/cWtXdYsZ, where W is the controller number, X is the SCSI target number, Y is the SCSI logical unit number (or LUN, almost always 0), and Z is the partition (slice) number. There are a couple of subtleties: ATA drives show up as cWdYsZ (with no t clause), and disks can have a series of DOS-style partitions, signified by pZ, as well as the Solaris-style slices denoted by sZ.
 

These device files are actually just symbolic links into the /devices tree, where the real device files live. More generally, Solaris makes an effort to give continuity to device names, even in the face of hardware changes. Once a disk has shown up under a given name, it can generally be found at that name in the future unless you switch controllers or SCSI target IDs.
 

By convention, slice 2 represents the complete, unpartitioned disk. Unlike Linux, Solaris gives you device files for every possible slice and partition, whether or not those slices and partitions actually exist. Solaris also supports overlapping partitions, but that’s just crazy talk. Oracle may as well ship every Solaris system with a loaded gun.
 

Hot-plugging should work fine on Solaris. When you add a new disk, devfsadmd should detect it and create the appropriate device files for you. If need be, you can run devfsadm by hand.
 

Disk devices for HP-UX
 

[image: Image] HP-UX has traditionally used disk device names patterned after those of Solaris, which record a lot of hardware-specific information in the device path. As of HP-UX 11i v3, however, those pathnames have been deprecated in favor of “agile addresses” of the form /dev/disk/disk1. The latter paths are stable and do not change with the details of the system’s hardware configuration.
 

Before you boot UNIX, you can obtain a listing of the system’s SCSI devices from the PROM monitor. Unfortunately, the exact way in which this is done varies among machines. After you boot, you can list disks by running ioscan.
 

[image: Image]
 

The old-style device names are still around in the /dsk and /rdsk directories, and you can continue to use them if you wish—at least for now. Run ioscan -m dsf to see the current mapping between old- and new-style device names.
 


 

[image: Image]
 

Note that partitions are now abbreviated p instead of s in the Solaris manner (for “slice”). Unlike Solaris, HP-UX uses names such as disk3 with no partition suffix to represent the entire disk. On Solaris systems, partition 2 represents the whole disk; on HP-UX, it’s just another partition.
 

The system from which this example comes is Itanium-based and so has disk partitions. Other HP systems use logical volume management instead of partitioning.
 

Disk devices for AIX
 

[image: Image] AIX’s /dev/hdiskX and /dev/rhdiskX paths are refreshingly simple. Disk names are unfortunately subject to change when the hardware configuration changes. However, most AIX disks will be under logical volume management, so the hardware device names are not that important. The logical volume manager writes a unique ID to each disk as part of the process of inducting it into a volume group. This labeling allows the system to sort out the disks automatically, so changes in device names are less troublesome than they might be on other systems.
 

You can run lsdev -C -c disk to see a list of the disks the system is aware of.
 

Formatting and bad block management
 

All hard disks come preformatted, and the factory formatting is at least as good as any formatting you can do in the field. It is best to avoid doing a low-level format if it’s not required. Don’t reformat new drives as a matter of course.
 

If you encounter read or write errors on a disk, first check for cabling, termination, and address problems, all of which can cause symptoms similar to those of a bad block. If after this procedure you are still convinced that the disk has defects, you might be better off replacing it with a new one rather than waiting long hours for a format to complete and hoping the problem doesn’t come back.
 

The formatting process writes address information and timing marks on the platters to delineate each sector. It also identifies bad blocks, imperfections in the media that result in areas that cannot be reliably read or written. All modern disks have bad block management built in, so neither you nor the driver need to worry about managing defects. The drive firmware substitutes known-good blocks from an area of backup storage on the disk that is reserved for this purpose.
 

Bad blocks that manifest themselves after a disk has been formatted may or may not be handled automatically. If the drive believes that the affected data can be reliably reconstructed, the newly discovered defect may be mapped out on the fly and the data rewritten to a new location. For more serious or less clearly recoverable errors, the drive aborts the read or write operation and reports the error back to the host operating system.
 

ATA disks are usually not designed to be formatted outside the factory. However, you may be able to obtain formatting software from the manufacturer, usually for Windows. Make sure the software matches the drive you plan to format and follow the manufacturer’s directions carefully.7
 

SCSI disks format themselves in response to a standard command that you send from the host computer. The procedure for sending this command varies from system to system. On PCs, you can often send the command from the SCSI controller’s BIOS. To issue the SCSI format command from within the operating system, use the sg_format command on Linux, the format command on Solaris, and the mediainit command on HP-UX.
 

Various utilities let you verify the integrity of a disk by writing random patterns to it and then reading them back. Thorough tests take a long time (hours) and unfortunately seem to be of little prognostic value. Unless you suspect that a disk is bad and are unable to simply replace it (or you bill by the hour), you should skip these tests. Barring that, let the tests run overnight. Don’t be concerned about “wearing out” a disk with overuse or aggressive testing. Enterprise-class disks are designed for constant activity.
 

ATA secure erase
 

Since 2000, PATA and SATA disks have implemented a “secure erase” command that overwrites the data on the disk by using a method the manufacturer has determined to be secure against recovery efforts. Secure erase is NIST-certified for most needs. Under the U.S. Department of Defense categorization, it’s approved for use at security levels less than “secret.”
 

Why is this feature even needed? First, filesystems generally do no erasing of their own, so an rm -rf * of a disk’s data leaves everything intact and recoverable with software tools. It’s critically important to remember this fact when disposing of disks, whether their destination is eBay or the trash.
 

Second, even a manual rewrite of every sector on a disk may leave magnetic traces that are recoverable by a determined attacker with access to a laboratory. Secure erase performs as many overwrites as are needed to eliminate these shadow signals. Magnetic remnants won’t be a serious concern for most sites, but it’s always nice to know that you’re not exporting your organization’s confidential data to the world at large.
 

Finally, secure erase has the effect of resetting SSDs to their fully erased state. This reset may improve performance in cases in which the ATA TRIM command (the command to erase a block) cannot be issued, either because the filesystem used on the SSD does not know to issue it or because the SSD is connected through a host adapter or RAID interface that does not propagate TRIM.
 

Unfortunately, UNIX support for sending the secure erase command remains elusive. At this point, your best bet is to reconnect drives to a Windows or Linux system for erasure. DOS software for secure erasing can be found at the Center of Magnetic Recording Research at tinyurl.com/2xoqqw. The MHDD utility also supports secure erase through its fasterase command—see tinyurl.com/2g6r98.
 

Under Linux, you can use the hdparm command:
 


 

[image: Image]
 

There is no analog in the SCSI world to ATA’s secure erase command, but the SCSI “format unit” command described under Formatting and bad block management on page 226 is a reasonable alternative. Another option is to zero-out a drive’s sectors with dd if=/dev/zero of=diskdevice
bs=8k.
 

Many systems have a shred utility that attempts to securely erase the contents of individual files. Unfortunately, it relies on the assumption that a file’s blocks can be overwritten in place. This assumption is invalid in so many circumstances (any filesystem on any SSD, any logical volume that has snapshots, perhaps generally on ZFS) that shred’s general utility is questionable.
 

For sanitizing an entire PC system at once, another option is Darik’s Boot and Nuke (dban.org). This tool runs from its own boot disk, so it’s not a tool you’ll use every day. It is quite handy for decommissioning old hardware, however.
 

hdparm: set disk and interface parameters (Linux)
 

[image: Image] Linux’s hdparm command can do more than just send secure erase commands. It’s a general way to interact with the firmware of SATA, IDE, and SAS hard disks. Among other things, hdparm can set drive power options, enable or disable noise reduction options, set the read-only flag, and print detailed drive information. A few of the options work on SCSI drives, too (under current Linux kernels).
 

The syntax is
 

hdparm [options] device

 

Scores of options are available, but most are of interest only to driver and kernel developers. Table 8.3. shows a few that are relevant to administrators.
 

[image: Image]
 

Table 8.3. Useful hdparm options system administrators.
 

Use hdparm -I to verify that each drive is using the fastest possible DMA transfer mode. hdparm lists all the disk’s supported modes and marks the currently active mode with a star, as shown in the example below.
 

[image: Image]
 

On any modern system, the optimal DMA mode should be selected by default; if this is not the case, check the BIOS and kernel logs for relevant information to determine why not.
 

Many drives offer acoustic management, which slows down the motion of the read/write head to attenuate the ticking or pinging sounds it makes. Drives that support acoustic management usually come with the feature turned on, but that’s probably not what you want for production drives that live in a server room. Disable this feature with hdparm -M 254.
 

Most power consumed by hard disks goes to keep the platters spinning. If you have disks that see only occasional use and you can afford to delay access by 20 seconds or so as the motors are restarted, run hdparm -S to turn on the disks’ internal power management feature. The argument to -S sets the idle time after which the drive enters standby mode and turns off the motor. It’s a one-byte value, so the encoding is somewhat nonlinear. For example, values between 1 and 240 are in multiples of 5 seconds, and values from 241 to 251 are in units of 30 minutes. hdparm shows you its interpretation of the value when you run it; it’s faster to guess, adjust, and repeat than to look up the detailed coding rules.
 

hdparm includes a simple drive performance test to help evaluate the impact of configuration changes. The -T option reads from the drive’s cache and indicates the speed of data transfer on the bus, independent of throughput from the physical disk media. The -t option reads from the physical platters. As you might expect, physical reads are a lot slower.
 

[image: Image]
 

100 MB/s or so is about the limit of today’s mass-market 1TB drives, so these results (and the information shown by hdparm -I above) confirm that the drive is correctly configured.
 

Hard disk monitoring with SMART
 

Hard disks are fault-tolerant systems that use error-correction coding and intelligent firmware to hide their imperfections from the host operating system. In some cases, an uncorrectable error that the drive is forced to report to the OS is merely the latest event in a long crescendo of correctable but inauspicious problems. It would be nice to know about those omens before the crisis occurs.
 

ATA devices, including SATA drives, implement a detailed form of status reporting that is sometimes predictive of drive failures. This standard, called SMART for “self-monitoring, analysis, and reporting technology,” exposes more than 50 operational parameters for investigation by the host computer.
 

The Google disk drive study mentioned on page 211 has been widely summarized in media reports as concluding that SMART data is not predictive of drive failure. That summary is not accurate. In fact, Google found that four SMART parameters were highly predictive of failure but that failure was not consistently preceded by changes in SMART values. Of failed drives in the study, 56% showed no change in the four most predictive parameters. On the other hand, predicting nearly half of failures sounds pretty good to us!
 

Those four sensitive SMART parameters are scan error count, reallocation count, off-line reallocation count, and number of sectors “on probation.” Those values should all be zero. A nonzero value in these fields raises the likelihood of failure within 60 days by a factor of 39, 14, 21, or 16, respectively.
 

To take advantage of SMART data, you need software that queries your drives to obtain it and then judges whether the current readings are sufficiently ominous to warrant administrator notification. Unfortunately, reporting standards vary by drive manufacturer, so decoding isn’t necessarily straightforward. Most SMART monitors collect baseline data and then look for sudden changes in the “bad” direction rather than interpreting absolute values. (According to the Google study, taking account of these “soft” SMART indicators in addition to the Big Four predicts 64% of all failures.)
 

The standard software for SMART wrangling on UNIX and Linux systems is the smartmontools package from smartmontools.sourceforge.net. It’s installed by default on SUSE and Red Hat systems; on Ubuntu, you’ll have to run apt-get install smartmontools. The package does run on Solaris systems if you build it from the source code.
 

The smartmontools package consists of a smartd daemon that monitors drives continuously and a smartctl command you can use for interactive queries or for scripting. The daemon has a single configuration file, normally /etc/smartd.conf, which is extensively commented and includes plenty of examples.
 

SCSI has its own system for out-of-band status reporting, but unfortunately the standard is much less granular in this respect than is SMART. The smartmontools attempt to include SCSI devices in their schema, but the predictive value of the SCSI data is less clear.
 

8.6 Disk Partitioning
 

Partitioning and logical volume management are both ways of dividing up a disk (or pool of disks, in the case of LVM) into separate chunks of known size. All our example systems support logical volume management, but only Linux, Solaris, and sometimes HP-UX allow traditional partitioning.
 

You can put individual partitions under the control of a logical volume manager, but you can’t partition a logical volume. Partitioning is the lowest possible level of disk management.
 

[image: Image] On Solaris, partitioning is required but essentially vestigial; ZFS hides it well enough that you may not even be aware that it’s occurring. This section contains some general background information that may be useful to Solaris administrators, but from a procedural standpoint, the Solaris path diverges rather sharply from that of Linux, HP-UX, and AIX. Skip ahead to ZFS: all your storage problems solved on page 264 for details. (Or don’t: zpool create
newpool newdevice pretty much covers basic configuration.)
 

Both partitions and logical volumes make backups easier, prevent users from poaching each other’s disk space, and confine potential damage from runaway programs. All systems have a root “partition” that includes / and most of the local host’s configuration data. In theory, everything needed to bring the system up to single-user mode is part of the root partition. Various subdirectories (most commonly /var, /usr, /tmp, /share, and /home) may be broken out into their own partitions or volumes. Most systems also have at least one swap area.
 

Opinions differ on the best way to divide up disks, as do the defaults used by various systems. Here are some general points to guide you:
 

• It’s a good idea to have a backup root device that you can boot to if something goes wrong with the normal root partition. Ideally, the backup root lives on a different disk from the normal root so that it can protect against both hardware problems and corruption. However, even a backup root on the same disk has some value.9

 

• Verify that you can boot from your backup root. The procedure is often nontrivial. You may need special boot-time arguments to the kernel and minor configuration tweaks within the alternate root itself to get everything working smoothly.

 

• Since the root partition is often duplicated, it should also be small so that having two copies doesn’t consume an unreasonable amount of disk space. This is the major reason that /usr is often a separate volume; it holds the bulk of the system’s libraries and data.

 

• Putting /tmp on a separate filesystem limits temporary files to a finite size and saves you from having to back them up. Some systems use a memory-based filesystem to hold /tmp for performance reasons. The memory-based filesystems are still backed by swap space, so they work well in a broad range of situations.

 

• Since log files are kept in /var, it’s a good idea for /var to be a separate disk partition. Leaving /var as part of a small root partition makes it easy to fill the root and bring the machine to a halt.

 

• It’s useful to put users’ home directories on a separate partition or volume. Even if the root partition is corrupted or destroyed, user data has a good chance of remaining intact. Conversely, the system can continue to operate even after a user’s misguided shell script fills up /home.

 

• Splitting swap space among several physical disks increases performance. This technique works for filesystems, too; put the busy ones on different disks. See page 1129 for notes on this subject.

 

• As you add memory to your machine, you should also add swap space. See page 1124 for more information about virtual memory.

 

• Backups of a partition may be simplified if the entire partition can fit on one piece of media. See page 294.

 

• Try to cluster quickly-changing information on a few partitions that are backed up frequently.

 

Traditional partitioning
 

Systems that allow partitions implement them by writing a “label” at the beginning of the disk to define the range of blocks included in each partition. The exact details vary; the label must often coexist with other startup information (such as a boot block), and it often contains extra information such as a name or unique ID that identifies the disk as a whole. Under Windows, the label is known as the MBR, or master boot record.
 

The device driver responsible for representing the disk reads the label and uses the partition table to calculate the physical location of each partition. Typically, one or two device files represent each partition (one block device and one character device; Linux has only block devices). Also, a separate set of device files represents the disk as a whole.
 

[image: Image] Solaris calls partitions “slices,” or more accurately, it calls them slices when they are implemented with a Solaris-style label and partitions when they are implemented with a Windows-style MBR. Slice 2 includes the entire expanse of the disk, illustrating the rather frightening truth that more than one slice can claim a given disk block. Perhaps the word “slices” was selected because “partition” suggests a simple division, whereas slices can overlap. The terms are otherwise interchangeable.
 

Despite the universal availability of logical volume managers, some situations still require or benefit from traditional partitioning.
 

• On PC hardware, the boot disk must have a partition table. Most systems require MBR partitioning (see Windows-style partitioning, next), but Itanium systems require GPT partitions (page 235). Data disks may remain unpartitioned.

 

See page 85 for more information about dual booting with Windows.

 

• Installing a Windows-style MBR makes the disk comprehensible to Windows, even if the contents of the individual partitions are not. If you want to interoperate with Windows (say, by dual booting), you’ll need to install a Windows MBR. But even if you have no particular ambitions along those lines, it may be helpful to consider the ubiquity of Windows and the likelihood that your disk will one day come in contact with it.

 

Current versions of Windows are well behaved and would never dream of writing randomly to a disk they can’t decipher. However, they will certainly suggest this course of action to any administrator who logs in. The dialog box even sports a helpful “OK, mess up this disk!” button.10 Nothing bad will happen unless someone makes a mistake, but safety is a structural and organizational process.

 

• Partitions have a defined location on the disk, and they guarantee locality of reference. Logical volumes do not (at least, not by default). In most cases, this fact isn’t terribly important. However, short seeks are faster than long seeks, and the throughput of a disk’s outer cylinders (those containing the lowest-numbered blocks) can exceed the throughput of its inner cylinders by 30% or more.11 For situations in which every ounce of performance counts, you can use partitioning to gain an extra edge. (You can always use logical volume management inside partitions to regain some of the lost flexibility.)

 

• RAID systems (see page 237) use disks or partitions of matched size. A given RAID implementation may accept entities of different sizes, but it will probably only use the block ranges that all devices have in common. Rather than letting extra space go to waste, you can isolate it in a separate partition. If you do this, however, you should use the spare partition for data that is infrequently accessed; otherwise, use of the partition will degrade the performance of the RAID array.

 

Windows-style partitioning
 

The Windows MBR occupies a single 512-byte disk block, most of which is consumed by boot code. Only enough space remains to define four partitions. These are termed “primary” partitions because they are defined directly in the MBR.
 

You can define one of the primary partitions to be an “extended” partition, which means that it contains its own subsidiary partition table. The extended partition is a true partition, and it occupies a defined physical extent on the disk. The subsidiary partition table is stored at the beginning of that partition’s data.
 

Partitions that you create within the extended partition are called secondary partitions. They are proper subsets of the extended partition.
 

Keep the following rules of thumb in mind when setting up Windows-partitioned disks. The first is an actual rule. The others exist only because certain BIOSes, boot blocks, or operating systems may require them.
 

• There can be only one extended partition on a disk.

 

• The extended partition should be the last of the partitions defined in the MBR; no primary partitions should come after it.

 

• Some older operating systems don’t like to be installed in secondary partitions. To avoid trouble, stick to primary partitions for OS installations.

 

The Windows partitioning system lets one partition be marked “active.” Boot loaders look for the active partition and try to load the operating system from it.
 

Each partition also has a one-byte type attribute that is supposed to indicate the partition’s contents. Generally, the codes represent either filesystem types or operating systems. These codes are not centrally assigned, but over time some common conventions have evolved. They are summarized by Andries E. Brouwer at tinyurl.com/part-types.
 

The MS-DOS command that partitioned hard disks was called fdisk. Most operating systems that support Windows-style partitions have adopted this name for their own partitioning commands, but there are many variations among fdisks. Windows itself has moved on: the command-line tool in recent versions is called diskpart. Windows also has a partitioning GUI that’s available through the Disk Management plug-in of mmc.
 

It does not matter whether you partition a disk with Windows or some other operating system. The end result is the same.
 

GPT: GUID partition tables
 

Intel’s extensible firmware interface (EFI) project aims to replace the rickety conventions of PC BIOSes with a more modern and functional architecture.12 Al-though systems that use full EFI firmware are still uncommon, EFI’s partitioning scheme has gained widespread support among operating systems. The main reason for this success is that MBR does not support disks larger than 2TB in size. Since 2TB disks are already widely available, this problem has become a matter of some urgency.
 

The EFI partitioning scheme, known as a “GUID partition table” or GPT, removes the obvious weaknesses of MBR. It defines only one type of partition, and you can create arbitrarily many of them. Each partition has a type specified by a 16-byte ID code (the globally unique ID, or GUID) that requires no central arbitration.
 

Significantly, GPT retains primitive compatibility with MBR-based systems by dragging along an MBR as the first block of the partition table. This “fakie” MBR makes the disk look like it’s occupied by one large MBR partition (at least, up to the 2TB limit of MBR). It isn’t useful per se, but the hope is that the decoy MBR may at least prevent naïve systems from attempting to reformat the disk.
 

Versions of Windows from the Vista era forward support GPT disks for data, but only systems with EFI firmware can boot from them. Linux and its GRUB boot loader have fared better: GPT disks are supported by the OS and bootable on any system. Intel-based Mac OS systems use both EFI and GPT partitioning. Solaris understands GPT partitioning, and ZFS uses it by default. However, Solaris boot disks cannot use GPT partitioning.
 

Although GPT has already been well accepted by operating system kernels, its support among disk management utilities is still spotty. GPT remains a “bleeding edge” format. There is no compelling reason to use it on disks that don’t require it (that is, disks 2TB in size or smaller).
 

Linux partitioning
 

[image: Image] Linux systems give you several options for partitioning. fdisk is a basic command-line partitioning tool. GNU’s parted is a fancier command-line tool that understands several label formats (including Solaris’s native one) and can move and re-size partitions in addition to simply creating and deleting them. A GUI version, gparted, runs under GNOME. Another possibility is cfdisk, which is a nice, terminal-based alternative to fdisk.
 

parted and gparted can theoretically resize several types of filesystems along with the partitions that contain them, but the project home page describes this feature as “buggy and unreliable.” Filesystem-specific utilities are likely to do a better job of adjusting filesystems, but unfortunately, parted does not have a “resize the partition but not the filesystem” command. Go back to fdisk if this is what you need.
 

In general, we recommend gparted over parted. Both are simple, but gparted lets you specify the size of the partitions you want instead of specifying the starting and ending block ranges. For partitioning the boot disk, most distributions’ graphical installers are the best option since they typically suggest a partitioning plan that works well with that particular distribution’s layout.
 

Solaris partitioning
 

[image: Image] ZFS automatically labels disks for you, applying a GPT partition table. However, you can also partition disks manually with the format command. On x86 systems, an fdisk command is also available. Both interfaces are menu driven and relatively straightforward.
 

format gives you a nice list of disks to choose from, while fdisk requires you to specify the disk on the command line. Fortunately, format has an fdisk command that runs fdisk as a subprocess, so you can use format as a kind of wrapper to help you pick the right disk.
 

Solaris understands three partitioning schemes: Windows MBR, GPT, and old-style Solaris partition tables, known as SMI. You must use MBR or SMI for the boot disk, depending on the hardware and whether you are running Solaris or OpenSolaris. For now, it’s probably best to stick to these options for all manually partitioned disks under 2TB.
 

HP-UX partitioning
 

[image: Image] HP uses disk partitioning only on Itanium (Integrity) boot disks, on which a GPT partition table and an EFI boot partition are required. The idisk command prints and creates partition tables. Rather than being an interactive partitioning utility, it reads a partitioning plan from a file or from standard input and uses that to construct the partition table.
 

An idisk partitioning specification is mercifully straightforward. The first line contains only a number that specifies the number of partitions to create. Each following line contains a partition type (EFI, HPUX, HPDUMP, or HPSP for swap), a space character, and a size specification such as 128MB or 100%. If a percentage is used, it is interpreted relative to the space remaining on the drive after the preceding partitions have been allocated.
 

8.7 RAID: Redundant Arrays of Inexpensive Disks
 

Even with backups, the consequences of a disk failure on a server can be disastrous. RAID, “redundant arrays of inexpensive disks,” is a system that distributes or replicates data across multiple disks.13 RAID not only helps avoid data loss but also minimizes the downtime associated with hardware failures (often to zero) and potentially increases performance.
 

RAID can be implemented by dedicated hardware that presents a group of hard disks to the operating system as a single composite drive. It can also be implemented simply by the operating system’s reading or writing multiple disks according to the rules of RAID.
 

Software vs. hardware RAID
 

Because the disks themselves are always the most significant bottleneck in a RAID implementation, there is no reason to assume that a hardware-based implementation of RAID will necessarily be faster than a software- or OS-based implementation. Hardware RAID has been predominant in the past for two main reasons: lack of software alternatives (no direct OS support for RAID) and hardware’s ability to buffer writes in some form of nonvolatile memory.
 

The latter feature does improve performance because it makes writes appear to complete instantaneously. It also protects against a potential corruption issue called the “RAID 5 write hole,” which we describe in more detail starting on page 241. But beware: many of the common “RAID cards” sold for PCs have no non-volatile memory at all; they are really just glorified SATA interfaces with some RAID software onboard. RAID implementations on PC motherboards fall into this category as well. You’re really much better off using the RAID features in Linux or OpenSolaris on these systems.
 

We recently experienced a disk controller failure on an important production server. Although the data was replicated across several physical drives, a faulty hardware RAID controller destroyed the data on all disks. A lengthy and ugly tape restore process ensued, and it was more than two months before the server had completely recovered. The rebuilt server now relies on the kernel’s software to manage its RAID environment, removing the possibility of another RAID controller failure.
 

RAID levels
 

RAID can do two basic things. First, it can improve performance by “striping” data across multiple drives, thus allowing several drives to work simultaneously to supply or absorb a single data stream. Second, it can replicate data across multiple drives, decreasing the risk associated with a single failed disk.
 

Replication assumes two basic forms: mirroring, in which data blocks are reproduced bit-for-bit on several different drives, and parity schemes, in which one or more drives contain an error-correcting checksum of the blocks on the remaining data drives. Mirroring is faster but consumes more disk space. Parity schemes are more disk-space-efficient but have lower performance.
 

RAID is traditionally described in terms of “levels” that specify the exact details of the parallelism and redundancy implemented by an array. The term is perhaps misleading because “higher” levels are not necessarily “better.” The levels are simply different configurations; use whichever versions suit your needs.
 

In the following illustrations, numbers identify stripes and the letters a, b, and c identify data blocks within a stripe. Blocks marked p and q are parity blocks.
 

• “Linear mode,” also known as JBOD (for “just a bunch of disks”) is not even a real RAID level. And yet, every RAID controller seems to implement it. JBOD concatenates the block addresses of multiple drives to create a single, larger virtual drive. It provides no data redundancy or performance benefit. These days, JBOD functionality is best achieved through a logical volume manager rather than a RAID controller.

 

• RAID level 0 is used strictly to increase performance. It combines two or more drives of equal size, but instead of stacking them end-to-end, it stripes data alternately among the disks in the pool. Sequential reads and writes are therefore spread among several disks, decreasing write and access times.

 

[image: Image]
 

Note that RAID 0 has reliability characteristics that are significantly inferior to separate disks. A two-drive array has roughly double the annual failure rate of a single drive, and so on.

 

• RAID level 1 is colloquially known as mirroring. Writes are duplicated to two or more drives simultaneously. This arrangement makes writes slightly slower than they would be on a single drive. However, it offers read speeds comparable to RAID 0 because reads can be farmed out among the several duplicate disk drives.

 

[image: Image]
 

• RAID levels 1+0 and 0+1 are stripes of mirror sets or mirrors of stripe sets. Logically, they are concatenations of RAID 0 and RAID 1, but many controllers and software implementations provide direct support for them. The goal of both modes is to simultaneously obtain the performance of RAID 0 and the redundancy of RAID 1.

 

[image: Image]
 

• RAID level 5 stripes both data and parity information, adding redundancy while simultaneously improving read performance. In addition, RAID 5 is more efficient in its use of disk space than is RAID 1. If there are N drives in an array (at least three are required), N–1 of them can store data. The space-efficiency of RAID 5 is therefore at least 67%, whereas that of mirroring cannot be higher than 50%.

 

[image: Image]
 

• RAID level 6 is similar to RAID 5 with two parity disks. A RAID 6 array can withstand the complete failure of two drives without losing data.

 

[image: Image]
 

RAID levels 2, 3, and 4 are defined but are rarely deployed. Logical volume managers usually include both striping (RAID 0) and mirroring (RAID 1) features.
 

[image: Image] For simple striped and mirrored configurations, Linux gives you a choice of using a dedicated RAID system (md; see page 242) or the logical volume manager. The LVM approach is perhaps more flexible, while the md approach may be a bit more rigorously predictable. If you opt for md, you can still use LVM to manage the space on the RAID volume. For RAID 5 and RAID 6, you must use md to implement software RAID.
 

[image: Image] As a RAID system, logical volume manager, and filesystem all rolled into one, Solaris’s ZFS system supports striping, mirroring, and configurations similar to RAID 5 and RAID 6. The ZFS architecture puts mirroring and parity arrangements on the lowest level, whereas striping is done per storage pool (one level up) and is automatic. This is a nice way to arrange the features because it preserves the clarity of the RAID configuration. See page 264 for more details on ZFS.
 

[image: Image] Logical volume management is the extent of OS-level support for RAID on HPUX and AIX. (HP even makes you purchase the mirroring feature separately, although it is bundled in certain enterprise configurations.) If you want a parity-based system, you’ll need some additional hardware. AIX does come with tools for administering RAID hardware already integrated, however: see Disk Array under Devices in SMIT.
 

Disk failure recovery
 

The Google disk failure study cited on page 211 should be pretty convincing evidence of the need for some form of storage redundancy in most production environments. At an 8% annual failure rate, your organization needs only 150 hard disks in service to expect an average of one failure per month.
 

JBOD and RAID 0 modes are of no help when hardware problems occur; you must recover your data manually from backups. Other forms of RAID enter a degraded mode in which the offending devices are marked as faulty. The RAID arrays continue to function normally from the perspective of storage clients, although perhaps at reduced performance.
 

Bad disks must be swapped out for new ones as soon as possible to restore redundancy to the array. A RAID 5 array or two-disk RAID 1 array can only tolerate the failure of a single device. Once that failure has occurred, the array is vulnerable to a second failure.
 

The specifics of the process are usually pretty simple. You replace the failed disk with another of similar or greater size, then tell the RAID implementation to replace the old disk with the new one. What follows is an extended period during which the parity or mirror information is rewritten to the new, blank disk. Often, this is an overnight operation. The array remains available to clients during this phase, but performance is likely to be very poor.
 

To limit downtime and the vulnerability of the array to a second failure, most RAID implementations let you designate one or more disks as “hot” spares. When a failure occurs, the faulted disk is automatically swapped for a spare, and the process of resynchronizing the array begins immediately. Where supported, hot spares should be used as a matter of course.
 

Drawbacks of RAID 5
 

RAID 5 is a popular configuration, but it has some weaknesses, too. The following issues apply to RAID 6 also, but for simplicity we frame the discussion in terms of RAID 5.
 

See Chapter 10, Backups, for general advice about backing up the system.

 

First, it’s critically important to note that RAID 5 does not replace regular off-line backups. It protects the system against the failure of one disk—that’s it. It does not protect against the accidental deletion of files. It does not protect against controller failures, fires, hackers, or any number of other hazards.
 

Second, RAID 5 isn’t known for its great write performance. RAID 5 writes data blocks to N–1 disks and parity blocks to the Nth disk.14 Whenever a random block is written, at least one data block and the parity block for that stripe must be updated. Furthermore, the RAID system doesn’t know what the new parity block should contain until it has read the old parity block and the old data. Each random write therefore expands into four operations: two reads and two writes. (Sequential writes may fare better if the implementation is smart.)
 

Finally, RAID 5 is vulnerable to corruption in certain circumstances. Its incremental updating of parity data is more efficient than reading the entire stripe and recalculating the stripe’s parity based on the original data. On the other hand, it means that at no point is parity data ever validated or recalculated. If any block in a stripe should fall out of sync with the parity block, that fact will never become evident in normal use; reads of the data blocks will still return the correct data.
 

Only when a disk fails does the problem become apparent. The parity block will likely have been rewritten many times since the occurrence of the original desynchronization. Therefore, the reconstructed data block on the replacement disk will consist of essentially random data.
 

This kind of desynchronization between data and parity blocks isn’t all that unlikely, either. Disk drives are not transactional devices. Without an additional layer of safeguards, there is no simple way to guarantee that either two blocks or zero blocks on two different disks will be properly updated. It’s quite possible for a crash, power failure, or communication problem at the wrong moment to create data/parity skew.
 

This problem is known as the RAID 5 “write hole,” and it has received increasing attention over the last five years or so. One helpful resource is the web site of the Battle Against Any Raid Five,15 baarf.org, which points to a variety of editorials on the subject. You’ll have to decide for yourself whether the problem is significant or overblown. (We lean more toward “significant.”)
 

The implementors of Solaris’s ZFS filesystem claim that because ZFS uses variable-width stripes, it is immune to the RAID 5 write hole. That’s also why ZFS calls its RAID implementation RAID-Z instead of RAID 5, though in practice the concept is similar.
 

Another potential solution is “scrubbing,” validating parity blocks one by one while the array is relatively idle. Many RAID implementations include some form of scrubbing function.
 

mdadm: Linux software RAID
 

The standard software RAID implementation for Linux is called md, the “multiple disks” driver. It’s front-ended by the mdadm command. md supports all the RAID configurations listed above as well as RAID 4. An earlier system known as raidtools is no longer used.
 

The following example scenario configures a RAID 5 array composed of three identical 500GB hard disks. Although md can use raw disks as components, we prefer to give each disk a partition table for consistency, so we start by running gparted, creating an MBR partition table on each disk (gparted refers to this as the “msdos” style of partition table), and assigning all the disk’s space to a single partition of type “unformatted” (which is unfortunately about as close as you can get to the actual use). It’s not strictly necessary to set the partition type, but it’s a useful reminder to anyone who might inspect the table later. There is also a “raid” flag bit you can set on a partition, although gparted doesn’t make this easy: you must create the partition, execute the pending operations, and then go back to the new partition and edit its flags.
 

The following command builds a RAID 5 array from our three SCSI partitions:
 

[image: Image]
 

The virtual file /proc/mdstat always contains a summary of md’s status and the status of all the system’s RAID arrays. It is especially useful to keep an eye on the /proc/mdstat file after adding a new disk or replacing a faulty drive. (watch cat /proc/mdstat is a handy idiom.)
 

[image: Image]
 

The md system does not keep track of which blocks in an array have been used, so it must manually synchronize all the parity blocks with their corresponding data blocks. md calls the operation a “recovery” since it’s essentially the same procedure used when you swap out a bad hard disk. It can take hours on a large array.
 

Some helpful notifications appear in the /var/log/messages file, too.
 

[image: Image]
 

The initial creation command also serves to “activate” the array (make it available for use), but on subsequent reboots it may be necessary to activate the array as a separate step, usually out of a startup script. Red Hat and SUSE include sample startup scripts for RAID, and Ubuntu starts arrays by default.
 

mdadm does not technically require a configuration file, although it will use a configuration file if one is supplied (typically, /etc/mdadm.conf). We strongly recommend the use of a configuration file. It documents the RAID configuration in a standard way, thus giving administrators an obvious place to look for information when problems occur. The alternative to the use of a configuration file is to specify the configuration on the command line each time the array is activated.
 

mdadm --detail --scan dumps the current RAID setup into a configuration file. Unfortunately, the configuration it prints is not quite complete. The following commands build a complete configuration file for our example setup:
 

[image: Image]
 

mdadm can now read this file at startup or shutdown to easily manage the array. To enable the array at startup by using the freshly created /etc/mdadm.conf, we would execute
 

$ sudo mdadm -As /dev/md0
 

To stop the array manually, we would use the command
 

$ sudo mdadm -S /dev/md0
 

Once you’ve set up the mdadm.conf file, print it out and tape it to the side of the server. It’s not always trivial to reconstruct the components of a RAID setup when something goes wrong.
 

mdadm has a --monitor mode in which it runs continuously as a daemon process and notifies you by email when problems are detected on a RAID array. Use this feature! To set it up, add a MAILADDR line to your mdadm.conf file to specify the recipient to whom warnings should be sent, and arrange for the monitor daemon to run at boot time. All our example distributions have an init script that does this for you, but the names and procedures for enabling are slightly different.
 

[image: Image]
 

What happens when a disk actually fails? Let’s find out! mdadm offers a handy option that simulates a failed disk.
 

[image: Image]
 

Because RAID 5 is a redundant configuration, the array continues to function in degraded mode, so users will not necessarily be aware of the problem.
 

To remove the drive from the RAID configuration, use mdadm -r:
 

[image: Image]
 

Once the disk has been logically removed, you can shut down the system and replace the drive. Hot-swappable drive hardware lets you make the change without turning off the system or rebooting.
 

If your RAID components are raw disks, you should replace them with an identical drive only. Partition-based components can be replaced with any partition of similar size, although for bandwidth matching it’s best if the drive hardware is similar. (If your RAID configuration is built on top of partitions, you must run a partitioning utility to define the partitions appropriately before adding the replacement disk to the array.)
 

In our example, the failure is just simulated, so we can add the drive back to the array without replacing any hardware:
 

[image: Image]
 

md will immediately start to rebuild the array. As always, you can see its progress in /proc/mdstat. A rebuild may take hours, so consider this fact in your disaster recovery plans.
 

8.8 Logical Volume Management
 

Imagine a world in which you don’t know exactly how large a partition needs to be. Six months after creating the partition, you discover that it is much too large, but that a neighboring partition doesn’t have enough space… Sound familiar? A logical volume manager lets you reallocate space dynamically from the greedy partition to the needy partition.
 

Logical volume management is essentially a supercharged and abstracted version of disk partitioning. It groups individual storage devices into “volume groups.” The blocks in a volume group can then be allocated to “logical volumes,” which are represented by block device files and act like disk partitions.
 

However, logical volumes are more flexible and powerful than disk partitions. Here are some of the magical operations a volume manager lets you carry out:
 

• Move logical volumes among different physical devices

 

• Grow and shrink logical volumes on the fly

 

• Take copy-on-write “snapshots” of logical volumes

 

• Replace on-line drives without interrupting service

 

• Incorporate mirroring or striping in your logical volumes

 

The components of a logical volume can be put together in various ways. Concatenation keeps each device’s physical blocks together and lines the devices up one after another. Striping interleaves the components so that adjacent virtual blocks are actually spread over multiple physical disks. By reducing single-disk bottlenecks, striping can often provide higher bandwidth and lower latency.
 

LVM implementations
 

All our example systems support logical volume management, and with the exception of Solaris’s ZFS, the systems are all quite similar.
 

[image: Image] In addition to ZFS, Solaris supports a previous generation of LVM called the Solaris Volume Manager, formerly Solstice DiskSuite. This volume manager is still supported, but new deployments should use ZFS.
 

Linux’s volume manager, called LVM2, is essentially a clone of HP-UX’s volume manager, which is itself based on software by Veritas. The commands for the two systems are essentially identical, but we show examples for both systems because their ancillary commands are somewhat different. AIX’s system has similar abstractions but different command syntax. Table 8.4. illustrates the parallels among these three systems.
 

In addition to commands that deal with volume groups and logical volumes, Table 8.4. also shows a couple of commands that relate to “physical volumes.” A physical volume is a storage device that has had an LVM label applied; applying such a label is the first step to using the device through the LVM. Linux and HP-UX use pvcreate to apply a label, but AIX’s mkvg does it automatically. In addition to bookkeeping information, the label includes a unique ID to identify the device.
 

[image: Image]
 

Table 8.4. Comparison of LVM commands
 

“Physical volume” is a somewhat misleading term because physical volumes need not have a direct correspondence to physical devices. They can be disks, but they can also be disk partitions or RAID arrays. The LVM doesn’t care.
 

Linux logical volume management
 

[image: Image] You can control Linux’s LVM implementation (LVM2) with either a large group of simple commands (the ones illustrated in Table 8.4.) or with the single lvm command and its various subcommands. These options are for all intents and purposes identical; in fact, the individual commands are really just links to lvm, which looks to see how it’s been called to know how to behave. man lvm is a good introduction to the system and its tools.
 

A Linux LVM configuration proceeds in a few distinct phases:
 

• Creating (defining, really) and initializing physical volumes

 

• Adding the physical volumes to a volume group

 

• Creating logical volumes on the volume group

 

LVM commands start with letters that make it clear at which level of abstraction they operate: pv commands manipulate physical volumes, vg commands manipulate volume groups, and lv commands manipulate logical volumes. A few commands with the prefix lvm (e.g., lvmchange) operate on the system as a whole.
 

In the following example, we set up the /dev/md0 RAID 5 device we created on page 243 for use with LVM and create a logical volume. Since striping and redundancy have already been addressed by the underlying RAID configuration, we won’t make use of the corresponding LVM2 features, although they exist.
 

[image: Image]
 

Our physical device is now ready to be added to a volume group:
 

[image: Image]
 

Although we’re using only a single physical device in this example, we could of course add additional devices. In this case, it would be strange to add anything but another RAID 5 array since there is no benefit to partial redundancy. DEMO is an arbitrary name that we’ve selected.
 

To step back and examine our handiwork, we use the vgdisplay command:
 

[image: Image]
 

A “PE” is a physical extent, the allocation unit according to which the volume group is subdivided.
 

The final steps are to create the logical volume within DEMO and then to create a filesystem within that volume. We make the logical volume 100GB in size:
 

[image: Image]
 

Most of LVM2’s interesting options live at the logical volume level. That’s where striping, mirroring, and contiguous allocation would be requested if we were using those features.
 

We can now access the volume through the device /dev/DEMO/web1. We discuss filesystems in general starting on page 254, but here is a quick overview of creating a standard filesystem so that we can demonstrate a few additional LVM tricks.
 

[image: Image]
 

Volume snapshots
 

You can create copy-on-write duplicates of any LVM2 logical volume, whether or not it contains a filesystem. This feature is handy for creating a quiescent image of a filesystem to be backed up on tape, but unlike ZFS snapshots, LVM2 snapshots are unfortunately not very useful as a general method of version control.
 

The problem is that logical volumes are of fixed size. When you create one, storage space is allocated for it up front from the volume group. A copy-on-write duplicate initially consumes no space, but as blocks are modified, the volume manager must find space in which to store both the old and new versions. This space for modified blocks must be set aside when you create the snapshot, and like any LVM volume, the allocated storage is of fixed size.
 

Note that it does not matter whether you modify the original volume or the snapshot (which by default is writable). Either way, the cost of duplicating the blocks is charged to the snapshot. Snapshots’ allocations can be pared away by activity on the source volume even when the snapshots themselves are idle.
 

If you do not allocate as much space for a snapshot as is consumed by the volume of which it is an image, you can potentially run out of space in the snapshot. That’s more catastrophic than it sounds because the volume manager then has no way to maintain a coherent image of the snapshot; additional storage space is required just to keep the snapshot the same. The result of running out of space is that LVM stops maintaining the snapshot, and the snapshot becomes irrevocably corrupt.
 

So, as a matter of practice, LVM snapshots should be either short-lived or as large as their source volumes. So much for “lots of cheap virtual copies.”
 

To create /dev/DEMO/web1-snap as a snapshot of /dev/DEMO/web1, we would use the following command:
 

$ sudo lvcreate -L 100G -s -n web1-snap DEMO/web1
 

Note that the snapshot has its own name and that the source of the snapshot must be specified as volume_group/volume.
 

In theory, /mnt/web1 should really be unmounted first to ensure the consistency of the filesystem. In practice, ext4 will protect us against filesystem corruption, although we may lose a few of the most recent data block updates. This is a perfectly reasonable compromise for a snapshot used as a backup source.
 

To check on the status of your snapshots, run lvdisplay. If lvdisplay tells you that a snapshot is “inactive,” that means it has run out of space and should be deleted. There’s very little you can do with a snapshot once it reaches this point.
 

Resizing filesystems
 

Filesystem overflows are more common than disk crashes, and one advantage of logical volumes is that they’re much easier to juggle and resize than are hard partitions. We have experienced everything from servers used for personal MP3 storage to a department full of email pack rats.
 

The logical volume manager doesn’t know anything about the contents of its volumes, so you must do your resizing at both the volume and filesystem levels. The order depends on the specific operation. Reductions must be filesystem-first, and enlargements must be volume-first. Don’t memorize these rules: just think about what’s actually happening and use common sense.
 

Suppose that in our example, /mnt/web1 has grown more than we predicted and needs another 10GB of space. We first check the volume group to be sure additional space is available.
 

[image: Image]
 

Plenty of space is available, so we unmount the filesystem and use lvresize to add space to the logical volume.
 

[image: Image]
 

The lvchange commands are needed to deactivate the volume for resizing and to reactivate it afterwards. This part is only needed because there is an existing snapshot of web1 from our previous example. After the resize operation, the snapshot will “see” the additional 10GB of allocated space, but since the filesystem it contains is only 100GB in size, the snapshot will still be usable.
 

We can now resize the filesytem with resize2fs. (The 2 comes from the original ext2 filesystem, but the command supports all versions of ext.) Since resize2fs can determine the size of the new filesystem from the volume, we don’t need to specify the new size explicitly. We would have to do so when shrinking the filesystem.
 

[image: Image]
 

Oops! resize2fs forces you to double-check the consistency of the filesystem before resizing.
 

[image: Image]
 

That’s it! Examining the output of df again shows the changes:
 

[image: Image]
 

HP-UX logical volume management
 

[image: Image] As of HP-UX 10.20, HP provides a full logical volume manager. It’s a nice addition, especially when you consider that HP-UX formerly did not even support the notion of disk partitions. The volume manager is called LVM, just as on Linux, although the HP-UX version is in fact the original. (Really, it’s Veritas software…)
 

As a simple example of LVM wrangling, here’s how you would configure a 75GB hard disk for use with the logical volume manager. If you have read through the Linux example above, the following procedure will seem eerily familiar. There are a few minor differences, but the overall process is essentially the same.
 

The pvcreate command identifies physical volumes.
 

[image: Image]
 

If you will be using the disk as a boot disk, add the -B option to pvcreate to reserve space for a boot block, then run mkboot to install it.
 

After defining the disk as a physical volume, you add it to a new volume group with the vgcreate command. Two metadata formats exist for volume groups, versions 1.0 and 2.0. You specify which version you want with the -V option when creating a volume group; version 1.0 remains the default. Version 2.0 has higher size limits, but it’s not usable for boot devices or swap volumes. Even version 1.0 metadata has quite generous limits, so it should be fine for most uses. You can see the exact limits with lvmadm. For reference, here are the limits for 1.0:
 

[image: Image]
 

You can add extra disks to a volume group with vgextend, but this example volume group contains only a single disk.
 

[image: Image]
 

Once your disks have been added to a convenient volume group, you can split the volume group’s pool of disk space back into logical volumes. The lvcreate command creates a new logical volume. Specify the size of the volume in megabytes with the -L flag or in logical extents (typically 4MiB) with the -l flag. Sizes specified in MiB are rounded up to the nearest multiple of the logical extent size.
 

To assess the amount of free space remaining in a volume group, run vgdisplay
vgname as root. The output includes the extent size and the number of unallocated extents.
 

[image: Image]
 

The command above creates a 25GB logical volume named web1. Once you’ve created your logical volumes, you can verify them by running vgdisplay -v/dev/vgname to double-check their sizes and make sure they were set up correctly.
 

In most scenarios, you would then go on to create a filesystem on /dev/vg01/web1 and arrange for it to be mounted at boot time. See page 258 for details.
 

Another common way to create a logical volume is to use lvcreate to create a zero-length volume and then use lvextend to add storage to it. That way, you can specify exactly which physical volumes in the volume group should compose the logical volume. If you allocate space with lvcreate (as we did above), it simply uses free extents from any available physical volumes in the volume group—good enough for most situations.
 

As in Linux, striping (which HP-UX’s LVM refers to as “distributed allocation”) and mirroring are features at the logical volume level. You can request them at the time the logical volume is created with lvcreate, or later with lvchange. In contrast to Linux, the logical volume manager does not allow snapshots. However, temporary snapshots are available as a feature of HP’s VxFS filesystem.
 

If you plan to use a logical volume as a boot or swap device or to store system core dumps, you must specify contiguous allocation and turn off bad block remapping with the -C and -r flags to lvcreate, as shown below.16
 

[image: Image]
 

You must then run the lvlnboot command to notify the system of the new root and swap volumes. See the man page for lvlnboot for more information about the special procedures for creating boot, swap, and dump volumes.
 

AIX logical volume management
 

[image: Image] AIX’s logical volume manager uses a different command set from the volume managers of Linux and HP-UX, but its underlying architecture and approach are similar. One potentially confusing point is that AIX calls the objects more commonly known as extents (that is, the units of space allocation within a volume group) “partitions.” Because the entities normally referred to as partitions do not exist in AIX, there is no ambiguity within the AIX sphere itself. However, tourists visiting from other systems may wish to bring along an AIX phrase book.
 

In other respects—physical volume, volume group, logical volume—AIX terminology is standard. The SMIT interface for logical volume management is pretty complete, but you can also use the commands listed in Table 8.4.
 

The following four commands create a volume group called webvg, a logical volume called web1 within it, and a JFS2 filesystem inside web1. The filesystem is then mounted in /mnt/web1.
 

[image: Image]
 

AIX does not require you to label disks to turn them into physical volumes. mkvg and extendvg automatically label disks as part of the induction process. Note that mkvg takes a device name and not the path to a disk device.
 

You can create the logical volume and the filesystem inside it in separate steps (with mklv and mkfs, respectively), but crfs performs both tasks for you and updates /etc/filesystems as well. The exact name of the logical volume device that holds the filesystem is made up for you in the crfs scenario, but you can determine it by inspecting /etc/filesystems or running mount. (On the other hand, it can be hard to unscramble filesystems in the event of problems if the volumes all have generic names.)
 

If you run mklv directly, you can specify not only a device name of your choosing but also various options to the volume manager such as striping and mirroring configurations. Snapshots are implemented through the JFS2 filesystem and not through the volume manager.
 

8.9 Filesystems
 

Even after a hard disk has been conceptually divided into partitions or logical volumes, it is still not ready to hold files. All the abstractions and goodies described in Chapter 6, The Filesystem, must be implemented in terms of raw disk blocks. The filesystem is the code that implements these, and it needs to add a bit of its own overhead and data.
 

The Berkeley Fast File System implemented by McKusick et al. in the 1980s was an early standard that spread to many UNIX systems. With some small adjustments, it eventually became known as the UNIX File System (UFS) and formed the basis of several other filesystem implementations, including Linux’s ext series, Solaris’s UFS, and IBM’s JFS.
 

Early systems bundled the filesystem implementation into the kernel, but it soon became apparent that support for multiple filesystem types was an important design goal. UNIX systems developed a well-defined kernel interface that allowed multiple types of filesystems to be active at once. The filesystem interface also abstracted the underlying hardware, so filesystems see approximately the same interface to storage devices as do other UNIX programs that access the disks through device files in /dev.
 

Support for multiple filesystem types was initially motivated by the need to support NFS and filesystems for removable media. But once the floodgates were opened, the “what if ” era began; many different groups started to work on improved filesystems. Some were system specific, and others (such as ReiserFS) were not tied to any particular OS.
 

Given that you may have a choice of filesystems, should you investigate the various alternatives and choose the “best” one? Unless you’re setting up a data disk for a very specific application, no. In nearly all situations, it’s better to stick with the system’s defaults. That’s what the system’s documentation and administrative tools probably assume.
 

Only a few features are truly non-negotiable:
 

• Good performance

 

• Tolerance for crashes and power outages without filesystem corruption

 

• The ability to handle disks and filesystems large enough for your needs

 

Fortunately, modern systems’ default filesystems already cover these bases. Any improvement you might see from changing filesystems will be marginal and context dependent at best.
 

The next sections discuss the default filesystems on Linux, HP-UX, and AIX. The ZFS filesystem used by Solaris is administered differently and merits an entire section of its own; that section starts on page 264.
 

Linux filesystems: the ext family
 

[image: Image] The “second extended filesystem,” ext2, was for a long time the mainstream Linux standard. It was designed and implemented primarily by Rémy Card, Theodore Ts’o, and Stephen Tweedie. Although the code for ext2 was written specifically for Linux, it is functionally similar to the Berkeley Fast File System.
 

Ext3 adds journaling capability to the existing ext2 code, a conceptually simple modification that increases reliability enormously. Even more interestingly, the ext3 extensions were implemented without changing the fundamental structure of ext2. In fact, you can still mount an ext3 filesystem as an ext2 filesystem—it just won’t have journaling enabled.
 

Ext3 sets aside an area of the disk for the journal. The journal is allocated as if it were a regular file in the root of the filesystem, so it is not really a distinct structural component.
 

When a filesystem operation occurs, the required modifications are first written to the journal. When the journal update is complete, a “commit record” is written to mark the end of the entry. Only then is the normal filesystem modified. If a crash occurs during the update, the filesystem uses the journal log to reconstruct a perfectly consistent filesystem.17
 

Journaling reduces the time needed to perform filesystem consistency checks (see the fsck section on page 259) to approximately one second per filesystem. Barring some type of hardware failure, the state of an ext3 filesystem can almost instantly be assessed and restored.
 

Ext4 is a comparatively incremental update that raises a few size limits, increases the performance of certain operations, and allows the use of “extents” (disk block ranges) for storage allocation rather than just individual disk blocks. The on-disk format is compatible enough that ext2 and ext3 filesystems can be mounted as ext4 filesystems. Furthermore, ext4 filesystems can be mounted as if they were ext3 filesystems provided that the extent system has not been used.
 

Use of ext4 over the previous versions is recommended as of Linux kernel 2.6.28.18
 

It is the default on Ubuntu and SUSE; Red Hat remains on ext3.
 

It’s easy to add a journal to an existing ext2 filesystem, thereby promoting it to ext3 or ext4 (the distinction is vague because of backward compatibility). Just run tune2fs with the -j option. For example:
 

# tune2fs -j /dev/hda4
 

You would then need to modify the corresponding entry in /etc/fstab to read ext4 rather than ext2 (see page 260 for more information on the fstab file).
 

HP-UX filesystems: VxFS and HFS
 

[image: Image] VxFS is the mainstream HP-UX filesystem. It’s based on a filesystem originally developed by Veritas Software, now part of Symantec. Since it includes a journal, HP sometimes refers to it as JFS, the Journaled File System. Don’t confuse this JFS with AIX’s JFS2, though; they are different filesystems.
 

VxFS is nearly unique among mainstream filesystems in that it supports clustering; that is, simultaneous modification by multiple, independent computers. This mode of operation involves some performance costs because the filesystem must take extra steps to ensure cache coherency among computers. By default, clustering features are turned off; use the -o cluster option to mount to turn them on.
 

HFS is HP’s previous mainstream filesystem. It’s based on the UNIX File System and is now deprecated, though still supported.
 

AIX’s JFS2
 

[image: Image] JFS2 is yet another filesystem that traces its roots back to the Berkeley Fast File System. The J stands for “journaled,” but JFS2 has some other tricks up its sleeve, including extents, dynamic allocation of inodes, and the use of a B+ tree structure to store directory entries.
 

JFS2 is also interesting in that it’s available under the GNU General Public License. It runs on Linux, too.
 

Filesystem terminology
 

Largely because of their common history with UFS, many filesystems share some descriptive terminology. The implementations of the underlying objects have often changed, but the terms are still widely used by administrators as labels for fundamental concepts.
 

“Inodes” are fixed-length table entries that each hold information about one file. They were originally preallocated at the time a filesystem was created, but some filesystems now create them dynamically as they are needed. Either way, an inode usually has an identifying number that you can see with ls -i.
 

Inodes are the “things” pointed to by directory entries. When you create a hard link to an existing file, you create a new directory entry, but you do not create a new inode.
 

On systems that preallocate inodes, you must decide in advance how many to create. It’s impossible to predict exactly how many will someday be needed, so filesystem-building commands use an empirical formula, based on the size of the volume and an average file size, to guesstimate an appropriate number. If you anticipate storing zillions of small files, you may need to increase this number.
 

A superblock is a record that describes the characteristics of the filesystem. It contains information about the length of a disk block, the size and location of the inode tables, the disk block map and usage information, the size of the block groups, and a few other important parameters of the filesystem. Because damage to the superblock could erase some extremely crucial information, several copies of it are maintained in scattered locations.
 

Filesystems cache disk blocks to increase efficiency. All types of blocks can be cached, including superblocks, inode blocks, and directory information. Caches are normally not “write-through,” so there may be some delay between the point at which an application thinks it has written a block and the point at which the block is actually saved to disk. Applications can request more predictable behavior for a file, but this option lowers throughput.
 

The sync system call flushes modified blocks to their permanent homes on disk, possibly making the on-disk filesystem fully consistent for a split second. This periodic save minimizes the amount of data loss that might occur if the machine were to crash with many unsaved blocks. Filesystems can do syncs on their own schedule or leave this up to the OS. Modern filesystems have journaling mechanisms that minimize or eliminate the possibility of structural corruption in the event of a crash, so sync frequency now mostly has to do with how many data blocks might be lost in a crash.
 

A filesystem’s disk block map is a table of the free blocks it contains. When new files are written, this map is examined to devise an efficient layout scheme. The block usage summary records basic information about the blocks that are already in use. On filesystems that support extents, the information may be significantly more complex than the simple bitmap used by older filesystems.
 

Filesystem polymorphism
 

Filesystems are software packages with multiple components. One part lives in the kernel (or even potentially in user space under Linux; google for FUSE) and implements the nuts and bolts of translating the standard filesystem API into reads and writes of disk blocks. Other parts are user-level commands that initialize new volumes to the standard format, check filesystems for corruption, and perform other format-specific tasks.
 

Long ago, the standard user-level commands knew about “the filesystem” that the system used, and they simply implemented the appropriate functionality. mkfs created new filesystems, fsck fixed problems, and mount mostly just invoked the appropriate underlying system calls. These days filesystems are more modular, so these commands call filesystem-specific implementations of each utility.
 

The exact implementation varies. For example, the Linux wrappers look for discrete commands named mkfs.fsname, fsck.fsname, and so on in the normal directories for system commands. (You can run these commands directly, but it’s rarely necessary.) AIX has a central /etc/vfs switch that records metainformation for filesystems (not to be confused with Solaris’s /etc/vfstab, which is equivalent to the fstab or filesystems file on other systems; it’s not needed for ZFS, though).
 

mkfs: format filesystems
 

The general recipe for creating a new filesystem is
 

mkfs [-T
fstype] [-o
options] rawdevice
 

The default fstype may be hard-coded into the wrapper, or it might be specified in /etc/default/fs. The available options are filesystem specific, but it’s rare that you’ll need to use them. Linux uses -t instead of -T, omits the -o designator, and does not have raw disk device files. AIX uses -V instead of -T.
 

[image: Image] AIX’s crfs can allocate a new logical volume, create a filesystem on it, and update the /etc/filesystems file all in one step.
 

Two options you may consider tweaking are those that enable snapshots for file-systems that support them (JFS2 and VxFS) and locating the filesystem journal on a separate disk. The latter option can give quite a performance boost in the right circumstances.
 

fsck: check and repair filesystems
 

Because of block buffering and the fact that disk drives are not really transactional devices, filesystem data structures can potentially become self-inconsistent. If these problems are not corrected quickly, they propagate and snowball.
 

The original fix for corruption was a command called fsck (“filesystem consistency check,” spelled aloud or pronounced “FS check” or “fisk”) that carefully inspected all data structures and walked the allocation tree for every file. It relied on a set of heuristic rules about what the filesystem state might look like after failures at various points during an update.
 

The original fsck scheme worked surprisingly well, but because it involved reading all a disk’s data, it could take hours on a large drive. An early optimization was a “filesystem clean” bit that could be set in the superblock when the filesystem was properly unmounted. When the system restarted, it would see the clean bit and know to skip the fsck check.
 

Now, filesystem journals let fsck pinpoint the activity that was occurring at the time of a failure. fsck can simply rewind the filesystem to the last known consistent state.
 

Disks are normally fscked automatically at boot time if they are listed in the system’s /etc/fstab, /etc/vfstab, or /etc/filesystems file. The fstab and vfstab files have legacy “fsck sequence” fields that were normally used to order and parallelize filesystem checks. But now that fscks are fast, the only thing that really matters is that the root filesystem be checked first.
 

You can run fsck by hand to perform an in-depth examination more akin to the original fsck procedure, but be aware of the time required.
 

[image: Image] Linux ext-family filesystems can be set to force a recheck after they have been remounted a certain number of times or after a certain period of time, even if all the unmounts were “clean.” This precaution is good hygiene, and in most cases the default value (usually around 20 mounts) is acceptable. However, on systems that mount filesystems frequently, such as desktop workstations, even that frequency of fscks can become tiresome. To increase the interval to 50 mounts, use the tune2fs command:
 

[image: Image]
 

If a filesystem appears damaged and fsck cannot repair it automatically, do not experiment with it before making an ironclad backup. The best insurance policy is to dd the entire disk to a backup file or backup disk.
 

Most filesystems create a lost+found directory at the root of each filesystem in which fsck can deposit files whose parent directory cannot be determined. The lost+found directory has some extra space preallocated so that fsck can store orphaned files there without having to allocate additional directory entries on an unstable filesystem. Don’t delete this directory.19
 

Since the name given to a file is recorded only in the file’s parent directory, names for orphan files are not available and the files placed in lost+found are named with their inode numbers. The inode table does record the UID of the file’s owner, however, so getting a file back to its original owner is relatively easy.
 

Filesystem mounting
 

A filesystem must be mounted before it becomes visible to processes. The mount point for a filesystem can be any directory, but the files and subdirectories beneath it are not accessible while a filesystem is mounted there. See Filesystem mounting and unmounting on page 143 for more information.
 

After installing a new disk, you should mount new filesystems by hand to be sure that everything is working correctly. For example, the command
 

$ sudo mount /dev/sda1 /mnt/temp
 

mounts the filesystem in the partition represented by the device file /dev/sd1a (device names will vary among systems) on a subdirectory of /mnt, which is a traditional path used for temporary mounts.
 

You can verify the size of a filesystem with the df command. The example below uses the Linux -h flag to request “human readable” output. Unfortunately, most systems’ df defaults to an unhelpful unit such as “disk blocks,” but there is usually a flag to make df report something specific such as kibibytes or gibibytes.
 

[image: Image]
 

Setup for automatic mounting
 

You will generally want to configure the system to mount local filesystems at boot time. A configuration file in /etc lists the device names and mount points of all the system’s disks (among other things). On most systems this file is called /etc/fstab (for “filesystem table”), but under both Solaris and AIX it has been restructured and renamed: /etc/vfstab on Solaris and /etc/filesystems on AIX. Here, we use the generic term “filesystem catalog” to refer to all three files.
 

[image: Image] By default, ZFS filesystems mount themselves automatically and do not require vfstab entries. However, you can change this behavior by setting ZFS filesystem properties. Swap areas and nonfilesystem mounts should still appear in vfstab.
 

mount, umount, swapon, and fsck all read the filesystem catalog, so it is helpful if the data presented there is correct and complete. mount and umount use the catalog to figure out what you want done if you specify only a partition name or mount point on the command line. For example, with the Linux fstab configuration shown on page 262, the command
 

$ sudo mount /media/cdrom0
 

would have the same effect as typing
 

$ sudo mount -t udf -o user,noauto,exec,utf8 /dev/scd0 /media/cdrom0
 

The command mount -a mounts all regular filesystems listed in the filesystem catalog; it is usually executed from the startup scripts at boot time.20 The -t, -F, or -v flag (-t for Linux, -F for Solaris and HP-UX, -v for AIX) with an fstype argument constrains the operation to filesystems of a certain type. For example,
 

$ sudo mount -at ext4
 

mounts all local ext4 filesystems. The mount command reads fstab sequentially. Therefore, filesystems that are mounted beneath other filesystems must follow their parent partitions in the fstab file. For example, the line for /var/log must follow the line for /var if /var is a separate filesystem.
 

The umount command for unmounting filesystems accepts a similar syntax. You cannot unmount a filesystem that a process is using as its current directory or on which files are open. There are commands to identify the processes that are interfering with your umount attempt; see page 144.
 

[image: Image] The HP-UX fstab file is the most traditional of our example systems. Here are entries for a system that has only a single volume group:
 

[image: Image]
 

There are six fields per line, separated by whitespace. Each line describes a single filesystem. The fields are traditionally aligned for readability, but alignment is not required.
 

The first field gives the device name. The fstab file can include mounts from remote systems, in which case the first field contains an NFS path. The notation server:/export indicates the /export directory on the machine named server.
 

See Chapter 18 for more information about NFS.

 

The second field specifies the mount point, and the third field names the type of filesystem. The exact type name used to identify local filesystems varies among machines.
 

The fourth field specifies mount options to be applied by default. There are many possibilities; see the man page for mount for the ones that are common to all filesystem types. Individual filesystems usually introduce options of their own. All the options shown above are specific to VxFS. For example, the delaylog option sacrifices some reliability for speed. See the mount_vxfs man page for more information about this and other VxFS mount options.
 

The fifth and sixth fields are vestigial. They are supposedly a “dump frequency” column and a column used to control fsck parallelism. Neither is important on contemporary systems.
 

[image: Image] Below are some additional examples culled from an Ubuntu system’s fstab. The general format is the same, but Linux systems often include some additional flourishes.
 

[image: Image]
 

The first line addresses the /proc filesystem, which is in fact presented by a kernel driver and has no actual backing store. The proc device listed in the first column is just a placeholder.
 

The second and third lines use partition IDs (UUIDs, which we’ve truncated to make the excerpt more readable) instead of device names to identify volumes. This alternative is useful on Linux systems because the device names of disk partitions are unstable; adding or removing a disk can cause all the other disks to change names (e.g., from /dev/sdb1 to /dev/sdc1). The UUID is linked only to the content of the partition, so it allows the partition to be tracked down wherever it might be hiding. Note that this convention works for the swap partition as well as the root.
 

The last three lines configure support for CD-ROM and floppy disk devices. The noauto option prevents the system from trying to mount these devices at boot time. (If no media were inserted, the mount attempt would fail and prolong the boot process.) The user option makes all the files on these removable drives appear to be owned by the user who mounts them.
 

[image: Image] On Solaris systems, the /etc/vfstab file has a slightly reorganized format with the order of some fields being swapped relative to the Linux and HP-UX scheme. However, the data is still tabular and is easily readable without much decoding effort. The distinguishing features of the vfstab format are that it has a separate “device to fsck” column and a separate “mount at boot” column.
 

[image: Image] AIX’s /etc/filesystems file is organized as a series of property lists somewhat reminiscent of YAML or JSON, although the format is a bit different. Here’s an example configuration for one filesystem:
 

[image: Image]
 

This format is nice in that it allows arbitrary properties to be associated with each filesystem, so filesystem-type-specific parameters can easily be recorded in the filesystems catalog. AIX automatically maintains this file when you perform disk wrangling operations through SMIT, but it’s fine to edit the file directly, too.
 

USB drive mounting
 

Floppy disks have finally gone the way of the dodo, and good riddance. In their place are friendly, fast, and fun USB drives. These devices come in many flavors: personal “thumb” drives, digital cameras, iPods, and large external disks, to name a few. Most of these are supported by UNIX systems as data storage devices.
 

In the past, special tricks were necessary to manage USB devices. But now that operating systems have embraced dynamic device management as a fundamental requirement, USB drives are just one more type of device that shows up or disappears without warning.
 

From the perspective of storage management, the issues are
 

• Getting the kernel to recognize a device and to assign a device file to it

 

• Finding out what assignment has been made

 

The first step usually happens automatically, but systems have commands (such as AIX’s cfgmgr) that you can use to goose the system if need be. Once a device file has been assigned, you can use the normal procedures described in Disk device files on page 224 to find out what it is.
 

For additional information about dynamic device management, see Chapter 13, Drivers and the Kernel.
 

Enabling swapping
 

Raw partitions or logical volumes, rather than structured filesystems, are normally used for swap space. Instead of using a filesystem to keep track of the swap area’s contents, the kernel maintains its own simplified mapping from memory blocks to swap space blocks.
 

On some systems, it’s also possible to swap to a file in a filesystem partition. With older kernels this configuration can be slower than using a dedicated partition, but it’s still very handy in a pinch. In any event, logical volume managers eliminate most of the reasons you might want to use a swap file rather than a swap volume.
 

The more swap space you have, the more virtual memory your processes can allocate. The best virtual memory performance is achieved when the swap area is split among several drives. Of course, the best option of all is to not swap; consider adding RAM if you find yourself needing to optimize swap performance.
 

See page 1129 for more information about splitting swap areas.

 

[image: Image] On Linux systems, swap areas must be initialized with mkswap, which takes the device name of the swap volume as an argument.
 

You can manually enable swapping to a particular device with swapon
device on most systems or swap -a
device on Solaris. However, you will generally want to have this function performed automatically at boot time. Except on AIX, you can list swap areas in the regular filesystem catalog (fstab or vfstab) by giving them a filesystem type of swap. AIX has a separate file that lists the system’s swap areas, /etc/swapspaces.
 

To review the system’s current swapping configuration, run swapon -s on Linux systems, swap -s on Solaris and AIX, or swapinfo on HP-UX.
 

[image: Image] On AIX systems, you can use the mkps command to create a logical volume for swapping, add it to the /etc/swapspaces file, and start using it. This is the command called by the SMIT interface.
 

8.10 ZFS: All Your Storage Problems Solved
 

ZFS was introduced in 2005 as a component of OpenSolaris, and it quickly made its way to Solaris 10 and to various BSD-based distributions. In 2008, it became usable as a root filesystem, and it has been the front-line filesystem of choice for Solaris ever since.
 

Although ZFS is usually referred to as a filesystem, it is in fact a comprehensive approach to storage management that includes the functions of a logical volume manager and a RAID controller. It also redefines many common aspects of storage administration to make them simpler, easier, and more consistent. Although the current version of ZFS has a few limitations, most fall into the “not yet implemented” category rather than the “can’t do for architectural reasons” category.
 

The advantages of ZFS’s integrated approach are clear. If you’re not already familiar with ZFS, we predict that you’ll enjoy working with it. There is little doubt that the system will be widely emulated over the next decade. The open question is how long we’ll have to wait to get ZFS-style features on other systems. Although ZFS is open source software, the terms of its current license unfortunately prevent inclusion in the Linux kernel.
 

Oracle’s Btrfs filesystem project (“B-tree file system,” officially pronounced “butter FS,” though it’s hard not to think “butter face”) aims to repeat many of ZFS’s advances on the Linux platform. It is already included in current Linux kernels as a technology preview. Ubuntu and SUSE users can experiment with it by installing the btrfs-tools or btrfsprogs packages, respectively. However, Btrfs is not production-ready, and now that Oracle has acquired Sun, the exact futures of both Btrfs and ZFS are uncertain.
 

ZFS architecture
 

Exhibit D shows a schematic of the major objects in the ZFS system and their relationship to each other.
 

Exhibit D ZFS architecture
 

[image: Image]
 

A ZFS “pool” is analogous to a “volume group” in other logical volume management systems. Each pool is composed of “virtual devices,” which can be raw storage devices (disks, partitions, SAN devices, etc.), mirror groups, or RAID arrays. ZFS RAID is similar in spirit to RAID 5 in that it uses one or more parity devices to provide redundancy for the array. However, ZFS calls the scheme RAID-Z and uses variable-sized stripes to eliminate the RAID 5 write hole. All writes to the storage pool are striped across the pool’s virtual devices, so a pool that contains only individual storage devices is effectively an implementation of RAID 0, although the devices in this configuration are not required to be of the same size.
 

Unfortunately, the current ZFS RAID is a bit brittle in that you cannot add new devices to an array once it has been defined; nor can you permanently remove a device. As in most RAID implementations, devices in a RAID set must be the same size; you can force ZFS to accept mixed sizes, but the size of the smallest volume then dictates the overall size of the array. To use disks of different sizes efficiently in combination with ZFS RAID, you must partition the disks ahead of time and define the leftover regions as separate devices.
 

Although you can turn over raw, unpartitioned disks to ZFS’s care, ZFS secretly writes a GPT-style partition table onto them and allocates all of each disk’s space to its first partition.
 

Most configuration and management of ZFS is done through two commands: zpool and zfs. Use zpool to build and manage storage pools. Use zfs to create and manage the entities created from pools, chiefly filesystems and raw volumes used as swap space and database storage.
 

Example: Solaris disk addition
 

Before we descend into the details of ZFS, let’s start with a high-level example. Suppose you’ve added a new disk to your Solaris system and the disk has shown up as /dev/dsk/c8d1. (An easy way to determine the correct device is to run sudo format. The format command then shows you a menu of the system’s disks from which you can spot the correct disk before typing <Control-C>.)
 

The first step is to label the disk and add it to a new storage pool:
 

solaris$ sudo zpool create demo c8d1
 

Step two is… well, there is no step two. ZFS labels the disk, creates the pool “demo,” creates a filesystem root inside that pool, and mounts that filesystem as /demo. The filesystem will be remounted automatically when the system boots.
 

solaris$ ls -a /demo
.      ..
 

It would be even more impressive if we could simply add our new disk to the existing storage pool of the root disk, which is called “rpool” by default. (The command would be sudo zpool add rpool c8d1.) Unfortunately, the root pool can only contain a single virtual device. Other pools can be painlessly extended in this manner, however.
 

Filesystems and properties
 

It’s fine for ZFS to automatically create a filesystem on a new storage pool because by default, ZFS filesystems consume no particular amount of space. All filesystems that live in a pool can draw from the pool’s available space.
 

Unlike traditional filesystems, which are independent of one another, ZFS filesystems are hierarchical and interact with their parent and child filesystems in several ways. You create new filesystems with zfs create.
 

[image: Image]
 

The -r flag to zfs list makes it recurse through child filesystems. Most other zfs subcommands understand -r, too. Ever helpful, ZFS automounts the new filesystem as soon as we create it.
 

To simulate traditional filesystems of fixed size, you can adjust the filesystem’s properties to add a “reservation” (an amount of space reserved in the storage pool for the filesystem’s use) and a quota. This adjustment of filesystem properties is one of the keys to ZFS management, and it’s something of a paradigm shift for administrators who are used to other systems. Here, we set both values to 1GB:
 

[image: Image]
 

The new quota is reflected in the AVAIL column for /demo/new_fs. Similarly, the reservation shows up immediately in the USED column for /demo. That’s because the reservations of /demo’s descendant filesystems are included in its size tally.21
 

Both property changes are purely bookkeeping entries. The only change to the actual storage pool is the update of a block or two to record the new settings. No process goes out to format the 1GB of space reserved for /demo/new_fs. Most ZFS operations, including the creation of new storage pools and new filesystems, are similarly lightweight.
 

Using this hierarchical system of space management, you can easily group several filesystems to guarantee that their collective size will not exceed a certain threshold; you do not need to specify limits on individual filesystems.
 

You must set both the quota and reservation properties to properly emulate a traditional fixed-size filesystem.22 The reservation alone simply ensures that the filesystem will have enough room available to grow at least that large. The quota limits the filesystem’s maximum size without guaranteeing that space will be available for this growth; another object could snatch up all the pool’s free space, leaving no room for /demo/new_fs to expand.
 

On the other hand, there are few reasons to set up a filesystem this way in real life. We show the use of these properties simply to demonstrate ZFS’s space accounting system and to emphasize that ZFS is compatible with the traditional model, should you wish to enforce it.
 

Property inheritance
 

Many properties are naturally inherited by child filesystems. For example, if we wanted to mount the root of the demo pool in /opt/demo instead of /demo, we could simply set the root’s mountpoint parameter:
 

[image: Image]
 

Setting the mountpoint parameter automatically remounts the filesystems, and the mount point change affects child filesystems in a predictable and straightforward way. The usual rules regarding filesystem activity still apply, however; see page 143.
 

Use zfs get to see the effective value of a particular property; zfs get all dumps them all. The SOURCE column tells you why each property has its particular value: local means that the property was set explicitly, and a dash means that the property is read-only. If the property value is inherited from an ancestor filesystem, SOURCE shows the details of that inheritance as well.
 

[image: Image]
 

Vigilant readers may notice that the available and referenced properties look suspiciously similar to the AVAIL and REFER columns shown by zfs list. In fact, zfs list is just a different way of displaying filesystem properties. If we had included the full output of our zfs get command above, there would be a used property in there, too. You can specify the properties you want zfs list to show with the -o option.
 

It wouldn’t make sense to assign values to used and to the other size properties, so these properties are read-only. If the specific rules for calculating used don’t meet your needs, other properties such as usedbychildren and usedbysnapshots may give you better insight into how your disk space is being consumed. See the ZFS admin guide for a complete list.
 

You can set additional, nonstandard properties on filesystems for your own use and for the use of your local scripts. The process is the same as for standard properties. The names of custom properties must include a colon to distinguish them from standard properties.
 

One filesystem per user
 

Since filesystems consume no space and take no time to create, the optimal number of them is closer to “a lot” than “a few.” If you keep users’ home directories on a ZFS storage pool, it’s recommended that you make each home directory a separate filesystem. There are several reasons for this convention.
 

• If you need to set disk usage quotas, home directories are a natural granularity at which to do this. You can set quotas on both individual users’ filesystems and on the filesystem that contains all users.

 

• Snapshots are per filesystem. If each user’s home directory is a separate filesystem, the user can access old snapshots througĥ/.zfs.23 This alone is a huge time saver for administrators because it means that users can service most of their own file restore needs.

 

• ZFS lets you delegate permission to perform various operations such as taking snapshots and rolling back the filesystem to an earlier state. If you wish, you can give users control over these operations for their own home directories. We do not describe the details of ZFS permission management in this book; see the ZFS Administration Guide.

 

Snapshots and clones
 

ZFS is organized around the principle of copy-on-write. Instead of overwriting disk blocks in place, ZFS allocates new blocks and updates pointers. This approach makes ZFS resistant to corruption because operations can never end up half-completed in the event of a power failure or crash. Either the root block is updated or it’s not; the filesystem is consistent either way (though a few recent changes may be “undone”).
 

Just as in a logical volume manager, ZFS brings copy-on-write to the user level by allowing you to create instantaneous snapshots. However, there’s an important difference: ZFS snapshots are implemented per-filesystem rather than per-volume, so they have arbitrary granularity. Solaris uses this feature to great effect in the Time Slider widget for the GNOME desktop. Much like Mac OS’s Time Machine, the Time Slider is a combination of scheduled tasks that create and manage snapshots at regular intervals and a UI that makes it easy for you to reach older versions of your files.
 

On the command line, you create snapshots with zfs snapshot. For example, the following command sequence illustrates creation of a snapshot, use of the snapshot through the filesystem’s .zfs/snapshot directory, and reversion of the filesystem to its previous state.
 

[image: Image]
 

You assign a name to each snapshot at the time it’s created. The complete specifier for a snapshot is usually written in the form filesystem@snapshot.
 

Use zfs snapshot -r to create snapshots recursively. The effect is the same as executing zfs snapshot on each contained object individually: each subcomponent receives its own snapshot. All the snapshots have the same name, but they’re logically distinct.
 

ZFS snapshots are read-only, and although they can bear properties, they are not true filesystems. However, you can instantiate a snapshot as a full-fledged, writable filesystem by “cloning” it.
 

[image: Image]
 

The snapshot that is the basis of the clone remains undisturbed and read-only. However, the new filesystem (demo/subclone in this example) retains a link to both the snapshot and the filesystem on which it’s based, and neither of those entities can be deleted as long as the clone exists.
 

Cloning isn’t a common operation, but it’s the only way to create a branch in a filesystem’s evolution. The zfs rollback operation demonstrated above can only revert a filesystem to its most recent snapshot, so to use it you must permanently delete (zfs destroy) any snapshots made since the snapshot that is your reversion target. Cloning lets you go back in time without losing access to recent changes.
 

For example, suppose that you’ve discovered a security breach that occurred some time within the last week. For safety, you want to revert a filesystem to its state of a week ago to be sure it contains no hacker-installed back doors. At the same time, you don’t want to lose recent work or the data for forensic analysis. The solution is to clone the week-ago snapshot to a new filesystem, zfs rename the old filesystem, and then zfs rename the clone in place of the original filesystem.
 

For good measure, you should also zfs promote the clone; this operation inverts the relationship between the clone and the filesystem of origin. After promotion, the main-line filesystem has access to all the old filesystem’s snapshots, and the old, moved-aside filesystem becomes the “cloned” branch.
 

Raw volumes
 

You create swap areas and raw storage areas with zfs create, just as you create filesystems. The -V
size argument makes zfs treat the new object as a raw volume instead of a filesystem. The size can use any common unit, for example, 128m.
 

Since the volume does not contain a filesystem, it is not mounted; instead, it shows up in the /dev/zvol/dsk and /dev/zvol/rdsk directories and can be referenced as if it were a hard disk or partition. ZFS mirrors the hierarchical structure of the storage pool in these directories, so sudo zfc create -V 128m demo/swap creates a 128MB swap volume located at /dev/zvol/dsk/demo/swap.
 

You can create snapshots of raw volumes just as you can with filesystems, but because there’s no filesystem hierarchy in which to put a .zfs/snapshot directory, the snapshots show up in the same directory as their source volumes. Clones work too, just as you’d expect.
 

By default, raw volumes receive a space reservation equal to their specified size. You’re free to reduce the reservation or do away with it entirely, but note that this can make writes to the volume return an “out of space” error. Clients of raw volumes may not be designed to deal with such an error.
 

Filesystem sharing filesystem through NFS, CIFS, and iSCSI
 

Just as ZFS redefines many aspects of traditional filesystem management, it also changes the way that filesystems are shared over a network. In particular, you can set the sharenfs or sharesmb property of a filesystem to on to make it available through NFS or Solaris’s built-in CIFS server. See Chapter 18, The Network File System, for more information about NFS, and see the section Sharing files with Samba and CIFS on page 1142 for more information about CIFS.
 

If you leave these properties set to off, that does not mean the filesystems are unsharable; it just means that you must do your own export management with tools such as sharemgr, share, and unshare instead of having ZFS take care of this for you. The sharenfs and sharesmb properties can also take on values other than on and off. If you set a more detailed value, it’s assumed that you want sharing turned on, and the value is passed through zfs share and on to share in the form of command-line arguments.
 

In a similar vein, shareiscsi=on on a raw volume makes that volume available as an iSCSI target. See page 274 for more information about iSCSI.
 

By default, all the share* properties are inheritable. If you share /home over NFS, for example, you automatically share the individual home directories beneath it, even if they are defined as separate filesystems. Of course, you can override this behavior by setting an explicit sharenfs=no value on each sub-filesystem.
 

ZFS uses the NFSv4 standard for access control lists. The nuances of that standard are discussed in more detail in Chapter 6, The Filesystem, starting on page 166. The executive summary is that ZFS provides excellent ACL support for both Windows and NFS clients.
 

Storage pool management
 

Now that we’ve peeked at some of the features that ZFS offers at the filesystem and block-client level, let’s take a longer swim in ZFS’s storage pools.
 

Up to this point, we’ve used a pool called “demo” that we created from a single disk back on page 266. Here it is in the output of zpool list:
 

[image: Image]
 

The pool named rpool contains the bootable root filesystem. Bootable pools are currently restricted in several ways: they can only contain a single virtual device, and that device must be either a mirror array or a single disk drive; it cannot be a RAID array. If it is a disk, it cannot have a GPT partition table.
 

zpool status adds more detail about the virtual devices that make up a storage pool and reports their current status.
 

[image: Image]
 

Let’s get rid of this demo pool and set up something a bit more sophisticated. We’ve attached five 500GB SCSI drives to our example system. We first create a pool called “monster” that includes three of those drives in a RAID-Z single-parity configuration.
 

[image: Image]
 

ZFS also understands raidz2 and raidz3 for double and triple parity configurations. The minimum number of disks is always one more than the number of parity devices. Here, one drive out of three is used for parity, so roughly 1TB is available for use by filesystems.
 

For illustration, we then add the remaining two drives configured as a mirror.
 

[image: Image]
 

zpool initially balks at this configuration because the two virtual devices have different redundancy schemes. This particular configuration is OK since both vdevs have some redundancy. In actual use, you should not mix redundant and nonredundant vdevs since there’s no way to predict which blocks might be stored on which devices; partial redundancy is useless.
 

[image: Image]
 

ZFS distributes writes among all a pool’s virtual devices. As demonstrated in this example, it is not necessary for all virtual devices to be the same size.24 However, the components within a redundancy group should be of similar size. If they are not, only the smallest size is used on each component. If you use multiple simple disks together in a storage pool, that is essentially a RAID 0 configuration.
 

You can add additional vdevs to a pool at any time. However, existing data will not be redistributed to take advantage of parallelism. Unfortunately, you cannot currently add additional devices to an existing RAID array or mirror.
 

ZFS has an especially nice implementation of read caching that makes good use of SSDs. To set up this configuration, just add the SSDs to the storage pool as vdevs of type cache. The caching system uses an adaptive replacement algorithm developed at IBM that is smarter than a normal LRU (least recently used) cache. It knows about the frequency at which blocks are referenced as well as their recency of use, so reads of large files are not supposed to wipe out the cache.
 

Hot spares are handled as vdevs of type spare. You can add the same disk to multiple storage pools; whichever pool experiences a disk failure first gets to claim the spare disk.
 

8.11 Storage Area Networking
 

There are several ways to attach storage resources to a network. Chapter 18, The Network File System, describes NFS, the traditional UNIX protocol used for file sharing. Windows systems use the protocol known variously as CIFS or SMB for similar purposes. The predominant implementation of CIFS for UNIX and Linux is Samba; see Sharing files with Samba and CIFS on page 1142 for more details.
 

NFS and CIFS are examples of “network-attached storage” (NAS) systems. They are high-level protocols, and their basic operations are along the lines of “open file X and send me the first 4KiB of data” or “adjust the ACL on file Y as described in this request.” These systems are good at arbitrating access to filesystems that many clients want to read or write at once.
 

A storage area network (SAN) is a lower-level system for abstracting storage, one that makes network storage look like a local hard disk. SAN operations consist primarily of instructions to read or write particular “disk” blocks (though, of course, the block addressing is virtualized by the server in some way). If a client wants to use SAN storage to hold a filesystem, it must provide its own filesystem implementation. On the other hand, SAN volumes can also be used to store swap areas or other data that doesn’t need the structure or overhead of a filesystem.
 

With the exception of HP’s VxFS, mainstream filesystems are not designed to be updated by multiple clients that are unaware of each other’s existence (at least, not at the level of raw disk blocks).25 Therefore, SAN storage is not typically used as a way of sharing files. Instead, it’s a way to replace local hard disks with centralized storage resources.
 

Why would you want to do this? Several reasons:
 

• Every client gets to share the benefits of a sophisticated storage facility that’s optimized for performance, fault tolerance, and disaster recovery.

 

• Utilization efficiency is increased because every client can have exactly as much storage as it needs. Although space allocations for virtual disks are fixed, they are not limited to the standard sizes of physical hard disks. In addition, virtual disk blocks that the client never writes need never actually be stored on the server.

 

• At the same time, a SAN makes storage infinitely more flexible and trivial to reconfigure. A “hard disk upgrade” can now be performed in a command or two from an administrator’s terminal window.

 

• Duplicate block detection techniques can reduce the cost of storing files that are the same on many machines.

 

• Backup strategy for the enterprise can be unified through the use of shadow copies of block stores on the SAN server. In some cases, every client gets access to advanced snapshot facilities such as those found on logical volume managers, regardless of its operating system or the file-system it’s using.

 

Performance is always of interest to system administrators, but it’s hard to make general statements about the effect of a SAN on a server’s I/O performance without knowing more about the specific implementation. Networks impose latency costs and bandwidth restrictions that local disks do not. Even with advanced switching hardware, networks are semi-shared resources that can be subject to bandwidth contention among clients. On the positive side, large SAN servers come packed to the gills with memory and SSD caches. They use premium components and spread their physical I/O across many disks. In general, a properly implemented SAN is significantly faster than local storage.
 

That kind of setup isn’t cheap, however. This is a domain of specialized, enterprise-class hardware, so get that $80 hard disk from Fry’s out of your mind right from the start. Some major players in the SAN space are EMC, NetApp, HP, IBM, and perhaps surprisingly, Dell.
 

SAN networks
 

Because network concerns are a major determinant of SAN performance, serious installations have traditionally relied on Fibre Channel networks for their infrastructure. Mainstream Fibre Channel speeds are typically 4 or 8 Gb/s, as opposed to the 1 Gb/s speed of a typical Ethernet.
 

Ethernet is rapidly gaining ground, however. There are several reasons for this, the two most important being the growing availability of inexpensive 10 Gb/s Ethernets and the increasing prevalence of virtualized servers; virtualization systems generally have better support for Ethernet than for Fibre Channel. Of course, it’s also helpful that Ethernet-based systems don’t require the installation of an expensive secondary physical network infrastructure.
 

Several communication protocols can implement SAN functionality over Ethernet. The common theme among these protocols is that they each emulate a particular hardware interface that many systems already understand.
 

The predominant protocol is iSCSI, which presents the virtual storage device to the system as if it lived on a local SCSI bus. Other options are ATA-over-Ethernet (AoE) and Fibre-Channel-over-Ethernet (FCoE). These last options are Ethernet-specific (and therefore limited in their geographical extent), whereas iSCSI runs on top of IP. At present, iSCSI has about 20% of the SAN market, true Fibre Channel has about 60%, and other solutions account for the remaining 20%.
 

The details of implementing a Fibre Channel deployment are beyond the scope of this book, so here we review only iSCSI in detail. From the host operating system’s perspective, Fibre Channel SAN drives typically look like a pile of SCSI disks, and they can be managed as such.
 

iSCSI: SCSI over IP
 

iSCSI lets you implement a SAN with your existing, cheap network hardware rather than a dedicated Fibre Channel network and expensive Fibre Channel host bus adapters. Your SAN servers will still likely be task-specific systems, but they too can take advantage of commodity hardware.
 

Borrowing a bit of terminology from traditional SCSI, iSCSI refers to a server that makes virtual disks available over the network as an iSCSI “target.” A client that mounts these disks is called an “initiator,” which makes sense if you keep in mind that the client originates SCSI commands and the server responds to them.
 

The software components that implement the target and initiator sides of an iSCSI relationship are separate. All modern operating systems include an initiator, although it’s often an optional component. Most systems also have a standard target implementation.
 

iSCSI is formally specified in RFC3720. Unlike most RFCs, the specification is several hundred pages long, mostly because of the complexity of the underlying SCSI protocol. For the most part, iSCSI administration is simple unless you use the optional Internet Storage Name Service (iSNS) for structured management and discovery of storage resources. iSNS, defined in RFC4171, is an adaptation of Fibre Channel’s management and discovery protocols to IP, so it’s primarily of interest to sites that want to use both Fibre Channel and iSCSI.
 

Without iSNS, you simply point your initiator at the appropriate server, specify the name of the iSCSI device you want to access, and specify a username and password with which to authenticate. By default, iSCSI authentication uses the Challenge Handshake Authentication Protocol (CHAP) originally defined for the Point-to-Point Protocol (PPP) (see RFC1994), so passwords are not sent in plaintext over the network. Optionally, the initiator can authenticate the target through the use of a second shared secret.
 

iSCSI can run over IPsec, although that is not required. If you don’t use an IPsec tunnel, data blocks themselves are not encrypted. According to RFC3720, connections that don’t use IPsec must use CHAP secrets at least 12 characters long.
 

Targets and initiators both have iSCSI names, and several naming schemes are defined. The names in common use are iSCSI Qualified Names (IQNs), which have the following bizarre format:
 

iqn.yyyy-mm.reversed_DNS_domain:arbitrary_name
 

In most cases, everything up to the colon is a fixed (i.e., essentially irrelevant) prefix that’s characteristic of your site. You implement your own naming scheme in the arbitrary_name portion of the IQN. The month and year (mm and yyyy) qualify the DNS domain to guard against the possibility of a domain changing hands. Use the original DNS registration date. An actual name looks something like this:
 

iqn.1995-08.com.example:disk54.db.engr
 

Despite the specificity of the IQN name format, it is not important that the prefix reflect your actual DNS domain or inception date. Most iSCSI implementations default to using the vendor’s domain as an IQN, and this works fine. It is not even necessary that the IQNs involved in a service relationship have matching prefixes.
 

Booting from an iSCSI volume
 

If you’re going to put your important data on a SAN, wouldn’t it be nice to eliminate local hard disks entirely? Not only could you eliminate many of the special procedures needed to manage local disks, but you could also allow administrators to “swap” boot drives with a simple reboot, bringing instant upgrades and multiple boot configurations within reach even of Windows systems.
 

Unfortunately, the use of an iSCSI volume as a boot device is not widely supported. At least, not straightforwardly and not as a mainstream feature. Various Linux projects have made a go of it, but the implementations are necessarily tied to specific hardware and to specific iSCSI initiator software, and no current iSCSI boot project cooperates with the now-predominant initiator software, Open-iSCSI. Similarly, iSCSI boot support for Solaris and OpenSolaris is being worked on, but there’s no production-ready solution yet.
 

The lone exception among our example systems is AIX, which has a long history of good support for iSCSI. AIX versions 5.3 and later running on POWER hardware have full support for iSCSI booting over IPv4.
 

Vendor specifics for iSCSI initiators
 

[image: Image] There have been at least four different iSCSI initiator implementations for Linux. Several have died off and others have merged. The sole survivor at this point seems to be Open-iSCSI, which is the standard initiator packaged with all our example Linux distributions. To get it up and running, install the open-scsi package on Ubuntu and SUSE and the iscsi-initiator-utils package on Red Hat.
 

The project’s home page is open-iscsi.org, but don’t go there looking for documentation. None seems to exist other than the man pages for iscsid and iscsiadm, which represent the implementation and the administrative interface for the system, respectively. Unfortunately, the administrative model for Open-iSCSI is best described as “creative.”
 

In Open-iSCSI’s world, a “node” is an iSCSI target, the thing that’s named with an IQN. Open-iSCSI maintains a database of the nodes it knows about in a hierarchy underneath the directory /etc/iscsi/nodes. Configuration parameters for individual nodes are stored in this tree. Defaults are set in /etc/iscsi/iscsid.conf, but they are sometimes copied to newly defined nodes, so their function is not entirely predictable. The process of setting per-target parameters is painful; iscsiadm tortures you by making you change one parameter at a time and by making you list the IQN and server on each command line.
 

The saving grace of the system is that iscsid.conf and all the database files are just editable text files. Therefore, the sane approach is to use iscsiadm for the few things it does well and to circumvent it for the others.
 

To set up the system for simple, static operation with a single username and password for all iSCSI targets, first edit the iscsid.conf file and make sure the following lines are configured as shown:
 

[image: Image]
 

We show these lines together, but they’ll be separated in the actual file. The file is actually quite nicely commented and contains a variety of commented-out configuration options. Make sure you don’t introduce duplicates.
 

Next, point iscsiadm at your target server and let it create node entries for each of the targets it discovers by reading that server’s directory. Here, we’ll configure the target called test from the server named iserver.
 

[image: Image]
 

iscsiadm creates a subdirectory in /etc/iscsi/nodes for each target. If there are targets you don’t want to deal with, it’s fine to just rm -rf their configuration directories. If the server offers many targets and you’d rather just specify the details of the one you want, you can do that, too:
 

[image: Image]
 

Strangely, these two methods achieve similar results but create different hierarchies under /etc/iscsi/nodes. Whichever version you use, check the text files that are the leaves of the hierarchy to be sure the configuration parameters are set appropriately. If you entered the target manually, you may need to set the property node.startup to automatic by hand.
 

You can then connect to the remote targets with iscsiadm -m node -l:
 

[image: Image]
 

You can verify that the system now sees the additional disk by running fdisk -l. (The device files for iSCSI disks are named like those for any other SCSI disk.) If you have set up the configuration files as described above, the connections should be restored automatically at boot time.
 

For iSCSI target service on Linux systems, the preferred implementation is the iSCSI Enterprise Target package hosted at iscsitarget.sourceforge.net. It’s usually available as a package called iscsitarget.
 

[image: Image] Solaris includes target and initiator packages; both are optional. All packages related to iSCSI have “iscsi” in their names. For the initiator side, install the package SUNWiscsi; you’ll have to reboot afterward.
 

There is no configuration file; all configuration is performed with the iscsiadm command, which has a rather strange syntax. Four top-level verbs (add, modify, list, and remove) can be applied to a variety of different aspects of the initiator configuration. The following steps perform basic configuration of the initiator as a whole and connect to a target on the server iserver.
 

[image: Image]
 

At this point you can simply configure the disk normally (for example, by running zpool create iscsi c10t3d0).
 

The first command sets the initiator’s authentication mode to CHAP and sets the CHAP username to testclient. The -C option sets the password; you cannot combine this option with any others. It’s also possible to set the name and password individually for each target if you prefer.
 

The modify discovery command enables the use of statically configured targets, and the add command designates the server and IQN of a specific target. All this configuration is persistent across reboots.
 

To serve iSCSI targets to other systems, you’ll need to install the SUNWiscsitgt package. Administration is structured similarly to the initiator side, but the command is iscsitadm instead of iscsiadm.
 

[image: Image] To use iSCSI on HP-UX systems, download the iSCSI initiator software from soft-ware.hp.com and install it with HP-UX’s Software Distributor tool. A kernel rebuild and reboot are required. Fortunately, the system is well documented in a stand-alone manual, the HP-UX iSCSI Software Initiator Support Guide, available from docs.hp.com.
 

Most initiator configuration is performed with the iscsiutil command, installed in /opt/iscsi/bin. Use iscsiutil -l
iqn to set the initiator’s IQN, iscsiutil -u -N
user to set the global CHAP username (it can also be set per-server or per-target), and iscsiutil -u -W
password to set the global CHAP password.
 

You can then add targets from a particular server with iscsiutil -a -I
server. Run ioscan -NH 64000 to activate the server connections and to create virtual disk devices. You can check the status of the system with iscsiutil -p -o.
 

[image: Image] AIX’s iSCSI initiator comes installed and ready to go. In typical AIX style, most configuration is done through the system’s ODM database. The iscsi0 device represents the configuration of the initiator as a whole, and individual target devices can be defined as ODM entries or in text configuration files in /etc/iscsi. The text configuration files seem to work somewhat more reliably.
 

AIX does not distinguish between the initiator’s IQN and its CHAP username. The IQN is set on the iscsi0 device; therefore, you should plan on using the same CHAP username on every server. The first step on the fast configuration path is to set that IQN to an appropriate value.
 

aix$ sudo chdev -l iscsi0 -a initiator_name=’iqn.1994-11.com.admin:client’
 

We used a different CHAP username for this example than for other systems since “testclient” isn’t technically a valid IQN for the initiator (although in fact it works fine as well).
 

In the /etc/iscsi/targets file, we add the following entry:
 

iserver 3260 iqn.1994-11.com.admin:test "chap_password"
 

The 3260 is the standard server port for iSCSI; we include it here only because the port is required by the file format. To activate the new iSCSI disk, we need only run cfgmgr -l iscsi0. The cfgmgr command prints no confirmation messages, but we can see that the new device has appeared by looking in the /dev directory (on our example system, the new disk is /dev/hdisk2) or by running smitty devices, navigating to the Fixed Disk category, and listing the entries. The latter option is perhaps safer since smitty explicitly shows that hdisk2 is an iSCSI volume.
 

To disconnect an iSCSI device, you must not only edit the configuration file and reload the configuration with cfgmgr but you must also delete the disk from smitty’s Fixed Disk list.
 

8.12 Exercises
 

E8.1 Describe any special considerations that an administrator should take into account when designing a storage architecture for each of the following applications.

 

a) A server that will host the home directories of about 200 users

 

b)A swap area for a site’s primary DNS server

 

c) Storage for the mail queue at a large spam house

 

d)A large InnoDB (MySQL) database

 

E8.2 Logical volume managers are powerful but can be confusing if not well understood. Practice adding, removing, and resizing disks in a volume group. Show how you would remove a device from one volume group and add it to another. What would you do if you wanted to move a logical volume from one volume group to another?

 

[image: Image] E8.3 Using printed or Internet resources, identify the best-performing SCSI and SATA drives. Do the benchmarks used to evaluate these drives reflect the way that a busy server would use its boot disk? What cost premium would you pay for SCSI, and how much performance improvement (if any) would you get for the money?

 

[image: Image] E8.4 Add a disk to your system and set up a partition or logical volume on the new disk as a backup root partition. Make sure you can boot from the backup root and that the system runs normally when so booted. Keep a journal of all the steps required to complete this task. You may find the script command helpful. (Requires root access.)

 

[image: Image] E8.5 What is a superblock and what is it used for? Look up the definition of the ext4 superblock structure in the kernel header files and discuss what each of the fields in the structure represents.

 

[image: Image] E8.6 Use mdadm and its -f option to simulate a failed disk in a Linux RAID array. Remove the disk from the array and add it back. How does /proc/mdstat look at each step?

 

[image: Image] E8.7 What fields are stored in an inode on an ext4 filesystem? List the contents of the inode that represents the /etc/motd file. Where is this file’s filename stored? (Tools such as hexdump and ls -i might help.)

 

[image: Image] E8.8 Examine the contents of a directory file with a program such as od or hexdump. Each variable-length record represents a file in that directory. Look up the on-disk structure of a directory and explain each field, using an example from a real directory file. Next, look at the lost+found directory on a filesystem that uses them. Why are there so many names there when the lost+found directory is empty?

 

[image: Image] E8.9 Write a program that traverses the filesystem and prints the contents of the /etc/motd and /etc/magic files. But don’t open the files directly; open the raw device file for the root partition and use the seek and read system calls to decode the filesystem and find the appropriate data blocks. /etc/motd is usually short and will probably contain only direct blocks. /etc/magic should require you to decode indirect blocks. (If it doesn’t, pick a larger text file.)

 

Hint: when reading the system header files, be sure you have found the filesystem’s on-disk inode structure, not the in-core inode structure. (Requires root access.)

 
  


9. Periodic Processes
 

[image: Image]
 

Scripting and automation are the keys to consistency and reliability. For example, an adduser program can add new users faster than you can, with a smaller chance of making mistakes. Almost any task can be encoded in a Perl or Python script.
 

It’s often useful to have a script or command executed without any human intervention. For example, you might want to have a script verify (say, every half-hour) that your network routers and switches are working correctly, and have the script send you email when problems are discovered.1
 

9.1 CRON: Schedule Commands
 

The cron daemon is the standard tool for running commands on a predetermined schedule. It starts when the system boots and runs as long as the system is up.
 

cron reads configuration files that contain lists of command lines and the times at which they are to be invoked. The command lines are executed by sh, so almost anything you can do by hand from the shell can also be done with cron.2
 

A cron configuration file is called a “crontab,” short for “cron table.” Crontabs for individual users are stored under /var/spool/cron. There is (at most) one crontab file per user: one for root, one for jsmith, and so on. Crontab files are named with the login names of the users to whom they belong, and cron uses these filenames to figure out which UID to use when running the commands contained in each file. The crontab command transfers crontab files to and from this directory.
 

Although the exact implementations vary, all versions of cron try to minimize the time they spend reparsing configuration files and making time calculations. The crontab command helps maintain cron’s efficiency by notifying cron when the crontabs change. Ergo, you shouldn’t edit crontab files directly, since this may result in cron not noticing your changes. If you do get into a situation where cron doesn’t seem to acknowledge a modified crontab, a HUP signal will force it to reload on most systems.
 

See Chapter 11 for more information about syslog.

 

cron normally does its work silently, but most versions can keep a log file (usually /var/cron/log or /var/adm/cron/log) that lists the commands that were executed and the times at which they ran. See Table 9.2. on page 287 for logging defaults.
 

On some systems, creating the log file enables logging, and removing the log file turns logging off. On other systems, the log is turned on or off in a configuration file. Yet another variation is for cron to use syslog. The log file grows quickly and is rarely useful; leave logging turned off unless you’re debugging a specific problem or have specific auditing requirements.
 

9.2 The Format of Crontab Files
 

All the crontab files on a system share a similar format. Comments are introduced with a pound sign (#) in the first column of a line. Each noncomment line contains six fields and represents one command:
 

minute hour dom month weekday command
 

The first five fields tell cron when to run the command. They’re separated by whitespace, but within the command field, whitespace is passed along to the shell. The fields in the time specification are interpreted as shown in Table 9.1.
 

Table 9.1. Crontab time specifications
 

[image: Image]
 

Each of the time-related fields may contain
 

• A star, which matches everything

 

• A single integer, which matches exactly

 

• Two integers separated by a dash, matching a range of values

 

• A range followed by a slash and a step value, e.g., 1-10/2 (Linux only)

 

• A comma-separated list of integers or ranges, matching any value

 

For example, the time specification
 

45 10 * * 1-5
 

means “10:45 a.m., Monday through Friday.” A hint: never put a star in the first field unless you want the command to be run every minute.
 

There is a potential ambiguity to watch out for with the weekday and dom fields. Every day is both a day of the week and a day of the month. If both weekday and dom are specified, a day need satisfy only one of the two conditions in order to be selected. For example,
 

0,30 * 13 * 5
 

means “every half-hour on Friday, and every half-hour on the 13th of the month,” not “every half-hour on Friday the 13th.”
 

The command is the sh command line to be executed. It can be any valid shell command and should not be quoted. The command is considered to continue to the end of the line and may contain blanks or tabs.
 

Although sh is involved in executing the command, the shell does not act as a login shell and does not read the contents of ~/.profile or ~/.bash_profile. As a result, the command’s environment variables may be set up somewhat differently from what you expect. If a command seems to work fine when executed from the shell but fails when introduced into a crontab file, the environment is the likely culprit. If need be, you can always wrap your command into a script that sets up the appropriate environment variables.
 

Percent signs (%) indicate newlines within the command field. Only the text up to the first percent sign is included in the actual command. The remaining lines are given to the command as standard input.
 

Here are some examples of legal crontab commands:
 

[image: Image]
 

And below are some additional examples of complete crontab entries:
 

30 2 * * 1 (cd /home/joe/project; make)
 

This entry runs make in the directory /home/joe/project every Monday morning at 2:30 a.m. An entry like this might be used to start a long compilation at a time when other users would not be using the system. Usually, any output produced by a cron command is mailed to the owner of the crontab.3
 

20 1 * * * find /tmp -atime +3 -type f -exec rm -f { } ’;’
 

This command runs at 1:20 each morning. It removes all files in the /tmp direc-tory that have not been accessed in 3 days.
 

55 23 * * 0-3,6 /staff/trent/bin/checkservers
 

This line runs checkservers at 11:55 p.m. every day except Thursdays and Fridays.
 

cron does not try to compensate for commands that are missed while the system is down. However, the Linux and HP-UX crons are smart about small time adjustments such as shifts into and out of daylight saving time. Other versions of cron may skip commands or run them twice if they are scheduled during the transition period (usually between 1:00 and 3:00 a.m. in the United States, for example).4
 

9.3 Crontab Management
 

crontab filename installs filename as your crontab, replacing any previous version. crontab -e checks out a copy of your crontab, invokes your editor on it (as specified by the EDITOR environment variable), and then resubmits it to the crontab directory. crontab -l lists the contents of your crontab to standard output, and crontab -r removes it, leaving you with no crontab file at all.
 

Root can supply a username argument to edit or view other users’ crontabs. For example, crontab -r jsmith erases the crontab belonging to the user jsmith, and crontab -e jsmith edits it. Linux allows both a username and a filename argument in the same command, so the username must be prefixed with -u to disambiguate (e.g., crontab -u jsmith crontab.new).
 

Without command-line arguments, most versions of crontab will try to read a crontab from standard input. If you enter this mode by accident, don’t try to exit with <Control-D>; doing so will erase your entire crontab. Use <Control-C> instead. Linux requires you to supply a dash as the filename argument if you want to make crontab pay attention to its standard input. Smart.
 

Two config files, cron.deny and cron.allow, specify which users may submit crontab files. They’re located in a different directory on every system; see Table 9.2. for a summary.
 

Table 9.2 Locations of cron permission and log files
 

[image: Image]
 

If the allow file exists, then it contains a list of all users that may submit crontabs, one per line. No unlisted person can invoke the crontab command. If the allow file doesn’t exist, then the deny file is checked. It, too, is just a list of users, but the meaning is reversed: everyone except the listed users is allowed access.
 

If neither the allow file nor the deny file exists, systems default (apparently at random, there being no dominant convention) to allowing all users to submit cron-tabs or to limiting crontab access to root. In practice, a starter cron.allow or cron.deny file is often included in the default OS installation, so the question of how crontab behaves without configuration files is moot. Among our example systems, only HP-UX defaults to blocking crontab access for unprivileged users.
 

It’s important to note that on most systems, access control is implemented by crontab, not by cron. If a user is able to sneak a crontab file into the appropriate directory by other means, cron will blindly execute the commands it contains.
 

[image: Image] Solaris is a bit different in this regard. Its cron daemon checks to be sure that the user’s account hasn’t been locked with an *LK* in /etc/shadow. If it has, cron won’t run the user’s jobs. The rationale is to prevent disabled users from running jobs, whether inadvertently or maliciously. If you want a user to have a valid account from cron’s perspective but not a valid password, run passwd -N
user.
 

9.4 Linux and Vixie-Cron Extensions
 

The version of cron included on Linux distributions (including our three examples) is usually the one known as ISC cron or “Vixie-cron,” named after its author, Paul Vixie. It’s a modern rewrite that provides a bit of added functionality with less mess.
 

A primary difference is that in addition to looking for user-specific crontabs, Vixie-cron also obeys system crontab entries found in /etc/crontab and in the /etc/cron.d directory. These files have a slightly different format from the peruser crontab files in that they allow commands to be run as an arbitrary user. An extra username field comes before the command name. The username field is not present in garden-variety crontab files because the crontab’s filename provides this same information (even on Linux systems).
 

cron treats the /etc/crontab and /etc/cron.d entries in exactly the same way. In general, /etc/crontab is intended as a file for system administrators to maintain by hand, whereas /etc/cron.d is provided as a depot into which software packages can install any crontab entries they might need. Files in /etc/cron.d are by convention named after the packages that install them, but cron doesn’t care about or enforce this convention.
 

Time ranges in Vixie-cron crontabs can include a step value. For example, the series 0,3,6,9,12,15,18 can be written more concisely as 0-18/3. You can also use three-letter text mnemonics for the names of months and days, but not in combination with ranges. As far as we know, this feature works only with English names.
 

You can specify environment variables and their values in a Vixie-cron crontab file. See the crontab(5) man page for more details.
 

Vixie-cron logs its activities through syslog using the facility “cron,” with most messages submitted at level “info.” Default syslog configurations generally send cron log data to its own file.
 

[image: Image] For reasons that are unclear, cron has been renamed crond on Red Hat. But it is still the same Vixie-cron we all know and love.
 

9.5 Some Common Uses for Cron
 

A number of standard tasks are especially suited for invocation by cron, and these usually make up the bulk of the material in root’s crontab. In this section we look at a few common chores and the crontab lines used to implement them.
 

Systems often come with crontab entries preinstalled. If you want to deactivate the standard entries, comment them out by inserting a pound sign (#) at the beginning of each line. Don’t delete them; you might want to refer to them later.
 

[image: Image] In addition to the /etc/cron.d mechanism, Linux distributions also preinstall crontab entries that run the scripts in a set of well-known directories, thereby providing another way for software packages to install periodic jobs without any editing of a crontab file. For example, scripts in /etc/cron.daily are run once a day, and scripts in /etc/cron.weekly are run once a week. You can put files in these directories by hand as well.
 

Many sites have experienced subtle but recurrent network glitches that occur because administrators have configured cron to run the same command on hundreds of machines at exactly the same time. Clock synchronization with NTP exacerbates the problem. The problem is easy to fix with a random delay script or config file adjustment, but it can be tricky to diagnose because the symptoms resolve so quickly and completely.
 

Simple reminders
 

It’s not going to put Google Calendar out of business, but cron can be quite useful in its own geeky way for simple reminders: birthdays, due dates, recurrent tasks, etc. That’s especially true when the reminder process has to integrate with other home-grown software such as a trouble ticket manager.
 

The following crontab entry implements a simple email reminder. (Lines have been folded to fit the page. In reality, this is one long line.)
 

[image: Image]
 

Note the use of the % character both to separate the command from the input text and to mark line endings within the input. This entry sends email once on the 25th day of each month.
 

Filesystem cleanup
 

Some of the files on any system are worthless junk (no, not the system files). For example, when a program crashes, the kernel may write out a file (usually named core, core.pid, or program.core) that contains an image of the program’s address space. Core files are useful for developers, but for administrators they are usually a waste of space. Users often don’t know about core files, so they tend not to delete them on their own.5
 

NFSv3 is another source of extra files. Because NFSv3 servers are stateless, they have to use a special convention to preserve files that have been deleted locally but are still in use by a remote machine. Most implementations rename such files to .nfsxxx, where xxx is a number. Various situations can result in these files being forgotten and left around after they are supposed to have been deleted.
 

NFS, the Network File System, is described in Chapter 18.

 

Many programs create temporary files in /tmp or /var/tmp that aren’t erased for one reason or another. Some programs, especially editors, like to make a backup copy of each file they work with.
 

A partial solution to the junk file problem is to institute some sort of nightly disk space reclamation out of cron. Modern systems usually come with something of this sort set up for you, but it’s a good idea to review your system’s default behavior to make sure it’s appropriate for your situation.
 

Below are several common idioms implemented with the find command.
 

[image: Image]
 

This command removes core images that have not been accessed in a week. The -xdev argument makes sure that find won’t cross over to filesystems other than the root; this restraint is important on networks where many filesystems may be cross-mounted.6 If you want to clean up more than one filesystem, use a separate command for each. (Note that /var is typically a separate filesystem.)
 

The -type f argument is important because the Linux kernel source contains a directory called core. You wouldn’t want to be deleting that, would you?7
 

[image: Image]
 

This command deletes files that have not been accessed in three days and that begin with # or .# or .nfs or end with ~ or .CKP. These patterns are typical of various sorts of temporary and editor backup files.
 

See page 143 for more information about mount options.

 

For performance reasons, some administrators use the noatime mount option to prevent the filesystem from maintaining access time stamps. That configuration will confuse both of the find commands shown above because the files will appear to have been unreferenced even if they were recently active. Unfortunately, the failure mode is to delete the files; be sure you are maintaining access times before using these commands as shown.
 

[image: Image]
 

This command recursively removes all subdirectories of /tmp not modified in 72 hours. On most systems, plain files in /tmp are removed at boot time by the system startup scripts. However, some systems do not remove directories. If a directory named lost+found exists, it is treated specially and is not removed. This is important if /tmp is a separate filesystem. See page 260 for more information about lost+found.
 

If you use any of these commands, make sure that users are aware of your cleanup policies before disaster strikes!
 

Network distribution of configuration files
 

See Chapter 19 for more information about sharing configuration files.

 

If you are running a network of machines, it’s often convenient to maintain a single, network-wide version of configuration files such as the mail aliases database. Usually, the underlying sharing mechanism is some form of polling or periodic distribution, so this is an ideal task for cron. Master versions of system files can be distributed every night with rsync or rdist.
 

Sometimes, postprocessing is required. For example, you might need to run the newaliases command to convert a file of mail aliases to the hashed format used by sendmail because the AutoRebuildAliases option isn’t set in your sendmail.cf file. You might also need to load files into an administrative database such as NIS.
 

Log file rotation
 

Systems vary in the quality of their default log file management, and you will probably need to adjust the defaults to conform to your local policies. To “rotate” a log file means to divide it into segments by size or by date, keeping several older versions of the log available at all times. Since log rotation is a recurrent and regularly scheduled event, it’s an ideal task for cron. See Chapter 11, Syslog and Log Files for more details.
 

9.6 Exercises
 

E9.1 A local user has been abusing his crontab privileges by running expensive tasks at frequent intervals. After asking him to stop several times, you are forced to revoke his privileges. List the steps needed to delete his current crontab and make sure he can’t add a new one.

 

E9.2 Think of three tasks (other than those mentioned in this chapter) that might need to be run periodically. Write crontab entries for each task and specify where they should go on your system.

 

E9.3 Choose three entries from your system’s crontab files. Decode each one and describe when it runs, what it does, and why you think the entry is needed. (Requires root access.)

 

[image: Image] E9.4 Write a script that keeps your startup files (~/.[a-z]*) synchronized among all the machines on which you have an account. Schedule this script to run regularly from cron. (Is it safe to blindly copy every file whose name starts with a dot? How will you handle directories? Should files being replaced on the destination machines be backed up before they are overwritten?)

 
  


10. Backups
 

[image: Image]
 

At most sites, the information stored on computers is worth far more than the computers themselves. It is also much harder to replace. Protecting this information is one of the system administrator’s most important (and, unfortunately, most tedious) tasks.
 

There are hundreds of creative and not-so-creative ways to lose data. Software bugs routinely corrupt documents. Users accidentally delete data files. Hackers and disgruntled employees erase disks. Hardware problems and natural disasters take out entire machine rooms.
 

If executed correctly, backups allow an administrator to restore a filesystem (or any portion of a filesystem) to the condition it was in at the time of the last backup. Backups must be done carefully and on a strict schedule. The backup system and backup media must also be tested regularly to verify that they are working correctly.
 

The integrity of your backup procedures directly affects your company’s bottom line. Senior management needs to understand what the backups are actually capable of doing, as opposed to what they want the backups to do. It may be OK to lose a day’s work at a university computer science department, but it probably isn’t OK at a commodity trading firm.
 

We begin this chapter with some general backup philosophy, followed by a discussion of the most commonly used backup devices and media (their strengths, weaknesses, and costs). Next, we talk about how to design a backup scheme and review the mechanics of the popular dump and restore utilities.
 

We then discuss some additional backup and archiving commands and suggest which commands are best for which situations. Finally, we take a look at Bacula, a free network backup package, and offer some comments about other open source and commercial alternatives.
 

10.1 Motherhood and Apple Pie
 

Before we get into the meat and potatoes of backups, we want to pass on some general hints that we have learned over time (usually, the hard way). None of these suggestions is an absolute rule, but you will find that the more of them you follow, the smoother your backups and restores will go.
 

Perform all backups from a central location
 

Many backup utilities allow you to perform dumps over the network. Although there is some performance penalty for doing dumps that way, the increase in ease of administration makes it worthwhile. If you manage only a handful of servers, it’s probably easiest to run a script from a central location that executes dump (by way of ssh) on each machine that needs to be dumped. If you have more than a few servers, you should use a software package (commercial or free) to automate this process.
 

Even if your backups are too large to be funneled through a single server, you should still try to keep your backup system as centralized as possible. Centralization facilitates administration and lets you restore data to alternate servers. Depending on the media you are using, you can often put more than one media device on a server without affecting performance.
 

Dumps created with dump can only be restored on machines that have the same byte order as the dump host (and in most cases, only on machines running the same OS). You can sometimes use dd to take care of byte swapping problems, but this simple fix won’t resolve differences among incompatible versions of dump.
 

If you are backing up so much data across a network that the network’s bandwidth becomes an issue, consider creating a LAN dedicated to backup traffic. Many organizations find this approach effective for alleviating network bottlenecks.
 

Label your media
 

Label each piece of backup media clearly and completely—an unlabeled tape is a scratch tape. Directly label each piece of media to uniquely identify its contents. On the cases for the media, write detailed information such as lists of filesystems, backup dates, the format of the backups, the exact syntax of the commands used to create them, and any other information you would need to restore the system without referring to on-line documentation.
 

Free and commercial labeling programs abound. Save yourself a major headache and invest in one. Vendors of laser printer labels can usually provide templates for each of their labels. Better yet, buy a dedicated label printer. They are inexpensive and work well.
 

Your automated dump system should record the name of each filesystem it has dumped. Good record keeping allows you to quickly skip forward to the correct filesystem when you want to restore a file. It’s also a good idea to record the order of the filesystems on the tape or case.
 

If you can afford it, buy an autochanger or tape drive that reads bar codes. This feature ensures that your electronic tape labels always match the physical ones.
 

Pick a reasonable backup interval
 

The more often backups are done, the less data is lost in a crash. However, backups use system resources and an operator’s time. You must provide adequate data integrity at a reasonable cost of time and materials. In general, costs increase as you move toward more granular restoration capabilities.
 

On busy systems, it is generally appropriate to back up home directories every workday. On systems that are used less heavily or on which the data is less volatile, you might decide that performing backups several times a week is sufficient. On a small system with only one user, performing backups once a week is probably adequate. How much data are your users willing to lose?
 

Choose filesystems carefully
 

Filesystems that are rarely modified do not need to be backed up as frequently as users’ home directories. If only a few files change on an otherwise static filesystem (such as /etc/passwd in the root filesystem), you can copy these files every day to another partition that is backed up regularly.
 

If /tmp is a separate filesystem, it should not be backed up. The /tmp directory should not contain anything essential, so there is no reason to preserve it. If this seems obvious, you are in better shape than many sites we’ve visited.
 

Make daily dumps fit on one piece of media
 

See Chapter 9 for more information about cron

 

In a perfect world, you could do daily dumps of all your important filesystems onto a single tape. High-density media such as DLT, AIT, and LTO make this goal practical for some sites. However, as our work habits change and telecommuting becomes more popular, the range of “good” times to do backups is shrinking. More and more network services must be available around the clock, and large backups take time.
 

Another major problem is the rapid expansion of disk space that has resulted from the ever-lower price of hard disks. You can no longer purchase a stock desktop machine with less than 250GB of disk space. Why clean up your disks and enforce quotas when you can just throw a little money at the problem and add more disk space? Unfortunately, it’s all too easy for the amount of on-line storage to outstrip your ability to back it up.
 

Backup utilities are perfectly capable of dumping filesystems to multiple pieces of media. However, if a dump spans multiple tapes, an operator or tape library robot must be present to change the media, and the media must be carefully labeled to allow restores to be performed easily. Unless you have a good reason to create a really large filesystem, don’t do it.
 

If you can’t fit your daily backups on one tape, you have several options:
 

• Buy a higher-capacity backup device.

 

• Buy a stacker or library and feed multiple pieces of media to one device.

 

• Change your dump sequence.

 

• Use multiple backup devices.

 

Keep media off-site
 

First, baby steps: you should always have an off-line copy of your data. That is, a protected copy that is not stored on a hard disk on the machine of origin. Snapshots and RAID arrays are not substitutes for real backups!
 

Most organizations also keep backups off-site so that a disaster such as a fire cannot destroy both the original data and the backups. “Off-site” can be anything from a safe deposit box at a bank to the President’s or CEO’s home. Companies that specialize in the secure storage of backup media guarantee a secure and climate-controlled environment for your archives. Always make sure your off-site storage provider is reputable, bonded, and insured. There are on-line (but off-site) businesses today that specialize in safeguarding your data.
 

The speed with which backup media are moved off-site should depend on how often you need to restore files and on how much latency you can accept. Some sites avoid making this decision by performing two dumps to different backup devices, one that stays on-site and one that is moved immediately.1
 

Protect your backups
 

Dan Geer, a security consultant, said, “What does a backup do? It reliably violates file permissions at a distance.” Hmmm.
 

Encryption of backup media is usually a no-brainer and is required by security standards such as the Payment Card Industry Data Security Standard (PCI DSS).
 

Many backup utilities make encryption relatively painless. However, you must be sure that the encryption keys cannot be lost or destroyed and that they are available for use in an emergency.
 

Physically secure your backup media as well. Not only should you keep your media off-site, but you should also keep them under lock and key. If you use a commercial storage facility for this purpose, the company you deal with should guarantee the confidentiality of the tapes in their care.
 

Some companies feel so strongly about the importance of backups that they make duplicates, which is really not a bad idea at all.
 

Limit activity during backups
 

Filesystem activity should be limited during backups because changes can cause your backup utility to make mistakes. One way to limit activity is to do dumps when few active users are around (in the middle of night or on weekends). To automate the process, mount your backup media every day before leaving work and let cron execute the backup for you. That way, dumps occur at a time when files are less likely to be changing, and the dumps have minimal impact on users.
 

In practice, it is next to impossible to find a disk that doesn’t always have at least a little activity. Users want 24/7 access to data, services run around the clock, and databases require special backup procedures. Most databases must be temporarily stopped or put in a special degraded mode so that backups can accurately capture data at a single point in time. Sites with a lot of data may not be able to tolerate the downtime necessary to perform a traditional backup of their database. These days the only way to do a backup with no disk activity is to first create a snapshot.
 

See page 274 for more information about SANs.

 

Most SAN controllers, and all our example operating systems, provide some way to create a snapshot of a filesystem. This feature lets you make relatively safe backups of an active filesystem, even one on which files are currently open. On Linux, snapshots are implemented through the logical volume manager (see page 249), and on our other example systems they are created through the filesystem.
 

Snapshots can be created almost instantaneously thanks to a clever copy-on-write scheme. No data is actually copied or moved at the time the snapshot is created. Once the snapshot exists, changes to the filesystem are written to new locations on disk. In this way, two (or more) images can be maintained with minimal use of additional storage. Snapshots are similar in concept to incremental backups, except that they operate at the block level rather than the filesystem level.
 

In this context, snapshots are primarily a tool for creating “real” backups of a file-system. They are never a replacement for off-line backups. Snapshots also help facilitate database backups, since the database only needs to be paused for a second while the snapshot completes. Later, the relatively slow tape backup can be performed against the snapshot as the live database goes happily on its way serving up queries.
 

Verify your media
 

We’ve heard many horror stories about system administrators who did not discover problems with their dump regime until after a serious system failure. It is essential that you continually monitor your backup procedure and verify that it is functioning correctly. Operator error ruins more dumps than any other problem.
 

The first check is to have your backup software attempt to reread tapes immediately after it has finished dumping.2 Scanning a tape to verify that it contains the expected number of files is a good check. It’s best if every tape is scanned, but this no longer seems practical for a large organization that uses many tapes every day. A random sample would be most prudent in this environment.
 

See page 310 for more information about restore.

 

It is often useful to generate a table of contents for each filesystem (dump users can use restore -t) and to store the resulting catalogs on disk. These catalogs should be named in a way that relates them to the appropriate tape; for example, okra:usr.Jan.13. A database of these records makes it easy to discover what piece of media a lost file is on. Just grep for the filename and pick the newest instance.
 

In addition to providing a catalog of tapes, successfully reading the table of contents from the tape is a good indication that the dump is OK and that you will probably be able to read the media when you need to. A quick attempt to restore a random file gives you even more confidence in your ability to restore from that piece of media.3
 

You should periodically attempt to restore from random media to make sure that restoration is still possible. Every so often, try to restore from an old (months or years) piece of dump media.4 Tape drives have been known to wander out of alignment over time and become unable to read their old tapes. The media can be recovered by a company that specializes in this service, but it is expensive.
 

A related check is to verify that you can read the media on hardware other than your own. If your machine room burns, it does not do much good to know that the backup could have been read on a tape drive that has now been destroyed. DAT tapes have been particularly susceptible to this problem in the past, but more recent versions of the technology have improved.
 

Develop a media life cycle
 

All media have a finite life. It’s great to recycle your media, but be sure to abide by the manufacturer’s recommendations regarding the life of the media. Most tape manufacturers quantify this life in terms of the number of passes that a tape can stand: a backup, a restore, and an mt fsf (file skip forward) each represent one pass. Nontape technologies have a much longer life that is sometimes expressed as a mean time to failure (MTTF), but all hardware and media have a finite lifetime. Think of media life in dog-years rather than real years.
 

Before you toss old tapes in the trash, remember to erase or render them unreadable. A bulk tape eraser (a large electromagnet) can help with this, but be sure to keep it far, far away from computers and active media. Cutting or pulling out part of a backup tape does not really do much to protect your data, because tape is easy to splice or respool. Document-destruction companies shred tapes for a fee.
 

In the case of hard disks used as backup media, remember that drive recovery services cost less than a thousand dollars and are just as available to bad guys as they are to you. Consider performing a secure erase (page 227) or SCSI format operation before a drive leaves your site.
 

Design your data for backups
 

With disks so cheap and new storage architectures so reliable, it’s tempting to throw up your hands and not back up all your data. Don’t give up! A sensible storage architecture—designed rather than grown willy-nilly as disk needs increase—can make backups much more tractable.
 

Start by taking an inventory of your storage needs:
 

• The various kinds of data your site deals with

 

• The expected volatility of each type of data

 

• The backup frequency needed for comfort with potential losses

 

• The network and political boundaries over which the data is spread

 

Use this information to design your site’s storage architecture, keeping backups and potential growth in mind. For example, putting project directories and users’ home directories on a dedicated file server can make it easier to manage your data and ensure its safety.
 

With the advent of powerful system-imaging and disk-building solutions, it is often easier to re-image a broken system than to troubleshoot and restore corrupt or missing files. Many administrators configure their users’ workstations to store all data on a centralized server. Others manage farms of servers that have near-identical configurations and data (such as the content for a busy web site). In such an environment, it’s reasonable not to back up vast arrays of duplicated systems. On the other hand, security mavens encourage generous backups so that data is available for forensic analysis in the event of an incident.
 

Prepare for the worst
 

After you have established a backup procedure, explore the worst case scenario: your site is completely destroyed. Determine how much data would be lost and how long it would take to get your system back to life. (Include in your calculations the time it would take to acquire new hardware.) Then determine whether you can live with your answers.
 

More formal organizations often designate a Recovery Time Objective (RTO) and a Recovery Point Objective (RPO) for information on specific servers or filesystems. When these numbers are available, they provide valuable guidance.
 

An RTO represents the maximum amount of time that the business can tolerate waiting for a recovery to complete. Typical RTOs for user data range from hours to days. For production servers, RTOs can range from hours to seconds.
 

An RPO indicates how recent a backup is required for the restore and influences the granularity at which backups must be retained. Depending on how frequently the dataset changes and how important it is, an RPO might range from weeks to hours to seconds. Tape backups clearly can’t satisfy near-real-time RPOs, so such requirements usually imply large investments and specialized storage devices located in multiple data centers.
 

Although the process of defining these metrics may seem somewhat arbitrary, it is a useful way to get the “owners” of the data on the same page as the technical folks. The process requires balancing cost and effort against the business’s need for recoverability. It’s a difficult but important venture.
 

10.2 Backup Devices and Media
 

Many failures can damage several pieces of hardware at once, so backups should be written to some sort of removable media. A good rule of thumb is to create off-line backups that no single disgruntled system administrator could destroy.
 

Backing up one hard disk to another on the same machine or in the same data center provides little protection against a server failure, although it is certainly better than no backup at all. Companies that back up your data over the Internet are becoming more popular, but most backups are still created locally.
 

The following sections describe some of the media that can be used for backups. The media are presented in rough order of increasing capacity.
 

Manufacturers like to specify their hardware capacities in terms of compressed data; they often optimistically assume a compression ratio of 2:1 or more. In the sections below, we ignore compression in favor of the actual number of bytes that can physically be stored on each piece of media.
 

The compression ratio also affects a drive’s throughput rating. If a drive can physically write 1 MB/s to tape but the manufacturer assumes 2:1 compression, the throughput magically rises to 2 MB/s. As with capacity figures, we have ignored throughput inflation below.
 

Optical media: CD-R/RW, DVD±R/RW, DVD-RAM, and Blu-ray
 

At a cost of about $0.30 each, CDs and DVDs are an attractive option for backups of small, isolated systems. CDs hold about 700MB and DVDs hold 4.7GB. Dual-layer DVDs clock in at about 8.5GB.
 

Drives that write these media are available for every common bus (SCSI, IDE, USB, SATA, etc.) and are in many cases are so inexpensive as to be essentially free. Now that CD and DVD prices have equilibrated, there’s no reason to use CDs rather than DVDs. However, we still see quite a few CDs used in the real world for reasons that are not entirely clear.
 

Optical media are written through a photochemical process that involves the use of a laser. Although hard data on longevity has been elusive, it is widely believed that optical media have a substantially longer shelf life than magnetic media. However, the write-once versions (CD-R, DVD-R, and DVD+R) are not as durable as manufactured (stamped) CDs and DVDs.
 

Today’s fast DVD writers offer speeds as fast as—if not faster than—tape drives. The write-once versions are DVD-R and DVD+R. DVD-RW, DVD+RW, and DVD-RAM are rewritable. The DVD-RAM system has built-in defect management and is therefore more reliable than other optical media. On the other hand, it is much more expensive.
 

Manufacturers estimate a potential life span of hundreds of years for these media if they are properly stored. Their recommendations for proper storage include individual cases, storage at a constant temperature in the range 41°F–68°F with relative humidity of 30%–50%, no exposure to direct sunlight, and marking only with water-soluble markers. Under average conditions, a reliable shelf life of 1–5 years is probably more realistic.
 

As borne out by numerous third-party evaluations, the reliability of optical media has proved to be exceptionally manufacturer dependent. This is one case in which it pays to spend money on premium quality media. Unfortunately, quality varies from product to product even within a manufacturer’s line, so there is no safe-bet manufacturer.
 

A recent entry to the optical data storage market is the Blu-ray disc, whose various flavors store from 25–100 GB of data. This high capacity is a result of the short wavelength (405nm) of the laser used to read and write the disks (hence the “blue” in Blu-ray). As the cost of media drops, this technology promises to become a good solution for backups.
 

Portable and removable hard disks
 

External storage devices that connect through a USB 2.0 or eSATA port are common. The underlying storage technology is usually some form of hard disk, but flash memory devices are common at the low end (the ubiquitous “jump drives”). Capacities for conventional hard drives range from less than 250GB to over 2TB. Solid state drives (SSDs) are based on flash memory and are currently available in sizes up to 160GB. The limit on USB flash memory devices is about 64GB, but it is growing fast.
 

The lifetime of flash memory devices is mostly a function of the number of write cycles. Midrange drives usually last at least 100,000 cycles.
 

The main limitation of such drives as backup media is that they are normally online and so are vulnerable to power surges, heating overload, and tampering by malicious users. For hard drives to be effective as backup media, they must be manually unmounted or disconnected from the server. Removable drives make this task easier. Specialized “tapeless backup” systems that use disks to emulate the off-line nature of tapes are also available.
 

Magnetic tapes in general
 

Many kinds of media store data by adjusting the orientation of magnetic particles. These media are subject to damage by electrical and magnetic fields. You should beware of the following sources of magnetic fields: audio speakers, transformers and power supplies, unshielded electric motors, disk fans, CRT monitors, and even prolonged exposure to the Earth’s background radiation.
 

All magnetic tapes eventually become unreadable over a period of years. Most tape media will keep for at least three years, but if you plan to store data longer than that, you should either use media that are certified for a longer retention period or rerecord the data periodically.
 

Small tape drives: 8mm and DDS/DAT
 

Various flavors of 8mm and Digital Data Storage/Digital Audio Tape drives compose the low end of the tape storage market. Exabyte 8mm tape drives were early favorites, but the drives tended to become misaligned every 6–12 months, requiring a trip to the repair depot. It was not uncommon for tapes to be stretched in the transport mechanism and become unreliable. The 2–7 GB capacity of these tapes makes them inefficient for backing up today’s desktop systems, let alone servers.
 

DDS/DAT drives are helical scan devices that use 4mm cartridges. Although these drives are usually referred to as DAT drives, they are really DDS drives; the exact distinction is unimportant. The original format held about 2GB, but successive generations have significantly improved DDS capacity. The current generation (DAT 160) holds up to 80GB of data at a transfer rate of 6.9 MB/s. The tapes should last for 100 backups and are reported to have a shelf life of 10 years.
 

DLT/S-DLT
 

Digital Linear Tape/Super Digital Linear Tape is a mainstream backup medium. These drives are reliable, affordable, and capacious. They evolved from DEC’s TK-50 and TK-70 cartridge tape drives. DEC sold the technology to Quantum, which popularized the drives by increasing their speed and capacity and by dropping their price. In 2002, Quantum acquired Super DLT, a technology by Benchmark Storage Innovations that tilts the recording head back and forth to reduce crosstalk between adjacent tracks.
 

Quantum now offers two hardware lines: a performance line and a value line. You get what you pay for. The tape capacities vary from DLT-4 at 800GB to DLT-4 in the value line at 160GB, with transfer rates of 60 MB/s and 10 MB/s, respectively. Manufacturers boast that the tapes will last 20 to 30 years—that is, if the hardware to read them still exists. How many 9-track tape drives are still functioning and on-line these days?
 

The downside of S-DLT is the price of media, which runs $90–100 per 800GB tape. A bit pricey for a university; perhaps not for a Wall Street investment firm.
 

AIT and SAIT
 

Advanced Intelligent Tape is Sony’s own 8mm product on steroids. In 1996, Sony dissolved its relationship with Exabyte and introduced the AIT-1, an 8mm helical scan device with twice the capacity of 8mm drives from Exabyte. Today, Sony offers AIT-4, with a capacity of 200GB and a 24 MB/s maximum transfer rate, and AIT-5, which doubles the capacity while keeping the same transfer speed.
 

SAIT is Sony’s half-height offering, which uses larger media and has greater capacity than AIT. SAIT tapes holds up to 500GB of data and sport a transfer rate of 30 MB/s. This product is most common in the form of tape library offerings— Sony’s are especially popular.
 

The Advanced Metal Evaporated (AME) tapes used in AIT and SAIT drives have a long life cycle. They also contain a built-in EEPROM that gives the media itself some smarts. Software support is needed to make any actual use of the EEPROM, however. Drive and tape prices are both roughly on par with DLT.
 

VXA/VXA-X
 

The VXA and VXA-X technologies were originally developed by Exabyte and were acquired by Tandberg Data in 2006. The VXA drives use what Exabyte describes as a packet technology for data transfer. The VXA-X products still rely on Sony for the AME media; the V series is upgradable as larger-capacity media become available. The VXA and X series claim capacities in the range of 33–160 GB, with a transfer rate of 24 MB/s.
 

LTO
 

Linear Tape-Open was developed by IBM, HP, and Quantum as an alternative to the proprietary format of DLT. LTO-4, the latest version, has an 800GB capacity at a speed of 120 MB/s. LTO media has an estimated storage life of 30 years but is susceptible to magnetic exposure. As with most technology, the previous generation LTO-3 drives are much less expensive and are still adequate for use in many environments. The cost of media is about $40 for LTO-4 tapes and $25 for the 400GB LTO-3 tapes.
 

Jukeboxes, stackers, and tape libraries
 

With the low cost of disks these days, most sites have so much disk space that a full backup requires many tapes, even at 800GB per tape. One possible solution for these sites is a stacker, jukebox, or tape library.
 

A stacker is a simple tape changer that is used with a standard tape drive. It has a hopper that you load with tapes. The stacker unloads full tapes as they are ejected from the drive and replaces them with blank tapes from the hopper. Most stackers hold about ten tapes.
 

A jukebox is a hardware device that can automatically change removable media in a limited number of drives, much like an old-style music jukebox that changed records on a single turntable. Jukeboxes are available for all the media discussed here. They are often bundled with special backup software that understands how to manipulate the changer. Storage Technology (now part of Oracle) and Sony are two large manufacturers of these products.
 

Tape libraries, also known as autochangers, are a hardware backup solution for large data sets—terabytes, usually. They are large-closet-sized mechanisms with multiple tape drives (or optical drives) and a robotic arm that retrieves and files media on the library’s many shelves. As you can imagine, they are quite expensive to purchase and maintain, and they have special power, space, and air conditioning requirements.
 

Most purchasers of tape libraries also purchase an operations contract from the manufacturer to optimize and run the device. The libraries have a software component, of course, which is what really runs the device. Storage Technology (Oracle), Spectra Logic, and HP are leading manufacturers of tape libraries.
 

Hard disks
 

The decreasing cost of hard drives makes disk-to-disk backups an attractive option to consider. Although we suggest that you not duplicate one disk to another within the same physical machine, hard disks can be a good, low-cost solution for backups over a network and can dramatically decrease the time required to restore large datasets.
 

One obvious problem is that hard disk storage space is finite and must eventually be reused. However, disk-to-disk backups are an excellent way to protect against the accidental deletion of files. If you maintain a day-old disk image in a well-known place that’s shared over NFS or CIFS, users can recover from their own mistakes without involving an administrator.
 

Remember that on-line storage is usually not sufficient protection against malicious attackers or data center equipment failures. If you are not able to actually store your backups off-line, at least shoot for geographic diversity when storing them on-line.
 

Internet and cloud backup services
 

Service providers have recently begun to offer Internet-hosted storage solutions. Rather than provisioning storage in your own data center, you lease storage from a cloud provider. Not only does this approach provide on-demand access to almost limitless storage, but it also gives you an easy way to store data in multiple geographic locations.
 

Internet storage services start at 10¢/GB/month and get more expensive as you add features. For example, some providers let you choose how many redundant copies of your data will be stored. This pay-per-use pricing allows you to pick the reliability that is appropriate for your data and budget.
 

Internet backups only work if your Internet connection is fast enough to transmit copies of your changes every night without bogging down “real” traffic. If your organization handles large amounts of data, it is unlikely that you can back it up across the Internet. But for smaller organizations, cloud backups can be an ideal solution since there is no up-front cost and no hardware to buy. Remember, any sensitive data that transits the Internet or is stored in the cloud must be encrypted.
 

Summary of media types
 

Whew! That’s a lot of possibilities. Table 10.1. summarizes the characteristics of the media discussed in the previous sections.
 

Table 10.1. Backup media compared
 

[image: Image]
 

What to buy
 

When you buy a backup system, you pretty much get what you see in Table 10.1.. All the media work reasonably well, and among the technologies that are close in price, there generally isn’t a compelling reason to prefer one over another. Buy a system that meets your specifications and your budget. If you are deploying new hardware, make sure it is supported by your OS and backup software.
 

Although cost and media capacity are both important considerations, it’s important to consider throughput as well. Fast media are more pleasant to deal with, but be careful not to purchase a tape drive that overpowers the server it is attached to. If the server can’t shovel data to the drive at an acceptable pace, the drive will be forced to stop writing while it waits on the server. You sure don’t want a tape drive that is too slow, but you also don’t want one that is too fast.
 

Similarly, choose backup media that is appropriately sized for your data. It doesn’t make any sense to splurge on DLT-S4 tapes if you have only a few hundred GB of data to protect. You will just end up taking half-full tapes off-site.
 

Optical media, DDS, and LTO drives are excellent solutions for small workgroups and for individual machines with a lot of storage. The startup costs are relatively modest, the media are widely available, and several manufacturers are using each standard. All of these systems are fast enough to back up beaucoup data in a finite amount of time.
 

DLT, AIT, and LTO are all roughly comparable for larger environments. There isn’t a clear winner among the three, and even if there were, the situation would no doubt change within a few months as new versions of the formats were deployed. All of these formats are well established and would be easy to integrate into your environment, be it a university or corporation.
 

In the remainder of this chapter, we use the generic term “tape” to refer to the media chosen for backups. Examples of backup commands are phrased in terms of tape devices.
 

10.3 Saving Space and Time with Incremental Backups
 

Almost all backup tools support at least two different kinds of backups: full backups and incremental backups. A full backup includes all of a filesystem’s contents. An incremental backup includes only files that have changed since the previous backup. Incremental backups are useful for minimizing the amount of network bandwidth and tape storage consumed by each day’s backups. Because most files never change, even the simplest incremental schedule eliminates many files from the daily dumps.
 

Many backup tools support additional kinds of dumps beyond the basic full and incremental procedures. In general, these are all more-sophisticated varieties of incremental dump. The only way to back up less data is to take advantage of data that’s already been stored on a backup tape somewhere.
 

Some backup software identifies identical copies of data even if they are found in different files on different machines. The software then ensures that only one copy is written to tape. This feature is usually known as deduplication, and it can be very helpful for limiting the size of backups.
 

The schedule that is right for you depends on
 

• The activity of your filesystems

 

• The capacity of your dump device

 

• The amount of redundancy you want

 

• The number of tapes you want to buy

 

When you do a backup with dump, you assign it a backup level, which is an integer. A level N dump backs up all files that have changed since the last dump of level less than N. A level 0 backup places the entire filesystem on the tape. With an incremental backup system, you may have to restore files from several sets of backup tapes to reset a filesystem to the state it was in during the last backup.5
 

Historically, dump, supported levels 0 through 9, but newer versions support thousands of dump levels. As you add additional levels to your dump schedule, you divide the relatively few active files into smaller and smaller segments. A complex dump schedule confers the following benefits:
 

• You can back up data more often, limiting your potential losses.

 

• You can use fewer daily tapes (or fit everything on one tape).

 

• You can keep multiple copies of each file to protect against media errors.

 

• You can reduce the network bandwidth and time needed for backups.

 

These benefits must be weighed against the added complexity of maintaining the system and of restoring files. Given these constraints, you can design a schedule at the appropriate level of sophistication. Below, we describe a couple of possible sequences and the motivation behind them. One of them might be right for your site—or, your needs might dictate a completely different schedule.
 

A simple schedule
 

If your total amount of disk space is smaller than the capacity of your tape device, you can use a trivial dump schedule. Do level 0 dumps of every filesystem each day. Reuse a group of tapes, but every N days (where N is determined by your site’s needs), keep the tape forever. This scheme costs you
 

(365/N) * (price of tape)
 

per year. Don’t reuse the exact same tape for every night’s dump. It’s better to rotate among a set of tapes so that even if one night’s dump is blown, you can still fall back to the previous night.
 

This schedule guarantees massive redundancy and makes data recovery easy. It’s a good solution for a site with lots of money but limited operator time (or skill).
 

From a safety and convenience perspective, this schedule is the ideal. Don’t stray from it without a specific reason (e.g., to conserve tapes or labor).
 

A moderate schedule
 

A more reasonable schedule for most sites is to assign a tape to each day of the week, each week of the month (you’ll need 5), and each month of the year. Every day, do a level 9 dump to the daily tape. Every week, do a level 5 dump to the weekly tape. And every month, do a level 3 dump to the monthly tape. Do a level 0 dump whenever the incrementals get too big to fit on one tape, which is most likely to happen on a monthly tape. Do a level 0 dump at least once a year.
 

The choice of levels 3, 5, and 9 is arbitrary. You could use levels 1, 2, and 3 with the same effect. However, the gaps between dump levels give you some breathing room if you later decide you want to add another level of dumps. Other backup software uses the terms full, differential, and incremental rather than numeric dump levels.
 

This schedule requires 24 tapes plus however many tapes are needed for the level 0 dumps. Although it does not require too many tapes, it also does not afford much redundancy.
 

10.4 Setting Up a Backup regime with Dump
 

The dump and restore commands are the most common way to create and restore from backups. These programs have been around for a very long time, and their behavior is well known. At most sites, dump and restore are the underlying commands used by automated backup software.
 

[image: Image] You may have to explicitly install dump and restore on your Linux systems, depending on the options you selected during the original installation. A package is available for easy installation on all our example distributions. The current Red Hat release offers a system administration package at installation time that includes dump.
 

[image: Image] On Solaris systems, dump and restore are called ufsdump and ufsrestore. A dump command exists, but it’s not backup-related. As the names suggest, the ufs* commands work only with the older UFS filesystem; they do not work on ZFS filesystems. See page 316 for a discussion of ZFS backup options.
 

ufsdump accepts the same flags and arguments as other systems’ traditional dump, but it parses arguments differently. ufsdump expects all the flags to be contained in the first argument and the flags’ arguments to follow in order. For example, where most commands would want -a 5 -b -c 10, on Solaris ufsdump would want abc 5 10.
 

ufsdump is only supposed to be used on unmounted filesystems. If you need to back up a live filesystem, be sure to run Solaris’s fssnap command and then run ufsdump against the snapshot.
 

[image: Image] On AIX, the dump command is called backup, although restore is still called restore. A dump command exists, but it’s not backup-related.
 

For simplicity, we refer to the backup commands as dump and restore and show their traditional command-line flags. Even on systems that call the commands something else, they function similarly. Given the importance of reliable dumps, however, you must check these flags against the man pages on the machine you are dumping; most vendors have tampered with the meaning of at least one flag.
 

Dumping filesystems
 

dump builds a list of files that have been modified since a previous dump, then packs those files into a single large file to archive to an external device. dump has several advantages over most of the other utilities described in this chapter.
 

• Backups can span multiple tapes.

 

• Files of any type (even devices) can be backed up and restored.

 

• Permissions, ownerships, and modification times are preserved.

 

• Files with holes are handled correctly.6

 

• Backups can be performed incrementally (with only recently modified files being written out to tape).

 

The GNU version of tar used on Linux provides all these features as well. However, dump’s handling of incremental backups is a bit more sophisticated than tar’s. You may find the extra horsepower useful if your needs are complex.
 

Unfortunately, the version of tar shipped with most major UNIX distributions lacks many of GNU tar’s features. If you must support backups for both Linux and UNIX variants, dump is your best choice. It is the only command that handles these issues (fairly) consistently across platforms, so you can be an expert in one command rather than being familiar with two. If you are lucky enough to be in a completely homogeneous Linux environment, pick your favorite. dump is less filling, but tar tastes great!
 

[image: Image] On Linux systems, dump natively supports filesystems in the ext family. You may have to download and install other versions of dump to support other filesystems.
 

The dump command understands the layout of raw filesystems, and it reads a filesystem’s inode table directly to decide which files must be backed up. This knowledge of the filesystem makes dump very efficient, but it also imposes a couple of limitations.7
 

See Chapter 18 for more information about NFS.

 

The first limitation is that every filesystem must be dumped individually. The other limitation is that only filesystems on the local machine can be dumped; you cannot dump an NFS filesystem you have mounted from a remote machine. However, you can dump a local filesystem to a remote tape drive.8
 

dump does not care about the length of filenames. Hierarchies can be arbitrarily deep, and long names are handled correctly.
 

The first argument to dump is the incremental dump level. dump uses the /etc/dumpdates file to determine how far back an incremental dump must go.
 

The -u flag causes dump to automatically update /etc/dumpdates when the dump completes. The date, dump level, and filesystem name are recorded. If you never use the -u flag, all dumps become level 0s because no record of your having previously dumped the filesystem is ever created. If you change a filesystem’s name, you can edit the /etc/dumpdates file by hand.
 

See page 418 for information about device numbers.

 

dump sends its output to some default device, usually the primary tape drive. To specify a different device, use the -f flag. If you are placing multiple dumps on a single tape, make sure you specify a non-rewinding tape device (a device file that does not cause the tape to be rewound when it is closed—most tape drives have both a standard and a non-rewinding device entry).9 Read the man page for the tape device to determine the exact name of the appropriate device file. Table 10.2. gives some hints for our four example systems.
 

Table 10.2. Device files for the default SCSI tape drive
 

[image: Image]
 

If you choose the rewinding device by accident, you end up saving only the last filesystem dumped. Since dump does not have any idea where the tape is positioned, this mistake does not cause errors. The situation only becomes apparent when you try to restore files.
 

To dump to a remote system, you specify the identity of the remote tape drive as hostname:device; for example,
 

$ sudo dump -0u -f anchor:/dev/nst0 /spare
 

Permission to access remote tape drives should be controlled through an SSH tunnel. See page 926 for more information.
 

In the past, you had to tell dump exactly how long your tapes were so that it could stop writing before it ran off the end of a tape. Modern tape drives can tell when they have reached the end of a tape and report that fact back to dump, which then rewinds and ejects the current tape and requests a new one. Since the variability of hardware compression makes the “virtual length” of each tape somewhat indeterminate, it’s always best to rely on the end-of-tape (EOT) indication.
 

All versions of dump understand the -d and -s options, which specify the tape density in bytes per inch and the tape length in feet, respectively. A few more-sensible versions let you specify sizes in kilobytes with the -B option. For versions that don’t, you must do a little bit of arithmetic to express the size you want.
 

For example, let’s suppose we want to do a level 5 dump of /work to a DDS-4 (DAT) drive whose native capacity is 20GB (with a typical compressed capacity of about 40GB). DAT drives can report EOT, so we need to lie to dump and set the tape size to a value that’s much bigger than 40GB, say, 50GB. That works out to about 60,000 feet at 6,250 bpi:
 

[image: Image]
 

The flags -5u are followed by the parameters -s (size: 60,000 feet), -d (density: 6,250 bpi), and -f (tape device: /dev/nst0). Finally, the filesystem name (/work) is given; this argument is required. Most versions of dump allow you to specify the filesystem by its mount point, as in the example above. Some require you to specify the raw device file.
 

The last line of output shown above verifies that dump will not attempt to switch tapes on its own initiative, since it believes that only about a quarter of a tape is needed for this dump. It is fine if the number of estimated tapes is more than 1, as long as the specified tape size is larger than the actual tape size. dump will reach the actual EOT before it reaches its own computed limit.
 

Restoring from dumps with restore
 

The program that extracts data from tapes written with dump is called restore. We first discuss restoring individual files (or a small set of files), then explain how to restore entire filesystems.
 

Normally, the restore command is dynamically linked, so you need the system’s shared libraries available to do anything useful. Building a statically linked version of restore takes some extra effort but makes it easier to recover from a disaster because restore is then completely self-contained.
 

When you are notified of a lost file, first determine which tapes contain versions of the file. Users often want the most recent version, but that is not always the case. For example, a user who loses a file by inadvertently copying another file on top of it would want the version that existed before the incident occurred. It’s helpful if you can browbeat users into telling you not only what files are missing but also when they were lost and when they were last modified. We find it helpful to structure users’ responses with a request form.
 

If you do not keep on-line catalogs, you must mount tapes and repeatedly attempt to restore the missing files until you find the correct tape. If the user remembers when the files were last changed, you may be able to make an educated guess about which tapes the files might be on.
 

After determining which tapes you want to extract from, create and cd to a temporary directory such as /var/restore where a large directory hierarchy can be created; most versions of restore must create all the directories leading to a particular file before that file can be restored. Do not use /tmp—your work could be wiped out if the machine crashes and reboots before the restored data has been moved to its original location.
 

The restore command has many options. Most useful are -i for interactive restores of individual files and directories and -r for a complete restore of an entire filesystem. You might also need -x, which requests a noninteractive restore of specified files—be careful not to overwrite existing files.
 

restore -i reads the table of contents from the tape and then lets you navigate through it as you would a normal directory tree, using commands called ls, cd, and pwd. You mark the files that you want to restore with the add command. When you finish selecting, type extract to pull the files off the tape.
 

See page 317 for a description of mt.

 

If you placed multiple dumps on a single tape, you must use the mt command to position the tape at the correct dump file before running restore. Remember to use the non-rewinding device!
 

For example, to restore the file /users/janet/iamlost from a remote tape drive, you might issue the following commands. Let’s assume that you have found the right tape, mounted it on tapehost:/dev/nst0, and determined that the filesystem containing janet’s home directory is the fourth one on the tape.
 


 

[image: Image]
 

Volumes (tapes) are enumerated starting at 1, not 0, so for a dump that fits on a single tape, you specify 1. When restore asks if you want to set the owner and mode, it’s asking whether it should set the current directory to match the root of the tape. Unless you are restoring an entire filesystem, you probably do not want to do this.
 

Once the restore has completed, give the file to janet:
 

[image: Image]
 

Your name, Humble System Administrator
 

Some administrators prefer to restore files into a special directory and allow users to copy their files out by hand. In that scheme, the administrator must protect the privacy of the restored files by verifying their ownership and permissions. If you choose to use such a system, remember to clean out the directory every so often.
 

If you originally wrote a backup to a remote tape drive and are unable to restore files from it locally, try hosting the tape on the same remote host that was used for the original backup.
 

restore -i is usually the easiest way to restore a few files or directories from a dump. However, it does not work if the tape device cannot be moved backwards a record at a time (a problem with some 8mm drives). If restore -i fails, try restore-x before jumping out the window. restore -x requires you to specify the complete path of the file you want to restore (relative to the root of the dump) on the command line. The following sequence of commands repeats the previous example, but with -x.
 

[image: Image]
 

Restoring entire filesystems
 

With luck, you will never have to restore an entire filesystem after a system failure. However, the situation does occasionally arise. Before attempting to restore the filesystem, be absolutely sure that whatever problem caused the filesystem to be destroyed in the first place has been taken care of. It’s pointless to spend hours spinning tapes only to lose the filesystem once again.
 

Before you begin a full restore, create and mount the target filesystem. See Chapter 8, Storage, for more information about how to prepare the filesystem. To start the restore, cd to the mount point of the new filesystem, put the first tape of the most recent level 0 dump in the tape drive, and type restore -r.
 

restore prompts for each tape in the dump. After the level 0 dump has been restored, mount and restore the incremental dumps. Restore incremental dumps in the order in which they were created. Because of redundancy among dumps, it may not be necessary to restore every incremental. Here’s the algorithm for determining which dumps to restore:
 

Step 1: Restore the most recent level 0 dump.

 

Step 2: Restore the lowest-level dump made after the dump you just restored. If multiple dumps were made at that level, restore the most recent one.

 

Step 3: If that was the last dump that was ever made, you are done.

 

Step 4: Otherwise, go back to step 2.

 

Here are some examples of dump sequences. You would need to restore only the levels shown in boldface.
 

0 0 0 0 0 0

 

0 5 5 5 5

 

0 3 2 5 4 5

 

0 9 9 5 9 9 3 9 9 5 9 9

 

0 3 5 9 3 5 9

 

Let’s take a look at a complete command sequence. If the most recent dump was the first monthly after the annual level 0 in the “moderate” schedule on page 307, the commands to restore /home, residing on the logical volume /dev/vg01/lvol5, would look like this:
 

[image: Image]
 

If you had multiple filesystems on one dump tape, you’d use the mt command to skip forward to the correct filesystem before running each restore. See page 317 for a description of mt.
 

This sequence would restore the filesystem to the state it was in when the level 3 dump was done, except that all deleted files would be resurrected. This problem can be especially nasty when you are restoring an active filesystem or are restoring to a disk that is nearly full. It is possible for a restore to fail because the filesystem has been filled up with ghost files.11
 

Restoring to new hardware
 

When an entire system has failed, you must perform what is known as “bare metal recovery.” Before you can follow the filesystem restoration steps above, you will at least need to
 

• Provision replacement hardware

 

• Install a fresh copy of the operating system

 

• Install backup software (such as dump and restore)

 

• Configure the local tape drive or configure access to a tape server

 

After these steps, you can follow the restoration process described above.
 

10.5 Dumping and Restoring for Upgrades
 

We recommend that when you perform a major OS upgrade, you back up all file-systems with a level 0 dump and, possibly, restore them. The restore is needed only if the new OS uses a different filesystem format or if you restructure your disks. However, you must do backups as insurance against any problems that might occur during the upgrade. A complete set of backups also gives you the option to reinstall the old OS if the new version does not prove satisfactory. Fortunately, with the progressive upgrade systems used by most distributions these days, you are unlikely to need these tapes.
 

Be sure to back up all system and user partitions. Depending on your upgrade path, you may choose to restore only user data and system-specific files that are in the root filesystem or in /usr, such as /etc/passwd, /etc/shadow, or /usr/local. UNIX’s directory organization mixes local files with vendor-distributed files, making it quite difficult to pick out your local customizations.
 

You should do a complete set of level 0 dumps immediately after an upgrade, too. Most vendors’ upgrade procedures set the modification dates of system files to the time when they were mastered rather than to the current time. Ergo, incremental dumps made relative to the pre-upgrade level 0 are not sufficient to restore your system to its post-upgrade state in the event of a crash.
 

10.6 Using Other Archiving Programs
 

dump is not the only program you can use to archive files to tapes; however, it is usually the most efficient way to back up an entire system. tar and dd can also move files from one medium to another.
 

tar: package files
 

tar reads multiple files or directories and packages them into one file, often a tape device. tar is a useful way to back up any files whose near-term recovery you anticipate. For instance, if you have a bunch of old data files and the system is short of disk space, you can use tar to put the files on a tape and then remove them from the disk.
 

tar is also useful for moving directory trees from place to place, especially if you are copying files as root. tar preserves ownership and time information, but only if you ask it to. For example,
 

sudo tar -cf -
fromdir
| (cd
todir
; sudo tar -xpf -)
 

creates a copy of the directory tree fromdir in todir. Avoid using .. in the todir argument since symbolic links and automounters can make it mean something different from what you expect. We’ve been bitten several times.
 

Most versions of tar do not follow symbolic links by default, but they can be told to do so. Consult your tar manual for the correct flag; it varies from system to system. The biggest drawback of tar is that non-GNU versions do not allow multiple tape volumes. If the data you want to archive will not fit on one tape, you may need to upgrade your version of tar.
 

Another problem with some non-GNU versions of tar is that pathnames are limited by default to 100 characters. This restriction prevents tar from archiving deep hierarchies. If you’re creating tar archives on your Linux systems and exchanging them with others, remember that people with the standard tar may not be able to read the tapes or files you create.12
 

tar’s -b option lets you specify a “blocking factor” to use when writing a tape. The blocking factor is specified in 512-byte blocks; it determines how much data tar buffers internally before performing a write operation. Some DAT devices do not work correctly unless the blocking factor is set to a special value, but other drives do not require this setting.
 

On some systems, certain blocking factors may yield better performance than others. The optimal blocking factor varies widely, depending on the computer and tape drive hardware. In many cases, you will not notice any difference in speed. When in doubt, try a blocking factor of 20.
 

tar expands holes in files and is intolerant of tape errors.13
 

dd: twiddle bits
 

dd is a file copying and conversion program. Unless you tell it to do some sort of conversion, dd just copies from its input file to its output file. If a user brings you a tape that was written on a non-UNIX system, dd may be the only way to read it.
 

One historical use for dd was to create a copy of an entire filesystem. However, a better option these days is to mkfs the destination filesystem and then run dump piped to restore. dd can sometimes clobber partitioning information if used incorrectly. It can only copy filesystems between partitions of exactly the same size.
 

You can also use dd to make a copy of a magnetic tape. With two tape drives, say, /dev/st0 and /dev/st1, you’d use the command
 

$ dd if=/dev/st0 of=/dev/st1 cbs=16b
 

With one drive (/dev/st0), you’d use the following sequence:
 

[image: Image]
 

Of course, if you have only one tape drive, you must have enough disk space to store an image of the entire tape.
 

dd is also a popular tool among forensic specialists. Because it creates a bit-for-bit, unadulterated copy of a volume, dd can be used to duplicate electronic evidence for use in court.
 

ZFS backups
 

See page 264 for a more general introduction to ZFS.

 

Solaris’s ZFS incorporates the features of a logical volume manager and RAID controller as well as a filesystem. It is in many ways a system administrator’s dream, but backup is something of a mixed bag.
 

ZFS makes it easy and efficient to create filesystem snapshots. Past versions of a filesystem are available through the .zfs directory in the filesystem’s root, so users can easily restore their own files from past snapshots without administrator intervention. From the perspective of on-line version control, ZFS gets a gold star.
 

However, snapshots stored on the same media as the active filesystem shouldn’t be your only backup strategy. ZFS knows this, too: it has a very nice zfs send facility that summarizes a filesystem snapshot to a linear stream. You can save the stream to a file or pipe it to a remote system. You can write the stream to a tape. You can even send the stream to a remote zfs receive process to replicate the filesystem elsewhere (optionally, with all its history and snapshots). If you like, zfs send can serialize only the incremental changes between two snapshots. Two gold stars: one for the feature, and one for the fact that the full documentation is just a page or two (see the man page for zfs).
 

The fly in the ointment is that zfs receive deals only with complete filesystems. To restore a few files from a set of serialized zfs send images, you must restore the entire filesystem and then pick out the files you want. Let’s hope you’ve got plenty of time and free disk space and that the tape drive isn’t needed for other backups.
 

In fairness, several arguments help excuse this state of affairs. ZFS filesystems are lightweight, so you’re encouraged to create many of them. Restoring all of /home might be traumatic, but restoring all of /home/ned is likely to be trivial.14 More importantly, ZFS’s on-line snapshot system eliminates 95% of the cases in which you would normally need to refer to a backup tape.
 

On-line snapshots don’t replace backup tapes or reduce the frequency with which those tapes must be written. However, snapshots do reduce the frequency at which tapes must be read.
 

10.7 Using Multiple Files on a Single Tape
 

A magnetic tape contains one long string of data. However, it’s often useful to store more than one “thing” on a tape, so tape drives and their drivers conspire to afford a bit more structure. When dump or some other command writes a stream of bytes out to a tape device and then closes the device file, the driver writes an end-of-file marker on the tape. This marker separates the stream from other streams that are written subsequently. When the stream is read back in, reading stops automatically at the EOF.
 

You can use the mt command to position a tape at a particular stream or “fileset,” as mt calls them. mt is especially useful if you put multiple files (for example, multiple dumps) on a single tape. It also has some of the most interesting error messages of any UNIX utility. The basic format of the command is
 

mt [-f
tapename] command [count]
 

There are numerous choices for command. They vary from platform to platform, so we discuss only the ones that are essential for doing backups and restores.
 

rew rewinds the tape to the beginning.

 

offl puts the tape off-line. On most tape drives, this command causes the tape to rewind and pop out of the drive. Most scripts use this command to eject the tape when they are done, clearly indicating that everything finished correctly.

 

status prints information about the current state of the tape drive (whether a tape is loaded, etc.).

 

fsf [count] fast-forwards the tape. If no count is specified, fsf skips forward one file. With a numeric argument, it skips the specified number of files. Use this command to skip forward to the correct filesystem on a tape with multiple dumps.

 

bsf [count] should backspace count files. The exact behavior of this directive depends on the tape drive hardware and its associated driver. In some situations, the current file is counted. In others, it is not. On some equipment, bsf does nothing, silently. If you go too far forward on a tape, your best bet is to run mt rew on it and start again from the beginning.

 

Consult the mt man page for a list of all the supported commands.
 

If you’re fortunate enough to have a robotic tape library, you may be able to control its tape changer by installing the mtx package, an enhanced version of mt. For example, we use it for unattended tape swapping with our groovy Dell PowerVault LTO-3 tape cartridge system. Tape changers with barcode readers will even display the scanned tape labels through the mtx interface. Look ma, no hands!
 

10.8 Bacula
 

Bacula is an enterprise-level client/server backup solution that manages backup, recovery, and verification of files over a network. The Bacula server components run on Linux, Solaris, and FreeBSD. The Bacula client backs up data from many platforms, including all our example operating systems and Microsoft Windows.
 

In previous editions of this book, Amanda was our favorite noncommercial backup tool. If you need Amanda information, see a previous edition of this book or amanda.org.
 

The feature list below explains why Bacula is our new favorite.
 

• It has a modular design.

 

• It backs up UNIX, Linux, Windows, and Mac OS systems.

 

• It supports MySQL, PostgreSQL, or SQLite for its back-end database.

 

• It supports an easy-to-use, menu-driven command-line console.

 

• It’s available under an open source license.

 

• Its backups can span multiple tape volumes.

 

• Its servers can run on multiple platforms.

 

• It creates SHA1 or MD5 signature files for each backed-up file.

 

• It allows encryption of both network traffic and data stored on tape.

 

• It can back up files larger than 2GiB.

 

• It supports tape libraries and autochangers.

 

• It can execute scripts or commands before and after backup jobs.

 

• It centralizes backup management for an entire network.

 

The Bacula model
 

To deploy Bacula, you should understand its major components. Exhibit A illustrates Bacula’s general architecture.
 

Exhibit A Bacula components and their relationships
 

[image: Image]
 

The Bacula director is the daemon that coordinates backup, restore, and verification operations. You can submit backup or restore jobs to the director daemon by using the Bacula console. You can also ask the director daemon to query the Bacula storage daemon or the file daemons located on client computers.
 

You communicate with the director daemon through the Bacula console, which can be run as a GNOME or MS Windows GUI or as a command-line tool. The console can run anywhere; it doesn’t have to be located on the same computer as the director daemon.
 

A storage daemon is the Bacula component that reads and writes tapes or other backup media. This service must run on the machine that is connected to the tape drive or storage device used for backups, but it does not have to be installed on the same server as the director (although it can be).
 

A Bacula file daemon runs on each system that is to be backed up. File daemon implementations for each supported operating system send the appropriate file data and attributes to the storage daemon as backup jobs are executed.
 

The final Bacula component is the catalog, a relational database in which Bacula stores information about every file and volume that is backed up. The catalog makes Bacula fast and efficient during a restore because the entire backup history is available on-line; Bacula knows what storage volumes are needed to restore a particular fileset before it reads a single tape. Bacula currently supports three different databases: MySQL, PostgreSQL, and SQLite. The catalog database need not reside on the same server as the director.
 

An additional, optional component is the Bacula Rescue CD-ROM. This component is a separately downloadable package that creates individualized, bootable rescue CDs for Linux systems to use for “bare metal” recovery. The CDs contain a statically linked copy of the system’s file daemon as well as customized shell scripts that incorporate configuration information about the system’s disks, kernel, and network interfaces. If a Linux system has a catastrophic failure, you can use its rescue CD to boot the fresh system, partition the disk, and connect to the Bacula director to perform a full system restore over the network.
 

Setting up Bacula
 

Because of Bacula’s complexity, advanced feature set, and modular design, there are many ways to set up a site-wide backup scheme. In this section we walk through a basic Bacula configuration.
 

In general, six steps get Bacula up and running:
 

• Install a supported third-party database and the Bacula daemons.

 

• Configure the Bacula daemons.

 

• Install and configure the client file daemons.

 

• Start the Bacula daemons.

 

• Add media to media pools with the Bacula console.

 

• Perform a test backup and restore.

 

A minimal setup consists of a single backup server machine and one or more clients. The clients run only a file daemon. The remaining four Bacula components (director daemon, storage daemon, catalog, and console) all run on the server. In larger environments it’s advisable to distribute the server-side Bacula components among several machines, but the minimal setup works great for backing up at least a few dozen systems.
 

Installing the database and Bacula daemons
 

It’s important to run the same (major) version of Bacula on every system. In the past, some major releases have been incompatible with one another.
 

Before you can install Bacula, you must first install the back-end database for its catalog. For sites backing up just a few systems, SQLite provides the easiest installation. If you are backing up more systems, it’s advisable to use a more scalable database. Our experience with MySQL in this role has been positive, and we assume MySQL in the following examples.
 

Stability and reliability are a must when you are dealing with a backup platform, so once you have installed the database, we recommend that you download and install the latest stable source code from the Bacula web site. Step-by-step installation documentation is included with the source code in the docs directory. The documentation is also on-line at bacula.org, where it is available in both HTML and PDF format. Helpful tutorials and developer guides can also be found there.
 

After unpacking the source code, run ./configure --with-mysql followed by make to compile the binaries, and, finally, run make install to complete the installation.
 

Once Bacula has been installed, the next step is to create the actual MySQL database and the data tables inside it. Bacula includes three shell scripts that prepare MySQL to store the catalog. The grant_mysql_privileges script sets up the appropriate MySQL permissions for the Bacula user. The create_mysql_database script creates the Bacula database, and, finally, the make_mysql_tables script populates the database with the required tables. Analogous scripts are included for PostgreSQL and SQLite. Bacula’s prebuilt database creation scripts can be found in the src/cats directory of the Bacula source code distribution.
 

Bacula saves a table entry for every file backed up from every client, so your database server should have plenty of memory and disk space. Database tables for a medium-sized network can easily grow to millions of entries. For MySQL, you should probably dedicate at least the resources defined in the my-large.cnf file included in the distribution. If you eventually find that your catalog database has grown to become unmanageable, you can always set up a second instance of MySQL and use separate catalogs for different groups of clients.
 

Configuring the Bacula daemons
 

After setting up the database that will store the catalog, you must configure the other four Bacula components. By default, all configuration files are located in the /etc/bacula directory. Bacula has a separate configuration file for each component. Table 10.3. lists the filenames and the machines on which each configuration file is needed.
 

Table 10.3. Bacula configuration filenames (in /etc/bacula)
 

[image: Image]
 

It might seem silly that you have to configure each Bacula component independently when you have a single server, but this modular design allows Bacula to scale incredibly well. Tape backup server at capacity? Add a second server with its own storage daemon. Want to back up to an off-site location? Install a storage daemon on a server there. Need to back up new clients? Install and configure the clients’ file daemons. New backup administrator? Install the management console on his or her workstation.
 

The configuration files are human-readable text files. The sample configuration files included in the Bacula distribution are well documented and are a great starting place for a typical configuration.
 

Before we begin a more detailed discussion of our example setup, let’s first define some key Bacula terms.
 

• “Jobs” are the fundamental unit of Bacula activity. They come in two flavors: backup and restore. A job comprises a client, a fileset, a storage pool, and a schedule.

 

• “Pools” are groups of physical media that store jobs. For example, you might use two pools, one for full backups and another for incrementals.

 

• “Filesets” are lists of filesystems and individual files. Filesets can be explicitly included in or excluded from backup or restore jobs.

 

• “Messages” are inter-daemon communiqués (log entries, really) regarding the status of daemons and jobs. Messages can also be sent by email and written to log files.

 

We do not cover all the possible configuration parameters in this chapter. Instead, we begin each section with a general overview and then point out some parameters that we think are either particularly useful or hard to grasp.
 

Common configuration sections
 

The Bacula configuration files are composed of sections known generically as “resources.” Each resource section is enclosed in curly braces. Some resources appear in multiple configuration files. Comments are introduced with a # sign in all Bacula configuration files.
 

All four configuration files contain a Director resource:
 

[image: Image]
 

The Director resource is more or less the mother ship of the Bacula sea. Its parameters define the name and basic behavior of the director. Options set the communication port through which the other daemons communicate with the director, the location in which the director stores its temporary files, and the number of concurrent jobs that the director can handle.
 

Passwords are strewn throughout the Bacula configuration files, and they serve a variety of purposes. Exhibit B shows how the passwords on different machines and in different configuration files should correspond.
 

Exhibit B Passwords in the Bacula configuration files
 

[image: Image]
 

Although passwords appear as plaintext in the configuration files, they are never transmitted over the network in this form.
 

In our example configuration, the director and console are hosted on the same machine. However, a password is still required in both configuration files.
 

The director, storage, and file daemons all have a Messages resource that tells Bacula how to handle specific message types generated by each Bacula daemon. In a typical configuration, the storage and file daemons forward their messages back to the director:
 

[image: Image]
 

In the director’s configuration file, the Messages resource is more complex. The example on the next page tells Bacula to save messages to a log file and to forward them by email.
 

[image: Image]
 

You can define multiple Messages resources for the director and then assign them to specific jobs in Job resources. This resource type is very configurable; a complete list of variables and commands can be found in the on-line documentation.
 

bacula-dir.conf: director configuration
 

bacula-dir.conf is the most complex of Bacula’s configuration files. It requires a minimum of seven types of resource definitions in addition to the Director and Messages resources described above: Catalog, Storage, Pool, Schedule, Client, FileSet, and Job. We highlight each resource definition here with a brief example, but start your own configuration by editing the sample files included with Bacula.
 

Catalog resources
 

A Catalog resource points Bacula to a particular catalog database. It includes a catalog name (so that you can define multiple catalogs), a database name, and database credentials.
 

[image: Image]
 

Storage resources
 

A Storage resource describes how to communicate with a particular storage daemon, which in turn is responsible for interfacing with its local backup devices. Storage resources are hardware-independent; the storage daemon has its own configuration file that describes the storage hardware in detail.
 

[image: Image]
 

Pool resources
 

A Pool resource groups backup media, typically tapes, into sets that are used by specific backup jobs. It may be useful to separate tapes that you use for off-site archival storage from those that you use for nightly incrementals. Each piece of media is assigned to a single Pool, so it’s easy to automatically recycle some tapes and archive others.
 

[image: Image]
 

Schedule resources
 

Schedule resources define the timetables for backup jobs. The name, date, and time specification are the only required parameters, but as you can see from the example below, you can sneak in additional parameter values. These values then override the default parameters set in a Job specification.
 

Below, full backups run on the first Tuesday of each month at 8:10 p.m. The incremental backups use a different tape pool and run every week from Wednesday through Monday at 8:10 p.m.
 

[image: Image]
 

Client resources
 

Client resources identify the computers to be backed up. Each resource has a unique name, IP address, and password; one is required for each client. The catalog for storing backup metadata is also specified. The parameters File Retention and Job Retention specify how long file and job records for this client should be kept in the catalog. If the AutoPrune parameter is set, expired data is deleted from the catalog. Pruning affects only the catalog records and not the actual files stored on backup tapes; recycling of tapes is configured in the Pool resource.
 

[image: Image]
 

FileSet resources
 

A FileSet resource defines the files and directories to be included in or excluded from a backup job. Unless you have systems with identical partitioning schemes, you’ll probably need a different fileset for each client. FileSet resources can define multiple Include and Exclude parameters, along with individual Options such as regular expressions. By default, Bacula recursively backs up directories but does not span partitions, so take care to list in separate File parameters all the partitions you want to back up.
 

In the example below, we enable software compression as well as the signature option, which computes a hash value for each file backed up. These options increase the CPU overhead for backups but can save tape capacity or help identify files that have been modified during a suspected security incident.
 

[image: Image]
 

Job resources
 

A Job resource defines the overall characteristics of a particular backup job by tying together Client, FileSet, Storage, Pool, and Schedule resources. In general, there is one Job definition per client, although you can easily set up multiple jobs if you want to back up different FileSets at different frequencies.
 

You can supply an (optional) JobDefs resource to set the defaults for all backup jobs. Use of this resource can simplify the per-job configuration data.
 

[image: Image]
 

A “bootstrap” file is a special text file, created by Bacula, that contains information about files to restore. Bootstrap files list the files and volumes needed for a restore job and are incredibly helpful for bare-metal restores. They are not mandatory but are highly recommended.
 

Bootstrap files are created during restores, or during backups if you have defined the Write Bootstrap parameter for the job. Write Bootstrap tells Bacula where to save the bootstrap information. Bootstrap files are overwritten during full backups and appended to during incremental backups.
 

bacula-sd.conf: storage daemon configuration
 

Storage daemons accept data from file daemons and transfer it to the actual storage media (or vice versa, in the case of a restore). The resources Storage, Device, and Autochanger are defined within the bacula-sd.conf file, along with the common Messages and Director resources.
 

The Director resource
 

The Director resource controls which directors are permitted to contact the storage daemon. The password in the Storage resource of bacula-dir.conf must match the password in the Director resource of bacula-sd.conf.
 

[image: Image]
 

The Storage resource
 

The Storage resource is relatively straightforward. It defines some basic working parameters such as the daemon’s network port and working directory.
 

[image: Image]
 

Device resources
 

Each storage device gets its own Device resource definition. This resource specifies details about the physical backup hardware, be it tape, optical media, or online storage. The details include media type, capabilities, and autochanger information for devices that are managed by a tape changer or media robot.
 

The example below defines an LTO-3 drive with an automatic tape changer. Note that /dev/nst0 is a non-rewinding device, which is almost invariably what you want. The Name parameter defines a symbolic name that’s used to associate the drive with its corresponding Autochanger resource. The Name also helps you remember which piece of equipment the resource describes.
 

The AlwaysOpen parameter tells Bacula to keep the device open unless an administrator explicitly requests an unmount. This option saves time and tape stress because it avoids rewinding and positioning operations between jobs.
 

[image: Image]
 

Autochanger resources
 

The optional Autochanger resource definition is only required if you are lucky enough to have a tape changer. It associates the storage devices to the autochanger and specifies the command that makes the changer swap tapes.
 

[image: Image]
 

bconsole.conf: console configuration
 

The console program communicates with the director to schedule jobs, check the status of jobs, or restore data. bconsole.conf tells the console how to communicate with the director. The parameters in this file must correspond to those given in the Director resource in the director’s configuration file (bacula-dir.conf), with the exception of the Address parameter.
 

[image: Image]
 

Installing and configuring the client file daemon
 

The file daemon installed on backup clients communicates with the Bacula storage daemon as backups and restores are executed. A file daemon must be installed and configured on every computer that is to be backed up with Bacula.
 

Bacula is available in binary form for many platforms, including Windows and various Linux distributions. On UNIX systems, you can install the file daemon from the original source tree by running ./configure --enable-client-only followed by make and make install. You can hard-code defaults for many file daemon options at configuration time, but maintenance is easier if you just list them in your bacula-fd.conf file. By default, binaries are installed in /sbin and configuration files in /etc/bacula.
 

After installing the file daemon, configure it by editing bacula-fd.conf, which is broken into three parts. The first part consists of the Director resource, which tells the file daemon which director is allowed to schedule backups for this client. The Director resource also includes a Password parameter, which must be identical to the password listed in the Client resource in the director’s own configuration file.
 

The second part of the bacula-fd.conf file is the FileDaemon resource, which names the client and specifies the port on which the file daemon listens for commands from the director daemon.
 

The final component is the Messages resource (refer back to page 323), which defines how local messages are to be handled.
 

Starting the Bacula daemons
 

With the server daemons installed and a test client configured, the next step is to fire up the daemons by running the startup script in the server’s installation directory (./bacula start). This same command is also used on each client to start the client’s file daemon.
 

The bacula startup script should be configured to run at boot time. Depending on your system and installation method, this may or may not be done for you. See Chapter 3, Booting and Shutting Down, for some additional details on how to start services at boot time on our example systems.
 

Once the daemons are running, you can use the console program (bconsole in the installation directory) to check their status, add media to pools, and execute backup and restore jobs. You can run bconsole from any computer as long as it has been properly installed and configured.
 

[image: Image]
 

Use the console’s help command to see a list of the commands it supports.
 

Adding media to pools
 

Before you can run a backup job, you need to label a tape and assign it to one of the media pools defined in the director’s configuration file. Use the console’s label command to write a software “label” to a blank tape and assign it to a Bacula pool. Always match your Bacula label to the physical label on your tape. If you have an autochanger that supports bar codes, you can use the label barcode command to automatically label any blank tapes with the human-readable values from their bar-coded labels.
 

Use the list media command to verify that the tape has been added to the correct pool and marked as appendable.
 

Running a manual backup
 

Use the console’s run command to perform a manual backup. No arguments are needed; the console displays all the backup jobs defined in the director’s configuration file. You can modify any option within the run command by following the console’s menu-driven prompts.
 

The following example shows a manual full backup of the server harp, using the defaults specified in our configuration files.
 

[image: Image]
 

After the backup job has been successfully submitted to the director, you can track its status with the console’s status command. You can also use the messages command to obtain blow-by-blow updates as they arrive. Depending on how you have set up the system’s Message resources, a detailed summary report may also be emailed to the Bacula administrator.
 

Running a restore job
 

To restore files, start up the console and run the restore command. Like the run command, restore is menu driven. It starts by helping you identify which jobs need to be read to restore the target files. restore presents you with several methods of specifying the relevant job IDs. Once you have selected a set of jobs, you can then select the files from those jobs to restore.
 

[image: Image]
 

The three most useful options are probably “Select the most recent backup for a client” (#5), “Select backup for a client before a specified time” (#6), and “List Jobs where a given File is saved” (#2). The first two of these options provide a shell-like environment for selecting files, similar to that of restore -i. The third option comes in handy for those pesky users that can never seem to remember exactly where the file they removed really lives. Another powerful way to find job IDs is option #4, “Enter SQL list command,” which lets you enter any properly formatted SQL query. (Of course, you must be familiar with the database schema.)
 

Suppose that a user needs a recent copy of his pw_expire.pl script restored. However, he’s not sure in which directory he kept the file. In addition, he would like the files restored to the /tmp directory of the original machine. A request like this would set many a system administrator to grumbling around the water cooler, but for the Bacula administrator it’s a snap. (Unfortunately, Bacula’s format for search results is so wide that we had to truncate it below.)
 

[image: Image]
 

Bacula’s list of pw_expire.pl instances reveals several recent backups and their associated job IDs. Bacula then returns us to the restore menu, where we can use option #3 (enter job IDs) to focus on a specific job.
 

[image: Image]
 

It’s not shown in this example, but Bacula sometimes displays job IDs with a comma (e.g., 4,484). You must omit the comma any time you enter an ID back into Bacula; otherwise, Bacula interprets your entry as a comma-separated list.
 

[image: Image]
 

Bacula now writes the bootstrap file that it will use to perform the restore, displays the names of the tape volumes it requires, and prompts you to select a client to which it should restore the files. For this example, we restored the file back to the original host harp.
 

[image: Image]
 

Before we run this particular job, we want to modify the default settings. Specifically, we need to change the destination of this restore to /tmp to accommodate the user’s request.
 

[image: Image]
 

After making the changes, we submit the job to the director, which executes it. We could then use the messages command to view the job’s logging output.
 

Backing up Windows clients
 

You can download prebuilt binaries for Windows clients from bacula.org.
 

Bacula is great for backing up Windows data files, but it takes an extra step to create a bomb-proof level 0 backup of a Windows system. Unfortunately, Bacula has no understanding of the Windows registry or system state, and it does not understand Windows’ locking of open files. At a minimum, you should configure a pre-execution script that triggers Windows’ built-in System Restore feature. System Restore will make a local backup of the system state, and your Bacula backup will then receive the current state in its archived form. To capture locked files correctly, you may also need to make use of the Windows Volume Shadow Copy Service (VSS).
 

Check the examples directory in the Bacula source tree for other Windows-related goodies, including a clever script that “pushes” Windows file daemon updates to clients through Bacula’s built-in restore system. The Windows client in the latest version of Bacula supports Windows 7 clients and 64-bit clients. It even has experimental support for Microsoft Exchange backups.
 

Monitoring Bacula configurations
 

System administration requires vigilance, and backups are the last place to be making an exception. Backups will fail, and if not fixed quickly, critical data will surely be lost.
 

Bacula jobs produce a job report that is routed according to the job’s Message resource in the director daemon’s configuration file. The report includes basic information about the volumes used, the number and size of files backed up, and any errors that may have occurred. The report usually gives you enough information to troubleshoot any minor problems. We recommend that you configure important messages to go to your email inbox, or perhaps even to your pager.
 

You can use the console’s status command to query the various Bacula daemons for information. The output includes information about upcoming jobs, currently running jobs, and jobs that were terminated. The messages command is an easy way to review recent log entries.
 

Bacula includes a contributed Nagios plug-in, which makes it easy to integrate backups into your existing monitoring infrastructure. See page 887 for general information about Nagios.
 

Bacula tips and tricks
 

Two issues that come up frequently are client file daemons that aren’t running and storage daemons that cannot find any appendable tape volumes. In the example below, the director daemon reports that a backup job terminated with a fatal error because it could not communicate with the file daemon on host harp. This error can be seen repeatedly at the end of the summary report.
 

[image: Image]
 

The example below shows the storage daemon reporting that no tape volumes from the appropriate pool are available to perform a requested backup. You can fix the problem either by adding a new volume to the pool or by purging and recycling an existing volume. There’s no need to restart the job; Bacula should continue to execute it unless you cancel it explicitly.
 

[image: Image]
 

If you ever need to see more detailed information about what the daemons are doing, you can have them send a slew of debugging information to the console by appending the option -dnnn to the startup command. For example,
 

$ sudo ./bacula start -d100
 

The nnn represents the debug level. Typical values range between 50 and 200. The higher the number, the more information displayed. You can also enable debugging from within the console with the setdebug command.
 

Alternatives to Bacula
 

Several other free or shareware backup tools are available for download. The following packages are particularly noteworthy; all are still actively developed.
 

• Amanda: a very popular and proven system that backs up UNIX and Linux systems to a single tape drive. See amanda.org.

 

• rsync: a free tool that runs on all of our example platforms and is included by default on many Linux distributions. It can synchronize files from one computer to another and can run in conjunction with SSH to transfer data securely over the Internet. rsync is smart about only transferring differences in files, so it uses network bandwidth efficiently. See page 725 for additional discussion of rsync. Note that rsync alone usually isn’t sufficient for backups since it does not save multiple copies. Nor does it create off-line backups.

 

• star: a faster implementation of tar. star is included with Linux and is available for all types of UNIX.

 

• Mondo Rescue: a utility that backs up Linux systems to CD-R, DVD-R, tape, or hard disk. This tool is particularly useful for bare-metal recovery. Read more at mondorescue.org.

 

10.9 Commercial Backup Products
 

We would all like to think that UNIX is the only OS in the world, but unfortunately, that is not the case. When looking at commercial backup solutions, you should consider whether they can handle any other operating systems that you are responsible for backing up. Most contemporary products address cross-platform issues and let you include UNIX, Windows, and Mac OS workstations in your backup scheme. You must also consider non-UNIX storage arrays and file servers.
 

Users’ laptops and other machines that are not consistently connected to your network should also be protected from failure. When looking at commercial products, you may want to ask if each product is smart enough not to back up identical files from every laptop. How many copies of command.com do you really need? Since we find that Bacula works well for us, we don’t have much experience with commercial products. We asked some of our big-bucks buddies at commercial sites for quick impressions of the systems they use. Their comments are reproduced here.
 

ADSM/TSM
 

The ADSM product was developed by IBM and later purchased by Tivoli. It is marketed today as the Tivoli Storage Manager (TSM), although the product is once again owned by IBM. TSM is a data management tool that also handles backups. More information can be found at ibm.com/tivoli.
 

Pros:
 

• Owned by IBM; it’s here to stay

 

• Attractive pricing and leasing options

 

• Very low failure rate

 

• Uses disk cache; useful for backing up slow clients

 

• Deals with Windows clients

 

• Excellent documentation (priced separately)

 

Cons:
 

• Poorly designed GUI interface

 

• Every 2 files =1kB in the database

 

• The design is incremental forever

 

Veritas NetBackup
 

Veritas merged with Symantec in 2005. They sell backup solutions for a variety of systems. When you visit their web site (symantec.com), make sure you select the product that’s appropriate for you. NetBackup is the most enterprise-ish product, but smaller shops can probably get away with BackupExec.
 

Pros:
 

• Decent GUI interface

 

• Connects to storage area networks and NetApp filers

 

• Push install for UNIX and Windows

 

• Can write tapes in GNU tar format

 

• Centralized database, but can support a distributed backup system

 

Cons:
 

• Some bugs

 

• Pricing is confusing and annoying

 

• Client notorious for security vulnerabilities

 

EMC NetWorker
 

Storage behemoth EMC acquired Legato NetWorker back in 2003. At the time, Veritas and Legato were the two market leaders for enterprise backup.
 

Pros:
 

• Competitively priced

 

• Server software can run on each of our example platforms

 

• Supports diverse client platforms

 

• Slick, integrated bare-metal restorations

 

Cons:
 

• Significant overlap among EMC products

 

Other alternatives
 

W. Curtis Preston, author of the O’Reilly book Backup & Recovery, maintains a web page about backup-related topics (disk mirroring products, advanced filesystem products, remote system backup products, off-site data-vaulting products, etc.) at backupcentral.com.
 

10.10 Recommended Reading
 

PRESTON, W. CURTIS. Backup & Recovery: Inexpensive Backup Solutions for Open Systems. Sebastopol, CA: O’Reilly Media, 2007.
 

10.11 Exercises
 

E10.1 Investigate the backup procedure used at your site. Which machines perform the backups? What type of storage devices are used? Where are tapes stored? Suggest improvements to the current system.

 

E10.2 What steps are needed to restore files on a system that uses Bacula? How do you find the right tape?

 

[image: Image] E10.3 Given the following output from df and /etc/dumpdates, identify the steps needed to perform the three restores requested. Enumerate your assumptions. Assume that the date of the restore request is January 18.

 

df output from the machine khaya.cs.colorado.edu:

 

[image: Image]
 

/etc/dumpdates from khaya.cs.colorado.edu:
 

[image: Image]
 

a) Please restore my entire home directory (/usr/home/clements) from some time in the last few days. I seem to have lost the entire code base for my senior project.”

 

b) Umm, I accidentally did a sudo rm -rf /* on my machine khaya. Could you restore all the filesystems from the latest backups?”

 

c) “All my MP3 files that I have been collecting from BitTorrent over the last month are gone. They were stored in /tmp/mp3/. Could you please restore them for me?”

 

[image: Image] E10.4 Design a backup plan for the following scenarios. Assume that each computer has a 400GB disk and that users’ home directories are stored locally. Choose a backup device that balances cost vs. support needs and explain your reasoning. List any assumptions you make.

 

a) A research facility has 50 machines. Each machine holds a lot of important data that changes often.

 

b) A small software company has 10 machines. Source code is stored on a central server that has 4TB of disk space. The source code changes throughout the day. Individual users’ home directories do not change very often. Cost is of little concern and security is of utmost importance.

 

c) A home network has two machines. Cost is the most important consideration, and the users are not system administrators.

 

[image: Image] E10.5 Design a restore strategy for each of the three situations described in Exercise 10.4.

 

[image: Image] E10.6 Write Bacula configuration statements that implement the backup plans you came up with for Exercise 10.4.

 

[image: Image] E10.7 Outline the steps you would take to perform a dump to a remote tape drive through a secure SSH tunnel.

 
  


11. Syslog and Log Files
 

[image: Image]
 

System daemons, the kernel, and various utilities and services all emit data that is logged and eventually ends up on your finite-sized disks. Most of that data has a limited useful life and needs to be summarized, compressed, archived, and eventually thrown away. Access and audit data may need to be managed closely according to regulatory retention rules or site security policies.
 

Experienced administrators review logs sooner rather than later. Log files often contain important hints that point toward the resolution of vexing configuration problems. When a daemon refuses to start or a chronic error continues to plague a booting system, check the logs first.
 

UNIX has historically tried to use an integrated system known as syslog for one-stop log shopping, but this effort has met with mixed success at best. Although the syslogd daemon still reigns as the designated king of logging, plenty of applications, network daemons, startup scripts, and other vigilantes still write to their own ad hoc log files. This lawlessness has resulted in a complement of logs that varies significantly among flavors of UNIX and even among Linux distributions.
 

In most cases, a log event is captured as a single line of text that includes the time and date, the type and severity of the event, and any other relevant details. The various components of the message may be separated by spaces, tabs, or punctuation, depending on the specific file.
 

Since most logs are text files, they can be viewed or parsed with standard tools such as cat, grep, tail, and Perl. Most modern systems also include log management tools that rotate, compress, and monitor log files on a daily or weekly basis.
 

Log files managed by syslog usually contain events from multiple sources. For example, complaints from the kernel and from a network daemon may appear adjacent to each other. At sites that have set up a centralized logging server, events from multiple hosts may be aggregated and processed together.
 

The snippet below shows typical events from a centralized syslog server:
 

Dec 18 15:12:42 av18.cs.colorado.edu sbatchd[495]: sbatchd/main: ls_info() failed: LIM is down; try later; trying …
 

Dec 18 15:14:28 proxy-1.cs.colorado.edu pop-proxy[27283]: Connection from 128.138.198.84
 

Dec 18 15:14:30 mroe.cs.colorado.edu pingem[271]: maltese-office.cs.colorado.edu has not answered 42 times
 

Dec 18 15:15:05 schwarz.cs.colorado.edu vmunix: Multiple softerrors: Seen 100 Corrected Softerrors from SIMM J0201
 

Dec 18 15:15:16 coyote.cs.colorado.edu PAM_unix[17405]: (sshd) session closed for user trent
 

Dec 18 15:15:48 proxy-1.cs.colorado.edu pop-proxy[27285]: Connection from 12.2.209.183
 

Dec 18 15:15:50 av18.cs.colorado.edu last message repeated 100 times
 

This example contains entries from several different hosts (av18, proxy-1, mroe, schwarz, and coyote) and from several programs: sbatchd, pop-proxy, pingem, and the Pluggable Authentication Modules library.
 

See page 908 for more information on PAM.

 

The importance of having a well-defined, site-wide logging strategy has grown along with the adoption of formal IT standards such as COBIT and ISO 27002 as well as the maturing of industry regulations. Today, these external standards may require you to maintain a centralized, hardened, enterprise-wide repository for log activity, with time stamps provided through NTP and a strict retention schedule. We discuss some specific strategies later in this chapter.
 

11.1 Finding Log Files
 

UNIX is often criticized for being inconsistent, and indeed it is. Just take a look at a directory of log files and you’re sure to find some with names like maillog, some like ftp.log, and maybe even some like lpNet, lpd-errs, or console_log. In addition to having random names, log files are often scattered across directories and filesystems. By default, most of these files are found in /var/adm or /var/log.
 

Linux systems are generally a bit more sane, although each distribution has its own way of naming and dividing up the log files. For the most part, Linux packages send their logging information to files in the /var/log directory.
 

Table 11.1 compiles information about some of the more common log files on our example systems. Specifically, it lists the following:
 

• The log files to archive, summarize, or truncate

 

• The program that creates each

 

• An indication of how each filename is specified

 

• The frequency of cleanup that we consider reasonable

 

• The systems (among our examples) that use the log file

 

• A description of the file’s contents

 

Filenames in Table 11.1 are relative to /var/adm, /var/log, or /var/log/syslog unless otherwise noted.
 

Log files are generally owned by root, although conventions for the ownership and mode of log files vary. In some cases, a less privileged daemon such as httpd or mysqld may require write access and set the ownership and mode appropriately. You may need to use sudo to view sensitive log files that have tight permissions. Alternatively, for log files that don’t contain sensitive system details, it’s usually safe to change the permissions to be world-readable. We usually recommend the latter method for log files that you need to view regularly, such as Apache’s logs in /var/log/httpd.
 

Syslog maintains many of the log files in Table 11.1, but its default configuration varies widely among systems. With a consistent /etc/syslog.conf file, the log files would have more in common among operating systems.
 

Log files can grow large very quickly, especially the logs for busy services such as email, web, and DNS servers. An out-of-control log file can fill up the disk and bring the system to its knees. For this reason, we like to keep a separate partition for the noisiest and busiest log files. On Linux systems, /var or /var/log is a good choice. Other systems’ conventions vary, but plan ahead when building a new box.
 

Files not to Manage
 

Most logs are text files to which lines are written as interesting events occur. But a few of the logs listed in Table 11.1 have a rather different context.
 

wtmp (sometimes wtmpx) contains a record of users’ logins and logouts as well as entries that record when the system was rebooted or shut down. It’s a fairly generic log file in that new entries are simply added to the end of the file. However, the wtmp file is maintained in a binary format. Use the last command to decode the information.
 

lastlog contains similar information to that in wtmp, but it records only the time of last login for each user. It is a sparse, binary file that’s indexed by UID. It will stay smaller if your UIDs are assigned in some kind of numeric sequence, although this is certainly nothing to lose sleep over in the real world. lastlog doesn’t need to be rotated because its size stays constant unless new users log in.
 

See the footnote on page 308 for more info about sparse files.

 

Table 11.1 Log files on parade
 

[image: Image]
 

[image: Image]
 

utmp attempts to keep a record of each user that is currently logged in. It is sometimes wrong, usually because a shell was killed with an inappropriate signal and the parent of the shell did not clean up properly. utmp is often world-writable.
 

Vendor specifics
 

Vendors seem to have hidden log files all over the disk. Careful detective work with your daemons’ config files and your syslog configuration file will find many of them. This section details some of the more obscure nooks and crannies in which log files have been hidden.
 

[image: Image] Linux distributions win the grand prize for simplified log management. Logs are clearly named and consistently stored in /var/log. All our example distributions also include a superior tool, logrotate, for rotating, truncating, and managing them. New software packages can drop a config file into the /etc/logrotate.d directory to set up a management strategy for their logs. (logrotate is covered in detail later in this chapter; see page 356.)
 

[image: Image] By contrast, Solaris has the most disorganized collection of log files ever. With a directory called /var/log it shouldn’t be so hard. A few pointers:
 

• /var/log/*

 

• /var/cron/log

 

• /var/lp/logs/*

 

• /var/saf/_log

 

• /var/saf/zsmon/log

 

• /var/svc/log

 

• /var/adm/*

 

You can run the vendor-supplied /usr/lib/newsyslog script out of cron to rotate the main log files, /var/adm/messages and /var/log/syslog.
 

[image: Image] HP-UX log files are in /var/adm. A lot of odd little mystery files live in this directory, many of which are not logs, so be careful what you touch. nettl.LOG000 is a network control and statistics file; see man nettl for details. By default, log entries submitted through syslog go into the /var/adm/syslog directory.
 

11.2 Syslog: The System Event Logger
 

Syslog, originally written by Eric Allman, is a comprehensive logging system. It has two important functions: to liberate programmers from the tedious mechanics of writing log files, and to put administrators in control of logging. Before syslog, every program was free to make up its own logging policy. System administrators had no control over what information was kept or where it was stored.
 

Syslog is flexible. It lets you sort messages by their source and importance (“severity level”) and route them to a variety of destinations: log files, users’ terminals, or even other machines. Syslog’s ability to centralize the logging for a network is one of its most valuable features.
 

[image: Image] Syslog was long ago adopted by every major variant of UNIX and Linux with the exception of AIX. Even AIX includes the syslog daemon and library routines, but it supplies no default syslog configuration and uses its own proprietary daemon for error reporting. See page 353 later in this chapter for details. Since syslog is so commonly used by add-on software, we believe that a thorough understanding of syslog is important even for AIX administrators.
 

Syslog Architecture
 

Syslog consists of three parts:
 

• syslogd, the logging daemon (and its config file, /etc/syslog.conf)

 

• openlog et al., library routines that submit messages to syslogd

 

• logger, a user-level command that submits log entries from the shell

 

syslogd is started at boot time and runs continuously; it cannot be managed with inetd. Programs that are syslog-aware write log entries (by calling the syslog library routine) to the special file /dev/log, a UNIX domain socket. syslogd reads messages from this file, consults its configuration file, and dispatches each message to the appropriate destination.
 

A hangup signal (HUP, signal 1) causes syslogd to close its log files, reread its configuration file, and start logging again. If you modify /etc/syslog.conf, you must send a hangup signal to syslogd to make your changes take effect. A TERM signal makes syslogd exit.
 

Signals are described on page 124.

 

syslogd writes its process ID to a file in /var/run (/etc on AIX). This convention makes it easy to send signals to syslogd from a script. For example, the following command sends a hangup signal:
 

solaris$ sudo kill -HUP `/bin/cat /var/run/syslogd.pid`
 

Trying to compress or rotate a log file that syslogd has open for writing is not healthy and has unpredictable results. Refer to page 356 for information on sane log rotation with the logrotate utility.
 

The preferred method of restarting syslogd on AIX is to use refresh:
 

aix$ sudo refresh -s syslogd
 

refresh contacts the System Resource Controller, which manages subsystems such as logging. See the refresh man page for more information.
 

Configuring Syslogd
 

The /etc/syslog.conf file controls syslogd’s behavior. It is a text file with a relatively simple format. Blank lines and lines with a pound sign (#) in column one are ignored. The basic format is
 

selector <Tab> action
 

For example, the line
 

mail.info    /var/log/maillog
 

causes messages from the email system to be saved in /var/log/maillog. The selector and action fields must be separated by one or more tabs; spaces don’t work (in most versions) and become invisible errors that are very hard to track down. Cutting and pasting with your mouse is one way to introduce such errors.
 

Selectors identify the program (“facility”) that is sending a log message and the message’s severity level with the syntax
 

facility.level
 

Both facility names and severity levels must be chosen from a short list of defined values; programs can’t make up their own. Facilities are defined for the kernel, for common groups of utilities, and for locally written programs. Everything else is classified under the generic facility “user.”
 

Selectors can contain the special keywords * and none, meaning all or nothing, respectively. A selector can include multiple facilities separated by commas. Multiple selectors can be combined with semicolons.
 

In general, selectors are ORed together: a message matching any selector will be subject to the line’s action. However, a selector with a level of none excludes the listed facilities regardless of what other selectors on the same line may say.
 

Here are some examples of ways to format and combine selectors:
 

[image: Image]
 

Table 11.2 lists the valid facility names. There are currently 21 facilities.
 

Table 11.2 Syslog facility names
 

[image: Image]
 

Don’t take syslog’s distinction between auth and authpriv too seriously. All authorization-related messages are sensitive, and none should be world-readable.
 

syslogd itself produces time stamp messages, which are logged if the “mark” facility appears in syslog.conf to specify a destination for them. Time stamps can help you figure out that your machine crashed between 3:00 and 3:20 a.m., not just “sometime last night.” This information can be a big help when you are debugging problems that seem to occur regularly.
 

Table 11.3 lists syslog’s severity levels in order of descending importance.
 

Table 11.3 Syslog severity levels (descending severity)
 

[image: Image]
 

The severity level of a message specifies its importance. The distinctions between the various levels are sometimes fuzzy. There’s a clear difference between notice and warning and between warning and err, but the exact shade of meaning expressed by alert as opposed to crit is a matter of conjecture.
 

In the syslog.conf file, levels indicate the minimum importance that a message must have in order to be logged. For example, a message from the mail system at level warning would match the selector mail.warning as well as the selectors mail.info, mail.notice, mail.debug, *.warning, *.notice, *.info, and *.debug. If syslog.conf specifies that mail.info messages be logged to a file, mail.warning messages will go there also.
 

[image: Image] As a refinement of the basic syntax, the Linux version of syslog also allows the characters = and ! to be prefixed to priority levels to indicate “this priority only” and “except this priority and higher,” respectively. Table 11.4 shows examples.
 

Table 11.4 Examples of Linux priority level qualifiers in syslog.conf
 

[image: Image]
 

The action field tells syslog what to do with each message. The options are listed in Table 11.5.
 

Table 11.5 Syslog actions
 

[image: Image]
 

If a filename (or fifoname) action is used, the name should be an absolute path. If you specify a nonexistent filename on a Linux system, syslogd will create the file when a message is first directed to it. On other systems, the file must already exist; syslogd will not create it.
 

[image: Image] On Linux distributions, you can preface a filename action with a dash to indicate that the filesystem should not be synced after each log entry is written. syncing helps preserve as much logging information as possible in the event of a crash, but for busy log files it can be devastating in terms of system performance. We recommend including the dashes (and thereby inhibiting syncing) as a matter of course. Remove the dashes only temporarily when investigating a problem that is causing kernel panics.
 

If you specify a hostname in lieu of an IP address, it must of course be resolvable through a translation mechanism such as DNS or NIS.
 

[image: Image] Solaris’s syslog implementation runs the syslog.conf file through the m4 macro preprocessor. Check your manual pages and use quotes liberally so that your configuration means what you intend. For example, you must quote anything that is an m4 keyword or contains a comma. Here is a typical m4-style entry:
 

auth.notice      ifdef(‘LOGHOST’, ‘/var/log/authlog’, ‘@loghost’)
 

Note that the quotes used are the back-tick and the single apostrophe. This line directs messages to the file /var/log/authlog if LOGHOST is not defined. Otherwise, messages are forwarded to the machine loghost. m4’s ifdef statements are very powerful; they allow sysadmins to create a single syslog.conf that can be used on all machines.
 

Although multiple facilities and levels are allowed in a selector, there is no provision for multiple actions. To send a message to two places (such as to a local file and to a central logging host), you simply include two lines in the configuration file that have the same selectors.
 

[image: Image] Because syslog messages can be used to mount a form of denial of service attack, the syslogd daemon on most Linux distributions does not accept log messages from other machines unless it is started with the -r flag. And by default, syslogd also refuses to act as a third-party message forwarder; messages that arrive from one network host cannot be sent on to another. Use the -h flag to override this behavior. Edit the syslog startup scripts to make the change permanent. On RHEL, syslog configuration should be edited in /etc/sysconfig/syslog.
 

Config File Examples
 

Since it’s relatively easy to read a syslog.conf file, we do not review our example systems’ config files in detail; they’re all pretty straightforward. Instead, we look at some common ways that you might want to set up logging if you choose to depart from or expand on your system’s default.
 

Below are three sample syslog.conf files that correspond to a stand-alone machine on a small network, a client machine on a larger network, and the central logging host on that same large network. The central host is called netloghost.1
 

Stand-Alone Machine
 

A basic configuration for a stand-alone machine is shown below:
 


 

[image: Image]
 

The first noncomment line writes emergency messages to the screens of all current users. An example of emergency messages are those generated by shutdown when the system is about to be turned off.
 

The second line writes important messages to /var/log/messages. The info level is below warning, so the daemon,auth.info clause includes additional logging from passwd, su, and daemon programs. The third line writes printer error messages to /var/log/lpd-errs.
 

Network Logging Client
 

A network client forwards serious messages to a central logging machine, as shown in the example on the next page.
 

[image: Image]
 

This configuration does not keep much log information locally. It’s worth mentioning that if netloghost is down or unreachable, log messages will be irretrievably lost. You may want to keep local duplicates of important messages to guard against this possibility.
 

At a site with local software installed, lots of messages can be logged inappropriately to facility user, level emerg. In this example, user/emerg has been specifically excluded with the user.none clause in the first noncomment line.
 

The second and third lines forward all important messages to the central logging host; messages from the printing system and the campus-wide card access system (local1) are explicitly excluded. The fourth line forwards a subset of local logging information to netloghost as well. The last three entries keep local copies of printer errors, sudo messages, and kernel messages.
 

See page 113 for more information about sudo.

 

Central Logging Host
 

This example is for netloghost, the central, secure logging host for a moderatesized network of about 7,000 hosts.
 

[image: Image]
 

Messages arriving from local programs and syslogds on the network are written to log files. In some cases, the output from each facility is put into its own file.
 

The central logging host generates the time stamp for each message as it writes the message out. The time stamps do not reflect the time on the originating host. If you have machines in several time zones or your system clocks are not synchronized, the time stamps can be somewhat misleading.
 

Syslog Debugging
 

The logger command is useful for submitting log entries from shell scripts. You can also use it to test changes in syslogd’s configuration file. For example, if you have just added the line
 

local5.warning /tmp/evi.log
 

and want to verify that it is working, run
 

hp-ux$ logger -p local5.warning "test message"
 

A line containing “test message” should be written to /tmp/evi.log. If this doesn’t happen, perhaps you forgot to create the evi.log file, to give the file appropriate permissions, or to send syslogd a hangup signal. Or perhaps you’ve used spaces instead of tabs?
 

Alternatives to Syslog
 

Although syslog has long been the reigning logging system for UNIX and Linux, several alternatives have been developed in an attempt to address some of syslog’s shortcomings. One of these, syslog-ng (syslog, next generation), is now used on SUSE systems by default. From a configuration standpoint it is quite different from the standard syslog, and we do not describe it in detail in this book. It’s available from balabit.com if you would like to try it on a non-SUSE system.
 

Syslog-ng adds additional configuration facilities, filtering based on message content, message integrity, and better support for firewall restrictions when messages are forwarded over the network.
 

SDSC Secure Syslog (from the San Diego Supercomputing Center) is also known as high-performance syslog. It provides a forensically sound auditing system by implementing the specifications of RFC3195 (Reliable Delivery for syslog). It was designed with high-traffic sites in mind and contains a number of performance optimizations. You can download the source code from SourceForge:
 

sourceforge.net/projects/sdscsyslog
 

Rsyslog, another powerful, next-generation alternative, is the default shipped with several popular Linux distributions, including Fedora. Rsyslog is multithreaded and aims for high reliability and robust security. It supports logging over TCP (as opposed to UDP, used by the original syslog) and can use SSL, which may be required at some sites for regulatory reasons. Rsyslog can even log to databases. Learn more at rsyslog.com.
 

Linux Kernel and Boot-Time Logging
 

[image: Image] The kernel and the system startup scripts present some special challenges in the domain of logging. In the case of the kernel, the problem is to create a permanent record of the boot process and the operation of the kernel without building in dependencies on any particular filesystem or filesystem organization. In the case of the startup scripts, the challenge is to capture a coherent narrative of the startup procedure without permanently tying any of the system daemons to a startup log file, interfering with any program’s own logging, or gooping up the startup scripts with double entries or output redirections.
 

Kernel logging is dealt with by having the kernel store its log entries in an internal buffer of limited size. The buffer is large enough to accommodate messages about all the kernel’s boot-time activities. Once the system has come all the way up, a user process accesses the kernel’s log buffer and makes a final disposition of its contents. The dmesg command is the best way to view the kernel buffer; the output even contains messages that were generated before init started.
 

The kernel’s ongoing logging is handled by a daemon called klogd. The functions of klogd are actually a superset of those of dmesg; in addition to dumping the kernel log and exiting, it can also read messages out of the kernel buffer as they are generated and pass them along to a file or to syslog. In normal operation, klogd runs in this latter mode. Syslog processes the messages according to the instructions for the “kern” facility. They are typically sent to /var/log/messages or /var/log/syslog.
 

Our example distributions’ startup scripts do not use dmesg’s -c flag when they make their initial dump of log messages, so the kernel’s message buffer is read but not reset. When klogd starts up, it finds the same set of messages seen by dmesg in the buffer and submits them to syslog. For this reason, some entries appear in both the dmesg or boot.msg file and in the system’s primary syslog file.
 

Another issue in kernel logging is the appropriate management of the system console. As the system is booting, it’s important for all the output to come to the console. However, once the system is up and running, console messages may be more an annoyance than a help, particularly if the console is used for logins.
 

Both dmesg and klogd let you set the kernel’s console logging level with a command-line flag. For example:
 

ubuntu$ sudo dmesg -n 2
 

Level 7 is the most verbose and includes debugging information. Level 1 includes only panic messages (the lower-numbered levels are the most severe). All kernel messages continue to go to the central buffer (and to syslog) regardless of whether they are forwarded to the console.
 

The kernel provides some control files underneath the /proc/sys directory to allow floods of repeated log messages to be choked off at the source. See the section Tuning Linux kernel parameters starting on page 421 for more information about the general mechanism through which kernel parameters are set. The specific control files are /proc/sys/kernel/printk_ratelimit, which specifies the minimum number of seconds that must elapse between kernel messages once the choke has been activated (default 5), and /proc/sys/kernel/printk_ratelimit_burst, which specifies how many grouped messages to let through before activating the choke (default 10). These parameters are advisory, so they do not absolutely guarantee that a heavy flow of messages will be stanched. They also apply only to messages created in the kernel with the printk_ratelimit() function.
 

Logging for the system startup scripts is unfortunately not as well managed as kernel logging.
 

[image: Image] Red Hat Enterprise Linux uses an initlog command to capture the output of startup commands and submit it to syslog. Unfortunately, initlog must be mentioned explicitly whenever a command is run, so the information comes at the cost of some complexity. Messages eventually make their way to /var/log/boot.log.
 

Our other example systems make no coherent effort to capture a history of the startup scripts’ output. Some information is logged by individual commands and daemons, but much goes unrecorded.
 

11.3 AIX Logging Snd Error Handling
 

[image: Image] AIX manages its logs differently from other UNIX systems. Although syslog is present in the default installation, it is not configured. Instead, AIX relies on a proprietary daemon called errdemon for system error reporting. errdemon is intended to handle system diagnostic messages (such as notifications of hardware failures or full filesystems) but not to handle logging for individual daemons. Thus, the prudent system administrator will rely on the wisdom of errdemon for AIX-specific diagnostics and on a custom-configured syslog for centralized application logs.
 

errdemon starts at system boot in /etc/rc.bootc and reads error events from the special file /dev/error. Both the kernel and some AIX userland applications write errors to this file according to predefined templates in /dev/adm/ras/errtmplt. errdemon compares new entries to the templates and writes the output in a binary format to the file /var/adm/ras/errlog. AIX loves binary formats!
 

errlog is a circular file, so it overwrites the first event with the most recent when the file reaches its maximum size, 1MB by default. errdemon also buffers events that haven’t yet been written to the log. The settings can be viewed or adjusted by running /usr/lib/errdemon directly. See the man page for invocation details.
 

Because errlog is not a text file, you use another proprietary tool called errpt to read its contents. Without any arguments, errpt prints a list of all events in the log in a short form. Add the -a argument for detailed output. A sample entry from our AIX systems looks like this:
 

[image: Image]
 

This particular event indicates that the system dump will not fit in the specified destination filesystem. Most of the section labels are self-explanatory, but see man errpt for further details.
 

Although errdemon is a useful source of log data on a stand-alone AIX system, its use can interfere with a more broadly defined enterprise logging strategy. You may have to do some scripting to capture errdemon events in syslog format or to forward them for central archiving. IBM’s extensive on-line documentation also shows how to send error reports to syslog through the Object Data Manager.
 

You may need to delete entries from the error logs, and IBM provides the errclear command for this purpose. errclear deletes all messages older than the number of days specified as an argument. For example, errclear 7 deletes error messages older than one week.
 

Run errclear 0 to clear all error messages or errclear -j
identifier
0 to clear a specific message.
 

Syslog Configuration Under AIX
 

By default, AIX’s syslog.conf file consists of a long list of comments and no parsable configuration data. It’s up to the system administrator to configure syslog in a manner consistent with settings on other systems.
 

Always the renegade, AIX provides a native log rotation facility within syslogd. Logs can be rotated at regular intervals or rotated when they reach a given size. They can optionally be compressed and archived to a new location. Although we appreciate the convenience of these features, they cannot manage files that are outside syslog’s control, such as logs that are generated by non-syslog-aware applications. To implement comprehensive log management, you’ll probably need a combination of the native syslogd rotation features and one of the tools covered later in this chapter.
 

To replicate a Linux-style syslog configuration, append the following lines to /etc/syslog.conf and run refresh -s syslogd. Don’t forget to use tabs in place of spaces and to create each file in advance.
 

mail.debug    /var/log/mail
 

user.debug    /var/log/user
 

kern.debug    /var/log/kern
 

syslog.debug    /var/log/messages
 

daemon.debug    /var/log/daemon
 

auth.debug    /var/log/secure
 

local2.debug    /var/log/sudo
 

You specify log rotation in syslog.conf by appending the term rotate to the end of a configuration line. Logs can be rotated when they reach a given file size or after a given time increment. If you set up both size and time constraints, syslogd
rotates the file as soon as either criterion is met. Furthermore, files can be compressed or archived to a new location. Table 11.6 summarizes these options.
 

Table 11.6 AIX log rotation options in syslog.conf
 

[image: Image]
 

For example, here are some syslog.conf configuration lines from the previous example that have been expanded to include rotation options:
 

[image: Image]
 

11.4 Logrotate: Manage Log Files
 

Erik Troan’s excellent logrotate utility implements a variety of log management policies and is standard on all our example Linux distributions. It also runs on Solaris, HP-UX, and AIX, but you’ll have to install it. We prefer logrotate to the inferior logadm package that’s provided with Solaris.
 

A logrotate configuration file consists of a series of specifications for groups of log files to be managed. Options that appear outside the context of a log file specification (such as errors, rotate, and weekly in the following example) apply to all following specifications. They can be overridden within the specification for a particular file and can also be respecified later in the file to modify the defaults.
 

Here’s a somewhat contrived example that handles several different log files:
 

[image: Image]
 

This configuration rotates    /var/log/messages every week. It keeps five versions of the file and notifies syslogd each time the file is reset. Samba log files (of which there may be several) are also rotated weekly, but instead of being moved aside and restarted, they are copied and then truncated. The Samba daemons are sent HUP signals only after all log files have been rotated.
 

Table 11.7 lists the most useful logrotate.conf options.
 

Table 11.7 logrotate options
 

[image: Image]
 

logrotate is normally run out of cron once a day. Its standard configuration file is /etc/logrotate.conf, but multiple configuration files (or directories containing configuration files) can appear on logrotate’s command line. This feature is used to great effect by Linux distributions, which define the /etc/logrotate.d directory as a standard place for logrotate config files. logrotate-aware software packages (of which there are many) can drop in log management instructions as part of their installation procedure, greatly simplifying administration.
 

In addition to logrotate, Ubuntu provides a simpler program called savelog that manages rotation for individual files. It’s more straightforward than logrotate and doesn’t use (or need) a config file. Some packages prefer to use their own savelog configurations rather than logrotate.
 

11.5 Condensing Log Files To Useful Information
 

Syslog is great for sorting and routing log messages, but when all is said and done, its end product is still a bunch of log files. While they may contain all kinds of useful information, those files aren’t going to come and find you when something goes wrong. Another layer of software is needed to analyze the logs and make sure that important messages don’t get lost amid the chatter.
 

A variety of free tools are available to fill this niche, and most of them are remarkably similar: they scan recent log entries, match them against a database of regular expressions, and process the important messages in some attention-getting way. Tools differ primarily in their degree of flexibility and in the size of their off-the-shelf database of patterns.
 

Two of the more commonly used log postprocessors are Todd Atkins’ swatch and Craig Rowland’s logcheck. Both are available from sourceforge.net (logcheck comes with the sentrytools package: sourceforge.net/projects/sentrytools).
 

swatch is a Perl script that gets its marching orders from a configuration file. The configuration syntax is fairly flexible, and it provides access to the full pattern-matching mojo of Perl. While swatch can process an entire file in a single bound, it’s primarily intended to be left running so that it can review new messages as they arrive, a la tail -f. A disadvantage of swatch is that you must build your own configuration essentially from scratch; it doesn’t know about specific systems and the actual log messages they might generate.
 

logcheck is a more basic script written in sh. The distribution also includes a C program that logcheck uses to help it record its place within a log file. logcheck knows how far it has read in a log file, so there is perhaps less chance of a message slipping by at startup or shutdown time. In addition, logcheck can run at intervals from cron rather than running continuously.
 

logcheck comes with sample databases for several different versions of UNIX and Linux. Even if you don’t want to use the actual script, it’s worth looking over the patterns to see if there are any you might want to steal for your own use.
 

These tools have the disadvantage of working on only a single log file at a time. If your syslog configuration sorts messages into many different files, you might want to duplicate some of the messages into a central file that is frequently truncated or rotated, then use that summary file to feed a postprocessing script. That’s easier than setting up a complicated network of scripts to handle multiple files.
 

Splunk (splunk.com) unites log and status messages from many different sources into a single, searchable message database. A basic version is free.
 

SEC, the Simple Event Correlator, is a different type of log management tool. It’s a Perl script that reads lines from files, named pipes, or standard input and converts them into various classes of “input events” by matching them to regular expressions. Configuration rules then specify how input events should be transmogrified into output events such as the execution of a particular script or the emission of a message to a specified pipe or file.
 

The SEC distribution is available from kodu.neti.ee/~risto/sec and contains an extensive man page with examples. Additional examples are available at the web site. SEC isn’t as “off the shelf ” as the other tools listed above, but it’s a good base on which to build a custom log analysis tool.
 

No matter what system you use to scan log files, there are a couple of things you should be sure to check for:
 

• Most security-related messages should receive a prompt review. It’s often helpful to monitor failed login, su, and sudo attempts in order to catch potential break-ins before they happen. If someone has just forgotten his password (as is usually the case), a proactive offer of help will make a good impression and cement your reputation for clairvoyance.

 

• Messages about disks that have filled up should be flagged and acted on immediately. Full disks often bring useful work to a standstill.

 

• Events that are repeated many times deserve attention, if only in the name of hygiene.

 

11.6 Logging Policies
 

Over the years, log events have emigrated from the realm of system administration minutia and become a formidable enterprise event management challenge. Security incident handling, IT standards, and legislative edicts may all require a holistic and systematic approach to the management of log data.
 

The log data from a single system has a relatively inconsequential effect on storage, but a centralized register of events from hundreds of servers and dozens of applications is a different story entirely. Thanks in large part to the mission-critical nature of web services, application and daemon logs have become as important as those generated by the operating system.
 

Keep these questions in mind when designing your logging strategy:
 

• How many systems and applications will be included?

 

• What type of storage infrastructure is available?

 

• How long must logs be retained?

 

• What types of events are important?

 

The answers to these questions depend on business requirements and on any applicable standards or regulations. For example, one standard from the Payment Card Industry Security Standards Council requires that logs be retained on an easy-access medium (e.g., a locally mounted hard disk) for three months and archived to long-term storage for at least one year. The same standard also includes specific requirements about the types of data that must be included.
 

However you answer the questions above, be sure to gather input from your information security and compliance departments if your organization has them.
 

UNIX systems and applications have highly configurable log and audit settings. Depending on the usage volume, it may be necessary to tone down the verbosity of logs. Conversely, a sensitive or important application may require additional event-related data. For most applications, consider capturing at least the following information:
 

• Username or user ID

 

• Event success or failure

 

• Source address for network events

 

• Date and time (from an authoritative source, such as NTP)

 

• Sensitive data added, altered, or removed

 

• Event details

 

Most sites today are trending towards a centralized approach to log collection and analysis. Such centralization has multiple benefits: simplified storage requirements, simpler automated analysis and alerting, and improved security. Copying events to a central system also improves the integrity of the logs, since it is much harder for an attacker to cover his tracks.
 

A log server should have a carefully considered storage strategy. For example, logs may reside on a local RAID array for 30 days, a locally mounted SAN for an additional year, and finally be archived to tape for inclusion in the enterprise backup rotation for another three years. Storage requirements may evolve over time, and a successful implementation will adapt easily to these changing conditions.
 

See page 237 for more information about RAID.

 

Access to centralized log servers should be limited to high-level system administrators and to software and personnel involved with addressing compliance and security issues. These systems have no real role in the organization’s daily business beyond satisfying auditability requirements, so application administrators, end users, and the help desk have no business accessing them. Access to log files on the central servers should itself be logged.
 

Centralization takes work, and at smaller sites it may not represent a net benefit. We suggest twenty servers as a reasonable threshold for considering centralization. Below that size, just ensure that logs are rotated properly and are archived frequently enough to avoid filling up a disk. Include log files in a monitoring solution that will alert you if a log file stops growing.
 

11.7 Exercises
 

E11.1 What are the main reasons for keeping old log files?
 

E11.2 What is the difference between lastlog and wtmp? What is a reasonable rotation policy for each?
 

E11.3 Dissect and understand the following syslog.conf line:
 

*.notice;kern.debug;lpr.info;mail.crit;news.err    /var/log/messages
 

Does it seem sensible?
 

E11.4 Look through your log files for entries from the SSH service. What events are logged when a login attempt is successful? What if a login attempt fails? What steps would you take to increase the logging verbosity of the SSH daemon?
 

E11.5 Many IT industry standards and regulations impose logging or auditing requirements. Choose one of these standards and discuss how you might tune a syslog configuration to achieve compliance.
 

[image: Image] E11.6 Where would you find the boot log for your Linux machine? What issues affect logging at boot time? How does klogd solve these issues?
 

[image: Image] E11.7 Investigate the logging policy in use at your site, including the log file rotation policy. How much disk space is dedicated to logging? How long are log files kept? Can you foresee circumstances in which your site’s policy would not be adequate? What solution would you recommend? (Requires root access.)
 

[image: Image] E11.8 Some log messages are extremely important and should be reviewed by an administrator immediately. What system could you set up to make sure that this happens as quickly as possible?
 
  


12. Software Installation and Management
 

[image: Image]
 

The installation, configuration, and management of software is a large part of most sysadmins’ jobs. Administrators respond to installation and configuration requests from users, apply updates to fix security problems, and supervise transitions to new software releases that may offer both new features and incompatibilities. Generally speaking, administrators perform all of the following tasks:
 

• Automating mass installations of operating systems

 

• Maintaining custom OS configurations for the local environment

 

• Keeping systems and applications patched and up to date

 

• Managing add-on software packages

 

The process of configuring an off-the-shelf distribution or software package to conform to your needs (and to your local conventions for security, file placement, and network topology) is often referred to as “localization.” This chapter explores some techniques and applications that help reduce the pain of software installation and make these tasks scale more gracefully. We also discuss the installation procedure for each of our example operating systems, including some options for automated deployment that use common (platform-specific) tools.
 

12.1 Installing Linux and Opensolaris
 

Current Linux distributions all have straightforward procedures for basic installation. OpenSolaris has adopted many of the same conventions, so its installation process is similar, especially on PC hardware.
 

Installation typically involves booting from a DVD, answering a few basic questions, optionally configuring disk partitions, and then telling the installer which software packages to install. Some systems, such as Ubuntu and OpenSolaris, include a “live” option on the installation media that lets you run the operating system without actually installing it on a local disk. This used to be a big deal, but these days it’s becoming a standard feature of most distributions.
 

Installing the base operating system from local media is fairly trivial thanks to the GUI applications that shepherd you through the process. Table 12.1 lists pointers to detailed installation instructions for each of our example distributions.
 

Table 12.1 Installation documentation for Linux and OpenSolaris
 

[image: Image]
 

Netbooting PCs
 

If you have to install the operating system on more than one computer, you will quickly reach the limits of interactive installation. It’s time consuming, error prone, and boring to repeat the standard installation process on hundreds of systems. You can minimize human errors by using a localization checklist, but even this measure does not remove all potential sources of variation.
 

To alleviate some of these problems, most systems include network installation options that simplify large-scale deployments. The most common methods use DHCP and TFTP to boot the system sans physical media, then retrieve the installation files from a network server through HTTP, NFS, or FTP. Network installations are appropriate for sites with more than ten or so systems.
 

The Preboot eXecution Environment, also known as PXE, is a standard from Intel that allows systems to boot from a network interface. PXE acts like a miniature OS sitting in a ROM on your network card. It exposes its network capabilities through a standardized API for the system BIOS to use. This cooperation makes it possible for a single boot loader to netboot any PXE-enabled PC without the need to supply special drivers for each network card.
 

The external (network) portion of the PXE protocol is straightforward and is similar to the netboot procedures used on other architectures. A host broadcasts a DHCP “discover” request with the PXE flag turned on, and a DHCP server or proxy responds with a DHCP packet that includes PXE options (the name of a boot server and boot file). The client downloads its boot file by using TFTP (or, optionally, multicast TFTP) and then executes it.
 

See page 469 for more information about DHCP.

 

Setting up PXE for Linux
 

Several PXE-based netboot systems exist, but the one that works best at this time is H. Peter Anvin’s PXELINUX, which is part of his SYSLINUX suite of boot loaders for every occasion. Check it out at syslinux.zytor.com.
 

PXELINUX provides a boot file that you install in your server’s tftpboot directory and that is downloaded to the booting PC when PXE goes into action. The PC then executes the boot file and downloads its configuration from the server; the configuration specifies which kernel to use. This chain of events can occur without intervention, or you can choose to create a custom boot menu.
 

PXELINUX uses the PXE API for its downloads and is therefore hardware independent all the way through the boot process. Despite the name, PXELINUX is not limited to booting Linux. It can boot other OSes and can even boot older image types (such as those made from floppy disks) if you use the MEMDISK kernel, which is also part of the SYSLINUX package.
 

On the server side, ISC’s (the Internet Systems Consortium’s) DHCP server is your best bet for providing PXE information. See also the material at netboot.me and boot.kernel.org.
 

Netbooting Non-PCs
 

PXE is an Intel product and is limited to IA-32 and IA-64 hardware. Other architectures have their own methods of booting over the net, and these are almost always more elegant than PXE. An interesting twist to the netboot story is that now that Linux has spread beyond the Intel architecture, many of these “dedicated” UNIX systems now have the option of netbooting Linux instead of their native operating systems.
 

SPARC machines and most PowerPC boxes use Open Firmware, which is easy to netboot (type boot net).
 

IBM and HP systems also have netbooting capabilities, but the procedures are heavily dependent on the Network Installation Manager and Ignite-UX software packages, respectively. We cover these tools below, but only in the context of mass system installations. Refer to the documentation from IBM and HP for netboot specifics.
 

Using Kickstart: The Automated Installer for Red Hat Enterprise Linux
 

[image: Image] Kickstart is Red Hat’s tool for performing automated installations. It is really just a scripting interface to the standard Red Hat installer, Anaconda, and it is dependent on both the base distribution and RPM packages. Kickstart is flexible and quite smart about autodetecting the system’s hardware.
 

Setting Up a Kickstart Configuration File
 

Kickstart’s behavior is controlled by a single configuration file, generally called ks.cfg. The format of this file is straightforward. If you’re visually inclined, Red Hat provides a handy GUI tool called system-config-kickstart that lets you point and click your way to ks.cfg nirvana.
 

The ks.cfg file is also quite easy to generate programmatically. For example, suppose that you wanted to install a different set of packages on servers and clients and that you also have two offices that require slightly different customizations. You could write a small Perl script that used a master set of parameters to generate a config file for the servers and clients in each office. Changing the complement of packages would become just a matter of changing this one Perl script rather than changing every config file. There may even be some cases in which you need to generate an individualized config file for each host. In this situation, you would certainly want the files to be automatically generated.
 

A Kickstart config file consists of three ordered parts. The first part is the command section, which specifies options such as the language, keyboard, and time zone. This section also specifies the source of the distribution with the url option (in the following example, it’s a host called installserver).
 

Here’s an example of a complete command section:
 

[image: Image]
 

Kickstart uses graphical mode by default, which defeats the goal of unattended installation. The text keyword at the top of the example fixes this.
 

The rootpw option sets the new machine’s root password. The default is to specify the password in cleartext, which presents a serious security problem. You should always use the --iscrypted flag to specify a pre-encrypted password. Password entries from an /etc/shadow file work fine for the encrypted password, or you can try the /sbin/grub-md5-crypt tool on an already built system.
 

The clearpart and part directives specify a list of disk partitions with sizes. You can use the --grow option to ask one of the partitions to expand to fill any remaining space on the disk. This feature makes it easy to accommodate systems that have different sizes of hard disk. Advanced partitioning options, such as the use of LVM, are supported by Kickstart but not by the system-config-kickstart tool. Refer to Red Hat’s on-line documentation for full disk layout options.
 

The second section is a list of packages to install, beginning with a %packages directive. The list can contain individual packages, collections such as @ GNOME, or the notation @ Everything to include the whole shebang. When selecting individual packages, specify only the package name, not the version or the .rpm ex-tension. Here’s an example:
 

[image: Image]
 

In the third section of the Kickstart configuration file, you can specify arbitrary shell commands for Kickstart to execute. There are two possible sets of commands: one introduced with %pre that runs before installation, and one introduced with %post that runs afterward. Both sections have some restrictions on the ability of the system to resolve hostnames, so it’s safest to use IP addresses if you want to access the network. In addition, the postinstall commands are run in a chrooted environment, so they cannot access the installation media.
 

Building a Kickstart Server
 

Kickstart expects its installation files to be laid out as they are on the distribution CD, with packages stored in a directory called RedHat/RPMS on the server. You can easily add your own packages to this directory. There are, however, a couple of issues to be aware of.
 

First, if you tell Kickstart to install all packages (with an @ Everything in the packages section of your ks.cfg), it installs the add-on packages in alphabetical order after the base packages have been laid down. If your package depends on other packages that are not in the base set, you may want to call your package something like zzmypackage.rpm to make sure that it gets installed last.
 

If you don’t want to install all packages, either list your supplemental packages individually in the %packages section of the ks.cfg file or add your packages to one or more of the collection lists. Collection lists are specified by entries such as @ GNOME and stand for a predefined set of packages whose members are enumerated in the file RedHat/base/comps on the server. Unfortunately, the comps file format is not well documented. The collections are the lines that begin with 0 or 1; the number specifies whether the collection is selected by default. In general, it’s not a good idea to tamper with the standard collections. We suggest that you leave them as Red Hat defined them and explicitly name all your supplemental packages in the ks.cfg file.
 

Pointing Kickstart at Your Config File
 

Once you’ve created a config file, you have a couple of ways to get Kickstart to use it. The officially sanctioned method is to boot with a DVD and ask for a Kickstart installation by specifying linux ks at the initial boot: prompt. If you don’t specify additional arguments, the system determines its network address by using DHCP. It then obtains the DHCP boot server and boot file options, attempts to mount the boot server with NFS, and uses the value of the boot file option as its Kickstart configuration file. If no boot file has been specified, the system looks for a file called /kickstart/host_ip_address-kickstart.
 

Alternatively, you can tell Kickstart to get its configuration file in some other way by providing a path as an argument to the ks option. There are several possibilities. The instruction
 

boot: linux ks=http:server:/path
 

tells Kickstart to use HTTP to download the file instead of NFS. Using ks=floppy tells Kickstart to look for ks.cfg on a local floppy drive.
 

To eliminate the use of boot media entirely, you’ll need to graduate to PXE. See page 363 for more information about that.
 

Using Autoyast: Suse’s Automated Installation Tool
 

[image: Image] YaST2 is SUSE’s all-in-one installation and configuration tool. It comes with a nice GUI and is fun to use when installing a single system. AutoYaST, its automated equivalent, is the most powerful automated installation software of all the distributions described in this book. You can download detailed documentation from suse.com/~ug/autoyast_doc.
 

SUSE splits the autoinstallation process into three phases: preparation, installation, and configuration. Initial preparation is performed with the YaST2 Auto-YaST module:
 

suse$ /sbin/yast2 autoyast
 

This module helps you define the details of your desired setup. The result of running it is an XML control file that tells the installer how to configure a SUSE system. The structure of the file is described in the on-line documentation mentioned above.
 

A couple of shortcuts can speed the configuration process. The AutoYaST module can read Kickstart configuration files to help you upgrade from “legacy” systems. If you want to duplicate the configuration of the machine you are currently working on, an option automates this as well.
 

To perform an actual installation, you need three network services:
 

• A DHCP server on the same subnet as the machine you want to set up

 

• A SUSE installation server or package repository

 

• A server that provides the configuration information for the installation

 

The last of these servers can supply the configuration files through your choice of HTTP, NFS, or TFTP.
 

In the most basic setup, you produce a control file for each machine you want to install. AutoYaST uses the IP address of the client to determine which control file to use. This approach is not especially efficient if you have to install a series of slightly different machines.
 

You can create more complex setups by using a rules system. Different control files are matched to the target system based on system properties such as disk size, host ID, or PCMCIA availability. The contents of all selected control files are merged, with the last control file overriding earlier ones in the case of conflicts. (A control file does not have to specify all aspects of a system’s configuration, so this merging does make sense.)
 

Control files can also define “classes” of machines based on hostnames or IP address ranges, and each class may have yet another subsidiary control file associated with it. Machines can belong to zero, one, or multiple classes, and their configurations will incorporate the contents of all the appropriate class control files.
 

Thanks to its ability to integrate the contents of multiple control files, the Auto-YaST structure allows complex setups to be defined with minimal redundancy. The XML control files are somewhat cumbersome for humans to read, but the files are simple to process and edit with any of the commonly available XML processing tools.
 

Automating Installation With the Ubuntu Installer
 

[image: Image] Ubuntu relies on the underlying Debian installer (named, appropriately enough, debian-installer) for “preseeding,” the recommended method for automated installation. As in Kickstart, a preconfiguration file answers questions asked by the installer. Preseeded installations cannot use existing partitions; they must either use existing free space or repartition the entire disk.
 

All the interactive parts of the Debian installer use the debconf utility to decide which questions to ask and what default answers to use. By providing debconf
with a database of preformulated answers, you fully automate the installer. You can either generate the database by hand (it’s a text file), or you can perform an interactive installation on an example system and then dump out your debconf answers with the following commands:
 

[image: Image]
 

Make the config file available on the net and then pass it to the kernel at installation time with the following kernel argument:
 

preseed/url=http://host/path/to/preseed
 

The syntax of the preseed file, usually called preseed.cfg, is simple and reminiscent of Red Hat’s ks.cfg. The sample below has been shortened for simplicity.
 

[image: Image]
 

Several options in this list simply disable dialogs that would normally require user interaction. For example, the ask_detect disables keymap selection. Similarly, the wireless_wep option forestalls a question about WEP keys.
 

This configuration tries to identify a network interface that’s actually connected to a network (choose_interface select auto) and obtains network information through DHCP. The system hostname and domain values are presumed to be provided by DHCP and are not overridden.
 

The partman* lines are evidence that the partman-auto package is being used for disk partitioning. You must specify a disk to install to unless the system has only one. In this case, /dev/sda is used.
 

Several partitioning “recipes” are provided:
 

• atomic puts all the system’s files in one partition.

 

• home creates a separate partition for /home.

 

• multi creates separate partitions for /home, /usr, /var, and /tmp.

 

You can create users through the passwd series of directives. As with Kickstart configuration, we strongly recommend providing MD5 hashed password values. Preseed files are often stored on HTTP servers and are apt to be discovered by curious users. (Of course, an MD5 password is still subject to brute force attack.)
 

The task selection (tasksel) option chooses the type of Ubuntu system to install. Available values include standard, ubuntu-desktop, dns-server, lamp-server, kubuntu-desktop, edubuntu-desktop, and xubuntu-desktop.
 

The sample preseed file shown above comes from the Ubuntu installation documentation found at help.ubuntu.com. The guide contains full documentation for the syntax and usage of the preseed file.
 

Although Ubuntu does not descend from the Red Hat lineage, it has grafted compatibility with Kickstart control files onto its own underlying installer. Ubuntu also includes the system-config-kickstart tool for creating these files. The Kick-start functionality in Ubuntu’s installer is missing a number of important features that are supported by Red Hat’s Anaconda, such as LVM and firewall configuration. We recommend sticking with the Debian installer unless you have a good reason to choose Kickstart.
 

12.2 Installing Solaris
 

Like most hardware vendors, Sun ships new servers with Solaris preinstalled. Administrators need only answer a few quick questions and reboot the server before the operating system is ready for localization. We’ve appreciated this preinstallation feature over the years because the Solaris installer was abysmal. The OpenSolaris team has seen the light, however, and the new installer (originally code named “Caiman”) is the bee’s knees.
 

The Solaris media is now a live CD that provides a “try before you buy” experience, similar to Ubuntu. The installation process is extremely straightforward and asks only a few questions before installing to the local drive.
 

As in the Linux world, Solaris administrators need a way to implement mass deployments over the network. Solaris systems running Intel processors can use PXE servers for network boot assistance, like their Linux-wielding siblings. Systems with SPARC processors use the OpenBoot PROM, aka OBP. The OBP is usually accessed with the STOP+A key combination on Sun keyboards. It identifies and tests hardware, detects error conditions, and hands over the boot process to a more sophisticated boot loader, much like the BIOS on Intel systems. OBP has more features than most PC BIOSes, however, including built-in support for booting over a network.
 

The network boot feature obtains an IP address through DHCP or RARP, then downloads a kernel via TFTP. When booted for automated installation, the kernel connects to an HTTP server or mounts an NFS share to download an appropriate system image and start the installation.
 

Solaris offers two automatic network installation methods:
 

• JumpStart, the traditional installer service developed by Sun

 

• Automated Installer, a replacement service used by OpenSolaris

 

JumpStart is a veteran installation tool that first appeared in Solaris 2.6 and can be used in all releases through Solaris 10. Like most automatic installation methods, JumpStart uses a predefined answers file and rule-based client selection to make installation choices automatically.
 

The biggest drawback to JumpStart is its poor scalability. Each client must be manually added to the install server by MAC address. Configuration files specify installation types, configuration values, and other parameters on a per-client basis. This gives the administrator power and flexibility, but it becomes cumbersome when you have hundreds or thousands of systems.
 

The Automated Installer (sometimes referred to as AI) is the new kid on the block. Its primary development goals were improved scalability and reduced configuration. AI has its roots in JumpStart but distances itself in part through the use of new terminology. At the time of this writing, AI remains a work in progress, but it’s more or less ready for production use. Notably, AI is limited to recent releases of OpenSolaris and currently does not work at all with traditional Solaris.
 

Network installations with JumpStart
 

JumpStart’s original purpose was just to allow Solaris to be installed over a network, but it does have some facilities for automatic installation as well. Over the years, Sun realized that more granular control was needed over the automated installations, so they added the advanced features that are now dubbed Custom JumpStart. An automated Custom JumpStart network installation involves several components:
 

• An install server that hosts the installation media. A single install server can host media for more than one installation type; for example, different versions of Solaris or support for multiple platforms.

 

• A boot server that helps clients boot and points them toward the install servers. A boot server is only needed when the client system and the install server are on different subnets.

 

• A series of files that identify clients, answer configuration questions, and select packages.

 

• An NFS or HTTP server that shares packages, installation files, and configuration information.

 

Server-side components can all be located on the same machine. The servers are release- and platform independent. For example, a SPARC-based Solaris 9 boot and install server can offer installation services for x86 Solaris 10 clients.
 

Since netboot parameters can be included in DHCP responses, you can use a DHCP server as an alternative to a dedicated JumpStart boot server. DHCP is probably the better option for x86 systems that use PXE booting and for client systems on a different subnet from the install server. We discuss only the same-subnet case here; refer to docs.sun.com/doc/817-5504 for more details.
 

Setting up an install server is straightforward. The setup tools are on the Solaris CD or DVD media. Insert the Solaris medium into the drive on the install server and run commands such as the following to configure a simple install server:
 

solaris$ sudo mkdir -p /jumpstart/s10sparc
 

solaris$ cd /cdrom/cdrom0/s0/Solaris_10/Tools
 

solaris$ sudo ./setup_install_server /jumpstart/s10sparc
 

Here, we transfer the SPARC installation files to the /jumpstart/s10sparc direc-tory on the install server. The setup_install_server script copies the files and adds the appropriate hooks for network-based installations. If only CD media are available, use the add_to_install_server command to replicate the contents of multiple CDs to the server.
 

Several files configure the automated installation tasks:
 

• A rules file identifies clients and assigns installation profiles.

 

• Individual profile files specify disk partition layout, packages to install, and other system details.

 

• A sysidcfg file provides preconfigured answers to installation questions.

 

• Optionally, shell scripts can run before and after the installation process.

 

When a client requests a network installation, JumpStart uses the rules file to identify it according to attributes such as the client’s hostname, subnet, or model. If the attributes match, JumpStart reads installation details from the appropriate profile, answers installation questions with sysidcfg, and executes any custom scripts before and after installation.
 

The first step in creating a JumpStart configuration is to create a directory to hold all the various configuration files:
 

olaris$ sudo mkdir -m 755 /jumpstart/config
 

This directory must be shared through NFS or HTTP so that clients can access it. For example, to share by NFS, add the line
 

share -F nfs /jumpstart
 

to /etc/dfs/dfstab and run shareall to initiate NFS service.
 

The syntax of the rules file is simple but powerful. Systems can be identified by network, hostname, model, domain name, or by many other attributes.1 The following rules file specifies one profile for systems on the 192.168.10.0 network and another profile for SPARC systems that have 2–4 GiB of memory:
 

[image: Image]
 

In the network example, there are no custom scripts, and the installation profile called profile_a is used. The other example uses scripts called begin and end and a profile file named profile_b.
 

Profile files are also simple. Keywords (of which there are many) specify filesystems and installation types. A sample profile might look something like this:
 

[image: Image]
 

An initial_install starts with a clean slate, as opposed to performing an upgrade. This profile uses a default disk partitioning scheme. The cluster SUNWCpall line identifies an “installation group” of packages to install—in this case, all available Solaris packages.
 

The sysidcfg file, which preconfigures other aspects of the installation, consists of lines of the form
 

keyword=value
 

Keywords are case insensitive and, except for the network_interface keyword, can only be used once. If a keyword appears more than once, only the first instance takes effect.
 

Some keywords depend on others and are enclosed in curly braces. These dependent keywords cannot be used unless the corresponding parent (independent) keyword has also been specified. Table 12.2 on the next page lists the independent keywords. See the man page for sysidcfg for information about dependent keywords.
 

As an alternative to sysidcfg, a limited set of preconfiguration options can also be specified through DHCP or a network service such as DNS. However, we recommend the use of sysidcfg because of the limited number of options available through the alternative pathways.
 

The following sysidcfg example configures a system called sake that has one network interface.
 

Table 12.2 Independent keywords for the JumpStart sysidcfg file
 

[image: Image]
 

[image: Image]
 

If you’re distributing the same sysidcfg file to many clients, the IP address will of course need to differ between systems. You can leave out the network interface details to force them to be configured the first time the system boots. Or, to obtain a network address from DHCP rather than assigning it statically, use the line
 

network_interface=e1000g0 {dhcp}
 

After you’ve set up the rules file, the sysidcfg file, and your profiles, copy them all to the /jumpstart/config directory and run Sun’s check tool, which validates the configuration. The check script should be run from the config directory, and its use is mandatory; it creates a rules.ok file that certifies to JumpStart that the files are syntactically acceptable. Do not skip this step or JumpStart will not work.
 

[image: Image]
 

At the end of the configuration process, your /jumpstart/config directory should look something like this:
 

[image: Image]
 

You must add each client to be set up through JumpStart to the install server; this is a two-step process. First, add the MAC address of the client to the server’s /etc/ethers file. Second, run the add_install_client tool to add the client to the configuration database, as shown here:
 

[image: Image]
 

In this case, the client called sake will use the JumpStart NFS share on the host server for installation. You start the actual network installation on the client from the OBP prompt:
 

ok boot net - install
 

This complicated process allows for highly customized and flexible installations at the expense of a few brain cells.
 

Network Installations with the Automated Installer
 

[image: Image] The OpenSolaris developers assessed the complexity of JumpStart and decided to create a new deployment tool for OpenSolaris. This tool, the Automated Installer, mirrors the style of JumpStart in several ways but abstracts away some of the complexity through a convenient tool called installadm. In its simplest form, server installation can now be achieved with a single command. All the files you need to get started with AI are contained in the SUNWinstalladm-tools package.
 

An AI server offers one or more “installation services,” each of which represents an OS installation option and is discovered by clients at boot time through multicast DNS. Different services might serve different installation needs; for example, one service for site-specific web servers and another for database servers.
 

Once a client locates an installer, it searches for a configuration, or manifest, that matches its system description. The client performs an installation with data from the manifest files. No client configuration is required, although custom client installations are available if you need them.
 

An AI server installation bundles all the necessary parts together in a convenient package, including DHCP and TFTP services. Be sure to check with your network administrator before adding these to the network.
 

Behind the scenes, AI creates three XML-formatted manifest files.
 

• The AI manifest file contains disk partitioning and packaging details, roughly equivalent to a JumpStart profile file.

 

• The SC manifest file contains system configuration details, such as time zone and account information, much like JumpStart’s sysidcfg file.

 

• The criteria manifest file matches the other two manifest files to client devices, just like the rules file in JumpStart.

 

If you find XML intellectually stimulating, you can edit the manifests by hand to create custom configurations. Normally, you just run installadm to add, remove, enable, disable, and list new installation services and to create custom client configurations.
 

For example, the following installadm command creates a new installation service that you can use to install a client. In this example, the OpenSolaris 0906 release ISO image is used as an installation source. The -c 10 option makes the DHCP server offer up to 10 dynamic addresses starting at 192.168.1.200. The installation image is copied to /export/install.
 

[image: Image]
 

To install the client, perform a network boot as usual. The server uses the predefined rules to pick an installation image, download it to the client, and start the installation.
 

Automated Installer is changing rapidly. After installing the package, refer to /usr/share/doc/auto_install/index.html for current details.
 

12.3 Installing HP-UX
 

[image: Image] As a server-oriented operating system aimed almost exclusively at large applications that require a lot of heavy lifting, HP-UX does not attempt to provide a flashy, next-generation installation process. Its text-based installation software is utilitarian and guides you through the basic configuration options: disk partitioning, network settings, software to install, etc.
 

For sites that need network-based and automated installations, HP’s Ignite-UX option is available. Ignite-UX can install multiple HP-UX systems simultaneously over the network. PA-RISC clients boot by using BOOTP, and Itanium systems use DHCP. You can configure multiple software repositories. For example, installation packages might be provided from one location, patches from another, and application packages from a third. As an added bonus, Ignite-UX also includes a recovery service that restores a machine’s configuration from a recent image.
 

The following steps are needed to set up Ignite-UX:
 

• Install the Ignite-UX software and HP-UX packages on the server.

 

• Configure Ignite-UX to offer the appropriate installation options.

 

• Enable Ignite-UX service dependencies, such as NFS and BOOTP.

 

• Add client MAC and IP addresses to the server.

 

After you’ve configured the server, you can add a boot option on the client systems (through HP’s EFI Boot Manager) to make them install HP-UX from an Ignite-UX server. Alternatively, for systems already running HP-UX, you can use the bootsys command to push the installation from the server to the client.
 

On our example system, Ignite-UX came preinstalled, but if your system doesn’t have it, try the command swinstall -s /dvdrom Ignite-UX. Here, /dvdrom is the mount point for a DVD that contains the operating system media, or “operating environment” in HP’s terminology. The installation results in a number of installed packages, some of which are listed below.
 

[image: Image]
 

Ignite-UX scatters its configuration files and binaries haphazardly across the file-system. Table 12.3 on the next page lists the most important components.
 

Table 12.3 Important binaries, directories, and configuration files used by Ignite-UX
 

[image: Image]
 

The make_depots command extracts installation packages and sets them up as an operating environment depot for installation to clients. After you create a depot, run make_config to read the depot’s contents and create a configuration file that describes them. The configuration becomes known to Ignite-UX by way of the manage_index command, which adds configurations to an INDEX file. A sample series of commands for version 11i v3 is shown below.
 

[image: Image]
 

Before the server can be used by clients, you must enable BOOTP and share the clients directory. Individual clients must also be added to the instl_boottab or bootptab file, depending upon whether they are PA-RISC or Itanium machines.
 

To share the config directory via NFS, just run /opt/ignite/lbin/setup_server. Behind the scenes, this command just creates an NFS share in /etc/dfs/sharetab.
 

You can turn on BOOTP by uncommenting the bootps line in /etc/inetd.conf. Then ask inetd to reread its configuration by running /usr/sbin/inetd -c.
 

Before Ignite-UX will offer installation services to a client, it must normally recognize the client by MAC address. However, to lighten your administrative burden, we recommend that you use HP’s concept of “anonymous clients,” which are not associated with particular MAC addresses.
 

PA-RISC and Itanium systems rely on different boot mechanisms, and the two services are configured slightly differently. To configure Ignite-UX boot services
 

for PA-RISC systems, edit the file /etc/opt/ignite/instl_boottab. Lines in this file are of the form:
 

IP_address:MAC_address:datetime_last_used [ :reserve ]
 

The IP_address field assigns an IP address for the new client to use while accessing installation services. The optional MAC_address field identifies a specific client machine; if you leave it out, any client can use this IP address (but note the interaction with the reserve keyword). The third field is used and maintained by Ignite-UX; leave it blank when adding new entries.
 

If the keyword reserve is present in the last column, the IP address is reserved for the use of the client whose MAC address appears in field two. If reserve is not specified, field two simply shows the last MAC address that used that IP address.
 

The /etc/bootptab and /etc/dhcptab files, used to boot Itanium systems, have a very different format. The files are well commented and littered liberally with examples, which we won’t repeat here. (Note that a single daemon, bootpd, serves both BOOTP and DHCP requests on HP-UX systems.) DHCP is the preferred boot method for Itanium systems since it can provide anonymous client services. See the comments in /etc/bootptab and /etc/dhcpv6tab for full details.
 

Once you’ve configured an Ignite-UX server as discussed above, clients can boot from it over the network. On the client side, interrupt the normal boot process, enter the EFI Boot Manager, and add a network device. The client will request an IP address, and the Ignite-UX server will respond and begin the installation.
 

This method works best for systems that share a subnet with the Ignite-UX server. For configurations in which the client is not on the server’s subnet, HP lists a number of options in the Ignite-UX Administration Guide.
 

Automating Ignite-UX installations
 

Ignite-UX network boot configuration is a prerequisite for automated installation, but configuring Ignite-UX without specifying automatic boot details results in an interactive installation. Ignite-UX can also
 

• Use the saved configuration from a previous installation to automate future installations.

 

• Rely on configuration files that can be set up per client, per release, or at the whim of the administrator.

 

• Specify default values for some configuration options, such as DNS servers, and leave others to be selected during interactive installation.

 

The automated installation files are located in /opt/ignite/data, and several examples and sample configurations are included in the Ignite-UX installation package. The release and example subdirectories are a good place to get started.
 

12.4 Installing AIX With the Network Installation Manager
 

[image: Image] Network Installation Manager, or NIM, is AIX’s answer to Kickstart, JumpStart, and Ignite-UX. Versions of NIM since AIX 5.3 can also install Linux systems. A NIM “master” server installs clients from one or more installation images, where a client can be a stand-alone machine, a diskless or dataless workstation, or a workload partition.2 Installations rely on TFTP, NFS, and DHCP or BOOTP, much as on other systems.3 NIM is included on the standard AIX installation media.
 

All NIM environments have at least one “resource server” that offers some set of software to be used by clients. The resource server may or may not be the same system as the master. Environments that have complex network topologies or geographically separated locations should use localized resource servers to improve installation performance.
 

There are three ways to configure NIM:
 

• By using the web-based system manager

 

• By using the smit nim or smit eznim fast paths

 

• From the command line with the nim tool

 

We find SMIT to be the fastest and most convenient interface for configuring a NIM environment. The “EZ” version covers most of the common NIM tasks such as quick setup of a master server, updating, backing up, or reinstalling existing clients, and configuring new clients. The full-featured smit nim version adds some complexity over EZ NIM but adds more configuration options, such as the ability to include custom software packages and more granular control over the installed clients.
 

If you insist on command-line operation, the nim_master_setup tool is the best place to get started. (SMIT’s EZ-NIM options for configuring a master server really just call nim_master_setup with the specified options.) This tool initializes filesystems for the NIM software resources, creates the necessary configuration files, and copies in a sample client configuration file that you can edit for your local clients.
 

The most basic usage is nim_master_setup -a device=/dev/cd0, where /dev/cd0 is the drive that contains the installation media for the target AIX release. Unlike most of the other installation systems described in this chapter, a NIM master server can install releases of AIX only at the same revision level or earlier; an AIX 5.2 server cannot install AIX 6.1 releases.
 

Table 12.4 lists some of the most useful NIM-related command-line tools.
 

Table 12.4 NIM command-line tools
 

[image: Image]
 

12.5 Managing Packages
 

UNIX and Linux variants all use some form of packaging system to facilitate the job of software management. Packages have traditionally been used to distribute software, but they can be used to wrap configuration files and administrative data as well. They have several advantages over the traditional unstructured .tar.gz archives. Perhaps most importantly, they try to make the installation process as atomic as possible. If an error occurs, the package can be backed out or reapplied.
 

Package installers are typically aware of configuration files and will not normally overwrite local customizations performed by a system administrator. They will either back up the existing config files that they change or provide example config files under a different name (e.g., pkg.conf.rpmnew). If you find that a newly installed package breaks something on your system, you can, at least in theory, back it out to restore your system to its original state. Of course, theory != practice, so don’t try this out on a production system without testing it first.
 

Packaging systems define a dependency model that allows package maintainers to ensure that the libraries and support infrastructure on which their applications depend are properly installed. Some packaging systems do a more complete job of dependency management than others.
 

Packages can also run scripts at various points during the installation, so they can do much more than just disgorge new files.
 

Packages are also a nice way to distribute your own localizations. You can create a package that, when installed, reads localization information about a machine (or gets it from central database) and uses that information to set up local configuration files. You can also bundle up your local applications as packages, complete with dependencies, or make packages for third-party applications that aren’t normally distributed in package format. You can versionize your packages and use the dependency mechanism to upgrade machines automatically when a new version of your localization package is installed.
 

You can also use the dependency mechanism to create groups of packages. For example, it’s possible to create a package that installs nothing of its own but depends on many other patches. Installing the package with dependencies turned on results in all the patches being installed in a single step.
 

12.6 Managing Linux Packages
 

Two package formats are in common use on Linux systems. Red Hat, SUSE, and several other distributions use RPM, the Red Hat Package Manager. Ubuntu uses the separate but equally popular .deb format (named after the Debian distribution on which Ubuntu was originally based). The two formats are functionally similar.
 

It’s easy to convert between the two package formats with a tool such as alien from kitenet.net/programs/alien. alien knows nothing about the software inside a package, so if the contents are not already compatible with your distribution, alien will not help. In general, it’s best to stick with the native package mechanism used by your distribution.
 

Both the RPM and .deb packaging systems now function as dual-layer soup-to-nuts configuration management tools. At the lowest level are the tools that install, uninstall, and query packages: rpm for RPM and dpkg for .deb.
 

On top of these commands are systems that know how to find packages on the Internet, analyze interpackage dependencies, and upgrade all the packages on a system. yum, the Yellowdog Updater, Modified, works with the RPM system. The Red Hat Network is specific to Red Hat Enterprise Linux and uses RPM. The Advanced Package Tool (APT) originated in the .deb universe but works well with both .deb and RPM packages.
 

On the next couple of pages, we review the low-level commands rpm and dpkg. In the section Using high-level Linux package management systems starting on page 384, we discuss the comprehensive update systems (e.g., APT and yum) that build on these low-level facilities.
 

rpm: Manage RPM Packages
 

The rpm command installs, verifies, and queries the status of packages. It formerly built them as well, but this function has now been broken out into a separate command called rpmbuild. rpm options have complex interactions and can be used together only in certain combinations. It’s most useful to think of rpm as if it were several different commands that happen to share the same name.
 

The mode you tell rpm to enter (such as -i or -q) specifies which of rpm’s multiple personalities you are hoping to access. rpm --help lists all the options broken down by mode, but it’s worth your time to read the man page in some detail if you will frequently be dealing with RPM packages.
 

The bread-and-butter options are -i (install), -U (upgrade), -e (erase), and -q (query). The -q option is a bit tricky in that it serves only to enable other options; you must supply an additional command-line flag to pose a specific question. For example, the command rpm -qa lists all the packages installed on the system.
 

Let’s look at an example. Suppose you need to install a new version of OpenSSH because of a recent security fix. Once you’ve downloaded the package, you could run rpm -U to replace the older version with the newer.
 

[image: Image]
 

D’oh! Perhaps it’s not so simple after all. Here we see that the currently installed version of OpenSSH, 2.9p2-7, is required by a number of other packages. rpm won’t let us upgrade OpenSSH because the change might affect the operation of these other packages. This type of conflict happens all the time, and it’s a major motivation for the development of systems like APT and yum. In real life we wouldn’t attempt to untangle the dependencies by hand, but let’s continue with rpm alone for the purpose of this example.
 

We could force the upgrade with the --force option, but that’s usually a bad idea. The dependency information is there to save you time and trouble, not just to get in your way. There’s nothing like a broken SSH on a remote system to ruin a sysadmin’s morning.
 

Instead, we’ll grab updated versions of the dependent packages as well. If we were smart, we could have determined that other packages depended on OpenSSH before we even attempted the upgrade:
 

[image: Image]
 

Suppose that we’ve obtained updated copies of all the packages. We could install them one at a time, but rpm is smart enough to handle them all at once. If you list multiple RPMs on the command line, rpm sorts them by dependency before installation.
 

redhat$ sudo rpm -U openssh-*
 

Cool! Looks like it succeeded, and sure enough:
 

redhat$ rpm -q openssh
 

openssh-2.9p2-12
 

Note that rpm understands which package we are talking about even though we didn’t specify the package’s full name or version.
 

dpkg: manage.deb Packages in Ubuntu
 

[image: Image] Just as RPM packages have the all-in-one rpm command, Debian packages have the dpkg command. Useful options include --install, --remove, and -l to list the packages that have been installed on the system. A dpkg --install of a package that’s already on the system removes the previous version before installing.
 

Running dpkg -l | grep
package is a convenient way to determine if a particular package is installed. For example, to search for an HTTP server, try:
 

[image: Image]
 

This search found the lighttpd software, an excellent open source, lightweight web server. The leading ii indicates that the software is installed.
 

Suppose that the Ubuntu security team recently released a fix to nvi to patch a potential security problem. After grabbing the patch, we run dpkg to install it. As you can see, it’s much chattier than rpm and tells us exactly what it’s doing:
 

[image: Image]
 

We can now use dpkg -l to verify that the installation worked. The -l flag accepts an optional prefix pattern to match, so we can just search for nvi:
 

[image: Image]
 

Our installation seems to have gone smoothly.
 

12.7 Using High-Level Linux Package Management Systems
 

Metapackage management systems such as APT, yum, and the Red Hat Network share several goals:
 

• To simplify the task of locating and downloading packages

 

• To automate the process of updating or upgrading systems

 

• To facilitate the management of interpackage dependencies

 

Clearly, there is more to these systems than just client-side commands. They all require that distribution maintainers organize their offerings in an agreed-upon way so that the software can be accessed and reasoned about by clients.
 

Since no single supplier can encompass the entire “world of Linux software,” the systems all allow for the existence of multiple software repositories. Repositories can be local to your network, so these systems make a dandy foundation for creating your own internal distribution system.
 

[image: Image] The Red Hat Network is closely tied to Red Hat Enterprise Linux. It’s a commercial service that costs money and offers more in terms of attractive GUIs and automation ability than do APT and yum. The Red Hat Network is a shiny, public version of Red Hat’s expensive and proprietary Satellite Server. The client side can reference yum and APT repositories, and this ability has allowed distributions such as CentOS to adapt the client GUI for nonproprietary use.
 

APT is better documented than the Red Hat Network, is significantly more portable, and is free. It’s also more flexible in terms of what you can do with it. APT originated in the world of Debian and dpkg, but it has been extended to encompass RPMs, and versions that work with all of our example distributions are available. It’s the closest thing we have at this point to a universal standard for software distribution.
 

yum is an RPM-specific analog of APT. It’s the default package manager for Red Hat Enterprise Linux version 5, although it runs on any RPM-based system, provided that you can point it toward appropriately formatted repositories.
 

We like APT and consider it a solid choice if you want to set up your own automated package distribution network. See the section APT: the Advanced Package Tool on page 387 for more information. However, in most cases it’s safest to stick with the package management tool that ships with your distribution of choice.
 

[image: Image] SUSE implements its own RPM-based package management tool known as ZYpp, with a command-line interface called Zypper. In addition to the usual features such as repository configuration, package installation, and status queries, Zypper shines in its implementation of dependency resolution. Zypper 1.0 was released with openSUSE 11.1. We discuss Zypper beginning on page 392.
 

Package Repositories
 

Linux distributors maintain software repositories that work hand-in-hand with their chosen package management systems. The default configuration for the package management system usually points to one or more well-known web or FTP servers that are under the distributor’s control.
 

However, it isn’t immediately obvious what such repositories should contain. Should they include only the sets of packages blessed as formal, major releases? Formal releases plus current security updates? Up-to-date versions of all the packages that existed in the formal releases? Useful third-party software not officially supported by the distributor? Source code? Binaries for multiple hardware architectures? When you run apt-get upgrade, yum upgrade, or zypper dup to bring the system up to date, what exactly should that mean?
 

In general, package management systems must answer all these questions and must make it easy for sites to select the cross-sections they want to include in their software “world.” The following concepts help structure this process.
 

• A “release” is a self-consistent snapshot of the package universe. Before the Internet era, named OS releases were more or less immutable and were associated with one specific point in time; security patches were made available separately. These days, a release is a more nebulous concept. Releases evolve over time as packages are updated. Some releases, such as Red Hat Enterprise Linux, are specifically designed to evolve slowly; by default, only security updates are incorporated. Other releases, such as beta versions, change frequently and dramatically. But in all cases, the release is the baseline, the target, the “thing I want to update my system to look like.”

 

• A “component” is a subset of the software within a release. Distributions partition themselves differently, but one common distinction is that between core software blessed by the distributor and extra software made available by the broader community. Another distinction that’s common in the Linux world is the one between the free, open source portions of a release and the parts that are tainted by some kind of restrictive licensing agreement.

 

Of particular note from an administrative standpoint are minimally active components that include only security fixes. Some releases allow you to combine a security component with an immutable baseline component to create a relatively stable version of the distribution, even though the mainline distribution may evolve much faster.

 

• An “architecture” represents a specific class of hardware. The expectation is that machines within an architecture class will be similar enough that they can all run the same binaries. Architectures are specific instances of releases, for example, “Ubuntu Karmic Koala for x86_64.” Since components are subdivisions of releases, there’s a corresponding architecture-specific instance for each of them as well.

 

• Individual packages are the elements that make up components, and therefore, indirectly, releases. Packages are usually architecture specific and are versioned independently of the main release and of other packages. The correspondence between packages and releases is implicit in the way the network repository is set up.

 

The existence of components that aren’t maintained by the distributor (e.g., Ubuntu’s “universe” and “multiverse”) raises the question of how these components relate to the core OS release. Can they really be said to be “a component” of the specific release, or are they some other kind of animal entirely? From a package management perspective, the answer is clear: extras are a true component. They are associated with a specific release, and they evolve in tandem with it. The separation of control is interesting from an administrative standpoint, but it doesn’t affect the package distribution systems, except that they may need to be manually added by the administrator.
 

RHN: The Red Hat Network
 

[image: Image] With Red Hat having gracefully departed from the consumer Linux business, the Red Hat Network has become the system management platform for Red Hat Enterprise Linux. You purchase the right to access the Red Hat Network by subscribing. At its simplest, you can use the Red Hat Network as a glorified web portal and mailing list. Used in this way, the Red Hat Network is not much different from the patch notification mailing lists that have been run by various UNIX vendors for years. But more features are available if you’re willing to pay for them. For current pricing and features, see rhn.redhat.com.
 

The Red Hat Network provides a web-based interface for downloading new packages as well as a command-line alternative. Starting with Red Hat Enterprise 5, the CLI tool is yum; before that it was the unwieldy, dependency-headache-inducing tool called up2date. yum even lets you download and install new packages without human intervention. Once you register, your machines get all the patches and bug fixes that they need without you ever having to intervene.
 

The downside of automatic registration is that Red Hat decides what updates you need. You might consider how much you really trust Red Hat (and the software maintainers whose products they package) not to screw things up. Given some of the interesting choices Red Hat has made in the past when it comes to little things like which compiler to ship, some folks might remain skeptical.
 

A reasonable compromise might be to sign up one machine in your organization for automatic updates. You can take snapshots from that machine at periodic intervals to test as possible candidates for internal releases.
 

APT: The Advanced Package Tool
 

APT is one of the most mature package management systems. It’s possible to upgrade an entire system full of software with a single apt-get command or even (as with the Red Hat Network) to have your boxes continuously keep themselves up to date without human intervention.
 

The first rule of using apt-get on Ubuntu systems (and indeed all management of Debian packages) is to ignore the existence of dselect, which acts as a front end for the Debian package system. It’s not a bad idea, but the user interface is poor and can be intimidating to the novice user. Some documentation will try to steer you toward dselect, but stay strong and stick with APT.
 

If you are using apt-get to manage a stock Ubuntu installation from a standard mirror, the easiest way to see the available packages is to visit the master list at packages.ubuntu.com. The web site includes a nice search interface. If you set up your own apt-get server (see page 390), then of course you will know what packages you have made available and you can list them in whatever way you want.
 

Distributions commonly include dummy packages that exist only to claim other packages as prerequisites. apt-get downloads and upgrades prerequisite packages as needed, so the dummy packages make it easy to install or upgrade several packages as a block. For example, installing the gnome-desktop-environment package obtains and installs all the packages necessary to run the GNOME UI.
 

Once you have set up your /etc/apt/sources.list file (described in detail below) and know the name of a package that you want, the only remaining task is to run apt-get update to refresh apt-get’s cache of package information. After that, just run apt-get install
package-name as a privileged user to install the package. The same command updates a package that has already been installed.
 

Suppose we want to install a new version of the sudo package that fixes a security bug. First, it’s always wise to do an apt-get update:
 

[image: Image]
 

Now we can actually fetch the package. Note that we are using sudo as we fetch the new sudo package—apt-get can even upgrade packages that are in use!
 

[image: Image]
 

Apt-Get Configuration
 

Configuring apt-get is straightforward; pretty much everything you need to know can be found in Ubuntu’s community documentation on package management:
 

help.ubuntu.com/community/AptGet/Howto
 

The most important apt-get configuration file is /etc/apt/sources.list, which tells apt-get where to get its packages. Each line specifies the following:
 

• A type of package, currently deb or deb-src for Debian-style packages or rpm or rpm-src for RPMs

 

• A URL that points to a file, CD-ROM, HTTP server, or FTP server from which to fetch packages

 

• A “distribution” (really, a release name) that lets you deliver multiple versions of packages. Distributors use this for major releases, but you can use it however you want for internal distribution systems.

 

• A potential list of components (categories of packages within a release)

 

Unless you want to set up your own APT repository or cache, the default configuration generally works fine. Source packages are downloaded from the entries beginning with deb-src.
 

On Ubuntu systems, you’ll almost certainly want to include the “universe” component, which gives access to the larger world of Linux open source software. The “multiverse” packages include non-open-source content, such as some VMware tools and components.
 

As long as you’re editing the sources.list file, you should retarget the individual entries to point to your closest mirror. A full list of Ubuntu mirrors can be found at launchpad.net/ubuntu/+archivemirrors. This is a dynamic (and long) list of mirrors that changes regularly, so be sure to keep an eye on it between releases.
 

Make sure that security.ubuntu.com is listed as a source so that you have access to the latest security patches.
 

An Example /etc/apt/sources.list File
 

The following example uses us.archive.ubuntu.com as a package source for the “main” components of Ubuntu (those that are fully supported by the Ubuntu team). In addition, this sources.list includes unsupported but open source “universe” packages, and non-free, unsupported packages in the “multiverse” component. There is also a repository for updates, or bug-fixed packages, in each component. Finally, the last six lines are for security updates.
 

[image: Image]
 

The
distribution and components fields help apt-get navigate the fileystem hierarchy of the Ubuntu repository, which has a standardized layout. The root distribution is the working title given to each release, such as intrepid, jaunty, or karmic. The available components are typically called main, universe, multiverse, and restricted. Only add the universe and multiverse repositories if you are comfortable having unsupported (and license restricted, in the case of multiverse) software in your environment.
 

Creation of a local repository mirror
 

If you plan to use apt-get on a large number of machines, you will probably want to cache packages locally—downloading a copy of each package for every machine is not a sensible use of external bandwidth. A mirror of the repository is easy to configure and convenient for local administration. Just make sure to keep it updated with the latest security patches.
 

The best tool for the job is the handy apt-mirror package, which is available from apt-mirror.sourceforge.net. You can also install the package from the universe component with sudo apt-get install apt-mirror.
 

Once installed, apt-mirror drops a file called mirror.list in /etc/apt. It’s a shadow version of sources.list, but it’s used only as a source for mirroring operations. By default, mirror.list conveniently contains all the repositories for the running version of Ubuntu.
 

To actually mirror the repositories in mirror.list, just run apt-mirror as root:
 

[image: Image]
 

By default, apt-mirror puts its repository copies in /var/spool/apt-mirror. Feel free to change this by uncommenting the set base_path directive in mirror.list, but be aware that you must then create mirror, skel, and var subdirectories under the new mirror root.
 

apt-mirror takes a long time to run on its first pass because it is mirroring many gigabytes of data (currently ~40 GB per Ubuntu release). Subsequent executions are faster and should be run automatically out of cron. You can run the clean.sh script from the var subdirectory of your mirror to clean out obsolete files.
 

To start using your mirror, share the base directory via HTTP using a web server of your choice. We like to use symbolic links to the web root. For instance:
 

ln -s /var/spool/apt-mirror/us.archive.ubuntu.com/ubuntu /var/www/ubuntu
 

To make clients use your local mirror, edit their sources.list files just as if you were selecting a nonlocal mirror.
 

apt-get Automation
 

You can run apt-get on a regular schedule from cron. Even if you don’t install packages automatically, you may want to run apt-get update regularly to keep your package summaries up to date.
 

apt-get dist-upgrade downloads and installs new versions of any packages that are currently installed on the local machine. dist-upgrade is similar to upgrade but has slightly more intelligent dependency handling. dist-upgrade may want to delete some packages that it views as irreconcilably incompatible with the upgraded system, so be prepared for potential surprises.
 

If you really want to play with fire, have machines perform the upgrade in an unattended fashion by using the -yes option. It answers any confirmation questions that apt-get might ask with an enthusiastic “Yes!” Be aware that some updates, such as kernel packages, may not take effect until after a system reboot.
 

It’s probably not a good idea to perform automated upgrades directly from a distribution’s mirror. However, in concert with your own APT servers, packages, and release control system, this is a perfect way to keep clients in sync. A quickie shell script like the following keeps a box up to date with its APT server:
 

[image: Image]
 

Call this script from a cron job if you want to run it nightly. You can also refer to it from a system startup script to make the machine update at boot time. See Chapter 9, Periodic Processes, for more information about cron; see Chapter 3, Booting and Shutting Down, for more information about startup scripts.
 

If you run updates out of cron on many machines, it’s a good idea to use time randomization to make sure that everyone doesn’t try to update at once. The short Perl script on page 727 can help with this task.
 

If you don’t quite trust your source of packages, consider automatically downloading all changed packages without installing them. Use apt-get’s --download-only option to request this behavior, then review the packages by hand and install the ones you want to update. Downloaded packages are put in /var/cache/apt, and over time this directory can grow to be quite large. Clean out the unused files from this directory with apt-get autoclean.
 

yum: release management for RPM
 

yum, the Yellowdog Updater, Modified, is a metapackage manager based on RPM.4 It may be a bit unfair to call yum an apt-get clone, but it’s thematically and implementationally similar, although cleaner and slower in practice. yum is the official package management system for Red Hat Enterprise Linux and comes preinstalled on many other distributions. If necessary, you can obtain the latest version from the distribution’s repository of packages.
 

As with apt-get, a server-side command (yum-arch) compiles a database of header information from a large set of packages (often an entire release). The header database is then shared along with the packages through HTTP or FTP. Clients use the yum command to fetch and install packages; yum figures out dependency constraints and does whatever additional work is needed to complete the installation of the requested packages. If a requested package depends on other packages, yum downloads and installs those packages as well.
 

The similarities between apt-get and yum extend to the command-line options they understand. For example, yum install foo downloads and installs the most recent version of the foo package (and its dependencies, if necessary). There is at least one treacherous difference, though: apt-get update refreshes apt-get’s package information cache, but yum update updates every package on the system (it’s analogous to apt-get upgrade). To add to the confusion, yum upgrade is the same as yum update but with obsolescence processing enabled.
 

yum does not match on partial package names unless you include shell globbing characters (such as * and ?) to explicitly request this behavior. For example, yum update ’perl*’ refreshes all packages whose name starts with “perl”. Remember to quote the globbing characters so the shell doesn’t interfere with them.
 

Unlike apt-get, yum defaults to validating its package information cache against the contents of the network repository every time you run it. Use the -C option to prevent the validation and yum makecache to update the local cache (it takes a while to run). Unfortunately, the -C option doesn’t do much to improve yum’s sluggish performance.
 

yum’s configuration file is /etc/yum.conf. It includes general options and pointers to package repositories. Multiple repositories can be active at once, and each repository can be associated with multiple URLs.
 

Zypper Package Management for SUSE: Now with More Zypp!
 

[image: Image] After years of fairly lax package management, SUSE systems now offer a best-of-breed option in the form of Zypper, a full-featured, next-generation package manager based on RPM. Of all the tools covered here, Zypper offers the most flexible and powerful options for installing, removing, and querying packages. It is also the only tool that includes repository management from the command line.
 

Getting to know the tool is easy for anyone that understands apt-get or yum. Table 12.5 shows the basic zypper commands, which should be eerily familiar.
 

In the example below, we’ve used zypper sh to open a Zypper shell where commands can be typed directly.
 

Table 12.5 Zypper commands
 

[image: Image]
 

[image: Image]
 

Rather than having to run zypper refresh by hand to ensure that package data is up to date, you can enable automatic refreshing with zypper -f.
 

Zypper configuration files, including software repository configuration, are found in /etc/zypp. Most administrators won’t need to touch these files, but they’re verbosely commented if the need arises.
 

12.8 Managing Packages for UNIX
 

Software installation and packaging is one area in which Linux has a clear advantage over traditional UNIX operating systems. Installing, upgrading, and searching for software on a Linux system is an almost trivial task for the end user or administrator. The search features are powerful, the user communities are large, and the active developers number in the thousands.
 

By contrast, UNIX systems leave administrators with far fewer packages to choose from and looser control over those that do exist. In this section, we examine the packaging software that’s prevalent on each of our example UNIX systems.
 

Solaris Packaging
 

[image: Image] Since SunOS 2.0, Solaris packaging was traditionally managed by SVR4 with some incremental improvements that kept the system hobbling along for twenty years or so. Unfortunately, SVR4 is deficient in many areas, including dependency management, usability, support for new technologies such as ZFS, and support for network repositories. For OpenSolaris, the developers decided to scrap the old system and start fresh.
 

OpenSolaris now uses the Image Packaging System (IPS), which is a great leap forward over SVR4. It incorporates network repositories as a key architectural theme. In addition to standard package management functionality, the system offers tools for package developers that simplify the creation and centralization of packages. IPS also offers backward compatibility with legacy SVR4 packages.
 

At the moment, IPS packages are markedly dissimilar to those in formats such as .deb or RPM. An IPS package is not a single file that you can easily copy among systems. Rather, a package is a collection of files, dependencies, and other data that must be served from a repository by IPS’s pkg.depotd daemon. IPS remains under development, and a more palatable format is promised someday.
 

You use the pkg command for most IPS operations—installation, removal, searching, status queries, etc. pkg also manages repositories, though they’re referred to as “publishers” in the pkg documentation and command syntax.5
pkg install, pkg uninstall, pkg search, and pkg info all perform the expected functions. The pkg image-update command is similar to APT’s dist-upgrade; it updates all installed packages to the latest available versions.
 

By default, the OpenSolaris release repository is the default publisher. It currently hosts around 1,700 packages.6
 

[image: Image]
 

See man -s5 pkg for further details on IPS, or man pkg for information on the pkg command.
 

HP-UX Packaging
 

[image: Image] HP’s packaging system, formally known as Software Distributor or SD, has offered HP-UX users robust package management since version 10. It’s a no-nonsense tool with a bundle of features that’s sure to make any system administrator giddy with excitement:
 

• Most tools offer graphical, curses-based, and command-line operating modes, depending on how they are invoked.

 

• Software can be managed on remote systems by way of swagentd, a daemon that starts at boot time and speaks over either UDP and TCP.7

 

• Software depots can be located on local media or in network directories.

 

• A job browser lets administrators monitor remote systems’ installation status in real time.

 

A series of executables whose names begin with sw (well, mostly) make up the SD toolkit. Table 12.6 lists the individual tools and their functions.
 

Table 12.6 Software Distributor command list
 

[image: Image]
 

Most of the SD commands support a peculiar -x flag that modifies default options specific to that tool. For example, among the options for the swinstall command are allow_incompatible, which permits installation of a package meant for a different architecture, and autoreboot, which reboots the system after installation if necessary. The full list of options for each tool is given in its man page or in the file /usr/lib/sw/sys.defaults. Even more strangely, per-user defaults can be configured in a ~/.swdefaults file.
 

The swinstall command is most often used by administrators, especially those that diligently install security patches as they are released. swinstall -i forces an interactive installation. The GUI starts if X is running; otherwise, you get the text interface.
 

Sadly, HP-UX does not have a convenient on-line software repository from which you can easily install patches. The closest thing to it is the HP-UX Software Assistant tool, which analyzes the system with reference to an HP-provided catalog of patches, downloads the appropriate patch bundles, and builds a software depot from which you can use swinstall to patch the system.
 

Let’s look at a few examples. To install security patch PHKL_40197 from an NFS-based software depot on the host hpux.booklab, we’d run the command
 

hp-ux$ sudo swinstall -s hpux.booklab:/hpux/patches PHKL_40197
 

swinstall runs configuration scripts automatically during installation. If you later need to reconfigure a package, use the swconfig command. swconfig customizes a software package for the local system (e.g., by making modifications to a file in /etc or changing the permissions on a directory). To reconfigure the sudo package, we’d run the following command:
 

hp-ux$ sudo swconfig -x reconfigure=true sudo
 

To remove this package, we’d run swremove sudo. swverify examines a package and performs an integrity check on its essential components. Use swverify to fix problems such as broken defaults files or missing directories.
 

swlist shows you the software installed on the system or available in a depot. The interactive interface is generally handier for searching, but here’s a simple command line that lists the Java-related packages on our example HP-UX system:
 

[image: Image]
 

Remote operation is a powerful feature of Software Distributor. The remote features allows sysadmins to push software to remote systems (optionally, on a predefined schedule). Most commands support remote operations, and some, such as swinstall, also support them in their GUIs. Remote operations are performed with remote procedure calls (RPC), and security is controlled with access control lists. See man 5 sd to configure remote operations.
 

Software Management in AIX
 

[image: Image] Most UNIX vendors have at least attempted to keep up with Linux in the software management space, but IBM has opted for something of a Stone Age approach in AIX. The SMIT install_software fastpath is recommended in most cases; behind the curtains, it invokes the installp command. The SMIT easy_install fastpath is another option that requires fewer keystrokes than install_software.
 

installp processes an IBM-proprietary package format called Backup File Format, or .bff, as well as an older version of the RPM format used by many Linux systems. Unfortunately, installp is missing many features that spoiled administrators have come to take for granted, such as package installation from a network depot and even effective package querying. We always use smit install_software or smit easy_install when we add packages to our AIX systems.
 

AIX’s lslpp command lists the installed software packages, which IBM refers to as “filesets.” lslpp -L all lists all software products on the system—you can also use the smit list_installed_sw fastpath to similar effect. Installed software has state and type codes that indicate the condition and origin of each package. The state can be one of applied, broken, committed, locked, obsolete, or inconsistent. The type is an installp fileset, product, component, feature, RPM, or fix.
 

12.9 Revision Control
 

Mistakes are a fact of life. Therefore, it’s important to keep track of the configuration changes you make so that when these changes cause problems, you can easily revert to a known-good configuration. In this section we discuss some common ways of managing changes at the level of individual files. Choose the tools that match your needs and the complexity of your site.
 

Backup file creation
 

This command probably looks familiar:
 

$ cp bigfile.conf bigfile.bak
 

It probably seems a bit shameful, as well—surely, real system administrators do something more sophisticated?
 

In fact, there’s much to be said in favor of this kind of impromptu backup. Backup files are simple to create, easy to diff, and they create an audit trail, at least to the extent that backup files can be ordered by modification time. They require no additional software, and there’s no possibility that someone will leave the backup system in an ambiguous state.
 

We suggest a couple of tweaks, however. It’s best to create backup files by moving the original file aside to its new name with mv and then copying it back to its original name. Use cp -p to preserve the file’s attribute settings. This procedure preserves the original file’s modification time and handles cases in which a process has an open reference to the original file.
 

Better yet, add a short scriptlet like the one below to your ~/.bash_profile or ~/.profile file. It defines a backup “command” (a bash function, really) that picks a backup filename and does the switcheroo for you.
 

[image: Image]
 

The filename encodes the date and time at which the backup occurred, and the file’s modification time records the time at which the contents were last changed prior to your new (still-to-be-made) updates. Both pieces of information are potentially useful. This script encodes the time in such a way that an alpha sort of the filenames also sorts the backup files correctly by date.
 

Systems that are regularly backed up to tape can still benefit from the use of manually created backup files. Recovery from a backup file is faster and easier than recovery from a tape, and manual backups preserve an additional layer of history.
 

Formal revision control systems
 

At the next level of complexity and robustness are formal revision control systems, which are software packages that track, archive, and provide access to multiple revisions of files. These packages originated in the world of software development, but they are quite useful for system administrators, too.
 

Revision control systems address several problems. First, they provide an organized way to trace the history of modifications to a file so that changes can be understood in context and so that earlier versions can be recovered. Second, they extend the concept of versioning beyond the level of individual files. Related groups of files can be versioned together in a manner that takes account of their interdependencies. Finally, revision control systems coordinate the activities of multiple editors so that race conditions cannot cause anyone’s changes to be permanently lost8 and so that incompatible changes from multiple editors do not become active simultaneously.
 

The last few years have witnessed a boom in open source version control systems, and the available choices have expanded by almost an order of magnitude. Major contenders among the newer systems include Arch, Mercurial, and Bazaar-NG. Git, originally developed by Linux creator Linus Torvalds, has gained quick traction in the open source community and is now used for management of the Linux kernel source code. A time-tested system called Subversion from the previous generation remains in wide use and offers an outstanding Windows GUI.
 

Several commercial revision control systems are also available. You may already have access to one of them if you work in a development shop, and you might be tempted to use it for administrative data. Tread carefully, though; our experience has been that these commercial systems are usually overkill for sysadmin use.
 

The most popular systems today are Subversion and Git. Either system works well for system administration, but Git has an edge in that it makes setting up new repositories a fast and simple operation. For other advantages of Git, see Scott Chacon’s whygitisbetterthanx.com web site.
 

Subversion
 

In the Subversion model, a central server or directory acts as a project’s authoritative repository. By default, the Subversion server is a module in the Apache web server, which is convenient for distributed software development but maybe not so good for administrative uses. Fortunately, the Subversion folks provide an alternative type of server in the form of a daemon called svnserve. You can run svnserve from your home directory while experimenting with Subversion, but in production use it should have its own user account and be run from inetd.
 

Setting up a repository is easy. For example, the following steps create a new Subversion repository called admin:
 

[image: Image]
 

If you peek inside the admin directory, you will find a well-organized repository structure, including a README file. The configuration file svnserve.conf can be found in the conf subdirectory. This file tells the server daemon how to provide access to the new repository. Here’s an example configuration appropriate for administrative files:
 

[image: Image]
 

Because one of Subversion’s design goals was to facilitate collaboration among people at different sites, it has an access control model that is separate from that of the operating system. The file passwd (in the same directory) contains a list of users and their plaintext (!) passwords. The plaintext bit is not nice, but the saving grace is that the passwords are never transmitted over the network. They are also never typed from memory by users, so you may as well assign passwords that are long enough and random enough to be secure.
 

For example:
 

[image: Image]
 

Naturally, permissions on the passwd file should be set restrictively.
 

All that remains is to start the server on the new repository:
 

# svnserve --daemon --root /home/svn/repositories
 

As an unprivileged user, you can now check out the admin archive from anywhere on the network.
 

[image: Image]
 

When you enter the password for the first time, Subversion squirrels away a copy in a .subversion directory that it creates in your home. To add or move files within your local copy of the project, use the svn command:
 

[image: Image]
 

Once you are done, commit your changes to the repository:
 

$ svn commit -m “Initial checkin; added foo.c”
 

It is not necessary to list the changed files you want to commit, although you can do so if you wish; svn will figure it out on its own. If you omit the -m option, svn starts an editor for you so that you can edit the commit message.
 

To get the latest updates from the repository, run svn update within the project. Subversion performs a merge operation on any files that have been modified in both your local copy of the project and the master repository. Files with unresolvable conflicts are marked as “conflicted,” and Subversion does not allow you to check them in until you have fixed the problems and told Subversion that the conflicts have been resolved:
 

$ svn resolved foo.c
 

If you want to know who has changed which lines in a file, you can ask Subversion to dish out the blame:
 

$ svn blame bar.c
 

This command prints an annotated version of the file that shows when and by whom each line was last modified. (Those of a more forgiving or optimistic nature can use the synonym svn praise.) It’s also easy to get diffs relative to a particular  date or version. For example, if you want to know what has changed in foo.c since July 4, 2010, the following command will tell you:
 

$ svn diff -r "{2010-07-04}" foo.c
 

You can download the latest version of Subversion from subversion.tigris.org. The standard documentation is the book Version Control with Subversion, published by O’Reilly. The full text is available on-line at svnbook.red-bean.com.
 

Subversion’s exceptionally good Windows GUI is called TortoiseSVN; we used it to manage the source files for this book. See tortoisesvn.tigris.org for details.
 

Git
 

Git’s shtick is that it has no central repository. Instead of checking out a particular version of a project’s files, you simply copy the repository (including its entire history) and carry it around with you like a hermit crab lugging its shell. Your commits to the repository are local operations, so they’re fast and you don’t have to worry about communicating with a central server.
 

Git uses an intelligent compression system to reduce the cost of storing the entire history, and in most cases this system is quite effective. In many cases, working requirements for storage space are even lower than with Subversion.
 

Git is great for developers because they can pile their source code onto a laptop and work without being connected to a network while still making use of all the benefits of revision control. When the time comes to integrate multiple developers’ work, their changes can be integrated from one copy of the repository to another in any fashion that suits the organization’s workflow. It’s always possible to unwind two copies of a repository back to their common ancestor state, no matter how many changes and iterations have occurred after the split.
 

Git’s promiscuous copying-and-branching strategy isn’t terribly relevant to the context of system administration, but its use of a local repository is a big leap forward for system administrators—or perhaps more accurately, it’s a big leap backward, but in a good way. Early revision control systems (e.g., RCS and CVS) used local repositories but were unable to handle collaboration, change merging, and independent development. Now we’ve come full circle to a point where putting files under revision control is once again a fast, simple, local operation. At the same time, all of Git’s advanced collaboration features are available for use in situations that require them.
 

Before you start using Git, set your name and email address:
 

[image: Image]
 

To track garden-variety changes to configuration files, you’ll generally want to use in-situ repositories that are never duplicated and therefore never need to be reconciled or integrated. This convention makes the Git wrangling pretty simple, but since commits will be done as root, it’s important to make sure that all potential committers set their names and email addresses as shown above. (Git uses your personal information for log entries even when you’re running it through sudo.)
 

To create a repository that covers the /etc directory, you’d run these commands:
 

[image: Image]
 

In the sequence above, git init creates the repository’s infrastructure in the /etc/.git directory. git add . puts /etc and everything beneath it on Git’s “staging” list, which is the list of files to be committed by the next git commit operation. The -m flag to git commit includes the log message on the command line. If you leave it out, git starts up an editor with which you can compose the log message.
 

Let’s now make a change and check it into the repository.
 

[image: Image]
 

Naming modified files on the git commit command line bypasses Git’s normal use of the staging area and creates a revision that includes only changes to the named files. The existing staging area remains unchanged, and Git ignores any other files that may have been modified.
 

If a change involves multiple files, you have a couple of options. If you know exactly which files were changed, you can always list them all on the command line as shown above. If you’re lazy, you can run git commit -a to make Git add all modified files to the staging area before doing the commit. This last option has a couple of pitfalls, however.
 

First, there may be modified files that have nothing to do with your changes. For example, the /etc/mtab file on Linux systems is maintained by the system, so it can change even in the absence of configuration changes. Allowing this file to participate in the commit sets you up for problems in the future because it’s not really part of your current changes. If you later have to revert your changes, it would be a mistake to revert the mtab file as well.
 

The second pitfall is that git commit -a only checks for changes to files that are currently under revision control. It does not pick up new files. To avoid these stumbling blocks, run git status and assess the situation manually. This command informs you of new files, modified files, and staged files all at once. For example, suppose that we edited /etc/mdadm/mdadm.conf as in the previous example and also installed a new system daemon, foobard, whose configuration file is /etc/foobard/foobard.conf. Git might show the following:9
 

[image: Image]
 

The foobard.conf file is not listed by name because Git doesn’t yet see beneath the foobard directory that contains it. We can see that both mtab and passwd have unexpected changes. The mtab changes are certainly spurious, but the passwd changes might or might not be. Perhaps the installation script for foobard created a dedicated system account for it, or perhaps someone else edited the passwd file and forgot to commit their changes to the repository.
 

To resolve the question, you can run git diff passwd to see the actual changes in the passwd file. Let’s assume that in this case the passwd changes are unrelated to our recent activities. Therefore, we’ll probably want to check in these changes separately from the ones we just made:
 

[image: Image]
 

We can make Git ignore the mtab file, now and forever; however, two steps are required. First, we’ll “delete” mtab from the current repository image:
 

[image: Image]
 

The --cached option prevents Git from actually deleting the mtab file, so don’t leave it out! In essence, we’re stuffing a virtual file deletion operation into Git’s staging area. Git will behave as if we had deleted the file with rm.
 

The second step to eradicating mtab from Git’s universe is to add it to Git’s list of files to ignore in the future. That’s done by creating or editing a .gitignore file.
 

$ sudo sh -c “echo mtab >> .gitignore”10
 

Finally, we’ll commit all the remaining changes:
 

[image: Image]
 

Note that the .gitignore file itself becomes part of the managed set of files. It’s fine to re-add files that are already under management, so git add . is an easy way to say “I want to make the new repository image look like the current directory.” You couldn’t just do a git commit -a in this situation because that would pick up neither foobard.conf nor .gitignore; these files are new to management by Git and must be explicitly added.
 

In an effort to fool you into thinking that it manages files’ permissions as well as their contents, Git shows you file modes when adding new files to the repository. It’s lying; Git does not track modes, owners, or modification times. If you use Git to revert changes to system files, double-check that their attributes remain OK. A corollary is that you can’t count on using Git to recover complex file hierarchies from scratch in situations where the ownerships and permissions are important.
 

Using Git for basic revision control isn’t significantly more painful than making manual backup copies. The hard part is getting your entire administrative team up to speed with the system and making sure that it’s used consistently.
 

12.10 Software Localization and Configuration
 

Adapting computers to your local environment is one of the prime battlegrounds of system administration: tell the system about all the printers available on the network, start the special licensing daemon, add the cron job that cleans the /scratch directory once a week, integrate support for that special scanner they use over in the graphics department, and on and on. Taking care of these issues in a structured and reproducible way is a central goal of architectural thinking.
 

Keep the following points in mind:
 

• Users do not have root privileges. Any need for root privileges in the course of normal operations is suspicious and probably indicates that something is fishy with your local configuration.

 

• Users do not wreck the system intentionally. Design internal security so that it guards against unintentional errors and the widespread dissemination of administrative privileges.

 

• Users that misbehave in minor ways should be interviewed before being chastised. Users frequently respond to inefficient administrative procedures by attempting to subvert them, so consider the possibility that noncompliance is an indication of architectural problems.

 

• Be customer-centered. Talk to users and ask them which tasks they find difficult. Find ways to make these tasks simpler.

 

• Your personal preferences are yours. Let your users have their own. Offer choices wherever possible.

 

• When administrative decisions affect users’ experience of the system, be aware of the reasons for your decisions. Let your reasons be known.

 

• Keep your local documentation up to date and easily accessible. See page 1200 for more information on this topic.

 

Organizing Your Localization
 

If your site has a thousand computers and each computer has its own configuration, you will spend a major portion of your working time figuring out why one box has a particular problem and another doesn’t. Clearly, the solution is to make every computer the same—right? But real-world constraints and the varying needs of your users typically make this impossible.
 

There’s a big difference in administrability between multiple configurations and countless configurations. The trick is to split your setup into manageable bits. You will find that some parts of the localization apply to all managed hosts, others apply to only a few, and still others are specific to individual boxes.
 

In addition to performing installations from scratch, you will also need to continually roll out updates. Keep in mind that individual hosts have different needs for currency, stability, and uptime.
 

A prudent system administrator should not roll out new software releases en masse. Instead, rollouts should be staged according to a gradual plan that accommodates other groups’ needs and allows time for problems to be discovered while their potential to cause damage is still limited. Never update critical servers until you have some confidence in the changes you are contemplating, and avoid Fridays unless you’re prepared for a long weekend in front of the terminal.11
 

However you design your localization system, make sure that all original data is kept in a revision control system. This precaution lets you keep track of which changes have been thoroughly tested and are ready for deployment. In addition, it lets you identify the originator of any problematic changes. The more people involved in the process, the more important this last consideration becomes.
 

It is advantageous to separate the base OS release from the localization release. Depending on the stability needs of your environment, you may use minor local releases only for bug fixing. However, we have found that adding new features in small doses yields a smoother operation than queuing up changes into “horse pill” releases that risk a major disruption of service.
 

It’s often a good idea to specify a maximum number of “releases” you are willing to have in play at any given time. Some administrators believe that there is no reason to fix software that isn’t broken. They point out that gratuitously upgrading systems costs time and money and that “cutting edge” all too often means “bleeding edge.” Those who put these principles into practice must be willing to collect an extensive catalog of active releases.
 

By contrast, the “lean and mean” crowd point to the inherent complexity of releases and the difficulty of comprehending (let alone managing) a random collection of releases dating years into the past. Their trump cards are security patches, which must typically be applied universally and on a tight schedule. Patching outdated versions of the operating system is often infeasible, so administrators are faced with the choice of skipping updates on some computers or crash-upgrading these machines to a newer internal release. Not good.
 

Neither of these perspectives is provably correct, but we tend to side with those who favor a limited number of releases. Better to perform your upgrades on your own schedule rather than one dictated by an external emergency.
 

Testing
 

It’s important to test changes before unleashing them on the world. At a minimum, this means that you need to test your own local configuration changes. However, you should really test the software that your vendor releases as well. A major UNIX vendor once released a patch that, when applied a certain way, performed an rm -rf /. Imagine installing this patch throughout your organization without testing it first.
 

Testing is an especially pertinent issue if you use a service that offers an automatic patching capability, such as most of the packaging systems discussed in this chapter. Mission-critical systems should never be directly connected to a vendor-sponsored update service. Identify a sacrificial machine to be connected to the service, and roll out the changes from this box to other machines at your site only after appropriate testing. Disable updates during your testing phase; otherwise, upstream changes can sneak their way prematurely onto your production systems in the middle of the testing process.
 

If you foresee that an update may cause user-visible problems or changes, notify users well in advance and give them a chance to communicate with you if they have concerns regarding your intended changes or timing. Make sure that users have an easy way to report bugs.
 

See page 1191 for more information about trouble tracking.

 

If your organization is geographically distributed, make sure that other offices help with testing. International participation is particularly valuable in multilingual environments. If no one in the U.S. office speaks Japanese, for example, you had better get the Tokyo office to test anything that might affect kanji support. A surprising number of system parameters vary with location. Does the U.S. office test changes to the printing infrastructure with A4 paper, or will the non-U.S. offices be in for a surprise?
 

Compiling Locally
 

In the old days of UNIX, when there were many different architectures, programs were generally distributed in the form of source archives, usually .tar.gz files that you would uncompress and then compile. Once the program was built, you would then install the software in a location such as /usr/local. Today, the use of package management systems means that fewer programs need to be installed this way. It also means that administrators make fewer decisions since packages specify where their contents are installed.
 

Even with easy package management, some people still prefer to compile their own software.12 Running your own build gives you more control over the software’s compiled-in options. It also lets you be more paranoid because you can inspect the source code you are compiling. Some people seem to think that this once-over is important, but unless you’ve got the time and skill to inspect every line of a 20,000-line software package, the added security value is minimal.
 

Since not every piece of software in the world has been packaged for every Linux distribution and UNIX flavor, it’s likely that you will run across at least a few programs that you need to compile and install yourself, especially if your computers are not 32-bit Intel systems. What’s more, if yours is a development site, you will have to consider where to put your site’s own locally developed software.
 

Historically, the most common location for local software has been /usr/local, and this convention is still widely followed today. The UNIX/Linux Filesystem Hierarchy Standard (FHS) specifies that /usr/local be present and empty after the initial OS installation, and many packages expect to install themselves there.
 

Although /usr/local is traditional, many sites find it to be an unmanageable dumping ground. The traditional way it’s laid out (basically the same as /usr, with binaries in /usr/local/bin, man pages in /usr/local/man, and so on) creates a raft of problems in some environments: it’s hard to have multiple versions of the same software installed, the directories can be large, it’s a pain to manage multiple architectures, etc.
 

Distributing Localizations
 

A localization system must handle both initial installation and incremental updates. The updates can be especially tricky. Efficiency is a major concern since you probably do not want to repeat the entire localization dance to update the permissions of a single file. Even though the process is automated, the rebuild-from-scratch model makes updates an expensive and time-consuming process.
 

A simple and scalable way to organize localizations is to maintain files in a tree structure that mimics the (skeletonized) filesystem of a production machine. A dedicated installation script can copy the tree to the destination machine and perform any additional editing that is required.
 

This type of setup has several advantages. You can maintain as many localization trees as are necessary to implement your local administrative scheme. Some of the trees will be alternatives, with each machine getting only one of the available choices. Other trees will be overlays that can be copied on top of the trees that came before them. Localization trees can overwrite files if necessary, or they can be completely disjoint. Each tree that is potentially installed independently should be represented by a separate revision control project.
 

The overlay-tree approach allows flexibility in implementation. If you use a packaging system to distribute your local customizations, the overlays can simply be rolled up into independent packages. The appropriate customization scripts can be included in the package and set to run as part of the installation process.
 

Another good implementation idea is to use rsync to bring destination machines into compliance with their overlay trees. rsync copies only files that are out of date, so it can be very efficient for distributing incremental changes. This behavior is hard to simulate with a packaging system alone. Refer to page 725 for more information about rsync.
 

12.11 Using Configuration Management Tools
 

Localization systems tend to be home-grown. Part of the reason for this is that all sites are different and each has its own bizarre quirks. However, the “not invented here” syndrome is also a significant contributor. Perhaps the lack of a dominant open source tool for performing configuration management has conditioned us to think of this problem as lying outside the domain of standardized tools.
 

Nevertheless, the tools exist and are worth your review, if only to give yourself some clarity about why you choose not to make use of them. The following sections outline a few common systems in rough order of popularity and similarity.
 

cfengine: Computer Immune System
 

One of the best-known localization tools is Mark Burgess’ cfengine. It was envisioned as a sort of “computer immune system” that bases its operation on a model of how the system should be configured. When it detects a discrepancy between the model and the reality, cfengine takes the appropriate steps to bring the system into compliance. Because of this underlying model, cfengine is useful for ongoing configuration maintenance.
 

cfengine can make backup copies of the files it modifies and can keep a detailed log of its changes. It can also be run in a no-action mode in which it describes the changes it would make without actually implementing them.
 

You use cfengine’s own special language to describe how you want your computers to be configured. You can specify rules such as, “The file xyz must exist in /etc, have permissions 644, and belong to root.” You can also write rules regarding the content of individual files. For example, you can specify that /etc/hosts must contain the line “router 192.168.0.1”. cfengine then adds this line if it is missing.
 

cfengine’s configuration language lets you turn on individual rules depending on factors such as the hostname, the OS, or the subnet. This feature makes it easy to write a single configuration file that covers the needs of all the machines in your administrative domain.
 

The following is a simple example from the UNIX world. It makes sure that /bin is a symlink to /usr/bin on Suns, does some additional link checking on legacy OSF boxes, and removes everything from /var/scratch that is older than seven days:
 

[image: Image]
 

LCFG: A Large-Scale Configuration System
 

LCFG was originally developed by Paul Anderson at Edinburgh University in 1993. In its latest incarnation it is known as LCFG(ng) and has gained a number of users outside the university. LCFG is primarily geared toward managing large Solaris or Linux installations. The LCFG web site is lcfg.org.
 

Like cfengine, LCFG defines a specialized configuration language. The configurations of all managed machines are stored on a central server in a set of master configuration files. From these, LCFG generates customized XML files that describe the configuration of each managed host. A daemon on the central server monitors the master configuration files for changes and regenerates the XML files as required.
 

The XML files are published on an internal web server from which clients can then pull their own configurations. The clients use a variety of component scripts to configure themselves according to the XML blueprints.
 

Template Tree 2: cfengine Helper
 

Template Tree 2 was created at the Swiss Federal Institute of Technology (ETH) by Tobias Oetiker. It is a component-based system driven by a central configuration. It reduces complexity by taking a two-level approach to defining a site’s configuration and can deal with the relocated root directories of diskless machines.
 

On the lower level, the system consists of a number of “feature packs.” A feature pack is a collection of files accompanied by a META file that describes how these files must be installed on the target system. A feature can be anything from a network configuration to the latest version of OpenSSH. Features can expose configurable parameters that can be set in the master configuration file.
 

The upper level of configuration is a master site configuration file in which you pull the features together and associate them to machines or groups of machines. At this level, you must specify values for the unbound configuration parameters exposed by each feature. For example, one of the parameters for a mail server feature might be the name of the mail domain.
 

Template Tree 2 combines the information from the master configuration file and the individual features’ META files to generate a cfengine configuration file for the whole site. Because each feature must contain documentation about its purpose and usage, Template Tree 2 can also generate composite documentation.
 

DMTF/CIM: The Common Information Model
 

The Distributed Management Task Force (DMTF), a coalition of “more than 3,000 active participants,” has been working since 1992 to develop its Common Information Model (CIM) in an attempt to create standards for an object-oriented, cross-platform management system.
 

In DMTF’s own words, CIM is “a management schema…provided to establish a common conceptual framework at the level of a fundamental topology both with respect to classification and association, and with respect to the basic set of classes intended to establish a common framework for a description of the managed environment.” Or whatever.
 

All major vendors from Microsoft to Sun are members of the DMTF. Unfortunately, the standards they have produced demonstrate an impressive mastery of the arts of obfuscation and buzzword husbandry. The companies involved seem eager to demonstrate their willingness to standardize no matter what. The standards center on XML and object orientation. However, we have yet to see a sensible product built on top of them.
 

If there is an upside to this quagmire, it is that the DMTF efforts at least require vendors to provide programmatically accessible configuration interfaces to their systems based on an open standard. For UNIX and Linux environments this is nothing new, but the DMTF is not a UNIX creature. It includes Cisco, Microsoft, Symantec, and many other companies with little history of providing sensible ways of scripting their systems. Giving these products a configuration API is a good thing, even if the implementations are still lacking.
 

12.12 Sharing Software Over NFS
 

Where should extra software actually be installed: on individual clients or on a central file server from which it can be shared over NFS? The standard answer is “on the clients,” but the NFS solution makes updates quicker (it’s faster and more reliable to update ten NFS servers than 1,000 clients) and saves disk space on clients (not that this matters much in the world of 1TB disks).
 

The question really boils down to manageability versus reliability. Network file-system-based access is centralized and easier to manage from day to day, and it makes bug fixes and new packages instantaneously available on all clients. However, running over the network may be a bit slower than accessing a local disk. In addition, the network server model adds dependencies on the network and the file server, not only because it adds potential points of failure but also because it requires that clients and servers agree on such things as the shared libraries that will be available and the version of those libraries that will be installed. The bottom line is that NFS software libraries are an advanced administrative technique and should only be attempted in environments that allow for a high degree of central coordination.
 

In general, networks of heterogeneous systems derive the most benefit from shared software repositories. If your site has standardized on one operating system and that operating system provides reasonable package management facilities, you’re likely to be better off sticking with the native system.
 

Package Namespaces
 

Traditional UNIX sprays the contents of new packages across multiple directories. Libraries go to /usr/lib, binaries to /usr/bin, documentation to /usr/share/docs, and so on. Linux inherits more or less the same system, although the Filesystem Hierarchy Standard helps make the locations somewhat more predictable. (See pathname.com/fhs for more information about the FHS.)
 

The advantage of this convention is that files show up in well-known places. As long your PATH environment variable points to /usr/bin and the other standard binary directories, for example, newly installed programs will be readily available.
 

The downsides are that the origins of files must be explicitly tracked (by means of package management systems) and that the scattered files are difficult to share on a network. Fortunately, sysadmins willing to put in some extra work have a reasonable way out of this dilemma: package namespaces.
 

The gist of the scheme is to install every package into its own separate root directory. For example, you might install gimp into /tools/graphics/gimp, with the binary being located at /tools/graphics/gimp/bin/gimp. You can then recreate an aggregate binary directory for your collection of tools by placing symbolic links into a directory such as /tools/bin:
 

/tools/bin/gimp -> /tools/graphics/gimp/bin/gimp
 

Users can then add the directory /tools/bin to their PATH variables to be assured of picking up all the shared tools.
 

There are various options for structuring the /tools directory. A hierarchical approach (e.g., /tools/graphics, /tools/editors, etc.) facilitates browsing and speeds performance. You may want to include the software version, hardware architecture, operating system, or responsible person’s initials in your naming conventions to allow the same collection of tools to be served to many types of clients. For example, Solaris users might include /tools/sun4/bin in their PATHs, and Ubuntu users include /tools/ubuntu/bin.
 

When you install a new version of a major tool, it’s a good idea to keep older versions around indefinitely, particularly when users may have significant time and effort invested in projects that use the tool. Ideally, new versions of tools would be backward compatible with old data files and software, but in practice, disasters are common. It’s fine to require users to go through some configuration trouble to access an older version of a package; it’s not fine to just break their existing work and make them deal with the consequences.
 

Dependency Management
 

Some packages depend on libraries or on other software packages. When you install software locally through a package-management system, you get lots of help with resolving these issues. However, when you build your own site-wide network software repository, you must address these issues explicitly.
 

If you manage libraries in the same way you manage applications, you can compile your tools to use libraries from within the shared /tools directory. This convention lets you keep multiple versions of a library active simultaneously. Because dependent applications are linked against specific versions of the library, the setup remains stable even when new versions of the library are released. The downside is that this type of setup can be quite complicated to use and maintain over time.
 

Resist the temptation to link against a global /tools/lib directory that contains generically named links to common libraries. If you change the links, you may run into unexpected and difficult-to-diagnose problems. Shared library systems are designed to address some of the potential headbutts, but it makes sense to play it safe in a complicated setup.
 

The exact steps needed to make the linker use a specific version of a shared library vary from system to system. Under Linux, you can set the LD_LIBRARY_PATH environment variable or use the linker’s -R option.
 

Wrapper Scripts
 

Unfortunately, library-level compatibility is only half the story. The fact that tools invoke one another directly raises another opportunity for conflict. For example, suppose the utility named foo makes frequent use of the utility named bar. If you update the default version of bar, you may find that foo suddenly stops working. In this case, you can conclude that foo depended on some behavior of bar that is no longer supported (or at least is no longer the default).
 

If your software repository supports multiple versions (e.g., /tools/util/bar-1.0 and /tools/util/bar-2.0), you can fix this problem by moving the original version of foo to foo.real and replacing it with a little wrapper script:
 

[image: Image]
 

Now foo will be launched with a customized PATH environment variable, and it will call the old version of bar in preference to the new one.
 

Wrappers are a powerful tool that can address not only package dependencies but also issues such as security, architecture- or OS-dependence, and usage tracking. Some sites wrap all shared binaries.
 

12.13 Recommended Reading
 

INTEL CORPORATION AND SYSTEMSOFT. Preboot Execution Environment (PXE) Specification, v2.1. 1999. pix.net/software/pxeboot/archive/pxespec.pdf
 

PXELinux Questions. syslinux.zytor.com/wiki/index.php/PXELINUX
 

RODIN, JOSIP. Debian New Maintainers’ Guide. debian.org/doc/maint-guide This document contains good information about .deb packages.
 

SILVA, GUSTAVO NORONHA. APT HOWTO. debian.org/doc/manuals/apt-howto
 

HOHNDEL, DIRK, AND FABIAN HERSCHEL. Automated Installation of Linux Systems Using YaST. usenix.org/events/lisa99/full_papers/hohndel/hohndel_html
 

STÜCKELBERG, MARC VUILLEUMIER, AND DAVID CLERC. Linux Remote-Boot mini-HOWTO: Configuring Remote-Boot Workstations with Linux, DOS, Windows 95/98 and Windows NT. 1999. tldp.org/HOWTO/Remote-Boot.html
 

The Red Hat Enterprise Linux System Administration Guide. redhat.com/docs WACHSMANN, ALF. How to Install Red Hat Linux via PXE and Kickstart. stanford.edu/~alfw/PXE-Kickstart/PXE-Kickstart.html
 

BURGESS, MARK. Cfengine: A Site Configuration Engine. USENIX Computing Systems, Vol 8, No 3. 1995. cfengine.org
 

HP Ignite-UX Administration Guide. docs.hp.com/en/5992-5309/5992-5309.pdf
 

NIM from A to Z.
www.redbooks.ibm.com/redbooks/pdfs/sg247296.pdf. This is a thorough Network Installation Manager guide.
 

Solaris Advanced Installation Guide. docs.sun.com/app/docs/doc/802-5740
 

12.14 Exercises
 

E12.1 Outline the differences between Kickstart, JumpStart, and Ignite-UX. What are some of the advantages and disadvantages of each?
 

E12.2 Install Subversion from subversion.tigris.org. Set up svnserve and create a repository. How can you make the repository usable from anywhere on the local network but still maintain reasonable security?
 

E12.3 Review the way that local software is organized at your site. Will the system scale? Is it easy to use? Discuss.
 

E12.4 What are some of the most important features of a configuration management system? What are the security implications of distributing configuration files over the network?
 

[image: Image] E12.5 Set up the network installer of your choice and install a new machine by using your server. Outline all the steps needed to perform this task. What were some of the stumbling blocks? What are some of the scalability issues you discovered with the installer you chose?
 
  


13. Drivers and the Kernel
 

[image: Image]
 

The kernel hides the system’s hardware underneath an abstract, high-level programming interface. It furnishes many of the facilities that users and user-level programs take for granted. For example, the kernel creates all the following concepts from lower-level hardware features:
 

• Processes (time-sharing, protected address spaces)

 

• Signals and semaphores

 

• Virtual memory (swapping, paging, mapping)

 

• The filesystem (files, directories, namespace)

 

• General input/output (specialty hardware, keyboard, mouse, USB)

 

• Interprocess communication (pipes and network connections)

 

The kernel incorporates device drivers that manage its interaction with specific pieces of hardware; the rest of the kernel is, to a large degree, device independent. The relationship between the kernel and its device drivers is similar to the relationship between user-level processes and the kernel. When a process asks the kernel to “Read the first 64 bytes of /etc/passwd,” the kernel (or more accurately, a filesystem driver) might translate this request into a device driver instruction such as “Fetch block 3,348 from device 3.” The disk driver would further break up this command into bit patterns to be presented to the device’s control registers.
 

The kernel is written mostly in C, with a sprinkling of assembly language to help it interface with hardware- or chip-specific functions that are not accessible through normal compiler directives.
 

One of the advantages of Linux and other open source environments is that the availability of source code makes it relatively easy to roll your own device drivers and kernel modules. In the early days of Linux, having skills in this area was a necessity because it was difficult to administer Linux systems without being able to mold the system to a specific environment. Development for other flavors of UNIX is more difficult without specialized knowledge. (Kudos to IBM for having excellent driver development documentation, as they do in many other areas.)
 

Fortunately, sysadmins can be perfectly effective without ever soiling their hands with kernel code. In fact, such activities are better left to kernel and driver developers. Administrators should focus more on the overall needs of the user community. Sysadmins can tune the kernel or add preexisting modules as described in this chapter, but they don’t need to take a crash course in C or assembly language programming to survive. (This was not always true!)
 

13.1 Kernel Adaptation
 

All the UNIX platforms covered in this book run monolithic kernels, in which the entire operating system runs in kernel space, a section of memory reserved for privileged operating system functions. In a monolithic kernel, services such as device drivers, interprocess communication, virtual memory, and scheduling run in the same address space. This approach contrasts with a “microkernel” architecture, in which many of these services run in user mode (i.e., as regular processes). The pros and cons of the two architectures have been hotly debated for years, but most kernel developers agree that both approaches have merit.
 

[image: Image] Linux is also a monolithic kernel at heart, but it allows user-space drivers for many devices. The Gelato, UIO, FUSE, and FUSD projects each provide interfaces to devices in user space. Nevertheless, most drivers are still implemented in kernel mode, generally for performance reasons.
 

Modern monolithic kernels support on-demand loading of modules, so you can incorporate device drivers and other kernel functions as needed without rebuilding the kernel and rebooting. Drivers, filesystems, and new system calls are all commonly implemented as modules. The memory used by a module is allocated and freed as the code is loaded or removed. This feature is particularly useful for embedded systems with limited memory since developers can tune the kernel to eliminate unneeded devices.
 

A kernel can learn about the system’s hardware in several ways. The most basic way is that you explicitly inform the kernel about the hardware it should expect to find (or pretend not to find, as the case may be). In addition, the kernel prospects for many devices on its own, either at boot time or dynamically (once the system is running). The latter method is the most typical for USB devices: memory sticks, digital cameras, printers, and so on. Linux has reasonable support for a wide array of such devices. AIX and HP-UX have very limited support, and Solaris falls somewhere in between.
 

Table 13.1 shows the location of the kernel build directory and the standard name of the installed kernel on each of our example systems.
 

Table 13.1 Kernel build directory and location by system
 

[image: Image]
 

13.2 Drivers and Device Files
 

A device driver is a program that manages the system’s interaction with a particular type of hardware. The driver translates between the hardware commands understood by the device and the stylized programming interface used by the kernel. The driver layer helps keep the kernel reasonably device independent.
 

In most cases, device drivers are part of the kernel; they are not user processes. However, a driver can be accessed both from within the kernel and from user space. User-level access to devices is usually through special device files that live in the /dev directory. The kernel maps operations on these files into calls to the code of the driver.
 

With the remarkable pace at which new hardware is developed, it is practically impossible to keep mainline OS distributions up to date with the latest hardware. Ergo, you will occasionally need to add a device driver to your system to support a new piece of hardware.
 

Device drivers are system specific, and they are often specific to a particular range of kernel revisions as well. Drivers for other operating systems (e.g., Windows) will not work, so keep this in mind when you purchase new hardware.1 In addition, devices vary in their degree of compatibility and functionality when used with various Linux distributions, so it’s wise to pay some attention to the results other sites have obtained with any hardware you are considering.
 

Hardware vendors are becoming more aware of the UNIX and Linux markets, and they sometimes provide UNIX and Linux drivers for their products. In the optimal case, your vendor furnishes you with both drivers and installation instructions. Occasionally, you only find the driver you need on some sketchy-looking and uncommented web page. For either case, this section shows you what is really going on when you add a driver to your system.
 

Device Files and Device Numbers
 

Most devices have a corresponding file in /dev; network devices are notable exceptions on modern operating systems. Complex servers may support hundreds of devices. Solaris handles this complexity quite nicely by using a separate subdirectory of /dev for each type of device: disk, cdrom, terminal, etc.
 

By virtue of being device files, the files in /dev each have a major and minor device number associated with them. The kernel uses these numbers to map device-file references to the corresponding driver.
 

The major device number identifies the driver with which the file is associated (in other words, the type of device). The minor device number usually identifies which particular instance of a given device type is to be addressed. The minor device number is sometimes called the unit number.
 

You can see the major and minor number of a device file with ls -l:
 

[image: Image]
 

This example shows the first SCSI disk on a Linux system. It has a major number of 8 and a minor number of 0.
 

The minor device number is sometimes used by the driver to select or enable certain characteristics particular to that device. For example, a tape drive can have one file in /dev that rewinds the drive automatically when it is closed and another file that does not. The driver is free to interpret the minor device number in whatever way it wants. Look up the man page for the driver to determine what convention it’s using.
 

There are actually two primary types of device files: block device files and character device files. A block device is read or written one block (a group of bytes, usually a multiple of 512) at a time; a character device can be read or written one byte at a time. Disks and tapes lead dual lives; terminals and printers do not.
 

Device drivers present a standard interface to the kernel. Each driver has routines for performing some or all of the following functions:
 

[image: Image]
 

It is sometimes convenient to implement an abstraction as a device driver even when it controls no actual device. Such phantom devices are known as pseudo-devices. For example, a user who logs in over the network is assigned a PTY (pseudo-TTY) that looks, feels, and smells like a serial port from the perspective of high-level software. This trick allows programs written in the days when everyone used a terminal to continue to function in the world of windows and networks. /dev/zero, /dev/null, and /dev/random are some other examples of pseudo-devices.
 

When a program performs an operation on a device file, the kernel intercepts the reference, looks up the appropriate function name in a table, and transfers control to the appropriate part of the driver. To perform an unusual operation that doesn’t have a direct analog in the filesystem model (for example, ejecting a floppy disk), a program can use the ioctl system call to pass a message directly from user space into the driver.
 

Device File Creation
 

Device files can be created manually with the mknod command, with the syntax
 

mknod
filename type major minor
 

where filename is the device file to be created, type is c for a character device or b for a block device, and major and minor are the major and minor device numbers. If you are manually creating a device file that refers to a driver that’s already present in your kernel, check the documentation for the driver to find the appropriate major and minor device numbers.
 

[image: Image] Under Linux, the udev system dynamically manages the creation and removal of device files according to the actual presence (or absence) of devices. The udevd daemon listens for messages from the kernel regarding device status changes. Based on configuration information in /etc/udev and /lib/udev, udevd can take a variety of actions when a device is discovered or disconnected. By default, it just creates device files in /dev. Udev is covered in detail beginning on page 437.
 

[image: Image] On Solaris systems, /dev is actually composed of symbolic links to files in the /devices directory, which is a separate filesystem. The Device File System (devfs) manages the device files in /devices. These files are created automatically at boot time by devfsadmd, which continues to run after boot to handle update notifications from the kernel. Administrators can use devfsadm to tweak this process, but most administrators will not need to use it.
 

[image: Image] The HP-UX kernel creates devices files at boot time. If new devices are attached later, administrators must create the device files manually by running the mksf, insf, and mknod commands. The smh tool also incorporates a limited interface for viewing device information.
 

[image: Image] In AIX, the cfgmgr command runs at boot time to configure devices and to install drivers for devices that weren’t formerly present. It prints warnings for any devices for which the software or drivers are not installed. Once a device is detected, AIX remembers it by placing an identifier in the Object Data Manager, which we discuss on page 432. cfgmgr creates files in /dev for devices that are successfully detected and initialized.
 

Given the existence of these various tools for automating the creation of device files, system administrators running current releases of UNIX and Linux should never need to manually manage device files with mknod.
 

Naming Conventions for Devices
 

Naming conventions for devices are somewhat random. They are often holdovers from the way things were done under UNIX on a DEC PDP-11, as archaic as that may sound in this day and age.
 

For devices that have both block and character identities, the character device name is usually prefaced with the letter r for “raw” (e.g., /dev/da0 vs. /dev/rda0). An alternative convention is to store character device files in a subdirectory that has a name that starts with r (e.g., /dev/dsk/dks0d3s0 vs. /dev/rdsk/dks0d3s0). However, an r does not always imply a raw device file.
 

Serial device files are usually named tty followed by a sequence of letters that identify the interface the port is attached to. TTYs are sometimes represented by more than one device file; the extra files usually afford access to alternative flow control methods or locking protocols.
 

See Chapter 31 for more information about serial ports.

 

The names of tape devices often include not only a reference to the drive itself but also an indication of whether the device rewinds after the tape device is closed. Each vendor has a different scheme.
 

The naming conventions for the files that represent hard disks and SSDs are rather complex on most systems. See Disk device files on page 224 for details.
 

Custom Kernels Versus Loadable Modules
 

When the system is installed, it comes with a generic kernel that’s designed to run most applications on most hardware. The generic kernel includes many different device drivers and option packages. Some drivers may also be dynamically inserted into the running kernel. On Linux, the udev system can also manage real-time device changes, such as the insertion of a USB device.
 

There are various schools of thought on whether production servers should have custom-built kernels. Although there is some potential for performance gains, especially in embedded systems without much memory, the manageability tradeoff for patching and system upgrades is usually a deal breaker. Unless there’s a legitimate need to wring every last ounce of performance out of the system, we recommend using the vendor’s stock kernel.
 

When it comes to kernel device support, the wise administrator is usually also the laziest. Use the dynamic module approach whenever possible. Avoid building a custom kernel unless it is strictly necessary. On Linux systems, most USB devices can be attached with no administrator intervention.
 

13.3 Linux Kernel Configuration
 

[image: Image] You can use any one of four basic methods to configure a Linux kernel. Chances are you’ll have the opportunity to try all of them eventually. The methods are
 

• Modifying tunable (dynamic) kernel configuration parameters

 

• Building a kernel from scratch (really, this means compiling it from the source code, possibly with modifications and additions)

 

• Loading new drivers and modules into an existing kernel on the fly

 

• Providing operational directives at boot time through the kernel loader, GRUB. See page 82 for more information.

 

These methods are each applicable in slightly different situations. Modifying tunable parameters is the easiest and most common, whereas building a kernel from source files is the hardest and least often required. Fortunately, all these approaches become second nature with a little practice.
 

Tuning Linux Kernel Parameters
 

Many modules and drivers in the kernel were designed with the knowledge that one size doesn’t fit all. To increase flexibility, special hooks allow parameters such as an internal table’s size or the kernel’s behavior in a particular circumstance to be adjusted on the fly by the system administrator. These hooks are accessible through an extensive kernel-to-userland interface represented by files in the /proc filesystem (aka procfs). In some cases, a large user-level application (especially an “infrastructure” application such as a database) may require a sysadmin to adjust kernel parameters to accommodate its needs.
 

You can view and set kernel options at run time through special files in /proc/sys. These files mimic standard Linux files, but they are really back doors into the kernel. If a file in /proc/sys contains a value you want to change, you can try writing to it. Unfortunately, not all files are writable (regardless of their apparent permissions), and not much documentation is available. If you have the kernel source tree installed, you may be able to read about some of the values and their meanings in the subdirectory Documentation/syscnt.
 

For example, to change the maximum number of files the system can have open at once, try something like
 

[image: Image]
 

Once you get used to this unorthodox interface, you’ll find it quite useful. A word of caution, however: changes are not remembered across reboots.
 

Table 13.2 lists some commonly tuned parameters. Default values vary widely among distributions.
 

Table 13.2 Files in /proc/sys for some tunable kernel parameters
 

[image: Image]
 

A more permanent way to modify these same parameters is to use the sysctl command. sysctl can set individual variables either from the command line or by reading a list of variable=value pairs from a file. By default, /etc/sysctl.conf is read at boot time and its contents are used to set initial (custom) parameter values.
 

For example, the command
 

linux$ sudo sysctl net.ipv4.ip_forward=0
 

turns off IP forwarding. (Alternatively, you can just edit /etc/sysctl.conf manu-ally.) You form the variable names used by sysctl by replacing the slashes in the /proc/sys directory structure with dots.
 

Building a Linux Kernel
 

Because Linux evolves rapidly, it is likely that you’ll eventually be faced with the need to build a Linux kernel. Kernel patches, device drivers, and new functionality continually arrive on the scene. This is really something of a mixed blessing. On one hand, it’s convenient to always support the “latest and greatest,” but on the other hand, it can become quite time consuming to keep up with the constant flow of new material.
 

It’s less likely that you’ll need to build a kernel on your own if you’re running a “stable” version. Originally, Linux adopted a versioning scheme in which the second part of the version number indicated whether the kernel was stable (even numbers) or in development (odd numbers). For example, kernel version 2.6.6 would be a “stable” kernel, whereas 2.7.4 would be a “development” kernel. Today, this scheme isn’t religiously followed, so you’d best check the home page at kernel.org for the official word on this issue. The kernel.org site is also the best source for Linux kernel source code if you aren’t relying on a particular distribution (or vendor) to provide you with a kernel.
 

If It Ain’t Broke, Don’t Fix It
 

A good system administrator carefully weighs needs and risks when planning kernel upgrades and patches. Sure, the new release may be the latest and greatest, but is it as stable as the current version? Could the upgrade or patch be delayed and installed with another group of patches at the end of the month? It’s important to resist the temptation to let “keeping up with the Joneses” (in this case, the kernel hacking community) dominate the best interests of your user community.
 

A good rule of thumb is to upgrade or apply patches only when the productivity gains you expect to obtain (usually measured in terms of reliability and performance) will exceed the effort and lost time required to perform the installation. If you’re having trouble quantifying the specific gain, that’s a good sign that the patch can wait for another day. (Of course, security-related patches should be installed promptly.)
 

Configuring Kernel Options
 

In this chapter we use path_to_kernel_src as a placeholder for whichever directory you choose for kernel source code. Most distributions install kernel source files in /usr/src. In all cases, you need to install the kernel source package before you can build a kernel on your system; see page 380 for tips on package installation.
 

The kernel configuration process revolves around the .config file at the root of the kernel source directory. All the kernel configuration information is specified in this file, but its format is somewhat cryptic. Use the decoding guide in
 

path_to_kernel_src/Documentation/Configure.help
 

to find out what the various options mean.
 

To save folks from having to edit the .config file directly, Linux has several make targets that let you configure the kernel with different interfaces. If you are running KDE, the prettiest configuration interface is provided by make xconfig. Likewise, if you’re running GNOME, make gconfig is probably the best option. These commands bring up a graphical configuration screen on which you can pick the devices to add to your kernel (or compile as loadable modules).
 

If you are not running KDE or GNOME, you can use a terminal-based alternative invoked with make menuconfig. Finally, the older-style make config prompts you to respond to every single configuration option available without letting you later go back if you change your mind. We recommend make xconfig or make gconfig if your environment supports them; otherwise, use make menuconfig. Avoid make config, the least flexible and most painful text-based make target.
 

If you’re migrating an existing kernel configuration to a new kernel version (or tree), you can use the make oldconfig target to read in the previous config file and to ask only the questions that are new.
 

These tools are straightforward as far as the options you can turn on, but unfortunately they are painful to use if you want to maintain several versions of the kernel for multiple architectures or hardware configurations.
 

The various configuration interfaces described above all generate a .config file that looks something like this:
 

[image: Image]
 

As you can see, the contents are cryptic and do not describe what the CONFIG tags mean. Each CONFIG line refers to a specific kernel configuration option. The value y compiles the option into the kernel; the value m enables the option as a loadable module.
 

Some things can be configured as modules and some can’t. You just have to know which is which; it’s not clear from the .config file. Nor are the CONFIG tags easily mapped to meaningful information.
 

Building the Kernel Binary
 

Setting up an appropriate .config file is the most important part of the Linux kernel configuration process, but you must jump through several more hoops to turn that file into a finished kernel.
 

Here’s an outline of the entire process:
 

• Change directory (cd) to the top level of the kernel source directory.

 

• Run make xconfig, make gconfig, or make menuconfig.

 

• Run make dep (not required for kernels 2.6.x and later).

 

• Run make clean.

 

• Run make.

 

• Run make modules_install.

 

• Copy arch/i386/boot/bzImage to /boot/vmlinuz.

 

• Copy arch/i386/boot/System.map to /boot/System.map.

 

• Add a configuration line for the new kernel to /boot/grub/grub.conf.

 

The make clean step is not always strictly necessary, but it is generally a good idea to start with a clean build environment. In practice, many problems can be traced back to this step having been skipped.
 

Adding a Linux Device Driver
 

On Linux systems, device drivers are typically distributed in one of three forms:
 

• A patch against a specific kernel version

 

• A loadable module

 

• An installation script or package that installs the driver

 

The most common form is the installation script or package. If you’re lucky enough to have one of these for your new device, you should be able to follow the standard procedure for installing new software.
 

In situations where you have a patch against a specific kernel version, you can in most cases install the patch with the following procedure:
 

linux# cd
path_to_kernel_src
; patch -p1 <
patch_file
 

If neither of these cases applies, you are likely in a situation in which you must manually integrate the new device driver into the kernel source tree. In the following pages, we demonstrate how to manually add a hypothetical network “snarf ” driver to the kernel. Linux actually makes this a rather tedious process, especially when compared to some other versions of UNIX.
 

Within the drivers subdirectory of the kernel source tree, find the subdirectory that corresponds to the type of device you are dealing with. A directory listing of drivers looks like this:
 

[image: Image]
 

The most common directories to which drivers are added are block, char, net, scsi, sound, and usb. These directories contain drivers for block devices (such as IDE disk drives), character devices (such as serial ports), network devices, SCSI cards, sound cards, and USB devices, respectively. Some of the other directories contain drivers for the buses themselves (e.g., pci, nubus, and zorro); it’s unlikely that you will need to add drivers to these directories. Some directories contain platform-specific drivers, such as macintosh, s390, and acorn.
 

Since our example device is a network-related device, we add the driver to the directory drivers/net. We modify the following files:
 

• drivers/net/Makefile so that our driver will be compiled

 

• drivers/net/Kconfig so that our device will appear in the config options

 

After putting the .c and .h files for the driver in drivers/net/snarf, we add the driver to drivers/net/Makefile. The line we add (near the end of the file) is
 

obj-$(CONFIG_SNARF_DEV) += snarf/
 

This configuration adds the snarf driver (stored in the snarf/ directory) to the build process.
 

After adding the device to the Makefile, we have to make sure we can configure the device when we configure the kernel. All network devices must be listed in the file drivers/net/Kconfig. To add the device so that it can be built either as a module or as part of the kernel (consistent with what we claimed in the Makefile), we add the following line:
 

[image: Image]
 

The first token after config is the configuration macro, which must match the token following CONFIG_ in the Makefile. The tristate keyword means that we can build the device as a module. If the device cannot be built as a module, we would use the keyword bool instead of tristate. The next token is the string to display on the configuration screen. It can be any arbitrary text, but it should identify the device that is being configured.
 

Having managed to link a new device driver into the kernel, how do you tell the kernel it needs to use the new driver? In kernel versions before 2.6, this was a tedious task that required programming knowledge. As part of the recent architectural changes made to the device driver model, there is now a standard way for drivers to associate themselves with the kernel.
 

It’s beyond the scope of this chapter to explain how that happens in detail, but the result is that device drivers written for version 2.6 (and later) register themselves with the macro MODULE_DEVICE_TABLE. This macro makes the appropriate behind-the-scenes connections so that other utilities such as modprobe (discussed in the Loadable kernel modules section starting on page 434) can enable new devices in the kernel.
 

13.4 Solaris Kernel Configuration
 

[image: Image] At boot time, the Solaris kernel probes for devices and initializes a driver for each device it finds. It makes extensive use of loadable modules and loads code only for the devices that are actually present, unless forced to do otherwise.
 

Depending on your point of view, this automatic configuration makes configuring a custom kernel more or less of a necessity under Solaris than on other systems. In an ideal world, the kernel would correctly identify its hardware environment 100% of the time. Unfortunately, flaky, nonstandard, or just plain buggy hardware (or drivers) can occasionally turn this creature comfort into a torment.
 

That said, let’s look at how to custom-configure a Solaris kernel, should you ever need to do so.
 

The Solaris Kernel Area
 

To make on-demand module loading work correctly, Solaris relies heavily on a particular directory organization. Solaris expects to find certain directories in certain places, and these directories must contain specific types of modules:
 

• /kernel – modules common to machines that share an instruction set

 

• /platform/platform-name/kernel – modules specific to one type of machine, such as a Sun Fire T200

 

• /platform/hardware-class-name/kernel – modules specific to one class of hardware; for example, all sun4u machines

 

• /usr/kernel – similar to /kernel

 

You can determine your platform-name and hardware-class-name with uname -i and uname -m, respectively.
 

Here’s an example:
 

[image: Image]
 

When Solaris boots, it searches the path
 

/platform/platform-name/kernel:/kernel:/usr/kernel
 

in an attempt to find a kernel. It first looks for files named unix, and then it looks for files named genunix. genunix is a generic kernel that represents the platform-independent portion of the base kernel.
 

Each of the directories listed above can contain several standard subdirectories, listed in Table 13.3. Since the subdirectories can exist within any of the kernel directories, we use the generic name KERNEL to symbolize any and all kernel directories.
 

Table 13.3 Subdirectories of Solaris kernel directories
 

[image: Image]
 

You should not normally have to change any files in these directories unless you install a new device driver. The one exception to this rule may be the .conf files in the KERNEL/drv directory, which specify device-specific configuration parameters. It’s rarely necessary to change them, however, and you should really only do it if a device’s manufacturer tells you to.
 

Configuring the Kernel with /etc/system
 

Solaris’s /etc/system file serves as the master configuration file for the kernel. Table 13.4 shows the directives and variables that can appear in this file. Directives are keywords in their own right; variables must be assigned a value with the set directive.
 

Table 13.4 Directives and variables used in /etc/system
 

[image: Image]
 

/etc/system is consulted at boot time and can be so badly mutilated that the system no longer boots. boot -a lets you specify a backup copy of /etc/system if you made one. (If you don’t have a backup copy and your existing one doesn’t work, you can use /dev/null.)
 

Let’s look at a sample /etc/system file for a simple kernel.
 

[image: Image]
 

These lines specify that the root filesystem will be of type UFS (UNIX File System) and that it will reside on the sd3a disk partition. The syntax used to specify the root device is identical to that used by Sun’s openprom monitor. It varies from platform to platform, so consult your hardware manual or follow the symlinks in /dev that map the weird names to sensible ones. An ls -l after the link has been followed will show the exact long name.
 

[image: Image]
 

This line (which has been wrapped to fit the page) specifies the search path for loadable modules. This value is suggested by the kernel man page; however, it is not the default, so you must specify it explicitly.
 

[image: Image]
 

The first line excludes the loopback filesystem from the kernel, and the second forces the generic SCSI driver (sd) to be loaded.
 

set maxusers=64
 

This line sizes the kernel’s tables appropriately for 64 simultaneous logins.
 

Adding a Solaris Device Driver
 

Solaris drivers are usually distributed as packages. Use pkgadd to add the device driver to the system. When drivers are not distributed as a package or when package addition fails, it’s trivial to add the drivers by hand because they are all implemented as loadable kernel modules.
 

Solaris drivers are almost always distributed as object files, not as source code as is common on Linux systems. In this example, we add the device “snarf ” to Solaris. The snarf driver should come with at least two files, including snarf.o (the actual driver) and snarf.conf (a configuration file). Both files should go into the directory /platform/‘uname -m‘/kernel/drv.
 

Once the .conf file has been copied over, you can edit it to specify particular device parameters. You should not normally need to do this, but sometimes configuration options are available for fine-tuning the device for your application.
 

After the files have been copied into place, you need to load the module with the add_drv command. (More on loadable kernel modules later in this chapter.) In this case, we load snarf into the kernel by running the command add_drv snarf. That’s it! This is definitely the least painful of our examples.
 

Debugging a Solaris configuration
 

Since Solaris makes up its view of the world on the fly, debugging a troubled machine can be frustrating. Fortunately, Solaris provides several tools that display the machine’s current configuration.
 

The prtconf command prints the machine’s general configuration, including its machine type, model number, amount of memory, and some information about the configured hardware devices. Lines that describe devices (drivers, really) are indented to show the dependencies among them. The handy prtconf -D option shows the name of the driver for each device.
 

In the following snippet of prtconf output, several lines state “driver not attached.” This message can have multiple meanings: there is no driver for a device, the device is configured but not attached to the system, or the device is unused and no driver has been loaded.
 

[image: Image]
 

The prtconf -D display shows which drivers to load in /etc/system.
 

[image: Image]
 

sysdef is prtconf on steroids. In addition to the information given by prtconf, it also lists pseudo-device drivers, tunable kernel parameters, and the filenames of loaded modules. If you modify the default kernel for an important machine, consider including the output of sysdef in your documentation for the machine.
 

The modinfo command reports information about dynamically loaded modules. Solaris dynamically loads device drivers, STREAMS modules, and filesystem drivers, among other things. Don’t be surprised if modinfo’s output contains more than 200 entries. See page 435 for more information about modinfo.
 

13.5 HP-UX Kernel Configuration
 

[image: Image] HP-UX’s kernel is the most monolithic among our example operating systems, and it prefers to load most modules statically. It also has a complex and confusing configuration file. Fortunately, HP provides a handy configuration tool known as kcweb, which runs as a GUI if X Windows and a browser are available, or on the command line otherwise. To force command-line operation, use kcweb -t.
 

HP-UX reads kernel configuration parameters (such as modules and tunable values) from the /stand/system file. This file is maintained by kcweb and other tools, and administrators should not modify it directly.
 

Modules and configuration options can be static or dynamic. A static value or module is one that requires a kernel rebuild and a reboot to change or install.
 

Dynamic modules are loaded and unloaded as they are used, without requiring a reboot. Likewise, dynamically tunable values take effect immediately.
 

Table 13.5 lists a few of the more useful tunable properties of the HP-UX kernel.
 

Table 13.5 HP-UX kernel tunable configuration values (useful ones)
 

[image: Image]
 

If you request changes to static modules or static tunable values, kcweb automatically runs the mk_kernel command to build a new kernel. The new kernel takes effect at the next system reboot.
 

13.6 Management of the AIX Kernel
 

[image: Image] The AIX kernel never requires a rebuild. New devices are configured dynamically through IBM’s mysterious black box known as the Object Data Manager (ODM).
 

It’s an enigmatic setup. Many parameters that are commonly tunable on other kernels, such as shared memory settings, cannot be tuned at all on AIX. Instead, they are managed independently by the kernel. Other configurable options are managed through a series of six tuning commands.
 

The Object Data Manager
 

Rather than keeping device configuration information in text files or scripts, AIX squirrels it away in the Object Data Manager (ODM) attribute/value database. Another layer of glue associates these property lists with specific devices (driver instances, really) and binds the drivers to the configuration information.
 

AIX’s intent is to support persistence for device configuration. Rather than having one way to configure devices on the fly (e.g., ifconfig or ndd) and a parallel system of configuration files and scripts that do configuration at boot time, AIX’s scheme attempts to unify these functions so that most device changes are automatically sticky across reboots.
 

However, if you take the red pill and look at what’s actually going on within the system, the underlying complexity can be daunting. The system has more entry points than traditional UNIX, and the interactions among the components aren’t always obvious. Here’s an outline of the various layers:
 

• The Object Data Manager is a configuration repository that’s analogous to the registry in Microsoft Windows. It’s actually a bit more sophisticated than the Windows registry in that it has the concept of object schemas and instances rather than just arbitrary property lists.

 

• Programs access ODM through library routines, but you can also work with the ODM database through the odmadd, odmcreate, odmdrop, odmshow, odmget, odmchange, and odmdelete commands.2

 

• The command family chdev, lsdev, lsattr, mkdev, rmdev, lsconn, and lsparent maps ODM configuration information to specific devices. AIX’s chdev is actually quite similar to the Solaris and HP-UX ndd command (see page 498), but by default chdev writes your changes both to the active driver and to the ODM configuration database. Even common parameters such as the system hostname and the details of static routes are stored as device attributes (the device in this case being an instance of the “inet” driver).

 

• Several administration utilities provide front ends to the chdev family. For example, mktcpip is sort of like a persistent ifconfig that converts its arguments into a series of chdev calls on network interfaces, affecting both the active and saved configurations. (Would you guess that its syntax mirrors that of ifconfig? You guessed wrong.)

 

• ODM is a user-level facility, so drivers don’t access it directly. Just as with traditional text-file configuration, some software must read the ODM configurations at boot time and poke the appropriate values into the running drivers.

 

Fortunately, most administrators need not touch the complexities of ODM thanks to SMIT and to higher-level tools such as mktcpip.
 

One indispensable utility for managing AIX devices is the cfgmgr command. Run it as root with no arguments after adding new hardware to the system; the new hardware will miraculously be recognized and become available for use. Well, usually. If the device drivers haven’t already been loaded into the ODM database, cfgmgr will helpfully suggest a package for you to install from the AIX installation media. See the cfgmgr man page for further details.
 

Kernel Tuning
 

AIX has six categories of tunable values and supplies six corresponding commands for tweaking them. Most of the values relate to performance optimization. Table 13.6 captures each command and its purpose. Breaking from standard AIX convention, the commands share a common syntax. The parameters can also be managed through the SMIT interface with the incantation smit tuning. See the man page for each command for detailed information.
 

Table 13.6 Commands for setting tunable kernel parameters in AIX
 

[image: Image]
 

The commands are simple to use. To enable IP forwarding, for example, run
 

aix$ sudo no -o ipforwarding=1
 

To list all available tunables for the I/O subsystem, type
 

aix$ sudo ioo -a
 

[image: Image] You can add the -r flag to any of the commands to ensure that your changes persist after a reboot.
 

13.7 Loadable Kernel Modules
 

Loadable kernel modules (LKMs) are now common to nearly all flavors of UNIX. Each of our example systems implements some form of dynamic loading facility, although the exact implementations vary.
 

Loadable kernel module support allows a device driver—or any other kernel service—to be linked into and removed from the kernel while it is running. This facility makes the installation of drivers much easier since the kernel binary does not need to be changed. It also allows the kernel to be smaller because drivers are not loaded unless they are needed.
 

Although loadable drivers are convenient, they are not 100% safe. Any time you load or unload a module, you risk causing a kernel panic. So don’t try out an untested module when you are not willing to crash the machine.
 

Like other aspects of device and driver management, the implementation of loadable modules is OS dependent. The sections below outline the commands and caveats appropriate for Solaris and Linux, which support more devices and allow more administrator configuration than do our other example systems.
 

Loadable Kernel Modules in Linux
 

[image: Image] Linux is both more and less sophisticated than Solaris in its handling of loadable kernel modules, at least from the system administrator’s point of view. Under Linux, almost anything can be built as a loadable kernel module. The exceptions are the root filesystem type, the device on which the root filesystem resides, and the PS/2 mouse driver.
 

Loadable kernel modules are conventionally stored under /lib/modules/version, where version is the version of your Linux kernel as returned by uname -r. You can inspect the currently loaded modules with the lsmod command:
 

[image: Image]
 

Loaded on this machine are the Intelligent Platform Management Interface modules and the iptables firewall.
 

As an example of manually loading a kernel module, here’s how we would insert the snarf module that we set up in the previous section:
 

redhat$ sudo insmod /path/to/snarf.ko
 

We can also pass parameters to loadable kernel modules; for example,
 

redhat$ sudo insmod /path/to/snarf.ko io=0xXXX
irq=X
 

Once a loadable kernel module has been manually inserted into the kernel, it can only be removed if you explicitly request its removal or if the system is rebooted. We could use rmmod snarf to remove our snarf module.
 

You can use rmmod at any time, but it works only if the number of current references to the module (listed in the Used by column of lsmod’s output) is 0.
 

You can also load Linux LKMs semiautomatically with modprobe, a wrapper for insmod that understands dependencies, options, and installation and removal procedures. modprobe uses the /etc/modprobe.conf file to figure out how to handle each individual module.
 

You can dynamically generate an /etc/modprobe.conf file that corresponds to all your currently installed modules by running modprobe -c. This command generates a long file that looks like this:
 

[image: Image]
 

The path statements tell where a particular module can be found. You can modify or add entries of this type if you want to keep your modules in a nonstandard location.
 

The alias statement maps between block major device numbers, character major device numbers, filesystems, network devices, and network protocols and their corresponding module names.
 

The options lines are not dynamically generated but rather must be manually added by an administrator. They specify options that should be passed to a module when it is loaded. For example, we could use the following line to tell the snarf module its proper I/O address and interrupt vector:3
 

options snarf io=0xXXX irq=X
 

modprobe also understands the statements install and remove. These statements allow commands to be executed when a specific module is inserted into or removed from the running kernel.
 

Loadable Kernel Modules in Solaris
 

[image: Image] In Solaris, virtually everything is a loadable module. The modinfo command lists the modules that are currently loaded.
 

The output looks like this:
 

[image: Image]
 

On our Solaris system, the list continued for 80-odd lines. Many elements that are hardwired into the kernel on other versions of UNIX (such as UFS, the local file-system) are loadable drivers in Solaris. This organization should make it much easier for third parties to write packages that integrate easily and seamlessly into the kernel, at least in theory.
 

As described in Linux kernel configuration earlier in this chapter, you can add a driver with the add_drv command. This command loads the driver into the kernel and makes the appropriate device links (all links are rebuilt each time the kernel boots). Once you add_drv a driver, it remains a part of the system until you actively remove it. You can unload drivers by hand with rem_drv.
 

Whenever you add a driver by running add_drv, it is a good idea to also run drvconfig. This command reconfigures the /devices directory and adds any files that are appropriate for the newly loaded driver.
 

Loadable modules that are not accessed through device files can be loaded and unloaded with modload and modunload.
 

13.8 Linux Udev For Fun And Profit
 

[image: Image] Device files have been a tricky problem for many years. When systems supported only a few types of devices, manual maintenance of device files was manageable. As the number of available devices has grown, however, the /dev filesystem has become cluttered, often with files irrelevant to the current system. Red Hat Enterprise Linux version 3 included more than 18,000 device files, one for every possible device that could be attached to the system! The creation of static device files quickly became a crushing problem and an evolutionary dead end.
 

USB, FireWire, PCMCIA, and other device interfaces introduce additional wrinkles. For example, if a user connects two external hard drives, it would be convenient for the system to recognize and automount each drive with a persistent device name. Ideally, a drive that is initially recognized as /dev/sda would remain available as /dev/sda despite intermittent disconnections and regardless of the activity of other devices and buses. The presence of dynamic devices such as cameras, printers, scanners, and other types of removable media clouds the water and makes the persistent identity problem even worse.
 

Udev is an elegant solution to these issues. It is a device management system implemented in user space (rather than inside the kernel) that informs end-user applications about devices as they are attached and removed. Udev relies on sysfs, described below, to learn what’s going on with the system’s devices, and it uses a series of udev-specific rules to understand appropriate naming conventions. Udev maintains device files in /dev automatically and with minimal disruption. Only devices that are currently available to the system have files in /dev.
 

Linux administrators should understand how udev’s rule system works and should know how to use the udevadm command. Before peering into those details, however, let’s first review the underlying technology of sysfs.
 

Linux Sysfs: a Window Into the Souls of Devices
 

Sysfs was added to the Linux kernel at version 2.6. It is a virtual, in-memory file-system that provides detailed and well-organized information about the system’s available devices, their configurations, and their state. Sysfs device information is accessible both from within the kernel and from user space.
 

You can explore the /sys directory, where sysfs is typically mounted, to find out everything from what IRQ a device is using to how many blocks have been queued for writing on a disk controller. One of the guiding principles of sysfs is that each file in /sys should represent only one attribute of the underlying device. This convention imposes a certain amount of structure on an otherwise chaotic data set.
 

Table 13.7 shows the directories in the /sys root directory, each of which is a subsystem that is registered with sysfs. These directories vary slightly by distribution.
 

Table 13.7 Subdirectories of /sys
 

[image: Image]
 

Originally, if information about device configuration was available at all, it was found in the /proc filesystem. Although /proc continues to hold run-time information about processes and the kernel, we anticipate that all device-specific information will move to /sys over time.
 

Exploring Devices with Udevadm
 

The udevadm command queries device information, triggers events, controls the udevd daemon, and monitors udev and kernel events. Its primary use for administrators is to build and test rules, which are covered in the next section.
 

udevadm expects one of six commands as its first argument: info, trigger, settle, control, monitor, or test. Of particular interest to system administrators are info, which prints device-specific information, and control, which starts and stops udev or forces it to reload its rules files. The monitor command displays events as they occur.
 

The following command shows all udev attributes for the device sdb. The output is truncated here, but in reality it goes on to list all parent devices—such as the USB bus—that are ancestors of sdb in the device tree.
 

[image: Image]
 

All paths in udevadm output, such as /devices/pci0000:00/…, are relative to /sys.
 

The output is formatted so that you can feed it back to udev when constructing rules. For example, if the ATTR{size}=="1974271" clause were unique to this device, you could copy that snippet into a rule as the identifying criteria.
 

Refer to the man page on udevadm for additional options and syntax.
 

Constructing Rules and Persistent Names
 

Udev relies on a set of rules to guide its management and naming of devices. The default rules reside in the /lib/udev/rules.d directory, but local rules belong in /etc/udev/rules.d. There is no need to edit or delete the default rules—you can ignore or override a file of default rules by creating a new file with the same name in the custom rules directory.
 

The master configuration file for udev is /etc/udev/udev.conf; however, the default behaviors are reasonable. The udev.conf files on our example distributions contain only comments, with the exception of one line that enables error logging.
 

Sadly, because of political bickering among distributors and developers, there is little rule synergy among distributions. Many of the filenames in the default rules directory are the same from distribution to distribution, but the contents of the files differ significantly.
 

Rule files are named according to the pattern nn-description.rules, where nn is usually a two-digit number. Files are processed in lexical order, so lower numbers are processed first. Files from the two rules directories are combined before the udev daemon, udevd, parses them. The .rules suffix is mandatory; files without it are ignored.
 

Rules are of the form
 

match_clause, [match_clause, …] assignment_clause [,assignment_clause …]
 

The match_clauses define the situations in which the rule is to be applied. Each match clause consists of a key, an operator, and a value. For example, the clause ATTR{size}=="1974271" was referred to above as a potential component of a rule; it selects all devices whose size attribute is exactly 1,974,271.
 

Most match keys refer to device properties (which udevd obtains from the /sys filesystem), but some refer to other context-dependent attributes, such as the operation being handled (e.g., device addition or removal). All match clauses must match in order for a rule to be activated.
 

Table 13.8 shows the match keys understood by udev.
 

Table 13.8 Udev match keys
 

[image: Image]
 

For matching rules, the assignment_clauses specify the actions udevd should take to handle the event. Their format is similar to that for match clauses.
 

The most important assignment key is NAME, which indicates what udev should name the device. The optional SYMLINK assignment key creates a symbolic link to the device through its desired path in /dev.
 

Let’s put these components together with an example: a USB flash drive. Suppose that we want to make the drive’s device name persist across insertions and that we want the drive to be mounted and unmounted automatically.
 

To start with, we insert the flash drive and check to see how the kernel identifies it. There are a couple of ways to do this. By running the lsusb command, we can inspect the USB bus directly:
 

[image: Image]
 

Alternatively, we can check for log entries submitted to    /var/log/messages. In our case, the attachment leaves an extensive audit trail:
 

[image: Image]
 

The log messages above indicate that the drive was recognized as sdb, which gives us an easy way to identify the device in /sys. We can now examine the /sys filesystem with udevadm in search of some rule snippets that are characteristic of the device and might be usable in udev rules.
 

[image: Image]
 

The output from udevadm show several opportunities for matching. One possibility is the size field, which is likely to be unique to this device. However, if the size of the partition were to change, the device would not be recognized. Instead, we can use a combination of two values: the kernel’s naming convention of sd plus an additional letter, and the contents of the model attribute, USB2FlashStorage. For creating rules specific to this particular flash drive, another good choice would be the device’s serial number (not displayed here).
 

We’ll put our rules for this device in the file /etc/udev/rules.d/10-local.rules. Because we have multiple objectives in mind, we need a series of rules.
 

First, we take care of creating device symlinks in /dev. The following rule uses our knowledge of the ATTRS and KERNEL match keys, gleaned from udevadm, to identify the device:
 

[image: Image]
 

When the rule triggers, udevd sets up /dev/ate-flashN as a symlink to the device. We don’t really expect more than one of these devices to appear on the system. If more copies do appear, they receive unique names in /dev, but the exact names depend on the insertion order of the devices.
 

Next, we use the ACTION key to run some commands whenever the device appears on the USB bus. The RUN assignment key lets us create an appropriate mount point directory and mount the device there.
 

[image: Image]
 

The PROGRAM and RUN keys look similar, but PROGRAM is a match key that’s active during the rule selection phase, whereas RUN is an assignment key that’s part of the rule’s actions once triggered. The second rule above verifies that the flash drive contains a Windows filesystem before mounting it with the -t vfat option to the mount command.
 

Similar rules clean up when the device is removed:
 

[image: Image]
 

Now that our rules are in place, we must notify udevd of our changes. udevadm’s control command is one of the few that require root privileges.
 

ubuntu$ sudo udevadm control --reload-rules
 

Typos are silently ignored after a reload, even with the --debug flag, so be sure to double-check the rules’ syntax.
 

That’s it! Now when the flash drive is plugged into a USB port, udevd creates a symbolic link called /dev/ate-flash1 and mounts the drive as /mnt/ate-flash1.
 

[image: Image]
 

13.9 Recommended Reading
 

BOVET, DANIEL P., AND MARCO CESATI. Understanding the Linux Kernel (3rd Edition). Sebastopol, CA: O’Reilly Media, 2006.
 

CORBET, JONATHAN, ET AL. Linux Device Drivers (3rd Edition). Sebastopol, CA: O’Reilly Media, 2005. This book is also available on-line at lwn.net/Kernel/LDD3.
 

LOVE, ROBERT. Linux Kernel Development (2nd Edition). Indianapolis, IN: Novell Press, 2005.
 

MCDOUGALL, RICHARD, AND JIM MAURO. Solaris Internals: Solaris 10 and Open-Solaris Kernel Architecture (2nd Edition). Upper Saddle River, NJ: Prentice Hall PTR, 2006.
 

13.10 Exercises
 

E13.1 Describe what the kernel does. Explain the difference between loading a driver as a module and linking it statically into the kernel.
 

E13.2 A process on an HP-UX system crashed and reported a cryptic error: “Too many open files: file permissions deny server access.” What might be the cause of this error? What change needs to occur to fix the underlying issue?
 

[image: Image] E13.3 Do AIX systems offer loadable kernel modules? How would a developer add support for a new filesystem or for new system calls to an AIX kernel? When might this functionality be needed?
 

[image: Image] E13.4 At a local flea market, you get a great deal on a laptop card that gives you Ethernet connectivity through a parallel port. What steps would you need to perform to make Linux recognize this new card? Should you compile support directly into the kernel or add it as a module? Why? (Bonus question: if your hourly consulting fee is $80, estimate the value of the labor needed to get this cheapie Ethernet interface working.)
 

[image: Image] E13.5 In the lab, configure a Linux kernel with xconfig or menuconfig and build a kernel binary. Install and run the new system. Turn in dmesg output from the old and new kernels and highlight the differences. (Requires root access.)
 
  


Section Two: Networking
 

[image: Image]
 
  


14. TCP/IP Networking
 

[image: Image]
 

It would be hard to overstate the importance of networks to modern computing, although that doesn’t seem to stop people from trying. At many sites—perhaps even the majority—web and email access are the primary uses of computers. As of 2010, internetworldstats.com estimates the Internet to have nearly 1.5 billion users, or more than 21% of the world’s population. In North America, Internet penetration approaches 75%.
 

TCP/IP is the networking system that underlies the Internet. TCP/IP does not depend on any particular hardware or operating system, so devices that speak TCP/IP can all exchange data (“interoperate”) despite their many differences.
 

TCP/IP works on networks of any size or topology, whether or not they are connected to the outside world. This chapter introduces the TCP/IP protocols in the political and technical context of the Internet, but stand-alone networks are quite similar at the TCP/IP level.
 

14.1 TCP/IP And Its Relationship Tothe Internet
 

TCP/IP and the Internet share a history that goes back several decades. The technical success of the Internet is due largely to the elegant and flexible design of TCP/IP and to the fact that TCP/IP is an open and nonproprietary protocol suite. In turn, the leverage provided by the Internet has helped TCP/IP prevail over several competing protocol suites that were favored at one time or another for political or commercial reasons.
 

The progenitor of the modern Internet was a research network called ARPANET established in 1969 by the U.S. Department of Defense. By the end of the 1980s the network was no longer a research project and we transitioned to the commercial Internet. Today’s Internet is a collection of private networks owned by Internet service providers (ISPs) that interconnect at many so-called peering points.
 

Who Runs the Internet?
 

Oversight of the Internet and the Internet protocols has long been a cooperative and open effort, but its exact structure has changed as the Internet has evolved into a public utility and a driving force in the world economy. Current Internet governance is split roughly into administrative, technical, and political wings, but the boundaries between these functions are often vague. The major players are listed below:
 

• ICANN, the Internet Corporation for Assigned Names and Numbers: if any one group can be said to be in charge of the Internet, this is probably it. It’s the only group with any sort of actual enforcement capability. ICANN controls the allocation of Internet addresses and domain names, along with various other snippets such as protocol port numbers. It is organized as a nonprofit corporation headquartered in California and operates under a memorandum of understanding with the U.S. Department of Commerce. (icann.org)

 

• ISOC, the Internet Society: ISOC is an open-membership organization that represents Internet users. Although it has educational and policy functions, it’s best known as the umbrella organization for the technical development of the Internet. In particular, it is the parent organization of the Internet Engineering Task Force (ietf.org), which oversees most technical work. ISOC is an international nonprofit organization with offices in Washington, D.C. and Geneva. (isoc.org)

 

• IGF, the Internet Governance Forum: a relative newcomer, the IGF was created by the United Nations in 2005 to establish a home for international and policy-oriented discussions related to the Internet. It’s currently structured as a yearly conference series, but its importance is likely to grow over time as governments attempt to exert more control over the operation of the Internet. (intgovforum.org)

 

Of these groups, ICANN has the toughest job: establishing itself as the authority in charge of the Internet, undoing the mistakes of the past, and foreseeing the future, all while keeping users, governments, and business interests happy.
 

Network Standards and Documentation
 

If your eyes haven’t glazed over just from reading the title of this section, you’ve probably already had several cups of coffee. Nonetheless, accessing the Internet’s authoritative technical documentation is a crucial skill for system administrators, and it’s more entertaining than it sounds.
 

The technical activities of the Internet community are summarized in documents known as Requests for Comments or RFCs. Protocol standards, proposed changes, and informational bulletins all usually end up as RFCs. RFCs start their lives as Internet Drafts, and after lots of email wrangling and IETF meetings they either die or are promoted to the RFC series. Anyone who has comments on a draft or proposed RFC is encouraged to reply. In addition to standardizing the Internet protocols, the RFC mechanism sometimes just documents or explains aspects of existing practice.
 

RFCs are numbered sequentially; currently, there are about 5,600. RFCs also have descriptive titles (e.g., Algorithms for Synchronizing Network Clocks), but to forestall ambiguity they are usually cited by number. Once distributed, the contents of an RFC are never changed. Updates are distributed as new RFCs with their own reference numbers. Updates may either extend and clarify existing RFCs or supersede them entirely.
 

RFCs are available from numerous sources, but rfc-editor.org is dispatch central and will always have the most up-to-date information. Look up the status of an RFC at rfc-editor.org before investing the time to read it; it may no longer be the most current document on that subject.
 

The Internet standards process itself is detailed in RFC2026. Another useful meta-RFC is RFC5540, 40 Years of RFCs, which describes some of the cultural and technical context of the RFC system.
 

Don’t be scared away by the wealth of technical detail found in RFCs. Most contain introductions, summaries, and rationales that are useful for system administrators even when the technical details are not. Some RFCs are specifically written as overviews or general introductions. RFCs may not be the gentlest way to learn about a topic, but they are authoritative, concise, and free.
 

Not all RFCs are full of boring technical details. Here are some of our favorites on the lighter side (usually written on April 1st):
 

• RFC1149 – Standard for Transmission of IP Datagrams on Avian Carriers1

 

• RFC1925 – The Twelve Networking Truths

 

• RFC3251 – Electricity over IP

 

• RFC3514 – The Security Flag in the IPv4 Header

 

• RFC4041 – Requirements for Morality Sections in Routing Area Drafts

 

In addition to being assigned its own serial number, an RFC can also be assigned an FYI (For Your Information) number, a BCP (Best Current Practice) number, or a STD (Standard) number. FYIs, STDs, and BCPs are subseries of the RFCs that include documents of special interest or importance.
 

FYIs are introductory or informational documents intended for a broad audience. They can be a good place to start research on an unfamiliar topic if you can find one that’s relevant. Unfortunately, this series has languished recently and not many of the FYIs are up to date.
 

BCPs document recommended procedures for Internet sites; they consist of administrative suggestions and for system administrators are often the most valuable of the RFC subseries.
 

STDs document Internet protocols that have completed the IETF’s review and testing process and have been formally adopted as standards.
 

RFCs, FYIs, BCPs, and STDs are numbered sequentially within their own series, so a document can bear several different identifying numbers. For example, RFC1713, Tools for DNS Debugging, is also known as FYI27.
 

14.2 Networking Road Map
 

Now that we’ve provided a bit of context, let’s look at the TCP/IP protocols themselves. TCP/IP is a protocol “suite,” a set of network protocols designed to work smoothly together. It includes several components, each defined by a standards-track RFC or series of RFCs:
 

• IP, the Internet Protocol, which routes data packets from one machine to another (RFC791)

 

• ICMP, the Internet Control Message Protocol, which provides several kinds of low-level support for IP, including error messages, routing assistance, and debugging help (RFC792)

 

• ARP, the Address Resolution Protocol, which translates IP addresses to hardware addresses (RFC826)2

 

• UDP, the User Datagram Protocol, which provides unverified, one-way data delivery (RFC768)

 

• TCP, the Transmission Control Protocol, which implements reliable, full duplex, flow-controlled, error-corrected conversations (RFC793)

 

These protocols are arranged in a hierarchy or “stack”, with the higher-level protocols making use of the protocols beneath them. TCP/IP is conventionally described as a five-layer system (as shown in Exhibit A), but the actual TCP/IP protocols inhabit only three of these layers.
 

[image: Image]
 

Exhibit A TCP/IP layering model
 

IPv4 And IPv6
 

The version of TCP/IP that has been in widespread use for three decades is protocol revision 4, aka IPv4. It uses four-byte IP addresses. A modernized version, IPv6, expands the IP address space to 16 bytes and incorporates several other lessons learned from the use of IPv4. It removes several features of IP that experience has shown to be of little value, making the protocol potentially faster and easier to implement. IPv6 also integrates security and authentication into the basic protocol.
 

All modern operating systems and many network devices already support IPv6. However, active use of IPv6 remains essentially zero in the real world.3 Experience suggests that it’s probably best for administrators to defer production use of IPv6 to the extent that this is possible. Everyone will eventually be forced to switch to IPv6, but as of 2010 that day is still years away. At the same time, the transition is not so far in the future that you can ignore it when purchasing new network devices. Insist on IPv6 compatibility for new acquisitions.
 

The development of IPv6 was to a large extent motivated by the concern that we are running out of 4-byte IPv4 address space. And indeed we are: projections indicate that the current IPv4 allocation system will collapse some time around 2011. (See ipv4.potaroo.net for a daily update.) Even so, mainstream adoption of IPv6 throughout the Internet is probably still not in the cards anytime soon.
 

More likely, another round of stopgap measures on the part of ISPs and ICANN (or more specifically, its subsidiary IANA, the Internet Assigned Numbers Authority) will extend the dominance of IPv4 for another few years. We expect to see wider use of IPv6 on the Internet backbone, but outside of large ISPs, academic sites involved in Internet research, and universal providers such as Google, our guess is that IPv6 will not be directly affecting most sysadmins’ work in the immediate future.
 

The IPv4 address shortage is felt more acutely outside the United States, and so IPv6 has received a warmer welcome there. In the United States, it may take a killer application to boost IPv6 over the hill: for example, a new generation of cell phones that map an IPv6 address to a telephone number. (Voice-over-IP systems would also benefit from a closer correspondence between phone numbers and IPv6 addresses.)
 

In this book, we focus on IPv4 as the mainstream version of TCP/IP. IPv6-specific material is explicitly marked. Fortunately for sysadmins, IPv4 and IPv6 are highly analogous. If you understand IPv4, you already know most of what you need to know about IPv6. The main difference between the versions lies in their addressing schemes. In addition to longer addresses, IPv6 introduces a few additional addressing concepts and some new notation. But that’s about it.
 

Packets and Encapsulation
 

TCP/IP supports a variety of physical networks and transport systems, including Ethernet, token ring, MPLS (Multiprotocol Label Switching), wireless Ethernet, and serial-line-based systems. Hardware is managed within the link layer of the TCP/IP architecture, and higher-level protocols do not know or care about the specific hardware being used.
 

Data travels on a network in the form of packets, bursts of data with a maximum length imposed by the link layer. Each packet consists of a header and a payload. The header tells where the packet came from and where it’s going. It can also include checksums, protocol-specific information, or other handling instructions. The payload is the data to be transferred.
 

The name of the primitive data unit depends on the layer of the protocol. At the link layer it is called a frame, at the IP layer a packet, and at the TCP layer a segment. In this book, we use “packet” as a generic term that encompasses these various cases.
 

As a packet travels down the protocol stack (from TCP or UDP transport to IP to Ethernet to the physical wire) in preparation for being sent, each protocol adds its own header information. Each protocol’s finished packet becomes the payload part of the packet generated by the next protocol. This nesting is known as encapsulation. On the receiving machine, the encapsulation is reversed as the packet travels back up the protocol stack.
 

For example, a UDP packet being transmitted over Ethernet contains three different wrappers or envelopes. On the Ethernet wire, it is framed with a simple header that lists the source and next-hop destination hardware addresses, the length of the frame, and the frame’s checksum (CRC). The Ethernet frame’s payload is an IP packet, the IP packet’s payload is a UDP packet, and the UDP packet’s payload is the data being transmitted. Exhibit B shows the components of such a frame.
 

Exhibit B A Typical Network Packet4
 

[image: Image]
 

Ethernet Framing
 

One of the main chores of the link layer is to add headers to packets and to put separators between them. The headers contain each packet’s link-layer addressing information and checksums, and the separators ensure that receivers can tell where one packet stops and the next one begins. The process of adding these extra bits is known generically as framing.
 

The link layer is actually divided into two parts: MAC, the Media Access Control sublayer, and LLC, the Link Layer Control sublayer. The MAC layer deals with the media and transmits packets onto the wire. The LLC layer handles the framing.
 

Today, a single standard for Ethernet framing is in common use: DIX Ethernet II. Historically, several slightly different standards based on IEEE 802.2 were also used, especially on Novell networks.
 

Maximum Transfer Unit
 

The size of packets on a network may be limited both by hardware specifications and by protocol conventions. For example, the payload of a standard Ethernet frame is traditionally 1,500 bytes. The size limit is associated with the link-layer protocol and is called the maximum transfer unit or MTU. Table 14.1 shows some typical values for the MTU.
 

[image: Image]
 

Table 14.1 MTUs for various types of network
 

The IP layer splits packets to conform to the MTU of a particular network link. If a packet is routed through several networks, one of the intermediate networks may have a smaller MTU than the network of origin. In this case, an IPv4 router that forwards the packet onto the small-MTU network further subdivides the packet in a process called fragmentation.
 

Fragmentation of in-flight packets is an unwelcome chore for a busy router, so IPv6 largely removes this feature. Packets can still be fragmented, but the originating host must do the work itself.
 

Senders can discover the lowest-MTU link through which a packet must pass by setting the packet’s “do not fragment” flag. If the packet reaches an intermediate router that cannot forward the packet without fragmenting it, the router returns an ICMP error message to the sender. The ICMP packet includes the MTU of the network that’s demanding smaller packets, and this MTU then becomes the governing packet size for communication with that destination.
 

The TCP protocol does path MTU discovery automatically, even in IPv4. UDP is not so nice and is happy to shunt extra work to the IP layer.
 

Fragmentation problems can be insidious. Although path MTU discovery should automatically resolve MTU conflicts, an administrator must occasionally intervene. If you are using a tunneled architecture for a virtual private network, for example, you should look at the size of the packets that are traversing the tunnel. They are often 1,500 bytes to start with, but once the tunneling header is added, they become 1,540 bytes or so and must be fragmented. Setting the MTU of the link to a smaller value averts fragmentation and increases the overall performance of the tunneled network. Consult the ifconfig man page to see how to set an interface’s MTU.
 

14.3 Packet Addressing
 

Like letters or email messages, network packets must be properly addressed in order to reach their destinations. Several addressing schemes are used in combination:
 

• MAC (media access control) addresses for use by hardware

 

• IPv4 and IPv6 network addresses for use by software

 

• Hostnames for use by people

 

Hardware (MAC) Addressing
 

Each of a host’s network interfaces usually has one link-layer MAC address that distinguishes it from other machines on the physical network, plus one or more IP addresses that identify the interface on the global Internet. This last part bears repeating: IP addresses identify network interfaces, not machines. (To users the distinction is irrelevant, but administrators must know the truth.)
 

The lowest level of addressing is dictated by network hardware. For example, Ethernet devices are assigned a unique 6-byte hardware address at the time of manufacture. These addresses are traditionally written as a series of 2-digit hex bytes separated by colons; for example, 00:50:8D:9A:3B:DF.
 

Token ring interfaces have a similar address that is also six bytes long. Some point-to-point networks (such as PPP) need no hardware addresses at all; the identity of the destination is specified as the link is established.
 

A 6-byte Ethernet address is divided into two parts. The first three bytes identify the manufacturer of the hardware, and the last three bytes are a unique serial number that the manufacturer assigns. Sysadmins can sometimes identify the brand of machine that is trashing a network by looking up the 3-byte identifier in a table of vendor IDs. A current vendor table is available from
 

iana.org/assignments/ethernet-numbers
 

The 3-byte codes are actually IEEE Organizationally Unique Identifiers (OUIs), so you can also look up them up directly in the IEEE’s database at
 

standards.ieee.org/regauth/oui
 

Of course, the relationships among the manufacturers of chipsets, components, and systems are complex, so the vendor ID embedded in a MAC address can be misleading, too.
 

In theory, Ethernet hardware addresses are permanently assigned and immutable. However, many network interfaces now let you override the hardware address and set one of your own choosing. This feature can be handy if you have to replace a broken machine or network card and for some reason must use the old MAC address (e.g., all your switches filter it, or your DHCP server hands out addresses based on MAC addresses, or your MAC address is also a software license key). Spoofable MAC addresses are also helpful if you need to infiltrate a wireless network that uses MAC-based access control. But for simplicity, it’s generally advisable to preserve the uniqueness of MAC addresses.
 

IP Addressing
 

At the next level up from the hardware, Internet addressing (more commonly known as IP addressing) is used. IP addresses are globally unique5 and hardware independent.
 

See page 468 for more information about ARP.
 

The mapping from IP addresses to hardware addresses is implemented at the link layer of the TCP/IP model. On networks such as Ethernet that support broadcasting (that is, networks that allow packets to be addressed to “all hosts on this physical network”), senders use the ARP protocol to discover mappings without assistance from a system administrator. In IPv6, an interface’s MAC address can be used as part of the IP address, making the translation between IP and hardware addressing virtually automatic.
 

Hostname “Addressing”
 

See Chapter 17 for more information about DNS.
 

IP addresses are sequences of numbers, so they are hard for people to remember. Operating systems allow one or more hostnames to be associated with an IP address so that users can type rfc-editor.org instead of 128.9.160.27. Under UNIX and Linux, this mapping can be set up in several ways, ranging from a static file (/etc/hosts) to the LDAP database system to DNS, the world-wide Domain Name System. Keep in mind that hostnames are really just a convenient shorthand for IP addresses, and as such, they refer to network interfaces rather than computers.
 

Ports
 

IP addresses identify a machine’s network interfaces, but they are not specific enough to address individual processes or services, many of which may be actively using the network at once. TCP and UDP extend IP addresses with a concept known as a port, a 16-bit number that supplements an IP address to specify a particular communication channel. Standard services such as email, FTP, and HTTP associate themselves with “well known” ports defined in /etc/services.6 To help prevent impersonation of these services, UNIX systems restrict server programs from binding to port numbers under 1,024 unless they are run as root. (Anyone can communicate with a server running on a low port number; the restriction applies only to the program listening on the port.)
 

Address Types
 

The IP layer defines several broad types of address, some of which have direct counterparts at the link layer:
 

• Unicast – addresses that refer to a single network interface

 

• Multicast – addresses that simultaneously target a group of hosts

 

• Broadcast – addresses that include all hosts on the local subnet

 

• Anycast – addresses that resolve to any one of a group of hosts

 

Multicast addressing facilitates applications such as video conferencing in which the same set of packets must be sent to all participants. The Internet Group Management Protocol (IGMP) constructs and manages sets of hosts that are treated as one multicast destination.
 

Multicast is largely unused on today’s Internet, but it’s slightly more mainstream in IPv6. IPv6 broadcast addresses are really just specialized forms of multicast addressing.
 

Anycast addresses bring load balancing to the network layer by allowing packets to be delivered to whichever of several destinations is closest in terms of network routing. You might expect that they’d be implemented similarly to multicast addresses, but in fact they are more like unicast addresses.
 

Most of the implementation details for anycast support are handled at the level of routing rather than IP. The novelty of anycast addressing is really just the relaxation of the traditional requirement that IP addresses identify unique destinations. Anycast addressing is formally described for IPv6, but the same tricks can be applied to IPv4, too—for example, as is done for root DNS name servers.
 

14.4 IP Addresses: The Gory Details
 

With the exception of multicast addresses, Internet addresses consist of a network portion and a host portion. The network portion identifies a logical network to which the address refers, and the host portion identifies a node on that network. In IPv4, addresses are four bytes long and the boundary between network and host portions is set administratively. In IPv6, addresses are 16 bytes long and the network portion and host portion are always eight bytes each.
 

IPv4 addresses are written as decimal numbers, one for each byte, separated by periods; for example, 209.85.171.147. The leftmost byte is the most significant and is always part of the network portion.
 

When 127 is the first byte of an address, it denotes the “loopback network,” a fictitious network that has no real hardware interface and only one host. The loopback address 127.0.0.1 always refers to the current host. Its symbolic name is “localhost”. (This is another small violation of IP address uniqueness since every host thinks 127.0.0.1 is a different computer: itself.)
 

IPv6 addresses and their text-formatted equivalents are a bit more complicated. They’re discussed in the section IPv6 addressing starting on page 464.
 

An interface’s IP address and other parameters are set with the ifconfig command. Jump ahead to page 478 for a detailed description of ifconfig.
 

IPv4 Address Classes
 

Historically, IP addresses had an inherent “class” that depended on the first bits of the leftmost byte. The class determined which bytes of the address were in the network portion and which were in the host portion. Today, an explicit mask identifies the network portion, and the boundary can fall between two adjacent bits, not just between bytes. However, the traditional classes are still used as defaults when no explicit division is specified.
 

Classes A, B, and C denote regular IP addresses. Classes D and E are used for multicasting and research addresses. Table 14.2 on the next page describes the characteristics of each class. The network portion of an address is denoted by N, and the host portion by H.
 

[image: Image]
 

Table 14.2 Historical Internet address classes
 

It’s rare for a single physical network to have more than 100 computers attached to it, so class A and class B addresses (which allow for 16,777,214 hosts and 65,534 hosts per network, respectively) are really quite silly and wasteful. For example, the 127 class A networks use up half the available address space. Who knew that IPv4 address space would become so precious!
 

Subnetting
 

To make better use of these addresses, you can now reassign part of the host portion to the network portion by specifying an explicit 4-byte “subnet mask” or “netmask” in which the 1s correspond to the desired network portion and the 0s correspond to the host portion. The 1s must be leftmost and contiguous. At least eight bits must be allocated to the network part and at least two bits to the host part. Ergo, there are really only 22 possible values for an IPv4 netmask.
 

For example, the four bytes of a class B address would normally be interpreted as N.N.H.H. The implicit netmask for class B is therefore 255.255.0.0 in decimal notation. With a netmask of 255.255.255.0, however, the address would be interpreted as N.N.N.H. Use of the mask turns a single class B network address into 256 distinct class-C-like networks, each of which can support 254 hosts.
 

Netmasks are assigned with the ifconfig command as each network interface is set up. By default, ifconfig uses the inherent class of an address to figure out which bits are in the network part. When you set an explicit mask, you simply override this behavior.
 

See page 478 for more information about ifconfig.

 

Netmasks that do not end at a byte boundary can be annoying to decode and are often written as /XX, where XX is the number of bits in the network portion of the address. This is sometimes called CIDR (Classless Inter-Domain Routing; see page 460) notation. For example, the network address 128.138.243.0/26 refers to the first of four networks whose first bytes are 128.138.243. The other three networks have 64, 128, and 192 as their fourth bytes. The netmask associated with these networks is 255.255.255.192 or 0xFFFFFFC0; in binary, it’s 26 ones followed by 6 zeros. Exhibit C breaks out these numbers in a bit more detail.
 

[image: Image]
 

Exhibit C Netmask base conversion
 

A /26 network has 6 bits left (32 – 26 = 6) to number hosts. 26 is 64, so the network has 64 potential host addresses. However, it can only accommodate 62 actual hosts because the all-0 and all-1 host addresses are reserved (they are the network and broadcast addresses, respectively).
 

In our 128.138.243.0/26 example, the extra two bits of network address obtained by subnetting can take on the values 00, 01, 10, and 11. The 128.138.243.0/24 network has thus been divided into four /26 networks:
 

[image: Image]
 

The boldfaced bits of the last byte of each address are the bits that belong to the network portion of that byte.
 

Tricks and Tools for Subnet Arithmetic
 

It’s confusing to do all this bit twiddling in your head, but some tricks can make it simpler. The number of hosts per network and the value of the last byte in the netmask always add up to 256:
 

last netmask byte = 256 – net size
 

For example, 256 – 64 = 192, which is the final byte of the netmask in the preceding example. Another arithmetic fact is that the last byte of an actual network address (as opposed to a netmask) must be evenly divisible by the number of hosts per network. We see this fact in action in the 128.138.243.0/26 example, where the last bytes of the networks are 0, 64, 128, and 192—all divisible by 64.7
 

Given an IP address (say, 128.138.243.100), we cannot tell without the associated netmask what the network address and broadcast address will be. Table 14.3 on the next page shows the possibilities for /16 (the default for a class B address), /24 (a plausible value), and /26 (a reasonable value for a small network).
 

The network address and broadcast address steal two hosts from each network, so it would seem that the smallest meaningful network would have four possible hosts: two real hosts—usually at either end of a point-to-point link—and the network and broadcast addresses. To have four values for hosts requires two bits in the host portion, so such a network would be a /30 network with netmask 255.255.255.252 or 0xFFFFFFFC. However, a /31 network is in fact treated as a special case (see RFC3021) and has no network or broadcast address; both of its two addresses are used for hosts, and its netmask is 255.255.255.254.
 

[image: Image]
 

Table 14.3 Example IPv4 address decodings
 

A handy web site called the IP Calculator by Krischan Jodies (it’s available at jodies.de/ipcalc) helps with binary/hex/mask arithmetic. IP Calculator displays everything you might need to know about a network address and its netmask, broadcast address, hosts, etc. A tarball for a command-line version of the tool, ipcalc, is also available.
 

[image: Image] On Ubuntu you can install ipcalc through apt-get.
 

Here’s some sample IP Calculator output, munged a bit to help with formatting:
 

[image: Image]
 

The output provides both easy-to-understand versions of the addresses and “cut and paste” versions. Very useful.
 

[image: Image] Red Hat includes a similar but unrelated program that’s also called ipcalc. However, it’s relatively useless because it only understands default IP address classes.
 

If a dedicated IP calculator isn’t available, the standard utility bc makes a good backup utility since it can do arithmetic in any base. Set the input and output bases with the ibase and obase directives. Set the obase first; otherwise, it’s interpreted relative to the new ibase.
 

CIDR: Classless Inter-Domain Routing
 

CIDR is defined in RFC1519.

 

Like subnetting, of which it is a direct extension, CIDR relies on an explicit net-mask to define the boundary between the network and host parts of an address. But unlike subnetting, CIDR allows the network portion to be made smaller than would be implied by an address’s implicit class. A short CIDR mask may have the effect of aggregating several networks for purposes of routing. Hence, CIDR is sometimes referred to as supernetting.
 

CIDR simplifies routing information and imposes hierarchy on the routing process. Although CIDR was only intended as an interim solution along the road to IPv6, it has proved to be sufficiently powerful to handle the Internet’s growth problems for the better part of a decade.
 

For example, suppose that a site has been given a block of eight class C addresses numbered 192.144.0.0 through 192.144.7.0 (in CIDR notation, 192.144.0.0/21). Internally, the site could use them as
 

• 1 network of length /21 with 2,046 hosts, netmask 255.255.248.0

 

• 8 networks of length /24 with 254 hosts each, netmask 255.255.255.0

 

• 16 networks of length /25 with 126 hosts each, netmask 255.255.255.128

 

• 32 networks of length /26 with 62 hosts each, netmask 255.255.255.192

 

and so on. But from the perspective of the Internet, it’s not necessary to have 32, 16, or even 8 routing table entries for these addresses. They all refer to the same organization, and all the packets go to the same ISP. A single routing entry for 192.144.0.0/21 suffices. CIDR makes it easy to allocate portions of class A and B addresses and thus increases the number of available addresses manyfold.
 

Inside your network, you can mix and match regions of different subnet lengths as long as all the pieces fit together without overlaps. This is called variable length subnetting. For example, an ISP with the 192.144.0.0/21 allocation could define some /30 networks for point-to-point customers, some /24s for large customers, and some /27s for smaller folks.
 

All the hosts on a network must be configured with the same netmask. You can’t tell one host that it is a /24 and another host on the same network that it is a /25.
 

Address Allocation
 

Only network numbers are formally assigned; sites must define their own host numbers to form complete IP addresses. You can subdivide the address space that has been assigned to you into subnets in whatever manner you like.
 

Administratively, ICANN (the Internet Corporation for Assigned Names and Numbers) has delegated blocks of addresses to five regional Internet registries, and these regional authorities are responsible for doling out subblocks to ISPs within their regions (see Table 14.4 on the next page). These ISPs in turn divide up their blocks and hand out pieces to individual clients. Only large ISPs should ever have to deal directly with one of the ICANN-sponsored address registries.
 

The delegation from ICANN to regional registries and then to national or regional ISPs has allowed for further aggregation in the backbone routing tables. ISP customers who have been allocated address space within the ISP’s block do not need individual routing entries on the backbone. A single entry for the aggregated block that points to the ISP suffices.
 

[image: Image]
 

Table 14.4 Regional Internet registries
 

Private Addresses and Network Address Translation (NAT)
 

Another factor that has helped decelerate the rate at which IPv4 addresses are consumed is the use of private IP address spaces, described in RFC1918. These addresses are used by your site internally but are never shown to the Internet (or at least, not intentionally). A border router translates between your private address space and the address space assigned by your ISP.
 

RFC1918 sets aside 1 class A network, 16 class B networks, and 256 class C networks that will never be globally allocated and can be used internally by any site. Table 14.5 shows the options. (The “CIDR range” column shows each range in the more compact CIDR notation; it does not add additional information.)
 

[image: Image]
 

Table 14.5 IP addresses reserved for private use
 

The original idea was that sites would choose an address class from among these options to fit the size of their organizations. But now that CIDR and subnetting are universal, it probably makes the most sense to use the class A address (subnetted, of course) for all new private networks.
 

To allow hosts that use these private addresses to talk to the Internet, the site’s border router runs a system called NAT (Network Address Translation). NAT intercepts packets addressed with these internal addresses and rewrites their source addresses, using a real external IP address and perhaps a different source port number. It also maintains a table of the mappings it has made between internal and external address/port pairs so that the translation can be performed in reverse when answering packets arrive from the Internet.
 

NAT’s use of port number mapping multiplexes several conversations onto the same IP address so that a single external address can be shared by many internal hosts. In some cases, a site can get by with only one “real” IP address. For example, this is the default configuration for most mass-market routers used with cable and DSL modems.
 

A site that uses NAT must still request a small section of address space from its ISP, but most of the addresses thus obtained are used for NAT mappings and are not assigned to individual hosts. If the site later wants to choose another ISP, only the border router and its NAT configuration need be updated, not the configurations of the individual hosts.
 

Large organizations that use NAT and RFC1918 addresses must institute some form of central coordination so that all hosts, independently of their department or administrative group, have unique IP addresses. The situation can become complicated when one company that uses RFC1918 address space acquires or merges with another company that’s doing the same thing. Parts of the combined organization must often renumber.
 

It is possible to have a UNIX or Linux box perform the NAT function, but most sites prefer to delegate this task to their routers or network connection devices.8 See the vendor-specific sections later in this chapter for details.
 

An incorrect NAT configuration can let private-address-space packets escape onto the Internet. The packets may get to their destinations, but answering packets won’t be able to get back. CAIDA,9 an organization that collects operational data from the Internet backbone, finds that 0.1% to 0.2% of the packets on the backbone have either private addresses or bad checksums. This sounds like a tiny percentage, but it represents thousands of packets every minute on a busy circuit. See caida.org for other interesting statistics and network measurement tools.
 

One issue raised by NAT is that an arbitrary host on the Internet cannot initiate connections to your site’s internal machines. To get around this limitation, NAT implementations let you preconfigure externally visible “tunnels” that connect to specific internal hosts and ports.10
 

Another issue is that some applications embed IP addresses in the data portion of packets; these applications are foiled or confused by NAT. Examples include some media streaming systems, routing protocols, and FTP commands. NAT sometimes breaks VPNs (virtual private networks), too.
 

NAT hides interior structure. This secrecy feels like a security win, but the security folks say NAT doesn’t really help for security and does not replace the need for a firewall. Unfortunately, NAT also foils attempts to measure the size and topology of the Internet. See RFC4864, Local Network Protection for IPv6, for a good discussion of both the real and illusory benefits of NAT in IPv4.
 

IPv6 Addressing
 

IPv6 addresses are 128 bits long. These long addresses were originally intended to solve the problem of IP address exhaustion. But now that they’re here, they are being exploited to help with issues of routing, mobility, and locality of reference.
 

IPv4 addresses were not designed to be geographically clustered in the manner of phone numbers or zip codes, but clustering was added after the fact in the form of the CIDR conventions. (Of course, the relevant “geography” is really routing space rather than physical location.) CIDR was so technically successful that hierarchical subassignment of network addresses is now assumed throughout IPv6. Your IPv6 ISP assigns you an address prefix that you simply prepend to the local parts of your addresses, usually at your border router.
 

The boundary between the network portion and the host portion of an IPv6 address is fixed at /64, so there can be no disagreement or confusion about how long an address’s network portion “really” is. Stated another way, true subnetting no longer exists in the IPv6 world, although the term “subnet” lives on as a synonym for “local network.” Even though network numbers are always 64 bits long, routers needn’t pay attention to all 64 bits when making routing decisions. They can route packets based on prefixes, just as they do under CIDR.
 

An early scheme outlined in RFC2374 called for four standardized subdivision levels within the network portion of an IPv6 address. But in light of the positive experience with letting ISPs manage their own IPv4 address subdivisions, that plan was withdrawn in RFC3587. ISPs are now free to set delegation boundaries wherever they wish.
 

The 64-bit host ID can potentially be derived from the hardware interface’s 48-bit MAC address.11 This scheme allows for automatic host numbering, which is a nice feature for sysadmins since only the subnet needs to be managed.
 

The fact that the MAC address can be seen at the IP layer has both good and bad implications. The good part is that host number configuration can be completely automatic. The bad part is that the brand and model of interface card are encoded in the first half of the MAC address, so prying eyes and hackers with code for a particular architecture will be helped along. The IPv6 standards point out that sites are not required to use MAC addresses to derive host IDs; they can use whatever numbering system they want.
 

Here are some useful sources of additional IPv6 information:
 

• ipv6tf.org – An IPv6 information portal

 

• ipv6.org – FAQs and technical information

 

• ipv6forum.com – Marketing folks and IPv6 propaganda

 

• RFC3587 – IPv6 Global Unicast Address Format

 

• RFC4291 – IP Version 6 Addressing Architecture

 

Various schemes have been proposed to ease the transition from IPv4 to IPv6, mostly focusing on ways to tunnel IPv6 traffic through the IPv4 network to compensate for gaps in IPv6 support. The two tunneling systems in common use are called 6to4 and Teredo; the latter, named after a family of wood-boring ship-worms, can be used on systems behind a NAT device.
 

14.5 Routing
 

Routing is the process of directing a packet through the maze of networks that stand between its source and its destination. In the TCP/IP system, it is similar to asking for directions in an unfamiliar country. The first person you talk to might point you toward the right city. Once you were a bit closer to your destination, the next person might be able to tell you how to get to the right street. Eventually, you get close enough that someone can identify the building you’re looking for.
 

Routing information takes the form of rules (“routes”), such as “To reach network A, send packets through machine C.” There can also be a default route that tells what to do with packets bound for a network to which there is no explicit route.
 

Routing information is stored in a table in the kernel. Each table entry has several parameters, including a mask for each listed network. To route a packet to a particular address, the kernel picks the most specific of the matching routes—that is, the one with the longest mask. If the kernel finds no relevant route and no default route, then it returns a “network unreachable” ICMP error to the sender.
 

The word “routing” is commonly used to mean two distinct things:
 

• Looking up a network address in the routing table to forward a packet toward its destination

 

• Building the routing table in the first place

 

In this section we examine the forwarding function and look at how routes can be manually added to or deleted from the routing table. We defer the more complicated topic of routing protocols that build and maintain the routing table until Chapter 15.
 

Routing Tables
 

You can examine a machine’s routing table with netstat -r. Use netstat -rn to avoid DNS lookups and present all the information numerically, which is generally more useful. We discuss netstat in more detail starting on page 868, but here is a short example to give you a better idea of what routes look like:
 

[image: Image]
 

This host has two network interfaces: 132.236.227.93 (eth0) on the network 132.236.227.0/24 and 132.236.212.1 (eth1) on the network 132.236.212.0/26.
 

The destination field is usually a network address, although you can also add host-specific routes (their genmask is 255.255.255.255 since all bits are consulted). An entry’s gateway field must contain the full IP address of a local network interface or adjacent host; on Linux kernels it can be 0.0.0.0 to invoke the default gateway.
 

For example, the fourth route in the table above says that to reach the network 132.236.220.64/26, packets must be sent to the gateway 132.236.212.6 through interface eth1. The second entry is a default route; packets not explicitly addressed to any of the three networks listed (or to the machine itself) are sent to the default gateway host, 132.236.227.1.
 

A host can only route packets to gateway machines that are reachable through a directly connected network. The local host’s job is limited to moving packets one hop closer to their destinations, so it is pointless to include information about nonadjacent gateways in the local routing table. Each gateway that a packet visits makes a fresh next-hop routing decision based on its own local routing database.12
 

Routing tables can be configured statically, dynamically, or with a combination of the two approaches. A static route is one that you enter explicitly with the route command. Static routes remain in the routing table as long as the system is up; they are often set up at boot time from one of the system startup scripts. For example, the Linux commands add the fourth and second routes displayed by netstat -rn above. (The first and third routes in that display were added by ifconfig when the eth0 and eth1 interfaces were configured.)
 

See page 481 for more information about the route command.
 

[image: Image]
 

The final route is also added at boot time. It configures the loopback interface, which prevents packets sent from the host to itself from going out on the network. Instead, they are transferred directly from the network output queue to the network input queue inside the kernel.
 

In a stable local network, static routing is an efficient solution. It is easy to manage and reliable. However, it requires that the system administrator know the topology of the network accurately at boot time and that the topology not change often.
 

Most machines on a local area network have only one way to get out to the rest of the network, so the routing problem is easy. A default route added at boot time suffices to point toward the way out. Hosts that use DHCP (see page 469) to get their IP addresses can also obtain a default route with DHCP.
 

For more complicated network topologies, dynamic routing is required. Dynamic routing is implemented by a daemon process that maintains and modifies the routing table. Routing daemons on different hosts communicate to discover the topology of the network and to figure out how to reach distant destinations. Several routing daemons are available. See Chapter 15, Routing, for details.
 

ICMP Redirects
 

Although IP generally does not concern itself with the management of routing information, it does define a naive damage control feature called an ICMP redirect. When a router forwards a packet to a machine on the same network from which the packet was originally received, something is clearly wrong. Since the sender, the router, and the next-hop router are all on the same network, the packet could have been forwarded in one hop rather than two. The router can conclude that the sender’s routing tables are inaccurate or incomplete.
 

In this situation, the router can notify the sender of its problem by sending an ICMP redirect packet. In effect, a redirect says, “You should not be sending packets for host xxx to me; you should send them to host yyy instead.”
 

In theory, the recipient of a redirect can adjust its routing table to fix the problem. In practice, redirects contain no authentication information and are therefore untrustworthy. Dedicated routers usually ignore redirects, but most UNIX and Linux systems accept them and act on them by default. You’ll need to consider the possible sources of redirects in your network and disable their acceptance if they could pose a problem.
 

[image: Image] Under Linux, the variable accept_redirects in the /proc hierarchy controls the acceptance of ICMP redirects. See page 504 for instructions on examining and resetting this variable.
 

[image: Image] On Solaris, use ndd -set /dev/ip ip_ignore_redirect 1 to disregard ICMP redirects. See page 498 for more details.
 

[image: Image] Although HP-UX also uses the ndd command to control its IP protocol stack, the underlying IP implementation lacks the ability to ignore ICMP redirects. However, you can arrange to have the routes that result from these redirects deleted from the routing table a second later with
 

ndd -set /dev/ip ip_ire_redirect_interval 1000
 

Some versions of HP-UX have enforced minima of 5 or 60 seconds on this parameter (which is expressed in milliseconds), but HP-UX 11 appears to accept smaller values without complaint.
 

[image: Image] On AIX, the command to ignore ICMP redirects is no -p -o ipignoreredirects=1. The -p option makes it a permanent change; omit this to test the change temporarily. See page 507 for more details.
 

14.6 ARP: The Address Resolution Protocol
 

ARP is defined in RFC826.
 

Although IP addresses are hardware-independent, hardware addresses must still be used to actually transport data across a network’s link layer.13 ARP, the Address Resolution Protocol, discovers the hardware address associated with a particular IP address. It can be used on any kind of network that supports broadcasting but is most commonly described in terms of Ethernet.
 

If host A wants to send a packet to host B on the same Ethernet, it uses ARP to discover B’s hardware address. If B is not on the same network as A, host A uses the routing system to determine the next-hop router along the route to B and then uses ARP to find that router’s hardware address. Since ARP uses broadcast packets, which cannot cross networks,14 it can only be used to find the hardware addresses of machines directly connected to the sending host’s local network.
 

Every machine maintains a table in memory called the ARP cache, which contains the results of recent ARP queries. Under normal circumstances, many of the addresses a host needs are discovered soon after booting, so ARP does not account for a lot of network traffic.
 

ARP works by broadcasting a packet of the form “Does anyone know the hardware address for 128.138.116.4?” The machine being searched for recognizes its own IP address and replies, “Yes, that’s the IP address assigned to one of my network interfaces, and the corresponding Ethernet address is 8:0:20:0:fb:6a.”
 

The original query includes the IP and Ethernet addresses of the requestor so that the machine being sought can reply without issuing an ARP query of its own.
 

Thus, the two machines learn each other’s ARP mappings with only one exchange of packets. Other machines that overhear the requestor’s initial broadcast can record its address mapping, too.
 

The arp command examines and manipulates the kernel’s ARP cache, adds or deletes entries, and flushes or shows the table. arp -a displays the contents of the ARP cache; output formats vary.
 

The arp command is generally useful only for debugging and for situations that involve special hardware. For example, if two hosts on a network are using the same IP address, one has the right ARP table entry and one is wrong. You can use the arp command to track down the offending machine.
 

14.7 DHCP: The Dynamic Host Configuration Protocol
 

DHCP is defined in RFCs 2131 and 2132.
 

When you plug a device or computer into a network, it usually obtains an IP address for itself on the local network, sets up an appropriate default route, and connects itself to a local DNS server. The Dynamic Host Configuration Protocol (DHCP) is the hidden Svengali that makes this magic happen.
 

The protocol lets a DHCP client “lease” a variety of network and administrative parameters from a central server that is authorized to distribute them. The leasing paradigm is particularly convenient for PCs that are turned off when not in use and for networks that must support transient guests such as laptops.
 

Leasable parameters include
 

• IP addresses and netmasks

 

• Gateways (default routes)

 

• DNS name servers

 

• Syslog hosts

 

• WINS servers, X font servers, proxy servers, NTP servers

 

• TFTP servers (for loading a boot image)

 

There are dozens more—see RFC2132. Real-world use of the more exotic parameters is rare, however.
 

Clients must report back to the DHCP server periodically to renew their leases. If a lease is not renewed, it eventually expires. The DHCP server is then free to assign the address (or whatever was being leased) to a different client. The lease period is configurable, but it’s usually quite long (hours or days).
 

Even if you want each host to have its own permanent IP address, DHCP can save you time and suffering. Once the server is up and running, clients can use it to obtain their network configuration at boot time. No fuss, no mess, and most importantly, a minimum of local configuration on the client machines.
 

DHCP Software
 

ISC, the Internet Systems Consortium, maintains a very nice open source reference implementation of DHCP. Major versions 2, 3, and 4 of ISC’s software are all in common use, and all of these versions work fine for basic service. Version 3 supports backup DHCP servers, and version 4 supports IPv6. Server, client, and relay agents are all available from isc.org.
 

[image: Image] Major Linux distributions all use some version of the ISC software, although you may have to install the server portion explicitly. The server package is called dhcp on Red Hat, dhcp3-server on Ubuntu, and dhcp-server on SUSE.
 

Non-Linux systems often have their own home-grown DCHP implementations, and unfortunately all our example UNIX systems fall into this category.
 

It’s best not to tamper with the client side of DHCP, since that part of the code is relatively simple and comes preconfigured and ready to use. Changing the client side of DHCP is not trivial.
 

However, if you need to run a DHCP server, we recommend the ISC package over vendor-specific implementations. In a typical heterogeneous network environment, administration is greatly simplified by standardizing on a single implementation. The ISC software provides a reliable, open source solution that builds without incident on most versions of UNIX.
 

In the next few sections, we briefly discuss the DHCP protocol, explain how to set up the ISC server that implements it, and review some client configuration issues.
 

How DHCP Works
 

DHCP is a backward-compatible extension of BOOTP, a protocol originally devised to help diskless UNIX workstations boot. DHCP generalizes the parameters that can be supplied and adds the concept of a lease period for assigned values.
 

A DHCP client begins its interaction with a DHCP server by broadcasting a “Help! Who am I?” message.15 If a DHCP server is present on the local network, it negotiates with the client to provide an IP address and other networking parameters. If there is no DHCP server on the local net, servers on different subnets can receive the initial broadcast message through a separate piece of DHCP software that acts as a relay agent.
 

When the client’s lease time is half over, it attempts to renew its lease. The server is obliged to keep track of the addresses it has handed out, and this information must persist across reboots. Clients are supposed to keep their lease state across reboots too, although many do not. The goal is to maximize stability in network configuration. In theory, all software should be prepared for network configurations to change at a moment’s notice, but a lot of software still makes unwarranted assumptions about the continuity of the network.
 

ISC’s DHCP Software
 

ISC’s server daemon is called dhcpd, and its configuration file is dhcpd.conf, usually found in /etc or /etc/dhcp3. The format of the config file is a bit fragile; leave out a semicolon and you may receive a cryptic, unhelpful error message.
 

When setting up a new DHCP server, you must also make sure that an empty lease database file has been created. Check the summary at the end of the man page for dhcpd to find the correct location for the lease file on your system. It’s usually somewhere underneath /var.
 

To set up the dhcpd.conf file, you need the following information:
 

• The subnets for which dhcpd should manage IP addresses, and the ranges of addresses to dole out

 

• A list of static IP address assignments you want to make (if any), along with the MAC (hardware) addresses of the recipients

 

• The initial and maximum lease durations, in seconds

 

• Any other options the server should pass to DHCP clients: netmask, default route, DNS domain, name servers, etc.

 

The dhcpd man page outlines the configuration process, and the dhcpd.conf man page covers the exact syntax of the config file. In addition to setting up your configuration, make sure dhcpd is started automatically at boot time. (See Chapter 3, Booting and Shutting Down, for instructions.) It’s helpful to make startup of the daemon conditional on the existence of the dhcpd.conf file if your system doesn’t do this for you automatically.
 

Below is a sample dhcpd.conf file from a Linux box with two interfaces, one internal and one that connects to the Internet. This machine performs NAT translation for the internal network (see page 462) and leases out a range of 10 IP addresses on this network as well.
 

Every subnet must be declared, even if no DHCP service is provided on it, so this dhcpd.conf file contains a dummy entry for the external interface. It also includes a host entry for one particular machine that needs a fixed address.
 

[image: Image]
 

Unless you make static IP address assignments such as the one for gandalf above, you’ll need to consider how your DHCP configuration will interact with DNS. The easy option is to assign a generic name to each dynamically leased address (e.g., dhcp1.synack.net) and allow the names of individual machines to float along with their IP addresses. Alternatively, you can configure dhcpd to update the DNS database as it hands out addresses. The dynamic update solution is more complicated, but it has the advantage of preserving each machine’s hostname.
 

See Chapter 17 for more information about DNS.
 

ISC’s DHCP relay agent is a separate daemon called dhcrelay. It’s a simple program with no configuration file of its own, although Linux distributions often add a startup harness that feeds it the appropriate command-line arguments for your site. dhcrelay listens for DHCP requests on local networks and forwards them to a set of remote DHCP servers that you specify. It’s handy both for centralizing the management of DHCP service and for provisioning backup DHCP servers.
 

ISC’s DHCP client is similarly configuration free. It stores status files for each connection in the directory /var/lib/dhcp or /var/lib/dhclient. The files are named after the interfaces they describe. For example, dhclient-eth0.leases would contain all the networking parameters that dhclient had set up on behalf of the eth0 interface.
 

14.8 Security Issues
 

We address the topic of security in a chapter of its own (Chapter 22), but several security issues relevant to IP networking merit discussion here. In this section, we briefly look at a few networking features that have acquired a reputation for causing security problems and recommend ways to minimize their impact. The details of our example systems’ default behavior on these issues (and the appropriate methods for changing them) vary considerably and are discussed in the system-specific material starting on page 484.
 

IP Forwarding
 

A UNIX or Linux system that has IP forwarding enabled can act as a router. That is, it can accept third-party packets on one network interface, match them to a gateway or destination host on another interface, and retransmit the packets.
 

Unless your system has multiple network interfaces and is actually supposed to function as a router, it’s advisable to turn this feature off. Hosts that forward packets can sometimes be coerced into compromising security by making external packets appear to have come from inside your network. This subterfuge can help an intruder’s packets evade network scanners and packet filters.
 

It is perfectly acceptable for a host to use multiple network interfaces for its own traffic without forwarding third-party traffic.
 

ICMP Redirects
 

ICMP redirects (see page 467) can maliciously reroute traffic and tamper with your routing tables. Most operating systems listen to ICMP redirects and follow their instructions by default. It would be bad if all your traffic were rerouted to a competitor’s network for a few hours, especially while backups were running! We recommend that you configure your routers (and hosts acting as routers) to ignore and perhaps log ICMP redirect attempts.
 

Source Routing
 

IP’s source routing mechanism lets you specify an explicit series of gateways for a packet to transit on the way to its destination. Source routing bypasses the next-hop routing algorithm that’s normally run at each gateway to determine how a packet should be forwarded.
 

Source routing was part of the original IP specification; it was intended primarily to facilitate testing. It can create security problems because packets are often filtered according to their origin. If someone can cleverly route a packet to make it appear to have originated within your network instead of the Internet, it might slip through your firewall. We recommend that you neither accept nor forward source-routed packets.
 

Broadcast Pings and Other Directed Broadcasts
 

Ping packets addressed to a network’s broadcast address (instead of to a particular host address) are typically delivered to every host on the network. Such packets have been used in denial of service attacks; for example, the so-called Smurf attacks. (The “Smurf attacks” Wikipedia article has details.)
 

Broadcast pings are a form of “directed broadcast” in that they are packets sent to the broadcast address of a distant network. The default handling of such packets has been gradually changing. For example, versions of Cisco’s IOS up through 11.x forwarded directed broadcast packets by default, but IOS releases since 12.0 do not. It is usually possible to convince your TCP/IP stack to ignore broadcast packets that come from afar, but since this behavior must be set on each interface, the task can be nontrivial at a large site.
 

IP Spoofing
 

The source address on an IP packet is normally filled in by the kernel’s TCP/IP implementation and is the IP address of the host from which the packet was sent. However, if the software creating the packet uses a raw socket, it can fill in any source address it likes. This is called IP spoofing and is usually associated with some kind of malicious network behavior. The machine identified by the spoofed source IP address (if it is a real address at all) is often the victim in the scheme. Error and return packets can disrupt or flood the victim’s network connections.
 

You should deny IP spoofing at your border router by blocking outgoing packets whose source address is not within your address space. This precaution is especially important if your site is a university where students like to experiment and may be tempted to carry out digital vendettas.
 

If you are using private address space internally, you can filter at the same time to catch any internal addresses escaping to the Internet. Such packets can never be answered (because they lack a backbone route) and always indicate that your site has an internal configuration error.
 

In addition to detecting outbound packets with bogus source addresses, you must also protect against a attacker’s forging the source address on external packets to fool your firewall into thinking that they originated on your internal network. A heuristic known as “unicast reverse path forwarding” (uRPF) helps with this. It makes IP gateways discard packets that arrive on an interface that is different from the one on which they would be transmitted if the source address were the destination. It’s a quick sanity check that uses the normal IP routing table as a way to validate the origin of network packets. Dedicated routers implement uRPF, but so does the Linux kernel. On Linux, it’s enabled by default.
 

If your site has multiple connections to the Internet, it may be perfectly reasonable for inbound and outbound routes to be different. In this situation, you’ll have to turn off uRPF to make your routing work properly. If your site has only one way out to the Internet, then turning on uRPF is usually safe and appropriate.
 

Host-Based Firewalls
 

Traditionally, a network packet filter or firewall connects your local network to the outside world and controls traffic according to a site-wide policy. Unfortunately, Microsoft has warped everyone’s perception of how a firewall should work with its notoriously insecure Windows systems. The last few Windows releases all come with their own personal firewalls, and they complain bitterly if you try to turn the firewall off.
 

Our example systems all include packet filtering software, but you should not infer from this that every UNIX or Linux machine needs its own firewall. It does not. The packet filtering features are there to allow these machines to serve as network gateways.
 

However, we don’t recommend using a workstation as a firewall. Even with meticulous hardening, full-fledged operating systems are too complex to be fully trustworthy. Dedicated network equipment is more predictable and more reliable— even if it secretly runs Linux.
 

Even sophisticated software solutions like those offered by Check Point (whose products run on UNIX, Linux, and Windows hosts) are not as secure as a dedicated device such as Cisco’s Adaptive Security Appliance series. The software-only solutions are nearly the same price, to boot.
 

A more thorough discussion of firewall-related issues begins on page 932.
 

Virtual Private Networks
 

Many organizations that have offices in several locations would like to have all those locations connected to one big private network. Such organizations can use the Internet as if it were a private network by establishing a series of secure, encrypted “tunnels” among their various locations. A network that includes such tunnels is known as a virtual private network or VPN.
 

VPN facilities are also needed when employees must connect to your private network from their homes or from the field. A VPN system doesn’t eliminate every possible security issue relating to such ad hoc connections, but it’s secure enough for many purposes.
 

Some VPN systems use the IPsec protocol, which was standardized by the IETF in 1998 as a relatively low-level adjunct to IP. Others, such as OpenVPN, implement VPN security on top of TCP using Transport Layer Security (TLS), formerly known as the Secure Sockets Layer (SSL). TLS is also on the IETF’s standards track, although it hasn’t yet been fully adopted.
 

A variety of proprietary VPN implementations are also available. These systems generally don’t interoperate with each other or with the standards-based VPN systems, but that’s not necessarily a major drawback if all the endpoints are under your control.
 

The TLS-based VPN solutions seem to be the marketplace winners at this point. They are just as secure as IPsec and considerably less complicated. Having a free implementation in the form of OpenVPN doesn’t hurt either. (Unfortunately, it doesn’t run on HP-UX or AIX yet.)
 

To support home and portable users, a common paradigm is for users to download a small Java or ActiveX component through their web browser. This component then provides VPN connectivity back to the enterprise network. The mechanism is convenient for users, but be aware that the browser-based systems differ widely in their implementations: some provide VPN service through a pseudo-network-interface, while others forward only specific ports. Still others are little more than glorified web proxies.
 

See page 943 for more information about IPsec.
 

Be sure you understand the underlying technology of the solutions you’re considering, and don’t expect the impossible. True VPN service (that is, full IP-layer connectivity through a network interface) requires administrative privileges and software installation on the client, whether that client is Windows or a UNIX laptop. Check browser compatibility too, since the voodoo involved in implementing browser-based VPN solutions often doesn’t translate among browsers.
 

14.9 PPP: The Point-to-Point Protocol
 

PPP is defined in RFC1331.
 

PPP represents an underlying communication channel as a virtual network interface. However, since the underlying channel need not have any of the features of an actual network, communication is restricted to the two hosts at the ends of the link—a virtual network of two. PPP has the distinction of being used on both the slowest and the fastest IP links, but for different reasons.
 

In its asynchronous form, PPP is best known as the protocol used to provide dialup Internet service over phone lines and serial links. These channels are not inherently packet oriented, so the PPP device driver encodes network packets into a unified data stream and adds link-level headers and markers to separate packets.
 

In its synchronous form, PPP is the encapsulation protocol used on high-speed circuits that have routers at either end. It’s also commonly used as part of the implementation of DSL and cable modems for broadband service. In these latter situations, PPP not only converts the underlying network system (often ATM in the case of DSL) to an IP-friendly form, but it also provides authentication and access control for the link itself. In a surreal, down-the-rabbit-hole twist, PPP can implement Ethernet-like semantics on top of an actual Ethernet, a configuration known as “PPP over Ethernet” or PPPoE.
 

Designed by committee, PPP is the “everything and the kitchen sink” encapsulation protocol. In addition to specifying how the link is established, maintained, and torn down, PPP implements error checking, authentication, encryption, and compression. These features make it adaptable to a variety of situations.
 

PPP as a dial-up technology was once an important topic for UNIX and Linux system administrators, but the widespread availability of broadband has made dial-up configuration largely irrelevant. At the same time, the high-end applications of PPP have mostly retreated into various pieces of dedicated network hardware. These days, the primary use of PPP is to connect through cellular modems.
 

14.10 Basic Network Configuration
 

Only a few steps are involved in adding a new machine to an existing local area network, but every system does it slightly differently. Systems typically provide a control panel GUI for basic network configuration, but more elaborate (or automated) setups may require you to edit the configuration files directly.
 

Before bringing up a new machine on a network that is connected to the Internet, secure it (Chapter 22, Security) so that you are not inadvertently inviting attackers onto your local network.
 

The basic steps to add a new machine to a local network are as follows:
 

• Assign a unique IP address and hostname.

 

• Make sure network interfaces are properly configured at boot time.

 

• Set up a default route and perhaps fancier routing.

 

• Point to a DNS name server to allow access to the rest of the Internet.

 

If you rely on DHCP for basic provisioning, most of the configuration chores for a new machine are performed on the DHCP server rather than on the new machine itself. New OS installations typically default to getting their configuration through DHCP, so new machines may require no network configuration at all. Refer to the DHCP section starting on page 469 for general information.
 

After any change that might affect booting, you should always reboot to verify that the machine comes up correctly. Six months later when the power has failed and the machine refuses to boot, it’s hard to remember what change you made that might have caused the problem. (Refer also to Chapter 21, Network Management and Debugging.)
 

The process of designing and installing a physical network is touched on in Chapter 16, Network Hardware. If you are dealing with an existing network and have a general idea of how it is set up, it may not be necessary for you to read too much more about the physical aspects of networking unless you plan to extend the existing network.
 

In this section, we review the various commands and issues involved in manual network configuration. This material is general enough to apply to any UNIX or Linux system. In the vendor-specific sections starting on page 484, we address the unique twists that distinguish UNIX from Linux and separate the various vendors’ systems.
 

As you work through basic network configuration on any machine, you’ll find it helpful to test your connectivity with basic tools such as ping and traceroute. Those tools are actually described in the Network Management and Debugging chapter; see the sections starting on page 861 for more details.
 

Hostname and IP Address Assignment
 

Administrators have various heartfelt theories about how the mapping from host-names to IP addresses is best maintained: through the hosts file, LDAP, the DNS system, or perhaps some combination of those options. The conflicting goals are scalability, consistency, and maintainability versus a system that is flexible enough to allow machines to boot and function when not all services are available. Priori-tizing sources of administrative information starting on page 739 describes how the various options can be combined.
 

See Chapter 17 for more information about DNS.
 

Another consideration you might take into account when designing your addressing system is the possible need to renumber your hosts in the future. Unless you are using RFC1918 private addresses (see page 462), your site’s IP addresses may change when you switch ISPs. Such a transition becomes daunting if you must visit each host on the network to reconfigure its address. To expedite renumbering, you can use hostnames in configuration files and confine address mappings to a few centralized locations such as the DNS database and your DHCP configuration files.
 

The /etc/hosts file is the oldest and simplest way to map names to IP addresses. Each line starts with an IP address and continues with the various symbolic names by which that address is known.
 

Here is a typical /etc/hosts file for the host lollipop:
 

[image: Image]
 

A minimalist version would contain only the first two lines. localhost is commonly the first entry in the /etc/hosts file; this entry is unnecessary on many systems, but it doesn’t hurt to include it. IPv6 addresses can go in this file as well.
 

Because /etc/hosts contains only local mappings and must be maintained on each client system, it’s best reserved for mappings that are needed at boot time (e.g., the host itself, the default gateway, and name servers). Use DNS or LDAP to find mappings for the rest of the local network and the rest of the world. You can also use /etc/hosts to specify mappings that you do not want the rest of the world to know about and therefore do not publish in DNS.16
 

The hostname command assigns a hostname to a machine. hostname is typically run at boot time from one of the startup scripts, which obtains the name to be assigned from a configuration file. (Of course, each system does this slightly differently. See the system-specific sections beginning on page 484 for details.) The hostname should be fully qualified: that is, it should include both the hostname and the DNS domain name, such as anchor.cs.colorado.edu.
 

See page 728 for more information about LDAP.
 

At a small site, you can easily dole out hostnames and IP addresses by hand. But when many networks and many different administrative groups are involved, it helps to have some central coordination to ensure uniqueness. For dynamically assigned networking parameters, DHCP takes care of the uniqueness issues. Some sites now use LDAP databases to manage their hostnames and IP addresses assignments.
 

Ifconfig: Configure Network Interfaces
 

ifconfig enables or disables a network interface, sets its IP address and subnet mask, and sets various other options and parameters. It is usually run at boot time with command-line parameters taken from config files, but you can also run it by hand to make changes on the fly. Be careful if you are making ifconfig changes and are logged in remotely—many a sysadmin has been locked out this way and had to drive in to fix things.
 

An ifconfig command most commonly has the form
 

ifconfig
interface [family] address options…
 

For example, the command
 

ifconfig eth0 192.168.1.13 netmask 255.255.255.0 up
 

sets the IPv4 address and netmask associated with the interface eth0 and readies the interface for use.
 

interface identifies the hardware interface to which the command applies. It is usually a two- or three-character name followed by a number, but Solaris interface names can be longer. Some common names are ie0, le0, le1, ln0, en0, we0, qe0, hme0, eth0, and lan0. The loopback interface is lo on Linux and lo0 on Solaris, HP-UX, and AIX. On most systems, ifconfig -a lists the system’s network interfaces and summarizes their current settings. Use netstat -i for this on HP-UX.
 

[image: Image] Under Solaris, network interfaces must be “attached” with ifconfig
interface
plumb before they become configurable and visible to ifconfig -a. You can use the dladm command to list interfaces regardless of whether they have been plumbed.
 

The family parameter tells ifconfig which network protocol (“address family”) you want to configure. You can set up multiple protocols on an interface and use them all simultaneously, but they must be configured separately. The main options here are inet for IPv4 and inet6 for IPv6; inet is assumed if you leave the parameter out. Linux systems support a handful of other legacy protocols such as AppleTalk and Novell IPX.
 

The address parameter specifies the interface’s IP address. A hostname is also acceptable here, but the hostname must be resolvable to an IP address at boot time. For a machine’s primary interface, this means that the hostname must appear in the local hosts file, since other name resolution methods depend on the network having been initialized.
 

The keyword up turns the interface on; down turns it off. When an ifconfig command assigns an IP address to an interface, as in the example above, the up parameter is implicit and does not need to be mentioned by name.
 

ifconfig understands lots of other options. The most common ones are mentioned below, but as always, consult your man pages for the final word on your particular system. ifconfig options all have symbolic names. Some options require an argument, which should be placed immediately after the option name and separated from the option name by a space.
 

The netmask option sets the subnet mask for the interface and is required if the network is not subnetted according to its address class (A, B, or C). The mask can be specified in dotted decimal notation or as a 4-byte hexadecimal number beginning with 0x. As usual, bits set to 1 are part of the network number, and bits set to 0 are part of the host number.
 

The broadcast option specifies the IP broadcast address for the interface, expressed in either hex or dotted quad notation. The default broadcast address is one in which the host part is set to all 1s. In the ifconfig example above, the auto-configured broadcast address is 192.168.1.255.
 

You can set the broadcast address to any IP address that’s valid for the network to which the host is attached. Some sites have chosen weird values for the broadcast address in the hope of avoiding certain types of denial of service attacks that are based on broadcast pings, but this is risky and probably overkill. Failure to properly configure every machine’s broadcast address can lead to broadcast storms, in which packets travel from machine to machine until their TTLs expire.17
 

A better way to avoid problems with broadcast pings is to prevent your border routers from forwarding them and to tell individual hosts not to respond to them. See Chapter 22, Security, for instructions on how to implement these constraints.
 

[image: Image] Solaris integrates the ifconfig command with its DHCP client daemon. ifconfig
interface
dhcp configures the named interface with parameters leased from a local DHCP server, then starts dhcpagent to manage the leases over the long term. Other systems keep ifconfig ignorant of DHCP, with the DHCP software operating as a separate layer.
 

You can also get the configuration for a single interface with ifconfig
interface:
 

[image: Image]
 

The lack of collisions on the Ethernet interface in the second example may indicate a very lightly loaded network or, more likely, a switched network. On a shared network (one built with hubs instead of switches, or one that uses old-style coaxial Ethernet), check this number to ensure that it is below about 5% of the output packets. Lots of collisions indicate a loaded network that needs to be watched and possibly split into multiple subnets or migrated to a switched infrastructure.
 

Now that you know how to configure a network interface by hand, you need to figure out how the parameters to ifconfig are set when the machine boots, and you need to make sure that the new values are entered correctly. You normally do this by editing one or more configuration files; see the vendor-specific sections starting on page 484 for more information.
 

One additional comment regarding ifconfig: you can assign more than one IP address to an interface by making use of the concept of “virtual network interfaces” or “IP aliases.” Administrators can do this to allow one machine to host several web sites. See page 967 for more information.
 

Network Hardware Options
 

Network hardware often has configurable options that are specific to its media type and have little to do with TCP/IP per se. One common example of this is modern-day Ethernet, wherein an interface card may support 10, 100, 1000, or even 10000 Mb/s in either half-duplex or full-duplex mode. Most equipment defaults to autonegotiation mode, in which both the card and its upstream connection (usually a switch port) try to guess what the other wants to use.
 

Historically, autonegotiation has worked about as well as a blindfolded cowpoke trying to rope a calf. Modern network devices play better together, but autonegotiation is still a common source of failure. High packet loss rates (especially for large packets) are a common artifact of failed autonegotiation.
 

If you’re having problems with mysterious packet loss, turn off autonegotiation everywhere as your first course of action. Lock the interface speed and duplex on both servers and the switch ports to which they are connected. Autonegotiation is useful for ports in public areas where roving laptops may stop for a visit, but it serves no useful purpose for statically attached hosts other than avoiding a small amount of administration.
 

The exact method by which hardware options like autonegotiation are set varies widely, so we defer discussion of those details to the system-specific sections starting on page 484.
 

Route: Configure Static Routes
 

The route command defines static routes, explicit routing table entries that never change, even if you run a routing daemon. When you add a new machine to a local area network, you usually need to specify only a default route.
 

This book’s discussion of routing is split between this section and Chapter 15, Routing. Although most of the basic information about routing and the route
command is found in this section, you might find it helpful to read the first few sections of Chapter 15 if you need more information.
 

Routing is performed at the IP layer. When a packet bound for some other host arrives, the packet’s destination IP address is compared with the routes in the kernel’s routing table. If the address matches a route in the table, the packet is forwarded to the next-hop gateway IP address associated with that route.
 

There are two special cases. First, a packet may be destined for some host on a directly connected network. In this case, the “next-hop gateway” address in the routing table is one of the local host’s own interfaces, and the packet is sent directly to its destination. This type of route is added to the routing table for you by the ifconfig command when you configure an interface.
 

Second, it may be that no route matches the destination address. In this case, the default route is invoked if one exists. Otherwise, an ICMP “network unreachable” or “host unreachable” message is returned to the sender.
 

Many local area networks have only one way out, so all they need is a single default route that points to the exit. On the Internet backbone, the routers do not have default routes. If there is no routing entry for a destination, that destination cannot be reached.
 

Each route command adds or removes one route. Unfortunately, route is one of a handful of UNIX commands that function identically across systems and yet have somewhat different syntax everywhere. Here’s a prototypical route command that works almost everywhere:
 

# route add -net 192.168.45.128/25 zulu-gw.atrust.net
 

This command adds a route to the 192.168.45.128/25 network through the gateway router zulu-gw.atrust.net, which must be either an adjacent host or one of the local host’s own interfaces. (Linux requires the option name gw in front of the gateway address.) Naturally, route must be able to resolve zulu-gw.atrust.net into an IP address. Use a numeric IP address if your DNS server is on the other side of the gateway!
 

[image: Image] Linux also accepts an interface name (e.g., eth0) as the destination for a route. It has the same effect as specifying the interface’s primary IP address as the gateway address. That is, the IP stack attempts direct delivery on that interface rather than forwarding to a separate gateway. Routing entries that were set up this way show their gateway addresses as 0.0.0.0 in netstat -r output. You can tell where the route really goes by looking in the Iface column for the interface name.
 

Destination networks were traditionally specified with separate IP addresses and netmasks, but all versions of route except that of HP-UX now understand CIDR notation (e.g., 128.138.176.0/20). CIDR notation is clearer and relieves you of the need to fuss over some of the system-specific syntax issues. Even Linux accepts CIDR notation, although the Linux man page for route doesn’t admit this.
 

[image: Image] Solaris has a nifty -p option to route that makes your changes persistent across reboots. In addition to being entered in the kernel’s routing table, the changes are recorded in /etc/inet/static_routes and restored at boot time.
 

Some other tricks:
 

• To inspect existing routes, use the command netstat -nr, or netstat -r if you want to see names instead of numbers. Numbers are often better if you are debugging, since the name lookup may be the thing that is broken. An example of netstat output is shown on page 466.

 

• Use the keyword default instead of an address or network name to set the system’s default route.

 

• Use route delete or route del to remove entries from the routing table.

 

• UNIX systems use route -f or route flush to initialize the routing table and start over. Linux does not support this option.

 

• IPv6 routes are set up similarly to IPv4 routes. You’ll need to tell route that you’re working in IPv6 space with the -inet6 or -A inet6 option.

 

• /etc/networks maps names to network numbers, much like the hosts file maps hostnames to IP addresses. Commands such as route that expect a network number can accept a name if it is listed in the networks file. Network names can also be listed in an NIS database or in DNS; see RFC1101.

 

• You can use route add -host to set up a route that’s specific to a single IP address. It’s essentially the same as a route with a netmask of 255.255.255.255, but it’s flagged separately in the routing table.

 

DNS Configuration
 

To configure a machine as a DNS client, you need only set up the /etc/resolv.conf file. DNS service is not, strictly speaking, required (see page 739), but it’s hard to imagine a situation in which you’d want to eliminate it completely.
 

The resolv.conf file lists the DNS domains that should be searched to resolve names that are incomplete (that is, not fully qualified, such as anchor instead of anchor.cs.colorado.edu) and the IP addresses of the name servers to contact for name lookups. A sample is shown here; for more details, see page 561.
 

[image: Image]
 

/etc/resolv.conf should list the “closest” stable name server first. Servers are contacted in order, and the timeout after which the next server in line is tried can be quite long. You can have up to three nameserver entries. If possible, you should always have more than one.
 

If the local host obtains the addresses of its DNS servers through DHCP, the DHCP client software stuffs these addresses into the resolv.conf file for you when it obtains the leases. Since DHCP configuration is the default for most systems, you generally do not need to configure the resolv.conf file manually if your DHCP server has been set up correctly.
 

Many sites use Microsoft’s Active Directory DNS server implementation. That works fine with the standard UNIX and Linux resolv.conf; there’s no need to do anything differently.
 

14.11 System-Specific network configuration
 

On early UNIX systems, you configured the network by editing the system startup scripts and directly changing the commands they contained. Modern systems have read-only scripts; they cover a variety of configuration scenarios and choose among them by reusing information from other system files or consulting configuration files of their own.
 

Although this separation of configuration and implementation is a good idea, every system does it a little bit differently. The format and use of the /etc/hosts and /etc/resolv.conf files are relatively consistent among UNIX and Linux systems, but that’s about all you can count on for sure.
 

Most systems provide some sort of GUI interface for basic configuration tasks, but the mapping between the visual interface and the configuration files behind the scenes is often unclear. In addition, the GUIs tend to ignore advanced configurations, and they are relatively inconvenient for remote and automated administration. In the next sections, we pick apart some of the variations among our example systems, describe what’s going on under the hood, and cover the details of network configuration for each of our supported operating systems. In particular, we cover
 

• Basic configuration

 

• DHCP client configuration

 

• Dynamic reconfiguration and tuning

 

• Security, firewalls, filtering, and NAT configuration

 

• Quirks

 

However, not all of our operating systems need discussion for each topic.
 

Keep in mind that most network configuration happens at boot time, so there’s some overlap between the information here and the information presented in Chapter 3, Booting and Shutting Down.
 

14.12 Linux Networking
 

[image: Image] Linux is always one of the first networking stacks to include new features. The Linux folks are sometimes so quick that the rest of the networking infrastructure cannot interoperate. For example, the Linux implementation of explicit congestion notification (ECN), specified in RFC2481, collided with incorrect default settings on an older Cisco firewall product, causing all packets with the ECN bit set to be dropped. Oops.
 

Linux developers love to tinker, and they often implement features and algorithms that aren’t yet accepted standards. One example is the Linux kernel’s addition of pluggable congestion control algorithms in release 2.6.13. The several options include variations for lossy networks, high-speed WANs with lots of packet loss, satellite links, and more. The standard TCP “reno” mechanism (slow start, congestion avoidance, fast retransmit, and fast recovery) is still used by default, but a variant may be more appropriate for your environment.
 

After any change to a file that controls network configuration at boot time, you may need to either reboot or bring the network interface down and then up again for your change to take effect. You can use ifdown
interface and ifup
interface for this purpose on most Linux systems, although the implementations are not identical. (Under SUSE, ifup and ifdown only work when networking is not under the control of NetworkManager.)
 

Network Manager
 

Linux support for mobile networking was relatively scattershot until the advent of NetworkManager in 2004. It consists of a service that’s designed to be run continuously, along with a system tray app for configuring individual network interfaces. In addition to various kinds of wired network, NetworkManager also handles transient wireless networks, wireless broadband, and VPNs. It continually assesses the available networks and shifts service to “preferred” networks as they become available. Wired networks are most preferred, followed by familiar wireless networks.
 

This system represents quite a change for Linux network configuration. In addition to being more fluid than the traditional static configuration, it’s also designed to be run and managed by users rather than system administrators. NetworkMan-ager has been widely adopted by Linux distributions, including all of our examples, but in an effort to avoid breaking existing scripts and setups, it’s usually made available as a sort of “parallel universe” of network configuration in addition to whatever traditional network configuration was used in the past.
 

SUSE makes you choose whether you want to live in the NetworkManager world or use the legacy configuration system, which is managed through YaST. Ubuntu runs NetworkManager by default, but keeps the statically configured network interfaces out of the NetworkManager domain. Red Hat Enterprise Linux doesn’t run NetworkManager by default at all.
 

NetworkManager is primarily of use on laptops, since their network environment may change frequently. For servers and desktop systems, NetworkManager isn’t necessary and may in fact complicate administration. In these environments, it should be ignored or configured out.
 

Ubuntu Network Configuration
 

[image: Image] As shown in Table 14.6, Ubuntu configures the network in /etc/hostname and /etc/network/interfaces, with a bit of help from the file /etc/network/options.
 

[image: Image]
 

Table 14.6 Ubuntu network configuration files in /etc
 

The hostname is set in /etc/hostname. The name in this file should be fully qualified; its value is used in a variety of contexts, some of which require qualification.
 

The IP address, netmask, and default gateway are set in /etc/network/interfaces. A line starting with the iface keyword introduces each interface. The iface line can be followed by indented lines that specify additional parameters. For example:
 

[image: Image]
 

The ifup and ifdown commands read this file and bring the interfaces up or down by calling lower-level commands (such as ifconfig) with the appropriate parameters. The auto clause specifies the interfaces to be brought up at boot time or whenever ifup -a is run.
 

The inet keyword in the iface line is the address family a la ifconfig. The keyword static is called a “method” and specifies that the IP address and netmask for eth0 are directly assigned. The address and netmask lines are required for static configurations; earlier versions of the Linux kernel also required the network address to be specified, but now the kernel is smarter and can figure out the network address from the IP address and netmask. The gateway line specifies the address of the default network gateway and is used to install a default route.
 

SUSE Network Configuration
 

[image: Image] SUSE makes you choose between NetworkManager and the traditional configuration system. You make the choice inside of YaST; you can also use the YaST GUI to configure the traditional system. Here, we assume the traditional system. In addition to configuring network interfaces, YaST provides straightforward UIs for the /etc/hosts file, static routes, and DNS configuration. Table 14.7 shows the underlying configuration files.
 

[image: Image]
 

Table 14.7 SUSE network configuration files in /etc/sysconfig/network
 

With the exceptions of DNS parameters and the system hostname, SUSE sets most networking options in ifcfg-interface files in the /etc/sysconfig/network direc-tory. One file should be present for each interface on the system.
 

In addition to specifying the IP address, gateway, and broadcast information for an interface, the ifcfg-* files can tune many other network dials. Take a look at the ifcfg.template file for a well-commented rundown of the possible parameters. Here’s a simple example with our comments:
 

[image: Image]
 

Global static routing information for a SUSE system (including the default route) is stored in the routes file. Each line in this file is like a route command with the option names omitted and includes destination, gateway, netmask, interface, and optional extra parameters to be stored in the routing table for use by routing daemons. For the host configured above, which has only a default route, the routes file contains the line
 

default 192.168.1.254 - -
 

Routes unique to specific interfaces are kept in ifroute-interface files, where the nomenclature of the interface component is the same as for the ifcfg-* files. The contents have the same format as the routes file.
 

Red Hat Network Configuration
 

[image: Image] Red Hat’s network configuration GUI is called system-config-network; it’s also accessible from the System->Administration menu under the name Network. This tool provides a simple UI for configuring individual network interfaces and static routes. It also has panels for setting up IPsec tunnels, configuring DNS, and adding /etc/hosts entries.
 

Table 14.8 shows the underlying configuration files that this GUI edits.
 

You set the machine’s hostname in /etc/sysconfig/network, which also contains lines that specify the machine’s DNS domain and default gateway.
 

[image: Image]
 

Table 14.8 Red Hat network configuration files in /etc/sysconfig
 

For example, here is a network file for a host with a single Ethernet interface:
 

[image: Image]
 

Interface-specific data is stored in /etc/sysconfig/network-scripts/ifcfg-ifname, where ifname is the name of the network interface. These configuration files set the IP address, netmask, network, and broadcast address for each interface. They also include a line that specifies whether the interface should be configured “up” at boot time.
 

A generic machine will have files for an Ethernet interface (eth0) and for the loop-back interface (lo). For example,
 

[image: Image]
 

and
 

[image: Image]
 

are the ifcfg-eth0 and ifcfg-lo files for the machine redhat.toadranch.com described in the network file above. A DHCP-based setup for eth0 is even simpler:
 

[image: Image]
 

After changing configuration information in /etc/sysconfig, run ifdown
ifname followed by ifup
ifname for the appropriate interface. If you reconfigure multiple interfaces at once, you can use the command service network restart to reset all networking. (This is really just a shorthand way to run /etc/rc.d/init.d/network, which is invoked at boot time with the start argument.)
 

The startup scripts can also configure static routes. Any routes added to the file /etc/sysconfig/static-routes are entered into the routing table at boot time. The entries specify arguments to route add, although in a different order:
 

[image: Image]
 

The interface is specified first, but it is actually shuffled to the end of the route command line, where it forces the route to be associated with the given interface. (You’ll see this architecture in the GUI as well, where the routes are configured as part of the setup for each interface.) The rest of the line consists of route arguments. The static-routes example above would produce the following commands:
 

[image: Image]
 

Current Linux kernels do not use the metric parameter to route, but they allow it to be entered into the routing table for use by routing daemons.
 

Linux Network Hardware Options
 

The ethtool command queries and sets a network interface’s media-specific parameters such as link speed and duplex. It replaces the old mii-tool command, but some systems still include both.
 

You can query the status of an interface just by naming it. For example, this eth0 interface (a generic NIC on a PC motherboard) has autonegotiation enabled and is currently running at full speed:
 

[image: Image]
 

To lock this interface to 100 Mb/s full duplex, use the command
 

ubuntu# ethtool -s eth0 speed 100 duplex full
 

If you are trying to determine whether autonegotiation is reliable in your environment, you may also find ethtool -r helpful. It forces the parameters of the link to be renegotiated immediately.
 

Another useful option is -k, which shows what protocol-related tasks have been assigned to the network interface rather than being performed by the kernel. Most interfaces can calculate checksums, and some can assist with segmentation as well. Unless you have reason to think that a network interface is not doing these tasks reliably, it’s always better to offload them. You can use ethtool -K in combination with various suboptions to force or disable specific types of offloading. (The -k option shows current values and the -K option sets them.)
 

Any changes you make with ethtool are transient. If you want them to be enforced consistently, you’ll have to make sure that ethtool gets run as part of the system’s network configuration. It’s best to do this as part of the per-interface configuration; if you just arrange to have some ethtool commands run at boot time, your configuration will not properly cover cases in which the interfaces are restarted without a reboot of the system.
 

[image: Image] On Red Hat systems, you can include an ETHTOOL_OPTS= line in the configuration file for the interface underneath /etc/sysconfig/network-scripts. ifup passes the entire line as arguments to ethtool.
 

[image: Image] SUSE’s provision for running ethtool is similar to Red Hat’s, but the option is called ETHTOOL_OPTIONS and the per-interface configuration files are kept in /etc/sysconfig/network.
 

[image: Image] In Ubuntu, you can run the ethtool commands from a post-up script specified in the interface’s configuration in /etc/network/interfaces.
 

Linux TCP/IP Options
 

Linux puts a representation of each tunable kernel variable into the /proc virtual filesystem. The networking variables are in /proc/sys/net/ipv4. Here’s a trimmed list of some of the most interesting ones for illustration:
 

[image: Image]
 

Many of the variables with rate and max in their names are used to thwart denial of service attacks. The conf subdirectory contains variables that are set per interface. It contains subdirectories all and default and a subdirectory for each interface (including the loopback). Each subdirectory contains the same set of files.
 

[image: Image]
 

If you change a variable in the conf/eth0 subdirectory, for example, your change applies to that interface only. If you change the value in the conf/all directory, you might expect it to set the corresponding value for all existing interfaces, but this is not in fact what happens. Each variable has its own rules for accepting changes via all. Some values are ORed with the current values, some are ANDed, and still others are MAXed or MINed. As far as we are aware, there is no documentation for this process outside of the kernel source code, so the whole debacle is probably best avoided. Just confine your modifications to individual interfaces.
 

If you change a variable in the conf/default directory, the new value propagates to any interfaces that are later configured. On the other hand, it’s nice to keep the defaults unmolested as reference information; they make a nice sanity check if you want to undo other changes.
 

The /proc/sys/net/ipv4/neigh directory also contains a subdirectory for each interface. The files in each subdirectory control ARP table management and IPv6 neighbor discovery for that interface. Here is the list of variables; the ones starting with gc (for garbage collection) determine how ARP table entries are timed out and discarded.
 

[image: Image]
 

To see the value of a variable, use cat; to set it, use echo redirected to the proper filename. For example, the command
 

ubuntu$ cat icmp_echo_ignore_broadcasts0
 

shows that this variable’s value is 0, meaning that broadcast pings are not ignored. To set it to 1 (and avoid falling prey to Smurf-type denial of service attacks), run
 

ubuntu$ sudo sh -c "echo 1 > icmp_echo_ignore_broadcasts"18
 

from the /proc/sys/net directory.
 

You are typically logged in over the same network you are tweaking as you adjust these variables, so be careful! You can mess things up badly enough to require a reboot from the console to recover, which might be inconvenient if the system happens to be in Point Barrow, Alaska, and it’s January. Test-tune these variables on your desktop system before you even think of tweaking a production machine.
 

To change any of these parameters permanently (or more accurately, to reset them every time the system boots), add the appropriate variables to /etc/sysctl.conf, which is read by the sysctl command at boot time. The format of the sysctl.conf file is variable=value rather than echo value > variable as you would run from the shell to change the variable by hand. Variable names are pathnames relative to /proc/sys; you can also use dots instead of slashes if you prefer. For example, either of the lines
 

[image: Image]
 

in the /etc/sysctl.conf file would turn off IP forwarding on this host.
 

Some of the options under /proc are better documented than others. Your best bet is to look at the man page for the protocol in question in section 7 of the manuals. For example, man 7 icmp documents four of the six available options. (You must have man pages for the Linux kernel installed to see man pages about protocols.)
 

You can also take a look at the ip-sysctl.txt file in the kernel source distribution for some good comments. If you don’t have kernel source installed, just google for ip-sysctl-txt to reach the same document.
 

Security-Related Kernel Variables
 

Table 14.9 shows Linux’s default behavior with regard to various touchy network issues. For a brief description of the implications of these behaviors, see page 472. We recommend that you verify the values of these variables so that you do not answer broadcast pings, do not listen to routing redirects, and do not accept source-routed packets. These should be the defaults on current distributions except for accept_redirects and sometimes accept_source_route.
 

[image: Image]
 

Table 14.9 Default security-related network behaviors in Linux
 

Linux NAT and Packet Filtering
 

Linux traditionally implements only a limited form of Network Address Translation (NAT) that is more properly called Port Address Translation, or PAT. Instead of using a range of IP addresses as a true NAT implementation would, PAT multiplexes all connections onto a single address. The details and differences aren’t of much practical importance, though.
 

iptables implements not only NAT but also packet filtering. In earlier versions of Linux this functionality was a bit of a mess, but iptables makes a much cleaner separation between the NAT and filtering features.
 

Packet filtering features are covered in more detail in the Security chapter starting on page 932. If you use NAT to let local hosts access the Internet, you must use a full complement of firewall filters when running NAT. The fact that NAT “isn’t really IP routing” doesn’t make a Linux NAT gateway any more secure than a Linux router. For brevity, we describe only the actual NAT configuration here; however, this is but a small part of a full configuration.
 

To make NAT work, you must enable IP forwarding in the kernel by setting the /proc/sys/net/ipv4/ip_forward kernel variable to 1. Additionally, you must insert the appropriate kernel modules:
 

[image: Image]
 

Many other connection-tracking modules exist; see the net/netfilter subdirectory underneath /lib/modules for a more complete list and enable the ones you need.
 

The iptables command to route packets using NAT is of the form
 

sudo iptables -t nat -A POSTROUTING -o eth1 -j SNAT --to 63.173.189.1
 

In this example, eth0 is the interface connected to the Internet. The eth0 interface does not appear directly in the command line above, but its IP address is the one that appears as the argument to --to. The eth1 interface is the one connected to the internal network.
 

To Internet hosts, it appears that all packets from hosts on the internal network have eth0’s IP address. The host performing NAT receives incoming packets, looks up their true destinations, rewrites them with the appropriate internal network IP address, and sends them on their merry way.
 

14.13 Solaris Networking
 

[image: Image] Solaris comes with a bounteous supply of startup scripts. At a trade show, we once scored a tear-off calendar with sysadmin trivia questions on each day’s page. The question for January 1 was to name all the files you had to touch to change the hostname and IP address on a machine running Solaris. A quick peek at the answers showed six files. This is modularization taken to bizarre extremes. That said, let’s look at Solaris network configuration.
 

Solaris Basic Network Configuration
 

Solaris stashes some network configuration files in /etc and some in /etc/inet. Many are duplicated through the magic of symbolic links, with the actual files living in /etc/inet and the links in /etc.
 

To set the hostname, enter it into the file /etc/nodename. The change will take effect when the machine is rebooted. Some sites use just the short hostname; others use the fully qualified domain name.
 

See page 739 for more information about the name service switch.
 

The /etc/defaultdomain file’s name suggests that it might be used to specify the DNS domain, but it actually specifies the NIS or NIS+ domain name. The DNS domain is specified in /etc/resolv.conf as usual.
 

Solaris uses /etc/nsswitch.conf to set the order in which /etc/hosts, NIS, NIS+, and DNS are consulted for hostname resolution. We recommend looking at the hosts file, then DNS for easy booting. The line from nsswitch.conf would be
 

hosts: files dns
 

This is the default configuration if the host receives the addresses of its DNS servers through DHCP.
 

Solaris networking can run in traditional mode or in “Network Auto-Magic” (NWAM) mode, where networking is managed autonomously by the nwamd daemon. NWAM mode is fine for workstations, but it has limited configurability and allows only one network interface to be active at a time. The discussion below assumes traditional mode.
 

To see which networking mode is active, run svcs svc:/network/physical. There should be two configuration lines, one for NWAM and one for the traditional mode (“default”). Run svcadm to switch the configuration. For example, the following exchange shows the system being taken from NWAM to traditional mode.
 

[image: Image]
 

Solaris configures the IP address of each network interface through a file called /etc/hostname.interface, where interface is the usual name of the interface. These files can contain either a hostname that appears in the hosts file or an IP address. The value in a hostname.interface file is used as the address parameter to ifconfig, so it’s safest to use an address, even though the configuration filename implies that a hostname is expected.
 

Any special ifconfig options can also be put in the hostname.interface file on the same line as the hostname or IP address; it is all one big ifconfig command line. The startup scripts try to discover the IP addresses of any interfaces without corresponding hostname files by using DHCP.19
 

As shipped, the Solaris startup files rely on using the ifconfig options netmask + and broadcast +. The pluses mean to look in /etc/netmasks for the netmask value and to figure out the broadcast address value from it. The /etc/netmasks file lists network numbers and their corresponding netmask values. Any network that is subnetted differently from its inherent network class (A, B, or C) must be represented in the file. Here is an example of a netmasks file:
 

[image: Image]
 

The first line sets a default of /26 for the class B address 128.138.0.0, which is then overridden with specific masks that vary from the default. All networks are listed, even though many use the default value and could in fact be left out. On the systems from which this example is taken, the netmasks file is centrally maintained and distributed to all hosts. No single host has interfaces on all these networks.
 

In older versions of Solaris, the network startup scripts were files in /etc/init.d (chiefly rootusr, inetinit, sysid.net, and inetsvc). Solaris 10 radically restructured the way that startup files and system services are managed. The scripts have been refactored and now live in /lib/svc/method. See page 97 for an overview of Solaris’s Service Management Facility.
 

If /etc/defaultrouter exists, it is assumed to contain the identity (which again can be either a hostname or a numeric address) of the default gateway, and no further routing configuration is performed. As usual, a numeric address is preferable; using a name requires an /etc/hosts entry or a DNS server on the local network.
 

Solaris used to run routed (which it actually called in.routed) whenever no default gateway was specified, but in Solaris 10 and later you must enable routed explicitly with svcadm enable routing/route. Use the command svcs route to determine the service’s current state.
 

Beware: routed will go into server (talkative) mode automatically if the machine has more than one network interface or the file /etc/gateways exists. This is generally not what you want. You can prevent routed from squawking by turning on the “quiet mode” flag:
 

solaris# svccfg -s routing/route:default setprop routing/quiet_mode = true
 

Solaris Configuration Examples
 

Here are some examples of the commands needed to bring up a Solaris interface and add a route to a default gateway:
 

[image: Image]
 

The following examples show how to see the status of network interfaces and routing tables. Commands prefaced with sudo must be run as root. The final example shows a feature of the Solaris route command that is not present on our other architectures: the get argument shows the next hop to a particular destination. We have taken some liberties to make the examples fit on the page.
 

[image: Image]
 

Notice that when run as root, ifconfig shows the hardware address, but when run as a user, it does not.
 

[image: Image]
 

Solaris DHCP Configuration
 

Solaris includes a DHCP client and wins the prize for the easiest and most sensible DHCP client configuration:
 

solaris$ sudo ifconfig
interface
dhcp
 

It just works! ifconfig calls the dhcpagent program to get the parameters for the interface from DHCP and to configure the interface with them. You can include several options on the ifconfig command line to specify the interface as the primary one, set timeouts, increase lease times, or display the status of the interface. To manually unconfigure DHCP, just run
 

solaris$ sudo ifconfig
interface
drop
 

This is all very nice, but you probably want DHCP to be automatically consulted at boot time. You can set this up either by providing no configuration files for an interface at all (thus relying on autoconfiguration, similar to Linux’s Network-Manager) or by creating an /etc/dhcp.interface file to go with the corresponding /etc/hostname.interface file. If you like, the dhcp.interface file can contain additional command-line parameters to be passed to the ifconfig command.
 

The hostname.interface file must still exist to get the interface to be plumbed; however, it can be left empty. If the hostname.interface file is not empty, the startup scripts will first statically configure the interface by using its contents and then later reconfigure the interface by using DHCP.
 

dhcpagent manages the interface from DHCP’s point of view. Among other tasks, it negotiates extensions to leases and cancels leases when they are no longer needed. If an interface that has been configured with DHCP is later reconfigured by hand, dhcpagent will discontinue management of that interface.
 

dhcpagent collects the leased values from the DHCP server (default route, domain, name servers, etc.), but it does not act on most of them directly. Instead, it makes the parameters available through the dhcpinfo command. The service management scripts consult dhcpinfo for various pieces of information, which are then used as arguments to route, put into the resolv.conf file, etc.
 

dhcpagent transmits errors to syslog with facility daemon and priorities info through critical. Debug-level syslog output is available with the -d flag.
 

You can check the files in /etc/dhcp to view the configuration of a particular interface. However, the existence of an interface.dhc file for an interface does not necessarily mean that dhcpagent is currently controlling the interface—the lease may have expired.
 

ndd: TCP/IP and Interface Tuning for Solaris
 

Solaris’s ndd command reconfigures the TCP/IP protocol stack on a running system. Perhaps “reconfigure” is too strong a word; each module exposes parameters that can be examined and in some cases adjusted on the fly.
 

The basic syntax is
 

ndd [-set] device
? | variable [value]
 

If you give the argument ? (which must be protected from the shell as \?), ndd returns a list of variables understood by the driver for the specified device. If you supply the name of a variable, ndd returns the value of that variable. If you use the -set flag and supply a value, the specified variable is set to the value you specify.
 

Unfortunately, the ndd man page doesn’t tell you the possible names of devices, and it doesn’t tell you that you must be root to run ndd on some devices (ip and hme, for example) and not on others (tcp and udp). Table 14.10 slips you a quick cheat sheet.
 

[image: Image]
 

Table 14.10 Devices you can probe with Solaris’s ndd command
 

Interface-specific variable names in the /dev/ip category control IP forwarding on specific network interfaces. For example, e1000g0:ip_forwarding controls IP forwarding on /dev/e1000g0. There’s a global ip_forwarding variable, too.
 

If you have access to an HP-UX machine, run ndd there with the -h flag (for help) and it will give you device names, variable names, and the meaning of each of the variables. Many variable names are the same, so you can partially work around Sun’s minimal ndd man page.
 

Interface-specific options such as link speed, autonegotiation, and jumbo packet support are also set with ndd; run ndd directly on the device file for the interface (e.g., /dev/e1000g0). Unfortunately, the way Sun has set up this convention makes the names of the configuration parameters dependent on the specific driver, so there isn’t a universal recipe for, say, locking a network interface to 100 Mb/s.
 

To change speeds, you’ll need to identify the writable “capability” variables for each speed (usually named *_cap) and turn off (set to zero) all the ones you want to disallow. Turn off the *_autoneg_cap variable, too, to disable autonegotiation. For example, the following script sets /dev/e1000g0 to 100 Mb/s full duplex on one of our lab machines:
 

[image: Image]
 

Solaris Security
 

Table 14.11 shows Solaris’s default behavior with regard to various touchy network issues. For a brief description of the implications of these behaviors, see Security issues starting on page 472. You can adjust most of these settings with ndd.
 

Table 14.11 Security-related network behaviors in Solaris
 

[image: Image]
 

Solaris Firewalls and Filtering
 

As mentioned in the Security issues section, you generally shouldn’t use a UNIX, Linux, or Windows box as a firewall or NAT gateway. Use a dedicated piece of network hardware instead. Solaris used to make it easy to follow this rule by not including any filtering software, but Darren Reed’s free IPFilter software has now been bundled into the basic distribution. If you must use a UNIX-based filter, this is a good choice—it was always our favorite of the add-on filters for Solaris.
 

The IPFilter suite implements IP filtering, NAT, and transparent port forwarding. It is free, open source, and works on either SPARC or Intel hardware. The IPFilter package includes ipf for configuring a firewall, ipfstat for printing out the filtering rules that have been installed, and ipnat for implementing NAT.
 

See Chapter 22, Security, for details on packet filtering with IPFilter. The section about this topic starts on page 939. Here, we discuss only IPFilter’s NAT features.
 

Solaris NAT
 

To make NAT work, you must tell the kernel what addresses to map from, what addresses to map to, and what port range to use to extend the address space. See page 462 for a general discussion of NAT and the mechanisms it uses to bridge from private to public address space.
 

To configure NAT, you supply rules to the ipnat command. The rules are similar to those used with ipf to implement packet filtering. But beware: like ipf rules, ipnat rules are ordered. However, they have opposite precedence. Just to keep you on your toes, the first matching rule is selected, not the last.
 

Below are some examples of ipnat rules. To be activated at boot time, these would go in the /etc/ipf/ipnat.conf file:
 

[image: Image]
 

We have assumed that eth1 is our interface to the Internet and that our internal network is numbered with the class C private address space range. These rules map addresses from a /24 network into addresses from a /26 network. Since a /26 network can accommodate only one-quarter of the hosts that a /24 network can, it’s potentially possible to run out of target addresses in this configuration. But the portmap clause extends the address range by allowing each address to be used with 45,000 different source ports.
 

The first rule above covers all TCP and UDP traffic but does not affect ICMP; ICMP does not use the concept of a port. The second rule catches ICMP messages and tries to get them routed back to the right host. If the kernel can’t unambiguously determine who should receive a particular ICMP message, it sends the packet out as a broadcast; machines that receive it out of context can just ignore it.
 

On a home machine, you might be assigned just a single real IP address by your ISP or your ISP’s DHCP server. If you’re given a static address assignment, just give the target network in the map line a /32 designation and a large enough port range to accommodate the needs of all your local hosts. If you get a different dynamic address each time you connect, use the notation 0/32 in the map line; it will make ipnat read the address directly from the network interface. For example, here is a line you might use for a single, dynamically assigned address:
 

map eth1 192.168.1.0/24 -> 0/32 portmap tcp/udp 20000:65000
 

To test out the configuration, run
 

solaris$ sudo ipnat -CF -f /etc/ipf/ipnat.conf
 

These options first delete all existing rules and then load the complete set of rules from the /etc/ipf/ipnat.conf file.
 

Solaris Networking Quirks
 

The output of ifconfig -a is different when it is run as root than when it is run as a regular user. When run as root, it shows the link-level Ethernet addresses in addition to the IP addresses and parameters.
 

Solaris lets you change the link-level (MAC) address of a network interface with the ifconfig command and the address family ether. This feature can be useful if you need to worm your way onto a MAC-restricted wireless network.
 

14.14 HP-UX Networking
 

[image: Image] HP-UX network configuration is easy: all configuration parameters are set in the file /etc/rc.config.d/netconf. The values in this file (and all the other files in the rc.config.d directory) are read into the environment at boot time and used by the /sbin/rc script as the machine boots. netconf is liberally scattered with comments that tell you just which variables must be set and what they mean.
 

Basic Network Configuration for HP-UX
 

To assign a hostname to a machine and configure its first network interface, edit the netconf file and assign a value to the following variables:
 

[image: Image]
 

For example:
 

[image: Image]
 

A second network interface would have subscript 1, and its existence would be indicated by the variable NET_CARDS being set to 2.
 

The netconf file also contains variables to configure static routes and start a routing daemon. To establish a default route, set the following variables:
 

[image: Image]
 

The ROUTE_MASK variable is needed for a network in which the netmask differed from the default for the class of addresses used. The ROUTE_COUNT variable should be 0 if the gateway is the local machine and 1 if it is remote. To add more static routes, just enter their parameters to a set of ROUTE_* variables with indexes [1], [2], etc. These arguments are passed directly to the route command. For example, the destination parameter can be the word default as above or net
netaddr or host
hostaddr.
 

HP-UX supplies gated but not routed; to use gated, set the variable GATED to 1 and GATED_ARGS to the arguments you want gated started with. See Chapter 15, Routing, for a bit more information about gated. The HP-UX man page on routing (man routing) contains a lot of good background information.
 

Many fields in the netconf file can contain either a hostname or an IP address. If a hostname is used, it must be defined in /etc/hosts. At boot time, HP-UX looks only at /etc/hosts and does not use any other name lookup mechanism. The machines in /etc/hosts should have their fully qualified domain names listed first, followed by their short names and any aliases.
 

HP uses the lanscan command to show information about the network interfaces on a machine. ifconfig -a does not work, but ifconfig
interface does. Network interface names begin with either “lan” or “snap”: lan for Ethernet link-layer encapsulation and snap for IEEE 802.3 encapsulation. The first interface is lan0, the second is lan1, and so on.
 

HP-UX has the same sort of “plumbing” concept that Solaris does, but interfaces are automatically plumbed when they are assigned an IP address by ifconfig.
 

SMH is HP’s system administration tool, which is alleged to make UNIX system administration a breeze. It is a menu-based system and can be used to configure network interfaces, as well as to perform many other sysadmin chores.
 

H P-UX Configuration Examples
 

To bring up an HP-UX network interface and add a default route by hand, you’d use commands such as the following:
 

hp-ux$ sudo ifconfig lan0 192.108.21.99 netmask 0xffffff00
 

hp-ux$ sudo route add default 192.108.21.254 120
 

HP’s lanscan command lists the network interfaces in the system and the characteristics of the device driver that controls them. lanscan -v shows slightly more information. The examples below were munged to fit the page. The MAC entry with value ETHER implies that the network device name should be lan0, not snap0; ifconfig shows this to be true.
 

[image: Image]
 

netstat -i shows network interface names, and netstat -nr displays routing tables:
 

[image: Image]
 

The lanadmin command displays a summary of the network traffic that each interface has seen. It can also manipulate and monitor interfaces. It’s a menu-based program with useful help lists to lead you to the information you want. Here is an example that displays the statistics for the lan0 interface:
 

[image: Image]
 

[image: Image]
 

HP-UX DHCP Configuration
 

As with other network configuration parameters, you turn on the use of DHCP at boot time by setting variables in the /etc/rc.config.d/netconf file. In this case, the variable names start with DHCP_ENABLE. The index [0] refers to the first interface, [1] to the second interface, and so on. For example,
 

DHCP_ENABLE[0]=1
 

sets the first network interface to DHCP mode. It will get its IP address, netmask, and other networking parameters from the DHCP server on the local network. Setting the variable equal to 0 would disable DHCP; you’d have to assign a static address in the netconf file. If no DHCP_ENABLE clause is present, the variable defaults to 1.
 

The /sbin/auto_parms script does the real legwork of contacting the DHCP server. The program dhcpdb2conf enters the DHCP parameters secured by auto_parms into the netconf file, from which boot-time configuration information is taken.
 

HP-UX Dynamic Reconfiguration and Tuning
 

See page 498 for more details about ndd.
 

As in Solaris, you can use ndd to tune many different networking parameters. When used interactively, ndd tunes values on the fly. To change values permanently, enter them in /etc/rc.config.d/nddconf, which is read at boot time.
 

On an HP-UX system, ndd’s -h (help) option is quite useful. With no arguments, it lists all the parameters you can tune. If you also specify a variable name, ndd -h
describes what the variable does and shows its minimum, maximum, and default values. For example:
 

[image: Image]
 

ndd’s output claims that this version of HP-UX allows forwarding of source-routed packets by default. That may be the kernel’s preference, but in fact the default /etc/rc.config.d/nddconf file on our lab system disables this behavior:
 

[image: Image]
 

The 2s here indicate the third of ten possible variables to be set in nddconf. For the next variable that you wanted to change, you would add another copy of the same three lines with appropriate values and with subscript 3 instead of 2. Unfortunately, only 10 parameters can be set through nddconf.
 

To view and change the value of the ip_forward_src_routed variable by hand, use ndd -get and ndd -set (the syntax is slightly different from that on Solaris systems):
 

[image: Image]
 

HP-UX Security, Firewalls, Filtering, and NAT
 

Table 14.12 shows HP-UX’s default behavior with regard to various touchy network issues. For a brief description of the implications of these behaviors, see Security issues on page 472. You can modify most of them with ndd.
 

[image: Image]
 

Table 14.12 Security-related network behaviors in HP-UX
 

Like Solaris, HP-UX includes Darren Reed’s IPFilter package for packet filtering and NAT translation. See IPFilter for UNIX systems on page 939 and Solaris NAT on page 500 for some additional detail. The IPFilter part is all the same, although HP-UX configures the package differently at startup. Instead of using svcadm to enable IPFilter, edit /etc/rc.config.d/ipfconf and turn on the options you want. Configuration files for ipf and ipnat should go in /etc/opt/ipf instead of /etc/ipf.
 

HP-UX’s version of inetd has built-in TCP wrapper functionality that you configure in the file /var/adm/inetd.sec.
 

If you wonder in exactly what ways HP has shipped you an insecure system, take a look at Kevin Steves’ article about the steps needed to turn an HP-UX 11 system into a bastion host on an unprotected network: tinyurl.com/5sffy2. This document is a bit old (2002), but it’s an excellent description of all the creature comforts in HP-UX that must be turned off if the machine is to be secure on the open Internet. We wish we knew of a document like this for our other example systems.
 

14.15 AIX Networking
 

[image: Image] Rather than keeping network configuration information in text files or scripts, AIX squirrels it away in the Object Data Manager (ODM) attribute/value database. Another layer of glue associates these property lists with specific devices (driver instances, really) and binds the drivers to the configuration information.
 

The Object Data Manager on page 432 describes the ODM system in general. The overall scheme is rather complex, and it allows access to the network configuration at multiple layers. Table 14.13 shows a variety of AIX commands for setting an interface’s network address. They vary chiefly in whether they affect the running configuration, the boot-time configuration, or both.
 

[image: Image]
 

Table 14.13 Eight ways to set an interface’s IP address in AIX
 

To be fair, mktcpip does more than just set device configuration parameters—it also runs the rc.tcpip script to start relevant network daemons.
 

SMIT’s network configuration facilities are relatively complete, so you can, and should, rely on SMIT for most basic configuration. Look under the “Communications Applications and Services” topic for TCP/IP configuration options.
 

Most sysadmins will never need to operate below the level of chdev/lsattr et al. However, this layer can be useful for seeing the authoritative list of configuration options for a device. For example, the following query shows the configurable parameters for the network interface en3:
 

[image: Image]
 

The -H option asks for the output columns to be labeled, the -E option requests current (“effective,” as opposed to default) values, and the -l option identifies the device to probe. Many of the devices that chdev et al. can operate on have no entries in /dev. You can run lsdev -C to see a complete list of the available devices.
 

To set a value, use chdev. For example, to set the MTU for en3 above to 1450, you could use the command
 

aix$ sudo chdev -l en3 -a mtu=1450
 

No: Manage AIX Network Tuning Parameters
 

AIX breaks out its system-wide TCP/IP options into a separate, parallel world of persistent attribute/value pairs that are accessed through the no command rather than through chdev. (The difference is that no is for system-wide configuration, whereas chdev configures instances of specific drivers or devices.)
 

You can run no -a to see a list of all the available variables—there are currently more than 125. Table 14.14 lists some of the ones with security implications.
 

[image: Image]
 

Table 14.14 Security-related TCP/IP tuning variables for AIX
 

To set a variable, use
 

no -p -o
variable=value
 

For example, to prevent the TCP/IP stack from forwarding source-routed packets, you would use the command
 

aix$ sudo no -p -o ipsrcrouteforward=0
 

The -p option makes the change effective both immediately and after a reboot.
 

14.16 Recommended Reading
 

STEVENS, W. RICHARD. TCP/IP Illustrated, Volume One: The Protocols. Reading, MA: Addison-Wesley, 1994.
 

WRIGHT, GARY R., AND W. RICHARD STEVENS. TCP/IP Illustrated, Volume Two: The Implementation. Reading, MA: Addison-Wesley, 1995.
 

These two books are an excellent and thorough guide to the TCP/IP protocol stack. A bit dated, but still solid.
 

STEVENS, W. RICHARD. UNIX Network Programming. Upper Saddle River, NJ: Prentice Hall, 1990.
 

STEVENS, W. RICHARD, BILL FENNER, AND ANDREW M. RUDOFF. UNIX Network Programming, Volume 1, The Sockets Networking API (3rd Edition). Upper Saddle River, NJ: Addison-Wesley, 2003.
 

STEVENS, W. RICHARD. UNIX Network Programming, Volume 2: Interprocess Communications (2nd Edition). Upper Saddle River, NJ: Addison-Wesley, 1999.
 

These books are the student’s bibles in networking classes that involve programming. If you need only the Berkeley sockets interface, the original edition is still a fine reference. If you need the STREAMS interface too, then the third edition, which includes IPv6, is a good bet. All three are clearly written in typical Rich Stevens style.
 

TANENBAUM, ANDREW. Computer Networks (4th Edition). Upper Saddle River, NJ: Prentice Hall PTR, 2003.
 

This was the first networking text, and it is still a classic. It contains a thorough description of all the nitty-gritty details going on at the physical and link layers of the protocol stack. The latest edition includes coverage on wireless networks, gigabit Ethernet, peer-to-peer networks, voice over IP, and more.
 

SALUS, PETER H. Casting the Net, From ARPANET to INTERNET and Beyond. Reading, MA: Addison-Wesley Professional, 1995.
 

This is a lovely history of the ARPANET as it grew into the Internet, written by a historian who has been hanging out with UNIX people long enough to sound like one of them!
 

COMER, DOUGLAS. Internetworking with TCP/IP Volume 1: Principles, Protocols, and Architectures (5th Edition). Upper Saddle River, NJ: Prentice Hall, 2006.
 

Doug Comer’s Internetworking with TCP/IP series was for a long time the standard reference for the TCP/IP protocols. The books are designed as undergraduate textbooks and are a good introductory source of background material.
 

HUNT, CRAIG. TCP/IP Network Administration (3rd Edition). Sebastopol, CA: O’Reilly Media, 2002.
 

Like other books in the nutshell series, this book is directed at administrators of UNIX systems. Half the book is about TCP/IP, and the rest deals with higher-level UNIX facilities such as email and remote login.
 

FARREL, ADRIAN. The Internet and Its Protocols: A Comparative Approach. San Francisco, CA: Morgan Kaufmann Publishers, 2004.
 

KOZIERAK, CHARLES M. The TCP/IP Guide: A Comprehensive, Illustrated Internet Protocols Reference. San Francisco, CA: No Starch Press, 2005.
 

An excellent collection of documents about the history of the Internet and its various technologies can be found at isoc.org/internet/history.
 

14.17 Exercises
 

E14.1 How could listening to (i.e., obeying) ICMP redirects allow an unauthorized user to compromise the network?
 

E14.2 What is the MTU of a network link? What happens if the MTU for a given link is set too high? Too low?
 

[image: Image] E14.3 The network 134.122.0.0/16 has been subdivided into /19 networks.
 

a) How many networks are there? List them. What is their netmask?

 

b) How many hosts could there be on each network?

 

c) Determine which network the address 134.122.67.124 belongs to.

 

d) What is the broadcast address for each network?

 

[image: Image] E14.4 Host 128.138.2.4 on network 128.138.2.0/24 wants to send a packet to host 128.138.129.12 on network 128.138.129.0/24. Assume that
 

• Host 128.138.2.4 has a default route through 128.138.2.1.

 

• Host 128.138.2.4 just booted and has not sent or received any packets.

 

• All other machines on the network have been running for a long time.

 

• Router 128.138.2.1 has a direct link to 128.138.129.1, the gateway for the 128.138.129.0/24 subnet.

 

a) List all the steps that are needed to send the packet. Show the source and destination Ethernet and IP addresses of all packets transmitted.

 

b) If the network were 128.138.0.0/16, would your answer change? How or why not?

 

c) If the 128.138.2.0 network were a /26 network instead of a /24, would your answer change? How or why not?

 

[image: Image] E14.5 DHCP lease times are configurable on the server. If there many more assignable IP addresses than potential clients, should you make the lease time as long as possible (say, weeks)? Why or why not? What about other DHCP parameters?
 

[image: Image] E14.6 After installing a new Linux system, how would you address the security issues mentioned in this chapter? Check to see if any of the security problems have been dealt with on the Linux systems in your lab. (May require root access.)
 

[image: Image] E14.7 What steps are needed to add a new machine to the network in your lab environment? In answering, use parameters appropriate for your network and local situation. Assume that the operating system has already been installed on the new machine.
 

[image: Image] E14.8 Create a configuration file for ISC’s DHCP server that assigns addresses in the range 128.138.192.[1-55]. Use a lease time of two hours and make sure that the host with Ethernet address 00:10:5A:C7:4B:89 always receives IP address 128.138.192.55.
 
  


15. Routing
 

[image: Image]
 

Keeping track of where network traffic should flow next is no easy task. Chapter 14 briefly introduced IP packet forwarding. In this chapter, we examine the forwarding process in more detail and investigate several network protocols that allow routers to automatically discover efficient routes. Routing protocols not only lessen the day-to-day administrative burden of maintaining routing information, but they also allow network traffic to be redirected quickly if a router, link, or network should fail.
 

It’s important to distinguish between the process of actually forwarding IP packets and the management of the routing table that drives this process, both of which are commonly called “routing.” Packet forwarding is simple, whereas route computation is tricky; consequently, the second meaning is used more often in practice. This chapter describes only unicast routing; multicast routing (sending packets to groups of subscribers) involves an array of very different problems and is beyond the scope of this book.
 

For most cases, the information covered in Chapter 14, TCP/IP Networking, is all you need to know about routing. If the appropriate network infrastructure is already in place, you can set up a single static route (as described in the Routing section starting on page 465) and voilà, you have enough information to reach just about anywhere on the Internet. If you must survive within a complex network topology or if you are using UNIX or Linux systems as part of your network infrastructure, then this chapter’s information about dynamic routing protocols and tools can come in handy.
 

IP routing is “next hop” routing. At any given point, the system handling a packet only needs to determine the next host or router in the packet’s journey to its final destination. This is a different approach from that of many legacy protocols, which determine the exact path a packet will travel before it leaves its originating host, a scheme known as source routing.1
 

15.1 Packet Forwarding: a Closer Look
 

Before we jump into the management of routing tables, let’s take a more detailed look at how the tables are used. Consider the network shown in Exhibit A.
 

[image: Image]
 

E xhibit A Example network
 

Router R1 connects two networks, and router R2 connects one of the nets to the outside world. For now, we assume that R1 and R2 are general-purpose computers rather than dedicated routers. (We assume Linux and IPv4 for all systems involved in this example, but the commands and principles are similar under IPv6 and on UNIX systems.) Let’s look at some routing tables and some specific packet forwarding scenarios. First, host A’s routing table:
 

[image: Image]
 

See page 478 for more information about ifconfig.
 

Host A has the simplest routing configuration of the four machines. The first two routes describe the machine’s own network interfaces in standard routing terms. These entries exist so that forwarding to directly connected networks need not be handled as a special case. eth0 is host A’s Ethernet interface, and lo is the loopback interface, a virtual interface emulated in software. Entries such as these are normally added automatically by ifconfig when a network interface is configured.
 

Some systems treat the loopback route as a “host route” to one particular IP address rather than an entire network. Since 127.0.0.1 is the only IP address that will ever exist on the loopback network, it doesn’t really matter how it’s defined. The only changes you’d see in the routing table would be 127.0.0.1 in the destination column instead of 127.0.0.0 and an H in the Flags column.
 

See the discussion of netmasks starting on page 458.
 

There is no substantive difference between a host route and a network route. They are treated exactly the same when the kernel goes to look up addresses in the routing table; only the length of the implicit mask is different.
 

The default route on host A forwards all packets not addressed to the loopback address or to the 199.165.145 network to the router R1, whose address on this network is 199.165.145.24. The G flag indicates that this route goes to a gateway, not to one of A’s local interfaces. Gateways must be only one hop away.
 

See page 454 for more information about addressing.
 

Suppose a process on A sends a packet to B, whose address is 199.165.146.4. The IP implementation looks for a route to the target network, 199.165.146, but none of the routes match. The default route is invoked and the packet is forwarded to R1. Exhibit B shows the packet that actually goes out on the Ethernet (the addresses in the Ethernet header are the MAC addresses of A’s and R1’s interfaces on the 145 net).
 

[image: Image]
 

Exhibit B Ethernet packet
 

The Ethernet destination hardware address is that of router R1, but the IP packet hidden within the Ethernet frame does not mention R1 at all. When R1 inspects the packet it has received, it sees from the IP destination address that it is not the ultimate destination of the packet. It then uses its own routing table to forward the packet to host B without rewriting the IP header; the header still shows the packet coming from A.
 

Here’s the routing table for host R1:
 

[image: Image]
 

This table is similar to that of host A, except that it shows two physical network interfaces. The default route in this case points to R2, since that’s the gateway through which the Internet can be reached. Packets bound for either of the 199.165 networks can be delivered directly.
 

Like host A, host B has only one real network interface. However, B needs an additional route to function correctly because it has direct connections to two different routers. Traffic for the 199.165.145 net must travel through R1, while other traffic should go out to the Internet through R2.
 

[image: Image]
 

In theory, you can configure host B with initial knowledge of only one gateway and rely on help from ICMP redirects to eliminate extra hops. For example, here is one possible initial configuration for host B:
 

[image: Image]
 

If B then sends a packet to host A (199.165.145.17), no route matches and the packet is forwarded to R2 for delivery. R2 (which, being a router, presumably has complete information about the network) sends the packet on to R1. Since R1 and B are on the same network, R2 also sends an ICMP redirect notice to B, and B enters a host route for A into its routing table:
 

[image: Image]
 

This route sends all future traffic for A directly through R1. However, it does not affect routing for other hosts on A’s network, all of which have to be routed by separate redirects from R2.
 

See page 467 for an explanation of ICMP redirects.
 

Some sites use ICMP redirects this way as a sort of low-rent routing “protocol,” thinking that this approach is dynamic. Unfortunately, systems and routers all handle redirects differently. Some hold on to them indefinitely. Others remove them from the routing table after a relatively short period (5–15 minutes). Still others ignore them entirely, which is probably the correct approach from a security perspective.
 

Redirects have several other potential disadvantages: increased network load, increased load on R2, routing table clutter, and dependence on extra servers, to name a few. Therefore, we don’t recommend their use. In a properly configured network, redirects should never appear in the routing table.
 

15.2 Routing Daemons and Routing Protocols
 

In simple networks such as the one shown in Exhibit A, it is perfectly reasonable to configure routing by hand. At some point, however, networks become too complicated to be managed this way. Instead of having to explicitly tell every computer on every network how to reach every other computer and network, it would be nice if the computers could just cooperate and figure it all out. This is the job of routing protocols and the daemons that implement them.
 

Routing protocols have a major advantage over static routing systems in that they can react and adapt to changing network conditions. If a link goes down, then the routing daemons can discover and propagate alternative routes to the networks served by that link, if any such routes exist.
 

Routing daemons collect information from three sources: configuration files, the existing routing tables, and routing daemons on other systems. This information is merged to compute an optimal set of routes, and the new routes are then fed back into the system routing table (and possibly fed to other systems through a routing protocol). Because network conditions change over time, routing daemons must periodically check in with one another for reassurance that their routing information is still current.
 

The exact manner in which routes are computed depends on the routing protocol. Two general types of protocols are in common use: distance-vector protocols and link-state protocols.
 

Distance-Vector Protocols
 

Distance-vector (aka “gossipy”) protocols are based on the general idea, “If router X is five hops away from network Y, and I’m adjacent to router X, then I must be six hops away from network Y.” You announce how far you think you are from the networks you know about. If your neighbors don’t know of a better way to get to each network, they mark you as being the best gateway. If they already know a shorter route, they ignore your advertisement. Over time, everyone’s routing tables are supposed to converge to a steady state.
 

This is really a very elegant idea. If it worked as advertised, routing would be relatively simple. Unfortunately, the basic algorithm does not deal well with changes in topology.2 In some cases, infinite loops (e.g., router X receives information from router Y and sends it on to router Z, which sends it back to router Y) can prevent routes from converging at all. Real-world distance-vector protocols must avoid such problems by introducing complex heuristics or by enforcing arbitrary restrictions such as the RIP (Routing Information Protocol) notion that any network more than 15 hops away is unreachable.
 

Even in nonpathological cases, it can take many update cycles for all routers to reach a steady state. Therefore, to guarantee that routing will not jam for an extended period, the cycle time must be made short, and for this reason distance-vector protocols as a class tend to be talkative. For example, RIP requires that routers broadcast all their routing information every 30 seconds. EIGRP sends updates every 90 seconds.
 

On the other hand, BGP, the Border Gateway Protocol, transmits the entire table once and then transmits changes as they occur. This optimization substantially reduces the potential for “chatty” (and mostly unnecessary) traffic.
 

Table 15.1 lists the distance-vector protocols in common use today.
 

[image: Image]
 

Table 15.1 Common distance-vector routing protocols
 

Link-State Protocols
 

Link-state protocols distribute information in a relatively unprocessed form. The records traded among routers are of the form “Router X is adjacent to router Y, and the link is up.” A complete set of such records forms a connectivity map of the network from which each router can compute its own routing table. The primary advantage that link-state protocols offer over distance-vector protocols is the ability to quickly converge on an operational routing solution after a catastrophe occurs. The tradeoff is that maintaining a complete map of the network at each node requires memory and CPU power that would not be needed by a distance-vector routing system.
 

Because the communications among routers in a link-state protocol are not part of the actual route-computation algorithm, they can be implemented in such a way that transmission loops do not occur. Updates to the topology database propagate across the network efficiently, at a lower cost in network bandwidth and CPU time.
 

Link-state protocols tend to be more complicated than distance-vector protocols, but this complexity can be explained in part by the fact that link-state protocols make it easier to implement advanced features such as type-of-service routing and multiple routes to the same destination.
 

Only two link-state protocols are in general use: OSPF and IS-IS. Although IS-IS has been widely implemented, it is not widely used and we do not recommended it for new deployments. See page 520 for some additional comments on IS-IS.
 

Cost Metrics
 

For a routing protocol to determine which path to a network is shortest, it has to define what is meant by “shortest.” Is it the path involving the fewest number of hops? The path with the lowest latency? The largest minimal intermediate bandwidth? The lowest financial cost?
 

For routing, the quality of a link is represented by a number called the cost metric. A path cost is the sum of the costs of each link in the path. In the simplest systems, every link has a cost of 1, leading to hop counts as a path metric. But any of the considerations mentioned above can be converted to a numeric cost metric.
 

Routing protocol designers have labored long and hard to make the definition of cost metrics flexible, and some protocols even allow different metrics to be used for different kinds of network traffic. Nevertheless, in 99% of cases, all this hard work can be safely ignored. The default metrics for most systems work just fine.
 

You may encounter situations in which the actual shortest path to a destination may not be a good default route for political reasons. To handle these cases, you can artificially boost the cost of the critical links to make them seem less appealing. Leave the rest of the routing configuration alone.
 

Interior and Exterior Protocols
 

An “autonomous system” (AS) is a group of networks under the administrative control of a single entity. The definition is vague; real-world autonomous systems can be as large as a world-wide corporate network or as small as a building or a single academic department. It all depends on how you want to manage routing. The general tendency is to make autonomous systems as large as possible. This convention simplifies administration and makes routing as efficient as possible.
 

Routing within an autonomous system is somewhat different from routing between autonomous systems. Protocols for routing among ASes (“exterior” protocols) must often handle routes for many networks (e.g., the entire Internet), and they must deal gracefully with the fact that neighboring routers are under other people’s control. Exterior protocols do not reveal the topology inside an autonomous system, so in a sense they can be thought of as a second level of routing hierarchy that deals with collections of nets rather than individual hosts or cables.
 

In practice, small- and medium-sized sites rarely need to run an exterior protocol unless they are connected to more than one ISP. With multiple ISPs, the easy division of networks into local and Internet domains collapses, and routers must decide which route to the Internet is best for any particular address. (However, that is not to say that every router must know this information. Most hosts can stay stupid and route their default packets through an internal gateway that is better informed.)
 

While exterior protocols are not so different from their interior counterparts, this chapter concentrates on the interior protocols and the daemons that support them. If your site must use an external protocol as well, see the recommended reading list on page 528 for some suggested references.
 

15.3 Protocols on Parade
 

Several routing protocols are in common use. In this section, we introduce the major players and summarize their main advantages and weaknesses.
 

RIP and RIPng: Routing Information Protocol
 

RIP is an old Xerox protocol that was adapted for IP networks. The IP version was originally specified in RFC1058, circa 1988. The protocol has existed in three versions: RIP, RIPv2, and the IPv6-only RIPng (“next generation”).
 

All versions of RIP are simple distance-vector protocols that use hop counts as a cost metric. Because RIP was designed in an era when computers were expensive and networks small, RIPv1 considers any host fifteen or more hops away to be unreachable. Later versions of RIP have maintained the hop-count limit, mostly to encourage the administrators of complex sites to migrate to more sophisticated routing protocols.
 

See page 460 for information about classless addressing, aka CIDR.

 

RIPv2 is a minor revision of RIP that distributes netmasks along with next-hop addresses, so its support for subnetted networks and CIDR is better than RIPv1’s. A vague gesture toward increasing the security of RIP was also included.
 

RIPv2 can be run in a compatibility mode that preserves most of its new features without entirely abandoning vanilla RIP receivers. In most respects, RIPv2 is identical to the original protocol and should be used in preference to it.
 

See page 451 for details on IPv6.

 

RIPng is a restatement of RIP in terms of IPv6. It is an IPv6-only protocol, and RIP remains IPv4-only. If you want to route both IPv4 and IPv6 with RIP, you’ll need to run RIP and RIPng as separate protocols.
 

Although RIP is known for its profligate use of broadcasting, it does a good job when a network is changing often or when the topology of remote networks is not known. However, it can be slow to stabilize after a link goes down.
 

It was originally thought that the advent of more sophisticated routing protocols such as OSPF would make RIP obsolete. However, RIP continues to fill a need for a simple, easy-to-implement protocol that doesn’t require much configuration, and it works well on low-complexity networks. The reports of RIP’s death are greatly exaggerated.
 

RIP is widely implemented on non-UNIX platforms. A variety of common devices, from printers to SNMP-manageable network components, can listen to RIP advertisements to learn about network gateways. In addition, some form of RIP client is available for all versions of UNIX and Linux, so RIP is a de facto lowest-common-denominator routing protocol. Often, RIP is used for LAN routing, and a more featureful protocol is used for wide-area connectivity.
 

Some sites run passive RIP daemons (usually routed or Quagga’s ripd) that listen for routing updates on the network but do not broadcast any information of their own. The actual route computations are performed with a more efficient protocol such as OSPF (see the next section). RIP is used only as a distribution mechanism.
 

OSPF: Open Shortest Path First
 

OSPF is the most popular link-state protocol. “Shortest path first” refers to the mathematical algorithm used to calculate routes; “open” is used in the sense of “nonproprietary.” RFC2328 defines the basic protocol (OSPF version 2), and RFC5340 extends it to include support for IPv6 (OSPF version 3). OSPF version 1 is obsolete and is not used.
 

OSPF is an industrial-strength protocol that works well for large, complicated topologies. It offers several advantages over RIP, including the ability to manage several paths to a single destination and the ability to partition the network into sections (“areas”) that share only high-level routing information. The protocol itself is complex and hence only worthwhile at sites of significant size, where routing protocol behavior really makes a difference. To use OSPF effectively, your site’s IP addressing scheme should be reasonably hierarchical.
 

The OSPF protocol specification does not mandate any particular cost metric. Cisco’s implementation uses a bandwidth-related value by default.
 

EIGRP: Enhanced Interior Gateway Routing Protocol
 

EIGRP is a proprietary routing protocol that runs only on Cisco routers. Its predecessor IGRP was created to address some of the shortcomings of RIP before robust standards like OSPF existed. IGRP has now been deprecated in favor of EIGRP, which accommodates CIDR masks. IGRP and EIGRP are configured similarly despite being quite different in their underlying protocol design.
 

EIGRP supports IPv6, but as with other routing protocols, the IPv6 world and IPv4 world are configured separately and act as separate, though parallel, routing domains.
 

EIGRP is a distance-vector protocol, but it’s designed to avoid the looping and convergence problems found in other DV systems. It’s widely regarded as the most evolved distance-vector protocol. For most purposes, EIGRP and OSPF are equally functional.
 

IS-IS: the ISO “Standard”
 

IS-IS, the Intra-domain Intermediate System to Intermediate System Routeing Protocol, is the International Organization for Standardization’s answer to OSPF. It was originally designed to manage “routeing” for the OSI network protocols and was later extended to handle IP routing.
 

Both IS-IS and OSPF were developed in the early 90s when ISO protocols were politically in vogue. Early attention from the IETF helped lend IS-IS a veneer of legitimacy, but it seems to be falling farther and farther behind OSPF in popularity. Today, the use of IS-IS is extremely rare outside of vendor certification test environments. The protocol itself is mired with lots of ISO baggage and generally should be avoided.
 

Router Discovery Protocol and Neighbor Discovery Protocol
 

IPv4’s Router Discovery Protocol uses ICMP messages sent to the IP multicast address 224.0.0.1 to announce and learn about other routers on a network. Unfortunately, not all routers currently make these announcements, and not all hosts listen to them. The hope was that someday the use of RDP would become more widespread, but chicken-and-egg issues have largely prevented other protocols from relying on it.
 

See page 468 for more information about ARP.
 

IPv6’s Neighbor Discovery Protocol subsumes the functions of both RDP and ARP, the Address Resolution Protocol used to map IPv4 addresses to hardware addresses on local networks. Because it’s a core component of IPv6, NDP is available wherever IPv6 is found and IPv6 routing protocols typically build on it.
 

BGP: the Border Gateway Protocol
 

BGP is an exterior routing protocol; that is, a protocol that manages traffic among autonomous systems rather than among individual networks. There were once several exterior routing protocols in common use, but BGP has outlasted them all.
 

BGP is now the standard protocol used for Internet backbone routing. As of mid-2010, the Internet routing table contains about 320,000 prefixes. It should be clear from this number that backbone routing has very different scaling requirements from local routing.
 

15.4 Routing Strategy Selection Criteria
 

Routing for a network can be managed at essentially four levels of complexity:
 

• No routing

 

• Static routes only

 

• Mostly static routes, but clients listen for RIP updates

 

• Dynamic routing everywhere

 

The topology of the overall network has a dramatic effect on each individual segment’s routing requirements. Different nets may need very different levels of routing support. The following rules of thumb can help you choose a strategy:
 

• A stand-alone network requires no routing.

 

• If a network has only one way out, clients (nongateway machines) on that network should have a static default route to the lone gateway. No other configuration is necessary, except perhaps on the gateway itself.

 

• A gateway with a small number of networks on one side and a gateway to “the world” on the other side can have explicit static routes pointing to the former and a default route to the latter. However, dynamic routing is advisable if both sides have more than one routing choice.

 

• Use dynamic routing at points where networks cross political or administrative boundaries, even if the complexity of the networks involved would not otherwise suggest the use of a routing protocol.

 

• RIP works OK and is widely supported. Don’t reject it out of hand just because it’s an older protocol with a reputation for chattiness.

 

The problem with RIP is that it doesn’t scale indefinitely; an expanding network will eventually outgrow it. That fact makes RIP something of a transitional protocol with a narrow zone of applicability. That zone is bounded on one side by networks too simple to require any routing protocol and on the other side by networks too complicated for RIP. If your network plans include continued growth, it’s probably reasonable to skip over the “RIP zone” entirely.

 

• Even when RIP isn’t a good choice for your global routing strategy, it’s still a good way to distribute routes to leaf nodes. But don’t use it where it’s not needed: systems on a network that has only one gateway never need dynamic updates.

 

• EIGRP and OSPF are about equally functional, but EIGRP is proprietary to Cisco. Cisco makes excellent and cost-competitive routers; nevertheless, standardizing on EIGRP limits your choices for future expansion.

 

• Routers connected to the Internet through multiple upstream providers must use BGP. However, most routers have only one upstream path and can therefore use a simple static default route.

 

A good default strategy for a medium-sized site with a relatively stable local structure and a connection to someone else’s net is to use a combination of static and dynamic routing. Routers within the local structure that do not lead to external networks can use static routing, forwarding all unknown packets to a default machine that understands the outside world and does dynamic routing.
 

A network that is too complicated to be managed with this scheme should rely on dynamic routing. Default static routes can still be used on leaf nets, but machines on networks with more than one router should run routed or some other RIP receiver in passive mode.
 

15.5 Routing Daemons
 

We don’t recommend the use of UNIX and Linux systems as routers for production networks. Dedicated routers are simpler, more reliable, more secure, and faster (even if they are secretly running a Linux kernel). That said, it’s nice to have the option to set up a new subnet using only a $15 network card and a $40 switch. That’s a reasonable approach for lightly populated test and auxiliary networks.
 

Systems that act as gateways to such subnets don’t need any help managing their own routing tables. Static routes are perfectly adequate, both for the gateway machine and for the machines on the subnet itself. However, if you want the subnet to be reachable by other systems at your site, you need to advertise the subnet’s existence and to identify the router to which packets bound for that subnet should be sent. The usual way to do this is to run a routing daemon on the gateway.
 

UNIX and Linux systems can participate in most routing protocols through the use of various routing daemons. The notable exception is EIGRP, which as far as we are aware has no widely available UNIX or Linux implementation.
 

Because the use of routing daemons is uncommon on production systems, we don’t describe their use and configuration in detail. However, the following sections outline the common software options and point to detailed configuration information.
 

routed: Obsolete RIP Implementation
 

routed was for a long time the only standard routing daemon, and it’s still included on a few systems. routed speaks only RIP, and poorly at that: even support for RIPv2 is scattershot. routed does not speak RIPng, implementation of that protocol being confined to modern daemons such as Quagga or HP-UX’s ramd.
 

Where available, routed is useful chiefly for its “quiet” mode (-q), in which it listens for routing updates but does not broadcast any information of its own. Aside from the command-line flag, routed normally does not require configuration. It’s an easy and cheap way to get routing updates without having to deal with much configuration hassle.
 

routed adds its discovered routes to the kernel’s routing table. Routes must be reheard at least every four minutes or they will be removed. However, routed knows which routes it has added and does not remove static routes that were installed with the route command.
 

See page 481 for more about route.
 

gated: First-Generation Multiprotocol Routing Daemon
 

gated is an elegantly designed and once-freely-available routing framework that allows the simultaneous use of multiple routing protocols. It gives administrators precise control over advertised routes, broadcast addresses, trust policies, and metrics. gated shares routes among several protocols, allowing routing gateways to be constructed between areas that have standardized on different routing systems. It also has one of the nicest administrative interfaces and configuration file designs of any administrative software.
 

Alas, gated is dead (or at least, dead-ish), though its memory lives on in slow-to-change releases such as HP-UX and AIX, which bundle versions 3.5.9 and 6.0, respectively.
 

gated is an object lesson in the perils of attempting to compete with open source software. It started out as freely distributable software, but in 1992 it was privatized and turned over to a development consortium; updates then became available only to members of the consortium. The consortium was eventually disbanded, and the rights to the commercial version of gated changed hands several times. Meanwhile, the open source Zebra and Quagga projects rose to take over gated’s role as the mainstream open source routing package. These days, gated is extinct both as a commercial product and as an open source project, a sad end to a useful and well-designed package.
 

Quagga: Mainstream Routing Daemon
 

Quagga (quagga.net) is a development fork of Zebra, a GNU project started by Kunihiro Ishiguro and Yoshinari Yoshikawa to implement multiprotocol routing with a collection of independent daemons instead of a single monolithic application. In real life, the quagga—a subspecies of zebra last photographed in 1870—is extinct, but in the digital realm it is Quagga that survives and Zebra that is no longer under active development.
 

Quagga currently implements RIP (all versions), OSPF (versions 2 and 3), BGP, and IS-IS. It runs on Linux, Solaris, and various flavors of BSD. On Solaris and our example Linux systems, Quagga is either installed by default or is available as an optional package through the system’s standard software repository.
 

In the Quagga system, the zebra daemon acts as a central clearing-house for routing information. It manages the interaction between the kernel’s routing table and the daemons for individual routing protocols (ripd, ripngd, ospfd, ospf6d, bgpd, and isisd). It also controls the flow of routing information among protocols. Each daemon has its own configuration file in the /etc/quagga directory.
 

You can connect to any of the Quagga daemons through a command-line interface (vtysh on Linux, quaggaadm on Solaris) to query and modify its configuration. The command language itself is designed to be familiar to users of Cisco’s IOS operating system; see the section on Cisco routers starting on page 525 for some additional details. As in IOS, you use enable to enter “superuser” mode, config term to enter configuration commands, and write to save your configuration changes back to the daemon’s configuration file.
 

The official documentation at quagga.net is available in HTML or PDF form. Although complete, it’s for the most part a workmanlike catalog of options and does not provide much of an overview of the system. The real documentation action is on the wiki, wiki.quagga.net. Look there for well-commented example configurations, FAQs, and tips.
 

Although the configuration files have a simple format and are not complex, you’ll need to understand the protocols you’re configuring and have some idea of which options you want to enable or configure. See the recommended reading list on page 528 for some good books on routing protocols.
 

[image: Image]
[image: Image] Solaris and Red Hat include a selection of helpful configuration file examples for the various Quagga daemons in the /etc/quagga directory. Solaris includes a nice README.Solaris file as well. However, you’re still best off referring to the wiki.
 

ramd: Multiprotocol Routing System for HP-UX
 

[image: Image] HP-UX includes a suite of routing daemons that are eerily similar in their general architecture to Zebra and Quagga. We are not sure whether the similarity is attributable to emulation, convergent evolution, or perhaps to an early fork from the Zebra code base.
 

In any event, the similarity is only superficial. Some notable points of divergence are that HP’s system supports only IPv6 and external routing protocols (RIPng, BGP, and IS-IS) and that it does not support OSPF at all. The configuration language is different, and the control utility (rdc, as opposed to Quagga’s vtysh or quaggaadm) accepts only command-line arguments; it does not function as an independent shell environment.
 

HP calls its system the Route Administration Manager Daemon, and the suite’s ramd daemon plays the same role as zebra in the Quagga universe. As in Quagga, the protocol-specific daemons are called ripngd, isisd, and bgpd.
 

XORP: Router in a Box
 

XORP, the eXtensible Open Router Platform project, was started at around the same time as Zebra, but its ambitions are more general. Instead of focusing on routing, XORP aims to emulate all the functions of a dedicated router, including packet filtering and traffic management. Check it out at xorp.org.
 

One interesting aspect of XORP is that in addition to running under several operating systems (Linux, various BSD derivatives, Mac OS X, and Windows Server 2003), it’s also available as a live CD that runs directly on PC hardware. The live CD is secretly based on Linux, but it does go a long way toward turning a generic PC into a dedicated routing appliance.
 

Vendor Specifics
 

[image: Image] Quagga is the go-to routing software for Linux. All of our example distributions either install it by default or make it readily available from the distributor’s repository. Quagga has become so entrenched that most distributions no longer include routed. Even where they do, it’s a vestigial version without RIPv2 support.
 

[image: Image] Solaris includes a functional routed (actually called in.routed) that understands RIPv2. It also includes Quagga; you can take your pick. For any sort of IPv6 routing, you’ll need to use Quagga.
 

in.routed is the default routing solution, and it’s started automatically at boot time if you haven’t specified a default network gateway in the /etc/defaultrouter file. Solaris continues to supply the in.rdisc router discovery daemon, which is curious since its functionality is now included in in.routed.
 

[image: Image] HP-UX’s primary routing system, ramd, is discussed above (see page 524). HP also provides a copy of gated 3.5.9, which is quite old and has no support for IPv6. If you want to manage both IPv4 and IPv6 routing under HP-UX, you’ll have to use gated for the former and ramd for the latter. Unfortunately, Quagga does not currently run on HP-UX.
 

[image: Image] AIX provides three routing daemons: gated v6.0, a routed that speaks only RIPv1, and ndpd-router, an implementation of RIPng and NDP. AIX’s gated speaks RIPng, too; however, if you want to use gated for IPv6 routing, you may need to run both gated and ndpd-router. See the documentation for details.
 

15.6 Cisco Routers
 

Routers made by Cisco Systems, Inc., are the de facto standard for Internet routing today. Having captured over 60% of the router market, Cisco’s products are well known, and staff that know how to operate them are relatively easy to find. Before Cisco, UNIX boxes with multiple network interfaces were often used as routers. Today, dedicated routers are the favored gear to put in datacom closets and above ceiling tiles where network cables come together.
 

Most of Cisco’s router products run an operating system called Cisco IOS, which is proprietary and unrelated to UNIX. Its command set is rather large; the full documentation set fills up about 4.5 feet of shelf space. We could never fully cover Cisco IOS here, but knowing a few basics can get you a long way.
 

By default, IOS defines two levels of access (user and privileged), both of which are password protected. By default, you can simply telnet to a Cisco router to enter user mode.
 

You are prompted for the user-level access password:
 


 

[image: Image]
 

Upon entering the correct password, you receive a prompt from Cisco’s EXEC command interpreter.
 

acme-gw.acme.com>
 

At this prompt, you can enter commands such as show interfaces to see the router’s network interfaces or show ? to list the other things you can see.
 

To enter privileged mode, type enable and when asked, type the privileged password . Once you have reached the privileged level, your prompt ends in a #:
 

acme-gw.acme.com#
 

BE CAREFUL—you can do anything from this prompt, including erasing the router’s configuration information and its operating system. When in doubt, consult Cisco’s manuals or one of the comprehensive books published by Cisco Press.
 

You can type show running to see the current running configuration of the router and show config to see the current nonvolatile configuration. Most of the time, these are the same.
 

Here’s a typical configuration:
 

[image: Image]
 

[image: Image]
 

The router configuration can be modified in a variety of ways. Cisco offers graphical tools that run under some versions of UNIX/Linux and Windows. Real network administrators never use these; the command prompt is always the “sure bet.” It is also possible to scp a config file to or from a router so that you can edit it with your favorite editor.
 

To modify the configuration from the command prompt, type config term:
 

[image: Image]
 

You can then type new configuration commands exactly as you want them to appear in the show running output. For example, if we wanted to change the IP address of the Ethernet0 interface in the example above, we could enter
 

[image: Image]
 

When you’ve finished entering configuration commands, press <Control-Z> to return to the regular command prompt. If you’re happy with the new configuration, enter write mem to save the configuration to nonvolatile memory.
 

Here are some tips for a successful Cisco router experience:
 

• Name the router with the hostname command. This precaution helps prevent accidents caused by configuration changes to the wrong router. The hostname always appears in the command prompt.

 

• Always keep a backup router configuration on hand. You can scp or tftp the running configuration to another system each night for safekeeping.

 

• It’s often possible to store a copy of the configuration in NVRAM or on a removable jump drive. Do so!

 

• Once you have configured the router for SSH access, turn off the Telnet protocol entirely.

 

• Control access to the router command line by putting access lists on the router’s VTYs (VTYs are like PTYs on a UNIX system). This precaution prevents unwanted parties from trying to break into your router.

 

• Control the traffic flowing through your networks (and possibly to the outside world) by setting up access lists on each interface. See Packet-filtering firewalls on page 932 for more information about how to set up access lists.

 

• Keep routers physically secure. It’s easy to reset the privileged password if you have physical access to a Cisco box.

 

If you have multiple routers and multiple router wranglers, check out the free tool RANCID from shrubbery.net. With a name like RANCID it practically markets itself, but here’s the elevator pitch: RANCID logs into your routers every night to retrieve their configuration files. It diffs the configurations and lets you know about anything that’s changed. It also keeps the configuration files under revision control (see page 397) automatically.
 

15.7 Recommended Reading
 

PERLMAN, RADIA. Interconnections: Bridges, Routers, Switches, and Internetworking Protocols (2nd Edition). Reading, MA: Addison-Wesley, 2000.
 

This is the definitive work in this topic area. If you buy just one book about networking fundamentals, this should be it. Also, don’t ever pass up a chance to hang out with Radia—she’s a lot of fun and holds a shocking amount of knowledge in her brain.
 

DOOLEY, KEVIN AND IAN J. BROWN. Cisco IOS Cookbook (2nd Edition). Sebastopol, CA: O’Reilly Media, 2007.
 

DOYLE, JEFF, AND JENNIFER CARROLL. Routing TCP/IP, Volume I (2nd Edition). Indianapolis, IN: Cisco Press, 2005.
 

DOYLE, JEFF, AND JENNIFER DEHAVEN CARROLL. Routing TCP/IP, Volume II. Indianapolis, IN: Cisco Press, 2001.
 

This pair of volumes is an in-depth introduction to routing protocols and is independent of any particular implementation. Volume I covers interior protocols, and Volume II covers exterior protocols, NAT, and multicast routing.
 

HALABI, SAM. Internet Routing Architectures (2nd Edition). Indianapolis, IN: Cisco Press, 2000.
 

This well-regarded book concentrates on BGP.
 

HUITEMA, CHRISTIAN. Routing in the Internet (2nd Edition). Upper Saddle River, NJ: Prentice Hall PTR, 2000.
 

This book is a clear and well-written introduction to routing from the ground up. It covers most of the protocols in common use and also some advanced topics such as multicasting.
 

There are many routing-related RFCs. The main ones are shown in Table 15.2.
 

[image: Image]
 

Table 15.2 Routing-related RFCs
 

15.8 Exercises
 

E15.1 Investigate the Linux route command and write a short description of what it does. Using route, how would you
 

a) Add a default route to 128.138.129.1 using interface eth1?

 

b) Delete a route to 128.138.129.1?

 

c) Determine whether a route was added by a program such as routed or an ICMP redirect?

 

E15.2 Compare static and dynamic routing, listing several advantages and disadvantages of each. Describe situations in which each would be appropriate and explain why.
 

[image: Image] E15.3 Consider the following netstat -rn output from a Linux system. Describe the routes and figure out the network setup. Which network, 10.0.0.0 or 10.1.1.0, is closer to the Internet? Which process added each route?
 

[image: Image]
 

[image: Image] E15.4 Figure out the routing scheme that is used at your site. What protocols are in use? Which machines directly connect to the Internet? You can use tcpdump to look for routing update packets on the local network and traceroute to explore beyond the local net. (Requires root access.)
 

[image: Image] E15.5 If you were a medium-sized ISP that provided dial-in accounts and virtual hosting, what sort of routing setup up would you use? Make sure that you consider not only the gateway router(s) between the Internet backbone and your own network but also any interior routers that may be in use. Draw a network diagram that outlines your routing architecture.
 
  


16. Network Hardware
 

[image: Image]
 

Whether you’re using Google on your cell phone,1 banking on-line, or receiving Skype video calls from your cousins in Belgium, just about everything in the world these days is handled in digital form. Moving data from one place to another is on everyone’s mind. Behind all this craziness is fancy network hardware and—you guessed it—a whole bunch of stuff that originated in the deep, dark caves of UNIX. If there’s one area in which UNIX technology has touched human lives, it’s in the practical realization of large-scale packetized data transport.
 

Many network-layer technologies have been promoted over the years, but one has emerged as a clear winner: Ethernet. Now that Ethernet is found on everything from game consoles to refrigerators, a thorough understanding of this system is critical to success as a system administrator.
 

It goes without saying that the speed and reliability of your network have a direct effect on your organization’s productivity. But today, networking is so pervasive that the state of the network can affect our ability to perform basic human interactions, such as placing a telephone call. A poorly designed network is a personal and professional embarrassment that can have catastrophic social effects. It can also be very expensive to fix.
 

At least four major factors contribute to success:
 

• Development of a reasonable network design

 

• Selection of high-quality hardware

 

• Proper installation and documentation

 

• Competent ongoing operations and maintenance

 

This chapter focuses on understanding, installing, and operating Ethernet networks. We also touch briefly on “last mile” network technologies such as DSL (Digital Subscriber Line), which are normally presented to the end customer in the form of—surprise!—Ethernet.
 

16.1 ETHERNET: The Swiss Armyknife of Networking
 

Having captured over 95% of the world-wide Local Area Network (LAN) market, Ethernet can be found just about everywhere in its many forms. It started as Bob Metcalfe’s Ph.D. thesis at MIT but is now described in a variety of IEEE standards.
 

Ethernet was originally specified at 3 Mb/s (megabits per second), but it moved to 10 Mb/s almost immediately. Once a 100 Mb/s standard was finalized in 1994, it became clear that Ethernet would evolve rather than be replaced. This touched off a race to build increasingly faster version of Ethernet, and that race goes on today. Table 16.1 highlights the evolution of the various Ethernet standards.2
 

How Ethernet works
 

The underlying model used by Ethernet can be described as a polite dinner party at which guests (computers) don’t interrupt each other but rather wait for a lull in the conversation (no traffic on the network cable) before speaking. If two guests start to talk at once (a collision) they both stop, excuse themselves, wait a bit, and then one of them starts talking again.
 

The technical term for this scheme is CSMA/CD:
 

• Carrier Sense: you can tell whether anyone is talking.

 

• Multiple Access: everyone can talk.

 

• Collision Detection: you know when you interrupt someone else.

 

The actual delay on collision detection is somewhat random. This convention avoids the scenario in which two hosts simultaneously transmit to the network, detect the collision, wait the same amount of time, and then start transmitting again, thus flooding the network with collisions. This was not always true!
 

Today, the importance of the CSMA/CD conventions has been lessened by the advent of switches, which typically limit the number of hosts in a given collision domain to two. (To continue the “dinner party” analogy, you might think of this variant as being akin to the scene sometimes found in old movies where two people sit at opposite ends of a long, formal dining table.)
 

[image: Image]
 

Table 16.1 The evolution of Ethernet
 

Ethernet Topology
 

The Ethernet topology is a branching bus with no loops; a packet can travel between two hosts on the same network in only one way. Three types of packets can be exchanged on a segment: unicast, multicast, and broadcast. Unicast packets are addressed to only one host. Multicast packets are addressed to a group of hosts. Broadcast packets are delivered to all hosts on a segment.
 

A “broadcast domain” is the set of hosts that receive packets destined for the hardware broadcast address. Exactly one broadcast domain is defined for each logical Ethernet segment. Under the early Ethernet standards and media (e.g., 10Base5), physical segments and logical segments were exactly the same because all the packets traveled on one big cable with host interfaces strapped onto the side of it.3
 

With the advent of switches, today’s logical segments usually consist of many (possibly dozens or hundreds) physical segments (or, in some cases, wireless segments) to which only two devices are connected: the switch port and the host. The switches are responsible for escorting multicast and unicast packets to the physical (or wireless) segments on which the intended recipients reside. Broadcast traffic is forwarded to all ports in a logical segment.
 

A single logical segment can consist of physical (or wireless) segments operating at different speeds (10 Mb/s, 100 Mb/s, 1 Gb/s, or 10 Gb/s). Hence, switches must have buffering and timing capabilities that let them smooth over any potential timing conflicts.
 

Unshielded Twisted Pair Cabling
 

Unshielded twisted pair (UTP) is the preferred cable medium for Ethernet. It is based on a star topology and has several advantages over other media:
 

• It uses inexpensive, readily available copper wire. (Sometimes, existing building wiring can be used.)

 

• UTP wire is much easier to install and debug than is coax or fiber. Custom lengths are easy to make.

 

• UTP uses RJ-45 connectors, which are cheap, reliable, and easy to install.

 

• The link to each machine is independent (and private!), so a cabling problem on one link is unlikely to affect other hosts on the network.

 

The general “shape” of a UTP network is illustrated in Exhibit A.
 

UTP wire suitable for use in modern LANs is commonly broken down into eight classifications. The performance rating system was first introduced by Anixter, a large cable supplier. These standards were formalized by the Telecommunications Industry Association (TIA) and are known today as Category 1 through Category 7, with a few special variants such as Category 5e and Category 6a thrown in for good measure.
 

The International Organization for Standardization (ISO) has also jumped into the exciting and highly profitable world of cable classification. They promote standards that are exactly or approximately equivalent to the higher-numbered
 

[image: Image]
 

Exhibit A A UTP installation
 

TIA categories. For example, TIA Category 5 cable is equivalent to ISO Class D cable. For the geeks in the audience, Table 16.2 illustrates the major differences among the various modern-day classifications. This is good information to memorize so you can impress your friends at parties.
 

[image: Image]
 

Table 16.2 UTP cable characteristics
 

In practice, Category 1 and Category 2 cables are suitable only for voice applications (if that). Category 3 cable is as low as you can go for a LAN; it is the standard for 10 Mb/s 10BaseT but should only be used today as a last resort. Category 4 is something of an orphan and is not ideally suited for any particular application.
 

Category 5 cable can support 100 Mb/s. Category 5e, Category 6, and Category 6a cabling support 1 Gb/s and are the most common standard currently in use for data cabling. Category 6a is the cable of choice for new installations because it is particularly resistant to interference from older Ethernet signaling standards (e.g., 10BaseT), a problem that has plagued some Category 5/5e installations. Category 7 and Category 7a cable are intended for 10 Gb/s use.
 

See page 545 for more information about wiring.
 

10BaseT connections require two pairs of Category 3 wire, and each link is limited to a length of 100 meters; 100BaseTX has the same length limitation but requires two pairs of Category 5 wire. 1000BaseTX requires four pairs of Category 5e or Category 6/6a wire. Likewise 10GBase-TX requires 4 pairs of Category 6a, 7, or 7a wire.
 

The 1000BaseTX and 10GBase-TX standards transmit data on multiple pairs. This use of multiple conductors transports data across the link faster than any single pair could support.
 

Both PVC-coated and Teflon-coated wire are available. Your choice of jacketing should be based on the environment in which the cable will be installed. Enclosed areas that feed into the building’s ventilation system (“return air plenums”) typically require Teflon.4 PVC is less expensive and easier to work with but produces toxic fumes if it catches fire (hence the need to keep it out of air plenums).
 

See page 1163 for more information about the RS-232 standard.
 

For terminating the four-pair UTP cable at patch panels and RJ-45 wall jacks, we suggest that you use the TIA/EIA-568A RJ-45 wiring standard. This standard, which is compatible with other uses of RJ-45 (e.g., RS-232), is a convenient way to keep the wiring at both ends of the connection consistent, regardless of whether you can easily access the cable pairs themselves. Table 16.3 shows the pinouts.
 

[image: Image]
 

Table 16.3 TIA/EIA-568A standard for wiring four-pair UTP to an RJ-45 jack
 

Existing building wiring may or may not be suitable for network use, depending on how and when it was installed. Many old buildings were retrofitted with new cable in the 1980s. Unfortunately, this cable usually won’t support anything beyond 100 Mb/s.
 

Optical Fiber
 

Optical fiber is used to transmit data in cases where copper cable isn’t adequate, for one reason or another. Fiber carries signals farther than copper. Fiber is also more resistant to electrical interference, which is an attractive feature for some applications. Where fiber isn’t absolutely necessary, copper is normally preferred because it’s less expensive and easier to work with.
 

“Multimode” and “single mode” fiber are the two common types. Multimode fiber is typically used for applications within a building or campus. It’s thicker than single-mode fiber and can carry multiple rays of light; this feature permits the use of less expensive electronics (e.g., LEDs as a light source).
 

Single-mode fiber is most often found in long-haul applications, such as intercity or interstate connections. It can carry only a single ray of light and requires expensive precision electronics on the endpoints.
 

TIA-598C recommends color-coding the common types of fiber as shown in Table 16.4. The key rule to remember is that everything must match. The fiber that connects the endpoints, the fiber cross-connect cables, and the endpoint electronics must all be of the same type and size. Note that although both OM1 and OM2 are colored orange, they are not interchangeable—check the size imprint on the cables to make sure they match. You will experience no end of difficult-to-isolate problems if you don’t follow this rule.
 

[image: Image]
 

Table 16.4 Attributes of standard optical fibers
 

More than 30 types of connectors are used on the ends of optical fibers, and there is no real rhyme or reason as to which connectors are used where. The connectors you need to use in a particular case will most often be dictated by the equipment vendors or by your existing building fiber plant. The good news is that conversion jumpers are fairly easy to obtain.
 

Connecting and Expanding Ethernets
 

Ethernets can be connected through several types of devices. The options below are ranked by approximate cost, with the cheapest options first. The more logic that a device uses to move bits from one network to another, the more hardware and embedded software the device needs to have and the more expensive it is likely to be.
 

Hubs
 

See page 451 for more on network layers.
 

Hubs are also referred to as concentrators or repeaters. They are active devices that connect Ethernet segments at the physical layer. They require external power.
 

Acting as a repeater, a hub retimes and reconstitutes Ethernet frames but does not interpret them; it has no idea where packets are going or what protocol they are using. With the exception of extremely special cases, hubs should no longer be used in enterprise networks, and we discourage their use in residential (consumer) networks as well. (Why? Because switches make significantly more efficient use of network bandwidth and are just as cheap these days.)
 

Switches
 

Switches connect Ethernets at the link layer. Their purpose is to join two physical networks in a way that makes them seem like one big physical network. Switches are the industry standard for connecting Ethernet devices today.
 

Switches receive, regenerate, and retransmit packets in hardware. Switches use a dynamic learning algorithm. They notice which source addresses come from one port and which from another. They forward packets between ports only when necessary. At first all packets are forwarded, but in a few seconds the switch has learned the locations of most hosts and can be more selective.
 

Since not all packets are forwarded among networks, each segment of cable that connects to a switch is less saturated with traffic than it would be if all machines were on the same cable. Given that most communication tends to be localized, the increase in apparent bandwidth can be dramatic. And since the logical model of the network is not affected by the presence of a switch, few administrative consequences result from installing one.
 

Switches can sometimes become confused if your network contains loops. The confusion arises because packets from a single host appear to be on two (or more) ports of the switch. A single Ethernet cannot have loops, but as you connect several Ethernets with routers and switches, the topology can include multiple paths to a host. Some switches can handle this situation by holding alternative routes in reserve in case the primary route goes down. They perform a pruning operation on the network they see until the remaining sections present only one path to each node on the network. Some switches can also handle duplicate links between the same two networks and route traffic in a round robin fashion.
 

Switches must scan every packet to determine if it should be forwarded. Their performance is usually measured by both the packet scanning rate and the packet forwarding rate. Many vendors do not mention packet sizes in the performance figures they quote; therefore, actual performance may be less than advertised.
 

Although Ethernet switching hardware is getting faster all the time, it is still not a reasonable technology for connecting more than a hundred hosts in a single logical segment. Problems such as “broadcast storms” often plague large switched networks since broadcast traffic must be forwarded to all ports in a switched segment. To solve this problem, use a router to isolate broadcast traffic between switched segments, thereby creating more than one logical Ethernet.
 

Choosing a switch can be difficult. The switch market is a highly competitive segment of the computer industry, and it’s plagued with marketing claims that aren’t even partially true. When selecting a switch vendor, you should rely on independent evaluations (“bakeoffs” such as those that appear in magazine comparisons) rather than any data supplied by vendors themselves. In recent years, it has been common for one vendor to have the “best” product for a few months but then completely destroy its performance or reliability when trying to make improvements, thus elevating another manufacturer to the top of the heap.
 

In all cases, make sure that the backplane speed of the switch is adequate—that’s the number that really counts at the end of a long day. A well-designed switch should have a backplane speed that exceeds the sum of the speeds of all its ports.
 

VLAN-Capable Switches
 

Large sites can benefit from switches that partition their ports (through software configuration) into subgroups called Virtual Local Area Networks or VLANs. A VLAN is a group of ports that belong to the same logical segment, as if the ports were connected to their own dedicated switch. Such partitioning increases the ability of the switch to isolate traffic, and that capability has beneficial effects on both security and performance.
 

Traffic between VLANs is handled by a router, or in some cases, by a routing module or routing software layer within the switch. An extension of this system known as “VLAN trunking” (such as is specified by the IEEE 802.1Q protocol) allows physically separate switches to service ports on the same logical VLAN.
 

Routers
 

Routers (aka “layer 3 switches”) direct traffic at the network layer, layer 3 of the OSI network model. They shuttle packets to their final destinations in accordance with the information in the TCP/IP protocol headers. In addition to simply moving the packets from one place to another, routers can also perform other functions such as packet filtering (for security), prioritization (for quality of service), and big-picture network topology discovery. See all the gory details of how routing really works in Chapter 15.
 

Routers take one of two forms: fixed configuration and modular. Fixed configuration routers have specific network interfaces permanently installed at the factory. They are usually suitable for small, specialized applications. For example, a router with a T1 interface and an Ethernet interface might be a good choice to connect a small company to the Internet.
 

Modular routers have a slot or bus architecture to which interfaces can be added by the end user. Although this approach is usually more expensive, it ensures greater flexibility down the road.
 

Depending on your reliability needs and expected traffic load, a dedicated router may or may not be cheaper than a UNIX or Linux system configured to act as a router. However, the dedicated router usually results in superior performance and reliability. This is one area of network design in which it’s usually advisable to spend the extra money up front to avoid headaches later.
 

Autonegotiation
 

With the introduction of a variety of Ethernet standards came the need for devices to identify how their neighbors were configured and to adjust their settings accordingly. For example, the network won’t work if one side of a link thinks the network is running at 1 Gb/s and the other side of the link thinks it’s running at 10 Mb/s. The Ethernet autonegotiation feature of the IEEE standards is designed to detect and solve this problem. And in some cases, it does. In other cases, it is easily misapplied and simply compounds the problem.
 

The two golden rules of autonegotiation are these:
 

• You must use autonegotiation on all interfaces capable of 1 Gb/s or above. It’s required by the standard.

 

• On interfaces limited to 100 Mb/s or below, you must either configure both ends of a link in autonegotiation mode, or you must manually con-figure the speed and duplex (half vs. full) on both sides. If you configure only one side in autonegotiation mode, it will not (in most cases) “learn” how the other side has been configured. The result will be a configuration mismatch and poor performance.

 

To see how to set a network interface’s autonegotiation policy, see the system-specific sections in the TCP/IP Networking chapter; they start on page 484.
 

Power Over Ethernet
 

Power over Ethernet (PoE) is an extension of UTP Ethernet (standardized as IEEE 802.3af) that transmits power to devices over the same UTP cable that carries the Ethernet signal. It’s especially handy for Voice over IP (VoIP) telephones or wireless access points (to name just two examples) that need a relatively small amount of power and a network connection wherever they live.
 

The power supply capacity of PoE systems has been stratified into four classes that range from 3.84 to 12.95 watts. Never satisfied, the industry is currently working on a higher power standard (802.3at) that may provide more than 60 watts. Won’t it be convenient to operate an Easy-Bake oven off the network port in the conference room?5
 

PoE has two ramifications that are significant for sysadmins:
 

• You need to be aware of PoE devices in your infrastructure so that you can plan the availability of PoE-capable switch ports accordingly. They are more expensive than non-PoE ports.

 

• The power budget for data closets that house PoE switches must include the wattage of the PoE devices. Note that you don’t have to budget the same amount of extra cooling for the closet because most of the heat generated by the consumption of PoE power will be dissipated outside the closet (usually, in an office).

 

Jumbo Frames
 

Ethernet is standardized for a typical packet size of 1,500 bytes (1,518 with framing), a value chosen long ago when networks were slow and memory for buffers was scarce. Today, these 1,500-byte packets look pretty shrimpy in the context of a gigabit Ethernet. Because every packet consumes overhead and introduces latency, network throughput can be higher if larger packet sizes are allowed.
 

Unfortunately, the IEEE standards for the various types of Ethernet forbid large packets because of interoperability concerns. But just as highway traffic often mysteriously flows faster than the stated speed limit, illicit king-size Ethernet packets are a common sight on today’s networks. Egged on by impatient customers, manufacturers of network equipment have quietly flouted the IEEE and built support for large frames into their gigabit products.
 

To use these so-called jumbo frames, all you need do is bump up your network interfaces’ MTUs. Throughput gains vary with traffic patterns, but large transfers over TCP (e.g., NFSv4 or CIFS file service) benefit the most. Expect a modest but measurable improvement on the order of 10%.
 

Be aware of these points, though:
 

• All network equipment on a subnet must support and use jumbo frames, including switches and routers. You cannot mix and match.

 

• Because jumbo frames are nonstandard, you usually have to enable them explicitly. Devices may accept jumbo frames by default, but they probably will not generate them.

 

• Since jumbo frames are a form of outlawry, there’s no universal consensus on exactly how large a jumbo frame can or should be. The most common value is 9,000 bytes, or 9,018 bytes with framing. You’ll have to investigate your devices to determine the largest packet size they have in common. Frames larger than 9K or so are sometimes called “super jumbo frames,” but don’t be scared off by the extreme-sounding name. Larger is generally better, at least up to 64K or so.

 

• Jumbo frames are only viable for internal use. The Internet does not transport jumbo frames.

 

We endorse the use of jumbo frames on gigabit Ethernets, but only where it’s easy and safe (i.e., probably not in complex enterprise environments). Be prepared to do some extra debugging if things go wrong. It’s perfectly reasonable to deploy new networks with the default MTU and to convert to jumbo frames later once the reliability of the underlying network has been confirmed.
 

16.2 Wireless: Ethernet for Nomads
 

A wireless network consists of Wireless Access Points (WAPs, or simply APs) and wireless clients. WAPs can be connected to traditional wired networks (the typical configuration) or wirelessly connected to other access points, a configuration known as a “wireless mesh.”
 

WAPs are usually dedicated appliances that consist of one or more radios and some form of embedded network operating system, often a stripped-down version of Linux. A single WAP can provide a connection point for multiple clients, but not for an unlimited number of clients. A good rule of thumb is to serve no more than eight simultaneous clients from a single enterprise-grade WAP. Any device that communicates through a wireless standard supported by your WAPs can act as a client.
 

The common wireless standards today are IEEE 802.11g and 802.11n. 802.11g operates in the 2.4 GHz frequency band and provides LAN-like access at up to 54 Mb/s. Operating range varies from 100 meters to 40 kilometers, depending on equipment and terrain.
 

802.11n delivers up to 600 Mb/s6 of bandwidth and can use both the 5 GHz frequency band and the 2.4 GHz band (though 5 GHz is recommended for deployment). Typical operating range is approximately double that of 802.11g.
 

Today, 802.11g (and its grandfather, 802.11b) are commonplace. The transceivers are inexpensive and are built into most laptops. Add-in cards are widely and cheaply available for desktop PCs, too.
 

You can configure a Linux box to act as an 802.11a/b/g access point if you have the right hardware and driver. Since most PC-based wireless cards are still designed for Microsoft Windows, they may not come from the factory with Linux drivers.
 

An excellent stand-alone 802.11b/g wireless base station for the home or small office is Apple’s AirPort Express, a wall-wart-like product that is inexpensive (around $99) and highly functional.7 Another option is to consider running a stripped down version of Linux (such as OpenWRT) on a commercial WAP. See openwrt.org for more information and a list of compatible hardware.
 

Literally dozens of vendors are hawking wireless access points. You can buy them at Home Depot and even at the grocery store. Predictably, the adage that “you get what you pay for” applies. El cheapo access points (those in the $50 range) are likely to perform poorly when handling large file transfers or more than one active client.
 

Debugging a wireless network is something of a black art. You must consider a range of variables when dealing with problems. If you are deploying a wireless network at an enterprise scale, you’ll probably need to invest in a wireless network analyzer. We highly recommend the analysis products made by AirMagnet.
 

Wireless Security
 

The security of wireless networks has traditionally been very poor. Wired Equivalent Privacy (WEP) is a protocol used in conjunction with 802.11b networks to encrypt packets traveling over the airwaves. Unfortunately, this standard contains a fatal design flaw that renders it little more than a speed bump for snoopers. Someone sitting outside your building or house can access your network directly and undetectably, usually in under a minute.
 

More recently, the Wi-Fi Protected Access (WPA) security standards have engendered new confidence in wireless security. Today, WPA (specifically, WPA2) should be used instead of WEP in all new installations. Without WPA2, wireless networks should be considered completely insecure and should never be found inside an enterprise firewall. Don’t even use WEP at home!
 

To remember that it’s WEP that’s insecure and WPA that’s secure, just remember that WEP stands for Wired Equivalent Privacy. The name is accurate; WEP gives you as much protection as letting someone connect directly to your wired network. (That is, no protection at all—at least at the IP level.)
 

Wireless Switches and Lightweight Access Points
 

In much the same way that Ethernet hubs grew up to become Ethernet switches, wireless products are undergoing a gradual makeover for use in large enterprises. A number of vendors (such as Cisco) now make “wireless switches” that work in conjunction with a fleet of access points that you deploy throughout a campus. The theory is that you can deploy hordes of inexpensive access points and then manage them centrally through an “intelligent” switch. The switch maintains the WAPs’ configuration information and smoothly supports authentication and roaming. LWAPP (Lightweight Wireless Access Point Protocol) is one standard protocol that provides this functionality.
 

If you need ubiquitous wireless service throughout a medium-to-large organization, it’s definitely worth your time to evaluate this category of products. Not only do these products decrease management time, but most also include a means to monitor and manage the quality of the wireless service delivered to users.
 

One particularly neat trick is to deploy an 802.11g/n network throughout your facility and use it to support hand-held VoIP phones for your staff. It’s like a cellular network for free!
 

16.3 DSL and Cable Modems: The Lastmile
 

It’s easy to move large amounts of data among businesses and other large data facilities. Carrier-provided technologies such as T1, T3, SONET, MPLS, and frame relay provide relatively simple conduits for moving bits from place to place. However, these technologies are not realistic options for connecting individual houses and home offices. They cost too much, and the infrastructure they require is not universally available.
 

Digital Subscriber Line (DSL) uses ordinary copper telephone wire to transmit data at speeds of up to 24 Mb/s (although typical DSL connections yield between 256 kb/s and 5 Mb/s). Since most homes and businesses already have existing telephone wiring, DSL is a viable way to complete the “last mile” of connectivity from the telephone company to the building. DSL connections are usually terminated in a box that acts as a TCP/IP router and connects to other devices within the building over an Ethernet.
 

Unlike regular POTS (Plain Old Telephone Service) and ISDN connections, which require you to “dial up” an endpoint, most DSL implementations supply a dedicated service that is always connected. This feature makes DSL even more attractive because there is no setup or connection delay when a user wants to transfer data.
 

DSL comes in several forms, and as a result it’s often referred to as xDSL, with the x representing a specific subtechnology such as A for asymmetric, S for symmetric, H for high speed, RA for rate-adaptive, and I for DSL-over-ISDN (useful for locations too far from the central office to support faster forms of DSL). The exact technology variants and data transfer speeds available in your area depend on the central office equipment that your telephone company or carrier has deployed.
 

The race for “last mile” connectivity to hundreds of millions of homes is a hot one. It’s also highly politicized, well capitalized, and overpublicized. The DSL approach leverages the copper infrastructure that is common among the Incumbent Local Exchange Carriers (ILECs), who often favored higher profit margins over infrastructure investments as the networking revolution of the 1980s and 90s passed them by.
 

Cable television companies, which already have fiber infrastructure in most neighborhoods, are promoting their own “last mile” solutions. Compared to DSL, cable modems typically yield higher (though asymmetric) bandwidth. The cable modem industry has become enlightened about data standards and is currently converging on the Data Over Cable Service Interface Specification (DOCSIS) standard. This standard defines the technical specs for both cable modems and the equipment used at the cable company, and it allows various brands of equipment to interoperate.
 

All in all, the fight between cable modem and DSL technologies largely boils down to who can deliver the highest bandwidth to a particular user’s home at the lowest cost. The good news for us is that as Big Cable and Big Telecom compete for customers, they are forced to invest in infrastructure to serve residential neighborhoods.
 

16.4 Network Testing and Debugging
 

One major advantage of the large-scale migration to Ethernet (and other UTP-based technologies) is the ease of network debugging. Since these networks can be analyzed link by link, hardware problems can often be isolated in seconds rather than days.
 

The key to debugging a network is to break it down into its component parts and to test each piece until you’ve isolated the offending device or cable. The “idiot lights” on switches and hubs (such as “link status” and “packet traffic”) often hold immediate clues to the source of the problem. Top-notch documentation of your wiring scheme is essential for making these indicator lights work in your favor.
 

As with most tasks, having the right tools for the job is a big part of being able to get the job done right and without delay. The market offers two major types of network debugging tools (although they are quickly growing together).
 

The first is the hand-held cable analyzer. This device can measure the electrical characteristics of a given cable, including its length (with a groovy technology called “time domain reflectrometry”). Usually, these analyzers can also point out simple faults such as a broken or miswired cable. Our favorite product for LAN cable analysis is the Fluke LanMeter. It’s an all-in-one analyzer that can even perform IP pings across the network. High-end versions have their own web server that can show you historical statistics. For WAN (telco) circuits, the T-BERD line analyzer is the cat’s meow. It’s made by JDSU (jdsu.com).
 

The second type of debugging tool is the network sniffer. A sniffer captures the bytes that travel across the wire and disassembles network packets to look for protocol errors, misconfigurations, and general snafus. Sniffers operate at the link layer of the network rather than the electrical layer, so they can’t diagnose cabling problems or electrical issues that may be affecting network interfaces.
 

Commercial sniffers are available, but we find that the freely available program Wireshark (wireshark.org) running on a fat laptop is usually the best option.8 See the Packet sniffers section starting on page 874 of Chapter 21, Network Management and Debugging, for more details.
 

16.5 Building Wiring
 

If you’re embarking on a building wiring project, the most important advice we can give you is to “do it right the first time.” This is not an area in which to skimp or cut corners. Buying quality materials, selecting a competent wiring contractor, and installing extra connections (drops) will save you years of frustration and heartburn down the road.
 

UTP Cabling Options
 

Category 6a wire typically offers the best price vs. performance tradeoff in today’s market. Its normal format is four pairs per sheath, which is just right for a variety of data connections from RS-232 to gigabit Ethernet.
 

Category 6a specifications require that the twist be maintained to the point of contact. Special training and termination equipment are necessary to satisfy this requirement. You must use Category 6a jacks and patch panels. We’ve had the best luck with parts manufactured by Siemon (siemon.com).
 

Connections to Offices
 

One connection per office is clearly not enough. But should you use two or four? We recommend four, for several reasons:
 

• They can be used with voice telephones.

 

• They can be used to accommodate visitors or demo machines.

 

• The cost of the materials is typically only 5%–10% of the total cost.

 

• Your best guess doubled is often a good estimate.

 

• It’s much cheaper to do it once rather than adding wires later.

 

• When ports run low, people add 4- or 8-port switches purchased from the nearest office supply store, then complain to the help desk about connection speed.

 

If you’re in the process of wiring your entire building, you might consider installing a few outlets in the hallways, conference rooms, lunch rooms, bathrooms, and of course, ceilings (for wireless access points). Don’t forget to keep security in mind, however, and put publicly accessible ports on a “guest” VLAN that doesn’t have access to your internal network resources.
 

Wiring Standards
 

Modern buildings often require a large and complex wiring infrastructure to support all the various activities that take place inside. Walking into the average telecommunications closet can be a shocking experience for the weak of stomach, as identically colored, unlabeled wires often cover the walls.
 

In an effort to increase traceability and standardize building wiring, the Telecommunications Industry Association in February 1993 released the TIA/EIA-606 Administration Standard for the telecommunication infrastructure of commercial buildings. EIA-606 specifies requirements and guidelines for the identification and documentation of telecommunications infrastructure.
 

Items covered by EIA-606 include
 

• Termination hardware

 

• Cables

 

• Cable pathways

 

• Equipment spaces

 

• Infrastructure color coding

 

• Symbols for standard components

 

In particular, the standard specifies colors to be used for wiring. Table 16.5 shows the details.
 

[image: Image]
 

Table 16.5 EIA-606 color chart
 

Pantone sells software to map between the Pantone systems for ink-on-paper, textile dyes, and colored plastic. Hey, you could color-coordinate the wiring, the uniforms of the installers, and the wiring documentation! On second thought…
 

16.6 Network Design Issues
 

This section addresses the logical and physical design of the network. It’s targeted at medium-sized installations. The ideas presented here will scale up to a few hundred hosts but are overkill for three machines and inadequate for thousands. We also assume that you have an adequate budget and are starting from scratch, which is probably only partially true.
 

Most of network design consists of the specification of
 

• The types of media that will be used

 

• The topology and routing of cables

 

• The use of switches and routers

 

Another key issue in network design is congestion control. For example, file-sharing protocols such as NFS and CIFS tax the network quite heavily, and so file serving on a backbone cable is undesirable.
 

The issues presented in the following sections are typical of those that must be considered in any network design.
 

Network Architecture Vs. Building Architecture
 

The network architecture is usually more flexible than the building architecture, but the two must coexist. If you are lucky enough to be able to specify the network before the building is constructed, be lavish. For most of us, both the building and a facilities management department already exist and are somewhat rigid.
 

In existing buildings, the network must use the building architecture, not fight it. Modern buildings often contain utility raceways for data and telephone cables in addition to high-voltage electrical wiring and water or gas pipes. They often use drop ceilings, a boon to network installers. Many campuses and organizations have underground utility tunnels that facilitate network installation.
 

The integrity of fire walls9 must be maintained; if you route a cable through a fire wall, the hole must be snug and filled in with a noncombustible substance. Respect return air plenums in your choice of cable. If you are caught violating fire codes, you may be fined and will be required to fix the problems you have created, even if that means tearing down the entire network and rebuilding it correctly.
 

Your network’s logical design must fit into the physical constraints of the buildings it serves. As you specify the network, keep in mind that it is easy to draw a logically good solution and then find that it is physically difficult or impossible to implement.
 

Expansion
 

It is very difficult to predict needs ten years into the future, especially in the computer and networking fields. Therefore, design the network with expansion and increased bandwidth in mind. As cable is installed, especially in out-of-the-way, hard-to-reach places, pull three to four times the number of pairs you actually need. Remember: the majority of installation cost is labor, not materials.
 

Even if you have no plans to use fiber, it’s wise to install some when wiring your building, especially in situations where it will be hard to install cable later. Run both multimode and single-mode fiber. The kind you need in the future is always the kind you didn’t install.
 

Congestion
 

A network is like a chain: it is only as good as its weakest or slowest link. The performance of Ethernet, like that of many other network architectures, degrades nonlinearly as the network gets loaded.
 

Overtaxed switches, mismatched interfaces, and low-speed links can all lead to congestion. It is helpful to isolate local traffic by creating subnets and by using interconnection devices such as routers. Subnets can also be used to cordon off machines that are used for experimentation. It’s difficult to run an experiment that involves several machines if you cannot isolate those machines both physically and logically from the rest of the network.
 

Maintenance and Documentation
 

We have found that the maintainability of a network correlates highly with the quality of its documentation. Accurate, complete, up-to-date documentation is absolutely indispensable.
 

Cables should be labeled at all termination points. It’s a good idea to post copies of local cable maps inside communications closets so that the maps can be updated on the spot when changes are made. Once every few weeks, have someone copy down the changes for entry into a wiring database.
 

Joints between major population centers in the form of switches or routers can facilitate debugging by allowing parts of the network to be isolated and debugged separately. It’s also helpful to put joints between political and administrative domains, for similar reasons.
 

16.7 Management Issues
 

If the network is to work correctly, some things need to be centralized, some distributed, and some local. Reasonable ground rules and “good citizen” guidelines need to be formulated and agreed on.
 

A typical environment includes
 

• A backbone network among buildings

 

• Departmental subnets connected to the backbone

 

• Group subnets within a department

 

• Connections to the outside world (e.g., Internet or field offices)

 

Several facets of network design and implementation must have site-wide control, responsibility, maintenance, and financing. Networks with charge-back algorithms for each connection grow in bizarre but predictable ways as departments try to minimize their own local costs. Prime targets for central control are
 

• The network design, including the use of subnets, routers, switches, etc.

 

• The backbone network itself, including the connections to it

 

• Host IP addresses, hostnames, and subdomain names

 

• Protocols, mostly to ensure that they interoperate

 

• Routing policy to the Internet

 

Domain names, IP addresses, and network names are in some sense already controlled centrally by authorities such as ARIN (American Registry for Internet Numbers) and ICANN. However, your site’s use of these items must be coordinated locally as well.
 

A central authority has an overall view of the network: its design, capacity, and expected growth. It can afford to own monitoring equipment (and the staff to run it) and to keep the backbone network healthy. It can insist on correct network design, even when that means telling a department to buy a router and build a subnet to connect to the campus backbone. Such a decision might be necessary to ensure that a new connection does not adversely impact the existing network.
 

If a network serves many types of machines, operating systems, and protocols, it is almost essential to have a smart router (e.g., Cisco) as a gateway between nets.
 

16.8 Recommended Vendors
 

In the past 20+ years of installing networks around the world, we’ve gotten burned more than a few times by products that didn’t quite meet specs or were misrepresented, overpriced, or otherwise failed to meet expectations. Below is a list of vendors in the United States that we still trust, recommend, and use ourselves today.
 

Cables and connectors
 

[image: Image]
 

Test equipment
 

[image: Image]
 

Routers/switches
 

[image: Image]
 

16.9 Recommended Reading
 

BARNETT, DAVID, DAVID GROTH, AND JIM MCBEE. Cabling: The Complete Guide to Network Wiring (3rd Edition). San Francisco: Sybex, 2004.
 

SEIFERT, RICH. Gigabit Ethernet: Technology and Applications for High Speed LANs. Reading, MA: Addison-Wesley, 1998.
 

ANSI/TIA/EIA-568-A, Commercial Building Telecommunications Cabling Standard, and ANSI/TIA/EIA-606, Administration Standard for the Telecommunications Infrastructure of Commercial Buildings, are the telecommunication industry’s standards for building wiring. Unfortunately, they are not free. See tiaonline.org.
 

SPURGEON, CHARLES. “Guide to Ethernet.” ethermanage.com/ethernet
 

16.10 Exercises
 

E16.1 Today, most office buildings house computer networks and are wired with UTP Ethernet. Some combination of routers and switches is needed to support these networks. List the advantages and disadvantages of each.
 

[image: Image] E16.2 Draw a simple, imaginary network diagram that connects a machine in your computer lab to Amazon.com. Include LAN, MAN, and WAN components. Show what technology is used for each component. Show some switches and routers.
 

[image: Image] E16.3 Research WPA2’s Temporal Key Integrity Protocol. Detail what advantages this has over WEP, and what types of attacks it prevents.
 

[image: Image] E16.4 TTCP is a tool that measures TCP and UDP performance. Install TTCP on two networked machines and measure the performance of the link between them. What happens to the bandwidth if you adjust buffer sizes up or down? How do your observed numbers compare with the theoretical capacity of the physical medium?
 
  


17. DNS: The Domain Name System
 

[image: Image]
 

Zillions of hosts are connected to the Internet. How do we keep track of them all when they belong to so many different countries, networks, and administrative groups? Two key pieces of infrastructure hold everything together: the Domain Name System (DNS), which keeps track of who the hosts are, and the Internet routing system, which keeps track of how they are connected.
 

Although DNS has come to serve several different purposes, its primary job is to map between hostnames and IP addresses. Users and user-level programs like to refer to machines by name, but low-level network software understands only IP addresses (that is, numbers). DNS provides the glue that keeps everyone happy. It has also come to play an essential role in the routing of email, web server access, and many other services.
 

DNS is a distributed database. “Distributed” means that my site stores the data about my computers, your site stores the data about your computers, and our sites cooperate and share data when one site needs to look up the other’s data. From an administrative point of view, your DNS servers answer queries from the outside world about names in your domain, and they query other domains’ servers on behalf of your users.
 

The DNS system is defined by a series of RFCs, 108 of them at last count. Several implementations exist, varying in functionality, focus, and adherence to the RFCs. Table 17.1 shows the major players. The market shares shown in Table 17.1 were measured with respect to Internet-facing name servers, not internal name servers.
 

See page 449 for more information about the RFC system.
 

Table 17.1 Some popular implementations of DNS
 

[image: Image]
 

This chapter includes general information about DNS and the sysadmin chores associated with the BIND, NSD, and Unbound name server implementations. Examples are drawn from BIND 9.7, NSD 3.2.4, and Unbound 1.4.1.
 

You might ask why we waste space on NSD and Unbound when their market share is so small, especially in a chapter that is already so long. Three reasons:
 

• First, to deploy a truly robust DNS environment, you should not have all servers running the same software. A successful attack on your site’s DNS service essentially takes your site off the Internet. Diversity of software, hardware, and network connectivity are the keys to surviving the Darwinian pressure of the Internet. Add geographical location and sysadmin skills to your diversity pile and you will be in fine shape.

 

• The second reason is performance: NSD and Unbound are significantly faster than BIND.

 

• Finally, of all the name server implementations, only BIND and NSD/Unbound implement DNSSEC, the cryptographic security extensions to DNS. DNSSEC is better tested and more robust in the NSD/Unbound implementations than in BIND.

 

Today, many sites (most?) use neither BIND nor NSD/Unbound internally, but rather Microsoft’s Active Directory instead. We cover Active Directory briefly in Chapter 30, Cooperating with Windows, beginning on page 1154.
 

17.1 Who Needs DNS?
 

DNS defines
 

• A hierarchical namespace for hosts and IP addresses

 

• A distributed database of hostname and address information

 

• A “resolver” to query this database

 

• Improved routing and sender authentication for email

 

• A mechanism for finding services on a network

 

• A protocol used by name servers to exchange information

 

DNS is a client/server system. Servers (“name servers”) load the data from your DNS files into memory and use it to answer queries both from internal clients and from clients and other servers out on the Internet. All of your hosts should be DNS clients, but relatively few need to be DNS servers.
 

Managing Your DNS
 

If your organization is small (a few hosts on a single network), you can run servers on your own hosts or ask your ISP to supply DNS service on your behalf. A medium-sized site with several subnets should run multiple DNS servers to reduce query latency and improve reliability. A very large site can divide its DNS domain into subdomains and run several servers for each subdomain.
 

DNS forward mappings associate a hostname with an IP address. Reverse mappings go from the IP address to the hostname. A domain’s forward and reverse mappings should be managed in the same place whenever possible. Some ISPs are happy to let you manage the forward files but are reluctant to relinquish control of the reverse mappings. Such split management can lead to synchronization problems. See page 585 for an elegant hack that makes delegation work even for tiny pieces of address space.
 

DNS domains must be served by at least two servers, though we recommend at least three, geographically dispersed. Typically, one of the servers is designated as a master server (also called a primary server) that owns the reference copy of the domain’s data. The other servers are called slave servers or secondary servers; they copy their data from the master server.
 

Some sites operate their own master server and let their ISP’s servers act as slaves. Once the system has been configured, the ISP’s servers automatically download host data from the master server. Changes to the DNS configuration are propagated to the slaves through a mechanism known as a zone transfer.
 

Another common arrangement is to outsource all DNS service and to rely on the outsourcing firm’s diversity, robustness, and geographic distribution.
 

If you run local servers, don’t put all of them on the same network. When DNS stops working, the network effectively stops for your users. Spread your DNS servers around so that you don’t end up with a fragile system and a single point of failure. DNS is quite robust if designed well and configured carefully.
 

17.2 How DNS Works
 

Each host that uses DNS is either a client of the system or simultaneously a client and a server. If you do not plan to run any DNS servers, it’s not essential that you read the next few sections. Just skip ahead to page 561 for details on configuring a machine to be a client of DNS.
 

Resource Records
 

Each site maintains one or more pieces of the distributed database that makes up the world-wide DNS system. Your piece of the database consists of text files that contain records for each of your hosts; these are known as “resource records.” Each record is a single line consisting of a name (usually a hostname), a record type, and some data values. The name field can be omitted if its value is the same as that of the previous line.
 

For example, the lines
 

[image: Image]
 

in the “forward” file (called atrust.com), and the line
 

[image: Image]
 

in the “reverse” file (called 63.173.189.rev) associate nubark.atrust.com with the IP address 63.173.189.1. The MX record reroutes email addressed to this machine to the host mailserver.atrust.com.
 

Resource records are the lingua franca of DNS and are independent of the configuration files that control the operation of any given DNS server implementation. They are also the pieces of data that flow around the DNS system and become cached at various locations.
 

Delegation
 

All name servers read the identities of the root servers from a local config file or have them built into the code. The root servers know the name servers for com, net, edu, fi, de, and other top-level domains. Farther down the chain, edu knows about colorado.edu, berkeley.edu, and so on. Each domain can delegate authority for its subdomains to other servers.
 

Let’s inspect a real example. Suppose we want to look up the address for the machine vangogh.cs.berkeley.edu from the machine lair.cs.colorado.edu. The host lair asks its local name server, ns.cs.colorado.edu, to figure out the answer. The following illustration (Exhibit A) shows the subsequent events.
 

Exhibit A Dns Query Process for Vangogh.Cs.Berkeley.Edu
 

[image: Image]
 

The numbers on the arrows between servers show the order of events, and a letter indicates the type of transaction (query, referral, or answer). We assume that none of the required information was cached before the query, except for the names and IP addresses of the servers of the root domain.
 

The local server doesn’t know vangogh’s address. In fact, it doesn’t know anything about cs.berkeley.edu or berkeley.edu or even edu. It does know servers for the root domain, however, so it queries a root server about vangogh.cs.berkeley.edu and receives a referral to the servers for edu.
 

The local name server is a recursive server. When the answer to a query consists of a referral to another server, the local server resubmits the query to the new server. It continues to follow referrals until it finds a server that has the data it’s looking for.
 

In this case, the local name server sends its query to a server of the edu domain (asking, as always, about vangogh.cs.berkeley.edu) and gets back a referral to the servers for berkeley.edu. The local name server then repeats the query in the berkeley.edu domain. If the Berkeley server doesn’t have the answer cached, it returns a referral to the servers for cs.berkeley.edu. The cs.berkeley.edu server is authoritative for the requested information, looks the answer up in its zone files, and returns vangogh’s address.
 

When the dust settles, ns.cs.colorado.edu has cached vangogh’s address. It has also cached data on the servers for edu, berkeley.edu, and cs.berkeley.edu.
 

You can view the query process in detail with dig +trace or drill -T.1
 

Caching and Efficiency
 

Caching increases the efficiency of lookups: a cached answer is almost free and is usually correct because hostname-to-address mappings change infrequently. An answer is saved for a period of time called the “time to live” (TTL), which is specified by the owner of the data record in question. Most queries are for local hosts and can be resolved quickly. Users also inadvertently help with efficiency because they repeat many queries; after the first instance of a query, the rest are more or less free.
 

Under normal conditions, your site’s resource records should use a TTL that is somewhere between 1 hour and 1 day. The longer the TTL, the less network traffic will be consumed by Internet clients obtaining fresh copies of the record.
 

If you have a specific service that is load balanced across logical subnets (often called “global server load balancing”), you may be required by your load balancing vendor to choose a shorter TTL, such as 10 seconds or 1 minute. (The short TTL lets the load balancer react quickly to inoperative servers and denial of service attacks.) The system still works correctly with short TTLs, but your name servers have to work hard. In the vangogh example above, the TTLs were 42 days for the roots, 2 days for edu, 2 days for berkeley.edu, and 1 day for vangogh.cs.berkeley.edu. These are reasonable values. If you are planning a massive renumbering, you can change the TTLs to a shorter value well before you start.
 

DNS servers also implement negative caching. That is, they remember when a query fails and do not repeat that query until the negative caching TTL value has expired. Negative caching saves answers of the following types:
 

• No host or domain matches the name queried.

 

• The type of data requested does not exist for this host.

 

• The server to ask is not responding.

 

• The server is unreachable because of network problems.

 

BIND caches the first two types of negative data; Unbound caches all four. Each implementation allows the negative cache times to be configured.
 

Multiple Answers
 

A name server often receives multiple records in response to a query. For example, the response to a query for the name servers of the root domain would list all 13 servers. Most name servers return the answers in random order as a primitive form of load balancing.
 

You can take advantage of this balancing effect for your own servers by assigning a single hostname to several different IP addresses (which in reality are different machines):
 

[image: Image]
 

Busy web servers such as Yahoo! or Google are not really a single machine; they’re just a single name in the DNS.
 

17.3 DNS For the Impatient
 

Before we start with the details of DNS, let’s first take a brief detour to address everyone’s most frequently asked questions:
 

• How do I add a new machine to a network that’s using a name server?

 

• How do I configure that new machine as a client of DNS?

 

What follows is a cookbook-style recipe that does not define or explain any terminology and that probably does not fit exactly with your local sysadmin policies and procedures. Use it with caution and refer to RFC1912, Common DNS Operational and Configuration Errors.
 

Adding a new machine to DNS
 

If your network is set up to use the Dynamic Host Configuration Protocol (DHCP) you may not need to perform any manual configuration for DNS. When a new computer is connected, the DHCP server informs it of the DNS servers it should use for queries. Hostname-to-IP-address mappings for use by the outside world were most likely set up when the DHCP server was configured and are automatically entered through DNS’s dynamic update facility.
 

For networks that do not use DHCP, the following recipe shows how to update the DNS configuration by copying and modifying the records for a similar computer.
 

Step 1: Choose an unused hostname and IP address for the new machine in conjunction with local sysadmins or your upstream ISP.
 

Step 2: Identify a similar machine on the same subnet. You’ll use that machine’s records as a model for the new ones. In this example, we use a machine called template.example.com on the subnet 208.77.188.0/24 as the model.
 

Step 3: Log in to the master name server machine. If you don’t know which machine is the master server, you probably shouldn’t be messing with it, but you can use the dig command (dig SOA
domainname) to identify it. (You can also use drill if dig is not installed.)
 

Step 4a, for sites running BIND servers:
 

• Find the name server configuration file, usually /etc/named.conf.

 

• Within the options statement in named.conf, find the directory line that tells where zone data files are kept at your site (see page 603). The zone files contain the actual host and IP address data.

 

• From the zone statements, find the filenames for the forward zone file and reverse zone file appropriate for your new IP address (page 612).

 

• Verify from the zone statements that this server is in fact the master server (type master, not slave or some other value) for the domain. If it’s not, you’re on the wrong system! The forward zone statement in /etc/named.conf should look something like this:

 

[image: Image]
 

The reverse zone statement should look like this:
 

[image: Image]
 

• Make a note of the filenames listed as arguments to file in the forward and reverse zone definitions.

 

Step 4b, for sites running NSD:
 

• Open the NSD configuration file, /etc/nsd/nsd.conf.

 

• Find the zone statement for your domain in nsd.conf (the name key-word identifies each zone).

 

• Verify that you are in fact on the master server. You can tell because the zone section for your domain will include a provide-xfr clause. If it contains a request-xfr clause, it’s a slave server for that zone and you’re on the wrong machine. The zone statement for the forward zone should look like:

 

[image: Image]
 

The reverse zone statement looks like:
 

[image: Image]
 

• Make a note of the filenames listed as arguments to the zonefile key-words in the forward and reverse zone definitions.

 

Step 5: Go to the zone file directory and edit the forward zone file. Find the records for the template host you identified earlier. They’ll look something like this:
 

[image: Image]
 

Your version might not include the MX lines, which are used for mail routing. Your zone files also might not include the IN specifier (it’s the default) or use capital letters.
 

Step 6: Duplicate those records and change them appropriately for your new host. The zone file might be sorted by hostname; follow the existing convention.
 

Step 7: Change the serial number in the SOA record at the beginning of the file— it’s the first of the five numbers in the SOA record. The serial number should only increase. Add 1 if your site uses an arbitrary serial number, or set the field to the current date if your site uses that convention.2
 

Step 8: Edit the reverse zone file and look for a record like this:
 

[image: Image]
 

Duplicate this record with the appropriate changes. Note that there is a trailing dot after the hostname; don’t omit it. If your reverse zone file shows more than just the last byte of each host’s IP address, you must enter the bytes in reverse order. For example, the record
 

[image: Image]
 

corresponds to the IP address 208.77.188.100 (here, the reverse zone is relative to 77.208.in-addr.arpa rather than 188.77.208.in-addr.arpa).
 

Step 9: Update the serial number in the SOA record of the reverse zone file, as described in step 7.
 

Step 10a: If you are using BIND and are lazy, run rndc reload. If the server is a busy one, you can reload only the domains (or views) that you changed:
 

[image: Image]
 

Step10b: If you are using NSD, run nsdc rebuild followed by nsdc restart.
 

Step 11: Check the configuration with dig or drill; see page 677. You can also try to ping or traceroute to your new host’s name, even if the new host has not yet been set up. A “host unknown” message means you goofed; “host not responding” means that everything is probably OK.
 

The most common errors are
 

• Forgetting to update the zone serial numbers (steps 7 and 9)

 

• Forgetting to reload the name server (step 10)

 

• Forgetting to add a dot at the end of the hostname in the PTR resource record in the reverse zone (step 8)

 

Configuring a DNS Client
 

Each host on the network must be a name server client. You configure the client side of DNS in the file /etc/resolv.conf, which lists the DNS servers the host can query when a user attempts to resolve a hostname (i.e., requests a web page, sends an email message, or uses the Internet).3
 

If your host gets its IP address and network parameters from a DHCP server, the /etc/resolv.conf file should be set up for you automatically. Otherwise, you must edit the file by hand. The format is
 

[image: Image]
 

Up to three name servers can be listed. Here’s a complete example:
 

[image: Image]
 

Comments were never defined for the resolv.conf file. They are somewhat supported in that anything that is not recognized is ignored. It’s safe to put comments at the end of nameserver lines because the parser just looks for an IP address and ignores the rest of the line. But because the search line can contain multiple arguments, comments there could cause problems.
 

The search line lists the domains to query if a hostname is not fully qualified. If a user issues the command ssh coraline, for example, the resolver completes the name with the first domain in the search list (in the example above, atrust.com) and looks for coraline.atrust.com. If no such name exists, the resolver also tries coraline.booklab.atrust.com. The number of domains that can be specified in a search directive is resolver specific; most allow between six and eight, with a limit of 256 characters.
 

The name servers listed in resolv.conf must be configured to allow your host to submit queries and must answer them completely (be recursive), not refer you to other name servers. They are contacted in order. As long as the first one continues to answer queries, the others are ignored. If a problem occurs, the query times out and the next name server is tried. Each server is tried in turn, up to four times. The timeout interval increases with every failure. The default timeout interval is 5 seconds, which seems like forever to impatient users.
 

The options clause can change the timeout interval, the number of retries, and the default behavior for choosing among the listed name servers. The options available are determined by the resolver library implementation. ISC’s libbind behavior is described below and is accurate for all our example systems except HP-UX.
 

It’s common to put the best and closest name server first in the nameserver lines, but if you want to load balance between equally competent name servers, you should use the rotate option. For example:
 

options rotate timeout:2 attempts:2
 

rotates between the listed name servers, times out in 2 seconds, and queries each server at most twice.
 

[image: Image] HP-UX does not fully support the options clause illustrated above; the timeout and number of retries variables are set directly in resolv.conf as follows:
 

[image: Image]
 

Most resolvers allow you to list a maximum of three name servers. If you list more, they are silently ignored. Table 17.2 summarizes the defaults.
 

Table 17.2 /etc/resolv.conf defaults
 

[image: Image]
 

If a host is itself a name server, it should be listed first in its own resolv.conf file. If no name servers are listed, localhost is assumed.
 

The resolv.conf file also understands the domain directive as an alternative to search; it specifies a single domain to add to names that are not fully qualified. It’s an older form; we recommend replacing domain directives with search directives when you encounter them. The directives are mutually exclusive, so only one should be present. If you inadvertently include both directives, only the last one listed takes effect.
 

[image: Image] If there is no /etc/resolv.conf file, AIX uses /etc/netsvc.conf to decide how to perform name resolution and extracts the default domain name from the host-name, which must be fully qualified. AIX provides a sample resolv.conf file in /usr/lpp/tcpip/samples/resolv.conf that you can copy. Just in case adding a couple of lines to a text file is too hard for you, AIX provides the namerslv command as an interface for adding, deleting, and changing name servers in resolv.conf. But wait! You also get the mknamsv, rmnamsv, chnamsv, and lsnamsv commands as high-level interfaces to namerslv. (Of course, a sysadmin can’t be expected to master a sophisticated set of tools like this overnight, so you’ll probably need a GUI to start out with; try smitty resolv.conf.)
 

Once /etc/resolv.conf has been configured, the system will start using DNS for name service as long as DNS hasn’t been disabled in the file that prioritizes sources of administrative data (/etc/nsswitch.conf, or /etc/netsvc.conf on AIX; see page 739).
 

After configuring /etc/resolv.conf, you should be able to refer to other machines by name rather than by IP address. Try ping
hostname. If you try to reach another local machine and the command just hangs, try referring to the machine by its IP address. If that works, then your DNS configuration is the problem. Verify that the name server IP addresses in /etc/resolv.conf are correct and that the servers you point to allow queries from your network (see page 606). dig from a working machine can answer these questions.
 

17.4 Name Servers
 

A name server performs several chores:
 

• It answers queries about your site’s hostnames and IP addresses.

 

• It asks about both local and remote hosts on behalf of your users.

 

• It caches the answers to queries so that it can answer faster next time.

 

• It transfers data between your name servers to keep them synchronized.

 

Name servers deal with zones, where a “zone” is essentially a domain minus its subdomains. You will often see the term “domain” used where “zone” is what’s really meant, even in this book.
 

The NSD/Unbound suite separates the function of answering queries about your hosts (the NSD part) from the function of issuing queries about other domains on behalf of your users (the Unbound part). This separation is healthy.
 

Name servers can operate in several different modes. The distinctions among them fall along several axes, so the final categorization is often not very tidy. To make things even more confusing, a single server can play different roles with respect to different zones. Table 17.3 on the next page lists some of the adjectives used to describe name servers.
 

These categorizations are based on the name server’s source of data (authoritative, caching, master, slave), on the type of data saved (stub), on the query path (forwarder), on the completeness of answers handed out (recursive, nonrecursive), and finally, on the visibility of the server (distribution). The next few sections provide some additional details on the most important of these distinctions; the others are described elsewhere in this chapter.
 

Authoritative and Caching-Only Servers
 

Master, slave, and caching-only servers are distinguished by two characteristics: where the data comes from and whether the server is authoritative for the domain. BIND can be all three types, NSD can be a master or slave, and Unbound is caching-only.
 

Table 17.3 A name server taxonomy
 

[image: Image]
 

Each zone typically has one master name server.4 The master server keeps the official copy of the zone’s data on disk. The system administrator changes the zone’s data by editing the master server’s data files.
 

A slave server gets its data from the master server through a “zone transfer” operation. A zone can have several slave name servers and must have at least one. A stub server is a special kind of slave that loads only the NS (name server) records from the master. See page 614 for an explanation of why you might want this behavior. It’s fine for the same machine to be both a master server for some zones and a slave server for other zones.
 

See page 639 for more information about zone transfers.

 

A caching-only name server loads the addresses of the servers for the root domain from a startup file and accumulates the rest of its data by caching answers to the queries it resolves. A caching-only name server has no data of its own and is not authoritative for any zone (except perhaps the localhost zone).
 

An authoritative answer from a name server is “guaranteed”5 to be accurate; a nonauthoritative answer might be out of date. However, a very high percentage of nonauthoritative answers are perfectly correct. Master and slave servers are authoritative for their own zones, but not for information they may have cached about other domains. Truth be told, even authoritative answers can be inaccurate if a sysadmin changes the master server’s data but forgets to propagate the changes (e.g., doesn’t change the zone’s serial number).
 

Name servers should be located on machines that are stable, do not have many users, are secure, and are on an uninterruptible power supply. One slave is required. Ideally, there should be at least two slaves, one of which is off-site. On-site slaves should live on different networks and different power circuits. When name service stops, all normal network access stops, too.
 

Although they are not authoritative, caching-only servers can reduce the latency seen by your users and the amount of DNS traffic on your internal networks. At most sites, desktop machines send their queries about machines on the Internet through a caching server. Larger sites should have several caching servers.
 

Security and general DNS hygiene argue for separating the functions of serving your authoritative data to the world from serving the world’s data to your users. In an implementation like NSD/Unbound, this separation is enforced architecturally. But even with BIND, which uses a single name server binary (named), you can run separate copies of the server for each purpose: one as an authoritative server and one as a caching, recursive server.
 

Recursive and Nonrecursive Servers
 

Name servers are either recursive or nonrecursive. If a nonrecursive server has the answer to a query cached from a previous transaction or is authoritative for the domain to which the query pertains, it provides an appropriate response. Otherwise, instead of returning a real answer, it returns a referral to the authoritative servers of another domain that are more likely to know the answer. A client of a nonrecursive server must be prepared to accept and act on referrals.
 

Although nonrecursive servers may seem lazy, they usually have good reason not to take on extra work. Authoritative-only servers (e.g., root servers and top-level domain servers) are all nonrecursive, but since they may process tens of thousands of queries per second we can excuse them for cutting corners.
 

A recursive server returns only real answers and error messages. It follows referrals itself, relieving clients of this responsibility. In other respects, the basic procedure for resolving a query is essentially the same.
 

For security reasons, an organization’s externally accessible name servers should always be nonrecursive. Recursive name servers that are visible to the world may be vulnerable to cache poisoning attacks.
 

Resolver libraries do not understand referrals; any local name server listed in a client’s resolv.conf file must be recursive.
 

One side effect of having a name server follow referrals is that its cache acquires information about intermediate domains. On a local network, this caching is often the behavior you want since it allows subsequent lookups from any host on the network to benefit from the name server’s previous work. On the other hand, the server for a top-level domain such as com or edu should not save up information requested by a host several domains below it.
 

Name servers generate referrals hierarchically. For example, if a server can’t supply an address for lair.cs.colorado.edu, it refers to the servers for cs.colorado.edu, colorado.edu, edu, or the root domain. A referral must include addresses for the servers of the referred-to domain, so the choice is not arbitrary; the server must refer to a domain for which it already knows the servers.
 

The longest answer (the one with the most components) is returned. If the address of lair was not known but the name servers for cs.colorado.edu were known, then those servers’ addresses would be returned. If cs.colorado.edu was unknown but colorado.edu was known, then the addresses of name servers for colorado.edu would be returned, and so on.
 

Name servers preload their caches from a “hints” file that lists the servers for the root domain. Some referral can always be made, even if it’s just “Ask a root server.”
 

17.5 The DNS namespace
 

The DNS namespace is organized into a tree with two top-level branches: forward mappings and reverse mappings. Forward mappings map hostnames to IP addresses, and reverse mappings map IP addresses to hostnames. Every fully qualified hostname (e.g., nubark.atrust.com) is a node in the forward branch of the tree, and every IP address is a node in the reverse branch. Periods separate levels of the tree; the root of the tree (the top) is “.”, aka “dot”.
 

Fully qualified hostnames can be viewed as a notation in which the “most significant part” is on the right. For example, in the name nubark.atrust.com, nubark is in atrust and atrust is in com. IP addresses, on the other hand, have the “most significant part” on the left. In the address 128.138.243.100, for example, host 100 is on subnet 243, which is part of network 128.138.
 

To allow the same DNS system to service both kinds of data, the IP branch of the namespace is inverted by listing the octets of the IP address backwards. For example, if host nubark.atrust.com has IP address 63.173.189.1, the corresponding node of the forward branch of the naming tree is “nubark.atrust.com.” and the node of the reverse branch is “1.189.173.63.in-addr.arpa.”.6 Both of these names end with a dot, just as the full pathnames of files always start with a slash.
 

A “fully qualified domain name” is the full path to a DNS object, including a final dot. For example, a host named nubark in the atrust.com domain has the FQDN “nubark.atrust.com.”.
 

A “domain” is a subtree of the DNS naming tree. For example, the atrust.com domain contains atrust.com and all of atrust.com’s subdomains and hosts. By contrast, a “zone” is a domain minus any subdomains that have been delegated to other name servers.
 

If the atrust.com domain were further subdivided into the subdomains engineering, marketing, and booklab, then the domain atrust.com would contain four zones: the original atrust.com plus engineering.atrust.com, marketing.atrust.com, and booklab.atrust.com. The atrust.com zone contains all the hosts in atrust.com except those in engineering, marketing, and booklab.
 

Name servers are associated with zones, not domains. You can determine whether a given name (such as booklab.atrust.com) identifies a subdomain rather than a host by checking DNS. Subdomains have name server (NS) records associated with them.
 

Domain names originally had to be made up of letters, numbers, and dashes, with each component (label) being at most 63 characters long and an entire FQDN being less than 256 characters. FQDNs are not case sensitive, but they are usually written in lowercase letters. Domain names were liberalized by RFC2181.
 

The ongoing internationalization of domain names is forcing changes to these rules to allow longer FQDNs. Characters in nonroman alphabets are represented through an encoding called Punycode, similar in spirit to Unicode but with different implementation details.
 

There are two types of top-level domains: country code domains (ccTLDs) and generic top level domains (gTLDs). ICANN, the Internet Corporation for Assigned Names and Numbers, accredits various agencies to be part of its shared registry project for registering names in the gTLDs such as com, net, and org. As of this writing, you have something like 1,000 choices for a registrar and 21 gTLDs in which to register. Check icann.org for the definitive list. ICANN is in the process of creating many more gTLDs.
 

To register for a ccTLD name, check the IANA (Internet Assigned Numbers Authority) web page iana.org/cctld to find the registry in charge of a particular country’s registration.
 

Registering a Second-Level Domain Name
 

To obtain a second-level domain name, you must apply to a registrar for the appropriate top-level domain. To complete the domain registration forms, you must choose a name that is not already taken and identify a technical contact person, an administrative contact person, and at least two hosts that will be name servers for your domain. Fees vary among registrars, but these days they are all generally quite inexpensive.
 

Creating Your Own Subdomains
 

The procedure for creating a subdomain is similar to that for creating a second-level domain, except that the central authority is now local (or more accurately, within your own organization). Specifically, the steps are as follows.
 

• Choose a name that is unique in the local context.

 

• Identify two or more hosts to be servers for your new domain.7

 

• Coordinate with the administrator of the parent domain.

 

Parent domains should check to be sure that a child domain’s name servers are up and running before performing the delegation. If the servers are not working, a “lame delegation” results, and you might receive nasty email asking you to clean up your DNS act. Page 678 covers lame delegations in more detail.
 

17.6 Designing Your DNS Environment
 

Many factors affect the design of a robust and efficient DNS system for your environment: the size of your organization, whether you use RFC1918 private IP addresses on your local network, whether you use DHCP, whether you use Microsoft’s Active Directory, whether your internal network is routed or switched, and where your firewall is in relation to your DNS servers, to name a few. You may find it helpful to split the problem into three parts:
 

• Managing the namespace hierarchy: subdomains, multiple levels, etc.

 

• Serving the authoritative data about your site to the outside world

 

• Providing name lookups for your users

 

Namespace Management
 

If your site is small and independent, the use of subdomains is neither necessary nor desirable unless your management requires them for some nontechnical reason. On the other hand, in a medium-sized organization with several independent sysadmin groups, subdomains can reduce the need for site-wide coordination. (Subdomains divided along geographic or departmental lines are most common.) A large organization has little hope of enforcing unique names throughout its site and therefore needs subdomains, perhaps at multiple levels.
 

Recent additions to DNS have defined zone-level records (SPF and DKIM/ADSP) that help to prevent other sites from forging mail that appears to originate from your domain. Optimal use of these features may require you to define subdomains based on the sensitivity of the information your organization sends by email. See page 591 for more details.
 

The creation of subdomains requires communication and cooperation between the sysadmins responsible for the parent domain and those responsible for the subdomain. At the time the subdomain is delegated and set up, be sure to make a note of whom to contact if you want to add, change, or delete servers. Make sure your firewall does not block access to the subdomain’s servers if you want the subdomain to be accessible from outside your organization.
 

If you use subdomains to manage your namespace, run the doc (domain obscenity control) tool from cron once a week to be sure that your delegations stay synchronized and that you don’t inadvertently create lame delegations. The DNS tools section (see page 667) describes doc and several other tools that help keep DNS healthy.
 

Authoritative Servers
 

The DNS specifications require at least two authoritative servers for each domain. Master and slave servers are authoritative; caching and stub servers are not. Ideally, a site has multiple authoritative servers, each on a separate network and power circuit. Many sites maintain an authoritative server off-site, often hosted by their ISP. If your ISP does not offer this service, you can purchase it from a DNS service provider or trade with a local firm (ideally, not a competitor) or university.
 

A few years ago, Microsoft got caught violating the rule of separate networks. They had all three of their authoritative servers on the same subnet, and when the router that connected that subnet to the Internet failed, the servers became unreachable. Two hours later, as cached records expired, microsoft.com and all their other domains dropped off the Internet. The number of queries for Microsoft-related names at the root servers increased to 25% of the total load (10,000 queries/second), up from its typical value of 0.000001%. Problems persisted for a couple of days. When the dust settled, Microsoft had fixed the router and outsourced their DNS service.
 

Authoritative servers keep their data synchronized by using zone transfers. Use TSIG (transaction signature) keys to authenticate and control the zone transfers from your master server to your slave servers. See page 645 for TSIG configuration information.
 

You may want the query responses provided by your authoritative servers to depend to some extent on who is asking. A query from outside your network might receive one answer, while the same query originating inside your organization would receive a different (or more complete) answer. This configuration is called “split DNS” and is implemented at the zone level, not the name server level.
 

Each version of the zone is called a “view,” after the view statement with which it is configured in the BIND configuration file. External folks see one view of the data, and internal folks see another. This feature is commonly used to conceal the existence of internal machines from prying eyes and to ensure that machines using RFC1918 private IP addresses do not leak them onto the Internet. Views are tricky to debug, but BIND’s extensive logging capabilities, together with clever use of the dig command, can help; see page 667 for some hints.
 

NSD does not support views and split DNS. However, you can simulate this feature by running two instances of NSD with different configurations. (Of course, you can do that with BIND, too.)
 

Caching Servers
 

Recursive caching servers answer local users’ queries about sites on the Internet. Each computer at your site should have ready access to a local caching server.
 

Some organizations use a hierarchy in which one or more machines are designated as “forwarders” through which the local subnets’ caching servers pass their queries. The forwarders thereby develop a rich cache that is available to the entire site. Depending on the size of your site, forwarders can be independent or arranged in a hierarchy. The configuration of forwarders is covered on page 606 for BIND and on page 638 for Unbound.
 

If a caching server dies, the network essentially stops working for all the users that were primary clients of that server.8 (And your phone starts ringing.) Start your caching name servers with a script that restarts them after a few seconds if they die. Here is an example of a nanny script from a machine that runs named for several TLDs:
 

[image: Image]
 

When named crashes, the script submits a syslog entry with the logger command, then waits 15 seconds (an arbitrary value) before restarting named. BIND ships with a nanny script in the contrib directory, although it’s not as necessary as it once was.
 

[image: Image] On Solaris, you can have SMF do your nannying for you; see page 97.
 

Hardware Requirements
 

Name servers need to be well provisioned in three dimensions: CPU, memory, and network bandwidth. Of these, CPU is probably the least critical for now, but it will become more of an issue as DNSSEC is fully deployed and zone signing and signature validation are required. If possible, use dedicated machines for your busy name servers and separate authoritative servers from recursive ones.
 

Busy name servers get thousands of queries per second and therefore need multiple network interfaces and high bandwidth connections. The traffic usually consists of zillions of small UDP packets.
 

Recursive servers need enough memory to cache all the answers your users demand. The best way to determine if a name server machine has enough memory is to run it for a while and watch the size of the name server process. It takes a week or two to converge on a stable size at which old cache records are expiring at about the same rate that new ones are being inserted. Once stable, the system should not be swapping, and its paging rates should be reasonable.
 

If your name server runs on a dedicated machine, a good rule of thumb is for the machine to have double the amount of memory consumed by the name server daemon after it has been running for a week. The top and vmstat commands show memory usage; see Analyzing memory usage on page 1125 for more details.
 

Authoritative servers need enough memory to store all the data for which they are authoritative. Most sites can manage this, but servers for top-level domains and DNS hosting sites may need either huge memories or special software that facilitates storing part of the data on disk.
 

You can control the amount of resources that a name server uses through configuration options. See the list of tuning options for BIND on page 608 and for NSD on page 630.
 

Security
 

DNS security is covered in a whole section of its own, starting on page 642. We won’t duplicate that discussion here except to remind you that if you use a firewall, be sure that your DNS system does not emit queries to which your firewall blocks the answers. Make sure that your DNS administrators have ongoing communication with your security and network administrators.
 

By default, DNS uses UDP with random unprivileged source ports (>1023) for queries; the answers are UDP packets addressed to those same ports. With DNSSEC and internationalized domain names, DNS responses may be larger than the path MTU and therefore arrive fragmented. Ergo, your firewall should not block fragmented UDP packets. If a UDP query fails due to fragmentation, often it is re-issued as a TCP query, so your firewall should be kind to TCP DNS replies, too.
 

Summing Up
 

Exhibit B illustrates the design recommended in the previous paragraphs.
 

Exhibit B DNS server architecture
 

[image: Image]
 

Exhibit B shows clear separation of caching servers (on the left) for your users and authoritative servers (on the right) for your data. Also note the use of the off-site slave server, which is highly recommended.
 

See page 457 for more information about anycast addressing.

 

The University of California at Berkeley (berkeley.edu) uses anycast IP addresses to replicate their caching servers. Clients all appear to contact the same set of servers, but the routing system (OSPF in this case) routes them to whichever caching server is nearest. This configuration results in easy and consistent client configuration and a robust DNS environment for users.
 

17.7 What’s New in DNS
 

One of the neatest new developments in the DNS world is the use of DNS records to authenticate and verify the integrity of email messages. This system, called DomainKeys Identified Mail (DKIM), helps expose phishing (e.g., mail that appears to come from your bank and asks you to “verify” your account information). DKIM also helps detect spammers who forge the sender’s address.
 

In the DKIM system, originating email servers sign outbound messages with a cryptographic private key. The corresponding public key is published as a DNS TXT record. Email receivers can verify the integrity and origin of a message by looking up the DKIM (public) key of the message’s ostensible origin and checking it against the message’s signatures.
 

The DKIM system does not require a change to your DNS software, but it does require the cooperation of your outgoing email server (to sign messages) and incoming email server or mail reader (to verify the signatures). From DNS’s point of view, only the configuration and data files need to change to support a new subdomain called _domainkey.
 

Even better, a construct called the Author Domain Signing Practice (ADSP) declaration allows a site to say whether it signs all, part, or none of its outgoing email for each DNS zone. Receiving sites can use this policy statement to decide how to treat unsigned messages and messages whose signatures cannot be verified.
 

For example, a bank that generates several categories of email (e.g., marketing messages, account statements, and wire transfer instructions) could create a subdomain for each function and institute different policies for each. Receivers can then ignore missing or mismatched signatures on advertisements but reject messages that ought to be secure.
 

This mechanism for expressing policy is similar to the Sender Policy Framework (SPF) system, which defines a way for organizations to publish the identities of their valid mail servers in DNS so that spammers who try to forge the From address can be recognized and their email rejected.
 

Also on our “what’s new” list is the upcoming BIND 10, the next generation of the BIND software developed by ISC, the Internet Systems Consortium, which has maintained BIND since version 4. The BIND 10 effort has been funded by sponsoring organizations around the world, mostly domain registrars.
 

BIND 10 will continue to be an open source reference implementation of DNS. It will be partially built on BIND 9 and will focus on improving modularity, customizability, clusterization, integration, resilience, and run-time control.
 

BIND 9 and earlier versions stored the DNS database in memory; BIND 10 will support multiple data storage systems. Another planned feature is a nice user interface API so folks can build GUI interfaces to populate zones and control the software. See isc.org/bind10 for details.
 

Several of our older “what’s new” issues from previous editions are still in the proposed-standard-but-not-yet-widely-adopted pile. Some examples are DNSSEC-bis (security), IDN (internationalized domain names), and IPv6. These initiatives are progressing, but slowly. We include them at the end of Table 17.4, which lists new topics, relevant RFCs, and references to the pages in this book where the details are covered.
 

Table 17.4 Recent developments in DNS and BIND
 

[image: Image]
 

Some of these new features are enormous projects that the IETF has not yet finished standardizing. The working groups that are writing the standards have good writers but lack vigilant code warriors, leading to the occasional specification that is difficult or even impossible to implement. The current releases of BIND, NSD, and Unbound include most of the new features.
 

IPv6 is described in more detail in Chapter 14.

 

Two massive new features, IPv6 support and DNSSEC, warrant a bit of commentary. IPv6 increases the length of IP addresses from 32 bits to 128 bits. If ever fully implemented, it will have an enormous impact on the Internet. BIND, NSD, and Unbound support the pieces of IPv6 that have been standardized so far, but it appears unlikely that IPv6 will be widely deployed during the lifetime of this book. Therefore, our coverage of IPv6 support is brief. There’s enough in this chapter to give you the general flavor, but not enough to enable you to migrate your site to IPv6 and configure DNS for it.
 

The DNSSEC standard adds authentication data to the DNS database and its servers. It uses public key cryptography to verify the source and integrity of DNS data and uses DNS to distribute keys as well as host data.
 

Sites that want to deploy DNSSEC-signed zones will run up against a bootstrapping problem until the root and top-level domains are signed, because the DNSSEC trust model requires signatures to be chained from the root down. However, a new stopgap scheme called DLV, domain lookaside validation, is poised to step in and glue islands of trust together until the root and gTLDs are fully onboard with DNSSEC. See page 661 for details.
 

The introduction of internationalized domain names, which allow the use of non-English characters, is proceeding by way of a hack that maps Unicode characters back to ASCII. A system called Punycode performs the mapping uniquely and reversibly by using an algorithm known as Bootstring; see RFC3492 for details. Internationalized domain names effectively reduce the maximum length (both per-component and total) allowed for DNS names. The Punycode representation of a name begins with the string xf--, so if you see strange queries that start with those four characters, you’ll know what they represent.
 

Each of these major issues (IPv6, DNSSEC, and internationalization) significantly increases the size of DNS data records, thereby making it more likely that DNS will bump into limits on UDP packet sizes and require the EDNS0 (Extended DNS, version 0) protocol to increase its packet size from 512 bytes (the default) to a larger value, say 4,096 bytes. As of 2009, statistics collected at the K root name server show that approximately 35% of queries are not using EDNS0 and so would receive truncated or fragmented DNS answers from sites that use larger packets.9
 

17.8 The DNS Database
 

A zone’s DNS database is a set of text files maintained by the system administrator on the zone’s master name server. These text files are often called zone files. They contain two types of entries: parser commands (things like $ORIGIN and $TTL) and resource records. Only the resource records are really part of the database; the parser commands just provide some shorthand ways to enter records.
 

Commands in Zone Files
 

Commands can be embedded in a zone files to make them more readable and easier to maintain. The commands either influence the way that the parser interprets subsequent records or they expand into multiple DNS records themselves. Once a zone file has been read and interpreted, none of these commands remain a part of the zone’s data (at least, not in their original forms).
 

Zone file commands are standardized in RFCs 1035 and 2308.

 

Three commands are standard in DNS, and a fourth, $GENERATE, is found only in BIND. See page 587 for an example of $GENERATE in action. The standard directives are
 

[image: Image]
 

Commands must start in the first column and occur on a line by themselves.
 

Zone files are read and parsed from top to bottom in a single pass. As the name server reads a zone file, it adds the default domain (or “origin”) to any names that are not already fully qualified. The origin defaults to the domain name specified in the name server’s configuration file. However, you can set the origin or change it within a zone file by using the $ORIGIN directive.
 

The use of relative names where fully qualified names are expected saves lots of typing and makes zone files much easier to read.
 

Many sites use the $INCLUDE directive in their zone database files to separate overhead records from data records, to separate logical pieces of a zone file, or to keep cryptographic keys in a file with restricted permissions. The syntax of the $INCLUDE directive is
 

$INCLUDE filename [origin]
 

The specified file is read into the database at the point of the $INCLUDE directive. If filename is not an absolute path, it is interpreted relative to the home directory of the running name server.
 

If you supply an origin value, the parser acts as if an $ORIGIN directive precedes the contents of the file being read. Watch out: the origin does not revert to its previous value after the $INCLUDE has been executed. You’ll probably want to reset the origin, either at the end of the included file or on the line following the $INCLUDE statement.
 

The $TTL directive sets a default value for the time-to-live field of the records that follow it. It must be the first line of the zone file. The default units for the $TTL value are seconds, but you can also qualify numbers with h for hours, m for minutes, d for days, or w for weeks. For example, the lines
 

[image: Image]
 

all set the $TTL to one day.
 

Resource Records
 

Each zone of the DNS hierarchy has a set of resource records associated with it. The basic format of a resource record is
 

[name] [ttl] [class] type data
 

Fields are separated by whitespace (tabs or spaces) and can contain the special characters shown in Table 17.5.
 

Table 17.5 Special characters used in resource records
 

[image: Image]
 

The name field identifies the entity (usually a host or domain) that the record describes. If several consecutive records refer to the same entity, the name can be omitted after the first record as long as the subsequent records begin with whitespace. If it is present, the name field must begin in column one.
 

A name can be either relative or absolute. Absolute names end with a dot and are complete. Internally, the software deals only with absolute names; it appends the current domain and a dot to any name that does not already end in a dot. This feature allows names to be shorter, but it also invites mistakes.
 

For example, if cs.colorado.edu was the current domain, the name “anchor” would be interpreted as “anchor.cs.colorado.edu.”. If by mistake you entered the name as “anchor.cs.colorado.edu”, the lack of a final dot would still imply a relative name, resulting in the name “anchor.cs.colorado.edu.cs.colorado.edu.”—this kind of mistake is common.
 

The ttl (time to live) field specifies the length of time, in seconds, that the data item can be cached and still be considered valid. It is often omitted, except in the root server hints file. It defaults to the value set by the $TTL directive (see page 596 for format details), which must be the first line of the zone data file.
 

See Chapter 19 for more information about NIS.

 

Increasing the value of the ttl parameter to about a week substantially reduces network traffic and DNS load. However, once records have been cached outside your local network, you cannot force them to be discarded. If you plan a massive renumbering and your old ttl was a week, lower the $TTL value (e.g., to one hour) at least a week before your intended renumbering. This preparatory step makes sure that records with week-long ttls are expired and replaced with records that have one-hour ttls. You can then be certain that all your updates will propagate together within an hour. Set the ttls back to their original value after you’ve completed your update campaign.
 

Some sites set the TTL on the records for Internet-facing servers to a low value so that if a server experiences problems (network failure, hardware failure, denial of service attack, etc.), the administrators can respond by changing the server’s name-to-IP-address mapping. Because the original TTLs were low, the new values will propagate quickly. For example, the name google.com has a five-minute TTL, but Google’s name servers have a TTL of four days (345,600 seconds):
 

[image: Image]
 

We used the dig command to recover this data; the output is truncated here.
 

The class specifies the network type. Three values are recognized:
 

• IN for the Internet, which is the default

 

• HS for Hesiod, a directory service used locally by some sites

 

• CH, used internally by name servers to identify themselves

 

The default value for the class is IN. It is often specified explicitly in zone data files even though as the default, it can be omitted. Hesiod, developed at MIT, is a database service built on top of BIND.
 

CH originally stood for ChaosNet, a now-obsolete network protocol formerly used by Symbolics Lisp machines. Today, only two pieces of identification data are normally tucked away in the CH class: the version number of the name server software and the name of the host on which the server is running. These data nuggets can be extracted with dig or drill as shown on page 598.
 

Administrators and hackers use the name server version number to identify servers in need of upgrades, and admins use the host identification to debug name servers that are replicated through the use of anycast routing. Making this information available through the CH class was originally a feature of BIND, but the convention has now been adopted by other DNS implementations as well.
 

Many different types of DNS records are defined, but fewer than 10 are in common use; IPv6 adds a few more. We divide the resource records into four groups:
 

• Zone infrastructure records identify domains and their name servers.

 

• Basic records map between names and addresses and route mail.10

 

• Security records add authentication and signatures to zone files.

 

• Optional records provide extra information about hosts or domains.

 

The contents of the data field depend on the record type. A DNS query for a particular domain and record type returns all matching resource records from the zone file. Table 17.6 lists the common record types.
 

Table 17.6 DNS record types
 

[image: Image]
 

Some record types are obsolete, experimental, or not widely used. See your name server’s implementation documentation for a complete list. Most records are maintained by hand (by editing text files), but the security resource records require cryptographic processing and so must be managed with software tools. These records are described in the DNSSEC section beginning on page 648.
 

The order of resource records in the zone file is arbitrary, but traditionally the SOA record is first, followed by the NS records. The records for each host are usually kept together. It’s common practice to sort by the name field, although some sites sort by IP address so that it’s easier to identify unused addresses. The zone files on slave servers are not managed by humans, but rather are written by the name server software; the record order is scrambled.
 

As we describe each type of resource record in detail in the next sections, we inspect some sample records from the atrust.com domain’s data files. The default domain in this context is “atrust.com.”, so a host specified as “bark” really means “bark.atrust.com.”.
 

The format and interpretation of each type of resource record is specified by the IETF in the RFC series. In the upcoming sections, we list the specific RFCs relevant to each record (along with their years of origin) in a margin note.
 

See page 449 for more information about RFCs.

 

The SOA Record
 

An SOA (Start of Authority) record marks the beginning of a zone, a group of resource records located at the same place within the DNS namespace. The data for a DNS domain usually includes at least two zones: one for translating host-names to IP addresses, called the forward zone, and others that map IP addresses back to hostnames, called reverse zones.
 

SOA records are specified in RFC1035 (1987).

 

Each zone has exactly one SOA record. The SOA record includes the name of the zone, the primary name server for the zone, a technical contact, and various timeout values. Comments are introduced by a semicolon. Here’s an example:
 

[image: Image]
 

The name field of the SOA record (atrust.com. in this example) often contains the symbol @, which is shorthand for the name of the current zone. The value of @ is the domain name specified in the zone statement of named.conf or in the zone’s name entry in the nsd.conf file. This value can be changed from within the zone file with the $ORIGIN parser directive (see page 596).
 

For configuration details see page 597 for named.conf and page 625 for nsd.conf.

 

This example has no ttl field. The class is IN for Internet, the type is SOA, and the remaining items form the data field. The numerical parameters in parentheses are timeout values and are often written on one line without comments.
 

“ns1.atrust.com.” is the zone’s master name server.11
 

“hostmaster.atrust.com.” is the email address of the technical contact in the format “user.host.” rather than the standard user@host. Just replace that first dot with an @ and remove the final dot if you need to send mail to a domain’s administrator. Sites often use an alias such as admin or hostmaster in place of an actual login name. The sysadmin responsible for hostmaster duties may change, and it’s easier to change one entry in the aliases file (see page 756) than to change all your zone files when you need to update the contact person.
 

The parentheses continue the SOA record over several lines.
 

The first numeric parameter is the serial number of the zone’s configuration data. The serial number is used by slave servers to determine when to get fresh data. It can be any 32-bit integer and should be incremented every time the data file for the zone is changed. Many sites encode the file’s modification date in the serial number. For example, 2009070200 is the first change to the zone on July 2, 2009.
 

Serial numbers need not be continuous, but they must increase monotonically. If by accident you set a really large value on the master server and that value is transferred to the slaves, then correcting the serial number on the master will not work. The slaves request new data only if the master’s serial number is larger than theirs.
 

There are two ways to fix this problem.
 

• One fix is to exploit the properties of the sequence space in which the serial numbers live. This procedure involves adding a large value (231) to the bloated serial number, letting all the slave servers transfer the data, and then setting the serial number to just what you want. This weird arithmetic, with explicit examples, is covered in detail in the O’Reilly DNS book; RFC1982 describes the sequence space.

 

• A sneaky but more tedious way to fix the problem is to change the serial number on the master, kill the slave servers, remove the slaves’ backup data files so they are forced to reload from the master, and restart the slaves. It does not work to just remove the files and reload; you must kill and restart the slave servers. This method gets hard if you follow best-practices advice and have your slave servers geographically distributed, especially if you are not the sysadmin for those slave servers.

 

It is a common mistake to change the data files but forget to update the serial number. Your name server will punish you by failing to propagate your changes to the slave servers.
 

The next four entries in the SOA record are timeout values, in seconds, that control how long data can be cached at various points throughout the world-wide DNS database. Times can also be expressed in units of minutes, hours, days, or weeks by addition of a suffix of m, h, d, or w, respectively. For example, 1h30m means 1 hour and 30 minutes. Timeout values represent a tradeoff between efficiency (it’s cheaper to use an old value than to fetch a new one) and accuracy (new values should be more accurate). The four timeout fields are called refresh, update, expire, and minimum.
 

The refresh timeout specifies how often slave servers should check with the master to see if the serial number of the zone’s configuration has changed. Whenever the zone changes, slaves must update their copy of the zone’s data. The slave compares the serial numbers; if the master’s serial number is larger, the slave requests a zone transfer to update the data. Common values for the refresh timeout range from one to six hours (3,600 to 21,600 seconds).
 

Instead of just waiting passively for slave servers to time out, master servers for BIND (always) and NSD (if so configured) notify their slaves every time a zone changes. It’s possible for an update notification to be lost because of network congestion, so the refresh timeout should still be set to a reasonable value.
 

If a slave server tries to check the master’s serial number but the master does not respond, the slave tries again after the retry timeout period has elapsed. Our experience suggests that 20–60 minutes (1,200–3,600 seconds) is a good value.
 

If a master server is down for a long time, slaves will try to refresh their data many times but always fail. Each slave should eventually decide that the master is never coming back and that its data is surely out of date. The expire parameter determines how long the slaves will continue to serve the domain’s data authoritatively in the absence of a master. The system should be able to survive if the master server is down for a few days, so this parameter should have a longish value. We recommend a week to a month or two.
 

The minimum parameter in the SOA record sets the time to live for negative answers that are cached. The default for positive answers (i.e., actual records) is specified at the top of the zone file with the $TTL directive. Experience suggests values of several hours to a few days for $TTL and an hour to a few hours for the minimum. BIND silently discards any minimum values greater than 3 hours.
 

The $TTL, expire, and minimum parameters eventually force everyone that uses DNS to discard old data values. The initial design of DNS relied on the fact that host data was relatively stable and did not change often. However, DHCP, mobile hosts, and the Internet explosion have changed the rules. Name servers are desperately trying to cope with the dynamic update and incremental zone transfer mechanisms described later. For more information about TTLs, see page 576.
 

NS Records
 

NS (name server) records identify the servers that are authoritative for a zone (that is, all the master and slave servers) and delegate subdomains to other organizations. NS records are usually placed directly after the zone’s SOA record.
 

NS records are specified in RFC1035 (1987).

 

The format is
 

zone [ttl] [IN] NS hostname
 

For example:
 

[image: Image]
 

The first two lines define name servers for the atrust.com domain. No name is listed because it is the same as the name field of the SOA record that precedes the records; the name can therefore be left blank. The class is also not listed because IN is the default and does not need to be stated explicitly.
 

The third and fourth lines delegate a subdomain called booklab.atrust.com to the name servers ubuntu.booklab and ns1. These records are really part of the book-lab subdomain, but they must also appear in the parent zone, atrust.com, in order for the delegation to work. In a similar fashion, NS records for atrust.com are stored in the .com zone file to define the atrust.com subdomain and identify its servers. The .com servers refer queries about hosts in atrust.com to the servers listed in NS records for atrust.com within the .com domain.
 

See page 596 for more information about delegation.

 

The list of name servers in the parent zone should be kept up to date with those in the zone itself, if possible. Nonexistent servers listed in the parent zone can delay name service, although clients will eventually stumble onto one of the functioning name servers. If none of the name servers listed in the parent exist in the child, a so-called lame delegation results; see page 678.
 

Extra servers in the child are OK as long as at least one of the child’s servers still has an NS record in the parent. Check your delegations with dig or drill occasion-ally to be sure they specify an appropriate set of servers; see page 677.
 

A records
 

A (address) records are the heart of the DNS database. They provide the mapping from hostnames to IP addresses that was formerly specified in the /etc/hosts file. A host usually has one A record for each of its network interfaces. The format is
 

A records are specified in RFC1035 (1987).

 

hostname [ttl] [IN] A ipaddr
 

For example:
 

ns1 IN A 63.173.189.1
 

In this example, the name field is not dot-terminated, so the name server adds the default domain to it to form the fully qualified name “ns1.atrust.com.”. The record associates that name with the IP address 63.173.189.1.
 

PTR Records
 

PTR (pointer) records map from IP addresses back to hostnames. As described on page 566, reverse mapping records live under the in-addr.arpa domain and are named with the bytes of the IP address in reverse order. For example, the zone for the 189 subnet in this example is 189.173.63.in-addr.arpa.
 

PTR records are specified in RFC1035 (1987).

 

The general format of a PTR record is
 

addr [ttl] [IN] PTR hostname
 

For example, the PTR record in the 189.173.63.in-addr.arpa zone that corresponds to ns1’s A record above is
 

1 IN PTR ns1.atrust.com.
 

The name 1 does not end in a dot and therefore is relative. But relative to what? Not atrust.com—for this sample record to be accurate, the default zone has to be “189.173.63.in-addr.arpa.”.
 

You can set the zone by putting the PTR records for each subnet in their own file. The default domain associated with the file is set in the name server configuration file. Another way to do reverse mappings is to include records such as
 

1.189 IN PTR ns1.atrust.com.
 

with a default domain of 173.63.in-addr.arpa. Some sites put all reverse records in the same file and use $ORIGIN directives (see page 596) to specify the subnet. Note that the hostname ns1.atrust.com ends with a dot to prevent the default domain, 173.63.in-addr.arpa, from being appended to its name.
 

Since atrust.com and 189.173.63.in-addr.arpa are different regions of the DNS namespace, they constitute two separate zones. Each zone must have its own SOA record and resource records. In addition to defining an in-addr.arpa zone for each real network, you should also define one that takes care of the loopback network (127.0.0.0), at least if you run BIND. See page page 619 for an example.
 

This all works fine if subnets are defined on byte boundaries. But how do you handle the reverse mappings for a subnet such as 63.173.189.0/26, where that last byte can be in any of four subnets: 0-63, 64-127, 128-191, or 192-255? An elegant hack defined in RFC2317 exploits CNAME resource records to accomplish this feat; see page 585.
 

The reverse mappings provided by PTR records are used by any program that authenticates inbound network traffic. For example, sshd may allow12 remote logins without a password if the machine of origin is listed, by name, in a user’s ~/.shosts file. When the destination host receives a connection request, it knows the source machine only by IP address. It uses DNS to convert the IP address to a hostname, which is then compared to the appropriate file. netstat, sendmail, tcpd, sshd, X Windows, and ftpd all do reverse mappings to get hostnames from IP addresses.
 

It’s important that A records match their corresponding PTR records. Mismatched and missing PTR records cause authentication failures that can slow your system to a crawl. This problem is annoying in itself; it can also facilitate denial of service attacks against any application that requires the reverse mapping to match the A record.
 

MX Records
 

The mail system uses mail exchanger (MX) records to route mail more efficiently. An MX record preempts the destination specified by the sender of a message, in most cases directing the message to a hub at the recipient’s site. This feature puts the flow of mail into a site under the control of local sysadmins instead of senders.
 

MX records are specified in RFC1035 (1987).

 

The format of an MX record is
 

name [ttl] [IN] MX preference host …
 

The records below route mail addressed to user@somehost.atrust.com to the machine mailserver.atrust.com if it is up and accepting email. If mailserver is not available, mail goes to mail-relay3.atrust.com. If neither machine named in the MX records is accepting mail, the fallback behavior is to deliver the mail as originally addressed.
 

[image: Image]
 

Hosts with low preference values are tried first: 0 is the most desirable, and 65,535 is as bad as it gets. (It might seem that this example configuration is not very robust because both mail servers are at atrust.com. However, the two servers are in fact on different networks and are not co-located.)
 

MX records are useful in many situations:
 

• When you have a central mail hub for incoming mail

 

• When you want to filter mail for spam or viruses before delivering it

 

• When the destination host is down

 

• When the destination host isn’t directly reachable from the Internet

 

• When the local sysadmin knows where mail should be sent better than your correspondents do (i.e., always)

 

Every host that the outside world knows about should have MX records. Other entities in DNS need them, too. For example, hosts that can never or should never receive email (e.g., network printers) should have MX records. The domain itself should have an MX record that points to a mail hub machine so that mail to user@domain will work as senders expect. (But note that this configuration does require that usernames be unique across all machines in the domain.)
 

A machine that accepts email on behalf of another host may need to configure its mail transport program to enable this function. See pages 784 and 835 for a discussion of how to set up this configuration on sendmail and Postfix email servers, respectively.
 

Wild card MX records are also sometimes seen in the DNS database:
 

[image: Image]
 

At first glance, this record seems like it would save lots of typing and add a default MX record for all hosts. But wild card records don’t quite work as you might expect. They match anything in the name field of a resource record that is not al-ready listed as an explicit name in another resource record.
 

Thus, you cannot use a star to set a default value for all your hosts. But perversely, you can use it to set a default value for names that are not your hosts. This setup causes lots of mail to be sent to your hub only to be rejected because the hostname matching the star really does not belong to your domain. Ergo, avoid wild card MX records.
 

CNAME Records
 

CNAME records assign additional names to a host. These nicknames are commonly used either to associate a function with a host or to shorten a long host-name. The real name is sometimes called the canonical name (hence, “CNAME”). Some examples:
 

CNAME records are specified in RFC1035 (1987).

 

[image: Image]
 

The format of a CNAME record is
 

nickname [ttl] [IN] CNAME hostname
 

When DNS software encounters a CNAME record, it stops its query for the nickname and requeries for the real name. If a host has a CNAME record, other records (A, MX, NS, etc.) for that host must refer to its real name, not its nickname.13
 

CNAME records can nest eight deep. That is, a CNAME record can point to another CNAME, and that CNAME can point to a third CNAME, and so on, up to seven times; the eighth target must be the real hostname. If you use CNAMEs, the PTR record should point to the real name, not a nickname.
 

You can avoid CNAMEs altogether by publishing A records for both a host’s real name and its nicknames. This configuration makes lookups slightly faster because the extra layer of indirection is not needed.
 

The CNAME Hack
 

CNAMEs are also used to torture the existing semantics of DNS into supporting reverse zones for networks that are not subnetted on a byte boundary. Before CIDR addressing was commonplace, most subnet assignments were on byte boundaries or within the same organization, and the reverse delegations were easy to manage. For example, if the class B network 128.138 was subnetted into a set of class C-like networks, each subnet would make a tidy package for the in-addr.arpa domain. The reverse zone for the 243 subnet would be 243.138.128.in-addr.arpa.
 

See page 460 for more information about CIDR.

 

But what happens if the 243 subnet is further divided into, say, four pieces as a /26 network? If all four pieces are assigned to the same organization, there is actually no problem. The four subnets can still share a single file that contains all of their PTR records. However, if the 243 subnet is assigned to an ISP that wants to delegate each /26 network to a different customer, a more complicated solution is necessary. The ISP must either maintain the reverse records on behalf of each client, or it must find a way to take the third octet of the IP address (243 in this case) and divide it into four different pieces that can be delegated independently.
 

When an administrative boundary falls in the middle of a byte, you have to be sneaky. You must also work closely with the domain above or below you. The trick is this: for each possible host address in the natural in-addr.arpa zone, add a CNAME that deflects the lookup to a zone controlled by the owner of the appropriate subnet. This scheme makes for messy zone files on the parent, but it does let you delegate authority to the actual users of each subnet.
 

Here is the scheme in gory detail. The parent organization (in our case, the ISP) creates CNAME records for each possible IP address with an extra fake component (dot-separated chunk) that represents the subnet. For example, in the /26 scenario just described, the first quarter of the addresses would have a “0-63” component, the second quarter would have a “64-127” component, and so on. Here’s what it looks like:
 

[image: Image]
 

To delegate the 0-63 piece of the reverse zone to the customer that has been assigned that subnet, we’d add the following NS records:
 

[image: Image]
 

customer1.com’s site would have a zone file that contained the reverse mappings for the 0-63.243.138.128.in-addr.arpa zone.
 

For example,
 

[image: Image]
 

By adding this extra component, we create a new “cut” at which to perform delegation. When someone looks up the reverse mapping for 128.138.243.1, for example, the CNAME record at 1.243.138.128.in-addr.arpa refocuses the search to the name 1.0-63.243.138.128.in-addr.arpa, which is controlled by the customer.
 

The customer’s files are clean; it’s only the ISP that must deal with an inelegant configuration mess. But things can get even more complicated. Customer1 could itself be an ISP that wants to further subdivide its addresses. But that’s OK: chains of CNAMEs can be up to eight links long, and since a byte has only eight bits, we can never run out. CNAME chains are discouraged but not forbidden in the RFCs; they do slow down name resolution since each link in a CNAME chain causes the link to be followed and a new query for the target to be initiated.
 

Early in the life of the CNAME hack, the $GENERATE command was added to BIND’s repertoire to facilitate the creation of resource records in the parent zone. For example, the following lines produce the records for the first subnet:
 

[image: Image]
 

The $ in the $GENERATE command (itself a BIND extension) iterates from 0 to 63 and creates 64 different CNAME records. The other three /26 networks would be handled similarly.
 

SRV Records
 

An SRV record specifies the location of services within a domain. For example, the SRV record lets you query a remote domain for the name of its FTP server. Before SRV, you had to hope the remote sysadmins had followed the prevailing custom and added a CNAME for “ftp” to their server’s DNS records.
 

SRV records are specified in RFC2782 (2000).

 

SRV records make more sense than CNAMEs for this application and are certainly a better way for sysadmins to move services around and control their use. However, SRV records must be explicitly sought and parsed by clients, so it will be a while before their effects are really felt. They are used extensively by Windows.
 

SRV records resemble generalized MX records with fields that let the local DNS administrator steer and load-balance connections from the outside world. The format is
 

service.proto.name [ttl] [IN] SRV pri wt port target
 

where service is a service defined in the IANA assigned numbers database (see iana.org/numbers.htm), proto is either tcp or udp, name is the domain to which the SRV record refers, pri is an MX-style priority, wt is a weight used for load balancing among several servers, port is the port on which the service runs, and target is the hostname of the server that provides the service. To avoid a second round trip, DNS servers usually return the A record of the target with the answer to a SRV query.
 

A value of 0 for the wt parameter means that no special load balancing should be done. A value of “.” for the target means that the service is not run at this site.
 

Here is an example snitched from the RFC2782 and adapted for atrust.com:
 

[image: Image]
 

This example illustrates the use of both the weight parameter (for SSH) and the priority parameter (HTTP). Both SSH servers are used, with the work being split between them. The backup HTTP server is only used when the principal server is unavailable. All other services are blocked, both for TCP and UDP. However, the fact that other services do not appear in DNS does not mean that they are not actually running, just that you can’t locate them through DNS.
 

MS Exchange servers use SRV records to help Outlook clients find them and to provide automatic configuration for Outlook Anywhere. The SRV records are the fourth thing tried, after Active Directory and some predefined auto-discovery URLs. Windows uses a GUI tool called DNS Manager to set up SRV records.
 

TXT Records
 

A TXT record adds arbitrary text to a host’s DNS records. For example, some sites have a TXT record that identifies them:
 

TXT records are specified in RFC1035 (1987).

 

IN TXT "Applied Trust Engineering, Boulder, CO, USA"
 

This record directly follows the SOA and NS records for the atrust.com zone and so inherits the name field from them.
 

The format of a TXT record is
 

name [ttl] [IN] TXT info …
 

All info items must be quoted. You can use a single quoted string or multiple strings that are individually quoted. Be sure the quotes are balanced—missing quotes wreak havoc with your DNS data because all the records between the missing quote and the next occurrence of a quote mysteriously disappear.
 

As with other resource records, servers return TXT records in random order. To encode long items such as addresses, use long text lines rather than a collection of several TXT records.
 

Because TXT records have no particular format, they are sometimes used to test prospective new types of DNS records without requiring changes to the DNS system itself. For example, SPF records (see page 590) were originally implemented as TXT records. Now that a dedicated record type has been created, use of the TXT version is no longer recommended, but many sites still do it.
 

IPv6 Resource Records
 

IPv6 is a new version of the IP protocol. It has spent over 15 years in the specification process and has spawned about 250 RFCs, yet it still isn’t really done.14 IPv6 was originally motivated by a perceived need for more IP network addresses. However, the stopgap solutions to this problem (CIDR, private addresses, NAT, and stricter control of addresses) have been so successful that a mass migration to IPv6 has turned out not to be as essential as originally envisioned—at least, not quite yet. The adoption of IPv6 is now being driven by Asia, where IPv4 addresses are spread more thinly.
 

The IPv6 records are specified in RFC1886 (1995).

 

See Chapter 14 for a more detailed discussion of IPv6.

 

IPv6 DNS records are totally separate from the transport protocol used to deliver them. Publishing IPv6 records in your DNS zones does not mean that you must answer queries for them with IPv6. About half the query load on the K root name server (k.root-servers.net) consists of queries for IPv4 A records, and one quarter consists of queries for IPv6 AAAA records. However, 99% of all the actual queries use IPv4 transport.
 

IPv6 Forward Records – AAAA
 

The format of an AAAA record is
 

hostname [ttl] [IN] AAAA ipaddr
 

For example:
 

f.root-servers.net. IN AAAA 2001:500:2f::f
 

Each colon-separated chunk of the address represents four hex digits, with leading zeros usually omitted. Two adjacent colons stand for “enough zeros to fill out the 128 bits of a complete IPv6 address.” An address can contain at most one such double colon.
 

IPv6 Reverse Records – PTR
 

See page 582 for a discussion of the IPv4 version of PTR records.

 

In IPv6, the reverse mapping information corresponding to an AAAA address record is a PTR record in the ip6.arpa top-level domain.
 

The “nibble” format reverses an AAAA address record by expanding each colon-separated address chunk to the full 4 hex digits and then reversing the order of those digits and tacking on ip6.arpa at the end. For example, the PTR record that corresponds to our sample AAAA record above would be
 

[image: Image]
 

(This line has been folded to fit the page.) It’s unfortunately not very friendly for a sysadmin to have to type or debug or even read. Of course, in your actual DNS zone files, the $ORIGIN statement could hide some of the complexity.
 

SPF Records
 

SPF (Sender Policy Framework) records are an attempt to identify email messages with forged From headers, which are often spam or phishing. If the site receiving a message determines that the headers are forged, it can drop the mail, filter it, or tag it before delivering it to the recipient. This functionality was first implemented with TXT records, but we now have a dedicated SPF record type that uses the same syntax as the TXT version. Sites can have SPF records, TXT records in SPF format, both, or neither.
 

SPF records are specified in RFCs 4406 and 4408 (2006).

 

Unfortunately, there are two competing ways of using SPF records: Microsoft’s Sender ID system and the rest of the world’s system. The IETF’s working groups could not reach consensus on the best option, so both approaches were published as experimental RFCs. The main difference is whether the tests are done on the envelope sender’s address or the header sender’s address.
 

Both the SPF and Sender ID specifications have a serious flaw: email that is forwarded fails the SPF check because the receiver compares the sender’s SPF record with the forwarder’s IP address. Therefore, sites need to be careful with the disposition of mail that fails the SPF check.
 

Here, we describe a subset of the syntax and semantics of the RFC4408 version of SPF records. The complete specification is infinitely flexible, with macros, redirects, includes, and such yielding a dozen ways to achieve a given policy. We concentrate on a simple, efficient subset of that dozen.
 

An SPF record lists the IP addresses of servers that originate the zone’s legitimate email. For example, dig gmail.com spf15 returns the following record:
 

[image: Image]
 

This SPF record redirects clients to the _spf subdomain at google.com. A followup query, dig _spf.google.com spf, yields
 

[image: Image]
 

Rather than listing specific hosts, this SPF record enumerates the IP networks of Google’s mail servers. This is all one long SPF record, but we have inserted line breaks to make it fit on the page.
 

Quoted strings are limited to 255 bytes, so if you need more than 255 characters for your entry, you must use multiple quoted strings. Multiple strings are concatenated with no extra white space. Try to keep the total length below about 450 bytes, though, so that query responses can still fit in a single 512-byte UDP packet. SPF strings are case insensitive.
 

Let’s dissect that record in a bit more detail:
 

• v=spf1 indicates that the record conforms to version 1 of the SPF protocol, described in RFC4408. v=spf2.0 would indicate Microsoft’s Sender ID system, described in RFC4406.

 

• The ip4 tags indicate that the following data value is a normal IP network or host address. Multiple clauses can be included, as is done here.

 

• ?all indicates “done” to the checking function that interprets the record.

 

The complexity of the full SPF language is disheartening. Other tags are available to list hostnames, MX records, PTR records, IPv6 addresses, and so on. Some of these forms require a second DNS lookup, so although they may add convenience or flexibility, they are less efficient than the ip4 tag. The examples at the end of RFC4408 are a good reference if you want to get fancy with your SPF records.
 

Here is another example, obtained with dig sendmail.com txt:
 

[image: Image]
 

This record specifies complete server IP addresses rather than entire networks. At the tail end of the IP address list is a ptr: clause that permits constantcontact.com to send mail purporting to be from sendmail.com. This clause should only take effect if constantcontact.com has a matching PTR record, which isn’t currently the case—as of this writing, the PTR maps back to www.constantcontact.com, not constantcontact.com. Either email receivers are not checking the PTR record rigorously or the SPF record has a small bug.
 

Surveys (sendmail.org/dkim/survey) of about 1,000 U.S. banks and Fortune 1,000 companies showed that SPF was supported by more than 90% of the sites, with the Sender ID format being used by only 1%–2%. Some email readers (e.g., Gmail) print a bright red warning banner across a message that has failed an SPF check and might be phishing.
 

sendmail, Postfix, and exim support SPF processing; Microsoft Exchange supports Sender ID. See page 768 for more SPF information.
 

DKIM and ADSP Records
 

DKIM stands for DomainKeys Identified Mail and is a merge and enhancement of two systems: DomainKeys from Yahoo! and Identified Internet Mail from Cisco. It’s a signature system for email. The receiver of a message can authenticate the sender (no forgeries) and guarantee the message’s integrity (no meddling).
 

DKIM records are specified in RFCs 4871 (2007) and 5617 (2009).

 

A lot of work has gone into the DKIM specifications so that edge cases like mailing lists and outsourced email solutions will work correctly. Another focus of the DKIM design is to make implementation easy; it requires no per-user or per-host changes. Here, we cover only the DNS aspects of DKIM. The email implications are described in Chapter 20, Electronic Mail, starting on page 845.
 

DKIM resource records have not yet been standardized as a DNS record type; TXT records in a special format are used instead. They use a DNS record name formed from a “selector” concatenated with the string _domainkey. The record’s data is the site’s DKIM public key. Multiple selectors may exist so that keys can be easily rolled over and revoked.
 

A site using DKIM signatures computes a signature over specified header fields and the body of the message with its DKIM private key. It puts the signature into the outbound message in the form of a header field called DKIM-Signature.
 

The corresponding public key is available through the sending site’s DNS zone as a TXT record associated with the name selector._domainkey.domain. The receiving site does a DNS lookup for this key and uses it to validate the message signature. Successful signature verification authenticates the message as having come from the purported sending domain and verifies that the message has not been modified in transit.
 

Here is an example of a DKIM-Signature header line from a signed message:
 

[image: Image]
 

The various tags in the signature are explained in Table 17.7.
 

Table 17.7 Tags in the DKIM-Signature email header
 

[image: Image]
 

The selector tag, s=gamma, tells us the name of the public key, and the d= tag gives the parent domain. To get our hands on the public key, we dig for the TXT record for the pseudo-host gamma._domainkey.gmail.com.
 

[image: Image]
 

This is a pretty messy record to have to type into your zone files—thank goodness for cut and paste. The k= tag identifies the type of key; the only value defined to date is rsa. The t=y flag means that you are just testing DKIM and so receiving sites should be lenient if your signatures don’t verify. The p= clause is the public key itself. Semicolons must be escaped with backslashes because they are comment symbols in DNS data files.
 

The DKIM TXT record often contains a version tag, v=DKIM1. As in all TXT records, everything must be in double quotes.
 

To generate an RSA key pair in the appropriate format for your zone files, use the following openssl commands to generate a private key and extract the corresponding public key from it:
 

[image: Image]
 

Then cut and paste the public key from rsa.public into the p= clause of your text record. It cannot contain any spaces or newlines, so be careful that the cut and paste does not introduce any additional characters.
 

You can choose any name as your selector.
 

In the Gmail example above, the _domainkey.gmail.com segment of the name gamma._domainkey.gmail.com is not a true subzone of gmail.com from the DNS perspective. You can verify this observation by searching for the zone’s name servers (dig _domainkey.gmail.com ns), which would have to exist if it was a proper delegated subzone. The example below from yahoo.com implements _domainkey as a proper subdomain.
 

RFC5617 defines a TXT record you can stash in a special subdomain to express your overall policy with respect to signing messages. This record was just recently standardized (2009) and is called an ADSP (Author Domain Signing Policy) text record. The subdomain is _adsp._domainkey.domain.
 

Inside the TXT record, you include a dkim= clause to declare your site’s signing policy. The possible values are
 

• all, for domains that sign all outgoing email messages

 

• unknown, for domains that might sign some email messages

 

• discardable, for domains that sign all email and recommend that recipients discard messages whose signature cannot be verified

 

As an example, the discardable tag might be used by a bank that sends sensitive customer account information from a subdomain created for this purpose. A user’s acting on instructions from forged email that appears to emanate from this domain could have disastrous consequences, so it’s best if such email can be refused or discarded without reaching the addressee.
 

The ADSP TXT record can also include a t=y clause if you are just testing out DKIM and don’t want recipients to take your signatures too seriously.
 

During the development of the ADSP system, prior to RFC5617, a domain’s ADSP TXT record was kept in a different subdomain (_domainkey.domain, with no _adsp prefix) and had a slightly different syntax. o=~ meant that the domain signed some of its email, and o=- meant that it signed all email.
 

Since the two conventions use different subdomains, they can coexist. As of this writing, the original form remains predominant. If you are serious about getting recipients to scrutinize your signatures, it’s probably best to use both conventions for the next few years until everyone has become RFC5617-compliant.
 

Let’s look at an example. Gmail does not have an ADSP record, but Yahoo! does:
 

[image: Image]
 

The n= clause is a comment that points a human user to more information about Yahoo!’s use of DKIM records.16 Some sites include an email address (without any @s, to avoid spam) instead. Here is yahoo.com’s DKIM TXT record for the key (selector) s1024:
 

[image: Image]
 

Here again, the n= clause is a comment, this time about the key itself.
 

The DKIM records shown in this section are all TXT records, but they will eventually migrate to the DKIM record type, which has the same format. In the interim, sites can use both record types to be sure there are no transition issues.
 

Chapter 20 covers the steps needed to implement DKIM within your mail system.
 

SSHFP Resource Records
 

SSH, the secure shell, allows secure remote logins over an insecure network. It uses two authentication schemes, one for the host itself and one for the user attempting to log in. Unfortunately, users typically accept whatever host key ssh presents to them without verifying it. DNS’s SSHFP record type lets ssh verify the host key automatically, ensuring that the user has reached the intended machine and not an impostor.
 

SSHFP records are specified in RFC4255 (2006).

 

To keep packet sizes down, SSHFP records do not store a complete copy of a host’s public keys. Instead, they store digests (i.e., cryptographic hashes) of those keys. Here’s the syntax:
 

name [ttl] [IN] SSHFP algorithm# fingerprint_algorithm# fingerprint
 

The algorithm# identifies the public key cryptosystem used to generate the host’s key. This algorithm is not actually used in the verification process; it is just compared with the key presented by the remote host to be sure that both parties are talking about the same kind of key. RSA is algorithm 1 and DSA is algorithm 2.
 

The fingerprint is the hash to be matched, and the fingerprint_algorithm# tells how to process the public key presented by the remote host to produce a hash for comparison. Only one hashing algorithm (SHA-1) is currently defined, so the contents of this field are currently always 1.
 

Here’s an example from RFC4255:
 

[image: Image]
 

SSH typically creates both RSA and DSS host key pairs; they’re usually stored in /etc/ssh with names like ssh_host_rsa_key.pub and ssh_host_dsa_key.pub. On the user’s end, SSH stores accepted host public keys in the .ssh/known_hosts file in the user’s home directory.
 

You can grab the host keys from that directory to build your SSHFP resource records. Recent versions of ssh-keygen can generate the SSHFP DNS records with the -r and -g flags. There is also an sshfp command on Linux and available for UNIX (freshports.org/dns/sshfp) that converts the keys to fingerprints and produces the necessary DNS records.
 

You can ask OpenSSH to use SSHFP records by setting the VerifyHostKeyDNS option to yes. SSH supports multiple authentication and verification methods, and since SSHFP records are not yet widely used, you shouldn’t make them the only possible option. Try SSHFP first, and if that fails, fall back to prompting the user to confirm the host key manually as was done before we had SSHFP. See page 926 in Chapter 22, Security, for more information about configuring SSH.
 

Like SPF and DKIM records, the SSHFP system more or less assumes that you are using DNSSEC and that DNS records are therefore trustworthy. That probably isn’t true right now, but DNSSEC is gaining traction and will eventually see the light of day. See page 648 for our DNSSEC coverage.
 

See page 928 for more information about SSHFP records.

 

DNSSEC Resource Records
 

Six resource record types are currently associated with DNSSEC. DS, DLV, and DNSKEY are for storing various types of keys or fingerprints. RRSIGs contain the signatures of other records in the zone (record sets, really). Finally, NSEC and NSEC3 give DNS servers a way to sign nonexistent records, providing cryptographic security for negative answers to queries. These six records are different from most in that they are generated with software tools rather than being typed in by hand.
 

DNSSEC is a big topic in its own right, so we discuss these records and their use in the DNSSEC section that begins on page 648.
 

Glue Records: Links Between Zones
 

Each zone stands alone with its own set of data files, name servers, and clients. But zones need to be connected to form a coherent hierarchy: booklab.atrust.com is a part of atrust.com, and we need some kind of DNS linkage between them.
 

Since DNS referrals occur only from parent domains to child domains, it is not necessary for a name server to know anything about the domains (or more accurately, zones) above it in the DNS hierarchy. However, the servers of a parent domain must know the IP addresses of the name servers for all of its subdomains. In fact, only the name servers known to the parent zone can be returned as referrals in response to external queries.
 

In DNS terms, the parent zone needs to contain the NS records for each delegated zone. Since NS records are written in terms of hostnames rather than IP addresses, the parent server must also have a way to resolve the hostnames, either by making a normal DNS query (if this does not create a dependency loop) or by having copies of the appropriate A records.
 

There are two ways in which you can meet this requirement: by including the necessary records directly, or by using stub zones.
 

With the first method, you simply include the necessary NS and A records in the parent zone. For example, the atrust.com zone file could contain these records:
 

[image: Image]
 

The “foreign” A records are called glue records because they don’t really belong in this zone. They’re only reproduced here to connect the new domain to the naming tree. Missing or incorrect glue records leave part of your namespace inaccessible, and users trying to reach it get “host unknown” errors.
 

It is a common error to include glue records for hostnames that don’t need them. For example, ns1.atrust.com in the example above is part of the atrust.com zone, and its A record is stored elsewhere in the file. The address of ns.cs.colorado.edu is also not needed in the glue section since it can be determined with a normal DNS query. An A record in this zone would initially just be unnecessary, but it could later become out of date and wrong if ns.cs.colorado.edu’s address were to change. The rule of thumb is to include A records only for hosts that are within the current domain or any of its subdomains. BIND and NSD ignore unnecessary glue records, and BIND logs their presence as an error.
 

The scheme just described is the standard way of connecting zones, but it requires the child to keep in touch with the parent and tell the parent about any changes or additions to its name server fleet. Since parent and child zones are often run by different sites, updates can be a tedious manual task that requires coordination across administrative boundaries. A corollary is that in the real world, this type of configuration is often out of date.
 

The second way to maintain links is to use stub zones. A stub zone is essentially the same thing as a slave zone, but it includes only the zone’s NS records and the corresponding A records of those name servers. Like a slave, a stub zone is automatically updated and so eliminates the need for communication between the administrators of the parent and child zones.
 

An important caveat is that stub zones must be configured identically on both the master and slave servers of the parent zone. It might just be easiest to keep in touch manually with your parent domain and to verify its configuration a couple of times a year (especially if it is local).
 

You can use the dig command to see which of your servers your parent domain is currently advertising. First run
 

$ dig
parent-domain
ns
 

to determine the name servers for your parent domain. Pick one and then run
 

$ dig @name-server.parent-domain child-domain
ns
 

to see your list of public name servers. One situation in which stub zones are very useful is when your internal network uses RFC1918 private IP address space and you need to keep the RFC1918 delegations in sync.
 

We have now covered most of the background information that applies to the Domain Name System generally and to its database. In the next section, we cover configuration details specific to the BIND implementation. The NSD/Unbound implementation is covered beginning on page 625.
 

17.9 The BIND Software
 

BIND, the Berkeley Internet Name Domain system, is an open source software package from ISC that implements the DNS protocol for Linux, UNIX, Mac OS, and Windows systems. There have been three main flavors of BIND: BIND 4, BIND 8, and BIND 9, with BIND 10 currently under development by ISC. We cover only BIND 9 in this book.
 

Version Determination
 

It often doesn’t seem to occur to vendors to document which version of an external software package they have included with their systems, so you might have to do some sleuthing to find out exactly what software you are dealing with. You can sometimes determine the version number with a sneaky query with dig, a command that comes with BIND. The command
 

$ dig @server
version.bind txt chaos
 

returns the version number unless someone has decided to withhold that information by changing it in BIND’s configuration file. First, determine the name of the name server for the domain in question with
 

$ dig
domain
ns
 

and then do the version.bind query. For example, the command works at isc.org:
 

[image: Image]
 

But it doesn’t work at cs.colorado.edu:
 


 

[image: Image]
 

Some sites configure BIND to conceal its version number on the theory that this provides some degree of “security through obscurity.” We don’t really endorse this practice, but it might help fend off some of the script kiddies. See page 603 for a more detailed discussion of this topic.
 

This same query works for some other DNS software; for example,
 

[image: Image]
 

shows that the K root name server is running NSD.
 

Another piece of data in the CHAOS class identifies the name of the server queried. But wait—if you just queried the server, you must know its name, right? Actually some of the busiest servers (e.g., the root name servers) are really multiple machines scattered around the globe that all have the same server name and IP address. This replication scheme is called “anycast routing.” The routing system takes you to the “closest” instance. If you are the sysadmin trying to debug a problem, however, it may be important to distinguish which of the replicated servers you have reached. For example,
 

[image: Image]
 

or
 

[image: Image]
 

The IETF tried to standardize these odd CHAOS-class names into implementation-independent forms, version.server and id.server, but only id.server made it through the entire process; version.server ended up in an IETF draft that never became an RFC. NSD uses all four forms, BIND only the three approved forms.
 

As an administrator, you can start the name server (named or nsd) with the -v flag to make it print its version to standard output and exit. On Linux, you can ask your package manager which version is installed. You can also usually tell what BIND version you have by inspecting the log files in /var/log or its equivalent on your system. The BIND name server logs its version number to syslog (facility “daemon”) as it starts up. grep for BIND to get lines like this:
 

See Chapter 11 for more information about syslog.

 

Jul 13 07:19:55 nubark named[757]: starting BIND 9.5.0-P2 -u named
 

If all else fails, dig’s version number usually parallels named’s, and dig is often installed even when named is not. dig’s first line of output includes the version number as a comment.
 

Table 17.8 shows the versions of BIND that are included with our example systems. It’s always safest to use the current release.
 

Table 17.8 Versions of BIND shipped with our example systems
 

[image: Image]
 

[image: Image] AIX ships both BIND 8 and BIND 9 binaries, called named8 and named9, respectively. As shipped, the generic form named is linked to named8. The + in the version number is short for “+Fix_for_CERT_till_07_15_04”; not exactly current.
 

Most vendors back-port security fixes to their installed version of an older release rather than upgrade to the latest release from ISC, so version numbers can be deceiving. As you can see, many of our vendors are not very current, so your first DNS sysadmin chore might be to upgrade the software.
 

Components Of BIND
 

The BIND distribution has four major components:
 

• A name server daemon called named that answers queries

 

• A resolver library that queries DNS servers on behalf of users

 

• Command-line interfaces to DNS: nslookup, dig, and host

 

• A program to remotely control named called rndc

 

The hardest BIND-related sysadmin chore is probably sorting through all the myriad options and features that BIND supports and determining which ones make sense for your situation.
 

Configuration Files
 

The complete configuration for named consists of the config file, the zone data files that contain address mappings for each host, and the root name server hints file. Authoritative servers need a config file and zone data files for each zone for which they are the master server; caching servers need the config file and the root hints file. named’s config file has its own format; all the other files are collections of individual DNS data records whose formats were discussed in the The DNS database section beginning on page 574.
 

named’s configuration file, named.conf, specifies the roles (master, slave, stub, or caching-only) of this host and the manner in which it should obtain its copy of the data for each zone it serves. It’s also the place where options are specified—both global options related to the overall operation of named and server- or zone-specific options that apply to only a portion of the DNS traffic.
 

The config file consists of a series of statements whose syntax we describe as they are introduced in subsequent sections. The format is unfortunately quite fragile— a missing semicolon or unbalanced quotes can wreak havoc.
 

Fortunately, BIND includes a couple of handy tools to check the syntax of the config file (named-checkconf) and the zone data files (named-checkzone). They look for both errors and omissions. For example, named-checkzone tells you if you’ve forgotten to include a $TTL directive. Unfortunately, it doesn’t catch everything. For example, missing glue records (see page 596) are not reported and cause heavy loads on the root and gTLD servers.
 

Comments can appear anywhere that whitespace is appropriate. C, C++, and shell-style comments are all understood:
 

[image: Image]
 

Each statement begins with a keyword that identifies the type of statement. There can be more than one instance of each type of statement, except for options and logging. Statements and parts of statements can also be left out, invoking default behavior for the missing items. Table 17.9 lists the available statements; the Page column points to our discussion of each statement in the upcoming sections.
 

Table 17.9 Statements used in named.conf
 

[image: Image]
 

Before describing these statements and the way they are used to configure named, we need to describe a data structure that is used in many of the statements, the address match list. An address match list is a generalization of an IP address that can include the following items:
 

• An IP address, either v4 or v6 (e.g., 199.165.145.4)

 

• An IP network specified with a CIDR18 netmask (e.g., 199.165/16)

 

• The name of a previously defined access control list (see page 609)

 

• The name of a cryptographic authentication key

 

• The ! character to negate things

 

Address match lists are used as parameters to many statements and options. Some examples:
 

[image: Image]
 

The first of these lists excludes the host 1.2.3.13 but includes the rest of the 1.2.3.0/24 network; the second defines the networks assigned to the University of Colorado. The braces and final semicolon are not really part of the address match lists but are included for illustration; they would be part of the enclosing statements of which the address match lists are a part.
 

When an IP address or network is compared to a match list, the list is searched in order until a match is found. This “first match” algorithm makes the ordering of entries important. For example, the first address match list above would not have the desired effect if the two entries were reversed, because 1.2.3.13 would succeed in matching 1.2.3.0/24 and the negated entry would never be encountered.
 

Now, on to the statements! Some are short and sweet; others almost warrant a chapter unto themselves.
 

The Include Statement
 

To break up or better organize a large configuration, you can put different portions of the configuration in separate files. Subsidiary files are brought into named.conf with an include statement:
 

include "path";
 

If the path is relative, it is interpreted relative to the directory specified in the directory option. A common use of the include statement is to bring in cryptographic keys that should not be world-readable. Rather than closing read access to the whole named.conf file, some sites keep keys in files with restricted permissions that only named can read. Those files are then included into named.conf.
 

Many sites put zone statements in a separate file and use the include statement to pull them in. This configuration helps separate the parts of the configuration that are relatively static from those that are likely to change frequently.
 

The Options Statement
 

The options statement specifies global options, some of which may later be overridden for particular zones or servers. The general format is
 

[image: Image]
 

If no options statement is present in named.conf, default values are used.
 

BIND has a lot of options—too many, in fact. The 9.7 release has more than 150, which is a lot for sysadmins to wrap their heads around. Unfortunately, as soon as the BIND folks think about removing some of the options that were a bad idea or that are no longer necessary, they get pushback from sites who use and need those obscure options. We do not cover the whole gamut of BIND options here; we have biased our coverage and discuss only the ones whose use we recommend. (We also asked the BIND developers for their suggestions on which options to cover, and followed their advice.)
 

For more complete coverage of the options, see one of the books on DNS and BIND listed at the end of this chapter. You can also refer to the documentation shipped with BIND. The ARM document in the doc directory of the distribution describes each option and shows both syntax and default values. The file doc/misc/options also contains a complete list of options.
 

As we wind our way through about a quarter of the possible options, we have added a margin note as a mini index entry. The default values are listed in square brackets beside each option. For most sites, the default values are just fine. Options are listed in no particular order.
 

File locations

 

[image: Image]
 

The directory statement causes named to cd to the specified directory. Wherever relative pathnames appear in named’s configuration files, they are interpreted relative to this directory. The path should be an absolute path. Any output files (debugging, statistics, etc.) are also written in this directory. The key-directory is where cryptographic keys are stored; it should not be world-readable.
 

We like to put all the BIND-related configuration files (other than named.conf and resolv.conf) in a subdirectory beneath /var (or wherever you keep your configuration files for other programs). We use /var/named or /var/domain.
 

Name server identity

 

[image: Image]
 

The version string identifies the version of the name server software running on the server. The hostname string identifies the server itself, as does the server-id string. These options let you lie about the true values. Each of them puts data into CHAOS-class TXT records where curious onlookers can search for them with the dig command.
 

We discourage tampering with these values. It is very handy to be able to query your name servers and find out what version they are running, for example, if you want to know whether your vendor is shipping a current release, or if you need to verify that you have upgraded all of your servers to the latest revision. If you must hide the version number, at least enter a string that communicates version information to your sysadmins but isn’t obviously doing so. (The new NSID resource record does exactly this. The data portion of this TXT-ish record is a string value that your sysadmins set to have meaning to them but not the rest of the world.)
 

The hostname and server-id parameters are recent additions motivated by the use of anycast routing to duplicate instances of the root and gTLD servers.
 

Zone synchronization

 

[image: Image]
 

The notify and also_notify clauses apply only to master servers, and allow-notify applies only to slave servers.
 

Early versions of BIND synchronized zone files between master and slave servers only when the refresh timeout in the zone’s SOA record had expired. These days the master named automatically notifies its peers whenever the corresponding zone database has been reloaded, as long as notify is set to yes. The slave servers can then rendezvous with the master to see if the file has changed, and if so, to update their copies of the zone data.
 

You can use notify both as a global option and as a zone-specific option. It makes the zone files converge much more quickly after you make changes. By default, every authoritative server sends updates to every other authoritative server (a system termed “splattercast” by Paul Vixie). If notify is set to master-only, this talkativeness is curbed and notifications are sent only to slave servers of zones for which this server is the master. If the notify option is set to explicit, then named only notifies the servers listed in the also-notify clause.
 

See page 614 for more information about stub zones.

 

named normally figures out which machines are slave servers of a zone by looking at the zone’s NS records. If also-notify is specified, a set of additional servers that are not advertised with NS records can also be notified. This tweak is sometimes necessary when your site has internal servers. Don’t also-notify stub servers; they are only interested in the zone’s NS records and can wait for the regular update cycle.
 

The target of an also-notify is a list of IP addresses and, optionally, ports. For servers with multiple network interfaces, additional options specify the IP address and port to use for outgoing notifications. Localhost zones are a good place to turn off notification, since they never change. You must use the allow-notify clause if you want a name server other than the master to notify secondaries.
 

Query recursion

 

[image: Image]
 

The recursion option specifies whether named should process queries recursively on behalf of your users. You can enable this option on an authoritative server of your zones’ data, but that’s frowned upon. The best-practice recommendation is to keep authoritative servers and caching servers separate.
 

If this name server should be recursive for your clients, set recursion to yes and include an allow-recursion clause so that named can distinguish queries that originate at your site from remote queries. named will act recursively for the former and nonrecursively for the latter. If your name server answers recursive queries for everyone, it is called an open resolver and can become a reflector for certain kinds of attacks; see RFC5358.
 

Cache memory use

 

[image: Image]
 

If your server has limited memory, you may need to tweak the recursive-clients and max-cache-size options. recursive-clients controls the number of recursive lookups the server will process simultaneously; each requires about 20KiB of memory. max-cache-size limits the amount of memory the server will use for caching answers to queries. If the cache grows too large, named deletes records before their TTLs expire, to keep memory use under the limit.
 

IP port utilization

 

[image: Image]
 

Source ports have become important in the DNS world because of a weakness in the DNS protocol discovered by Dan Kaminsky that allows DNS cache poisoning when name servers use predictable source ports and query IDs. The use- and avoid- options for UDP ports together with changes to the named software have mitigated this attack. Do not use the query-source address options to specify a fixed outgoing port for DNS queries or you will undo the Kaminsky protection that a large range of random ports provides.
 

The defaults for the use-v*-udp-ports are fine and you shouldn’t need to change them. If your firewall blocks certain ports in this range (for example, port 2049 for SunRPC) then you have a small problem. When your name server sends a query and uses one of the blocked ports as its source, the firewall blocks the answer, and the name server eventually stops waiting and sends out the query again. Not fatal, but annoying to the user caught in the crossfire.
 

To avoid this problem, use the avoid-v*-udp-ports options to make BIND stay away from the blocked ports. Any high-numbered UDP ports blocked by your firewall should be included in the list.19 If you update your firewall in response to some threatened attack, be sure to update the port list here, too.
 

The query-source options let you specify the IP address to be used on outgoing queries. For example, you might need to use a specific IP address to get through your firewall or to distinguish between internal and external views.
 

Queries go out from random high-numbered ports, and the answers come back to those same ports. Ergo, your firewall must be prepared to accept UDP packets on random high-numbered ports. Some sysadmins used to set a specific outgoing port number so that they can configure the firewall to recognize it and accept UDP packets only for that port. However, this configuration is no longer safe in the post-Kaminsky era.
 

If you use the query-source option, specify only the IP address from which you want queries to be sent; do not specify a port number.
 

Use of forwarding

 

[image: Image]
 

Instead of having every name server perform its own external queries, you can designate one or more servers as forwarders. A run-of-the-mill server can look in its cache and in the records for which it is authoritative. If it doesn’t find the answer it’s looking for, it can then send the query on to a forwarder host. That way, the forwarders build up caches that benefit the entire site. The designation is implicit—nothing in the configuration file of the forwarder explicitly says “Hey, you’re a forwarder.”
 

The forwarders option lists the IP addresses of the servers you want to use as forwarders. They are queried in turn. The use of a forwarder circumvents the normal DNS procedure of starting at a root server and following the chain of referrals. Be careful not to create forwarding loops.
 

A forward-only server caches answers and queries forwarders, but it never queries anyone else. If the forwarders do not respond, queries fail. A forward-first server prefers to deal with forwarders, but if they do not respond, the forward-first server will complete queries itself.
 

Since the forwarders option has no default value, forwarding does not occur unless it has been specifically configured. You can turn on forwarding either globally or within individual zone statements.
 

Permissions

 

[image: Image]
 

These options specify which hosts (or networks) can query your name server or its cache, request block transfers of your zone data, or dynamically update your zones. These match lists are a low-rent form of security and are susceptible to IP address spoofing, so there’s some risk in relying on them. It’s probably not a big deal if someone tricks your server into answering a DNS query, but avoid the allow_update and allow_transfer clauses; use cryptographic keys instead.
 

The blackhole address list identifies servers that you never want to talk to; named does not accept queries from these servers and will never ask them for answers.
 

Packet sizes

 

[image: Image]
 

All machines on the Internet must be capable of reassembling a fragmented UDP packet of 512 bytes or fewer. Although this conservative requirement made sense in the 1980s, it is laughably small by modern standards. Modern routers and firewalls can handle much larger packets, but it only takes one bad link in the IP chain to spoil the whole path.
 

Since DNS uses UDP for queries and since DNS responses are often larger than 512 bytes, DNS administrators have to worry about large UDP packets being dropped. If a large reply gets fragmented and your firewall only lets the first fragment through, the receiver gets a truncated answer and retries the query with TCP. TCP is much more expensive, and busy servers at the root or TLDs don’t need increased TCP traffic because of everybody’s broken firewalls.
 

The edns-udp-size option sets the reassembly buffer size that the name server advertises through EDNS0, the extended DNS protocol. The max-udp-size option sets the maximum packet size that the server will actually send. Both sizes are in bytes. Reasonable values are in the 512–4,096 byte range.
 

Both values default to 4,096 bytes to help accommodate new features such as DNSSEC, IPv6, and internationalized domain names. However, some (broken) firewalls do not allow UDP packets larger than 512 bytes, and others are configured to block all but the first packet of a fragmented UDP response. The only real solution is to fix the firewalls.
 

To get an idea of what packet size is OK for your site, try running the command dig rs.dns-oarc.net txt and see what comes back; see page 652 for more details about the DNS-OARC reply-size server. If this tool shows a small size, the problem is probably at your perimeter and you will need to fix your firewalls.
 

As an interim solution, try setting the max-udp-size parameter to the value shown by the reply-size server. This setting makes named squeeze its answers into packets that might get through unfragmented. Set edns-udp-size to the same value so that you can get packets flowing in both directions. Don’t forget to set the values back to 4,096 after you fix your firewalls!
 

Avoid these options unless you are sure you have a packet size problem, since they also limit the size of packets along paths that can handle a full 4,096 bytes.
 

DNSSEC control

 

[image: Image]
 

These options configure support for DNSSEC. See the sections starting on page 648 for a general discussion of DNSSEC and a detailed description of how to set up DNSSEC at your site.
 

An authoritative server needs the dnssec-enable option turned on. A recursive server needs the dnssec-enable and dnssec-validation options turned on and a trust anchor specified with a trusted-keys statement.
 

If there is no trust anchor for the domain in question, the software tries to find one by using the dnssec-lookaside option, which skirts the issue of the parent domains not using DNSSEC.
 

dnssec-enable and dnssec-validation are turned on by default, which has various implications:
 

• An authoritative server of a signed zone answering a query with the DNSSEC-aware bit turned on answers with the requested resource records and their signatures.

 

• An authoritative server of a signed zone answering a query with the DNSSEC-aware bit not set answers with just the requested resource records, as in the pre-DNSSEC era.

 

• An authoritative server of an unsigned zone answers queries with just the requested resource records; there are no signatures to include.

 

• A recursive server sends queries on behalf of users with the DNSSEC-aware bit set.

 

• A recursive server validates the signatures included with signed replies before returning data to the user.

 

The dnssec-lookaside option takes two domains as parameters. For example, the defaults are equivalent to the following configuration line:
 

dnssec-lookaside “.” trust-anchor “dlv.isc.org”;
 

This configuration tells name servers trying to establish a chain of trust to look to dlv.isc.org if they cannot get secure delegation information from the root of the DNS naming tree. Once the root and top-level domains have been signed and are served with DNSSEC, lookaside validation will not be necessary. See page 661 for a discussion of the pros and cons of DLV and its privacy implications.
 

The dnssec-must-be-secure option allows you to specify that you will only accept secure answers from particular domains, or, alternatively, that you don’t care and that insecure answers are OK. For example, you might say yes to the domain important-stuff.mybank.com and no to the domain marketing.mybank.com. The domains in question must be covered by your trusted-keys clause or registered with the DLV server.
 

Statistics

 

[image: Image]
 

This option makes named maintain per-zone statistics as well as global statistics. See page 676 for more information about the statistics named compiles and how to display them.
 

Performance tuning

 

[image: Image]
 

[image: Image]
 

This long list of options can be used to tune named to run well on your hardware. We don’t describe them in detail, but if you are having performance problems, these may suggest a starting point for your tuning efforts.
 

Whew, we are finally done with the options. Let’s get on to the rest of the configuration language!
 

The acl Statement
 

An access control list is just an address match list with a name:
 

[image: Image]
 

You can use an acl_name anywhere an address match list is called for.
 

An acl must be a top-level statement in named.conf, so don’t try sneaking it in amid your other option declarations. named.conf is read in a single pass, so access control lists must be defined before they are used. Four lists are predefined:
 

• any – all hosts

 

• localnets – all hosts on the local network(s)

 

• localhost – the machine itself

 

• none – nothing

 

The localnets list includes all of the networks to which the host is directly attached. In other words, it’s a list of the machine’s network addresses modulo their netmasks.
 

The (TSIG) Key Statement
 

The key statement defines a “shared secret” (that is, a password) that authenticates communication between two servers; for example, between the master server and a slave for a zone transfer, or between a server and the rndc process that controls it. Background information about BIND’s support for cryptographic authentication is given in the Security issues section starting on page 642. Here, we touch briefly on the mechanics of the process.
 

To build a key record, you specify both the cryptographic algorithm that you want to use and the shared secret, represented as a base-64-encoded string (see page 645 for details):
 

[image: Image]
 

As with access control lists, the key-id must be defined with a key statement before it is used. To associate the key with a particular server, just include key-id in the keys clause of that server’s server statement. The key is used both to verify requests from that server and to sign the responses to those requests.
 

The shared secret is sensitive information and should not be kept in a world-readable file. Use an include statement to bring it into the named.conf file.
 

The Trusted-Keys Statement
 

In theory, DNSSEC parent zones authenticate their child zones’ public keys, allowing signatures to be chain-authenticated all the way back to the DNS root. In practice, the root and top-level domains do not yet support DNSSEC, so some other method of validating a zone’s public keys is needed.
 

The trusted-keys statement is a brute-force way of telling named, “The proper public key for zone XXX.com is YYY,” thus bypassing the usual DNSSEC mechanisms for obtaining and verifying zone keys. Such a declaration is sometimes known as a “trust anchor.” It’s intended for use when a zone is signed but its parent zone is not.
 

Of course, XXX.com must be important enough to your site to merit this special treatment, and you must have some secure, out-of-band way to determine the proper value of the key. There’s no magic way to get the correct key; the foreign zone’s administrator has to read it to you over the telephone or send it to you in some other way that can be authenticated. An HTTPS secure web page is often used for this purpose. You must go through the whole process again whenever the key changes.
 

The format of the trusted-keys statement is
 

[image: Image]
 

Each line represents the trust anchor for a particular domain. The flags, protocol, and algorithm are nonnegative integers. The key is a base-64-encoded string matching the DNSKEY resource record used to sign the zone.
 

DNSSEC is covered in more detail starting on page 648.
 

The Server Statement
 

named can potentially talk to many servers, not all of which are running current software and not all of which are even nominally sane. The server statement tells named about the characteristics of its remote peers. The server statement can override defaults for a particular server; it’s not required unless you want to configure keys for zone transfers.
 

[image: Image]
 

You can use a server statement to override the values of global configuration options for individual servers. Just list the options for which you want nondefault behavior. We have not shown all the server-specific options, just the ones we think you might need. See the BIND documentation for a complete list.
 

If you mark a server as being bogus, named won’t send any queries its way. This directive should be reserved for servers that really are bogus. bogus differs from the global option blackhole in that it suppresses only outbound queries. By contrast, the blackhole option completely eliminates all forms of communication with the listed servers.
 

A BIND name server acting as master for a dynamically updated zone performs incremental zone transfers if provide-ixfr is set to yes. Likewise, a server acting as a slave requests incremental zone transfers from the master if request-ixfr is set to yes. Dynamic DNS is discussed in detail on page 640.
 

The keys clause identifies a key ID that has been previously defined in a key statement for use with TSIG transaction signatures (see page 645). Any requests sent to the remote server are signed with this key. Requests originating at the remote server are not required to be signed, but if they are, the signature will be verified.
 

The transfer-source clauses give the IPv4 or IPv6 address of the interface (and optionally, the port) that should be used as a source address (port) for zone transfer requests. This clause is only needed when the system has multiple interfaces and the remote server has specified a specific IP address in its allow-transfer clause; the addresses must match.
 

The Masters Statement
 

The masters statement lets you name a set of one or more master servers by specifying their IP addresses and cryptographic keys. You can then use this defined name in the masters clause of zone statements instead of repeating the IP addresses and keys.
 

How can there be more than one master? See page 614.

 

The masters facility is helpful when multiple slave or stub zones get their data from the same remote servers. If the addresses or cryptographic keys of the remote servers change, you can update the masters statement that introduces them rather than changing many different zone statements.
 

The syntax is
 

masters name { ip_addr [port ip_port] [key key] ; … } ;
 

The Logging Statement
 

named is the current holder of the “most configurable logging system on Earth” award. Syslog put the prioritization of log messages into the programmer’s hands and the disposition of those messages into the sysadmin’s hands. But for a given priority, the sysadmin had no way to say, “I care about this message but not about that message.” BIND added categories that classify log messages by type, and channels that broaden the choices for the disposition of messages. Categories are determined by the programmer, and channels by the sysadmin.
 

Since logging requires quite a bit of explanation and is somewhat tangential, we discuss it in the debugging section beginning on page 667.
 

The Statistics-Channels Statement
 

The statistics-channels statement lets you connect to a running named with a browser to view statistics as they are accumulated. Since the stats of your name server might be sensitive, you should restrict access to this data to trusted hosts at your own site. The syntax is
 

[image: Image]
 

You can include multiple inet-port-allow sequences. The defaults are open, so be careful! The IP address defaults to any, the port defaults to port 80 (normal HTTP), and the allow clause defaults to letting anyone connect. To use statistics channels, you must compile named with libxml2.
 

The Zone Statement
 

zone statements are the heart of the named.conf file. They tell named about the zones for which it is authoritative and set the options that are appropriate for managing each zone. A zone statement is also used by a caching server to preload the root server hints —the names and addresses of the root servers, which bootstrap the DNS lookup process.
 

The exact format of a zone statement varies, depending on the role that named is to play with respect to that zone. The possible zone types are master, slave, hint, forward, stub, and delegation-only. We do not describe the stub-type zones (used by BIND only) or the delegation-only type (used to stop the use of wild card records in top-level zones to advertise a registrar’s services). The following brief sections describe the other zone types.
 

Many of the global options covered earlier can become part of a zone statement and override the previously defined values. We have not repeated those options here, except to mention certain ones that are frequently used.
 

Configuring The Master Server for a Zone
 

Here’s the format you need for a zone of which this named is the master server:
 

[image: Image]
 

The domain_name in a zone specification must always appear in double quotes.
 

The zone’s data is kept on disk in a human-readable (and human-editable) file. Since there is no default for the filename, you must provide a file statement when declaring a master zone. A zone file is just a collection of DNS resource records in the formats described starting on page 574.
 

Other server-specific attributes are also frequently specified within the zone statement. For example:
 

[image: Image]
 

The access control options are not required, but it’s a good idea to use them. They each take either an IP address or a TSIG encryption key. As usual, the encryption key is safer. If dynamic updates are used for this zone, the allow-update clause must be present with an address match list that limits the hosts from which updates can occur. Dynamic updates apply only to master zones; the allow-update clause cannot be used for a slave zone. Be sure that this clause includes just your own machines (e.g., DHCP servers) and not the whole Internet.20
 

The zone-statistics option makes named keep track of query/response statistics such as the number and percentage of responses that were referrals, that resulted in errors, or that demanded recursion. See the examples on page 676.
 

With all these zone-specific options (and about 40 more we have not covered), the configuration is starting to sound complicated. However, a master zone declaration consisting of nothing but a pathname to the zone file is perfectly reasonable. Here is an example, slightly modified, from the BIND documentation:
 

[image: Image]
 

Here, my-slaves would be an access control list you had previously defined.
 

Configuring A Slave Server for a Zone
 

The zone statement for a slave is similar to that of a master:
 

[image: Image]
 

Slave servers normally maintain a complete copy of their zone’s database. The file statement specifies a local file in which the replicated database can be stored. Each time the server fetches a new copy of the zone, it saves the data in this file. If the server crashes and reboots, the file can then be reloaded from the local disk without being transferred across the network.
 

You shouldn’t edit this cache file, since it’s maintained by named. However, it can be interesting to look at if you suspect you have made an error in the master server’s data file. The slave’s disk file shows you how named has interpreted the original zone data—relative names and origin directives have all been expanded. If you see a name in the data file that looks like one of these
 

[image: Image]
 

you can be pretty sure that you forgot a trailing dot somewhere.
 

The masters clause lists the IP addresses of one or more machines from which the zone database can be obtained. It can also contain the name of a masters list defined with a previous masters statement.
 

We have said that only one machine can be the master for a zone, so why is it possible to list more than one address? Two reasons. First, the master machine might have more than one network interface and therefore more than one IP address. It’s possible for one interface to become unreachable (because of network or routing problems) while others are still accessible. Therefore, it’s a good practice to list all of the master server’s topologically distinct addresses.
 

Second, named really doesn’t care where the zone data comes from. It can pull the database just as easily from a slave server as from the master. You could use this feature to allow a well-connected slave server to serve as a sort of backup master, since the IP addresses are tried in order until a working server is found. In theory, you can also set up a hierarchy of servers, with one master serving several second-level servers, which in turn serve many third-level servers.
 

Setting up the Root Server Hints
 

Another form of zone statement points named toward a file from which it can preload its cache with the names and addresses of the root name servers.
 

[image: Image]
 

The “hints” are a set of DNS records that list servers for the root domain. They’re needed to give a recursive, caching instance of named a place to start searching for information about other sites’ domains. Without them, named would only know about the domains it serves and their subdomains.
 

When named starts, it reloads the hints from one of the root servers. Ergo, you’ll be fine as long as your hints file contains at least one valid, reachable root server. As a fallback, the root server hints are also compiled into named.
 

The hints file is often called root.cache. It contains the response you would get if you queried any root server for the name server records in the root domain. In fact, you can generate the hints file this way by running dig. For example:
 

$ dig @f.root-servers.net . ns > root.cache
 

Mind the dot. If f.root-servers.net is not responding, you can run the query without specifying a particular server:
 

$ dig . ns > root.cache
 

The output will be similar; however, you will be obtaining the list of root servers from the cache of a local name server, not from an authoritative source. That should be just fine—even if you have not rebooted or restarted your name server for a year or two, it has been refreshing its root server records periodically as their TTLs expire.
 

Setting up a Forwarding Zone
 

A zone of type forward overrides named’s default query path (ask the root first, then follow referrals as described on page 606) for a particular domain:
 

[image: Image]
 

You might use a forward zone if your organization had a strategic working relationship with some other group or company and you wanted to funnel traffic directly to that company’s name servers, bypassing the standard query path.
 

The Controls Statement for rndc
 

The controls statement limits the interaction between the running named process and rndc, the program a sysadmin can use to signal and control it. rndc can start and stop named, dump its state, put it in debug mode, etc. rndc is a network program, and with improper configuration it might let anyone on the Internet mess with your name server. The syntax is
 

[image: Image]
 

The port that rndc uses to talk to named defaults to port 953 if it is not specified with the port clause.
 

Allowing your name server to be controlled remotely is both handy and dangerous. Strong authentication through a key entry in the allow clause is required; keys in the address match list are ignored and must be explicitly stated in the keys clause of the controls statement.
 

You can use the rndc-confgen command to generate an authentication key for use between rndc and named. There are essentially two ways to set this up: you can have both named and rndc consult the same configuration file to learn the key (/etc/rndc.key), or you can include the key in both the rndc and named configu-ration files (/etc/rndc.conf for rndc and /etc/named.conf for named). The latter option is more complicated, but it’s necessary when named and rndc will be running on different computers. rndc-confgen -a sets up keys for localhost access.
 

When no controls statement is present, BIND defaults to the loopback address for the address match list and looks for the key in /etc/rndc.key. Because strong authentication is mandatory, the rndc command cannot control named if there is no key. This precaution may seem draconian, but consider: even if rndc worked only from 127.0.0.1 and this address was blocked from the outside world at your firewall, you would still be trusting all local users to not tamper with your name server. Any user could telnet to the control port and type “stop”—quite an effective denial of service attack.
 

Here is an example of the output (to standard out) from rndc-confgen when a 256-bit key is requested. We chose 256 bits because it fits on the page. You would normally choose a longer key and redirect the output to /etc/rndc.conf. The comments at the bottom of the output show the lines you need to add to named.conf to make named and rndc play together.
 

[image: Image]
 

Split Dns and the View Statement
 

Many sites want the internal view of their network to be different from the view seen from the Internet. For example, you might reveal all of a zone’s hosts to internal users but restrict the external view to a few well-known servers. Or, you might expose the same set of hosts in both views but supply additional (or different) records to internal users. For example, the MX records for mail routing might point to a single mail hub machine from outside the domain but point to individual workstations from the perspective of internal users.
 

See page 462 for more information about private address spaces.

 

A split DNS configuration is especially useful for sites that use RFC1918 private IP addresses on their internal networks. For example, a query for the hostname associated with IP address 10.0.0.1 can never be answered by the global DNS system, but it is meaningful within the context of the local network. Of the queries arriving at the root name servers, 4%–5% are either from an IP address in one of the private address ranges or about one of these addresses. Neither can be answered; both are the result of misconfiguration, either of BIND’s split DNS or Microsoft’s “domains.”
 

The view statement packages up a couple of access lists that control which clients see which view, some options that apply to all the zones in the view, and finally, the zones themselves. The syntax is
 

[image: Image]
 

Views have always had a match-clients clause that filters on the source IP address in the query packet and is typically used to serve internal and external views of a site’s DNS data. For finer control, you can now also filter on the query destination address and can require recursive queries. The match-destinations clause looks at the destination address in the query packet and is useful on multihomed machines when you want to serve different DNS data depending on the interface on which the query arrived. The match-recursive-only clause requires queries to be recursive as well as to originate at a permitted client. Iterative queries let you see what is in a site’s cache; this option prevents it.
 

Views are processed in order, so put the most restrictive views first. Zones in different views can have the same names but take their data from different files. Views are an all-or-nothing proposition; if you use them, all zone statements in your named.conf file must appear in the context of a view.
 

Here is an example from the BIND 9 documentation. The two views define the same zone, but with different data.
 

[image: Image]
 

If the order of the views were reversed, no one would ever see the internal view. Internal hosts would match the any value in the match-clients clause of the external view before they reached the internal view.
 

Our second DNS configuration example starting on page 620 provides an additional example of views.
 

17.10 Bind Configuration Examples
 

Now that we have explored the wonders of named.conf, let’s look at some complete configuration examples. In the following sections, we discuss samples from several contexts:
 

• The localhost zone

 

• A small security company that uses split DNS

 

• The experts: isc.org, the Internet Systems Consortium

 

The Localhost Zone
 

The address 127.0.0.1 refers to a host itself and should be mapped to the name “localhost.”.21 Some sites map the address to “localhost.localdomain.” and some do both. The corresponding IPv6 address is ::1.
 

If you forget to configure the localhost zone, your site may end up querying the root servers for localhost information. The root servers receive so many of these queries that the operators are considering adding a generic mapping between localhost and 127.0.0.1 at the root level. In measurements at the K root server in Europe in January 2010 (k.root-servers.org/statistics), “local” was the fourth most popular domain queried, just behind com, arpa, and net. That’s a lot of useless queries (1,500/second) for a busy name server. Other unusual names in the popular “bogus TLD” category are lan, home, localdomain, and domain.
 

The forward mapping for the name localhost can be defined in the forward zone file for the domain (with an appropriate $ORIGIN statement) or in its own file. Each server, even a caching server, is usually the master for its own reverse local-host domain.
 

Here are the lines in named.conf that configure localhost:
 

[image: Image]
 

The corresponding forward zone file, localhost, contains
 

[image: Image]
 

and the reverse file, 127.0.0:
 

[image: Image]
 

The mapping for the localhost address (127.0.0.1) never changes, so the timeouts can be large. Note the serial number, which encodes the date; the file was last changed in 1998. Also note that only the master name server is listed for the local-host domain. The meaning of @ here is “0.0.127.in-addr.arpa.”.
 

A Small Security Company
 

Our first real example is for a small company that specializes in security consulting. They run BIND 9 on a recent version of Red Hat Enterprise Linux and use views to implement a split DNS system in which internal and external users see different host data. They also use private address space internally; queries about those addresses should never escape to the Internet to clutter up the global DNS system. Here is their named.conf file, reformatted and commented a bit:
 

[image: Image]
 

[image: Image]
 

The file atrust.key defines the key named atkey:
 

[image: Image]
 

The file infrastructure.zones contains the root hints and localhost files, and trademark.zones includes variations on the name atrust.com, both in different top-level domains (net, org, us, info, etc.) and with different spellings (applied-trust.com, etc.).
 

Zones are organized by view (internal or world) and type (master or slave), and the naming convention for zone data files reflects this scheme. This server is recursive for the internal view, which includes all local hosts, including many that use private addressing. The server is not recursive for the external view, which contains only selected hosts at atrust.com and the external zones for which they provide either master or slave DNS service.
 

Snippets of the files internal/atrust.com and world/atrust.com are shown below. First, the internal file:
 

[image: Image]
 

RFC1918 private addresses are used. Also, note that rather than use CNAMEs to assign nicknames to a host, this site uses multiple A records. This scheme is faster because encountering a CNAME results in an additional query. PTR records should point to only one of the multiple names that are mapped to the same IP address. This site also delegates subdomains for their DHCP networks, our book writing lab, and their Microsoft infrastructure (not shown).
 

Here is the external view of that same domain from the file world/atrust.com:
 

[image: Image]
 

As in the internal view, nicknames are implemented with A records. Very few hosts are actually visible in the external world view, although that’s not immediately apparent from these truncated excerpts. Note that machines that appear in both views (for example, ns1.atrust.com) have RFC1918 private addresses internally but real addresses externally.
 

The TTL in these zone files is set to 16 hours (57,600 seconds). For internal zones, the TTL is one day (86,400 seconds). Most individual records in zone files are not assigned an explicit TTL value.
 

The bizarre PTR records at the end of the external file allow atrust.com’s ISP to delegate the reverse mapping of a very small piece of address space. CNAME records at the ISP’s site enable this variation of the CNAME hack to work; see page 585 for more information.
 

The Internet Systems Consortium, Isc.Org
 

ISC is the author and maintainer of BIND as well as the operator of the F root name server. ISC also runs a TLD server that serves many top-level domains. That’s why we call them the experts!
 

Below are snippets from their configuration files. Notice that they are using both IPv4 and IPv6. They also use TSIG encryption to authenticate between master and slave servers for zone transfers. The transfer-source options ensure that the source IP addresses for outgoing zone transfer requests conform to the specifications in the allow-transfers statements on the master servers.
 

The named.conf file:
 

[image: Image]
 

These include statements keep the named.conf file short and tidy. If you serve lots of zones, consider breaking up your configuration into bite-sized pieces like this. More importantly, set up your filesystem hierarchy so that you don’t have a directory with a thousand zone files in it. Modern filesystems handle large directories efficiently, but they can be a management hassle.
 

Here’s more from the file master.zones:
 

[image: Image]
 

And from slaves.zones:
 

[image: Image]
 

The allow-transfer clause set to none in the master.zones file implies that ISC is using multiple master servers—someone has to implement zone transfers to the slave servers.
 

17.11 The NSD/Unbound Software
 

With BIND configuration out of the way, we now introduce an alternative DNS server implementation that offers some nice features along with speedy performance. NSD, the Name Server Daemon, was developed by NLnet Labs in 2003. The original intention of the project was to develop an authoritative server implementation independent of BIND that could be used on root servers, thus making the root zone more robust through software diversity. Three root servers and several top-level domains now use NSD, but you don’t have to be a root server or TLD to benefit from NSD’s robustness, speed, and simplicity.
 

Two programs form the core of the NSD software suite: zonec, a zone file precompiler that converts text-format DNS zone files into databases; and nsd, the name server daemon itself. NSD precomputes and indexes all possible answers to the valid queries it might receive, so unlike BIND, which creates its answers on the fly, NSD has the answers in an outgoing packet in a single memory copy, making it blindingly fast.
 

Unbound is a recursive DNS server that is complementary to NSD. It was developed in C by NLnet Labs from a Java implementation by VeriSign, Nominet, Kirei, and EP.NET. Together, NSD and Unbound provide flexible, fast, secure DNS service appropriate for most sites. The NLnet Labs components are not as mature as BIND and do not have as many bells and whistles, but they are fine solutions for most sites.
 

ldns, a library of routines that make it easier to write DNS software tools, is also available for use with the NSD and Unbound distributions. It includes a directory of examples: several tools aimed primarily at DNSSEC, a DNSSEC signer tool, and drill, a debugging tool similar to BIND’s dig. You can download them all from nlnetlabs.nl. NLnet Labs has also built a tool called Autotrust that does RFC5011 key rollover and key management. It is being integrated into Unbound; however, we do not cover it here.
 

The DNSSEC code in NSD/Unbound is more robust and better tested than that in BIND. It’s also faster. For example, Unbound is about five times faster than BIND at verifying DNSSEC signatures. BIND still has an edge in some areas, though, notably in documentation and in extra features. For a really robust DNS regime, run both!
 

Installing and Configuring NSD
 

First, create a user called nsd on the system where the nsd name server will run. Then log in as nsd, download the NSD/Unbound packages (currently, three of them: NSD, Unbound, and the separate ldns), and unpack. To install nsd, follow the directions in the doc/README file in the distribution, basically:
 

[image: Image]
 

Table 17.10 shows where NSD installs or expects things to be by default.
 

Table 17.10 NSD installation directories
 

[image: Image]
 

It seems a bit rude for NSD to put the zone files beneath /etc, especially if your zones are large. Consider moving the files to somewhere in /usr/local or /var. You can use configure to change things if you don’t like NSD’s choices; the makefile is quite readable. The output of configure goes to the file config.log in the install directory, so you can sort through it if there is a problem.
 

The NSD suite installs seven programs:
 

• nsd – the name server daemon

 

• nsdc – a script that controls nsd by sending it signals

 

• zonec – converts text zone files to database files

 

• nsd-notify – sends notification messages (deprecated)

 

• nsd-xfer – receives zone transfers (deprecated)

 

• nsd-checkconf – checks the syntax of nsd.conf

 

• nsd-patch – reflects incremental database updates back to zone files

 

Fundamental Differences from BIND
 

If you are used to BIND, a few things in NSD will seem strange at first. For example, there is no root hints file and no need to include localhost zones. NSD also has no support for views, so if your site publishes different versions of the DNS data inside and outside your organization, you will have to stick with BIND or use multiple instances of nsd. Dynamic updates are also unsupported. Since nsd is an authoritative-only server, many of BIND’s bells and whistles do not apply.
 

BIND reads zone files and keeps them in memory; NSD precompiles zone files into a database format and uses both memory and disk for the database.
 

nsd’s configuration language is simpler than BIND’s. There are no semicolons to forget, no braces to group things, and only three top-level statements: server, zone, and key. Comments are introduced with the # sign. Options under each of the three statements have the form
 

attribute: value
 

There can be only one server statement. It specifies global options. zone statements list zone-specific options, and key statements define cryptographic keys, which are required for communication between master and slave servers and for controlling nsd. Whitespace separates attributes from values. Values can be quoted, but they don’t have to be.
 

Like BIND, nsd generalizes IP addresses, but in a slightly different manner than BIND’s address match list construct. It is called an ip-spec and can be
 

• A plain IP address (IPv4 or IPv6)

 

• A subnet in CIDR notation, e.g., 1.2.3.0/24

 

• A subnet with an explicit mask, e.g., 1.2.3.4&255.255.255.0

 

• A range of IP addresses such as 1.2.3.4-1.2.3.25

 

Spaces are not allowed in any of these forms.
 

Another fundamental difference is the use of key values for authentication of zone transfers and notification messages. In BIND, a key is associated with an IP address, and communication to and from that address is signed and validated with that key. In NSD, the key is finer grained, so nsd could have one key for notifications, a different key for sending a zone transfer, and yet a third key for receiving that transfer. Useful? Well…
 

The semantics of notify in nsd are analogous to BIND’s notify explicit clause: only servers explicitly listed are notified. (By default, BIND notifies all name servers listed in the zone file for the domain in question.)
 

The NSD documentation refers to master and slave zones, whereas the BIND documentation uses those adjectives to refer to servers. These are basically the same thing. An “instance” of a name server is the master server or slave server for a specific zone.
 

nsd favors sensible default behavior over configurability. For example, DNSSEC is turned on by default for signed zones and off for unsigned zones. By default, nsd listens on both IPv4 and IPv6 sockets. Logging is either on or off rather than having the infinite shades and gradations of the BIND paradigm. nsd uses TSIG for communication among servers (zone transfers, notifications, etc.).
 

The file doc/NSD-FOR-BIND-USERS gives a quick description of the differences between BIND and NSD and includes a sample config file. The man page for the configuration file, nsd.conf, and the doc/README file also have examples, but sadly there is no consistency between them.22
 

NSD Configuration Example
 

We have taken some editorial license and merged the three samples from the distribution and added our own editorial commentary to give you a feel for NSD configuration before covering the various options in more detail. Here we have configured nsd to be the master server for the domain atrust.com and a slave server for the domain admin.com.
 

[image: Image]
 

This sample nsd.conf file configures the server to be the master for atrust.com and to notify and provide zone transfers to two slave servers, one at IP address 1.2.3.4 and the other at IP address 1.2.30.40. The server will use the TSIG key called tsig.atrust.com to authenticate both slave servers for transfers and notifications. (You could, and probably should, use a separate key for each slave server.)
 

This server is also a slave server for the signed zone admin.com, whose master server is at IP address 5.6.7.8. We can receive notifications of zone data changes without a key, but must use the tsig.admin.com key to receive zone transfers. Master zones have provide-xfr clauses and slave zones have a request-xfr clause.
 

After you’ve installed nsd and set up your configuration file, use nsd-checkconf to check the config file’s syntax. Its error reports are a bit terse; for example, “error: syntax error” and a line number. After fixing nsd-checkconf ’s gripes, run it again and repeat the process until nsd-checkconf reports no more errors.
 

NSD Key Definitions
 

A key clause defines a named key to be used in subsequent access control options. Each key has three attributes: a name, an algorithm, and a shared secret (aka password). Consider putting key definitions, or at least their secret portions, into files that have restricted permissions. You can use the include statement to import them into nsd.conf—just put include: filename wherever you want the text from filename to be inserted.
 

Here is the syntax of the key statement:
 

Key definitions

 

[image: Image]
 

There can be multiple key statements.
 

The name field identifies the key. Choose names that reflect the zone and the servers involved in the secure communication. The algorithm can be hmac-md5, hmac-sha1, or hmac-sha256. You can use the ldns-keygen command to generate TSIG keys, even though it is really designed for generating DNSSEC private/public key pairs. You can run ldns-keygen -a list to get a list of algorithms.
 

Here’s an example using hmac-sha1:
 

$ ldns-keygen -a hmac-sha1 example.com
 

This command produces a file called Kexample.com.+158+12345.key that contains the TSIG key. Just cut and paste the secret part into your key specification. The 158 in the filename stands for the hmac-sha1 algorithm. hmac-md5 is 157, and hmac-sha256 is 159. The number 12345 is just a placeholder for a random 5-digit key tag. If you have multiple keys, this tag helps you keep them straight.
 

NSD Global Configuration Options
 

We divide NSD’s options into two groups: global options for the server, and zone-specific options that can be applied to any zones served by a given instance of nsd. Some options can be overridden by command-line flags as nsd is started.
 

Server options generally have sensible defaults and require attention only if your directory structure is nonstandard or you want to do something fancy. Below, we show default values in square brackets. As with the BIND options, we have added margin notes describing each group of options to make navigation easier.
 

Include a file

 

include: filename
 

The include: directive can appear anywhere in the configuration file. The specified filename is read into the config file, and its contents replace the directive.
 

IP addresses and port

 

[image: Image]
 

By default, NSD binds to port 53 on all network interfaces, both IPv4 and IPv6. If you list the addresses with an ip-address: clause, nsd bypasses the kernel’s routing tables and ensures that a query to one IP address does not receive its answer from a different IP address; many resolvers require this. If your machine has only one network interface, this option is not useful. The ip4-only and ip6-only options limit nsd to a particular protocol, and port sets the network port on which to listen for incoming queries.
 

You should not normally need any of these options, as the defaults are fine.
 

ID variables

 

[image: Image]
 

This pair of options controls whether nsd tells the truth about its version and hostname when queried for the CHAOS class names id.server and version.server. As explained on page 598, we recommend not tampering with these values.
 

Logging, statistics

 

[image: Image]
 

Logging is, by default, to standard error and to syslog (facility daemon), with the amount of logging determined by the verbosity option. The range of possible values is 0–5; higher numbers mean that more data should be logged. The logfile parameter diverts log messages to a file instead sending them to syslog.
 

If you specify debug-mode, nsd does not fork extra copies of itself and stays attached to your terminal so that you can see messages sent to standard error.
 

If you want to keep statistics, set #secs to the number of seconds between dumps. Statistics are like other log messages, so they go to the log file or to syslog if no log file has been specified. It’s best to watch the stats output for a bit to make sure you have chosen a sensible dump interval and are not filling your disks with information that no one will ever look at.
 

Filenames

 

[image: Image]
 

Compiled zone files and zone transfer info default to living in /var/db/nsd; it’s unlikely that you will need to change this. The PID file should go where your operating system puts other PID files, usually in /var/run. By default, human-editable zone files go in /etc/nsd, which feels like a bad choice. Consider moving them beneath /var, perhaps to /var/nsd/zones.
 

Tuning

 

[image: Image]
 

tcp-count limits the number of concurrent TCP connections the server can use for zone transfers. You’ll know you’ve exceeded the limit when you see “xfrd: max number of TCP connections (10) reached” in the log. If that happens frequently, you should increase this limit.
 

The server-count option specifies the number of instances of nsd to start. For multi-CPU machines, you may want to increase this value. xfrd-reload-timeout throttles reloads after zone transfers by waiting at least the specified number of seconds since the last reload before reloading again.
 

Security

 

[image: Image]
 

nsd must start running as root in order to open a privileged socket (port 53), but it can then drop back to the privileges of a normal user as long as all the files it needs are owned by that user. Hence, the dedicated nsd account.
 

For added security, you can also run nsd in a chrooted jail as long as the zone files, database file, xfrdfile, difffile, PID file, and syslog socket (or log file) are accessible through the jail directory.
 

NSD Zone-Specific Configuration Options
 

Unlike global options, zone-specific options do generally require some configuration, especially the access control lists.
 

Zone definitions

 

[image: Image]
 

A zone is defined by a zone name and a file of resource records.
 

Master ACLs

 


 

[image: Image]
 

The master server for a zone notifies its slaves of updates to the zone. Then, when requested by the slaves, it initiates zone transfers to transmit the modified data. Therefore, a zone for which this server is the master must have the notify and provide-xfr access lists specified. The values of these options will normally be the same. Notification messages are signed with the listed key-name unless you specify the NOKEY option.
 

Keep in mind that unlike named, nsd does not automatically notify the slave servers of a zone; you must list them explicitly in the notify and provide-xfr clauses. There may be multiple instances of these statements.
 

Slave ACLs

 

[image: Image]
 

A slave server for a zone must explicitly allow the master to send notification messages. Any messages received from servers that are not listed in the allow-notify list (or that are tagged as BLOCKED) are ignored.
 

The request-xfr clause makes the slave server request a zone transfer from the master server at the listed ip-address using the specified key-name. If you include the AXFR argument, only AXFR transfers (that is, transfers of the entire zone, as opposed to incremental updates) will be requested. The UDP argument specifies that the request for a zone transfer be sent with UDP transport rather than the default TCP. It’s best just to use TCP.
 

Source IP address

 

outgoing-interface: ip-spec
 

This list controls the IP address used by a slave server to request a zone transfer or by a master to send notifications. The addresses must match; that is, the access control clause in the master’s zone configuration must use the same address as the corresponding clause in the slave’s zone configuration.
 

Running NSD
 

Once you have configured nsd, run the nsd-checkconf program to be sure there are no syntax errors in your nsd.conf file. Then put your zone files in the right directory (the one specified in nsd.conf) and use nsdc, the NSD control script, to compile them into database files. Finally start the name server with nsdc.
 

[image: Image]
 

Test the name server with dig or drill, and if you’re happy with the results, add nsdc start to your operating system’s startup sequence and nsdc stop to its shutdown sequence. You can also set up a crontab job to run nscd patch once a day to update the text zone files from the database files.
 

Installing and Configuring Unbound
 

Unbound is a recursive, caching, validating DNS name server from the same folks (NLnet Labs) that produce NSD. It was originally developed for UNIX and Linux, but it’s now is available for Windows, too.
 

To install, create a new user called “unbound”, log in as this user, and download the distribution from unbound.net. Unbound requires the ldns and OpenSSL libraries and can use the libevent libraries (monkey.org/~provos/libevent) as well if they are available. Like NSD, Unbound initially runs as root, but then falls back to running under its dedicated user account.
 

To build:
 

[image: Image]
 

Unbound also comes with an extensive test suite that you can run with make test. The distribution installs the following binaries:
 

• unbound – the recursive name server

 

• unbound-checkconf – syntax checker of the unbound.conf file

 

• unbound-control, unbound-control-setup – secure remote control

 

• unbound-host – simple query tool

 

unbound-host is not as verbose as dig or drill, but it’s handy for command-line validation when DNSSEC is tested.
 

Table 17.11 shows the locations of Unbound components.
 

Table 17.11 Unbound installation directories
 

[image: Image]
 

unbound’s configuration file, unbound.conf, is similar to that of nsd. The basic syntax is
 

attribute: value
 

with comments initiated by # and lasting until the end of the line. You can run unbound-checkconf to check the validity of your config file.
 

Here is a small example of an unbound.conf file, adapted from the man page with saner paths and some additional comments:
 

[image: Image]
 

This example listens on all interfaces and allows queries from the local IPv6 networks and from the unrouted private net 10. It logs to syslog with facility daemon (the default) and runs in a chrooted jail as user unbound.
 

With recursion come lots of options; the unbound option list approaches half the size (70+) of BIND’s (150+). Our coverage is selective. See the man page and the how-to documents at unbound.net for the full story.
 

unbound’s config language has four top-level clauses: server, remote-control, stub-zone, and forward-zone.24 Global options appear beneath the server clause. Here are a few of the more important ones.
 

Locations
 

[image: Image]
 

The directory option sets the server’s working directory. unbound defaults to a directory under /usr/local/etc, but many sites prefer /var. The location of the PID file defaults to unbound’s working directory, but it also works fine in more traditional places such as /var/run.
 

Root hints are built into unbound’s code, so the hints file is not required. However, you can provide one if you like since the addresses in the code may eventually become out of date. Use dig . ns to obtain a fresh copy occasionally, or if you are really paranoid, try dig @a.root-servers.net . ns for an authoritative copy.
 

Logging

 

[image: Image]
 

Logging information can go either to syslog or to a file. Choose between them with the use-syslog and logfile options. If you want normal time instead of UNIX time (seconds since 1/1/1970) in log messages, turn on the log-time-ascii option. The verbosity determines the amount of logging; see page 673 for details.
 

Statistics

 

[image: Image]
 

Statistics are turned off by default because they slow down the name server. If you turn them on by setting the statistics-interval option to a nonzero number of seconds, statistics will be written to the log file (or to syslog) at the specified interval. By default, the statistics counters are reset to 0 each time they are written out; use the statistics-cumulative option to make them accumulate over time.
 

Setting extended-statistics to yes generates more data that you can dump using unbound-control.
 

See page 886 for more information about Cacti and RRDtool.

 

The distribution’s contrib directory contains plug-ins that connect Cacti or Munin to the running name server and that graph real-time statistics with RRD-tool. See the statistics how-to at unbound.net for details.
 

Query access

 

[image: Image]
 

The access-control option is the key to configuring unbound to be a recursive name server for your own users and not for the rest of the world. Use multiple access-control lines to allow multiple networks. The action parameter can take on four values:
 

• deny – blocks all queries from the specified network or host

 

• refuse – blocks queries and sends a REFUSED message back

 

• allow – answers queries from clients requesting recursion

 

• allow-snoop – answers queries from recursive and iterative clients

 

The refuse action is more conformant to the DNS specification than deny because clients assume that unanswered queries were lost on the network rather than having been administratively dropped for policy reasons. The allow action is the one to use for normal DNS clients.
 

allow-snoop answers iterative queries as well as recursive queries. You can use it to investigate the contents of the server’s cache, since an iterative query succeeds only if the answer is already in-cache. allow-snoop can also be exploited for unwholesome purposes, so limit this action to your sysadmins’ hosts.
 

Security

 

[image: Image]
 

The username option specifies the unprivileged user as whom unbound should run once it has completed its startup housekeeping.
 

The chroot directive tells unbound to run in a chrooted jail. You will have to jump through some hoops to make sure that everything unbound needs is available from the jail directory, but recent versions of the code make this pretty easy.
 

The code is smart about mapping global pathnames into the chrooted world. Most paths can be specified as absolute global paths, as absolute paths within the jail directory, or as paths relative to the working directory. unbound performs the appropriate mapping when necessary.
 

A couple of fine points about running unbound in jail: Reading the config file of course predates the chroot, so the config file specified on unbound’s command line should be a global path. The PID file, the unbound-control key files, and the syslog socket can all remain outside the jail directory because they are opened before unbound performs its chroot.
 

unbound reads /dev/random before chrooting, but it’s still a good idea to make /dev/random available after the chroot; unbound may need to return to it later to obtain more random data. If unbound cannot reach /dev/random, it uses a default source of randomness and logs a warning message.
 

[image: Image] Under Linux, you can make /dev/random available in the jail with the following incantation (which assumes that /var/unbound is your jail directory):
 

linux$ sudo mount --bind -n /dev/random /var/unbound/dev/random
 

ID variables

 

The following options control whether unbound tells the truth about its version and hostname when queried for the CHAOS names id.server and version.server:
 

[image: Image]
 

As explained on page 598, we recommend not tampering with these values.
 

IP addresses

 

[image: Image]
 

unbound has several options that control the interfaces on which it listens for queries and the port numbers used for receiving and sending queries. The defaults are fine for most sites and are not vulnerable to Kaminsky-type cache poisoning attacks. However, the interface and outgoing-port-avoid options should be configured explicitly.
 

The interface option specifies the interfaces on which unbound listens for queries. It needs to be set explicitly because the default is localhost—fine if every machine runs unbound, but not so fine if you run one name server per subnet or per site. Add an interface statement for each interface on which clients might try to submit queries.
 

You should also configure outgoing-port-avoid to exclude any ports that are blocked by your firewall and any ports used by another program. unbound al-ready excludes ports below 1,024 and IANA-assigned ports.
 

DNSSEC

 

[image: Image]
 

These options all deal with DNSSEC deployment; they allow you to express trust anchors by listing the files in which they live or by stuffing the resource record directly into the option’s value. There can be at most one DLV anchor.
 

Setting module-config to validator iterator turns on DNSSEC validation and must be accompanied by trust anchors, either explicitly configured or via DLV. See DNSSEC on page 648 for more info.
 

Signatures

 

[image: Image]
 

The val-* series of options deal with the validation process for signatures of signed zones. They tweak various parameters (such as maximum permissible clock skew) that can affect validation. The default values are fine unless you are debugging your DNSSEC deployment. Setting val-log-level to 1 logs validation failures, which is also helpful for debugging.
 

Tuning

 

unbound supports several performance-tuning options. An important one is num-threads, which should be set to the number of cores available on the server (i.e., the number of cores per processor times the number of processors).
 

The tuning defaults are fine for most sites, so rather than list them all here, we refer you to the man page for unbound.conf and the how-tos at unbound.net. Toward the end of the man page is a helpful example that tunes performance on a small-memory machine.
 

Private addresses

 

[image: Image]
 

The private-address statement blocks the listed IP addresses from being returned in query results. It’s normally used in conjunction with RFC1918 private IP address spaces (see page 462) to keep these shameful addresses from escaping onto the Internet. This behavior is generally what you want for external sites, but if you are actually using RFC1918 addresses internally, you probably don’t want to be blacklisting your own internal addresses. The private-domain statement resolves this conflict by allowing the specified domain and all its subdomains to contain private addresses.
 

The next set of configuration options pertains to the remote-control statement, which controls communication between unbound and the unbound-control program. That communication is controlled by self-signed SSL/TLS certificates in X.509 format that are set up by the unbound-control-setup program. There are only a few options, so we list them all:
 

Controlling

 

[image: Image]
 

You can control unbound from anywhere on the Internet. To set up authentication, run unbound-control-setup to create the necessary certificate files, set the control-enable option to yes, and set the control-interface to the network interface on which the server should listen for control commands. You can use 0.0.0.0 (and ::0) to enable all interfaces. The default is to require the controller to be logged in to the same machine as unbound, which is probably safest.
 

Stub zones

 

[image: Image]
 

A stub-zone clause lets you tunnel queries for a particular domain to an authoritative server that you designate rather than resolving them in the usual hierarchical fashion from the root. For example, you might want your users to see a private view of your local network that includes more hosts than are seen by DNS queriers on the outside. The name “stub zone” is unfortunate and has no connection to the stub zones used in the BIND world.
 

To implement this configuration, you’d run an authoritative server on a different host (or on the same host at a different port) to serve your local version of the zone. You’d then point unbound to that server by using the stub-zone options. You can specify either the hostname of the server (stub-host) or its IP address (stub-addr). You can also specify the port, which defaults to 53. The address form protects against chicken-and-egg problems if unbound cannot look up the name without access to the destination zone.
 

You can have as many stub zones as you want.
 

Forwarding

 

[image: Image]
 

The forward-zone option lets unbound act as a forwarder, forwarding all queries (or just some, depending on the value of the name parameter) to another server to help that server build up a bigger cache. Forwarding occurs only if unbound cannot answer a query from its own cache. See page 569 for general information about forwarders and reasons why you might want to use them.
 

There may be multiple forward-zone statements. If you specify the name as . (a single period), all queries are forwarded.
 

17.12 Updating Zone Files
 

To change a domain’s data (e.g., to add or delete a host), you update the zone data files on the master server. You must also increment the serial number in the zone’s SOA record. Finally, you must get your name server software to pick up and distribute your changes. This final step varies depending on your software:
 

• BIND: Run rndc reload to signal named to pick up the changes. You can also kill and restart named, but if your server is both authoritative for your zone and recursive for your users, this operation discards cached data from other domains.

 

• NSD: Run nsdc rebuild, followed by nsdc reload. nsd does no caching, so it is not adversely affected by being restarted.

 

Updated zone data is propagated to slave servers of BIND masters right away because the notify option is on by default. In NSD, you must configure the notify ACL to get this (desirable) effect. If notifications are not turned on, your slave servers will not pick up the changes until after refresh seconds, as set in the zone’s SOA record (typically an hour later).
 

If you have the notify option turned off, you can force BIND slaves to update themselves by running rndc reload on each slave. This command makes the slave check with the master, see that the data has changed, and request a zone transfer. The corresponding NSD command is nsdc reload.
 

Don’t forget to modify both the forward and reverse zones when you change a hostname or IP address. Forgetting the reverse files leaves sneaky errors: some commands work and some won’t.
 

Changing the data files but forgetting to change the serial number makes the changes take effect on the master server (after a reload) but not on the slaves.
 

Do not edit data files on slave servers. These files are maintained by the name server and sysadmins should not meddle with them. It’s fine to look at the BIND data files as long as you don’t make changes. The NSD files are databases and so cannot be directly inspected. However, changes are by default written back to the text zone files by nsd-patch.
 

BIND allows zone changes to be made through a programmatic API, as specified in RFC2136. This feature, called dynamic updates, is necessary to support auto-configuration protocols like DHCP. The dynamic update mechanism is described on page 640.
 

Zone Transfers
 

DNS servers are synchronized through a mechanism called a zone transfer. A zone transfer can include the entire zone (called AXFR) or just the recent changes (called IXFR). By default, zone transfers use the TCP protocol on port 53. BIND logs transfer-related information with category “xfer-in” or “xfer-out”; NSD includes it in the regular logging stream.
 

A slave that wants to refresh its data requests a zone transfer from the master server and makes a backup copy of the zone data on disk. If the data on the master has not changed, as determined by a comparison of the serial numbers (not the actual data), no update occurs and the backup files are just touched. (That is, their modification times are set to the current time.)
 

Both the sending and receiving servers remain available to answer queries during a zone transfer. Only after the transfer is complete does the slave begin to use the new data.
 

When zones are huge (like com) or dynamically updated (see the next section), changes are typically small relative to the size of the entire zone. With IXFR, only the changes are sent (unless they are larger than the complete zone, in which case a regular AXFR transfer is done). The IXFR mechanism is analogous to the patch program in that it makes changes to an old database to bring it into conformity with a new database.
 

In BIND, IXFR is the default for any zones configured for dynamic update, and named maintains a transaction log called zonename.jnl. You can set the options provide-ixfr and request-ixfr in the server statements for individual peers. The provide-ixfr option enables or disables IXFR service for zones for which this server is the master. The request-ixfr option requests IXFRs for zones for which this server is a slave.
 

[image: Image]
 

IXFRs work for zones that are edited by hand, too. Use the BIND zone option called ixfr-from-differences to enable this behavior. IXFR requires the zone file to be sorted in a canonical order. named takes care of this chore for you, but it costs the server some memory and CPU. IXFRs trade these costs in exchange for reduced network traffic.
 

When requesting a zone transfer, NSD slaves ask for an IXFR but fall back to AXFR if that is all the master server supports. Because NSD’s data lives in a compiled database format, sorting is not required for IXFRs. NSD stores the transfer daemon’s state in the file specified by the xfrdfile attribute in case the transfer is interrupted.
 

Reloads after IXFRs can be throttled by the xfrd-reload-timeout attribute. It defaults to 10 seconds, so IXFR changes are batched to some degree.
 

In BIND, an IXFR request to a server that does not support it automatically falls back to the standard AXFR zone transfer. You can prohibit AXFR fallback in NSD by setting allow-axfr-fallback to no.
 

In both systems, much effort has been expended to ensure that a server crash during an IXFR does not leave zones with trashed data.
 

BIND Dynamic Updates
 

The DNS system is built on the premise that name-to-address mappings are relatively stable and do not change frequently. However, a site that uses DHCP to dynamically assign IP addresses as machines boot and join the network breaks this rule constantly. There are two classical solutions: add generic entries to the DNS database, or continually edit the DNS files. For many sites, neither solution is satisfactory.
 

The first solution should be familiar to anyone who has looked up the PTR record for the IP address assigned to them by a mass-market (home) ISP. The DNS configuration usually looks something like this:
 

[image: Image]
 

Although this is a simple solution, it means that hostnames are permanently associated with particular IP addresses and that computers therefore change host-names whenever they receive a new IP address. Hostname-based logging and security measures become very difficult in this environment.
 

BIND’s dynamic update feature offers an alternative solution. It allows the DHCP daemon to notify BIND of the address assignments it makes, thus updating the contents of the DNS database on the fly. Dynamic updates can add, delete, or modify resource records. When dynamic updates are enabled, named maintains a journal of dynamic changes (zonename.jnl) that it can consult in the event of a server crash. named recovers the in-memory state of the zone by reading the original zone files and then replaying the changes from the journal.
 

You cannot hand-edit a dynamically updated zone without first stopping the dynamic update stream. rndc freeze
zone or rndc freeze
zone class view will do the trick. These commands sync the journal file to the master zone file on disk and then delete the journal. You can then edit the zone file by hand. Unfortunately, the original formatting of the zone file will have been destroyed by named’s monkeying—the file will look like those maintained by named for slave servers.
 

Dynamic update attempts are refused while the zone is frozen. Use rndc thaw with the same arguments you froze with to reload the zone file from disk and reenable dynamic updates.
 

The nsupdate program supplied with BIND 9 comes with a command-line interface for making dynamic updates. It runs in batch mode, taking commands from the keyboard or a file. A blank line or the send command signals the end of an update and sends the changes to the server. Two blank lines signify the end of input. The command language includes a primitive if statement to express constructs such as “if this hostname does not exist in DNS, add it.” As predicates for an nsupdate action, you can require a name to exist or not exist, or require a resource record set to exist or not exist.
 

For example, here is a simple nsupdate script that adds a new host and also adds a nickname for an existing host if the nickname is not already in use. The angle bracket prompt is produced by nsupdate and is not part of the command script.
 

[image: Image]
 

Dynamic updates to DNS are scary. They can potentially provide uncontrolled write access to your important system data. Don’t try to use IP addresses for access control—they are too easily forged. TSIG authentication with a shared-secret key is better; it’s available and is easy to configure. BIND 9 supports both:
 

$ nsupdate -k
keydir:keyfile
 

or
 

$ nsupdate -y
keyname:secretkey
 

Since the password goes on the command line in the -y form, anyone running w or ps at the right moment can see it. For this reason, the -k form is preferred. For more details on TSIG, see the section starting on page 645.
 

Dynamic updates to a zone are enabled in named.conf with an allow-update or update-policy clause. allow-update grants permission to update any records in accordance with IP- or key-based authentication. update-policy is a BIND 9 extension that allows fine-grained control for updates according to the hostname or record type. It requires key-based authentication. Both are zone options.
 

Use update-policy to allow clients to update their A or PTR records but not to change the SOA record, NS records, or KEY records. You can also use update-policy to allow a host to update only its own records. The parameters let you express names explicitly, as a subdomain, as a wild card, or as the keyword self, which sets a general policy for machines’ access to their own records. Resource records are identified by class and type. The syntax of an update-policy rule is
 

update-policy (grant | deny) identity nametype name [types];
 

The identity is the name of the cryptographic key needed to authorize the update. The nametype has one of four values: name, subdomain, wildcard, or self. The name is the zone to be updated, and the types are the resource record types that can be updated. If no types are specified, all types except SOA, NS, RRSIG, and NSEC or NSEC3 can be updated. Here’s an example:
 

update-policy { grant dhcp-key subdomain dhcp.cs.colorado.edu A } ;
 

This configuration allows anyone who knows the key dhcp-key to update address records in the dhcp.cs.colorado.edu subdomain. This statement would appear in the master server’s named.conf file within the zone statement for the domain dhcp.cs.colorado.edu. There would be a key statement to define dhcp-key as well.
 

The snippet below from the named.conf file at the Computer Science Department at the University of Colorado uses the update-policy statement to allow students in a system administration class to update their own subdomains but not to mess with the rest of the DNS environment.
 

[image: Image]
 

17.13 Security Issues
 

DNS started out as an inherently open system, but it has steadily grown more and more secure—or at least, securable. By default, anyone on the Internet can investigate your domain with individual queries from tools such as dig, host, nslookup, and drill. In some cases, they can dump your entire DNS database.
 

To address such vulnerabilities, name servers support various types of access control based on host and network addresses or on cryptographic authentication. Table 17.12 summarizes the security features that can be configured in named.conf, nsd.conf, or unbound.conf. The Page column shows where in this book to look for more information.
 

Table 17.12 Security features in BIND, NSD, and Unbound
 

[image: Image]
 

All three name servers can run in a chrooted environment under an unprivileged UID to minimize security risks; unbound does so by default. They can all use transaction signatures to control communication between master and slave servers (BIND and NSD) and between the name servers and their control programs (BIND and Unbound). Each also supports the whole DNSSEC hairball. These topics are taken up in the next few sections.
 

Access Control Lists in BIND, Revisited
 

ACLs are named address match lists that can appear as arguments to statements such as allow-query, allow-transfer, and blackhole. Their basic syntax was described on page 609. ACLs can help beef up DNS security in a variety of ways.
 

Every site should at least have one ACL for bogus addresses and one ACL for local addresses. For example:
 


 

[image: Image]
 

In the global options section of your config file, you could then include
 

[image: Image]
 

It’s also a good idea to restrict zone transfers to legitimate slave servers. An ACL makes things nice and tidy.
 

[image: Image]
 

The actual restriction is implemented with a line such as
 

allow-transfer { ourslaves; measurements; } ;
 

Here, transfers are limited to our own slave servers and to the machines of an Internet measurement project that walks the reverse DNS tree to determine the size of the Internet and the percentage of misconfigured servers. Limiting transfers in this way makes it impossible for other sites to dump your entire database with a tool such as dig (see page 677).
 

Of course, you should still protect your network at a lower level through router access control lists and standard security hygiene on each host. If those measures are not possible, you can refuse DNS packets except to a gateway machine that you monitor closely.
 

Open Resolvers
 

An open resolver is a recursive, caching name server that accepts and answers queries from anyone on the Internet. Open resolvers are bad. Outsiders can consume your resources without your permission or knowledge, and if they are bad guys, they may be able to poison your resolver’s cache.
 

Worse, open resolvers are sometimes used by bad guys to amplify distributed denial of service attacks. The attacker sends queries to your resolver with a faked source address that points back to the victim of the attack. Your resolver dutifully answers the queries and sends some nice fat packets to the victim. The victim didn’t initiate the queries, but it still has to route and process the network traffic. Multiply by a bunch of open resolvers and it’s real trouble for the victim.
 

Statistics show that between 75% and 80% of caching name servers are currently open resolvers—yikes! The site dns.measurement-factory.com/tools can help you test your site. Go there, select the “open resolver test,” and type in the IP addresses of your name servers. You can also test all the name servers on your network or all the servers at your site by using your whois identifier.
 

Use access control lists in named.conf or unbound.conf to limit your caching name servers to answering queries from your own users.
 

Running in a Chrooted Jail
 

If hackers compromise your name server, they can potentially gain access to the system under the guise of the user as whom it runs. To limit the damage that someone could do in this situation, you can run the server in a chrooted environment, run it as an unprivileged user, or both.
 

For named, the command-line flag -t specifies the directory to chroot to, and the -u flag specifies the UID under which named should run. For example,
 

$ sudo named -u 53
 

initially starts named as root, but after named completes its rootly chores, it relinquishes its root privileges and runs as UID 53.
 

For nsd and unbound, the config file server options username and chroot do the same job. These options can also be specified on the nsd command line with the same flags as BIND: -u and -t, respectively.
 

Many sites don’t bother to use the -u and -t flags, but when a new vulnerability is announced, they must be faster to upgrade than the hackers are to attack.
 

The chroot jail cannot be an empty directory since it must contain all the files the name server normally needs in order to run: /dev/null, /dev/random, the zone files, configuration files, keys, syslog target files and the syslog UNIX-domain socket, /var, etc. It takes a bit of work to set this all up. The chroot system call is performed after libraries have been loaded, so it is not necessary to copy shared libraries into the jail.
 

Secure Server-to-Server Communication with TSIG and TKEY
 

While DNSSEC (covered in the next section) was being developed, the IETF developed a simpler mechanism, called TSIG (RFC2845), to allow secure communication among servers through the use of “transaction signatures.” Access control based on transaction signatures is more secure than access control based on IP source addresses alone. TSIG can secure zone transfers between a master server and its slaves, and in BIND can secure dynamic updates.
 

The TSIG signature on a message authenticates the peer and verifies that the data has not been tampered with. Signatures are checked at the time a packet is received and are then discarded; they are not cached and do not become part of the DNS data.
 

TSIG uses symmetric encryption. That is, the encryption key is the same as the decryption key. This single key is called the “shared secret.” The TSIG specification allows multiple encryption methods. BIND implements MD5, SHA-1, SHA-224, and SHA-256. NSD implements the same set but without SHA-224. Use a different key for each pair of servers that want to communicate securely.
 

TSIG is much less expensive computationally than public key cryptography, but because it requires manual configuration, it is only appropriate for a local network on which the number of pairs of communicating servers is small. It does not scale to the global Internet.
 

Setting up TSIG for BIND
 

First, use BIND’s dnssec-keygen utility to generate a shared-secret host key for the two servers, say, master and slave1:
 

$ dnssec-keygen -a HMAC-MD5 -b 128 -n HOST master-slave1
 

The -b 128 flag tells dnssec-keygen to create a 128-bit key. We use 128 bits here just to keep the keys short enough to fit on our printed pages. In real life, you might want to use a longer key; 512 bits is the maximum allowed.
 

This command produces two files: Kmaster-slave1.+157+09068.private and Kmaster-slave1.+157+09068.key. The 157 stands for the HMAC-MD5 algorithm, and the 09068 is a number used as a key identifier in case you have multiple keys for the same pair of servers.26
 

Both files include the same key, just in different formats. The .private file looks like this:
 

[image: Image]
 

and the .key file like this:
 

master-slave1. IN KEY 512 3 157 jxopbeb+aPc71Mm2vc9R9g==
 

Note that dnssec-keygen has added a dot to the end of the key names in both the filenames and the contents of the .key file. The motivation for this convention is that when dnssec-keygen is used for DNSSEC keys that are added to zone files, the key names must be fully qualified domain names and must therefore end in a dot. There should probably be two tools, one for shared-secret keys and one for public-key key pairs.
 

You don’t actually need the .key file—it’s another artifact of dnssec-keygen being used for two different jobs. Just delete it. The 512 in the KEY record is not the key length but rather a flag bit that identifies the record as a DNS host key.
 

After all this complication, you may be disappointed to learn that the generated key is really just a long random number. You could generate the key manually by writing down an ASCII string of the right length (divisible by 4) and pretending that it’s a base-64 encoding of something, or you could use mmencode to encode a random string. The way you create the key is not important; it just has to exist on both machines.
 

Copy the key from the .private file to both master and slave1 with scp, or cut and paste it. Do not use telnet or ftp to copy the key; even internal networks may not be secure.
 

scp is part of the OpenSSH suite. See page 926 for details.

 

The key must be included in both machines’ named.conf files. Since named.conf is usually world-readable and keys should not be, put the key in a separate file that is included in named.conf. The key file should have mode 600 and should be owned by the named user.
 

For example, you could put the snippet
 

[image: Image]
 

in the file master-slave1.tsig. In the named.conf file, add the line
 

include "master-slave1.tsig" ;
 

near the top.
 

This part of the configuration simply defines the keys. For them to actually be used to sign and verify updates, the master needs to require the key for transfers and the slave needs to identify the master with a server statement and keys clause. For example, you might add the line
 

allow-transfer { key master-slave1. ;} ;
 

to the zone statement on the master server, and the line
 

server master’s-IP-address { keys { master-slave1. ; } ; } ;
 

to the slave’s named.conf file. If the master server allows dynamic updates, it can also use the key in its allow-update clause in the zone statement.
 

Our example key name is pretty generic. If you use TSIG keys for many zones, you may want to include the name of the zone in the key name to help you keep everything straight.
 

To test your TSIG configuration, run named-checkconf to verify that you have the syntax right. Then use dig to attempt a zone transfer (dig @master
axfr) from both slave1 and from some other machine. The first should succeed and the second should fail with the diagnostic “Transfer failed.” To be absolutely sure everything is right, remove the allow-transfer clause and try the dig commands again. This time, both should succeed. (Don’t forget to put the allow-transfer back in!) As a final test, increase the serial number for the zone on the master server, run rndc reload, and watch the log file on the slave to see if it picks up the change and transfers the zone.
 

When you first start using transaction signatures, run named at debug level 1 (see page 667 for information about debug mode) for a while to see any error messages that are generated. Ancient versions of BIND do not understand signed messages and complain about them, sometimes to the point of refusing to load the zone.
 

See page 1195 for more information about NTP.

 

When using TSIG keys and transaction signatures between master and slave servers, you should keep the clocks of the servers synchronized with NTP. If the clocks are too far apart (more than about 5 minutes), signature verification will not work. This problem can be very hard to identify.
 

TKEY is a BIND mechanism that lets two hosts generate a shared-secret key automatically, without phone calls or secure copies to distribute the key. It uses an algorithm called the Diffie-Hellman key exchange in which each side makes up a random number, does some math on it, and sends the result to the other side. Each side then mathematically combines its own number with the transmission it received to arrive at the same key. An eavesdropper might overhear the transmission but will be unable to reverse the math.27
 

Microsoft servers use TSIG in a nonstandard way called GSS-TSIG that exchanges the shared secret through TKEY. If you need a Microsoft server to communicate with BIND, use the tkey-domain and tkey-gssapi-credential options.
 

SIG(0) is another mechanism for signing transactions between servers or between dynamic updaters and the master server. It uses public key cryptography; see RFCs 2535 and 2931 for details.
 

TSIG in NSD
 

You can use the ldns-keygen command in the examples directory of the ldns distribution to generate TSIG keys for NSD’s access control lists. For details, see page 655. NSD does not support SIG(0) keys or the TKEY Diffie-Hellman key exchange system.
 

DNSSEC
 

DNSSEC is a set of DNS extensions that authenticate the origin of zone data and verify its integrity by using public key cryptography. That is, the extensions allow DNS clients to ask the questions “Did this DNS data really come from the zone’s owner?” and “Is this really the data sent by that owner?”
 

DNSSEC relies on a cascading chain of trust. The root servers provide validation information for the top-level domains, the top-level domains provide validation information for the second-level domains, and so on. Or at least, that’s the original design of the system. As of early 2010, the root and most top-level domains remain unsigned.
 

ICANN and the U.S. Department of Commerce are dragging their feet on signing the root, although this change has been promised for a while. It might happen in mid-2010. VeriSign appears to be in no rush to sign the .com and .net zones. The zones are already huge, and the signed versions will be even larger, requiring servers to be reprovisioned. Furthermore, VeriSign’s X.509 certificate service represents a significant portion of its revenue, and DNSSEC may replace these certificates for certain applications. Nevertheless, VeriSign has promised to sign the .com zone by 2011, just in time for the scheduled renegotiation of its contract with ICANN in 2012.
 

Fortunately, the concept of trust anchors lets us bootstrap the DNSSEC validation process and secure portions of the DNS tree in advance of the availability of signed root and top-level domains.
 

Public key cryptosystems use two keys: one to encrypt (sign) and a different one to decrypt (verify). Publishers sign their data with the secret “private” key. Anyone can verify the validity of a signature with the matching “public” key, which is widely distributed. If a public key correctly decrypts a zone file, then the zone must have been encrypted with the corresponding private key. The trick is to make sure that the public keys you use for verification are authentic. Public key systems allow one entity to sign the public key of another, thereby vouching for the legitimacy of the key; hence the term “chain of trust.”
 

The data in a DNS zone is too voluminous to be encrypted with public key cryptography—the encryption would be too slow. Instead, since the data is not secret, a secure hash (e.g., an MD5 checksum) is run on the data and the results of the hash are signed (encrypted) by the zone’s private key. The results of the hash are like a fingerprint of the data and are called a digital signature. The signatures are appended to the data they authenticate as RRSIG records in the signed zone file.
 

To verify the signature, you decrypt it with the public key of the signer, run the data through the same secure hash algorithm, and compare the computed hash value with the decrypted hash value. If they match, you have authenticated the signer and verified the integrity of the data.
 

In the DNSSEC system, each zone has its own public and private keys. In fact, it has two sets of keys: a zone-signing key pair and a key-signing key pair. The private zone-signing key signs each RRset (that is, each set of records of the same type for the same host). The public zone-signing key verifies the signatures and is included in the zone’s data in the form of a DNSKEY resource record.
 

Parent zones contain DS records that are a hash of the child’s self-signed key-signing key DNSKEY records. A name server verifies the authenticity of a child zone’s DNSKEY record by checking it against the parent zone’s signature. To verify the authenticity of the parent zone’s key, the name server can check the parent’s parent, and so on back to the root. The public key for the root zone would be widely published and included in the root hints file.
 

The DNSSEC specifications require that if a zone has multiple keys, each is tried until the data is validated. This behavior is required so that keys can be rolled over (changed) without interruptions in DNS service. If a DNSSEC-aware recursive name server queries an unsigned zone, the unsigned answer that comes back is accepted as valid. But problems occur when signatures expire or when parent and child zones do not agree on the child’s current DNSKEY record.
 

Before we jump into the mechanics of generating keys and signing zones, we need to outline the real-world status of DNSSEC and its impact on sysadmins. It is ready to deploy, but a couple of problems remain. On the plus side:
 

• Current versions of the DNS software (both named and nsd/unbound) are ready. Tools exist to sign zones and verify signatures.

 

• Momentum toward signed zones is building. As of early 2010, .gov, .org, and several ccTLDs (mostly in Europe) are now signed. (Sweden was the first signed TLD.) The root will be signed in 2010, and the other gTLDs will follow a year or two later. The U.S. government has required all sites within .gov to be signed as well.

 

• The IETF standards seem to be functional and deployable.

 

However, two thorny problems remain: key distribution and packet size.
 

With the root and TLDs not signed, the chain of trust is currently broken. Sites that want to sign their zones have to find other ways to publish their keys. A lookaside validation scheme (RFCs 4431 and 5074) designed by Sam Weiler of Sparta allows a convenient workaround for this problem by enabling third-party organizations such as ISC to validate sites’ keys. This is a good interim solution, but also a single point of failure. ISC is used to running critical servers (they run the F root server), but accidents do happen. There are also potential privacy issues with a third party having knowledge of all the sites your users visited. (Of course, these same privacy concerns apply to all root server operators.) Another interim solution is the use of so-called ITARs (itar.iana.org); see page 661.
 

Strong keys are long, and some sites like to distribute several of them. This means bigger packets. DNSSEC requires EDNS0, the extended DNS protocol, which supports UDP packets larger than 512 bytes. However, not all implementations support it; those folks may not be able to use DNSSEC.
 

Even for EDNS0-aware servers, the MTU over the path between two servers may be smaller than a big fat signed packet stuffed with keys. If the packet is too large, it should in theory be fragmented at the IP layer, but problems remain. Some implementations of TCP/IP fragment TCP packets but not UDP packets. Some firewall devices do not have enough saved state to properly reassemble fragmented UDP packets. And finally, some firewalls drop UDP packets to port 53 that are larger than 512 bytes. Oops. When a UDP response is mutilated or fails to get through, the client then switches to TCP, which causes performance problems of its own.
 

A few other issues:
 

• Russia refuses to use the RSA algorithm, and RSA is currently the only algorithm that DNSSEC-aware name servers are required to implement. Russia has standardized on an algorithm called GOST, a symmetric cipher, that is similar in design to DES.28

 

• China (among other countries) has its own root, .com, and .net servers, thus fracturing the DNS naming tree. How will DNSSEC work with a fractured root?

 

• RFC5011, a proposed standard for automated updates of DNSSEC trust anchors, inflates the key handling overhead by adding keys to your DNSKEY resource record sets. This extension would exacerbate the MTU problem mentioned above and seems to be a bad idea. There are also situations in which use of the RFC5011 scheme would leave a site’s keys in a revoked state even though cached data might still require those keys for verification.

 

• Linux distributions ship with a list of keys to get you started. This seems like a bad idea since the keys will inevitably become out of date and wrong. Your DNS will slowly degrade without you really knowing why. (Key lists themselves are not necessarily a bad idea. For example, you can use lists from the RIPE and IANA web sites to cross-check keys you obtain through DNS until the root and TLDs are signed.)

 

• Maybe we need a well-known hostname (analogous to www for web servers) that sites can use to publish their public keys while we wait for the top of the DNS tree to be signed—key.domain-name, or something like that.

 

Sysadmins need to start thinking about signing their domains and setting up a shiny new server or two. We do recommend that you deploy DNSSEC at this point, but stage it carefully on a test network well before you plan to deploy it on production networks.
 

DNSSEC deployment can be done in two independent steps:
 

• Sign your zones and serve signed data to DNSSEC-aware clients.

 

• Validate the answers to your users’ queries.

 

Check out UCLA’s handy SecSpider tool at secspider.cs.ucla.edu. It probes your DNSSEC setup from several locations around the globe to verify that your keys are available and that large packets containing them can reach those locations. (It was in fact SecSpider that first discovered the path MTU issue with DNSSEC.) SecSpider also identifies DNSSEC misconfigurations, and using it may help out a grad student trying to gather enough data to write his thesis. You can also obtain copies of the public keys for other signed zones from the SecSpider web site (secspider.cs.ucla.edu/trust-anchors.conf).
 

The DNS-OARC (DNS Operations, Analysis, and Research Center) has implemented a reply-size test server that you can query with dig to find out how large a DNS UDP reply packet can transit between that server and your site:
 

[image: Image]
 

This example tells you that DNS replies of size 1,382 can get through, but not much larger, even though you are advertising a buffer size of 4,096. In this case, the problem is likely that the firewall is not admitting UDP fragments.
 

Other common sizes are 486, indicating a server that does not support EDNS0 and limits UDP packets to 512 bytes, and 4,023, which indicates that the full 4,096-byte buffer size can be used. If you use the @server argument to dig, you will see the packet size limitations from the DNS-OARC machine to that server. For more information, see dns-oarc.net/oarc/services/replysizetest.
 

If you are about to implement DNSSEC and either SecSpider or DNS-OARC indicates a problem with packet sizes, it might be time to talk to your firewall folks and try to get things fixed before you deploy.
 

DNSSEC Policy
 

Before you begin deployment of DNSSEC, there are a few policies and procedures that you should nail down or at least think about. For example:
 

• What size keys will you use? Longer keys are more secure, but they make for larger packets.

 

• How often will you change keys in the absence of a security incident?

 

• How will you distribute your public keys? How will sites that need your keys verify that they are authentic?

 

We suggest that you keep a key log that records the date you generated each key, the hardware and operating system used, the key tag assigned, the version of the key generator software, the algorithm used, the key length, and the signature validity period. If a cryptographic algorithm is later compromised, you can check your log to see if you are vulnerable.
 

DNSSEC Resource Records
 

DNSSEC uses six resource record types that were referenced in the DNS database section back on page 590 but were not described in detail: DS, DLV, DNSKEY, RRSIG, NSEC, and NSEC3. We describe them here in general and then outline the steps involved in signing a zone. Each of these records is created by DNSSEC tools rather than by being typed into a zone file with a text editor.
 

The DS (Designated Signer) record appears only in the parent zone and indicates that a subzone is secure (signed). It also identifies the key used by the child to self-sign its own KEY resource record set. The DS record includes a key identifier (a five-digit number), a cryptographic algorithm, a digest type, and a digest of the public key record allowed (or used) to sign the child’s key resource record.
 

If your parent zone is not signed, you can establish a trust anchor at ISC by using a DLV (domain lookaside validation) record with the same format. Here are examples of each:29
 

[image: Image]
 

The question of how to change existing keys in the parent and child zones has been a thorny one that seemed destined to require cooperation and communication between parent and child. The creation of the DS record, the use of separate key-signing and zone-signing keys, and the use of multiple key pairs have helped address this problem.
 

Keys included in a DNSKEY resource record can be either key-signing keys (KSKs) or zone-signing keys (ZSKs). A new flag, called SEP for “secure entry point,” distinguishes between them. Bit 15 of the flags field is set to 1 for KSKs and to 0 for ZSKs. This convention makes the flags field of KSKs odd and of ZSKs even when they are treated as decimal numbers. The values are currently 257 and 256, respectively.
 

Multiple keys can be generated and signed so that a smooth transition from one key to the next is possible. The child may change its zone-signing keys without notifying the parent; it must only coordinate with the parent if it changes its key-signing key. As keys roll over, both the old key and the new key are valid for a certain interval. Once cached values on the Internet have expired, the old key can be retired.
 

An RRSIG record is the signature of a resource record set (that is, the set of all records of the same type and name within a zone). RRSIG records are generated by zone-signing software and added to the signed version of the zone file.
 

An RRSIG record contains a wealth of information:
 

• The type of record set being signed

 

• The signature algorithm used, encoded as a small integer

 

• The number of labels (dot-separated pieces) in the name field

 

• The TTL of the record set that was signed

 

• The time the signature expires (as yyyymmddhhssss)

 

• The time the record set was signed (also yyyymmddhhssss)

 

• A key identifier (a 5-digit number)

 

• The signer’s name (domain name)

 

• And finally, the digital signature itself (base-64 encoded)

 

Here’s an example:
 

[image: Image]
 

NSEC or NSEC3 records are also produced as a zone is signed. Rather than signing record sets, they certify the intervals between record set names and so allow for a signed answer of “no such domain” or “no such resource record set.” For example, a server might respond to a query for A records named bork.atrust.com with an NSEC record that certifies the nonexistence of any A records between bark.atrust.com and borrelia.atrust.com.
 

Unfortunately, the inclusion of the endpoint names in NSEC records allows someone to walk through the zone and obtain all of its valid hostnames. NSEC3 fixes this feature by including hashes of the endpoint names rather than the endpoint names themselves, but it is more expensive to compute: more security, less performance. NSEC and NSEC3 are both in current use, and you can choose between them when you generate your keys and sign your zones.
 

Unless protecting against a zone walk is critically important for your site, we recommend that you use NSEC for now. Only recent versions of BIND (9.6 and later) and NSD (3.1 and later) understand NSEC3 records.
 

Turning on DNSSEC
 

Since NSD is an authoritative-only name server, it only needs to be concerned with serving signed data to DNSSEC-aware clients. There is no need to explicitly turn DNSSEC on. If a zone is signed, NSD uses DNSSEC.
 

BIND is a bit more complicated. Current BIND releases have removed OpenSSL from the distribution, so if you want to use DNSSEC, you will have to either obtain a preconfigured package that includes DNSSEC support or obtain the SSL libraries directly from openssl.org. If you take the latter route, you’ll have to then recompile BIND with cryptographic support turned on (use the --with-openssl option to ./configure). If you don’t do this, dnssec-keygen will complain. However, it will still work for generating TSIG keys, since those don’t require Open-SSL. BIND displays a lovely warning page if your version of OpenSSL is so old that it has known security vulnerabilities.
 

Two separate workflows are involved in using signed zones: one that creates keys and signs zones, and a second that serves the contents of those signed zones. These duties need not be implemented on the same machine. In fact, it is better to quarantine the private key and the CPU-intensive signing process on a machine that is not publicly accessible from the Internet. (Of course, the machine that serves the data must be visible to the Internet.)
 

The first step in setting up DNSSEC is to organize your zone files so that all the data files for a zone are in a single directory. The tools that manage DNSSEC zones expect this organization.
 

Next, enable DNSSEC on your servers with the named.conf options
 

[image: Image]
 

for authoritative servers and
 

[image: Image]
 

for recursive servers. The dnssec-enable option tells your authoritative servers to include DNSSEC record set signatures in their responses when answering queries from DNSSEC-aware name servers. The dnssec-validation option makes named verify the legitimacy of signatures it receives in responses from other servers.
 

Key Pair Generation
 

You must generate two key pairs for each zone you want to sign: a zone-signing (ZSK) pair and a key-signing (KSK) pair. Each pair consists of a public key and a private key. The KSK’s private key signs the ZSK and creates a secure entry point for the zone. The ZSK’s private key signs the zone’s resource records. The public keys are then published to allow other sites to verify your signatures.
 

The BIND commands
 

[image: Image]
 

or the NSD commands
 

[image: Image]
 

generate for example.com a 1,024-bit ZSK pair that uses the RSA and SHA-1 algorithms and a corresponding 2,048-bit KSK pair.30 The outstanding issue of UDP packet size limits suggests that it’s best to use short zone-signing keys, but to change them often. You can use longer key-signing keys to help recover some security. It takes awhile to generate the keys—a minute or two for short keys, and a half-hour or more for longer keys on a tired old laptop.
 

Both key generators print the base filename of the key they have generated to standard out. In this example, example.com is the name of the key, 005 is the identifier of the RSA/SHA-1 algorithm suite, and 23301 and 00682 are hashes called the key identifiers, key footprints, or key tags.31 Each run of the BIND key generator creates two files (.key and .private), and the NSD key generator produces three files (.key, .private, and .ds):
 

[image: Image]
 

Several encryption algorithms are available, each with a range of possible key lengths. You can run dnssec-keygen with no arguments or ldns-keygen -a list to see the current list of supported algorithms. BIND and NSD can both use keys generated by other software.
 

Depending on the version of your software, some of the available algorithm names may have NSEC3 appended or prepended to them. If you want to use NSEC3 records instead of NSEC records for signed negative answers, you must generate NSEC3-compatible keys with one of the NSEC3-specific algorithms; see the man pages for ldns-signzone or dnssec-keygen.
 

The .key files each contain a single DNSKEY resource record for example.com. For example, here is the zone-signing public key, truncated to fit the page. You can tell it’s a ZSK because the flags field is 256, rather than 257 for a KSK.
 

[image: Image]
 

These public keys must be $INCLUDEd or inserted into the zone file, either at the end or right after the SOA record. To copy the keys into the zone file, you can append them with cat32 or paste them in with a text editor.
 

The .ds files produced by NSD’s key generator, ldns-keygen, contain DS records; the one that corresponds to the KSK would be stored in the parent zone if DNSSEC were fully deployed. The DS record can be generated from the KSK’s DNSKEY resource record, and some signed zones require it instead of or in addition to the KSK’s DNSKEY record. Here is what DS records look like:
 

[image: Image]
 

Ideally, the private key portion of any key pair would be kept off-line, or at least on a machine that is not on the public Internet. This precaution is impossible for dynamically updated zones and impractical for zone-signing keys, but it is perfectly reasonable for key-signing keys, which are presumably quite long-lived. Consider a hidden master server that is not accessible from outside for the ZSKs. Print out the private KSK or write it to a USB memory stick and then lock it in a safe until you need it again.
 

While you’re locking away your new private keys, it’s also a good time to enter the new keys into your key log file. You don’t need to include the keys themselves, just the IDs, algorithms, date, purpose, and so on.
 

The default signature validity periods are one month for RRSIG records (ZSK signatures of resource record sets) and three months for DNSKEY records (KSK signatures of ZSKs). Current best practice suggests ZSKs of length 1,024 that are used for three months to a year and KSKs of length 1,280 that are used for a year or two.33 Since the recommended key retention periods are longer than the default signature validity periods, you must either specify a longer validity period when signing zones or periodically re-sign the zones, even if the key has not changed.
 

Zone Signing
 

Now that you’ve got keys, you can sign your zones with the dnssec-signzone (BIND) or ldns-signzone (NSD) commands, which add RRSIG and NSEC or NSEC3 records for each resource record set. These commands read your original zone file and produce a separate, signed copy named zonefile.signed.
 

The BIND syntax is
 

dnssec-signzone [-o
zonename] [-N increment] [-k
KSKfile] zonefile [ZSKfile]
 

where zonename defaults to zonefile and the key files default to the filenames produced by dnssec-keygen as outlined above.
 

If you name your zone data files after the zones and maintain the names of the original key files, the command reduces to
 

dnssec-signzone [-N increment] zonefile
 

The -N increment flag automatically increments the serial number in the SOA record so that you can’t forget. You can also specify the value unixtime to update the serial number to the current UNIX time (seconds since January 1, 1970) or the value keep to prevent dnssec-signzone from modifying the original serial number. The serial number is incremented in the signed zone file but not in the original zone file.
 

Here’s a spelled-out example that uses the keys generated above:
 

[image: Image]
 

The signed file is sorted in alphabetical order and includes the DNSKEY records we added by hand and the RRSIG and NSEC records generated during signing. The zone’s serial number has been incremented.
 

If you generated your keys with the NSEC3RSASHA1 algorithm, you would sign the zone as above but with the -3
salt flag.
 

Some other useful options to dnssec-signzone are
 

• -g to generate DS record(s) to be included in the parent zone

 

• -l to generate DLV record(s) for use if the parent zone is not signed

 

• -s
start-time to set the time that the signatures become valid

 

• -e
end-time to set the time that the signatures expire

 

• -t to print statistics

 

The dates for signature validity can be expressed as absolute times in the format yyyymmddhhmmss or as a time relative to now in the format +N, where N is in seconds. The default signature validity period is from an hour in the past to 30 days in the future. Here is an example in which we specify that signatures should be valid until the end of the calendar year 2010:
 

$ dnssec-signzone -N increment -e 20101231235959 example.com
 

Under NSD, the syntax for signing a zone is
 

ldns-signzone [-o
zonename] zonename key [key …]
 

You can just list both keys and let ldns-signzone figure out which is the KSK and which is the ZSK. For example:
 

[image: Image]
 

As with dnssec-signzone, you can use the -e
yyyymmdd flag to set the expiration date for signatures. To generate NSEC3 records instead of NSEC records for signing gaps, use the flags -n -s
salt.
 

Signed zone files are typically four to ten times larger than the original zone, and all your nice logical ordering is lost. A line such as
 

[image: Image]
 

becomes several lines:
 

[image: Image]
 

In practical terms, a signed zone file is no longer human-readable, and it cannot be edited by hand because of the RRSIG and NSEC or NSEC3 records. No user-serviceable parts inside!
 

With the exception of DNSKEY records, each resource record set (resource records of the same type for the same name) gets one signature from the ZSK. DNSKEY resource records are signed by both the ZSK and the KSK, so they have two RRSIGs. The base-64 representation of a signature ends in however many equal signs are needed to make the length a multiple of 4.
 

For clarity in subsequent examples, we assume that the zone file is named for the zone and that the zone files and the key files are in the same directory. In real life it’s actually a good idea to specify the key files explicitly, especially when you are rolling over keys and need to be sure the command uses the right ones.
 

Once your zones are signed, all that remains is to point your name server at the signed versions of the zone files. If you’re using BIND, look for the zone statement that corresponds to each zone in named.conf and change the file parameter from example.com to example.com.signed. For NSD, the corresponding configuration file is nsd.conf and you’re looking for zonefile lines.
 

Finally, restart the name server daemon, telling it to reread its configuration file. For BIND, do sudo rndc reconfig followed by sudo rndc flush. For NSD, try sudo nsdc rebuild followed by sudo nsdc restart.
 

We are now serving a DNSSEC signed zone! To make changes, you can edit either the original unsigned zone or the signed zone and then re-sign the zone. Editing a signed zone is something of a logistical nightmare, but it is much quicker than resigning the entire zone. Be sure to remove the RRSIG records that correspond to any records that you change. You probably want to make identical changes to the unsigned zone to avoid version skew.
 

If you pass a signed zone as the argument to dnssec-signzone or ldns-signzone, any unsigned records are signed and the signatures of any records that are close to expiring are renewed. “Close to expiring” is defined as being three-quarters of the way through the validity period. Re-signing typically results in changes, so make sure you increment the zone’s serial number by hand or, with BIND, use the -N increment clause on the dnssec-signzone command line to automatically increment the zone’s serial number.
 

That’s all there is to the local part of DNSSEC configuration. What’s left is the thorny problem of getting our island of secure DNS connected to other trusted, signed parts of the DNS hierarchy. We either need to get our DS records into the signed parent zone, or we need to use the domain lookaside validation work-around. The next sections cover these tasks.
 

The DNSSEC Chain of Trust
 

Continuing with our example DNSSEC setup, example.com is now signed and its name servers have DNSSEC enabled. This means that when querying they use EDNS0, the extended DNS protocol, and set the DNSSEC-aware option in the DNS header of the packet. When answering a query that arrives with that bit set, they include the signature data with their answer.
 

A client that receives signed answers can validate the response by checking the record’s signatures with the appropriate public key. But it gets this key from the zone’s own DNSKEY record, which is rather suspicious if you think about it. What’s to stop an impostor from serving up both fake records and a fake public key that validates them?
 

There are several possible answers to this question. Your site must implement at least one of them; otherwise, all your DNSSEC work is for naught.
 

The canonical solution is that you give your parent zone a DS record to include in its zone file. By virtue of coming from the parent zone, the DS record is certified by the parent’s private key. If the client trusts your parent zone, it should then trust that the parent zone’s DS record accurately reflects your zone’s public key.
 

The parent zone is in turn certified by its parent, and so on back to the root. When DNSSEC is fully deployed, the only key you will need to know a priori is the public key used to sign the root, which can be put in the root hints file that bootstraps the whole DNS process.
 

If you’re lucky enough to have a signed parent, just give your parent’s administrators a DS record and the key-signing DNSKEY used to sign it.34 The -g flag to BIND’s dnssec-signzone generates files called dsset-domain and keyset-domain that can be securely delivered to your parent to be added directly to the parent’s zone file. Similarly, NSD’s ldns-keygen produces the required DS record in the .ds file and the DNSKEY record in the .key file as the keys are generated. Note that you must publish your DNSKEY record in your own zone before your parent installs the corresponding DS record.
 

If your parent zone isn’t signed, you must provide some other way for the outside world to verify that the public key published in your DNS is really yours. There are three different ways to do this:
 

• Use one or more of the trusted anchor repositories (TAR) to publish your public key; for example, the one from SecSpider. To use TAR keys on your own servers, get the key lists from SecSpider, from the ITAR run by the IANA (contains only TLDs), or from the RIPE-NCC TAR (contains only their own zones, mostly European TLDs and reverse zones). Put these in a trusted-keys clause in your name server config file.

 

• Use a domain lookaside validation server such as that provided by ISC, the Internet Systems Consortium. This service essentially makes isc.org your adoptive DNS parent. It’s easy and free; see isc.org/ops/dlv. Other DLV servers exist, but you can use only one, and ISC’s is well established and well run.

 

• Use Vantages (vantage-points.org), a daemon that partners with copies of itself that belong to friends you trust, thus forming a social network of daemons who can obtain keys independently from different sites on the Internet and compare their results to decide if the keys are authentic.

 

We describe the DLV solution in more detail in the next section. But keep in mind that all three of these options are interim solutions designed to help with incremental DNSSEC deployment. If your parent zone is already signed, don’t even consider these options. Just give your parent the appropriate DS record.
 

DLV: Domain Lookaside Validation
 

A DNSSEC-aware caching server that receives a signed query response first verifies that the record signatures match the domain’s public key as specified by its DNSKEY record. The client then attempts to validate the key itself by looking in the parent zone for a DS record. If no DS record is available, the client looks for a DLV record in the original domain; that record redirects to dlv.isc.org or whichever DLV server is acting as the zone’s foster parent. Once the client gets hold of the DLV record from dlv.isc.org, it can verify the chain of trust. Setting up DLV service for your zone is therefore a matter of generating the appropriate DLV records and putting them in the right places.
 

A DLV record is really just a DS record in disguise. The record type is different, but the body of the record is the same. The record’s name field is also modified to place the record into the DLV provider’s zone. For example, example.com might become example.com.dlv.isc.org.
 

In BIND, dnssec-signzone -l (lowercase letter L) generates the DLV record:
 

$ sudo dnssec-signzone -l dlv.isc.org example.com
 

This command re-signs the zone and writes a file called dlvset-example.com. containing a DLV record ready for the DLV provider’s zone.
 

NSD/Unbound users must generate the DLV record themselves. Copy the .ds file created when you generated your KSK key and change the record type from DS to DLV. Then adjust the name field. For example, change
 

[image: Image]
 

to
 

[image: Image]
 

The changes are shown in bold.
 

Once you’ve collected the DLV record and the key files used to sign your zone, go to the dlv.isc.org web page and follow the directions to have isc.org be your DLV server. ISC makes you jump through some hoops to verify that you own your domain, are authorized to manage it, and have provided its public key securely. But the process is not difficult.
 

ISC will give you some new lines for your trusted-keys clause in named.conf:
 

[image: Image]
 

BIND users must also add a line to the named.conf options section:
 

dnssec-lookaside “.” trusted-anchor “dlv.isc.org” ;
 

For NSD, add the DLV record to the zone and re-sign the zone. To enable DLV validation in unbound, get dlv.isc.org’s KSK DNSKEY record from the ISC web site or from SecSpider and verify its signature. (SecSpider verifies that keys are consistent as seen from multiple locations; see page 652.) Don’t just dig for the key, as that’s insecure until you have DNSSEC deployed. Put the key in a file in unbound’s working directory, say, dlv.isc.org.key, and add the line
 

dlv-anchor-file: "dlv.isc.org.key"
 

to your unbound.conf file in the server section.
 

DNSSEC Key Rollover
 

Key rollover has always been a thorny issue in DNSSEC. In fact, the original specifications were changed specifically to address the issue of the communication needed between parent and child zones whenever keys were created, changed, or deleted. The new specifications are called DNSSEC-bis.
 

ZSK rollover is relatively straightforward and does not involve your parent zone or any trust anchor issues. The only tricky part is the timing. Keys have an expiration time, so rollover must occur well before that. However, they also have a TTL, defined in the zone file. For the sake of illustration, let’s assume that the TTL is one day and that keys don’t expire for another week. The steps involved are then
 

• Generate a new ZSK.

 

• Include it in the zone file.

 

• Sign or re-sign the zone with the KSK and the old ZSK.

 

• Signal the name server to reload the zone; the new key is now there.

 

• Wait 24 hours (the TTL); now everyone has both the old and new keys.

 

• Sign the zone again with the KSK and the new ZSK.

 

• Signal the name server to reload the zone.

 

• Wait another 24 hours; now everyone has the new signed zone.

 

• Remove the old ZSK at your leisure, e.g., the next time the zone changes.

 

This scheme is called prepublishing. Needless to say, you must start the process at least two TTLs before the point at which you need to have everyone using the new key. The waiting periods guarantee that any site with cached values always has a cached key that corresponds to the cached data.
 

Another variable that affects this process is the time it takes for your slowest slave server to update its copy of your zone when notified by the master server. So don’t wait until the last minute to start your rollover process or to re-sign zones whose signatures are expiring. Expired signatures do not validate, so sites that verify DNSSEC signatures will not be able to do DNS lookups for your domain.
 

The mechanism to roll over a KSK is called double signing and it’s also pretty straightforward. However, you will need to communicate your new DS record to your parent or communicate a DLV record to your surrogate parent. Make sure you have positive acknowledgement from the parent or trust anchor repository before you switch to just the new key. Here are the steps:
 

• Create a new KSK.

 

• Include it in the zone file.

 

• Sign the zone with both old and new KSKs and the ZSK.

 

• Signal the name server to reload the zone.

 

• Wait 24 hours (the TTL); now everyone has the new key.

 

• Notify anyone with a trust anchor for you of the new KSK value.

 

• After confirmation, delete the old KSK record from the zone.

 

• Re-sign the zone with the new KSK and ZSK.

 

DNSSEC Tools
 

Four tool sets for dealing with DNSSEC deployment and testing exist in addition to those that come with the BIND and NSD/Unbound distributions: ldns, Sparta, RIPE, and Vantages. At least two more sets are under development: OpenDNSSEC (opendnssec.org) and DNSSHIM. OpenDNSSEC hopes to manage all the mess and complexity that comes with DNSSEC automatically, which sounds wonderful. DNSSHIM is an authoritative DNS server implementation with automatic configuration of slaves and DNSSEC goo written in Java and Python.
 

ldns Tools, nlnetlabs.nl/projects/ldns
 

ldns, from the folks at NLnet Labs, is a library of routines for writing DNS tools and a set of example programs that use the library. We list the tools below along with a brief statement of what each one does. The tools are all in the examples directory except for drill, which has its own directory in the distribution. Man pages can be found with the commands. The top-level README file gives very brief installation instructions.
 

• ldns-keygen generates TSIG keys and DNSSEC key pairs.

 

• ldns-signzone signs a zone file with either NSEC or NSEC3.

 

• ldns-verify-zone makes sure RRSIG, NSEC, and NSEC3 records are OK.

 

• ldns-key2ds converts a DNSKEY record to a DS record.

 

• ldns-rrsig prints out human-readable expiration dates from RRSIGs.

 

• ldns-nsec3-hash prints the NSEC3 hash for a name.

 

• ldns-revoke sets the revoke flag on a DNSKEY key RR (RFC5011).

 

• ldns-chaos shows the name server ID info stored in the CHAOS class.

 

• ldns-keyfetcher fetches DNSSEC public keys for zones.

 

• ldns-read-zone reads a zone and prints it out in various formats.

 

• ldns-update sends a dynamic update packet.

 

• ldns-walk walks through a zone, using the DNSSEC NSEC records.

 

• ldns-zsplit splits a zone into chunks so it can be signed in parallel.

 

• ldns-zcat reassembles zone files split with ldns-zsplit.

 

• ldns-compare-zones shows the differences between two zone files.

 

• ldns-notify makes a zone’s slave servers check for updates.

 

• ldns-dpa analyzes DNS packets in tcpdump trace files.

 

Many of these tools are very simple and do only one tiny DNS chore. They were written as examples of using the ldns library and demonstrate how simple the code becomes when the library does all the hard bits for you.
 

Sparta Tools, Dnssec-Tools.Org
 

The Sparta tool set builds on the BIND tools for DNSSEC and includes the following commands:
 

• zonesigner generates keys and signs zones.

 

• donuts analyzes zone files and finds errors and inconsistencies.

 

• donutsd runs donuts at intervals and warns of problems.

 

• rollerd, rollctl, and rollinit automate key rollovers using the prepublishing scheme for ZSKs and the double signature method for KSKs. See page 662 for the details of these schemes.

 

• trustman manages trust anchors and includes an implementation of RFC5011 key rollover.

 

• dnspktflow traces the flow of DNS packets during a query/response sequence captured by tcpdump and produces a cool diagram.

 

• mapper maps your zone files, showing secure and insecure portions.

 

• validate is a command-line signature validation tool.

 

The web site contains good documentation and tutorials for all of these tools. The source code is available for download and is covered by the BSD license.
 

Sparta maintains DNSSEC libraries written in Perl that are distributed through CPAN. It also distributes patches to several popular software packages (including Firefox, Thunderbird, Postfix, sendmail, libSPF, and OpenSSH) to make them more DNSSEC aware.
 

RIPE Tools, ripe.net
 

RIPE’s tools act as a front end to BIND’s DNSSEC tools and focus on key management. They have friendlier messages as they run and package up the many arguments and commands into more intuitive forms.
 

Vantages Tools, Vantage-Points.Org
 

Vantages is a framework for distributed monitoring that is based at Colorado State University. Its current focus is on operational issues related to DNSSEC, and Vantages tools can be used to help maintain your DNSSEC deployment.
 

The project’s chief product is vantaged, a daemon that gathers DNSKEY records and compares their values with those obtained by other vantageds around the Internet. If lots of vantageds get the same answer, the key is likely to be accurate and not spoofed; a spoofer would have to compromise all sites running the Vantage software to get this result. Vantages collects keys from DNS, HTTP, and HTTPS sources and classifies them into one of four states: confirmed, provisional, unknown, and conflict. It adds confirmed keys to your trusted-keys statement in named.conf.
 

Vantages has some additional tools as well:
 

• d-sync monitors the consistency of DS record keys between parent and child zones, which is especially useful during key rollovers.

 

• dnsfunnel determines the path MTU between you and any other site. It looks a bit like traceroute.

 

• dnskey-grab gets the DNSKEYs for a zone from its authoritative servers.

 

Debugging DNSSEC
 

DNSSEC has been designed to interoperate with both signed and unsigned zones, and with both DNSSEC-aware and DNSSEC-oblivious name servers. So incremental deployment is possible, and it usually just works. But not always.
 

DNSSEC is a distributed system with lots of moving parts. Authoritative servers, client resolvers, and the paths between them can all experience problems. A problem seen locally may originate far away, so tools like SecSpider and Vantages that monitor the distributed state of the system can be very helpful. Those tools, the utilities mentioned in the previous section, and your name server log files are your primary weapons on the debugging front.
 

Make sure that you route the DNSSEC logging category in named.conf to a file on the local machine. It’s helpful to separate out the DNSSEC-related messages so that you don’t route any other logging categories to this file. Here is an example logging specification for named:
 

[image: Image]
 

In BIND you must set the debugging level to 3 or higher to see the validation steps taken by a recursive BIND server trying to validate a signature. This logging level produces about two pages of logging output per signature verified. If you are monitoring a busy server, log data from multiple queries will likely be interleaved. Sorting through the mess can be challenging and tedious.
 

For NSD and Unbound, set the verbosity level higher than the defaults (0 and 1, respectively) in their config files or, for Unbound, just adjust the verbosity on the fly with the verbosity
level flag to unbound-control. Like BIND, Unbound must be at log level 3 to show the steps for signature validation.
 

Once things are working OK, set Unbound’s val-log-level to 1 to print a one-line error message for each signature that fails to verify. This level of detail helps you keep track of sites that are giving you trouble. You can further explore the failures with either the signature chase option to drill or with unbound-host -v -d (or even -dddd to get lots of debugging info) on the problem name. You must pass both drill and unbound-host the relevant public keys.
 

drill has two particularly useful flags: -T to trace the chain of trust from the root to a specified host, and -S to chase the signatures from a specified host back to the root. Here’s some mocked-up sample output from drill -S snitched from the DNSSEC HOWTO at NLnet Labs:
 

[image: Image]
 

If a validating name server cannot verify a signature, it returns a SERVFAIL indication. The underlying problem could be a configuration error by someone at one of the zones in the chain of trust, bogus data from an interloper, or a problem in the setup of the validating recursive server itself. Try drill to chase the signatures along the chain of trust and see where the problem is. If the signatures all verify, then try querying the troublesome site with dig and then with dig +cd. (The cd flag turns off validation.) Try this at each of the zones in the chain of trust to see if you can find the problem. You can work your way up or down the chain of trust. The likely result will be an expired trust anchor or expired signatures.
 
  


17.14 Microsoft and DNS
 

For years, ISC and BIND struggled to interoperate with Microsoft’s DNS tools and Active Directory product. Microsoft was accused of being intentionally incompatible with the standards and of not documenting the protocol extensions they were using. However, it now appears that Microsoft was not really trying to be incompatible; they were just slightly incompetent and were working with buggy software (their ASN.1 encoder and parser) that tweaked the packets just enough so that BIND could not make sense of them. Now, all is well. The bugs have been fixed, and both BIND and Microsoft follow the IETF protocols and can interoperate. That’s the good news.
 

The bad news is that Active Directory is tightly integrated with Kerberos and LDAP and follows its own twisty little passages (all alike!). Replacing any of the pieces—for example, the Kerberos key distribution center—with a comparable open source implementation is doomed to failure. BIND can do authentication with Active Directory by using GSS-TSIG, but authorization is still nearly impossible because AD stores everything in an LDAP database from hell.
 

See Chapter 30, Cooperating with Windows, for hints on peaceful coexistence with Active Directory. It starts on page 1135.
 

17.15 Testing and Debugging
 

Both BIND and NSD/Unbound provide three basic debugging tools: logging, a control program, and a command-line query tool. BIND’s fleet is the most mature, but since BIND is also the most complicated, things even out.
 

Logging in BIND
 

named’s logging facilities are flexible enough to make your hair stand on end. BIND originally just used syslog to report error messages and anomalies. Recent versions generalize the syslog concepts by adding another layer of indirection and support for logging directly to files. Before we dive in, let’s take a look at the mini-glossary of BIND logging terms shown in Table 17.13 on the next page.
 

See Chapter 11 for more information about syslog.

 

You configure BIND logging with a logging statement in named.conf. You first define channels, the possible destinations for messages. You then tell various categories of message to go to particular channels.
 

Table 17.13 A BIND logging lexicon
 

[image: Image]
 

When a message is generated, it is assigned a category, a module, and a severity at its point of origin. It is then distributed to all the channels associated with its category and module. Each channel has a severity filter that tells what severity level a message must have in order to get through. Channels that lead to syslog are also filtered according to the rules in /etc/syslog.conf.
 

Here’s the outline of a logging statement:
 

[image: Image]
 

Channels
 

A channel_def looks slightly different depending on whether the channel is a file channel or a syslog channel. You must choose file or syslog for each channel; a channel can’t be both at the same time.
 

[image: Image]
 

For a file channel, numvers tells how many backup versions of a file to keep, and sizespec specifies how large the file should be allowed to grow (examples: 2048, 100k, 20m, unlimited, default) before it is automatically rotated. If you name a file channel mylog, the rotated versions are mylog.0, mylog.1, and so on.
 

See page 346 for a list of syslog facility names.

 

In the syslog case, facility specifies what syslog facility name is used to log the message. It can be any standard facility. In practice, only daemon and local0 through local7 are reasonable choices.
 

The rest of the statements in a channel_def are optional. severity can have the values (in descending order) critical, error, warning, notice, info, or debug (with an optional numeric level, e.g., severity debug 3). The value dynamic is also recognized and matches the server’s current debug level.
 

The various print options add or suppress message prefixes. Syslog prepends the time and reporting host to each message logged, but not the severity or the category. The source filename (module) that generated the message is also available as a print option. It makes sense to enable print-time only for file channels—syslog adds its own time stamps, so there’s no need to duplicate them.
 

The four channels listed in Table 17.14 are predefined by default. These defaults should be fine for most installations.
 

Table 17.14 Predefined logging channels in BIND
 

[image: Image]
 

Categories
 

Categories are determined by the programmer at the time the code is written. They organize log messages by topic or functionality instead of just by severity. Table 17.15 on the next page shows the current list of message categories.
 

Log Messages
 

The default logging configuration is:
 

[image: Image]
 

You should watch the log files when you make major changes to BIND and perhaps increase the logging level. Later, reconfigure to preserve only serious messages once you have verified that named is stable.
 

Query logging can be quite educational. You can verify that your allow clauses are working, see who is querying you, identify broken clients, etc. It’s a good check to perform after major reconfigurations, especially if you have a good sense of what your query load looked like before the changes.
 

Table 17.15 BIND logging categories
 

[image: Image]
 

To start query logging, just direct the queries category to a channel. Writing to syslog is less efficient than writing directly to a file, so use a file channel on a local disk when you are logging every query. Have lots of disk space and be ready to turn query logging off once you obtain enough data. (rndc querylog toggles query logging on and off dynamically.)
 

Views can be pesky to debug, but fortunately, the view that matched a particular query is logged along with the query.
 

Some common log messages are listed below:
 

• Lame server resolving xxx. If you get this message about one of your own zones, you have configured something incorrectly. The message is harmless if it’s about some zone out on the Internet; it’s someone else’s problem. A good one to throw away by directing it to the null channel.

 

• … query (cache) xxx denied. This can be either misconfiguration of the remote site, abuse, or a case in which someone has delegated a zone to you, but you have not configured it.

 

• Too many timeouts resolving xxx: disabling EDNS. This message can result from a broken firewall not admitting UDP packets over 512 bytes long or not admitting fragments. It can also indicate problems at the specified host. Verify that the problem is not your firewall and consider redirecting these messages to the null channel.

 

• Unexpected RCODE (SERVFAIL) resolving xxx. This can be an attack or, more likely, a sign of something repeatedly querying a lame zone.

 

• Bad referral. This message indicates a miscommunication among a zone’s name servers.

 

• Not authoritative for. A slave server is unable to get authoritative data for a zone. Perhaps it’s pointing to the wrong master, or perhaps the master had trouble loading the zone in question.

 

• Rejected zone. named rejected a zone file because it contained errors.

 

• No NS RRs found. A zone file did not include NS records after the SOA record. It could be that the records are missing, or it could be that they don’t start with a tab or other whitespace. In the latter case, the records are not attached to the zone of the SOA record and are therefore misinterpreted.

 

• No default TTL set. The preferred way to set the default TTL for resource records is with a $TTL directive at the top of the zone file. This error message indicates that the $TTL is missing; it is required in BIND 9.

 

• No root name server for class. Your server is having trouble finding the root name servers. Check your hints file and the server’s Internet connectivity.

 

• Address already in use. The port on which named wants to run is already being used by another process, probably another copy of named. If you don’t see another named around, it might have crashed and left an rndc control socket open that you’ll have to track down and remove. A good way to fix the problem is to stop the named process with rndc and then restart named:

 

[image: Image]
 

• … updating zone xxx: update unsuccessful. A dynamic update for a zone was attempted but refused, most likely because of the allow-update or update-policy clause in named.conf for this zone. This is a common error message and often is caused by misconfigured Windows boxes.

 

Sample BIND Logging Configuration
 

The following snippet from the ISC named.conf file for a busy TLD name server illustrates a comprehensive logging regimen.
 

[image: Image]
 

Debug Levels in BIND
 

named debug levels are indicated by integers from 0 to 100. The higher the number, the more verbose the output. Level 0 turns debugging off. Levels 1 and 2 are fine for debugging your configuration and database. Levels beyond about 4 are appropriate for the maintainers of the code.
 

You invoke debugging on the named command line with the -d flag. For example,
 

$ sudo named -d2
 

would start named at debug level 2. By default, debugging information is written to the file named.run in the current working directory from which named is started. The named.run file grows very fast, so don’t go out for a beer while debugging or you will have bigger problems when you return.
 

You can also turn on debugging while named is running with rndc trace, which increments the debug level by 1, or with rndc trace
level, which sets the debug level to the value specified. rndc notrace turns debugging off completely. You can also enable debugging by defining a logging channel that includes a severity specification such as
 

severity debug 3;
 

which sends all debugging messages up to level 3 to that particular channel. Other lines in the channel definition specify the destination of those debugging messages. The higher the severity level, the more information is logged.
 

Watching the logs or the debugging output illustrates how often DNS is miscon-figured in the real world. That pesky little dot at the end of names (or rather, the lack thereof) accounts for an alarming amount of DNS traffic. The dot is required at the end of each fully qualified domain name.
 

Logging in NSD/Unbound
 

Logging in NSD and Unbound is simple in comparison to BIND. According to NSD’s doc/README file, “NSD doesn’t do any logging.” What that really means is that NSD does not do any DNS traffic logging or monitoring; however, it does log important software events to syslog.
 

By default, log messages go to standard error and to syslog with facility daemon. However, if the logfile attribute of the server statement in either unbound.conf or nsd.conf is set, then logging goes to the specified file.
 

The amount of data logged (aside from errors, which are always included) is controlled by a verbosity level that you set in the config files. In the case of unbound, you can also set the verbosity level as a command-line option. Verbosity varies from 0–5; the default levels are 0 for nsd and 1 for unbound.
 

It can be a bit hard to get a handle on what the various verbosity levels mean for nsd. They map to syslog roughly as follows:
 

• Level 3 – syslog severity “error”

 

• Level 4 – syslog severity “warning”

 

• Level 5 – syslog severity “notice”

 

• Level 6 – syslog severity “info”

 

The meanings of the levels for unbound are documented in the config file’s man page as follows:
 

• Level 0 – no information logged, only errors

 

• Level 1 – operational information

 

• Level 2 – detailed operational information

 

• Level 3 – query-level information on a per-query basis

 

• Level 4 – algorithm-level information

 

• Level 5 – cache misses and client identification

 

You can invoke nsd with the -d flag to turn on debugging mode. In this mode, nsd stays in the foreground instead of forking and exiting. This behavior is equivalent to what you get if you set debug-mode: yes in the server clause of nsd.conf. If you recompile nsd with DEBUG defined to a particular level, even more debugging information becomes available, but it’s mostly of value to developers.
 

unbound also has a -d flag to turn on debugging mode. You can boost the verbosity of the debugging information with the -v flag; for more, try -v -v. Debugging output is separate from the verbosity of logging information set in the config file. You can configure additional logging to help debug DNSSEC signature validation issues; see page 666.
 

Name Server Control Programs
 

All three of our name servers come with a control program: nsdc controls nsd, rndc controls named, and unbound-control controls unbound. nsdc works on the local machine only, but rndc and unbound-control can work across the Internet if you set them up that way.
 

rndc uses a network socket to communicate with named and uses TSIG authentication for security. unbound-control uses SSL/TLS, and nsdc uses signals.
 

Using BIND’s rndc
 

Table 17.16 shows some of the options accepted by rndc. Typing rndc with no arguments gives a list of available commands and a short description of what they do. Earlier incantations of rndc used signals as nsdc does, but with over 25 commands, the BIND folks ran out of signals long ago. Commands that produce files put them in whatever directory is specified as named’s home in named.conf.
 

rndc reload makes named reread its configuration file and reload zone files. The reload
zone command is handy when only one zone has changed and you don’t want to reload all the zones, especially on a busy server. You can also specify a class and view to reload only the selected view of the zone’s data.
 

Note that rndc reload is not sufficient to add a completely new zone; that requires named to read both the named.conf file and the new zone file. For new zones, use rndc reconfig, which rereads the config file and loads any new zones without disturbing existing zones.
 

rndc freeze
zone stops dynamic updates and reconciles the journal of dynamic updates to the data files. After freezing the zone, you can edit the zone data by hand. As long as the zone is frozen, dynamic updates are refused. Once you’ve finished editing, use rndc thaw
zone to start accepting dynamic updates again.
 

rndc dumpdb makes named dump its database to named_dump.db. The dump file is big and includes not only local data but also any cached data the name server has accumulated.
 

Your versions of named and rndc must match or you will get an error message about a protocol version mismatch. They’re normally installed together on individual machines, but version skew can be an issue when you are trying to control a named on another computer.
 

Table 17.16 rndc commandsa
 

[image: Image]
 

Using NSD’s Nsdc
 

NSD’s control program, nsdc, is a shell script that uses signals to control the behavior of nsd and zonec, its zone precompiler companion. Because nsdc must be run on the same machine as nsd, keys are not needed.
 

nsdc has a smaller repertoire of commands than rndc, as shown in Table 17.17 on the next page. When run, nsdc reads the nsd.conf configuration file and uses the nsd-checkconf utility to verify that there are no syntax errors.
 

Using Unbound-Control
 

unbound-control talks to the unbound name server through TLS, the transport layer security protocol (formerly known as SSL), which uses a key and a certificate for each end. These keys are configured in the remote-control section of the config file unbound.conf. More than 20 commands can be given remotely to modify the server’s behavior. Rather than list all possible commands, we refer you to the man page for unbound-control, where they are well documented.
 

Table 17.17 nsdc commands
 

[image: Image]
 

Among the 20 are the usual start, stop, and reread types, but also several options that allow fine-grained control of the cache and the local data zones that have been configured. Options such as forwarding can be configured or modified on the fly. You can dump or reload the cache as well.
 

Name Server Statistics
 

Each of our name servers collects statistics with varying granularity and can dump them to a file on request. Several options are configurable: what data to collect, where to write it, how often to update it, and so on. BIND’s new statistics channel is the most flexible mechanism. NSD’s attitude is that it’s a sleek, speedy name server and that if you want statistics, another program should gather them and let NSD get on with it primary job. unbound is somewhere in the middle.
 

BIND and unbound can both send their statistics to another program for presentation and graphing. BIND uses the new statistics-channels statement (page 612) and XML. unbound uses plug-ins in the contrib directory to connect to either Munin or Cacti (see page 886).
 

named maintains summary information that can be dumped to named.stats in named’s working directory on receipt of a nudge from rndc:
 

$ sudo rndc stats
 

Here’s a small snippet of the output from a server in the vix.com domain. Lots has been left out; about 20 groups of data are shown, but we include only two:
 

[image: Image]
 

The statistics show the success vs. failure of lookups and categorize the various kinds of errors. This server received 10 million queries, with the majority of the query types being AAAA (the IPv6 address type) and TXT (perhaps for SPF or DKIM records). The logs showed quite a bit of bogus activity on this server (e.g., unauthorized zone transfer requests). Perhaps the unusually high number of AAAA and TXT record queries is part of this activity—A records are typically the most queried-for.
 

If named has been compiled with the XML library, the statistics-channels statement in named.conf sets up a real-time statistics feed that you can monitor with a web browser.
 

Debugging with Dig
 

Four command-line tools query the DNS database: nslookup, dig, host, and drill. The first three are distributed with BIND, and drill comes with Unbound/ldns. nslookup and host are simple and have pretty output, but you need dig or drill to get all the details. drill is better for following DNSSEC signature chains. The name drill is a pun on dig (the domain information groper), implying you can get even more info from DNS with drill than you can with dig.
 

By default, dig and drill query the name servers configured in /etc/resolv.conf. The @nameserver argument makes either command query a specific name server. The ability to query a particular server lets you check to be sure that any changes you make to a zone have been propagated to secondary servers and to the outside world. This feature is especially useful if you use views (split DNS) and need to verify that you have configured them correctly.
 

If you specify a record type, dig and drill query for that type only. The pseudo-type ANY is a bit sneaky: instead of returning all data associated with a name, it returns all cached data associated with the name. So, to get all records, you might have to do dig
domain
NS followed by dig @ns1.domain domain
ANY. (Authoritative data counts as cached in this context.)
 

dig has about 50 options and drill about half that many. Either command accepts an -h flag to list the various options. (You’ll probably want to pipe the output through less.) For both tools, -x reverses the bytes of an IP address and does a reverse query. The +trace flag to dig or -T to drill shows the iterative steps in the resolution process from the roots down.
 

We have omitted samples of dig and drill output, since we have used them throughout this chapter to illustrate various DNS issues.
 

dig and drill include the notation aa in the output flags if an answer is authoritative (i.e., it comes directly from a master or slave server of that zone). The code ad indicates that an answer is “authentic” in the DNSSEC sense. When testing a new configuration, be sure that you look up data for both local and remote hosts. If you can access a host by IP address but not by name, DNS is probably the culprit.
 

Lame Delegations
 

When you apply for a domain name, you are asking for a part of the DNS naming tree to be delegated to your name servers and your DNS administrator. If you never use the domain or you change the name servers or their IP addresses without coordinating with your parent zone, a “lame delegation” results.
 

The effects of a lame delegation can be very bad. If one of your servers is lame, your DNS system is less efficient. If all the name servers for a domain are lame, no one can reach you. All queries start at the root unless answers are cached, so lame servers and software that doesn’t do negative caching of SERVFAIL errors increase the load of everyone on the path from the root to the lame domain.
 

There are two ways to find lame delegations: by reviewing the log files and by using a tool called doc, short for “domain obscenity control.” We look at some doc examples in the next section, but let’s first review some log entries.
 

Many sites point the lame-servers logging channel to /dev/null and don’t bother fretting about other people’s lame delegations. That’s fine as long as your own domain is squeaky clean and is not itself a source or victim of lame delegations. One lame server slows DNS down; if all servers are lame, your domain is essentially off the air.
 

Here is a logging example. We have truncated the output to tame dig’s verbosity; the +short flag to dig limits the output even more.
 

[image: Image]
 

Digging for name servers for w3w3.com at one of the .com gTLD servers yields
 

[image: Image]
 

But if we now ask each of these servers in turn that same question, we get an answer from ns0 and no answer from ns1:
 

[image: Image]
 

The name server ns1.nameservices.net has been delegated responsibility for w3w3.com by the .com servers, but it does not accept that responsibility. It is mis-configured, resulting in a lame delegation. Clients trying to look up w3w3.com will get slow service. If w3w3.com is paying nameservices.net for DNS service, they deserve a refund!
 

Sometimes when you dig at an authoritative server in an attempt to find lameness, dig returns no information. Try the query again with the +norecurse flag so that you can see exactly what the server in question knows.
 

DNS Sanity Checking Tools
 

Several tools check various aspects of your DNS environment. named-checkconf and named-checkzone are shipped with BIND 9; they check the basic syntax (not semantics) of the named.conf file and of your zone files. NSD and Unbound include similar tools called nsd-checkconf and unbound-checkconf.
 

The original DNS checking tool is nslint, written by Craig Leres when he was at Lawrence Berkeley Labs. doc, the domain obscenity control program, which checks delegations and finds inconsistencies and errors in your deployed DNS, is discussed in more detail below. The tool lamers (from the same web site as doc) rifles through log files and sends email to the DNS administrators of offending sites telling them that they have a lame delegation and describing how to fix the problem. DDT by Jorge Frazao and Artur Romao debugs cached data.
 

dnswalk traverses your delegation tree and identifies inconsistencies between parent and child or between forward and reverse records. It also finds missing dots, unnecessary glue records, etc. It is a general DNS hygiene nag. dnswalk needs to be able to do zone transfers in order to work its magic.
 

Several DNSSEC debugging and management tools are described on page 663.
 

doc is a C shell script. It’s currently maintained by Brad Knowles, from whose web site it can be downloaded: shub-internet.org/brad/dns (note: “shub”, not “shrub”). If you plan to put doc in your path or run it from cron, you must edit the script and set the auxd variable to point to the installation directory.
 

doc checks delegations by making repeated calls to dig. It reports on inconsistencies, errors, and other problems related to a particular domain name. Its screen output summarizes the issues that it finds. It also produces a verbose log file in the current directory with details.
 

doc uses the local name server to do its digging. If your domain uses BIND’s view statement and includes RFC1918 private addresses in the internal view, running doc on the internal view confuses doc and makes it report spurious errors. If you use views, run doc from outside the domain so that it sees what external users see.
 

Here’s what doc has to say about w3w3.com, the lame domain above:
 

[image: Image]
 

doc puts the details of the testing and the errors found (together, over 600 lines) in its log file, in this case log.w3w3.com.:
 

ERROR: no SOA record for w3w3.com. from ns1.nameservices.net.
 

doc didn’t label w3w3.com as a “lame delegation” per se, but that’s the underlying problem it has identified. Following the NS records from the parent zone, it checked with ns1.nameservices.net to be sure it was acting as an authoritative name server for w3w3.com; it wasn’t.
 

If you manage a domain that includes subdomains (or don’t trust the managers of your parent domain), consider running doc from cron once a week to verify that all delegations relating to your domain are correct.
 

Performance Issues
 

BIND 9’s performance on multiprocessor architectures is not as speedy as its developers might have hoped, but several root servers use BIND 9 and happily handle tens of thousands of queries per second. The performance is probably more than adequate for most sites. But NSD’s and Unbound’s performance is even better, especially for DNSSEC signed zones.
 

We’ve said this multiple times already, but it bears repeating: set your TTLs to reasonable values—weeks or days, not minutes or seconds. The use of short TTLs punishes both you (because you must constantly re-serve the same records) and your web clients (because they must constantly fetch them). It also provides a potential attacker with a cache poisoning opportunity. Some name servers selectively ignore TTLs they don’t like (values that seem unreasonably long or unreasonably short).
 

Paging degrades server performance nonlinearly, so don’t be stingy with memory on hosts that run name servers. You’ll need to wait about a week for the memory footprint to stabilize for recursive servers; see page 571.
 

To estimate the memory nsd would need to serve your authoritative data, fill in the web form at nlnetlabs.net/nsd/nsd-memsize.html. Neat!
 

Use forwarders. See page 606 for a discussion of forwarding.
 

The init scripts that start named on many systems provide extra entry points (e.g., reload) that are intended for use by system administrators. But it’s easier and more cross-platform efficient to use rndc instead.
 

See page 1188 for more information about inetd.

 

Do not use inetd or xinetd to manage a name server; it restarts the server every time it’s needed, dramatically slowing response times and preventing any useful cache from being developed.
 

17.16 Vendor Specifics
 

This section describes the status of name service software on our various vendors’ platforms. Everyone ships BIND, although you may have to specify that you want it installed when you install the operating system or install it as a package later.
 

Linux distributions are for the most part far more agile at upgrading to recent releases of BIND than their UNIX cohorts. Even so, name service is crucially important. You might want to make a policy of getting the latest source distribution and building it yourself rather than waiting for packages to become available.
 

Ubuntu and Red Hat have the entire NSD/Unbound suite available in the form of packages; SUSE has only Unbound in their official repositories. Currently, all of the packaged versions are a bit out of date, so as with BIND, you might want to just get the latest source code from nlnetlabs.nl and build it yourself.
 

In this section, we include pointers to the configuration files, the release of BIND on which each vendor’s software is based, and information about how to integrate BIND with other sources of administrative data such as flat files or NIS. A more complete discussion of this last topic is presented in Chapter 19. In particular, refer to the material beginning on page 739.
 

See page 87 for more information about system startup scripts.

 

We also include pointers to the startup scripts that should execute at boot time to start the name server. If name service dies, so does your network, your email, your web site—everything. Some sites use a keep-running script such as the nanny script in the BIND distribution.
 

Specifics for Linux
 

[image: Image] BIND packages for Linux install a startup script for named that’s run through init: /etc/init.d/bind9 for Ubuntu and /etc/init.d/named for RHEL and SUSE.
 

Linux’s named packages install things in all the usual places. Table 17.18 shows the details. Red Hat has some extras that interact with their Network Manager tool through a -D command-line flag to named. Details can be found in the doc/README-DBUS file in the Red Hat BIND package.
 

Table 17.18 BIND files in Linux
 

[image: Image]
 

Linux uses a switch file, /etc/nsswitch.conf, to specify how hostname-to-IP address mappings should be performed and whether DNS should be tried first, last, or not at all. If no switch file is present, the default behavior is
 

hosts: dns [!UNAVAIL=return] files
 

The !UNAVAIL clause means that if DNS is available but a name is not found there, the lookup attempt should fail rather than continuing to the next entry (in this case, the /etc/hosts file). If no name server were running (as might be the case during the boot process), the lookup process would consult the hosts file.
 

Our example distributions all provide the following default nsswitch.conf entry:
 

hosts: files dns
 

There is really no “best” way to configure the lookups—it depends on how your site is managed. In general, we prefer to keep as much host information as possible in DNS rather than in NIS or flat files, but we also try to preserve the ability to fall back to the static hosts file during the boot process if necessary.
 

[image: Image] Ubuntu is the most up-to-date of our Linux distributions, with its distributed package being just a few months old. Programs and files have owner root and group owner “bind” with permissions set to allow access if named is invoked as user “bind” instead of root.
 

Some useful sample files are stashed in /etc/bind. Included are a named.conf file and zone files for root hints, localhost, the broadcast addresses, and private address space. The supplied named.conf includes the files named.conf.options and named.conf.local. It sets BIND’s default directory to /var/cache/bind; as shipped, the directory exists but is empty.
 

The logic behind the configuration info being in /etc and the zone info in /var is that if you are a secondary server for other sites, you do not control the size of the zone files that named will write. To avoid potentially filling up the root partition, you will probably want to keep the files in /var. Zones for which you are the primary server can live with the config files (use absolute paths in the named.conf file), or they can live in /var/cache/bind, too.
 

The sample named.conf file does not need to be modified if you want to run a caching-only server. You must add any zones for which you are authoritative, preferably to the supplied named.conf.local file.
 

The sample files provided by Ubuntu make use of some new BIND features to help your servers be good DNS citizens on the network. For example, they configure .com and .net as delegation-only zones to keep your users’ typos from generating advertising revenue for VeriSign through its Site Finder tool. If you don’t use private address space (RFC1918) internally, then the empty RFC1918 zone files prevent those addresses from escaping the local network. Go, Ubuntu!
 

The directory /usr/share/doc/bind9 contains several useful references. Check out the README.Debian file (even on Ubuntu) to understand the strategy for configuring BIND.
 

[image: Image] The SUSE installation says what it is doing and produces a reasonable, well-documented name server installation. By default, named runs in a chrooted environment beneath /var/lib/named as user and group “named”. The installer creates the chroot jail directory and populates it with all the files needed to run named, even niceties such as the UNIX-domain socket for syslog. Extra configuration files (not named.conf) and zone files live in /etc/named.d and are copied to the jail when named is started. If you do not want to run named in jail, modify the line that says
 

NAMED_RUN_CHROOTED="yes"
 

in /etc/sysconfig/named. That’s all you have to change; the startup scripts in /etc/init.d refer to this information and are able to start named in either fashion.
 

SUSE provides a sample /etc/named.conf file with helpful comments that explain many of the options. SUSE’s /etc/named.conf file is not world-readable as it usually is on other systems. The default file imports a file called named.conf.include, which then imports the rndc-access.conf file from /etc/named.d, both of which are readable to the world. It’s not entirely clear what SUSE has in mind here concerning security. rndc is preconfigured to accept control commands from local-host only.
 

SUSE’s named.conf file can be used as-is to run a caching-only server. If you want to serve your own zones, put the zone files in the /etc/named.d directory and list the zones’ names in the /etc/named.conf.include file.
 

The ISC BIND documentation lives in /usr/share/doc/packages/bind9.
 

[image: Image] Installing RHEL’s BIND package puts the binaries in /usr/sbin, puts the man pages in /usr/share/man, adds a user and group called “named”, and creates directories for zone files. The “named” user has access to the data files through group permissions.
 

Unless you change this in /etc/sysconfig/named, the named.conf file goes in /etc (as Paul Vixie and God intended), and the zone files go in /var/named. No sample files are provided, but the bindconf package should have them.
 

Specifics for Solaris
 

[image: Image] Solaris 10 ships with BIND 9.3.4-P1, vintage late 2007; you should consider upgrading. OpenSolaris is more up to date with BIND 9.6.1-P1 (2009). Solaris has always called their network programs in.progname and named was no exception, so that you often couldn’t find it for a bit if you forgot that it was called in.named, and not named. Happily, this is no longer true and Solaris has come around to calling the name server plain old named, though the in.named name persists as a link. Like Linux, Solaris uses a service order file called /etc/nsswitch.conf to specify how BIND, NIS, NIS+ (Solaris 10 only), and the /etc/hosts file interact. Modifying the hosts line in that file to
 

hosts: files dns
 

causes name resolution to try /etc/hosts first and then try DNS. The short-circuit clause NOTFOUND=return can modify any entry. Putting crucial servers and routers in the /etc/hosts file eases the chicken-and-egg problems that sometimes occur at boot time before name service is available. Solaris’s name service is started by the SMF service svc:/network/dns/server:default. SMF options specify the command-line arguments.
 

Table 17.19 summarizes the BIND filenames and locations for Solaris.
 

Table 17.19 BIND 9 files in Solaris
 

[image: Image]
 

Specifics for HP-UX
 

[image: Image] HP-UX includes BIND 9.3.2, vintage late 2005; better upgrade! HP-UX provides several sample nsswitch.conf files for various combinations of databases and services. One lists the HP defaults. Copy the one that seems right for your environment to /etc/nsswitch.conf.
 

HP recommends
 

hosts:     dns [NOTFOUND=return] nis [NOTFOUND=return] files
 

but we prefer
 

hosts:     files [NOTFOUND=continue] dns
 

to avoid problems with booting. It’s important to be able to configure the network in the boot sequence without looking up names in NIS or DNS, inasmuch as those services cannot run until the network is up. HP-UX’s startup script for name service is in /etc/rc.config.d/namesvrs_dns.
 

HP-UX supplies well-commented sample files for just about everything in the directory /usr/newconfig, but alas, nothing for name service. However, it does have a couple of ancient commands related to name service: hosts_to_named, which transforms a hosts file into a zone file, and sig_named, which sends signals to the running named process to control it. The /etc/hosts file these days just contains localhost and the host itself, so the conversion routine is useless. And since BIND 9, rndc must be used to control named, not signals.
 

Table 17.20 summarizes the filenames and locations for name service on HP-UX.
 

Table 17.20 BIND files in HP-UX
 

[image: Image]
 

Specifics for AIX
 

[image: Image] AIX ships with both BIND 8 and BIND 9, with binaries named8 and named9, respectively. As shipped, named is a link to named8, which is no longer supported by ISC. They ship versions 8.3.3+ and 9.2.1, vintage January 2004. Sloth-like upgrade performance here! AIX does not include the named-checkconf and named-checkzones commands—perhaps they entered the BIND distribution after 2004. The startup scripts for name service under AIX are in /etc/rc.tcpip.
 

We were starting to think these tables of file locations were silly since operating systems have largely converged to standard locations as far as BIND is concerned, but AIX settles that dispute. Table 17.21 on the next page shows the AIX the filenames and locations.
 

Table 17.21 BIND files in AIX
 

[image: Image]
 

In typical AIX fashion, there are three mechanisms that embody the “service switch” concept whereby you specify the order in which directory services are consulted. The NSORDER environment variable overrides what is specified in /etc/netsvc.conf, and the contents there override what is in /etc/irs.conf.
 

Not only are there three places to worry about, but the syntax is slightly different in each one. For example, to select DNS lookups for hostnames in the netsvc.conf file, you would use the value bind, but to do the same thing in the irs.conf file, the value is dns. The syntax allows you to specify what to do if the preferred service does not find an answer, but of course it’s different from the notation used in the nsswitch.conf files of other systems. See Prioritizing sources of administrative information on page 739 for the details on service switches.
 

17.17 Recommended Reading
 

DNS and BIND are described by a variety of sources, including the documentation that comes with the distributions, chapters in several books on Internet topics, books in the O’Reilly Nutshell series, books from other publishers, and various on-line resources. NSD and Unbound are new enough that their external documentation is thinner, but we have found one book with coverage along with several web documents.
 

Mailing Lists and Newsgroups
 

The following mailing lists are associated with BIND:
 

• bind-announce – mail bind-announce-request@isc.org to join

 

• namedroppers – mail namedroppers-request@internic.net to join

 

• bind-users – mail bind-users-request@isc.org to join

 

• bind9-workers – mail bind9-workers-request@isc.org (code warriors)

 

Send bug reports to bind9-bugs@isc.org.
 

The mailing lists for NSD/Unbound are
 

• nsd-users – join from the nlnetlabs.nl/projects/nsd web page

 

• unbound-users – join from the unbound.net web page

 

• ldns-users – join from nlnetlabs.nl/projects/ldns web page

 

• drill – join from nlnetlabs.nl/projects/drill web page

 

And finally, a DNS mailing list where operational issues for extreme sites (registrars, root servers, TLD servers, etc.) are discussed:
 

• dns-operations – join at the lists.dns-oarc.net web site

 

Books and Other Documentation
 

THE NOMINUM AND ISC BIND DEVELOPMENT TEAMS. BINDv9 Administrator Reference Manual. Available in the BIND distribution (doc/arm) from isc.org. This document outlines the administration and management of BIND 9. It’s also available as a printed booklet:
 

REED, JEREMY C., EDITOR. BIND 9 DNS Administration Reference Book. Redwood City, CA: Reed Media Services, 2007.
 

ALBITZ, PAUL, AND CRICKET LIU. DNS and BIND (5th Edition). Sebastopol, CA: O’Reilly Media, 2006.
 

This popular and well-respected book about BIND includes coverage of both BIND 8 and BIND 9. It is very complete—the virtual DNS bible.
 

LIU, CRICKET. DNS & BIND Cookbook. Sebastopol, CA: O’Reilly Media, 2002.
 

This baby version of the O’Reilly DNS book is task oriented and gives clear instructions and examples for various name server chores. This book is a bit dated, but it’s still useful.
 

AITCHISON, RON. Pro DNS and BIND. Berkeley, CA: Apress, 2005.
 

This is a newcomer in the DNS arena and includes a very good section on DNSSEC with examples and deployment strategy. We found a few typos but fortunately the author maintains a web site of corrections while awaiting the publisher’s next print run. The depth of material and organization make it a better choice than DNS and BIND for many purposes, but as a DNS administrator you had better own both!
 

MENS, JAN-PIET. Alternative DNS Servers: Choice and Deployment, and Optional SQL/LDAP Back-Ends. Cambridge, England: UIT Cambridge Ltd., 2009.
 

This book covers about 10 different name server implementations, including NSD/Unbound. It explores various back ends for storing zone data, has nice diagrams, and offers a wealth of information.
 

On-Line Resources
 

The DNS Resources Directory, dns.net/dnsrd, is a useful collection of resources and pointers to resources, maintained by András Salamon.
 

The web sites isc.org, dns-oarc.net, ripe.net, nlnetlabs.nl, and f.root-servers.org or k.root-servers.org contain a wealth of DNS information, research, measurement results, presentations, and other good stuff.
 

Google has indexed DNS resources at
 

   directory.google.com/Top/Computers/Internet/Protocols/DNS
 

All the nitty-gritty details of the DNS protocol, resource records, and the like are summarized at iana.org/assignments/dns-parameters. This document contains a nice mapping from a DNS fact to the RFC that specifies it.
 

The DNSSEC HOWTO, a tutorial in disguise by Olaf Kolkman, is a 70-page document that covers the ins and outs of deploying and debugging DNSSEC. Get it at nlnetlabs.nl/dnssec_howto/dnssec_howto.pdf.
 

The RFCs
 

The RFCs that define the DNS system are available from rfc-editor.org. We used to list a page or so of the most important DNS-related RFCs, but there are now so many (more than 100, with another 50 Internet drafts) that you are better off searching rfc-editor.org to access the entire archive. Refer to the doc/rfc and doc/draft directories of the current BIND distribution to see the whole fleet.
 

The original, definitive standards for DNS, vintage 1987, are
 

• RFC1034 – Domain Names: Concepts and Facilities

 

• RFC1035 – Domain Names: Implementation and Specification

 

17.18 Exercises
 

E17.1 Explain the function of each of the following DNS records: SOA, PTR, A, MX, and CNAME.

 

E17.2 What are glue records and why are they needed? Use dig or drill to find the glue records that connect your local zone to its parent.

 

E17.3 What are the implications of negative caching? Why is it important?

 

E17.4 Create SPF records for your site to help control spam.

 

[image: Image] E17.5 What steps are needed to set up a new second-level domain? Include both technical and procedural factors.

 

[image: Image] E17.6 What is the difference between an authoritative and a nonauthoritative answer to a DNS query? How could you ensure that an answer was authoritative?

 

[image: Image] E17.7 What machine is your local name server? What steps must it take to resolve the name www.admin.com, assuming that no information about this domain is cached anywhere in DNS?

 

[image: Image] E17.8 Explain the significance for DNS of the 512-byte limit on UDP packets. What are the potential problems, and what are the workarounds that address them?

 

[image: Image] E17.9 Explore the 512-bit Russian GOST or 256-bit NIST P-256 ECDSA algorithms and their impact on the 512-byte UDP packet limit. Do they help things fit? How big are the keys and the signatures?

 

[image: Image] E17.10 Create SSHFP records for your site and upgrade your ssh to use them.

 

[image: Image] E17.11 Use the ISC DNS-OARC reply size server from various locations at your site to determine if there are any local configuration policies or practices that would inhibit DNSSEC deployment. What sizes do you see? Do they vary with your location? How about from home? Gather the same data with SecSpider or dnsfunnel. Are the numbers consistent? If not, which tool gives more accurate information?

 

[image: Image] E17.12 Use the DNSSEC tools or libraries to build a script that determines whether a secure site is in sync with its parent’s DS record and whether its signatures have expired. Set it up to run daily from cron.

 

[image: Image] E17.13 Create DKIM records for your domain and set up your mail servers and clients to use them.

 

[image: Image] E17.14 Create a subdomain at your site. Add a real host with lots of names and addresses, then secure it with DNSSEC and connect it to the Internet’s trust network by creating a DLV record at ISC. Turn on logging and watch the logs for a few days. Document your procedures and problems.

 
  


18. The Network File System
 

[image: Image]
 

The Network File System protocol, commonly known as NFS, lets you share file-systems among computers. NFS is nearly transparent to users, and no information is lost when an NFS server crashes. Clients can simply wait until the server returns and then continue as if nothing had happened.
 

NFS was introduced by Sun Microsystems in 1984. It was originally implemented as a surrogate filesystem for diskless clients, but the protocol proved to be well designed and useful as a general file-sharing solution. All UNIX vendors and Linux distributions provide some version of NFS; many use code licensed from Sun. The NFS protocol is now an open standard documented in RFCs (see RFCs 1094, 1813, and 3530 in particular).
 

18.1 Introduction to Network File Services
 

Sharing files over a network seems like a simple task, but in fact it’s a confound-ingly complex problem with many edge cases and subtleties. As evidence of the complexities involved, numerous issues in the NFS protocol have revealed themselves only as bugs encountered in unusual situations over more than a quarter century of use. Today’s administrators can be confident that the most common file-sharing protocols (NFS and CIFS) will not regularly corrupt data or otherwise induce the wrath of upset users, but it’s taken a lot of work and experience to get to this point.
 

Issues of State
 

One of the design decisions made when designing a network filesystem is determining what part of the system will track the files that each client has open, information referred to generically as “state.” A server that does not record the status of files and clients is said to be stateless; one that does is stateful. Both approaches have been used over the years, and both have benefits and drawbacks.
 

Stateful servers keep track of all open files across the network. This mode of operation introduces many layers of complexity (more than you might expect) and makes recovery in the event of a crash far more difficult. When the server returns from a hiatus, a negotiation between the client and server must occur to reconcile the last known state of the connection. Statefulness allows clients to maintain more control over files and facilitates the management of files that are opened in read/write mode.
 

On a stateless server, each request is independent of the requests that have preceded it. If either the server or the client crashes, nothing is lost in the process. Under this design, it is painless for servers to crash or reboot, since no context is maintained. However, it’s impossible for the server to know which clients have opened files for writing, so the server cannot manage concurrency.
 

Performance Concerns
 

Network filesystems should provide users with a seamless experience. Accessing a file over the network should be no different from accessing a file on a local filesystem. Unfortunately, wide area networks have high latencies, which cause operations to behave erratically, and low bandwidth, which results in slow performance for larger files. Most file service protocols, including NFS, incorporate techniques to minimize performance problems on both local and wide area networks.
 

Most protocols try to minimize the number of network requests. For example, read-ahead caching preloads portions of a file into a local memory buffer to avoid delay when a new section of the file is read. A little extra network bandwidth is consumed in an effort to avoid a full round trip exchange with the server. Similarly, some systems cache writes in memory and send their updates in batches, reducing the delay incurred when communicating write operations to the server. These types of batch operations are generically referred to as request coalescing.
 

Security
 

Any service that provides convenient access to files on a network has great potential to cause security problems. Local filesystems implement complex access control algorithms, safeguarding files with granular access permissions. On a network, the problems are multiplied since there may be race conditions and differences in configuration among machines as well as bugs in the file service software and unresolved issues in the file-sharing protocol.
 

The rise of directory services and centralized authentication has improved the security of network file systems. In essence, no client can be trusted to authenticate itself sanely, so a trusted, central system must verify identities and approve access to files. The complexities of these services have slowed their adoption, but most sites today implement some form of centralized access control.
 

18.2 The NFS Approach
 

The newest version of the NFS protocol is designed for platform independence, good performance over wide area networks like the Internet, and strong security. Most implementations also include diagnostic utilities to debug configuration and performance problems. A portion of both the server-side and client-side software resides in the kernel. However, these parts of NFS need no configuration and are largely transparent from an administrator’s point of view.
 

Protocol versions and history
 

The first public release of the NFS protocol was version 2 in 1989. Version 2 clients cannot assume that a write operation is complete until they receive an acknowledgment from the server. To avoid discrepancies in the event of a crash, version 2 servers must commit each modified block to disk before replying. This constraint introduces a significant delay in NFS writes since modified blocks would normally be written only to the in-memory buffer cache.
 

NFS version 3, which dates from the early 1990s, eliminates this bottleneck with a coherency scheme that permits asynchronous writes. It also updates several other aspects of the protocol that were found to have caused performance problems and improves the handling of large files. The net result is that NFS version 3 is quite a bit faster than version 2. All sites should be using version 3 or 4 at this point.
 

NFS version 4 is a major overhaul that includes many new fixes and features. Highlighted enhancements include
 

• Compatibility and cooperation with firewalls and NAT devices

 

• Integration of the lock and mount protocols into the core NFS protocol

 

• Stateful operation

 

• Strong, integrated security

 

• Support for replication and migration

 

• Support for both UNIX and Windows clients

 

• Access control lists (ACLs)

 

• Support for Unicode filenames

 

• Good performance even on low-bandwidth connections

 

Although V4 is a significant step forward in many ways, the protocol changes haven’t much altered the process of configuring and administering NFS.
 

The various protocol versions are not compatible, but NFS servers (including those on all our example systems) typically implement all three of them. In practice, all NFS clients and servers can interoperate using some version of the protocol. Always use the V4 protocol if both sides support it.
 

Transport Protocols
 

NFS version 2 originally used UDP because that was what performed best on the LANs and computers of the 1980s. Although NFS does its own packet sequence reassembly and error checking, UDP and NFS both lack the congestion control algorithms that are essential for good performance on a large IP network.
 

To remedy these potential problems, NFS migrated to a choice of UDP or TCP in version 3, and to TCP only in version 4.1 The TCP option was first explored as a way to help NFS work through routers and over the Internet. Over time, most of the original reasons for preferring UDP over TCP have evaporated in the warm light of fast CPUs, cheap memory, and faster networks.
 

State
 

A client must explicitly mount an NFS filesystem before using it, just as a client must mount a filesystem stored on a local disk. However, NFS versions 2 and 3 are stateless, and the server does not keep track of which clients have mounted each filesystem. Instead, the server simply discloses a secret “cookie” at the conclusion of a successful mount negotiation. The cookie identifies the mounted directory to the NFS server and so provides a way for the client to access its contents. Cookies persist between reboots of the server, so a crash does not leave the client in an unrecoverable muddle. The client can simply wait until the server is available again and resubmit the request.
 

NFSv4, on the other hand, is a stateful protocol: both client and server maintain information about open files and locks. When the server fails, the client assists in the recovery process by sending the server its pre-crash state information. A returning server waits during a predefined grace period for former clients to report their state information before it permits new operations and locks. The cookie management of V2 and V3 no longer exists in NFSv4.
 

File System Exports
 

NFS servers maintain a list of directories (called “exports” or “shares”) that they make available to clients over the network. By definition, all servers export at least one directory. In V2 and V3, each export is treated as an independent entity. In V4, each server exports a single hierarchical pseudo-filesystem that incorporates all its exported directories. Essentially, the pseudo-filesystem is the server’s own filesystem namespace skeletonized to remove anything that is not exported.
 

For example, consider the following list of directories, with the directories to be exported in boldface.
 

[image: Image]
 

In NFS version 3, each exported directory must be separately configured. Client systems must execute three different mount requests to obtain access to all the server’s exports.
 

In NFS version 4, however, the pseudo-filesystem bridges the disconnected portions of the directory structure to create a single view for NFS clients. Rather than requesting a separate mount for each of /www/domain1, /www/domain2, and /var/logs/httpd, the client can simply mount the server’s pseudo-root directory and browse the hierarchy.
 

The directories that are not exported, /www/domain3 and /var/spool, do not appear during browsing. In addition, individual files contained in /, /var, /www, and /var/logs are not visible to the client because the pseudo-filesystem portion of the hierarchy includes only directories. Thus, the client view of the NFSv4-exported file system is
 

[image: Image]
 

The server specifies the root of the exported filesystems in a configuration file known as the exports file.
 

File Locking
 

File locking (as implemented by the flock, lockf, or fcntl systems calls) has been a sore point on UNIX systems for a long time. On local filesystems, it has been known to work less than perfectly. In the context of NFS, the ground is shakier still. By design, early versions of NFS servers are stateless: they have no idea which machines are using any given file. However, state information is needed to implement locking. What to do?
 

The traditional answer was to implement file locking separately from NFS. In most systems, the two daemons lockd and statd try to make a go of it. Unfortunately, the task is difficult for a variety of subtle reasons, and NFS file locking has generally tended to be flaky.
 

NFSv4 has removed the need for lockd and statd by folding locking (and hence, statefulness and all that it implies) into the core protocol. This change introduces significant complexity but obviates many of the related problems of earlier NFS versions. Unfortunately, separate lockds and statds are still needed to support V2 and V3 clients if your site has them. Our example systems all ship with the earlier versions of NFS enabled, so the separate daemons still run by default.
 

Security Concerns
 

In many ways, NFS V2 and V3 are poster children for everything that is or ever has been wrong with UNIX and Linux security. The protocol was originally designed with essentially no concern for security, and convenience has its price. NFSv4 has addressed the security concerns of earlier versions by mandating support for strong security services and establishing better user identification.
 

All versions of the NFS protocol are intended to be security-mechanism independent, and most servers support multiple “flavors” of authentication. A few of the common flavors include
 

• AUTH_NONE – no authentication

 

• AUTH_SYS – UNIX-style user and group access control

 

• RPCSEC_GSS – a powerful flavor that ensures integrity and privacy in addition to authentication

 

Traditionally, most sites have used AUTH_SYS authentication, which depends on UNIX user and group identifiers. In this scheme, the client simply sends the local UID and GID of the user requesting access to the server. The server compares the values to those from its own /etc/passwd file2 and determines whether the user should have access. Thus, if users mary and bob share the same UID on two different clients, they will have access to each other’s files. Furthermore, users that have root access on a system can su to whatever UID they wish; the server will then give them access to the corresponding user’s files.
 

Enforcing passwd file consistency among systems is essential in environments that use AUTH_SYS. But even this is only a security fig leaf; any rogue host (or heaven forfend, Windows machine) can “authenticate” its users however it likes and therefore subvert NFS security.
 

To prevent such problems, most sites should use a more robust authentication mechanism such as Kerberos in combination with the NFS RPCSEC_GSS layer. This configuration requires both the client and server to participate in a Kerberos realm. The Kerberos realm authenticates clients centrally, avoiding the problems of self-identification described above. Kerberos can also provide strong encryption and guaranteed integrity for files transferred over the network. All protocol-conformant NFS version 4 systems must implement RPCSEC_GSS, but it’s optional in version 3.
 

See page 924 for more information about Kerberos.

 

Access to NFS volumes is granted by a file called /etc/exports that enumerates the hostnames (or IP addresses) of systems that should have access to the server’s shared filesystems. Unfortunately, this too is a weak form of security because the server trusts the clients to tell it who they are. It’s easy to make clients lie about their identities and IP addresses, so this mechanism cannot be fully trusted. Nevertheless, you should export filesystems only to clients that you trust, and you should always check that you have not accidentally exported filesystems to the whole world.
 

See page 702 for more information about the exports file.

 

NFS version 4 uses only TCP as a transport protocol and typically communicates over port 2049. Since V4 does not rely on any other ports, opening access through a firewall is as simple as opening TCP port 2049. As with all access list configurations, be sure to specify source and destination addresses in addition to the port. If your site doesn’t need to provide NFS services to hosts on the Internet, block access through the firewall or use a local packet filter.
 

See page 932 for more information about firewalls.

 

File service over wide area networks with NFSv2 and V3 is not recommended because of the long history of bugs in the RPC protocols and the lack of strong security mechanisms. Administrators of NFS version 3 servers should block access to TCP and UDP ports 2049 and also the portmap port, 111.
 

Identity mapping in version 4
 

As discussed in Chapter 7, UNIX operating systems identify users through a collection of UIDs and GIDs in the local passwd file or administrative database. NFS version 4, on the other hand, represents users and groups as string identifiers of the form user@nfs-domain and group@nfs-domain. Both NFS clients and servers run an identity mapping daemon that maps UNIX identifier values to strings.
 

When a version 4 client performs an operation that returns identities, such as a file listing with ls -l (the underlying operation is a series of stat calls), the server’s identity mapping daemon uses its local passwd file to convert the UID and GID of each file object to a string such as ben@atrust.com. The client’s identity mapper then reverses the process, converting ben@atrust.com into local UID and GID values, which may or may not be the same as the server’s. If the string value does not match any local identity, the nobody user account is used.
 

At this point, the remote filesystem call (stat) has completed and returned UID and GID values to its caller (here, the ls command). But since ls was called with the -l option, it needs to display text names instead of numbers. So, ls in turn retranslates the IDs back to textual names using the getpwuid and getgrgid library routines. These routines once again consult the passwd file or its network database equivalent. What a long, strange trip it’s been.
 

Confusingly, the identity mapper is only used when retrieving and setting file attributes, typically ownerships. Identity mapping plays no role in authentication or access control, all of which is handled in the traditional form by RPC. Ergo, consistent passwd files are still essential for users of AUTH_SYS “security.”
 

An unfortunate side effect of this identity and authentication ambiguity arises on systems that do not have synchronized passwd files. The identity mapper may do a better job of mapping than the underlying NFS protocol, causing the apparent file permissions to conflict with the permissions the NFS server will actually enforce. Consider, for example, the following commands on an NFSv4 client:
 

[image: Image]
 

First, ben is shown to have UID 1000 and john to have UID 1010. An NFS-exported home directory called ben appears to have permissions 755 and is owned by john. However, ben is able to create a file in the directory even though the ls -l output indicates that he lacks write permission.
 

On the server, john has UID 1000. Since john has UID 1010 on the client, the identity mapper performs UID conversion as described above, with the result that “john” appears to be the owner of the directory. However, the identity mapping daemon plays no role in access control. For the file creation operation, ben’s UID of 1000 is sent directly to the server, where it is interpreted as john’s UID.
 

How do you know which operations are identity mapped and which are not? It’s simple: whenever a UID or GID appears in the filesystem API (as with stat or chown), it is mapped. Whenever the user’s own UIDs or GIDs are used implicitly for access control, they are routed through the designated authentication system.
 

Unfortunately for administrators, identity mapping daemons are not standardized across systems, so their configuration processes may be different. The specifics for each of our example systems are covered starting on page 709.
 

Root access and the nobody account
 

Although users should generally be given identical privileges wherever they go, it’s traditional to prevent root from running rampant on NFS-mounted filesystems. By default, the NFS server intercepts incoming requests made on behalf of UID 0 and changes them to look as if they came from some other user. This modification is called “squashing root.” The root account is not entirely shut out, but it is limited to the abilities of a normal user.
 

A placeholder account named “nobody” is defined specifically to be the pseudo-user as whom a remote root masquerades on an NFS server. The traditional UID for nobody is 65,534 (the 16-bit twos-complement equivalent of UID -2).3 You can change the default UID and GID mappings for root in the exports file. Some systems have an all_squash option to map all client UIDs to the same UID on the server. This configuration eliminates all distinctions among users and creates a sort of public-access filesystem. On Solaris and HP-UX, access is denied altogether if root is mapped to UID -1.
 

The intent behind these precautions is good, but their ultimate value is not as great as it might seem. Remember that root on an NFS client can su to whatever UID it wants, so user files are never really protected. The only real effect of root squashing is to prevent access to files that are owned by root and not readable or writable by the world.
 

Performance Considerations in Version 4
 

NFSv4 was designed to achieve good performance over wide area networks. Most WANs have higher latency and lower bandwidth than LANs. NFS takes aim at these problems with the following refinements:
 

• An RPC called COMPOUND clumps multiple file operations into one request, reducing the latency incurred from multiple network requests.

 

• A delegation mechanism allows client-side caching of files. Clients can maintain local control over files, including those open for writing.

 

These features are part of the core NFS protocol and do not require much attention from system administrators.
 

Disk Quotas
 

Remote disk quota information can be accessed through an out-of-band server, rquotad. NFS servers enforce disk quotas if they are enabled on the underlying filesystem, but users cannot view their quota information unless rquotad is running on the remote server.
 

We consider disk quotas to be largely obsolete; however, some organizations still depend on them to keep users from hogging all available disk space. If you’re supporting one of these organizations, you can consult the quota man pages. We don’t discuss rquotad further.
 

18.3 Server-Side NFS
 

An NFS server is said to “export” a directory when it makes the directory available for use by other machines. Solaris and HP-UX use the word “share” instead. For consistency, we use “export” throughout this chapter.
 

In NFS version 3, the process used by clients to mount a filesystem (that is, to learn its secret cookie) is separate from the process used to access files. The operations use separate protocols, and the requests are served by different daemons: mountd for mount requests and nfsd for actual file service. On some systems, these daemons are called rpc.nfsd and rpc.mountd as a reminder that they rely on RPC as an underlying protocol (and hence require portmap to be running). In this chapter, we omit the rpc prefix for readability.
 

NFSv4 does not use mountd at all. However, unless your NFS clients are all at version 4, mountd should remain running.
 

On an NFS server, both mountd and nfsd should start when the system boots, and both should remain running as long as the system is up. The system startup scripts typically run the daemons automatically if you have any exports configured. The names of the NFS server startup scripts for each of our example platforms are shown in Table 18.1.
 

Table 18.1 NFS server startup scripts
 

[image: Image]
 

NFS uses a single access control database that tells which filesystems should be exported and which clients may mount them. The operative copy of this database is usually kept in a file called xtab (sharetab on Solaris and HP-UX) and also in tables internal to the kernel. Since xtab and sharetab aren’t meant to be human readable, you use a helper command—exportfs or share—to add and modify entries. To remove entries from the exports table, use exportfs -u or unshare.
 

Maintaining a binary file by hand is not much fun, so most systems assume that you would rather maintain a text file that enumerates the system’s exported directories and their access settings. The system can then consult this text file at boot time to automatically construct the xtab or sharetab file.
 

On most systems, /etc/exports is the canonical, human-readable list of exported directories. Its contents are read by exportfs -a. Under Solaris and HP-UX, the canonical list is /etc/dfs/dfstab, which is really just a script containing a series of share commands. (The shareall command greps the NFS-related commands out of dfstab and runs them. Since NFS is the only native file-sharing system that obeys this convention, shareall is equivalent to sh /etc/dfs/dfstab.)
 

Table 18.2 summarizes the last few paragraphs. It tells you what file to edit when you want to export a new filesystem and what to do to make your changes take effect once you’ve finished editing that file.
 

Table 18.2 Where to set up exported directories
 

[image: Image]
 

NFS deals with the logical layer of the filesystem. Any directory can be exported; it doesn’t have to be a mount point or the root of a physical filesystem. However, for security, NFS does pay attention to the boundaries between filesystems and does require each device to be exported separately. For example, on a machine that has set up /users as a separate partition, you could export the root directory without exporting /users.4
 

Clients are usually allowed to mount subdirectories of an exported directory if they wish, although the protocol does not require this feature. For example, if a server exports /chimchim/users, a client could mount only /chimchim/users/joe and ignore the rest of the users directory.
 

Most versions of UNIX don’t let you export subdirectories of an exported directory with different options, but this practice is OK under Linux.
 

The share command and dfstab file (Solaris, HP-UX)
 

[image: Image]
/etc/dfs/dfstab executes the share command once for each exported filesystem. For example, on a server that shares /home with hosts monk and leopard (with monk allowed root access) and that shares /usr/share/man with hosts ross and harp, the /etc/dfs/dfstab file would contain the following commands:
 

[image: Image]
 

After editing /etc/dfs/dfstab, remember to run shareall to make your changes take effect. Since shareall simply runs the commands in the dfstab file, it will not unshare filesystems that you remove. Use the command unshare /path/to/fs to explicitly remove a share. Table 18.3 lists the most common options for share.
 

Table 18.3 Options for the share command (Solaris, HP-UX)
 

[image: Image]
 

Wherever a list is called for in a share option, it should consist of a colon-separated group of the items shown in Table 18.4, all of which are ways of specifying hosts or groups of hosts.
 

Table 18.4 Client specifications for the share command
 

[image: Image]
 

The note in Table 18.4 regarding hostnames bears repeating: individual host-names must be fully qualified or they will be ignored.
 

You can put a dash in front of an item to explicitly disallow it. The list is examined from left to right during each lookup until a matching item is found, so negations should precede the more general items that they modify. For example, the line
 

share -F nfs -o rw=-@192.168.10.0/24:.booklab.atrust.com /users
 

exports /users read-write to all hosts in the booklab.atrust.com DNS domain except for hosts on the 192.168.10 network. In the command, the -F flag indicates that share should use the nfs filesystem type, as opposed to any of the others in /etc/dfs/fstypes.
 

It’s possible to export a directory read-only to some clients and read-write to others. Just include both the rw= and ro= options.
 

The share man page documents a few basic NFS options. For a complete list, refer to the share_nfs man page.
 

The Exportfs Command and the Exports File (Linux, AIX)
 

[image: Image] The exports file consists of a list of exported directories in the leftmost column followed by lists of associated options. For example, the AIX exports line
 

/home -vers=4,sec=sys,access=harp.atrust.com
 

permits /home to be mounted by the machine harp.atrust.com using version 4 of the NFS protocol and UNIX authentication (sec=sys).
 

Filesystems that are listed in the exports file without a specific set of hosts are usually mountable by all machines. This is a sizable security hole.
 

The exact options and syntax used in the exports file vary somewhat among systems, though there is a certain thematic similarity. The following sections describe the general formats for Linux and AIX. As always, be sure to check the man page for your system.
 

Exports in AIX
 

[image: Image] AIX has the most “classic” exports format of our example systems. The permissible options are shown in Table 18.5.
 

Table 18.5 Common export options for AIX
 

[image: Image]
 

In Table 18.5, a list consists of a colon-separated series of hostnames and netgroup names. The options in Table 18.5 are similar to those understood by the share command. However, there are some subtle differences. For example, the option
 

rw=leopard.atrust.com:ross.atrust.com
 

in share syntax means to export the directory read-write with access only by the listed hosts. Under AIX, this option allows the entire world to mount the directory read-only. Gotcha! Under AIX, you must use the access clause to restrict mounting to a specified list of clients:
 

rw,access=leopard.atrust.com:ross.atrust.com
 

Read-write exporting is the default, so the rw clause could actually be eliminated. It doesn’t hurt to include it explicitly, however.
 

Each line in an AIX exports file should consist of a directory path, whitespace, and then a dash followed by a comma-separated list of options. For instance, the following example shares the /home directory to the host leopard.atrust.com with AUTH_SYS security and version 4 of the protocol:
 

/home -vers=4,sec=sys,rw,access=leopard.atrust.com
 

Remember to run exportfs -a after changing the /etc/exports file.
 

Exports in Linux
 

[image: Image] As in AIX, the Linux /etc/exports file enumerates the filesystems exported through NFS and the clients that may access each of them. Whitespace separates the filesystem from the list of clients, and each client is followed by a parenthesized list of comma-separated options. Lines can be continued with a backslash.
 

Here’s what the format looks like:
 

[image: Image]
 

There is no way to list multiple client specifications for a single set of options, although some client specifications refer to multiple hosts. Table 18.6 lists the four types of specifications that can appear in the exports file.
 

Table 18.6 Client specifications in the Linux /etc/exports file
 

[image: Image]
 

Table 18.7 on the next page shows the most commonly used export options understood by Linux.
 

Linux’s NFS server has the unusual feature of allowing subdirectories of exported directories to be exported with different options. Use the noaccess option to un-export subdirectories that you would rather not share.
 

Table 18.7 Common export options in Linux
 

[image: Image]
 

For example, the configuration
 

[image: Image]
 

allows hosts in the atrust.com domain to access all the contents of /home except for /home/ben. The absence of a client name on the second line means that the option applies to all hosts; it’s perhaps somewhat more secure this way.
 

The subtree_check option (the default) verifies that every file accessed by a client lies within an exported subdirectory. If you turn off this option, only the fact that the file is within an exported filesystem is verified. Subtree checking can cause occasional problems when a requested file is renamed while the client has the file open. If you anticipate many such situations, consider setting no_subtree_check.
 

The secure_locks option requires authorization and authentication in order for files to be locked. Some NFS clients don’t send credentials with lock requests and do not work with secure_locks. In this case, you would only be able to lock world-readable files. Replacing these clients with ones that support credentials correctly is the best solution. However, you can specify the insecure_locks option as a stopgap.
 

Linux’s mountd can be run out of inetd rather than run continuously. This configuration allows supplemental access control to be performed by the TCP wrapper program, tcpd. See page 917 for more information.
 

nfsd: serve files
 

Once a client’s mount request has been validated by mountd, the client can request various filesystem operations. These requests are handled on the server side by nfsd, the NFS operations daemon.5
nfsd need not be run on an NFS client machine unless the client exports filesystems of its own.
 

nfsd takes a numeric argument that specifies how many server threads to fork. Selecting the appropriate number of nfsds is important and is unfortunately something of a black art. If the number is too low or too high, NFS performance can suffer.
 

The optimal number of nfsd threads depends on the operating system and the hardware in use. If you notice that ps usually shows the nfsds in state D (uninterruptible sleep) and that some idle CPU is available, consider increasing the number of threads. If you find the load average (as reported by uptime) rising as you add nfsds, you’ve gone too far; back off a bit from that threshold. You should also run nfsstat regularly to check for performance problems that might be associated with the number of nfsd threads. See page 710 for more details on nfsstat.
 

On a loaded NFS version 2 or 3 server with a lot of UDP clients, UDP sockets can overflow if requests arrive while all nfsd threads are already in use. You can monitor the number of overflows with netstat -s. Add more nfsds until UDP socket overflows drop to zero. Overflows indicate a severe undersupply of server daemons, so you should probably add a few more than this metric would indicate.
 

The number of nfsd threads is configured in a system-wide NFS configuration file. The location of the file and the available settings differ widely. Table 18.8 on the next page shows the settings for our example systems. After making any changes to the nfsd configuration file, be sure to restart the services using the scripts in Table 18.1.
 

Table 18.8 How to specify the number of nfsd daemons
 

[image: Image]
 

18.4 Client-Side NFS
 

NFS filesystems are mounted in much the same way as local disk filesystems. The mount command understands the notation hostname:directory to mean the path directory on the host hostname. As with local filesystems, mount maps the remote directory on the remote host into a directory within the local file tree. After the mount completes, you access an NFS-mounted filesystem just like a local filesystem. The mount command and its associated NFS extensions represent the most significant concerns to the system administrator of an NFS client.
 

Before an NFS file system can be mounted, it must be properly exported (see Server-side NFS on page 698). To verify that a server has properly exported its filesystems from the client’s perspective, use the client’s showmount command:
 

[image: Image]
 

This example reports that the directory /home/ben on the server monk has been exported to the client system harp.atrust.com. If an NFS mount is not working, first verify that the filesystems have been properly exported on the server with exportfs. (You might have just forgotten to run exportfs -a after updating the exports file.) Next, check the showmount output.
 

If the directory is properly exported on the server but showmount returns an error or an empty list, you might double-check that all the necessary processes are running on the server (portmap, mountd, nfsd, statd, and lockd), that the hosts.allow and hosts.deny files allow access to those daemons, and that you are on the right client system.
 

See page 917 for more information about hosts.* files and TCP wrappers.

 

The path information displayed by showmount, such as /home/ben above, is only valid for NFS version 2 and 3 servers. NFS version 4 servers export a single unified pseudo-filesystem. The traditional NFS concept of separate mount points doesn’t jive with version 4’s model, so showmount isn’t applicable.
 

Unfortunately, there is no good replacement for showmount in NFSv4. On the server, the command exportfs -v shows the existing exports, but of course this only works locally. If you don’t have direct access to the server, mount the root of the server’s pseudo-filesystem and traverse the directory structure manually, noting each mount point.
 

To actually mount the filesystem in versions 2 and 3, you would use a command such as
 

$ sudo mount -o rw,hard,intr,bg monk:/home/ben /nfs/ben
 

To accomplish the same using version 4 on a Linux system, type
 

$ sudo mount -t nfs4 -o rw,hard,intr,bg monk:/ /nfs/ben
 

In this case, the options after -o specify that the filesystem should be mounted read-write (rw), that operations should be interruptible (intr), and that retries should be done in the background (bg). Table 18.9 introduces the most common mount options.
 

Table 18.9 NFS mount flags and options
 

[image: Image]
 

Filesystems mounted hard (the default) cause processes to hang when their servers go down. This behavior is particularly bothersome when the processes in question are standard daemons, so we do not recommend serving critical system binaries over NFS. In general, the use of the soft and intr options reduces the number of NFS-related headaches. However, these options can have their own undesirable side effects, such as aborting a 20-hour simulation after it has run for 18 hours just because of a transient network glitch.6 Automount solutions such as autofs, discussed later, also provide some remedies for mounting ailments.
 

The read and write buffer sizes apply to both UDP and TCP mounts, but the optimal values differ. Because you can trust TCP to transfer data efficiently, the values should be higher; 32KiB is a good value. For UDP, 8KiB is a good value when server and client are on the same network. The default is 1KiB, but even the man page recommends increasing it to 8KiB for better performance.
 

You can test an NFS mount with df just as you would test a local filesystem:
 

[image: Image]
 

umount works on NFS filesystems just like it does on local filesystems. If the NFS filesystem is in use when you try to unmount it, you will get an error such as
 

umount: /nfs/ben: device is busy
 

Use lsof to find processes with open files on the filesystem. Kill them, or in the case of shells, change directories. If all else fails or your server is down, try running umount -f to force the filesystem to be unmounted.
 

[image: Image] The footnote to Table 18.9 is worth repeating: the Linux mount command defaults to a filesystem type of nfs when it recognizes the hostname:directory syntax on the command line. The nfs type is only valid for protocol versions 2 and 3. Use mount -t nfs4
hostname:directory when requesting a version 4 mount.
 

Mounting remote filesystems at boot time
 

You can use the mount command to establish temporary network mounts, but you should list mounts that are part of a system’s permanent configuration in /etc/fstab (/etc/vfstab in Solaris) so that they are mounted automatically at boot time. Alternatively, mounts can be handled by an automatic mounting service such as autofs.
 

See page 711 for more information about autofs.

 

The following fstab entries mount the filesystems /home and /usr/local from the hosts monk and ross:
 

[image: Image]
 

[image: Image] The Solaris /etc/vfstab file is slightly different in format, but options are listed similarly. The NFS options are largely the same as those on other systems.
 

[image: Image] Use SMIT to configure boot-time NFS mounts on AIX systems. Do not modify the /etc/filesystems file by hand since it can be overwritten during volume group imports or exports.
 

When you add entries to fstab/vfstab, be sure to create the appropriate mount point directories with mkdir. You can make your changes take effect immediately (without rebooting) by running mount -a -F nfs on Solaris or HP-UX; use -t in-stead of -F on Linux, and for version 4 use mount -a -t nfs4. On AIX, you can mount NFS filesystems with mount -v nfs -a.
 

See page 260 for more information about the fstab file.

 

The flags field of /etc/fstab specifies options for NFS mounts; these options are the same ones you would specify on the mount command line.
 

Restricting Exports to Privileged Ports
 

NFS clients are free to use any TCP or UDP source port they like when connecting to an NFS server. However, some servers may insist that requests come from a privileged port (a port numbered lower than 1,024). Others allow this behavior to be set as an option. In the world of PCs and desktop Linux boxes, the use of privileged ports provides little actual security.
 

Most NFS clients adopt the traditional (and still recommended) approach of defaulting to a privileged port to avert the potential for conflict. Under Linux, you can accept mounts from unprivileged ports with the insecure export option.
 

18.5 Identity Mapping for NFS Version 4
 

Unlike earlier versions of NFS, which identify users with raw UID and GID values, version 4 uses strings of the form user@nfs-domain and group@nfs-domain. On both NFS servers and clients, an identity mapping daemon translates between the string identifiers and the local UNIX UID and GID values. Mapped values are used to translate file attribute information, but they are not used for access control, which is handled separately.
 

All systems participating in an NFSv4 network should have the same NFS domain. In most cases, it’s reasonable to use your DNS domain as the NFS domain. For example, atrust.com is a straightforward choice of NFS domain for the server harp.atrust.com. Clients in subdomains (e.g., booklab.atrust.com) may or may not want to use the shorter site-wide name (e.g., atrust.com) to facilitate NFS communication.
 

Unfortunately for administrators, there is no standard implementation of NFSv4 UID mapping, so the details of administration differ slightly among systems. Table 18.10 on the next page names the mapping daemon on each of our example systems and notes the location of its configuration file.
 

Other than having their NFS domains set, identity mapping services require little assistance from administrators. The daemons are started at boot time from the same scripts that manage NFS. After making configuration changes, you’ll need
 

Table 18.10 Identity mapping daemons and configurations
 

[image: Image]
 

to restart the daemon. Options such as verbose logging and alternate management of the nobody account are usually available; see the man page for the specific daemon.
 

18.6 NFSSTAT: Dump NFS Statistics
 

nfsstat displays various statistics maintained by the NFS system. nfsstat -s shows server-side statistics, and nfsstat -c shows information for client-side operations. By default, nfsstat shows statistics for all protocol versions. For example:
 

[image: Image]
 

This example is from a relatively healthy NFS client. If more than 3% of RPC calls time out, it’s likely that there is a problem with your NFS server or network. You can usually discover the cause by checking the badxid field. If badxid is near 0 with timeouts greater than 3%, packets to and from the server are getting lost on the network. You may be able to solve this problem by lowering the rsize and wsize mount parameters (read and write block sizes).
 

If badxid is nearly as high as timeout, then the server is responding, but too slowly. Either replace the server or increase the timeo mount parameter.
 

Running nfsstat and netstat occasionally and becoming familiar with their output will help you discover NFS problems before your users do.
 

18.7 Dedicated NFS File Servers
 

Fast, reliable file service is an essential element of a production computing environment. Although you can certainly roll your own file servers from workstations and off-the-shelf hard disks, doing so is often not the best-performing or easiest-to-administer solution (though it is usually the cheapest).
 

Dedicated NFS file servers have been around for many years. They offer a host of potential advantages over the homebrew approach:
 

• They are optimized for file service and typically provide the best possible NFS performance.

 

• As storage requirements grow, they can scale smoothly to support tera-bytes of storage and hundreds of users.

 

• They are more reliable than stand-alone boxes thanks to their simplified software, redundant hardware, and use of disk mirroring.

 

• They usually provide file service for both UNIX and Windows clients. Most even contain integrated web, FTP, and SFTP servers.

 

• They are often easier to administer than UNIX file servers.

 

• They often include backup and checkpoint facilities that are superior to those found on vanilla UNIX systems.

 

Some of our favorite dedicated NFS servers are made by Network Appliance, Inc. (netapp.com). Their products run the gamut from very small to very large, and their pricing is OK. EMC is another player in the high-end server market. They make good products, but be prepared for sticker shock and build up your tolerance for marketing buzzwords. LeftHand Networks, owned by HP, is another player that has gained traction in recent years with lower-cost, high-performing, entry-level storage products.
 

Storage area network (SAN) systems are another option for high-performance storage management over a network. They differ from dedicated file servers in that they have no understanding of filesystems; they simply serve disk blocks. A SAN is therefore unencumbered by the overhead of an operating system and affords fast read/write access, but it’s unable to manage concurrent access by multiple clients without the help of a clustered filesystem. See page 274 for more information about SANs.
 

18.8 Automatic Mounting
 

Mounting filesystems at boot time by listing them in /etc/fstab or /etc/vfstab can cause several kinds of administrative headaches on large networks.
 

First, maintaining the fstab file on hundreds of machines can be tedious, even with help from scripts and configuration management systems. Each host may have slightly different needs and so require individual attention.
 

Second, if filesystems are mounted from many different hosts, clients become dependent on many different servers. Chaos ensues when one of those servers crashes. Every command that accesses the mount points will hang.
 

Third, when an important server crashes, it may cripple users by making important filesystems like /usr/share unavailable. In this situation, it’s best if a copy of the partition can be mounted temporarily from a backup server. However, NFS has no built-in provision for backup servers.
 

You can moderate all these problems by using an automount daemon to mount filesystems when they are referenced and to unmount them when they are no longer being used. An automounter limits the number of active mount points and is largely transparent to users. Most automounters also accept a list of “replicated” (identical) filesystems so that the network can continue to function when a primary server becomes unavailable.
 

To implement this behind-the-scenes mounting and unmounting, the automounter mounts a virtual filesystem driver on the directories you’ve designated as locations for automatic mounting to occur. In the past, the automounter did this by posing as an NFS server, but this scheme suffers from some significant limitations and is rarely found on contemporary systems. These days, a kernel-resident filesystem driver called autofs is used.
 

Instead of mirroring an actual filesystem, the automounter “makes up” a virtual filesystem hierarchy according to the specifications given in its configuration file. When a user references a directory within the automounter’s virtual filesystem, the automounter intercepts the reference and mounts the actual filesystem the user is trying to reach. On systems that support autofs, the NFS filesystem is mounted beneath the autofs filesystem in normal UNIX fashion. Other systems may require mounting to occur in a separate directory that is then pointed to by symbolic links.
 

The idea of an automounter originally comes from Sun, now part of Oracle. Sun’s implementation, automount, is shipped with most Sun-derived NFS clients. Linux distributions supply a version that functionally mimics that of Sun, though it is an independent implementation. Similarly, AIX provides its own independent automount daemon that IBM calls “an administration tool for AutoFS.”
 

The various automount implementations understand three different kinds of configuration files (referred to as “maps”): direct maps, indirect maps, and master maps.7 Direct and indirect maps provide information about the filesystems to be automounted. A master map lists the direct and indirect maps that automount should pay attention to. Only one master map can be active at once; the default master map is kept in /etc/auto_master (/etc/auto.master under Linux).
 

On most systems, automount is a stand-alone command that reads its configuration files, sets up any necessary autofs mounts, and exits. Actual references to automounted filesystems are handled (through autofs) by a separate daemon process, automountd. The daemon does its work silently and does not need additional configuration.
 

[image: Image] On Linux systems, the daemon is called automount and the setup function is performed by the /etc/init.d/autofs startup script. Linux details are given in the section Specifics for Linux on page 717. In the following discussion, we refer to the setup command as automount and the daemon as automountd.
 

If you change the master map or one of the direct maps that it references, you must rerun automount to pick up the changes. With the -v option, automount will show you the adjustments it’s making to its configuration.
 

automount also accepts a -t argument that tells how long (in seconds) an auto-mounted filesystem may remain unused before being unmounted. The default is usually 10 minutes. Since an NFS mount whose server has crashed can cause programs that touch it to hang, it’s good hygiene to clean up automounts that are no longer in use; don’t raise the timeout too much.8
 

Indirect Maps
 

Indirect maps automount several filesystems underneath a common directory. However, the path of the directory is specified in the master file, not in the map itself. For example, an indirect map for filesystems mounted under /chimchim might look like this:
 

[image: Image]
 

The first column names the subdirectory in which each automount should be installed, and subsequent items list the mount options and the NFS path of the file-system. This example (perhaps stored in /etc/auto.harp) tells automount that it can mount the directories /harp/users, /harp/devel, and /harp/info from the server harp, with info being mounted read-only and devel being mounted soft.
 

In this configuration the paths on chimchim and the local host are the same. However, this correspondence is not required.
 

Direct Maps
 

Direct maps list filesystems that do not share a common prefix, such as /usr/src and /cs/tools. A direct map (e.g., /etc/auto.direct) that described both of these filesystems to automount might look something like this:
 

[image: Image]
 

Because they do not share a common parent directory, these automounts must each be implemented with a separate autofs mount. This configuration requires more overhead, but it has the added advantage that the mount point and directory structure are always accessible to commands such as ls. Using ls on a directory full of indirect mounts can be confusing to users because automount doesn’t show the subdirectories until their contents have been accessed (ls doesn’t look inside the automounted directories, so it does not cause them to be mounted).
 

Master Maps
 

A master map lists the direct and indirect maps that automount should pay attention to. For each indirect map, it also specifies the root directory used by the mounts defined in the map.
 

A master map that made use of the direct and indirect maps shown in the previous examples would look something like this:
 

[image: Image]
 

The first column is a local directory name for an indirect map or the special token /- for a direct map. The second column identifies the file in which the map is stored. You can have several maps of each type. When you specify mount options at the end of a line, they set the defaults for all mounts within the map. Linux administrators should always specify the -fstype=nfs4 mount flag for NFS version 4 servers.
 

[image: Image] On most systems, the default options set on a master map entry do not blend with the options specified in the direct or indirect map to which it points. If a map entry has its own list of options, the defaults are ignored. Linux merges the two sets, however. If the same option is specified in both places, the map entry’s value overrides the default.
 

The master map can usually be replaced or augmented by a version shared through NIS. See your documentation for details.
 

Executable Maps
 

If a map file is executable, it’s assumed to be a script or program that dynamically generates automounting information. Instead of reading the map as a text file, the automounter executes it with an argument (the “key”) that indicates which subdirectory a user has attempted to access. The script is responsible for printing an appropriate map entry; if the specified key is not valid, the script can simply exit without printing anything.
 

This powerful feature makes up for many of the deficiencies in automounter’s rather strange configuration system. In effect, it allows you to easily define a site-wide automount configuration file in a format of your own choice. You can write a simple script to decode the global configuration on each machine. Some systems come with a handy /etc/auto.net executable map that takes a hostname as a key and mounts all exported file systems on that host.
 

Since automount scripts run dynamically as needed, it’s unnecessary to distribute the master configuration file after every change or to convert it preemptively to the automounter format; in fact, the global configuration file can have a permanent home on an NFS server.
 

Automount Visibility
 

When you list the contents of an automounted filesystem’s parent directory, the directory appears empty no matter how many filesystems have been automounted there. You cannot browse the automounts in a GUI filesystem browser.
 

An example:
 

[image: Image]
 

The photos filesystem is alive and well and is automounted under /portal. It’s accessible through its full pathname. However, a review of the /portal directory does not reveal its existence. If you had mounted this filesystem through the fstab file or a manual mount command, it would behave like any other directory and would be visible as a member of the parent directory.
 

One way around the browsing problem is to create a shadow directory that contains symbolic links to automount points. For example, if /automounts/photos is a link to /portal/photos, you can ls the contents of /automounts to discover that photos is an automounted directory. References to /automounts/photos are still routed through the automounter and work correctly.
 

Unfortunately, these symbolic links require maintenance and can go out of sync with the actual automounts unless they are periodically reconstructed by a script.
 

Replicated filesystems and automount
 

In some cases, a read-only filesystem such as /usr/share may be identical on several different servers. In this case, you can tell automount about several potential sources for the filesystem. It will choose a server based on its own idea of which servers are closest given network numbers, NFS protocol versions, and response times to an initial query.
 

Although automount itself does not see or care how the filesystems it mounts are used, replicated mounts should represent read-only filesystems such as /usr/share or /usr/local/X11. There’s no way for automount to synchronize writes across a set of servers, so replicated read-write filesystems are of little practical use.
 

[image: Image] Under Solaris and HP-UX, automount can smoothly switch from one server of a replicated mount to another when problems occur. This feature is only supposed to work properly for read-only mounts, but rumor has it that read-write mounts are handled more reasonably than the documentation would suggest. References to files that have been opened for writing will still hang when automount changes servers, however, which is yet another reason why replicated read-write mounts may not be so useful.
 

Although automount can select among replicated servers according to its own criteria for efficiency and locality, you can also assign explicit priorities if you like. The priorities are small integers, with larger numbers indicating lower priority. The default priority is 0, most eligible.
 

An auto.direct file that defines /usr/man and /cs/tools as replicated filesystems might look like this:
 

[image: Image]
 

Note that server names can be listed together if the source path on each is the same. The (1) after monk in the first line sets that server’s priority with respect to /usr/man. The lack of a priority after harp indicates an implicit priority 0.
 

Automatic Automounts (V3; All but Linux)
 

Instead of listing every possible mount in a direct or indirect map, you can tell automount a little about your filesystem naming conventions and let it figure things out for itself. The key piece of glue that makes this work is that the mountd running on a remote server can be queried to find out what filesystems the server exports. In NFS version 4, the export is always /, which eliminates the need for this automation.
 

There are several ways to configure “automatic automounts,” the simplest of which is the -hosts mount type. If you list -hosts as a map name in your master map file, automount then maps remote hosts’ exports into the specified auto-mount directory:
 

/net -hosts -nosuid,soft
 

For example, if harp exported /usr/share/man, that directory could then be reached through the automounter at the path /net/harp/usr/share/man.
 

The implementation of -hosts does not enumerate all possible hosts from which filesystems can be mounted; that would be impossible. Instead, it waits for individual subdirectory names to be referenced, then runs off and mounts the exported filesystems from the requested host.
 

A similar but finer-grained effect can be achieved with the * and & wild cards in an indirect map file. Also, a number of macros available for use in maps expand to the current hostname, architecture type, and so on. See the automount(1M) man page for details.
 

Specifics for Linux
 

[image: Image] The Linux implementation of automount has diverged a bit from that of Sun. The changes mostly have to do with the naming of commands and files.
 

First, automount is the daemon that actually mounts and unmounts remote file-systems. It fills the same niche as the automountd daemon on other systems and generally does not need to be run by hand.
 

The default master map file is /etc/auto.master. Its format and the format of indirect maps are as described previously. The documentation can be hard to find, however. The master map format is described in auto.master(5) and the indirect map format in autofs(5); be careful, or you’ll get autofs(8), which documents the syntax of the autofs command. (As one of the man pages says, “The documentation leaves a lot to be desired.”) To cause changes to the master map to take effect, run /etc/init.d/autofs reload, which is equivalent to automount in Sun-land.
 

The Linux implementation does not support the Solaris-style -hosts clause for automatic automounts.
 

18.9 Recommended Reading
 

CALLAGHAN, BRENT. NFS Illustrated. Reading, MA: Addison-Wesley, 1999.
 

STERN, HAL, MIKE EISLER, AND RICARDO LABIAGA. Managing NFS and NIS (2nd Edition). Sebastopol, CA: O’Reilly Media, 2001.
 

Table 18.11 lists the various RFCs for the NFS protocol.
 

Table 18.11 NFS-related RFCs
 

[image: Image]
 

18.10 Exercises
 

[image: Image] E18.1 Explore your local NFS setup. Is NFS used, or is a different solution in place? Is automounting used? What tradeoffs have been made?

 

[image: Image] E18.2 In NFS versions 2 and 3, what is the relationship between mountd, nfsd, and portmap? What does the NFS dependency on portmap mean in terms of security?

 

[image: Image] E18.3 What are some of the conceptual changes between NFS versions 3 and 4? How does the issue of stateful versus stateless change other attributes of the protocol?

 

[image: Image] E18.4 Your employer needs you to export /usr and /usr/local through NFS. You have been given the following information and requests:

 

a) Because of office politics, you want only your department (local subnet 192.168.123.0/24) to be able to use these exported filesystems. What lines must be added to which files to implement this configuration? Pay attention to the proper export options.

 

b) List the steps needed to make mountd and nfsd recognize these new shared filesystems. How could you verify that the directories were being shared without mounting them?

 

c) Outline a strategy that would make all machines on your local subnet automatically mount the exported directories on the mount points /mnt/usr and /mnt/usr/local.

 
  


19. Sharing System Files
 

[image: Image]
 

We’re all familiar with the concept of sharing data among computers, whether that’s accomplished through email attachments, transfer protocols such as HTTP and FTP, or file-sharing services like those provided by NFS and CIFS. These mechanisms are designed primarily as a way for users to share files and application data. However, UNIX and Linux systems can benefit from another type of sharing: the distribution of administrative configuration data. This kind of sharing centralizes administrative control and promotes consistency among systems.
 

User logins and passwords are a real-world example of the need for this kind of sharing. You rarely want to add a user to a single machine; in most cases, you want to define that user on an entire class or network of machines. In addition, most organizations are now faced with the need to support a mix of platforms—some UNIX, some Linux, and some Windows—and users are increasingly annoyed when they have to remember (and change) a different password on each platform. Fortunately, it’s not that hard to synchronize configuration and user information across different systems.
 

Sharing system files isn’t as easy as it sounds. Attempts to develop distributed administrative databases for large networks go back several decades and have produced a number of interesting systems. However, none of the systems in general use seem exactly right in their approach. Some are simple but not secure and not scalable. Others are functional but unwieldy. All the systems have limitations that can prevent you from setting up the network the way you want to, and none of them manage all the information you may want to share across your machines.
 

In this chapter we first discuss some basic techniques for keeping configuration files synchronized on a network. Next, we address the Lightweight Directory Access Protocol (LDAP), a more sophisticated, platform-independent database system that is becoming a de facto standard in both the UNIX and Windows worlds. Most sites today are migrating toward LDAP, in large part because of Microsoft’s adoption of (most of) the LDAP standard in their Active Directory product and the desire to better integrate Linux and Windows environments. Finally, we cover NIS, a historically popular database system that lingers on in some environments but probably should not be deployed at new sites.
 

Note that sharing system files is different from system configuration and software deployment. These domains have different needs, and in practice, they are addressed by different solutions. See Chapter 12, Software Installation and Management, for details about what goes on behind that particular wall.
 

19.1 What to Share
 

Of the many configuration files on a UNIX or Linux system, only a subset can be usefully shared among machines. In modern times, the most pressing need for sharing relates to the contents of the passwd, hosts, and aliases files; however, other configuration files can become shared entities as well. Table 19.1 shows some of the most commonly shared files.
 

Table 19.1 System files that are commonly shared
 

[image: Image]
 

Table 19.1 is far from being a comprehensive list; your exact configuration depends on how similar you want the machines at your site to be. For the most part, though, additional configuration files are associated with specific applications and are not supported by administrative directory systems such as LDAP; you must share the files by copying them.
 

Many of the files in Table 19.1 are intended to be accessed through routines in the standard C library. For example, the /etc/passwd file can be searched with the getpwuid, getpwnam, and getpwent routines. These routines take care of opening, reading, and parsing the passwd file so that user-level programs don’t have to do it themselves. Modern systems can also use pluggable authentication modules (PAM), which define a standard programming interface for performing security-related lookups. PAM allows systems such as Kerberos and LDAP to be easily integrated into the system. The exact complement of data sources that are consulted is set by the system administrator; see Prioritizing sources of administrative information on page 739 for details.
 

See page 908 for more information about PAM.

 

19.2 Copying Files Around
 

Brute-force file copying is not an elegant solution, but it works on every kind of machine and is easy to set up and maintain. It’s a reliable system because it minimizes the interdependencies among machines (although it may also make it easier for machines to fall out of sync). File copying also offers the most flexibility in terms of what can be distributed, and how. It is often used to keep applications and data files, as well as system files, up to date.
 

Quite a few configuration files are not supported by any of the common database services. /etc/ntp.conf, which determines how hosts keep their clocks synchronized, is an example. To keep such files in sync, you really have no choice but to use some sort of file-copying system.
 

The NFS Option
 

Some sites distribute configuration files by publishing them on an NFS server. This is perhaps the simplest possible technique from an automation point of view—all you need on the client is cp, at least in theory.
 

NFS used to have security issues that made this approach a bit risky, but in NFSv4, those concerns have largely been addressed. For extra security, you can use encryption to protect sensitive files from inspection by prying eyes.
 

See Chapter 18, for more information about NFS.

 

Another step that increases security is to have the publisher sign configuration files with a public key cryptography package such as PGP. Clients can then verify that the files they are being offered through NFS are authentic and unmodified before installing them.
 

See page 925 for more information about PGP.

 

Many software packages let you specify a nonstandard location for configuration files. Therefore, it’s theoretically possible to point these packages at configuration files that live on an NFS filesystem, thus making no local copies at all. However, we strongly advise against this configuration. It makes every system in the world dependent on one NFS server, and that server then has to actively serve all those clients. Worse yet, many packages don’t expect remote systems to be locking their configuration files or creating temporary files in their configuration directories; the setup may not even work correctly. More accurately, it may work perfectly almost all of the time but fail mysteriously and sporadically, leaving no evidence of what went wrong. Welcome to hell.
 

Push Systems Vs. Pull Systems
 

Once you get away from the shared filesystem model, file-copying systems generally use either a “push” model or a “pull” model. With push, the master server periodically distributes the freshest files to each client, whether the client wants them or not. Files can be pushed explicitly whenever a change is made, or they can simply be distributed on a regular schedule (perhaps with some files being transferred more often than others).
 

The push model has the advantage of keeping the distribution system centralized on one machine. Files, lists of clients, update scripts, and timetables are stored in one place, making the scheme easy to control. One disadvantage is that each client must let the master modify its system files, thereby creating a security hazard.
 

In a pull system, each client is responsible for updating itself from the server. This is a less centralized way of distributing files, but it is also more adaptable and more secure. When data is shared across administrative boundaries, a pull system is especially attractive because the master and client machines need not be run by the same administrative group or political faction.
 

rdist: push files
 

The rdist command is the easiest way to distribute files from a central server. It has something of the flavor of make: you use a text editor to create a specification of the files to be distributed, and then you use rdist to bring reality into line with your specification. rdist copies files only when they are out of date, so you can write your specification as if all files were to be copied and let rdist optimize out unnecessary work.
 

rdist preserves the owner, group, mode, and modification time of files. When it updates an existing file, rdist first deletes the old version before installing the new. This feature makes rdist suitable for transferring executables that might be in use during the update.1
 

rdist historically ran on top of rsh and used rsh’s authentication system to gain access to remote systems. However, this system is not secure and is disabled by default on modern operating systems. Even though the rdist documentation continues to talk about rsh, do not be fooled into thinking that rsh security is a reasonable choice.
 

Current versions of rdist are better in that they allow any command that understands the same syntax to be substituted for rsh. In practice, the substitute is ssh, which uses cryptography to verify the identity of hosts and to prevent network eavesdroppers from obtaining copies of your data. The downside is that you must
 

run remote ssh servers in a mode that does not require a password (but authenticates the client with a cryptographic key pair). This is a less secure configuration than we would normally recommend, but it is still a huge improvement over rsh. See page 926 for more information about sshd and its authentication modes.
 

Now that we’ve belabored the perils of rdist, let’s look at how it actually works. Like make, rdist looks for a control file (Distfile or distfile) in the current directory. rdist -f
distfile explicitly specifies the control file’s pathname. Within the control file, tabs, spaces, and newlines are used interchangeably as separators. Comments are introduced with a pound sign (#).
 

The meat of a Distfile consists of statements of the form
 

label: pathnames -> destinations commands
 

The label field associates a name with the statement. From the shell, you can run rdist
label to distribute only the files described in a particular statement.
 

The pathnames and destinations are lists of files to be copied and hosts to copy them to, respectively. If a list contains more than one entry, the list must be surrounded with parentheses and the elements separated by whitespace. The pathnames can include shell-style globbing characters (e.g., /usr/man/man[123] or /usr/lib/*). The notation ~user is also acceptable, but it is evaluated separately on the source and destination machines.
 

By default, rdist copies the files and directories listed in pathnames to the equivalent paths on each destination machine. You can modify this behavior by supplying a sequence of commands and terminating each with a semicolon.
 

The following commands are understood:
 

[image: Image]
 

The install command sets options that affect the way rdist copies files. Options typically control the treatment of symbolic links, the correctness (vs. efficiency) of rdist’s difference-checking algorithm, and the way that deletions are handled. The options, which must be preceded by -o, consist of a comma-separated list of option names. For example, the line
 

install -oremove,follow;
 

makes rdist follow symbolic links (instead of just copying them as links) and removes existing files on the destination machine that have no counterpart on the source machine. See the rdist man page for a complete list of options. The defaults are almost always what you want.
 

The name “install” is somewhat misleading, since files are copied whether or not an install command is present. Options are specified as they would be on the rdist command line, but when included in the Distfile, they apply only to the set of files handled by that install command.
 

The optional destdir specifies an installation directory on the destination hosts. By default, rdist uses the original pathnames.
 

The notify command takes a list of email addresses as its argument. rdist sends mail to these addresses whenever a file is updated. Any addresses that do not contain an at sign (@) are suffixed with the name of the destination host. For example, rdist would expand “pete” to “pete@anchor” when reporting a list of files updated on host anchor.
 

The except and except_pat commands remove pathnames from the list of files to be copied. Arguments to except are matched literally, and those of except_pat are interpreted as regular expressions. These exception commands are useful because rdist, like make, allows macros to be defined at the beginning of its control file. You might want to use a similar list of files for several statements, specifying only the additions and deletions for each host.
 

See the section starting on page 48 for more information about regular expressions.

 

The special command executes a shell command (the string argument, in quotation marks) on each remote host. If a pathlist is present, rdist executes the command once after copying each of the specified files. Without a pathlist, rdist executes the command after every file. cmdspecial is similar, but it executes the shell command once after all copying is complete. (The contents of the pathlist are passed to the shell as an environment variable.)
 

Here’s a simple example of a Distfile:
 

[image: Image]
 

This configuration replicates the three listed system files on chimchim, lollipop, and barkadon and sends mail to barb@destination describing any updates or errors that occur. After /etc/mail/aliases is copied, rdist runs newaliases on each destination. Only two files are copied to whammo and spiff. newaliases is not run, and a report is mailed to eddie@spiff.
 

See page 760 for more information about newaliases.

 

To get rdist working among machines, you must also tell sshd on the recipient hosts to trust the host from which you are distributing files. To do this, you generate a plaintext key for the master host and store a copy of the public portion in the file ~root/.ssh/authorized_keys on each recipient. It’s probably also wise to restrict what this key can do and where it can log in from. See the description of “method B” on page 926 for more information.
 

rsync: Transfer Files More Securely
 

rsync is available from rsync.samba.org.
rsync, written by Andrew Tridgell and Paul Mackerras, is similar in spirit to rdist but with a somewhat different focus. It does not use a file-copying control file in the manner of rdist (although the server side does have a configuration file). rsync is a bit like a souped-up version of scp that is scrupulous about preserving links, modification times, and permissions. It is more network efficient than rdist because it looks inside individual files and attempts to transmit only the differences between versions.
 

rsync is available from rsync.samba.org.

 

From our perspective, the main advantage of rsync is the fact that receiving machines can run the remote side as a server process out of xinetd or inetd. The server (actually just a different mode of rsync, which must be installed on both the master and the clients) is quite configurable: it can restrict remote access to a set of given directories and can require the master to prove its identity with a password. Since no ssh access is necessary, you can set up rsync to distribute system files without making too many security compromises. (However, if you prefer to use ssh instead of an inetd-based server process, rsync lets you do that too.) What’s more, rsync can also run in pull mode (pulling files down from the rsync server rather than letting the server push files to the local system), which is even more secure (see the section on pulling files, page 727).
 

Unfortunately, rsync isn’t nearly as flexible as rdist, and its configuration is less sophisticated than rdist’s distfile. You can’t execute arbitrary commands on the clients, and you can’t rsync to multiple hosts at once.
 

As an example, the command
 

# rsync -gopt --password-file=/etc/rsync.pwd /etc/passwd lollipop::sysfiles
 

transfers the /etc/passwd file to the machine lollipop. The -gopt options preserve the permissions, ownerships, and modification times of the file. The double colon in lollipop::sysfiles makes rsync contact the remote rsync directly on port 873 instead of using ssh. The password stored in /etc/rsync.pwd authenticates the connection.2
 

This example transfers only one file, but rsync is capable of handling multiple files at once. In addition, the --include and --exclude flags let you specify a list of regular expressions to match against filenames, so you can set up a sophisticated set
 

of transfer criteria. If the command line gets too unwieldy, you can read the patterns from separate files with the --include-file and --exclude-file options.
 

[image: Image] Linux rsync packages usually include a xinetd configuration for rsync. However, you must edit /etc/xinetd.d/rsync and change disable = yes to disable = no to actually enable the server.
 

[image: Image] As of this writing, rsync isn’t shipped as part of the Solaris distribution. You can download the source code from rsync.samba.org and install it, or google for a pre-made Solaris binary. You may need to use inetconv to convert the daemon’s startup method to be compatible with Solaris’s new SMF framework.
 

[image: Image] HP-UX doesn’t include rsync either, but you can get precompiled HP-UX binaries in swinstall depot form from
 

hpux.connect.org.uk/hppd/hpux/Networking/Admin/rsync-3.0.6
 

[image: Image] An AIX version of rsync is available from
 

ftp://ftp.software.ibm.com/aix/freeSoftware/aixtoolbox/RPMS/ppc/rsync
 

As of this writing, an RPM package for AIX 6.1 is still under development. In the interim, many people have reported success in using the AIX 5.3 RPM on their AIX 6.1 systems.
 

Once you have enabled rsync, you need to set up a couple of config files to tell the rsync server how to behave. The main file is /etc/rsyncd.conf, which contains both global configuration parameters and a set of “modules,” each of which is a directory tree to export or import. A reasonable configuration for a module that you can push to (i.e., that will accept incoming file transfers initiated by the connecting client) looks something like this:
 

[image: Image]
 

Many other options can be set, but the defaults are reasonable. This configuration limits operations to the /etc directory and allows access only by the listed host. From the user’s or client’s point of view, you can rsync files to the server with the destination hostname::sysfiles, which maps to the module above. If you want to set up rsync in pull mode (pulling files from a central rsync server), the lines above will still work, but you may want to tighten things up a bit; for example, by setting the transfer mode to read-only.
 

The last thing you need to do is set up an rsyncd.secrets file. It’s generally kept in /etc (although you can put it elsewhere) and contains the passwords that clients use to authenticate themselves. For example:
 

root:password
 

As a general rule, rsync passwords should be different from system passwords. Because the passwords are shown in plaintext, rsyncd.secrets must be readable only by root.
 

Pulling Files
 

You can implement a pulling system in several ways. The most straightforward way is to make the files available on a central FTP or web server3 and to have the clients automatically download them as needed. In historical times, administrators would roll their own utilities to do this (often scripting ftp with a system such as expect), but standard utilities can now do it for you.
 

One such utility that ships with most systems is the popular wget. It’s a straightforward little program that fetches the contents of a URL (either FTP or HTTP). For example, to FTP a file with wget, just run
 

wget ftp://
user:password@hostname/path/to/file
 

The specified file is deposited in the current directory.
 

An alternative option for FTP is ncftp, which ships with many systems. It’s really just an enhanced FTP client that allows for easy scripting.
 

You can also use rsync as described in the previous section. If you run an rsync server on your central distribution host, clients can simply rsync the files down. Using this method is perhaps slightly more complex than using FTP, but you then have access to all of rsync’s features.
 

Whatever system you use, be careful not to overload your data server. If a lot of machines on the network try to access the server simultaneously (e.g., if everyone runs an update out of cron at the same time), you can cause an inadvertent denial of service attack. Large sites should keep this problem in mind and allow for staggering or randomization. A simple way to do this is to wrap cron jobs in a Perl script such as this:
 

[image: Image]
 

19.3 LDAP: The Lightweight Directory Access Protocol
 

UNIX and Linux sites need a good way to distribute their administrative configuration data; however, the problem is really more general than that. What about nonadministrative data such as telephone and email directories? What about information that you want to share with the outside world? What everyone really needs is a generalized directory service.
 

A directory service is just a database, but one that makes a few assumptions. Any data set that has characteristics matching the assumptions is a candidate for inclusion in the directory. The basic assumptions are as follows:
 

• Data objects are relatively small.

 

• The database will be widely replicated and cached.

 

• The information is attribute based.

 

• Data are read often but written infrequently.

 

• Searching is a common operation.

 

The current IETF standards-track system designed to fill this role is the Lightweight Directory Access Protocol (LDAP). The LDAP specifications don’t really speak to the database itself, just the way that it’s accessed through a network. But because they specify how the data is schematized and how searches are performed, they imply a fairly specific data model as well.
 

LDAP was originally designed as a gateway protocol that would allow TCP/IP clients to talk to an older directory service called X.500, which is now obsolete. Over time, it became apparent both that X.500 was going to die out and that UNIX really needed a standard directory of some sort. These factors have led to LDAP being developed as a full-fledged directory system in its own right (and perhaps to its no longer being quite so deserving of the L).4
 

At this point, LDAP has become quite mainstream, spurred perhaps in part by Microsoft’s adoption of LDAP as the basis for its Active Directory service. On the UNIX and Linux side, the OpenLDAP package (openldap.org) has become the standard implementation. The 389 Directory Server (formerly known as Fedora Directory Server and Netscape Directory Server) is also open source and can be found at port389.org. It runs on Linux, Solaris, and HP-UX.
 

The Structure of LDAP Data
 

LDAP data takes the form of property lists, which are known in LDAP world as “entries.” Each entry consists of a set of named attributes (such as description or uid) along with those attributes’ values. Windows users might recognize this structure as being similar to that of the Windows registry. As in the registry, an individual attribute can have several values.
 

As an example, here’s a typical (but simplified) /etc/passwd line expressed as an LDAP entry:
 

[image: Image]
 

This notation is a simple example of LDIF, the LDAP Data Interchange Format, which is used by most LDAP-related tools and server implementations. The fact that LDAP data can be easily converted back and forth from plain text is part of the reason for its success.
 

Entries are organized into a hierarchy through the use of “distinguished names” (attribute name: dn) that form a sort of search path. For example, the dn for the user above might be
 

dn: uid=ghopper,ou=People,dc=navy,dc=mil
 

As in DNS, the “most significant bit” goes on the right. Here, the DNS name navy.mil has been used to structure the top levels of the LDAP hierarchy. It has been broken down into two domain components (dc’s), “navy” and “mil,” but this is only one of several common conventions.
 

Every entry has exactly one distinguished name. Therefore, the entry hierarchy looks like a simple branching tree with no loops. There are, however, provisions for symbolic links between entries and for referrals to other servers.
 

LDAP entries are typically schematized through the use of an objectClass attribute. Object classes specify the attributes that an entry can contain, some of which may be required for validity. The schema also assigns a data type to each attribute. Object classes nest and combine in the traditional object-oriented fashion. The top level of the object class tree is the class named top, which specifies merely that an entry must have an objectClass attribute.
 

Table 19.2 shows some common LDAP attributes whose meanings might not be immediately apparent.
 

Table 19.2 Some common attribute names found in LDAP hierarchies
 

[image: Image]
 

The Point of LDAP
 

Until you’ve had some experience with it, LDAP can be a slippery concept to grab hold of. LDAP by itself doesn’t solve any specific administrative problem. There’s no “primary task” that LDAP is tailor-made to handle, and sites diverge widely in their reasons for deploying LDAP servers. So before we move on to the specifics of installing and configuring OpenLDAP, it’s probably worth reviewing some reasons why you might want to investigate LDAP for use at your site.
 

Here are the big ones:
 

• LDAP can act as a central repository for information about your users, including everything from their phone numbers and home addresses to their login names and passwords.

 

• In a similar vein, you can use LDAP to distribute configuration information for ancillary applications. Most mail systems—including sendmail, Exim, and Postfix—can draw a large part of their routing information from LDAP, and this is in fact one of LDAP’s most popular applications. Tools as varied as the Apache web server and the autofs automounter can be configured to pay attention to LDAP, too. It’s likely that LDAP support will become more and more common over time.

 

See page 774 for more information about using LDAP with sendmail.

 

• LDAP makes it easy for applications (even those written by other teams and other departments) to authenticate users without having to worry about the exact details of account management.

 

• Changes to LDAP data take effect immediately and are instantly visible to all hosts and client applications.

 

• It’s easy to access LDAP data through command-line tools such as ldapsearch. In addition, LDAP is well supported by common scripting languages such as Perl and Python (through the use of libraries). Ergo, LDAP is a terrific way to distribute configuration information for locally written scripts and administrative utilities.

 

• Excellent web-based tools are available for managing LDAP, some examples being phpLDAPadmin (phpldapadmin.sourceforge.net) and Directory Administrator (diradmin.open-it.org). These tools are so easy to use that you can just rip the box open and start playing without reading the manual.

 

• LDAP is well supported as a public directory service. Most major email clients support the use of LDAP to access user directories. Simple LDAP searches are also supported by many web browsers through the use of an LDAP URL type.

 

• Microsoft’s Active Directory architecture is based on LDAP, and the current release of Windows Server includes extensions (originally called “Services for UNIX,” then “Windows Security and Directory Services for UNIX,” and now “Windows Server 2008 UNIX Interoperability Components”) that facilitate the mapping of UNIX users and groups. See Chapter 30, Cooperating with Windows, for more information about integrating your UNIX systems with Active Directory-based LDAP.

 

LDAP Documentation and Specifications
 

A good general introduction to LDAP is LDAP for Rocket Scientists, which covers LDAP architecture and protocol. Find it on-line at zytrax.com/books/ldap. Another good source of information is the LDAP-related RFCs, which are numerous and varied. As a group, they tend to convey an impression of great complexity, which is somewhat unrepresentative of average use. Table 19.3 list some of the high points.
 

Table 19.3 Important LDAP-related RFCs
 

[image: Image]
 

OpenLDAP: The Traditional Open Source LDAP Server
 

OpenLDAP is an extension of work originally done at the University of Michigan; it now continues as an open source project. It’s shipped with most Linux distributions, though it is not necessarily included in the default installation. You’ll need to download and install the software to run it on Solaris, HP-UX, or AIX. The documentation is perhaps best described as “brisk.”
 

In the OpenLDAP distribution, slapd is the standard LDAP server daemon. In an environment with multiple OpenLDAP servers, slurpd runs on the master server and handles replication by pushing changes out to slave servers. A selection of command-line tools enable the querying and modification of LDAP data.
 

Setup is straightforward. First, create an /etc/openldap/slapd.conf file by copying the sample installed with the OpenLDAP server.
 

These are the lines you need to pay attention to:
 

[image: Image]
 

The database format defaults to Berkeley DB, which is fine for data that will live within the OpenLDAP system. You can use a variety of other back ends, including ad hoc methods such as scripts that create the data on the fly.
 

suffix is your “LDAP basename.” It’s the root of your portion of the LDAP namespace, similar in concept to your DNS domain name. In fact, this example illustrates the use of a DNS domain name as an LDAP basename, which is a common practice.
 

rootdn is your administrator’s name, and rootpw is the administrator’s UNIX-format (DES) password. Note that the domain components leading up to the administrator’s name must also be specified. You can either copy and paste the password from /etc/shadow (if you don’t use MD5 passwords) or generate it with a simple Perl one-liner
 

perl -e “print crypt(’password’,’salt’);”
 

where password is the desired password and salt is an arbitrary two-character string. Because of the presence of this password, make sure that the permissions on your slapd.conf file are 600 and that the file is owned by root.
 

Edit /etc/openldap/ldap.conf to set the default server and basename for LDAP client requests. It’s pretty straightforward—just set the argument of the host entry to your server and set the base to the same value as the suffix in slapd.conf. (Make sure both lines are uncommented.)
 

At this point, you should be able to start up slapd by simply running it with no arguments.
 

389 Directory Server: Alternative Open Source LDAP Server
 

Like OpenLDAP, the 389 Directory Server (port389.org) is an extension of the work done at the University of Michigan. However, it spent some years in the commercial world (at Netscape) before returning as an open source project.
 

There are many reasons to consider the 389 Directory Server as an alternative to OpenLDAP, but its superior documentation is one clear advantage. The 389 Directory Server comes with several professional-grade administration and use guides, including detailed installation and deployment instructions.
 

A few other key features of the 389 Directory Server are
 

• Multimaster replication for fault tolerance and high write performance

 

• Active Directory user and group synchronization

 

• A graphical console for all facets of user, group, and server management

 

• On-line, zero downtime, LDAP-based update of schema, configuration, management and in-tree Access Control Information (ACIs)

 

As of this writing, the 389 Directory Server appears to have a more active development community than OpenLDAP. We generally recommend it over OpenLDAP for new installations.
 

From an administrative standpoint, the structure and operation of the two open source servers are strikingly similar. This fact is perhaps not too surprising since both packages were built on the same original code base.
 

LDAP Instead of /etc/Passwd and /etc/Group
 

Client-side LDAP support is relatively easy to add. Some systems install the necessary nss_ldap package by default, but if not, they usually provide the package as an option. This package includes a PAM module that lets you use LDAP with pluggable authentication modules in addition to the name service switch. (See Chapter 30, Cooperating with Windows, for more information about integrating UNIX and Linux systems with Active Directory-based LDAP.)
 

Client-side LDAP defaults for nss_ldap are set in /etc/ldap.conf, which shares its format with /etc/openldap/ldap.conf (described on page 732) but which includes additional options specific to the name service and PAM contexts. You must also edit the /etc/nsswitch.conf file on each client to add ldap as a source for each type of data you want to LDAPify. (The nsswitch.conf changes make the C library pass requests to the libnss_ldap library, which then uses the /etc/ldap.conf information to figure out how to perform the LDAP queries. See Prioritizing sources of administrative information on page 739 for details.)
 

RFC2307 defines the standard mapping from traditional UNIX data sets, such as the passwd and group files, into the LDAP namespace. It’s a useful reference document for sysadmins using LDAP in a UNIX environment, at least in theory. In practice, the specifications are a lot easier for computers to read than for humans; you’re better off looking at examples.
 

Padl Software offers a free set of Perl scripts that migrate existing flat files or NIS maps to LDAP. It’s available from padl.com/OSS/MigrationTools.html, and the scripts are straightforward to run. They can be used as filters to generate LDIF, or they can be run against a live server to upload the data directly. For example, the migrate_group script converts this line from /etc/group
 

csstaff:x:2033:evi,matthew,trent
 

to the following LDIF:
 

(Note the object class and distinguished name specifications, which were omitted from the passwd example on page 729.)
 

Once a database has been imported, you can verify that the transfer worked correctly by running the slapcat utility, which displays the entire database.
 

LDAP Querying
 

To administer LDAP, you need to be able to see and manipulate the contents of the database. The phpLDAPadmin tool mentioned earlier is one of the nicer free tools for this purpose because it gives you an intuitive point-and-click interface. If phpLDAPadmin isn’t an option, ldapsearch (distributed with both OpenLDAP and 389 Directory Server) is an analogous command-line tool that produces output in LDIF format. ldapsearch is especially useful for calling from scripts and for debugging environments in which Active Directory is acting as the LDAP server.
 

The following example query uses ldapsearch to look up directory information for every user whose cn starts with “ned”. (In this case, there’s only one result.) The meanings of the various flags are discussed below.
 

[image: Image]
 

ldapsearch’s -h and -p flags specify the host and port of the LDAP server you want to query, respectively.
 

You usually need to authenticate yourself to the LDAP server. In this case, the -x flag requests simple authentication (as opposed to SASL). The -D flag identifies the distinguished name of a user account that has the privileges needed to execute the query, and the -W flag makes ldapsearch prompt you for the corresponding password.
 

The -b flag tells ldapsearch where in the LDAP hierarchy to start the search. This parameter is known as the baseDN; hence the b. By default, ldapsearch returns all matching entries below the baseDN; you can tweak this behavior with the -s flag.
 

The last argument is a “filter,” which is a description of what you’re searching for. It doesn’t require an option flag. This filter, cn=ned*, returns all LDAP entries that have a common name that starts with “ned”. The filter is quoted to protect the star from shell globbing.
 

If you want to extract all entries below a given baseDN, just use objectClass=* as the search filter—or leave the filter out, since this is the default.
 

Any arguments that follow the filter select specific attributes to return. For example, if you added mail givenName to the command line above, ldapsearch would return only those attributes of matching entries.
 

LDAP and Security
 

Traditionally, LDAP was used more in the manner of a phone directory than anything else, and for that purpose, sending data without encrypting it was usually acceptable. As a result, the “standard” LDAP implementation grants unencrypted access through TCP port 389. However, we strongly advise against the use of unencrypted LDAP for the transmission of authentication information, even if passwords are individually hashed or encrypted.
 

As an alternative, LDAP-over-SSL (known as LDAPS, usually running on TCP port 686) is available in most situations (including the Microsoft world) on both the client and server. This access method is preferred because it protects the information contained in both the query and the response. Use LDAPS when possible.
 

A system as complex as LDAP inevitably has the potential to be misconfigured in a way that weakens security. Of course, it is likely to contain some plain, old-fashioned security holes, too. Caveat administrator.
 

19.4 NIS: The Network Information Service
 

NIS, released by Sun in the 1980s, was the first “prime time” administrative database. It was originally called the Sun Yellow Pages, but eventually had to be renamed for legal reasons. NIS commands still begin with the letters yp, so it’s hard to forget the original name. NIS was widely adopted among UNIX vendors and is supported by every Linux distribution.
 

These days, however, NIS is an old grey mare. NIS should not be used for new deployments. We say this primarily because of the inevitable need to integrate with Windows systems, but also because of NIS’s various security and scalability shortcomings.
 

Nevertheless, we include some brief coverage of NIS in deference to the large number of legacy sites where it’s still in use.
 

The NIS Model
 

The unit of sharing in NIS is the record, not the file. A record usually corresponds to one line in a config file. A master server maintains the authoritative copies of system files, which are kept in their original locations and formats and are edited with a text editor just as before. A server process makes the contents of the files available over the network. A server and its clients constitute an NIS “domain.”5
 

Data files are preprocessed into database files by a hashing library to improve the efficiency of lookups. After editing files on the master server, you use make to tell NIS to convert them to their hashed format.
 

Only one key can be associated with each entry, so a system file may have to be translated into several NIS “maps.” For example, the /etc/passwd file is translated into two different maps called passwd.byname and passwd.byuid. One map is used to look up entries by username and the other to look up entries by UID. Either map can be used to enumerate the entries in the passwd file. However, because hashing libraries do not preserve the order of records, there is no way to reconstruct an exact duplicate of the original file.
 

NIS lets you replicate the network maps on a set of slave servers. Providing more than one server helps relieve the load on the master and helps keep clients working even when some servers become unavailable. Whenever a file is changed on the master server, the corresponding NIS map must be pushed out to the slaves so that all servers provide the same data. Clients do not distinguish between the master server and the slaves.
 

Understanding how NIS Works
 

NIS’s data files are stored in one directory, usually /var/yp. Hereafter, we refer to this as “the NIS directory.” Each NIS map is stored in a hashed database format in
 

a subdirectory of the NIS directory named for the NIS domain. The exact name and number of the map files depends on the hashing library being used. There is one map (file) for each key by which a file can be searched. For example, in the domain cssuns, the DB files for the /etc/passwd maps might be
 

/var/yp/cssuns/passwd.byname
/var/yp/cssuns/passwd.byuid
 

The makedbm command generates NIS maps from flat files. However, you need not invoke this command directly; a Makefile in /var/yp generates all the common NIS maps. After you modify a system file, cd to /var/yp and run make. The make command checks the modification time of each file against the modification times of the maps derived from it and runs makedbm for each map that needs to be rebuilt.
 

[image: Image] On HP-UX systems, a command called ypmake is used instead of make.
 

The ypxfr command copies maps from the master server to the slave servers. ypxfr is a pull command; it must be run on each slave server to make that server import the map. Slaves usually execute ypxfr every so often just to verify that they have the most recent maps; you can use cron to control how often this is done.
 

The default implementation of map copying is somewhat inefficient. On most systems, a daemon called ypxfrd (or rpc.ypxfrd) can be run on the master server to speed responses to ypxfr requests. ypxfrd sidesteps the normal NIS protocol and simply hands out copies of the map files. Unfortunately, map files are stored with different database formats and byte ordering on different systems, so the use of ypxfrd introduces some potential incompatibilities.
 

yppush is a “push” command that’s used on the master server. It actually does not transfer any data but rather instructs each slave to execute a ypxfr. The yppush command is used by the Makefile in the NIS directory to ensure that newly updated maps are propagated to slaves.
 

The special map called ypservers does not correspond to any flat file. This map contains a list of all the servers of the domain. It’s automatically constructed when the domain is set up with ypinit. Its contents are examined when the master server needs to distribute maps to slaves.
 

After initial configuration, the only active components of the NIS system are the ypserv and ypbind daemons. ypserv runs only on servers (both master and slave); it accepts queries from clients and answers them by looking up information in the hashed map files.
 

ypbind runs on every machine in the NIS domain, including servers. The C library contacts the local ypbind daemon when it needs to answer an administrative query (provided that /etc/nsswitch.conf says to do so). ypbind locates a ypserv in the appropriate domain and returns its identity to the C library, which then contacts the server directly.
 

Latter-day versions of ypbind periodically check to be sure they are dealing with the most responsive server for an NIS domain. This is an improvement over the traditional implementation, which fixates on a particular server.
 

NIS includes a number of minor commands that examine maps, find out which version of a map each server is using, and control the binding between clients and servers. A complete list of NIS commands and daemons is given in Table 19.4.
 

Table 19.4 NIS commands and daemons
 

[image: Image]
 

NIS Security
 

NIS is not secure. Broadcast mode is particularly bad; any host on a network can claim to serve a particular domain and then feed bogus administrative data to NIS clients. On Linux systems, you can mitigate this particular problem by explicitly enumerating the permissible NIS servers for each client.
 

If you’re at all concerned about the security in your environment, you shouldn’t use NIS to serve the passwd or shadow files. Use alternative distributed authentication mechanisms, such as LDAP, for this purpose.
 

Many security vulnerabilities have been found in older versions of NIS. Make sure you’re running the current version.
 

19.5 Prioritizing Sources of Administrative Information
 

Administrative information can be distributed in several ways. Every system understands flat files and knows how to use DNS to look up hostnames and Internet addresses. Since a given piece of information could come from several potential sources, there’s also a way for you to specify the sources that are to be checked and the order in which the checks are made.
 

The /etc/nsswitch.conf (/etc/netsvc.conf on AIX) config file allows an explicit search path to be specified for each type of configuration information. A typical nsswitch.conf file looks something like this:
 

[image: Image]
 

Each line configures one type of information (usually, one flat-file equivalent). The common sources are nis, nisplus, files, dns, ldap, and compat; they refer to NIS, NIS+,6 vanilla flat files (ignoring tokens such as “+”), DNS, LDAP, and NISified flat files, respectively. DNS is a valid data source only for host and network information.
 

Sources are tried from left to right until one of them produces an answer for the query. In the example above, the gethostbyname routine would first check the /etc/hosts file, and if the host was not listed there, would then check DNS. Queries about UNIX groups, on the other hand, would check only the /etc/group file.
 

If necessary, you can define the “failure” of a source more specifically by putting bracketed expressions after it. For example, the line
 

hosts: dns [NOTFOUND=return] files
 

causes DNS to be used exclusively if it is available; a negative response from the name server makes queries return immediately (with a failure code) without checking flat files. However, flat files are used if no name server is available. The various types of failures are shown in Table 19.5; each can be set to return or continue, signifying whether the query should be aborted or forwarded to the next source.
 

Table 19.5 Failure modes recognized in /etc/nsswitch.conf
 

[image: Image]
 

By default, most systems ship with nsswitch.conf files that are reasonable for a stand-alone machine. All entries go to the flat files, with the exception of host lookups, which first consult flat files and then DNS. A few systems default to compat mode for passwd and group, which is probably worth changing. If you really use NIS, just explicitly put it in the nsswitch.conf file.
 

nscd: Cache the Results of Lookups
 

[image: Image] On some Linux distributions, another finger in the system file pie belongs to nscd, the somewhat misleadingly titled name service cache daemon.
 

nscd works in conjunction with the C library to cache the results of library calls such as getpwent. nscd is simply a wrapper for these library routines; it knows nothing about the actual data sources being consulted. nscd should in theory improve the performance of lookups, but any improvement is largely unnoticeable from the user’s viewpoint.
 

We say that “name service cache daemon” is misleading because the term “name service” usually refers to DNS, the distributed database system that maps between hostnames and Internet addresses. nscd does in fact cache the results of DNS lookups (because it wraps gethostbyname, etc.), but it also wraps the library routines that access information from the passwd and group files and their network database equivalents. (For security, lookups to /etc/shadow are not cached.)
 

See Chapter 17 for more information about DNS.

 

In concept, nscd should have no effect on the operation of the system other than to speed up repeated lookups. In practice, it can cause unexpected behavior because it maintains its own copy of the lookup results. Lookups are stored in the cache for a fixed amount of time (set in nscd’s configuration file, /etc/nscd.conf), and there is always the possibility that recent changes will not be reflected in nscd’s cache until the previous data has timed out. nscd is smart enough to monitor local data sources (such as /etc/passwd) for changes, so local updates should propagate within 15 seconds. For remote entries, such as those retrieved through NIS, you may have to wait for the full timeout period before changes take effect.
 

Among our example distributions, only SUSE runs nscd by default. Red Hat installs nscd but does not start it at boot time by default; to enable the use of nscd, run chkconfig nscd on. Ubuntu is nscd compatible but does not include nscd in the default installation; run apt-get install nscd to download it.
 

nscd starts at boot time and runs continuously. The default /etc/nscd.conf specifies a timeout of 10 minutes for passwd data and an hour for hosts and group, with a 20-second negative timeout (the amount of time before an unsuccessful lookup is retried). In practice, these values rarely need changing. If a change you recently made doesn’t seem to show up, nscd is probably the reason.
 

19.6 Recommended Reading
 

CARTER, GERALD. LDAP System Administration. Sebastopol, CA: O’Reilly Media, 2003.
 

MALÈRE, LUIZ ERNESTO PINHEIRO. LDAP Linux HOWTO. tldp.org
 

VOGLMAIER, REINHARD. The ABCs of LDAP: How to Install, Run, and Administer LDAP Services. Boca Raton, FL: Auerbach Publications, 2004.
 

LDAP for Rocket Scientists. zytrax.com/books/ldap
 

19.7 Exercises
 

E19.1 Why is a “pull” method of updating a local machine’s files more secure than a “push” method?
 

E19.2 Explain the following excerpt from an rdist distfile:
 

[image: Image]
 

[image: Image] E19.3 Explain the differences between rdist and rsync. In what situations would it be better to use one than the other?
 

[image: Image] E19.4 What method does your site use to share system files? What security issues are related to that method? Suggest an alternative way to share system files at your site, and detail the concerns that it addresses. What, if any, are the drawbacks?
 

[image: Image] E19.5 Design an LDAP schema that stores user information such as login, password, shell, authorized machines, etc. Build a tool that enters new users into the database interactively or from a file containing a list of users. Build a tool that generates the passwd, group, and shadow files from the LDAP database for the machines in your lab. Allow users to have different passwords on each machine if they want. (Not all users are necessarily authorized to use each computer.) Your adduser system should be able to print lists of existing user login names and to print login/password pairs for new users.
 
  


20. Electronic Mail
 

[image: Image]
 

Social networks and SMS messages have started to push email into the “old technology” category as they reduce the world to relationships and microthoughts. Nevertheless, email remains the universal standard for on-line communication. Everyone from grandmas to the stodgiest of corporations now routinely uses email to communicate with family, co-workers, partners, customers, and even the government. It’s a mad, mad, mad email-enabled world.1
 

Email is easy and just works; if you know someone’s email address, you type a message addressed to them and press Send. Voilà! Seconds later, the message is delivered to their electronic mailbox, whether they’re next door or halfway around the world. From the user’s perspective, nothing could be easier.
 

The underlying infrastructure that makes electronic mail possible on such a large scale is complex. There are several software packages you can run on your system to transport and manage electronic mail (three of which are discussed later in this chapter), but they all require a certain degree of configuration and management. In addition, it’s important that you understand the underlying concepts and protocols associated with email so that you don’t spoil your users’ illusion that cross-platform interorganizational email is a gift from the gods that magically works every time.
 

Understanding and administering your own email infrastructure isn’t your only option. Many providers now offer “managed” email service, which hosts your email system on remote servers in exchange for a monthly or yearly fee (possibly per-user). Likewise, a number of “free” hosted services, such as Google’s Gmail, Yahoo! Mail, and MSN Hotmail have become popular for individuals. If you’re an individual looking for a personal email account or an account for a small business, these may be viable options for you. In addition to offering personal email accounts, Gmail has an interesting step-up feature that hosts email for an entire domain. See google.com/a for details or google for “hosted Gmail” to find several useful how-to guides that describe the setup process.
 

Hosted services relieve you of multiple burdens, including storage, server management, software updates, configuration, spam filtering, backups, and security vigilance, to name a few. In return for the “free” services, you’ll probably see some advertising and may wonder about your privacy and exactly who is reading your mail. It seems like a good deal in many cases; if the hosted option works for you, you at least get the benefit of not needing to read the rest of this huge chapter.
 

However, hosted email isn’t the solution for everyone. Businesses and other large organizations that depend on email service often cannot take the risk of hosting email off-site. Such organizations may have a variety of reasons to host their own email systems, including security, performance, and availability. This chapter is for those people.
 

The sheer bulk of this chapter—almost 120 pages—attests to the complexity of email systems (or perhaps just to the wordiness of the authors). Table 20.1 presents a mini-roadmap.
 

Table 20.1 Roadmap to the giant email chapter
 

[image: Image]
 

20.1 Mail Systems
 

In theory, a mail system consists of several distinct components:
 

• A “mail user agent” (MUA or UA) that lets users read and compose mail

 

• A “mail submission agent” (MSA) that accepts outgoing mail from an MUA, grooms it, and submits it to the transport system

 

• A “mail transport agent” (MTA) that routes messages among machines

 

• A “delivery agent” (DA) that places messages in a local message store2

 

• An optional “access agent” (AA) that connects the user agent to the message store (e.g., through the IMAP or POP protocol)

 

Attached to some of these agents are tools for recognizing spam, viruses, and (outbound) internal company secrets. Exhibit A illustrates how the various pieces fit together as a message winds its way from sender to receiver.
 

Exhibit A Mail system components
 

[image: Image]
 

User Agents
 

Email users employ a user agent (sometimes called an email client) to read and compose messages. Email messages originally consisted only of text, but a standard known as Multipurpose Internet Mail Extensions (MIME) is now used to encode text formats and attachments (including viruses) into email. It is supported by most user agents. Since MIME generally does not affect the addressing or transport of mail, we do not discuss it further.
 

/bin/mail was the original user agent, and it remains the “good ol’ standby” for reading text email messages at a shell prompt. Since email on the Internet has moved beyond the text era, text-based user agents are no longer practical for most users. But we shouldn’t throw /bin/mail away; it’s still a handy interface for scripts and other programs. (One avid Linux user we know routes nightly emails from cron to calendaring software so that a glance at the calendar tells him the status of all his software builds. By default, cron uses /bin/mail to notify a user when it cannot run a scheduled job.)
 

One of the elegant features illustrated in Exhibit A is that a user agent doesn’t necessarily need to be running on the same system—or even on the same platform—as the rest of your mail system. Users can reach their email from a Windows laptop or smartphone through access agent protocols like IMAP and POP.
 

Wikipedia’s “comparison of e-mail clients” page contains a detailed listing of many, many email clients, the operating systems they run on, and the features they support. Popular clients include Thunderbird, Alpine, Zimbra, and of course, Microsoft Outlook. The “comparison of webmail providers” page has similar information for web-based services like Gmail, Hotmail, and Yahoo! Mail.
 

Submission Agents
 

MSAs, a late addition to the email pantheon, were invented to offload some of the computational tasks of MTAs. MSAs make it easy for mail hub servers to distinguish incoming from outbound email (when making decisions about allowing relaying, for example) and give user agents a uniform and simple configuration for outbound mail.
 

The MSA is a sort of “receptionist” for new messages injected into the system by local user agents. An MSA sits between the user agent and the transport agent and takes over several functions that were formerly a part of the MTA’s job. An MSA implements secure (encrypted and authenticated) communication with user agents and often does minor header rewriting and cleanup on incoming messages. In many cases, the MSA is really just the MTA listening on a different port with a different configuration applied.
 

MSAs speak the same mail transfer protocol used by MTAs, so they appear to be MTAs from the perspective of user agents. However, they typically listen for connections on port 587 rather than port 25, the MTA standard. For this scheme to work, user agents must connect on port 587 instead of port 25. If your user agents cannot be taught to use port 587, you can still run an MSA on port 25, but you must do so on a system other than the one that runs your MTA; only one process at a time can listen on a particular port.
 

An MSA can help with several spam-induced problems. Infected home PCs are being used to send large amounts of spam. As a result, many ISPs that offer home service either block outgoing connections to port 25 or require account verification as part of the SMTP conversation. A home PC could use the ISP’s own mail server for outgoing mail, but some of the newer spam-fighting mechanisms such as SPF (page 767) and DKIM (page 845) require that mail that appears to be sent from an organization actually originate there.
 

If you use an MSA, be sure to configure your transport agent so that it doesn’t duplicate any of the rewriting or header fix-up work done by the MSA. Duplicate processing won’t affect the correctness of mail handling, but it does represent useless extra work.
 

Since your MSA uses your MTA to relay messages, the MSA and MTA must use SMTP-AUTH to authenticate each other. Otherwise, you will have a so-called open relay that spammers can exploit and that other sites will blacklist you for.
 

Transport Agents
 

A transport agent must accept mail from a user agent or submission agent, understand the recipients’ addresses, and somehow get the mail to the correct hosts for delivery. Transport agents speak the Simple Mail Transport Protocol (SMTP), which was originally defined in RFC821 but has now been superseded and extended by RFC5321. The extended version is called ESMTP.
 

An MTA’s list of chores, as both a mail sender and receiver, includes
 

• Receiving email messages from remote mail servers

 

• Understanding the recipients’ addresses

 

• Rewriting addresses to a form understood by the delivery agent

 

• Forwarding the message to the next responsible mail server or passing it to a local delivery agent to be saved to a user’s mailbox

 

The bulk of the work involved in setting up a mail system relates to the configuration of the MTA. In this book, we cover three open source MTAs: sendmail, Exim, and Postfix.
 

Local Delivery Agents
 

A delivery agent, sometimes called a local delivery agent (LDA), accepts mail from a transport agent and delivers it to the appropriate recipients’ mailboxes on the local machine. As originally specified, email can be delivered to a person, to a mailing list, to a file, or even to a program. However, the last two types of recipients can weaken the security and safety of your system.
 

MTAs usually include a built-in local delivery agent for easy deliveries. procmail (procmail.org) and Maildrop (courier-mta.org/maildrop) are LDAs that can filter or sort mail before delivering it. Some access agents (AAs) also have built-in LDAs that do both delivery and local housekeeping chores.
 

Message Stores
 

The message store is the final resting place of an email message once it has completed its journey across the Internet and been delivered to recipients.
 

Mail has traditionally been stored in either mbox format or Maildir format. The former stores all mail in a single file, typically /var/mail/username, with individual messages separated by a special From line. Maildir format stores each message in a separate file. A file for each message is more convenient but creates directories with many, many small files; some filesystems may not be amused.
 

These flat files are still common message stores, but ISPs with thousands or millions of email clients are looking to other technologies for their message stores, usually databases. Message stores are becoming more opaque.
 

Access Agents
 

Two protocols are used to access message stores and download email messages to a local device (workstation, laptop, telephone, etc.): IMAP4 and POP. Earlier versions of these protocols had security issues. Be sure to use a version (IMAPS or POP3S) that incorporates SSL encryption and hence does not transmit passwords in cleartext over the Internet.
 

We like IMAP, the Internet Message Access Protocol, better than POP. It delivers your mail one message at a time rather than all at once, which is kinder to the network (especially on slow links) and better for someone who travels from location to location. IMAP is especially good at dealing with the giant attachments that some folks like to send: you can browse the headers of your messages and not download the attachments until you are ready to deal with them.
 

IMAP manages mail folders among multiple sites; for example, between your mail server and your PC. Mail that stays on the server can be part of the normal backup schedule. The Wikipedia page for IMAP contains lots of information and a list of available implementations.
 

POP, the Post Office Protocol, is similar to IMAP but assumes a model in which all email is downloaded from the server to the client. The mail can either be deleted from the server (in which case it might not be backed up) or saved on the server (in which case your mail spool file grows larger and larger). The “mailbox at a time” paradigm is hard on the network and less flexible for the user. It can be really slow if you are a pack rat and have a large mail spool file.
 

Some IMAP/POP server implementations are Courier, Cyrus IMAP, Dovecot, UW3
imapd, and Zimbra. Dovecot and Zimbra4 are our favorites. Nearly every email user agent supports both IMAP and POP.
 

So Many Pieces, So Little Time
 

With a mail system consisting of so many pieces (and we haven’t even addressed spam and virus scanning!), the architecture of email probably sounds overly complex. But at smaller sites, the MTA can largely absorb the functions of the MSA and LDA, and that helps keep things simple. Larger sites may want to keep all the pieces separated and run multiple instances of each piece to help spread load. The reality is that email handling systems can be as simple or as complicated as you want them to be. We cover design suggestions beginning on page 753.
 

20.2 The Anatomy of a Mail Message
 

A mail message has three distinct parts:
 

• The envelope

 

• The headers

 

• The body of the message

 

The envelope determines where the message will be delivered or, if the message can’t be delivered, to whom it should be returned. The envelope is invisible to users and is not part of the message itself; it’s used internally by the MTA.
 

The envelope addresses generally agree with the From and To lines of the header when the sender and recipient are individuals. The envelope and headers may not agree if the message was sent to a mailing list or was generated by a spammer who is trying to conceal his identity.
 

The headers are a collection of property/value pairs as specified in RFC5322. They record all kinds of information about the message, such as the date and time it was sent, the transport agents through which it passed on its journey, and who it is to and from. The headers are a bona fide part of the mail message, but user agents often hide the less interesting ones when displaying messages for the user.
 

The body of the message is the content to be sent. It usually consists of plain text, although that text often represents a mail-safe encoding of various types of binary content.
 

Reading Mail Headers
 

Dissecting mail headers and using them to locate problems within the mail system is an essential sysadmin skill. Many user agents hide the headers, but there is usually a way to see them, even if you have to use an editor on the message store. Below are most of the headers (with occasional truncations indicated by …) from a typical nonspam message. We removed another half page of headers that Gmail uses as part of its spam filtering.
 

[image: Image]
 

To read this beast, start reading the Received lines, but start from the bottom (sender side). This message went from David Schweikert’s home machine in the schweikert.ch domain to his mail server (mail.schweikert.ch), where it was scanned for viruses. It was then forwarded to the recipient evi@atrust.com. However, the receiving host mail-relay.atrust.com sent it on to sailingevi@gmail.com, where it entered Evi’s mailbox.
 

See page 767 for more information about SPF.

 

Midway through the headers, you see an SPF validation failure. This happened because Google checked the IP address of mail-relay.atrust.com and compared it to the SPF record at schweikert.ch; of course, it doesn’t match. This is an inherent weakness of using SPF records to identify forgeries—they don’t work for mail that has been relayed.
 

You can often see the MTAs that were used (Postfix at schweikert.ch, sendmail 8.12 at atrust.com), and in this case, you can also see that virus scanning was performed through amavisd-new on port 10,024 on a machine running Debian Linux. You can follow the progress of the message from the Central European Summer Time zone (CEST +0200), to Colorado (-0600), and on to the Gmail server (PDT -0700); the numbers are the differences between local time and UTC, Coordinated Universal Time. There is a lot of info stashed in the headers!
 

Here are the headers, again truncated, from a spam message:
 

[image: Image]
 

According to the From header, this message’s sender is alert@atrust.com. But according to the Return-Path header, which contains a copy of the envelope sender, the originator was smotheringl39@sherman.dp.ua, an address in the Ukraine. The first MTA that handled the message is at IP address 187.10.167.249, which is in Brazil. Sneaky spammers…5
 

The SPF check at Google fails again, this time with a “neutral” result because the domain sherman.dp.ua does not have an SPF record with which to compare the IP address of mail-relay.atrust.com.
 

The recipient information is also at least partially untrue. The To header says the message is addressed to ned@atrust.com. However, the envelope recipient addresses must have included evi@atrust.com in order for the message to be forwarded to sailingevi@gmail.com for delivery.
 

20.3 The SMTP Protocol
 

The Simple Mail Transport Protocol (SMTP) and its extended version, ESMTP, have been standardized in the RFC series (RFC5321) and are used for most message hand-offs among the various pieces of the mail system:
 

• UA-to-MSA or -MTA as a message is injected into the mail system

 

• MSA-to-MTA as the message starts its delivery journey

 

• MTA- or MSA-to-antivirus or -antispam scanning programs

 

• MTA-to-MTA as a message is forwarded from one site to another

 

• MTA-to-DA as a message is delivered to the local message store

 

Because the format of messages and the transfer protocol are both standardized, my MTA and your MTA don’t have to be the same or even know each other’s identity; they just have to both speak SMTP or ESMTP. Your various mail servers can run different MTAs and interoperate just fine.
 

True to its name, SMTP is quite simple. An MTA connects to your mail server and says, in essence, “Here’s a message; please deliver it to user@your.domain.” Your MTA says “OK.”
 

Requiring strict adherence to the SMTP protocol has become a technique for fighting spam and malware, so it’s important for mail administrators to be somewhat familiar with the protocol. The language has only a few commands; Table 20.2 shows the most important ones.
 

Table 20.2 SMTP commands
 

[image: Image]
 

You Had me at EHLO
 

ESMTP speakers start conversations with EHLO instead of HELO. If the process at the other end understands and responds with an OK, then the participants negotiate supported extensions and agree on a lowest common denominator for the exchange. If the peer returns an error in response to the EHLO, then the ESMTP speaker falls back to SMTP. But today, almost everything uses ESMTP.
 

A typical SMTP conversation to deliver an email message goes as follows: HELO or EHLO, MAIL FROM:, RCPT TO:, DATA, and QUIT. The sender does most of the talking, with the recipient contributing error codes and acknowledgments.
 

SMTP and ESMTP are both text-based protocols, so you can use them directly when debugging the mail system. Just telnet to TCP port 25 or 587 and start entering SMTP commands. See the example on page 845 in the Postfix section.
 

SMTP Error Codes
 

Also specified in the RFCs that define SMTP are a set of temporary and permanent error codes. These were originally three-digit codes (e.g., 550), with each digit being interpreted separately. A first digit of 2 indicated success, a 4 signified a temporary error, and a 5 indicated a permanent error.
 

The three-digit error code system did not scale, so RFC3463 restructured it to create more flexibility. It defined an expanded error code format known as a delivery status notification or DSN. DSNs have the format X.X.X instead of the old XXX, and each of the individual Xs can be a multidigit number. The initial X must still be 2, 4, or 5. The second digit specifies a topic, and the third provides the details. The new system uses the second number to distinguish host errors from mailbox errors. We’ve listed a few of the DSN codes in Table 20.3. RFC3463’s Appendix A shows them all.
 

Table 20.3 RFC3463 delivery status notifications
 

[image: Image]
 

SMTP Authentication
 

RFC4954 defines an extension to the original SMTP protocol that allows an SMTP client to identify and authenticate itself to a mail server. The server might then let the client relay mail through it. The protocol supports several different authentication mechanisms. The exchange is as follows:
 

• The client says EHLO, announcing that it speaks ESMTP.

 

• The server responds and advertises its authentication mechanisms.

 

• The client says AUTH and names a specific mechanism that it wants to use, optionally including its authentication data.

 

• The server accepts the data sent with AUTH or starts a challenge and response sequence with the client.

 

• The server either accepts or denies the authentication attempt.

 

To see what authentication mechanisms a server supports, you can telnet to port 25 and say EHLO. For example, here is a truncated conversation with the mail server mail-relay.atrust.com (the commands we typed are in bold):
 

[image: Image]
 

In this case, the mail server supports the LOGIN and PLAIN authentication mechanisms. sendmail, Exim, and Postfix all support SMTP authentication; details of configuration are covered on pages 801, 820, and 830, respectively.
 

20.4 Mail System Design
 

The mail design we outline in this chapter is almost mandatory for keeping the administration of medium and large sites manageable and for protecting users from viruses and spam. However, it is also appropriate for small sites. The main concepts that lead to easy administration are
 

• Servers for incoming and outgoing mail; for really large sites, a hierarchy

 

• Filtering for spam and viruses before admitting messages to your site

 

• Filtering for spam, viruses, and data leaks before sending messages out

 

• For busy sites, a backup MTA for outgoing mail that fails on the first try

 

• Journaling and archiving ability for legal purposes (e.g., discovery)

 

• A mail home for each user at a physical site

 

• IMAP or POP to integrate PCs, Macs, cell phones, and remote clients

 

We discuss each of these key issues below and then give a few examples. Other subsystems must cooperate with the design of your mail system as well: DNS MX records must be set correctly, Internet firewalls must let mail in and out, the message store machine(s) must be identified, and so on.
 

See page 583 for more information about MX records.

 

Mail servers have at least five functions:
 

• To accept outgoing mail from MSAs or user agents

 

• To receive incoming mail from the outside world

 

• To filter mail for spam, viruses, and other malware

 

• To deliver mail to end-users’ mailboxes

 

• To allow users to access their mailboxes with IMAP or POP

 

At a small site, the servers that implement these functions might all be the same machine wearing different hats. At larger sites, they should be separate machines. It is much easier to configure your network firewall rules if incoming mail arrives at only one machine and outgoing mail appears to originate from only one machine. The realities of today’s unsecured Internet force content-scanning chores on mail servers as well.
 

Using Mail Servers
 

There are two basic types of mail server: Internet-facing servers, to handle incoming and outgoing mail; and internal servers, to interface with users. Here, we outline a mail system design that is secure, seems to scale well, and is relatively easy to manage. It centralizes the handling of both incoming and outgoing mail on servers dedicated to those purposes. Exhibit B illustrates one form of this system.
 

Exhibit B Mail system architecture
 

[image: Image]
 

The mail system depicted here shows two regions of your site: a DMZ (demilitarized zone) whose machines connect directly to the Internet, and an internal zone that is separated from the DMZ and the Internet by a firewall. In the DMZ are several servers:
 

See page 932 for more information about firewalls.

 

• An MTA listening on port 25 and handing incoming mail to filters

 

• Virus and spam filters that reject or quarantine dangerous messages

 

• An LDAP (Lightweight Directory Access Protocol) database replica that contains mail routing information

 

• An outgoing MTA that tries to deliver mail submitted by the MSA

 

• A fallback MTA, for messages that fail on the first delivery attempt

 

• A caching DNS server: used by the outgoing MTA for MX lookups, and by the incoming MTA for blacklist lookups (senders’ domains) and cryptographic lookups for signed messages

 

The server that accepts messages from the wild and woolly Internet is the most vulnerable one. It should be well secured, have few users, and have no extraneous processes or services running. Each message it handles should be checked to ensure that
 

• The sender’s site is not on a blacklist.

 

• The sender’s SPF record is OK.

 

• The local recipients are valid.

 

• If the message is signed, its DKIM signature can be verified.

 

• No malware is embedded in the message.

 

• The message is not spam.

 

All of this scanning can be done within the MTA or by a separate package such as amavisd-new. Spam and malware scanning are covered starting on page 761.
 

The server that handles outgoing mail must also be well maintained. If your site manages large mailing lists, a fallback MTA can improve overall performance by isolating problem recipients and handling them separately. We assume that the filtering and scanning of outbound mail happens at the MSA in the internal zone.
 

The servers in the internal zone are
 

• An internal routing MTA that routes accepted mail to message stores

 

• The original LDAP database, which includes mail routing information

 

• An outgoing MSA or MTA

 

• Filters for viruses, spam, and data leak prevention (DLP)

 

Outgoing mail should be scanned for viruses and spam to verify that local machines are not infected and to limit the spread of malware to other sites. If your site has concerns about the leakage of confidential or proprietary information (e.g., credit card or Social Security numbers), DLP filtering should be performed by the internal MSA before the message reaches the outgoing MTA in the more vulnerable DMZ.
 

Most current DLP filtering solutions seem to be embedded in commercial web/email products (e.g., ClearEmail, Cisco’s IronPort, WebSense, Content Control, etc.) and include a large dose of marketing hype. Some have routines to recognize things like Social Security numbers and credit card numbers in addition to recognizing words or phrases that you configure. DLP scanning is in its infancy and has privacy ramifications. Make sure employee or use agreements mention that you intend to scan both incoming and outgoing email for spam, malware, and proprietary data.
 

At the end of the road are the users in the internal zone who access both the message stores (to read incoming mail) and the MSA (to send outgoing mail). These same users can be remote, in which case they should use SMTP-AUTH to authenticate themselves.
 

Both incoming and outgoing mail servers can be replicated if your mail load requires this. For example, multiple inbound mail servers can hide behind a load balancing box or can use DNS MX records to crudely balance load. Different client machines can route mail through different outbound servers.
 

In the opposite direction, sites with modest mail loads might carefully combine incoming and outgoing mail servers. Some types of processing, like BATV or Pen-pals backscatter, are easier to implement with a single server. BATV (bounce address tag validation) is a scheme for determining whether a bounce address is real or forged; it rejects email backscatter from bounces to forged sender addresses. Pen-pals (part of amavisd-new) is a scheme that lowers the spam score of a message if the sender is replying to email previously sent by one of your users.
 

Most hosts at your site can use a minimal MSA/MTA configuration that forwards all outgoing mail to a smarter server for processing. They do not need to accept mail from the Internet and can all share the same configuration. You might want to distribute the configuration with a tool such as rdist or rsync.
 

See page 721 for a discussion of file distribution issues.

 

Sites that use software such as Microsoft Exchange or Lotus Notes but are not comfortable directly exposing these applications to the Internet can use a design similar to the one outlined above in which Exchange assumes the routing role in the internal zone.
 

Whatever design you choose, make sure that your MTA configuration, your DNS MX records, and your firewall rules are all implementing the same policy with respect to mail.
 

20.5 Mail Aliases
 

Aliases allow mail to be rerouted either by the system administrator or by individual users.6 Aliases can define mailing lists, forward mail among machines, or allow users to be referred to by more than one name. Alias processing is recursive, so it’s legal for an alias to point to other destinations that are themselves aliases.
 

Sysadmins often use role or functional aliases (e.g., printers@example.com) to route email about a particular issue to whatever person is currently handling that issue. Other examples might include an alias that receives the results of a nightly security scan or an alias for the postmaster in charge of email.
 

Mail systems typically support several aliasing mechanisms:
 

• Flat-file maps such as those generated from the /etc/mail/aliases file

 

• Various mail routing databases associated with a particular MTA

 

• LDAP databases

 

• Other sharing mechanisms such as NIS

 

Flat files such as the /etc/mail/aliases file (discussed later in this section) are by far the most straightforward and easiest way to set up aliases at small- to mid-sized sites. If you want to use the mail homes concept and you have a large, complex site, we recommend that you implement mail homes by storing aliases in an LDAP server.
 

See Chapter 19 for more information about LDAP.

 

Most user agents provide some sort of aliasing feature (usually called “my groups,” “my mailing lists,” or something like that). However, the user agent expands such aliases before the mail ever reaches the MSA or MTA. These aliases are internal to the user agent and don’t require support from the rest of the mail system.
 

Another place where aliases can be defined is in a forwarding file in the home directory of each user (~/.forward). These aliases, which use a slightly nonstandard syntax, apply to all mail delivered to that particular user. They’re often used to forward mail to a different account or to implement automatic “I’m on vacation” responses.
 

Transport agents look for aliases in the global aliases file (/etc/mail/aliases or /etc/aliases) and then in recipients’ forwarding files. Aliasing is applied only to messages that the MTA considers to be local.
 

The format of an entry in the aliases file is
 

local-name: recipient1,recipient2,…
 

where local-name is the original address to be matched against incoming messages and the recipient list contains either recipient addresses or the names of other aliases. Indented lines are considered continuations of the preceding lines.
 

From mail’s point of view, the aliases file supersedes /etc/passwd, so the entry
 

david: david@somewhere-else.edu
 

would prevent the local user david from ever receiving any mail. Therefore, administrators and adduser tools should check both the passwd file and the aliases file when selecting new usernames.
 

The aliases file should always contain an alias named “postmaster” that forwards mail to whoever maintains the mail system. Similarly, an alias for “abuse” is appropriate in case someone outside your organization needs to contact you regarding spam or suspicious network behavior that originates at your site. An alias for automatic messages from the MTA must also be present; it’s usually called Mailer-Daemon and is often aliased to postmaster.
 

Sadly, there is so much abuse of the mail system these days that some sites configure these standard contact addresses to throw mail away instead of forwarding it to a human user. Entries such as
 

[image: Image]
 

are common. We don’t recommend this practice because humans having trouble reaching your site by email do write to the postmaster address.
 

A better paradigm might be
 

[image: Image]
 

You should redirect root’s mail to your site’s sysadmins or to someone who logs in every day. The bin, sys, daemon, nobody, and hostmaster accounts (and any other pseudo-user accounts you set up) should have similar aliases.
 

In addition to a list of users, aliases can refer to
 

• A file containing a list of addresses

 

• A file to which messages should be appended

 

• A command to which messages should be given as input

 

These last two targets should push your “What about security?” button because the sender of a message totally determines its content. Being able to append that content to a file or deliver it as input to a command sounds pretty scary. Many MTAs either do not allow these targets or severely limit the commands and file permissions that are acceptable.
 

Aliases can cause mail loops. MTAs try to detect loops that would cause mail to be forwarded back and forth forever and return the errant messages to the sender. To determine when mail is looping, an MTA can count the number of Received lines in a message’s header and stop forwarding it when the count reaches a preset limit (usually 25). Each visit to a new machine is called a “hop” in email jargon; returning a message to the sender is known as “bouncing” it. So a more typically jargonized summary of loop handling would be, “Mail bounces after 25 hops.”7 Another way MTAs can detect mail loops is by adding a Delivered-To header for each host to which a message is forwarded. If an MTA finds itself wanting to send a message to a host that’s already mentioned in a Delivered-To header, it knows the message has traveled in a loop.
 

Getting Aliases From Files
 

The :include: directive in the aliases file (or a user’s .forward file) allows the list of targets for the alias to be taken from the specified file. It is a great way to let users manage their own local mailing lists. The included file can be owned by the user and changed without involving a system administrator. However, such an alias can also become a tasty and effective spam expander, so don’t let email from outside your site be directed there. If users outside your site need to send mail to the alias, use mailing list software such as Mailman (covered on page 760) to help keep the system secure.
 

When setting up a list to use :include:, the sysadmin must enter the alias into the global aliases file, create the included file, and chown the included file to the user that is maintaining the mailing list. For example, the aliases file might contain
 

sa-book: :include:/usr/local/mail/ulsah.authors
 

The file ulsah.authors should be on a local filesystem and should be writable only by its owner. To be really complete, we should also include aliases for the mailing list’s owner so that errors (bounces) are sent to the owner of the list and not to the sender of a message addressed to the list:
 

owner-sa-book: evi
 

See page 760 for more information about mailing lists and their interaction with the aliases file.
 

Mailing to Files
 

If the target of an alias is an absolute pathname (double-quoted if it includes special characters), messages are appended to the specified file. The file must already exist. For example:
 

cron-status: /usr/local/admin/cron-status-messages
 

It’s useful to be able to send mail to files, but this feature arouses the interest of the security police and is therefore restricted. This syntax is only valid in the aliases file and in a user’s .forward file (or in a file that’s interpolated into one of these files with the :include: directive). A filename is not understood as a normal address, so mail addressed to /etc/passwd@example.com would bounce.
 

If the destination file is referenced from the aliases file, it must be world-writable (not advisable), setuid but not executable, or owned by the MTA’s default user. The identity of the default user is set in the MTA’s configuration file.
 

If the file is referenced in a .forward file, it must be owned and writable by the original message recipient, who must be a valid user with an entry in the passwd file and a valid shell that’s listed in /etc/shells. For files owned by root, use mode 4644 or 4600, setuid but not executable.
 

Mailing to Programs
 

An alias can also route mail to the standard input of a program. This behavior is specified with a line such as
 

autoftp: "|/usr/local/bin/ftpserver"
 

It’s even easier to create security holes with this feature than with mailing to a file, so once again it is only permitted in aliases, .forward, or :include: files, and often requires the use of a restricted shell.
 

Aliasing by Example
 

Here are some typical aliases that a system administrator might use.
 

[image: Image]
 

The sa-class alias has two levels so that the data file containing the list of students only needs to be maintained on a single machine, nag. The diary alias is a nice convenience and works well as a documentation extraction technique for squirrelly student sysadmins who bristle at documenting what they do. Sysadmins can easily memorialize important events in the life of the machine (OS upgrades, hardware changes, crashes, etc.) by sending mail to the diary file.
 

Building the Hashed Alias Database
 

Since entries in the aliases file are in no particular order, it would be inefficient for the MTA to search this file directly. Instead, a hashed version is constructed with the Berkeley DB system. This hashing significantly speeds alias lookups, especially when the file gets big.
 

The file derived from /etc/mail/aliases is called aliases.db. Every time you change the aliases file, you must rebuild the hashed database with the newaliases command. Save the error output if you run newaliases automatically—you might have introduced formatting errors.
 

Using Mailing Lists and List Wrangling Software
 

A mailing list is a giant alias that sends a copy of each message posted to it to each person who has joined the list. Some mailing lists have thousands of recipients.
 

Mailing lists are usually specified in the aliases file but maintained in an external file. Some standard naming conventions are understood by MTAs and most mailing list software. Experienced users have come to rely on them as well. The most common are the “-request” suffix and the “owner-” prefix, which are used to reach the maintainers of the list. The conventions are illustrated by the following aliases:
 

[image: Image]
 

In this example, mylist is the name of the mailing list. The members are read from the file /etc/mail/include/mylist. Bounces generated by mailing to the list are sent to the list’s owner, evi, as are requests to join the list. The indirection from owner-mylist to mylist-request to evi is useful because the owner’s address (in this case, mylist-request) becomes the Return-Path address on each message sent to the list. The mylist-request alias is a bit more appropriate for this field than the address of the actual maintainer. Errors in messages to the owner-mylist alias (evi, really) would be sent to owner-owner.
 

If you use a site-wide aliases file, you need to add an extra level of indirection pointing mylist to myreallist@master so that the data file containing the list of members only needs to exist in one place.
 

Software Packages for Maintaining Mailing Lists
 

Two software packages, Mailman and Sympa, that automate the maintenance of mailing lists have clawed their way to “best of breed” status from a pack of about ten major contenders. These packages typically let users obtain information about the list and give users an easy way to subscribe and unsubscribe. They facilitate moderation of the list and filter it for spam and viruses. Each package is available in several (spoken, not programming) languages.
 

Both Mailman (gnu.org/software/mailman), written in Python, and Sympa (sympa.org), written in Perl, have web interfaces that let users subscribe and un-subscribe without involving the list manager.
 

20.6 Content Scanning: Spam and Malware
 

This section covers the generic issues involved in fighting spam and viruses, including the use of an external antivirus tool, amavis-new. The details specific to a particular MTA are covered in each MTA’s section.
 

Some issues to decide before you implement content scanning include
 

• Where to scan: in the DMZ or on the internal network?

 

• When to scan: at the initial connection or after a message is accepted?

 

• In what order to scan?

 

• What to do with the viruses and spam messages you identify?

 

Incoming mail is traditionally scanned at the incoming mail hub in the DMZ. Ideally, it should be scanned in-line so that bad messages can be refused while the original SMTP connection is still open. Outgoing email can be scanned for viruses and spam on an internal smart host through which all messages are routed.
 

We suggest the following order of operations for sanity-checking a message:
 

• Checking RFC compliance of the sender’s SMTP implementation

 

• Verifying the existence of local recipients

 

• IP blacklisting; see page 766

 

• Reputation checking; see page 766

 

• DKIM and SPF verification; see page 767

 

• Antispam filtering; see pages 764 and 765

 

• Antivirus scanning; see pages 768 and 769

 

Many spam robots do not follow the SMTP protocol correctly; they typically start talking before the EHLO response. A slight delay by your server can often expose their “early talker” behavior. You can use this information either to reject the connection or to increase the spam score of the received messages.
 

Checking recipients to verify that they are valid local users is good unless your later checks might transform the recipients’ addresses. Early checking minimizes the work your mail server has to do for mail that will eventually turn out to be undeliverable. It also eliminates a lot of “shotgun” spam. However, it does let the sender probe your user address space.
 

The order of the other checks is primarily driven by their cost. Check quick and easy things before more time-consuming things, so that, on average, bad messages are refused as soon possible.
 

Once you have identified a message as bad, what do you do with it? Refuse it, drop it, quarantine it, archive it? We recommend that you quarantine and archive while you are testing your setup. When you are satisfied that the system is doing what you want, refuse or drop all viruses and refuse or archive spam, according to your users’ preferences. Delete archived spam that is more than a month old; meanwhile, users can move false positives from the spam box to their regular mailbox.
 

Spam
 

Spam is the jargon word for junk mail, also known as unsolicited commercial email or UCE. It has become a serious problem because although the response rate is low, the responses per dollar spent is high. (A list of 30 million email addresses costs about $40.) If it didn’t work for the spammers, it wouldn’t be such a problem. Surveys show that 95%–98% of all mail is spam. Refer to spamological sites such spamlinks.net for the latest numbers.
 

Our main recommendation regarding spam is that you use the preventive measures and publicly maintained blacklists that are available to you. A good one is zen.spamhaus.org. Another possibility is to redirect your incoming email to an outsourced spam fighting company such as Postini (now part of Google) or Message Labs (now part of Symantec). However, this option may entail some compromises in performance, privacy, or reliability.
 

Advise your users to simply delete the spam they receive. Many spam messages contain instructions on how recipients can be removed from the mailing list. If you follow those instructions, the spammers may remove you from the current list, but they immediately add you to several other lists with the annotation “reaches a real human who reads the message.” Your email address is then worth even more.
 

Folks that sell email addresses to spammers use a form of dictionary attack to harvest addresses. Starting with a list of common last names, the scanning software adds different first initials in hopes of hitting on a valid email address. To check the addresses, the software connects to the mail servers at, say, 50 large ISPs and does a VRFY, EXPN, or RCPT on each of zillions of addresses. MTAs can block the SMTP commands VRFY and EXPN, but not RCPT. Such actions hammer your mail server and interfere with it being able to accept and deliver real email promptly. To protect themselves from this sort of abuse, MTAs can rate-limit the number of RCPTs from a single source.
 

Forgeries
 

Forging email is trivial; many user agents let you fill in the sender’s address with anything you want. MTAs can use SMTP authentication between local servers, but that doesn’t scale to Internet sizes. Some MTAs add warning headers to outgoing local messages that they think might be forged.
 

Any user can be impersonated in mail messages. Be careful if email is your organization’s authorization vehicle for things like door keys, access cards, and money. You should warn administrative users of this fact and suggest that if they see suspicious mail that appears to come from a person in authority, they should verify the validity of the message. Caution is doubly appropriate if the message asks that unreasonable privileges be given to an unusual person.
 

Message Privacy
 

Message privacy essentially does not exist unless you use an external encryption package such as Pretty Good Privacy (PGP), its GNU-ified clone (GPG), or S/MIME. By default, all mail is sent unencrypted. End-to-end encryption requires support from mail user agents. Tell your users that they must do their own encryption if they want their mail to be private.
 

See page 925 for more information about PGP and GPG.

 

Both S/MIME and PGP are documented in the RFC series, with S/MIME being on the standards track. However, we prefer PGP and GPG; they’re more widely available. PGP was designed by an excellent cryptographer, Phil Zimmermann, whom we trust.
 

These standards offer a basis for email confidentiality, authentication, message integrity assurance, and nonrepudiation of origin. However, traffic analysis is still possible since the headers and envelope are sent as plaintext.
 

Spam Filtering
 

The spam problem has led to an arms race between the spam abatement folks and the spammers, with ever-more-sophisticated techniques being deployed on both sides. Some of the current control measures are
 

• Greylisting: temporary deferrals (a form of RFC compliance checking)

 

• SpamAssassin, a heuristic, pattern-matching spam recognition tool

 

• Blacklists: lists of known bad guys in the spam world, often DNS-based

 

• Whitelists: lists of known good guys, DNS-based, avoid false positives

 

• Mail filters (“milters”) that scan both the headers and body of a message

 

• SPF and DKIM/ADSP records to identify senders’ domains and policies

 

• amavisd-new and MailScanner: antivirus/antispam filtering systems

 

We cover each of these options in more detail later in this section.
 

When to Filter
 

When to filter is a fundamental question, and one with no perfect answer. The main question is whether you filter “in line” during the SMTP transaction with the sender or after the mail has been accepted. There are advantages and disadvantages to both schemes. The advantages of in-line (pre-queue) filtering include the following:
 

• You can reject the mail and thus not take responsibility for delivery. (This may even be required for legal reasons in some countries!)

 

• The sender is notified reliably about why the mail couldn’t be delivered. You don’t need to trust the sender of the mail; you just state the reason for rejecting the message and let the originating server deal with informing the sender. Much cleaner and more reliable than accepting the mail and then bouncing it.

 

However, there are advantages to post-queue filtering, too:
 

• The performance of your Internet-facing mail server is not dragged down by extensive spam checking. This is especially valuable when bursts of mail arrive at the same time.

 

• Filtering after a message has been queued is simpler and more robust.

 

At first glance you might think post-queue filtering is best. It doesn’t impact your mail server and is easier on your sysadmins. However, the bounce messages generated by post-queue filtering become their own type of spam when the sender’s address is forged—as it usually is on spam.
 

This problem is called “backscatter spam,” and a system called BATV (bounce address tag validation) has been devised to help with it. But problems remain. BATV can determine the validity of the bounce address (envelope address of the sender) if the original submitter of the message has signed the envelope address. BATV milters are available to help sites send only valid bounce messages.
 

A reasonable compromise might be to do basic virus and spam scanning in-line and then do additional scanning after messages have been queued.
 

Greylisting/DCC
 

Greylisting is a scheme in which you configure your mail server to defer all connections from new, unrecognized IP addresses for, say, 15 minutes to an hour. The server rejects the mail with a “try again later” message. Real MTAs sending real users’ email will wait and then try again; spambots will move on down their lists and won’t retry.
 

Greylisting has been implemented for a host of MTAs; see greylisting.org for current details. It is especially effective as part of a spam-fighting tool called DCC (the Distributed Checksum Clearinghouses; see rhyolite.com/dcc) that detects the “bulkiness” of a message by computing a fuzzy checksum and seeing how many other mail servers have seen that same checksum. It is not really a spam detector per se, but a bulk email detector. If you whitelist all the bulk email you expect to receive (such as mailing lists you belong to), then the remaining detections consist of unsolicited bulk email, which is pretty much the definition of spam.
 

DCC can do greylisting as well; it is used as a milter and can greylist or reject inline during an SMTP session. Because DCC does not do pattern matching as SpamAssassin-type tools do, it is not fooled by spammers who add randomness to their messages in an attempt to foil the pattern matchers.
 

The effectiveness of greylisting has declined (from more than 97% effective to below 90%) as spambots have begun to take it seriously and spruced up their SMTP implementations. However, it is still effective when used in combination with blacklists because the automated blacklist maintainers often manage to get spamming sites onto the blacklist before the retry period has elapsed. Go Zen!
 

SpamAssassin
 

SpamAssassin (spamassassin.apache.org) is an open source Perl module written by Habeeb Dihu and maintained by Ian Justman. It does a pretty good job of identifying spam. It can be invoked through a milter and is used in lots of antispam products.
 

SpamAssassin uses a variety of ad hoc rules to identify spam. The rules used to be updated frequently, but they seem to be less actively maintained these days. Spam-Assassin catches essentially all the real spam but has occasional false positives, especially if configured with the auto-Bayes option turned on. Be sure to scrutinize your haul of spam carefully as you are setting up SpamAssassin and tuning its parameters.
 

SpamAssassin uses a point system to score messages. If a message accumulates too many points (configurable on both a site-wide and per-user basis), SpamAssassin tags the message as spam. You can then refile suspicious messages in a spam folder, either by running a server-side filter such as Cyrus’s sieve or by configuring your user agent. You can even teach SpamAssassin about good and bad messages (“ham” and “spam”) by using its Bayesian filter feature.
 

Blacklists
 

Several organizations (e.g., spamhaus.org) compile lists of spammers and publish them in the DNS. MTAs can be configured to check these blacklists (also known as Realtime Black Lists or RBLs) and reject mail that comes from listed sites.
 

See Chapter 17 for more information about DNS.

 

There are also lists of open relays, that is, mail servers that are willing to forward a message from the Internet to a user outside their local site without authenticating the sending server. Spammers use open relays to obfuscate the origin of their messages and to foist the work of sending their huge volumes of email onto other sites.
 

Whitelists
 

Whitelists are DNS-based reputation lists that are essentially the opposite of the blacklists described above. They are used to reduce the number of false positives generated by spam filters. One whitelist, dnswl.org, rates domains as follows:
 

• High – never sends spam

 

• Medium – rarely sends spam, fixes spam problems when they occur

 

• Low – occasionally sends spam, slower to correct it

 

• None – legitimate mail server but might send spam

 

They recommend that you omit some of your usual mail scanning based on the rating in the whitelist:
 

• Skip both blacklisting and greylisting for every domain with a rating.

 

• Skip spam filtering for domains with ratings of high or medium.

 

• Never skip virus scanning.

 

The web site includes details for using the whitelist with each of the MTAs we describe in this book. Lookups are done through DNS, as with blacklists. For example, if you want to know the rating of IP address 1.2.3.4, you do a DNS query for the pseudo-host 4.3.2.1.list.dnswl.org. The return value is an IP address of the form 127.0.x.y, where x is a number that identifies the sending domain’s general category of business (e.g., financial services or email marketing) and y is the site’s whitelist rating from 0–3 (0 = none, 3 = high).
 

To speed up whitelist evaluations, you can download the data for the entire whitelist and rsync it daily to keep current; don’t choose the even hour or half hour for your cron job.
 

You can check your own site’s status at the dnswl.org web site. Here is typical output for a nonspammy site, caida.org:
 

[image: Image]
 

The domain hotmail.com yielded about ten pages of entries, all with score “none.”
 

Miltering: Mail Filtering
 

The developers of sendmail created an API that lets third-party programs filter the headers and content of mail messages as they are being processed by the MTA. These “milters” are used for spam fighting, virus detection, statistical analysis, encryption, and a host of other purposes. Milters are fully supported in both the sendmail and Postfix MTAs; Exim uses filters and ACLs instead. See milter.org for a catalog of available milters, complete with user ratings, license information, and statistics on downloads and updates.
 

MTAs invoke milters on incoming messages while they are still connected to the sending site. Milters can recognize the profile of a virus or spam message and report back to the MTA, discard the message, create log entries, or take whatever other action you feel is appropriate. Milters have access to both metadata and message content.
 

Miltering is potentially a powerful tool both for fighting spam and viruses and for violating users’ privacy. A touchy situation evolves when managers want to know exactly what proprietary information is leaving the organization by email, while employees feel that their email should be private. Make sure employee agreements are explicit about any kind of scanning you intend to do.
 

SPF and Sender ID
 

The best way to fight spam is to stop it at its source. This sounds simple and easy, but in reality it’s almost an impossible challenge. The structure of the Internet makes it difficult to track the real source of a message and to verify its authenticity. The community needs a sure-fire way to verify that the entity sending an email is really who or what it claims to be.
 

Many proposals have addressed this problem, but SPF and Sender ID have achieved the most traction. SPF, or Sender Policy Framework, has been described by the IETF in RFC4408. SPF defines a set of DNS records (see page 588) through which an organization can identify its official outbound mail servers. MTAs can then refuse email purporting to be from that organization’s domain if the email does not originate from one of these official sources. Of course, the system only works well if the majority of organizations publish SPF records. Several milters available for download implement SPF-checking functionality.
 

Sender ID and SPF are virtually identical in form and function. However, key parts of Sender ID are patented by Microsoft, and hence it has been the subject of much controversy. As of this writing, Microsoft is still trying to strong-arm the industry into adopting its proprietary standards. The IETF chose not to choose and published RFC4406 on Sender ID and RFC4408 on SPF. Both are classified as experimental, so it’s up to the marketplace to decide between them.
 

Messages that are relayed break SPF and Sender ID, which is a serious flaw in both systems. The receiver consults the SPF record for the original sender to discover its list of authorized servers. However, those addresses won’t match any relay machines that were involved in transporting the message. Be careful what decisions you make based on SPF failures.
 

Domainkeys, DKIM, and ADSP
 

DKIM (DomainKeys Identified Mail) is a cryptographic signature system for email messages. It lets the receiver verify not only the sender’s identity but also the fact that a message has not been tampered with in transit. The system uses DNS records to publish a domain’s cryptographic keys and message-signing policy.
 

See Chapter 17 for more information about DKIM in DNS.

 

The original DomainKeys system is a precursor to DKIM that offers similar functionality and was championed by Yahoo!. It is still in use. DKIM and DomainKeys do not collide, and sites can verify signatures of both types. For signing new messages, it’s best to use DKIM.
 

ADSP (Author Domain Signing Practice) DNS records let senders declare their signing policies for each subdomain. For example, a bank might state that it signs all mail from transactions.mybank.com. Anyone who receives unsigned mail (or mail on which the signature can’t be verified) that claims to be from that domain should refuse or quarantine it. However, marketing.mybank.com might not sign its messages at all.
 

For a while, ADSP was called SSP (sender signing policy), so you might still see either type of DNS TXT record. DKIM is supported by all the MTAs described in this chapter, but real-world deployment has been slow. We are not sure why.
 

Even if you don’t want to refuse messages based on DKIM or SPF verification failures, you can still use the information to increase the messages’ spam score or to change your behavior to accord with the sender’s reputation.
 

MTA-Specific Antispam Features
 

Each MTA has configuration options that can help ameliorate spam problems. For example, some MTAs can determine that they are being asked to do a zillion RCPTs and can introduce a delay of, say, 15 seconds between RCPTs for connections that are abusing them.
 

We cover spam-related configuration options with the rest of the details of MTA configuration. For sendmail, see page 789; for Exim, see page 818; and for Postfix, see page 840. DKIM and ADSP are discussed in more detail on page 845 of this chapter and in Chapter 17, beginning on page 590.
 

MailScanner
 

Julian Field’s MailScanner (mailscanner.info) is an actively maintained, flexible, open source scanner for mail hubs; it recognizes spam, viruses, and phishing attempts. It’s written in Perl and uses external antivirus (ClamAV and 25 other tools) and antispam (SpamAssassin) software. Its antiphishing component, called ScamNailer (scamnailer.info), is independent and does not depend on MailScanner. You can adjust MailScanner’s configuration rulesets at the granularity of users, domains, or IP addresses.
 

MailScanner is not a milter, but rather a stand-alone program that operates on the MTA’s mail queues. For example, you might configure the MTA in your DMZ to accept messages (after in-line checks with milters, blacklists, etc.) and put them in an inbound queue. You’d have MailScanner read messages from that queue, do its antispam, antivirus, and antiphishing magic, and transfer the messages that pass muster into a separate outbound queue. Another instance of the MTA could then process the outbound queue and deliver the messages.
 

One disadvantage of this system is that mail rejected by MailScanner creates bounce messages and can therefore contribute to backscatter spam.
 

Although MailScanner is free, commercial support is available. It also has an active user mailing list and a dedicated IRC channel that is monitored 24/7. It’s well documented both on-line and in the book MailScanner: A User Guide and Training Manual by Julian Field. MailScanner’s configuration file comes with so many comments that the configuration primitives almost get lost; once you’re an expert, you might want to delete some of the boilerplate.
 

You can capture statistics from MailScanner through a web front-end called Mail-Watch. MRTG can graph the data, as illustrated in Exhibit C (next page). Note the huge spike that occurred on September 19th, probably an attack of some type.
 

amavisd-new
 

amavisd-new is an interface between MTAs and various virus and spam scanners such as ClamAV and SpamAssassin. It was originally based on AMaViS (A Mail Virus Scanner) but has little in common with the original these days. It’s written in Perl and is developed by Mark Martinec; the web site is ijs.si/software/amavisd. We follow the maintainers’ conventions in referring to the overall package as (boldfaced) amavisd-new; however, the daemon itself is called amavisd.
 

Exhibit C MRTG graph of mail traffic
 

[image: Image]
 

amavisd-new communicates with the MTA through a local domain or TCP socket. It can filter either in-line (when used as a milter, before the MTA has accepted a message) or after a message has been accepted but before it is delivered to the recipients.
 

Why use another piece of software when your MTA can do its own scanning with milters and the like? One answer is that it’s convenient to keep the configuration of all your filters in one place. It’s also likely to be easier to respond to a new attack or to include a new tool if all your filtering is coordinated through one interface. Another benefit is that the scanner can run on a separate machine and thereby distribute some of the load of accepting and processing messages on a busy server. A good compromise is to do easy, quick checks in your MTA and to hand the more expensive checks to a tool like amavisd.
 

amavisd can interface to many antispam and antivirus scanning packages. It is quite powerful but has a couple of disadvantages:
 

• The documentation is a bit scattered, and it’s not clear what is current and what is old and no longer true.

 

• The configuration is complicated. There are lots of parameters and subtly different variants of those parameters.

 

How Amavisd Works
 

amavisd stands between the MTA that holds the message to be vetted and the software that will actually do the checking. amavisd listens for connections from the MTA on TCP port 10,024, speaks SMTP or LMTP to receive messages, and returns its answers to the MTA on port 10,025. It can also use a local domain socket if it is running on the same machine as the MTA.
 

If amavisd hands the scanned message and results back to the MTA from which the message was originally received, filtering can be done in-line and the message rejected during the MTA’s initial SMTP session. If amavisd instead queues messages for an internal mail hub, the filtering is off-line and naughty messages can be dropped or bounced.
 

amavisd is meticulous about not losing mail, not letting messages slip by without being checked, honoring individual recipients’ wishes, and following the standards laid out in the various email-related RFCs. Despite being written in Perl, amavisd has pretty good performance. It scans each message only once, no matter how many recipients are associated with it. Logging can be quite extensive, and tools in the distribution can monitor filtering through SNMP. amavisd does not need to run as root and has a good security history.
 

See Chapter 21 for more information about SNMP.

 

Amavisd Installation
 

Download the latest version of the software from ijs.si/software/amavisd or grab a Linux package and skip the steps detailed in the INSTALL file at the top of the distribution hierarchy. The project home page has pointers to precompiled packages. amavisd expects to run as user and group vscan or amavis, so it might be easiest to create that user and group and then log in as vscan to get the software and install it. After you have amavisd installed and working correctly, change the account’s login shell to /bin/false or some other restricted shell.
 

The file amavisd.conf-default contains a list of every possible configuration parameter and its default value. amavisd.conf-sample is a more typical commented sample config file. Finally, amavisd.conf is a minimal starting place (but still over 750 lines long!) with some comments for variables that must be changed. The configuration language is Perl.
 

Basic Amavisd Configuration
 

Here is a basic amavisd configuration for a host called mail.example.com, where the MTA and amavisd are running on the same machine and using TCP and the SMTP protocol to communicate with each other.
 

[image: Image]
 

More than 40 antispam and antivirus programs are listed in the sample configuration’s av_scanners array; this excerpt shows only ClamAV. The 1; at the end of the file is a Perlism that ensures that the file itself will evaluate to true in any Perl context that reads it.
 

Amavisd-New Tools
 

The amavisd-new distribution includes two handy tools: amavisd-nanny and amavisd-agent. The nanny monitors the health of amavisd, and the agent provides access to lots of SNMP-like counters and gauges in real time. Both require the Berkeley DB library.
 

amavisd-nanny shows the state of all amavisd processes, what messages they are working on, what they are doing, and how long they have been doing it. Running it with the -h flag shows a usage message and also a list of states that amavisd can be in. Most interesting are S for spam scanning, V for virus scanning, and a dot (period) for being idle. A state character is printed every second with a colon character every ten to make it easier to count. You should run the amavisd-nanny occasionally just to see how the system is doing. Here’s an example:
 

[image: Image]
 

amavisd-agent is an SNMP-like agent that collects statistics from all the running daemons and can show things like the number of messages processed, the time to process each, the percent that contain viruses, the most common viruses, etc. Here is a massively truncated example:
 

[image: Image]
 

The first numerical column is the absolute count of an item, followed by the calculated rate and a percentage value in relation to the baseline of which it’s a subset, shown in parentheses.
 

In this case, the mail server processed 247,458 messages in 12 days with an average of 1.2 recipients per message (InMsgsRecips is 120.3% of InMsgs). The server detected 1,274 viruses, which represents about 0.5% of the total mail traffic. The scanners required 0.253 seconds on average to process a mail message. The two most frequent viruses were MyDoom-N and BredoZp-H.
 

Tests of Your MTA’s Scanning Effectiveness
 

When testing that your MTA is correctly identifying viruses and other malware, you need to use real, infected messages to verify that your countermeasures are actually identifying them and dealing with them appropriately. So don’t do this in a production environment in case things get out of hand. Set up a secure, physically separate test lab that is not connected to your production network.
 

Antivirus researchers have compiled a small test file and given it to EICAR, the European Expert Group for IT-Security (eicar.org/anti_virus_test_file.htm) to distribute. It is not actually a virus, just a distinctive sequence of bytes that antivirus applications add to their databases as a virus (usually under a descriptive name such as EICAR-AV-Test). You can email, share, and reproduce the test file freely without worrying about starting a virus outbreak. EICAR provides several versions of the file so that you can test for the file in various wrappers such as ZIP.
 

GTUBE, the generic test for unsolicited bulk email, is a similar file for testing spam filters. It’s available from spamassassin.apache.org/gtube.
 

If you are testing and debugging by speaking SMTP to your MTA, check out the SWAKS tool (SWiss Army Knife SMTP, jetmore.org/john/code/#swaks) by John Jetmore. It’s written in Perl and lets you test SMTP conversations easily with command-line arguments. The man page or swaks --help gets you documentation. It requires the libraries libnet-ssleay-perl and libnet-dns-perl if you want to test SMTP authentication. It’s not rocket science, but it’s definitely faster than typing SMTP commands by hand.
 

20.7 Email Configuration
 

The heart of an email system is its MTA, or mail transport agent. sendmail was the original UNIX MTA, written by Eric Allman while he was a graduate student at UC Berkeley many years ago. Since then, a host of other MTAs have been developed. Some of them are commercial products and some are open source implementations. In this chapter, we cover three open source mail transport agents: sendmail, Postfix by Wietse Venema of IBM Research, and Exim by Philip Hazel of the University of Cambridge.
 

After the top-level design of the mail system, configuration of the MTA is the next big sysadmin chore. Fortunately, the default or sample configurations that ship with MTAs are often very close to what the average site needs. You don’t have to start from scratch when configuring your MTA.
 

SecuritySpace (securityspace.com) does a monthly survey to determine the market share of the various MTAs. In their December 2009 survey, 1.7 million out of 2 million MTAs responded, and 950,000 replied with a banner that identified the MTA software in use. Table 20.4 shows these results, as well as the SecuritySpace results for 2007 and some 2001 values from a different survey.
 

Table 20.4 Mail transport agent market share
 

[image: Image]
 

The trend is clearly away from sendmail and toward Exim and Postfix, with Microsoft gaining market share and then leveling off. Among our example operating systems, the UNIX variants all ship sendmail. Ubuntu is moving from Postfix to Exim, SUSE ships Postfix, and Red Hat includes all three but defaults to sendmail.
 

For each of our MTAs, we include details on the configuration necessary to accomplish many of the features of our suggested mail system design, including
 

• Configuration of simple clients

 

• Configuration of an Internet-facing mail server

 

• Control of both inbound and outbound mail routing

 

• Stamping of mail as coming from a central server or the domain itself

 

• Security

 

• Debugging

 

If you are implementing a mail system from scratch and have no site politics or biases to deal with, it may be hard to choose an MTA. sendmail and Exim are certainly the most complex and probably the most configurable and most powerful options. Postfix is simpler, faster, and was designed with security as a primary goal. If your site or your sysadmins have a history with a particular MTA, it’s probably not worth switching unless you need functionality that’s not available in your old MTA.
 

sendmail configuration is covered in the next section. Exim configuration begins on page 807, and Postfix configuration on page 828.
 

20.8 Sendmail
 

The sendmail distribution in source form is available from sendmail.org, but it’s rarely necessary to build it from scratch these days. If you have to, refer to the top-level INSTALL file. If you need to tweak some of the build defaults, you can find sendmail’s assumptions in devtools/OS/your-OS-name, and you can add features by editing devtools/Site/site.config.m4. sendmail uses the m4 macro preprocessor not only during compilation but also for configuration. An m4 configuration file is usually named hostname.mc and is then translated from a slightly user-friendly syntax into a totally inscrutable low-level language in the file hostname.cf, which is in turn installed as /etc/mail/sendmail.cf.
 

To see what version of sendmail is installed on your system and how it was compiled, try the following command:
 

[image: Image]
 

This command puts sendmail in address test mode (-bt) and debug mode (-d0.1) but gives it no addresses to test (</dev/null). A side effect is that sendmail tells us its version and the compiler flags it was built with. Once you know the version number, you can look at the sendmail.org web site to see if any known security vulnerabilities are associated with that release.
 

To find the sendmail files on your system, look at the beginning of the installed /etc/mail/sendmail.cf file. The comments there mention the directory in which the configuration was built. That directory should in turn lead you to the .mc file that is the original source of the configuration.
 

Most vendors that ship sendmail include not only the binary but also the cf direc-tory from the distribution tree, which they hide somewhere among the operating system files. Table 20.5 will help you find it.
 

Table 20.5 sendmail configuration directory location
 

[image: Image]
 

The Switch File
 

Most systems have a “service switch” configuration file, /etc/nsswitch.conf, that enumerates the methods that can satisfy various standard queries such as user and host lookups. If more than one resolution method is listed for a given type of query, the service switch file also determines the order in which the various methods are consulted.
 

The service switch is covered in more detail in Chapter 19.

 

The existence of the service switch is normally transparent to software. However, sendmail likes to exert fine-grained control over its lookups, so it currently ignores the system switch file and uses its own internal service configuration file (/etc/mail/service.switch) instead.
 

Two fields in the switch file impact the mail system: aliases and hosts. The possible values for the hosts service are dns, nis, nisplus, and files. For aliases, the possible values are files, nis, nisplus, and ldap. Support for the mechanisms you use (except files) must be compiled into sendmail before the service can be used.
 

Starting Sendmail
 

sendmail should not be controlled by inetd or xinetd, so it must be explicitly started at boot time. See Chapter 3, Booting and Shutting Down, for startup details. The flags that sendmail is started with determine its behavior. You can run sendmail in several modes, selected with the -b flag. -b stands for “be” or “become” and is always used with another flag that determines the role sendmail will play. Table 20.6 lists the legal values and also includes the -A flag, which selects between MTA and MSA behavior.
 

If you are configuring a server that will accept incoming mail from the Internet, run sendmail in daemon mode (-bd). In this mode, sendmail listens on network port 25 and waits for work.8 You will usually specify the -q flag, too—it sets the interval at which sendmail processes the mail queue. For example, -q30m runs the queue every thirty minutes, and -q1h runs it every hour.
 

Table 20.6 Command-line flags for sendmail’s major modes
 

[image: Image]
 

sendmail normally tries to deliver a message immediately, saving it in the queue only momentarily to guarantee reliability. But if your host is too busy or the destination machine is unreachable, sendmail queues the message and tries to send it again later. sendmail uses persistent queue runners that are usually started at boot time. It does locking, so multiple, simultaneous queue runs are safe. The “queue groups” configuration feature helps with large mailing lists and queues. It is covered in more detail starting on page 802.
 

sendmail reads its configuration file, sendmail.cf, only when it starts up. Therefore, you must either kill and restart sendmail or send it a HUP signal when you change the config file. sendmail creates a sendmail.pid file that contains its process ID and the command that started it. You should start sendmail with an absolute path because it re-execs itself on receipt of the HUP signal. The sendmail.pid file allows the process to be HUPed with the command
 

$ sudo kill -HUP ‘head -1 sendmail.pid‘
 

The location of the PID file is OS-dependent. It’s usually /var/run/sendmail.pid or /etc/mail/sendmail.pid but can be set in the config file with the confPID_FILE option:
 

define(confPID_FILE, `/var/run/sendmail.pid’)
 

Mail Queues
 

sendmail uses at least two queues: /var/spool/mqueue when acting as an MTA on port 25, and /var/spool/clientmqueue when acting as an MSA on port 587.9 All messages make at least a brief stop in the queue before being sent on their way.
 

A queued message is saved in pieces in several different files. Each filename has a two-letter prefix that identifies the piece, followed by a random ID built from sendmail’s process ID. Table 20.7 shows the six possible pieces.
 

Table 20.7 Prefixes for files in the mail queue
 

[image: Image]
 

If subdirectories qf, df, or xf exist in a queue directory, then those pieces of the message are put in the proper subdirectory. The qf file contains not only the message header but also the envelope addresses, the date at which the message should be returned as undeliverable, the message’s priority in the queue, and the reason the message is in the queue. Each line begins with a single-letter code that identifies the rest of the line.
 

Each message that is queued must have a qf and df file. All the other prefixes are used by sendmail during attempted delivery. When a machine crashes and reboots, the startup sequence for sendmail should delete the tf, xf, and Tf files from each queue. The sysadmin responsible for mail should check occasionally for Qf files in case local configuration is causing the bounces. An occasional glance at the queue directories lets you spot problems before they become disasters.
 

The mail queue opens up several opportunities for things to go wrong. For example, the filesystem can fill up (avoid putting /var/spool/mqueue and /var/log on the same partition), the queue can become clogged, or orphaned mail messages can get stuck in the queue. sendmail has configuration options to help with performance on very busy machines; we have collected these in the performance section starting on page 802.
 

20.9 Sendmail Configuration
 

sendmail’s actions are controlled by a single configuration file, typically called /etc/mail/sendmail.cf for a sendmail running as an MTA or /etc/mail/submit.cf
for a sendmail acting as an MSA. The flags with which sendmail is started determine which config file it uses: -bm, -bs, and -bt use submit.cf if it exists, and all other modes use sendmail.cf. You can change these names with command-line flags or config file options, but it is best not to.
 

The raw config file format was designed to be easy to parse by machines, not humans. The m4 source (.mc) file from which the .cf file is generated is an improvement, but its picky and rigid syntax isn’t going to win any awards for user friendliness, either. Fortunately, many of the paradigms you might want to set up have already been hammered out by others with similar needs and are supplied in the distribution as prepackaged features.
 

sendmail configuration involves several steps:
 

• Deciding the role of the machine you are configuring: client, server, Internet-facing mail receiver, etc.

 

• Choosing the features needed to implement that role and building an .mc file for the configuration

 

• Compiling the .mc file with m4 to produce a .cf config file

 

We cover the features commonly used for site-wide, Internet-facing servers and for little desktop clients. For more detailed coverage, we refer you to two key pieces of documentation on the care and feeding of sendmail: the O’Reilly book sendmail by Bryan Costales et al. and the file cf/README from the distribution.
 

The m4 Preprocessor
 

m4, originally intended as a front end for programming languages, lets users write more readable (or perhaps more cryptic) programs. m4 is powerful enough to be useful in many input transformation situations, and it works nicely for sendmail configuration files.
 

m4 macros have the form
 

name(arg1, arg2, …, argn)
 

There cannot be any space between the name and the opening parenthesis. Left and right single quotes designate strings as arguments. m4’s quote conventions are weird, since the left and right quotes are different characters. Quotes nest, too.
 

m4 has some built-in macros, and users can also define their own. Table 20.8 on the next page lists the most common built-in macros that are used in sendmail configuration.
 

The Sendmail Configuration Pieces
 

The sendmail distribution includes a cf subdirectory beneath which are all the pieces necessary for m4 configuration. Table 20.5 on page 776 shows the location of the cf directory if you did not install the sendmail source but relied on your vendor. The README file there is sendmail’s configuration documentation. The
 

Table 20.8 m4 macros commonly used with sendmail
 

[image: Image]
 

subdirectories, listed in Table 20.9, contain examples and snippets you can include in your own configuration.
 

Table 20.9 sendmail configuration subdirectories
 

[image: Image]
 

The cf/cf directory contains examples of .mc files. In fact, it contains so many examples that yours may get lost in the clutter. We recommend that you keep your own .mc files separate from those in the distributed cf directory. Either create a new directory named for your site (cf/sitename) or move the cf directory aside to cf.examples and create a new cf directory. If you do this, copy the Makefile and Build script over to your new directory so the instructions in the README file still work. Alternatively, you can copy all of your own configuration .mc files to a central location rather than leaving them inside the sendmail distribution. The Build script uses relative pathnames, so you’ll have to modify it if you want to build a .cf file from an .mc file and are not in the sendmail distribution hierarchy.
 

The files in the cf/ostype directory configure sendmail for each specific operating system. Many are predefined, but if you have moved things around on your system, you might have to modify one or create a new one. Copy one that is close to reality for your system and give it a new name.
 

The cf/feature directory is where you will shop for all the configuration pieces you might need. There is a feature for just about anything that any site running sendmail has found useful.
 

The other directories beneath cf are pretty much boilerplate and do not need to be tweaked or even understood—just use them.
 

A Configuration File Built from a Sample .mc File
 

Before we dive into the details of the various configuration macros, features, and options you might use in a sendmail configuration, let’s put the cart before the horse and create a “no frills” configuration to illustrate the general process. Our example is for a leaf node, myhost.example.com; the master configuration file is called myhost.mc. Here’s the complete .mc file:
 

[image: Image]
 

Except for the diversions and comments, each line invokes a prepackaged macro. The first four lines are boilerplate; they insert comments in the compiled file to note the version of sendmail, the directory the configuration was built in, etc. The OSTYPE macro includes the ../ostype/linux.m4 file. The MAILER lines allow for local delivery (to users with accounts on myhost.example.com) and for delivery to Internet sites.
 

To build the real configuration file, just run the Build command you copied over to the new cf directory:
 

$ ./Build myhost.cf
 

Finally, install myhost.cf in the right spot—normally /etc/mail/sendmail.cf, but some vendors move it. Favorite vendor hiding places are /etc and /usr/lib.
 

At a larger site, you may want to create a separate m4 file to hold site-wide defaults; put it in the cf/domain directory. Individual hosts can then include the contents of this file by using the DOMAIN macro. Not every host needs a separate config file, but each group of similar hosts (same architecture and same role: server, client, etc.) will probably need its own configuration.
 

The order of the macros in the .mc file is not arbitrary. It should be
 

[image: Image]
 

Even with sendmail’s easy m4 configuration system, you still have to make several configuration decisions for your site. As you read about the features described below, think about how they might fit into your site’s organization. A small site will probably have only a hub node and leaf nodes and thus will need only two versions of the config file. A larger site may need separate hubs for incoming and outgoing mail and, perhaps, a separate POP/IMAP server.
 

Whatever the complexity of your site and whatever face it shows to the outside world (exposed, behind a firewall, or on a virtual private network, for example), it’s likely that the cf directory contains some appropriate ready-made configuration snippets just waiting to be customized and put to work.
 

20.10 Sendmail Configuration Primitives
 

sendmail configuration commands are case sensitive. By convention, the names of predefined macros are all caps (e.g., OSTYPE), m4 commands are all lower case (e.g., define), and configurable option names usually start with lowercase conf and end with an all-caps variable name (e.g., confFALLBACK_MX). Macros usually refer to an m4 file called ../macroname/arg1.m4. For example, the reference OSTYPE(`linux’) causes the file ../ostype/linux.m4 to be included.
 

Tables and Databases
 

Before we dive into specific configuration primitives, we must first discuss tables (sometimes called maps or databases), which sendmail can use to do mail routing or address rewriting. Most are used in conjunction with the FEATURE macro.
 

A table is a cache (usually a text file) of routing, aliasing, policy, or other information that is converted to a database format with the makemap command and then used as an information source for one or more of sendmail’s various lookup operations. Although the data usually starts as a text file, data for sendmail tables can come from DNS, NIS, LDAP, or other sources. The use of a centralized IMAP server relieves sendmail of the chore of chasing down users and obsoletes some of its tables.
 

Two database libraries are supported: the dbm/ndbm library that is standard with most versions of UNIX and Linux, and Berkeley DB, which is a more extensible library that supports multiple storage schemes. We recommend BDB if your system has it or you can install it. It’s faster than dbm and creates smaller files.
 

sendmail defines three database map types:
 

• dbm – uses an extensible hashing algorithm (dbm/ndbm)

 

• hash – uses a standard hashing scheme (DB)

 

• btree – uses a B-tree data structure (DB)

 

For most table applications in sendmail, the hash database type—the default—is the best. Use the makemap command to build the database file from a text file; you specify the database type and the output file base name. The text version of the database should appear on makemap’s standard input. For example:
 

$ sudo makemap hash /etc/mail/access < /etc/mail/access
 

At first glance this command looks like a mistake that would cause the input file to be overwritten by an empty output file. However, makemap tacks on an appropriate suffix, so the actual output file is /etc/mail/access.db and in fact there is no conflict. Each time the text file is changed, the database file must be rebuilt with makemap (but sendmail need not be HUPed).
 

Comments can appear in the text files from which maps are produced. They begin with # and continue until the end of the line.
 

In most circumstances, the longest possible match is used for database keys. As with any hashed data structure, the order of entries in the input text file is not significant. FEATUREs that expect a database file as a parameter default to hash as the database type and /etc/mail/tablename.db as the filename for the database.
 

Generic Macros and Features
 

Table 20.10 lists common configuration primitives, whether they are typically used (yes, no, maybe), and a brief description of what they do. More details and examples are given in the sections following the table.
 

Table 20.10 Sendmail generic configuration primitives
 

[image: Image]
 

OSTYPE macro
 

An OSTYPE file packages a variety of vendor-specific information, such as the expected locations of mail-related files, paths to commands that sendmail needs, flags to mailer programs, etc. See cf/README for a list of all the variables that can be defined in an OSTYPE file.10
 

[image: Image]Each of our example systems except SUSE includes the appropriate OSTYPE file from the sendmail distribution. SUSE instead has its own suse_linux.m4 file. That file is long (over 80 lines compared to 5 lines in the comparable linux.m4 file) and contains numerous FEATUREs and other macros that are usually found in a site’s master configuration file (the .mc file) and not in the OSTYPE file. This hides the real configuration from the sysadmin—a mixed blessing, perhaps, but not a practice we recommend.
 

DOMAIN Macro
 

The DOMAIN directive lets you specify site-wide generic information in one place (cf/domain/filename.m4) and then include it in each host’s config file with
 

DOMAIN(`filename`)
 

MAILER Macro
 

You must include a MAILER macro for every delivery agent you want to enable. You’ll find a complete list of supported mailers in the directory cf/mailers, but typically you need only local, smtp, and maybe cyrus. MAILER lines are generally the last thing in the .mc file.
 

FEATURE Macro
 

The FEATURE macro enables a whole host of common scenarios (56 at last count!) by including m4 files from the feature directory. The syntax is
 

FEATURE(keyword, arg, arg, …)
 

where keyword corresponds to a file keyword.m4 in the cf/feature directory and the args are passed to it. There can be at most nine arguments to a feature.
 

use_cw_file Feature
 

The sendmail internal class w (hence the name cw) contains the names of all local hosts for which this host accepts and delivers mail. This feature specifies that mail be accepted for the hosts listed, one per line, in /etc/mail/local-host-names. The configuration line
 

FEATURE(`use_cw_file`)
 

invokes the feature. A client machine does not really need this feature unless it has nicknames, but your incoming mail hub machine does. The local-host-names file should include any local hosts and virtual domains for which you accept email, including sites whose backup MX records point to you.
 

Without this feature, sendmail delivers mail locally only if it is addressed to the machine on which sendmail is running.
 

If you add a new host at your site, you must add it to the local-host-names file and send a HUP signal to sendmail to make your changes take effect. Unfortunately, sendmail reads this file only when it starts.
 

Redirect Feature
 

When people leave your organization, you usually either forward their mail or let mail to them bounce back to the sender with an error. The redirect feature provides support for a more elegant way of bouncing mail.
 

If Joe Smith has graduated from oldsite.edu (login smithj) to newsite.com (login joe), then enabling redirect with
 

FEATURE(`redirect`)
 

and adding the line
 

smithj: joe@newsite.com.REDIRECT
 

to the aliases file at oldsite.edu causes mail to smithj to be returned to the sender with an error message suggesting that the sender try the address joe@newsite.com instead. The message itself is not automatically forwarded.
 

Always_Add_Domain Feature
 

The always_add_domain feature makes all email addresses fully qualified. It should always be used.
 

Access_Db Feature
 

The access_db feature controls relaying and other policy issues. Typically, the raw data that drives this feature either comes from LDAP or is kept in a text file called /etc/mail/access. In the latter case, the text file must be converted to some kind of indexed format with the makemap command, as described on page 782. To use the flat file, use FEATURE(`access_db`) in the configuration file; for the LDAP version, use FEATURE(`access_db`, `LDAP`).11
 

The key field in the access database is an IP network or a domain name with an optional tag such as Connect:, To:, or From:. The value field specifies what to do with the message.
 

The most common values are OK to accept the message, RELAY to allow it to be relayed, REJECT to reject it with a generic error indication, or ERROR:"error code and message" to reject it with a specific message. Other possible values allow for finer-grained control. Here is a snippet from a sample /etc/mail/access file:
 

[image: Image]
 

Virtusertable Feature
 

The virtusertable feature supports domain aliasing for incoming mail. This feature allows multiple virtual domains to be hosted on one machine and is used frequently at web hosting sites. The key field of the table contains either an email address (user@host.domain) or a domain specification (@domain). The value field is a local or external email address. If the key is a domain, the value can either pass the user field along as the variable %1 or route the mail to a different user. Here are some examples:
 

[image: Image]
 

All the host keys on the left side of the data mappings must be listed in the cw file, /etc/mail/local-host-names, or be included in the VIRTUSER_DOMAIN list. If they are not, sendmail will not know to accept the mail locally and will try to find the destination host on the Internet. But DNS MX records will point sendmail back to this same server and you will get a “local configuration error” message in the resulting bounce message. Unfortunately, sendmail cannot tell that the error message for this instance should really be “virtusertable key not in cw file.”
 

Ldap_Routing Feature
 

LDAP, the Lightweight Directory Access Protocol, can be a source of data for aliases or mail routing information as well general tabular data as described earlier. The cf/README file has a long section on LDAP with lots of examples.
 

To use LDAP in this way, you must have built sendmail to include LDAP support. In your .mc file, add the lines
 

[image: Image]
 

Those lines tell sendmail that you want to use an LDAP database to route incoming mail addressed to the specified domain. The LDAP_DEFAULT_SPEC option identifies the LDAP server and the LDAP basename for searches. LDAP uses port 389 unless you specify a different port by adding -p ldap_port to the define.
 

sendmail uses the values of two tags in the LDAP database:
 

• mailLocalAddress for the addressee on incoming mail

 

• mailRoutingAddress for the destination to which email should be sent

 

sendmail also supports the tag mailHost, which if present routes mail to the MX-designated mail handler for the specified host. The recipient address remains the value of the mailRoutingAddress tag.
 

LDAP database entries support a wild card entry, @domain, that reroutes mail addressed to anyone at the specified domain (as was done in the virtusertable).
 

By default, mail addressed to user@host1.mydomain would first trigger a lookup on user@host1.mydomain. If that failed, sendmail would try @host1.mydomain but not user@mydomain. Including the line
 

LDAPROUTE_EQUIVALENT(`host1.mydomain`)
 

would also try the keys user@mydomain and @mydomain. This feature enables a single database to route mail at a complex site. You can also take the entries for the LDAPROUTE_EQUIVALENT clauses from a file, which makes the feature quite usable. The syntax for that form is
 

LDAPROUTE_EQUIVALENT_FILE(`filename`)
 

Additional arguments to the ldap_routing feature let you specify more details about the LDAP schema and control the handling of addressee names that have a +detail part. As always, see the cf/README file for exact details.
 

Masquerading Features
 

An email address is usually made up of a username, a host, and a domain, but many sites do not want the names of their hosts exposed on the Internet. The MASQUERADE_AS macro lets you specify a single identity for other machines to hide behind. All mail appears to emanate from the designated machine or domain. This is fine for regular users, but for debugging purposes, system users such as root should be excluded from the masquerade.
 

For example, the sequence
 

[image: Image]
 

would stamp mail as coming from user@atrust.com unless it was sent by root or the mail system; in these cases, the mail would carry the name of the originating host. MASQUERADE_AS is just the tip of a vast masquerading iceberg that extends downward through a dozen variations and exceptions. The allmasquerade and masquerade_envelope features (in combination with MASQUERADE_AS) hide just the right amount of local info. See the cf/README for details.
 

MAIL_HUB and SMART_HOST Macros
 

Masquerading makes all mail appear to come from a single host or domain by rewriting the headers and, optionally, the envelope. But most sites will want all mail to actually come from (or go to) a single machine so that they can control the flow of viruses, spam, and company secrets. You can achieve this control with a combination of MX records in the DNS, the MAIL_HUB macro for incoming mail, and the SMART_HOST macro for outgoing mail.
 

For example, in the architectural diagram on page 754, MX records would direct incoming email from the Internet to the MTA in the demilitarized zone. After verification that the received email was free of viruses and spam and was directed to valid local users, the mail could be relayed, with the following define, to the internal routing MTA for delivery:
 

See page 583 for more information about DNS MX records.

 

define(`MAIL_HUB`, `smtp:routingMTA.mydomain`)
 

Likewise, client machines would relay their mail to the SMART_HOST designated in the nullclient feature in their configuration. The SMART_HOST could then filter for viruses and spam so that mail from your site did not pollute the Internet.
 

See the next section for more about nullclient.

 

The syntax of SMART_HOST parallels that of MAIL_HUB, and the default delivery agent is again relay. For example:
 

define(`SMART_HOST`, `smtp:outgoingMTA.mydomain`)
 

You can use the same machine as the server for both incoming and outgoing mail. Both the SMART_HOST and the MAIL_HUB must allow relaying, the first from clients inside your domain and the second from the MTA in the DMZ.
 

Client Configuration
 

If your site follows the paradigms illustrated in the mail system design section (page 753), most of your machines will need to be configured as clients who just submit outgoing mail generated by users and don’t receive mail at all. One of sendmail’s FEATUREs, nullclient, is just right for this situation. It creates a config file that forwards all mail to a central hub via SMTP. The entire config file, after the VERSIONID and OSTYPE lines, would be simply
 

[image: Image]
 

where mailserver is the name of your central hub. The nocanonify feature tells sendmail not to do DNS lookups or rewrite addresses with fully qualified domain names. All of that work will be done by the mailserver host. This feature is similar to SMART_HOST and assumes that the client will MASQUERADE_AS
mailserver. The EXPOSED_USER clause exempts root from the masquerading and so facilitates debugging.
 

The mailserver machine must allow relaying from its null clients. That permission is granted in the access_db, described on page 785. The null client must have an associated MX record that points to mailserver and must also be included in the mailserver’s cw file (usually /etc/mail/local-host-names). These settings allow the mailserver to accept mail for the client.
 

sendmail should run as an MSA (without the -bd flag) if the user agents on the client machine can be taught to use port 587 for submitting mail. If not, you can run sendmail in daemon mode (-bd) but set the DAEMON_OPTIONS configuration option to listen for connections only on the loopback interface.
 

[image: Image] SUSE provides a sample .mc file for a null client in /etc/mail/linux.nullclient.mc. Fill in the name of your mail server, build the sendmail.cf file, and you’re done.
 

Configuration Options
 

You set config file options with m4’s define command. A complete list of options that are accessible as m4 variables (along with their default values) is given in the cf/README file.
 

The defaults are OK for a typical site that is not too paranoid about security and not too concerned with performance. The defaults try to protect you from spam by turning off relaying, by requiring addresses to be fully qualified, and by requiring that senders’ domains resolve to an IP address. If your mail hub machine is very busy and services a lot of mailing lists, you may need to tweak some of the performance values.
 

Table 20.11 on the next page lists some options that you might need to adjust (about 10% of over 175 configuration options). Their default values are shown in parentheses. To save space, the option names are shown without their conf prefix; for example, the FALLBACK_MX option is really named confFALLBACK_MX. We divided the table into subsections that identify the kind of issue the variable addresses: resource management, performance, security and spam abatement, and miscellaneous options. Some options fit in more than one category, but we listed them only once.
 

Spam-related Features in Sendmail
 

sendmail has a variety of features and configuration options that can help you control spam and viruses:
 

• Rules that control third-party (aka promiscuous, aka open) relaying; that is, the use of your mail server by one off-site user to send mail to another off-site user. Spammers often use relaying to mask the true source of their mail and thereby avoid detection by ISPs. Relaying also lets spammers use your cycles and save their own.

 

• The access database for filtering recipient addresses. This feature is rather like a firewall for email.

 

• Blacklists that catalog open relays and known spam-friendly sites that sendmail can check against.

 

• Throttles that can slow down mail acceptance when certain types of bad behavior are detected.

 

• Header checking and input mail filtering by means of a generic mail filtering interface called libmilter. It allows arbitrary scanning of message headers and content and lets you reject messages that match a particular profile. Milters are plentiful and very powerful; see milter.org.

 

Table 20.11 Basic sendmail configuration options
 

[image: Image]
 

[image: Image]
 

Couple these with techniques like greylisting (page 764), content scanning with amavisd-new (page 769), and the new DNS records for email authentication (page 767), and you might stand a fighting chance against the spammers.
 

Relay Control
 

sendmail accepts incoming mail, looks at the envelope addresses, decides where the mail should go, and then passes it along to an appropriate destination. That destination can be local or it can be another transport agent farther along in the delivery chain. When an incoming message has no local recipients, the transport agent that handles it is said to be acting as a relay.
 

Only hosts that are tagged with RELAY in the access database (see page 785) or that are listed in /etc/mail/relay-domains are allowed to submit mail for relaying. Some types of relaying are useful and legitimate. How can you tell which messages to relay and which to reject? Relaying is actually necessary in only three situations:
 

• When the transport agent acts as a gateway for hosts that are not reachable in any other way; for example, hosts that are not always turned on (laptops, Windows PCs) and virtual hosts. In this situation, all the recipients for which you want to relay lie within the same domain.

 

• When the transport agent is the outgoing mail server for other, not-so-smart hosts. In this case, all the senders’ hostnames or IP addresses will be local (or at least enumerable).

 

• When you have agreed to be a backup MX destination for another site.

 

Any other situation that appears to require relaying is probably just an indication of bad design (with the possible exception of support for mobile users). You can obviate the first use of relaying (above) by designating a centralized server to receive mail, with POP or IMAP being used for client access. The second case should always be allowed, but only for your own hosts. You can check IP addresses or hostnames. In the third case, you can list the other site in your access database and allow relaying just for that site’s IP address blocks.
 

Although sendmail comes with relaying turned off by default, several features have been added to turn relaying back on, either fully or in a limited and controlled way. These features are listed below for completeness, but our recommendation is that you be careful about opening things up too much. The access_db feature is the safest way to allow limited relaying.
 

• FEATURE(`relay_entire_domain`) – allows relaying for just your domain

 

• RELAY_DOMAIN(`domain, …`) – adds more domains to be relayed

 

• RELAY_DOMAIN_FILE(`filename`) – same; takes domain list from a file

 

• FEATURE(`relay_hosts_only`) – affects RELAY_DOMAIN, accessdb

 

You will need to make an exception if you use the SMART_HOST or MAIL_HUB designations to route mail through a particular mail server machine. That server will have to be set up to relay mail from local hosts. Configure it with
 

FEATURE(`relay_entire_domain`)
 

If you consider turning on relaying in some form, consult the sendmail documentation in cf/README to be sure you don’t inadvertently become a friend of spammers. When you are done, have one of the relay-checking sites verify that you did not inadvertently create an open relay—try spamhelp.org.
 

User or Site Blacklisting
 

If you have local users or hosts to which you want to block mail, use
 

FEATURE(`blacklist_recipients`)
 

which supports the following types of entries in your access file:
 

[image: Image]
 

These lines block incoming mail to user nobody on any host, to host printer, and to a particular user’s address on one machine. The use of the To: tag lets these users send messages, just not receive them; some printers have that capability.
 

To include a DNS-style blacklist for incoming email, use the dnsbl feature:
 

FEATURE(`dnsbl`, `zen.spamhaus.org`)
 

This feature makes sendmail reject mail from any site whose IP address is in any of the three blacklists of known spammers (SBL, XBL, and PBL) maintained at spamhaus.org. Other lists catalog sites that run open relays and known blocks of addresses that are likely to be a haven for spammers. These blacklists are distributed through a clever tweak of the DNS system; hence the name dnsbl. See page 766 for a more complete explanation of how the system works.
 

You can pass a third argument to the dnsbl feature to specify the error message you would like returned. If you omit this argument, sendmail returns a fixed error message from the DNS database that contains the records.
 

You can include the dnsbl feature several times to check different lists of abusers.
 

Throttles, Rates, and Connection Limits
 

Table 20.12 lists several sendmail controls that can slow down mail processing when clients’ behavior appears suspicious.
 

Table 20.12 sendmail’s “slow down” configuration primitives
 

[image: Image]
 

After the no-such-login count reaches the limit set in the BAD_RCPT_THROTTLE option, sendmail sleeps for one second after each rejected RCPT command, slowing a spammer’s address harvesting to a crawl. To set that threshold to 3, use
 

define(`confBAD_RCPT_THROTTLE`, `3`)
 

Setting the MAX_RCPTS_PER_MESSAGE option causes the sender to queue extra recipients for later. This is a cheap form of greylisting for messages that have a suspiciously large number of recipients.
 

The ratecontrol and conncontrol features allow per-host or per-net limits on the rate at which incoming connections are accepted and the number of simultaneous connections, respectively. Both use the /etc/mail/access file to specify the limits and the domains to which that they should apply, the first with the tag ClientRate: in the key field and the second with tag ClientConn:. To enable rate controls, insert lines like these in your .mc file:12
 

[image: Image]
 

Then, add to your /etc/mail/access file the list of hosts or nets to be controlled and their restriction thresholds. For example, the lines
 

[image: Image]
 

limit the hosts 192.168.6.17 and 170.65.3.4 to two new connections per minute and ten new connections per minute, respectively. The lines
 

[image: Image]
 

set limits of two simultaneous connections for 192.168.2.8, seven for 175.14.4.1, and ten simultaneous connections for all other hosts.
 

Another nifty feature is greet_pause. When a remote MTA connects to your sendmail server, the SMTP protocol mandates that it wait for your server’s welcome greeting before speaking. However, it’s common for spam mailers to blurt out an EHLO/HELO command immediately. This behavior is partially explainable as poor implementation of the SMTP protocol in spam-sending tools, but it may also be a feature that aims to save time on the spammer’s behalf. Whatever the cause, this behavior is suspicious and is known as “slamming.”
 

The greet_pause feature makes sendmail wait for a specified period of time at the beginning of the connection before greeting its newfound friend. If the remote MTA does not wait to be properly greeted and proceeds with an EHLO or HELO command during the planned awkward moment, sendmail logs an error and refuses subsequent commands from the remote MTA.
 

You can enable greeting pauses with this entry in the .mc file:
 

FEATURE(`greet_pause`, `700`)
 

This line causes a 700 millisecond delay at the beginning of every new connection. You can set per-host or per-net delays with a GreetPause: prefix in the access database, but most sites use a blanket value for this feature.
 

Milter Configuration in Sendmail
 

Miltering in general is introduced on page 767; this section describes how to configure miltering in sendmail. The configuration directives INPUT_MAIL_FILTER and MAIL_FILTER control the miltering action. A slew of options give you fine-grained control over exactly when in the SMTP conversation each filter is applied (MILTER_MACROS_*). For example, the line
 

INPUT_MAIL_FILTER(`filtername`, `S=mailer:/var/run/filtername.socket`)
 

passes each incoming message to the /etc/mail/filtername program through the socket specified in the second argument. Below is a more realistic example that uses milters to connect to SpamAssassin through a local domain socket and to check DKIM signatures with the dkim-filter program through a TCP socket at port 8699.
 

[image: Image]
 

The last two statements set parameters passed to the milters when the session connection starts and after the MAIL FROM command, respectively.
 

For more information, see libmilter/README or the HTML documentation in the libmilter/docs directory of the sendmail distribution. The README file gives an overview and a simple example of a filter that logs messages to a file. The files in docs describe the library interface and tell how to use the various calls to build your own mail filtering programs. milter.org is a great reference.
 

Amavisd and Sendmail Connection
 

amavisd is an external, industrial strength virus and spam scanner introduced on page 769. This section illustrates how to use it with sendmail.
 

The easiest way to connect sendmail and amavisd is to use two mail servers: one that receives mail from the Internet and passes it to amavisd; the other that runs in queue-only mode, receives scanned messages from amavisd, and transmits them on their way, either for local delivery or to the Internet. amavisd sits in the middle, acting as a MAIL_HUB for incoming mail and a SMART_HOST for outgoing mail.
 

Unfortunately, this scheme scans messages off-line, after sendmail has already accepted them for delivery. To use amavisd in-line, see the file README.milter in the amavisd-new documentation.
 

The key configuration lines on the Internet-facing server—the ones that pass all mail to the amavisd process listening on port 10,024—are
 

[image: Image]
 

This last line makes debugging the configuration much easier because you can then tell which process (the receiving sendmail, the transmitting sendmail, or amavisd) is logging what messages.
 

After scanning, amavisd passes messages to the queueing-only sendmail process listening on port 10,025 (not port 25 as usual), and from there, queue runners either complete local delivery or ship the messages out to the Internet.
 

On the transmitting server, setting
 

DAEMON_OPTIONS(`Addr=127.0.0.1, Port=10025, Name=transmittingMTA`)
 

tells sendmail to listen on port 10,025 for messages returning from amavisd. It logs any info or error messages with the name transmittingMTA to distinguish it from the receivingMTA.
 

There are more settings you can tweak (for example, performance limits) to make sure the two instances of sendmail play well together. Some thought needs to go into deciding exactly what checks will be done, which process will do them, and in what order they will occur.
 

The file README_FILES/README.sendmail-dual in the amavisd-new distribution is a good reference.
 

20.11 Security and Sendmail
 

With the explosive growth of the Internet, programs such as sendmail that accept arbitrary user-supplied input and deliver it to local users, files, or shells have frequently provided an avenue of attack for hackers. sendmail, along with DNS and even IP, is flirting with authentication and encryption as a built-in solution to some of these fundamental security issues.
 

sendmail supports both SMTP authentication and encryption with TLS, Transport Layer Security (formerly known as SSL, the Secure Socket Layer). TLS brought with it six new configuration options for certificate files and key files. New actions for access database matches can require that authentication must have succeeded.
 

In this section, we describe sendmail’s permissions model, ownerships, and privacy protection. We then briefly discuss TLS and SASL (the Simple Authentication and Security Layer) and their use with sendmail.
 

sendmail carefully inspects file permissions before it believes the contents of, say, a .forward or an aliases file. Although this tightening of security is generally welcome, it’s sometimes necessary to relax the tough policies. To this end, sendmail introduced the DontBlameSendmail option, so named in hopes that the name will suggest to sysadmins that what they are doing is considered unsafe.
 

This option has many possible values—55 at last count. The default is safe, the strictest possible. For a complete list of values, see doc/op/op.ps in the sendmail distribution or the O’Reilly sendmail book. Or just leave the option set to safe.
 

Ownerships
 

Three user accounts are important in the sendmail universe: the DefaultUser, the RunAsUser, and the TrustedUser.
 

By default, all of sendmail’s mailers run as the DefaultUser unless the mailer’s flags specify otherwise. If a user mailnull, sendmail, or daemon exists in the /etc/passwd file, DefaultUser will be that. Otherwise, it defaults to UID 1 and GID 1. We recommend the use of the mailnull account and a mailnull group. Add it to /etc/passwd with a star as the password, no valid shell, no home directory, and a default group of mailnull. You’ll have to add the mailnull entry to the group file, too. The mailnull account should not own any files. If sendmail is not running as root, the mailers must be setuid.
 

If RunAsUser is set, sendmail ignores the value of DefaultUser and does everything as RunAsUser. If you are running sendmail setgid (to smmsp), then the submission sendmail just passes messages to the real sendmail through SMTP. The real sendmail does not have its setuid bit set, but it runs as root from the startup files.
 

The RunAsUser is the UID that sendmail runs under after opening its socket connection to port 25. Ports numbered less than 1,024 can be opened only by the superuser; therefore, sendmail must initially run as root. However, after performing this operation, sendmail can switch to a different UID. Such a switch reduces the risk of damage or access if sendmail is tricked into doing something bad. Don’t use the RunAsUser feature on machines that support user accounts or other services; it is meant for use on firewalls or bastion hosts only.13
 

By default, sendmail does not switch identities and continues to run as root. If you change the RunAsUser to something other than root, you must change several other things as well. The RunAsUser must own the mail queue, be able to read all maps and include files, be able to run programs, etc. Expect to spend a few hours finding all the file and directory ownerships that must be changed.
 

sendmail’s TrustedUser can own maps and alias files. The TrustedUser is allowed to start the daemon or rebuild the aliases file. This facility exists mostly to support GUI interfaces to sendmail that need to provide limited administrative control to certain users. If you set TrustedUser, be sure to guard the account that it points to because this account can easily be exploited to gain root access. The TrustedUser is different from the TRUSTED_USERS class, which determines who can rewrite the From line of messages.14
 

Permissions
 

File and directory permissions are important to sendmail security. Use the settings listed in Table 20.13 to be safe.
 

Table 20.13 Owner and permissions for sendmail-related directories
 

[image: Image]
 

sendmail refuses to read files that have lax permissions (for example, files that are group- or world-writable or that live in group- or world-writable directories). In particular, sendmail is very picky about the complete path to any alias file or forward file. This pickiness sometimes clashes with the way sites like to manage mailing list aliases. To see where you stand with respect to sendmail’s ideas about permissions, run sendmail -v -bi. The -bi flag initializes the alias database and warns you of inappropriate permissions.
 

[image: Image] Solaris has a handy program, check-permissions, that understands sendmail’s security standards and reports unsafe paths or files. It follows includes in aliases and .forward files. It can check either the invoking user or all users, depending on the command-line flags.
 

sendmail no longer reads .forward files that have link counts greater than 1 if the directory paths that lead to them have lax permissions. This rule bit Evi when one of her .forward files, which she usually hard-linked to either .forward.to.boulder
or .forward.to.sandiego, silently failed to forward her mail from a small site at which she did not receive much mail. It was months before she realized that “I never got your mail” was her own fault and not a valid excuse.
 

You can turn off many of the restrictive file access policies mentioned above with the DontBlameSendmail option. But don’t do that.
 

Safer Mail to Files and Programs
 

We recommend that you use smrsh instead of /bin/sh as your program mailer and that you use mail.local instead of /bin/mail as your local mailer. Both programs are included in the sendmail distribution. To incorporate them into your configuration, add the lines
 

[image: Image]
 

to your .mc file. If you omit the explicit paths, the commands are assumed to live in /usr/libexec. You can use sendmail’s confEBINDIR option to change the default location of the binaries to whatever you want. Table 20.14 may help you find where our friendly vendors have stashed things.
 

Table 20.14 Location of sendmail’s restricted delivery agents
 

[image: Image]
 

smrsh is a restricted shell that executes only the programs contained in one directory (/usr/adm/sm.bin by default). smrsh ignores user-specified paths and tries to find any requested commands in its own known-safe directory. smrsh also blocks the use of certain shell metacharacters such as <, the input redirection symbol. Symbolic links are allowed in sm.bin, so you don’t need to make duplicate copies of the programs you allow. The vacation program is a good candidate for sm.bin. Don’t put procmail there; it’s insecure.
 

Here are some example shell commands and their possible smrsh interpretations:
 

[image: Image]
 

sendmail’s SafeFileEnvironment option controls where files can be written when email is redirected to a file by aliases or a .forward file. It causes sendmail to execute a chroot system call, making the root of the filesystem no longer / but rather /safe or whatever path you specified in the SafeFileEnvironment option. An alias that directed mail to the /etc/passwd file, for example, would really be written to /safe/etc/passwd.
 

The SafeFileEnvironment option also protects device files, directories, and other special files by allowing writes only to regular files. Besides increasing security, this option ameliorates the effects of user mistakes. Some sites set the option to /home to allow access to home directories while keeping system files off-limits.
 

Mailers can also be run in a chrooted directory.
 

Privacy Options
 

sendmail also has privacy options that control
 

• What external folks can determine about your site through SMTP

 

• What you require of the host on the other end of an SMTP connection

 

• Whether your users can see or run the mail queue

 

Table 20.15 lists the possible values for the privacy options as of this writing; see the file doc/op/op.ps in the distribution for current information.
 

Table 20.15 Values of the PrivacyOption variable
 

[image: Image]
 

We recommend conservatism; in your .mc file, use
 

[image: Image]
 

sendmail’s default value for the privacy options is authwarnings; the line above would reset that value. Notice the double sets of quotes; some versions of m4 require them to protect the commas in the list of privacy option values. Red Hat, Solaris, and AIX default to authwarnings; SUSE and Ubuntu to authwarnings, needmailhelo, novrfy, noexpn, and noverb; and HP-UX defaults to restrictqrun, goaway, and authwarnings, the most secure—go, HP!
 

Running a Chrooted Sendmail (for the truly paranoid)
 

If you are worried about the access that sendmail has to your filesystem, you can start it in a chrooted jail. (See page 913 in Chapter 22, Security, for more information about chroot.) Create a minimal filesystem in your jail, including things like /dev/null, /etc essentials (passwd, group, resolv.conf, sendmail.cf, any map files, mail/*), the shared libraries that sendmail needs, the sendmail binary, the mail queue directory, and any log files. You will probably have to fiddle with the list to get it just right. Use the chroot command to start a jailed sendmail. For example:
 

$ sudo chroot /jail /usr/sbin/sendmail -bd -q30m
 

Denial of Service Attacks
 

Denial of service attacks are difficult to prevent because there is no a priori way to determine that a message is an attack rather than a valid piece of email. Attackers can try various nasty things, including flooding the SMTP port with bogus connections, filling disk partitions with giant messages, clogging outgoing connections, and mail bombing. sendmail has some configuration parameters that can help slow down or limit the impact of a denial of service attack, but these parameters can also interfere with legitimate mail. Milters can help sysadmins thwart a prolonged denial of service attack.
 

The MaxDaemonChildren option limits the number of sendmail processes. It prevents the system from being overwhelmed with sendmail work, but it also allows an attacker to easily shut down SMTP service. The MaxMessageSize option can help prevent the mail queue directory from filling, but if you set it too low, legitimate mail will bounce. (You might mention your limit to users so that they aren’t surprised when their mail bounces. We recommend a fairly high limit anyway, since some legitimate mail is huge.) The ConnectionRateThrottle option, which limits the number of permitted connections per second, can slow things down a bit. And finally, setting MaxRcptsPerMessage, which controls the maximum number of recipients allowed on a single message, might help.
 

sendmail has always been able to refuse connections (option REFUSE_LA) or queue email (QUEUE_LA) according to the system load average. A variation, DELAY_LA, keeps the mail flowing, but at a reduced rate. See page 803 in the performance section for details.
 

In spite of all these protections for your mail system, someone mail bombing you will still interfere with legitimate mail. Mail bombing can be quite nasty.
 

SASL: the Simple Authentication and Security Layer
 

sendmail supports the SMTP authentication system defined in RFC4954. It’s based on SASL, the Simple Authentication and Security Layer (RFCs 4422 and 4752). SASL is a shared-secret system that is typically host-to-host; you must make explicit arrangements for each pair of servers that are to mutually authenticate. It is usually used between user agents and MSAs or between MSAs and MTAs within a site.
 

SASL is a generic authentication mechanism that can be integrated into a variety of protocols. The SASL framework (it’s a library) has two fundamental concepts: an authorization identifier (like a login name) and an authentication identifier (like a password). It can map these to permissions on files, account passwords, Kerberos tickets, etc. SASL contains both an authentication part and an encryption component. To use SASL with sendmail, get a copy of Cyrus SASL from ftp.andrew.dmu.edu/pub/cyrus-mail.
 

TLS: Transport Layer Security
 

TLS, another encryption/authentication system, is specified in RFC3207. It is implemented in sendmail as an extension to SMTP called STARTTLS. You can even use both SASL and TLS.
 

TLS is a bit harder to set up and requires a certificate authority. You can pay Veri-Sign big bucks to issue you certificates (signed public keys identifying an entity), set up your own certificate authority, or go to OpenCA or equivalent. Strong authentication is used in place of a hostname or IP address as the authorization token for relaying mail or for accepting a connection from a host in the first place. An entry such as
 

[image: Image]
 

in the access_db indicates that STARTTLS is in use and that email to the domain secure.example.com must be encrypted with at least 112-bit encryption keys. Email from a host in the laptop.example.com domain should be accepted only if the client has authenticated itself.
 

Greg Shapiro and Claus Assmann of Sendmail, Inc., have stashed some (slightly dated) extra documentation about security and sendmail on the web. It’s available from sendmail.org/~gshapiro and sendmail.org/~ca. The index link in ~ca is especially useful.
 

20.12 Sendmail Performance
 

sendmail has several configuration options that improve performance. Although we have scattered them throughout the chapter, we expand on the most important ones in this section. These are options and features you should consider if you run a high-volume mail system (in either direction). Actually, if you really need to send 1,000,000 mail messages an hour and you aren’t a spammer, your best bet might be to use the commercial side of sendmail, Sendmail, Inc.
 

Delivery Modes
 

sendmail has four basic delivery modes: background, interactive, queue, and defer. Each represents a tradeoff between latency and throughput. Background mode delivers the mail immediately but requires sendmail to fork a new process to do it. Interactive mode also delivers immediately, but delivery is done by the same process and makes the remote side wait for the results. Queue mode queues incoming mail for delivery by a queue runner at some later time. Defer mode is similar to queue mode, but it also defers all map, DNS, alias, and forwarding lookups. Interactive mode is rarely used. Background mode favors lower latency, and defer or queueing mode favors higher throughput. The delivery mode is set with the option confDELIVERY_MODE and defaults to background.
 

Queue Groups and Envelope Splitting
 

Queue groups let you create multiple queues for outgoing mail and control the attributes of each queue group individually. Queue groups are used with an envelope-splitting feature that distributes an envelope with many recipients (such as a message sent to a mailing list) across multiple queue groups. Several configuration primitives are used with queue groups. See the O’Reilly sendmail book or the cf/README file for examples and details.
 

Queue Runners
 

sendmail forks copies of itself to perform the actual transport of mail. You can control how many copies are running at any given time and even how many copies are attached to each queue group. By using this feature, you can balance the activities of sendmail and the operating system on your busy mail hub machines.
 

Three sendmail options control the number of queue runner daemons processing each queue:
 

• The MAX_DAEMON_CHILDREN option specifies the total number of copies of the sendmail daemon that are allowed to run at any one time, including those running queues and those accepting incoming mail.

 

• The MAX_QUEUE_CHILDREN option sets the maximum number of queue runners allowed at one time.

 

• The MAX_RUNNERS_PER_QUEUE option sets the default runner limit per queue if no explicit value is set with the Runners= (or R=) parameter in the queue group definition.

 

Load Average Controls
 

sendmail has always been able to refuse connections or queue messages instead of delivering them when the system load average goes too high. Unfortunately, the load average has only a one-minute granularity, so it’s not a very finely honed tool for smoothing out the resources consumed by sendmail. The DELAY_LA primitive lets you set a value of the load average at which sendmail should slow down; it will sleep for one second between SMTP commands for current connections and before accepting new connections. The default value is 0, which turns the mechanism off.
 

Undeliverable Messages in the Queue
 

Undeliverable messages in the mail queue can really kill performance on a busy mail server. sendmail has several features that help with the issue of undeliverable messages. The most effective is the FALLBACK_MX option, which hands a message off to another machine if it cannot be delivered on the first attempt. Your primary machine cranks out the messages to good addresses and shunts the problem children to a secondary fallback machine. Another aid is the host status directory, which stores the status of remote hosts across queue runs.
 

The FALLBACK_MX option is a big performance win for a site with large mailing lists that invariably contain addresses that are temporarily or permanently undeliverable. To use it, you specify the host to handle the deferred mail. For example,
 

define(`confFALLBACK_MX`, `mailbackup.atrust.com`)
 

forwards messages that fail their first delivery attempt to mailbackup.atrust.com for further processing. There can be multiple fallback machines if the designated hosts have multiple MX records in DNS.
 

The TO_ICONNECT option sets a timeout on the initial attempt to connect and send a message. If you set it short, more work is shunted to the fallback MTA. However, it does let the main server whip through the first pass at a large mailing list in record time.
 

On the fallback machines, you can use the HOST_STATUS_DIRECTORY option to help with multiple failures. This option directs sendmail to maintain a status file for each host to which mail is sent and to use that status information to prioritize the hosts each time the queue is run. This status information effectively implements negative caching and allows information to be shared across queue runs. It’s a performance win on servers that handle mailing lists with a lot of bad addresses, but it can be expensive in terms of file I/O.
 

Here is an example that uses the directory /var/spool/mqueue/.hoststat. (You must create the directory first.)
 

define(`confHOST_STATUS_DIRECTORY`, `/var/spool/mqueue/.hoststat`)
 

If the .hoststat directory is specified with a relative path, it is stored beneath the queue directory. sendmail creates its own internal hierarchy of subdirectories based on the destination hostname.
 

For example, if mail to evi@anchor.cs.colorado.edu were to fail, status information would go in the /var/spool/mqueue/.hoststat/edu./colorado./cs. directory in a file called anchor. That’s because the host anchor has an MX record with itself as highest priority. If the DNS MX records had directed anchor’s email to host foo, then the filename would have been foo, not anchor.
 

A third performance enhancement for busy machines involves setting a minimum queue age so that any message that cannot be delivered on the initial try stays in the queue for a minimum time between delivery attempts. This technique is usually coupled with command-line flags that run the queue more often (e.g., -q5m). If a queue runner hangs on a bad message, another one starts in 5 minutes, improving performance for the messages that can be delivered. The entire queue is run in batches determined by which messages have been there for the required minimum time. Running sendmail with the flags -bd -q5m and including
 

define(`confMIN-QUEUE_AGE`, `27m`)
 

in the config file could result in a more responsive system.
 

Kernel Tuning
 

If you plan to use a UNIX or Linux box as a high-volume mail server, you should modify several of the kernel’s networking configuration parameters. Table 20.16 shows the parameters to change under Linux on a high-volume mail server along with their suggested and default values. Similar parameters exist for UNIX, perhaps under slightly different names.
 

Table 20.16 Kernel parameters to change on high-volume mail servers
 

[image: Image]
 

[image: Image] To reset the parameters of the networking stack on a Linux box, use the shell’s echo command redirected to the proper variable in the /proc filesystem. Chapter 14, TCP/IP Networking, contains a general description of this procedure starting on page 490. These changes can be made permanent with the sysctl command or by putting the appropriate echo commands in a shell script that runs at boot time.
 

For example, to change TCP’s FIN timeout value, you could use the following command:
 

linux$ sudo sh -c "echo 30 > /proc/sys/net/ipv4/tcp_fin_timeout"15
 

[image: Image] Solaris and HP-UX use the ndd command to tune network parameters. The HPUX implementation is well documented, and ndd -h (help) gives a clear description of each variable, its range of values, and the default value. Solaris’s ndd understands a question mark to mean that you want documentation, but you must backslash it (ndd \?) to protect it from the shell. Unfortunately, Solaris’s ndd just names the tunable variables instead of describing them.
 

For example, to change the FIN timeout value with ndd on HP-UX, run
 

hp-ux$ sudo ndd -set tcp_fin_wait_2_timeout 30000
 

The time unit for ndd is milliseconds, thus the 30,000 instead of 30. On Solaris, the variable is called tcp_fin_wait_2_flush_interval, with no units given in the man page…but Google knows! In fact, the units are milliseconds, with the default value being 675,000. ndd is described in more detail in Chapter 14, TCP/IP Networking on page 498 for Solaris and page 504 for HP-UX.
 

[image: Image] AIX uses the no command to tune network parameters. sudo no -L lists tunable variables with their min, max, and current values along with the units of these values. If you want a change to be permanent, use no with the -p flag—your change will then survive a reboot.
 

For example, to set the TCP FIN_WAIT parameter, use
 

aix$ sudo no -p -o tcp_finwait2=60
 

The units are half-seconds, so the value 60 achieves the 30 seconds recommended in the tuning table above. no is also discussed on page 507.
 

20.13 Sendmail Testing and Debugging
 

m4-based configurations are to some extent pretested. You probably won’t need to do low-level debugging if you use them. One thing the debugging flags cannot test is your design. While researching this chapter, we found errors in several of the configuration files and designs that we examined. The errors ranged from invoking a feature without the prerequisite macro (e.g., using masquerade_envelope without having turned on masquerading with MASQUERADE_AS) to total conflict between the design of the sendmail configuration and the firewall that controlled whether and under what conditions mail was allowed in.
 

You cannot design a mail system in a vacuum. You must be synchronized with (or at least not be in conflict with) your DNS MX records and your firewall policy.
 

Queue Monitoring
 

You can use the mailq command (which is equivalent to sendmail -bp) to view the status of queued messages. Messages are queued while they are being delivered or when delivery has been attempted but has failed.
 

mailq prints a human-readable summary of the files in /var/spool/mqueue at any given moment. The output is useful for determining why a message may have been delayed. If it appears that a mail backlog is developing, you can monitor the status of sendmail’s attempts to clear the jam.
 

There are two default queues: one for messages received on port 25 and another for messages received on port 587 (the client submission queue). You can invoke mailq -Ac to see the client queue.
 

Here is some typical output from mailq. This case shows three messages waiting to be delivered:
 

[image: Image]
 

If you think you understand the situation better than sendmail or you just want sendmail to try to redeliver the queued messages immediately, you can force a queue run with sendmail -q. If you use sendmail -q -v, sendmail shows the play-by-play results of each delivery attempt, information that is often useful for debugging. Left to its own devices, sendmail retries delivery every queue run interval (typically every 30 minutes).
 

Logging
 

sendmail uses syslog to log error and status messages with the syslog facility “mail” and levels “debug” through “crit”; messages are tagged with the string “sendmail.” You can override the logging string “sendmail” with the -L command-line option; this capability is handy if you are debugging one copy of sendmail while other copies are doing regular email chores.
 

See Chapter 11 for more information about syslog.

 

The confLOG_LEVEL option, specified on the command line or in the config file, determines the severity level that sendmail uses as a threshold for logging. High values of the log level imply low severity levels and cause more info to be logged.
 

Table 20.17 gives an approximate mapping between sendmail log levels and syslog severity levels.
 

Table 20.17 sendmail log levels vs. syslog levels
 

[image: Image]
 

Recall that a message logged to syslog at a particular level is reported to that level and all those above it. The /etc/syslog.conf file determines the eventual destination of each message. Table 20.18 shows their default locations:16
 

Table 20.18 Vendor’s sendmail logging locations
 

[image: Image]
 

Several programs can summarize sendmail log files, with the end products ranging from simple counts and text tables (mreport) to fancy web pages (Yasma). You might need to—or want to—limit access to this data or at least inform your users that you are collecting it. Yasma (Yet Another Sendmail Log Analyzer), for example, lets you hide the username part of email addresses in its reports.
 

20.14 Exim
 

The Exim mail transport and submission agent was written in 1995 by Philip Hazel of the University of Cambridge and is distributed under the GNU General Public License. The current release, Exim version 4.71, came out in late 2009.
 

Tons of Exim documentation are available on-line, as are a couple of books by the author of the software.
 

Googling for Exim questions often seems to lead to old, undated, and sometimes inappropriate materials, so check the official documentation first. A 400+ page specification and configuration document (doc/spec.txt) is included in the distribution. This document is also available from exim.org as a PDF file. It’s the definitive reference work for Exim and is updated religiously with each new release.
 

There are two cultures with respect to Exim configuration: Debian’s and the rest of the world’s. Debian adds m4 preprocessing and runs its own set of mailing lists to support users. We do not cover the Debian-specific configuration extensions.
 

Exim releases 4.70 and later have dropped support for DomainKeys (the precursor to DKIM) and now include internal DKIM support by default. Both systems can and do coexist in the real world, but DKIM is on the IETF standards track and will eventually replace DomainKeys.
 

Exim is like sendmail in that it is implemented as a single process that performs all the mail chores. However, it does not carry all of sendmail’s historical baggage (support for ancient address formats, needing to get mail to hosts not on the Internet, etc.). When compiled with content scanning, it interfaces with common spam and virus scanners such as SpamAssassin and ClamAV. Policy control is implemented through ACLs (access control lists) that can accept or reject messages or pass them to external scanning software. Per-user filters are available through a special type of entry in users’ .forward files. Many aspects of Exim’s behavior are specified at compile time, the chief examples being Exim’s database and message store formats.
 

The workhorses in the Exim system are called routers and transports. Both are included in the general category of “drivers.” Routers decide how messages should be delivered, and transports decide on the mechanics of making deliveries. Routers are an ordered list of things to try, whereas transports are an unordered set of delivery methods.
 

Exim Installation
 

You can download the latest distribution from exim.org, or if yours is a Linux site, from your favorite package repository. Refer to the top-level README file and the file src/EDITME, where you must set installation locations, user IDs, and other parameters. EDITME is over 1,000 lines long, but it’s mostly comments that lead you through the compilation process; required changes are well labeled. After your edits, save the file as ../Local/Makefile or ../Local/Makefile-osname (if you are building configurations for several different operating systems from the same distribution directory) before you run make.
 

Here are a few of the important variables (our opinion) and suggested values (Exim developers’ opinion) from the EDITME file. The first five are required, and the rest are recommended.
 

[image: Image]
 

Routers and transports must be compiled into the code if you intend to use them. In these days of large memories, you might as well leave them all in. Some default paths are certainly nonstandard: for example, the binary in /usr/exim/bin and the PID file in /var/spool/exim. You might want to tweak these values to match your other installed software.
 

About ten database lookup methods are available, including MySQL, Oracle, CDB,17 and LDAP. If you include LDAP, you must specify the LDAP_LIB_TYPE variable to tell Exim what LDAP library you are using (the options are Netscape, Solaris, and a couple of versions of OpenLDAP). You may also need to specify the path to LDAP include files and libraries.
 

The EDITME file does a good job of telling you about any dependencies your database choices may require. Any entries above that have “(from README)” in their comment line were not listed in src/EDITME but rather in the README.
 

EDITME has many additional security options that you might want to include, such as support for SMTP AUTH, TLS, SASL, PAM, and options for controlling file ownerships and permissions. You can disable certain Exim options at compile time to limit the damage a hacker might cause if the software is compromised.
 

It’s advisable to read the entire EDITME file before you complete the installation. It will give you a good feel for what you can control at run time through the configuration file. The top-level README file has lots of detail about OS-specific quirks that you may need to add to the EDITME file as well.
 

Once you have modified EDITME and installed it as Local/Makefile, run make at the top of the distribution tree followed by sudo make install. The next step is to test your shiny new exim binary and see if it delivers mail as expected. The doc/spec.txt file contains good testing documentation.
 

Once you are satisfied that Exim is working properly, link /usr/sbin/sendmail to exim so that Exim can emulate the traditional command-line interface to the mail system used by many user agents. You must also arrange for exim to be started at boot time.
 

Exim Startup
 

On a mail hub machine, exim typically starts at boot time in daemon mode and runs continuously, listening on port 25 and accepting messages through SMTP. See Chapter 3, Booting and Shutting Down, page 97, for startup details for your operating system.
 

Like sendmail, Exim can wear several hats, and if started with specific flags or alternative command names, it performs different functions. Exim’s mode flags are similar to those understood by sendmail because exim works hard to maintain compatibility when called by user agents and other tools. Table 20.19 lists a few common flags.
 

Table 20.19 Common exim command-line flags
 

[image: Image]
 

Any errors in the config file that can be detected at parse time are caught by exim-bV, but some errors can only be caught at run time. Misplaced braces are a common mistake.
 

The exim man page gives lots of detail on all the nooks and crannies of exim’s command-line flags and options, including extensive debugging information.
 

Exim Utilities
 

The Exim distribution includes a bunch of utilities to help you monitor, debug, and sanity-check your installation. Below is the current list along with a brief description of each. See the documentation from the distribution for more detail.
 

• exiwhat – lists what Exim processes are doing

 

• exiqgrep – searches the queue

 

• exiqsumm – summarizes the queue

 

• exigrep – searches the main log

 

• exipick – selects messages based on various criteria

 

• exicyclog – rotates log files

 

• eximstats – extracts statistics from the log

 

• exim_checkaccess – checks address acceptance from a given IP address

 

• exim_dbmbuild – builds a DBM file

 

• exinext – extracts retry information

 

• exim_dumpdb – dumps a hints database

 

• exim_tidydb – cleans up a hints database

 

• exim_fixdb – patches a hints database

 

• exim_lock – locks a mailbox file

 

• exilog – visualizes log files across multiple servers

 

Another utility that is part of the Exim suite is eximon, an X Windows application that displays Exim’s state, the state of Exim’s queue, and the tail of the log file. Like the main distribution, you build it by editing a well-commented EDITME file in the exim_monitor directory and running make. However, in the case of eximon the defaults are usually fine, so you should not have to do much configuration to build the application. Some configuration and queue management can be done from the eximon GUI as well.
 

Exim Configuration Language
 

The Exim configuration language (or more accurately, languages: one for filters, one for regular expressions, etc.) feels a bit like the ancient (1970s) language Forth.18 When first reading an Exim configuration, you might find it hard to distinguish between keywords and option names that are fixed by Exim and variable names that sysadmins define with configuration statements. We have tried to preface all variable names with my_ to help with this issue.
 

Although Exim is advertised as being easy to configure and is extensively documented, there is quite a learning curve for new users. The section “How Exim receives and delivers mail” in the specification document is essential reading for newcomers. It gives a good feel for the underlying concepts of the system.
 

When assigned a value, the Exim language’s predefined options sometimes cause an action to occur. There are also about 120 predefined variables whose values may change as a result of one of the actions. These variables can be included in conditional statements.
 

The language for evaluating if statements and the like may remind you of the reverse Polish notation used during the heyday of Hewlett-Packard calculators. Let’s look at a simple example. In the line
 

[image: Image]
 

the acl_smtp_rcpt option, when set, causes an ACL to be implemented for each recipient (SMTP RCPT command) in the SMTP exchange. The value assigned to this option is either acl_check_rcpt or acl_check_rcpt_submit, depending on whether or not the Exim variable $interface_port has value 25.
 

We do not detail the Exim configuration language further, but refer you to its extensive documentation. In particular, pay close attention to the string expansion section of the Exim specification.
 

Exim Configuration File
 

Exim’s run-time behavior is controlled by a single configuration file, usually called /usr/exim/configure. Its name is one of the required variables specified in the EDITME file and compiled into the binary.
 

The supplied default configuration file, src/configure.default, is well commented and a good starting place for sites just getting set up with Exim. In fact, we recommend that you don’t stray far from it until you really understand the Exim paradigm and need to elaborate on the default configuration for a specific purpose. Exim works hard to support common situations and has sensible defaults.
 

It is also helpful to stick with the variable names used in the default config file because they are assumed by the folks on the exim-users mailing list who will be answering your configuration questions.
 

exim prints a message to stderr and exits if you have a syntax error in your configuration file. It doesn’t catch all syntax errors immediately, however, because it does not expand variables until it needs to.
 

The order of entries in the configuration file is not quite arbitrary: the global configuration options section must be first and must exist. All other sections are optional and can appear in any order.
 

Possible sections include
 

• Global configuration options (mandatory)

 

• acl – access control lists that filter addresses and messages

 

• authenticators – for SMTP AUTH or TLS authentication

 

• routers – ordered sequence to determine where a message should go

 

• transports – definitions of the drivers that do the actual delivery

 

• retry – policy settings for dealing with problem messages

 

• rewrite – global address rewriting rules

 

• local_scan – a hook for fancy flexibility

 

Each section except the first starts with a begin
section-name statement—for example, begin acl. There is no end
section-name statement; the end is signaled by the next section’s begin statement. Indentation to show subordination makes the config file easier to read for humans, but it is not meaningful to Exim.
 

Some configuration statements name objects that will later be used to control the flow of messages. Those names must begin with a letter and contain only letters, numbers, and the underscore character. If the first non-whitespace character on a line is #, the rest of the line is treated as a comment. Note that this means you cannot put a comment on the same line as a statement; it will not be recognized as a comment because the first character is not #.
 

Exim lets you include files anywhere in the configuration file. Two forms of include are used:
 

[image: Image]
 

The first form generates an error if the file does not exist. Although include files keep your config file tidy, they are read several times during the life of a message, so it might be best to just include their contents directly into your configuration.
 

Global Options
 

Lots of stuff is specified in the global options section, including operating parameters (limits, sizes, timeouts, properties of the mail server on this host), list definitions (local hosts, local hosts to relay for, remote domains to relay for), and macros (hostname, contact, location, error messages, SMTP banner).
 

Options
 

Options are set with the basic syntax
 

option_name = value[s]
 

where the values can be Booleans, strings, integers, decimal numbers, or time intervals. Multivalued options are allowed, in which case the various values are separated by colons.
 

Using the colon as a value separator presents a problem when you express IPv6 addresses, which use colons as part of the address. You can escape the colons by doubling them, but the easiest and most readable fix is to redefine the separator character with the < character as you assign values to the option. For example, both of the following two lines set the value of the localhost_interfaces option, which contains the IPv4 and IPv6 localhost addresses:
 

[image: Image]
 

The second form, in which the semicolon has been defined as the separator, is more readable and less fragile.
 

There are a zillion options—more than 500 in the options index of the documentation. And we said sendmail was complicated! Most options have sensible defaults, and all have descriptive names. It’s handy to have a copy of the doc/spec.txt file from the distribution in your favorite text editor when you are researching a new option. We don’t cover all the options, just the ones that occur in our example configuration bits.
 

Lists
 

Exim has four kinds of lists, introduced by the keywords hostlist, domainlist, addresslist, and localpartslist. Here are two examples using hostlist:
 

[image: Image]
 

Members can be listed in-line or taken from a file. If in-line, they are separated by colons. There can be up to 16 named lists of each type. In the in-line example above, we included all machines on a local /24 network and a specific hostname.
 

The symbol @ can be a member of a list; it means the name of the local host and helps make it possible to write a single generic configuration file that works for most nonhub machines at your site. The notation @[] is also useful and means all IP addresses on which Exim is listening; that is, all the IP addresses of localhost.
 

To reference a list, just put + in front of its name to match members of the list or !+ to match nonmembers; for example, +my_relay_list. There must be no space between the + and the name of the list.
 

Lists can include references to other lists and the ! character to indicate negation. Lists that include references to variables (e.g., $variable_name) make processing slower because Exim cannot cache the results of evaluating the list, which it does by default.
 

Macros
 

You can use macros to define parameters, error messages, etc. The parsing is primitive, so you cannot define a macro whose name is a subset of another macro without unpredictable results.
 

The syntax is
 

MACRO_NAME = rest of the line
 

For example, the first of the following lines define a macro named ALIAS_QUERY that looks up a user’s alias entry in a MySQL database. The second line shows the use of the macro to do an actual lookup, with the result being stored in the variable called data.
 

[image: Image]
 

Macro names are not required to be all caps, but they must begin with a capital letter. However, the all-caps convention aids clarity. The configuration file can include ifdefs that evaluate a macro and use it to determine whether or not to include a portion of the config file. Every imaginable form of ifdef is supported; they all begin with a dot.
 

ACLs (access control lists)
 

Access control lists filter the addresses of incoming messages and either accept or deny them. Exim divides incoming addresses into a local part that represents the user and a domain part that is the recipient’s domain.
 

ACLs can be applied at any of the various stages of an SMTP conversation: HELO, MAIL, RCPT, DATA, etc. Typically, an ACL enforces strict adherence to the SMTP protocol at the HELO stage, checks the sender and the sender’s domain at the MAIL stage, checks the recipients at the RCPT stage, and scans the message content at the DATA stage.
 

A slew of options named acl_smtp_command specify which ACL should be applied after each command in the SMTP protocol. For example, the acl_smtp_rcpt option specifies the ACL to run on each address that is a recipient of the message. You can define ACLs in the acl section of the config file, in a file that is referenced by the acl_smtp_command option, or in-line when the option is defined.
 

A sample ACL called my_acl_check_rcpt is defined below. We would invoke it by assigning its name to the acl_smtp_rcpt option in the global options section of the config file. If this ACL denies an address at the RCPT command, the sending server should give up and not try the address again. Another common ACL to use is acl_smtp_data, which would run on the message after it has been received, for example, to scan content.
 

[image: Image]
 

This ACL, adapted from examples in the Exim documentation, ends with a default accept; you might want to rethink your ACLs to deny by default, as firewalls typically do. The default name for this access control list is acl_check_rcpt; you probably should not change its name (as we did, to emphasize that the name is something you specify, not a predefined Exim configuration option).
 

The first accept line, containing just a colon, is an empty list. The empty list of remote hosts matches cases in which a local MUA submitted a message on the MTA’s standard input. If the address being tested meets this condition, the ACL accepts the address and disables DKIM signature validation, which is turned on by default. If the address does not match this address clause, control drops through to the next clause in the ACL definition.
 

The first deny stanza is intended for messages coming into your local domains. It rejects any address whose local part (the username) starts with a dot or contains the special characters @, %, !, /, or |. The second deny applies to messages being sent out by your users. It, too, disallows certain special characters and sequences in the local parts of addresses, in case your users’ machines have been infected with a virus or other malware. In the past, such addresses have been used by spammers to confuse ACLs or have been guilty of creating security problems.
 

In general, if you are intending to use $local_parts (supposedly, the recipient’s username) in a directory path (to store mail or look for a vacation file, for example) be very careful that your ACLs have filtered out any special characters that could cause unwanted behavior. (This example looks for the sequence /../, which could be problematic if the username is inserted into a path.)
 

The next accept stanza guarantees that mail to postmaster will always get through if it’s sent to a local domain; this can help with debugging.
 

The require line checks to see if a bounce message can be returned, but it checks only the sender’s domain.19 If the sender’s username is forged, a bounce message could still fail (that is, the bounce itself could bounce). You can add more extensive checking here by calling another program, but some sites consider such call-outs abusive and might add your mail server to a blacklist or bad-reputation list.
 

The next accept stanza checks for hosts that are allowed to relay through this host, namely, local hosts that are submitting mail into the system. The control line specifies that exim should act as a mail submission agent and fix up any header deficiencies as the message arrives from the user agent. The sender’s address is not checked because many user agents get confused by error returns. (This is appropriate only for local machines relaying to a smart host, not for external domains that you might be willing to relay for.) DKIM verification is disabled because these messages are outbound from your users or relay friends.
 

The last accept stanza deals with local hosts that authenticate through SMTP AUTH. Once again, these messages are treated as submissions from user agents.
 

We next check the destination domain to which the message is headed and require that it be either in our list of local_domains or in our list of domains to which we allow relaying, relay_to_domains. (These domain lists are defined elsewhere.) Any destinations not in one of those lists are refused with the specified error message. DKIM verification is again disabled.
 

Finally, given that all previous requirements have been met but that no more-specific accept or deny rule has been triggered, we verify the recipient and accept the message. Most Internet messages to local users will fall into this category.
 

We haven’t included any blacklist scanning in the example above. To access a blacklist, use one of the examples in the default config file or something like this:
 

[image: Image]
 

Translated to English, this code specifies that if a message matches all of the following criteria, it is rejected with a custom error message and logged (also with a custom message).
 

• It’s from an IPv4 address (some lists don’t handle IPv6 correctly).

 

• It’s not associated with an authenticated SMTP session.

 

• It’s from a sender not in the local whitelist.

 

• It’s from a sender not in the global (Internet) whitelist.

 

• It’s addressed to a valid local recipient.

 

• The sending host is on the zen.spamhaus.org blacklist.

 

The variables dnslist_text and dnslist_domain are set by the assignment to dnslists, which triggers the blacklist lookup. This deny clause could be placed right after your checks for unusual characters in addresses.
 

Here’s another example ACL that rejects mail if the remote side does not say HELO properly:
 

[image: Image]
 

Exim solves the early talker problem (a more specific case of “not saying HELO properly”) with the smtp_enforce_sync option, which is turned on by default.
 

Content Scanning at ACL Time
 

Exim supports powerful content scanning at several points in a message’s traversal of the mail system: at ACL time (after the SMTP DATA command), at delivery time through the transport_filter option, or with a local_scan function after all ACL checks have been completed. You must compile support for content scanning into Exim by setting the WITH_CONTENT_SCAN variable in the EDITME file; it is commented out by default. This option endows ACLs with extra power and flexibility and adds two new configuration options: spamd_address and av_scanner.
 

Scanning at ACL time allows a message to be rejected in-line with the MTA’s conversation with the sending host. The message is never accepted for delivery, so it need not be bounced. This way of rejecting the message is nice because it avoids backscatter spam caused by bounce messages to forged sender addresses.
 

Scanning For Viruses
 

To scan for viruses, first assign your scanner type and its parameters to the av_scanner variable in the global options section of the config file. Table 20.20 lists the scanners understood by the current version of Exim and their corresponding av_scanner specifications.
 

Once you’ve set av_scanner, you can use the malware condition in the ACL that checks things after the DATA command in the SMTP conversation. Here is an example from the Exim documentation:
 

[image: Image]
 

Table 20.20 Antivirus scanners known to Exim
 

[image: Image]
 

The malware clause calls the virus scanner if the value passed to it is true (which is always the case in this example). If you turn on demime and a message contains a MIME-encoded attachment, exim will de-MIME it for the antivirus scanner. Most scanners can do this decoding for themselves, however. To avoid having both exim and the scanner try to perform this task, include the demime clause only if the virus scanner needs it. Duplication won’t cause errors, but it wastes resources and slows mail processing.
 

Scanning for Spam
 

Exim uses SpamAssassin for spam scanning. SpamAssassin usually accepts messages on TCP port 783, but it can also use a local domain socket. Set the connection parameters in exim’s config file by assigning a value to the spamd_address variable. It accepts either an IP address and port separated by a space, or the absolute path to a local domain socket. You can specify multiple address/port pairs— up to 32 of them—to use multiple copies of SpamAssassin.
 

From the ACL associated with the SMTP DATA command, call SpamAssassin by assigning a username to the spam variable. If you specify nobody as the user, SpamAssassin uses a generic scanning profile; otherwise, it uses the profile associated with the user you specify (if such a profile exists).20 These lines
 

[image: Image]
 

would use the system-wide default spam profile. Just putting a spam statement in the config file doesn’t work; you must assign a value.
 

Since SpamAssassin scanning is slow and most spam messages are short, you might do a size check and only scan small messages. For example:
 

[image: Image]
 

There are much fancier things you can do with SpamAssassin scanning; refer to the Exim specification for all the details.
 

Authenticators
 

Authenticators are drivers that interact with the SMTP AUTH command’s challenge/response sequence and identify an authentication mechanism acceptable to both client and server. Exim supports four mechanisms:
 

• AUTH_CRAM_MD5 (RFC2195)

 

• AUTH_CYRUS_SASL for use with the Cyrus IMAP software

 

• AUTH_PLAINTEXT, which includes both PLAIN and LOGIN

 

• AUTH_SPA, which supports Microsoft’s Secure Password Authentication

 

If exim is receiving email, it is acting as an SMTP AUTH server. If it is sending mail, it is a client. Options that appear in the definitions of authenticator instances are tagged with a prefix of either server_ or client_ to allow for different configurations depending on the role Exim is playing.
 

Authenticators are used in access control lists, as in the following clause in the ACL example on page 817:
 

accept authenticated = *
 

Below is an example that shows both the client-side and server-side LOGIN mechanisms. This simple example uses a fixed username and password, which is OK for small sites but probably inadvisable for larger installations.
 

[image: Image]
 

Authentication data can come from many sources: LDAP, PAM, /etc/passwd, etc. The server_advertise_condition clause above prevents mail clients from sending passwords in the clear by requiring TLS security (through STARTTLS or SSL) on connection. If you want the same behavior when exim acts as the client system, use the client_condition option in the client clause, too, again with tis_cipher.
 

Refer to the documentation for details of all the possible Exim authentication options and for examples.
 

Routers
 

Routers work on recipient email addresses, either by rewriting them or by assigning them to a transport and sending them on their way. A particular router can have multiple instances, each with different options.
 

You specify a sequence of routers. A message starts with the first router and progresses through the list until the message is either accepted or rejected. The accepting router typically hands the message to a transport driver. Routers handle both incoming and outgoing messages. They feel a bit like subroutines in a programming language.
 

A router can return any of the following dispositions for a message:
 

• accept – the router accepts the address and hands it to a transport driver

 

• pass – this router can’t handle the address; go on to the next router

 

• decline – router chooses not to handle the address; next router, please!

 

• fail – the address is invalid; router queues it for a bounce message

 

• defer – leaves the message in the queue for later

 

• error – there is an error in the router specification; message is deferred

 

If a message receives a pass or decline from all the routers in the sequence, it is bounced as an unroutable address.
 

If a message meets the preconditions for a router and the router ends with a no_more statement, then that message will not be presented to any additional routers, regardless of its disposition by the current router. For example, if your remote SMTP router has the precondition domains = !+local_domains and has no_more set, then only messages to local users (that is, those that would fail the domains precondition) will continue to the next router in the sequence.
 

Routers have many possible options; some common examples are preconditions, acceptance or failure conditions, error messages to return, and transport drivers to use.
 

The next few sections detail the routers called accept, dnslookup, manualroute, and redirect. The example configuration snippets assume that exim is running on a local machine in the example.com domain. They’re all pretty straightforward; refer to the documentation if you want to use some of the fancier routers.
 

The Accept Router
 

The accept router labels an address as OK and passes the associated message to a transport driver. Below are examples of accept router instances called localusers for delivering local mail and save_to_file for appending to an archive.
 

[image: Image]
 

The localusers router instance checks that the domain part of the destination address is example.com and that the local part of the address is the login name of a local user. If both conditions are met, the router hands the message to the transport driver instance called my_local_delivery, which is defined in the transports section. The save_to_file instance is designed for dial-up users; it appends the message to a file specified in the batchsmtp_appendfile transport definition.
 

The Dnslookup Router
 

The dnslookup router is typically used for outgoing messages. It looks up the MX record of the recipient’s domain and hands the message to an SMTP transport driver for delivery. Here is an instance called remoteusers:
 

[image: Image]
 

The dnslookup code looks up the MX records for the addressee. If there are none, it tries the A record. A common extension to this router instance is to prohibit delivery to certain IP addresses; a prime example is the RFC1918 private addresses that cannot be routed on the Internet. See the ignore_target_hosts option for more information.
 

See page 462 for more information about RFC1918 private address spaces.

 

The Manualroute Router
 

The flexible manualroute driver can pretty much route email in whatever way you want. The routing information can be a table of rules matching by recipient domain (route_list) or a single rule that applies to all domains (route_data).
 

Below are two examples of manualroute instances. The first example implements the “smart host” concept, in which all outgoing nonlocal mail is sent to a central (“smart”) host for processing. This instance is called smarthost and applies to all recipients’ domains that are not (the ! character) in the local_domains list.
 

[image: Image]
 

The router instance below, firewall, uses SMTP to send incoming messages to hosts inside the firewall (perhaps after scanning them for spam and viruses). It looks up the routing data for each recipient domain in a CDB database that contains the names of local hosts. (You must build Exim with the LOOKUP_CDB option to be able to use CDB.)
 

[image: Image]
 

The Redirect Router
 

The redirect driver does address rewriting, such as that called for in the systemwide aliases file or in a user’ŝ/.forward file. It usually does not assign the rewritten address to a transport; that task is left to other routers in the chain.
 

The first instance shown below, system_aliases, looks up aliases with a linear search (lsearch) of the /etc/aliases file. That’s fine for a small aliases file, but if yours is huge, replace that linear search with a database lookup. The second instance, forwardfile, first verifies that mail is addressed to a local user, then checks that user’s .forward file.
 

[image: Image]
 

The check_local_user option ensures that the recipient is a valid local user. The no_verify says not to verify that the address to which the forward file redirects the message is valid; just ship it.
 

Per-user Filtering Via .Forward Files
 

Exim allows not only forwarding through .forward files, but also filtering based on the contents of a user’s .forward file. It supports its own filtering as well as the Sieve filtering that is being standardized by the IETF. If the first line of a user’s .forward file is
 

#Exim filter
 

or
 

#Sieve filter
 

then the subsequent filtering commands (there are about 15 of them) can be used to determine where the message should be delivered. Filtering does not actually deliver messages—it just meddles with the destination. For example:
 

[image: Image]
 

Lots of options are available that control what users can and cannot do in their .forward files. The option names begin with forbid_ or allow_. They’re important to prevent users from running shells, loading libraries into binaries, or using the embedded Perl interpreter when they shouldn’t. Check for new forbid_* options when you upgrade to be sure your users can’t get too fancy in their .forward files.
 

Transports
 

Routers decide where messages should go, and transports actually take them there. Local transports typically append to a file, pipe to a local program, or speak the LMTP protocol to IMAP servers. Remote transports speak SMTP to their counterparts across the Internet.
 

There are five Exim transports: appendfile, lmtp, smtp, autoreply, and pipe; we detail appendfile and smtp. The autoreply transport is typically used to send vacation messages, and the pipe transport hands messages as input to a command through a UNIX pipe. As with routers, you must define instances of transports, and it’s fine to have multiple instances of the same type of transport. Order is significant for routers, but not for transports.
 

The Appendfile Transport
 

The appendfile driver stores messages in mbox, mbx, Maildir, or mailstore format in a specified file or directory. You must have included the appropriate mailbox formats when you compiled Exim; they are commented out of the EDITME file by default. The following example defines the my_local_delivery transport (an instance of the appendfile transport) referred to in the localusers router instance definition on page 821.
 

[image: Image]
 

The various *_add lines add headers to the message. The group and mode clauses ensure that the transport agent can write to the file.
 

The Smtp Transport
 

The smtp transport is the workhorse of any mail system. Here, we define two instances, one for the standard SMTP port (25) and one for the mail submission port (587).
 

[image: Image]
 

The second instance, my_remote_delivery_port587, specifies the port and also a header to be added to the message that includes an indication of the outgoing port. MACRO_HEADER would be defined elsewhere in the configuration file.
 

Retry Configuration
 

The retry section of the configuration file must exist or Exim will never attempt redelivery of messages that could not be delivered on the first attempt. You can specify three time intervals, each less frequent than the previous one. After the last interval has expired, messages bounce back to the sender as undeliverable. retry statements understand the suffixes m, h, d, and w to indicate minutes, hours, days, and weeks. You can specify different intervals for different hosts or domains.
 

Here’s what a retry section looks like:
 

[image: Image]
 

This example means, “For any domain, an address that fails temporarily should be retried every 15 minutes for 2 hours, then every hour for the next 24 hours, then every 6 hours for 4 days, and finally, bounced as undeliverable.”
 

Rewriting Configuration
 

The rewriting section of the configuration file starts with begin rewrite. It’s used to fix up addresses, not to reroute messages. For example, you could use it on your outgoing addresses
 

• To make mail appear to be from your domain, not from individual hosts

 

• To map usernames to a standard format such as First.Last

 

Rewriting should not be used on addresses in incoming mail.
 

Local Scan Function
 

If you want to further customize exim, for example, to filter for the latest and greatest virus, you can write a C function to do your scanning and install it in the local_scan section of the config file. Refer to the Exim documentation for details and examples that show how to do this.
 

Amavisd and Exim Connection
 

To configure exim to send all mail destined for your domain to amavisd for virus or spam scanning, make the first router in your config file something like this:
 

[image: Image]
 

The condition line says not to forward messages originating from port 10,025 to amavisd. This is the port on which messages return from amavisd after scanning, so such messages cannot go back to amavisd without creating a loop. The amavis transport is configured as follows:
 

[image: Image]
 

You must also add the line
 

local_interfaces = 0.0.0.0.25 : 127.0.0.1.10025
 

to the start of the configuration file where global options are set, to tell exim to accept messages from any address on port 25 and from localhost on port 10,025, the amavisd return port.
 

This configuration would cause all scanning to be done off-line, so the bounce messages generated in response to virus and spam detections might themselves become backscatter spam. Placing amavis later in the ordered list of routers and letting Exim’s rich ACL language take care of the easiest and most lightweight message checks might be a better solution. Even better, use exim’s ${run…} construct to force amavisd checking to occur in-line. Overall, exim’s built-in scanning ability makes amavisd somewhat less compelling.
 

Logging
 

Exim by default writes three different log files: a main log, a reject log, and a panic log. Each log entry includes the time the message was written. You specify the location of the log files in the EDITME file (before building exim) or in the runtime config file in the value of the log_file_path option. By default, logs are kept in the /var/spool/exim/log directory.
 

The log_file_path option accepts up to two colon-separated values. Each value must be either the keyword syslog or an absolute path with a %s embedded where the names main, reject, and panic can be substituted. For example,
 

log_file_path = syslog : /var/log/exim_%s
 

would log both to syslog (with facility “mail”) and to the files exim_main, exim_reject, and exim_panic in the /var/log directory. Exim submits the main log entries to syslog at priority info, the reject entries at priority notice, and the panic entries at priority alert.
 

The main log contains one line for the arrival and delivery of each message. It can be summarized by the Perl script eximstats, included in the Exim distribution.
 

The reject log records information on the messages that have been rejected for policy reasons: malware, spam, etc. It includes the summary line for the message from the main log and also the original headers of the message that was rejected. If you change your policies, check the reject log to make sure that all is still well.
 

The panic log is for serious errors in the software; exim writes here just before it gives up. The panic log should not exist in the absence of problems. Ask cron to check it for you and if it exists, fix the problem that caused the panic and then delete the file. exim will recreate it when the next panic-worthy situation arises.
 

When debugging, you can increase the amount and type of data logged with the log_selector option. For example:
 

log_selector = +smtp_connection +snmp_incomplete_transaction +…
 

The logging categories that can be included or excluded by the log_selector mechanism are listed in the Exim specification, in the section called “Log files” toward the end. There are about 35 possibilities, including +all, which will really fill your disks!
 

exim also keeps a temporary log for each message it handles. It is named with the message ID and lives in /var/spool/exim/msglog. If you are having trouble with a particular destination, you should check there.
 

Debugging
 

Exim has powerful debugging aids. You can configure the amount of information you want to see about each potential debugging topic. exim -d tells exim to go into debugging mode, in which it stays in the foreground and does not fork copies of itself. You can add specific debugging categories to the -d with a + or - in front of them to verbosify or eliminate a category. For example, -d+expand+acl re-quests regular debugging output plus extra details regarding string expansions and ACL interpretation. (These two categories are common problem spots.) You can tune more than 30 categories of debugging information; see the man page for a list.
 

A common technique when debugging mail systems is to start the MTA on a nonstandard port and then talk to it through telnet. For example, to start exim in daemon mode, listening on port 26, with debugging info turned on, use
 

$ sudo exim -d -oX 26 -bd
 

You can then telnet to port 26 and type SMTP commands in an attempt to reproduce the problem you are debugging.
 

Alternatively, you can have swaks do your SMTP talking for you. It’s a Perl script that makes SMTP debugging faster and easier. swaks --help gets you some documentation, and jetmore.org/john/code/#swaks supplies complete details.
 

If your log files show timeouts of around 30 seconds, that’s suggestive of a DNS issue. Timeouts of 5 seconds are more likely to be identd query timeouts. (identd was a daemon intended to identify the actual sender of a mail message, but since it’s so easily fooled, no one uses it anymore.)
 

20.15 Postfix
 

Postfix is another popular alternative to sendmail. Wietse Venema started the Postfix project when he spent a sabbatical year at IBM’s T. J. Watson Research Center in 1996, and he is still actively developing it. Postfix’s design goals included not only security (first and foremost!), but also an open source distribution policy, speedy performance, robustness, and flexibility. All major Linux distributions include Postfix, and since version 10.3, Mac OS X has shipped Postfix instead of sendmail as the default mail system.
 

See page 48 for more information about regular expressions.

 

The most important things to know about Postfix are, first, that it works almost out of the box (the simplest config files are only a line or two long), and second, that it leverages regular expression maps to filter email effectively, especially in conjunction with the PCRE (Perl Compatible Regular Expression) library. Postfix is compatible with sendmail in the sense that Postfix’s aliases and .forward files have the same format and semantics as those of sendmail.
 

Postfix speaks ESMTP. Virtual domains and spam filtering are both supported. For address rewriting, Postfix relies on table lookups from flat files, Berkeley DB, DBM, LDAP, NIS, NetInfo, or SQL databases. Postfix also supports sendmail’s milter protocol, so you can easily customize its behavior with a multitude of publicly available milters (external programs that take over specific tasks during an SMTP session; see page 767).
 

Postfix Architecture
 

Postfix is composed of several small, cooperating programs that send network messages, receive messages, deliver email locally, etc. Communication among them is performed through local domain sockets or FIFOs. This architecture is quite different from that of sendmail and Exim, wherein a single large program does most of the work.
 

The master program starts and monitors all Postfix processes. Its configuration file, master.cf, lists the subsidiary programs along with information about how they should be started. The default values set in that file cover most needs; in general, no tweaking is necessary. One common change is to comment out a program, for example, smtpd, when a client should not listen on the SMTP port.
 

The most important server programs involved in the delivery of email are shown in Exhibit D.
 

Exhibit D Postfix server programs
 

[image: Image]
 

Receiving Mail
 

smtpd receives mail entering the system through SMTP. It also verifies that the connecting clients are authorized to send the mail they are trying to deliver. When email is sent locally through the /usr/lib/sendmail compatibility program, a file is written to the /var/spool/postfix/maildrop directory. That directory is periodically scanned by the pickup program, which processes any new files it finds.
 

All incoming email passes through cleanup, which adds missing headers and rewrites addresses according to the canonical and virtual maps. Before inserting it in the incoming queue, cleanup gives the email to trivial-rewrite, which does minor fixing of the addresses, such as appending a mail domain to addresses that are not fully qualified.
 

Managing Mail-Waiting Queues
 

qmgr manages five queues that contain mail waiting to be delivered:
 

• incoming – mail that is arriving

 

• active – mail that is being delivered

 

• deferred – mail for which delivery has failed in the past

 

• hold – mail blocked in the queue by the administrator

 

• corrupt – mail that can’t be read or parsed

 

The queue manager generally selects the next message to process with a simple FIFO strategy, but it also supports a a complex preemption algorithm that prefers messages with few recipients over bulk mail.
 

trivial-rewrite
 

In order not to overwhelm a receiving host, especially after it has been down, Postfix uses a slow-start algorithm to control how fast it tries to deliver email. Deferred messages are given a try-again time stamp that exponentially backs off so as not to waste resources on undeliverable messages. A status cache of unreachable destinations avoids unnecessary delivery attempts.
 

Sending Mail
 

qmgr decides with the help of trivial-rewrite where a message should be sent. The routing decision made by trivial-rewrite can be overridden with lookup tables (transport_maps).
 

Delivery to remote hosts through the SMTP protocol is performed by the smtp program. lmtp delivers mail by using LMTP, the Local Mail Transfer Protocol defined in RFC2033. LMTP is based on SMTP, but the protocol has been modified so that the mail server is not required to manage a mail queue. This mailer is particularly useful for delivering email to mailbox servers such as the Cyrus IMAP suite.
 

local’s job is to deliver email locally. It resolves addresses in the aliases table and follows instructions found in recipients’ .forward files. Messages are forwarded to another address, passed to an external program for processing, or stored in users’ mail folders.
 

The virtual program delivers email to “virtual mailboxes”; that is, mailboxes that are not related to a local Linux account but that still represent valid email destinations. Finally, pipe implements delivery through external programs.
 

Security
 

Postfix implements security at several levels. Most of the Postfix server programs can run in a chrooted environment. They are separate programs with no parent/child relationship. None of them are setuid. The mail drop directory is group-writable by the postdrop group, to which the postdrop program is setgid.
 

Impressively, no remotely exploitable vulnerabilities have yet been identified in any version of Postfix.
 

Postfix Commands and Documentation
 

Several command-line utilities permit user interaction with the mail system:
 

• sendmail, mailq, newaliases – are sendmail-compatible replacements

 

• postfix – starts and stops the mail system (must be run as root)

 

• postalias – builds, modifies, and queries alias tables

 

• postcat – prints the contents of queue files

 

• postconf – displays and edits the main configuration file, main.cf

 

• postmap – builds, modifies, or queries lookup tables

 

• postsuper – manages the mail queues

 

The Postfix distribution includes a set of man pages that describe all the programs and their options. On-line documents at postfix.org explain how to configure and manage various aspects of Postfix. These documents are also included in the Postfix distribution in the README_FILES directory.
 

Postfix Configuration
 

The main.cf file is Postfix’s principal configuration file. The master.cf file configures the server programs. It also defines various lookup tables that are referenced from main.cf and that provide different types of service mappings.
 

The postconf(5) man page describes every parameter you can set in the main.cf file. There is also a postconf program, so if you just type man postconf, you’ll get the man page for that instead of postconf(5). Use man -s 5 postconf to get the right version (man 5 postconf on HP-UX and AIX).
 

The Postfix configuration language looks a bit like a series of sh comments and assignment statements. Variables can be referenced in the definition of other variables by being prefixed with a $. Variable definitions are stored just as they appear in the config file; they are not expanded until they are used, and any substitutions occur at that time.
 

You can create new variables by assigning them values. Be careful to choose names that do not conflict with existing configuration variables.
 

All Postfix configuration files, including the lookup tables, consider lines starting with whitespace to be continuation lines. This convention results in very readable configuration files, but you must start new lines in column one.
 

What to Put in Main.cf
 

More than 500 parameters can be specified in the main.cf file. However, just a few of them need to be set at an average site. The author of Postfix strongly recommends that only parameters with nondefault values be included in your configuration. That way, if the default value of a parameter changes in the future, your configuration will automatically adopt the new value.
 

The sample main.cf file that comes with the distribution includes many commented-out example parameters, along with some brief documentation. The original version is best left alone as a reference. Start with an empty file for your own configuration so that your settings are not lost in a sea of comments.
 

Basic Settings
 

Let’s start with as simple a configuration as possible: an empty file. Surprisingly, this is a perfectly reasonable Postfix configuration. It results in a mail server that delivers email locally within the same domain as the local hostname and that sends any messages directed to nonlocal addresses directly to the appropriate remote servers.
 

Another simple configuration is a “null client”; that is, a system that doesn’t deliver any email locally but rather forwards outbound mail to a designated central server. To implement this configuration, we define several parameters, starting with mydomain, which defines the domain part of the hostname, and myorigin, which is the mail domain appended to unqualified email addresses. If these two parameters are the same, we can write something like this:
 

[image: Image]
 

Another parameter we should set is mydestination, which specifies the mail domains that are local. If the recipient address of a message has mydestination as its mail domain, the message is delivered through the local program to the corresponding user (assuming that no relevant alias or .forward file is found). If more than one mail domain is included in mydestination, these domains are all considered aliases for the same domain.
 

For a null client, we want no local delivery, so this parameter should be empty:
 

mydestination =
 

Finally, the relayhost parameter tells Postfix to send all nonlocal messages to a specified host instead of sending them directly to their apparent destinations:
 

relayhost = [mail.cs.colorado.edu]
 

The square brackets tell Postfix to treat the specified string as a hostname (DNS A record) instead of a mail domain name (DNS MX record).
 

Since null clients should not receive mail from other systems, the last thing to do in a null client configuration is to comment out the smtpd line in the master.cf file. This change prevents Postfix from running smtpd at all. With just these few lines, we’ve defined a fully functional null client!
 

For a “real” mail server, you’ll need a few more configuration options as well as some mapping tables. We cover these in the next few sections.
 

Use of Postconf
 

postconf is a handy tool that helps you configure Postfix. When run without arguments, it prints all the parameters as they are currently configured. If you name a specific parameter as an argument, postconf prints the value of that parameter. The -d option makes postconf print the defaults instead of the currently configured values. For example:
 

[image: Image]
 

Another useful option is -n, which makes postconf print only the parameters that differ from the default. If you ask for help on the Postfix mailing list, that’s the configuration information you should put in your email.
 

Lookup Tables
 

Many aspects of Postfix’s behavior are shaped through the use of lookup tables, which can map keys to values or implement simple lists. For example, the default setting for the alias_maps table is
 

alias_maps = dbm:/etc/mail/aliases, nis:mail.aliases
 

Data sources are specified with the notation type:path. Note that this particular table actually uses two distinct sources of information simultaneously: a dbm database and an NIS map. Multiple values can be separated by commas, spaces, or both. Table 20.21 lists the available data sources; postconf -m shows this information as well.
 

Table 20.21 Information sources for Postfix lookup tables
 

[image: Image]
 

Use the dbm and sdbm types only for compatibility with the traditional sendmail alias table. Berkeley DB (hash) is a more modern implementation; it’s safer and faster. If compatibility is not a problem, use
 

[image: Image]
 

The alias_database specifies the table that is rebuilt by newaliases and should correspond to the table that you specify in alias_maps. The reason for having two parameters is that alias_maps might include non-DB sources such as mysql or nis that do not need to be rebuilt.
 

All DB-class tables (dbm, sdbm, hash, and btree) are based on a text file that is compiled to an efficiently searchable binary format. The syntax for these text files is similar to that of the configuration files with respect to comments and continuation lines. Entries are specified as simple key/value pairs separated by whitespace, except for alias tables, which use a colon after the key to retain sendmail compatibility. For example, the following lines are appropriate for an alias table:
 

[image: Image]
 

As another example, here’s an access table for relaying mail from any client with a hostname ending in cs.colorado.edu.
 

.cs.colorado.edu OK
 

Text files are compiled to their binary formats with the postmap command for normal tables and the postalias command for alias tables. The table specification (including the type) must be given as the first argument. For example:
 

$ sudo postmap hash:/etc/postfix/access
 

postmap can also query values in a lookup table (no match = no output):
 

[image: Image]
 

Local Delivery
 

The local program delivers mail to local recipients. It also handles local aliasing. For example, if mydestination is set to cs.colorado.edu and email arrives for evi@cs.colorado.edu, local first consults the alias_maps tables and then substitutes any matching entries recursively.
 

If no aliases match, local looks for a .forward file in user evi’s home directory and follows the instructions in this file if it exists. (The syntax is the same as the right side of an alias map.) Finally, if no .forward file is found, the email is delivered to evi’s local mailbox.
 

By default, local writes to standard mbox-format files under /var/mail. You can change that behavior with the parameters shown in Table 20.22.
 

Table 20.22 Parameters for local mailbox delivery (set in main.cf)
 

[image: Image]
 

The mail_spool_directory and home_mailbox options normally generate mbox-format mailboxes, but they can also produce Maildir mailboxes. To request this behavior, add a slash to the end of the pathname.
 

If recipient_delimiter is +, mail addressed to evi+whatever@cs.colorado.edu is accepted for delivery to the evi account. With this facility, users can create special-purpose addresses and sort their mail by destination address. Postfix first attempts lookups on the full address, and only if that fails does it strip the extended components and fall back to the base address. Postfix also looks for a corresponding forwarding file, .forward+whatever, for further aliasing.
 

Virtual Domains
 

To host a mail domain on your Postfix mail server, you have three choices:
 

• List the domain in mydestination. Delivery is performed as described above: aliases are expanded and mail is delivered to the corresponding accounts.

 

• List the domain in the virtual_alias_domains parameter. This option gives the domain its own addressing namespace that is independent of the system’s user accounts. All addresses within the domain must be resolvable (through mapping) to real addresses outside of it.

 

• List the domain in the virtual_mailbox_domains parameter. As with the virtual_alias_domains option, the domain has its own namespace. All mailboxes must live beneath a specified directory.

 

List the domain in only one of these three places. Choose carefully, because many configuration elements depend on that choice. We have already reviewed the handling of the mydestination method. The other options are discussed below.
 

Virtual Alias Domains
 

If a domain is listed as a value of the virtual_alias_domains parameter, mail to that domain is accepted by Postfix and must be forwarded to an actual recipient either on the local machine or elsewhere.
 

The forwarding for addresses in the virtual domain must be defined in a lookup table included in the virtual_alias_maps parameter. Entries in the table have the address in the virtual domain on the left side and the actual destination address on the right.
 

An unqualified name on the right is interpreted as a local username.
 

Consider the following example from main.cf:
 

[image: Image]
 

In /etc/mail/admin.com/virtual we could then have the lines
 

[image: Image]
 

Mail for evi@admin.com would be redirected to evi@cs.colorado.edu (myorigin is appended) and would ultimately be delivered to the mailbox of user evi because cs.colorado.edu is included in mydestination.
 

Definitions can be recursive: the right hand side can contain addresses that are further defined on the left hand side. Note that the right hand side can only be a list of addresses. If you need to execute an external program or to use :include: files, then you need to redirect the email to an alias, which can then be expanded according to your needs.
 

To keep everything in one file, you can set virtual_alias_domains to the same lookup table as virtual_alias_maps and put a special entry in the table to mark it as a virtual alias domain. In main.cf:
 

[image: Image]
 

In /etc/mail/admin.com/virtual:
 

[image: Image]
 

The right hand side of the entry for the mail domain (admin.com) is never actually used; admin.com’s existence in the table as an independent entry is enough to make Postfix consider it a virtual alias domain.
 

Virtual Mailbox Domains
 

Domains listed under virtual_mailbox_domains are similar to local domains, but the list of users and their corresponding mailboxes must be managed independently of the system’s user accounts.
 

The parameter virtual_mailbox_maps points to a table that lists all valid users in the domain. The map format is
 

user@domain /path/to/mailbox
 

If the path ends with a slash, the mailboxes are stored in Maildir format. The value of virtual_mailbox_base is always prefixed to the specified paths.
 

You often want to alias some of the addresses in the virtual mailbox domain. Use a virtual_alias_map to do this. Here is a complete example. In main.cf:
 

[image: Image]
 

/etc/mail/admin.com/vmailboxes might contain entries like these:
 

evi@admin.com nemeth/evi/
 

/etc/mail/admin.com/valiases might contain:
 

postmaster@admin.com evi@admin.com
 

You can use virtual alias maps even on addresses that are not virtual alias domains. Virtual alias maps let you redirect any address from any domain, independently of the type of the domain (canonical, virtual alias, or virtual mailbox). Since mailbox paths can only be put on the right hand side of the virtual mailbox map, use of this mechanism is the only way to set up aliases in that domain.
 

Access Control
 

Mail servers should relay mail for third parties only on behalf of trusted clients. If a mail server forwards mail from unknown clients to other servers, it is a so-called open relay, which is bad. See Relay control on page 791 for more details.
 

Fortunately, Postfix doesn’t act as an open relay by default. In fact, its defaults are quite restrictive; you are more likely to need to liberalize the permissions than to tighten them. Access control for SMTP transactions is configured in Postfix through “access restriction lists.” The parameters shown in Table 20.23 control what should be checked during the different phases of an SMTP session.
 

Table 20.23 Postfix parameters for SMTP access restriction
 

[image: Image]
 

The most important parameter is smtpd_recipient_restrictions since access control is most easily performed when the recipient address is known and can be identified as being local or not. All the other parameters in Table 20.23 are empty in the default configuration. The default value is
 

smtpd_recipient_restrictions = permit_mynetworks, reject_unauth_destination
 

Each of the specified restrictions is tested in turn until a definitive decision about what to do with the mail is reached. Table 20.24 on the next page shows the common restrictions.
 

Table 20.24 Common Postfix access restrictions
 

[image: Image]
 

Everything can be tested in these restrictions, not just specific information like the sender address in the smtpd_sender_restrictions. Therefore, for simplicity, you might want to put all the restrictions under a single parameter, which should be smtpd_recipient_restrictions since it is the only one that can test everything (except the DATA part).
 

smtpd_recipient_restriction is also where mail relaying is tested. You should keep the reject_unauth_destination restriction and carefully choose the “permit” restrictions before it.
 

Access Tables
 

Each restriction returns one of the actions shown in Table 20.25. Access tables are used in restrictions such as check_client_access and check_recipient_access to select an action based on the client host address or recipient address, respectively.
 

Table 20.25 Actions for access tables
 

[image: Image]
 

As an example, suppose you wanted to allow relaying for all machines within the cs.colorado.edu domain and that you wanted to allow only trusted clients to post
 

to the internal mailing list newsletter@cs.colorado.edu. You could implement these policies with the following lines in main.cf:
 

[image: Image]
 

Note that commas are optional when the list of values for a parameter is specified.
 

In /etc/postfix/relaying_access:
 

.cs.colorado.edu OK
 

In /etc/postfix/restricted_recipients:
 

newsletter@cs.colorado.edu REJECT Internal list
 

The text after REJECT is an optional string that is sent to the client along with the error code. It tells the sender why the mail was rejected.
 

Authentication of Clients and Encryption
 

For users sending mail from home, it is usually easiest to route outgoing mail through the home ISP’s mail server, regardless of the sender address that appears on that mail. Most ISPs trust their direct clients and allow relaying. If this configuration isn’t possible or if you are using a system such as Sender ID or SPF, ensure that mobile users outside your network can be authorized to submit messages to your smtpd.
 

The solution to this problem is to use the SMTP AUTH mechanism to authenticate directly at the SMTP level. Postfix must be compiled with support for the SASL library to make this work. You can then configure the feature like this:
 

[image: Image]
 

You also need to support encrypted connections to avoid sending passwords in clear text. Add lines like the following to main.cf:
 

[image: Image]
 

You will need to put a properly signed certificate in /etc/certs/smtp.pem. It’s also a good idea to turn on encryption on outgoing SMTP connections:
 

[image: Image]
 

Fighting Spam and Viruses
 

Postfix has many features that can help block suspicious email.
 

One class of protection features calls for strict implementation of the SMTP protocol. Legitimate mail servers should respect the protocol, but spam and virus senders often play fast and loose with it, thus giving themselves away. Unfortunately, broken mailers handling legitimate mail are still out there, so this technique isn’t quite foolproof. Choose restrictions carefully, and monitor the log files.
 

Here are some of the main features in this category:
 

• reject_non_fqdn_* – rejects messages without a fully qualified sender domain (sender), recipient domain, (recipient) or HELO/EHLO host-name (hostname).

 

• reject_unauth_pipelining – aborts the session if the client doesn’t wait to see the status of a command before proceeding.

 

• reject_unknown_sender_domain – rejects messages with an unresolvable sender domain. Postfix returns a temporary error message because the problem may result from a transient DNS glitch.

 

• reject_unknown_reverse_client_hostname – rejects messages from hosts that have no reverse DNS record.

 

• smtpd_helo_required – requires HELO/EHLO at the start of the conversation (parameter, either yes or no).

 

• strict_rfc821_envelopes – requires correct syntax for email addresses in the MAIL FROM and RCPT TO commands (parameter, yes or no).

 

The items above that are not marked as parameters are restrictions. You invoke them by including their names in smtpd_helo_restrictions (reject_non_fqdn_*) or smtpd_client_restrictions (the others). To test a restriction before putting it in production (always a good idea), insert the restriction warn_if_reject in front of it to convert the effect from outright rejection to warning log messages.
 

Blacklists
 

You can tell Postfix to check incoming email against a DNS-based blacklist; see User or site blacklisting on page 792 for more details. To enable this behavior, use the reject_rbl_client restriction followed by address of the DNS server to be consulted. A similar feature is reject_rhsbl_sender, which checks the domain name of the sender’s address rather than the client’s hostname.
 

Spam-fighting Example
 

The following example represents a relatively complete spam-fighting configuration from the main.cf file:
 

[image: Image]
 

Note that we put some restrictions in front of permit_mynetworks. That tweak lets us verify that our own clients are sending out correctly formatted mail. This is an easy way to find out about configuration errors. The final permit action is the default but has been made explicit for clarity.
 

Spamassassin and Procmail
 

Postfix supports SpamAssassin and other filters of that ilk. See Content scanning: spam and malware on page 761 for general information about these tools.
 

procmail can be started from users’ .forward files, but that’s complicated and error prone. A better solution is to put the following line in main.cf:
 

mailbox_command = /usr/bin/procmail -a "$EXTENSION"
 

Postfix then uses procmail to deliver mail instead of writing messages directly to the mail spool. The arguments given to procmail pass the address extension (the portion after the +); it can then be accessed in procmail as $1.
 

Policy Daemons
 

Postfix version 2.1 introduced a mechanism for delegating access control to external programs. These programs, called policy daemons, receive all the information that Postfix has about an email message and must return one of the disposition actions listed in Table 20.25 on page 838.
 

Greylisting is one of the more interesting features that can be implemented with a policy daemon. See page 765 for more information about greylisting and why you might want to employ it.
 

Content Filtering
 

Postfix can use regular expressions to check the headers and bodies of email messages for contraband. It can also pass messages to other programs such as dedicated spam fighting tools or antivirus applications.
 

Header and body checks are performed in real time as messages are accepted through SMTP. Each regular expression that is checked invokes an action as specified in Table 20.25 on page 838 if the regex matches. For example, the line
 

header_checks = regexp:/etc/postfix/header_checks
 

in main.cf along with the following line in /etc/postfix/header_checks
 

/^Subject: reject-me/ REJECT You asked for it
 

would reject any message whose subject started with “reject-me”. Though regular expression support is always nice, it comes with caveats in the context of email processing. In particular, this is not an effective method of spam or virus filtering.
 

Content Filtering with amavisd
 

Industrial-strength virus filtering is usually implemented through amavisd (see page 769), a Perl program that interfaces mail server software with one or more antivirus applications. Such filters are configured with Postfix’s content_filter parameter, which instructs Postfix to pass every incoming message once through the specified service. In addition to setting the content_filter parameter, you must modify some existing entries in the master.cf file and add some new ones.
 

Postfix and amavisd interact with each other by means of the standard SMTP and LMTP protocols. Postfix sends the mail to be analyzed to amavisd through LMTP. amavisd scans it and sends it back to Postfix through SMTP at an alternative port that’s accessible only on the local machine and that has content-scanning disabled (thus avoiding a loop).
 

For mail coming in from the Internet, amavisd typically listens on port 10,024, and Postfix’s back-door port is often 10,025. If we also process outgoing mail and want to differentiate it from incoming mail, we need a separate amavisd port for that—say, 10,026. The incoming mail can return to Postfix on the same return port as outgoing mail.
 

The configuration outlined below is a “post queue” setup that scans mail after it has been accepted into Postfix’s queue. If you want to implement an in-line scanning setup, whereby the mail is scanned during the client’s initial SMTP dialog, try the amavisd-milter helper tool, which lets you connect Postfix to amavisd as a milter.
 

On the amavisd side, make sure that amavisd’s configuration contains lines such as the following. (This configuration uses separate ports for inbound and outbound messages.)
 

[image: Image]
 

You now need to configure Postfix to send the mail to amavisd.
 

The README.Postfix file in the amavisd-new distribution includes about 20 lines of boilerplate configuration you can put into /etc/postfix/master.cf to make amavisd accessible and able to send mail back to Postfix. We don’t duplicate it here; just cut and paste from the README.
 

To tell Postfix to send mail to amavisd for scanning, add this line to main.cf:
 

content_filter = amavisfeed:[127.0.0.1]:10024
 

For differentiating between incoming and outgoing mail, the configuration gets a bit more complicated. Instead of just the above directive, you need to modify smtpd_recipient_restrictions like this (changes in boldface):
 

[image: Image]
 

Then put the following line in the file tag_as_originating.re:
 

/^/ FILTER amavisfeed:[127.0.0.1]:10026
 

And in tag_as_foreign.re:
 

/^/ FILTER amavisfeed:[127.0.0.1]:10024
 

Mail from external hosts matches the tag_as_foreign.re restriction, which instructs Postfix to filter the mail by sending it to port 10,024. All mail matches the tag_as_originating.re restriction, but for external hosts it is replaced by the foreign restriction tag.
 

Debugging
 

When you have a problem with Postfix, first check the log files. The answers to your questions are most likely there; it’s just a question of finding them. Every Postfix program normally issues a log entry for every message it processes. For example, the trail of an outbound message might look like this:
 

[image: Image]
 

As you can see, the interesting information is spread over many lines. Note that the identifier 0E4A93688 is common to every line: Postfix assigns a queue ID as soon as a message enters the mail system and never changes it. Therefore, when searching the logs for the history of a message, first concentrate on determining the message’s queue ID. Once you know that, it’s easy to grep the logs for all the relevant entries.
 

Postfix is good at logging helpful messages about problems that it notices. However, it’s sometimes difficult to spot the important lines among the thousands of normal status messages. This is a good place to consider using some of the tools discussed in the section Condensing log files to useful information, which starts on page 358.
 

Looking at the Queue
 

Another place to look for problems is the mail queue. As in the sendmail system, a mailq command prints the contents of a queue. You can use it to see if and why a message has become stuck.
 

Another helpful tool is the qshape script that’s shipped with recent Postfix versions. It shows summary statistics about the contents of a queue. The output looks like this:
 

[image: Image]
 

qshape summarizes the given queue (here, the deferred queue), sorted by recipient domain. The columns report the number of minutes the relevant messages have been in the queue. For example, you can see that 25 messages bound for expn.com have been in the queue longer than 1,280 minutes. All the destinations in this example are suggestive of messages having been sent from vacation scripts in response to spam.
 

qshape can also summarize by sender domain with the -s flag.
 

Soft-bouncing
 

If soft_bounce is set to yes, Postfix sends temporary error messages whenever it would normally send permanent error messages such as “user unknown” or “relaying denied.” This is a great testing feature; it lets you monitor the disposition of messages after a configuration change without the risk of permanently losing legitimate email. Anything you reject will eventually come back for another try. Don’t forget to turn off this feature when you are done testing or you will have to deal with every rejected message over and over again.
 

Testing Access Control
 

The easiest way to test access control restrictions is to try to send a message from an outside host and see what happens. This is a good basic test, but it doesn’t cover special conditions such as mail from a domain where you have no login.
 

Postfix 2.1 introduced an extension to the SMTP protocol called XCLIENT that simulates submissions from another place. This feature is disabled by default, but with the following configuration line in main.cf, you can enable it for connections originating from localhost:
 

smtpd_authorized_xclient_hosts = localhost
 

A testing session might look something like this:
 

[image: Image]
 

20.16 DKIM Configuration
 

Our DKIM coverage is a bit scattered. The introductory material is in the DNS chapter (on page 591) and on page 768 of this chapter. Here we concentrate on the email-related details of using DKIM through an external tool, amavisd, and directly, in conjunction with sendmail, Exim, and Postfix. sendmail and Postfix use milters to implement DKIM; Exim does it natively. The Exim implementation is new (late 2009) and still a bit rough around the edges.
 

DKIM: DomainKeys Identified Mail
 

DKIM is the new hope for positively identifying a sender’s organization. If widely deployed, it would curb spammers’ and phishers’ ability to forge the sender’s domain. Mail from your bank would really be from your bank—or at the very least, would not be categorized as phishing or spam.
 

DKIM replaces an earlier system called DomainKeys. DKIM uses public key cryptography (with keys stored in DNS) to let receivers verify both the origin and integrity of a message. These guarantees are becoming essential in our interconnected world, where so much business is done electronically. DKIM also prevents a sender from denying that he sent a message, a feature known as nonrepudiation.
 

A DKIM implementation has two halves: the part that signs outbound email as it leaves your site, and the part that verifies signatures on inbound email as it arrives. The first operation should be performed by your outgoing mail hub just before the mail leaves your site (after any internal rewriting and content scanning has been done). The second part, verification, should be done as soon as a message is received, before other scanning tools add to or change its headers.
 

sendmail.org has a couple of handy tools that are generic and can be used with any software that implements DKIM. The first is an ADSP wizard that accepts a domain name and generates the corresponding ADSP TXT records you must add to DNS to implement DKIM.21 The second tool is a verifier that you can use to check your setup after it’s all ready to go.
 

The details of DKIM and ADSP resource records are covered on page 591. They are currently still TXT records but may get their own DNS resource record types in the future. Both OpenSSL and amavisd include code to generate DKIM keys. Various DKIM milter packages also contain scripts that generate keys.
 

Once you have configured your MTA to generate DKIM signatures, you can send a message to sa-test@sendmail.net to verify that everything is working correctly. The server will email you back to tell you what security features it received.
 

If you have a Gmail account, another way to test is to send yourself a message there. Clicking on the “show details” link should reveal a signed-by field. You can also ask Gmail to “Show original” in the drop-down menu—this command shows you the raw message with all its headers, including the DKIM signature.
 

DKIM Miltering
 

Software to implement DKIM was originally developed by Sendmail, Inc., for use as a milter to interface with the sendmail MTA. There are now two versions of this code: the original, DKIM-milter; and a code fork, OpenDKIM. Both packages are available as source code from sourceforge.net and in precompiled form from various package repositories. We illustrate use of the sendmail version, DKIM-milter v2.8.3.
 

The package contains dkim-filter, the milter that creates and verifies signatures, and several utilities to help debug and monitor DKIM usage. Here is a list:
 

• dkim-filter – generates and verifies DKIM signatures

 

• dkim-genkey – generates key pairs and required DNS records

 

• dkim-stats – summarizes statistics gathered by dkim-filter

 

• dkim-testkey – tests that keys are in the correct format and accessible

 

• dkim-testssp – tests the ADSP record (which used to be called SSP)

 

The first step in setting up the DKIM-milter package is to create a dedicated user account and group to own DKIM-related files. Use the name “dkim” for both. Make sure the account has a restricted shell such as /bin/false.
 

The dkim-genkey script generates a DKIM key pair. You specify the domain for which the key is intended with -d and the selector (key name, really) with -s. The defaults are example.com and “default”. The -r flag restricts the key to use for email signing only, and -t indicates that you are testing DKIM. The keys are saved in separate files: selector.private for the private key and selector.txt for the DNS TXT record that contains the public key.
 

For example,
 

$ dkim-genkey -r -d example.com -s email
 

generates a key pair in the files email.private and email.txt in the current directory. Install the private key somewhere like /etc/mail/dkim/keys. Set the mode of the /etc/mail/dkim directory to 600 and chown it (recursively) to your dkim user and group. Add the DNS TXT record to the appropriate zone file, bump the serial number of the zone, and signal your name server. You can add an ADSP record once everything is tested and working, but don’t do that just yet.
 

Run dkim-testkey to verify that your keys are OK. dkim-testkey produces no output if everything is fine, so silence is golden.
 

The next chore is the configuration of dkim-filter for use as a milter. Create a file /etc/mail/dkim.conf that’s owned by your dkim user and group. Sample contents adapted from T. J. Nelson’s on-line article Setting up DKIM with Sendmail follow:
 

[image: Image]
 

The general format of entries in dkim.conf is
 

parameter value
 

A hash mark (#) introduces a comment. The distribution includes a well-commented sample configuration, dkim-filter.conf.sample, that includes a description of the variables and their default values. An even better description can be found in the dkim-filter.conf man page.
 

If you are configuring a central mail hub, the Domain line should be a comma-separated list of fully qualified domain names you will sign for, or a filename containing such a list.
 

The KeyFile parameter specifies the location of the private key used to sign messages. It is assumed that the first part of the filename is the selector (here, “email”).
 

The MTA line lists the names of MTAs whose mail should always be signed rather than verified. It’s analogous to the Name part of sendmail’s DAEMON_OPTIONS configuration parameter.
 

The Socket specification identifies the listening TCP socket; here, port 8,891 on localhost. The SignatureAlgorithm can be either rsa-sha1 or rsa-sha256; the latter is the default but is new enough that not all MTAs can use it. The X-Header parameter specifies that dkim-filter should add a header line to each scanned message. The Mode can be s for signing, v for verifying, or sv for both.
 

The InternalHosts parameter should point to a file that contains a list of the hosts whose outgoing mail should be signed. Hosts should be listed by fully qualified domain name.
 

Several configuration options can help with debugging. Check out MilterDebug, LogWhy, and SyslogSuccess. Some of these generate so much logging information that you should be sure to turn them off once you are satisfied with things.
 

Another series of options specifies what to do with messages whose signatures cannot be verified: On-Default, On-BadSignature, On-DNSError, On-Security, On-InternalError, and On-NoSignature. They each accept the values reject, tempfail, accept, and discard.
 

The system is highly configurable, and many more parameters (over 80) are described in the dkim-filter.conf man page.
 

DKIM Configuration in Amavisd-new
 

To use DKIM in amavisd-new, you must have the Perl module Mail::DKIM version 0.33 or later. If not, download it from CPAN. You must generate a key pair, turn on DKIM verification and signing, point to your private key file, and set some signing options.
 

amavisd itself can generate keys for DKIM:
 

$ amavisd genrsa /var/db/dkim/example.com-email.key.pem
 

The second argument to amavisd is the file in which to store the keys. Since it contains both the private and the public key, it’s best to check the permissions and make sure that this file is not readable by the world or anyone you don’t trust.
 

The following configuration snippet has been modified slightly from the section of the amavisd-new documentation called “bits and pieces.” This example assumes that your site’s domain is example.com and that you are using the selector “email” for your keys.
 

[image: Image]
 

The DKIM signature options line lets you override the default tags, which are stored in an associative array. Signatures can have 13 distinct tag values associated with them. Many, such as the d tag, which specifies the domain of the sender, are set automatically. An important tag is the s tag, which specifies the selector to use when DNS is queried for the public key to verify the signature. In this example, you override the default time-to-live (ttl) of 30 days with a value of 21 days. Some of the tags become important if mail is relayed (for example, through a mailing list) and you want signatures to survive the operation.
 

You can also specify the header fields to be included in the signature by assigning Boolean values to the associative array signed_header_fields. For example,
 

[image: Image]
 

excludes the Received header but includes Sender, To, and Cc. The defaults are probably just fine for most sites.
 

You can use amavisd showkeys and amavisd testkeys to test your configuration. The showkeys command displays the public key that you should add to your DNS zone file for example.com. (Don’t forget to change the zone’s serial number and to signal your name server!) The testkeys command both tests the signing process and verifies that your key has been published in DNS.
 

DKIM in Sendmail
 

You can implement DKIM for sendmail by using either milters (for in-line filtering; see page 767) or a dual-server setup in conjunction with amavisd. Here, we cover the use of DKIM-milter to sign and verify messages.
 

sendmail’s configuration primitives masquerade_as and genericstable rewrite headers, so those primitives must be implemented before any DKIM signature is added; otherwise, the signature will not remain valid.
 

To support DKIM, sendmail must be built with milter support, have the OpenSSL and Berkeley DB libraries available, and have the DKIM-milter package installed (find it at sourceforge.net). Use OpenSSL to generate keys, and add them to your DNS zone as described on page 591, or use dkim-genkey as shown on page 846.
 

For this example, our domain is example.com. We chose the selector “email” and stored our private key in email.private and our public key in email.key.pem. We can test the keys with dkim-testkey as follows:
 

$ dkim-testkey -d example.com -k /var/db/dkim/email.key.pem -s ma
 

If all’s well, dkim-testkey says nothing.
 

In your sendmail configuration file, sendmail.mc, add the line
 

INPUT_MAIL_FILTER(`dkim-filter’, `S=inet:8891@localhost’)
 

and rebuild the sendmail.cf file (./Build sendmail.cf; sudo make install-cf). Then restart sendmail and start the dkim-filter program.
 

DKIM in Exim
 

The Exim 4.70 release (late 2009) added native support for DKIM and dropped support for Yahoo!’s DomainKeys. Expect the feature set to continue to evolve as the Exim developers work out bugs and gain experience working with DKIM.
 

Exim’s DKIM support is enabled by default. To turn it off, set DISABLE_DKIM=yes in Local/Makefile and rebuild and reinstall the package.
 

The Exim implementation signs outgoing messages in the SMTP transport configuration and verifies signatures on incoming messages through a new ACL, acl_smtp_dkim. Hub machines can disable the signature verification on messages they relay for local hosts by setting dkim_disable_verify for those messages.
 

Signing Outgoing Messages
 

The first DKIM implementation chore is to generate your cryptographic keys with OpenSSL as described on page 591 (in the DNS chapter). Several new Exim options must be defined for use by the SMTP transport. The options can include variables to be expanded when the transport is called. Table 20.26 contains a list of the DKIM-related signing options.
 

Table 20.26 DKIM signing options in Exim
 

[image: Image]
 

The first three “options” are required and must be configured; the rest are truly optional. By default, the canonicalization method (dkim_canon) is relaxed, messages that cause signing errors are sent without signatures (dkim_strict), and Exim uses the RFC4871 list of headers to sign (dkim_sign_headers). The mandatory options are straightforward, but if you have a complex site that hosts multiple real or virtual domains, you will have to be clever in defining them.
 

Verifying Incoming Signed Messages
 

Incoming DKIM-signed mail messages are verified in the acl_smtp_dkim ACL. This ACL is called once for each signature and returns one of the following codes:
 

• none – message is not signed

 

• invalid – signature could not be verified (key unavailable or invalid)

 

• fail – signature failed verification for headers, body, or both

 

• pass – signature is valid

 

The status is returned in the $dkim_verify_status variable, with failure details in $dkim_verify_reason. There are lots of other $dkim_variable tags that give you access to the various fields of the signature and allow you to implement special policies (e.g., flagging messages from gmail.com that do not have signatures, or rejecting messages from paypal.com that do not verify).
 

A Complete Example
 

The following example is adapted from Phil Pennock’s DKIM setup.22 It includes definitions of acl_process_dkim to verify signatures and a router and a transport (dnslookup_signed and remote_dksign, respectively) to do the actual signing.
 

This configuration allows multiple domains to be signed and provides for multiple keys so that key rollover is possible. This file is stored in CDB format and maps keys such as “example.org” to values such as “d200912.”
 

Key selectors are named dyyyymm, where d is just the letter “d” for date, yyyy is the year the key was generated, and mm is the month it was generated. Key files are named rsa.private.selector.domain and are stored in a key directory defined
 

with the macro DKKEY_DIR. Be sure this directory is readable by exim but not by the rest of the world.
 

[image: Image]
 

These fragments result in outgoing messages being signed and incoming messages having their signatures verified and a DKIM report header added. Here’s an example of that header:
 

X-DKIM-Report: pass (Signer=gmail.com) (Testing=0)
 

Further policy is needed if you are going to reject or punish messages whose signatures do not verify.
 

The no_verify line in the router section refers not to DKIM verification but rather to verifying the recipient’s address; it is turned off in this router, but done in the dnslookup router that is next in line. No sense doing it twice.
 

DKIM in Postfix
 

DKIM is implemented in Postfix with the DKIM-milter software package described on page 846. Generate your key pair and test it with dkim-testkey; build a dkim-filter.conf file from the sample in the distribution, and then teach Postfix to use dkim-filter. In main.cf, after any other milter options, add the lines
 

[image: Image]
 

Now all you need to do is start dkim-filter and restart postfix.
 

20.17 Integrated Email Solutions
 

A host of integrated email solutions are available, ranging from free, open source products to pricey commercial offerings. All handle more than just electronic mail. Common groupware and conferencing features include
 

• Address book and shared contact list management

 

• Calendar and task management

 

• Mailing lists and bulletin boards

 

• Instant messaging

 

• SSL/TLS encryption

 

• Archiving and automatic backups

 

• Support for mobile devices (BlackBerry, iPhone, etc.)

 

Most of these megapackages include a configuration GUI that more or less replaces the need to read this humongous chapter. (Perhaps we should have put this section at the beginning of the chapter instead of the end.) Many are targeted as replacements for Microsoft Exchange.
 

Several products merit an explicit mention:
 

• Citadel (citadel.org) is an open source email and groupware package that has support contracts available.

 

• Zimbra (zimbra.com) straddles the divide between open source and proprietary systems. Its full-featured version is proprietary and costs money, but an only-slightly-hobbled version is open source and free.

 

• Kerio MailServer (kerio.com) is a proprietary system that, like Zimbra, is licensed on a per-user basis. For a large organization, these options can get pricey.

 

• Communigate Pro (communigate.com) folds voice and video into the usual email/groupware suite and offers either traditional unlimited licensing or use-based licensing.

 

You might also consider email appliances, hardware boxes that are usually built on hardened, stripped-down versions of FreeBSD UNIX or Linux. Three choices in this space are Cisco’s IronPort Series and models from Sophos and Clearswift. These products typically perform antivirus and antispam filtering and then hand messages to Microsoft Exchange for delivery.
 

20.18 Recommended Reading
 

Rather than jumble together the references listed here, we’ve sorted them by MTA and topic.
 

General Spam References
 

CLAYTON, RICHARD. “Good Practice for Combating Unsolicited Bulk Email.” RIPE/Demon Internet. 2000, ripe.net/ripe/docs/ripe-206.html.
 

This document is aimed at ISPs. It has lots of policy information and some good links to technical subjects.
 

FIELD, JULIAN. MailScanner: A User Guide and Training Manual. University of Southampton Department of Electronics, 2007.
 

MCDONALD, ALISTAIR. SpamAssassin: A Practical Guide to Configuration, Customization, and Integration. Packt Publishing, 2004.
 

SCHWARTZ, ALAN. SpamAssassin. Sebastopol, CA: O’Reilly Media, 2004.
 

WOLFE, PAUL, CHARLIE SCOTT, AND MIKE ERWIN. The Anti-Spam Tool Kit. Emeryville, CA: Osborne, 2004.
 

Sendmail References
 

COSTALES, BRYAN, CLAUS ASSMANN, GEORGE JANSEN, AND GREGORY NEIL SHAPIRO. sendmail, 4th Edition. Sebastopol, CA: O’Reilly Media, 2007.
 

This book is the definitive tome for sendmail configuration—1,300 pages’ worth. It includes a sysadmin guide as well as a complete reference section. An electronic edition is available, too. The author mix includes two key sendmail developers (Claus and Greg) who enforce technical correctness and add insight to the mix.
 

Installation instructions and a good description of the configuration file are covered in the Sendmail Installation and Operation Guide, which can be found in the doc/op subdirectory of the sendmail distribution. This document is quite complete, and in conjunction with the README file in the cf directory, it gives a good nuts-and-bolts view of the sendmail system.
 

sendmail.org, sendmail.org/~ca, and sendmail.org/~gshapiro all contain documents, HOWTOs, and tutorials related to sendmail.
 

Exim References
 

HAZEL, PHILIP. The Exim SMTP Mail Server: Official Guide for Release 4, 2nd Edition. Cambridge, UK: User Interface Technologies, Ltd., 2007.
 

HAZEL, PHILIP. Exim: The Mail Transfer Agent. Sebastapol, CA: O’Reilly Media, 2001.
 

MEERS, JASON. Getting started with EXIM. exim-new-users.co.uk, 2007.
 

The Exim specification is the defining document for Exim configuration. It is very complete and is updated with each new distribution. A text version is included in the file doc/spec.txt in the distribution, and a PDF version is available from exim.org. There are also several how-to documents on the web site.
 

Postfix References
 

BLUM, RICHARD. Postfix. Sams Publishing, 2001.
 

DENT, KYLE D. Postfix: The Definitive Guide. Sebastopol, CA: O’Reilly Media, 2003.
 

HILDEBRANDT, RALF, AND PATRICK KOETTER. The Book of Postfix: State of the Art Message Transport. San Francisco, CA: No Starch Press, 2005.
 

This book is the best; it guides you through all the details of Postfix configuration, even for complex environments. The authors are active in the Postfix community and participate regularly on the postfix-users mailing list. The book is unfortunately out of print, but used copies are easily available.
 

postfix.org/SOHO_README.html is a guide to using Postfix at home or in a small office environment.
 

RFCs
 

RFCs 5321 and 5322 are the current versions of RFCs 821 and 822. They define the SMTP protocol and the formats of messages and addresses for Internet email. RFCs 5335 and 5336 cover extensions for internationalized email addresses. There are currently almost 90 email-related RFCs, too many to list here. See the general RFC search engine at rfc-editor.org for more.
 

20.19 Exercises
 

E20.1 Briefly explain the difference between a user agent (MUA), a delivery agent (DA), and an access agent (AA). Then explain the difference between a mail transport agent (MTA) and a mail submission agent (MSA).
 

E20.2 Inspect the mail queue on your local mail server. Is there cruft in the directory? Are there messages with no control files or control files with no messages? What is the oldest message in the queue? (Requires root access.)
 

E20.3 Explain what an MX record is. Why are MX records important for mail delivery? Give an example in which a misconfigured MX record might make mail undeliverable.
 

E20.4 Determine the design of mail service at your site and diagram it in the style of Exhibit B on page 754. Where is incoming mail scanned for spam or viruses? What about outgoing mail?
 

E20.5 Compare the use of /etc/mail/aliases with the use of an LDAP server or MySQL database to store mail aliases. What are the advantages and disadvantages of each?
 

[image: Image] E20.6 Write a brief description of the following email headers. What path did the email take? To whom was it addressed, and to whom was it delivered? How long did it spend in transit?
 

[image: Image]
 

[image: Image]
 

[image: Image] E20.7 What are the implications of being blacklisted at spamhaus.org or a similar service? What should you do if you find that your site has become blacklisted? Outline techniques you can use to stay off such lists in the first place.
 

[image: Image] E20.8 If your site allows procmail and if you have permission from your local sysadmin group, set up your personal procmail configuration file to illustrate how procmail can compromise security.
 

[image: Image] E20.9 Explore the current MTA configuration at your site. What are some of the special features of the MTA that are in use? Can you find any problems with the configuration? In what ways could the configuration be made better?
 

[image: Image] E20.10 Find a piece of spam in your mailbox and inspect the headers. Report any signs that the mail has been forged. Then run some of the tools mentioned in this chapter, such as SpamAssassin, and report their findings. How did you do at recognizing faked headers? Submit the spam and your conclusions about the sender, the validity of the listed hosts, and anything else that looks out of place.
 

Sendmail-Specific Exercises
 

E20.11 What is smrsh, and why should you use it instead of /bin/sh? If smrsh is used at your site, what programs are allowed to run as the program mailer? Are any of them dangerously insecure?
 

E20.12 Write a small /etc/mail/aliases file that demonstrates three different types of aliases. Talk briefly about what each line does and why it could be useful.
 

[image: Image] E20.13 List the prefixes for files in the mail queue directory and explain what each one means. Why is it important to delete some queue files but very wrong to delete others? How can some of the prefixes be used to debug sendmail configuration mistakes?
 

[image: Image] E20.14 Explain the purpose of each of the following m4 macros. If the macro includes a file, provide a short description of what the contents of the file should be.
 

a) VERSIONID

 

b) OSTYPE

 

c) DOMAIN

 

d) MAILER

 

e) FEATURE

 

[image: Image] E20.15 Explain how you would configure a sendmail server to accept email for both your own domain and a virtual domain. Allow the virtual domain to relay mail to an off-site mailbox.
 

Exim-Specific Exercises
 

E20.16 Take the ACL example for the SMTP RCPT command shown on page 815 and reverse its default behavior to deny, while letting the same addresses pass through.
 

[image: Image] E20.17 Version 4.70 and later removed the DomainKeys code in favor of DKIM. Simplify the example DKIM setup on page 851 to support only a single domain and single signing key. Then add some policy rules, such as logging unsigned mail from Gmail or Yahoo! or rejecting failed verifications from PayPal or your bank.
 

[image: Image] E20.18 Explain how you would configure an Exim server to accept mail for both your own domain and a virtual domain. Allow the virtual domain to relay mail to an off-site mailbox.
 

[image: Image] E20.19 Look through the configuration snippets in the spec.txt document in the Exim distribution and experiment with including some of them in your configuration. Turn on verbose logging for each thing you try and examine the log files to see if it has the desired behavior.
 

Postfix-Specific Exercises
 

E20.20 Try to set up a “null client”—that is, a mail system that only sends mail and can’t receive it. Make sure that port 25 is closed.
 

E20.21 Configure Postfix to authenticate your site to your provider or company server (even Gmail!); use the following parameters:
 

[image: Image]
 

E20.22 Why do you think that Postfix supports so many map types?
 

E20.23 What would you use pcre maps for? Is value substitution something useful for mail systems? Do you need to use the postmap command to compile pcre maps?
 

E20.24 Look up the meaning of the recipient_delimiter parameter in the documentation (postconf man page). What could it be used for?
 

[image: Image] E20.25 Explain how you would configure Postfix to accept email for both your own domain and a virtual domain. Allow the virtual domain to relay mail to an off-site mailbox.
 
  


21. Network Management and Debugging
 

[image: Image]
 

Because networks increase the number of interdependencies among machines, they tend to magnify problems. As the saying goes, “Networking is when you can’t get any work done because of the failure of a machine you have never heard of.”
 

Network management is the art and science of keeping a network healthy. It generally includes the following tasks:
 

• Fault detection for networks, gateways, and critical servers

 

• Schemes for notifying an administrator of problems

 

• General network monitoring, to balance load and plan expansion

 

• Documentation and visualization of the network

 

• Administration of network devices from a central site

 

On a single network segment, it is generally not worthwhile to establish formal procedures for network management. Just test the network thoroughly after installation and check it occasionally to be sure that its load is not excessive. When it breaks, fix it.
 

As your network grows, management procedures should become more automated. On a network consisting of several different subnets joined with switches or routers, you may want to start automating management tasks with shell scripts and simple programs. If you have a WAN or a complex local network, consider installing a dedicated network management station.
 

In many cases, your organization’s reliability needs will dictate the sophistication of your network management system. A problem with the network can bring all work to a standstill. If your site cannot tolerate downtime, it may well be worthwhile to obtain and install a high-end enterprise network management system.
 

Unfortunately, even the best network management system cannot prevent all failures. It is critical to have a well-documented network and a high-quality staff available to handle the inevitable collapses.
 

21.1 Network Troubleshooting
 

Several good tools are available for debugging a network at the TCP/IP layer. Most give low-level information, so you must understand the main ideas of TCP/IP and routing in order to use the debugging tools.
 

On the other hand, network issues can also stem from problems with higher-level protocols such as DNS, NFS, and HTTP. You might want to read through Chapter 14, TCP/IP Networking, and Chapter 15, Routing, before tackling this chapter.
 

In this section, we start with some general troubleshooting strategy. We then cover several essential tools, including ping, traceroute, netstat, tcpdump, and Wireshark. We don’t discuss the arp command in this chapter, though it, too, is sometimes a useful debugging tool—see page 468 for more information.
 

Before you attack your network, consider these principles:
 

• Make one change at a time. Test each change to make sure that it had the effect you intended. Back out any changes that have an undesired effect.

 

• Document the situation as it was before you got involved, and document every change you make along the way.

 

• Problems may be transient, so begin by capturing relevant information with tools like sar and nmon. This information may come in handy as you are unraveling the problem.

 

• Start at one end of a system or network and work through the system’s critical components until you reach the problem. For example, you might start by looking at the network configuration on a client, work your way up to the physical connections, investigate the network hardware, and finally, check the server’s physical connections and software configuration.

 

• Communicate regularly. Most network problems affect lots of different people: users, ISPs, system administrators, telco engineers, network administrators, etc. Clear, consistent communication prevents you from hindering one another’s efforts to solve the problem.

 

• Work as a team. Years of experience show that people make fewer stupid mistakes if they have a peer helping out. If the problem has any visibility, management will also want to be involved. Take advantage of managers’ interest to get technical people from other groups on board and to cut through red tape where necessary.

 

• Use the layers of the network to negotiate the problem. Start at the “top” or “bottom” and work your way through the protocol stack.

 

This last point deserves a bit more discussion. As described on page 450, the architecture of TCP/IP defines several layers of abstraction at which components of the network can function. For example, HTTP depends on TCP, TCP depends on IP, IP depends on the Ethernet protocol, and the Ethernet protocol depends on the integrity of the network cable. You can dramatically reduce the amount of time spent debugging a problem if you first figure out which layer is misbehaving.
 

Ask yourself questions like these as you work up or down the stack:
 

• Do you have physical connectivity and a link light?

 

• Is your interface configured properly?

 

• Do your ARP tables show other hosts?

 

• Is there a firewall on your local machine?

 

• Is there a firewall anywhere between you and the destination?

 

• If firewalls are involved, do they pass ICMP ping packets and responses?

 

• Can you ping the localhost address (127.0.0.1)?

 

• Can you ping other local hosts by IP address?

 

• Is DNS working properly?1

 

• Can you ping other local hosts by hostname?

 

• Can you ping hosts on another network?

 

• Do high-level services such as web and SSH servers work?

 

• Did you really check the firewalls?

 

Once you’ve identified where the problem lies and have a fix in mind, take a step back to consider the effect that your subsequent tests and prospective fixes will have on other services and hosts.
 

21.2 Ping: Check to See if a Host is Alive
 

The ping command is embarrassingly simple, but in many situations it is the only command you need for network debugging. It sends an ICMP ECHO_REQUEST packet to a target host and waits to see if the host answers back.
 

You can use ping to check the status of individual hosts and to test segments of the network. Routing tables, physical networks, and gateways are all involved in processing a ping, so the network must be more or less working for ping to succeed. If ping doesn’t work, you can be pretty sure that nothing more sophisticated will work either.
 

However, this rule does not apply to networks that block ICMP echo requests with a firewall. Make sure that a firewall isn’t interfering with your debugging before you conclude that the target host is ignoring a ping. You might consider disabling a meddlesome firewall for a short period of time to facilitate debugging.
 

If your network is in bad shape, chances are that DNS is not working. Simplify the situation by using numeric IP addresses when pinging, and use ping’s -n option to prevent ping from attempting to do reverse lookups on IP addresses—these lookups also trigger DNS requests.
 

Be aware of the firewall issue if you’re using ping to check your Internet connectivity, too. Some well-known sites answer ping packets and others don’t. We’ve found google.com to be a consistent responder.
 

Most versions of ping run in an infinite loop unless you supply a packet count argument. Under Solaris, ping -s provides the extended output that other versions use by default. Once you’ve had your fill of pinging, type the interrupt character (usually <Control-C>) to get out.
 

Here’s an example:
 

[image: Image]
 

The output for beast shows the host’s IP address, the ICMP sequence number of each response packet, and the round trip travel time. The most obvious thing that the output above tells you is that the server beast is alive and connected to the network.
 

The ICMP sequence number is a particularly valuable piece of information. Discontinuities in the sequence indicate dropped packets. They’re normally accompanied by a message for each missing packet.
 

Despite the fact that IP does not guarantee the delivery of packets, a healthy network should drop very few of them. Lost-packet problems are important to track down because they tend to be masked by higher-level protocols. The network may appear to function correctly, but it will be slower than it ought to be, not only because of the retransmitted packets but also because of the protocol overhead needed to detect and manage them.
 

To track down the cause of disappearing packets, first run traceroute (see the next section) to discover the route that packets are taking to the target host. Then ping the intermediate gateways in sequence to discover which link is dropping packets. To pin down the problem, you need to send a fair number of packets. The fault generally lies on the link between the last gateway you can ping without loss of packets and the gateway beyond that.
 

The round trip time reported by ping gives you insight into the overall performance of a path through a network. Moderate variations in round trip time do not usually indicate problems. Packets may occasionally be delayed by tens or hundreds of milliseconds for no apparent reason; that’s just the way IP works. You should expect to see a fairly consistent round trip time for the majority of packets, with occasional lapses. Many of today’s routers implement rate-limited or lower-priority responses to ICMP packets, which means that a router may delay responding to your ping if it is already dealing with a lot of other traffic.
 

The ping program can send echo request packets of any size, so by using a packet larger than the MTU of the network (1,500 bytes for Ethernet), you can force fragmentation. This practice helps you identify media errors or other low-level issues such as problems with a congested network or VPN.
 

On Linux systems, you specify the desired packet size in bytes with the -s flag.
 

$ ping -s 1500 cuinfo.cornell.edu
 

Under Solaris, HP-UX, and AIX, you simply add the desired packet size to the end of the ping command.
 

$ ping cuinfo.cornell.edu 1500
 

Note that even a simple command like ping can have dramatic effects. In 1998, the so-called Ping of Death attack crashed large numbers of UNIX and Windows systems. It was launched simply by transmission of an overly large ping packet. When the fragmented packet was reassembled, it filled the receiver’s memory buffer and crashed the machine. The Ping of Death issue has long since been fixed, but several other caveats should be kept in mind regarding ping.
 

First, it is hard to distinguish the failure of a network from the failure of a server with only the ping command. In an environment where ping tests normally work, a failed ping just tells you that something is wrong.
 

Second, a successful ping does not guarantee much about the target machine’s state. Echo request packets are handled within the IP protocol stack and do not require a server process to be running on the probed host. A response guarantees only that a machine is powered on and has not experienced a kernel panic. You’ll need higher-level methods to verify the availability of individual services such as HTTP and DNS.
 

21.3 Smokeping: Gather Ping Statistics Over Time
 

As mentioned earlier, even a healthy network occasionally drops a packet. On the other hand, networks should not drop packets regularly, even at a low rate, because the impact on users can be disproportionately severe. Because high-level protocols often function even in the presence of packet loss, you might never notice dropped packets unless you’re actively monitoring for them.
 

For this purpose, you may want to check out SmokePing, an open source tool by Tobias Oetiker that keeps track of network latencies. SmokePing sends several ping packets to a target host at regular intervals. It shows the history of each monitored link through a web front end and can send alarms when things go amiss. You can get a copy from oss.oetiker.ch/smokeping.
 

Exhibit A shows a SmokePing graph. The vertical axis is the round trip time of pings, and the horizontal axis is time (weeks). The black line from which the gray spikes stick up indicates the median round trip time; the spikes themselves are the transit times of individual packets. Since the gray in this graph appears only above the median line, the great majority of packets must be traveling at close to the median speed, with just a few being delayed. This is a typical finding.
 

[image: Image]
 

Exhibit A Sample SmokePing graph
 

The stair-stepped shape of the median line indicates that the baseline transit time to this destination has changed several times during the monitoring period. The most likely hypotheses to explain this observation are either that the host is reachable by several routes or that it is actually a collection of several hosts that have the same DNS name but multiple IP addresses.
 

 21.4 Traceroute: Trace IP Packets
 

traceroute, originally written by Van Jacobson, uncovers the sequence of gateways through which an IP packet travels to reach its destination. All modern operating systems come with some version of traceroute.2 The syntax is simply
 

traceroute
hostname
 

There are a variety of options, most of which are not important in daily use. As usual, the hostname can be specified as either a DNS name or an IP address. The output is simply a list of hosts, starting with the first gateway and ending at the destination. For example, a traceroute from our host jaguar to our host nubark produces the following output:
 

[image: Image]
 

From this output we can tell that jaguar is three hops away from nubark, and we can see which gateways are involved in the connection. The round trip time for each gateway is also shown—three samples for each hop are measured and displayed. A typical traceroute between Internet hosts often includes more than 15 hops, even if the two sites are just across town.
 

traceroute works by setting the time-to-live field (TTL, actually “hop count to live”) of an outbound packet to an artificially low number. As packets arrive at a gateway, their TTL is decreased. When a gateway decreases the TTL to 0, it discards the packet and sends an ICMP “time exceeded” message back to the originating host.
 

The first three traceroute packets have their TTL set to 1. The first gateway to see such a packet (lab-gw in this case) determines that the TTL has been exceeded and notifies jaguar of the dropped packet by sending back an ICMP message. The sender’s IP address in the header of the error packet identifies the gateway, and traceroute looks up this address in DNS to find the gateway’s hostname.
 

See page 582 for more information about reverse DNS lookups.

 

To identify the second-hop gateway, traceroute sends out a second round of packets with TTL fields set to 2. The first gateway routes the packets and decreases their TTL by 1. At the second gateway, the packets are then dropped and ICMP error messages are generated as before. This process continues until the TTL is equal to the number of hops to the destination host and the packets reach their destination successfully.
 

Most routers send their ICMP messages from the interface “closest” to the destination. If you run traceroute backward from the destination host, you may see different IP addresses being used to identify the same set of routers. You might also discover that packets flowing in the reverse direction take a completely different path, a configuration known as asymmetric routing.
 

Since traceroute sends three packets for each value of the TTL field, you may sometimes observe an interesting artifact. If an intervening gateway multiplexes traffic across several routes, the packets might be returned by different hosts; in this case, traceroute simply prints them all.
 

Let’s look at a more interesting example from a host in Switzerland to caida.org at the San Diego Supercomputer Center:3
 

[image: Image]
 

This output shows that packets travel inside Init Seven’s network for a long time. Sometimes we can guess the location of the gateways from their names. Init Seven’s core stretches all the way from Zurich (zur) to Frankfurt (fra), Amsterdam (ams), London (lon), and finally, Los Angeles (lax). Here, the traffic transfers to cenic.net, which delivers the packets to the caida.org host within the network of the San Diego Supercomputer Center (sdsc) in La Jolla, CA.
 

At hop 8, we see a star in place of one of the round trip times. This notation means that no response (error packet) was received in response to the probe. In this case, the cause is probably congestion, but that is not the only possibility. traceroute relies on low-priority ICMP packets, which many routers are smart enough to drop in preference to “real” traffic. A few stars shouldn’t send you into a panic.
 

If you see stars in all the time fields for a given gateway, no “time exceeded” messages are arriving from that machine. Perhaps the gateway is simply down. Sometimes, a gateway or firewall is configured to silently discard packets with expired TTLs. In this case, you can still see through the silent host to the gateways beyond. Another possibility is that the gateway’s error packets are slow to return and that traceroute has stopped waiting for them by the time they arrive.
 

Some firewalls block ICMP “time exceeded” messages entirely. If such a firewall lies along the path, you won’t get information about any of the gateways beyond it. However, you can still determine the total number of hops to the destination because the probe packets eventually get all the way there.
 

Also, some firewalls may block the outbound UDP datagrams that traceroute sends to trigger the ICMP responses. This problem causes traceroute to report no useful information at all. If you find that your own firewall is preventing you from running traceroute, make sure the firewall has been configured to pass UDP ports 33434–33534 as well as ICMP ECHO (type 8) packets.
 

A slow link does not necessarily indicate a malfunction. Some physical networks have a naturally high latency; UMTS/EDGE/GPRS wireless networks are a good example. Sluggishness can also be a sign of high load on the receiving network. Inconsistent round trip times would support such a hypothesis.
 

Sometimes, you may see the notation !N instead of a star or round trip time. It indicates that the current gateway sent back a “network unreachable” error, meaning that it doesn’t know how to route your packet. Other possibilities include !H for “host unreachable” and !P for “protocol unreachable.” A gateway that returns any of these error messages is usually the last hop you can get to. That host usually has a routing problem (possibly caused by a broken network link): either its static routes are wrong, or dynamic protocols have failed to propagate a usable route to the destination.
 

If traceroute doesn’t seem to be working for you or is working slowly, it may be timing out while trying to resolve the hostnames of gateways through DNS. If DNS is broken on the host you are tracing from, use traceroute -n to request numeric output. This option disables hostname lookups; it may be the only way to get traceroute to function on a crippled network.
 

traceroute needs root privileges to operate. To be available to normal users, it must be installed setuid root. Several Linux distributions include the traceroute command but leave off the setuid bit. Depending on your environment and needs, you can either turn the setuid bit back on or give interested users access to the command through sudo.
 

Recent years have seen the introduction of several new traceroute-like utilities that can bypass ICMP-blocking firewalls. See the PERTKB Wiki for an overview of these tools at tinyurl.com/y99qh6u. We especially like mtr, which has a top-like interface and shows a sort of live traceroute. Very neat!
 

When debugging routing issues, it can be helpful to take a look at your site from the perspective of the outside world. Several web-based route tracing services let you do this sort of inverse traceroute right from a browser window. Thomas Kernen maintains a list of these services at traceroute.org.
 

21.5 Netstat: Get Network Statistics
 

netstat collects a wealth of information about the state of your computer’s networking software, including interface statistics, routing information, and connection tables. There isn’t really a unifying theme to the different sets of output, except that they all relate to the network. Think of netstat as the “kitchen sink” of network tools—it exposes a variety of network information that doesn’t fit anywhere else. Here, we discuss the five most common uses of netstat:
 

• Inspecting interface configuration information

 

• Monitoring the status of network connections

 

• Identifying listening network services

 

• Examining the routing table

 

• Viewing operational statistics for various network protocols

 

Inspecting Interface Configuration Information
 

netstat -i shows the configuration and state of each of the host’s network interfaces along with the associated traffic counters. The output is generally tabular but the details vary by system:
 

[image: Image]
 

[image: Image] On Linux, you may want to use ifconfig -a instead of netstat -i. It prints similar information in a more detailed and more verbose format.
 

[image: Image]
 

This host has two network interfaces: one for regular traffic, plus a second interface that is currently not in use (it has no IP address and is not marked UP). RX packets and TX packets report the number of packets that have been received and transmitted on each interface since the machine was booted. Many types of errors are counted in the error buckets, and it is normal for a few to show up.
 

Errors should be less than 1% of the associated packets. If your error rate is high, compare the rates of several neighboring machines. A large number of errors on a single machine suggests a problem with that machine’s interface or connection. A high error rate everywhere most likely indicates a media or network problem. One of the most common causes of a high error rate is an Ethernet speed or duplex mismatch caused by a failure of autosensing or autonegotiation.
 

Although a collision is a type of error, it is counted separately by netstat. The field labeled Collisions reports the number of collisions that were experienced while packets were being sent. Use this number to calculate the percentage of output packets (TX packets) that resulted in collisions.
 

On a switched network with full duplex links—that is, on any modern variety of Ethernet—you should not see any collisions, even when the network is under heavy load. If you do see collisions, something is seriously wrong. You might also want to make sure that flow control is enabled on your switches and routers, especially if your network contains links of different speeds.
 

We have often traced network problems back to el cheapo pieces of desktop network equipment, such as a switch that has gone haywire and needs to be power-cycled or replaced.
 

Monitoring the Status of Network Connections
 

With no arguments, netstat displays the status of active TCP and UDP ports. Inactive (“listening”) servers that are waiting for connections are normally hidden, but you can see them with netstat -a.4 The output looks like this:
 

[image: Image]
 

This example is from the host otter, and it has been severely pruned; for example, UDP and UNIX socket connections are not displayed. The output above shows an inbound SSH connection, two inbound IMAPS connections, one inbound HTTP connection, an outbound MySQL connection, and a bunch of ports listening for other connections.
 

Addresses are shown as hostname.service, where the service is a port number. For well-known services, netstat shows the port symbolically, using the mapping defined in /etc/services. You can obtain numeric addresses and ports with the -n option to netstat. Like most network debugging tools, netstat is painful to use without the -n flag if your DNS is broken.
 

Send-Q and Recv-Q show the sizes of the local host’s send and receive queues for the connection; the queue sizes on the other end of a TCP connection might be different. These numbers should tend toward 0 and at least not be consistently nonzero. (Of course, if you are running netstat over a network terminal, the send queue for your connection may never be 0.)
 

The connection state has meaning only for TCP; UDP is a connectionless protocol. The most common states you’ll see are ESTABLISHED for currently active connections, LISTEN for servers waiting for connections (not normally shown without -a), and TIME_WAIT for connections in the process of closing.
 

netstat -a is primarily useful for debugging higher-level problems once you have determined that basic networking facilities are working correctly. It lets you verify that servers are set up correctly and facilitates the diagnosis of certain types of miscommunication, particularly with TCP. For example, a connection that stays  in state SYN_SENT identifies a process that is trying to contact a nonexistent or inaccessible network server.
 

If netstat shows a lot of connections in the SYN_WAIT condition, your host probably cannot handle the number of connections being requested. This inadequacy may be due to kernel tuning limitations or even to malicious flooding.
 

See Chapter 13 for more information about kernel tuning.

 

Identifying listening network services
 

One common question in this security-conscious era is “What processes on this machine are listening on the network for incoming connections?” netstat -a shows all the ports that are actively listening (any TCP port in state LISTEN, and potentially any UDP port), but on a busy machine, those lines can get lost in the noise of established TCP connections.
 

[image: Image] On Linux, use netstat -l to see only the listening ports. The output format is the same as for netstat -a. You can also add the -p flag to make netstat identify the specific process associated with each listening port.5 The sample output below shows three common services (sshd, sendmail, and named) followed by an unusual one:
 

[image: Image]
 

mudd with PID 38221 is listening on UDP port 962. If you don’t know what mudd is, you might want to follow up on this.
 

For security, it’s also helpful to look at machines from an outsider’s perspective by running a port scanner. nmap is very helpful for this; see page 914.
 

Examining the Routing Table
 

netstat -r displays the kernel’s routing table. The following sample output is from a Red Hat machine with two network interfaces. (The output varies slightly among operating systems.)
 

[image: Image]
 

Destinations and gateways can be displayed either as hostnames or as IP addresses; the -n flag requests numeric output.
 

Flags characterize the route: U means up (active), G is a gateway, and H is a host route. U, G, and H together indicate a host route that passes through an intermediate gateway. The D flag (not shown) indicates a route resulting from an ICMP redirect. The remaining fields show TCP segment and window sizes along this route along with an initial round trip time estimate and the name of the interface.
 

See page 466 for more information about the routing table.

 

Use this form of netstat to check the health of your system’s routing table. It’s particularly important to verify that the system has a default route and that this route is correct. The default route is represented by an all-0 destination address (0.0.0.0) or by the word default. It is possible not to have a default route entry, but such a configuration would be highly atypical on anything but a backbone router.
 

Viewing Operational Statistics for Network Protocols
 

netstat -s dumps the contents of counters that are scattered throughout the network code. The output has separate sections for IP, ICMP, TCP, and UDP. Below are pieces of netstat -s output from a typical server; they have been edited to show only the tastiest pieces of information.
 

[image: Image]
 

Be sure to check that packets are not being dropped or discarded. It is acceptable for a few incoming packets to be discarded, but a quick rise in this metric usually indicates a memory shortage or some other resource problem.
 

[image: Image]
 

In this example, the number of echo requests in the input section matches the number of echo replies in the output section. Note that “destination unreachable” messages can still be generated even when all packets are apparently forwardable.
 

Bad packets eventually reach a gateway that rejects them, and error messages are then sent back along the gateway chain.
 

[image: Image]
 

It’s a good idea to develop a feel for the normal ranges of these statistics so that you can recognize pathological states.
 

21.6 Inspection of Live Interface Activity
 

One good way to identify network problems is to look at what’s happening right now. How many packets were sent in the last five minutes on a given interface? How many bytes? Are collisions or other errors occurring? You can answer all these questions by watching network activity in real time. Different tools come into play depending on your OS.
 

[image: Image] On Solaris, you can append an interval in seconds and a count value to netstat -i:
 

[image: Image]
 

[image: Image] HP-UX and AIX expect a single number that sets the interval (in seconds) at which statistics are to be printed.
 

[image: Image]
 

[image: Image] Linux’s netstat has no interval option, so for Linux we recommend a completely different tool: sar. (We discuss sar from the perspective of general system monitoring on page 1129.) Most distributions don’t install sar by default, but it’s always available as an optional package. The example below requests reports every two seconds for a period of one minute (i.e., 30 reports). The DEV argument is a literal keyword, not a placeholder for a device or interface name.
 

[image: Image]
 

This example is from a Red Hat machine with two network interfaces. The output includes instantaneous and average readings of interface utilization in units of both bytes and packets. The second interface (eth1) is clearly not in use.
 

The first two columns state the time at which the data was sampled and the names of the network interfaces. The next two columns show the number of packets received and transmitted, respectively.
 

The rxbyt/s and txbyt/s columns are probably the most useful since they show the actual bandwidth in use. The final three columns give statistics on compressed (rxcmp/s, txcmp/s) and multicast (rxmcst/s) packets.
 

sar -n DEV is especially useful for tracking down the source of errors. ifconfig can alert you to the existence of problems, but it can’t tell you whether the errors came from a continuous, low-level problem or from a brief but catastrophic event. Observe the network over time and under a variety of load conditions to solidify your impression of what’s going on. Try running ping with a large packet payload (size) while you watch the output of sar -n DEV.
 

21.7 Packet Sniffers
 

tcpdump and Wireshark belong to a class of tools known as packet sniffers. They listen to network traffic and record or print packets that meet criteria of your choice. For example, you can inspect all packets sent to or from a particular host, or TCP packets related to one particular network connection.
 

Packet sniffers are useful both for solving problems that you know about and for discovering entirely new problems. It’s a good idea to take an occasional sniff of your network to make sure the traffic is in order.
 

Packet sniffers need to be able to intercept traffic that the local machine would not normally receive (or at least, pay attention to), so the underlying network hardware must allow access to every packet. Broadcast technologies such as Ethernet work fine, as do most other modern local area networks.
 

Since packet sniffers need to see as much of the raw network traffic as possible, they can be thwarted by network switches, which by design try to limit the propagation of “unnecessary” packets. However, it can still be informative to try out a sniffer on a switched network. You may discover problems related to broadcast or multicast packets. Depending on your switch vendor, you may be surprised at how much traffic you can see.
 

See page 537 for more information about network switches.

 

In addition to having access to all network packets, the interface hardware must transport those packets up to the software layer. Packet addresses are normally checked in hardware, and only broadcast/multicast packets and those addressed to the local host are relayed to the kernel. In “promiscuous mode,” an interface lets the kernel read all packets on the network, even the ones intended for other hosts.
 

Packet sniffers understand many of the packet formats used by standard network services, and they can print these packets in human-readable form. This capability makes it easier to track the flow of a conversation between two programs. Some sniffers print the ASCII contents of a packet in addition to the packet header and so are useful for investigating high-level protocols.
 

Since some protocols send information (and even passwords) across the network as cleartext, you must take care not to invade the privacy of your users. On the other hand, nothing quite dramatizes the need for cryptographic security like the sight of a plaintext password captured in a network packet.
 

Sniffers read data from a raw network device, so they must run as root. Although this root limitation serves to decrease the chance that normal users will listen in on your network traffic, it is really not much of a barrier. Some sites choose to remove sniffer programs from most hosts to reduce the chance of abuse. If nothing else, you should check your systems’ interfaces to be sure they are not running in promiscuous mode without your knowledge or consent. On all systems, the output of ifconfig labels promiscuous interfaces with the flag PROMISC. On Linux systems, the fact that an interface has been switched to promiscuous mode is also recorded in the kernel log.
 

Tcpdump: Industry-Standard Packet Sniffer
 

tcpdump, yet another amazing network tool by Van Jacobson, is available as a package for most Linux distributions and can be installed from source on our other example systems. tcpdump has long been the industry-standard sniffer, and most other network analysis tools read and write trace files in tcpdump format, also known as libpcap format.
 

By default, tcpdump tunes in on the first network interface it comes across. If it chooses the wrong interface, you can force an interface with the -i flag. If DNS is broken or you just don’t want tcpdump doing name lookups, use the -n option. This option is important because slow DNS service can cause the filter to start dropping packets before they can be dealt with by tcpdump.
 

The -v flag increases the information you see about packets, and -vv gives you even more data. Finally, tcpdump can store packets to a file with the -w flag and can read them back in with the -r flag.
 

Note that tcpdump -w saves only packet headers by default. This default makes for small dumps, but the most helpful and relevant information may be missing. So, unless you are sure you need only headers, use the -s option with a value on the order of 1560 (actual values are MTU-dependent) to capture whole packets for later inspection.
 

As an example, the following truncated output comes from the machine named nubark. The filter specification host bull limits the display of packets to those that directly involve the machine bull, either as source or as destination.
 

[image: Image]
 

The first packet shows bull sending a DNS lookup request about atrust.com to nubark. The response is the IP address of the machine associated with that name, which is 66.77.122.161. Note the time stamp on the left and tcpdump’s under-standing of the application-layer protocol (in this case, DNS). The port number on bull is arbitrary and is shown numerically (41537), but since the server port number (53) is well known, tcpdump shows its symbolic name, domain.
 

Packet sniffers can produce an overwhelming amount of information—overwhelming not only for you but also for the underlying operating system. To avoid this problem on busy networks, tcpdump lets you specify complex filters. For example, the following filter collects only incoming web traffic from one subnet:
 

$ sudo tcpdump src net 192.168.1.0/24 and dst port 80
 

The tcpdump man page contains several good examples of advanced filtering along with a complete listing of primitives.6
 

[image: Image] Solaris includes a sniffer in the base system that works much like tcpdump. It is called snoop. HP-UX, AIX, and most Linux distributions do not seem to include a packet sniffer in the base install.
 

[image: Image]
 

If you are using Solaris zones, note that snoop only works properly in the global zone, even when you are debugging a problem in a nonglobal zone.
 

Wireshark and TShark: Tcpdump on Steroids
 

tcpdump has been around since approximately the dawn of time, but a newer open source package called Wireshark (formerly known as Ethereal) has been gaining ground rapidly. Wireshark is under active development and incorporates more functionality than most commercial sniffing products. It’s an incredibly powerful analysis tool and should be included in every networking expert’s tool kit. It’s also an invaluable learning aid.
 

Wireshark includes both a GUI interface (wireshark) and a command-line interface (tshark). Linux distributions make it a snap to install. UNIX administrators should check wireshark.org, which hosts the source code and a variety of precom-piled binaries.
 

Wireshark can read and write trace files in the formats used by many other packet sniffers. Another handy feature is that you can click on any packet in a TCP conversation and ask Wireshark to reassemble (splice together) the payload data of all the packets in the stream. This feature is useful if you want to examine the data transferred during a complete TCP exchange, such as a connection used to transmit an email message across the network.
 

Wireshark’s capture filters are functionally identical to tcpdump’s since Wireshark uses the same underlying libpcap library. Watch out, though—one important gotcha with Wireshark is the added feature of “display filters,” which affect what you see rather than what’s actually captured by the sniffer. The display filter syntax is more powerful than the libpcap syntax supported at capture time. The display filters do look somewhat similar, but they are not the same.
 

Wireshark has built-in dissectors for a wide variety of network protocols, including many used to implement SANs. It breaks packets into a structured tree of information in which every bit of the packet is described in plain English.
 

See page 274 for more information about SANs.

 

Exhibit B on the next page shows Wireshark’s capture of a DNS query and response. The table near the top of the screen shows the two packets involved. The first packet is the request on its way to the DNS server, and the second packet is the answer coming back. The response packet is selected, so the middle panel shows its disassembly. The lower panel shows the packet in the form of raw bytes.
 

The expanded section of the tree shows the packet’s DNS payload. The raw content can also be interesting to look at because it sometimes contains telltale text fragments that hint at what is going on. Scanning the text is especially handy when there is no built-in dissector for the current protocol. Wireshark’s help menu provides many great examples to get you started. Experiment!
 

Exhibit B A pair of DNS packets in Wireshark
 

[image: Image]
 

A note of caution regarding Wireshark: although it has lots of neat features, it has also required many security updates over the years. Run a current copy, and do not leave it running indefinitely on sensitive machines; it might be a potential route of attack.
 

21.8 The ICSI Netalyzr
 

We have looked at several tools for network debugging and for reviewing specific aspects of the network configuration. But even with your own best efforts at monitoring, it’s useful to have someone else take a peek at your network from time to time. The Netalyzr is a service provided by the International Computer Science Institute at Berkeley that provides a useful “second opinion.” To use it, just point your Java-enabled browser at netalyzr.icsi.berkeley.edu (note: missing ‘e’).
 

The Netalyzr tests your Internet connection in a variety of ways. It has the advantage of being able to access your network both from inside (through the Java program that runs in your browser) and from the perspective of ICSI’s servers.
 

Exhibit C shows the Netalyzr report for a workstation on a private network that’s attached to the outside world through a DSL link. The Netalyzr seems to be generally happy with the setup except for a few quibbles about the Apache web proxy that’s in use. (Blocking malformed HTTP requests may actually be a useful feature, however.)
 

Exhibit C A Netalyzr report
 

[image: Image]
 

The full report contains sections that report on the environment’s IP connectivity, bandwidth, latency, buffering, and handling of fragmented packets, among other topics. The tests for DNS and HTTP anomalies are particularly strong.
 

21.9 Network Management Protocols
 

Networks have grown rapidly in size and value over the last 20 years, and along with that growth has come the need for an efficient way to manage them. Commercial vendors and standards organizations have approached this challenge in many different ways. The most significant developments have been the introduction of several standard device-management protocols and a glut of high-level products that exploit those protocols.
 

Network management protocols standardize a way of probing a device to discover its configuration, health, and network connections. In addition, they allow some of this information to be modified so that network management can be standardized across different kinds of machinery and performed from a central location.
 

The most common protocol used with TCP/IP is the Simple Network Management Protocol, SNMP. Despite its name, SNMP is actually quite complex. It  defines a hierarchical namespace of management data and a way to read and write the data at each node. It also defines a way for managed servers and devices (“agents”) to send event notification messages (“traps”) to management stations.
 

The protocol itself is simple; most of SNMP’s complexity lies above the protocol layer in the conventions for constructing the namespace and in the unnecessarily baroque vocabulary that surrounds SNMP like a protective shell. As long as you don’t think too hard about its internal mechanics, SNMP is easy to use.
 

Several other standards are floating around out there. Many of them originate from the Distributed Management Task Force (DMTF), which is responsible for concepts such as WBEM (Web-Based Enterprise Management), DMI (Desktop Management Interface), and the CIM (Conceptual Interface Model). Some of these concepts, particularly DMI, have been embraced by several major vendors and may eventually become a useful complement to (or even a replacement for) SNMP. For now, however, the vast majority of networking gear management takes place over SNMP.
 

Since SNMP is only an abstract protocol, you need both a server program (“agent”) and a client (“manager”) to use it. Perhaps counterintuitively, the server side of SNMP represents the thing being managed, and the client side is the manager. Clients range from simple command-line utilities to dedicated management stations that graphically display networks and faults in eye-popping color.
 

Dedicated network management stations are the primary reason for the existence of management protocols. Most products let you build a topographic model of the network as well as a logical model; the two are presented together on-screen, along with a continuous indication of the status of each component.
 

Just as a chart can reveal the hidden meaning in a page of numbers, a network management station can summarize the state of a large network in a way that’s easily accepted by a human brain. This kind of executive summary is almost impossible to get in any other way.
 

A major advantage of network management by protocol is that it promotes all kinds of network hardware onto a level playing field. UNIX and Linux systems are all basically similar, but routers, switches, and other low-level components are not. With SNMP, they all speak a common language and can be probed, reset, and configured from a central location. It’s nice to have one consistent interface to all the network’s hardware.
 

21.10 SNMP: The Simple Network Management Protocol
 

When SNMP first became widely used in the early 1990s, it started a mini gold rush. Hundreds of companies came out with SNMP management packages. Most pieces of network hardware that are intended for production use (as opposed to household use) now incorporate an SNMP agent.
 

Before we dive into the gritty details of SNMP, we should note that the terminology associated with it is some of the most wretched technobabble to be found in the networking arena. The standard names for SNMP concepts and objects actively lead you away from an understanding of what’s going on. The people responsible for this state of affairs should have their keyboards smashed.
 

SNMP Organization
 

SNMP data is arranged in a standardized hierarchy. This enforced organization allows the data space to remain both universal and extensible, at least in theory. Large portions are set aside for future expansion, and vendor-specific additions are localized to prevent conflicts. The naming hierarchy is made up of “Management Information Bases” (MIBs), structured text files that describe the data accessible through SNMP. MIBs contain descriptions of specific data variables, which are referred to with names known as object identifiers, or OIDs.
 

Translated into English, this means that SNMP defines a hierarchical namespace of variables whose values are tied to “interesting” parameters of the system. An OID is just a fancy way of naming a specific managed piece of information.
 

The SNMP hierarchy is much like a filesystem. However, a dot is used as the separator character, and each node is given a number rather than a name. By convention, nodes are also given text names for ease of reference, but this naming is really just a high-level convenience and not a feature of the hierarchy. (It is similar in principle to the mapping of hostnames to IP addresses.)
 

For example, the OID that refers to the uptime of the system is 1.3.6.1.2.1.1.3. This OID is also known by the human-readable (though not necessarily “human-understandable without additional documentation”) name
 

iso.org.dod.internet.mgmt.mib-2.system.sysUpTime

 

The top levels of the SNMP hierarchy are political artifacts and generally do not contain useful data. In fact, useful data can currently be found only beneath the OID iso.org.dod.internet.mgmt (numerically, 1.3.6.1.2).
 

The basic SNMP MIB for TCP/IP (MIB-I) defines access to common management data: information about the system, its interfaces, address translation, and protocol operations (IP, ICMP, TCP, UDP, and others). A later and more complete reworking of this MIB (called MIB-II) is defined in RFC1213. Most vendors that provide an SNMP server support MIB-II. Table 21.1 on the next page presents a sampling of nodes from the MIB-II namespace.
 

In addition to the basic MIB, there are MIBs for various kinds of hardware interfaces and protocols, MIBs for individual vendors, and MIBs for particular hardware products.
 

A MIB is only a schema for naming management data. To be useful, a MIB must be backed up with agent-side code that maps between the SNMP namespace and the device’s actual state. SNMP agents that run on UNIX, Linux, or Windows come with built-in support for MIB-II. Most can be extended to support supplemental MIBs and to interface with scripts that do the actual work of fetching and storing these MIBs’ associated data.
 

Table 21.1 Selected OIDs from MIB-II
 

[image: Image]
 

SNMP agents are complex beasts, and they have seen their share of security issues. Instead of relying on whatever agent your vendor happens to toss over the wall to you, it may be prudent to compile and install a current copy of NET-SNMP. See The NET-SNMP agent, opposite page, for details.
 

SNMP Protocol Operations
 

There are only four basic SNMP operations: get, get-next, set, and trap.
 

Get and set are the basic operations for reading and writing data to the node identified by a specific OID. Get-next steps through a MIB hierarchy and can read the contents of tables as well.
 

A trap is an unsolicited, asynchronous notification from server (agent) to client (manager) that reports the occurrence of an interesting event or condition. Several standard traps are defined, including “I’ve just come up” notifications, reports of failure or recovery of a network link, and announcements of various routing and authentication problems. Many other not-so-standard traps are in common use, including some that simply watch the values of other SNMP variables and fire off a message when a specified range has been exceeded. The mechanism by which the destinations of trap messages are specified depends on the implementation of the agent.
 

Since SNMP messages can potentially modify configuration information, some security mechanism is needed. The simplest version of SNMP security is based on the concept of an SNMP “community string,” which is really just a horribly obfuscated way of saying “password.” There’s usually one community string for read-only access and another that allows writing.
 

Although many organizations still use the original community-string-based authentication, version 3 of the SNMP standard introduced access control methods with higher security. Although configuring this more advanced security requires a little extra work, the risk reduction is well worth the effort. If for some reason you can’t use version 3 SNMP security, at least be sure you’ve selected a hard-to-guess community string.
 

RMON: Remote Monitoring MIB
 

The RMON MIB permits the collection of generic network performance data (that is, data not tied to any one particular device). Network sniffers or “probes” can be deployed around the network to gather information about utilization and performance. Once a useful amount of data has been collected, statistics and interesting information about the data can be shipped back to a central management station for analysis and presentation. Many probes have a packet capture buffer and can provide a sort of remote tcpdump facility.
 

RMON is defined in RFC1757, which became a draft standard in 1995. The MIB is broken up into nine “RMON groups.” Each group contains a different set of network statistics. If you have a large network with many WAN connections, consider buying probes to reduce the SNMP traffic across your WAN links. Once you have access to statistical summaries from the RMON probes, there’s usually no need to gather raw data remotely. Many switches and routers support RMON and store at least some network statistics.
 

21.11 The NET-SNMP Agent
 

When SNMP was first standardized, Carnegie Mellon University and MIT both produced implementations. CMU’s implementation was more complete and quickly became the de facto standard. When active development at CMU died down, researchers at UC Davis took over the software. After stabilizing the code, they rehomed it at the SourceForge repository. The package is now known as NET-SNMP, and it is the authoritative free SNMP implementation for UNIX and Linux. The latest version is available from net-snmp.sourceforge.net.
 

NET-SNMP includes an agent, some command-line tools, a server for receiving traps, and even a library for developing SNMP-aware applications. We discuss the agent in some detail here, and on page 885 we look at the command-line tools.
 

As in other implementations, the agent collects information about the local host and serves it to SNMP managers across the network. The default installation includes MIBs for network interfaces, memory, disk, processes, and CPU. The agent is easily extensible since it can execute an arbitrary command and return the  command’s output as an SNMP response. You can use this feature to monitor almost anything on your system with SNMP.
 

By default, the agent is installed as /usr/sbin/snmpd. It is usually started at boot time and reads its configuration information from files in the /etc/snmp direc-tory. The most important of these files is snmpd.conf, which contains most of the configuration information and ships with a bunch of sample data collection methods enabled. Although the intention of the authors seems to have been for users to edit only the snmpd.local.conf file, you must edit snmpd.conf at least once to disable any default data collection methods that you don’t plan to use.
 

The NET-SNMP configure script lets you specify a default log file and a couple of other local settings. You can use snmpd -l to specify an alternative log file or -s to direct log messages to syslog. Table 21.2 lists snmpd’s most important flags. We recommend that you always use the -a flag. For debugging, you should use the -V, -d, or -D flags, each of which gives progressively more information.
 

Table 21.2 Useful flags for NET-SNMP snmpd
 

[image: Image]
 

It’s worth mentioning that many useful SNMP-related Perl, Ruby, and Python modules are available from the respective module repositories.
 

21.12 Network Management Applications
 

We begin this section by exploring the simplest SNMP management tools: the commands provided with the NET-SNMP package. These commands can familiarize you with SNMP, and they’re also great for one-off checks of specific OIDs. Next, we look at Cacti, a program that generates beautiful historical graphs of SNMP values, and Nagios, an event-based monitoring system. We conclude with some recommendations of what to look for when purchasing a commercial network monitoring system.
 

The NET-SNMP Tools
 

Even if your system comes with its own SNMP server, you may still want to compile and install the client-side tools from the NET-SNMP package. Table 21.3 lists the most commonly used tools.
 

Table 21.3 Command-line tools in the NET-SNMP package
 

[image: Image]
 

In addition to their value on the command line, these programs are tremendously handy in simple scripts. It is often helpful to have snmpget save interesting data values to a text file every few minutes. (Use cron to implement the scheduling; see Chapter 9, Periodic Processes.)
 

snmpwalk is another useful tool. Starting at a specified OID (or at the beginning of the MIB, by default), this command repeatedly makes “get next” calls to an agent. This behavior results in a complete list of available OIDs and their associated values. snmpwalk is particularly handy when you are trying to identify new OIDs to monitor from your fancy enterprise management tool.
 

Here’s a truncated sample snmpwalk of the host tuva. The community string is “secret813community”, and -v1 specifies simple authentication.
 

[image: Image]
 

In this example, we see some general information about the system, followed by statistics about the host’s network interfaces: lo0, eth0, and eth1. Depending on the MIBs supported by the agent you are managing, a complete dump can run to hundreds of lines.
 

SNMP Data Collection and Graphing
 

Network-related data is best appreciated in visual and historical context. It’s important to have some way to track and graph performance metrics, but your exact choice of software for doing this is not critical.
 

One of the most popular early SNMP polling and graphing packages was MRTG, written by Tobi Oetiker. MRTG is written mostly in Perl, runs regularly out of cron, and can collect data from any SNMP source. Each time the program runs, new data is stored and new graph images are created.
 

Another useful tool in this area is RRDtool, also by Tobi Oetiker. It is an application tool kit for storing and graphing performance metrics. All the leading open source monitoring solutions are based on RRDtool, including our favorite, Cacti.
 

Cacti, available from cacti.net, offers several attractive features. Using RRDtool as its back end, it stores monitoring data in zero-maintenance, statically sized databases. Cacti stores only enough data to create the graphs you want. For example, Cacti could store one sample every minute for a day, one sample every hour for a week, and one sample every week for a year. This consolidation scheme lets you maintain important historical information without having to store unimportant details or consume your time with database administration.
 

Second, Cacti can record and graph any SNMP variable, as well as many other performance metrics. You’re free to collect whatever data you want. When combined with the NET-SNMP agent, Cacti generates a historical perspective on almost any system or network resource.
 

Exhibit D shows some examples of the graphs created by Cacti. These graphs show the load average on a server over a period of multiple weeks along with a day’s traffic on a network interface.
 

Cacti sports easy web-based configuration as well as all the other built-in benefits of RRDtool, such as low maintenance and beautiful graphing. See the RRDtool home page at rrdtool.org for links to the current versions of RRDtool and Cacti, as well as dozens of other monitoring tools.
 

Exhibit D Examples of Cacti graphs
 

[image: Image]
 

Nagios: Event-Based Service Monitoring
 

Nagios specializes in real-time reporting of error conditions. It includes scores of scripts for monitoring services of all shapes and sizes, along with extensive SNMP monitoring capabilities. Perhaps its greatest strength is its modular, heavily customizable configuration system that allows custom scripts to be written to monitor any conceivable metric. Although Nagios does not help you determine how much your bandwidth utilization has increased over the last month, it can page you when your web server goes down.
 

The Nagios distribution includes plug-ins that supervise a variety of common points of failure. You can whip up new monitors in Perl, or even in C if you are feeling ambitious. For notification methods, the distribution can send email, generate web reports, and use a dial-up modem to page you. As with the monitoring plug-ins, it’s easy to roll your own.
 

In addition to sending real-time notifications of service outages, Nagios keeps a historical archive of this data. It provides several powerful reporting interfaces that track availability and performance trends. Many organizations use Nagios to measure compliance with service level agreements; Exhibit E on the next page shows the availability of a DNS server.
 

Exhibit E Server availability as shown by nagios
 

[image: Image]
 

Nagios works very well for networks of fewer than a thousand hosts and devices. It is easy to customize and extend, and it includes powerful features such as redundancy, remote monitoring, and escalation of notifications. If you cannot afford a commercial network management tool, you should strongly consider Nagios. You can read more at nagios.org.
 

The Ultimate Network Monitoring Package: Still Searching
 

As we reviewed the state of network management packages for this edition of the book, we found the software landscape bustling with activity, just as it has been for most of the last decade. However, most packages are still using RRDtool somewhere in their guts to do their logging and graphing. No high-level standard akin to vi or emacs has yet arrived on the scene.
 

Two well-funded companies based on the “open source plus” model (GroundWork Open Source and Zenoss) have debuted network management packages backed by serious advertising dollars and polished interfaces. In the traditional free software arena, the packages Munin (munin.projects.linpro.no) and collectd (collectd.org) have gained quite a following.
 

Munin is especially popular in the Scandinavian countries. It’s built on a clever architecture in which the data collection plug-ins not only provide data but also tell the system how the data should be presented.
 

collectd is written in C for performance and portability. It runs even on tiny systems without hampering performance or requiring any additional dependencies. At the time of this writing, collectd comes with over 70 data collection plug-ins.
 

Commercial Management Platforms
 

Hundreds of companies sell network management software, and new competitors enter the market every week. Instead of recommending the hottest products of the moment (which may no longer exist by the time this book is printed), we identify the features you should look for in a network management system.
 

Data-gathering flexibility: Management tools must be able to collect data from sources other than SNMP. Many packages include ways to gather data from almost any network service. For example, some packages can make SQL database queries, check DNS records, and connect to web servers.
 

User interface quality: Expensive systems often offer a custom GUI or a web interface. Most well-marketed packages today tout their ability to understand XML templates for data presentation. A UI is not just more marketing hype—you need an interface that relays information clearly, simply, and comprehensibly.
 

Value: Some management packages come at a stiff price. HP’s OpenView is both one of the most expensive and one of the most widely adopted network management systems. Many corporations find definite value in being able to say that their site is managed by a high-end commercial system. If that isn’t so important to your organization, you should look at the other end of the spectrum for free tools like Cacti and Nagios.
 

Automated discovery: Many systems offer the ability to “discover” your network. Through a combination of broadcast pings, SNMP requests, ARP table lookups, and DNS queries, they identify all your local hosts and devices. All the discovery implementations we have seen work pretty well, but none are very accurate on a complex (or heavily firewalled) network.
 

Reporting features: Many products can send alert email, activate pagers, and automatically generate tickets for popular trouble-tracking systems. Make sure that the platform you choose accommodates flexible reporting; who knows what electronic devices you will be dealing with in a few years?
 

Configuration management: Some solutions step far beyond monitoring and alerting. They enable you to manage actual host and device configurations. For example, a CiscoWorks interface lets you change a router’s configuration in addition to monitoring its state with SNMP. Because device configuration information deepens the analysis of network problems, we predict that many packages will develop along these lines in the future.
 

21.13 Netflow: Connection-Oriented Monitoring
 

SNMP is widely known for its ability to report the amount of network traffic flowing through an interface. But if you want to know more about the exact type of traffic and its destinations, SNMP is not much help. On a UNIX box you could run a sniffer to unearth some additional details, but this option isn’t available on a dedicated router.
 

In response, router vendors have come up with their own solutions to this problem. The most popular of these solutions is Cisco’s NetFlow protocol.
 

NetFlow tracks every connection with seven keys: source and destination IP address, source and destination port number, protocol (TCP, UDP, etc.), type of service (ToS), and logical interface. This metadata, combined with additional information such as the number of packets and bytes involved, can be sent to any suitable collector.
 

The predominant NetFlow protocol versions are v5 and v7, which are usually lumped together because they’re the same except that v7 adds an additional field (source router). v7 is used on Cisco Catalyst switches. Version 9 is gaining popularity. Its template-based nature makes it very flexible.
 

You can have your NetFlow router send a running account of its metadata to a suitable receiver such as CAIDA’s cflowd. On a busy network link, this configuration generates a huge amount of data, so you may need to provision substantial disk space and look into analysis tools that are up to the task.
 

For the latter, one possibility is Dave Plonka’s FlowScan package. It has unfortunately not been updated in some time, but it still works well. You can find it at net.doit.wisc.edu/~plonka/FlowScan.
 

Monitoring Netflow Data with Nfdump and Nfsen
 

Another pair of useful tools for collecting and analyzing NetFlow data are Peter Haag’s nfdump (nfdump.sourceforge.net) and NfSen (nfsen.sourceforge.net). The collector (nfcapd) stores NetFlow data on disk for later processing by nfdump.
 

nfcapd and nfdump handle NetFlow protocol versions v5/v7 and v9. For IPv6 support, you’ll have to use v9; versions 5 and 7 do not support it.
 

nfdump works a bit like tcpdump (see page 875). It has a similar filter syntax that has been adapted for NetFlow data. Flexible output formats let you customize the display of records. Built-in summarizers show you the top N talkers7 on your network and other useful information.
 

The following (slightly condensed) nfdump output shows which IP addresses and networks exchange the most traffic, which ports are currently the most active, and more. The -s ip/flows option asks for information about any source or destination IP address, sorted by flows. -n 10 limits the display to the top 10 items.
 

[image: Image]
 

Since the NetFlow data is stored on disk, you can analyze it repeatedly with different sets of filters. Another nice feature is nfdump’s ability to match incoming and outgoing flows into a single bidirectional flow.
 

NfSen is a web front end for NetFlow data that sits on top of nfdump and therefore combines graphing capabilities with all the features of nfdump. It displays the data in three different categories: flows, packets, and bytes. NfSen does more than just create static graphs, though—it lets you navigate through data, point to interesting peaks in the graphs, and drill down to the individual flows. You can also apply arbitrary nfdump filters to refine the display. The combination of easy GUI browsing with the underlying power of nfdump makes NfSen a powerful tool.
 

NfSen lets you save your filter and display settings together as a profile so that you can easily return to a specific type of analysis in the future. For example, you might define profiles that monitor traffic for your DMZ, your web server, or a client’s network.
 

Profiles also make NfSen a valuable tool for security incident response teams because they make it easy to track specific types of incidents or network traffic. For example, Exhibit F on the next page shows a display that’s customized for investigating “SYN flood” denial of service attacks.
 

Exhibit F A “SYN flood” profile for NfSen
 

[image: Image]
 

A security investigation usually happens hours or days after the incident that triggered it, but if you save NetFlow data as a matter of course, you can easily create an NfSen profile that looks back to an earlier time period. This retrospective view lets you identify the IP addresses involved in an attack and track down other hosts that may have been affected. You can also set up NfSen to watch your flows outside of office hours and to trigger alarms when certain conditions are met.
 

Setting Up Netflow on a Cisco Router
 

To get started with NetFlow, you must first configure your network device to send NetFlow data to nfcapd. This section outlines the configuration of NetFlow on a Cisco router.
 

Export of NetFlow data is enabled per interface:
 

[image: Image]
 

To tell the router where to send the NetFlow data, enter the following command:
 

ios# ip flow-export
nfcapd-hostname listen-port
 

The options below break up long-lived flows into 5-minute segments. You can choose any segment length between 1 and 60 minutes, but it should be equal to or less than nfdump’s file rotation period, which is 5 minutes by default.
 

[image: Image]
 

On the Catalyst 6500/7600, you must enable NDE (NetFlow Data Export) in addition to normal NetFlow export.
 

Here’s how:
 

[image: Image]
 

On a busy router, consider aggressively timing out small flows:
 

[image: Image]
 

You still need the traditional NetFlow configuration, including ip flow ingress or ip route-cache flow on every interface, so that you see “software switched” flows such as those that go to the router itself.
 

For NetFlow v9, the configuration may be even longer. Depending on your IOS version, you can also define your own template. With the introduction of Flexible NetFlow (FNF), the NetFlow environment has become even more complex.
 

21.14 Recommended Reading
 

Wikipedia includes a nice (though somewhat compressed) overview of SNMP with pointers to RFCs. It’s a good starting point.
 

MAURO, DOUGLAS R., AND KEVIN J. SCHMIDT. Essential SNMP (2nd Edition). Sebastopol, CA: O’Reilly Media, 2005.
 

SIMPLEWEB. SNMP and Internet Management Site. simpleweb.org.
 

You may find the following RFCs to be useful as well. We replaced the actual titles of the RFCs with a description of the RFC contents because some of the actual titles are an unhelpful jumble of buzzwords and SNMP jargon.
 

• RFC1155 – Characteristics of the SNMP data space (data types, etc.)

 

• RFC1156 – MIB-I definitions (description of the actual OIDs)

 

• RFC1157 – Simple Network Management Protocol

 

• RFC1213 – MIB-II definitions (OIDs)

 

• RFC3414 – User-based Security Model for SNMPv3

 

• RFC3415 – View-based Access Control Model for SNMPv3

 

• RFC3512 – Configuring devices with SNMP (best general overview)

 

• RFC3584 – Practical coexistence between different SNMP versions

 

• RFC3954 - Cisco Systems NetFlow Services Export Version 9

 

21.15 Exercises
 

E21.1 You are troubleshooting a network problem, and netstat -rn gives you the following output. What is the problem and what command would you use to fix it?
 

[image: Image]
 

[image: Image] E21.2 Write a script that monitors a given set of machines and notifies an administrator by email if a machine becomes unresponsive to pings for some set amount of time. Don’t hard-code the list of machines, the notification email address, or the amount of time to determine unresponsive behavior.
 

[image: Image] E21.3 Experiment with changing the netmask on a machine on your local network. Does it still work? Can you reach everything at your site? Can other machines reach you? Do broadcasts work (e.g., ARP requests or DHCP discover packets)? Explain your findings. (Requires root access.)
 

[image: Image] E21.4 Use the traceroute command to discover routing paths on your network.
 

a) How many hops does it take to leave your facility?

 

b) Are there any routers between machines on which you have accounts?

 

c) Can you find any bottlenecks?

 

d) Is your site multihomed?

 

[image: Image] E21.5 Design a MIB that includes all the variables you as a Linux sysadmin might want to query or set. Leave ways for the MIB to be extended to include that important new sysadmin variable you forgot.
 

[image: Image] E21.6 Use wireshark or tshark to capture traffic that illustrates the following protocols. For TCP sessions, include and indicate the initial and final packets. Submit clean, well-formatted output. (Requires root.)
 

a) ARP

 

b) ICMP echo request and reply

 

c) SMTP

 

d) HTTP

 

e) DNS

 

f) Samba

 

g) SSH

 

[image: Image] E21.7 Set up Cacti graphs that show the packets transmitted to and from a local router. This project requires an SNMP package to query the router, and you must know the router’s read-only community string.
 

[image: Image] E21.8 Write a script that uses RRDtool to track network traffic as reported by netstat -i, and create a web page with rrdcgi that shows the results. This exercise will probably take you several hours if you have never worked with RRDtool before. Dig in! It is well worth the effort, both because knowing how to whip up such scripts will come in handy and because familiarity with RRDtool will help you tweak and tune it when it’s used as a component of network management packages.
 
  


22. Security
 

[image: Image]
 

Despite Hollywood’s best efforts, the maintenance of a secure computing environment remains unglamorous and largely unappreciated. It is a system administration discipline born of necessity; if UNIX and Linux systems are going to house sensitive data and control critical processes, we must protect them.
 

Such protection requires resources, both in terms of sysadmin time and in the hard currency of security-related equipment. Unfortunately, many organizations don’t make the appropriate investments in this area until an incident has already occurred.
 

In November 1988, we experienced our first real taste of the security threat posed by a world-wide network as the Robert Morris, Jr., Internet worm was unleashed onto the Internet (see the Wikipedia article on “Morris worm”). Before that event, the Internet lived in an age of innocence. Security was a topic that administrators thought about mostly in the “what if ” sense. A big security incident usually consisted of something like a user gaining administrative access to read another user’s mail, often just to prove that he could.
 

The Morris worm wasted thousands of administrator hours but greatly increased security awareness on the Internet. Once again, we were painfully reminded that good fences make good neighbors. A number of excellent tools for use by system administrators (as well as a formal organization for handling incidents of this nature) came into being as a result.
 

Today, security breaches are commonplace. According to the 2008 CSI/FBI Computer Crime and Security Survey,1 responding organizations reported an average annual loss ascribable to security breaches of $234,000. Most large organizations report having at least one significant security breach each year.
 

Addressing this problem isn’t as easy as you might think. Security is not something that you can buy in a box or as a service from a third party. Commercial products and services can be part of a solution for your site, but they are not a panacea. Achieving an acceptable level of security requires an enormous amount of patience, vigilance, knowledge, and persistence—not just from you and other administrators, but from your entire user and management communities.
 

As the system administrator, you must personally ensure that your systems are secure, that they are vigilantly monitored, and that you and your users are properly educated. You should familiarize yourself with current security technology, actively monitor security mailing lists, and hire professional security experts to help with problems that exceed your knowledge.
 

22.1 Is UNIX Secure?
 

Of course not. Neither UNIX nor Linux is secure, nor is any other operating system that communicates on a network. If you must have absolute, total, unbreachable security, then you need a measurable air gap2 between your computer and any other device. Some people argue that you also need to enclose your computer in a special room that blocks electromagnetic radiation (Wikipedia: “Faraday cage”). How fun is that?
 

You can work to make your system somewhat more resistant to attack. Even so, several fundamental flaws in the UNIX model ensure that you will never reach security nirvana:
 

• UNIX is optimized for convenience and doesn’t make security easy or natural. The system’s overall philosophy stresses easy manipulation of data in a networked, multiuser environment.

 

• The software that runs on UNIX systems is developed by a large community of programmers. They range in experience level, attention to detail, and knowledge of the system and its interdependencies. As a result, even the most well-intended new features can introduce large security holes.

 

• Most administrative functions are implemented outside the kernel, where they can be inspected and tampered with. Hackers have broad access to the system.

 

On the other hand, since some systems’ source code (e.g., Linux, OpenSolaris) is available to everyone, thousands of people can (and do) scrutinize each line of code for possible security threats. This arrangement is widely believed to result in better security than that of closed operating systems, in which a limited number of people have the opportunity to examine the code for holes.
 

Many sites are a release or two behind, either because localization is too troublesome or because they do not subscribe to a software maintenance service. In any case, when security holes are patched, the window of opportunity for hackers often does not disappear overnight.
 

It might seem that security should gradually improve over time as security problems are discovered and corrected, but unfortunately this does not seem to be the case. System software is growing ever more complicated, hackers are becoming better and better organized, and computers are connecting more and more intimately on the Internet. Security is an ongoing battle that can never really be won.
 

Remember, too, that
 

[image: Image]
 

The more secure your system, the more constrained you and your users will be. Implement the security measures suggested in this chapter only after carefully considering the implications for your users.
 

22.2 How Security is Compromised
 

This chapter discusses some common security problems and their standard countermeasures. But before we leap into the details, we should take a more general look at how real-world security problems tend to occur. Most security lapses fit into the following taxonomy.
 

Social Engineering
 

The human users (and administrators) of a computer system are the weakest links in the chain of security. Even in today’s world of heightened security awareness, unsuspecting users with good intentions are easily convinced to give away sensitive information. No amount of technology can protect against the user element— you must ensure that your user community has a high awareness of security threats so that they can be part of the defense.
 

This problem manifests itself in many forms. Attackers cold-call their victims and pose as legitimately confused users in an attempt to get help accessing the system. Administrators unintentionally post sensitive information on public forums when troubleshooting problems. Physical compromises occur when seemingly legitimate maintenance personnel rewire the phone closet.
 

The term “phishing” describes attempts to collect information from users through deceptive email, instant messages, or even SMS messages. Phishing can be especially hard to defend against because the communications often include victim-specific information that lends them the appearance of authenticity.
 

Social engineering continues to be a powerful hacking technique and is one of the most difficult threats to neutralize. Your site security policy should include training for new employees. Regular organization-wide communications are an effective way to provide information about telephone dos and don’ts, physical security, email phishing, and password selection.
 

To gauge your organization’s resistance to social engineering, you might find it informative to attempt some social engineering attacks of your own. Be sure you have explicit permission to do this from your own managers, however. Such exploits look very suspicious if they are performed without a clear mandate. They’re also a form of internal spying, so they have the potential to generate resentment if they’re not handled in an aboveboard manner.
 

Many organizations find it useful to communicate to users that administrators will never request their passwords, whether by email, instant message, or telephone. Tell users to report any such password requests to the IT department immediately.
 

Software Vulnerabilities
 

Over the years, countless security-sapping bugs have been discovered in computer software (including software from third parties, both commercial and free). By exploiting subtle programming errors or context dependencies, hackers have been able to manipulate systems into doing whatever they want.
 

Buffer overflows are a common programming error and one with complex implications. Developers often allocate a predetermined amount of temporary memory space, called a buffer, to store a particular piece of information. If the code isn’t careful about checking the size of the data against the size of the container that’s supposed to hold it, the memory adjacent to the allocated space is at risk of being overwritten. Crafty hackers can input carefully composed data that crashes the program or, in the worst case, executes arbitrary code.
 

Fortunately, the sheer number of buffer overflow exploits in recent years has raised the programming community’s consciousness about this issue. Although buffer overflow problems are still occurring, they are often quickly discovered and corrected, especially in open source applications. Newer programming systems such as Java and .NET include mechanisms that automatically check data sizes and prevent buffer overflows. Sometimes.
 

Buffer overflows are a subcategory of a larger class of software security bugs known as input validation vulnerabilities. Nearly all programs accept some type of input from users (e.g., command-line arguments or HTML forms). If the code processes such data without rigorously checking it for appropriate format and content, bad things can happen. Consider the following simple example:
 

[image: Image]
 

The intent of this code is probably to print the contents of some HTML file under /var/www/html, which is the default document root for the Apache web server on Red Hat servers. The code accepts a filename from the user and includes it as part of the argument to open. But if a malicious user entered ../../../etc/passwd as the argument, the contents of /etc/passwd would be echoed!
 

What can you as an administrator do to prevent this type of attack? Very little, at least until a bug has been identified and addressed in a patch. Keeping up with patches and security bulletins is an important part of most administrators’ jobs. Most Linux distributions include automated patching utilities, such as yum on Red Hat and apt-get on Ubuntu. OpenSolaris also has automated (and failsafe) updates implemented through pkg image-update. Take advantage of these utilities to keep your site safe from software vulnerabilities.
 

Configuration Errors
 

Many pieces of software can be configured securely or not-so-securely. Unfortunately, because software is developed to be useful instead of annoying, not-so-securely is often the default. Hackers frequently gain access by exploiting software features that would be considered helpful and convenient in less treacherous circumstances: accounts without passwords, disks shared with the world, and unprotected databases, to name a few.
 

A typical example of a host configuration vulnerability is the standard practice of allowing Linux systems to boot without requiring a boot loader password. GRUB can be configured at install time to require a password, but administrators almost always decline the option. This omission leaves the system open to physical attack. However, it’s also a perfect example of the need to balance security against usability. Requiring a password means that if the system were unintentionally rebooted (e.g., after a power outage), an administrator would have to be physically present to get the machine running again.
 

One of the most important steps in securing a system is simply making sure that you haven’t inadvertently put out a welcome mat for hackers. Problems in this category are the easiest to find and fix, although there are potentially a lot of them and it’s not always obvious what to check for. The port and vulnerability scanning tools covered later in this chapter can help a motivated administrator identify problems before they’re exploited.
 

22.3 Security Tips and Philosophy
 

This chapter discusses a wide variety of security concerns. Ideally, you should address all of them within your environment. Most administrators should probably digest the contents of this entire chapter more than once.
 

Most systems do not come secured out of the box. In addition, customizations made both during and after installation change the security profile for new systems. Administrators should take steps to harden new systems, integrate them into the local environment, and plan for their long-term security maintenance.
 

When the auditors come knocking, it’s useful to be able to prove that you have followed a standard methodology, especially if that methodology conforms to external recommendations and best practices for your industry.
 

We use a localization checklist to secure new systems. A system administrator applies the standard hardening steps to the system, and a security administrator then confirms that the steps were followed correctly and keeps a log of newly secured systems.
 

Patches
 

Keeping the system updated with the latest patches is an administrator’s highest-value security chore. Most systems are configured to point at the vendor’s repository, which makes applying patches as simple as running a few commands. Larger environments can use a local repository that mirrors that of the vendor.
 

A reasonable approach to patching should include the following elements:
 

• A regular schedule for installing routine patches that is diligently followed. Consider the impact on users when designing this schedule. Monthly updates are usually sufficient; regularity is more important than immediacy. It is not acceptable to fix high-profile zero-day vulnerabilities but neglect other updates.

 

• A change plan that documents the impact of each set of patches, outlines appropriate postinstallation testing steps, and describes how to back out the changes in the event of problems. Communicate this change plan to all relevant parties.

 

• An understanding of what patches are relevant to the environment. Administrators should subscribe to vendor-specific security mailing lists and blogs, as well as to generalized security discussion forums such as Bugtraq. An accurate inventory of applications and operating systems used in your environment helps ensure complete coverage.

 

Unnecessary Services
 

Most systems come with several services configured to run by default. Be sure to disable (and possibly remove) any that are unnecessary, especially if they are network daemons. One way to see which services are running is to use the netstat command. Here’s partial output from a Solaris system:
 

[image: Image]
 

A variety of techniques can identify the service that’s using an unknown port. On most systems, lsof or fuser may be of help. Under Linux, either command can identify the PID of the process that’s using a given port:
 

[image: Image]
 

Once you have the PIDs, you can then use ps to identify specific processes. If the service is unneeded, stop it and make sure that it won’t be restarted at boot time.
 

Unfortunately, the availability of lsof and fuser varies by system, and implementations differ widely. Many versions of both tools lack support for network sockets.
 

If lsof and fuser aren’t available (or aren’t useful), you can either look up “well known” service ports in the /etc/services file or run netstat without the -n option to let it do this lookup for you.
 

The security risks inherent in some network protocols render them unsafe in almost all circumstances. FTP, Telnet, and the BSD “r” programs (rcp, rlogin, and rsh) use insecure authentication and data transfer methods. They should be disabled on all systems in favor of more secure alternatives such as SSH.
 

Remote Event Logging
 

The syslog facility forwards log information to files, lists of users, or other hosts on your network. Consider setting up a secure host to act as a central logging machine that parses forwarded events and takes appropriate action. A single centralized log aggregator can capture logs from a variety of devices and alert administrators whenever meaningful events occur. Remote logging also prevents hackers from covering their tracks by rewriting or erasing log files on systems that have been compromised.
 

See Chapter 11 for more information about syslog.

 

Most systems come configured to use syslog by default, but you will need to customize the configuration to set up remote logging.
 

Backups
 

Regular system backups are an essential part of any site security plan. They fall into the “availability” bucket of the CIA triad discussed on page 944. Make sure that all partitions are regularly dumped and that you store some backups off-site. If a significant security incident occurs, you’ll then have an uncontaminated checkpoint from which to restore.
 

See Chapter 10 for more information about backups.

 

Backups can also be a security hazard. A stolen collection of tapes can circumvent the rest of the system’s security. When storing tapes off-site, use a fireproof safe to deter theft and consider using encryption. If you are thinking about using a contract storage facility, ask for a physical tour.
 

Viruses and Worms
 

UNIX and Linux have been mostly immune from viruses. Only a handful exist (most of which are academic in nature), and none have done the costly damage that has become commonplace in the Windows world. Nonetheless, this fact hasn’t stopped certain antivirus vendors from predicting the demise of the platform from malware—unless you purchase their antivirus product at a special introductory price, of course.
 

The exact reason for the lack of malicious software is unclear. Some claim that UNIX simply has less market share than its desktop competitors and is therefore not an interesting target for virus authors. Others insist that UNIX’s access-controlled environment limits the damage from a self-propagating worm or virus.
 

The latter argument has some validity. Because UNIX restricts write access to system executables at the filesystem level, unprivileged user accounts cannot infect the rest of the environment. Unless the virus code is being run by root, the scope of infection is significantly limited. The moral, then, is not to use the root account for day-to-day activities.
 

Perhaps counterintuitively, one valid reason to run antivirus software on UNIX servers is to protect your site’s Windows systems from Windows-specific viruses. A mail server can scan incoming email attachments for viruses, and a file server can scan shared files for infection. However, this solution should supplement desktop antivirus protection rather than replace it.
 

See Chapter 20 for more information about email content scanning.

 

ClamAV by Tomasz Kojm is a popular, free antivirus product for UNIX and Linux. This widely used GPL tool is a complete antivirus toolkit with signatures for thousands of viruses. You can download the latest version from clamav.net.
 

Trojan Horses
 

Trojan horses are programs that aren’t what they seem to be. An example of a Trojan horse is a program called turkey that was distributed on Usenet a long time ago. The program said it would draw a picture of a turkey on your terminal screen, but it actually deleted files from your home directory.
 

Trojan fragments appear in major software packages now and then. sendmail, tcpdump, OpenSSH, and InterBase have all issued advisories regarding malicious software in their products. These Trojans typically embed malicious code that allows attackers to access the victim’s systems at will. Fortunately, most vendors fix the software and issue an advisory in a week or two. Be sure to watch the security mailing lists for any network software packages you run on your hosts.
 

Even given the number of security-related escapades the UNIX community has seen over the last few years, it is remarkable how few Trojan horse incidents have occurred. Credit for this state of affairs is due largely to the speed of Internet communication. Obvious security problems tend to be discovered quickly and widely discussed. Malicious packages don’t stay available for very long on well-known Internet servers.
 

You can be certain that any software that has been discovered to be malicious will cause a big stink on the Internet. Google the name of a software package before installing it and make sure the first page of results doesn’t look incriminating.
 

Rootkits
 

The craftiest hackers try to cover their tracks and avoid detection. Often, they hope to continue using your system to distribute software illegally, probe other networks, or launch attacks against other systems. They often use “rootkits” to help them remain undetected. Sony’s Trojan horse employed rootkit-like capabilities to hide itself from the user.
 

Rootkits are programs and patches that hide important system information such as process, disk, or network activity. They come in many flavors and vary in sophistication from simple application replacements (such as hacked versions of ls and ps) to kernel modules that are nearly impossible to detect.
 

Host-based intrusion detection software such as OSSEC is an effective way to monitor systems for the presence of rootkits. There are also rootkit finder scripts (such as chkrootkit, chkrootkit.org) that scan the system for known rootkits.
 

Although programs are available to help administrators remove rootkits from a compromised system, the time it takes to perform a thorough cleaning would probably be better spent saving data, reformatting the disk, and starting from scratch. The most advanced rootkits are aware of common removal programs and try to subvert them.
 

Packet Filtering
 

If you’re connecting a system to a network that has Internet access, you must in-stall a packet-filtering router or firewall between the system and the outside world. As an alternative, some systems let you implement packet filtering with software on the system itself, an option we discuss starting on page 935. Whatever the implementation, the packet filter should pass only traffic for services that you specifically want to provide or use from that system.
 

Passwords
 

We’re simple people with simple rules. Here’s one: every account must have a password, and it needs to be something that can’t easily be guessed. It’s never a good idea to send plaintext reusable passwords across the Internet. If you allow remote logins to your system, you must use SSH or some other secure remote access system (discussed starting on page 926).
 

Vigilance
 

To ensure the security of your system, you must monitor its health, network connections, process table, and overall status regularly (usually, daily). Perform regular self-assessments, using the power tools discussed later in this chapter. Security problems tend to start small and grow quickly, so the earlier you identify an anomaly, the better off you’ll be.
 

General Philosophy
 

Effective system security has its roots in common sense. Some rules of thumb:
 

• Don’t put files on your system that are likely to be interesting to hackers or to nosy employees. Trade secrets, personnel files, payroll data, election results, etc., must be handled carefully if they’re on-line. Securing such information cryptographically provides a far higher degree of security than simply trying to prevent unauthorized users from accessing the files that contain the juicy tidbits.

 

• Your site’s security policy should specify how sensitive information is handled. See Chapter 32,
Management, Policy, and Politics, and the security standards section in this chapter (page 945) for some suggestions.

 

• Don’t provide places for hackers to build nests in your environment. Hackers often break into one system and then use it as a base of operations to get into other systems. Sometimes hackers may use your network to cover their tracks while they attack their real target. Publicly exposed services with vulnerabilities, world-writable anonymous FTP directories, shared accounts, and neglected systems all encourage nesting activity.

 

• Set traps to help detect intrusions and attempted intrusions. Tools such as OSSEC, Bro, Snort, and John the Ripper (described starting on page 916) keep you abreast of potential problems.

 

• Religiously monitor the reports generated by these security tools. A minor problem you ignore in one report may grow into a catastrophe by the time the next report is sent.

 

• Teach yourself about system security. Traditional know-how, user education, and common sense are the most important parts of a site security plan. Bring in outside experts to help fill in gaps, but only under your close supervision and approval.

 

• Prowl around looking for unusual activity. Investigate anything that seems unusual, such as odd log messages or changes in the activity of an account (more activity, activity at strange hours, or perhaps activity while the owner is on vacation).

 

22.4 Passwords and User Accounts
 

Poor password management is a common security weakness. By default, the contents of the /etc/passwd and /etc/shadow files determine who can log in, so these files are the system’s first line of defense against intruders. They must be scrupulously maintained and free of errors, security hazards, and historical baggage.
 

See page 176 for more information about the passwd file.

 

UNIX allows users to choose their own passwords, and although this is a great convenience, it leads to many security problems. When you give users their logins, you should also instruct them on how to choose a good password. Passwords should be at least eight characters long and should include numbers, punctuation, and changes in case. Nonsense words, combinations of simple words, or the first letters of words in a memorable phrase make the best passwords. (Of course, “memorable” is good but “traditional” is hacker bait; make up your own phrase.) The comments in the section Choosing a root password on page 111 are equally applicable to user passwords.
 

It is important to continually verify (preferably daily) that every login has a password. Entries in the /etc/shadow file that describe pseudo-users such as “daemon” who own files but never log in should have a star or an exclamation point in their encrypted password field. These do not match any password and thus prevent use of the account.
 

At sites that use a centralized authentication scheme such as LDAP or Active Directory, the same logic applies. Enforce password complexity requirements, and lock out accounts after a few failed login attempts.
 

Password Aging
 

Most systems that have shadow passwords also allow you to compel users to change their passwords periodically, a facility known as password aging. This feature may seem appealing at first glance, but it has several problems. Users often resent having to change their passwords, and since they don’t want to forget the new password, they choose something simple that is easy to type and remember. Many users switch between two passwords each time they are forced to change, or increment a digit in the password, defeating the purpose of password aging. PAM modules (see page 908) can help enforce strong passwords to avoid this pitfall.
 

[image: Image]On Linux systems, the chage program controls password aging. Using chage, administrators can enforce minimum and maximum times between password changes, password expiration dates, the number of days to warn users before their passwords expire, the number of days of inactivity that are permissible before accounts are automatically locked, and more. The following command sets the minimum number of days between password changes to 2, the maximum number to 90, the expiration date to July 31, 2010, and warns the user for 14 days that the expiration date is approaching:
 

$ sudo chage -m 2 -M 90 -E 2010-07-31 -W 14 ben
 

For more information about user account settings, see Chapter 7.

 

Other systems implement password aging differently, usually with less granularity. Under Solaris, you set password aging preferences in /etc/default/password. Password aging on HP-UX systems is controlled through the smc console, and in AIX it’s configured in the file /etc/security/user.
 

Group Logins and Shared Logins
 

Any login that is used by more than one person is bad news. Group logins (e.g., “guest” or “demo”) are sure terrain for hackers to homestead and are prohibited in many contexts by federal regulations such as HIPAA. Don’t allow them at your site. However, technical controls can’t prevent users from sharing passwords, so education is the best enforcement tactic.
 

User Shells
 

In theory, you can set the shell for a user account to be just about any program, including a custom script. In practice, the use of shells other than standards such as bash and tcsh is a dangerous practice, and the risk is even greater for passwordless logins that have a script as their shell. If you find yourself tempted to create such a login, you might consider a passphrase-less SSH key pair instead.
 

Rootly Entries
 

The only distinguishing feature of the root login is its UID of zero. Since there can be more than one entry in the /etc/passwd file that uses this UID, there can be more than one way to log in as root.
 

A common way for a hacker to install a back door after having obtained a root shell is to edit new root logins into /etc/passwd. Programs such as who and w refer to the name stored in utmp rather than the UID that owns the login shell, so they cannot expose hackers that appear to be innocent users but are really logged in as UID 0.
 

Don’t allow root to log in remotely, even through the standard root account. Under OpenSSH, you can set the PermitRootLogin configuration option to No in the /etc/ssh/sshd_config file to enforce this restriction.
 

[image: Image] On Solaris, you can put CONSOLE=/dev/console in /etc/default/login to prohibit root logins from locations beside the console.
 

Because of sudo (see page 113), it’s rare that you’ll ever need to log in as root, even on the system console.
 

22.5 PAM: Cooking Spray or Authentication Wonder?
 

PAM stands for “pluggable authentication modules.” The PAM system relieves programmers of the chore of implementing authentication systems and gives sysadmins flexible, modular control over the system’s authentication methods. Both the concept and the term come from Sun Microsystems (now part of Oracle) and from a 1996 paper by Samar and Lai of SunSoft.
 

In the distant past, commands like login included hardwired authentication code that prompted the user for a password, tested the password against the encrypted version obtained from /etc/shadow (/etc/passwd at that time, really), and rendered a judgment as to whether the two passwords matched. Of course, other commands (e.g., passwd) contained similar code. It was impossible to change authentication methods without source code, and administrators had little or no control over details such as whether the system should accept “password” as a valid password. PAM changed all of that.
 

PAM puts the system’s authentication routines into a shared library that login and other programs can call. By separating authentication functions into a discrete subsystem, PAM makes it easy to integrate new advances in authentication and encryption into the computing environment. For instance, multifactor authentication can be supported without changes to the source code of login and passwd.
 

For the sysadmin, setting the right level of security for authentication has become a simple configuration task. Programmers win, too: they no longer have to write tedious authentication code, and more importantly, their authentication systems are implemented correctly on the first try. PAM can authenticate all sorts of activities: user logins, other forms of system access, use of protected web sites—even the configuration of applications.
 

System Support for Pam
 

All of our example systems support PAM. Configuration information goes in the /etc/pam.d directory (Linux) or in the /etc/pam.conf file (Solaris, HP-UX, and AIX). The formats of the configuration files are basically the same, but the UNIX systems put everything in one file and the Linux systems have a file for each service or command that uses PAM.
 

PAM support is nearly universal at this point, but if you’re using some other variant of UNIX and want to check whether your system uses PAM, you can run ldd/bin/login to see if that binary links to PAM’s shared library, libpam.
 

PAM Configuration
 

PAM configuration files are a series of one-liners, each of which names a particular PAM module to be used on the system.
 

The general format is
 

[service] module-type control-flag module-path [arguments]
 

Fields are separated by whitespace.
 

Linux systems don’t use a service field, or more accurately, they put each service in its own configuration file and let the filename assume the role of the UNIX service parameter. The service can name an authentication context to which the configuration line applies (e.g., login for vanilla user logins) or can contain the keyword other to set system defaults.
 

Here’s an illustrative snippet from a Solaris system; all module-path fields are relative to the /usr/lib/security directory.
 

[image: Image]
 

Individual PAM modules have finer granularity than just “authenticate the user,” so there may be several lines in a PAM configuration file for any given service and module type. A series of lines for a given service and module type form a “stack.”
 

The order in which modules appear in the PAM configuration file is important. For example, the module that prompts the user for a password must come before the module that checks that password for validity. One module can pass its output to the next by setting either environment variables or PAM variables.
 

The module-type parameter—auth, account, session, or password—determines what the module is expected to do. auth modules identify the user and grant group memberships. Modules that do account chores enforce restrictions such as limiting logins to particular times of day, limiting the number of simultaneous users, or limiting the ports on which logins can occur. (For example, you would use an account-type module to restrict root logins to the console.) session chores include tasks that are done before or after a user is granted access; for example, mounting the user’s home directory. Finally, password modules change a user’s password or passphrase.
 

The control-flag specifies how the modules in the stack should interact to produce an ultimate result for the stack. Table 22.1 on page 910 shows the common values.
 

If PAM could simply return a failure code as soon as the first individual module in a stack failed, the control-flags system would be simpler. Unfortunately, the system is designed so that most modules get a chance to run regardless of their sibling modules’ success or failure, and this fact causes some subtleties in the flow of control. (The intent is to prevent an attacker from learning which module in the PAM stack caused the failure.)
 

Table 22.1 PAM control flags
 

[image: Image]
 

required modules are required to succeed; a failure of any one of them guarantees that the stack as a whole will eventually fail. However, the failure of a module that is marked required doesn’t immediately stop execution of the stack. If you want that behavior, you need to use the requisite control flag instead of required.
 

The success of a sufficient module aborts the stack immediately. However, the ultimate result of the stack isn’t guaranteed to be success because sufficient modules can’t override the failure of earlier required modules. If an earlier required module has already failed, a successful sufficient module aborts the stack and returns failure as the overall result. Solaris’s binding flag acts like sufficient, but failure of the binding module ensures eventual failure of the stack. By contrast, failure of a sufficient module is treated like the failure of an optional module: it makes no difference to the final result unless it is the only module in the stack.
 

Clear as mud, hmm? To make things even more complicated, Linux has a parallel system of alternative control flags that you can theoretically use instead of these cross-system standards. Overall, the control-flag system would take another page or two to really explain in detail. We don’t do that here, however, because PAM configurations tend to be relatively stereotyped; you’re unlikely to be writing your own from scratch. We mention some of the details only to impress upon you that the control flags don’t have the straightforward meanings their names might suggest. If you’re going to modify your systems’ security settings, make sure that you understand the system thoroughly and that you double-check the particulars. (You won’t configure PAM every day. How long will you remember which version is requisite and which is required?)
 

For easy reference, here’s another copy of that same Solaris pam.conf example:
 

[image: Image]
 

Let’s look at the specific modules.
 

The pam_authtok_get library routine prompts the user for a login name (if one has not already been set) and password and stores these values in the authentication token called PAM_AUTHTOK. The pam_dhkeys module is used for RPC (remote procedure call) authentication for NIS or NIS+ and is looking for Diffie-Hellman keys, hence the name.
 

The pam_unix_cred module sets the credentials for the authenticated user, and the pam_unix_auth module performs the actual authentication, checking that the value stored in PAM_AUTHTOK is the user’s correct password. Finally, the module pam_dial_auth authenticates the user for dialup access according to the contents of /etc/dialups and /etc/d_passwd.
 

[image: Image] Linux moves each set of PAM configuration lines that refer to the same service into a separate file named after that service. The format is otherwise the same except that the service field is no longer needed.
 

You may see the same code module referred to more than once in a configuration file, with different module-type values. That’s fine; multiple type implementations are often collected into a single library if they share significant code.
 

A Detailed Linux Configuration Example
 

For example, the /etc/pam.d/login file from a SUSE system is reproduced below with the included files expanded to form a more coherent example.
 

[image: Image]
 

The auth stack includes several modules. On the first line, the pam_nologin module checks for the existence of the /etc/nologin file. If it exists, the module aborts the login immediately unless the user is root. The pam_securetty module ensures that root can only log in on terminals listed in /etc/securetty. This line uses the alternative Linux syntax described in the pam.conf man page. In this case, the requested behavior is similar to that of the required control flag. pam_env sets environment variables from /etc/security/pam_env.conf, and Security
finally, pam_unix2 checks the user’s credentials by performing standard UNIX authentication. If any of these modules fail, the auth stack returns an error.
 

The account stack includes only the pam_unix2 module, which in this context assesses the validity of the account itself. It returns an error if, for example, the account has expired or the password must be changed. In the latter case, the module collects a new password from the user and passes it to the password modules.
 

The pam_pwcheck line checks the strength of proposed new passwords by calling the cracklib library. It returns an error if the new password does not meet the requirements. However, it also allows empty passwords because of the nullok flag. The pam_unix2 line updates the actual password.
 

Finally, the session modules perform several housekeeping chores. pam_loginuid sets the kernel’s loginuid process attribute to the user’s UID. pam_limits reads resource usage limits from /etc/security/limits.conf and sets the corresponding process parameters that enforce them. pam_unix2 logs the user’s access to the system, and pam_umask sets an initial file creation mode. The pam_lastlog module displays the user’s last login time as a security check, and the pam_mail module prints a note if the user has new mail. Finally, pam_ck_connector notifies the ConsoleKit daemon (a system-wide daemon that manages login sessions) of the new login.
 

At the end of the process, the user has been successfully authenticated and PAM returns control to login.
 

22.6 Setuid Programs
 

Setuid programs (executables on which the setuid bit has been set) run as the user that owns the executable file. For example, the passwd program must run as root in order to modify the /etc/shadow file when users change their passwords. See Setuid and setgid execution on page 106 for basic information about this feature.
 

Programs that run setuid, especially ones that run setuid to root, are prone to security problems. The setuid commands distributed with the system are theoretically secure; however, security holes have been discovered in the past and will undoubtedly be discovered in the future.
 

The surest way to minimize the number of setuid problems is to minimize the number of setuid programs. Think twice before installing software that needs to run setuid, and avoid using the setuid facility in your own home-grown software. Never use setuid execution on programs that were not explicitly written with setuid execution in mind.
 

You can disable setuid and setgid execution on individual filesystems by specifying the nosuid option to mount. It’s a good idea to use this option on filesystems that contain users’ home directories or that are mounted from less trustworthy administrative domains.
 

It’s useful to scan your disks periodically to look for new setuid programs. A hacker who has breached the security of your system sometimes creates a private setuid shell or utility to facilitate repeat visits. Some of the tools discussed starting on page 914 locate such files, but you can do just as well with find. For example, the one-liner script
 

[image: Image]
 

mails a list of all files that are setuid to root to the “netadmin” user. (In practice, you may need to be more specific about which filesystems to search.)
 

22.7 Effective Use Of Chroot
 

The chroot system call confines a process to a specific directory. It disallows access to files outside or above that directory and thereby limits the damage the process can cause if it should be compromised by a hacker.
 

The chroot command is a simple wrapper around this system call. In addition, some security-sensitive daemons have chroot support built in and need only have this mode turned on in their configuration files.
 

Security experts sometimes frown upon use of chroot for security purposes because they believe that when it is poorly used or misunderstood, it can give administrators a false sense of security. They complain that some administrators use chroot to excuse themselves from other forms of security diligence such as regular software updates and close security monitoring.
 

These points are not inaccurate, but they’re not the last word on chroot, either. Similar claims could be made regarding network firewalls, but few experts would recommend removing the packet filter from your network. Used correctly and as a supplemental layer of protection, chroot is a worthy addition to your security arsenal (even if that was not the feature’s original design intent).
 

The following scenarios illustrate reasonable uses of chroot:
 

• You want to run a non-root daemon process such as Apache or BIND within a restricted filesystem subtree. If the daemon is compromised, the attacker will be restricted to the subtree as long as no privilege escalation vulnerabilities exist.

 

• You want to restrict remote users to a specific set of files and commands.

 

However, chroot can only protect you in these scenarios if all of the following conditions are met:
 

• All processes in the chroot jail run without root privileges. Processes that run as root always have the ability to break out of the chroot jail.

 

• You are not using setuid root execution within the jail.

 

• The chroot environment is up to date and minimal, in the sense that it contains only the executables, libraries, and configuration files that are needed to support the intended task.

 

In this era of shared libraries and interprocess dependencies, constructing a proper jail cell can be tricky. The JailKit (olivier.sessink.nl/jailkit) includes several scripts to help you create chrooted environments.
 

22.8 Security Power Tools
 

Some of the time-consuming chores mentioned in the previous sections can be automated with freely available tools. Here are a few of the tools you’ll want to look at.
 

Nmap: Network Port Scanner
 

Nmap is a network port scanner. Its main function is to check a set of target hosts to see which TCP and UDP ports have servers listening on them.3 Since most network services are associated with “well known” port numbers, this information tells you quite a lot about the software a machine is running.
 

Running Nmap is a great way to find out what a system looks like to someone on the outside who is trying to break in. For example, here’s a report from a production Ubuntu system:
 

[image: Image]
 

By default, nmap includes the -sT argument to try to connect to each TCP port on the target host in the normal way.4 Once a connection has been established, nmap immediately disconnects, which is impolite but not harmful to a properly written network server.
 

From the example above, we can see that the host ubuntu is running two services that are likely to be unused and that have historically been associated with security problems: portmap (rpcbind) and an email server (smtp). An attacker would most likely probe those ports for more information as a next step in the information-gathering process.
 

The STATE column in nmap’s output shows open for ports that have servers listening, closed for ports with no server, unfiltered for ports in an unknown state, and filtered for ports that cannot be probed because of an intervening packet filter. nmap does not classify ports as unfiltered unless it is running an ACK scan. Here are results from a more secure server, secure.booklab.atrust.com:
 

[image: Image]
 

In this case, it’s clear that the host is set up to allow SMTP (email) and an HTTP server. A firewall blocks access to other ports.
 

In addition to straightforward TCP and UDP probes, nmap also has a repertoire of sneaky ways to probe ports without initiating an actual connection. In most cases, nmap probes with packets that look like they come from the middle of a TCP conversation (rather than the beginning) and waits for diagnostic packets to be sent back. These stealth probes may be effective at getting past a firewall or at avoiding detection by a network security monitor on the lookout for port scanners. If your site uses a firewall (see Firewalls on page 932), it’s a good idea to probe it with these alternative scanning modes to see what they turn up.
 

nmap has the magical and useful ability to guess what operating system a remote system is running by looking at the particulars of its implementation of TCP/IP. It can sometimes even identify the software that’s running on an open port. The -O and -sV options, respectively, turn on this behavior. For example:
 

[image: Image]
 

This feature can be very useful for taking an inventory of a local network. Unfortunately, it is also very useful to hackers, who can base their attacks on known weaknesses of the target OSes and servers.
 

Keep in mind that most administrators don’t appreciate your efforts to scan their network and point out its vulnerabilities, however well intended your motive. Do not run nmap on someone else’s network without permission from one of that network’s administrators.
 

Nessus: Next-Generation Network Scanner
 

Nessus, originally released by Renaud Deraison in 1998, is a powerful and useful software vulnerability scanner. At this point, it uses more than 31,000 plug-ins to check for both local and remote security flaws. Although it is now a closed source, proprietary product, it is still freely available, and new plug-ins are released regularly. It is the most widely accepted and complete vulnerability scanner available.
 

Nessus prides itself on being the security scanner that takes nothing for granted. Instead of assuming that all web servers run on port 80, for instance, it scans for web servers running on any port and checks them for vulnerabilities. Instead of relying on the version numbers reported by the service it has connected to, Nessus attempts to exploit known vulnerabilities to see if the service is susceptible.
 

Although a substantial amount of setup time is required to get Nessus running (it requires several packages that aren’t installed on a typical system), it’s well worth the effort. The Nessus system includes a client and a server. The server acts as a database and the client handles the GUI presentation. Nessus servers and clients exist for both Windows and UNIX platforms.
 

One of the great advantages of Nessus is the system’s modular design, which makes it easy for third parties to add new security checks. Thanks to an active user community, Nessus is likely to be a useful tool for years to come.
 

John the Ripper: Finder of Insecure Passwords
 

One way to thwart poor password choices is to try to break the passwords yourself and to force users to change passwords that you have broken. John the Ripper is a sophisticated tool by Solar Designer that implements various password-cracking algorithms in a single tool. It replaces the tool crack, which was covered in previous editions of this book.
 

Even though most systems use a shadow password file to hide encrypted passwords from public view, it’s still wise to verify that your users’ passwords are crack resistant.5 Knowing a user’s password can be useful because people tend to use the same password over and over again. A single password might provide access to another system, decrypt files stored in a user’s home directory, and allow access to financial accounts on the web. (Needless to say, it’s not very security-smart to reuse a password this way. But nobody wants to remember ten passwords.)
 

Considering its internal complexity, John the Ripper is an extremely simple program to use. Direct john to the file to be cracked, most often /etc/shadow, and watch the magic happen:
 

[image: Image]
 

In this example, 25 unique passwords were read from the shadow file. As passwords are cracked, John prints them to the screen and saves them to a file called john.pot. The output contains the password in the left column with the login in parentheses in the right column. To reprint passwords after john has completed, run the same command with the -show argument.
 

As of this writing, the most recent stable version of John the Ripper is 1.7.3.4. It’s available from openwall.com/john. Since John the Ripper’s output contains the passwords it has broken, you should carefully protect the output and delete it as soon as you are done checking to see which users’ passwords are insecure.
 

As with most security monitoring techniques, it’s important to obtain explicit management approval before cracking passwords with John the Ripper.
 

Hosts_Access: Host Access Control
 

Network firewalls are a first line of defense against access by unauthorized hosts, but they shouldn’t be the only barrier in place. Two files, /etc/hosts.allow and /etc/hosts.deny, also referred to as TCP wrappers, can restrict access to services according to the origin of network requests. The hosts.allow file lists the hosts that are allowed to connect to a specific service, and the hosts.deny file restricts access. However, these files control access only for services that are hosts_access aware, such as those managed by inetd, xinetd, sshd, and some configurations of sendmail.
 

In most cases it is wise to be restrictive and permit access only to essential services from designated hosts. We suggest denying access by default in the hosts.deny file with the single line
 

ALL: ALL
 

You can then permit access on a case-by-case basis in hosts.allow. The following configuration allows access to SSH from hosts on the 192.168/16 networks and to sendmail from anywhere.
 

[image: Image]
 

The format of an entry in either file is service: host or service: network. Failed connection attempts are noted in syslog. Connections from hosts that are not permitted to access the service are immediately closed.
 

Most Linux distributions include hosts.allow and hosts.deny files by default, but they’re usually empty. Our other example systems all offer TCP wrappers as an option after installation.
 

Bro: the Programmable Network Intrusion Detection System
 

Bro is an open source network intrusion detection system (NIDS) that monitors network traffic and looks for suspicious activity. It was originally written by Vern Paxson and is available from bro-ids.org.
 

Bro inspects all traffic flowing into and out of a network. It can operate in passive mode, in which it generates alerts for suspicious activity, or in active mode, in which it injects traffic to disrupt malicious activity. Both modes likely require modification of your site’s network configuration.
 

Unlike other NIDSs, Bro monitors traffic flows rather than just matching patterns inside individual packets. This method of operation means that Bro can detect suspicious activity based on who talks to whom, even without matching any particular string or pattern. For example, Bro can
 

• Detect systems used as “stepping stones” by correlating inbound and outbound traffic

 

• Detect a server that has a back door installed by watching for unexpected outbound connections immediately after an inbound one

 

• Detect protocols running on nonstandard ports

 

• Report correctly guessed passwords (and ignore the incorrect guesses)

 

Some of these features require substantial system resources, but Bro includes clustering support to help you manage a group of sensor machines.
 

The configuration language for Bro is complex and requires significant coding experience to use. Unfortunately, there is no simple default configuration for a novice to install. Most sites require a moderate level of customization.
 

Bro is supported to some extent by the Networking Research Group of the International Computer Science Institute (ICSI), but mostly it’s maintained by the community of Bro users. If you are looking for a turnkey commercial NIDS, you will probably be disappointed by Bro. However, Bro can do things that no commercial NIDS can do, and it can either supplement or replace a commercial solution in your network.
 

Snort: the Popular Network Intrusion Detection System
 

Snort (snort.org) is an open source network intrusion prevention and detection system originally written by Marty Roesch and now maintained by Sourcefire, a commercial entity. It has become the de facto standard for home-grown NIDS deployments and is also the basis of many commercial and “managed services” NIDS implementations.
 

Snort itself is distributed for free as an open source package. However, Sourcefire charges a subscription fee for access to the most recent set of detection rules.
 

A number of third-party platforms incorporate or extend Snort, and some of those projects are open source. One excellent example is Aanval (aanval.com), which aggregates data from multiple Snort sensors in a web-based console.
 

Snort captures raw packets off the network wire and compares them with a set of rules, aka signatures. When Snort detects an event that’s been defined as interesting, it can alert a system administrator or contact a network device to block the undesired traffic, among other actions.
 

Although Bro is a much more powerful system, Snort is a lot simpler and easier to configure, attributes that make it a good choice as a “starter” NIDS platform.
 

OSSEC: Host-Based Intrusion Detection
 

Do you lie awake at night wondering if the security of your systems has been breached? Do you think a disgruntled coworker might be installing malicious programs on your systems? If you answered yes to either of these questions, you may want to consider installing a host-based intrusion detection system (HIDS) such as OSSEC.
 

OSSEC is free software and is available as source code under the GNU General Public License. Commercial support is available from Third Brigade (recently acquired by Trend Micro). OSSEC is available for Linux, Solaris, HP-UX, AIX, and Windows. It provides the following services:
 

• Rootkit detection

 

• Filesystem integrity checks

 

• Log file analysis

 

• Time-based alerting

 

• Active responses

 

OSSEC runs on the systems of interest and monitors their activity. It can send alerts or take action according to a set of rules that you configure. For example, OSSEC can monitor systems for the addition of unauthorized files and send email notifications like this one:
 

[image: Image]
 

In this way, OSSEC acts as your 24/7 eyes and ears on the system. We recommend running OSSEC on every production system, in combination with a change management policy (discussed in Chapter 32, Management, Policy, and Politics, on page 1211).
 

OSSEC Basic Concepts
 

OSSEC has two primary components: the manager (server) and the agents (clients). You need one manager on your network, and you should install that component first. The manager stores the file-integrity-checking databases, logs, events, rules, decoders, major configuration options, and system auditing entries for the entire network. A manager can connect to any OSSEC agent, regardless of its operating system. The manager can also monitor certain devices that do not have a dedicated OSSEC agent.
 

Agents run on the systems you want to monitor and report back to the manager. By design, they have a small footprint and operate with a minimal set of privileges. Most of the agent’s configuration is obtained from the manager. Communication between the server and the agent is encrypted and authenticated. You need to create an authentication key for each agent on the manager.
 

OSSEC classifies alerts by severity at levels 0 to 15; 15 is the highest severity.
 

OSSEC Installation
 

OSSEC is not yet part of the major UNIX and Linux distributions, even as a fetchable package. Therefore, you will need to download the source code package with a web browser or a tool such as wget and then build the software:
 

[image: Image]
 

The install script asks what language you prefer (use “en” for English), and then what type of installation you want to perform: server, agent, or local. If you are only installing OSSEC on a single, personally managed system, you may want to choose local. Otherwise, first do the server install on the system you want to be your OSSEC manager, and then install the agent on that and all other systems you want to monitor. The install script asks some additional questions, too, such as to what email address alerts should be sent and which monitoring modules should be enabled.
 

Once the installation has finished, start OSSEC with
 

server$
sudo /var/ossec/bin/ossec-control start
 

Next, register each agent with the manager. On the server, run
 

server$
sudo /var/ossec/bin/manage_agents
 

You’ll see a menu that looks something like this:
 

[image: Image]
 

Select option A to add an agent, and then type in the name and IP address of the agent. Next, select option E to extract the agent’s key. Here’s what that looks like:
 

[image: Image]
 

Finally, log in to the agent system and run manage_agents there:
 

agent$
sudo /var/ossec/bin/manage_agents
 

On the client, you will see that the menu has somewhat different options.
 

[image: Image]
 

Select option I and then cut and paste the key you extracted above. After you have added an agent, you must restart the OSSEC server. Repeat the process of key generation, extraction, and installation for each agent you want to connect.
 

OSSEC Configuration
 

Once OSSEC is installed and running, you’ll want to tweak it so that it gives you just enough information, but not too much. The majority of the configuration is stored on the server in the /var/ossec/etc/ossec.conf file. This XML-style file is well commented and fairly intuitive, but it contains dozens of options.
 

A common item you may want to configure is the list of files to ignore when doing file integrity (change) checking. For example, if you have a custom application that writes its log file to /var/log/customapp.log, you can add the following line to the <syscheck> section of the file:
 

[image: Image]
 

After you’ve made this change and restarted the OSSEC server, OSSEC will stop alerting you every time the log file changes. The many OSSEC configuration options are documented at ossec.net/main/manual/configuration-options.
 

It takes time and effort to get any HIDS system running and tuned. But after a few weeks, you’ll have filtered out the noise and the system will start to provide valuable information about changing conditions in your environment.
 

22.9 Mandatory Access Control(MAC)
 

Mandatory Access Control is an alternative to the traditional UNIX access control system that vests control of all permissions in the hands of a security administrator. In contrast to the standard model (described in Chapter 4,
Access Control and Rootly Powers, and to some extent in Chapter 6,
The Filesystem), MAC does not allow users to modify any permissions, even on their own objects.
 

MAC security policies control access according to the perceived sensitivity of the resource being controlled. Users are assigned a security classification from a structured hierarchy. Users can read and write items at the same classification level or lower but cannot access items at a higher classification. For example, a user with “secret” access can read and write “secret” objects but cannot read objects that are classified as “top secret.”
 

A well-implemented MAC policy relies on the principle of least privilege (allowing access only when necessary), much as a properly designed firewall allows only specifically recognized services and clients to pass. MAC can prevent software with code execution vulnerabilities (e.g., buffer overflows) from compromising the system by limiting the scope of the breach to the few specific resources required by that software.
 

Needless to say, kernel modifications are necessary to implement MAC on UNIX and Linux. Our example UNIX systems (Solaris, HP-UX, and AIX) all are available in MAC-enabled versions at additional cost. These versions are called Solaris Trusted Extensions (formerly Trusted Solaris), HP-UX Security Containment, and Trusted AIX, respectively.
 

Unless you’re handling sensitive data for a government entity, it is unlikely that you will ever need or encounter these security-enhanced editions.
 

Security-Enhanced Linux (SELinux)
 

SELinux implements MAC for Linux systems. Although it has gained a foothold in a few distributions, it is notoriously difficult to administer and troubleshoot. This unattributed quote from a former version of the SELinux Wikipedia page vents the frustration felt by many sysadmins:
 

“Intriguingly, although the stated raison d’être of SELinux is to facilitate the creation of individualized access control policies specifically attuned to organizational data custodianship practices and rules, the supportive software tools are so sparse and unfriendly that the vendors survive chiefly on ‘consulting,’ which typically takes the form of incremental modifications to boilerplate security policies.”

 

Despite the administrative complexity of SELinux, its adoption has been slowly growing, particularly in environments, such as government agencies, with strict security requirements. Of our example Linux distributions, Red Hat Enterprise Linux has the most mature SELinux model. SELinux is available as an optional package for Ubuntu and SUSE.
 

Policy development is a complicated topic. To protect a new daemon, for example, a policy must carefully enumerate all the files, directories, and other objects to which the process needs access. For complicated software like sendmail or the Apache httpd, this task can be quite complex. At least one company offers a 3-day class on policy development.
 

Fortunately, many general policies are available on-line, and most distributions come with reasonable defaults. These can easily be installed and configured for your particular environment. A full-blown policy editor that aims to ease policy application can be found at seedit.sourceforge.net.
 

[image: Image] SELinux has been present in Red Hat Enterprise Linux since version 4. A default installation of RHEL enables SELinux protection out of the box.
 

/etc/selinux/config controls the SELinux configuration. The interesting lines are
 

[image: Image]
 

The first line has three possible values: enforcing, permissive, or disabled. The enforcing setting ensures that the loaded policy is applied and prohibits violations. permissive allows violations to occur but logs them through syslog, which is valuable for debugging. disabled turns off SELinux entirely.
 

SELINUXTYPE refers to the type of policy to be applied. Red Hat has two policies: targeted, which defines additional security for daemons that Red Hat has protected,6 and strict, which protects the entire system. Although the strict policy is available, it is not supported by Red Hat; the restrictions are so tight that the
 

system is difficult to use. The targeted policy offers protection for important network daemons without affecting general system use, at least in theory. But even the targeted policy isn’t perfect. If you’re having problems with newly installed software, check /var/log/messages for SELinux errors.
 

[image: Image] SUSE uses Novell’s implementation of MAC, called AppArmor. However, as of version 11.1, SUSE also includes basic SELinux functionality.
 

[image: Image] Ubuntu ships with AppArmor by default. SELinux packages are maintained for Ubuntu by Russell Coker, the Red Hat bloke who generated the targeted and strict policies.
 

22.10 Cryptographic Security Tools
 

Many of the UNIX protocols in common use date from a time before the wide deployment of the Internet and modern cryptography. Security was simply not a factor in the design of many protocols; in others, security concerns were waved away with the transmission of a plaintext password or with a vague check to see if packets originated from a trusted host or port.
 

These protocols now find themselves operating in the shark-infested waters of large corporate LANs and the Internet, where, it must be assumed, all traffic is open to inspection. Not only that, but there is little to prevent anyone from actively interfering in network conversations. How can you be sure who you’re really talking to?
 

Cryptography solves many of these problems. It has been possible for a long time to scramble messages so that an eavesdropper cannot decipher them, but this is just the beginning of the wonders of cryptography. Developments such as public key cryptography and secure hashing have promoted the design of cryptosystems that meet almost any conceivable need.
 

An excellent resource for those interested in cryptography is RSA Laboratories’ Frequently Asked Questions about Today’s Cryptography, available for free from rsa.com/rsalabs. Despite the name, it is a book-length treatise downloadable in PDF format. The document hasn’t been updated since 2000, but most of the information remains valid. Additionally, Stephen Levy’s book Crypto is a comprehensive guide to the history of cryptography.
 

Kerberos: a Unified Approach to Network Security
 

The Kerberos system, designed at MIT, attempts to address some of the issues of network security in a consistent and extensible way. Kerberos is an authentication system, a facility that “guarantees” that users and services are in fact who they claim to be. It does not provide any additional security or encryption beyond that.
 

Kerberos uses DES to construct nested sets of credentials called “tickets.” Tickets are passed around the network to certify your identity and to give you access to network services. Each Kerberos site must maintain at least one physically secure machine (called the authentication server) to run the Kerberos daemon. This daemon issues tickets to users or services that present credentials, such as passwords, when they request authentication.
 

In essence, Kerberos improves upon traditional password security in only two ways: it never transmits unencrypted passwords on the network, and it relieves users from having to type passwords repeatedly, making password protection of network services somewhat more palatable.
 

The Kerberos community boasts one of the most lucid and enjoyable documents ever written about a cryptosystem, Bill Bryant’s “Designing an Authentication System: a Dialogue in Four Scenes.” It’s required reading for anyone interested in cryptography and is available at
 

web.mit.edu/kerberos/www/dialogue.html

 

Kerberos offers a better network security model than the “ignoring network security entirely” model, but it is neither perfectly secure nor painless to install and run. It does not supersede the other security measures described in this chapter.
 

Unfortunately (and perhaps predictably), the Kerberos system distributed as part of Windows’ Active Directory uses proprietary, undocumented extensions to the protocols. As a result, it does not interoperate well with distributions based on the MIT code. Fortunately, the winbind module lets UNIX and Linux systems interact with Active Directory’s version of Kerberos. See Configuring Kerberos for Active Directory integration on page 1156 for more information.
 

PGP: Pretty Good Privacy
 

Phil Zimmermann’s PGP package provides a tool chest of bread-and-butter cryptographic utilities focused primarily on email security. It can be used to encrypt data, to generate signatures, and to verify the origin of files and messages.
 

See page 763 for more information about email privacy.

 

PGP has an interesting history that includes lawsuits, criminal prosecutions, and the privatization of portions of the original PGP suite. Currently, PGP’s file formats and protocols are being standardized by the IETF under the name Open-PGP, and multiple implementations of the proposed standard exist. The GNU project provides an excellent, free, and widely used implementation known as GnuPG at gnupg.org. For clarity, we refer to the system collectively as PGP even though individual implementations have their own names.
 

PGP is perhaps the most popular cryptographic software in common use. Unfortunately, the UNIX/Linux version is nuts-and-bolts enough that you have to understand a fair amount of cryptographic background in order to use it. Although you may find PGP useful in your own work, we don’t recommend that you support it for users because it has been known to spark many puzzled questions. We have found the Windows version to be considerably easier to use than the gpg command with its 52 different operating modes.
 

Software packages on the Internet are often distributed with a PGP signature file that purports to guarantee the origin and purity of the software. However, it is difficult for people who are not die-hard PGP users to validate these signatures— not because the process is complicated, but because true security can only come from having collected a personal library of public keys from people whose identities you have directly verified. Downloading a single public key along with a signature file and software distribution is approximately as secure as downloading the distribution alone.
 

Some email clients, such as Mozilla Thunderbird, have add-ons that provide a simple GUI for encrypted incoming and outgoing messages. Enigmail, the solution for Thunderbird, can even search on-line public key databases if the key for your recipient isn’t already in your key ring. See enigmail.mozdev.org for details.
 

SSH: The Secure Shell
 

The SSH system, written by Tatu Ylönen, is a secure replacement for rlogin, rcp, and telnet. It uses cryptographic authentication to confirm a user’s identity and encrypts all communications between the two hosts. The protocol used by SSH is designed to withstand a wide variety of potential attacks. The protocol is documented by RFCs 4250 through 4256 and is now a proposed IETF standard.
 

SSH has morphed from being a freely distributed open source project (SSH1) to being a commercial product that uses a slightly different (and more secure) protocol, SSH2. Fortunately, the open source community has responded by releasing the excellent OpenSSH package (maintained by OpenBSD), which now implements both protocols.
 

The main components of SSH are a server daemon, sshd, and a few user-level commands, notably ssh for remote logins and sftp/scp for copying files. Other components are an ssh-keygen command that generates public key pairs and a couple of utilities that help support secure X Windows.
 

sshd can authenticate user logins in several different ways. It’s up to you as the administrator to decide which of these methods are acceptable:
 

• Method A: If the name of the remote host from which the user is logging in is listed iñ/.rhosts, ~/.shosts, /etc/hosts.equiv, or /etc/shosts.equiv, then sshd logs in the user automatically without a password check. This scheme mirrors that of the old rlogin daemon and in our opinion is never acceptable for normal use.

 

• Method B: As a refinement of method A, sshd can also use public key cryptography to verify the identity of the remote host. For that to happen, the remote host’s public key (generated at install time) must be listed in the local host’s /etc/ssh_known_hosts file or the user’s ~/.ssh/known_hosts file.

 

If the remote host can prove that it knows the corresponding private key (normally stored in /etc/ssh_host_key, a world-unreadable file), then sshd logs in the user without asking for a password.

 

Method B is more restrictive than method A, but we think it’s still not quite secure enough. If the security of the originating host is compromised, the local site will be compromised as well.

 

• Method C: sshd can use public key cryptography to establish the user’s identity. At login time, the user must have access to a copy of his or her private key file and must supply a password to decrypt it. The key can also be created without a password, which is a reasonable option for automating logins from remote systems.

 

This method is the most secure, but it’s annoying to set up. It also means that users cannot log in when traveling unless they bring along a copy of their private key file (perhaps on a USB key, hopefully encrypted).

 

If you decide to use key pairs, make extensive use of ssh -v during the troubleshooting process.

 

• Method D: Finally, sshd can simply allow the user to enter his or her normal login password. This makes ssh behave very much like telnet, except that the password and session are both encrypted. The main drawbacks of this method are that system login passwords can be relatively weak if you have not beefed up their security, and that ready-made tools (such as John the Ripper) have been designed to break them. However, this method is probably the best choice for normal use.

 

Authentication policy is set in /etc/sshd_config. This file gets filled up with configuration rubbish for you as part of the installation process, but you can safely ignore most of it. The options relevant to authentication are shown in Table 22.2.
 

Table 22.2 Authentication-related options in /etc/sshd_config
 

[image: Image]
 

Our suggested configuration, which allows methods C and D but not methods A or B, is as follows:
 

[image: Image]
 

It is never wise to allow root to log in remotely. Superuser access should be achieved through the use of sudo. To encourage this behavior, use the option
 

PermitRootLogin no
 

The first time you connect to a new system through SSH, you are prompted to accept the remote host’s public key (which is usually generated as part of the server’s installation of OpenSSH, or soon thereafter). A truly paranoid user might manually verify it, but most of us blindly accept the key, which is then stored in the ~/.ssh/known_hosts file for future use. SSH won’t mention the server’s key again unless it changes. Unfortunately, users’ rubber-stamping the keys of new systems leaves you vulnerable to a man-in-the-middle attack if the host key was actually being presented by an attacker’s system.
 

A DNS record known as SSHFP has been developed to address this vulnerability. The premise is that the server’s key is stored as a DNS record. When a client connects to an unknown system, SSH looks up the SSHFP record to verify the server’s key rather than asking the user to verify it.
 

The sshfp utility, available from xelerance.com/software/sshfp, generates SSHFP DNS resource records either by scanning a remote server or by parsing a previously accepted key from the known_hosts file. (Of course, either choice assumes that the source of the key is known to be correct.) Usage is quite simple: use the -s flag to generate a key from a network scan, or use -k to scan the known_hosts file (the default). For example, the following command generates a BIND-compatible SSHFP record for solaris.booklab.atrust.com:
 

[image: Image]
 

Add these records to the domain’s zone file (be careful of the names and the $ORIGIN), reload the domain, and use dig to verify the key:
 

[image: Image]
 

ssh does not consult SSHFP records by default. Add the VerifyHostKeyDNS option to /etc/ssh/ssh_config to enable it. As with most SSH client options, you can also pass -o "VerifyHostKeyDNS yes" on the ssh command line when first accessing a new system.
 

SSH has a couple of ancillary functions that are useful for system administrators. One of these is the ability to tunnel TCP connections securely through an encrypted SSH channel, thereby allowing connectivity to insecure or firewalled services at remote sites. This functionality is ubiquitous among SSH clients and is simple to configure. Exhibit A shows a typical use of an SSH tunnel and should help clarify how it works.
 

Exhibit A An SSH tunnel for RDP
 

[image: Image]
 

In this scenario, a remote user wants to establish an RDP (remote desktop) connection to a Windows system on the enterprise network. Access to that host or to port 3389 is blocked by the firewall, but since the user has SSH access, he can route his connection through the SSH server.
 

To set this up, the user logs in to the remote SSH server with ssh. On the ssh command line, he specifies an arbitrary (but specific; in this case, 9989) local port that ssh should forward through the secure tunnel to the remote Windows machine’s port 3389. (For the standard OpenSSH implementation, the option to request this behavior is simply -L
localport:remotehost:remoteport.) All source ports in this example are marked as random since programs choose an arbitrary port from which they initiate connections.
 

To access the Windows machine’s desktop, the user then opens the remote desktop client (here, rdesktop) and enters localhost:9989 as the address of the server to connect to. The local ssh receives the connection on port 9989 and tunnels the traffic over the existing connection to the remote sshd. In turn, sshd forwards the connection to the Windows host.
 

Of course, tunnels such as these can be intentional or unintentional back doors as well. System administrators should use tunnels with caution and should also watch for unauthorized misuse of this facility by users.
 

In recent years, SSH has become the target of regular brute-force password attacks. Attackers perform repeated authentication attempts as common users, such as root, joe, or admin. Evidence of the attacks can be seen in the logs as hundreds or thousands of failed logins. Disabling password authentication is the best protection against these attacks. For now, attackers seem to be focusing only on port 22, so moving your SSH server to another port is an effective countermeasure. But history shows that this type of “security through obscurity” is rarely effective for long. Running password checks on your systems can reveal weak passwords that are likely to be broken by brute-force attacks.
 

Stunnel
 

Stunnel, created by Michal Trojnara, is an open source package that encrypts arbitrary TCP connections, much in the manner of SSH. It uses SSL, the Secure Sockets Layer, to create end-to-end tunnels through which it passes data to and from an unencrypted service. It is known to work well with insecure services such as Telnet, IMAP, and POP.
 

A stunnel daemon runs on both the client and server systems. The local stunnel usually accepts connections on the service’s traditional port (e.g., port 25 for SMTP) and routes them through SSL to a stunnel on the remote host. The remote stunnel accepts the connection, decrypts the incoming data, and routes it to the remote port on which the server is listening. This system allows unencrypted services to take advantage of the confidentiality and integrity offered by encryption without requiring any software changes. Client software need only be configured to look for services on the local system rather than on the server that will ultimately provide them.
 

The Telnet protocol makes a good example because it consists of a simple daemon listening on a single port. To stunnelify a Telnet link, you first create an SSL certificate. Stunnel is SSL library independent, so any standards-based implementation will do; we like OpenSSL. To generate the certificate:
 

[image: Image]
 

This command creates a self-signed, passphrase-less certificate. Although not using a passphrase is a convenience (a real human doesn’t have to be present to type a passphrase each time stunnel restarts), it also introduces a security risk. Be careful to protect the certificate file with strong permissions.
 

Next, define the configuration for both the server and client stunnels. The standard configuration file is /etc/stunnel/stunnel.conf, but you can create several configurations if you want to run more than one tunnel.
 

[image: Image]
 

There are a couple of important points to note about the server configuration. First, the chroot statement confines the stunnel process to the /var/run/stunnel directory. Paths for accessory files may need to be expressed in either the regular system namespace or the chrooted namespace, depending on the point at which they are opened. Here, the stunnel.pid file is actually located in /var/run/stunnel.
 

The [telnets] section has two statements: accept tells stunnel to accept connections on port 992, and connect passes those connections through to port 23, the actual Telnet service.
 

The client configuration is similar:
 

[image: Image]
 

A couple of directives are reversed relative to the server configuration. The statement client = yes tells the program to initiate stunnel connections rather than accept them. The local stunnel listens for connections on port 23 and connects to the server on port 992. The hostname in the connect directive should match the entry specified when the certificate was created.
 

Both the client and the server stunnels can be started with no command-line arguments. If you check with netstat -an, you should see the server stunnel waiting for connections on port 992 while the client stunnel waits on port 23.
 

To access the tunnel, a user simply telnets to the local host:
 

[image: Image]
 

The user can now safely log in without fear of password thievery. A vigilant administrator would be careful to use TCP wrappers to restrict connections on the client to only the local interface—the intent is not to allow the world to telnet securely to the server! stunnel is one of several programs that have built-in wrapper support and do not require the use of tcpd to restrict access. Visit stunnel.org for instructions.
 

22.11 Firewalls
 

In addition to protecting individual machines, you can also implement security precautions at the network level. The basic tool of network security is the firewall, a device or piece of software that prevents unwanted packets from accessing networks and systems. Firewalls are ubiquitous today and are found in devices ranging from desktop systems and servers to consumer routers and enterprise-grade network appliances.
 

Packet-Filtering Firewalls
 

A packet-filtering firewall limits the types of traffic that can pass through your Internet gateway (or through an internal gateway that separates domains within your organization) on the basis of information in the packet header. It’s much like driving your car through a customs checkpoint at an international border crossing. You specify which destination addresses, port numbers, and protocol types are acceptable, and the gateway simply discards (and in some cases, logs) packets that don’t meet the profile.
 

Packet-filtering software is included in Linux systems in the form of iptables, in Solaris and HP-UX as IPFilter, and in AIX as genfilt. See the details beginning on page 935 for more information.
 

Although these tools are capable of sophisticated filtering and bring a welcome extra dose of security, we generally discourage the use of UNIX and Linux systems as network routers and, most especially, as enterprise firewall routers. The complexity of general-purpose operating systems makes them inherently less secure and less reliable than task-specific devices. Dedicated firewall appliances such as those made by Check Point and Cisco are a better option for site-wide network protection.
 

How Services are Filtered
 

Most well-known services are associated with a network port in the /etc/services file or its vendor-specific equivalent. The daemons that provide these services bind to the appropriate ports and wait for connections from remote sites.7 Most of the well-known service ports are “privileged,” meaning that their port numbers are in the range 1 to 1023. These ports can only be used by a process running as root. Port numbers 1024 and higher are referred to as nonprivileged ports.
 

Service-specific filtering is based on the assumption that the client (the machine that initiates a TCP or UDP conversation) uses a nonprivileged port to contact a privileged port on the server. For example, if you wanted to allow only inbound SMTP connections to a machine with the address 192.108.21.200, you would install a filter that allowed TCP packets destined for port 25 at that address and that permitted outbound TCP packets from that address to anywhere.8 The exact way that such a filter is installed depends on the kind of router or filtering system you are using.
 

Some services, such as FTP, add a twist to the puzzle. The FTP protocol actually uses two TCP connections when transferring a file: one for commands and the other for data. The client initiates the command connection, and the server initiates the data connection9. Ergo, if you want to use FTP to retrieve files from the Internet, you must permit inbound access to all nonprivileged TCP ports since you have no idea what port might be used to form an incoming data connection.
 

See page 977 for more information about setting up an ftp server.

 

This tweak largely defeats the purpose of packet filtering because some notoriously insecure services (for example, X11 at port 6000) naturally bind to nonprivileged ports. This configuration also creates an opportunity for curious users within your organization to start their own services (such as a telnet server at a nonstandard and nonprivileged port) that they or their friends can access from the Internet.
 

One common solution to the FTP problem is to use the SSH file transfer protocol. The protocol is currently an Internet draft but is widely used and mature. It is commonly used as a subcomponent of SSH, which provides its authentication and encryption. Unlike FTP, SFTP uses only a single port for both commands and data, handily solving the packet-filtering paradox. A number of SFTP implementations exist. We’ve had great luck with the command-line SFTP client supplied by OpenSSH.
 

If you must use FTP, a reasonable approach is to allow FTP to the outside world only from a single, isolated host. Users can log in to the FTP machine when they need to perform network operations that are forbidden from the inner net. Since replicating all user accounts on the FTP “server” would defeat the goal of administrative separation, you may want to create FTP accounts by request only. Naturally, the FTP host should run a full complement of security-checking tools.
 

Modern security-conscious sites use a two-stage filtering scheme. In this scheme, one filter is a gateway to the Internet, and a second filter lies between the outer gateway and the rest of the local network. The idea is to terminate all inbound Internet connections on systems that lie in between these two filters. If these systems are administratively separate from the rest of the network, they can provide a variety of services to the Internet with reduced risk. The partially secured network is usually called the “demilitarized zone” or DMZ.
 

The most secure way to use a packet filter is to start with a configuration that allows no inbound connections. You can then liberalize the filter bit by bit as you discover useful things that don’t work and, hopefully, move any Internet-accessible services onto systems in the DMZ.
 

Stateful Inspection Firewalls
 

The theory behind stateful inspection firewalls is that if you could carefully listen to and understand all the conversations (in all the languages) that were taking place in a crowded airport, you could make sure that someone wasn’t planning to bomb a plane later that day. Stateful inspection firewalls are designed to inspect the traffic that flows through them and compare the actual network activity to what “should” be happening.
 

For example, if the packets exchanged in an FTP command sequence name a port to be used later for a data connection, the firewall should expect a data connection to occur only on that port. Attempts by the remote site to connect to other ports are presumably bogus and should be dropped.
 

So what are vendors really selling when they claim to provide stateful inspection? Their products either monitor a very limited number of connections or protocols or they search for a particular set of “bad” situations. Not that there’s anything wrong with that; clearly, some benefit is derived from any technology that can detect traffic anomalies. In this particular case, however, it’s important to remember that the claims are mostly marketing hype.
 

Firewalls: How Safe are They?
 

A firewall should not be your primary (or only!) means of defense against intruders. It’s only one component of what should be a carefully considered, multilayered security strategy. The use of firewalls often confers a false sense of security. If a firewall lulls you into relaxing other safeguards, it will have had a negative effect on the security of your site.
 

Every host within your organization should be individually patched, hardened, and regularly monitored with one or more tools such as Bro, Snort, Nmap, Nessus, and OSSEC. Likewise, your entire user community needs to be educated about basic security hygiene. Otherwise, you are simply building a structure that has a hard crunchy outside and a soft chewy center.
 

Ideally, local users should be able to connect to any Internet service they want, but machines on the Internet should only be able to connect to a limited set of local services hosted within your DMZ. For example, you may want to allow SFTP access to a local archive server and allow SMTP connections to a server that receives incoming email.
 

To maximize the value of your Internet connection, we recommend that you emphasize convenience and accessibility when deciding how to set up your network. At the end of the day, it’s the system administrator’s vigilance that makes a network secure, not a fancy piece of firewall hardware.
 

22.12 Linux Firewall Features
 

As stated earlier, we don’t really recommended the use of Linux (or UNIX, or Windows) systems as firewalls because of the insecurity of running a full-fledged, general-purpose operating system.10 However, a hardened Linux system is a workable substitute for organizations that don’t have the budget for a high-dollar firewall appliance. Likewise, it’s a fine option for a security-savvy home user with a penchant for tinkering. In any case, a local filter such as iptables can be an excellent supplemental security measure to consider when hardening a system.
 

If you are set on using a Linux machine as a firewall, make sure that it’s up to date with respect to security configuration and patches. A firewall machine is an excellent place to put into practice all of this chapter’s recommendations. (The section that starts on page 932 discusses packet-filtering firewalls in general. If you are not familiar with the basic concept of a firewall, it would probably be wise to read that section before continuing.)
 

Rules, Chains, and Tables
 

Version 2.4 of the Linux kernel introduced an all-new packet-handling engine, called Netfilter, along with a command-line tool, iptables, to manage it. iptables
applies ordered “chains” of rules to network packets. Sets of chains make up “tables” and are used for handling specific kinds of traffic.
 

For example, the default iptables table is named “filter”. Chains of rules in this table are used for packet-filtering network traffic. The filter table contains three default chains: FORWARD, INPUT, and OUTPUT. Each packet handled by the kernel is passed through exactly one of these chains.
 

Rules in the FORWARD chain are applied to all packets that arrive on one network interface and need to be forwarded to another. Rules in the INPUT and OUTPUT chains are applied to traffic addressed to or originating from the local host, respectively. These three standard chains are usually all you need for firewalling between two network interfaces. If necessary, you can define a custom configuration to support more complex accounting or routing scenarios.
 

In addition to the filter table, iptables includes the “nat” and “mangle” tables. The nat table contains chains of rules that control Network Address Translation (here, “nat” is the name of the iptables table and “NAT” is the name of the generic address translation scheme). The section Private addresses and network address translation (NAT) on page 462 discusses NAT, and an example of the nat table in action is shown on page 493. Later in this section, we use the nat table’s PREROUTING chain for anti-spoofing packet filtering.
 

The mangle table contains chains that modify or alter the contents of network packets outside the context of NAT and packet filtering. Although the mangle table is handy for special packet handling, such as resetting IP time-to-live values, it is not typically used in most production environments. We discuss only the filter and nat tables in this section, leaving the mangle table to the adventurous.
 

Rule Targets
 

Each rule that makes up a chain has a “target” clause that determines what to do with matching packets. When a packet matches a rule, its fate is in most cases sealed; no additional rules will be checked. Although many targets are defined internally to iptables, it is possible to specify another chain as a rule’s target.
 

The targets available to rules in the filter table are ACCEPT, DROP, REJECT, LOG, MIRROR, QUEUE, REDIRECT, RETURN, and ULOG. When a rule results in an ACCEPT, matching packets are allowed to proceed on their way. DROP and REJECT both drop their packets; DROP is silent, and REJECT returns an ICMP error message. LOG gives you a simple way to track packets as they match rules, and ULOG expands logging.
 

REDIRECT shunts packets to a proxy instead of letting them go on their merry way. For example, you might use this feature to force all your site’s web traffic to go through a web cache such as Squid. RETURN terminates user-defined chains and is analogous to the return statement in a subroutine call. The MIRROR target swaps the IP source and destination address before sending the packet. Finally, QUEUE hands packets to local user programs through a kernel module.
 

See page 974 for more information about Squid.

 

Iptables Firewall Setup
 

Before you can use iptables as a firewall, you must enable IP forwarding and make sure that various iptables modules have been loaded into the kernel. For more information on enabling IP forwarding, see Tuning Linux kernel parameters on page 421 or Security-related kernel variables on page 492. Packages that install iptables generally include startup scripts to achieve this enabling and loading.
 

A Linux firewall is usually implemented as a series of iptables commands contained in an rc startup script. Individual iptables commands usually take one of the following forms:
 

[image: Image]
 

The first form (-F) flushes all prior rules from the chain. The second form (-P) sets a default policy (aka target) for the chain. We recommend that you use DROP for the default chain target. The third form (-A) appends the current specification to the chain. Unless you specify a table with the -t argument, your commands apply to chains in the filter table. The -i parameter applies the rule to the named interface, and -j identifies the target. iptables accepts many other clauses, some of which are shown in Table 22.3.
 

Table 22.3 Command-line flags for iptables filters
 

[image: Image]
 

A Complete Example
 

Below we break apart a complete example. We assume that the eth1 interface goes to the Internet and that the eth0 interface goes to an internal network. The eth1 IP address is 128.138.101.4, the eth0 IP address is 10.1.1.1, and both interfaces have a netmask of 255.255.255.0. This example uses stateless packet filtering to protect the web server with IP address 10.1.1.2, which is the standard method of protecting Internet servers. Later in the example, we show how to use stateful filtering to protect desktop users.
 

Our first set of rules initializes the filter table. First, all chains in the table are flushed, then the INPUT and FORWARD chains’ default target is set to DROP. As
 

with any other network firewall, the most secure strategy is to drop any packets you have not explicitly allowed.
 

[image: Image]
 

Since rules are evaluated in order, we put our busiest rules at the front.11 The first rule allows all connections through the firewall that originate from within the trusted net. The next three rules in the FORWARD chain allow connections through the firewall to network services on 10.1.1.2. Specifically, we allow SSH (port 22), HTTP (port 80), and HTTPS (port 443) through to our web server.
 

[image: Image]
 

The only TCP traffic we allow to our firewall host (10.1.1.1) is SSH, which is useful for managing the firewall itself. The second rule listed below allows loopback traffic, which stays local to the host. Administrators get nervous when they can’t ping their default route, so the third rule here allows ICMP ECHO_REQUEST packets from internal IP addresses.
 

[image: Image]
 

For any IP host to work properly on the Internet, certain types of ICMP packets must be allowed through the firewall. The following eight rules allow a minimal set of ICMP packets to the firewall host, as well as to the network behind it.
 

[image: Image]
 

We next add rules to the PREROUTING chain in the nat table. Although the nat table is not intended for packet filtering, its PREROUTING chain is particularly useful for anti-spoofing filtering. If we put DROP entries in the PREROUTING chain, they need not be present in the INPUT and FORWARD chains, since the PREROUTING chain is applied to all packets that enter the firewall host. It’s cleaner to put the entries in a single place rather than to duplicate them.
 

See page 473 for more information about IP spoofing.

 

[image: Image]
 

Finally, we end both the INPUT and FORWARD chains with a rule that forbids all packets not explicitly permitted. Although we already enforced this behavior with the iptables -P commands, the LOG target lets us see who is knocking on our door from the Internet.
 

[image: Image]
 

Optionally, we could set up IP NAT to disguise the private address space used on the internal network. See page 492 for more information about NAT.
 

One of the most powerful features that Netfilter brings to Linux firewalling is stateful packet filtering. Instead of allowing specific incoming services, a firewall for clients connecting to the Internet needs to allow incoming responses to the client’s requests. The simple stateful FORWARD chain below allows all traffic to leave our network but only allows incoming traffic that’s related to connections initiated by our hosts.
 

[image: Image]
 

Certain kernel modules must be loaded to enable iptables to track complex network sessions such as those of FTP and IRC. If these modules are not loaded, iptables simply disallows those connections. Although stateful packet filters can increase the security of your site, they also add to the complexity of the network. Be sure you need stateful functionality before implementing it in your firewall.
 

Perhaps the best way to debug your iptables rulesets is to use iptables -L -v. These options tell you how many times each rule in your chains has matched a packet. We often add temporary iptables rules with the LOG target when we want more information about the packets that get matched. You can often solve trickier problems by using a packet sniffer such as tcpdump.
 

22.13 IPFilter for UNIX Systems
 

Most UNIX vendors don’t have their own firewall software.12 But it’s easy enough to add: IPFilter, an open source package developed by Darren Reed, supplies NAT and stateful firewall services for UNIX systems. Solaris includes it by default, and it’s also available as an add-on for HP-UX, AIX, and many other systems, including Linux. You can use IPFilter as a loadable kernel module (which is recommended by the developers) or include it statically in the kernel.
 

IPFilter is mature and feature-complete. The package has an active user community and a history of continuous development. It is capable of stateful tracking even for stateless protocols such as UDP and ICMP.
 

IPFilter reads filtering rules from a configuration file (usually /etc/ipf.conf or /etc/ipf/ipf.conf) rather than making you run a series of commands as does iptables. An example of a simple rule that could appear in ipf.conf is
 

block in all
 

This rule blocks all inbound traffic (that is, network activity received by the system) on all network interfaces. Certainly secure, but not particularly useful!
 

Table 22.4 shows some of the possible conditions that can appear in an ipf rule.
 

Table 22.4 Commonly used ipf conditions
 

[image: Image]
 

IPFilter evaluates rules in the sequence in which they are presented in the configuration file. The last match is binding. For example, inbound packets traversing the following filter will always pass:
 

[image: Image]
 

The block rule matches all packets, but so does the pass rule, and pass is the last match. To force a matching rule to apply immediately and make IPFilter skip subsequent rules, use the quick keyword:
 

[image: Image]
 

An industrial-strength firewall typically contains many rules, so liberal use of quick is important to maintain the performance of the firewall. Without it, every packet is evaluated against every rule, and this wastefulness is costly.
 

Perhaps the most common use of a firewall is to control access to and from a specific network or host, often with respect to a specific port. IPFilter has powerful syntax to control traffic at this level of granularity. In the following rules, inbound traffic is permitted to the 10.0.0.0/24 network on TCP ports 80 and 443 and on UDP port 53.
 

[image: Image]
 

The keep state keywords deserve special attention. IPFilter can keep track of connections by noting the first packet of new sessions. For example, when a new packet arrives addressed to port 80 on 10.0.0.10, IPFilter makes an entry in the state table and allows the packet through. It also allows the reply from the web server even though the first rule explicitly blocks all outbound traffic.
 

keep state is also useful for devices that offer no services but that must initiate connections. The following ruleset permits all conversations that are initiated by 192.168.10.10. It blocks all inbound packets except those related to connections that have already been initiated.
 

[image: Image]
 

The keep state keywords work for UDP and ICMP packets, too, but since these protocols are stateless, the mechanics are slightly more ad hoc: IPFilter permits responses to a UDP or an ICMP packet for 60 seconds after the inbound packet is seen by the filter. For example, if a UDP packet from 10.0.0.10, port 32,000, is addressed to 192.168.10.10, port 53, a UDP reply from 192.168.10.10 will be permitted until 60 seconds have passed. Similarly, an ICMP echo reply (ping response) is permitted after an echo request has been entered in the state table.
 

Network address translation (NAT) is another feature offered by IPFilter. NAT lets a large network that uses RFC1918 private IP addresses connect to the Internet through a small set of Internet-routable IP addresses. The NAT device maps traffic from the private network to one or more public addresses, sends requests across the Internet, and then intercepts the responses and rewrites them in terms of the local IP addresses.
 

See page 462 for more information about private addresses and NAT.

 

IPFilter uses the map keyword (in place of pass and block) to provide NAT services. In the following rule, traffic from the 10.0.0.0/24 network is mapped to the current routable address on the e1000g0 interface.
 

map e1000g0 10.0.0.0/24 -> 0/32
 

The filter must be reloaded if the address of e1000g0 changes, as might happen if e1000g0 leases a dynamic IP address through DHCP. For this reason, IPFilter’s NAT features are best used at sites that have a static IP address on the Internet-facing interface.
 

IPFilter rules are flexible and configurable. Advanced features such as macros can considerably simplify the rules files. For details on these advanced features, see the official IPFilter site at coombs.anu.edu.au/~avalon.
 

The IPFilter package includes several commands, listed in Table 22.5.
 

Table 22.5 IPFilter commands
 

[image: Image]
 

Of the commands in Table 22.5, ipf is the most commonly used. ipf accepts a rule file as input and adds correctly parsed rules to the kernel’s filter list. ipf adds rules to the end of the filter unless you use the -Fa argument, which flushes all existing rules. For example, to flush the kernel’s existing set of filters and load the rules from ipf.conf, use the following syntax:
 

solaris$ sudo ipf -Fa -f /etc/ipf/ipf.conf
 

IPFilter relies on pseudo-device files in /dev for access control, and by default only root can edit the filter list. We recommend leaving the default permissions in place and using sudo to maintain the filter.
 

Use ipf ’s -v flag when loading the rules file to debug syntax errors and other problems in the configuration.
 

[image: Image] IPFilter is preinstalled in the Solaris kernel, but you must enable it with
 

solaris$ sudo svcadm enable network/ipfilter
 

before you can use it.
 

22.14 Virtual Private Networks(VPNs)
 

In its simplest form, a VPN is a connection that makes a remote network appear as if it is directly connected, even if it is physically thousands of miles and many router hops away. For increased security, the connection is not only authenticated in some way (usually with a “shared secret” such as a password), but the end-to-end traffic is also encrypted. Such an arrangement is usually referred to as a “secure tunnel.”
 

Here’s a good example of the kind of situation in which a VPN is handy: Suppose that a company has offices in Chicago, Boulder, and Miami. If each office has a connection to a local ISP, the company can use VPNs to transparently (and, for the most part, securely) connect the offices across the untrusted Internet. The company could achieve a similar result by leasing dedicated lines to connect the three offices, but that would be considerably more expensive.
 

Another good example is a company whose employees telecommute from their homes. VPNs would allow those users to reap the benefits of their high-speed and inexpensive cable modem service while still making it appear that they are directly connected to the corporate network.
 

Because of the convenience and popularity of this functionality, everyone and his brother is offering some type of VPN solution. You can buy it from your router vendor as a plug-in for your operating system or even as a dedicated VPN device for your network. Depending on your budget and scalability needs, you may want to consider one of the many commercial VPN solutions.
 

If you’re without a budget and looking for a quick fix, SSH can do secure tunneling for you. See the end of the SSH section on page 926.
 

IPsec Tunnels
 

If you’re a fan of IETF standards (or of saving money) and need a real VPN solution, take a look at IPsec (Internet Protocol security). IPsec was originally developed for IPv6, but it has also been widely implemented for IPv4. IPsec is an IETF-approved, end-to-end authentication and encryption system. Almost all serious VPN vendors ship a product that has at least an IPsec compatibility mode. Linux, Solaris, HP-UX, and AIX all include native kernel support for IPsec.
 

IPsec uses strong cryptography to provide both authentication and encryption services. Authentication ensures that packets are from the right sender and have not been altered in transit, and encryption prevents the unauthorized examination of packet contents.
 

In tunnel mode, IPsec encrypts the transport layer header, which includes the source and destination port numbers. Unfortunately, this scheme conflicts with the way in which most firewalls work. For this reason, most modern implementations default to using transport mode, in which only the payloads of packets (the data being transported) are encrypted.
 

There’s a gotcha involving IPsec tunnels and MTU size. It’s important to ensure that once a packet has been encrypted by IPsec, nothing fragments it along the path the tunnel traverses. To achieve this feat, you may have to lower the MTU on the devices in front of the tunnel (in the real world, 1,400 bytes usually works). See page 453 in the TCP chapter for more information about MTU size.
 

All I Need is a VPN, Right?
 

Sadly, there’s a downside to VPNs. Although they do build a (mostly) secure tunnel across the untrusted network between the two endpoints, they don’t usually address the security of the endpoints themselves. For example, if you set up a VPN between your corporate backbone and your CEO’s home, you may be inadvertently creating a path for your CEO’s 15-year-old daughter to have direct access to everything on your network.
 

Bottom line: you need to treat connections from VPN tunnels as external connections and grant them additional privileges only as necessary and after careful consideration. Consider adding a special section to your site security policy that covers the rules that apply to VPN connections.
 

22.15 Certifications and Standards
 

If the subject matter of this chapter seems daunting to you, don’t fret. Computer security is a complicated and vast topic, as countless books, web sites, and magazines can attest. Fortunately, much has been done to help quantify and organize the available information. Dozens of standards and certifications exist, and mindful system administrators should consider their guidance.
 

One of the most basic philosophical principles in information security is informally referred to as the “CIA triad.”
 

The acronym stands for
 

• Confidentiality

 

• Integrity

 

• Availability

 

Confidentiality concerns the privacy of data. Access to information should be limited to those who are authorized to have it. Authentication, access control, and encryption are a few of the subcomponents of confidentiality. If a hacker breaks into a system and steals a database containing customer contact information, a compromise of confidentiality has occurred.
 

Integrity relates to the authenticity of information. Data integrity technology ensures that information is valid and has not been altered in any unauthorized way. It also addresses the trustworthiness of information sources. When a secure web site presents a signed SSL certificate, it is proving to the user not only that the information it is sending is encrypted but also that a trusted certificate authority (such as VeriSign or Equifax) has verified the identity of the source. Technologies such as PGP and Kerberos also guarantee data integrity.
 

Availability expresses the idea that information must be accessible to authorized users when they need it or there is no purpose in having it. Outages not caused by intruders, such as those caused by administrative errors or power outages, also fall into the category of availability problems. Unfortunately, availability is often ignored until something goes wrong.
 

Consider the CIA principles as you design, implement, and maintain systems. As the old security adage goes, “security is a process.”
 

Certifications
 

This crash course in CIA is just a brief introduction to the larger information security field. Large corporations often employ many full-time employees whose job is guarding information. To gain credibility in the field and keep their knowledge current, these professionals attend training courses and obtain certifications. Prepare yourself for acronym-fu as we work through a few of the most popular certifications.
 

One of the most widely recognized security certifications is the CISSP, or Certified Information Systems Security Professional. It is administered by (ISC)2, the International Information Systems Security Certification Consortium (say that ten times fast!). One of the primary draws of the CISSP is (ISC)2’s notion of a “common body of knowledge” (CBK), essentially an industry-wide best practices guide for information security. The CBK covers law, cryptography, authentication, physical security, and much more. It’s an incredible reference for security folks.
 

One criticism of the CISSP has been its concentration on breadth and consequent lack of depth. So many topics in the CBK, and so little time! To address this, (ISC)2 has issued CISSP concentration programs that focus on architecture, engineering, and management. These specialized certifications add depth to the more general CISSP certification.
 

The System Administration, Networking, and Security (SANS) Institute created the Global Information Assurance Certification (GIAC) suite of certifications in 1999. Three dozen separate exams cover the realm of information security with tests divided into five categories. The certifications range in difficulty from the moderate two-exam GISF to the 23-hour, expert-level GSE. The GSE is notorious as one of the most difficult certifications in the industry. Many of the exams focus on technical specifics and require quite a bit of experience.
 

Finally, the Certified Information Systems Auditor (CISA) credential is an audit and process certification. It focuses on business continuity, procedures, monitoring, and other management content. Some consider the CISA an intermediate certification that is appropriate for an organization’s security officer role. One of its most attractive aspects is that it involves only a single exam.
 

Although certifications are a personal endeavor, their application to business is undeniable. More and more companies now recognize certifications as the mark of an expert. Many businesses offer higher pay and promotions to certified employees. If you decide to pursue a certification, work closely with your organization to have it help pay for the associated costs.
 

Security Standards
 

Because of the ever-increasing reliance on data systems, laws and regulations have been created to govern the management of sensitive, business-critical information. Major pieces of U.S. legislation such as HIPAA, FISMA, NERC CIP, and the Sarbanes-Oxley Act (SOX) have all included sections on IT security. Although the requirements are sometimes expensive to implement, they have helped give the appropriate level of focus to a once-ignored aspect of technology.
 

Unfortunately, the regulations are filled with legalese and can be difficult to interpret. Most do not contain specifics on how to achieve their requirements. As a result, standards have been developed to help administrators reach the lofty legislative requirements. These standards are not regulation specific, but following them usually ensures compliance. It can be intimidating to confront the requirements of all the various standards at once, so it’s usually best to first work through one standard in its entirety.
 

For a broader discussions of industry and legal standards that affect IT environments, see page 1222.

 

ISO 27002
 

The ISO/IEC 27002 (formerly ISO 17799) standard is probably the most widely accepted in the world. First introduced in 1995 as a British standard, it is 34 pages long and is divided into 11 sections that run the gamut from policy to physical security to access control. Objectives within each section define specific requirements, and controls under each objective describe the suggested “best practice” solutions. The document costs about $200.
 

The requirements are nontechnical and can be fulfilled by any organization in a way that best fits its needs. On the downside, the general wording of the standard leaves the reader with a sense of broad flexibility. Critics complain that the lack of specifics leaves organizations open to attack.
 

Nonetheless, this standard is one of the most valuable documents available to the information-security industry. It bridges an often tangible gap between management and engineering and helps focus both parties on minimizing risk.
 

PCI DSS
 

The Payment Card Industry Data Security Standard (PCI DSS) is a different beast entirely. It arose out of the perceived need to improve security in the credit card processing industry following a series of dramatic exposures. For example, in June 2005, CardSystems Services International revealed the “loss” of 40 million credit card numbers.
 

The U.S. Department of Homeland Security has estimated that $49.3 billion was lost to identity theft in 2009 alone. Not all of this can be linked directly to credit card exposure, of course, but increased vigilance by vendors would certainly have had a positive impact. The FBI has even connected credit card fraud to the funding of terrorist groups. Specific incidents include the bombings in Bali and the Madrid subway system.
 

The PCI DSS standard is the result of a joint effort between Visa and MasterCard, though it is currently maintained by Visa. Unlike ISO 27002, it is freely available for anyone to download. It focuses entirely on protecting cardholder data systems and has 12 sections that define requirements for protection.
 

Because PCI DSS is focused on card processors, it is not generally appropriate for businesses that don’t deal with credit card data. However, for those that do, strict compliance is necessary to avoid hefty fines and possible criminal prosecution. You can find the document at pcisecuritystandards.org.
 

NIST 800 Series
 

The fine folks at the National Institute of Standards and Technology (NIST) have created the Special Publication (SP) 800 series of documents to report on their research, guidelines, and outreach efforts in computer security. These documents are most often used in connection with measuring FISMA compliance for those organizations that handle data for the U.S. federal government. More generally, they are publicly available standards with excellent content and have been widely adopted by industry.
 

The SP 800 series includes more than 100 documents. All of them are available from csrc.nist.gov/publications/PubsSPs.html. Here are a few that you might want to consider starting with: NIST 800-12, An Introduction to Computer Security: The NIST Handbook; NIST 800-14, Generally Accepted Principles and Practices for Securing Information Technology Systems; NIST 800-34 R1, Contingency Planning Guide for Information Technology Systems; NIST 800-39, Managing Risk from Information Systems: An Organizational Perspective; NIST 800-53 R3, Recommended Security Controls for Federal Information Systems and Organizations; NIST 800-123, Guide to General Server Security.
 

Common Criteria
 

The Common Criteria for Information Technology Security Evaluation (commonly known as the “Common Criteria”) is a standard against which to evaluate the security level of IT products. These guidelines have been established by an international committee of members from a variety of manufacturers and industries. See commoncriteriaportal.org to learn more about the standard and certified products.
 

Owasp
 

The Open Web Application Security Project (OWASP) is a not-for-profit worldwide organization focused on improving the security of application software. They are best known for their “top 10” list of web application security risks, which serves to remind all of us where to focus our energies when securing applications. Find the current list and a bunch of other great material at owasp.org.
 

22.16 Sources of Security Information
 

Half the battle of keeping your system secure consists of staying abreast of security-related developments in the world at large. If your site is broken into, the break-in probably won’t be through the use of a novel technique. More likely, the chink in your armor is a known vulnerability that has been widely discussed in vendor knowledge bases, on security-related newsgroups, and on mailing lists.
 

CERT: a Registered Service Mark of Carnegie Mellon University
 

In response to the uproar over the 1988 Robert Morris, Jr., Internet worm, the Defense Advanced Research Projects Agency (DARPA) formed an organization called CERT, the Computer Emergency Response Team, to act as a clearing house for computer security information. CERT is still the best-known point of contact for security information, although it seems to have grown rather sluggish and bureaucratic of late. CERT also now insists that the name CERT does not stand for anything and is merely “a registered service mark of Carnegie Mellon University.”
 

In mid-2003, CERT partnered with the Department of Homeland Security’s National Cyber Security Division, NCSD. For better or worse, the merger has altered the previous mailing list structure.
 

The combined organization, known as US-CERT, offers four announcement lists, the most useful of which is the “Technical Cyber Security Alerts.” Subscribe to any of the four lists at forms.us-cert.gov/maillists.
 

Securityfocus.Com and the Bugtraq Mailing List
 

SecurityFocus.com specializes in security-related news and information. The news includes current articles on general issues and on specific problems; there’s also an extensive technical library of useful papers, nicely sorted by topic.
 

SecurityFocus’s archive of security tools includes software for a variety of operating systems, along with blurbs and user ratings. It is the most comprehensive and detailed source of tools that we are aware of.
 

The BugTraq list is a moderated forum for the discussion of security vulnerabilities and their fixes. To subscribe, visit securityfocus.com/archive. Traffic on this list can be fairly heavy, however, and the signal-to-noise ratio is poor. A database of BugTraq vulnerability reports is also available from the web site.
 

Schneier on Security
 

Bruce Schneier’s blog is a valuable and sometimes entertaining source of information about computer security and cryptography. Schneier is the author of the well-respected books Applied Cryptography and Secrets and Lies, among others. Information from the blog is also captured in the form of a monthly newsletter known as the Crypto-Gram. Learn more at schneier.com/crypto-gram.html.
 

SANS: the System Administration, Networking, and Security Institute
 

SANS is a professional organization that sponsors security-related conferences and training programs, as well as publishing a variety of security information. Their web site, sans.org, is a useful resource that occupies something of a middle ground between SecurityFocus and CERT: neither as frenetic as the former nor as stodgy as the latter.
 

SANS offers several weekly and monthly email bulletins that you can sign up for on their web site. The weekly NewsBites are nourishing, but the monthly summaries seem to contain a lot of boilerplate. Neither is a great source of late-breaking security news.
 

Vendor-Specific Security Resources
 

Because security problems have the potential to generate a lot of bad publicity, vendors are often eager to help customers keep their systems secure. Most large vendors have an official mailing list to which security-related bulletins are posted, and many maintain a web site about security issues as well. It’s common for security-related software patches to be distributed for free, even by vendors that normally charge for software support.
 

Security portals on the web, such as SecurityFocus.com, contain vendor-specific information and links to the latest official vendor dogma.
 

[image: Image] Ubuntu maintains a security mailing list at
 

https://lists.ubuntu.com/mailman/listinfo/ubuntu-security-announce

 

[image: Image] You can find SUSE security advisories at
 

novell.com/linux/security/securitysupport.html

 

You can join the official SUSE security announcement mailing list by visiting
 

suse.com/en/private/support/online_help/mailinglists/index.html

 

[image: Image] Subscribe to the “Enterprise watch” list to get announcements about the security of Red Hat’s product line at redhat.com/mailman/listinfo/enterprise-watch-list.
 

[image: Image] Despite Oracle’s acquisition of Sun Microsystems, Sun’s original security blog at blogs.sun.com/security/category/alerts continues to be updated. When the branding and location are updated, you can probably still find a pointer there.
 

[image: Image] You can access HP’s various offerings through us-support.external.hp.com for the Americas and Asia, and europe-support.external.hp.com for Europe.
 

The security-related goodies have been carefully hidden. To find them, enter the maintenance/support area and select the option to search the technical knowledge base. A link in the filter options on that page takes you to the archive of security bulletins. (You will need to register if you have not already done so.) You can access security patches from that area as well.
 

To have security bulletins sent to you, return to the maintenance/support main page and choose the “Subscribe to proactive notifications and security bulletins” option. Unfortunately, there does not appear to be any way to subscribe directly by email.
 

[image: Image]Sign up for AIX security notifications through the “My notifications” link at ibm.com/systems/support.
 

Security information about Cisco products is distributed in the form of field notices, a list of which can be found at cisco.com/public/support/tac/fn_index.html along with a news aggregation feed. To subscribe to Cisco’s security mailing list, email majordomo@cisco.com with the line “subscribe cust-security-announce” in the message body.
 

Other Mailing Lists and Web Sites
 

The contacts listed above are just a few of the many security resources available on the net. Given the volume of info that’s now available and the rapidity with which resources come and go, we thought it would be most helpful to point you toward some meta-resources.
 

One good starting point is the linuxsecurity.com, which logs several posts every day on pertinent Linux security issues. It also keeps a running collection of Linux security advisories, upcoming events, and user groups.
 

(IN)SECURE magazine is a free bimonthly magazine containing current security trends, product announcements, and interviews with notable security professionals. Read some of the articles with a vial of salt nearby, and be sure to check the author at the end—he may be pimping his own products.
 

Linux Security (linuxsecurity.com) covers the latest news in Linux and open source security. Subscribe to the RSS feed for best results.
 

The Linux Weekly News is a tasty treat that includes regular updates on the kernel, security, distributions, and other topics. LWN’s security section can be found at lwn.net/security.
 

22.17 What to do When Your Site has Been Attacked
 

The key to handling an attack is simple: don’t panic. It’s very likely that by the time you discover the intrusion, most of the damage has already been done. In fact, it has probably been going on for weeks or months. The chance that you’ve discovered a break-in that just happened an hour ago is slim to none.
 

In that light, the wise owl says to take a deep breath and begin developing a carefully thought out strategy for dealing with the break-in. You need to avoid tipping off the intruder by announcing the break-in or performing any other activity that would seem abnormal to someone who may have been watching your site’s operations for many weeks. Hint: performing a system backup is usually a good idea at this point and (hopefully!) will appear to be a normal activity to the intruder.13
 

This is also a good time to remind yourself that some studies have shown that 60% of security incidents involve an insider. Be very careful with whom you discuss the incident until you’re sure you have all the facts.
 

Here’s a quick 9-step plan that may assist you in your time of crisis:
 

Step 1: Don’t panic. In many cases, a problem isn’t noticed until hours or days after it took place. Another few hours or days won’t affect the outcome. The difference between a panicky response and a rational response will. Many recovery situations are exacerbated by the destruction of important log, state, and tracking information during an initial panic.
 

Step 2: Decide on an appropriate level of response. No one benefits from an over-hyped security incident. Proceed calmly. Identify the staff and resources that must participate and leave others to assist with the post-mortem after it’s all over.
 

Step 3: Hoard all available tracking information. Check accounting files and logs. Try to determine where the original breach occurred. Back up all your systems. Make sure that you physically write-protect backup tapes if you put them in a drive to read them.
 

Step 4: Assess your degree of exposure. Determine what crucial information (if any) has “left” the company, and devise an appropriate mitigation strategy. Determine the level of future risk.
 

Step 5: Pull the plug. If necessary and appropriate, disconnect compromised machines from the network. Close known holes and stop the bleeding. CERT provides steps for analyzing an intrusion. The document can be found at
 

cert.org/tech_tips/win-UNIX-system_compromise.html

 

Step 6: Devise a recovery plan. With a creative colleague, draw up a recovery plan on nearby whiteboard. This procedure is most effective when performed away from a keyboard. Focus on putting out the fire and minimizing the damage. Avoid assessing blame or creating excitement. In your plan, don’t forget to address the psychological fallout your user community may experience. Users inherently trust others, and blatant violations of trust make many folks uneasy.
 

Step 7: Communicate the recovery plan. Educate users and management about the effects of the break-in, the potential for future problems, and your preliminary recovery strategy. Be open and honest. Security incidents are part of life in a modern networked environment. They are not a reflection on your ability as a system administrator or on anything else worth being embarrassed about. Openly admitting that you have a problem is 90% of the battle, as long as you can demonstrate that you have a plan to remedy the situation.
 

Step 8: Implement the recovery plan. You know your systems and networks better than anyone. Follow your plan and your instincts. Speak with a colleague at a similar institution (preferably one who knows you well) to keep yourself on the right track.
 

Step 9: Report the incident to authorities. If the incident involved outside parties, report the matter to CERT. They have a hotline at (412) 268-7090 and can be reached by email at cert@cert.org. Provide as much information as you can.
 

A standard form is available from cert.org to help jog your memory. Here are some of the more useful pieces of information you might provide:
 

• The names, hardware, and OS versions of the compromised machines

 

• The list of patches that had been applied at the time of the incident

 

• A list of accounts that are known to have been compromised

 

• The names and IP addresses of any remote hosts that were involved

 

• Contact information (if known) for the administrators of remote sites

 

• Relevant log entries or audit information

 

If you believe that a previously undocumented software problem may have been involved, you should report the incident to the software vendor as well.
 

22.18 Recommended Reading
 

BARRETT, DANIEL J., RICHARD E. SILVERMAN, AND ROBERT G. BYRNES. Linux Security Cookbook. Sebastopol, CA: O’Reilly Media, 2003.
 

BAUER, MICHAEL D. Linux Server Security (2nd Edition). Sebastopol, CA: O’Reilly Media, 2005.
 

BRYANT, WILLIAM. “Designing an Authentication System: a Dialogue in Four Scenes.” 1988. web.mit.edu/kerberos/www/dialogue.html
 

CHESWICK, WILLIAM R., STEVEN M. BELLOVIN, AND AVIEL D RUBIN. Firewalls and Internet Security: Repelling the Wily Hacker (2nd Edition). Reading, MA: Addison-Wesley, 2003.
 

CURTIN, MATT, MARCUS RANUM, AND PAUL D. ROBINSON. “Internet Firewalls: Frequently Asked Questions.” 2004. interhack.net/pubs/fwfaq
 

FARROW, RIK, AND RICHARD POWER. Network Defense article series. 1998-2004. spirit.com/Network
 

FRASER, B., EDITOR. RFC2196: Site Security Handbook. 1997. rfc-editor.org
 

GARFINKEL, ISMSON, GENE SPAFFORD, AND ALAN SCHWARTZ. Practical UNIX and Internet Security (3rd Edition). Sebastopol, CA: O’Reilly Media, 2003.
 

KERBY, FRED, ET AL. “SANS Intrusion Detection and Response FAQ.” SANS. 2009. sans.org/resources/idfaq
 

LYON, GORDON FYODOR. Nmap Network Scanning: The Official Nmap Project Guide to Network Discovery and Security Scanning. Nmap Project, 2009.
 

MANN, SCOTT, AND ELLEN L. MITCHELL. Linux System Security: The Administrator’s Guide to Open Source Security Tools (2nd Edition). Upper Saddle River, NJ: Prentice Hall PTR, 2002.
 

MORRIS, ROBERT, AND KEN THOMPSON. “Password Security: A Case History.” Communications of the ACM, 22 (11): 594-597, November 1979. Reprinted in UNIX System Manager’s Manual, 4.3 Berkeley Software Distribution. University of California, Berkeley, April 1986.
 

RITCHIE, DENNIS M. “On the Security of UNIX.” May 1975. Reprinted in UNIX System Manager’s Manual, 4.3 Berkeley Software Distribution. University of California, Berkeley, April 1986.
 

SCHNEIER, BRUCE. Applied Cryptography: Protocols, Algorithms, and Source Code in C. New York, NY: Wiley, 1995.
 

STEVES, KEVIN. “Building a Bastion Host Using HP-UX 11.” HP Consulting. 2002. tinyurl.com/5sffy2
 

THOMPSON, KEN. “Reflections on Trusting Trust.” in ACM Turing Award Lectures: The First Twenty Years 1966-1985. Reading, MA: ACM Press (Addison-Wesley), 1987.
 

22.19 Exercises
 

E22.1 Discuss the strength of SSH authentication when passwords are used versus when a passphrase and key pair are used. If one is clearly more secure than the other, should you automatically require the more secure authentication method?

 

[image: Image] E22.2 SSH tunneling is often the only way to tunnel traffic to a remote machine on which you don’t have administrator access. Read the ssh man page and write a command line that tunnels traffic from localhost port 113 to mail.remotenetwork.org port 113. The forwarding point of your tunnel should also be the host mail.remotenetwork.org.

 

[image: Image] E22.3 Pick a recent security incident and research it. Find the best sources of information about the incident and find patches or workarounds that are appropriate for the systems in your lab. List your sources and the actions you propose for protecting your lab.

 

[image: Image] E22.4 With permission from your local sysadmin group, install John the Ripper, the program that searches for logins with weak passwords.

 

a) Modify the source code so that it outputs only the login names with which weak passwords are associated, not the passwords themselves.

 

b) Run John the Ripper on your local lab’s password file (you need access to /etc/shadow) and see how many breakable passwords you can find.

 

c) Set your password to a dictionary word and give john just your own entry in /etc/shadow. How long does john take to find it?

 

d) Try other patterns (capital letter, number after dictionary word, single-letter password, etc.) to see exactly how smart john is.

 

[image: Image] E22.5 In the computer lab, set up two machines: a target and a prober.

 

a) Install nmap and Nessus on the prober. Attack the target with these tools. How could you detect the attack on the target?

 

b) Set up a firewall on the target; use iptables to defend against the probes. Can you detect the attack now? If so, how? If not, why not?

 

c) What other defenses can be set up against the attacks?

 

(Requires root access.)

 

[image: Image] E22.6 Using a common security mailing list or web site, identify an application that has recently encountered a vulnerability. Find a good source of information on the hole and discuss the issues and the best way to address them.

 

[image: Image] E22.7 Setuid programs are sometimes a necessary evil. However, setuid shell scripts should be avoided. Why?

 

[image: Image] E22.8 Use tcpdump to capture FTP traffic for both active and passive FTP sessions. How does the need to support an anonymous FTP server affect the site’s firewall policy? What would the firewall rules need to allow? (Requires root access.)

 

[image: Image] E22.9 What do the rules in the following iptables output allow and disallow? What would be some easy additions that would enhance security and privacy? (Hint: the OUTPUT and FORWARD chains could use some more rules.)

 

[image: Image]
 

[image: Image] E22.10 Inspect a local firewall’s rulesets. Discuss what you find in terms of policies. Are there any glaring security holes? (This exercise is likely to require the cooperation of the administrators responsible for your local site’s security.)

 

[image: Image] E22.11 Write a tool that determines whether any network interfaces at your site are in promiscuous mode. Run it periodically on your networks to try to quickly spot such an intrusion. How much load does the tool generate? Do you have to run it on each machine, or can you run it from afar? Can you design a sneaky packet that would tell you if an interface was in promiscuous mode, and if so, what does it look like? (Requires root access.)

 
  


23. Web Hosting
 

[image: Image]
 

Today, UNIX and Linux systems are the predominant platform for serving web content and web applications. They are ideal systems for this task because they were designed from the ground up as preemptive, multitasking systems. They can handle a high volume of web requests, and they can do it efficiently, securely, and reliably.
 

In some respects, web-based applications have actually simplified sysadmins’ jobs. “Web 2.0” features like AJAX (Asynchronous JavaScript and XML) and dynamic HTML bring users the functionality and responsiveness of locally installed applications but relieve sysadmins of a multitude of deployment headaches: the only software required on the client side is a web browser.
 

On the server side, the LAMP (Linux, Apache, MySQL, and PHP/Perl/Python)1 stack is a common configuration that is also highly functional. For database-driven applications, Ruby on Rails is a popular open source web application framework built on the Ruby language. Both of these stacks are reasonable choices and are easy to support.
 

23.1: WEB HOSTING BASICS
 

Hosting a web site isn’t substantially different from providing any other network service. A daemon listens for connections on TCP port 80 (the HTTP standard), accepts requests for documents, and transmits them to the requesting user’s browser. Many of these documents are generated on the fly in conjunction with databases and application frameworks, but that’s incidental to the underlying HTTP protocol.
 

Resource Locations on The Web
 

Information on the Internet is organized into an architecture defined by the Internet Society (ISOC). This well-intended (albeit committee-minded) organization helps ensure consistency and interoperability throughout the Internet.
 

See page 448 for more information about the Internet Society.

 

ISOC defines three primary ways to identify a resource: Uniform Resource Identifiers (URIs), Uniform Resource Locators (URLs), and Uniform Resource Names (URNs). URLs and URNs are really specialized types of URIs, as illustrated in Exhibit A.
 

Exhibit A Uniform resource taxonomy
 

[image: Image]
 

So what’s the difference?
 

• URLs tell you how to locate a resource by describing its primary access mechanism (e.g., http://admin.com).

 

• URNs identify (“name”) a resource without implying its location or telling you how to access it (e.g., urn:isbn:0-13-020601-6).

 

When do you call something a URI? If a resource is only accessible through the Internet, refer to it as a URL. If it could be accessed through the Internet or through other means, then you’re using a URI.
 

Uniform resource locators
 

Most of the time, you’ll be dealing with URLs, which describe how to access an object through five basic components:
 

• Protocol or application

 

• Hostname

 

• TCP/IP port (optional)

 

• Directory (optional)

 

• Filename (optional)

 

Table 23.1 shows some of the protocols that can be used in URLs.
 

Table 23.1 URL protocols
 

[image: Image]
 

How HTTP Works
 

HTTP is a stateless client/server protocol. A client asks the server for the “contents” of a specific URL. The server responds either with a spurt of data or with some type of error message. The client can then go on to request another object.
 

Because HTTP is so simple, you can turn yourself into a crude web browser by running telnet. Just telnet to port 80 on your web server of choice. Once you’re connected, you can issue HTTP commands.
 

The most common command is GET, which requests the contents of a document. Usually, GET / is what you want, since it requests the root document (usually, the home page) of whatever server you’ve connected to. HTTP is case sensitive, so make sure you type commands in capital letters.
 

[image: Image]
 

A more “complete” HTTP request would include the HTTP protocol version, the host that the request is for (required to retrieve a file from a name-based virtual host), and other information. The response would then include informational headers as well as response data. For example:
 

[image: Image]
 

In this case, we told the server we were going to speak HTTP protocol version 1.1 and named the virtual host from which we were requesting information. The server returned a status code (HTTP/1.1 200 OK), its idea of the current date and time, the name and version of the server software it was running, the date that the requested file was last modified, the length of the requested file, and the requested file’s content type. The header information is separated from the content by a single blank line.
 

Content Generation on the Fly
 

In addition to serving up static documents, an HTTP server can provide the user with content that has been created on the fly. For example, if you wanted to provide the current time and temperature to users visiting your web site, you might have the HTTP server execute a script to obtain this information. This amaze-the-natives trick is often accomplished with the Common Gateway Interface, or CGI.
 

CGI is not a programming language but rather a specification by which an HTTP server exchanges information with other programs. CGI scripts are most often written in Perl, Python, or PHP. But really, any programming language that can perform real-time I/O is acceptable.
 

Embedded Interpreters
 

The CGI model provides complete flexibility in that the web developer is free to use any interpreter or scripting language. Unfortunately, starting a separate process for every script call can be a performance nightmare on busy web servers that serve a significant amount of dynamic content.
 

In addition to supporting external CGI scripts, many web servers define a plug-in architecture that allows script interpreters such as Perl and PHP to be embedded within the web server itself. This bundling significantly increases performance because the web server no longer needs to fork a separate process to deal with each script request. The architecture is largely invisible to script developers. Whenever the server sees a file ending in a specified extension (such as .pl or .php), it sends the contents of the file to the embedded interpreter to be executed. Table 23.2 on the next page lists some common embedded interpreters that run inside Apache.
 

FastCGI
 

Another trick you can use in some situations is FastCGI (fastcgi.com). This module improves the performance of scripts by starting them once and then leaving them running to service multiple requests. This arrangement amortizes the cost of starting the interpreter and parsing the script across multiple requests. It can be faster than running the interpreter inside Apache itself.
 

Table 23.2 Embeded scripting modules for the Apache web server
 

[image: Image]
 

Unfortunately, scripts must be modified to understand and conform to this new way of interacting with the web server. The basic protocol is easy to implement, but FastCGI scripts cannot afford to be sloppy about memory management. Loose ends cause the script’s memory footprint to grow over time. Another potential hazard is the persistence of data across requests; programmers must ensure that requests cannot interact. Web developers will need to weigh whether the performance improvement from FastCGI is worth the extra effort and risk.
 

Some administrators prefer FastCGI to embedded interpreters because individual scripts can be restarted without affecting the rest of the system when they go awry. With embedded interpreters, you may need to restart the entire web server if one interpreter starts acting up.
 

Script Security
 

For the most part, CGI scripts and server plug-ins are the concern of web developers and programmers. Unfortunately, they collide with the job of the system administrator in one important area: security. Because CGI scripts and plug-ins have access to files, network connections, and other ways of moving data from one place to another, their execution can potentially affect the security of the machine on which the HTTP server is running. Ultimately, a CGI script or plug-in gives anyone in the world the ability to run a program (the script) on your server. Therefore, CGI scripts and the files processed by plug-ins must be just as secure as any other network-accessible program.
 

OWASP, the Open Web Application Security Project (owasp.org), publishes a variety of excellent materials about web security. For general information about system security, see Chapter 22.
 

Application Servers
 

Complex enterprise applications may need more functionality than a basic HTTP server can provide. For example, modern-day Web 2.0 pages often contain a subcomponent that is tied to a dynamic data feed (e.g., a stock ticker). Although it’s possible to implement this functionality with Apache through technologies such as AJAX and JavaScript Object Notation (JSON), some developers prefer a more fully featured language such as Java. The common way to interface Java applications to an enterprise’s other data sources is with a “servlet.”
 

Servlets are Java programs that run on the server on top of an application server platform. Application servers can work independently or in concert with Apache. Most application servers were designed by programmers for programmers and lack the concise debugging mechanisms expected by system administrators. Table 23.3 highlights some common UNIX/Linux application servers.
 

Table 23.3 Application servers
 

[image: Image]
 

If you are faced with supporting one of these application servers, seek product specific documentation and training. Trust us; this is not a technology you can pick up “on the fly” like most UNIX and Linux applications. You’ve been warned.
 

Load Balancing
 

It’s difficult to predict how many hits (requests for objects, including images) or page views (requests for HTML pages) a server can handle per unit of time. A server’s capacity depends on the system’s hardware architecture (including subsystems), the operating system it is running, the extent and emphasis of any system tuning that has been performed, and perhaps most importantly, the construction of the sites being served. (Do they contain only static HTML pages, or must they make database calls and numeric calculations?)
 

Only direct benchmarking and measurement of your actual site running on your actual hardware can answer the “how many hits?” question. Sometimes, people who have built similar sites on similar hardware can give you information that is useful for planning. In no case should you believe the numbers quoted by system suppliers. Also remember that your bandwidth is a key consideration. A single machine serving static HTML files and images can easily serve enough data to saturate an OC3 (155 Mb/s) link.
 

That said, instead of single-server hit counts, a better parameter to focus on is scalability; a web server typically becomes CPU- or IO-bound before saturating its Ethernet interface. Make sure that you and your web design team plan to spread the load of a heavily trafficked site across multiple servers.
 

Load balancing adds both performance and redundancy. Several different load balancing approaches are available: round robin DNS, load balancing hardware, and software-based load balancers.
 

See Chapter 17 for more information about DNS and its behavior.

 

Round robin DNS is the simplest and most primitive form of load balancing. In this system, multiple IP addresses are assigned to a single hostname. When a request for the web site’s IP address arrives at the name server, the client receives one of the IP addresses in response. Addresses are handed out one after another, in a repeating “round robin” sequence.
 

Round robin load balancing is extremely common. It is even used by Google. For example, if you query the DNS infrastructure for www.google.com, you might get something like the following records:
 

[image: Image]
 

In this example, the name www.google.com is mapped to the canonical name www.l.google.com. Google adds this layer of indirection so that it can delegate responsibility for content delivery to a downstream provider such as Akamai (see Content distribution networks on page 978 for more context) without giving the CDN control of its root domain.
 

A DNS client can pick any one of the A records returned for www.l.google.com; it is supposed to do so randomly. Contrary to popular belief, the order in which the A records are returned has no significance. In particular, the first one is not “primary.” Because clients select addresses randomly, the load for this site is distributed roughly evenly across these six servers.
 

The problem with round robin DNS is that if a server goes down, DNS data must be updated to reroute traffic away from it. Long timeouts on the A records can make this operation tricky and unreliable. On the other hand, short timeouts thwart caching and so make DNS lookups of your site slower and more resource intensive. See Caching and efficiency on page 556 for a discussion of this tradeoff.
 

In the example above, the A records can be cached for 65 seconds before they expire. That’s a relatively short timeout. If you have a backup server available, you might prefer to use a longer timeout for the A records and to simply reassign a disabled server’s IP address to the backup server.
 

Load balancing hardware is an easy alternative to round robin DNS, but one that requires some spare cash. Commercial third-party load balancing hardware includes the Big-IP Controller from F5 Networks, Nortel’s Alteon web switching products, and Cisco’s Content Services Switches. These products distribute incoming work according to a variety of configurable parameters and can take the current response times of individual servers into account.
 

Software-based load balancers don’t require specialized hardware; they can run on a UNIX server. Both open source and commercial solutions are available. The open source category includes the Linux Virtual Server (linuxvirtualserver.org) and the proxy load balancing functionality (mod_proxy_balancer) introduced in Apache 2.2. An example of commercial offerings in this space are those sold by Zeus, zeus.com.
 

Google actually uses a combination of custom load-balancing DNS servers (with round robin records) and load balancing hardware. See the Wikipedia article for “Google platform” for more details.
 

Keep in mind that most sites these days are dynamically generated. This architecture puts a heavy load on database servers. If necessary, consult your database administrator to determine the best way to distribute load across multiple database servers.
 

23.2: HTTP SERVER INSTALLATION
 

Installing and maintaining a web server is easy. Web services rank far below email and DNS in complexity and difficulty of administration.
 

Choosing a Server
 

Several HTTP servers are available, but you’ll most likely want to start with the Apache server, which is well known in the industry for its flexibility and performance. As of January 2010, 54% of web servers on the Internet were running Apache (currently serving up content for over 111 million sites). Microsoft accounts for most of the remainder at 24% of servers. This market share split between Apache and Microsoft has been relatively stable for the last five years. More detailed market share statistics over time are available here:
 

news.netcraft.com/archives/web_server_survey.html
 

You can find a useful comparison of currently available HTTP servers at the site serverwatch.com/stypes (select “web” in the Server Type menu). Here are some of the factors you may want to consider in making your selection:
 

• Robustness

 

• Performance

 

• Timeliness of updates and bug fixes

 

• Availability of source code

 

• Level of commercial or community support

 

• Cost

 

• Access control and security

 

• Ability to act as a proxy

 

• Ability to handle encryption

 

The Apache HTTP server is “free to a good home,” and full source code is available from the Apache Group site at apache.org. The less adventurous may want to install a prebuilt binary package; see the hints provided in the table below. Some vendors avoid the name “Apache,” but that’s the server you get nonetheless.
 

Table 23.4 Locations of Apache binaries
 

[image: Image]
 

Installing Apache
 

If you do decide to download the Apache source code and compile it yourself, start by executing the configure script included with the distribution. This script automatically detects the system type and sets up the appropriate makefiles. Use the --prefix option to specify where in your directory tree the Apache server should live. For example:
 

$ ./configure --prefix=/etc/httpd/
 

If you don’t specify a prefix, the default is /usr/local/apache2.
 

You can use configure --help to see the entire list of possible arguments, most of which consist of --enable-module and --disable-module options that include or exclude various functional components that live within the web server.
 

You can also compile modules into dynamically shared object files by specifying the option --enable-module=shared (or use --enabled-mods-shared=all to make all modules shared). That way, you can decide later which modules to include or exclude; only modules specified in your httpd configuration are loaded at run time. This is actually the default configuration for the binary-only Apache pack-age—all the modules are compiled into shared objects and are dynamically loaded when Apache starts.
 

The only disadvantages to using shared libraries are a slightly longer startup time and a very slight degradation in performance (typically less than 5%). For most sites, the benefit of being able to add new modules on the fly and to turn existing modules off without having to recompile outweighs the slight performance hit.
 

For a complete list of standard modules, see httpd.apache.org/docs-2.2/mod.
 

Although the default set of modules is reasonable, you may also want to enable the modules shown in Table 23.5.
 

Table 23.5 Useful Apache modules that are not enabled by default
 

[image: Image]
 

Likewise, you may want to disable the modules listed in Table 23.6. For security and performance, it’s a good idea to disable modules that you know you will not be using.
 

Table 23.6 Apache modules we suggest removing
 

[image: Image]
 

When configure has finished executing, run make and then make install to actually compile and install the appropriate files.
 

[image: Image] Compiling Apache on AIX is unfortunately not so straightforward. See the tips and tricks at people.apache.org/~trawick/apache-2-on-aix.html.
 

Configuring Apache
 

Once you’ve installed the server, configure it for your environment. The config files are kept in the conf subdirectory of the installation directory. Examine and customize the httpd.conf file, which is divided into three sections.
 

The first section deals with global settings such as the server pool, the TCP port on which the HTTP server listens for queries (usually port 80, although you can choose another—and yes, you can run multiple HTTP servers on different ports on a single machine), and the settings for dynamic module loading.
 

The second section configures the “default” server, the server that handles any requests that aren’t answered by VirtualHost definitions (see page 971). Configuration parameters in this section include the user and group as whom the server will run (something other than root!) and the all-important DocumentRoot statement, which defines the root of the directory tree from which documents are served. This section also addresses issues such as the handling of “special” URLs like those that include the ûuser syntax to access a user’s home directory.
 

You manage global security concerns in the second section of the configuration file as well. Directives control access on a per-file basis (the <File> directive) or on a per-directory basis (the <Directory> directive). These permission settings prevent access to sensitive files through httpd. You should specify at least two access controls: one that covers the entire filesystem and one that applies to the main document folder. The defaults that come with Apache are sufficient, although we recommend that you remove the AllowSymLinks option to prevent httpd from following symbolic links in your document tree. (We wouldn’t want someone to accidentally create a symbolic link to /etc, now would we?) For more Apache security tips, see
 

httpd.apache.org/docs-2.2/misc/security_tips.html
 

The third and final section of the config file sets up virtual hosts. We discuss this topic in more detail on page 971.
 

Once you have made your configuration changes, check the syntax of the configuration file by running httpd -t. If Apache reports “Syntax OK,” then you’re good to go. If not, check the httpd.conf file for typos.
 

Running Apache
 

You can start httpd by hand or from your system’s startup scripts. The latter is preferable, since this configuration ensures that the web server restarts whenever the machine reboots. To start the server by hand, type something like:
 

$ apachectl start
 

See Chapter 3 for more information about startup scripts.
 

Analyzing Log Files
 

With your web site in production, you’re likely to want to gather statistics about the use of the site, such as the number of requests per page, the average number of requests per day, the percentage of failed requests, and the amount of data transferred. Make sure you’re using the “combined” log format (your CustomLog directives should have the word combined at the end instead of common). The combined log format includes each request’s referrer (the page from which the URL was linked) and user agent (the client’s browser and operating system).
 

Your access and error logs appear in Apache’s logs directory. The files are human readable, but they contain so much information that you really need a separate analysis program to extract useful data from them. There are literally hundreds of different log analyzers, both free and commercial.
 

Two free analyzers worth taking a look at are Analog (analog.cx) and AWStats (awstats.sourceforge.net). These both provide fairly basic information.
 

If you’re looking for information about traffic and usage patterns for a web site, check out Google Analytics at analytics.google.com. This service requires that you put a small stub on each web page you want to track, but it then provides all the data gathering and analysis infrastructure for free.2
 

Optimizing for High-Performance Hosting of Static Content
 

The hosting community has learned over the last few years that one of the easiest ways to create a high-performance hosting platform is to optimize some servers for hosting static content.
 

One way to address this need is through the use of an in-kernel web server or in-kernel web page cache. Because these systems do not copy data to or from user space before returning it to a requestor, they achieve some incremental performance gains. However, because the solutions operate in kernel space, they entail some additional security risk. We recommend using them with extreme caution.
 

A kernel-based web server called TUX that runs in conjunction with a traditional web server such as Apache is available for some Linux distributions. When possible, TUX serves up static pages without leaving kernel space, much as rpc.nfsd serves files. Although TUX was developed by Red Hat (Red Hat now calls it the Red Hat Content Accelerator), it’s been released under the GPL and can be used with other Linux distributions. Unfortunately, configuring TUX can be something of a challenge. The system was popular in the early 2000s, but its popularity has since dwindled. For details, see redhat.com/docs/manuals/tux.
 

On the Solaris platform, Sun has released the Solaris Network Cache and Accelerator (NCA) to provide in-kernel content caching. NCA intercepts the traffic going to and from httpd and caches static pages. When subsequent requests arrive for the same content, they’re served from cache without involving httpd.
 

23.3: VIRTUAL INTERFACES
 

In the early days, a UNIX machine typically acted as the server for a single web site (e.g., acme.com). As the web’s popularity grew, everybody wanted to have a web site, and overnight, thousands of companies became web hosting providers.
 

Providers quickly realized that they could achieve significant economies of scale if they were able to host more than one site on a single server. This trick would allow acme.com, ajax.com, toadranch.com, and many other sites to be transparently
 

See Chapter 14 for more information on basic interface configuration.

 

served by the same hardware. In response to this business need, virtual interfaces were born.
 

The idea is simple: a single machine responds on the network to more IP addresses than it has physical network interfaces. Each of the resulting “virtual” network interfaces can be associated with a corresponding domain name that users on the Internet might want to connect to. Thus, a single machine can serve literally hundreds of web sites.
 

Virtual interfaces allow a daemon to identify connections based not only on the destination port number (e.g., port 80 for HTTP) but also on the connection’s destination IP address. Today, virtual interfaces are in widespread use and have proved to be useful for applications other than web hosting.
 

Using Name-Based Virtual Hosts
 

The HTTP 1.1 protocol also defines a form of virtual-interface-like functionality (officially called “name-based virtual hosts”) that eliminates the need to assign unique IP addresses to web servers or to configure a special interface at the OS level. This approach conserves IP addresses and is useful for some sites, especially those (such as universities) at which a single server is home to hundreds or thousands of home pages.
 

Unfortunately, the scheme isn’t very practical for commercial sites. It reduces scalability (you must change the IP address of the site to move it to a different server) and may also have a negative impact on security (if you filter access to a site at your firewall according to IP addresses). Additionally, name-based virtual hosts require browser support to use SSL.3 Given these limitations of name-based virtual hosts, it appears that true virtual interfaces will be around for a while.
 

Configuring Virtual Interfaces
 

Setting up a virtual interface involves two steps. First, you must create the virtual interface at the TCP/IP level. The exact way you do this depends on your version of UNIX; the next few sections provide instructions for each of our example systems. Second, you must tell the Apache server about the virtual interfaces you have installed. We cover this second step starting on page 971.
 

Linux Virtual Interfaces
 

[image: Image] Linux virtual interfaces are named with the notation interface:instance. For example, if your Ethernet interface is eth0, then the virtual interfaces associated with it could be eth0:0, eth0:1, and so on. All interfaces are configured with the ifconfig command. For example, the command
 

$ sudo ifconfig eth0:0 128.138.243.150 netmask 255.255.255.192 up
 

configures eth0:0 and assigns it an address on the 128.138.243.128/26 network.
 

[image: Image] To make virtual address assignments permanent on Red Hat, you create a separate file for each virtual interface in /etc/sysconfig/network-scripts. For example, the file ifcfg-eth0:0 that corresponds to the ifconfig command shown above contains the following lines:
 

[image: Image]
 

[image: Image] Ubuntu’s approach is similar to Red Hat’s, but the interface definitions must appear in the file /etc/network/interfaces. The entries corresponding to the eth0:0 interface in our example above are
 

[image: Image]
 

[image: Image] On SUSE systems, you can either create virtual interfaces (“aliases”) with YaST or create the interface files manually. To do it with YaST, first select “Traditional method with ifup” on the Global Options tab of Network Settings.
 

Under SUSE, an interface’s IP addresses are all configured within a single file. To configure these files manually, look in /etc/sysconfig/network for files whose names start with ifcfg-ifname.
 

For example, add these lines to the config file to define two virtual interfaces:
 

[image: Image]
 

The suffixes that follow IPADDR and NETMASK (here, _1 and _2) don’t have to be numeric, but for consistency, this is a reasonable convention. Note that you’ll also need to edit /etc/sysconfig/network/config and set NETWORKMANAGER=“no” so that the virtual interfaces will be recognized.
 

Solaris Virtual Interfaces
 

[image: Image] Solaris supports virtual interfaces (aka “secondary interfaces”) through the concept of a physical interface and a logical unit. For example, if hme0 were the name of a physical interface, then hme0:1, hme0:2, and so on would be the names of the corresponding virtual interfaces. By default, each physical interface can have up to 256 virtual identities attached to it. If you need to change this limit, use ndd to change the parameter ip_addrs_per_if (see page 498 for details on using ndd).
 

To configure a virtual interface, just run ifconfig on one of the virtual names. (The underlying physical interface must already have been “plumbed.”) In most cases, you’ll want to set up the system so that the ifconfigs for virtual interfaces happen automatically at boot time.
 

Here is an example in which a Solaris machine has an address in private address space on an internal virtual private network (VPN) and an external address for the Internet, both associated with the same physical interface, hme0. To have these interfaces configured automatically at boot time, the administrator has set up two hostname files: /etc/hostname.hme0 and /etc/hostname.hme0:1.
 

[image: Image]
 

Hostname files can contain either hostnames from the /etc/hosts file or IP addresses. In this case, the administrator has used one of each:
 

[image: Image]
 

At boot time, both addresses are automatically configured (along with the loop-back address, which we omitted from the output shown below):
 

[image: Image]
 

HP-UX Virtual Interfaces
 

[image: Image] On HP-UX, you add virtual interfaces with the ifconfig command. The syntax is very similar to that of Solaris. For example, to add the first interface, you would execute the command
 

$ sudo ifconfig lan0:1 192.168.69.1 up
 

AIX Virtual Interfaces
 

[image: Image] On AIX, you create an “alias” to add additional IP addresses to an interface. For example, to add 192.168.1.3 as a virtual IP address for the en0 interface, you can use ifconfig:
 

$ sudo ifconfig en0 192.168.1.3 netmask 255.255.255.0 alias
 

However, this alias is only temporary. To create a permanent virtual IP, use the chdev command:
 

$ sudo chdev -l en0 -a alias4=192.168.1.3,255.255.255.0
 

Telling Apache About Virtual Interfaces
 

In addition to creating the virtual interfaces, you need to tell Apache what documents to serve when a client tries to connect to each interface (IP address). You do this with a VirtualHost clause in the httpd.conf file. There is one VirtualHost clause for each virtual interface that you’ve configured. Here’s an example:
 

[image: Image]
 

In this example, any client that connects to the virtual host 128.138.243.150 is served documents from /var/www/htdocs/company. Nearly any Apache directive can go into a VirtualHost clause to define settings specific to that virtual host. Relative directory paths, including those for the DocumentRoot, ErrorLog, and CustomLog directives, are interpreted in the context of the ServerRoot.
 

With name-based virtual hosts, multiple DNS names all point to the same IP address. The Apache configuration is similar, but you specify the primary IP address on which Apache should listen for incoming named virtual host requests and you omit the IP address in the VirtualHost clause:
 

[image: Image]
 

In this configuration, Apache looks in the HTTP headers to determine the requested site. The server listens for requests for www.company.com on its main IP address, 128.138.243.150.
 

23.4: THE SECURE SOCKETS LAYER(SSL)
 

The SSL protocol secures communications between a web site and a client browser. URLs that start with https:// use this technology. SSL uses cryptography to prevent eavesdropping, tampering, and message forgery.
 

The browser and server use a certificate-based authentication scheme to establish communications, after which they switch to a faster cipher-based encryption scheme to protect their actual conversation.
 

SSL runs as a separate layer underneath the HTTP application protocol. SSL simply supplies the security for the connection and does not involve itself in the HTTP transaction. Because of this hygienic architecture, SSL can secure not only HTTP but also protocols such as SMTP and FTP. For more details, see the Wikipedia entry for “Secure Sockets Layer.” 4
 

In the “early days” of SSL use, most symmetric encryption keys were a relatively weak 40 bits because of U.S. government restrictions on the export of cryptographic technology. After years of controversy and lawsuits, the government relaxed some aspects of the export restrictions, allowing SSL implementations to use 128-bit keys for symmetric key ciphers.
 

Generating a Certificate Signing Request
 

The owner of a web site that is to use SSL must generate a Certificate Signing Request (CSR), a digital file that contains a public key and a company name. The “certificate” must then be “signed” by a trusted source known as a Certificate Authority (CA). The signed certificate returned by the CA contains the site’s public key and company name along with the CA’s endorsement.
 

Web browsers have built-in lists of CAs whose signed certificates they will accept. A browser that knows of your site’s CA can verify the signature on your certificate and obtain your public key, thus enabling it to send messages that only your site can decrypt. Although you can actually sign your own certificate, a certificate that does not come from a recognized CA prompts most browsers to notify the user that the certificate is potentially suspect. In a commercial setting, such behavior is obviously a problem. But if you want to set up your own certificate authority for internal use and testing, see
 

httpd.apache.org/docs/2.2/ssl/ssl_faq.html#aboutcerts.
 

You can obtain a certificate signature from any one of a number of certificate authorities. Enter “SSL certificate” into Google and take your pick. The only real differences among CAs are the amount of work they do to verify your identity, the warranties they offer, and the number of browsers that support them out of the box (most CAs are supported by the vast majority of browsers).
 

Creating a certificate to send to a CA is relatively straightforward. OpenSSL must be installed, which it is by default on most systems. Here is the procedure.
 

First, create a 1024-bit RSA private key for your Apache server:
 

$ openssl genrsa -des3 -out server.key 1024
 

You are prompted to enter and confirm a passphrase to encrypt the server key. Back up the server.key file to a secure location (readable only by root), and be sure to remember the passphrase you entered. The curious can view the numeric details of the key with this command:
 

$ openssl rsa -noout -text -in server.key
 

Next, create a Certificate Signing Request (CSR) that incorporates the server key you just generated:
 

$ openssl req -new -key server.key -out server.csr
 

Enter the fully qualified domain name of the server when you are prompted to enter a “common name.” For example, if your site’s URL is https://company.com, enter “company.com” as your common name. Note that you need a separate certificate for each hostname—even to the point that “www.company.com” is different from “company.com.” Companies typically register only one common name; they make sure any SSL-based links point to that hostname.
 

You can view the details of a generated CSR with the following command:
 

$ openssl req -noout -text -in server.csr
 

You can now send the server.csr file to the CA of your choice to be signed. It is not necessary to preserve your local copy. The signed CSR returned by the CA should have the extension .crt. Put the signed certificate in a directory with your httpd conf files, for example, /usr/local/apache2/conf/ssl.crt.
 

Configuring Apache to Use SSL
 

HTTP requests come in on port 80, and HTTPS requests use port 443. Both HTTPS and HTTP traffic can be served by the same Apache process. However, SSL does not work with name-based virtual hosts; each virtual host must have a specific IP address. (This limitation is a consequence of SSL’s design.)
 

To set up Apache for use with SSL, first make sure that the SSL module is enabled within httpd.conf by locating or adding the line
 

LoadModule ssl_module libexec/mod_ssl.so
 

Then add a VirtualHost directive for the SSL port:
 

[image: Image]
 

Note the :443 after the IP address and also the SSL directives that tell Apache where to find your private key and signed certificate.
 

When you restart Apache, you will be asked to enter the passphrase for your server.key file. Because of this interaction, httpd can no longer start up automatically when the machine is booted. If you want, you can remove the encryption from your private key to circumvent the need to enter a password:
 

[image: Image]
 

Of course, anyone who obtains a copy of your unencrypted key can then impersonate your site.
 

For more information about SSL, see the following resources:
 

[image: Image]
 

23.5: CACHING AND PROXY SERVERS
 

The Internet and the information on it are still growing rapidly. Ergo, the bandwidth and computing resources required to support it are growing rapidly as well. How can this state of affairs continue?
 

The only way to deal with this growth is to use replication. Whether it’s on a national, regional, or site level, Internet content needs to be more readily available from a closer source as the Internet grows. It just doesn’t make sense to transmit the same popular web page from Australia across a very expensive link to North America millions of times each day. There should be a way to store this information once it’s been sent across the link once.
 

Fortunately, there is—at least at the site level. A web proxy lets you cache and manage your site’s outbound requests for web content.
 

Here’s how it works. Client web browsers contact the proxy server to request an object from the Internet. The proxy server then makes a request on the client’s behalf (or provides the object from its cache) and returns the result to the client. Proxy servers of this type are often used to enhance security or to filter content.
 

In a proxy-based system, only one machine needs direct access to the Internet through the organization’s firewall. At organizations such as K–12 schools, a proxy server can also filter content so that inappropriate material doesn’t fall into the wrong hands. Many commercial and freely available proxy servers are available today. Some of these systems are purely software based, and others are embodied in a hardware appliance. An extensive list of proxy server technologies can be found at web-caching.com/proxy-caches.html.
 

The next couple of sections describe the Squid Internet Object Cache,5 a popular stand-alone cache. We also delve briefly into the proxy features of the mod_cache module for the Apache web server.
 

Using the Squid Cache and Proxy Server
 

Squid is a caching and proxy server that supports several protocols, including HTTP, FTP, and SSL.
 

Proxy service is nice, but it’s Squid’s caching features that are really worth getting excited about. Squid not only caches information from local user requests but also allows construction of a hierarchy of Squid servers.6 Groups of Squid servers use the Internet Cache Protocol (ICP) to communicate information about what’s in their caches.
 

With this feature, administrators can build a system in which local users contact an on-site caching server to obtain content from the Internet. If another user at that site has already requested the same content, a copy can be returned at LAN speed (usually 100 Mb/s or greater). If the local Squid server doesn’t have the object, perhaps the server contacts the regional caching server. As in the local case, if anyone in the region has requested the object, it is served immediately. If not, perhaps the caching server for the country or continent can be contacted, and so on. Users perceive a performance improvement, so they are happy.
 

For many, Squid offers economic benefits. Because users tend to share web discoveries, significant duplication of external web requests can occur at a reasonably sized site. One study has shown that running a caching server can reduce external bandwidth requirements by up to 40%.
 

To make effective use of Squid, you’ll likely want to force your users to use the cache. Either configure a default proxy through Active Directory (in a Windows-based environment) or configure your router to redirect all web-based traffic to the Squid cache by using the Web Cache Communication Protocol, WCCP.
 

Setting up Squid
 

Squid is easy to install and configure. Since Squid needs space to store its cache, you should run it on a dedicated machine that has plenty of free memory and disk space. A configuration for a large cache would be a machine with 32GiB of RAM and 8TB of disk.
 

You may be able to find precompiled Squid binaries for your system, or you can download a fresh copy of Squid from squid-cache.org. If you choose to compile it yourself, run the configure script at the top of the source tree after you unpack the distribution. This script assumes that you want to install the package in
 

/usr/local/squid. If you prefer some other location, use the --prefix=dir option to configure. After configure has completed, run make all and then make install.
 

Once you’ve installed Squid, you must localize the squid.conf configuration file. See the QUICKSTART file in the distribution directory for a list of the changes you need to make to the sample squid.conf file.
 

You must also run squid -z by hand to build and zero out the directory structure in which cached web pages will be stored. Finally, you can start the server by hand with the RunCache script; it will normally be started by a script when the machine boots.
 

To test Squid, configure your desktop web browser to use the Squid server as a proxy. This option is usually found in the browser’s preferences panel.
 

Reverse-proxying with Apache
 

For security or load balancing reasons, it’s sometimes useful for web hosting sites to proxy inbound requests (that is, requests to your web servers that are coming in from browsers on the Internet). Since this is backward from the typical use of a web proxy (handling outbound requests from browsers at your site), such an installation is called a reverse proxy.
 

One popular configuration puts a reverse proxy on your site’s DMZ network to accept Internet users’ requests for services such as web-based email. The proxy then passes these requests along to the appropriate internal servers. This approach has several advantages:
 

See Chapter 22 for more information about DMZ networks.
 

• It eliminates the temptation to allow direct inbound connections to servers that are not in the DMZ.

 

• You need to configure only a single DMZ server, rather than one server for each externally accessible service.

 

• You can control the accessible URLs at a central choke point, providing some security benefit.

 

• You can log inbound requests for monitoring and analysis.

 

Configuring Apache to provide reverse proxy service is relatively straightforward. Inside a VirtualHost clause in Apache’s httpd.conf file, you use the ProxyPass and ProxyPassReverse directives.
 

• ProxyPass maps a remote URL into the URL space of the local server, making that part of the local address space appear to be a mirror of the remote server. (In this scenario, the “local” server is the DMZ machine and the “remote” server is the server on your interior network.)

 

• ProxyPassReverse hides the real server by “touching up” outbound HTTP headers that transit the proxy.

 

Below is a snippet of the reverse proxy configuration needed to insert a UNIX DMZ system in front of a Microsoft Outlook Web Access (OWA) server that provides web-based email.
 

[image: Image]
 

In this example, proxy services are provided for only a few top-level URLs: /rpc, /exchange, /exchweb, /public, /oma, and /Microsoft-Server-ActiveSync. For security reasons, it’s a good idea to limit the requests allowed through the proxy.
 

23.6: SCALING BEYOND YOUR LIMITS
 

On the web, “overnight success” can be a system administrator’s nightmare. Being mentioned on a popular blog or showing up on digg.com can increase your web traffic by several orders of magnitude. Even “real” popularity growth can rapidly outstrip your local servers’ capacity or the bandwidth of your network connection. But fear not; these are good problems to have, and many possible solutions are available.
 

Cloud Computing
 

Cloud hosting gives you access to a virtualized instance of the operating system of your choice without the need to house the hardware at your site. In fact, the hardware and its maintenance are completely abstracted—you have only the most general idea of where your virtualized instance is actually running.
 

See Chapter 24, Virtualization, for more information about cloud computing.
 

Many cloud hosting providers exist, but Amazon remains the trailblazer and market leader with their Amazon Web Services (AWS) offering (aws.amazon.com). In less than 5 minutes, you can start a new Linux or UNIX instance. You log in with ssh to administer it, just as you would with a system in your own data center. Best of all, the service is incredibly inexpensive (currently around 10 cents per instance-hour in the U.S. region for the lowest service tier).
 

Several services can be layered on top of the cloud to automatically bring servers on-line and off-line according to load or other conditions. Amazon’s native facility is called Auto Scaling. RightScale (rightscale.com) is a third-party provider that sells a well-integrated scaling service.
 

Co-lo Hosting
 

Co-location is another way of hosting your systems in a remote data center, but in the co-location scenario you typically own or rent the server hardware. This arrangement may be preferable to a cloud-based solution in cases where standards or regulatory requirements prohibit the use of a cloud data center (e.g., some cases involving PCI DSS) or where custom hardware is necessary. Some I/O intensive applications also perform better on dedicated hardware, although the virtualized world is quickly catching up.
 

There are hundreds of co-location providers. Select one at a tier appropriate to your needs as defined by the Uptime Institute (uptimeinstitute.org). Commercial applications are usually housed in Tier 3 or Tier 4 data centers.
 

See Chapter 27, for more information about data center tiers.
 

Content Distribution Networks
 

Most of the content on the Internet is static: images, documents, software downloads. By putting copies of these static components close to users (in network terms), you can reduce or eliminate the need to serve that data from the original source and haul it across the network backbone.
 

A system of computers that provides this service is called a content distribution network, or CDN. Intercontinental network links are often congested, so CDNs are particularly important when quick access to popular content on other continents is desired.
 

Most CDNs operate as for-profit endeavors funded by content providers that want to ensure the availability and responsiveness of their sites without scaling up their own infrastructure. Akamai Technologies (akamai.com) operates the most successful and well known CDN platform. Limelight (limelightnetworks.com) and Disney-owned EdgeCast (edgecast.com) are the biggest upstart contenders.
 

When implemented correctly, the use of a CDN is completely transparent to the end user. Some objects may come from a relatively local server or cache, while other objects may originate directly from the source. However, all this speed and transparency comes with a high price tag. You’ll need a fat wallet to include CDN service in your hosting plans.
 

23.7: EXERCISES
 

E23.1 Configure a virtual interface on your workstation. Run ifconfig before and after to see what changed. Can you ping the virtual interface from another machine on the same subnet? From a different network? Why or why not? (Requires root access.)
 

E23.2 In your browser, visit a popular content-rich site such as abcnews.com and view the page source (View->Page Source in Firefox, Page->View source in IE). Use dig to look up the DNS entries for the hosts of individual object URLs. Can you determine which objects are hosted by a content delivery network?
 

[image: Image] E23.3 With a packet sniffer (tcpdump), capture a two-way HTTP conversation that uploads information (e.g., filling out a form or a search field). Annotate the session to show how your browser conveyed information to the web server. (Requires root access.)
 

[image: Image] E23.4 Use a packet sniffer to capture the traffic when you open a busy web page such as the home page for amazon.com or cnn.com. How many separate TCP connections are opened? Who initiates them? Could the system be made more efficient? (Requires root access.)
 

[image: Image] E23.5 Locate log files from an Internet-accessible web server, perhaps the main server for your site. Examine the log files. What can you say about the access patterns over a period of a few hours? What errors showed up during that period? What privacy concerns are illustrated by the contents of the log files? (May require root access.)
 

[image: Image] E23.6 Install Apache on your system and create a couple of content pages.
 

From other machines, verify that your web server is operating. Find the Apache log files that let you see what browsers are hitting your server. Configure Apache to serve some of its content pages to the virtual interface created in E23.1. (Requires root access.)

 
  


Section Three: Bunch O’ Stuff
 

[image: Image]
 
  


24. Virtualization
 

[image: Image]
 

As enterprise data centers continue to rack up servers to slake the insatiable information appetite of the modern business, system administrators struggle with a technical conundrum: how can existing systems be managed more efficiently to save power, space, and cooling costs while continuing to meet the needs of users?
 

Software vendors have historically discouraged administrators from running their applications with other software, citing potential incompatibilities and in some cases even threatening to discontinue support in cases of noncompliance. The result has been a flood of single-purpose servers. Recent estimates have pegged the utilization of an average sever at somewhere between 5% and 15%, and this number continues to drop as server performance rises.
 

One answer to this predicament is virtualization: allowing multiple, independent operating systems to run concurrently on the same physical hardware. Administrators can treat each virtual machine as a unique server, satisfying picky vendors (in most cases) while simultaneously reducing data center costs. A wide variety of hardware platforms support virtualization, and the development of virtualization-specific CPU instructions and the increasing prevalence of multicore processors have vastly improved performance. Virtual servers are easy to install and require less maintenance (per server) than physical machines.
 

Implementations of virtualization have changed dramatically over the years, but the core concepts are not new to the industry. Big Blue used virtual machines in early mainframes while researching time-sharing concepts in the 1960s, allowing users to share processing and storage resources through an abstraction layer. The same techniques developed by IBM were used throughout the mainframe heyday of the 1970s until the client-server boom of the 1980s. The technology lay dormant during the 1980s and 1990s until the cost and manageability problems of enormous server farms rekindled interest in virtualization for modern systems. VMware is widely credited with having started the current virtualization craze by creating a virtualization platform for the Intel x86 architecture in 1999.
 

Today, virtualization technology is a flourishing business, with many vendors twisting knobs and pushing buttons to create unique entries into the market. VM-ware remains a clear leader and offers products targeted at business of all sizes, along with management software to support highly virtualized organizations. The open source community has responded with a project known as Xen, which is supported commercially by a company called XenSource, now owned by Citrix. With the release of Solaris 10, Sun introduced some powerful technology known collectively as zones and containers that can run more than 8,000 virtual systems on a single Solaris deployment. These are just a few of the players in the market. There are dozens of competing products, each with a slightly different niche.
 

See page 206 for more information about storage area networks.

 

Although server virtualization is our primary focus in this chapter, the same concepts apply to many other areas of the IT infrastructure, including networks, storage, applications, and even desktops. For example, when storage area networks or network-attached storage are used, pools of disk space can be provisioned as a service, creating additional space on demand. Applying virtualization to the desktop can be useful for system administrators and users alike, allowing for custom-tailored application environments for each user.
 

The many virtualization options have created a struggle for hapless UNIX and Linux administrators. With dozens of platforms and configurations to choose from, identifying the right long-term approach can be a daunting prospect. In this chapter, we start by defining the terms used for virtualization technologies, continue with a discussion of the benefits of virtualization, proceed with tips for selecting the best solution for your needs, and finally, work through some hands-on implementation activities for some of the most commonly used virtualization software on our example operating systems.
 

24.1 VIRTUAL VERNACULAR
 

The virtualization market has its own set of confusing terms and concepts. Mastering the lingo is the first step toward sorting out the various options.
 

Operating systems assume they are in control of the system’s hardware, so running two systems simultaneously causes resource conflicts. Server virtualization is an abstraction of computing resources that lets operating systems run without direct knowledge of the underlying physical hardware. The virtualization software parcels out the physical resources such as storage, memory, and CPU, dynamically allocating their use among several virtual machines.
 

UNIX administrators should understand three distinct paradigms: full virtualization, paravirtualization, and OS-level virtualization. Each model resolves the resource contention and hardware access issues in a slightly different manner, and each model has distinct benefits and drawbacks.
 

Full virtualization
 

Full virtualization is currently the most accepted paradigm in production use today. Under this model, the operating system is unaware that it is running on a virtualized platform. A “hypervisor,” also known as a virtual machine monitor, is installed between the virtual machines (“guests”) and the hardware.
 

Such hypervisors are also known as bare-metal hypervisors since they control the physical hardware. The hypervisor provides an emulation layer for all of the host’s hardware devices. The guest operating system is not modified. Guests make direct requests to the virtualized hardware, and any privileged instructions that guest kernels attempt to run are intercepted by the hypervisor for appropriate handling.
 

Bare-metal virtualization is the most secure type of virtualization because guest operating systems are isolated from the underlying hardware. In addition, no kernel modifications are required, and guests are portable among differing underlying architectures. As long as the virtualization software is present, the guest can run on any processor architecture. (Translation of CPU instructions does, however, incur a modest performance penalty.)
 

VMware ESX is an example of a popular full virtualization technology. The general structure of these systems is depicted in Exhibit A.
 

[image: Image]
 

Paravirtualization
 

Paravirtualization is the technology used by Xen, the leading open source virtual platform. Like full virtualization, paravirtualization allows multiple operating systems to run in concert on one machine. However, each OS kernel must be modified to support “hypercalls,” or translations of certain sensitive CPU instructions. User-space applications do not require modification and run natively on Xen machines. A hypervisor is used in paravirtualization just as in full virtualization.
 

The translation layer of a paravirtualized system has less overhead than that of a fully virtualized system, so paravirtualization does lead to nominal performance gains. However, the need to modify the guest operating system is a dramatic downside and is the primary reason why Xen paravirtualization has scant support outside of Linux and other open source kernels.
 

Exhibit B shows a paravirtualized environment. It looks similar to the fully virtualized system in Exhibit A, but the guest operating systems interface with the hypervisor through a defined interface, and the first guest is privileged.
 

[image: Image]
 

Operating system virtualization
 

OS-level virtualization systems are very different from the previous two models. Instead of creating multiple virtual machine environments within a physical system, OS-level virtualization lets an operating system create multiple, isolated application environments that reference the same kernel. OS-level virtualization is properly thought of as a feature of the kernel rather than as a separate layer of software abstraction.
 

Because no true translation or virtualization layer exists, the overhead of OS-level virtualization is very low. Most implementations offer near-native performance. Unfortunately, this type of virtualization precludes the use of multiple operating systems since a single kernel is shared by all guests (or “containers” as they are commonly known in this context).1
AIX workload partitions and Solaris containers and zones are examples of OS-level virtualization.
 

OS-level virtualization is illustrated in Exhibit C.
 

[image: Image]
 

Native virtualization
 

In an attempt to distinguish their hardware offerings, the silicon heavyweights AMD and Intel are competing head to head to best support virtualization through hardware-assisted (“native”) virtualization. Both companies offer CPUs that include virtualization instructions, eliminating the need for the translation layer used in full and paravirtualization. Today, all major virtualization players can take advantage of these processors’ features.
 

Cloud computing
 

In addition to traditional virtualization, a relatively recent offering in the industry known informally (and, to some, begrudgingly) as cloud computing is an alternative to locally run server farms. Cloud computing offers computing power as a service, typically attractively priced on an hourly basis. The most obvious benefit is the conversion of server resources into a form of infrastructure analogous to power or plumbing. Administrators and developers never see the actual hardware they are using and need have no knowledge of its structure. The name comes from the traditional use of a cloud outline to denote the Internet in network diagrams.
 

As a system administration book, this one focuses on cloud computing at the server level, but applications are also being moved to the cloud (commonly known as software-as-a-service, or SAAS). Everything from email to business productivity suites to entire desktop environments can be outsourced and managed independently.
 

Cloud services are commonly bundled with a control interface that adjusts capacity on demand and allows one-click provisioning of new systems. Amazon’s Elastic Compute Cloud (EC2) is the most mature of the first-generation services of this type. It has been widely adopted by companies that offer next-generation web platforms. Love it or hate it, utility computing is gaining traction with bean counters as a cheaper alternative to data centers and localized server infrastructure. Talking heads in the IT industry believe that cloud technologies in their myriad forms are the future of computing.
 

Cloud computing relies on some of the same ideas as virtualization, but it should be considered a distinct set of technologies in its own right.
 

Live migration
 

A final concept to consider is the possibility of migrating virtual machines from one physical machine to another. Most virtualization software lets you move virtual machines in real time between running systems, in some cases without interruptions in service or loss of connectivity. This feature is called live migration. It’s helpful for load balancing, disaster recovery, server maintenance, and general system flexibility.
 

Comparison of virtualization technologies
 

Although the various virtualization options are conceptually different, each technique offers similar results in the end. Administrators access virtual systems in the same way as they access any normal node on the network. The primary differences are that hardware problems may affect multiple systems at once (since they share hardware) and that resource contention issues must be debugged at the same level at which virtualization is implemented (e.g., in the hypervisor).
 

24.2 BENEFITS OF VIRTUALIZATION
 

Given the many blessings of virtual computing, it’s surprising that it took so many years to be developed and commercially accepted. Cost savings, reduced energy use, simplified business continuity, and greater technical agility are some of the main drivers of the adoption of virtual technologies.
 

Cost is a major factor in all new IT projects, and with virtualization, businesses realize immediate short-term cost savings because they purchase fewer servers. Instead of acquiring new servers for a new production application, administrators can spin up new virtual machines and save in up-front purchasing costs as well as ongoing support and maintenance fees. Cooling requirements are cut dramatically since virtual servers do not generate heat, resulting in additional savings. Data centers also become easier to support and less expensive to maintain. With some organizations consolidating up to 30 physical servers onto a single virtual host, a quick glance at the savings in rack space alone is sure to set data center managers blushing with pride.
 

A reduced ecological impact is an easy marketing win for businesses as well. Some estimates suggest that nearly one percent of the world’s electricity is consumed by power-hungry data centers.2 Modern multicore CPUs are used more efficiently when several virtual machines are running simultaneously.
 

Business continuity—that is, the ability of a company to survive physical and logical crises with minimal impact on business operations—is a vexing and expensive problem for system administrators. Complex approaches to disaster recovery are simplified when virtual servers can be migrated from one physical location to another with a single command. The migration technologies supported by most virtualization platforms allow applications to be location independent.
 

Because hypervisors can be accessed independently of the virtual servers they support, server management ceases to be grounded in physical reality and becomes fully scriptable. System administrators can respond quickly to customer requests for new systems and applications by making use of template-driven server provisioning. Scripts can automate and simplify common virtual system administration tasks. A virtual server’s boot, shutdown, and migration chores can be automated by shell scripts and even scheduled through cron. Discontinued operating systems and applications can be moved off unsupported legacy hardware onto modern architectures.
 

Virtualization increases availability. Live migration allows physical servers to be taken down for maintenance without downtime or interruptions in service. Hardware upgrades do not impact the business, either. When it’s time to replace an aging machine, the virtual system is immediately portable without a painful upgrade, installation, test, and cutover cycle.
 

Virtualization makes the rigorous separation of development, test, staging, and production environments a realistic prospect, even for smaller businesses. Historically, maintaining these separate environments has been too expensive for many businesses to bear, even though regulations and standards may have demanded it. The individual environments may also benefit; for example, quality assurance testers can easily restore a test environment to its baseline configuration.
 

In terms of immediate gratification, few technologies seem to offer as many possibilities as server virtualization. As we’ll see in the next section, however, virtualization is not a panacea.
 

24.3 A Practical Approach
 

The transition to a virtualized environment must be carefully planned, managed, and implemented. An uncoordinated approach will lead to a motley assortment of unstable, unmanageable implementations that do more harm than good. Furthermore, the confidence of stakeholders is easily lost: early missteps can complicate future attempts to move reluctant users to new platforms. Slow and steady wins the race.
 

It’s important to choose the right systems to migrate since some applications are better suited to virtualization than others. Services that already have high utilization might be better left on a physical system, at least at the outset. Other services that are best left alone include these:
 

• Resource intensive backup servers or log hosts

 

• High-bandwidth applications, such as intrusion detection systems

 

• Busy I/O-bound database servers

 

• Proprietary applications with hardware-based copy protection

 

• Applications with specialized hardware needs, such as medical systems or certain scientific data gathering applications

 

Good candidates for virtualization include these:
 

• Internet-facing web servers that query middleware systems or databases

 

• Underused stand-alone application servers

 

• Developer systems, such as build or version control servers

 

• Quality assurance test hosts and staging environments

 

• Core infrastructure systems, such as LDAP directories,DHCP and DNS servers, time servers, and SSH gateways

 

Starting with a small number of less critical systems will help establish the organization’s confidence and develop the expertise of administrators. New applications are obvious targets since they can be built for virtualization from the ground up. As the environment stabilizes, you can continue to migrate systems at regular intervals. Large organizations might find that 25 to 50 servers per year is a sustainable pace.
 

Plan for appropriate infrastructure support in the new environment. Storage and network resources should support the migrations plans. If several systems on the same physical host will reside on separate physical networks, plan to trunk the network interfaces. Include appropriate attachments for systems that will use space on a SAN. Make smart decisions about locating similar systems on the same physical hardware to simplify the infrastructure. Finally, make sure that every virtual machine has a secondary home to which it can migrate in the event of maintenance or hardware problems on the primary system.
 

Don’t run all your mission-critical services on the same physical hardware, and don’t overload systems with too many virtual machines.
 

Thanks to rapid improvements in server hardware, administrators have lots of good options for virtualization. Multicore, multiprocessor architectures are an obvious choice for virtual machines since they reduce the need for context switches and facilitate the allocation of CPU resources. New blade server products from major manufacturers are designed for virtual environments and offer high I/Oand memory capacity. Solid state disk drives have inherent synergy with virtualization because of their fast access times and low power consumption.
 

24.4 Virtualization with Linux
 

Two major projects are vying for the title of Linux virtualization champion: Xen and KVM. In one corner, Xen is an established, well-documented platform with wide support from the distribution heavyweights. In the other corner, KVM has been accepted by Linus Torvalds into the mainstream Linux kernel. It enjoys a growing fan base, and both Ubuntu and Red Hat are supporting it.
 

In this section we’ll stay out of the ring and stay focused on the pertinent system administration details for each technology.
 

Introduction to Xen
 

Initially developed by Ian Pratt as a research project at the University of Cambridge, the Linux-friendly Xen has grown to become a formidable virtualization platform, challenging even the commercial giants in terms of performance, security, and especially cost. As a paravirtual hypervisor, the Xen virtual machine monitor claims a mere 0.1%–3.5% overhead, far less than fully virtualized solutions. Because the Xen hypervisor is open source, a number of management tools exist with varying levels of feature support. The Xen source is available from xen.org, but many distributions already include native support.
 

Xen is a bare-metal hypervisor that runs directly on the physical hardware. A running virtual machine is called a domain. There is always at least one domain, referred to as domain zero (or dom0). Domain zero has full hardware access, manages the other domains, and runs all device drivers. Unprivileged domains are referred to as domU. All domains, including dom0, are controlled by the Xen hypervisor, which is responsible for CPU scheduling and memory management. A suite of daemons, tools, and libraries completes the Xen architecture and enables communication between domU, dom0, and the hypervisor.
 

Several management tools simplify common Xen administration tasks such as booting and shutting down, configuring, and creating guests. Xen Tools is a collection of Perl scripts that simplify domU creation. MLN, or Manage Large Networks, is another Perl script that creates complex virtual networks out of clean, easily understood configuration files. ConVirt is a shockingly advanced GUI tool for managing guests. It includes drag-and-drop live migration, agentless multi-server support, availability and configuration dashboards, and template-driven provisioning for new virtual machines. For hardened command-line junkies, the unapologetic built-in tool xm fits the bill.
 

Linux distributions vary in their support of Xen. Red Hat originally expended significant resources on including Xen in its distributions before ditching it for the competing KVM software. Xen is well supported in SUSE Linux, particularly in the Enterprise 11 release. Canonical, the company behind Ubuntu Linux, has taken an odd approach with Xen, wavering on support in most releases before finally dropping it in version 8.10 in favor of KVM (although Xen is still mentioned in documentation). Once installed, basic Xen usage differs little among distributions. In general, we recommend Red Hat or SUSE for a large Xen-based virtualization deployment.
 

Xen essentials
 

A Linux Xen server requires a number of daemons, scripts, configuration files, and tools. Table 24.1 lists the most interesting puzzle pieces.
 

Table 24.1 Xen components
 

[image: Image]
 

Each Xen guest domain configuration file in /etc/xen specifies the virtual resources available to a domU, such as disk devices, CPU, memory, and network interfaces. There is one configuration file per domU. The format is extremely flexible and gives administrators granular control over the constraints that will be applied to each guest. If a symbolic link to a domU configuration file is added to the auto subdirectory, that guest OS will be automatically started at boot time.
 

The xend daemon handles domU creation, migration, and other management tasks. It must always remain running and typically starts at boot time. Its configuration file, /etc/xen/xend-config.sxp, specifies the communication settings for the hypervisor and the resource constraints for dom0. It also configures facilities for live migration.
 

Guest domains’ disks are normally stored in virtual block devices (VBDs) in dom0. The VBD can be connected to a dedicated resource such as a physical disk drive or logical volume. Or it can be a loopback file, also known as a file-backed VBD, created with dd. Performance is better with a dedicated disk or volume, but files are more flexible and can be managed with normal Linux commands (such as mv and cp) in domain zero. Backing files are sparse files that grow as needed. Unless the system is experiencing performance bottlenecks, a file-backed VBD is usually the better choice. It’s a simple process to transfer a VBD onto a dedicated disk if you change your mind.
 

See the footnote on page 308 for more info about sparse files.

 

Similarly, virtual network interfaces (aka VIFs) can be set up in multiple ways. The default is to use bridged mode, in which each guest domain is a node on the same network as the host. Routed and NAT modes configure guest domains to be on a private network, accessible to each other and domain 0 but hidden from the rest of the network. Advanced configurations include bonded network interfaces and VLANs for guests on different networks. If none of these options fit the bill, Xen network scripts are customizable to meet almost any unique need.
 

Xen guest installation with virt-install
 

One tool for simple guest installation is virt-install, bundled as part of Red Hat’s virt-manager application.3
virt-install is a command-line OS provisioning tool. It accepts installation media from a variety of sources, such as an NFS mount, a physical CD or DVD, or an HTTP location.
 

For example, the installation of a guest domain might look like this:
 

[image: Image]
 

This is a typical Xen guest domain with the name “chef,” a disk VBD location of /vm/chef.img, and installation media obtained through HTTP. The instance has 512MiB of RAM and uses no X Windows-based graphics support during installation. virt-install downloads the files needed to start the installation and then kicks off the installer process.
 

You’ll see the screen clear, and you’ll go through a standard text-based Linux installation, including network configuration and package selection. After the installation completes, the guest domain reboots and is ready for use. To disconnect from the guest console and return to dom0, type <Control-]>.
 

It’s worth noting that although this incantation of virt-install provides a text-based installation, graphical support through Virtual Network Computing (VNC) is also available.
 

See page 1138 for more details on VNC.

 

The domain’s configuration is stored in /etc/xen/chef. Here’s what it looks like:
 

[image: Image]
 

You can see that the NIC defaults to bridged mode. In this case, the VBD is a “block tap” file that provides better performance than does a standard loopback file. The writable disk image file is presented to the guest as /dev/xvda. This particular disk device definition, tap:aio, is recommended by the Xen team for performance reasons.
 

The xm tool is convenient for day-to-day management of virtual machines, such as starting and stopping VMs, connecting to their consoles, and investigating current state. Below, we show the running guest domains, then connect to the console for chef. IDs are assigned in increasing order as guest domains are created, and they are reset when the host reboots.
 

[image: Image]
 

To effect any customization of a guest domain, such as attaching another disk or changing the network to NAT mode instead of bridged, you should edit the guest’s configuration file in /etc/xen and reboot the guest. The xmdomain.cfg man page contains excellent detail on additional options for guest domains.
 

Xen live migration
 

A domain migration is the process of moving a domU from one physical host to another, and a live migration does so without any loss of service. Practically speaking, this is one of the handiest and most magical of virtualization tricks for system administrators. Open network connections are maintained, so any SSH sessions or active HTTP connections will not be lost. Hardware maintenance, operating system upgrades, and physical server reboots are all good opportunities to use migration magic.
 

One important requirement for implementing migrations is that storage must be shared. Any storage needed by the domU, such as the disk image files on which the virtual machine is kept, must be accessible to both host servers. File-backed virtual machines are simplest for live migration since they’re usually contained in a single portable file. But a SAN, NAS, NFS share, or iSCSI unit are all acceptable methods of sharing files among systems. However the VBD is shared, be sure to run the domU on only one physical server at a time. Linux filesystems do not support direct, concurrent access by multiple hosts.
 

Additionally, because the IP and MAC addresses of a virtual machine follow it from one host to another, each server must be on the same layer 2 and IP subnets. Network hardware learns the new location of the MAC address once the virtual machine begins sending traffic over the network.
 

Once these basic requirements are met, all you need are a few configuration changes to the hypervisor configuration file, /etc/xen/xend-config.sxp, to enable migrations. Table 24.2 describes the pertinent options; they are all commented out in a default Xen installation. After making changes, restart xend by running /etc/init.d/xend restart.
 

Table 24.2 Live migration options in the xend configuration file
 

[image: Image]
 

In the process of migrating a virtual machine between hosts, the domU’s memory image traverses the network in an unencrypted format. Administrators should keep security in mind if the guest has sensitive data in memory.
 

Before attempting a migration, the guest’s configuration file must be in place on both the source and destination servers. If the location of the disk image files differs between hosts (e.g., if one server mounts the shared storage in /xen and the other in /vm), this difference should be reflected in the disk = parameter of the domain’s configuration file.
 

The migration itself is simple:
 

redhat$ sudo xm migrate --live chef server2.example.com
 

Assuming that our guest domain chef is running, the command migrates it to another Xen host, server2.example.com. Omitting the --live flag pauses the domain prior to migration. We find it entertaining to run a ping against chef ’s IP address during the migration to watch for dropped packets.
 

KVM
 

KVM, the Kernel-based Virtual Machine, is a full virtualization tool that has been included in the mainline Linux kernel since version 2.6.20. It depends on the Intel VT and AMD-V virtualization extensions found on current CPUs.4 It is the default virtualization technology in Ubuntu, and Red Hat has also changed gears from Xen to KVM after acquiring KVM’s parent company, Qumranet.
 

Since KVM virtualization is supported by the CPU hardware, many guest operating systems are supported, including Windows. The software also depends on a modified version of the QEMU processor emulator.
 

Under KVM, the Linux kernel itself serves as the hypervisor; memory management and scheduling are handled through the host’s kernel, and guest machines are normal Linux processes. Enormous benefits accompany this unique approach to virtualization. For example, the complexity introduced by multicore processors is handled by the kernel, and no hypervisor changes are required to support them. Linux commands such as top, ps, and kill show and control virtual machines, just as they would for other processes. The integration with Linux is seamless.
 

Administrators should be cautioned that KVM is a relatively young technology, and it should be heavily tested before being promoted to production use. The KVM site itself documents numerous incompatibilities when running guests of differing operating system flavors. Reports of live migrations breaking between different versions of KVM are common. Consider yourself forewarned.
 

KVM installation and usage
 

Although the technologies behind Xen and KVM are fundamentally different, the tools that install and manage guests operating systems are similar. As under Xen, you can use virt-install to create new KVM guests. Use the virsh command to manage them.5 These utilities depend on Red Hat’s libvirt library.
 

Before the installation is started, the host must be configured to support networking in the guests.6 In most configurations, one physical interface is used to bridge network connectivity to each of the guests. Under Red Hat, the network device configuration files are in /etc/sysconfig/network-scripts. Two device files are required: one each for the bridge and the physical device.
 

In the examples below, peth0 is the physical device and eth0 is the bridge:
 

[image: Image]
 

Here, the eth0 device receives an IP address through DHCP.
 

The flags passed to virt-install vary slightly from those used for a Xen installation. To begin with, the --hvm flag indicates that the guest should be hardware virtualized, as opposed to paravirtualized. In addition, the --connect argument guarantees that the correct default hypervisor is chosen, since virt-installsupports more than one hypervisor. Finally, the use of --accelerate is recommended, to take advantage of the acceleration capabilities in KVM. Ergo, an example of a full command for installing an Ubuntu server guest from CD-ROM is
 

[image: Image]
 

Assuming that the Ubuntu installation DVD has been inserted, this command launches the installation and stores the guest in the file ~/ubuntu-hardy.img, allowing it to grow to 12GB. Since we specified neither --nographics nor --vnc, virt-install asks whether to enable graphics.
 

The virsh utility spawns its own shell from which commands are run. To open the shell, type virsh --connect qemu:///system. The following series of commands demonstrates some of the core functionality of virsh. Type help in the shell to see a complete list, or see the man page for the nitty-gritty details.
 

[image: Image]
 

Live migrations with KVM appear to be a work in progress; the implementation has changed dramatically between versions. Migrations between systems with differing CPU architectures may require special patches. We do not recommend depending on KVM live migrations in a production environment until some level of stability has been reached.
 

24.5 SOLARIS ZONES AND CONTAINERS
 

Sun brought OS-level virtualization to the system administration game earlier than most with the inclusion of zones and containers in Solaris 10 (circa 2005). Extensive on-line documentation and a community of active supporters have led to wide acceptance and adoption of this technology in the business community. Flexibility and a rich suite of management tools also help make Solaris virtualization an easy sell.
 

Zones and containers are not Solaris’s only virtualization tools. The xVM project includes a Xen-based hypervisor called LDOM for virtual machines along with a powerful management tool for deploying and managing large numbers of guest systems. Sun’s hardware technology (along with the systems from many other vendors) can physically partition hardware at the electrical layer, permitting more than one operating system to run concurrently on the same chassis. We don’t discuss these additional technologies in this book, but they’re worth looking into for sites with a lot of Sun hardware.
 

Zones and containers are distinct from other virtualization tools, so let’s begin with a quick overview to help wrap some structure around the commands we examine later.
 

The terms “zone” and “container” are largely interchangeable. In the strictest sense, a zone is a protected execution environment and a container is a zone plus resource management. In practice, the terms are equivalent, and that’s how we use them in this chapter.
 

All Solaris systems have a “global zone,” which runs the kernel and all processes on the system, including those in other zones. A nonglobal zone is a virtual Solaris system that runs alongside the global zone. Network traffic and processes running in a nonglobal zone are not visible from other nonglobal zones, but all process activity is visible from the global zone. For security, it’s important to limit access to the global zone to system administrators.
 

Two types of zones, whole-root and sparse, are available. A whole-root zone contains its own copy of the operating system files and independent filesystems but requires much more storage space. A sparse zone shares many of its filesystems with the global zone, mounting them read-only.
 

Resource pools are collections of system resources, such as processors, that can be allocated among zones. At least one resource pool, the default pool, exists on all systems, and it contains all the system’s resources. All zones, including the global zone, must have at least one resource pool. You can create multiple resource pools to allocate the available system resources among running zones.
 

A resource pool consists of at least one resource set (which is currently limited to a division of CPU resources) and a scheduling algorithm. Multiple zones can share a single resource pool, in which case the scheduler will determine how the CPU usage is shared among the zones that use the resource pool.
 

Zones support a variety of different scheduling algorithms for use in different circumstances, but we focus on the most popular, “fair share scheduling,” here.
 

Let’s ground all this detail with a concrete example. Imagine a system running two physical CPUs. This particular system is going to run two virtual Solaris systems: one with a proprietary application that requires at least one full CPU, plus a lightweight web server that has no particular resource requirements. Exhibit D shows the Solaris implementation of this architecture.
 

[image: Image]
 

Exhibit D shows three containers, one each for the proprietary software, the web server, and the original (global) Solaris instance. In addition, there are three zones, one each for the proprietary application, the web server, and global. There are two resource pools, each with one CPU.
 

The web server and the global zone share the default resource pool, which contains one CPU and uses the fair share scheduling algorithm. Each of the zones has one share (not depicted), meaning that CPU resources will be divided evenly between the global and web server zones. The proprietary application uses a separate resource pool with a dedicated CPU.
 

Solaris provides several command-line tools for managing containers, zones, and resources. Most importantly, zones and resource pools each have a configuration tool and an administration tool: zonecfg, zoneadm, poolcfg, pooladm.
 

You must construct resource pools with pooladm before you can assign them to a zone. Enable pools with the -e flag, then run pooladm with no arguments to see the current status:
 

[image: Image]
 

We’ve truncated the lengthy output; the command continues to print the current resource pool information and available CPU status. The default pool is called pool_default, and it includes all available CPU resources.
 

The poolcfg command creates a new pool. In the series of commands below, we allocate a single CPU to the proprietary resource set, assign the resource set to a new resource pool, and activate the pool.
 

[image: Image]
 

We can now create a zone with the zoneadm and zonecfg commands. Running zonecfg opens a new configuration shell for the zone. Conveniently, the tool supports shell-like features such as <Tab> completion and cursor movement hot keys.
 

At a minimum, the zone must be
 

• Created;

 

• Given a storage path for the zone files and filesystems;

 

• Given an independent IP address;

 

• Assigned to one of the system’s active NICs;

 

• Assigned the resource pool we created above.

 

Here’s how:
 

[image: Image]
 

Note that the zonecfg prompt shows you the object you’re currently working on.
 

At this point the zone has been configured, but it is not actually installed or ready to run. This is a full Solaris system, and it needs to have packages installed, just as a normal system would. The zoneadm utility installs, boots, and performs other operations on the zone.
 

[image: Image]
 

Now the zone is running, and an invocation of zlogin -C proprietary-zone will connect to its console. The boot process for a zone is much like that of a physical system, so connecting with zlogin before bootstrapping is complete displays output from the boot process. We must perform all the normal configuration for a new system, such as choosing language options and an authentication method.
 

The remaining task is to create a zone for our web server. Since the web server zone will share the default resource pool with the global zone, it isn’t necessary to create a new pool. Instead, we would just create the zone with zonecfg as shown above, but with set pool=pool_default.
 

There is considerably more depth to zones and containers than we’ve shown here. Advanced features that administrators should be aware of include migration of zones between physical systems (although live migrations are not supported), ZFS resources for smaller whole-root zones, and “branded zones” that support running binaries from other platforms (e.g., Linux) on a Solaris kernel.
 

24.6 AIX Workload Partitions
 

IBM has been in the virtualization game a long time. They pioneered the concept in the 1960s, but it wasn’t until the release of AIX 6.1 in late 2007 that software virtualization was included in AIX. Any system capable of running AIX 6 supports workload partitions (WPARs). (This technology is distinct from IBM’s various logical partition implementations found in versions as early as 4.3.)
 

WPARs run in an isolated execution environment. Processes can only communicate with peers in the same partition. Signals and events in the global environment do not affect the partition, and vice versa. WPARs can have their own dedicated network addresses.
 

WPARs are served in two delicious flavors: system and application.
 

• A system WPAR shares only the AIX kernel with the global environment (the host, essentially). An application running in a system WPAR believes it is running in an independent AIX installation with its own inetd daemon for networking autonomy.

 

• An application WPAR runs a single application in an isolated environment. It shares all filesystems with the global environment and cannot provide remote access capabilities. The application WPAR exits when the application completes.

 

IBM provides several tools for managing WPARs, continuing the AIX tradition of convenient administration. We discuss the command-line interface here, but administrators should be aware that in typical AIX fashion, there is a full SMIT interface as well as WPAR Manager, a web-based management interface for centralized management of multiple servers and their workload partitions.
 

You create a system WPAR with the mkwpar command. The only required argument is -n to name it. Thus, the command mkwpar -n mario creates a partition named “mario.” mkwpar creates the relevant filesystems, installs the appropriate filesets, and prepares subsystems and services. This process takes only a short time; when it’s finished, run startwpar mario to start the WPAR.
 

The /wpars directory in the global environment will contain the filesystems for mario. You can list the WPARs from the global environment with lswpar:
 

[image: Image]
 

To attach as root to the console, use clogin mario. Could it be any easier?
 

This simple example leaves out a number of important considerations and customization opportunities. For one, new software cannot be installed in the mario WPAR because the /usr and /opt filesystems are by default mounted read-only to save space. No network interfaces are available. The simplified procedure above also ignores IBM’s excellent resource management features, which facilitate administrative control over the WPAR’s use of CPU, memory, virtual memory, and other resources.
 

To create a more usable instance, you can beef up your mkwpar command with some additional arguments. The version below creates a WPAR with the following attributes:
 

• The name of the WPAR is mario (-n).

 

• Name resolution settings are inherited from the global instance (-r).

 

• Private, writable /opt and /usr filesystems are created (-l).

 

• The WPAR uses the IP address 192.168.10.15 on the en0 interface from the global WPAR (-N).

 

• The CPU allocated to this WPAR will be a minimum of 5%, a soft maximum of 15%, and an absolute limit of 25% (-R).

 

[image: Image]
 

This invocation is a little chewier than a basic mkwpar and it takes longer to execute because of the duplication of /usr and /opt.
 

To modify a partition after it has been created, use the chwpar command. You can stop a partition with stopwpar and remove it for good with rmwpar.
 

Application WPARS are handled very similarly. Instead of mkwpar, application WPARs are created with wparexec. Parameters are generally identical to those of mkwpar, but rather than providing a name, you provide the application to execute as an argument. For example, to run Apache in its own application WPAR, simply use wparexec /usr/local/sbin/httpd.
 

24.7 Integrity Virtual Machines in HP-UX
 

If HP’s goal is to confuse administrators with the most disorganized possible approach to virtualization, they have succeeded admirably. On a stand-alone, lowend server, the Integrity Virtual Machines software shares hardware resources among multiple guest operating systems. For larger systems with multiple cores, HP has a more powerful software partitioning technology called Virtual Partitions, aka vPars. Additionally, the hardware partitioning service known as nPartitions provides a true electrical-level separation between running servers. These technologies, along with HP’s clustering software, are collectively referred to as the Virtual Server Environment.
 

In this section we cover only Integrity Virtual Machines. IVM is a full virtualization technology, and unmodified versions of Windows and Linux can run on an HP-UX host. Each guest is given a preconfigured proportion of CPU time. Memory and storage allocation is also tunable. An unlimited number of guests may be configured, but the number of running virtual machines is capped at 256.
 

Network connectivity for guest machines consists of three components:
 

• A physical network adapter in the host, also known as a pNIC

 

• A guest network adapter, referred to as a virtual NIC or vNIC

 

• A virtual switch, or vswitch, that creates a network between the host and one or more guests

 

The intricacies of the various network configurations offered in an Integrity installation are daunting, but we appreciate the flexibility the system offers. For purposes of this discussion, we’ll create a single vswitch that maps to the same network the host lives on. This is the simplest configuration and is equivalent to the bridged networks discussed elsewhere in this chapter.
 

Much as in Xen, the host can supply storage to guests from physical disks, DVDs, tape changers, or files in the host operating system. Also eerily reminiscent of Xen, milking the best performance out of a storage device is something of an art.
 

Consult HP’s Installation, Configuration, and Administration Guide for a thorough guide to complex network configurations and techniques for optimizing storage performance.
 

Creating and installing virtual machines
 

The commands that create, install, and manage virtual machines are powerful yet simple. Each command name starts with an hpvm prefix, with the rest of the command corresponding to the desired action. For example, to create a new virtual machine, the command is hpvmcreate.
 

Various arguments to each command control the configuration of the guest operating systems, and there are no static files for the administrator to manage. Changes to a guest are made with the hpvmmodify command.
 

Before you create a virtual machine, its storage and network resources must be available. In the example below, we first create a filesystem on one of the host’s physical disks to store the guest, then create a vswitch to provide the guest’s network connectivity. To summarize the virtual machine creation process:
 

• Create a storage resource for the guest’s files.

 

• Create a virtual switch for network connectivity.

 

• Create the virtual machine.

 

• Start and install the virtual machine.

 

In the series of commands below, we use the mkfs command to create a filesystem on the physical device disk3, an arbitrary disk that happened to be available on our lab system. It will eventually store the guest’s operating system, applications, and data. The file is mounted under /vdev, and finally the hpvmdevmgmt command (not to be confused with the hpwndkwlvyfm command) creates a usable storage entity called disk1.
 

[image: Image]
 

The next step is to create a virtual switch for use by the guest. A single vswitch can be used by multiple guests.
 

[image: Image]
 

Here, the handy lanscan command finds all the system’s network interfaces. We need the identifier for the network interface on the correct network; in this case it’s the 0 in lan0. Using the hpvmnet command, we create the switch by using lan0, then start it in the next command with the -b argument.
 

Now that the necessary resources have been created, it’s finally time to create the virtual machine itself.
 

[image: Image]
 

This command creates a virtual machine called vm0, allocates 2GiB of memory to it, uses the virtual switch vm0switch, and selects the storage device we created above. The new virtual machine is then started with the hpvmstart command.
 

Installation of the virtual machine is identical to installing a physical machine from the console. Attach to the console with hpvmconsole -P vm0 and disconnect with <Control-B>. To check the status of a guest, use hpvmstatus -P vm0.
 

24.8 VMware: An Operating System in its Own Right
 

VMware is the biggest player in the bleeding edge virtualization industry and was the first vendor to develop techniques to virtualize the fractious x86 platform. VMware developed techniques for handling seventeen problematic instructions that previously prevented virtualization from becoming ubiquitous. The release of the VMware Workstation product in 1999 sparked a call to arms for more efficient computing—a call that is still reverberating today.
 

VMware is a third-party commercial product that is worthy of consideration when you are choosing a site-wide virtualization technology. The primary products of interest to UNIX and Linux administrators are ESX and ESXi, both of which are bare-metal hypervisors for the Intel x86 architecture. ESXi is free, but some useful functionality, such as console access, has been removed. ESX targets the enterprise with scriptable installations, features for monitoring through SNMP, and support for booting from a storage area network (SAN) device.
 

In addition to the ESX products, VMware offers some powerful, advanced products that facilitate centralized deployment and management of virtual machines. They also have the most mature live migration technology we’ve seen. Unfortunately, their client management interface runs only on Windows at this time. Collectively, VMware’s products create a next generation IT environment, in-depth coverage of which is unfortunately beyond the scope of this chapter.
 

HP-UX and AIX cannot run as VMware virtual machines because those operating systems run on proprietary processor architectures that VMware does not emulate. Linux is of course well supported. Solaris can also run under VMware since its code base covers both the SPARC and x86 platforms.
 

24.9 Amazon Web Services
 

All the cool kids are getting into cloud computing, and Amazon Web Services (AWS) is leading the pack. Starting in early 2006, Amazon began to productize the infrastructure behind its amazon.com site by selling access to a suite of APIs and web services. These services have become an immensely powerful, scalable, and highly available computing and service platform for anyone that needs cheap, instantaneous computing power or storage.
 

The core suite of AWS offerings of interest to a UNIX administrator include
 

• EC2, the Elastic Compute Cloud – a platform for scalable computing. An EC2 “instance” is a server located on the Internet that runs an operating system of your choice and is under your complete control. You can add and remove instances at will. EC2 is based on Xen, and many different operating systems are supported.

 

• EBS, the Elastic Block Store – persistent, disk-like storage for EC2 instances. EBS is similar in concept to SAN storage. It lets EC2 instances preserve and share state across invocations.

 

• S3, Simple Storage Services – a highly available, long-term storage infrastructure. S3 differs from EBS in that it is not intended to be mounted as a filesystem but instead stores and retrieves objects through an API.

 

These services give administrators unprecedented flexibility and scalability, at the cost of losing some control over hardware and network configuration.
 

Administrators and developers alike must also consider the security implications of moving services to the cloud. Sensitive data should be left in a physical data center, especially when subject to regulations such as Sarbanes-Oxley or HIPAA (in the United States). Regulatory requirements may or may not preclude the use cloud computing, but until the courts work out the kinks, it’s better to play it safe.
 

Where, then, does the AWS become useful? In terms of cost, availability, and dynamic scalability, it’s difficult to compete with AWS as a web-hosting platform. The cost for on-demand EC2 instances currently ranges from $0.09 to $0.68 per hour, depending on the computing power of the instance. S3 storage is priced at $0.15 per GB per month. These pennies add up (the cheapest possible EC2 instance works out to about $379/year on a three-year plan), but with power, cooling, and maintenance included, the bottom line is generally more attractive than self-hosted servers when all costs are considered.
 

With limitless processing capacity, the cloud is also attractive as a distributed computing platform. In fact, AWS could be useful for hosting email, DNS, or other services that are normally provided in the data center.
 

AWS is at heart a set of SOAP APIs, but Amazon provides some simple command-line wrappers written in Java as well as a web-based GUI and a Firefox plug-in. AWS can run both Linux and Windows as guest operating systems.
 

The steps to get an instance up and running with persistent storage include
 

• Installing and configuring a Java run-time environment (make sure the JAVA_HOME environment variable points to the right place);

 

• Creating S3 and EC2 accounts with Amazon Web Services;

 

• Downloading and installing the EC2 tools;

 

• Creating an EC2 instance from an Amazon Machine Image (AMI), which is the disk image of a configured operating system, possibly with some extra software installed. There are many to choose from, or you can roll your own.

 

• Creating an EBS volume and attaching it to your instance.

 

The AWS web site contains the account signup pages and all the necessary downloads. To start using AWS, download the command-line tools and the access identifiers, which consist of a certificate and a private key.
 

Make a directory called ~/.ec2 and move the downloaded certificate file, key file, and extracted tools to that directory. All EC2 commands will reside iñ/.ec2/bin, with library dependencies iñ/.ec2/lib. To set up the environment for easy use, add the following to the shell’s login script. (For bash, the file is ~/.bash_login or ~/.bash_profile.)
 

[image: Image]
 

Finally, before choosing an image and starting it, create a key pair that you’ll use to gain access to the image. The ec2-add-keypair command creates a new key pair. Any new images that are created will automatically be configured to use the new public key for SSH authentication on the root account.
 

[image: Image]
 

This key will be needed in the future, so save everything but the line beginning with KEYPAIR to a file in thê/.ec2 directory and make sure the permissions are 600. Never share the private key file—it contains the keys to the cloud kingdom!
 

Now it’s time to choose an AMI. There are an enormous number of AMIs to choose from, many created by Amazon and many contributed (or sold) by the community. It’s also possible to build a custom AMI for private use, possibly configured with the particulars of your environment or preinstalled with all your needed applications.
 

After choosing an image, note its identifier. The command below lists the AMIs created by Amazon. Having added the tools directory to the PATH variable, you can execute EC2 commands anywhere.
 

[image: Image]
 

The image name typically has a brief description to help you understand its purpose and configuration, but details are available in an on-line directory. To spin up the PHP quick start AMI from the list above, use the following command:
 

[image: Image]
 

The ec2-describe-instances output reflects that the instance is still booting (status “pending”) and that it’s using the key pair set with the name my-keypair.
 

Importantly, the output shows that the instance is running in the us-east-1c availability zone. Amazon has segmented its systems into separate availability zones, so that a user who wants to guarantee that several instances will run in physically separate data centers can request this on the command line. This value will also be needed to attach an EBS volume.
 

Finally, the command shows that the instance type is m1.small. This code tells you the amount of resources available to the system. Amazon has defined several standard profiles; m1.small is the default and includes a single 32-bit EC2 CPU, 1.7GB memory, and 160GB of (nonpersistent) disk. Of course, the actual hardware your server runs on probably looks nothing like this; it’s just a way of describing your allocation.
 

Once the instance is running, any network ports you need to access must be authorized through another EC2 command, ec2-authorize:
 

ubuntu$ ec2-authorize default -p 22
 

In this case, port 22 (for SSH) is authorized for all hosts in the default group. (Groups are a mechanism for managing collections of instances. New instances are provisioned in the default group unless otherwise specified.) After you’ve been authorized on port 22, you can finally connect to your new instance. To do so, first find the hostname, then SSH to it just as if it were another node on the Internet (because it is!).
 

[image: Image]
 

This command uses the key pair saved above to connect to the new instance’s root account. For security reasons, we recommend disabling root SSH access.
 

The only remaining problem is that instances are not persistent. That is, when this instance terminates, any changes to its disk or memory state are not captured. EBS provisions storage volumes just as new instances are provisioned. Here, we create a volume and attach it to the running host.
 

[image: Image]
 

These commands create a new EBS storage volume in the us-east-1c availability zone and attach it as the device /dev/sdf to the instance created above. To create a filesystem and begin using the volume, log in to the instance and proceed as if you were creating a filesystem on a physical disk.
 

See the Adding a Disk chapter for more information about creating filesystems.

 

Remember that AWS charges by the hour for instances, so unused instances and volumes should be cleaned up. Before terminating an unneeded instance, be sure to detach any EBS volumes and gracefully shut down the system, just as you would a physical host.
 

[image: Image]
 

In addition to the command-line interface, Amazon offers a web management interface that can initiate the same operations as the command-line tools, such as starting and stopping instances, attaching storage volumes, and allocating IP addresses. A Firefox web browser plug-in called ElasticFox provides similar functionality from within the browser itself.
 

Amazon regularly introduces new features and products to its web services product line. Auto-scaling of EC2 instances automatically spins up new servers to prevent outages when the load is high. The CloudWatch feature monitors metrics such as CPU usage and disk I/O for quick response to changing conditions. Keep an eye on the AWS blog at aws.typepad.com for feature enhancements and product announcements.
 

24.10 Recommended Reading
 

The web site virtualization.info is an excellent source of current news, trends, and gossip in the virtualization and cloud computing sectors.
 

TROY, RYAN. VMware Cookbook: A Real-World Guide to Effective VMware Use. Sebastopol, CA: O’Reilly Media, 2009.
 

CRAWFORD, LUKE. The Book of Xen: A Practical Guide for the System Administrator. San Francisco, CA: No Starch Press, 2009.
 

HESS, KENNETH. Practical Virtualization Solutions: Virtualization from the Trenches. Upper Saddle River, NJ: Prentice Hall PTR, 2009.
 

24.11 Exercises
 

E24.1 Briefly compare and contrast the different approaches to virtualization. In what category is KVM? Why is cloud computing a distinct technology from virtualization?

 

E24.2 Modern Intel and AMD processors include special instructions that improve virtualization support. What are these instructions, and what special functions do they accomplish? Given a running system and a knowledge of the processor model, describe at least two ways of determining whether the virtualization instructions are supported.

 

E24.3 What new features has Amazon Web Services started to support since this chapter was written? Are they enhancements to the existing infrastructure or entirely new services?

 

[image: Image] E24.4 Create an Amazon Web Services account and a public key pair. Set up a Java environment and create an EC2 instance. Can you access the console directly? What does this imply? Assuming that the instance was intended to contain sensitive data, what steps could you take to reassure a client that the data would be protected in the cloud?

 

[image: Image] E24.5 A large enterprise is planning the deployment of a new customer relationship management (CRM) solution that consists of redundant front end web servers, middleware servers, and a database server. Which of these CRM components should be virtualized? Explain.

 
  


25. The X Window System
 

[image: Image]
 

The X Window System, also called X11 or simply X, is the foundation for most graphical user environments for UNIX and Linux. X is the natural successor to a window system called (believe it or not) W, which was developed as part of MIT’s Project Athena in the early 1980s. Version 10 of the X Window System, released in 1985, was the first to achieve widespread deployment, and version 11 (X11) followed shortly thereafter. Thanks to the system’s relatively liberal licensing terms, X spread quickly to other platforms, and multiple implementations emerged. Much as in the case of TCP/IP, X’s elegant architecture and flexibility have positioned it as the world’s predominant non-Windows GUI.
 

In 1988, the MIT X Consortium was founded to set the overall direction for the X protocol. Over the next decade, this group and its successors issued a stream of protocol updates. X11R7.5 is today’s latest and greatest, with the trend apparently heading toward adding new numbers to the version designation instead of incrementing the existing ones.
 

XFree86 became the de facto X server implementation for most platforms until a licensing change in 2004 motivated many systems to switch to a fork of XFree86 that was unencumbered by the new licensing clause. That fork is maintained by the nonprofit X.Org Foundation and is the predominant implementation in use today. In addition, the X.Org server has been ported to Windows for use in the Cygwin Linux compatibility environment. (Several commercial X servers for Windows are also available; see page 1136 for more information.)
 

This chapter describes the X.Org version of X, which is used by all of our example systems except HP-UX. The implementations of X.Org and XFree86 have diverged architecturally, but most of the administrative details remain the same. It is often possible to substitute xf86 for xorg in commands and filenames to guess at the appropriate XFree86 version.
 

[image: Image] Solaris systems through version 10 included both the X.Org server and Xsun, yet another implementation of X.1 Xsun remains common on SPARC systems running Solaris 10, but x86 systems typically run X.Org. However, X.Org now supports SPARC, and the OpenSolaris project has stated that X.Org will be the only supported X platform in the future. Therefore, we do not discuss Xsun here.
 

[image: Image] By default, AIX does not include an X Window System environment. To install one, run smitty easy-install, select the lpp library source, and then choose either CDE (for the traditional IBM-blessed Motif platform) or KDE (for the more modern option).2 What you get is a highly customized version of the X.Org environment that has been stripped down to look more like the older X systems of the Motif era. However, it supports X11R7.5 under the hood.
 

The X Window System can be broken down into a few key components. First, it provides a display manager whose main job is to authenticate users, log them in, and start up an initial environment from startup scripts. The display manager also starts the X server, which defines an abstract interface to the system’s bitmapped displays and input devices (e.g., keyboard and mouse). The startup scripts also run a window manager, which allows the user to move, resize, minimize, and maximize windows, as well as to manage separate virtual desktops. Finally, at the lowest level, applications are linked to a widget library that implements high-level user interface mechanisms such as buttons and menus. Exhibit A illustrates the relationship between the display manager, the X server, and client applications.
 

The X server understands only a very basic set of drawing primitives over a network API; it does not define a programming interface to high-level entities such as buttons, text boxes, menus, and sliders. This design achieves two important goals. First, it allows the X server to run on a computer that is completely separate from that of the client application. Second, it allows the server to support a variety of different window managers and widget sets.
 

Exhibit A The X client/server model
 

[image: Image]
 

Application developers have their choice of several common widget libraries and user interface standards. Unfortunately, the choice often depends more on religious affiliation than on any real design considerations. Although freedom of choice is good, X’s UI agnosticism and lack of design leadership did result in many years of poor user interfaces. Fortunately, the fit and finish of the mainstream X environments has improved markedly. Both the KDE and GNOME desktop environments sport modern web browsers, user-friendly file managers, and modern multimedia capabilities.
 

In this chapter, we explain how to run programs on a remote display and how to enable authentication. We then discuss how to configure the X.Org server and how to troubleshoot configuration errors. Finally, we touch briefly on some of the available window managers and desktop environments.
 

25.1 The Display Manager
 

The display manager presents the user with a (graphical) login screen and is usually the first thing a user sees when sitting down at the computer. It is not required; many users disable the display manager and start X from the text console or from their .login script by running startx (which itself is a wrapper for the xinit program, which starts the X server).
 

xdm (for X display manager) is the original display manager, but modern replacements such as gdm (the GNOME display manager) and kdm (the KDE display manager) deliver additional features and are more aesthetically pleasing. The display manager can manage remote logins to other X servers through the XDMCP protocol, and it can also handle display authentication (see Client authentication on page 1016).
 

Configuration files in the xdm, gdm, or kdm subdirectory of /etc/X11 specify how the display manager will run. For example, you can edit the Xservers file to change the display number used for this server if multiple servers will be running on other virtual terminals. Or, you might alter the server layout with the -layout option if you have defined layouts to suit multiple systems.
 

See page 908 for more information about PAM.

 

In the typical scenario, the display manager prompts for a username and password. The user’s password is then authenticated according to the PAM configuration specified in /etc/pam.d/xdm (or gdm/kdm if you are using the GNOME or KDE display managers). The login screen can also offer several alternative desktop environments, including the important failsafe option discussed below.
 

The display manager’s final duty is to execute the Xsession shell script, which sets up the user’s desktop environment. The Xsession script, also most often found in /etc/X11/{xdm,gdm,kdm}, is a system-wide startup script. It sets application defaults, installs standard key bindings, and selects language settings. The Xsession script then executes the user’s own personal startup script, usuallŷ/.xsession, to start up the window manager, task bar, helper applets, and possibly other programs. GNOME and KDE also have their own startup scripts that configure the user’s desktop in accordance with GNOME’s and KDE’s configuration tools; this scheme is less error-prone than users’ editing of their own startup scripts.
 

When the execution of ~/.xsession completes, the user is logged out of the system and the display manager goes back to prompting for a username and password. Therefore, ~/.xsession must start all programs in the background (by appending an & to the end of each command) except for the last one, which is normally the window manager. (If all commands in ~/.xsession are run in the background, the script terminates right away and the user is logged out immediately after logging in.) With the window manager as the final, foreground process, the user is logged out only after the window manager exits.
 

The failsafe login option lets users log in to fix their broken startup scripts. This option can usually be selected from the display manager’s login screen. It opens only a simple terminal window; once the window closes, the system logs the user out. Every system should allow the failsafe login option; it helps users fix their own messes rather than having to page you in the middle of the night.
 

Forgetting to leave a process in the foreground is the most common startup problem, but it’s hardly the only possibility. If the cause of problems is not obvious, you may have to refer to the ~/.xsession-errors file, which contains the output of the commands run from ~/.xsession. Look for errors or other unexpected behavior. In a pinch, move the ~/.xsession script aside and make sure you can log in without it. Then restore one or two lines at a time until you find the offending line.
 

25.2 Processr for Running an X Application
 

The process required to run an X application may at first seem overly complex. However, you will soon discover the flexibility afforded by the client/server display model. Because display updates are transmitted over the network, an application (the client) can run on a completely separate computer from the one that displays its graphical user interface (the server). An X server can have connections from many different applications, all of which run on separate computers.
 

To make this model work, clients must be told what display to connect to and what screen to inhabit on that display. Once connected, clients must authenticate themselves to the X server to ensure that the person sitting in front of the display has authorized the connection.
 

Even with authentication, X’s intrinsic security is weak. You can manage connections somewhat more securely by routing them through SSH (see X connection forwarding with SSH on page 1017). We strongly recommend the use of SSH for X connections over the Internet. It’s not unreasonable for local traffic, either.
 

See page 926 for more information about SSH.

 

The DISPLAY Environment Variable
 

X applications consult the DISPLAY environment variable to find out where to display themselves. The variable contains the hostname or IP address of the server, the display number (identifying the particular instance of an X server to connect to), and an optional screen number (for displays with multiple monitors). When applications run on the same computer that displays their interfaces, you can omit most of these parameters.
 

The following example shows both the format of the display information and the bash syntax used to set the environment variable:
 

client$ DISPLAY=servername.domain.com:10.2; export DISPLAY
 

This setting points X applications at the machine servername.domain.com, display 10, screen 2. Applications establish a TCP connection to the server on port number 6000 plus the display number (in this example, port 6010), where the X server handling that display should be listening.
 

Keep in mind that every process has its own environment variables. When you set the DISPLAY variable for a shell, its value is inherited only by programs that you run from that shell. If you execute the commands above in one xterm and then try to run your favorite X application from another, the application won’t have access to your carefully constructed DISPLAY variable.
 

Another point worth mentioning is that although X applications send their graphical displays to the designated X server, they still have local stdout and stderr channels. Some error output may still come to the terminal window from which an X application was run.
 

If the client and server are both part of your local organization, you can usually omit the server’s full domain name from the DISPLAY variable, depending on how your name server’s resolver has been configured. Also, since most systems run only a single X server, the display is usually 0. The screen number can be omitted, in which case screen 0 is assumed. Ergo, most of the time it’s fine to set the value of DISPLAY to servername:0.
 

See page 561 for more information about DNS resolver configuration.

 

If the client application happens to be running on the same machine as the X server, you can simplify the DISPLAY variable even further by omitting the host-name. This feature is more than just cosmetic: with a null hostname, the client libraries use a UNIX domain socket instead of a network socket to contact the X server. In addition to being faster and more efficient, this connection method bypasses any firewall restrictions on the local system that are trying to keep out external X connections. The simplest possible value for the DISPLAY environment variable, then, is simply “:0”.
 

Client Authentication
 

Although the X environment is generally thought to be relatively insecure, every precaution helps prevent unauthorized access. In the days before security was such a pressing concern, it was common for X servers to welcome connections from any client running on a host that had been marked as safe with the xhost command. But since any user on that host could then connect to your display and wreak havoc (either intentionally or out of confusion), the xhost method of granting access to clients was eventually deprecated. We do not discuss it further.
 

The most prevalent alternative to host-based security is called magic cookie authentication. While the thought of magic cookies might inspire flashbacks in some of our readers, in this context they are used to authenticate X connections. The basic idea is that the X display manager generates a large random number, called a cookie, early in the login procedure. The cookie for the server is written to the ~/.Xauthority file in the user’s home directory. Any clients that know the cookie are allowed to connect. Users can run the xauth command to view existing cookies and to add new ones to this file.
 

The simplest way to show how this works is with an example. Suppose you have set your DISPLAY variable on the client system to display X applications on the machine at which you are sitting. However, when you run a program, you get an error that looks something like this:
 

[image: Image]
 

This message tells you that the client does not have the right cookie, so the remote server refused the connection. To get the right cookie, log in to the server (which you have probably already done if you are trying to display on it) and list the server’s cookies by running xauth list:
 

[image: Image]
 

Each network interface on the server has an entry. This example shows a cookie for the Ethernet, a cookie for the UNIX domain socket used for local connections, and a cookie for the localhost loopback network interface.
 

The easiest way to get the cookie onto the client (when not using SSH, which negotiates the cookie for you) is with good old cut-and-paste. Most terminal emulators (e.g., xterm3) let you select text with the mouse and paste it into another window, usually by pressing the middle mouse button. Conveniently, the xauth add command accepts as input the same format that xauth list displays. You can add the cookie to the client like this:
 

[image: Image]
 

You should verify that the cookie was added properly by running xauth list on the client. With the DISPLAY environment variable set and the correct magic cookie added to the client, applications should now display correctly on the server.
 

If you are having trouble getting cookies to work, you can drop back temporarily to xhost authentication just to verify that there are no other problems (for example, firewalls or local network restrictions that are preventing the client from accessing the server). Always run xhost -(that is, xhost with a dash as its only argument) to disable xhost authentication once your test is complete.
 

X Connection Forwarding With SSH
 

Magic cookies increase security, but they’re hardly foolproof. Any user who can obtain your display’s cookie can connect to the display and run programs that monitor your activities. Even without your cookie, the X protocol transfers data over the network without encryption, allowing it to be sniffed by virtually anyone.
 

You can boost security with SSH, the secure shell protocol. SSH provides an authenticated and encrypted terminal service. However, SSH can also forward arbitrary network data, including X protocol data, over a secure channel. X forwarding is similar to generic SSH port forwarding, but because SSH is X-aware, you gain some additional features, including a pseudo-display on the remote machine and the negotiated transfer of magic cookies.
 

See page 926 for more information about SSH.

 

You typically ssh from the machine running the X server to the machine on which you want to run X programs. This arrangement can be confusing to read about because the SSH client is run on the same machine as the X server, and it connects to an SSH server that is on the same machine as the X client applications. To make it worse, the virtual display that SSH creates for your X server is local to the remote system. Exhibit B on the next page shows how X traffic flows through the SSH connection.
 

Exhibit B Using SSH with X
 

[image: Image]
 

Your DISPLAY variable and authentication information are set up automatically by ssh. The display number starts at :10.0 and increments for each SSH connection that is forwarding X traffic.
 

An example might help show the sequence.
 

[image: Image]
 

You can see from the last two lines that the client is requesting forwarding for X11 applications. X forwarding must be enabled on both the SSH server and the SSH client, and the client must still have the correct cookie for the X server. If things do not seem to be working right, try the -X and -v flags as shown above (for OpenSSH) to explicitly enable X forwarding and to request verbose output.4 Also check the global SSH configuration files in /etc/ssh to make sure that X11 forwarding has not been administratively disabled. Once logged in, you can check your display and magic cookies:
 

[image: Image]
 

Notice that the DISPLAY points to a virtual display on the SSH server. Other SSH connections (both from you and from other users) are assigned different virtual display numbers. With the DISPLAY and cookie properly set, the client application can now be run.
 

[image: Image]
 

With the debugging information enabled with ssh -v, you can see that ssh has received the X connection request and dutifully forwarded it to the X server. The forwarding can be a little slow on a distant link, but the application should eventually appear on your screen.
 

25.3 X Server Configuration
 

The X.Org server, Xorg, was once notorious for being difficult to configure for a given hardware environment. However, a tremendous amount of effort has been put into making Xorg ready to eat right out of the box, and many modern systems run it successfully without any configuration file. However, it is still possible to manually adapt the Xorg server to a wide array of graphics hardware, input devices, video modes, resolutions, and color depths.
 

If your system is running fine without an Xorg configuration file, great! It may be using the KMS module, which is described later in this chapter. Otherwise, you have two options. Option one is to manually configure the xorg.conf file. The sections below describe manual configuration. Truth be told, this may be your only real option in some situations. Option two is to use the xrandr tool to configure your server; it’s covered starting on page 1025.
 

The Xorg configuration file is normally located in /etc/X11/xorg.conf, but the X server searches a slew of directories to find it. The man page presents a complete list, but one point to note is that some of the paths Xorg searches contain the hostname and a global variable, making it easy for you to store configuration files for multiple systems in a central location.
 

[image: Image] AIX operates without an xorg.conf configuration file and instead tries to automatically recognize all AIX hardware display types. You can pass configuration hints as arguments to the X server.
 

Several programs can help you configure X (e.g., xorgconfig), but it’s a good idea to understand how the configuration file is structured in case you need to view or edit the configuration directly. You can gather some useful starting information directly from the X server by running Xorg -probeonly and looking through the output to identify your video chipset and any other probed values. You can also run Xorg -configure to have the X server create an initial configuration file that is based on the probed values. It’s a good place to start if you have nothing else.
 

The xorg.conf file has several sections, each of which starts with the Section key-word and ends with EndSection. Table 25.1 lists the most common section types.
 

Table 25.1 Sections of the xorg.conf file
 

[image: Image]
 

It is often simplest to build a configuration file from the bottom up by first defining sections for the input and output devices and then combining them into various layouts. With this hierarchical approach, a single configuration file can be used for many X servers, each with different hardware. It’s also a reasonable approach for a single system that has multiple video cards and monitors.
 

Exhibit C shows how some of these sections fit together into the X.Org configuration hierarchy. A physical display Monitor plus a video card Device combine to form a Screen. A set of Screens plus InputDevices form a ServerLayout. Multiple server layouts can be defined in a configuration file, though only one is active for a given instance of the Xorg process.
 

Exhibit C Relationship of xorg.conf configuration sections
 

[image: Image]
 

Some of the sections that make up the xorg.conf file are relatively fixed. The defaults can often be used straight from an existing or example configuration file. Others, such as the Device, Monitor, Screen, InputDevice, and ServerLayout sections, depend on the host’s hardware setup. We discuss the most interesting of these sections in more detail in the following subsections.
 

Device Sections
 

A Device section describes a particular video card. You must provide a string to identify the card and a driver appropriate for the device. The driver is loaded only if the device is referenced by a corresponding Screen section. A typical device section might look like this:
 

[image: Image]
 

The manual page for the driver, radeon in this example, describes the hardware that’s driven as well as the options the driver supports. If you are experiencing strange video artifacts, you might try setting options to turn off hardware acceleration (if supported), slowing down video memory access, or modifying interface parameters. It is generally a good idea to check the web to see if other people have experienced similar problems before you start randomly changing values.
 

Monitor Sections
 

The Monitor section describes the displays attached to your computer. It can specify detailed timing values. The timing information is necessary for older hardware, but most modern monitors can be probed for it. Display specifications can usually be obtained from the manufacturer’s web site, but nothing beats having the original manual that came with the monitor. Either way, you will want to know at least the horizontal sync and vertical refresh frequencies for your model.
 

A typical Monitor section looks like this:
 

[image: Image]
 

As with all of the sections, the Identifier line assigns a name by which you later refer to this monitor. Here we have turned on DPMS (Display Power Management Signaling) so that the X server can power down the monitor when we sneak away for a donut and some coffee.
 

The HorizSync and VertRefresh lines, which apply only to CRT monitors, should be filled in with values appropriate for your monitor. They may be specified as a frequency range (as above) or as discrete values separated by commas. The driver can theoretically probe for supported modes, but specifying the parameters keeps the driver from attempting to use unsupported frequencies.
 

Screen Sections
 

A Screen section ties a device (video card) to a monitor at a specific color depth and set of display resolutions. Here’s an example that uses the video card and monitor specified above.
 

[image: Image]
 

As you might expect, the screen is named with an Identifier, and the identifiers for the previously defined video device and monitor are mentioned. This is the first section we have introduced that has subsections. One subsection is defined for each color depth, with the default being specified by the DefaultDepth field.
 

A given instance of the X server can run at only one color depth. At startup, the server determines what resolutions are supported for that depth. The possible resolutions generally depend on the video card. Special keyboard combinations for X on page 1026 describes how to cycle through the resolutions that are defined here.
 

Any modern video card should be able to drive your monitor at its full resolution in 24-bit or 32-bit color. If you want to run old programs that require a server running in 8-bit color, run a second X server on a separate virtual console. Use the -depth 8 flag on the Xorg command line to override the DefaultDepth option.
 

InputDevice Sections
 

An InputDevice section describes a source of input events such as a keyboard or mouse. Each device gets its own InputDevice section, and as with other sections, each is named with an Identifier field. If you are sharing a single configuration file among machines with different hardware, you can define all the input devices; only those referenced in the ServerLayout section are used. Here is a typical keyboard definition:
 

[image: Image]
 

You can set options in the keyboard definition to express your particular religion’s stance on the proper position of the Control and Caps Lock keys, among other things. In this example, the AutoRepeat option specifies how long a key needs to be held down before it starts repeating and how fast it repeats.
 

The mouse is configured in a separate InputDevice section:
 

[image: Image]
 

The CorePointer option designates this mouse as the system’s primary pointing device. The device file associated with the mouse is specified as an Option; Table 25.2 lists the mouse device multiplexer files for our example systems.
 

Table 25.2 Common mouse device files
 

[image: Image]
 

The communication protocol depends on the particular brand of mouse, its features, and its interface. You can set it to auto to make the server try to figure out the protocol for you. If your mouse wheel doesn’t work, try setting the protocol to IMPS/2. If you have more than a few buttons, try using the ExplorerPS/2 protocol. Some Solaris users report success with the VUID protocol.
 

The Emulate3Buttons option lets a two-button mouse emulate a three-button mouse by defining a click on both buttons to stand in for a middle-button click.
 

The ZAxisMapping option is sometimes needed to support a scroll wheel or joystick device. Most mice these days have at least three buttons, a scroll wheel, a built-in MP3 player, a foot massager, and a beer chiller.5
 

ServerLayout Sections
 

The ServerLayout section is the top-level node of the configuration hierarchy. Each hardware configuration on which the server will be run should have its own instance of the ServerLayout section. The layout used by a particular X server is usually specified on the server’s command line.
 

This section ties together all the other sections to represent an X display. It starts with the requisite Identifier, which names this particular layout. It then associates a set of screens with the layout.6 If multiple monitors are attached to separate video cards, each screen is specified along with optional directions to indicate how they are physically arranged. In this example, screen one is on the left and screen two is on the right.
 

Here is an example of a complete ServerLayout section:
 

[image: Image]
 

Some video cards can drive multiple monitors at once. In this case, only a single Screen is specified in the ServerLayout section. Following the screen list is the set of input devices to associate with the layout. The CorePointer and CoreKeyboard options are passed to the InputDevice section to indicate that the devices are to be active for the configuration. Those options can also be set directly in the corresponding InputDevice sections, but it’s cleaner to set them in the ServerLayout.
 

The last few lines configure several layout-specific options. In the example above, these all relate to DPMS, which is the interface that tells Energy Star-compliant monitors when to power themselves down. The monitors must also have their DPMS options enabled in the corresponding Monitor sections.
 

Xrandr: Not Your Father’s X Server Configurator
 

The X Resize and Rotate Extension (RandR) lets clients dynamically change the size, orientation, and reflection of their X server screens. xrandr is the command-line interface to this extension.
 

Of course, we would all love to spend a few days tediously crafting each line of the xorg.conf file to support that brand-new SUPERINATOR 3000 system with its four deluxe displays. But in many cases, you can have xrandr do the configuration for you and be done in time to grab a few beers. Run with no arguments, xrandr shows the available displays and their possible resolutions.
 

[image: Image]
 

You can specify the resolution to use for each display along with the display’s placement relative to other displays.7 For example:
 

$ xrandr --auto --output VGA-0 --mode 800x600 --right-of DVI-0
 

The --auto argument turns on all available monitors. The --output and --mode arguments set the VGA display to a resolution of 800 * 600, and the --right-of argument specifies that the VGA display is physically located to the right of the DVI display. (The latter option is needed to properly implement desktop continuity.) Run xrandr --help to see the many available options.
 

If you want xrandr to run automatically when you start the X server, you can put it in your ~/.xprofile file, which is executed at server startup.
 

Kernel Mode Setting
 

[image: Image] To make the system’s presentation more seamless and flicker free, responsibility for setting the initial mode of the graphics display is now being pushed into the Linux kernel through the “kernel mode setting” (KMS) module. As of kernel version 2.6.30-10.12, KMS defaults to initializing the video card very early in the kernel’s boot sequence.
 

You enable or disable KMS through settings in the video driver configuration files in /etc/modprobe.d. For example, if you have an ATI Radeon video card, you can turn off KMS by adding the following line to /etc/modprobe.d/radeon.conf:
 

options radeon modeset=0
 

The KMS module is still young and it does not currently support all video cards. If you’re lucky enough to have a supported card, your best bet is to rename the xorg.conf file so that the X server tries to start without it and defaults to the KMS configuration.
 

25.4 X Server Troubleshooting and Debugging
 

X server configuration has come a long way over the last decade, but it can still be difficult to get things working just the way you would like. You may need to experiment with monitor frequencies, driver options, proprietary drivers, or extensions for 3D rendering. Ironically, it is the times when the display is not working correctly that you are most interested in seeing the debugging output on your screen. Fortunately, the X.Org server gives you all the information you need (and a lot that you don’t) to track down the problem.
 

Special Keyboard Combinations for X
 

Because the X server takes over your keyboard, display, mouse, and social life, you can imagine that it might leave you with little recourse but to power the system down if things are not working. However, there are a few things to try before it comes to that.
 

If you hold down the Control and Alt keys and press a function key (F1–F6), the X server takes you to one of the text-based virtual terminals. From there you can log in and debug the problem. To get back to the X server running on, say, virtual terminal 7, press <Alt-F7>.8 If you are on a network, you can also try logging in from another computer to kill the X server before resorting to the reset button.
 

[image: Image] For virtual console support on Solaris, enable the svc:/system/vtdaemon:default SMF service and the console-login:vt[2-6] services.
 

If the monitor is not in sync with the card’s video signal, try changing the screen resolution. The available resolutions are specified on a Modes line from the Screen section of the configuration file. The exact Modes line that is active depends on the color depth; see Screen sections on page 1022 for details. The X server defaults to the first resolution shown on the active Modes line, but you can cycle through the different resolutions by holding down Control and Alt and pressing the plus (+) or minus (-) key on the numeric keypad.
 

Pressing <Control-Alt-Backspace> kills the X server immediately. If you ran the server from a console, you will find yourself back there when the server exits. If a display manager started the server, it usually respawns a new server and prompts again for a login and password. You have to kill the display manager (xdm, gdm, etc.) from a text console to stop it from respawning new X servers.
 

When X Servers Attack
 

Once you have regained control of the machine, you can begin to track down the problem. The simplest place to start is the output of the X server. This output is occasionally visible on virtual terminal 1 (<Control-Alt-F1>), which is where startup program output goes. Most often, the X server output goes to a log file such as /var/log/Xorg.0.log (/var/X11/Xserver/logs/Xf86.0.log on HP-UX).
 

As seen below, each line is preceded by a symbol that categorizes it. You can use these symbols to spot errors (EE) and warnings (WW), as well as to determine how the server found out each piece of information: through default settings (==), in a config file (**), detected automatically (--), or specified on the X server command line (++).
 

Let’s examine the following snippet from an Ubuntu system:
 

[image: Image]
 

The first lines tell you the version number of the X server and the X11 protocol version it implements. Subsequent lines tell you that the server is using default values for the log file location, the configuration file location, and the active server layout. The display and input devices from the config file are echoed in schematic form.
 

One common problem that shows up in the logs is difficulty with certain screen resolutions, usually evidenced by those resolutions not working or the X server bailing out with an error such as “Unable to validate any modes; falling back to the default mode.” If you have not specified a list of frequencies for your monitor, the X server probes for them by using Extended Display Identification Data (EDID). If your monitor does not support EDID or if your monitor is turned off when X is started, you need to put the frequency ranges for X to use in the Monitor section of the configuration file.
 

Rounding error in the results obtained from an EDID probe can cause some resolutions to be unavailable even though they should be supported by both your video card and monitor. Log entries such as “No valid modes for 1280x1024; removing” are evidence of this. The solution is to tell the X server to ignore EDID information and use the frequencies you have specified; the following lines in the Device section are what you need:
 

[image: Image]
 

As another example, suppose you forgot to define the mouse section properly. The error would show up like this in the output:
 

[image: Image]
 

Once X is up and running and you have logged in, you can run the xdpyinfo command to get more information about the X server’s configuration.9
xdpyinfo’s output again tells you the name of the display and the X server version information. It also tells you the color depths that are available, the extensions that have been loaded, and the screens that have been defined, along with their dimensions and color configurations.
 

xdpyinfo’s output can be parsed by a script (such as your ~/.xsession file) to determine the size of the active screen and to set up the desktop parameters appropriately. For debugging, xdpyinfo is most useful for determining that the X server is up and listening to network queries, that it has configured the correct screen and resolution, and that it is operating at the desired color bit depth. If this step works, you are ready to start running X applications.
 

25.5 A Brief Note on Desktop Environments
 

The flexibility of the X Window System client/server model has, over the years, led to an explosion of widget sets, window managers, file browsers, tool bar utilities, and utility programs. The first comprehensive environments, OpenLook and Motif, were elegant for their time but proprietary. Licensing fees for the development libraries and window manager made them inaccessible to the general public.
 

As applications became more advanced and demanded progressively more support from the underlying window system, it became clear that a comprehensive approach to advancing the platform was required. From this need were born the two big players in modern desktop environments: GNOME and KDE. Although some users have strong feelings regarding which is the One True Way, both are relatively complete desktop managers. In fact, just because you are running in one realm does not mean you cannot use applications from the other; just expect a different look and feel and a brief sense of discontinuity in the universe.
 

The freedesktop.org project is dedicated to creating an environment that will allow applications to be compatible with any desktop environment.
 

KDE
 

KDE, which stands for the K Desktop Environment, is written in C++ and built on the Qt tool kit library. It is often preferred by users who enjoy eye candy, such as transparent windows, shadows, and animated cursors. It looks nice, but it can be slow on anything but a high-end workstation. For users who spend a lot of time clicking around in the desktop rather than running applications, the tradeoff between efficiency and aesthetics may ultimately decide whether KDE is the appropriate choice.
 

KDE is often preferred by people transitioning from a Windows or Mac environment because of its pretty graphics. It’s also a favorite of technophiles who love to be able to fully customize their environment. For others, KDE is simply too much to deal with and GNOME is the simpler choice.
 

Applications written for KDE almost always contain a K somewhere in the name, for example, Konqueror (the web/file browser), Konsole (the terminal emulator), or KWord (a word processor). The default window manager, KWin, supports the freedesktop.org Window Manager Specification standard, configurable skins for changing the overall look and feel, and many other features. The KOffice application suite contains word processing, spreadsheet, and presentation utilities. KDE sports a comprehensive set of development tools, including an integrated development environment (IDE).
 

GNOME
 

GNOME is written in C and is based on the GTK+ widget set. The name GNOME was originally an acronym for GNU Network Object Model Environment, but that derivation no longer really applies; these days, GNOME is just a name.
 

With the recent addition of support for Compiz (compiz.org), GNOME has acquired many of the eye candy features that it previously lacked. Overall, GNOME is still less glitzy than KDE, is not as configurable, and is slightly less consistent. However, it is noticeably cleaner, faster, simpler, and more elegant. Most Linux distributions use GNOME as the default desktop environment.
 

Like KDE, GNOME has a rich application set. GNOME applications are usually identifiable by the presence of a G in their names. One of the exceptions is the standard GNOME window manager, called Metacity (pronounced like “opacity”), which supplies basic windowing functions and skinning of the GNOME UI. Following the GNOME model, Metacity is designed to be lean and mean.
 

If you want some of the extra features you may be used to, such as smart window placement, you need the support of external applications such as brightside or devilspie. Unfortunately, bling is one area in which KDE still has a leg up.
 

Office applications include AbiWord for word processing, Gnumeric as a spreadsheet, and one of the more impressive projects to come out of GNOME, The GIMP for image processing. A file manager called Nautilus is also included. Like KDE, GNOME provides an extensive infrastructure for application developers. Altogether, GNOME offers a powerful architecture for application development in an easy-to-use desktop environment.
 

Which is better, GNOME or KDE?
 

Ask this question on any public forum and you will see the definition of “flame war.” Because of the tendency for people to turn desktop preference into a personal crusade, the following paragraphs may be some of the least opinionated in this book.
 

The best answer is to try both desktops and decide for yourself which best meets your needs. Keep in mind that your friends, your users, and your manager may all have different preferences for a desktop environment, and that is OK.
 

Remember that your choice of desktop environment does not dictate which applications you can run. No matter which desktop you choose, you can select applications from the full complement of excellent software made available by both of these (and other) open source projects.
 

25.6 Recommended Reading
 

The X.Org home page, x.org, includes information on upcoming releases as well as links to the X.Org wiki, mailing lists, and downloads.
 

The man pages for Xserver and Xorg (or just X on AIX) cover generic X server options and Xorg-specific command-line options. They also include a general overview of X server operation.
 

The xorg.conf man page covers the config file and describes its various sections in detail. This man page also lists video card drivers in its REFERENCES section. Look up your video card here to learn the name of the driver, then read the driver’s own man page to learn about driver-specific options.
 

25.7 Exercises
 

E25.1 Use SSH to run an X program over the network. Use ssh -v to verify that X forwarding is set up correctly. What is the DISPLAY variable set to after you log in? List the cookies by running xauth and verify that magic cookie authentication is active for that display.
 

E25.2 Write a shell command line or script to parse the output of xdpyinfo and print the current screen resolution in the format XxY, e.g., 1024*768.
 

E25.3 Examine the Xorg log file (/var/log/Xorg.0.log) and determine as many of the following items as possible:
 

a) What type of video card is present and which driver does it use?

 

b) How much video memory does the card have?

 

c) Was EDID used to probe monitor settings? How do you know?

 

d) What modes (resolutions) are supported?

 

e) Is DPMS enabled?

 

f) What does the server think the physical screen dimensions are?

 

g) What device file is used for the mouse?

 

E25.4 What flag disables nonlocal TCP connections to the X server? Explain why this option is useful.
 
  


26. Printing
 

[image: Image]
 

UNIX printing is a mess. Let us elaborate.
 

Linux printing is quite nice. So is Mac OS X printing. Both are built on the Common UNIX Printing System (CUPS), an up-to-date, sophisticated, network- and security-aware printing system. CUPS provides a modern, browser-based GUI as well as shell-level commands that allow printing and control of the printing system from scripts.
 

Just as newer mail transport systems supply a command called sendmail that lets older scripts (and older system administrators!) work as they always did back in sendmail’s glory days, CUPS supplies commands such as lp and lpr that are backward-compatible with traditional UNIX printing systems. So everyone is happy.
 

Given its name, you might guess that CUPS could be found on UNIX systems as well. Alas, you’d be wrong. None of our example UNIX platforms—Solaris, HPUX, and AIX—use it. Even worse, a quick Google search reveals that attempts to install CUPS on these systems typically fail.
 

Instead, these systems offer variants of the creaky, decades-old System V and BSD printing systems. If it was good enough for a PDP-11, it should be good enough for you! The unfortunate fact is that Microsoft Windows and Mac OS dominate the document processing world, so UNIX vendors are not under much pressure to improve printing support. Until UNIX vendors adopt CUPS (or you adopt Linux or Mac OS), you’ll have to learn the older printing systems, too.
 

We start this chapter with a general discussion of printing systems and printing terminology. We go on to describe the various UNIX and Linux printing systems and their architectures. We move on to the specifics of printer configuration and administration, then conclude with a brief guide to print-system debugging, a tour of optional printing-related software, and some general administration hints.
 

Before we start, though, here’s a point worth making: system administrators often consider printing a lower priority than users do. Administrators are used to reading documents on-line, but users typically want hard copy, and they want the printing system to work 100% of the time.
 

26.1 Printing-System Architecture
 

Printing relies on a handful of pieces:
 

• A print “spooler” that collects and schedules jobs. The word “spool” originated as an acronym for Simultaneous Peripheral Operation OnLine. Now it’s just a generic term.

 

• User-level utilities (a command-line interface and/or GUI) that talk to the spooler. These utilities send jobs to the spooler, query the system about jobs (both pending and complete), remove or reschedule jobs, and configure the other parts of the system.

 

• Back ends that talk to the printing devices themselves. (These are normally unseen and hidden under the floorboards.)

 

• A network protocol that lets spoolers communicate and transfer jobs.

 

A good way to approach printer administration is to figure out what parts of the system fulfill each of these roles. Unfortunately, it varies a lot.
 

Major Printing Systems
 

Each of the target systems covered in this book supplies a printing system from one of three families: System V, BSD, or CUPS. We’ll talk about where these names came from by-and-by: they’re historical, but useful. A system’s printing software doesn’t necessarily come from the same lineage as the OS itself. For example, AIX, which was originally built on System V.0 with some V.2 extensions, uses a BSD print system.
 

There are add-on printing systems you can install yourself (such as the ill-fated LPRng), but printing is often so enmeshed with other parts of the operating system that it’s a long and uphill battle to make this work. Installing your own printing system is like installing your own shell: UNIX gives you the freedom to do it, and you might have good reason to, but you’re on your own. In this book, we only cover the printing software that comes by default.
 

You can tell what kind of printing software your system has by looking for the spooler. CUPS has cupsd, BSD has lpd, and System V has lpsched, so the command which cupsd lpd lpsched tells you which one you have.
 

Print Spoolers
 

Each system has a spooler: a piece of software that receives print jobs, stores them, prioritizes them, and sends them out sequentially to one or more printers. You’ll sometimes see the spooler referred to as a print daemon or print server.
 

Some printers (usually high-end models) have their own internal spoolers. If telling your print daemon to discard all the jobs in its queue does not fix a problem right away, consider that there may still be jobs stored inside the printer. To discard those as well, you may need to shut off the printer and restart it.
 

The lpd (BSD) and lpsched (SysV) spoolers are stand-alone daemons that are specifically designed for printing. Applications on the system either talk to these servers or read and write spool or configuration files in “well known” locations such as /var/spool or /etc.
 

26.2 CUPS Printing
 

[image: Image] CUPS servers are also web servers, and CUPS clients are web clients. The clients can be commands such as the CUPS versions of lpr and lpq, or they can be applications with their own GUIs such as kprinter. Under the covers they’re all web apps, even if they’re only talking to the CUPS daemon on the local system. CUPS servers can also act as clients of other CUPS servers.
 

A CUPS server provides a web interface to its full functionality on port 631. For administrators, a web browser is usually the most convenient way to manage the system; just navigate to http://printhost:631. If you need secure communication with the daemon (and your system offers it) use https://printhost:433 instead. Scripts can use discrete commands to control the system, and users will probably access it through a GNOME or KDE interface. These routes are all equivalent.
 

HTTP is the underlying protocol for all interactions among CUPS servers and their clients. Actually, it’s the Internet Printing Protocol, a souped-up version of HTTP. Clients submit jobs with the HTTP/IPP POST operation and request status with HTTP/IPP GET. The CUPS configuration files also look suspiciously similar to Apache configuration files.
 

Interfaces to the Printing System
 

CUPS is modern enough that most CUPS printing is done from a GUI, and administration is often done through a web browser. As a sysadmin, though, you (and perhaps some of your hard-core terminal users) may want to use shell-level commands as well. CUPS provides work-alike commands for many of the basic, shell-level printing commands of both the classic BSD and System V printing systems. Unfortunately, CUPS doesn’t necessarily emulate all the bells and whistles. Sometimes, it emulates the old interfaces entirely too well; instead of giving you a quick usage summary, lpr --help and lp --help just print error messages.
 

Still, many legacy scripts that use these commands work just fine with CUPS. Think of what’s missing as an opportunity: if you want to contribute to world peace and Pareto optimality, there’s still code left for you to write (or if you’re using an older system, code left for you to port).
 

Here’s how you might print the files foo.pdf and /tmp/testprint.ps to your default printer under CUPS:
 

$ lpr foo.pdf /tmp/testprint.ps
 

The lpr command transmits copies of the files to the CUPS server, cupsd, which stores them in the print queue. CUPS processes each file in turn as the printer becomes available.
 

When printing, CUPS examines both the document and the printer’s PostScript Printer Description (PPD) file to see what needs to be done to get the document to print properly. (As we discuss in more detail on page 1072, PPD files are used even for non-PostScript printers.)
 

To prepare a job for printing on a specific printer, CUPS passes it through a series of filters. For example, one filter might reformat the job so that two reduced-size page images print on each physical page (aka “2-up printing”), and another might transform the job from PostScript to PCL. Filters can also perform printer-specific processing such as printer initialization. Some filters perform rasterization, turning abstract instructions such as “draw a line across the page” into a bitmap image. Such rasterizers are useful for printers that do not include their own rasterizers or that don’t speak the language in which a job was originally submitted.
 

The final stage of the print pipeline is a back end that transmits the job from the host to the printer through an appropriate protocol such as Ethernet. The back end also communicates status information in the other direction, back to the CUPS server. To see your available back ends, try the command
 

$ locate backend | grep -i cups
 

After transmitting the print job, the CUPS daemon returns to processing its queues and handling requests from clients, and the printer goes off to print the job it was shipped.
 

The Print Queue
 

cupsd’s centralized control of the printing system makes it easy to understand what the user-level commands are doing. For example, the lpq command requests job status information from the server and reformats it for display. Other CUPS clients ask the server to suspend, cancel, or reprioritize jobs. They can also move jobs from one queue to another.
 

Most changes require jobs be identified by their job number, which you can get from lpq. For example, to remove a print job, just run lprm
jobid.
 

lpstat -t summarizes the print server’s overall status.
 

Multiple Printers and Queues
 

The CUPS server maintains a separate queue for each printer. Command-line clients accept an option (typically -P
printer or -p
printer) to specify which queue you want to address. You can also set a default printer for yourself by setting the PRINTER environment variable
 

$ export PRINTER=printer_name
 

or by telling CUPS to use a particular default for your account.
 

$ lpoptions -dprinter_name
 

When run as root, lpoptions sets system-wide defaults in /etc/cups/lpoptions, but it’s more typically used by individual, nonroot users. lpoptions lets each user define personal printer instances and defaults, which it stores in ~/.lpoptions. lpoptions -l lists the current settings.
 

Printer Instances
 

If you have only one printer but want to use it in several ways—say, both for quick drafts and for final production work—CUPS lets you set up different “printer instances” for these different uses.
 

For example, if you already have a printer named Phaser_6120, the command
 

$ lpoptions -p Phaser_6120/2up -o number-up=2 -o job-sheets=standard
 

creates an instance named Phaser_6120/2up that performs 2-up printing and adds banner pages. Once the instance has been created, the command
 

$ lpr -P Phaser_6120/2up biglisting.ps
 

prints the PostScript file biglisting.ps as a 2-up job with a banner page.
 

Network Printing
 

From CUPS’ perspective, a network of machines isn’t very different from an isolated machine. Every computer runs a cupsd, and all the CUPS daemons talk to one another.
 

If you’re working on the command line, you configure a CUPS daemon to accept print jobs from remote systems by editing the /etc/cups/cupsd.conf file (see Network print server setup on page 1039). By default, servers that are set up this way broadcast information every 30 seconds about the printers they serve. As a result, computers on the local network automatically learn about the printers that are available to them. You can effect the same configuration by clicking a check box in the CUPS GUI in your browser.
 

If someone has plugged in a new printer, if you’ve brought your laptop into work, or if you’ve just installed a new workstation, you can tell cupsd to look and see what’s out there by clicking on the Find New Printers button in the Administration tab of the CUPS GUI.
 

Because broadcast packets do not cross subnet boundaries, it’s a bit tricker to make printers available to multiple subnets. One solution is to designate a slave server on each subnet that polls the other subnets’ servers for information and then relays that information to machines on the local subnet.
 

For example, suppose the print servers allie (192.168.1.5) and jj (192.168.2.14) live on different subnets and we want both of them to be accessible to users on a third subnet, 192.168.3. We designate a slave server (say, copeland, 192.168.3.10) and add these lines to its cupsd.conf file:
 

[image: Image]
 

The first two lines tell the slave’s cupsd to poll the cupsds on allie and jj for information about the printers they serve. The third line tells copeland to relay the information it learns to its own subnet. Simple!
 

Need a more sophisticated setup? Multiple queues for one printer, each with different defaults? A single server that load-balances by parceling out jobs to several printers? Multiple servers that each handle interchangeable instances of the same kind of printer? lpd or Windows clients? There’s too much variation to go through here, but CUPS handles all these situations, and the documentation can walk you through the details. (See the section on documentation, starting on page 1083.)
 

Filters
 

Rather than using a specialized printing tool for every printer, CUPS uses a chain of filters to convert each printed file into something the printer can understand.
 

The CUPS filter scheme is elegant. Given a document and a target printer, CUPS uses its .types files to figure out the document’s MIME type. It consults the printer’s PPD file to figure out what MIME types the printer can handle. It then uses the .convs files to deduce what filter chains could convert one format to the other, and what each prospective chain would cost. Finally, it picks a chain and passes the document through those filters. The final filter in the chain passes the printable format to a back end, which transmits the data to the printer through whatever hardware or protocol the printer understands.
 

Let’s flesh out that process a bit. CUPS uses rules in /etc/cups/mime.types to suss out the incoming data type. For example, the rule
 

application/pdf pdf string (0,%PDF)
 

means “If the file has a .pdf extension or starts with the string %PDF, then its MIME type is application/pdf.”
 

CUPS figures out how to convert one data type to another by looking up rules in the file mime.convs (usually in /etc/cups or /usr/share/cups). For example,
 

application/pdf application/postscript 33 pdftops
 

means “To convert an application/pdf file to an application/postscript file, run the filter pdftops.” The number 33 is the cost of the conversion. When CUPS finds that several filter chains can convert a file from one type to another, it picks the chain with the lowest total cost. (Costs are chosen by whoever created the file— the distribution maintainers, perhaps. We have no idea how. If you want to spend time tuning them because you think you can do a better job, you may have too much free time.)
 

The last component in a CUPS pipeline is a filter that talks directly to the printer. In the PPD of a non-PostScript printer, you may see lines such as
 

*cupsFilter: "application/vnd.cups-postscript 0 foomatic-rip"
 

or even
 

*cupsFilter: "application/vnd.cups-postscript foomatic-rip"
 

The quoted string has the same format as a line in mime.convs, but there’s only one MIME type instead of two. This line advertises that the foomatic-rip filter converts data of type application/vnd.cups-postscript to the printer’s native data format. The cost is zero (or omitted) because there’s only one way to do this step, so why pretend there’s a cost? (Some PPDs for non-PostScript printers, like those from the Gutenprint project, are slightly different.)
 

To find the filters available on your system, try running locate pstops. pstops is a popular filter that massages PostScript jobs in various ways, such as adding a PostScript command to set the number of copies. Wherever you find pstops, the other filters won’t be far away.
 

You can ask CUPS for a list of the available back ends by running lpinfo -v. If your system lacks a back end for the network protocol you need, it may be available from the web or from your Linux distributor.
 

CUPS Server Administration
 

cupsd starts at boot time and runs continuously. All of our example Linux distributions are set up this way by default.
 

The CUPS configuration file is called cupsd.conf; it’s usually found in /etc/cups. The file format is similar to that of the Apache configuration file. If you’re comfortable with one of these files, you’ll be comfortable with the other. You can view and edit cupsd.conf with a text editor or, once again, from the CUPS web GUI.
 

The default config file is well commented. The comments and the cupsd.conf man page are good enough that we won’t belabor the same information here.
 

CUPS reads its configuration file only at startup time. If you change the contents of cupsd.conf, you have to restart cupsd for changes to take effect. If you make changes through cupsd’s web GUI, it restarts automatically. To restart cupsd from the command line, just run /etc/init.d/cups restart or /etc/initd.cupsys restart, whichever is present.
 

You can also configure the system through desktop-specific GUI tools. For example, under KDE, you can use the KDE Print Manager, accessible through the KDE control center. We found some problems with the KDE Print Manager during our testing, however. For example, it complained about not understanding certain options found in some distributions’ default cupsd.conf files. The browser GUI is safer and is certainly authoritative.
 

Network Print Server Setup
 

If you’re having trouble printing from the network, go into the browser-based CUPS GUI and make sure you’ve checked all the right boxes. Possible problem areas include an unpublished printer, a CUPS server that isn’t broadcasting its printers to the network, or a CUPS server that won’t accept network print jobs.
 

If you’re editing the cupsd.conf file directly, you’ll need to make a couple of changes. First, change
 

[image: Image]
 

to
 

[image: Image]
 

Replace netaddress with the IP address of the network from which you want to accept jobs (e.g., 192.168.0.0). Then look for the BrowseAddress keyword and set it to the broadcast address on that network plus the CUPS port; for example,
 

BrowseAddress 192.168.0.255:631
 

These steps tell the server to accept requests from any machine on the designated subnet and to broadcast what it knows about the printers it’s serving to every CUPS daemon on that network. That’s it! Once you restart cupsd, it comes back as a server.
 

Printer Autoconfiguration
 

You can use CUPS without a printer (for example, to convert files to PDF or fax format), but its typical role is to manage real printers. In this section we review the ways in which you can deal with the printers themselves.
 

In some cases, adding a printer is trivial. CUPS tries to autodetect USB printers when they’re plugged into the system and figure out what to do with them.
 

Printer manufacturers typically supply installation software that does most of the setup work for you on Windows and even Mac OS X (which also uses CUPS). However, few vendors explicitly support Linux.
 

Even if you have to do some configuration work yourself, adding a printer is often no more painful than plugging in the hardware, connecting to the CUPS web interface at localhost:631/admin, and answering a few questions. KDE and GNOME come with their own printer configuration widgets, which you may prefer to the CUPS interface. (We like the CUPS GUI.)
 

If someone else adds a printer and one or more CUPS servers running on the network know about it, your CUPS server will learn of its existence. You don’t have to explicitly add the printer to the local inventory or copy PPDs to your machine. It’s magic.
 

Network Printer Configuration
 

Network printers—that is, printers whose primary hardware interface is an Ethernet jack—need some configuration of their own just to be proper citizens of the TCP/IP network. In particular, they need to know their own IP addresses and netmasks. That information is usually conveyed to them in one of two ways.
 

Modern printers can get this information across the network from a BOOTP or DHCP server, and this method works well in environments that have many such printers. See DHCP: the Dynamic Host Configuration Protocol on page 469 for more information about DHCP.
 

Alternatively, you can assign the printer a static IP address from its console, which usually consists of a set of buttons on the printer’s front panel and a one-line display. Fumble around with the menus until you discover where to set the IP address. (If there is a menu option to print the menus, use it and put the printed version underneath the printer for future reference.)
 

A few printers give you access to a virtual console through a serial port. It’s a nice idea, but the total amount of work is probably more than suffering through the front-panel interface. The principles are the same.
 

Once configured, network printers usually have a web console accessible from a browser. However, printers need to have an IP address and be up and running on the network before you can get to them this way, so this interface is unavailable just when you might want it most.
 

After your printer is on the network and you can ping it, make sure to secure it as described in the section Secure your printers on page 1081.
 

Printer configuration examples
 

Let’s add the parallel printer groucho and the network printer fezmo from the command line.
 

[image: Image]
 

Groucho is attached to port /dev/lp0 and fezmo is at IP address 192.168.0.12. We specify each device in the form of a universal resource indicator (URI) and choose an appropriate PPD from the ones in /usr/share/cups/model.
 

As long as cupsd has been configured as a network server, it immediately makes the new printers available to other clients on the network. No restart is required.
 

CUPS accepts a wide variety of URIs for printers. Here are a few more examples:
 

• ipp://zoe.canary.com/ipp

 

• lpd://riley.canary.com/ps

 

• serial://dev/ttyS0?baud=9600+parity=even+bits=7

 

• socket://gillian.canary.com:9100

 

• usb://XEROX/Phaser%206120?serial=YGG210547

 

Some types take options (e.g., serial) and others don’t. lpinfo -v lists the devices your system can see and the types of URIs that CUPS understands.
 

Printer Class Setup
 

A “class” is a set of printers that share a queue. Jobs in the queue print on whichever printer becomes available first. The commands below create the class haemer and adds three printers to it: riley, gilly, and zoe.
 

[image: Image]
 

Note that there is no explicit step to create the class; the class exists as long as printers are assigned to it. In fact, CUPS is even smarter than that: if multiple printers on a network are all given the same name, CUPS treats them as an implicit class and load-shares jobs among them. Unless all the printers are located in the same room, this may not be the behavior you want.
 

Service Shutoff
 

If you want to remove a printer or class, that’s easily done with lpadmin -x.
 

[image: Image]
 

OK Mr. Smarty Pants, but what if you just want to disable a printer temporarily for service instead of removing it? You can block the print queue at either end. If you disable the tail (the exit or printer side) of the queue, users can still submit jobs, but the jobs will never print. If you disable the head (the entrance) of the queue, jobs that are already in the queue can still print, but the queue rejects attempts to submit new jobs.
 

The cupsdisable and cupsenable commands control the exit side of the queue, and the reject and accept commands control the submission side.1 For example,
 

[image: Image]
 

Which to use? It’s a bad idea to accept print jobs that have no hope of being printed in the foreseeable future, so use reject for extended downtime. For brief interruptions that should be invisible to users (e.g., changing a toner cartridge), use cupsdisable.
 

Administrators occasionally ask for a mnemonic to help them remember which commands control which end of the queue. Consider: if CUPS “rejects” a job, that means you can’t “inject” it. Another way to keep the commands straight is to remember that accepting and rejecting are things you can do to print jobs, whereas disabling and enabling are things you can do to printers. It doesn’t make any sense to “accept” a printer or queue.
 

CUPS itself sometimes temporarily disables a printer that it’s having trouble with (e.g., if someone has dislodged a cable). Once you fix the problem, remember to re-cupsenable the queue. If you forget, lpstat will tell you. (For a complete discussion of this issue and an alternative approach, see linuxprinting.org/beh.html.)
 

Other Configuration Tasks
 

Today’s printers are infinitely configurable, and CUPS lets you tweak a wide variety of features through its web interface and through the lpadmin and lpoptions commands. As a rule of thumb, lpadmin is for system-wide tasks and lpoptions is for per-user tasks.
 

lpadmin can restrict access to printers and queues. For example, you can set up printing quotas and specify which users can print to which printers.
 

Table 26.1 lists the commands that come with CUPS and classifies them according to their origin.
 

Table 26.1 CUPS’s command-line utilities and their origins
 

[image: Image]
 

Printing from Desktop Environments
 

We’ve mentioned already that we encourage the use of the native CUPS GUI for administration rather than the use of add-ons such as those designed for KDE. The native GUI is authoritative and also happens to be pretty good.
 

Another point to consider is portability. You may already be struggling with three different families of printing systems—why add to the confusion by struggling with several different administrative GUIs, too? If your CEO wants to print from his brand-new Macintosh, you may not know where to click to get to the latest Apple-designed GUI configuration widgets. But if you browse to localhost:631, you’ll find yourself in familiar territory.
 

Still, if all your users are on a particular desktop environment, you may decide to use that desktop’s GUI to support them. As an example, consider KDEPrint, the overarching framework for printing under KDE.
 

KDEPrint provides its own tools for adding printers, administering print jobs, restarting print servers, and so on. Like other KDE tools, it has a KDE look and feel, affording consistency for KDE users. (You’ve probably noticed that even KDE utility names have a distinctive look and feel. Someone once asked us if ksh was a KDE application.)
 

KDEPrint is not tied to CUPS. Although it can handle all of CUPS’s features, it can be configured to work with everything from LPRng to a generic external program. If for some reason you can’t run CUPS (or worse, you have to switch back and forth between print systems), you can still use KDEPrint to manage printing. Be forewarned that CUPS is more capable than other printing systems, so if you have to downshift to an alternative printing system, some of KDEPrint’s functionality may disappear.
 

Here are the major components of KDEPrint that you should know about:
 

• kprinter, a GUI tool that submits print jobs

 

• The Add Printer wizard, which autodetects network printers (JetDirect, IPP, and SMB) and some locally connected printers. The Add Printer wizard also lets you add and configure printers that it doesn’t autodetect.

 

• The Print Job Viewer, which moves and cancels print jobs and shows print job status information

 

• The KDEPrint Handbook, which documents the system. It’s available through the KDE Help Center but can be annoyingly hard to find. An easier route is to invoke something like kprinter and click on Help. Another alternative is to use the KDE browser, konqueror, by running konqueror help:/kdeprint. KDEPrint documentation can also be found at printing.kde.org.

 

• The Print Manager, which is the main GUI management tool for the printing system. It, too, can be a bit hard to find. You can poke around in your main desktop menu, although the location in the menu tree varies from distribution to distribution. Another option is to run kcmshell printmgr or konqueror print:/manager.

 

The Add Printer wizard and the Print Job Manager are accessible through either kprinter or the KDE Print Manager, not to mention the URLs print:/manager and print:/printers in Konqueror.
 

Per-user information for KDEPrint is stored under ~/.kde. The files are human readable but designed to be changed through the Print Manager. Tinker with them at your peril.
 

Kprinter: Print Documents
 

kprinter is a GUI replacement for lpr. It can be used from the command line without a GUI. For example, the command
 

$ kprinter --nodialog -5 -P lj4600 riley.ps gillian.pdf zoe.prn
 

is equivalent to
 

$ lpr -5 -P lj4600 riley.ps gillian.pdf zoe.prn
 

Your users probably don’t care; they want a GUI. Show them how to drag files from the file manager or desktop into the kprinter dialog, then print the entire batch. Replace lpr with kprinter in their browser’s Print dialog, and they’ll have a GUI print dialog. Teach them to click on their “Keep this dialog open after printing” check box, and they won’t experience a restart delay every time they print.
 

Take note of the “Print system currently in use” menu, evidence of KDEPrint’s system neutrality. Note also that kprinter offers print-to-PDF and print-to-fax functions even if your network has no actual printers. The advanced options are also worth a look; you can queue your résumé for printing and specify that it be printed after your boss goes home.
 

Konqueror and Printing
 

Many web browsers recognize a set of special-purpose URIs that act as gateways to idiosyncratic functionality. You’ve probably at least tried about:config and about:mozilla in Firefox. Similarly, the print: family of URIs is Konqueror’s secret gateway to the world of KDEPrint.
 

The print:/ URL shows you all the possibilities. print:/jobs monitors print jobs, and print:/manager starts the Print Manager inside of Konqueror.
 

Even though you’re not dealing directly with CUPS here, what makes all this relatively easy is the underlying fact that CUPS is a web server. Browsers know how to talk to web servers, so it’s relatively easy to tweak them to add CUPS-specific printing features.
 

26.4 System V Printing
 

System V’s printing software is the oldest and most primitive of the printing systems we cover—so old that it wasn’t designed with network printing in mind. Most vendors that use it have made numerous changes. As usual with vendor-specific software maintenance, some modifications have added useful functionality while others seem gratuitous.
 

[image: Image] Among our example systems, Solaris and HP-UX use the System V software. Both have modified it significantly. Below, we discuss the standard system, but with many vendor-specific notes.
 

Overview
 

A user who wants to print something must either use the lp command or a command that invokes lp indirectly. lp puts data into the spool directory associated with its destination. The lpsched daemon determines when and where the data should be printed, then executes an interface program that formats the data and sends it to the correct printer. Table 26.2 on the next page lists the commands in the System V printing system.
 

Table 26.2 System V printing commands
 

[image: Image]
 

Destinations and Classes
 

Each printing “destination” has a name that consists of up to 14 alphanumeric characters and underscores. A destination is usually a printer, but it doesn’t have to be. For example, a destination could be a file to which many users may need to append text. Because printing systems are queuing systems, you could use lp to avoid a situation in which two people attempt to add to the file at the same time.
 

Every destination belongs to zero or more classes. A class is a group of destinations that all serve the same purpose in some way, For example, if a site has two printers in the same room, they might be combined into a class. Likewise, two printers with similar features (such as color, resolution, duplex, or speed) might be grouped into a class. lpsched would direct output submitted to that class to whichever printer became available first. Class names have the same restrictions as destination names.
 

For better or worse, you’ll see “destination” used to mean “printer or class,” and “printer” and “destination” used interchangeably. You should be able to tell from context which meaning is intended.
 

A Brief Description of Lp
 

lp is a user-level command that enqueues data for printing. lp copies the submitted data (which can come either from named files or from lp’s standard input) into a file or set of files in the spool directory. Under HP-UX, the spool directory for a destination is /var/spool/lp/request/dest where dest is the name by which lp knows the printer or class of printers. Solaris uses the gratuitously different, pluralized version, /var/spool/lp/requests/dest.
 

Spool files are named xxxn, where n is a job identification number assigned by lp and xxx varies from system to system. This filename identifies the job both to the user and internally to the printing system. We refer to this name as the job identification, or jobid for short.
 

lp -d queues the input for output to a specific destination (either a printer or a class). Without the -d option, lp uses the contents of the LPDEST environment variable as the name of the output destination. If this environment variable is not set, lp queues the data for output to the default destination, which the system administrator can set with lpadmin -d.
 

[image: Image] In Solaris, if no default device has been specified with lpadmin -d, then lp searches thê/.printers file, the /etc/printers.conf file, and finally, the Federated Naming Service for a default destination.
 

Lpsched and Lpshut: Start and Stop Printing
 

The lpsched daemon sends files placed in the spool directory by lp to an appropriate device as soon as one is available. lpsched keeps a log of each file it processes and of any errors that occur.
 

In Solaris, the default log file is /var/lp/logs/lpsched. HP-UX keeps the log file in /var/adm/lp/log; when lpsched starts (normally at boot time), it moves the old log aside to oldlog and starts a new one.
 

A log file looks something like this:
 

[image: Image]
 

The first column is the jobid of each job. The second column is the user who requested the job. The third column is the actual printer the job was sent to, and the last column is the time at which the job was queued.
 

The HP-UX system in this example lists two printers: pr1 and pr2, both of which are in the class pr. The user garth always specified the specific printer pr1, so that’s  where his jobs were always sent. The users scott and evi, on the other hand, specified the class pr, so their jobs were sent to the first available printer in that class.
 

To stop lpsched for any reason, run lpshut as root or as the user lp. When lpsched is not running, no jobs will actually be printed, although lp can still queue jobs for printing. Jobs that are being printed when the daemon is stopped will be reprinted in their entirety when the daemon is restarted.
 

lpsched creates the file /var/spool/lp/SCHEDLOCK to indicate that it is running. If you try to start another copy of lpsched, it notices that this file exists and refuses to run. If you stop lpsched by any means other than lpshut, you must remove the SCHEDLOCK file by hand before you can restart lpsched.
 

Lpadmin: Configure the Printing Environment
 

The lpadmin command tells the printing system about your printer configuration. It names printers, creates classes, and specifies the default printer. All the lpadmin command really does is create and modify a collection of text files that are found in the /var/spool/lp directory.
 

Despite the fact that you can read these configuration files, they are a good place to practice the old adage “look but don’t touch”; the files are format-sensitive and break easily.
 

[image: Image] Solaris’s lpadmin tries to use a BSD-like printer description file to make the system easier to configure. But in fact, it ends up just spreading the configuration information out into two additional locations: /etc/printers.conf and /etc/lp.
 

Solaris wants lpsched to be running during most administrative commands. On the other hand, most HP-UX lpadmin commands do not work when lpsched is running, so lpsched must be stopped with lpshut before you try to use lpadmin. (Perhaps these vendors are reluctant to move to CUPS because it would be the same on all systems and would deprive the world of richness and diversity?)
 

Before the printing system can send jobs to a particular printer, you must tell it that the printer exists. To add a new printer, execute
 

[image: Image]
 

where printer is the name of the new printer (both internally in the queuing system and at the level of user commands) and device is the device file with which the printer is associated. The device is usually a special file underneath the /dev direc-tory, but it can be any file.
 

The flags -e, -m, or -i tell the queuing system which printer interface program to use. The interface program is responsible for actually formatting jobs before they are sent to the printer. System V interface programs are analogous to CUPS filters. See the section Filters on page 1037 for more details.
 

A printer’s interface program can be specified in three ways:
 

• -eprinter – in this case, printer is the name of an existing printer. This method of specifying the interface program is useful if you’re adding a printer that is exactly like an existing one. lpadmin makes a copy of the interface program under the new destination’s name.

 

• -mmodel – with this option, model is a type of device for which your system has a standard interface program. To determine which models your system supports, look in /var/spool/lp/model. When you use this form, lpadmin makes a copy of the file /var/spool/lp/model/model to be used exclusively by the new destination.

 

• -iinterface – with the -i option, interface is the full pathname of a program to be used as the interface script. Most versions of lpadmin make a copy of the interface program, so if you want to change the program after you have run lpadmin, you must change the destination-specific copy and not your original.

 

[image: Image] HP-UX lets you specify programs that return status information and cancel printer jobs. These programs are specified like interface scripts, but different option prefixes are used (-ocm and -osm for cancel and status scripts, respectively).
 

lpadmin also accepts the following additional options:
 

• -pprinter tells lpadmin which printer or printers you are referring to. Combine this flag with other options to modify a printer.

 

• -cclass specifies the name of a class in which the printer should be included. Any number of classes can be specified for a given printer. If you specify a nonexistent class, it is created. The class name is limited to 14 characters.

 

• -xprinter removes printer from the print system. If printer is the only member of a class, then that class is also removed. Neither a printer nor a class can be removed if it has jobs queued for output. If queued jobs are keeping you from removing a printer, use the reject command to stop new jobs from being spooled and use the lpmove or cancel command to clear the existing jobs. If lpadmin -x still won’t remove the printer, follow the advice on page 1053.

 

• -rclass removes a printer from class. The -r flag does not remove the printer; it just removes it from the class. If the specified printer is the only member of the class, the class itself is removed.
 

lp does not accept requests for a new printer until told to do so by accept.
 

System V printing commands often accept a quoted, comma-separated list of destinations in place of a single destination. For example, the command
 

$ sudo /usr/sbin/lpadmin -p"howler-lw,ralphie-lw" -ceng-printers
 

adds the printers howler-lw and ralphie-lw to the eng-printers class. Table 26.3 summarizes the flags understood by lpadmin.
 

Table 26.3 lpadmin flags
 

[image: Image]
 

lpadmin examples
 

The following examples show various uses of lpadmin.
 

$ sudo lpadmin -phowler-lw -v/dev/tty06 -mPostScript -cpr
 

This command tells the printing system that a printer to be called howler-lw is connected to /dev/tty06, that the printer should be in the class pr, and that the interface program for PostScript printers should be used. lpadmin takes care of creating the spool directory for you.
 

The command
 

$ sudo lpadmin -dpr
 

sets the system’s default destination to class (or printer) pr, and the command
 

$ sudo lpadmin -phowler-lw -L"Conference room"
 

sets the description string for howler-lw.
 

$ sudo lpadmin -phowler-lw -rpr -cfast
 

removes howler-lw from class pr and adds it to class fast;
 

$ sudo lpadmin -xhowler-lw
 

removes howler-lw completely.
 

lpstat: get status information
 

lpstat shows the status of the printing system. If executed without any arguments, it gives the status of all jobs that belong to the user who executed it. With a -p flag, lpstat gives information about the status of a particular printer. For example,
 

[image: Image]
 

shows the status of printer howler-lw. To determine the status of the lpsched daemon, run lpstat -r. For example,
 

[image: Image]
 

shows that everything is OK. Table 26.4 lists the flags understood by lpstat.
 

Table 26.4 lpstat flags
 

[image: Image]
 

Cancel: Remove Print Jobs
 

cancel removes from the queue jobs that are queued or being printed. You can invoke cancel with either a job number (determined with lpstat) or with a printer name. If you specify a printer, then the job currently being printed is canceled.
 

The cancel command is usually owned by the pseudo-user lp with group bin and mode 6775 so that anyone can use it to cancel jobs that are obviously bogus. If someone who did not send a job cancels it, mail is sent to the job’s owner. If users abuse this privilege, set the mode of the command so that it does not run setuid.
 

See page 153 for more information about setuid execution.
 

Accept and Reject: Control Spooling
 

If a printer will be unavailable for a long time (for example, because of a hardware failure), spooling to that device should be disabled so that users who are unaware of the situation do not fill the queue. Disable spooling with the reject command. For example, the following command makes lp reject requests on howler-lw:
 

$ sudo reject -r"howler-lw will be down until Tuesday" howler-lw
 

The -r flag is optional, but it is a nice way to tell users why the printer is rejecting requests. When someone tries to print a file, lp displays your message:
 

[image: Image]
 

accept
printer tells lp to begin accepting requests for printer. You must run accept once for each new printer added with lpadmin because new printers are configured to reject requests by default. You can give accept and reject a class name instead of a printer name to enable or disable spooling for an entire class.
 

Enable and Disable: Control Printing
 

The disable command tells lpsched to stop sending jobs to a particular printer. Unlike reject, disable does not stop lp from queuing jobs for the printer. However, queued jobs will not be output until the printer is reenabled with enable. disable does not normally abort printing of the current job, but the -c option requests this behavior. Like reject, disable supports a -r flag that allows you to explain why a printer is disabled. For example, the command
 

$ sudo disable -r"Being cleaned, back in 5 minutes" howler-lw
 

disables printing on howler-lw. To restart printing, type:
 

$ sudo enable howler-lw
 

Lpmove: Transfer Jobs
 

It’s sometimes necessary to move jobs queued for one printer or class to another printer. You accomplish this feat with lpmove, which you run with a list of jobids and the name of a new printer. For example, the command
 

$ sudo lpmove howler-lw-324 howler-lw-325 anchor-lj
 

would move the jobs numbered 324 and 325 from the queue for howler-lw to the queue for anchor-lj. You can also give lpmove a printer or class as a source. For example, the command
 

$ sudo lpmove howler-lw anchor-lj
 

moves all jobs queued for howler-lw to the queue for anchor-lj. When lpmove is used in this way, it has the side effect of executing a reject on the printer of origin. In the preceding example, lp would no longer accept requests for howler-lw.
 

[image: Image] By design, the HP-UX version of lpmove cannot be used when lpsched is running. Run lpshut first.
 

Interface Programs
 

An interface program takes information from a file that lpsched specifies, formats it, and sends the formatted data to its stdout. The interface program is also responsible for setting the correct modes on its output device and for generating headers and trailers if they are desired. Interface programs are usually shell scripts, but they can be executable binaries, too.
 

lpsched calls interface programs with the following arguments:
 

jobid user title copies options file …
 

where
 

• jobid is the job identification that is assigned by lp

 

• user is the user to whom the job belongs

 

• title is an optional title supplied by the user

 

• copies is the number of copies to print

 

• options are user-supplied options

 

• The files are full pathnames of files to be printed

 

All of the arguments are supplied each time the interface program is executed, but some of them may be null strings. The interface program gets its standard input from /dev/null, and both standard output and standard error are directed to the destination device as specified by lpadmin -v.
 

Unlike CUPS or the BSD printing system, which use different filters for different file formats, System V requires that interface programs handle all the kinds of data that the printer can accept. (They are also required to fail nicely if they receive unrecognizable input.) For this reason, interface programs are usually just shell scripts that process their arguments and call other programs to do the real work of formatting.
 

In essence, the interface script for a printer is responsible for the entire output stage of the printing system. Although the use of interface scripts makes customization easy, it also leads to different printers behaving in very different ways.
 

Interfaces are almost essential if you are planning on printing to anything other than a generic text or PostScript printer. Today, almost all printers use them. Inkjet printers absolutely require an interface to translate the print job to their format of choice.
 

An interface program should exit with a 0 on successful completion and with an integer in the range 1 to 127 if an error is encountered. If a job fails, the interface script should attempt to reprint it. If a serious error occurs, the interface program should disable (see page 1052) the printer. If you are having erratic printing problems, you can probably find the cause somewhere in the interface script.
 

What to do when the Printing System is Completely Hosed
 

Sometimes, attempts to configure and unconfigure printers leave the system confused. The config files that hold printer information are complicated and neurotic—one stray character can leave a printer in an unusable state.
 

If you somehow create a printer that is confusing the system, the best solution is to remove the destination completely and start over. Sometimes, the system can be so confused that even removing the printer is hard.
 

The following brute-force technique will often rescue you from this sort of situation. Here, we try to remove the printer hoser. (Don’t use this exact sequence unless your equivalent of hoser is a single printer and not a class.)
 

[image: Image]
 

The first two commands turn off the spooler and attempt to remove the printer according to the USDA-approved method. If the system is confused, lpadmin -x may fail. The find command removes all interface programs and spool directories for the printer. lpsched restarts the spooler, and lpstat should show you that there are no more references to hoser within the printing system.
 

26.5 BSD and AIX Printing
 

[image: Image] We could have just called this section “AIX printing” because AIX is the only one of our example systems that still uses the BSD system. But we call the system by its traditional name because you may encounter it on other systems as well.
 

The BSD printing system was designed for use with old-fashioned line printers, but good design has let it scale to support many more modern printers and printer languages. The network portion of the BSD printing system also extends to large, heterogeneous networks and permits many computers to share printers. At one point, the BSD print spooler, lpd, became so widely accepted that it found its way into the firmware of some network printers.
 

An Overview of the BSD Printing Architecture
 

Access to printers is controlled by the lpd daemon. lpd accepts print jobs from users or from other (remote) lpds, processes them, and sends them on to an actual printer. To accomplish these steps, lpd reads printer configuration information from /etc/printcap, the system’s printer information database.
 

Users invoke the lpr program to submit their print jobs to lpd. These two processes communicate through the UNIX domain socket /dev/printer.
 

To determine what printer to send a job to, lpr first looks at the command line. If you’ve supplied a -Pprinter argument, printer becomes the destination. Otherwise, lpr checks the environment to see if the PRINTER variable is defined, and if so, lpr uses the variable’s value. If all else fails, lpr submits the job to the system-wide default printer, which is the printer named “lp”, or if there is no lp, to the first printer described in the /etc/printcap file. Almost all printing-related commands, including lpq and lprm, understand the PRINTER environment variable and the -P argument.
 

As soon as lpr knows where the current job is headed, it looks up the printer in /etc/printcap. The printcap file tells lpr where to put print jobs bound for that printer. This spool directory is often /var/spool/lpd/printername.
 

lpr creates two files in the spool directory for each job. The first file’s name consists of the letters cf (control file) followed by a number that identifies the job. This file contains reference and handling information for the job, such as the identity of the user who submitted it. The numeric portion of the filename allows space for only three digits, so the printing system becomes confused if more than 999 jobs are queued. The second file’s name begins with df (data file) followed by the same number. This file contains the actual data to be printed. After the file has been spooled, lpr notifies the lpd daemon of the job’s existence.
 

When lpd receives this notification, it consults the printcap file to determine whether the destination is local or remote. If the printer is connected locally, lpd checks to be sure a printing daemon is running on the appropriate printer’s queue and creates one (by forking a copy of itself) if necessary.
 

If the requested printer is connected to a different machine, lpd opens a connection to the remote machine’s lpd and transfers both the data and the control file. lpd then deletes the local copies of these files.
 

Scheduling for print jobs is done on a first-in, first-out basis, but the system administrator can modify the printing agenda by using lpc on individual jobs. Unfortunately, there is no way to permanently instruct the printing system to give preferential treatment to jobs spooled by a particular user or machine.
 

When the job is ready to print, lpd creates a series of UNIX pipes between the spool file and the printing hardware through which the data to be printed is transported. In the middle of this channel, lpd installs a filter process that can review and edit the contents of the data stream before it reaches the printer.
 

Filter processes can perform various transformations on the data or do nothing at all. Their chief purposes are to provide formatting and to support any device-specific protocols that may be required for dealing with a particular printer. A printer’s default filter is specified in /etc/printcap, but the default filter can be overridden on the lpr command line.
 

Printing Environment Control
 

For day-to-day maintenance of the printing system, you need only three commands: lpq, lprm, and lpc. lpq shows you the queue of jobs waiting to be printed on a particular printer. lprm deletes jobs. Both of these commands are available to users, and both work across a network (if you’re lucky), though only the superuser can remove someone else’s job.
 

lpc lets you make a number of changes to the printing environment, such as disabling printers and reordering print queues. Although some of its functions are available to users, lpc is primarily an administrative tool. Table 26.5 summarizes the commands and daemons associated with the BSD printing system.
 

Table 26.5 BSD printing commands
 

[image: Image]
 

Lpd: Spool Print Jobs
 

If you start lpd with the -l flag, it logs print requests through syslog under the “lpr” facility. Without the -l flag, lpd logs only errors.
 

Access control is at the granularity of hosts; the BSD printing system does not support access control for specific remote users. Only hosts whose names appear in the files /etc/hosts.equiv or /etc/hosts.lpd are allowed to spool print jobs. Because of security issues, the use of hosts.equiv is deprecated; use hosts.lpd.
 

Lpr: Submit Print Jobs
 

lpr is the only program on a BSD-style system that can queue files for printing. Other programs that cause files to be printed (for example, enscript or a browser) must do so by calling lpr.
 

The -#num flag prints num copies, and the -h flag suppresses the header page. For example, to print two copies of a file named thesis to a printer called howler-lw, just run
 

$ lpr -Phowler-lw -#2 thesis
 

Lpq: View the Printing Queue
 

lpq is normally used with just a -P option to select a printer, although the -l flag is available to produce more detailed output. Output from lpq looks like this:
 

[image: Image]
 

The output lines are always in order, with the active job on top and the last job to be printed on the bottom. If the first job is listed as 1st rather than active, no printing daemon is running on the printer, and you’ll need to restart it.
 

The second column names the user who spooled each job, and the third column gives the job’s identification number; this number is important to know if you intend to manipulate the job later with lprm or lpc. The fourth column shows the filenames that were listed on the lpr command line that spooled the job. If the data came in through a pipe, the entry in this column is standard input. The job size unfortunately gives no information about how many pages a job will produce or how long it will take to print.
 

lprm: Remove Print Jobs
 

The most common form of lprm is lprm
jobid, where jobid is the job identification number reported by lpq. lprm
user removes all jobs belonging to user. lprm without arguments removes the active job. lprm - (that’s a hyphen) removes all the jobs you submitted; if you are root, it removes every job in the queue. Ordinary users can’t remove each other’s jobs, but the superuser can remove any job.
 

Perversely, lprm fails silently but produces output on success. If you don’t see output that looks like this
 

[image: Image]
 

after running lprm, it means the command failed. Either lprm couldn’t remove the job, or you invoked the command incorrectly.
 

The printing system records the host on which a job originated as well as the user who spooled it, and lprm’s matching process takes both pieces of data into account. Thus garth@sigi is not equivalent to garth@boulder, and neither can remove the other’s jobs.
 

Trying to lprm the active job can cause problems on some printers. The filter process for the job may not be properly notified of the termination, with the result that the whole system comes to a grinding halt with the filter process holding an exclusive lock on the port and preventing other processes from using the printer.
 

The only way to fix this situation is to use ps to identify the filter processes and to kill them off by hand. lpc is useless in this situation. Rebooting the system always cures a hung printer, but this is a drastic measure. Before you resort to a reboot, kill and restart the master copy of lpd and manually remove jobs from the spool directory with the rm command.
 

lpc: Make Administrative Changes
 

The lpc command can perform the following functions:
 

• Enable or disable queuing for a particular printer

 

• Enable or disable printing on a particular printer

 

• Remove all jobs from a printer’s queue

 

• Move a job to the top of a printer’s queue

 

• Start, stop, or restart the lpd daemon

 

• Get printer status information

 

When the printing system is running smoothly, lpc works just fine. But as soon as a filter gets stuck or some other minor problem appears, lpc tends to wig out completely. And it lies: it sometimes claims to have fixed everything when in reality, it has done nothing at all. You may have to fix things up by hand or even power-cycle your equipment when BSD printing gets badly snarled.
 

lpc cannot be used across a network, so you must log in to the machine that owns the printer you want to manipulate. lpc is normally used interactively, although you can also invoke it in a one-shot mode by putting one of the interactive commands on lpc’s command line. Once you have activated lpc, the various commands described below are available:
 

help [command]
 

help without arguments shows you a short list of all available lpc commands. With an argument, it shows a one-line description of a particular command.
 

[image: Image]
 

These commands enable or disable spooling of jobs to the named printer. Users who attempt to queue files are politely informed that spooling has been disabled. Jobs that are already in the queue are not affected.
 

[image: Image]
 

start enables and stop disables printing on the named printer. Print jobs can still be spooled when a printer has been stopped, but they will not be printed until printing is restarted. start and stop operate by setting or clearing owner execute permission on /var/spool/lpd/printer/lock. They also start and kill the appropriate daemons for the printer. stop allows the active job to complete before disabling printing.
 

abort
printer
 

abort is just like stop, but it doesn’t allow the active job to complete. When printing is reenabled, the job will be reprinted.
 

[image: Image]
 

These commands affect both spooling and printing. Use them when a printer is really broken or has to be taken off-line for an extended period. The message parameter supplied to down can be as long as you like (on one line) and need not be quoted; it will be put in the printer’s /var/spool/lpd/printer/status file and shown to users who run lpq. You’ll normally want to use this feature to register a short explanation of why the printer is unavailable and when it will be back in service. The up command reverses the effect of a down.
 

clean
printer
 

The clean command removes all queued jobs from the printer’s queue but allows the current job to complete.
 

[image: Image]
 

The first form of topq moves the specified job to the top of the printer’s queue. The second form promotes all jobs belonging to username.
 

restart
printer
 

The restart command restarts a printing daemon that has mysteriously died. You’ll know that the daemon is dead when lpq tells you “no daemon present.” Although you might think restart would have the same effect as a stop followed by a start, it does not; restart will not restart a printer that still has a filter running.
 

status
printer
 

The status command shows you four things about a printer: whether spooling is enabled, whether printing is enabled, the number of entries in the queue, and the status of the daemon for that printer. If no entries are in the queue, you’ll see something like this:
 

[image: Image]
 

The fact that no daemon is present is not a cause for concern; printer-specific daemons go away after the queue is empty and aren’t restarted by the master copy of lpd until another job is spooled.
 

The /etc/printcap file
 

/etc/printcap is the BSD printing system’s master database. It contains information necessary for printing to local and remote printers. A printer must be described in the printcap file before jobs can be submitted to it.
 

/etc/printcap uses the same format as /etc/termcap and /etc/remote. The first item in each entry is a list of names for the printer, separated by vertical bars. The names are followed by a number of configuration settings separated by colons. Configuration options are of the form xx, xx=string, or xx#number, where xx is the two-character name of a parameter and string and number are values to be assigned to it. When no value is assigned, the variable is Boolean and its presence indicates “true.”
 

The null statement is acceptable, so you can place two colons side by side. It is helpful to begin and end each line with a colon to make subsequent modifications easier. Comments in /etc/printcap start with a pound sign (#). Entries can span several lines if intermediate lines are terminated with a backslash. Continuation lines are, by convention, indented.
 

The syntax of the printcap file is illustrated in the following example, which defines a remote printer attached to the machine anchor:
 

[image: Image]
 

From the first line, we can see that “anchor-lj”, “cer”, “1-56”, and “LaserJet 5M in lab” are all equivalent names for the same printer. These names are the printer’s given name, a well-known abbreviation, the room number of the printer’s location, and a full description.
 

You can give your printers as many names as you like, but you should include at least three forms of the primary name:
 

• Full name – hostname and type of printer (e.g., “anchor-lj”)

 

• Short name – three or four characters, easy to type (e.g., “cer”)

 

• Descriptive name – other information (e.g., “LaserJet 5M in lab”)

 

The next two lines in our example contain configuration settings for device name (lp), spool directory (sd), and error log file (lf). The last line specifies a read-write connection with the printer (rw), the maximum file size (mx, unlimited in this case), the remote machine name (rm), and the remote printer name (rp).
 

Jobs submitted to the printing system without a specific destination are routed to the first printer that has “lp” as one of its aliases. Don’t use lp as a printer’s primary name since that makes it difficult to change the default printer. If no printer has the name lp, the first printer in the printcap file is the system-wide default printer.
 

Printcap Variables
 

The flexibility of the printcap file is largely responsible for the BSD printing system’s adaptability. The details are documented in the printcap man page, so we discuss only the most common variables here. They’re shown in Table 26.6.
 

All printcap entries should include at least a specification of the spool directory (sd), the error log file (lf), and the printing device (lp). Modern printers should generally be opened for reading and writing (rw) so that the printer can send error and status messages back to the host.
 

Table 26.6 Commonly used printcap variables
 

[image: Image]
 

Sd: Spool Directory
 

Each printer should have its own spool directory. All spool directories should be in the same parent directory (usually /var/spool/lpd) and should have the same name as the full name of the printer they serve (anchor-lj in the preceding example). A spool directory is needed, even if the printer being described lives on a different machine, because spooled files are stored locally until they can be transmitted to the remote system for printing.
 

When you install a new printer, you must create its spool directory by hand. Permissions should be 775, with both owner and group daemon.
 

The spool directory for a printer also contains two status files: status and lock. The status file contains a one-line description of the printer’s state. This information is maintained by lpd and viewed with the lpq command. The lock file prevents multiple invocations of lpd from becoming active on a single queue and holds information about the active job. The permissions on the lock file are manipulated by lpc to control spooling and printing on the printer.
 

Lf: Error Log File
 

Errors generated by print filters are logged to the file named in this variable. One error log can be shared by all printers, and it can be placed anywhere you like. When a log entry is made, the name of the offending printer is included. Even remote printers should have log files, just in case of a communication problem with the remote machine.
 

See Chapter 11 for more information about log files.

 

Keep in mind that lpd sends error messages to syslog with facility lpr. Some filters send their error messages to syslog as well, leaving nothing in their printcap-specified log files. Check both of these locations when problems arise.
 

Lp: Device Name
 

The device name for a printer must be specified if the printer is local. This name is usually the file in the /dev directory that represents the port to which the printer is attached.
 

lpd uses an advisory lock on the lp file to determine if the printer is in use. Even if the printer is really accessed through a network connection, you should provide a value for the lp variable. Specify a unique dummy file that was created for that purpose and that exists on a local disk.
 

Rw: Device Open Mode
 

If a printer can send status information back to the host through its device file, the Boolean variable rw should be specified to request that the device be opened for both reading and writing. Read-write mode is useful for accounting and status reporting, and some filters require it.
 

Af: Accounting File
 

You can enable accounting by simply specifying an accounting file on the machine to which the printer is physically connected. Accounting records are not written until a job is actually printed, so there is no point in specifying an accounting file in printcap entries for remote printers.
 

For a summary of accounting information, use the pac command. By convention, printer accounting data files are usually called /var/adm/printer-acct. They list the number of pages printed for each job (usually a lie), the hostnames on which the jobs originated, and the usernames of the jobs’ owners.
 

It is the responsibility of the printer’s input filter to generate accounting records. Unless the filter actually queries the printer for its page count before and after the job, the page counts are extremely suspect.
 

Mx: File Size Limits
 

The mx variable limits the amount of data that can be spooled at one time. (If fed to the wrong language interpreter, PostScript or PCL files can print hundreds of pages of garbage.)
 

On some systems, mx defaults to some value other than 0 (no limit), and an explicit mx#0 entry is necessary to allow large jobs. Note that mx is a numeric field, so you need to say mx#0, not mx=0.
 

Rm and Rp: Remote Access Information
 

In most situations, you will want to access a printer from more than one machine on the network. Even if the printer is a network device, you should pick a single machine to be responsible for communicating with it. All other machines should forward jobs to the designated handler. With this setup, you have lpd take care of queuing the jobs in order rather than having several machines constantly fighting over control of the printer. It also gives you a single place to look when printing is not working.
 

Remote machines (machines that are not directly connected to the printer) have a simple printcap entry that tells where to send the job, as in the example on page 1060. The rm variable specifies the machine to which jobs should be sent, and the rp variable gives the name of the printer on that machine.
 

The fact that printcap entries are different for local and remote printers necessitates a bit of subterfuge on the part of the system administrator if one printcap file is to be shared among several machines. The fix is to make the local and remote names for a printer distinct; for example, howler-lw-local and howler-lw. This configuration makes howler-lw a “remote” printer even on the machine where it actually lives, but that’s perfectly OK. You must refer to howler-lw-local if you want to use the lpc command, however.
 

Of, If: Printing Filters
 

Filters serve several purposes. The default printing filter (usually /usr/lib/lpf) fixes up various nonprinting sequences and writes out an accounting record if appropriate. Unfortunately, filters are not standardized. Any of several filter packages could do the same job, but each vendor tends to have unique filters.
 

If you have a laser or inkjet printer, or even an ancient typesetter or plotter, the necessary filters will usually have been provided with the printer’s software. If you need to configure a printer for which you have no software, read through the details in the rest of this section. Otherwise, skip ahead; ignorance is bliss.
 

Filters are usually just shell scripts that call a series of translation programs. The filter program must accept the print job on standard input, translate the job to a format appropriate for the device, and send the result to standard output.
 

If the user does not specify a filter when executing lpr, either the if (input filter) or the of (output filter) is used. The names are deceptive—both actually send data to a printer.
 

If the printcap entry lists an input filter but does not specify an output filter, the device is opened once for each job. The filter is expected to send one job to the printer and then exit.
 

Conversely, if an output filter is specified without an input filter, lpd opens the device once and calls the filter program once, sending all the jobs in the queue in a big clump. This convention is OK for devices that take a long time to connect to; however, such devices are extremely rare.
 

If both an input filter and an output filter are specified, the banner page is sent to the output filter, and the output filter is called even if banners are turned off. The input filter is called to process the rest of the job. This combination of options is really too confusing for mere mortals. Avoid it.
 

If you have to write new filters, stick to using input filters, as they are easier to debug. Input filters are called with numerous arguments, which vary among implementations. The most interesting are the username, host of origin, and accounting file name. If you want to do accounting for the printer, the input filter must generate the accounting records and append them to the accounting file. If you want to restrict access to a printer (for example, to deny printing to the user “guest”), the input filter must also take care of that since lpd has no built-in way to prevent individual users from printing.
 

To clarify the uses of filters, let’s look at a simple example of an input filter script. This example is for a PostScript printer connected to a local serial line.
 

[image: Image]
 

Because the printer is serially connected, lpd takes care of opening the device with the correct modes, as specified in the printcap file. The first program called is textps, which looks at the input and decides if it is PostScript (which our printer expects), and if not, converts it to PostScript. textps gets all the filter arguments that were passed (the $*) and is expected to generate accounting records from that information. The second program, psreverse, reverses the order of the pages so that they come out in a proper stack.
 

Printcap Variables for Serial Devices
 

Many printcap variables and features are involved in the handling of old-style serial printers. If you have to support one of these, one approach is to plan time for reviewing the manual pages and drinking heavily. If you don’t drink, spend your department’s alcohol budget on a new printer.
 

Printcap Extensions
 

A nice feature of the lpr/lpd system is that it does not mind if you supply values for nonstandard printcap variables. Often, when a particular printer needs more configuration information than the base system defines, you can put extra variables in printcap for the printer’s filters to use.
 

For example, the output filter for a network printer might need to know the network name of the device. The printcap entry for the printer might contain an entry such as
 

:nn=laser.colorado.edu:\
 

The use of printcap extensions allows all of the configuration information for a printer to be stored in one convenient place. If you see variables in the printcap file that are not discussed in the printcap man page, check the documentation for the printer filters to determine the meanings of the variables.
 

Our site has taken advantage of this feature to document the physical location of each printer. Our printers have entries such as
 

:lo=Room 423, Engineering building:\
 

We have scripts that monitor paper and toner levels in the printers and send mail to support staff with instructions such as “Take more paper to room 423 in the Engineering building” when necessary.
 

26.6 What a Long, Strange Trip It’ s Been
 

You can see from the previous sections how different the three major printing systems are from one another, why having vendors complete the migration from older systems to CUPS would be helpful, and why CUPS’s decision to provide commands that mimic those of the older systems is a wise one.
 

How did things get this way? This section presents some historical background.
 

Printing History and the Rise of Print Systems
 

Decades ago, the most common printers were ASCII line printers. Laser printers were expensive and rare. High-resolution output devices required custom driver software and formatting programs.
 

Today, instead of connecting to a single computer through a serial or parallel port, laser printers often connect to a TCP/IP network over an Ethernet, Wi-Fi, or Blue-tooth link. Laser printers have lost the low-end market to inkjet printers. Color printers used to be a luxury, but like color photography and color monitors, they’re now the norm. Finding a black-and-white printer will soon be as hard as finding a black-and-white television. Or any television, for that matter.
 

Special-purpose printers, scanners, copiers, and fax machines are being pushed aside by multifunction devices that do all these jobs. Some of these now read files directly from your digital camera’s memory card.
 

Early printers were primitive, and so were their spoolers. The computer you were working on was assumed (correctly) to be connected directly to the printer. Printer configuration consisted of answering questions such as “Serial or parallel?” This was true for non-UNIX systems, too, though the non-UNIX systems were proprietary: IBM systems knew how to drive IBM printers, Apple computers knew how to drive Apple LaserWriters, and so on.
 

The earliest commercial UNIX application, sold by INTERACTIVE Systems Corporation, was a document production system for a law firm. The key pieces were a text editor, markup languages (nroff/troff), and printing software.
 

As the complexity of the world increased, several attempts were made to create unified standards for UNIX, but none of them succeeded. The printing protocols in use got older and creakier.
 

The BSD and System V printing systems were both developed for the line printers of yore. These systems, hacked and overloaded in an attempt to keep up with evolving technologies, were never really up to the job of supporting modern printers, and each new printer feature, such as duplexing (double-sided printing), required a lot of special-case hacks.
 

Why were there two competing printing systems, and was there any important difference between them? Stand up in the middle of a users’ group meeting and yell, “Anyone who uses vi instead of emacs is an idiot!” Then come ask us again.
 

Network printing added another universe of complexity. Early network printing systems were idiosyncratic and used an assortment of protocols for printer-to-spooler communication, client-to-spooler communication, and network traffic negotiation.
 

HP’s JetDirect printers often accepted raw data on port 9100, as did printers from other manufacturers that adopted HP’s convention. Printers with internal lpd daemons (implementations of the BSD protocol) expected jobs on port 515.
 

Gritting its teeth, the IETF’s Printer Working Group created the Internet Printing Protocol (IPP), which it built on top of HTTP. This choice structured interactions in terms of simple GET and POST requests and let printing take advantage of standard technologies for authentication, access control, and encryption.
 

Michael Sweet and Andrew Senft of Easy Software Products (ESP) brought IPP to UNIX in the form of the CUPS implementation. Apple adopted CUPS for Mac OS X (and, in 2007, bought the source code), and CUPS became the most complete implementation of IPP on the planet. CUPS is an open source project, fixes many older systems’ problems, and is freely redistributable.
 

Printer Diversity
 

In addition to diversity in print systems, administrators face diversity in the printers themselves.
 

Because printers can plug into computers, users tend to lump them in with peripherals such as mice and monitors. They’re more complicated than that. They’re really more like smartphones or routers, but with moving parts.
 

At one time, the most powerful computer Apple made was the Apple LaserWriter. Today, your desktop machine is probably more powerful than your printer, but the printer is still a computer. It has a CPU, memory, an operating system, and perhaps even a disk.
 

If it’s a network printer, it has its own network stack and IP address. If you have a network printer around, enter its address (or DNS name) into your web browser. Chances are, the printer will serve up some web pages that let you administer the printer hardware: the printer is running its own web server.
 

(Since system administrators are security minded, you may already be thinking, “Does that mean a printer could be compromised or hit by a denial of service attack?” You bet. See the section on security that starts on page 1081.)
 

What operating system is your printer running? What?! You don’t know? Not surprising. You probably can’t find out, either, without some digging—and perhaps not even then. The operating system varies from vendor to vendor and sometimes even from model to model. Mid-range and higher-end printers may even run some derivative of UNIX or Linux.
 

Your printer may handle a variety of network protocols and accept jobs in any of several different printer-specific page-description and document-description languages. It may even understand and print common bitmap formats such as GIF, JPG, and TIFF.
 

Your printer may only print in black and white, or it may print in color. It may print pages at resolutions that range from 150 through 2400 dots per inch (dpi), or even at asymmetric resolutions such as 1200 x 600—1200dpi in one direction and 600 in the other.
 

If you’re administering a larger facility, you may need to support several models of printers from several different manufacturers, each of which has different capabilities. This state of affairs means that the printing software on your computers must be prepared to communicate with diverse (and sometimes unknown) hardware through an array of protocols.
 

26.7 Common Printing Software
 

There’s more to printing than just spooling and printing jobs. Even on a stock Ubuntu system (which uses CUPS), the command
 

$ man -k . | egrep -i ’ghostscript|cups|print(er|ing| *(job|queue|filter))’
 

lists well over a hundred printing-related man pages—and that’s just a quick and dirty search. (Not everything you find will be printing-related. apcupsd is a daemon that talks to Universal Power Supplies made by APC, and even the print command has nothing to do with printing.) Several of these commands and tools are worth knowing about and work across all three of the printing systems covered in this book.
 

Both the BSD and System V print systems lack many of the format translation facilities that are needed to drive modern printers. So, most vendors that use these systems have at least one set of tools that sits on top of their printing system to provide the additional features. These tools are sometimes included in the OS, but more often they are extra-cost add-ons. Third-party and freely distributed packages are also in wide use.
 

pr is one of the oldest printing tools. It reformats text files for the printed page. It breaks its input into pagefuls of 66 lines, adds headers and footers, and can double-space text. It’s perfect for minor massaging of text files on their way to the printer. (Why 66? Because that’s how many lines fit on an old, green-and-white line printer page.)
 

Adobe’s enscript command performs similar conversions with quite a few more bells and whistles. Its output is PostScript. GNU enscript is an open source version of this command that is backward compatible with Adobe’s; however, GNU enscript offers a wealth of new features, including language-sensitive highlighting, support for various paper sizes, font downloading, and user-defined headers.
 

One of enscript’s main claims to fame was its implementation of 2-up printing. If you’re not using CUPS, that feature can still be useful. If you are using CUPS, you don’t need enscript for this; try lpr -o number-up=2.
 

At the high end of the complexity spectrum is Ghostscript, originally written by Exeter graduate L. Peter Deutsch so that he could print PostScript documents on inexpensive PCL printers. Today, Ghostscript interprets both PostScript and PDF. CUPS uses it as a filter, but Ghostscript can also create page images for the screen, either on its own or with help from front ends such as Evince, gv, GNOME Ghost-view (ggv), or KDE’s KGhostView.
 

Linux distributions all come with a free version of Ghostscript. If you need to install and build Ghostscript yourself, see ghostscript.com. A commercial version of Ghostscript with support is available from Artifex Software.
 

26.8 Printer Languages
 

A print job is really a computer program written in a specialized programming language. These programming languages are known collectively as page description languages or PDLs. The language interpreters for these PDLs often run inside the printers themselves.
 

Pages encoded in a PDL can be much smaller and faster to transmit than the equivalent raw images. (Or, in some cases, bigger.) PDL descriptions can also be device independent and resolution independent.
 

PDLs you may encounter include PostScript, PCL5, PCL6 (also called PCL/XL or “pxl”), and PDF. Many printers can accept input in more than one language. We touch on each of these languages briefly in the sections below.
 

Printers have to interpret jobs written in these languages and transform them into some form of bitmap representation that makes sense to the actual imaging hardware. Therefore, printers contain language interpreters. Just as with C or Java, these languages exist in multiple versions, and the versions make a difference. Most PostScript printers understand PostScript Level 3, but if you send a Level 3 program to a printer that only understands Level 2, the printer may be confused.
 

Rasterizing a PDL description (or anything else, such as an image file) into a bitmap page image is called “raster image processing,” and a program that performs such rasterization is called a RIP. “To rip” is sometimes used informally as a verb—this has nothing to do with CDs, DVDs, BitTorrent, or the DMCA.
 

It’s possible to rip print jobs in your computer and view the images on your display. We discuss host-based interpreters that do this, such as Ghostscript, on page 1078. You could in theory use your computer to rip jobs for printing and ship the completed (and much larger) bitmaps off to be printed by a not-very-smart print device. In fact, this is the way that many Windows “GDI” printers work. The level of support for this mode of operation varies widely among systems.
 

Postscript
 

PostScript is still the most common PDL found on UNIX and Linux systems. It was invented at Adobe Systems, and many PostScript printers still use an interpreter licensed from Adobe. Almost all page layout programs can generate PostScript, and some work with PostScript exclusively.
 

PostScript is a full-fledged programming language. You can read most PostScript programs with a text editor or with less. The programs are full of parentheses, curly braces, and slashes, and often start with the characters %!PS. Although these starting characters are not required by the language itself, PostScript interpreters and other printing software often look for them when trying to recognize and classify print jobs.
 

PCL
 

PCL is Hewlett-Packard’s Printer Control Language. It’s understood by HP printers as well as many other brands; some printers speak only PCL. Unlike PostScript, which is a Turing-complete, generalized programming language, PCL just tells printers how to print pages. PCL jobs are binary, not human readable, and usually much shorter than the equivalent PostScript. Applications seldom generate PCL directly, but filters can convert PostScript to PCL.
 

PCL also varies more than PostScript. The differences are minor but annoying. Jobs that print correctly on a LaserJet 5si can print slightly wrong on a LaserJet 5500, and vice versa. It’s not just this pair of models, either; every PCL printer has a custom PCL dialect with commands to exploit that printer’s features.
 

For example, if you tell your computer you have a LaserJet 4500 when you actually have a LaserJet 4550, it may generate some PCL commands that the 4550 ignores or misinterprets. If you have a stored PCL print job—say, a blank purchase request form—and you replace the printer for which it was generated with something newer, you may have to regenerate the job.
 

Worse still, HP has defined two almost completely unrelated language families called PCL: PCL5 (PCL5C means color and PCL5E means black and white) and PCL6 (also called PCL/XL). Nowadays, it’s normal for new HP printers to have language interpreters for both.
 

PDF
 

Adobe’s Portable Document Format is produced by Adobe Acrobat and many other non-Adobe applications. OpenOffice, for example, prefers to export documents as PDF.
 

PDF documents are platform independent, and PDF is routinely used to exchange documents electronically for both on-line and off-line (printed) use. The final text of this book was delivered to the book printer as a PDF file.
 

PDF is a document description language, not just a page description language. It describes not only individual pages, but also the overall structure of a document: which pages belong to which chapters, which text columns flow to other text columns, and so on. It also accommodates a variety of multimedia, hypertext, and scripting features for on-screen use.
 

Some printers interpret PDF directly. If yours doesn’t, a host of PDF viewers and translators (including Ghostview, xpdf, kpdf, Evince, and Acrobat Reader) can convert your PDF documents into something else (such as PostScript) that is more widely understood. Your print system may even hide the conversion requirement from you and automatically convert PDF documents before sending them to the printer.
 

XPS
 

Worth a mention, too, is Microsoft’s XML Paper Specification, aka XPS, aka OpenXPS. XPS is not yet widely used even on Windows systems. UNIX and Linux support is currently scant, although Artifex already has an XPS interpreter. Linux distributions will undoubtedly start to support XPS if it becomes popular.
 

PJL
 

PJL, Hewlett-Packard’s Printer Job Language, is not really a PDL. It’s a metalanguage that describes printer jobs. We mention it here because you’ll see it mentioned in printer descriptions. You’ll also need to know about it if you’re looking at the internals of print jobs to try to solve printing problems.
 

PJL is a job control language that specifies things such as a job’s PDL, whether the job is duplex or simplex, what size paper to use, and so on. The PJL commands come at the start of the job, and the PJL statements all start with @PJL:
 

[image: Image]
 

Non-HP printers may understand (or deliberately ignore) PJL, but if you’re having trouble printing something that contains PJL on a non-HP printer, try removing the PJL with a text editor and resubmitting the job.
 

Printer Drivers and their Handling of PDLs
 

What if a printer supports only a subset of the languages you need to process? If you download a PostScript file from the web and your printer only understands PCL5E, what do you do? If your printer doesn’t interpret PDF directly, how do you print a PDF file?
 

One option is to convert the file by hand. Your boxes come with plenty of conversion utilities; there’s almost always some way to turn what you have into something your printers can print. Browsers can transform HTML (or XHTML) pages into PostScript. OpenOffice can turn MS Word files into PDF. Ghostscript can turn PDF into PostScript and PostScript into almost anything, including PCL.
 

An easier approach is to let your printing system do the work for you. Some systems, such as CUPS, have some built-in knowledge about which conversions need to be done and can set up the conversions for you automatically.
 

If you need to determine what PDL a file uses and you can’t tell from the filename (e.g., foo.pdf), the file command can tell you (unless the file starts with a chunk of PJL instructions, in which case file just says “HP Printer Job Language data”).
 

Save a few print jobs to files instead of shipping them to a printer, and you can see what a program in one of these languages looks like. A minute or two perusing files of each of these types in your text editor will give you a good feel for how different they are. (Don’t cat them directly to your screen, since only PostScript is ASCII. Random binary data tends to confuse terminal emulators.)
 

[image: Image]
 

PCL5:
 

[image: Image]
 

PCL/XL:
 

[image: Image]
 

26.9 PPD Files
 

When you invoke lpr to print book.ps on the color printer Pollux, lpr may come back and ask you what size paper you want to print on. But wait—how does the system know to tell its client, lpr, that Pollux can print on A4 paper? How does it know Pollux can handle PostScript, and what should it do if it can’t? Where does it find the information that Pollux is a color printer?
 

If you’re using CUPS, all this information is kept in PostScript Printer Description (PPD) files that describe the attributes and capabilities of your printers. The CUPS daemon reads the PPDs for its printers and passes information about them to clients and filters as needed.
 

PPDs were first developed for the Mac world, but they were quickly adopted by Windows as well. Mac and Windows printer drivers use the PPD file to figure out how to send PostScript jobs to the printer. For example, it makes no sense to ask a single-sided, black-and-white printer sold in America to print a duplex, color document on European B4-sized paper.
 

Every PostScript printer has its own PPD file created by the vendor, although the file is not always easy to find. Check the installation disk and the vendor’s web site.
 

PPD files are just text files. Take a look at one in a text editor to see the type of information it contains. On a network, PPDs can even be remote—CUPS clients can get all the PPD information they need from the relevant CUPS server.
 

CUPS also uses PPDs to describe printers that lack a PostScript interpreter. An extra field does the trick. Look:
 

[image: Image]
 

You can diff a couple of related PPDs (try pxlmono.ppd and pxlcolor.ppd) to see exactly how two printers differ.
 

If you need a PPD file and your printer vendor doesn’t supply one—say, because the printer doesn’t have a PostScript interpreter and the vendor doesn’t care about anything but Windows—go to linuxprinting.org and hunt through the Foomatic database for more information. Your printer may also be supported by the Guten-print project (gutenprint.sourceforge.net). If you have a choice of PPDs from these sources and your users want every last drop of quality, the ones marked “foomatic+gutenprint” are often quite good. However, you’ll still have to experiment with the printer configuration to find out what options give the best output.
 

If a PPD file is nowhere to be found:
 

• You should have consulted linuxprinting.org before you acquired the printer. Even if you got the printer out of a dumpster, “free” doesn’t always mean “inexpensive.”

 

• There may well be a PPD file that will let you print something, even if it doesn’t take advantage of all your printer’s features. For example, we’ve had good luck using generic HP drivers on non-HP printers.

 

Though CUPS depends on PPDs, older printing systems make no use of them. For the BSD or System V printing systems, you can either massage your PostScript or you can live with what you get by default.
 

26.10 Paper Sizes
 

Users want output on physical sheets of paper. Paper comes in sizes and shapes. To make your users happy, you should know the basic facts about paper sizes.
 

In the United States and Canada, the most common paper size is called letter and is 8.5 × 11 inches. Some Linux distributions (e.g., Knoppix and SUSE) are produced in Europe, where they don’t even know what inches are, or in England, where they do know but don’t use them to measure paper. In these places, and in Japan, the common paper type is called A4, and printers all come with A4 trays. Ergo, some distributions’ printing utilities produce A4 page images by default.
 

A4 paper makes sense because it’s irrational—mathematically speaking, that is. The ratio of length to width of A4 paper is [image: Image]. If you slice a piece of A4 paper in half horizontally, you get two half-size pieces of paper that have the same length-to-width ratio: [image: Image]. This paper size is called A5. Cut A5 in half and you get two sheets of A6. In the other direction, A3 is twice the area of A4, but the same shape, and so on.
 

In other words, you can manufacture A0 paper, which has an area of one square meter, and use a paper cutter to create the other sizes you need. The only common U.S. paper size you can play this kind of game with is ledger (11 × 17 inches, also known as tabloid), which you can slice in half to get two sheets of letter.
 

There are also an ISO B series and C series that preserve the [image: Image] aspect ratio but have different base areas. B0 paper is one meter tall, and C0 paper has an area of two square meters. Engineers will see immediately that the sides of Bn paper are the geometric means of An  1 and An sides, while Cn paper sides are the geometric means of An and Bn.
 

What does all this mean? Bn has the same look as An but is bigger, and Cn is intermediate between the two. A report on A4 paper fits beautifully in a C4 manila folder. Folding an A4 letter down the middle to make it A5 lets it slide into a C5 envelope. Fold it again and it slides just as nicely into a C6 envelope.
 

To confuse things slightly, Japan has its own B series that’s similar but different. Although it has the same aspect ratio as the ISO papers, the size of Japanese B4 paper is the arithmetic mean of A3 and A4, which (engineers will also see immediately) makes it slightly larger than ISO B4 paper. There is no Japanese C series.
 

Just as the ISO system makes it easy to copy two pages of a B5 textbook onto a single B4 handout, it makes all types of n-up printing (printing several reduced-sized page images on the same page) trivial. European copiers often have buttons that reduce or expand by a factor of [image: Image].
 

If you have a CUPS system with the paperconf command, you can use it to print the dimensions of various named papers in inches, centimeters, or printer’s points (72nds of an inch). For the Americans, Table 26.7 lists some typical uses for common sizes to give a sense of their scale.
 

Unfortunately, A4 paper is slightly thinner and longer (8.3 × 11.7 inches) than American letter paper. Printing an A4 document on letter paper typically cuts off vital slivers such as headers, footers, and page numbers. Conversely, if you’re in Europe or Japan and try to print American pages on A4 paper, you may have the sides of your documents chopped off, though the problem is less severe.
 

Table 26.7 Common uses for ISO paper sizes
 

[image: Image]
 

Individual software packages may have their own defaults regarding paper size. For example, GNU enscript is maintained in Finland by Markku Rossi and defaults to A4 paper. If you’re American and your distribution hasn’t compiled in a different default, one option is to grab the source code for enscript and reconfigure it. Typically, however, it’s easier to set the paper type on the command line or in a GUI configuration file. If your documents come out with the ends or sides cut off, paper size conflicts are a likely explanation.
 

You may also be able to adjust the default paper size for many printing tasks with the paperconfig command, the PAPERSIZE environment variable, or the contents of the /etc/papersize file. (Note: paperconfig != paperconf.)
 

Admittedly, not all output is on paper. If you take a color picture to the bakery department of a large supermarket, they can probably make you a cake that has a copy of that picture on top of it. These pictures are printed by specialized bitmap printers that use edible inks. Large, rectangular cakes are known as sheet cakes, and they come in standard sizes, too. Unfortunately, we’ll have to limit our discussion of sheet sizes to paper. You can’t talk about everything…
 

26.11 Printer Practicalities
 

Printers can bring troubles and frustrations. Here are some general guidelines to help limit those. When all else fails, just be glad you’re not still using a dot-matrix printer connected via an RS-232 serial port. (Unless, of course, you are.)
 

Printer Selection
 

If you’re using CUPS, before you buy a printer or accept a “free” printer that someone else is throwing away, go to the Foomatic database at linuxprinting.org (funded and run by the Linux Foundation) and check to see how well the printer is supported. The database classifies printers into four categories ranging from Paperweight to Perfectly; you want Perfectly.
 

Everyone likes printers with embedded PostScript interpreters. Configuration of these printers is invariably easy.
 

Non-PostScript printers tend to be less well supported. To print to these, you need software that converts print jobs into the printer’s preferred PDL or data format. Chances are, this software is available either from your Linux/UNIX vendor or from one of the other locations mentioned in this chapter. Still, CUPS handles most of these printers pretty well, too.
 

If you’re not using CUPS and you have a PostScript printer, you’re probably still in good shape. If you have a non-PostScript printer, try using Ghostscript to turn PostScript and PDF documents into something your printer can accept.
 

GDI Printers
 

Windows still holds an advantage in a couple of areas, one of which is its support for very low-end printers. The el cheapo printers used on Windows systems are known collectively as GDI printers or WinPrinters. These printers have very little built-in intelligence and lack interpreters for any real PDL. They expect rasterization to be performed by the host computer.
 

Some of the information needed to communicate with GDI printers is hidden in proprietary, Windows-specific code. Such secrecy hinders efforts to develop support for these devices, but the open source community has demonstrated a remarkable aptitude for reverse engineering. CUPS supports many WinPrinters.
 

A second area of strength for Windows is its support for brand-new printers. Just as with new video and audio cards, new printers are first released with Windows drivers that fully support all the model’s documented and undocumented features. Even CUPS support generally lags. If you buy a fancy, just-released printer because you need its advanced features, you may have to resign yourself to driving it from Windows for a while.
 

Legacy UNIX systems, which typically don’t run CUPS, have an even tougher time with these printers. If you want to use a WinPrinter but only have legacy UNIX systems, consider buying an inexpensive Mac, Linux, or Windows box to run the printer. You can always share the printer over the network.
 

Double-Sided Printing
 

A duplexer is a hardware component that lets a printer print on both sides of the page. Some printers include them by default, and others support them as an optional add-on. We like them; they save both paper and filing space.
 

If you don’t have access to (or can’t afford) a printer that duplexes, you can run paper through a printer once to print the odd pages, then flip the paper over and run it a second time for the even pages. Experiment with a two-page document to find out which way to flip the paper, then tape instructions to the printer.
 

A variety of printing software can help with this process. For example, Ghostview (gv) has icons that let you mark odd or even pages, and an option to print only marked pages. The CUPS versions of lp and lpr handle this task with the options -o page-set=odd and -o page-set=even. You can even enshrine these options in a printer instance if you use them frequently; see page 1036.
 

Some printers, particularly inexpensive laser printers, are not designed with double-sided printing in mind. Their manufacturers often warn of the irreparable damage that is sure to attend printing on both sides of the page. We have never actually seen a case of such damage, but surely printer manufacturers wouldn’t steer you wrong just to sell more expensive printers. Would they?
 

Other Printer Accessories
 

In addition to duplexers, many printers let you add memory, extra paper trays, hard disks, and other accessories. These upgrades can allow the printer to handle jobs that would otherwise be indigestible, or at the very least, they can let jobs print more efficiently. If you have problems getting jobs to print, review the error logs to see if more printer memory might help resolve the problem. See, for example, the comments regarding CUPS logging on page 1082.
 

Serial and Parallel Printers
 

If your printer is directly attached to your computer with a cable, it’s using some form of serial or parallel connection.
 

Although the parallel standard has not aged gracefully, it does provide us with ports that require relatively little tinkering. If you have a parallel printer, it will probably be easy to set up—that is, if you can find a computer with a parallel port to hook it to.
 

A serial connection on older Mac hardware could be FireWire, but serial connections on newer computers are usually USB. For Linux, check the database of supported USB devices at linuxprinting.org to see the status of your hardware.
 

You almost certainly do not have an old-fashioned RS-232 serial printer. If you do, it’s going to require a mess of extra configuration. The spooler software has to know the appropriate values for the baud rate and other serial options so that it can communicate properly with the printer. Even CUPS lets you handle these, by specifying options in the URI for the device (see the on-line CUPS Software Administrators Manual for details). However, our suggestion is to not bother; it’s faster and cheaper to buy a modern printer than to figure out the exact combination of serial magic needed to get things working.
 

Network Printers
 

Many printers contain full-fledged network interfaces that allow them to sit directly on a network and accept jobs through one or more network or printing protocols. Data can be sent to network-attached printers much faster than to printers connected to serial or parallel ports.
 

Laser printers are likely to be network printers. Inkjet printers, less so, but networked inkjets do exist. If you want to know whether you have a network printer, look for an Ethernet port or a wireless antenna on its back panel.
 

Other Printer Advice
 

Some administrative issues related to printing transcend the details of your printing system. For the most part, these issues arise because printers are temperamental mechanical devices that cost money every time they are used.
 

Use banner pages only if you have to
 

Your system can usually print header and trailer pages for each job that show the title of the job and the user who submitted it. These banner pages are sometimes useful for separating jobs on printers used by many different people, but in most cases they’re a waste of time, toner, and paper.
 

On BSD systems, suppress them by setting the Boolean printcap variable sh. On System V systems, don’t have your interface script generate them.
 

With CUPS, you can globally disable banner pages in your GUI or by running lpadmin, then turn them on for any individual jobs that might benefit from them:
 

$ lpr -o job-sheets=confidential gilly.ps
 

CUPS lets you turn on banners for individual users by using lpoptions. You can also create a printer instance that adds banner pages to jobs (see Printer instances on page 1036). CUPS also lets you create a custom banner page by copying an existing one from /usr/share/cups/banners and modifying it. Put the new page in with the others under a new name.
 

Fan Your Paper
 

Printers are supposed to pull one page at a time from the paper tray. Sometimes, though, blank pages stick together and your printer will try to feed two or more pages at a time. You can minimize the frequency of this problem just by fanning paper before you load it. Hold one side of the ream, bend the paper, and run your thumb down the opposite edge as you would riffle through a deck of cards. It’s low-tech, it’s free, and it works.
 

Some inkjet paper cares which side is up. Its packaging should indicate the preferred orientation.
 

Provide Recycling Bins
 

All kinds of computer paper are recyclable. You can use the boxes that paper comes in as recycling bins; the paper fits in them perfectly. Post a sign asking that no foreign material (such as staples, paper clips, or newspaper) be discarded there.
 

Use previewers
 

Users often print a document, find a small error in the formatting, fix it, and then reprint the job. This waste of paper and time can easily be avoided with software that lets users see, on-screen, what the printed output will look like.
 

Having previewers isn’t enough; your users have to know how to use them. They’re sometimes happy to learn. One use of accounting records is to check for cases in which the same document has been printed repeatedly. It can point you to a user who doesn’t know about previewers.
 

Previewing is built into many modern WYSIWYG editors, browsers, and print-job aggregators. For other types of documents, your options vary. Tools such as Ghostview (gv) preview random PostScript and PDF documents. For roff, pipe the output of groff into Ghostview; for TeX output, try xdvi, kdvi, or Evince.
 

Buy Cheap Printers
 

Printer hardware technology is mature. You don’t need to spend a lot of money for good output and reliable mechanics.
 

Don’t splurge on an expensive “workgroup” printer just because you have a work-group. If you’re only printing text, an inexpensive “personal” printer can produce good-quality output, be nearly as fast and reliable, and weigh tens of pounds less. One 10-page-a-minute printer can serve about five full-time writers. You may be better off buying five $150 printers for a group of 25 writers than one $750 printer.
 

Even if you stick to mainstream brands, no individual manufacturer is a universally safe bet. We have had excellent experiences with HP laser printers. They are solid products, and HP has been very aggressive in supporting both Linux and CUPS. Even so, some of HP’s printers have been complete disasters. Look for reviews on the Internet before buying. Here, too, cheap is an advantage: a $150 mistake is easier to cover up than a $750 mistake.
 

Keep Extra Toner Cartridges on Hand
 

Faded or blank areas on a laser-printed page are hints that the printer is running out of toner. Buy replacement cartridges before you need them. In a pinch, remove the cartridge from the printer and gently rock it to redistribute the remaining toner particles. You can often get another few hundred pages out of a cartridge this way.
 

Streaks and spots probably mean you should clean your printer. Look on the printer to see if there is a “clean” cycle. If not, or if the cleaning cycle doesn’t help, read the manufacturer’s cleaning instructions. Most toner cartridges include an imaging drum, so try swapping toner cartridges to verify that the problem is really the printer and not the cartridge. If none of these procedures resolve the streaks, pay to have the printer serviced.
 

Printer manufacturers hate the use of recycled and aftermarket cartridges, and they go to great lengths to try to prevent it. Many devices use “keyed” consumables whose identities are detected (either electronically or physically) by the printer. Even if two printers look identical, such as the Xerox Phaser 6120 and the Konica-Minolta Magicolor 2450, it doesn’t necessarily mean that you can use the same cartridges in both.
 

Sometimes you can do surgery to convert one vendor’s cartridges to another’s printer, but it helps to know what you’re doing. Usually, you just make a mess. If you spill toner, vacuum up as much of the material as possible and wipe up the remainder with cold water. Contrary to common belief, laser printer toner is not toxic, but as with all fine powders, you should not inhale the toner dust.
 

When you replace a cartridge, save the box and baggie the new cartridge came in to use when recycling the spent one. Then find a company to take the old cartridge off your hands.
 

Keyed consumables spurred the growth of companies (“punch and pours”) that refill old cartridges for a fraction of the new-cartridge price. Cartridge recyclers are usually also punch-and-pours, so you can recycle your old cartridges and get replacements at the same time.
 

Opinions on the quality and life span of recycled cartridges vary. One punch-and-pour we know won’t refill color toner cartridges or sell remanufactured ones because they believe the savings are less than the increased maintenance costs for the printers that use them.
 

Pay Attention to the cost Per Page
 

Most inexpensive printers are sold at close to their manufacturing cost. The manufacturers make their money on the consumables, which are disproportionately expensive. As of this writing, a quick check reveals that Amazon is selling for $80 a laser printer that takes toner cartridges costing $65. You can buy a cheap inkjet printer for less than $50 at Wal-Mart, but it won’t be long before you need to buy a set of replacement ink cartridges that cost more than the printer.2 You can feign outrage over this, but printer companies have to make their money on something. Cheaper cartridges would just mean pricier printers.
 

A good rule of thumb is that inkjet printers are cheap as long as you don’t print with them. Laser printers have a higher initial cost, but the consumables are cheaper and last longer. A full-color page from an inkjet printer can cost 20–50 times as much as an analogous print from a laser printer. It also requires special paper and prints more slowly. Inkjet cartridges empty quickly and frequently plug up or go bad. The ink usually runs when wet, so don’t use an inkjet to print a recipe book for use in the kitchen. On the other hand, you can now get photo prints from an inkjet that look as good as prints from a photo lab. Color laser photos? Nice enough, but no comparison.
 

All printers have failure-prone mechanical parts. Cheap printers break faster.
 

In other words, it’s all tradeoffs. For low-volume, personal use—printing a web page or two a day, or printing a couple of rolls of film per month—a low-cost, general purpose inkjet is an excellent choice.
 

Next time you go printer shopping, estimate how long you want to keep your printer, how much printing you do, and what kind of printing you need before you buy. Assess quantitatively the long-term cost per page for each candidate printer. Ask your local punch-and-pour whether they remanufacture cartridges for the printer, and at what price.
 

Consider Printer Accounting
 

Printer accounting can give you a good feel for how your printing resources are being consumed. At medium-to-large installations, consider using it just to keep tabs on what’s going on. The per-job overhead is unimportant, and you get to see who is using the printer. Demographic information about the sources of print jobs is valuable when you are planning the deployment of new printers.
 

Secure your Printers
 

Network printers typically support remote management. Even if you don’t have CUPS and IPP, you can configure and monitor them from a web browser with HTTP, and perhaps with SNMP. Through the remote interface, you can set parameters such as the printer’s IP address, default gateway, syslog server, SNMP community name, protocol options, and administrative password.
 

By default, most remotely administrable printers are unprotected and must have a password (or perhaps an SNMP “community string”) assigned as part of the installation process. The installation manuals from your printer manufacturer should explain how to do this on any particular printer.
 

GUI administration tools, such as the CUPS browser interface, are increasingly able to hide vendor variations from you. Expect this trend to continue.
 

26.12 Troubleshooting Tips
 

Printers combine all the foibles of a mechanical device with the communication eccentricities of a foreign operating system. They (and the software that drives them) delight in creating problems for you and your users. Here are some general tips for dealing with printer adversity.
 

Restarting a Print Daemon
 

Always remember to restart daemons after changing a configuration file.
 

You can restart cupsd in whatever way your system normally restarts daemons: /etc/init.d/cups restart, or something similar. In theory, you can also send cupsd a HUP signal. Unfortunately, this seems to just kill the daemon on SUSE systems.
 

Alternatively, you can use the CUPS GUI or another GUI interface such as the KDE Print Manager application to restart cupsd.
 

Other systems have their own specialized methods for resetting the print system; often, they are vendor specific. For example, AIX uses the following sequence:
 

[image: Image]
 

Just what you would have guessed, right?
 

Logging
 

CUPS maintains three logs: a page log, an access log, and an error log. The page log lists the pages that CUPS has printed. The other two logs are just like the access log and error log for Apache, which should not be surprising since the CUPS server is a web server.
 

The cupsd.conf file specifies the logging level and the locations of the log files. They’re all typically kept underneath /var/log.
 

Here’s an excerpt from a log file that corresponds to a single print job:
 

[image: Image]
 

Problems with Direct Printing
 

Under CUPS, to verify the physical connection to a local printer, you can directly run the printer’s back end. For example, here’s what we get when we execute the back end for a USB-connected printer:
 

[image: Image]
 

When the USB cable for the Phaser 6120 is disconnected, that printer drops out of the back end’s output:
 

[image: Image]
 

Network Printing Problems
 

Before you start tracking down a network printing problem, make sure you can print from the machine that actually hosts the printer. Your “network printing problem” may just be a “printing problem.” Also make sure that the network is up.
 

Next, try connecting to the printer daemon. You can connect to cupsd with a web browser (hostname:631) or the telnet command (telnet
hostname
631).
 

Network lpd print jobs are delivered on TCP port 515. Unless you want to be printing jobs for strangers, your firewall should block all traffic to this port from the Internet. To test your connectivity to a remote lpd server, telnet to port 515 of the server. If you can establish a connection, you can at least verify that the network is working and that lpd is running on the server.
 

If you have problems debugging a network printer connection, keep in mind that there must be a queue for the job on some machine, a way to decide where to send the job, and a method of sending the job to the machine that hosts the print queue. On the print server, there must be a place to queue the job, sufficient permissions to allow the job to be printed, and a way to output to the device.
 

Any and all of these will, at some point, go wrong, so be prepared to hunt in many places, including these:
 

• System log files on the sending machine, for name resolution and permission problems

 

• System log files on the print server, for permission problems

 

• Log files on the sending machine, for missing filters, unknown printers, missing directories, etc.

 

• The print daemon’s log files on the print server’s machine, for messages about bad device names, incorrect formats, etc.

 

• The printer log file on the printing machine, for errors in transmitting the job (as specified by the lf variable in the /etc/printcap file on BSD printing systems)

 

• The printer log file on the sending machine, for errors about preprocessing or queuing the job

 

Consult your system’s documentation to determine which of these log files are available and where the files are located. The system’s log files are usually specified in syslog’s configuration file, /etc/syslog.conf. The locations of CUPS log files are specified in /etc/cups/cupsd.conf.
 

Distribution-Specific Problems
 

Every program has bugs.3 On Ubuntu systems, for example, there seem to be CUPS updates every month or so. Some problems are worse than others, and some have security implications.
 

On some older versions of Red Hat Enterprise Linux, CUPS was badly broken. The right solution for those systems is an OS upgrade, but if you can’t install a newer release, try installing the current release of CUPS.
 

26.13 Recommended Reading
 

Each vendor and GUI supplies its own, idiosyncratic printing-system-specific documentation. KDE includes man pages for the KDEPrint commands, plus the KDEPrint Handbook. You can find additional information at printing.kde.org. All of these sources contain useful references to other documentation. (Actually, the KDE documentation is a great introduction to CUPS even if you don’t use KDE.)
 

CUPS comes with a lot of documentation in HTML format. An excellent way to access it is to connect to a CUPS server and click the link for on-line help. Of course, this isn’t any help if you’re consulting the documentation to figure out why you can’t connect to the CUPS server. On your computer, the documents should be installed in /usr/share/doc/cups in both HTML and PDF formats. If they aren’t there, ask your distribution’s package manager or look on cups.org.
 

The cups.org forums are a good place to ask questions, but do your homework first and ask politely.
 

If you’re running Linux, try linuxprinting.org. It’s a vast collection of Linux printing resources and a good place to start when answering questions. The site also has a nice CUPS tutorial that includes a troubleshooting section.
 

Wikipedia and SUSE both supply good CUPS overviews. You can find SUSE’s at en.opensuse.org/SDB:CUPS_in_a_Nutshell.
 

If you want a printed CUPS reference manual, we recommend the following one. This is the CUPS bible, right from the horse’s mouth.
 

SWEET, MICHAEL R., CUPS: Common UNIX Printing System. Indianapolis, Indiana: Sams Publishing, 2001.
 

26.14 Exercises
 

E26.1 Find someone who isn’t computer literate (an art student, your mother, or perhaps a Microsoft Certified Professional) and teach that person how to print a PDF document on your system. Did your subject find any of the steps confusing? How could you make the process easier for other users?
 

E26.2 Using a web browser, visit a printer on your network. If you have CUPS, visit a CUPS server on your system with the same browser. What prevents you from making administrative changes to that server’s printers?
 

E26.3 Visit a real or virtual big-box store such as Sam’s Club or Amazon.com and pick three color laser printers you can buy for under $400. If you had to purchase one of these printers for your organization tomorrow, which one would it be and why? Make sure you’ve checked the database at linuxprinting.org.
 

E26.4 You have been asked to design the system software to run inside a laser printer aimed at the corporate workgroup market. What distribution will you start with? What additional software will you need to add? Will you have to write all of it? How will you accommodate Windows and Mac OS clients? (Hint: Check out Linux distributions designed for “embedded systems.”)
 
  


27. Data Center Basics
 

[image: Image]
 

A service is only as reliable as the data center that houses it. For those with hands-on experience, that’s just common sense. But for upper management, the data center can seem like a faraway and almost imaginary land.
 

With the rise of desktop workstations and the move away from big-iron computing, it once appeared that the days of the central data center might be numbered. In reality, the need for properly designed data centers is higher today than ever before. These facilities house the mission-critical servers (often running UNIX or Linux) that feed the world’s hunger for on-line data and applications.
 

Certain aspects of data centers—such as their physical layout, power, and cool-ing—were traditionally designed and maintained by “facilities” or “physical plant” staff. However, the fast-moving pace of IT technology and the increasingly low tolerance for downtime have forced a shotgun marriage of IT and facilities staff as partners in the planning and operation of data centers. As a sysadmin, you get to play the role of “subject matter expert” for the facilities folks.1
 

A data center is composed of:
 

• A physically safe and secure space

 

• Racks that hold computer, network, and storage devices

 

• Electric power sufficient to operate the installed devices

 

• Cooling, to keep the devices within their operating temperature ranges

 

• Network connectivity throughout the data center, and to places beyond (enterprise network, partners, vendors, Internet)

 

27.1 Data Center Reliability Tiers
 

Several aspects of a data center’s design contribute to the overall availability it can provide, including
 

• Uninterruptible power supplies (UPSs) – UPSs provide power when the normal long-term power source (e.g., the commercial power grid) becomes unavailable. Depending on size and capacity, they can provide anywhere from a few minutes to a couple of hours of power. UPSs alone cannot support a site in the event of a long-term outage.

 

• On-site power generation – If the commercial grid is unavailable, on-site standby generators can provide long-term power. Generators are usually fueled by diesel, LP gas, or natural gas and can support the site as long as fuel is available. It is customary to store at least 72 hours of fuel on-site and to arrange to buy fuel from multiple providers.

 

Generator-backed facilities still need UPSs to cover the short time (usually less than 60 seconds) required to start the generators and transfer from grid to generator power.

 

• Redundant power feeds – In some locations, it may be possible to obtain more than one power feed from the commercial power grid (possibly from different power generators).

 

• Mechanical systems – These are also known as HVAC systems, but in the context of a data center, only cooling is really relevant—no heat necessary! A plethora of available technologies provide both primary and standby cooling.

 

The Uptime Institute is an industry group that researches and guides data centers. They have developed a four-tier system for classifying the reliability of data centers, which we summarize in Table 27.1. In this table, N means that you have just enough of something (UPSs, generators) to meet normal needs. N+1 means that you have one spare; 2N means that each device has its own spare.
 

Centers in the highest tier must be “compartmentalized,” which means that groups of systems are powered and cooled in such a way that the failure of one group has no effect on other groups.
 

Table 27.1 Uptime Institute availability classification system
 

[image: Image]
 

Even 99.671% availability may sound pretty good at first glance, but it works out to nearly 29 hours of downtime per year. 99.995% availability corresponds to 26 minutes of downtime per year.
 

Exhibit A Courtesy of xkcd.com
 

[image: Image]
 

Of course, no amount of redundant power or cooling is going to keep an application available if it’s administered poorly or is improperly architected. The data center is a foundational building block, necessary but not sufficient to ensure overall availability from the end user’s perspective.
 

You can learn more about the Uptime Institute’s availability standards from their web site, uptimeinstitute.org.
 

27.2 Cooling
 

Just like humans, computers work better and live longer if they’re happy in their environment. Maintenance of a safe operating temperature is a prerequisite for this happiness.
 

See Chapter 28, Green IT, for a discussion of data center energy savings.

 

The American Society of Heating, Refrigerating and Air-conditioning Engineers (ASHRAE) traditionally recommended data center temperatures (measured at server inlets) in the range of 68° to 77°F (20° to 25°C). In an effort to support organizations’ attempts to reduce energy consumption, ASHRAE released updated guidance in 2008 that enlarged the recommended temperature range to 64.4° to 80.6°F (18° to 27°C).
 

Temperature maintenance starts with an accurate estimate of your cooling load. Traditional textbook models for data center cooling (even those from the 1990s) may be up to an order of magnitude off from the realities of today’s high-density blade server chassis. Hence, we have found that it’s a good idea to double-check the cooling load estimates produced by your HVAC folks.
 

You’ll definitely need an HVAC engineer to help you calculate the cooling load that your roof, walls, and windows (don’t forget solar load) contribute to your environment. HVAC engineers usually have a lot of experience with those components and should be able to give you a good estimate. The part you need to check up on is the internal heat load for your data center.
 

You need to determine the heat load contributed by the following components:
 

• Roof, walls, and windows (from your HVAC engineer)

 

• Electronic gear

 

• Light fixtures

 

• Operators (people)

 

Electronic gear
 

You can estimate the heat load produced by your servers (and other electronic gear) by determining the servers’ power consumption. Direct measurement of power use is by far the best way to obtain this information. Your friendly neighborhood electrician can help, or you can purchase an inexpensive meter and do it yourself.2 Most equipment is labeled with its maximum power consumption in watts, but typical consumption tends to be significantly less than the maximum.
 

You can convert power consumption to the standard heat unit, BTUH, by multiplying by 3.413 BTUH/watt. For example, if you wanted to build a data center that would house 25 servers rated at 450 watts each, the calculation would be
 

[image: Image]
 

Light fixtures
 

As with electronic gear, you can estimate light fixture heat load based on power consumption. Typical office light fixtures contain four 40-watt fluorescent tubes. If your new data center had six of these fixtures, the calculation would be
 

[image: Image]
 

Operators
 

At one time or another, humans will need to enter the data center to service something. Allow 300 BTUH for each occupant. To allow for four humans in the data center at the same time:
 

[image: Image]
 

Total heat load
 

Once you have calculated the heat load for each component, sum the results to determine your total heat load. For our example, we assume that our HVAC engineer estimated the load from the roof, walls, and windows to be 20,000 BTUH.
 

[image: Image]
 

Cooling system capacity is typically expressed in tons. You can convert BTUH to tons by dividing by 12,000 BTUH/ton. You should also allow at least a 50% slop factor to account for errors and future growth.
 

See how your estimate matches up with the one from your HVAC folks.
 

Hot aisles and cold aisles
 

You can dramatically reduce your data center’s cooling difficulties by putting some thought into its physical layout. The most common and effective strategy is to alternate hot and cold aisles.
 

Facilities that have a raised floor and are cooled by a traditional CRAC (computer room air conditioner) unit are often set up so that cool air enters the space under the floor, rises up through holes in the perforated floor tiles, cools the equipment, and then rises to the top of the room as warm air, where it is sucked into return air ducts. Traditionally, racks and perforated tiles have been placed “randomly” about the data center, a configuration that results in relatively even temperature distribution. The result is an environment that is comfortable for humans but not really optimized for computers.
 

A better strategy is to lay out alternating hot and cold aisles between racks. Cold aisles have perforated cooling tiles and hot aisles do not. Racks are arranged so that equipment draws in air from a cold aisle and exhausts it to a hot aisle; the exhaust sides of two adjacent racks are therefore back to back. See Exhibit B on the next page for an illustration of this basic concept.
 

Exhibit B Hot and cold aisles, raised floor
 

[image: Image]
 

This arrangement optimizes the flow of cooling so that air inlets always breathe cool air rather than another server’s hot exhaust. Properly implemented, the alternating row strategy results in aisles that are noticeably cold and hot. You can measure your cooling success with an infrared thermometer, which is an indispensable tool of the modern system administrator. This point-and-shoot $100 device (such as the Fluke 62) instantly measures the temperature of anything you aim it at, up to six feet away. Don’t take it out to the bars.
 

If you must run cabling under the floor (see Racks on page 1094 for a discussion of this), run power under cold aisles and network cabling under hot aisles.
 

Facilities without a raised floor can use in-row cooling units such as those manufactured by APC (www.apcc.com). These units are skinny and sit between racks. Exhibit C shows how this system works.
 

Exhibit C Hot and cold aisles with in-row cooling (bird’s-eye view)
 

[image: Image]
 

Both CRAC and in-row cooling units need a way to dissipate heat outside the data center. This requirement is typically satisfied with a loop of liquid refrigerant (such as chilled water, Puron/R410A, or R22) that carries the heat outdoors. We omitted the refrigerant loops from Exhibits B and C for simplicity, but most installations will require them. See Chapter 28, Green IT, for some comments on using cool outdoor air as an alternative to mechanical refrigeration.
 

Humidity
 

According to the 2008 ASHRAE guidelines, data center humidity should be kept between 30% and 55%. If the humidity is too low, static electricity becomes a problem. If it is too high, condensation can form on circuit boards and cause short circuits and oxidation. Depending on your geographic location, you may need either humidification or dehumidification equipment to maintain a proper level of humidity.
 

Environmental monitoring
 

If you are supporting a mission-critical computing environment, it’s a good idea to monitor the temperature (and other environmental factors, such as noise and power) in the data center even when you are not there. It can be very disappointing to arrive on Monday morning and find a pool of melted plastic on your data center floor.
 

Fortunately, automated data center monitors can watch the goods while you are away. We use and recommend the Sensaphone (sensaphone.com) product family. These inexpensive boxes monitor environmental variables such as temperature, noise, and power, and they phone or page you when they detect a problem. You can reach Sensaphone in Aston, Pennsylvania, at (610) 558-2700.
 

27.3 Power
 

Computer hardware requires clean, stable power. In a data center, this means at the very least a power conditioner that filters out spikes and produces the correct voltage levels and phases.
 

Servers and network infrastructure equipment should be put on uninterruptible power supplies. Good UPSes have an RS-232, Ethernet, or USB interface that can be attached either to the machine to which they supply power or to a centralized monitoring infrastructure that can elicit a higher-level response. Such connections let the UPS warn computers or operators that power has failed and that a clean shutdown should be performed before the batteries run out.
 

See page 100 for more information about shutdown procedures.

 

UPSs are available in various sizes and capacities, but even the largest ones cannot provide long-term backup power. If your facility must operate on standby power for longer than a UPS can handle, you need a local generator in addition to a UPS.
 

A large selection of standby power generators are available, ranging in capacity from 5 kW to more than 2,500 kW. The gold standard is the family of generators made by Cummins Onan (onan.com). Most organizations select diesel as their fuel type. If you’re in a cold climate, make sure you fill the tank with “winter mix diesel” or substitute Jet A-1 aircraft fuel to prevent gelling. Diesel is chemically stable but can grow algae, so consider adding an algicide to diesel you will store for an extended period.
 

Generators and the infrastructure to support them are expensive, but they can save money in some ways, too. If you install a standby generator, your UPSs need only be large enough to cover the short gap between the power going out and your generator coming on-line.
 

If UPSs or generators are part of your power strategy, it is extremely important to have a periodic test plan in place. We recommend that you test all components of your standby power system at least every 6 months. In addition, you (or your vendor) should perform preventative maintenance on standby power components at least annually.
 

Rack Power Requirements
 

Planning the power for a data center is one of the most difficult challenges you may face. Typically, the opportunity to build a new data center or to significantly remodel an existing one comes up only every decade or so, so it’s important to look far down the road when it comes to power.
 

Most architects have a bias toward calculating the amount of power needed in a data center by multiplying the center’s square footage by a magic number. This approach proves to be ineffective in most real-world cases because the size of the data center alone tells you very little about the types of equipment it might eventually house. Our recommendation is to use a per-rack power consumption model and to ignore the amount of floor space.
 

Historically, data centers have been designed to provide between 1.5 kW and 3 kW to each rack. But now that server manufacturers have started squeezing servers into 1U of rack space and building blade server chassis that hold 20 or more blades, the power needed to support a full rack of modern gear has skyrocketed.
 

One approach to solving the power density problem is to put only a handful of 1U servers in each rack, leaving the rest of the rack empty. Although this technique eliminates the need to provide more power to the rack, it’s a prodigious waste of space. A better strategy is to develop a realistic projection of the power that might be needed by each rack and to provision power accordingly.
 

Equipment varies in its power requirements, and it’s hard to predict exactly what the future will hold. A good approach is to create a system of power consumption tiers that allocates the same amount of power to all racks in a particular tier. This scheme is useful not only for meeting current equipment needs but also for planning future use. Table 27.2 outlines some basic starting points for tier definitions.
 

Table 27.2 Power-tier model for racks in a data center
 

[image: Image]
 

The power allocations for the upper tiers in Table 27.2 may seem generous, but they are not so hard to reach, even with today’s equipment. APC measured the power consumption of a chassis containing 14 IBM BladeCenter HS20s at 4,050 watts.3 Six of those chassis in a rack consume 24.3 kW. Without cooling, that’s enough power to reduce 50 pounds of steel, aluminum, or silicon to a liquid puddle within 15 minutes. Needless to say, you’ll need special cooling arrangements and multiple power supplies for these configurations.
 

Once you’ve defined your power tiers, estimate your need for racks in each tier. On the floor plan, put racks from the same tier together. Such zoning concentrates the high-power racks and lets you plan cooling resources accordingly.
 

kVA vs. kW
 

One of the many common disconnects between IT folks, facilities folks, and UPS engineers is that each of these groups uses different units for power. The amount of power a UPS can provide is typically labeled in kVA (kilovolt-amperes). But computer equipment and the electrical engineers that support your data center usually express power in watts (W) or kilowatts (kW). You might remember from fourth grade science class that watts = volts × amps. Unfortunately, your fourth grade teacher failed to mention that watts is a vector value, which for AC power includes a “power factor” (pf) in addition to volts and amps.
 

If you are designing a bottle-filling line at a brewery that involves lots of large motors and other heavy equipment, ignore this section and hire a qualified engineer to determine the correct power factor to use in your calculations. For modern-day computer equipment, you can cheat and use a constant. The equations you can use for a “probably good enough” conversion between kVA and kW are
 

kVA = kW / .85
kW = kVA * .85

 

A final point to note on this topic is that when estimating the amount of power you need in a data center (or to size a UPS), you should measure devices’ power consumption with a clamp-on ammeter (aka current clamp) such as the Fluke 902 rather than relying on the manufacturer’s stated values as shown on the label (which typically represent maximum consumption values).
 

Remote Control
 

You may occasionally find yourself in a situation in which you need to regularly power-cycle a server because of a kernel or hardware glitch. Or, perhaps you have non-UNIX servers in your data center that are more prone to this type of problem. In either case, you may want to consider installing a system that lets you power-cycle problem servers by remote control.
 

A reasonable solution is manufactured by American Power Conversion (APC). Their MasterSwitch product is similar to a power strip, except that it can be controlled by a web browser through its built-in Ethernet port. You can reach APC at (401) 789-0204 or on the web at apc.com.
 

27.4 Racks
 

The days of the traditional raised-floor data center—in which power, cooling, network connections, and phone lines are all hidden underneath the floor—are over. Have you ever tried to trace a cable that runs under the floor of one of these labyrinths? Our experience is that while it looks nice through glass, a “classic” raised-floor room is a hidden rat’s nest. Today, you should use a raised floor to hide electrical power feeds, to distribute cooled air, and for nothing else. Network cabling (both copper and fiber) should be routed through overhead raceways designed specifically for this purpose.
 

In a dedicated data center, storing equipment in racks (as opposed to, say, setting it on tables or on the floor) is the only maintainable, professional choice. The best storage schemes use racks that are interconnected with an overhead track system for routing cables. This approach confers that irresistible high-tech feel without sacrificing organization or maintainability.
 

The best overhead track system is manufactured by Chatsworth Products (Chats-worth, CA, (818) 882-8595; chatsworth.com). Using standard 19" single-rail telco racks, you can construct homes for both shelf-mounted and rack-mounted servers. Two back-to-back 19" telco racks make a high-tech-looking “traditional” rack (for cases in which you need to attach rack hardware both in front of and in back of equipment). Chatsworth provides the racks, cable races, and cable management doodads, as well as all the hardware necessary to mount them in your building. Since the cables lie in visible tracks, they are easy to trace and you will naturally be motivated to keep them tidy.
 

27.5 Tools
 

A well-outfitted sysadmin is an effective sysadmin. Having a dedicated tool box is an important key to minimizing downtime in an emergency. Table 27.3 lists some items to keep in your tool box, or at least within easy reach.
 

Table 27.3 A system administrator’s tool box
 

[image: Image]
 

27.6 Recommended Reading
 

Telecommunications Infrastructure Standard for Data Centers. ANSI/TIA/EIA 942.
 

ASHRAE INC. ASHRAE 2008 Environmental Guidelines for Datacom Equipment. Atlanta, GA: ASHRAE, Inc., 2008.
 

EUBANK, HUSTON, JOEL SWISHER, CAMERON BURNS, JEN SEAL, AND BEN EMERSON. Design Recommendations for High Performance Data Centers. Snowmass, CO: Rocky Mountain Institute, 2003.
 

27.7 Exercises
 

E27.1 Why would you want to mount your computers in a rack?

 

[image: Image] E27.2 Environmental factors affect both people and machines. Augment the factors listed in this book with some of your own (e.g., dust, noise, light, clutter, etc.). Pick four factors and evaluate the suitability of your lab for man and machine.

 

[image: Image] E27.3 A workstation draws 0.8 A, and its monitor draws 0.7 A @ 120 V.

 

a) How much power does this system consume in watts?

 

b) With electricity going for about $0.12/kWh, what does it cost to leave this system on year-round?

 

c) How much money can you save annually by turning off the monitor for an average of 16 hours a day (either manually or with Energy Star features such as DPMS)?

 

d) What is the annual cost of cooling this system? (State your assumptions regarding cooling costs and show your calculations.)

 

[image: Image] E27.4 Design a new computing lab for your site. State your assumptions regarding space, numbers of machines, and type and power load of each machine. Then compute the power and cooling requirements for the lab. Include both servers and client workstations. Include the layout of the room, the lighting, and the expected human load as well.

 
  


28. Green IT
 

[image: Image]
 

You might think that a book about system administration would be the last place to find a chapter on environmental and social consciousness. But now that large IT installations have become commonplace, the environmental impact and resource consumption of the equipment we oversee have started to attract attention. Green IT is the art and science of reducing these hidden and not-so-hidden costs.
 

Although each of us can make a difference through small changes in our choices and behavior, most improvement comes from centrally driven efforts to effect change. For example, no amount of “Choose unleaded gasoline! It’s a whole lot better!” would have equalled the impact of the federal mandate to stop producing cars that required lead. Guess who can set similar mandates for your IT organization? You can!
 

But why bother? Bragging rights and the satisfaction of doing the right thing for the planet may be reason enough for some. But there are practical reasons to convince decision-makers in your organization to consider a green IT effort as well:
 

• Lower initial costs – by minimizing the equipment that your organization buys and uses, you reduce capital expenditures. By minimizing the size of the data center required, you can reduce real estate costs.

 

• Lower operating costs – power, management, and maintenance for equipment cost money over time. Efficient use of fewer pieces of equipment means that your organization spends less on the direct costs of operations.

 

• Indirect cost savings – you pay for electricity twice: once to power your equipment, and then again to cool down the equipment after it has converted that expensive power into heat.1 Less equipment means less cooling, less square footage for IT projects, and fewer people dedicated to IT operations. Fewer people means less spent on rent, office cooling, wages, benefits, and support.

 

This chapter focuses on some basic concepts you can use to reduce your IT organization’s energy and resource consumption. We’ve targeted organizations that have from 1 to 500 servers in their data centers. If your environment is larger, you should consider hiring an expert in green data-center construction to achieve the most dramatic results.
 

28.1 Green IT Initiation
 

What exactly does it mean to be “green”? We define it as
 

• Lower power consumption

 

• Smaller physical plant requirements

 

• Lower consumption of consumables

 

• Recyclable outputs

 

There is no silver bullet or single path to a green IT environment. Despite some vendors’ claims, you cannot purchase one product that makes all the greenness in the world shower down upon you. Specifically, green IT is a lot more than just server virtualization. And, like so many aspects of system administration, green IT is more a journey than a destination. You must first visualize where you want to go, map out a plan to get there, and chart your progress along the way. Ongoing measurement and monitoring must be key elements of your overall plan.
 

Start your green IT journey by assessing the eco-friendliness of your current environment. Take a comprehensive view of all IT within your organization, not only to maximize the project’s impact but also to ensure that you don’t ultimately end up playing the “squeeze the balloon” game. For example, it might seem eco-wonderful to remove all the servers from your environment until you discover that eliminating your 50 managed servers has resulted in users purchasing and deploying 600 rogue server-class systems in their cubicles as part of a “personal server deprivation revolt.”
 

Here is some information to gather as you start your green IT assessment:
 

• Equipment survey – everything, including servers, laptops, workstations, monitors, printers, storage devices, network gear, backup devices, UPSs, and cooling units. Capture the location, model number, “size” (in units appropriate to the specific equipment), and age of each item.

 

It’s helpful to have power consumption data for each item as well. Rated power consumption can be misleading—better to measure a device’s actual energy use with a Kill A Watt meter, which costs around $20.2 For devices that have both active and sleep states (e.g., printers), you may want to record average energy use over a one-day or one-week period.
 

• Accounting of consumables – paper, toner, storage media

 

• Organizational metrics – including gross revenue, number of employees, number of physical locations, total facility energy consumption, IT equipment energy consumption (in data centers), data center cooling energy consumption, total IT capital cost, total IT operations cost, and total facilities costs for data centers.

 

Once you’ve collected this baseline data, identify one to three targets for optimization. These targets should be tied to your organization’s overall strategy for success and growth, and if achieved, they should also demonstrate progress toward becoming a greener IT shop. We can’t tell you what targets will work best for your environment, but here are some appropriate examples:
 

• Data center energy consumption per dollar of gross revenue

 

• Number of employees per physical server

 

• Sheets of paper used per employee per month

 

• Average energy consumption of an employee’s workspace equipment

 

• Average life of a laptop computer

 

• Data center energy use as a proportion of total facility use3

 

Plan to reassess your green IT status at least yearly, but review energy consumption monthly.
 

28.2 The Green IT Eco-Pyramid
 

It’s easy to see how eco-unfriendly your organization is. The hard part is making (and monitoring) progress toward the goal of being green. To help you navigate the sea of choices presented in this chapter, we map green IT strategies into three divisions, as shown in Exhibit A on the next page.
 

[image: Image]
 

We show these categories in the form of a pyramid because the strategies at the bottom have the most significant impact and are most likely to provide secondary benefits. As you go up the pyramid, the strategies involve more cost and effort and tend to be less effective.
 

Reducing direct consumption should always be your first-choice strategy; less is more. If you can achieve your mission with less effort and fewer resources, that eliminates both capital and operational costs.
 

Mitigation of secondary consumption is the next best strategy. For example, the cooling needed to support a server counts as secondary consumption since it only occurs because the server exists in the first place. Optimizing the HVAC system to minimize cooling expenses saves money, but it doesn’t save as much as eliminating the server entirely.
 

Perhaps somewhat nonintuitively, choosing products and technologies that have been designed to be “green” is our lowest-value strategy. Think of it this way: we first reduce the number of cars on the road as much as possible, and only then do we replace the remaining cars with fuel efficient models.
 

28.3 Green IT Strategies: Data Center
 

Data centers are excellent targets for green IT initiatives because they typically operate 7  24  365 and are under the direct control of the IT group. A study by Lawrence Berkeley Laboratories showed that data centers can be as many as 40 times more energy-intensive than conventional office space.4
 

At this level of consumption, special strategies are required. As shown in Exhibit B, the strategies to reduce direct consumption at the bottom of the pyramid are the most effective approaches. You don’t need to use every strategy in a given environment, but every little bit counts.
 

[image: Image]
 

Application consolidation
 

Over time, organizations and IT departments tend to accumulate applications. New applications come onboard to support specific business initiatives and the CEO’s pet projects, but old applications rarely die. More commonly, they linger “on the road to retirement” for a decade with no one being willing to take the risk of pulling the plug. Whatever the reason, the number one opportunity for progress in an established organization is to consolidate applications to the minimum set that meets current business needs.
 

Let’s consider an example organization that has three applications: EmployeeLinq, AccountAwesome, and ElectricClockster. Although this is a simplified example, it’s loosely based on real-world applications used by one organization that we examined. Each of the applications had a back-end database server, an application server, and a web front-end server. That’s a total of nine servers to support these three applications.
 

The first step toward consolidation is to map out the functions provided by each application. Table 28.1 on the next page shows the features of our example apps. As you can see, there’s quite a bit of overlap.
 

This organization had three systems that could be (and were!) used to track time, two systems that could do payroll (though only one was currently in use), and many other overlapping functions.
 

This situation came to pass because three different departments—Finance, Human Resources, and Operations—had each chosen their own application. Not only does this lack of coordination waste energy and computing resources, but it also complicates or forestalls integration of data among departments. In this case, moving the organization to a single application trimmed software, hardware, and energy costs by over 60% and resulted in smoother data flow within the company.
 

Table 28.1 Functional breakdown of three applications
 

[image: Image]
 

Your situation is probably not this dramatic, but if you take the time to map out your application domains, chances are that you’ll find some significant overlap. The business case for consolidating applications is easy to make because the projected results can (at least in part) be expressed in dollars saved. Data integration and operational improvements are just icing on the cake.
 

Server consolidation
 

Most organizations have at least a few “single purpose” servers that operate at 10% utilization or less. For example, we’ve seen many organizations that have dedicated NTP (network time protocol) servers. NTP is a low-overhead protocol that requires very little computational effort. Reserving a server for NTP is like flying a Boeing 767 cross-country with only one passenger.
 

Server consolidation is a close cousin of application consolidation and is equally effective. Instead of bundling multiple functions into one application, you bundle multiple services onto one server machine.
 

Unlike Windows, UNIX and Linux excel at preemptive multitasking. A good solution in the NTP case is to run the NTP daemon on the same servers that provide common infrastructural services such as DNS and Kerberos.5
 

Another common opportunity for server consolidation is presented by database servers that are dedicated to a single application. If you have competent sysadmins and DBAs (and good monitoring), a single database server should be able to host the databases for many applications. Once again, this consolidation reduces license fees, capital costs, and energy consumption.
 

In some cases, you may be able to reduce the number of servers you need by replacing old, less powerful servers with a smaller number of new, more powerful, and more energy-efficient servers.
 

SAN storage
 

One common indicator of IT gluttony is a fleet of servers that are loaded up with hard disks. For example, imagine a data center that has 100 servers, each with six 1TB disks. That’s 600 disks that must be manufactured, maintained, powered, and eventually scrubbed and disposed of. The likelihood that these drives’ average utilization exceeds 50% is virtually nil.
 

This approach results in excessive waste because it chops the storage into discrete chunks that cannot be efficiently managed to make “just the right amount” of storage available to each server or application. Some servers may have less than 1TB of actual data in play while others are underprovisioned at 6TB and unable to benefit from the idle drives in their neighbor’s chassis. The reality is that it’s hard to push much above 30% storage utilization in a typical data center that has discrete storage for each server.
 

A good alternative to this approach is a storage area network or SAN; see page 274 for more details. SAN technology provides highly reliable storage that is also eco-friendly because sysadmins can allocate the centralized storage space efficiently. Many organizations exceed 90% utilization on their SANs. That’s triple the efficiency of discrete storage. Now that SANs can run on Ethernet, there is no longer any major hardware hurdle to deploying this wonderful tool.
 

Server virtualization
 

Server virtualization seems to be everyone’s favorite topic in the green IT arena, although some of the current buzz is probably fueled by the marketing dollars of the companies selling virtualization platforms.
 

Server virtualization (covered in detail in Chapter 24) is in fact a fantastic tool. Its eco-impact is similar to that of server consolidation. In both approaches, several applications or services end up running on a single computer. Virtualization reduces energy consumption by reducing the number of chassis in production and achieving higher utilization of the remaining units.
 

Virtualization offers some additional features that are not provided by consolidation, such as the ability to easily scale out identical systems, the ability to reserve a portion of the hardware’s capacity for a given server, and the ability to migrate virtual servers among physical chassis. Those aspects of virtualization are a win.
 

Virtualization also has a dark side. Applications that are I/O intensive typically do not virtualize well and tend to be more sluggish in a virtualized environment. The virtualization process itself consumes resources, so virtualized systems have overhead that physical systems do not. The additional layers of abstraction introduced by virtualization require constant vigilance on the part of system administrators,both because the virtualization itself must be actively managed and because virtualization may affect the operation of the hosted systems.
 

Virtualization is best employed in environments that have adequate IT staff and mature processes. At this point, we don’t really recommend server virtualization for beginning sysadmins. However, the technology is rapidly becoming more reliable and easier to use. Soon, it will be inescapable.
 

Only-as-needed servers
 

Only-as-needed servers are powered down when not in use. This approach works best in cases where the demand for computing power is predictably cyclical; for example, when the server is linked to the accounting cycle or to work that is only done in the wee hours of the morning. This isn’t a common technique, but every once in a while there’s a green IT savings opportunity so special that only this trick fits.
 

You can roll your own implementation with some scripts and Ethernet-connected (managed) power strips. Platforms such as RightScale (rightscale.com) extend the concept into demand-based territory. Using systems such as this, you can set thresholds at which additional servers are automatically spun up (or spun down) according to metrics such as CPU load or transaction volume.
 

Granular utilization and capacity planning
 

In green IT, as in other areas, you can only manage what you can measure. Careful data collection is an essential tool for optimizing your environment.
 

If you track your site’s use of resources such as CPU and memory (see Chapter 29, Performance Analysis), you can plan your hardware deployments so that you don’t have to buy overprovisioned servers “just to make sure” your capacity is sufficient. Monitoring and analysis take time, but they’re an excellent basis for “lean and mean” data center management.
 

Buy only what you need; use only what you must.
 

Energy-optimized server configuration
 

Some systems give you the opportunity to save energy by altering the behavior of the system itself.
 

Power-saving options for Linux
 

[image: Image] CPUs and CPU cores can be idled to reduce their power consumption. To achieve the lowest possible power consumption, you pack as many threads as possible onto one core or CPU and do not activate additional cores or CPUs until they are needed. Conversely, to achieve the best possible performance, you distribute threads as widely as possible among cores and CPUs to minimize the time-costs of context switching and cache contention. In theory, you must trade away some performance to reduce power consumption.
 

In practice, the opportunity to idle parts of the CPU only arises when the system isn’t busy. In those circumstances, the additional overhead of packing threads onto one core may have no detectable effect. Experiment to see if you can discern any difference with your specific workload.
 

The process scheduler’s power management system consults two control variables, both of which are set through files in the /sys/devices/system/cpu direc-tory. The sched_mc_power_savings variable controls whether all cores on a CPU are used before activating another CPU, and the sched_smt_power_savings variable controls whether all thread slots on a core are used before activating another core. In both cases, a value of 0 turns power saving off and a 1 turns it on.
 

For example, to turn on both power-saving modes, you could use the commands
 

[image: Image]
 

To make these changes persistent across reboots, check out the sysctl command or add the lines to a startup script such as /etc/init.d/local on Ubuntu or SUSE (create it if necessary) or /etc/rc.local on Red Hat.
 

A computer’s CPU is one of its most profligate consumers of energy (just look at those heat sinks!), so aggressive power management can significantly reduce the system’s power use.
 

Filesystem power savings
 

You can save power and increase performance by preventing filesystems from maintaining a “last access” time (st_atime) for every file. This information isn’t very useful, and it theoretically adds a tax of one seek and one write to every file operation. (The real-world impact is harder to quantify because of block caching.)
 

Zedlewski et al. analyzed hard disk power consumption in a 2003 paper and concluded that seeks cost about 4 millijoules each on an IBM Microdrive; the cost is probably at least double that for a standard drive with its larger armature. Combining the cost of seeks with the cost of writes, we calculate the benefit of disabling last access times to be up to several kWh per drive per year. Not a huge savings, but probably worthwhile for the performance benefits alone; the energy savings are just gravy.
 

On most filesystems, you can turn off maintenance of the last access time with the noatime option to mount:
 

$ sudo mount -o remount,noatime /
 

Some Linux systems also support the relatime mount option, which provides hybrid functionality. Under this option, last access time is only updated if the previous value is earlier than the file’s modification time. This mode allows tools such as mail readers to correctly identify cases in which an interesting file has been changed but not yet read.
 

Cloud computing
 

Take a deep breath, and think outside the box—outside the box of your data center, that is. The recent availability of “cloud computing” has brought many benefits, but one worth mentioning here is energy efficiency. In their quest to provide low-cost, high-reliability services, providers like Amazon have constructed ultra-high-efficiency data centers and utilization management processes. These cloud providers can supply compute cycles that are more eco-friendly than you could ever achieve in your own data center.
 

See page 987 for more information about cloud computing.

 

If you have applications (especially web applications) that don’t absolutely have to live under your own roof, consider outsourcing their infrastructure to a cloud data center. You still have complete administrative control of the virtual systems that run in this environment. You just never get to physically “hug” them.
 

Free cooling
 

Nothing is more disturbing on a cold winter’s day than to walk outside a data center and see the compressor pad whirling away at full speed. It’s 10 degrees outside, but the HVAC engineer apparently designed a system that uses mechanical cooling (and an amazing amount of energy) to pull heat out of the data center regardless of the ambient temperature.
 

Fortunately, some modern HVAC engineers specialize in data centers and have a better solution to this problem: use outside air for cooling when the temperature is low enough.
 

Of course, this solution isn’t available everywhere or in every season. The Green Grid, a consortium of technology companies dedicated to advancing energy efficiency in data centers, now produces “free cooling” maps for North America and Europe that illustrate how many hours a year a center can be cooled by outside air in a given area. A more detailed on-line cooling calculator is also available—check it out at thegreengrid.org.
 

Efficient data center cooling
 

Various tricks of data center design can be used to reduce the amount of energy used for cooling. For example, the hot aisle/cold aisle layout described on page 1089 concentrates cooling where it is most needed and allows other parts of the data center to operate at higher temperatures.
 

See Chapter 27, Data Center Basics, for a broader discussion of some of these tips.
 

Degraded mode for outages
 

Many organizations are obsessed with availability (aka uptime). What often aren’t considered are the additional energy and resources used to ensure a particular level of availability.
 

Internal customers are accustomed to thinking of services as being either up or down. Consider offering degraded service as an additional choice for fault management, and ask whether that might meet the customers’ availability needs.
 

For example, instead of running a fully redundant set of equipment for every production environment, you could use server virtualization to deploy several applications to a single chassis in the event of an outage. This configuration might supply all the standard functionality, but at slower speed than normal. In some cases, this tradeoff can reduce the organization’s capital costs by 50% or more.
 

Equipment life extension
 

Electronics manufacturing consumes energy and generates toxic waste, so purchases of new equipment entail an environmental cost that isn’t necessarily reflected in the price tag. Unfortunately, the technology industry has become so accustomed to rapid innovation and product development that manufacturers often discontinue support for equipment after just a few years.
 

If your current equipment meets your business needs and is reasonably energy efficient, you may want to consider a life extension strategy.6 Such a scheme typically involves scouring eBay and other sources of salvage equipment for similar systems you can acquire cheaply and bring to your site as a source of vintage spare parts. This approach typically extends system life by two to three years, though in at least one case we have kept a system running eight extra years this way.
 

If older equipment is not meeting performance requirements or cannot be supplemented by on-site spares, another option is to buy new equipment for the production environment and reassign the current equipment to a development environment, where performance and reliability are not as important. This approach doesn’t avoid new purchases entirely, but it may delay purchases for the development environment for a year or two.
 

If equipment simply must be retired, make sure that you turn it over to a legitimate computer recycler who will break it down into component pieces and recycle each piece appropriately. Make sure the recycler has a certified data destruction program so that your data doesn’t later show up in someone else’s hands.
 

Computers contain a surprising amount of toxic waste. Whatever you do, don’t just throw old equipment into the dumpster—that waste typically goes to a landfill not designed to handle electronics.
 

Some regions have organizations that provide computer recycling services for free. In the Portland, Oregon, area, freegeek.org is a model recycling program.
 

Warmer temperature in the data center
 

Approximately one-third of the energy consumed in a traditional data center goes to support cooling. Historically, data centers have maintained temperatures in the range of 68–77 degrees Fahrenheit. These values are now seen as conservative.
 

In early 2009, the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) issued guidance that an expanded range of 64.4–80.6 degrees Fahrenheit is acceptable for data centers. Raising the data center temperature by three degrees typically saves an estimated 12% in cooling costs.
 

See Chapter 27, Data Center Basics, for additional cooling tips.
 

Low-power equipment
 

When procuring new equipment, take the time to select products that have minimal environmental impact.
 

The IEEE has standardized the criteria for environmental assessment of electronics in IEEE publication 1680. One evaluation system based on IEEE P1680, the Electronic Products Environmental Assessment Tool (EPEAT), considers a wide range of potential impacts that might be involved in a product’s manufacture. It can help you compare products uniformly. The system currently covers desktop and laptop computers, thin clients, workstations, and computer monitors. It is required for U.S. federal government purchases. Visit EPEAT at epeat.net.
 

Note that EPEAT compliance requires conformance to Energy Star standards (in version 5.0 as of July 1, 2009) for energy consumption during use.
 

Some server manufacturers (including Dell, Sun, IBM, and HP) offer environmentally focused product families. But even eco-friendly servers have an environmental impact and consume power. The existence of these product lines should not be viewed as a license to add equipment in the name of being green. Focus first on reducing the number of servers that you need, then pick the most eco-friendly option for meeting that need.
 

28.4 Green IT Strategies: User Workspace
 

Staff work areas present another set of opportunities to green up your operations. Exhibit C summarizes some improvements to consider.
 

Below are listed workspace arenas in which green IT can be a player. Most of the accompanying suggestions are straightforward, and you’ll find many of them familiar from other sources. (Chances are that you’re already doing some of them.)
 

• User education – encourage users to power off equipment that’s not needed, to think before they print documents, and to let desktop equipment go into a power-saving mode instead of running a screen saver (or, better yet, turn it off).

 

[image: Image]
 

• Monitors – replace CRTs with LCD monitors. They use significantly less power and contain fewer toxic elements.

 

• Workstation idle – centrally configure workstations to “sleep” or power-off when idle for a given period (e.g., 30 minutes).

 

• Workstation count – limit desktop workstations to one per user. Users who claim to need more than one workstation should be encouraged to use a desktop virtualization client.

 

• Task-based sizing – don’t buy “one size fits all” workstations. Have three or four tiers of workstation specifications so that users have the appropriate configuration for their task mix.

 

• Personal heaters – this is not really an IT topic per se, but it’s a pet peeve of ours, and the IT department is usually the one to notice. Do not allow the use of personal space heaters in users’ offices or cubicles. Explain to users that such heaters feed a vicious cycle in which the office HVAC and the heater fight in an effort to enforce different temperature targets. If the user’s work area is truly the wrong temperature, escalate the issue with the appropriate HVAC support team. (Maybe you can offer them some VIP IT support in exchange for their assistance.)

 

• Print duplexing – configure printers to default to double-sided, two-up printing. This works fine for most routine printing, and users can always select something other than the default for special cases.

 

• eDocument campaign – launch a campaign or contest within your organization to find ways to eliminate the use of printed documents.

 

• Office temperature – since office computing equipment is designed to work at much higher temperatures than humans are, raise that office cooling setting to 78F or higher.

 

• Equipment recycling – once or twice a year, hold equipment recycling days during which staff can pile up their unwanted, unused, or underutilized equipment for your favorite recycling company to haul off. If you’re really eco-friendly, let staff add equipment from home to the pile.

 

• Equipment life extension – once a workstation has become too old or too slow to be used by staff with the most intense computing demands, cycle it down to staff who have lower requirements. They’ll see it as an upgrade, and you’ll squeeze another year or two of life out of it.

 

• Workplace recycling – start a workplace recycling program for used paper. Many recycling companies also accept office plastics (soda bottles, etc.) in the same stream.

 

• Recycled paper and printer cartridges – become a consumer of recycled goods. Purchase 100% recycled paper for your printers and copiers, and buy recycled toner cartridges as well. We’ve had outstanding luck with Boise Aspen 100 as general-purpose recycled printer paper that’s inexpensive and has outstanding ecological characteristics.

 

• Telecommuting – encourage staff to telecommute one or more days per week by installing and supporting technologies that facilitate remote access, such as VPNs, VOIP service at home, and web-available applications. In addition to the benefits for the staff involved, telecommuting reduces the use of transportation and office support services. Make sure, though, that telecommuters turn off their equipment at whichever site they’re not occupying on a given day. Otherwise, this policy can backfire, at least from an energy conservation perspective.

 

28.5 Green IT Friends
 

If you’re looking to do even more in the green IT space, you can find both camaraderie and guidance from a variety of organizations and resources. Table 28.2 lists some of the groups that we’re familiar with and recommend.
 

Table 28.2 The green mafia
 

[image: Image]
 

In addition to stockpiling green ideas, many of these organizations have their own sets of benchmark data that you can use to find out how your organization compares with others of similar size and activity.
 

28.6 Exercises
 

E28.1 Use a Kill A Watt meter to measure the power consumption of your desktop workstation under various load conditions, including sleep mode or power-save mode. How much power would be saved if you turned your workstation off every night?
 

E28.2 Write a script that emails the system administrator when CPU load indicates that a new server should be spun up.
 

E28.3 Make a list of the main applications that your organization uses today.
 

Which ones have overlapping functionality?
 

E28.4 Visit thegreengrid.org and determine if your location could benefit by using outside air for cooling.
 

[image: Image] E28.5 Organizations such as TerraPass and Carbonfund.org sell CO2 “offsets” through which organizations can compensate for their carbon emissions. For example, one common strategy used by offsetters is to subsidize the development of carbon-neutral energy sources (e.g., solar and wind power), with the goal of reducing future emissions.
 

These programs have proved controversial. Some observers doubt the reality of the claimed emission reductions, while others question the programs on philosophical grounds.7
 

Select a specific carbon offset provider and assess the plausibility of the strategies it is pursuing. Are the programs sufficiently well documented that you could make your own evaluation of their quality? Has any impartial group evaluated this provider, and if so, what were their conclusions?
 
  


29. Performance Analysis
 

[image: Image]
 

Performance analysis and tuning are often likened to system administration witchcraft. They’re not really witchcraft, but they do qualify as both science and art. The “science” part involves making careful quantitative measurements and applying the scientific method. The “art” part relates to the need to balance resources in a practical, level-headed way, since optimizing for one application or user may result in other applications or users suffering. As with so many things in life, you may find that it’s impossible to make everyone happy.
 

A sentiment widespread in the blogosphere has it that today’s performance problems are somehow wildly different from those of previous decades. That claim is inaccurate. It’s true that systems have become more complex, but the baseline determinants of performance and the high-level abstractions used to measure and manage it remain the same as always. Unfortunately, improvements in baseline system performance correlate strongly with the community’s ability to create new applications that suck up all available resources.
 

This chapter focuses on the performance of systems that are used as servers. Desktop systems typically do not experience the same types of performance issues that servers do, and the answer to the question of how to improve performance on a desktop machine is almost always “Upgrade the hardware.” Users like this answer because it means they get fancy new systems on their desks more often.
 

One of the ways in which UNIX and Linux differ from other mainstream operating systems is in the amount of data that is available to characterize their inner workings. Detailed information is available for every level of the system, and administrators control a variety of tunable parameters. If you still have trouble identifying the cause of a performance problem despite the available instrumentation, source code is often available for review. For these reasons, UNIX and Linux are typically the operating systems of choice for performance-conscious consumers.
 

Even so, performance tuning isn’t easy. Users and administrators alike often think that if they only knew the right “magic,” their systems would be twice as fast. One common fantasy involves tweaking the kernel variables that control the paging system and the buffer pools. These days, kernels are pretuned to achieve reasonable (though admittedly, not optimal) performance under a variety of load conditions. If you try to optimize the system on the basis of one particular measure of performance (e.g., buffer utilization), the chances are high that you will distort the system’s behavior relative to other performance metrics and load conditions.
 

The most serious performance issues often lie within applications and have little to do with the underlying operating system. This chapter discusses system-level performance tuning and mostly leaves application-level tuning to others. As a system administrator, you need to be mindful that application developers are people too. (How many times have you said, or thought, that “it must be a network problem”?) Given the complexity of modern applications, some problems can only be resolved through collaboration among application developers, system administrators, server engineers, DBAs, storage administrators, and network architects. In this chapter, we help you determine what data and information to take back to these other folks to help them solve a performance problem—if, indeed, the problem lies in their area. This approach is far more productive than just saying, “Everything looks fine; it’s not my problem.”
 

In all cases, take everything you read on the web with a tablespoon cup of salt. In the area of system performance, you will see superficially convincing arguments on all sorts of topics. However, most of the proponents of these theories do not have the knowledge, discipline, and time required to design valid experiments. Popular support means very little; for every hare-brained proposal, you can expect to see a Greek chorus of “I increased the size of my buffer cache by a factor of ten just like Joe said, and my system feels much, much faster!!!” Right.
 

Here are some rules to keep in mind:
 

• Collect and review historical information about your system. If the system was performing fine a week ago, an examination of the aspects of the system that have changed may lead you to a smoking gun. Keep baselines and trends in your hip pocket to pull out in an emergency. As a first step, review log files to see if a hardware problem has developed.

 

Chapter 21, Network Management and Debugging, discusses some trend analysis tools that are also applicable to performance monitoring. The sar utility discussed on page 1129 can also be used as a poor man’s trend analysis tool.
 

• Tune your system in a way that lets you compare the current results to the system’s previous baseline.

 

• Always make sure you have a rollback plan in case your magic fix actually makes things worse.

 

• Don’t intentionally overload your systems or your network. The kernel gives each process the illusion of infinite resources. But once 100% of the system’s resources are in use, the kernel has to work hard to maintain that illusion, delaying processes and often consuming a sizable fraction of the resources itself.

 

• As in particle physics, the more information you collect with system monitoring utilities, the more you affect the system you are observing. It is best to rely on something simple and lightweight that runs in the background (e.g., sar or vmstat) for routine observation. If those feelers show something significant, you can investigate further with other tools.

 

29.1 What You Can Do To Improve Performance
 

Here are some specific things you can do to improve performance:
 

• Ensure that the system has enough memory. As we see in the next section, memory size has a major influence on performance. Memory is so inexpensive these days that you can usually afford to load every performance-sensitive machine to the gills.

 

• If you are using UNIX or Linux as a web server or as some other type of network application server, you may want to spread traffic among several systems with a commercial load balancing appliance such as Cisco’s Content Services Switch (cisco.com), Nortel’s Alteon Application Switch (nortel.com), or Brocade’s ServerIron (brocade.com). These boxes make several physical servers appear to be one logical server to the outside world. They balance the load according to one of several user-selectable algorithms such as “most responsive server” or “round robin.”

 

These load balancers also provide useful redundancy should a server go down. They’re really quite necessary if your site must handle unexpected traffic spikes.

 

• Double-check the configuration of the system and of individual applications. Many applications can be tuned to yield tremendous performance improvements (e.g., by spreading data across disks, by not performing DNS lookups on the fly, or by running multiple instances of a server).

 

• Correct problems of usage, both those caused by “real work” (too many servers run at once, inefficient programming practices, batch jobs run at excessive priority, and large jobs run at inappropriate times of day) and those caused by the system (such as unwanted daemons).

 

• Eliminate storage resources’ dependence on mechanical operations where possible. Solid state disk drives (SSDs) are widely available and can provide quick performance boosts because they don’t require the physical movement of a disk or armature to read bits. SSDs are easily installed in place of existing old-school disk drives.1

 

• Organize hard disks and filesystems so that load is evenly balanced, maximizing I/O throughput. For specific applications such as databases, you can use a fancy multidisk technology such as striped RAID to optimize data transfers. Consult your database vendor for recommendations. For Linux systems, ensure that you’ve selected the appropriate Linux I/O scheduler for your disk (see page 1130 for details).

 

• It’s important to note that different types of applications and databases respond differently to being spread across multiple disks. RAID comes in many forms; take time to determine which form (if any) is appropriate for your particular application.

 

• Monitor your network to be sure that it is not saturated with traffic and that the error rate is low. A wealth of network information is available through the netstat command, described on page 868. See also Chapter 21, Network Management and Debugging.

 

• Identify situations in which the system is fundamentally inadequate to satisfy the demands being made of it. You cannot tune your way out of these situations.

 

These steps are listed in rough order of effectiveness. Adding memory and balancing traffic across multiple servers can often make a huge difference in performance. The effectiveness of the other measures ranges from noticeable to none.
 

Analysis and optimization of software data structures and algorithms almost always lead to significant performance gains. But unless you have a substantial base of local software, this level of design is usually out of your control.
 

29.2 Factors That Affect Performance
 

Perceived performance is determined by the basic capabilities of the system’s resources and by the efficiency with which those resources are allocated and shared.
 

The exact definition of a “resource” is rather vague. It can include such items as cached contexts on the CPU chip and entries in the address table of the memory controller. However, to a first approximation, only the following four resources have much effect on performance:
 

• CPU utilization

 

• Memory

 

• Storage I/O

 

• Network I/O

 

If resources are still left after active processes have taken what they want, the system’s performance is about as good as it can be.
 

If there are not enough resources to go around, processes must take turns. A process that does not have immediate access to the resources it needs must wait around doing nothing. The amount of time spent waiting is one of the basic measures of performance degradation.
 

CPU utilization is one of the easiest resources to measure. A constant amount of processing power is always available. In theory, that amount is 100% of the CPU cycles, but overhead and various inefficiencies make the real-life number more like 95%. A process that’s using more than 90% of the CPU is entirely CPU bound and is consuming essentially all of the system’s available computing power.
 

Many people assume that the speed of the CPU is the most important factor affecting a system’s overall performance. Given infinite amounts of all other resources or certain types of applications (e.g., numerical simulations), a faster CPU does make a dramatic difference. But in the everyday world, CPU speed is relatively unimportant.
 

Disk bandwidth is a common performance bottleneck. Because traditional hard disks are mechanical systems, it takes many milliseconds to locate a disk block, fetch its contents, and wake up the process that’s waiting for it. Delays of this magnitude overshadow every other source of performance degradation. Each disk access causes a stall worth millions of CPU instructions. Solid state drives are one tool you can use to address this problem; they are significantly faster than drives with moving parts.
 

Because of virtual memory, disk bandwidth and memory can be directly related if the demand for physical memory is greater than the supply. Situations in which physical memory becomes scarce often result in memory pages being written to disk so they can be reclaimed and reused for another purpose. In these situations, using memory is just as expensive as using the disk. Avoid this trap when performance is important; ensure that every system has adequate physical memory.
 

Network bandwidth resembles disk bandwidth in many ways because of the latencies involved in network communication. However, networks are atypical in that they involve entire communities rather than individual computers. They are also particularly susceptible to hardware problems and overloaded servers.
 

29.3 How To Analyze Performance Problems
 

It can be difficult to isolate performance problems in a complex system. As a sysadmin, you often receive anecdotal problem reports that suggest a particular cause or fix (e.g., “The web server has gotten painfully sluggish because of all those damn AJAX calls…”). Take note of this information, but don’t assume that it’s accurate or reliable; do your own investigation.
 

A rigorous, transparent, scientific methodology helps you reach conclusions that you and others in your organization can rely on. Such an approach lets others evaluate your results, increases your credibility, and raises the likelihood that your suggested changes will actually fix the problem.
 

“Being scientific” doesn’t mean that you have to gather all the relevant data yourself. External information is usually very helpful. Don’t spend hours looking into issues that can just as easily be looked up in a FAQ.
 

We suggest the following five steps:
 

Step 1: Formulate the question.
 

Pose a specific question in a defined functional area, or state a tentative conclusion or recommendation that you are considering. Be specific about the type of technology, the components involved, the alternatives you are considering, and the outcomes of interest.
 

Step 2: Gather and classify evidence.
 

Conduct a systematic search of documentation, knowledge bases, known issues, blogs, white papers, discussions, and other resources to locate external evidence related to your question. On your own systems, capture telemetry data and, where necessary or possible, instrument specific system and application areas of interest.
 

Step 3: Critically appraise the data.
 

Review each data source for relevance and critique it for validity. Abstract key information and note the quality of the sources.
 

Step 4: Summarize the evidence both narratively and graphically.
 

Combine findings from multiple sources into a narrative précis and, if possible, a graphic representation. Data that seems equivocal in numeric form can become decisive once charted.
 

Step 5: Develop a conclusion statement.
 

Arrive at a concise statement of your conclusions (i.e., the answer to your question). Assign a grade to indicate the overall strength or weakness of the evidence that supports your conclusions.
 

29.4 System Performance Checkup
 

Enough generalities—let’s look at some specific tools and areas of interest. Before you take measurements, you need to know what you’re looking at.
 

Taking Stock of Your Hardware
 

Start your inquiry with an inventory of your hardware, especially CPU and memory resources. This inventory can help you interpret the information presented by other tools and can help you set realistic expectations regarding the upper bounds on performance.
 

[image: Image] On Linux systems, the /proc filesystem is the place to look to find an overview of what hardware your operating system thinks you have (more detailed hardware information can be found in /sys; see page 438). Table 29.1 shows some of the key files. See page 421 for general information about /proc.
 

Table 29.1 Sources of hardware information on Linux
 

[image: Image]
 

Four lines in /proc/cpuinfo help you identify the system’s exact CPU: vendor_id, cpu family, model, and model name. Some of the values are cryptic; it’s best to look them up on-line.
 

The exact info contained in /proc/cpuinfo varies by system and processor, but here’s a representative example:
 

[image: Image]
 

The file contains one entry for each processor core seen by the OS. The data varies slightly by kernel version. The processor value uniquely identifies each core. physical id values are unique per physical socket on the circuit board, and core id
 

values are unique per core within a physical socket. Cores that support hyperthreading (duplication of CPU contexts without duplication of other processing features) are identified by an ht in the flags field. If hyperthreading is actually in use, the siblings field for each core shows how many contexts are available on a given core.
 

Another command to run for information on PC hardware is dmidecode. It dumps the system’s Desktop Management Interface (DMI, aka SMBIOS) data. The most useful option is -t
type; Table 29.2 shows the valid types.
 

Table 29.2 Type values for dmidecode -t
 

[image: Image]
 

The example below shows typical information:
 

[image: Image]
 

Bits of network configuration information are scattered about the system. ifconfig-a is the best source of IP and MAC information for each configured interface.
 

[image: Image] On Solaris systems, the psrinfo -v and prtconf commands are the best sources of information about CPU and memory resources, respectively. Example output for these commands is shown below.
 

[image: Image]
 

[image: Image] Under HP-UX, machinfo is an all-in-one command you can use to investigate a machine’s hardware configuration. Here’s some typical output:
 

[image: Image]
 

[image: Image] It takes a bit of work to find CPU and memory information under AIX. First, use the lscfg command to find the names of the installed processors.
 

[image: Image]
 

You can then use lsattr to extract a description of each processor:
 

[image: Image]
 

lsattr can also tell you the amount of physical memory in the system:
 

[image: Image]
 

Gathering Performance Data
 

Most performance analysis tools tell you what’s going on at a particular point in time. However, the number and character of loads probably changes throughout the day. Be sure to gather a cross-section of data before taking action. The best information on system performance often becomes clear only after a long period (a month or more) of data collection. It is particularly important to collect data during periods of peak use. Resource limitations and system misconfigurations are often only visible when the machine is under heavy load.
 

Analyzing CPU Usage
 

You will probably want to gather three kinds of CPU data: overall utilization, load averages, and per-process CPU consumption. Overall utilization can help identify systems on which the CPU’s speed is itself the bottleneck. Load averages give you an impression of overall system performance. Per-process CPU consumption data can identify specific processes that are hogging resources.
 

You can obtain summary information with the vmstat command. vmstat takes two arguments: the number of seconds to monitor the system for each line of output and the number of reports to provide. If you don’t specify the number of reports, vmstat runs until you press <Control-C>.
 

The first line of data returned by vmstat reports averages since the system was booted. The subsequent lines are averages within the previous sample period, which defaults to five seconds. For example:
 

[image: Image]
 

Although exact columns may vary among systems, CPU utilization stats are fairly consistent across platforms. User time, system (kernel) time, idle time, and time waiting for I/O are shown in the us, sy, id, and wa columns on the far right. CPU numbers that are heavy on user time generally indicate computation, and high system numbers indicate that processes are making a lot of system calls or are performing lots of I/O.
 

A rule of thumb for general-purpose compute servers that has served us well over the years is that the system should spend approximately 50% of its nonidle time in user space and 50% in system space; the overall idle percentage should be nonzero. If you are dedicating a server to a single CPU-intensive application, the majority of time should be spent in user space.
 

The cs column shows context switches per interval (that is, the number of times that the kernel changed which process was running). The number of interrupts per interval (usually generated by hardware devices or components of the kernel) is shown in the in column. Extremely high cs or in values typically indicate a misbehaving or misconfigured hardware device. The other columns are useful for memory and disk analysis, which we discuss later in this chapter.
 

Long-term averages of the CPU statistics let you determine whether there is fundamentally enough CPU power to go around. If the CPU usually spends part of its time in the idle state, there are cycles to spare. Upgrading to a faster CPU won’t do much to improve the overall throughput of the system, though it may speed up individual operations.
 

As you can see from this example, the CPU generally flip-flops back and forth between heavy use and idleness. Therefore, it’s important to observe these numbers as an average over time. The smaller the monitoring interval, the less consistent the results.
 

On multiprocessor machines, most tools present an average of processor statistics across all processors. On Linux, Solaris, and AIX, the mpstat command generates vmstat-like output for each individual processor. The -P flag lets you specify a specific processor to report on. mpstat is useful for debugging software that supports symmetric multiprocessing—it’s also enlightening to see how (in)efficiently your system uses multiple processors. Here’s an example that shows the status of each of four processors:
 

[image: Image]
 

On a workstation with only one user, the CPU generally spends most of its time idle. Then when you render a web page or switch windows, the CPU is used heavily for a short period. In this situation, information about long-term average CPU usage is not meaningful.
 

The second CPU statistic that’s useful for characterizing the burden on your system is the “load average,” which represents the average number of runnable processes. It gives you a good idea of how many pieces the CPU pie is being divided into. The load average is obtained with the uptime command:
 

[image: Image]
 

Three values are given, corresponding to the 5, 10, and 15-minute averages. In general, the higher the load average, the more important the system’s aggregate performance becomes. If there is only one runnable process, that process is usually bound by a single resource (commonly disk bandwidth or CPU). The peak demand for that one resource becomes the determining factor in performance.
 

When more processes share the system, loads may or may not be more evenly distributed. If the processes on the system all consume a mixture of CPU, disk, and memory, the performance of the system is less likely to be dominated by constraints on a single resource. In this situation, it becomes most important to look at average measures of consumption, such as total CPU utilization.
 

Modern single-processor systems are typically busy with a load average of 3 and do not deal well with load averages over about 8. A load average of this magnitude is a hint that you should start to look for ways to spread the load artificially, such as by using nice to set process priorities.
 

See page 123 for more information about priorities.

 

The system load average is an excellent metric to track as part of a system baseline. If you know your system’s load average on a normal day and it is in that same range on a bad day, this is a hint that you should look elsewhere (such as the network) for performance problems. A load average above the expected norm suggests that you should look at the processes running on the system itself.
 

Another way to view CPU usage is to run the ps command with arguments that show you how much of the CPU each process is using (-aux for Linux and AIX, -elf for HP-UX and Solaris). On a busy system, at least 70% of the CPU is often consumed by just one or two processes. Deferring the execution of the CPU hogs or reducing their priority makes the CPU more available to other processes.
 

An excellent alternative to ps is a program called top. It presents about the same information as ps, but in a live, regularly updated format that shows the status of the system over time.2 AIX’s topas command is even nicer.
 

See page 133 for more information about top.

 

On virtualized systems, ps, top, and other commands that display CPU utilization data may be misleading. A virtual machine that is not using all of its virtual CPU cycles allows other virtual machines to use (steal) those cycles. Any measurement that is relative to the operating system, such as clock ticks per second, should be examined carefully to be sure you understand what is really being reported. See
 

Chapter 24, Virtualization, for additional information about various virtualization technologies and their implications.
 

How the System Manages Memory
 

The kernel manages memory in units called pages that are usually 4KiB or larger. It allocates virtual pages to processes as they request memory. Each virtual page is mapped to real storage, either to RAM or to “backing store” on disk. (Backing store is usually space in the swap area, but for pages that contain executable program text, the backing store is the original executable file. Likewise, the backing store for some data files may be the files themselves.) The kernel uses a “page table” to keep track of the mappings between these made-up virtual pages and real pages of memory.
 

The kernel can effectively allocate as much memory as processes ask for by augmenting real RAM with swap space. Since processes expect their virtual pages to map to real memory, the kernel may have to constantly shuffle pages between RAM and swap as different pages are accessed. This activity is known as paging.3
 

The kernel tries to manage the system’s memory so that pages that have been recently accessed are kept in memory and less active pages are paged out to disk. This scheme is known as an LRU system since the least recently used pages are the ones that get shunted to disk.
 

It would be inefficient for the kernel to keep track of all memory references, so it uses a cache-like algorithm to decide which pages to keep in memory. The exact algorithm varies by system, but the concept is similar across platforms. This system is cheaper than a true LRU system and produces comparable results.
 

When memory is low, the kernel tries to guess which pages on the inactive list were least recently used. If those pages have been modified by a process, they are considered “dirty” and must be paged out to disk before the memory can be reused. Pages that have been laundered in this fashion (or that were never dirty to begin with) are “clean” and can be recycled for use elsewhere.
 

When a process refers to a page on the inactive list, the kernel returns the page’s memory mapping to the page table, resets the page’s age, and transfers it from the inactive list to the active list. Pages that have been written to disk must be paged in before they can be reactivated if the page in memory has been remapped. A “soft fault” occurs when a process references an in-memory inactive page, and a “hard fault” results from a reference to a nonresident (paged-out) page. In other words, a hard fault requires a page to be read from disk and a soft fault does not.
 

The kernel tries to stay ahead of the system’s demand for memory, so there is not necessarily a one-to-one correspondence between page-out events and page allocations by running processes. The goal of the system is to keep enough free memory handy that processes don’t have to actually wait for a page-out each time they make a new allocation. If paging increases dramatically when the system is busy, it would probably benefit from more RAM.
 

[image: Image] Linux is still evolving rapidly, and its virtual memory system has not quite finished going through puberty—it’s a little bit jumpy and a little bit awkward. You can tune the kernel’s “swappiness” parameter (/proc/sys/vm/swappiness) to give the kernel a hint about how quickly it should make physical pages eligible to be reclaimed from a process in the event of a memory shortage. By default, this parameter has a value of 60. If you set it to 0, the kernel resorts to reclaiming pages that have been assigned to a process only when it has exhausted all other possibilities. If you set the parameter higher than 60 (the maximum value is 100), the kernel is more likely to reclaim pages. (If you find yourself tempted to modify this parameter, it’s probably time to buy more RAM for the system.)
 

If the kernel fills up both RAM and swap, all VM has been exhausted. Linux uses an “out-of-memory killer” to handle this condition. This function selects and kills a process to free up memory. Although the kernel attempts to kill off the least important process on your system, running out of memory is always something to avoid. In this situation, it’s likely that a substantial portion of the system’s resources are being devoted to memory housekeeping rather than to useful work.
 

Analyzing Memory Usage
 

Two numbers summarize memory activity: the total amount of active virtual memory and the current paging rate. The first number tells you the total demand for memory, and the second suggests the proportion of that memory that is actively used. Your goal is to reduce activity or increase memory until paging remains at an acceptable level. Occasional paging is inevitable; don’t try to eliminate it completely.
 

You can determine the amount of paging (swap) space that’s currently in use. Run swapon -s on Linux, swap -l under Solaris and AIX, and swapinfo under HP-UX.
 

[image: Image]
 

swapinfo and swapon report usage in kilobytes, and swap -l uses 512-byte disk blocks. The sizes quoted by these programs do not include the contents of core memory, so you must compute the total amount of virtual memory yourself.
 

VM = size of real memory + amount of swap space used
 

On UNIX systems, paging statistics obtained with vmstat look similar to this output from Solaris:
 

[image: Image]
 

CPU information has been removed from this example. Under the procs heading is shown the number of processes that are immediately runnable, blocked on I/O, and runnable but swapped. If the value in the w column is ever nonzero, it is likely that the system’s memory is pitifully inadequate relative to the current load.
 

The columns under the page heading give information about paging activity. All columns represent average values per second. Table 29.3 shows their meanings.
 

Table 29.3 Decoding guide for vmstat paging statistics
 

[image: Image]
 

The de column is the best indicator of serious memory problems. If it often jumps above 100, the machine is starved for memory. Unfortunately, some versions of vmstat don’t show this number.
 

On Linux systems, paging statistics obtained with vmstat look like this:
 

[image: Image]
 

As in the UNIX output, the number of processes that are immediately runnable and that are blocked on I/O are shown under the procs heading. Paging statistics are condensed to two columns, si and so, which represent pages swapped in and out, respectively.
 

Any apparent inconsistencies among the memory-related columns are for the most part illusory. Some columns count pages and others count kilobytes. All values are rounded averages. Furthermore, some are averages of scalar quantities and others are average deltas.
 

Use the si and so fields to evaluate the system’s paging behavior. A page-in (si) does not necessarily represent a page being recovered from the swap area. It could be executable code being paged in from a filesystem or a copy-on-write page being duplicated, both of which are normal occurrences that do not necessarily indicate a shortage of memory. On the other hand, page-outs (so) always represent data written to disk after being forcibly ejected by the kernel.
 

If your system has a constant stream of page-outs, it’s likely that you would benefit from more physical memory. But if paging happens only occasionally and does not produce annoying hiccups or user complaints, you can ignore it. If your system falls somewhere in the middle, further analysis should depend on whether you are trying to optimize for interactive performance (e.g., a workstation) or to configure a machine with many simultaneous users (e.g., a compute server).
 

On a traditional hard disk, you can figure that every 100 page-outs cause about one second of latency.4 If 150 page-outs must occur to let you scroll a window, you will wait for about 1.5 seconds. A rule of thumb used by interface researchers is that an average user perceives the system to be “slow” when response times are longer than seven-tenths of a second.
 

Analyzing Disk I/O
 

You can monitor disk performance with the iostat command. Like vmstat, it accepts optional arguments to specify an interval in seconds and a repetition count, and its first line of output is a summary since boot. Like vmstat, it also tells you how the CPU’s time is being spent. Here is an example from Solaris:
 

[image: Image]
 

Columns are divided into topics (in this case, five: tty, sd0, sd1, nfs1, and cpu), with the data for each topic presented in the fields beneath it. iostat output tends to be somewhat different on every system.
 

The tty topic presents data concerning terminals and pseudo-terminals. This information is basically uninteresting, although it might be useful for characterizing the throughput of a modem. The tin and tout columns give the average total number of characters input and output per second by all of the system’s terminals.
 

Each hard disk has columns kps, tps, and serv, indicating kilobytes transferred per second, total transfers per second, and average “service times” (seek times, essentially) in milliseconds. One transfer request can include several sectors, so the ratio between kps and tps tells you whether there are a few large transfers or lots of small ones. Large transfers are more efficient. Calculation of seek times seems to work only on specific drives and sometimes gives bizarre values (the values in this example are reasonable).
 

iostat output on Linux, HP-UX, and AIX looks more like this:
 

[image: Image]
 

Each hard disk has the columns tps, Blk_read/s, Blk_wrtn/s, Blk_read, and Blk_wrtn, indicating I/O transfers per second, blocks read per second, blocks written per second, total blocks read, and total blocks written.
 

Disk blocks are typically 1KiB in size, so you can readily determine the actual disk throughput in KiB/s. Transfers, on the other hand, are nebulously defined. One transfer request can include several logical I/O requests over several sectors, so this data is also mostly useful for identifying trends or irregular behavior.
 

The cost of seeking is the most important factor affecting disk drive performance. To a first approximation, the rotational speed of the disk and the speed of the bus to which the disk is connected to have relatively little impact. Modern disks can transfer hundreds of megabytes of data per second if they are read from contiguous sectors, but they can only perform about 100 to 300 seeks per second. If you transfer one sector per seek, you can easily realize less than 5% of the drive’s peak throughput.
 

Seeks are more expensive when they make the heads travel a long distance. If you have a disk with several filesystem partitions and files are read from each partition in a random order, the heads must travel back and forth a long way to switch between partitions. On the other hand, files within a partition are relatively local to one another. When partitioning a new disk, consider the performance implications and put files that are accessed together in the same filesystem.
 

To really achieve maximum disk performance, you should put filesystems that are used together on different disks. Although the bus architecture and device drivers influence efficiency, most computers can manage multiple disks independently, thereby dramatically increasing throughput. For example, it is often worthwhile to split frequently accessed web server data and logs among multiple disks.
 

It’s especially important to split the paging (swap) area among several disks if possible, since paging tends to slow down the entire system. Many systems can use both dedicated swap partitions and swap files on a formatted filesystem.
 

Some systems also let you set up multiple “memory-based filesystems,” which are essentially the same thing as PC RAM disks. A special driver poses as a disk but actually stores data in high-speed memory. Many sites use a RAM disk for their /tmp filesystem or for other busy files such as web server logs or email spools. Using a RAM disk reduces the memory available for general use, but it makes the reading and writing of temporary files blindingly fast. It’s generally a good deal.
 

The lsof command, which lists open files, and the fuser command, which shows the processes that are using a filesystem, can be helpful for isolating disk I/O performance issues. These commands show interactions between processes and file-systems, some of which may be unintended. For example, if an application is writing its log to the same device used for database logs, a disk bottleneck may result.
 

See page 144 for more information about lsof and fuser.

 

xdd: Analyze Disk Subsystem Performance
 

Modern storage systems can involve network or SAN-attached elements, RAID arrays, and other layers of abstraction. Consider the xdd tool for measuring and optimizing these complex systems. xdd is available under the GPL and runs on all of our example systems (not to mention Windows).
 

xdd measures subsystem I/O on single systems and on clusters of systems. It is well documented and yields accurate and reproducible performance measurements. You can read more about it at ioperformance.com.
 

sar: Collect and Report Statistics Over Time
 

The sar command is a performance monitoring tool that has lingered through multiple UNIX and Linux epochs despite its somewhat obtuse command-line syntax. The original command has its roots in early AT&T UNIX.
 

At first glance, sar seems to display much the same information as vmstat and iostat. However, there’s one important difference: sar can report on historical as well as current data.
 

Without options, the sar command reports CPU utilization for the day at 10-minute intervals since midnight, as shown below. This historical data collection is made possible by the sal script, which is part of the sar toolset and must be set up to run from cron at periodic intervals. sar stores the data it collects underneath the /var/log directory in a binary format.
 

The Linux package that contains sar is called sysstat.

 

[image: Image]
 

In addition to CPU information, sar can also report on metrics such as disk and network activity. Use sar -d for a summary of this day’s disk activity or sar -n DEV for network interface statistics. sar -A reports all available information.
 

sar has some limitations, but it’s a good bet for quick-and-dirty historical information. If you’re serious about making a long-term commitment to performance monitoring, we suggest that you set up a data collection and graphing platform such as Cacti. Cacti comes to us from the network management world, but it can actually graph arbitrary system metrics such as CPU and memory information. See page 886 for some additional comments on Cacti and an example of the graphs that it’s capable of producing.
 

nmon and nmon_analyser: Monitor in AIX
 

[image: Image] On AIX systems, nmon is the monitoring tool of choice. It is similar to sar in many ways.
 

Stephen Atkins of IBM developed a super-spreadsheet called nmon_analyser that processes the data collected by nmon. It’s great for producing cleaned-up data as well as for creating presentation graphs. It analyzes data with more sophistication than does sar. For example, it can calculate weighted averages for hot-spot analysis and can integrate IBM and EMC disk performance information. Although nmon_analyser is not officially supported by IBM, you can find it at
 

ibm.com/developerworks/aix/library/au-nmon_analyser
 

Choosing a Linux I/O Scheduler
 

[image: Image] Linux systems use an I/O scheduling algorithm to mediate between processes competing to perform disk I/O. The I/O scheduler massages the order and timing of disk requests to provide the best possible overall I/O performance for a given application or situation.
 

Four different scheduling algorithms are available in the Linux 2.6 kernel. You can take your pick. Unfortunately, the scheduling algorithm is set at boot time (with the elevator=algorithm kernel argument), so it’s not easy to change. The system’s scheduling algorithm is usually specified in the GRUB boot loader’s configuration file, grub.conf.
 

The available algorithms are
 

• Completely Fair Queuing (elevator=cfq): This is the default algorithm and is usually the best choice for general-purpose servers. It tries to evenly distribute access to I/O bandwidth. (If nothing else, the algorithm surely deserves an award for marketing: who could ever say no to a completely fair scheduler?)

 

• Deadline (elevator=deadline): This algorithm tries to minimize the latency for each request. It reorders requests to increase performance.

 

• NOOP (elevator=noop): This algorithm implements a simple FIFO queue. It assumes that I/O requests have already been optimized or reordered by the driver or will be optimized or reordered by the device (as might be done by an intelligent controller). This option may be the best choice in some SAN environments and is the best choice for SSD drives.

 

By determining which scheduling algorithm is most appropriate for your environment (you may need to run trials with each scheduler) you may be able to improve I/O performance.
 

oprofile: Profile Linux Systems in Detail
 

[image: Image]
oprofile is an incredibly powerful integrated system profiler for Linux systems running the 2.6 kernel or later. All components of a Linux system can be profiled: hardware and software interrupt handlers, kernel modules, the kernel itself, shared libraries, and applications.
 

If you have a lot of extra time on your hands and want to know exactly how your system resources are being used (down to the smallest level of detail), consider running oprofile. This tool is particularly useful if you are developing your own in-house applications or kernel code.
 

Both a kernel module and a set of user-level tools are included in the oprofile distribution, which is available for download at oprofile.sourceforge.net.
 

As of early 2010, a new system for tracing performance is on the horizon. Known as the performance events (“perf events”) subsystem, it provides a level of instrumentation never before seen in the Linux kernel. This is likely to be the future of Linux performance profiling and is slated to eventually replace oprofile.
 

29.5 Help! My System Just Got Really Slow!
 

In previous sections, we’ve talked mostly about issues that relate to the average performance of a system. Solutions to these long-term concerns generally take the form of configuration adjustments or upgrades.
 

However, you will find that even properly configured systems are sometimes more sluggish than usual. Luckily, transient problems are often easy to diagnose. Most of the time, they are caused by a greedy process that is simply consuming so
 

much CPU power, disk, or network bandwidth that other processes are affected. On occasion, malicious processes hog available resources to intentionally slow a system or network, a scheme known as a “denial of service” or DOS attack.
 

You can often tell which resource is being hogged without even running a diagnostic command. If the system feels “sticky” or you hear the disk going crazy, the problem is most likely a disk bandwidth or memory shortfall.5 If the system feels “sluggish” (everything takes a long time, and applications can’t be “warmed up”), the problem may lie with the CPU load.
 

The first step in diagnosis is to run ps auxww (ps -elf on Solaris and HP-UX) or top to look for obvious runaway processes. Any process that’s using more than 50% of the CPU is likely to be at fault. If no single process is getting an inordinate share of the CPU, check to see how many processes are getting at least 10%. If you snag more than two or three (don’t count ps itself), the load average is likely to be quite high. This is, in itself, a cause of poor performance. Check the load average with uptime, and use vmstat or top to check whether the CPU is ever idle.
 

If no CPU contention is evident, run vmstat to see how much paging is going on. All disk activity is interesting: a lot of page-outs may indicate contention for memory, and disk traffic in the absence of paging may mean that a process is monopolizing the disk by constantly reading or writing files.
 

There’s no direct way to tie disk operations to processes, but ps can narrow down the possible suspects for you. Any process that is generating disk traffic must be using some amount of CPU time. You can usually make an educated guess about which of the active processes is the true culprit.6 Use kill -STOP to suspend the process and test your theory.
 

Suppose you do find that a particular process is at fault—what should you do? Usually, nothing. Some operations just require a lot of resources and are bound to slow down the system. It doesn’t necessarily mean that they’re illegitimate. It is sometimes useful to renice an obtrusive process that is CPU-bound, however.
 

Sometimes, application tuning can dramatically reduce a program’s demand for CPU resources; this effect is especially visible with custom network server software such as web applications.
 

Processes that are disk or memory hogs can’t be dealt with so easily. renice gener-ally does not help. You do have the option of killing or stopping the process, but we recommend against this if the situation does not constitute an emergency. As with CPU pigs, you can use the low-tech solution of asking the owner to run the process later.
 

The kernel allows a process to restrict its own use of physical memory by calling the setrlimit system call.7 This facility is also available in the C shell through the built-in limit command. For example, the command
 

% limit memoryuse 32m
 

causes all subsequent commands that the user runs to have their use of physical memory limited to 32MiB (Solaris uses memorysize rather than memoryuse). This feature is roughly equivalent to renice for memory-bound processes.
 

If a runaway process doesn’t seem to be the source of poor performance, investigate two other possible causes. The first is an overloaded network. Many programs are so intimately bound up with the network that it’s hard to tell where system performance ends and network performance begins. See Chapter 21 for more information about the tools used to monitor networks.
 

Some network overloading problems are hard to diagnose because they come and go very quickly. For example, if every machine on the network runs a network-related program out of cron at a particular time each day, there will often be a brief but dramatic glitch. Every machine on the net will hang for five seconds, and then the problem will disappear as quickly as it came.
 

Server-related delays are another possible cause of performance crises. UNIX and Linux systems are constantly consulting remote servers for NFS, Kerberos, DNS, and any of a dozen other facilities. If a server is dead or some other problem makes the server expensive to communicate with, the effects ripple back through client systems.
 

For example, on a busy system, some process may use the gethostent library routine every few seconds or so. If a DNS glitch makes this routine take two seconds to complete, you will likely perceive a difference in overall performance. DNS forward and reverse lookup configuration problems are responsible for a surprising number of server performance issues.
 

29.6 Recommended Reading
 

COCKCROFT, ADRIAN, AND BILL WALKER. Capacity Planning for Internet Services. Upper Saddle River, NJ: Prentice Hall. 2001.
 

DREPPER, ULRICH. What Every Programmer Should Know about Memory. lwn.net/Articles/250967.
 

EZOLT, PHILLIP G. Optimizing Linux Performance. Upper Saddle River, NJ: Prentice Hall PTR, 2005.
 

JOHNSON, S., ET AL. Performance Tuning for Linux Servers. Indianapolis, IN: IBM Press, 2005.
 

LOUKIDES, MIKE, AND GIAN-PAOLO D. MUSUMECI. System Performance Tuning (2nd Edition). Sebastopol, CA: O’Reilly & Associates, 2002.
 

TUFTE, EDWARD R. The Visual Display of Quantitative Information (2nd Edition). Cheshire, CT: Graphics Press, 2001.
 

29.7 Exercises
 

E29.1 Make an educated guess as to what the problem might be in each of the following scenarios:
 

a) When switching between applications, the disk thrashes and there is a noticeable lag.

 

b) A numerical simulation program takes more time than normal, but system memory is mostly free.

 

c) Users on a busy LAN complain of slow NFS access, but the load average on the server is very low.

 

d) Running a command (any command) often produces the error message “out of memory.”

 

[image: Image] E29.2 Load balancing can dramatically impact server performance as seen from the outside world. Discuss several load balancing mechanisms.
 

[image: Image] E29.3 List the four main resources that can affect performance. For each resource, give an example of an application that could easily lead to the exhaustion of that resource. Discuss ways to alleviate some of the stress associated with each scenario.
 

[image: Image] E29.4 Write three simple programs or scripts. The first should drive the CPU’s %system time high. The second should drive the CPU’s %user time high. The third should affect neither of these measures but should have a high elapsed time. Use your programs in conjunction with the commands described in the Analyzing CPU usage section (starting on page 1121) to see what happens when you stress the system in various ways.
 

[image: Image] E29.5 Write two simple programs or scripts. The first should be read-intensive and the second write-intensive. Use your programs with the commands in the Analyzing disk I/O section (starting on page 1127) to see what happens when you stress the system in various ways. (For bonus points, give each of your programs the option to use either a random or a sequential access pattern.)
 

[image: Image] E29.6 Choose two programs that use a noticeable amount of system resources. Use vmstat and the other tools mentioned in this chapter to profile both applications. Make a claim as to what each program does that makes it a resource hog. Back up your claims with data.
 
  


30. Cooperating With Windows
 

[image: Image]
 

Chances are high that your environment includes both Microsoft Windows and UNIX systems. If so, these operating systems can assist each other in many ways. Among other feats, Windows applications can run from a UNIX desktop or access a UNIX server’s printers and files. UNIX applications can display their user interfaces on a Windows desktop.
 

Both platforms have their strengths, and they can be made to work together. Windows is a popular and featureful desktop platform, capable of bridging the gap between the user and the network cable. UNIX, on the other hand, is a reliable and scalable infrastructure platform. So let’s not fight, OK?
 

30.1 Logging in to a Unix System From Windows
 

Users may often find themselves wanting to head for the snow-covered slopes of a good bash session without abandoning the Windows box on their desk. The best remote access tool for UNIX and Linux systems is the secure shell protocol, SSH.
 

See page 926 for more information about SSH.

 

Several SSH client implementations are available for Windows. Our current favorite, the open source PuTTY, is simple and effective. It supports many of the features you have come to expect from a native terminal application such as xterm.
 

SSH also supports file transfer, and PuTTY includes two command-line clients for this purpose: psftp and pscp. Hard-core “never touch a command line” Windows users might prefer the graphical WinSCP client from winscp.net.
 

Another good option is to install the more general UNIX-on-Windows Cygwin package and to run its SSH utilities from rxvt. There’s more information about Cygwin starting on page 1140.
 

A nifty zero-footprint Java implementation of SSH called MindTerm is available from AppGate (appgate.com). It’s free for personal use. It runs on any system that supports Java and can be configured in a variety of ways.
 

Of the commercial SSH client implementations, our favorite is VanDyke Soft-ware’s SecureCRT, available for purchase from vandyke.com. SecureCRT supports all our favorite terminal features, and VanDyke offers excellent customer service and an open-minded attitude toward feature requests from customers. Like PuTTY, SecureCRT features built-in SFTP file transfer software.
 

An interesting feature of SSH is its ability to forward TCP ports between client and server. For example, this feature allows you to set up on the client a local port that forwards incoming connections to a different port on a machine that is only reachable from the server. Although this feature opens a world of new possibilities, it is also potentially dangerous and is something you must be aware of when granting SSH access to your server. Fortunately, the port-forwarding feature can be disabled on the server side to limit SSH to terminal access and file transfer.
 

30.2 Accessing Remote Desktops
 

Graphical desktops on UNIX are tied to the free X Window System, which is in no way related to Microsoft Windows. X was developed at MIT in the mid-1980s and has been adopted as a standard by all UNIX workstation manufacturers and Linux distributions. It has been through several major updates, but a stable base was finally reached with version 11, first published in the early 1990s. The version number of the protocol was appended to X to form X11, the name by which it is most commonly known. (The name “Windows” by itself always refers to Microsoft Windows, both in this chapter and in the real world.)
 

X11 is a client/server system. The X server is responsible for displaying data on the user’s screen and for acquiring input from the user’s mouse and keyboard. It communicates with client applications over the network. The server and clients need not be running on the same machine.
 

A more detailed discussion of the X Windows architecture can be found in Chapter 25, The X Window System, which starts on page 1011.
 

X Server Running on a Windows Computer
 

X11 is a rich protocol that has incorporated many extensions over the years. The implementation of an X server is, therefore, rather complex. Nevertheless, X server implementations now exist for almost every operating system. X itself is OS agnostic, so X11 clients running on a UNIX box can display on an X server running under Microsoft Windows and still be controlled as if the user were sitting at the system console.
 

Unfortunately, the original designers of the X protocols did not devote much thought to security. Every program that connects to your X server can read everything you type on the keyboard and see everything displayed on your screen. To make matters worse, remote programs need not even display a window when accessing your X server; they can simply lurk silently in the background.
 

Several methods of securing X11 have been proposed over time, but they have all tended to be somewhat complex. The bottom line is that you are best off preventing all remote connections to your X server unless you are absolutely sure of what you are doing. Most X servers are configured to refuse remote connections by default, so you should be safe as long as you do not run the xhost program (or its equivalent) to grant remote access.
 

Unfortunately, granting remote access is exactly what you need to do when you seek to run programs on UNIX and display their interfaces on Windows. So, how to run a remote application without granting remote access to the X server? The most common method is to use a feature of the SSH protocol that is specifically designed to support X11. This scheme creates a secure tunnel between X clients running on the remote host and the local X server. Programs started on the remote host display automatically on the local machine, but through the magic of SSH, the local X server perceives them as having originated locally.
 

See page 926 for more information about SSH.

 

Note that X forwarding only works if the X forwarding features have been enabled on both the SSH server and the SSH client. If you use the PuTTY SSH client on Windows, simply activate the X11 forwarding feature in its setup screen. On the SSH server side (that is, the X11 client side; the UNIX machine), make sure that the /etc/ssh/sshd_config file contains the line
 

X11Forwarding yes
 

If you modify the SSH server configuration, make sure you restart the sshd process to activate the new configuration. The X11Forwarding option is enabled by default on most UNIX systems that ship OpenSSH.
 

As our technical reviewer Dan Foster notes, forwarding X connections over SSH “can be excruciatingly slow, even on a LAN, and it is even worse if there is any network latency.” VNC, discussed below, is an alternative.
 

Although Apple provides a free X server for Mac OS X, Microsoft unfortunately offers no corresponding feature. A free X server for Windows is available from the Cygwin project (cygwin.com), and it works very well once you’ve configured it. The Xming server for Windows is an excellent alternative that’s much easier to configure. Commercial X servers for Windows include Exceed and X-Win32. These offer much simpler configuration at a rather steep price.
 

VNC: Virtual Network Computing
 

In the late 1990s, a few people at AT&T Labs in Cambridge, UK, developed a system for remote desktop access called VNC. Their idea was to marry the simplicity of a dumb terminal with the modern world of window systems. In contrast to X11, the VNC protocol does not deal with individual applications. Instead, it creates a complete virtual desktop (or provides remote access to an existing desktop) as a unit.
 

AT&T published the VNC software under a liberal source license. This openness allowed other folks to hop on the bandwagon and create additional server and viewer implementations, as well as protocol improvements that reduced the consumption of network bandwidth. Today, VNC viewers are available for most devices that provide some means for graphical display. VNC servers for UNIX, Linux, and Windows are widely available. VNC implementations exist even for most smartphones.
 

The UNIX VNC server implementation is essentially a graphics adapter emulator that plugs into the X.Org X Windows server. Running a vncserver from your UNIX account creates a new virtual desktop that runs in the self-contained world of the UNIX machine. You can then use a VNC viewer to access that desktop remotely. We recommend taking advantage of the vncpasswd command before starting the server for the first time to establish a connection password.
 

The VNC protocol is stateless and bitmap based. Therefore, viewers can freely connect and disconnect. Moreover, several viewers can access the same server at the same time. This last feature is especially useful for remote support and for training setups. It also facilitates shared console access for system administration.
 

VNC servers in the Windows world do not normally create an extra desktop; they simply export the standard Windows desktop as it is displayed on screen. The main application for this technology is remote support.
 

These days, the original authors of the VNC protocol are running their own company, RealVNC (realvnc.com). The UltraVNC project (uvnc.com) is concentrating on the Windows domain with a very fast and feature-rich Windows-based VNC server implementation, and TightVNC (tightvnc.com) is working on improved compression ratios. These groups do talk with each other, so features tend to cross-pollinate among the various implementations.
 

The VNC protocol has been designed with extensibility in mind. All combinations of viewers and servers can work together; they pick the best protocol variant that both sides understand. Implementation-specific features (such as file transfer) can only be accessed by a server and client running from the same project.
 

Windows RDP: Remote Desktop Protocol
 

Ever since Windows 2000 Server, every Windows box has the technical ability to provide graphical remote access to several users at the same time. The remote access component is called Remote Desktop, and it uses a protocol called the Remote Desktop Protocol (RDP) to communicate between client and server. RDP clients for UNIX let administrators manage Windows systems from a UNIX desktop. They are an indispensable tool for UNIX administrators who have Windows systems in their environments.
 

To take advantage of RDP, you must enable it on the server (Windows) side and set up a client to access it. On Windows 7, go to the System control panel, click Remote settings, and select an option in the Remote Desktop box. Older versions of Windows might require you to manually enable the Terminal Server service.
 

On the UNIX side, install the open source rdesktop program (www.rdesktop.org) to display Windows desktops on your UNIX workstation. Clients exist for most other operating systems, too, including mobile devices.
 

RDP can also map the server’s printers and disks onto the client.
 

30.3 Running Windows and Windows-Like Applications
 

As discussed in Chapter 24, the free but proprietary product VMware Server from vmware.com lets you run multiple operating systems simultaneously on PC hardware. VMware emulates entire virtual “guest machines” on top of a host operating system, which must be either Linux or Windows. Regardless of the host OS, you can install most Intel-compatible operating systems into one of VMware’s virtual machines. From the guest machine’s perspective, the operating system runs exactly as it would on dedicated hardware, and applications install normally. Other virtualization offerings such as KVM and VirtualBox can also run Windows and should be candidates for running Windows applications.
 

A different approach is taken by the Wine system from winehq.org. Wine implements the Windows programming API in the UNIX environment, allowing you to run Windows applications directly on top of X. This free software translates native Windows API calls to their UNIX counterparts and can do so without using any Microsoft code. Wine supports TCP/IP networking, serial devices, and sound output. It runs on Linux, BSD, Mac OS, and Solaris systems.
 

A large number of Windows applications run in Wine without problems, and others can be made to work with a few tricks; see the web site for details. Unfortunately, getting an application to run under Wine is often not so simple. The talented folks at codeweavers.com have written a commercial installer system that can make some of the balkier Windows apps work correctly.
 

If your tool of choice is supported by CodeWeavers, great. But even if it is not, give the application a try—you might be pleasantly surprised. If an application does not work on its own and you cannot find any prewritten hints, be prepared to spend some serious spare time whipping it into shape if you are determined to do it on your own. If you have the budget, you can consider contracting CodeWeavers to help you.
 

Win4Lin is a commercial alternative to Wine from NeTraverse. Win4Lin claims to be more stable than Wine and to support a few more Microsoft applications. However, it requires kernel modifications, which Wine does not. Win4Lin is available from win4lin.com.
 

Dual Booting, or Why You Shouldn’t
 

If you’ve ever installed Linux on a computer that had a former life as a Windows machine, you have doubtless been offered the option to set up a dual boot configuration. Such configurations function pretty much as promised. It is even possible to mount Windows partitions under Linux and to access Linux filesystems under Windows. Read all about setting up a dual boot configuration on page 85.
 

But wait! If you are doing real work and need access to both Windows and UNIX, be very skeptical of dual booting as a possible solution in the context of a production system. Dual boot setups represent Murphy’s Law at its worst: they always seem to be booted into the wrong OS, and the slightest chore usually requires multiple reboots. With the advent of widespread virtualization and cheap computing hardware, there’s usually no reason to put yourself through this torture.
 

Microsoft Office Alternatives
 

A few years ago, Sun released an open source version of StarOffice, its Microsoft Office-like application suite, under the name OpenOffice.org. OpenOffice.org includes a spreadsheet, a word processor, a presentation package, a drawing application, and a database application similar to Microsoft Access. These tools can read and write files generated by their Microsoft analogs. You can download the suite from openoffice.org.
 

OpenOffice.org is available on all major platforms, including Windows, Linux, Solaris, Mac OS X, and most other versions of UNIX. If you’re looking for a package with a commercial support contract, you can also buy Sun’s StarOffice, which is essentially OpenOffice.org in a box with support and better spell-checking.
 

Google competes on the application front with its Google Apps offering. In addition to its powerful Gmail and Google Calendar offerings, Google also includes basic word processing and spreadsheets. These free products include collaboration features that let multiple users edit documents simultaneously from several locations. Since all of Google’s apps run in a web browser, they can be used on virtually any operating system. You can export and import content in various formats, including those of Microsoft Office.
 

30.4 Using Command-Line Tools with Windows
 

What many UNIX people miss most when working on Windows systems is their beloved command-line terminal. Not just any old terminal application or the abomination known as the DOS box, but a proper xterm with support for window resizing, colors, mouse control, and all the fancy xterm escape sequences. Although Windows has no stand-alone (i.e., without X) native port of xterm, a neat little program called rxvt comes awfully close. It is part of the Cygwin system, downloadable from cygwin.com. If you install Cygwin’s X server, you can use the real xterm.
 

Cygwin is distributed under the GNU General Public License and contains an extensive complement of common UNIX commands as well as a porting library that implements the POSIX APIs under Windows. Cygwin’s reconciliation of the UNIX and Windows command-line and filesystem conventions is well thought out and manages to bring many of the creature comforts of a UNIX shell to native Windows commands. In addition to making UNIX users feel at home, Cygwin makes it easy to get UNIX software running under Windows. See cygwin.com for more details.
 

The MKS Toolkit is a commercial alternative to Cygwin. See MKS’s web site at mkssoftware.com for more information.
 

A growing list of UNIX software now also runs natively on Windows, including Apache, Perl, BIND, PHP, MySQL, Vim, Emacs, Gimp, Wireshark, and Python. Before attempting to force an application to work on Windows with something like Cygwin, find out if a native implementation is available.
 

30.5 Windows Compliance with Email and Web Standards
 

In an ideal world, everybody would use open standards to communicate and happiness would abound. But this is not an ideal world, and many have accused Windows of being a mess of proprietary protocols and broken implementations of Internet standards. Partially true, perhaps, but Windows can play along nicely in some parts of the standards world. Two of these areas are email and web service.
 

In the wild history of the web, a number of corporations have tried to embrace and extend the web in ways that would allow them to lock out competition and give their own business a mighty boost. Microsoft is still engaged in this battle at the browser level with its numerous extensions peculiar to Internet Explorer. At the underlying level of the HTTP protocol, however, Windows and Windows browsers are relatively platform agnostic.
 

Microsoft provides its own web server, IIS, but the adoption of IIS has historically lagged that of Apache running on Linux by a significant margin. Unless you are locked in to a server-side technology such as ASP, or your vendor’s product requires IIS, there’s no compelling reason to use Windows machines as web servers.
 

For email, Microsoft touts its Exchange Server product as the preferred server-side technology. Truth be told, Exchange Server’s capabilities do outshine those of Internet-standard mail systems, particularly when the mail clients consist of Windows boxes running Microsoft Outlook. But fear not: Exchange Server can also speak SMTP for inbound and outbound mail, and it can serve up mail to UNIX clients through the standard IMAP and POP protocols.
 

On the client side, both Outlook and its free younger sibling Windows Mail can connect to UNIX IMAP and POP servers (as can most other third-party email user agents for Windows). Mix and match in any combination you like. More information about POP and IMAP can be found starting on page 756.
 

30.6 Sharing Files With Samba and CIFS
 

In the early 1980s, IBM designed an API that let computers on the same network subnet talk to one another using names instead of cryptic numeric addresses. The result was called the Network Basic/Input Output System, or NetBIOS. The combination of NetBIOS and its original underlying network transport protocol was called the NetBIOS Extended User Interface, or NetBEUI. The NetBIOS API became quite popular, and it was adapted for use on top of a variety of different network protocols such as IPX, DECNet, and TCP/IP.
 

Microsoft and Intel developed a file-sharing protocol on top of NetBIOS and called it “the core protocol.” Later, it was renamed the Server Message Block protocol, or SMB for short. A later evolution of the SMB protocol known as the Common Internet File System (CIFS) is essentially a version of SMB that has been cleaned up and tuned for operation over wide area networks. CIFS is the current lingua franca of Windows file sharing.
 

In the Windows world, a filesystem or directory made available over the network is known as a “share.” It sounds a bit strange to UNIX ears, but we follow this convention when referring to CIFS filesystems.
 

Samba: CIFS Server for UNIX
 

Samba is an enormously popular software package, available under the GNU Public License, that implements the server side of CIFS on UNIX and Linux hosts. It was originally created by Andrew Tridgell, who first reverse-engineered the SMB protocol and published the resulting code in 1992. Here, we focus on Samba version 3.
 

Today, Samba is well supported and under active development to expand its functionality. It provides a stable, industrial-strength mechanism for integrating Windows machines into a UNIX network. The real beauty of Samba is that you only need to install one package on the server; no special software is needed on the Windows side.
 

CIFS provides five basic services:
 

• File sharing

 

• Network printing

 

• Authentication and authorization

 

• Name resolution

 

• Service announcement (file server and printer “browsing”)

 

Samba not only serves files through CIFS, but it can also perform the basic functions of a Windows Active Directory controller. As a domain controller, Samba supports advanced features such as Windows domain logins, roaming Windows user profiles, and CIFS print spooling.
 

Most of Samba’s functionality is implemented by two daemons, smbd and nmbd. smbd implements file and print services, as well as authentication and authorization. nmbd provides the other major CIFS components: name resolution and service announcement.
 

Unlike NFS, which requires kernel-level support, Samba requires no drivers or kernel modifications and runs entirely as a user process. It binds to the sockets used for CIFS requests and waits for a client to request access to a resource. Once a request has been authenticated, smbd forks an instance of itself that runs as the user who is making the requests. As a result, all normal file-access permissions (including group permissions) are obeyed. The only special functionality that smbd adds on top of this is a file-locking service that gives client PCs the locking semantics to which they are accustomed.
 

Samba Installation
 

Samba is known to work with all of our example systems.1 Linux distributions package it as a matter of course. Patches, documentation, and other goodies are available from samba.org. Make sure you are using the most current Samba packages available for your system since many updates fix security vulnerabilities.
 

On all systems, you’ll need to edit the smb.conf file (which is to be found in either /etc/samba/smb.conf or /etc/smb.conf) to tell Samba how it should behave. In this file, you specify the directories and printers that should be shared, their access rights, and Samba’s general operational parameters. The Samba package comes with a well-commented sample smb.conf file that is a good starting place for new configurations. Note that once Samba is running, it checks its configuration file every few seconds and loads any changes you make.
 

It’s important to be aware of the security implications of sharing files and other resources over a network. For a typical site, you need to do two things to ensure a basic level of security:
 

• Explicitly specify which clients can access the resources shared by Samba. This part of the configuration is controlled by the hosts allow clause in the smb.conf file. Make sure that it contains only the IP addresses (or address ranges) that it should.

 

• Block access to the server from outside your organization. Samba uses encryption only for password authentication. It does not use encryption for its data transport. In almost all cases, you should block access from

 

outside your organization to prevent your users from accidentally downloading files in the clear across the Internet. Blocking is typically implemented at the network firewall level; Samba uses UDP ports 137 through 139 and TCP ports 137, 139, and 445.

 

Since the release of Samba version 3, excellent documentation has been available on-line from samba.org.
 

Samba comes with sensible defaults for its configuration options, and most sites will need only a small configuration file. Use the command testparm -v to get a listing of all the Samba configuration options and the values to which they are currently set. This listing includes your settings from the smb.conf file as well as any default values you have not overridden.
 

Avoid setting options in the smb.conf file unless they are different from the default values and you have a clear idea of why you want to lock them down. The advantage of this approach is that your configuration automatically adapts to the settings recommended by the Samba authors when you upgrade to a newer version of Samba.
 

That having been said, do make sure that password encryption is turned on:
 

encrypt passwords = true
 

This option encrypts the password exchange between Windows clients and the Samba server. It’s currently the default, and there’s no conceivable situation in which you would want to turn it off.
 

The encryption feature requires the Samba server to store a special Windows password hash for every user. Windows passwords work in a fundamentally different way from UNIX passwords, and therefore it is not possible to use the passwords from /etc/shadow.2
 

Samba provides a special tool, smbpasswd, for setting up these passwords. For example, let’s add the user tobi and set a password for him:
 

[image: Image]
 

Users can change their own Samba passwords with smbpasswd as well:
 

[image: Image]
 

This example changes the Samba password of user tobi on the server smbserver.
 

Filename Encoding
 

Starting with version 3.0, Samba encodes all filenames in UTF-8. If your server runs with a UTF-8 locale, this a great match.3 If you are in Europe and you are still using one of the ISO 8859 locales on the server, you will find that filenames with special characters such as ä, ö, ü, é, or è look rather odd when you type ls in a directory in which such files have been created with Samba and UTF-8. The solution is to tell Samba to use the same character encoding as your server:
 

[image: Image]
 

Make sure that the filename encoding is correct right from the start. Otherwise, files with oddly encoded names will accumulate. Fixing them can be quite a complex task later on.
 

User Authentication
 

In the Windows authentication systems, the client does not trust the server; the user’s password never travels across the net as plaintext. Instead, Windows uses a Kerberos-based challenge/response method for authentication. A Windows client can authenticate to a Samba server by using Kerberos as well.
 

Windows saves your login username and password and tries to use these credentials to authenticate you to network services whenever it is presented with an authentication request. So, if a user has the same username and password combination on your Windows box as on your Samba server, Samba grants seemingly passwordless access to the appropriate Samba shares. All the authentication happens transparently in the background.
 

The downside of the challenge/response approach is that the server has to store plaintext-equivalent passwords. In actual fact, the server’s copies of the passwords are locally encrypted, but this is primarily a precaution against casual browsing. An intruder who gains access to the encrypted passwords can use them to access the associated accounts without the need for further password cracking. Samba passwords must be protected even more vigorously than the /etc/shadow file.
 

In complex environments with multiple Samba servers, it makes sense to operate a centralized directory service that makes sure the same password is active on all servers. Samba supports LDAP and Windows authentication services. LDAP is discussed in Chapter 19, Sharing System Files.
 

To merge the authentication systems of Windows and UNIX, you have two basic options. First, you can configure a Samba server to act as a Windows Active Directory controller. (See Active Directory authentication starting on page 1154 for more information about how to implement this option.) Alternatively, you can install the pGina software (sourceforge.net/projects/pgina) on your Windows clients. This clever application replaces the standard Windows login system with a framework that supports all sorts of standard authentication services, including LDAP and NIS.
 

Basic File Sharing
 

If each user has a home directory, the homes can be “bulk shared”:
 

[image: Image]
 

This configuration allows the user oetiker (for example) to access his home directory through the path \\sambaserver\oetiker from any Windows system.
 

At some sites, the default permissions on home directories allow people to browse one another’s files. Because Samba relies on UNIX file permissions to implement access restrictions, Windows users coming in through CIFS can read one another’s home directories as well. However, experience shows that this behavior tends to confuse Windows users and make them feel exposed. The valid users line in the configuration fragment above tells Samba to prevent connections to other people’s home directories. Leave it out if this is not what you want.
 

Samba uses its magic [homes] section as a last resort. If there is an explicitly defined share in the configuration for a particular user’s home directory, the parameters set there override the values set through [homes].
 

Group Shares
 

Samba can map Windows access control lists (ACLs) to either file permissions or ACLs (if the underlying filesystem supports them). In practice, we find that the concept of ACLs tends to be too complex for most users. Therefore, we normally just set up a special share for each group of users that requires one and configure Samba to take care of setting the appropriate permissions. Whenever a user tries to mount this share, Samba checks to make sure the applicant is in the appropriate UNIX group and then switches its effective UID to the designated owner of the group share (a pseudo-user created for this purpose). For example:
 

[image: Image]
 

A similar effect can be achieved through Samba’s inherit permissions option. If that option is enabled on a share, all new files and directories inherit their settings from their parent directory:
 

[image: Image]
 

Because Samba will now propagate settings from the parent directory, it’s important to set the permissions on the root of the share appropriately:
 

[image: Image]
 

Note that this configuration still requires you to create an eng pseudo-user to act as the owner of the shared directory.
 

Transparent Redirection with MS DFS
 

Microsoft’s Distributed File System (MS DFS) lets directories within a share trigger clients to transparently automount other shares as soon as they are accessed. For habitués of UNIX and Linux this does not sound like a big deal, but for Windows the whole concept is quite revolutionary and unexpected.
 

Here is an example:
 

[image: Image]
 

You create symbolic links in /home/dfs/mydfs to set up the actual automounts. For example, the following command makes the jump “directory” a link to one of two directories on other servers. (Note the single quotes. They are required for protection of the backslashes.)
 

$ sudo ln -s ’msdfs:serverX\shareX,serverY\shareY’ jump
 

If more than one source is provided (as here), Windows will fail over between them. Users who access \\server\mydfs\jump will now actually be reading files from shareX on serverX or shareY on serverY, depending on availability. If the filesystems are exported read/write, you must make sure you have some mechanism in place to synchronize the files. rsync can be helpful for this.
 

With Samba, you can also redirect all clients that access a particular share to a different server. This is something a Windows server cannot do.
 

[image: Image]
 

Note that DFS only works for users who have the same username and password on all the servers involved.
 

Smbclient: A Simple CIFS Client
 

In addition to its many server-side features, the Samba package includes a simple command-line file transfer program called smbclient. You can use this program to access any Windows or Samba server. For example:
 

[image: Image]
 

Once you have successfully logged in to the file server, you use standard ftp-style commands (such as get, put, cd, lcd, and dir) to navigate and transfer files. Type ? to see a full list of the available commands.
 

Linux Client-Side Support for CIFS
 

[image: Image] Linux includes direct client-side support for the SMB/CIFS filesystem. You can mount a CIFS share into your filesystem tree much as you can with any other filesystem that is directly understood by the kernel. For example:
 

$ sudo mount -t cifs -o username=joe //redmond/joes /home/joe/mnt
 

Although this feature is useful, keep in mind that Windows conceptualizes network mounts as being established by a particular user (hence the username=joe
option above), whereas UNIX regards them as more typically belonging to the system as a whole. Windows servers generally cannot deal with the concept that several different people might be accessing a mounted Windows share.
 

From the perspective of the UNIX client, all files in the mounted directory appear to belong to the user who mounted it. If you mount the share as root, then all files belong to root, and garden-variety users might not be able to write files on the Windows server.
 

The mount options uid, gid, fmask, and dmask let you tweak these settings so that ownership and permission bits are more in tune with the intended access policy for that share. Check the mount.cifs manual page for more information about this behavior.
 

To allow users to mount a Windows share on their own, you can add a line in the following format to your /etc/fstab file:
 

[image: Image]
 

Because of the user option specified here, users can now mount the filesystem just by running the command
 

$ mount /home/joe/mnt
 

mount prompts the user to supply a password before mounting the share.
 

Although NFS is the UNIX standard for network file service, in some situations it may make more sense to use Samba and CIFS to share files among UNIX and Linux computers. For example, in some versions of NFS, it is dangerous to allow users to perform mounts of corporate filesystems from their personal laptops.4 However, you can safely use CIFS to give these laptops access to their owner’s home directories.
 

See Chapter 18 for more information about NFS.

 

30.7 Sharing Printers with SAMBA
 

The simple approach to printer sharing is to add a [printers] section to the smb.conf file; this makes Samba share all local printers. Samba uses the system printing commands to do its work, but since UNIX printing is not very standardized, you may have to tell Samba which particular printing system is in use on your server. To do that, set the printing option to an appropriate value; check the smb.conf man page for the list of printing systems that are currently supported.
 

[image: Image]
 

Windows clients can now use these printers as network printers, just as if they were hosted by a Windows server. There is one small problem, though. The Windows client will want know what kind of printer it is using, and it will ask the user to select an appropriate printer driver. This leads to quite a lot of support requests from users who do not know how to proceed in this situation. If the particular printer in question requires a driver that is not included with Windows, the situation becomes even more support-intensive.
 

See Chapter 26 for more information about printing.

 

Fortunately, you can configure Samba to furnish the necessary Windows printer drivers to the Windows clients. But to make this work, you must do some preparation. First, to make sure that Samba behaves like a print server, add appropriate entries to the [global] section of the smb.conf file:
 

[image: Image]
 

Now Samba knows that it is a print server, and it will accept the user printadm as its printer administrator.
 

If you are going to provide printer drivers for your Windows clients, there has to be a place to store the drivers. This is done through a special share called [print$].
 

[image: Image]
 

Before you can start to upload printer drivers to the new print server, you must take care of a few more details at the system level. Make sure the printadm account exists and has permission to access Samba.
 

[image: Image]
 

Samba can store printer drivers only if the appropriate directory structure exists and is owned by printadm (as defined in the write list option):
 

[image: Image]
 

At this point there are two options: you can either walk to a Windows box and upload the printer drivers from there, or you can use Samba tools to do it all from the command line. Unfortunately, there is no simple way of knowing what exactly has to be installed for a particular driver, so we recommend the first approach in most circumstances. Only if you are faced with repeatedly installing a driver on multiple servers is it worthwhile to examine the installation and learn to replicate it with command-line tools.
 

Installing a Printer Driver From Windows
 

To install drivers from a Windows client, open a connection to the Samba server by typing \\sambaserver in the Start -> Run dialog box. Windows will ask you to log in to the Samba server. Log in as the user printadm. If all goes well, a window pops up with a list of shares provided by the server.
 

Within the Printers subfolder you should see all the printers you have shared from your server. Right-click in the blank space around the printer icons to activate the Server Properties dialog, then add your favorite printer drivers by making use of the Drivers tab.
 

The uploaded drivers end up in the directory specified for the [print$] share. At this point, you might want to take a quick peek at the properties of the driver you just uploaded. This list of files is what you will have to provide to the Samba command-line tool if ever you want to automate the uploading of the driver.
 

Once the proper drivers have been uploaded, you can now associate them with specific printers. Bring up the Properties panel of each printer in turn (by right-clicking and selecting Properties) and select the appropriate drivers in the Advanced tab. Then open the Printing Defaults dialog and modify the settings. Even if you are happy with the default settings, make at least one small change to force Windows to store the configuration data structures on the Samba server. Samba then provides that data to clients that access the printer. If you miss this last step, you may end up with clients crashing because no valid default configuration can be found when they try to use the printer.
 

Installing a Printer Driver from the Command Line
 

As you may have guessed already, some of these steps are hard to replicate without Windows, especially the setting of printer defaults. But if you want to set up hundreds of printers on a Samba server, you may want to try to do it from the command line all the same. Command-line configuration works particularly well for PostScript printers because the Windows PostScript printer driver works correctly without default configuration information.
 

If you made a note of the files required by a particular driver, you can install the driver from the command line. First, copy the required files to the [print$] share:
 

[image: Image]
 

Next, assign the driver to a particular printer. Let’s assume you have a simple PostScript printer with a custom PPD file:
 

[image: Image]
 

The backslashes at the ends of lines allow the command to be split onto multiple lines for clarity; you can omit these and enter the command on one line if you prefer. The backslashes before double quotes distinguish the nested sets of quotes.
 

The long string in the example above contains the information listed in the property dialog of the printer driver that is seen when the printer driver is being installed from Windows:
 

• Long printer name

 

• Driver filename

 

• Data filename

 

• Configuration filename

 

• Help filename

 

• Language monitor name (set this to NULL if you have none)

 

• Default data type (set this to NULL if there is none)

 

• Comma-separated list of additional files

 

To configure a printer to use one of the uploaded drivers, run
 

[image: Image]
 

30.8 Debugging SAMBA
 

Samba usually runs without requiring much attention. However, if you do have a problem, you can consult two primary sources of debugging information: the log files for each client and the smbstatus command. Make sure you have appropriate log file settings in your configuration file.
 

[image: Image]
 

Higher log levels produce more information. Logging takes time, so don’t ask for too much detail unless you are debugging. Operation can be slowed considerably.
 

The following example shows the log entries generated by an unsuccessful connect attempt followed by a successful one.
 

[image: Image]
 

The smbcontrol command is handy for altering the debug level on a running Samba server without altering the smb.conf file. For example,
 

$ sudo smbcontrol smbd debug "4 auth:10"
 

The example above would set the global debug level to 4 and set the debug level for authentication-related matters to 10. The smbd argument specifies that all smbd daemons on the system will have their debug levels set. To debug a specific established connection, you can use the smbstatus command to figure out which smbd daemon handles the connection and then pass its PID to smbcontrol to debug just this one connection. At log levels over 100 you will start to see (encrypted) passwords in the logs.
 

smbstatus shows currently active connections and locked files. This information is especially useful when you are tracking down locking problems (e.g., “Which user has file xyz open read/write exclusive?”). The first section of output lists the resources that a user has connected to. The last section lists any active file locks.
 

[image: Image]
 

If you kill the smbd associated with a certain user, all its locks disappear. Some applications handle this gracefully and reacquire any locks they need. Others, such as MS Access, freeze and die a horrible death with much clicking required on the Windows side just to be able to close the unhappy application. As dramatic as this may sound, we have yet to see any file corruption resulting from such a procedure. In any event, be careful when Windows claims that files have been locked by another application. Often Windows is right and you should fix the problem on the client side by closing the offending application instead of brute-forcing the locks on the server.
 

30.9 Active Directory Authentication
 

The Windows desktops lurking on your network most likely use Microsoft’s Active Directory system for authentication, directory services, and other network services. Active Directory (AD) collects users, groups, computers, and operating system polices under a single umbrella, centralizing and simplifying system administration. It is also one of the primary reasons why Windows has gained a permanent foothold in many enterprises. UNIX has assembled some of the pieces of this puzzle, but none of the UNIX solutions are as polished or as widely implemented as Active Directory.
 

Ever devious, the Samba project folks have made great strides toward providing Active Directory support for UNIX and Linux environments. With the help of Samba, Linux systems can join an Active Directory domain and allow access to the system by accounts defined in AD that have no entries in the /etc/passwd file. Linux UIDs are derived from their analogous Windows user identifiers, known as security identifiers or SIDs. By leveraging PAM, a home directory can automatically be created for a user who doesn’t already have one. The integration system even allows the passwd command to change a user’s AD password. All of this Windows integration magic is handled by a component of Samba called winbind.
 

See page 908 for more information about PAM.

 

Active Directory embraces and extends several standard protocols, notably LDAP and Kerberos. In an attempt to achieve IT system management nirvana, Microsoft has unfortunately sacrificed compliance with the original protocols, creating an intoxicating web of proprietary RPC dependencies.
 

See page 739 for more information about the name service switch.

 

To emulate the behavior of an Active Directory client, winbind hooks into PAM, NSS, and Kerberos. It converts authentication and system information requests into the appropriate Microsoft-specific formats. From the standpoint of UNIX, Active Directory is just another source of LDAP directory information and Kerberos authentication data.
 

See Chapter 17 for more information about DNS.

 

You must complete the following configuration chores before your Linux system can enter Active Directory paradise:
 

• Install Samba with support for Active Directory and identity conversion.

 

• Configure the name service switch, nsswitch.conf, to use winbind as a source of user, group, and password information.

 

• Configure PAM to service authentication requests through winbind.

 

• Configure Active Directory as a Kerberos realm.

 

UNIX and Linux AD clients should also use AD controllers to service their DNS requests and to set their clocks with NTP. Ensure as well that the system’s fully qualified domain name is listed in /etc/hosts. In some cases, it’s necessary to add the domain controller’s IP address to /etc/hosts, too. However, we discourage this if you’re using Active Directory for DNS service.
 

winbind is an excellent option for Linux systems, but UNIX has largely been left out in the cold. We have heard reports of UNIX sites successfully deploying the same general scheme described here, but each system has a few caveats, and the integration tends to be not as clean as on Linux. For UNIX systems, we suggest using one of the alternatives described on page 1160.
 

Getting Ready for Active Directory Integration
 

Samba is included by default on most Linux distributions, but some distributions do not include the identity mapping services needed for a full AD client implementation. Those components can be fiddly to set up correctly if you’re compiling from source code, so we recommend installing binary packages if they’re available for your distribution.
 

The Samba components, on the other hand, should be as fresh as possible. Active Directory integration is one of Samba’s newer features, so downloading the most recent source code from samba.org can eliminate frustrating bugs.
 

If you build Samba from source, configure it with the idmap_ad and idmap_rid shared modules. The appropriate argument to the ./configure script is
 

--with-shared-modules=idmap_ad,idmap_rid
 

Build and install Samba with the familiar make, sudo make install sequence. When installed correctly, the winbind library is deposited in /lib:
 

[image: Image]
 

The winbind daemon is stopped and started through normal operating system procedures. It should be restarted after changes to nsswitch.conf, smb.conf, or the Kerberos configuration file, krb5.conf. There is no need to start it until these other services have been configured.
 

Configuring Kerberos for Active Directory Integration
 

Kerberos is infamous for complex configuration, particularly on the server side. Fortunately, you only need to set up the client side of Kerberos, which is a much easier task. The configuration file is /etc/krb5.conf.
 

First, double-check that the system’s fully qualified domain name has been included in /etc/hosts and that NTP is using an Active Directory server as a time reference. Then, edit krb5.conf to add the realm as shown in the following example. Substitute your site’s AD domain for ULSAH.COM.
 

[image: Image]
 

Several values are of interest in the above example. A 5-minute clock skew is allowed even though the time is set through NTP. This gives some slack in the event of an NTP problem. The default realm is set to the AD domain, and the key distribution center, or KDC, is configured as an AD domain controller. krb5.log might come in handy for debugging.
 

Request a ticket from the Active Directory controller by running the kinit command. Specify a valid domain user account. “administrator” is usually a good test, but any account will do. When prompted, type the domain password.
 

[image: Image]
 

Use klist to show the Kerberos ticket:
 

[image: Image]
 

If a ticket is displayed, authentication was successful and you configured Kerberos correctly. In this case, the ticket is valid for 10 hours and can be renewed for 24 hours. (You can use the kdestroy command to invalidate the ticket.)
 

See the man page for krb5.conf for additional configuration options.
 

Samba as an Active Directory Domain Member
 

Like other Samba components, winbind is configured in the smb.conf file. Configure Samba as an AD domain member with the security = ads option.
 

A working configuration is reproduced below. We set our Kerberos realm and pointed Samba authentication at the domain controller. We also set up the user identity mapping with smb.conf ’s idmap options. Note that the configuration of individual shares in smb.conf is separate from the configuration of AD authentication services; only domain authentication is shown here.
 

[image: Image]
 

Most of the options here are straightforward, but see man smb.conf for details.
 

Of particular note is the winbind use default domain option. If you’re using multiple AD domains, this value should be no. If you’re using only one domain, however, setting this value to yes lets you omit the domain during authentication (you can use “ben” as opposed to “ULSAH\ben”, for example). Additionally, the winbind separator value specifies an alternative to the backslash when user-names are typed. The workgroup value should be the short name of the domain. A domain such as linux.ulsah.com would use LINUX as the workgroup value.
 

After configuring Samba, restart the Samba and winbind services to make these new settings take effect.
 

It’s finally time to join the system to the domain; use the Samba-provided net tool, which borrows its syntax from the Windows command of the same name. net accepts several protocols for communicating with Windows. We use the ads option to target Active Directory.
 

Ensure that a ticket exists by running klist (and request one with kinit if it does not), then use the following command to join the domain:
 

[image: Image]
 

We specified an AD server, dc.ulsah.com, on the command line (not strictly necessary) and the administrator account. By default, AD adds the new system to the Computer organizational unit of the domain hierarchy. If the system appears in the Computers OU within Windows’ AD Users and Computers tool, the domain join operation was successful. You can also examine the system state with the net ads status command. See the net man page for additional options, including LDAP search operations.
 

Name service switch configuration is simple. The system’s passwd and group files should always be consulted first, but you can then punt to Active Directory by way of winbind. These entries in nsswitch.conf do the trick:
 

[image: Image]
 

Once NSS has been configured, you can test AD user and group resolution with the wbinfo command. Use wbinfo -u to see a list of the domain’s users and wbinfo -g to see groups. The command getent passwd shows the user accounts defined in all sources, in /etc/passwd format:
 

[image: Image]
 

The only way to distinguish local users from domain accounts is by user ID and by the ULSAH path in the home directory, apparent in the last three entries above. If your site has multiple domains or if the winbind use default domain option is not set, the short domain name is prepended to domain accounts (for instance, ULSAH\ben).
 

PAM Configuration
 

At this point the system has been configured to communicate with Active Directory through Samba, but authentication has not been configured. Setting up PAM to do authentication through Active Directory is a bit tricky, mostly because the specifics differ widely among Linux distributions.
 

See page 908 for general information about PAM.

 

The general idea is to configure winbind as an authentication module for all the services that should have Active Directory support. Some distributions, such as Red Hat, conveniently set up all services in a single file. Others, such as Ubuntu, rely on several files. Table 30.1 lists the appropriate files for each of our example Linux distributions.
 

Table 30.1 PAM configuration files for winbind support
 

[image: Image]
 

To enable winbind authentication, add
 

auth sufficient pam_winbind.so
 

at the beginning of each file. An exception is SUSE’s common-password file, in which you must replace the auth keyword with password:
 

password sufficient pam_winbind.so
 

PAM can create home directories automatically if they don’t exist when a new (to the system) user logs in. Since Active Directory users aren’t added by the standard useradd command, which is normally responsible for creating home directories, this feature is quite helpful. Add the following line to PAM’s session configuration file as indicated in Table 30.1:
 

session required pam_mkhomedir.so umask=0022 skel=/etc/skel
 

With this configuration, PAM creates home directories with octal permissions 755 and with account profiles copied from /etc/skel.
 

You may also want to restrict access to the local system to users who are in a particular Active Directory group. To do that, add the following line to PAM’s session configuration file:
 

[image: Image]
 

Here, only users in the AD group unix_users can log in.
 

Alternatives to Winbind
 

Although the “free as in beer” route to Active Directory clienthood outlined above works well enough, it is error prone and riddled with complexity. Alternatives exist for administrators who want a relatively painless installation and troubleshooting support from a knowledgeable third party.
 

Products from Likewise Software automate winbind, name service switch, PAM, and identity mapping configuration for more than 100 Linux distributions and UNIX variants, including all the example systems referenced in this book. Likewise also includes a group policy object agent, which permits some centralized configuration for AD-enabled UNIX systems. Several GUI plug-ins, including a management console and an Active Directory snap-in, simplify installation and configuration. A limited version is available for free, or you can pay for support and complete functionality. Find details at likewise.com.
 

Another option that skirts winbind entirely is a tool kit called Quest Authentication Services. It offers many of the same features as Likewise’s tools, but adds additional group policy management features. Be prepared to open your wallet, as Quest’s tools do not come cheap. See quest.com/authentication-services for the full scoop.
 

30.10 Recommended Reading
 

TERPSTRA, JOHN H. Samba-3 by Example: Practical Exercises to Successful Deployment (2nd Edition). Upper Saddle River, NJ: Prentice Hall PTR, 2006. (An on-line version of this book is available at samba.org.)
 

TERPSTRA, JOHN H., JELMER R. VERNOOIJ. The Official Samba-3 HOWTO and Reference Guide (2nd Edition). Upper Saddle River, NJ: Prentice Hall PTR, 2006. (An on-line version of this book is available at samba.org.)
 

30.11 Exercises
 

E30.1 Why would you want to block Internet access to ports 137–139 and 445 on a Samba server?
 

E30.2 Install the Cygwin software on a Windows machine and use ssh in rxvt to connect to a UNIX machine. What differences from PuTTY do you find?
 

[image: Image] E30.3 In the lab, compare the performance of a client that accesses files through Samba with one that accesses files from a native CIFS server (i.e., a Windows machine). If your two test servers have different hardware, devise a way to adjust for the hardware variation so that the comparison is more indicative of the performance of the server software. (May require root access.)
 

[image: Image] E30.4 In the lab, use a packet sniffer such as tcpdump or Wireshark to monitor a telnet session between Windows and a UNIX server. Obtain and install the PuTTY software and repeat the monitoring. In each case, what can you see with the packet sniffer? (Requires root access.)
 

[image: Image] E30.5 Set up a Samba print server that provides Windows printer drivers for all the printers it shares. Make sure the printers come with a sensible default configuration.
 

[image: Image] E30.6 Configure the system of your choice to authenticate to an Active Directory environment. Make sure that password changes work and that home directories are automatically created at login for new users.
 
  


31. Serial Devices and Terminals
 

[image: Image]
 

An operating system with over 40 years of history is sure to be dragging some cruft along with it. Some would put support for serial devices into this category, arguing that it’s a technology from a bygone era that is best forgotten. Compared to today’s multi-megabit serial interfaces such as USB, traditional serial ports may indeed seem too slow and twiddly to be useful.
 

In fact, an understanding of serial interfaces is an essential component of any system administrator’s tool box. For better or worse, the UNIX command-line interface is based on the ancient concept of a serial terminal and the associated commands and control structures remain in use today. Even if you have never been within 50 paces of a hardwired terminal, you’re still using the same basic OS facilities that supported it. For example, the console window on your UNIX or Linux desktop is really a pseudo-terminal, as is the device to which you appear to be connected when you log in through the network.
 

Actual RS-232C serial ports are still around, too. They’re no longer the general facility they used to be, but they remain important in several situations. They’re the common denominator for bootstrapping all types of hardware devices, from lights-out enterprise-class server managers to embedded systems the size of a thumbnail, including custom hardware projects. They’re a medium you can use to communicate with legacy systems. There are even cases in which you might run into an actual hardwired terminal, such as on a manufacturing floor.
 

This chapter describes how to connect and use RS-232-based serial devices in the modern world. The first few sections address serial hardware and cabling considerations. Then, starting on page 1171, we talk about the software infrastructure that supports both hardwired terminals and the pseudo-terminals that emulate them. Finally, we cover the use of a UNIX or Linux system to communicate with the serial consoles of other devices.
 

31.1 The Rs-232C Standard
 

Most slow-speed serial ports conform to some variant of the RS-232C standard. This standard specifies the electrical characteristics and meaning of each signal wire, as well as the pin assignments on the traditional 25-pin (DB-25p) serial connector shown in Exhibit A.
 

[image: Image]
 

Exhibit A A male DB-25 connector
 

Full RS-232C1 is never used in real-world situations since it defines numerous signals that are unnecessary for basic communication. DB-25 connectors are also inconveniently large. As a result, 9-pin DB-9 connectors are now commonly used instead of the original 25-pin flavor. In cases where structured cabling is used, RJ-45 connectors are also a convenient alternative. Both of these connectors are described in the section titled Alternative connectors starting on page 1165.
 

Exhibit A shows a male DB-25. As with all serial connectors, the pin numbers on a female connector are a mirror image of those on a male connector so that like-numbered pins mate. The diagram is drawn from the orientation shown, as if you were facing the end of the cable, about to plug the connector into your forehead.
 

Note that in Exhibit A, only seven pins are actually installed, which is typical. The RS-232 signals and their pin assignments on a full-size DB-25 connector are
 

shown in Table 31.1. Only the shaded signals are ever used in practice (at least on computer systems); all others can be ignored.
 

[image: Image]
 

Table 31.1 RS-232 signals and pin assignments on a DB-25
 

Unlike connector standards such as USB and Ethernet that were designed to be mostly idiot-proof, RS-232 requires you to know what types of devices you are connecting. Two interface configurations exist: DTE (Data Terminal Equipment) and DCE (Data Communications Equipment). DTE and DCE share the same pinouts, but they specify different interpretations of the RS-232 signals.
 

Every device is configured as either DTE or DCE; a few devices support both, but not simultaneously. Computers, terminals, and printers are generally DTE, and most modems are DCE. DTE and DCE serial ports can communicate with each other in any combination, but different combinations require different cabling.
 

There is no sensible reason for both DTE and DCE to exist; all equipment could use the same wiring scheme. The existence of two conventions is merely one of the many pointless historical legacies of RS-232.
 

DTE and DCE can be confusing if you let yourself think about the implications too much. When that happens, just take a deep breath and reread these points:
 

• The RS-232 pinout for a given connector type is always the same, regardless of whether the connector is male or female (matching pin numbers always mate) and regardless of whether the connector is on a cable, a DTE device, or a DCE device.

 

• All RS-232 terminology is based on the model of a straight-through connection from a DTE device to a DCE device. By “straight through,” we mean that TD on the DTE end is connected to TD on the DCE end, and so on. Each pin connects to the same-numbered pin on the other end.

 

• Signals are named relative to the perspective of the DTE device. For example, the name TD (transmitted data) really means “data transmitted from DTE to DCE.” Despite the name, the TD pin is an input on a DCE device. Similarly, RD is an input for DTE and an output for DCE.

 

• When you wire DTE equipment to DTE equipment (computer-to-terminal or computer-to-computer), you must trick each device into thinking the other is DCE. For example, both DTE devices expect to transmit on TD and receive on RD. You must cross-connect the wires so that one device’s transmit pin goes to the other’s receive pin, and vice versa.

 

• Three sets of signals must be crossed in this fashion for DTE-to-DTE communication (if you choose to connect them at all). TD and RD must be crossed. RTS and CTS must be crossed. And each side’s DTR pin must be connected to both the DCD and DSR pins of the peer.

 

• To add to the confusion, a cable crossed for DTE-to-DTE communication is often called a “null modem” cable. You might be tempted to use a null modem cable to hook up a modem, but since modems are DCE, that won’t work! A cable for a modem is called a “modem cable” or a “straight cable.”

 

Exhibit B shows pin assignments and connections for both null-modem and straight-through cables. Only signals used in the real world are shown.
 

[image: Image]
 

31.2 Alternative Connectors
 

The following sections describe the most common modern connector systems, DB-9 and RJ-45. Despite their physical differences, these connectors provide access to the same electrical signals as a DB-25. Devices that use different connectors are always compatible if the right kind of converter cable is used.
 

The DB-9 variant
 

The DB-9 is the most common modern-day embodiment of RS-232. It’s a 9-pin connector that looks like a “DB-25 junior” and supplies the eight most commonly used signals. Pin 9 is left unconnected.
 

[image: Image]
 

Exhibit C A male DB-9 connector
 

[image: Image]
 

Table 31.2 DB-9 Pinout
 

The RJ-45 variant
 

An RJ-45 is an 8-wire modular telephone connector. The use of RJ-45s makes it easy to run serial communications through your building’s existing wiring if the wiring plant was installed with twisted-pair Ethernet in mind.
 

RJ-45 jacks for serial connections are usually not found on computers or on garden-variety serial equipment, but they are often used as intermediate connectors for routing serial lines through patch panels. RJ-45s are compact, self-securing, cheap, and easy to crimp onto the ends of custom-cut cables. An inexpensive crimping tool is required.
 

Several systems map the pins on an RJ-45 connector to those on a DB-25. Table 31.3 shows the official RS-232D standard, which is used only haphazardly.
 

[image: Image]
 

Exhibit D A male RJ-45 connector
 

[image: Image]
 

Table 31.3 pins for an rj-45 to DB-25 straight cable
 

A well-thought-out standard for RJ-45 to DB-25 wiring was created by Dave Yost. If you’re planning to use a significant amount of serial cabling, be sure to check it out at yost.com/computers/RJ45-serial.
 

31.3 Hard and Soft Carrier
 

UNIX expects to see the DCD signal, carrier detect, go high (positive voltage) when a serial device is attached and turned on. If your serial cable has a DCD line and your computer really pays attention to it, you are using what is known as hard carrier. Most systems also allow soft carrier; that is, the computer pretends that DCD is always asserted.
 

For certain devices (such as traditional hardwired terminals), soft carrier is a great blessing. You can get away with using only three wires for each serial connection: transmit, receive, and signal ground. However, modem connections really need the DCD signal. If a terminal is connected through a modem and the carrier signal is lost, the modem should hang up (especially on a long distance call!).
 

You can specify soft carrier for a serial port in the configuration file for whatever client software you use in conjunction with the port (e.g., gettydefs or inittab for a login terminal or printcap for a printer). You can also use stty -clocal to enable soft carrier on the fly.
 

For example,
 

suse$ sudo stty -clocal < /dev/ttyS1
 

enables soft carrier for the port ttyS1.
 

31.4 Hardware Flow Control
 

The CTS and RTS signals make sure that a device does not send data faster than the receiver can process it. For example, if a modem is in danger of running out of buffer space (perhaps because the connection to the remote site is slower than the serial link between the local machine and the modem), it can tell the computer to shut up until more room becomes available in the buffer.
 

Flow control is essential for high-speed modems and is also very useful for serial printers. On systems that do not support hardware flow control (either because the serial ports do not understand it or because the serial cable leaves CTS and RTS disconnected), flow control can sometimes be simulated in software with the ASCII characters XON and XOFF. However, software flow control must be explicitly supported by high-level software, and even then it does not work very well.
 

XON and XOFF are <Control-Q> and <Control-S>, respectively. This is a problem for emacs users because <Control-S> is the default key binding for the emacs search command. To fix the problem, bind the search command to another key or use stty start and stty stop to change the terminal driver’s idea of XON and XOFF.
 

Most terminals ignore the CTS and RTS signals. By jumpering pins 4 and 5 together at the terminal end of the cable, you can fool the few terminals that require a handshake across these pins before they will communicate. When the terminal sends out a signal on pin 4 saying “I’m ready,” it gets the same signal back on pin 5 saying “Go ahead.” You can also jumper the DTR/DSR/DCD handshake like this.
 

As with soft carrier, hardware flow control can be set through configuration files or with the stty command.
 

[image: Image] On Sun hardware, flow control for built-in serial ports must be set up with the eeprom command.
 

[image: Image] On some HP platforms, you may need to set flow control for built-in serial ports with the Guardian Service Processor (GSP).
 

31.5 Serial Device Files
 

Serial ports are represented by device files in or under /dev. Even today, many computers have one or two serial ports built in, mainly as a communication mechanism of last resort. In the past, such ports were usually known by names such as /dev/ttya and /dev/ttyb, but naming conventions have diverged over time, and those ports are now often named /dev/ttyS0 or/dev/tty1.
 

Sometimes, more than one device file refers to the same serial port. For example, /dev/cua/a on a Solaris system refers to the same port as /dev/term/a. However, the minor device number for /dev/cua/a is different:
 

[image: Image]
 

As always, the names of the device files do not really matter. Device mapping is determined by the major and minor device numbers, and the names of device files are merely a convenience for human users.
 

Multiple device files are primarily used to support modems that handle both incoming and outgoing calls. In the Solaris scheme, the driver allows /dev/term/a to be opened only when DCD has been asserted by the modem, indicating the presence of an active (inbound) connection (assuming that soft carrier is not enabled on the port). /dev/cua/a can be opened regardless of the state of DCD; it’s used when connecting to the modem to instruct it to place a call. Access to each device file is blocked while the other is in use.
 

[image: Image] On HP-UX, serial device files are not always created automatically. You can use the ioscan command to force the system to look for them, something like
 

hp-ux$ sudo ioscan -C tty -fn
 

You can then create the device files with
 

hp-ux$ sudo mksf -H
port-from-ioscan-output
-d asio0 -a0 -i -v
 

[image: Image] AIX appears to be moving away from supporting serial interfaces entirely. In particular, if you have a system with multiple LPARs (see Chapter 24), serial interfaces are not available by default. You may have to purchase special hardware to obtain serial connectivity in this case.
 

31.6 Setserial: Set Serial Port Parameters Under Linux
 

The serial ports on a PC can appear at several different I/O port addresses and interrupt levels (IRQs). These settings might be configured through the system’s BIOS, or they might be set automatically through plug and play (PnP) code at boot time. On rare occasions, you may need to change a serial port’s address and IRQ settings to accommodate some cranky piece of hardware that is finicky about its own settings and only works correctly when it has co-opted the settings normally used by a serial port. Unfortunately, the serial driver may not be able to detect such configuration changes without your help.
 

The traditional UNIX response to such diversity is to allow the serial port parameters to be specified when the kernel is compiled. Fortunately, Linux lets you skip this tedious step and change the parameters on the fly with the setserial command. setserial -g shows the current settings.
 

[image: Image]
 

To set the parameters, you specify the device file and then a series of parameters and values. For example, the command
 

ubuntu$ sudo setserial /dev/ttyS1 port 0x02f8 irq 3
 

sets the I/O port address and IRQ for ttyS1. It’s important to keep in mind that this command does not change the hardware configuration in any way; it simply informs the Linux serial driver of the configuration. To change the actual settings of the hardware, consult your system’s BIOS.
 

setserial changes only the current configuration, and the settings do not persist across reboots. Unfortunately, there isn’t a standard way to make the changes permanent; each of our example distributions does it differently.
 

[image: Image] The /etc/init.d/setserial script on Ubuntu systems is used for serial port initialization. It reads parameters for each port from /var/lib/setserial/autoserial.conf.
 

[image: Image] SUSE’s /etc/init.d/serial script handles serial port initialization. Unfortunately, this script has no configuration file; you must edit it directly to reflect the commands you want to run. Bad SUSE! The script uses its own little metalanguage to construct the setserial command lines, but fortunately there are plenty of commented-out example lines to choose from.
 

[image: Image] Red Hat’s /etc/rc.d/rc.sysinit script checks for the existence of /etc/rc.serial and executes it at startup time if it exists. No example file is provided, so you must create the file yourself if you want to make use of this feature. Just list the setserial commands you want to run, one per line. For completeness, it’s probably a good idea to make the file executable and to put #!/bin/sh on the first line; however, these touches d’élégance aren’t strictly required.
 

31.7 Pseudo-Terminals
 

Hardwired CRT terminals may be nothing more than museum fodder these days, but their spirit lives on in the form of pseudo-terminals. These pairs of device files emulate a text terminal interface on behalf of services such as virtual consoles, virtual terminals (e.g., xterm), and network login services like telnet and ssh.
 

Here’s how it works. Each of the of the paired device files accesses the same device driver inside the kernel. The slave device is named something like /dev/ttyp1. A process that would normally interact with a physical terminal, such as a shell, uses the slave device in place of a physical device such as /dev/ttyS0. A host process such as sshd or telnetd opens the corresponding master device—in this example, /dev/ptyp1. The pseudo-terminal device driver shuttles keystrokes and text output between the two devices, hiding the fact that no physical terminal exists.
 

Although pseudo-terminals don’t need a baud rate or flow control strategy, most of the other terminal attributes and settings covered in this chapter apply to them.
 

The expect scripting language uses a pseudo-terminal to control a process (such as ftp or parted) that expects to interact with a human user. It is quite useful for automating certain types of sysadmin tasks.
 

31.8 Configuration of Terminals
 

Cheap computers have replaced ASCII terminals. However, even the “terminal” windows on a graphical display (such as xterm) use the same drivers and configuration files as real terminals, so system administrators still benefit by understanding how this archaic technology works.
 

Terminal configuration involves two main tasks: making sure that a process is attached to a terminal to accept logins, and making sure that information about the terminal is available once a user has logged in. Before we dive into the details of these tasks, however, let’s look at the entire login process.
 

The login process
 

The login process involves several different programs, the most important of which is the init daemon. One of init’s jobs is to spawn a process, known generically as a getty (but not on Solaris, which calls it a ttymon), on each terminal port that is turned on in the /etc/ttys or /etc/inittab file. The getty sets the port’s initial characteristics (such as speed and parity) and prints a login prompt.
 

See page 88 for more information about the init daemon.

 

[image: Image] The actual name of the getty program varies among Linux distributions, and some distributions include multiple implementations. Red Hat and SUSE use a simplified version called mingetty to handle logins on virtual consoles. To manage terminals and dial-in modems, they provide Gert Doering’s mgetty implementation. Ubuntu uses a single getty written by Wietse Venema et al.; this version is also available on SUSE systems under the name agetty. An older implementation called uugetty has largely been superseded by mgetty. Finally, HylaFAX (hylafax.org), a popular open source fax server, has its own version of getty called faxgetty.
 

To distinguish among this plenitude of gettys, think of them in order of complexity. mingetty is the simplest and is essentially just a placeholder for a getty. It can only handle logins on Linux virtual consoles. agetty is a bit more well-rounded and handles both serial ports and modems. mgetty is the current king of the hill. It handles incoming faxes as well as logins and does proper locking and coordination so that the same modem can be used as both a dial-in and a dial-out line.
 

The sequence of events in a complete login is as follows:
 

• getty prints a login prompt (along with the contents of the /etc/issue file on Linux systems).

 

• A user enters a login name at getty’s prompt.

 

• getty runs the login program with the specified name as an argument.

 

• login requests a password and validates the account against /etc/shadow or an administrative database system such as NIS or LDAP.

 

• login prints the message of the day from /etc/motd and runs a shell.

 

• The shell executes the appropriate startup files.2

 

• The shell prints a prompt and waits for input.

 

When the user logs out, control returns to init, which wakes up and spawns a new getty on the terminal port.
 

Files in /etc control the characteristics associated with each terminal port. These characteristics include the presence of a login prompt and getty process on the port, the baud rate to expect, and the type of terminal that is assumed to be connected to the port.
 

Unfortunately, terminal configuration is one area where there is little agreement among vendors. Table 31.4 lists the files used by each system.
 

[image: Image]
 

Table 31.4 Terminal configuration files
 

The /etc/ttytype file
 

On many systems, terminal type information is kept in a file called /etc/ttytype. The format of an entry in ttytype is
 

termtype device
 

where device is the short name of the device file representing the port and the termtype names an entry in the termcap or terminfo database. When you log in, the TERM environment variable is set to the value of this field.
 

Here is a sample ttytype file:
 

[image: Image]
 

The /etc/gettytab file
 

The gettytab file associates symbolic names such as std.9600 with port configuration profiles that include parameters such as speed, parity, and login prompt. Here is a sample:
 

[image: Image]
 

The format is the same as that of printcap or termcap. The lines with names separated by a vertical bar (|) list the names by which each configuration is known. The other fields in an entry set the options to be used with the serial port.
 

The /etc/gettydefs file
 

Like gettytab, gettydefs defines port configurations used by getty. A given system will usually have one or the other, never both. The gettydefs file looks like this:
 

[image: Image]
 

The format of an entry is
 

label# initflags # finalflags # prompt #next
 

getty tries to match its second argument with a label entry. If it is called without a second argument, the first entry in the file is used. The initflags field lists ioctl(2) flags that should be set on a port until login is executed. The finalflags field sets flags that should be used thereafter.
 

There must be an entry that sets the speed of the connection in both the initflags and the finalflags. The flags that are available vary by system; check the gettydefs or mgettydefs man page for authoritative information.
 

The prompt field defines the login prompt, which may include tabs and newlines in backslash notation. The next field gives the label of an inittab entry that should be substituted for the current one if a break is received. This was useful decades ago when modems didn’t negotiate a speed automatically and you had to match speeds by hand with a series of breaks. Today, it’s an anachronism. For a hardwired terminal, next should refer to the label of the current entry.
 

Each time you change the gettydefs file, you should run getty -c gettydefs, which checks the syntax of the file to make sure that all entries are valid.
 

The /etc/inittab file
 

See page 88 for more information about the role of init.

 

init supports various “run levels” that determine which system resources are enabled. There are seven run levels, numbered 0 to 6, with “s” recognized as a synonym for level 1 (single-user operation). When you leave single-user mode, init prompts you to enter a run level unless an initdefault field exists in /etc/inittab as described below. init then scans the inittab file for all lines that match the specified run level.
 

Run levels are usually set up so that you have one level in which only the console is enabled and another level in which all gettys are enabled. You can define the run levels in whatever way is appropriate for your system; however, we recommend that you not stray too far from the defaults.
 

Entries in inittab are of the form
 

id:run-levels:action:process
 

Here are some simple examples of inittab entries:
 

[image: Image]
 

In this format, id is a one- or two-character string that identifies the entry; it can be null. For terminal entries, it is customary to use the terminal number as the id.
 

run-levels enumerates the run levels to which the entry pertains. If no levels are specified (as in the first line), then the entry is valid for all run levels. action tells how to handle the process field; Table 31.5 lists some of the commonly used values.
 

If one of the run-levels matches the current run level and the action field indicates that the entry is relevant, init uses sh to execute (or terminate) the command specified in the process field. The Wait? column in Table 31.5 tells whether init waits for the command to complete before continuing.
 

In the example inittab lines above, the last two lines spawn mingetty processes on the first two virtual consoles (accessed with <Alt-F1> and <Alt-F2>). If you add hardwired terminals or dial-in modems, the appropriate inittab lines look similar to these. However, you must use mgetty or getty (agetty on SUSE) with such devices because mingetty is not sophisticated enough to handle them correctly. In general, respawn is the correct action and 2345 is an appropriate set of levels.
 

[image: Image]
 

Table 31.5 Common values for the /etc/inittab
action
field
 

The command telinit -q makes init reread the inittab file.
 

getty configuration for Linux
 

[image: Image] Different gettys require different configuration procedures. The getty/agetty version found on SUSE and Ubuntu is generally a bit cleaner than the mgetty version because it accepts all of its configuration information on the command line (in /etc/inittab).
 

The general model is
 

/sbin/getty
port speed termtype
 

where port is the device file of the serial port relative to /dev, speed is the baud rate (e.g., 38400), and termtype identifies the default terminal type for the port. The termtype refers to an entry in the terminfo database. Most emulators simulate a DEC VT100, denoted vt100. Most of the many other minor options relate to the handling of dial-in modems.
 

mgetty is a bit more sophisticated than agetty in its handling of modems and integrates both incoming and outgoing fax capability. Unfortunately, its configuration is a bit more diffuse. In addition to other command-line flags, mgetty can accept an optional reference to an entry in /etc/gettydefs that specifies configuration details for the serial driver. Unless you’re setting up a sophisticated modem configuration, you can usually get away without a gettydefs entry.
 

Use man mgettydefs to find the man page for the gettydefs file. It’s named this way to avoid conflict with an older gettydefs man page that no longer exists on any Linux system.
 

A simple mgetty command line for a hardwired terminal looks like this:
 

/sbin/mgetty -rs
speed device
 

speed is the baud rate (e.g., 38400), and device is the device file for the serial port (use the full pathname).
 

If you want to specify a default terminal type for a port when using mgetty, you must specify it in a separate file, /etc/ttytype, and not on the mgetty command line. The format of an entry in ttytype is described on page 1172.
 

Ubuntu Upstart
 

[image: Image] Ubuntu has replaced its init with a rearchitected version called Upstart that starts and stops services in response to events. The executable file for Upstart is still known as /sbin/init, however.
 

Upstart uses one file for each active terminal in /etc/event.d. For example, if we wanted a getty to run on ttyS0, /etc/event.d/ttyS0 might look like this:
 

[image: Image]
 

See page 94 for some additional comments on Upstart.
 

Solaris and sacadm
 

[image: Image] Rather than traditional UNIX gettys that watch each port for activity and provide a login prompt, Solaris has a convoluted hierarchy called the Service Access Facility that controls TTY monitors, port monitors, and many other things that provide a lot of complexity but little added functionality.
 

To set up a serial port to provide a login prompt, you must first configure a “monitor” that watches the status of the port (ttymon). You then configure a port monitor that watches the TTY monitor. For example, to set up a 9,600 baud monitor on ttyb to print a login prompt with terminal type VT100, you would use the following commands.
 

[image: Image]
 

The /etc/ttydefs file is used much like gettydefs on other systems to set speed and parity parameters.
 

See the manual pages for saf, sacadm, pmadm, ttyadm, and ttymon as well as the terminals chapter in the Solaris AnswerBook for more information about setting up these monitors. Have fun.
 

31.9 Special Characters and the Terminal Driver
 

The terminal driver supports several special functions that you access by typing particular keys (usually control keys) on the keyboard. The exact binding of functions to keys can be set with the tset and stty commands. Table 31.6 lists some of these functions, along with their default key bindings.
 

[image: Image]
 

Table 31.6 Special characters for the terminal driver
 

Depending on what a vendor’s keyboards look like, the default for ERASE might be either <Control-H> or the delete character. (The actual keyboard key may be labeled “backspace” or “delete,” or it may show only a backarrow graphic.) Unfortunately, the existence of two different standards for this function creates a multitude of problems.
 

You can use stty erase (see the next section) to tell the terminal driver which key code your setup is actually generating. However, some programs (such as text editors and shells with command-editing features) have their own idea of what the backspace character should be, and they don’t always pay attention to the terminal driver’s setting. In a helpful but confusing twist, some programs obey both the backspace and delete characters. You may also find that systems you log in to through the network make different assumptions from those of your local system.
 

Solving these annoying little conflicts can be a Sunday project in itself. In general, there is no simple, universal solution. Each piece of software must be individually beaten into submission. Two useful resources to help with this task are the Linux Backspace/Delete mini-HOWTO from tldp.org and a nifty article by Anne Baretta at ibb.net/~anne/keyboard.html. These notes are both written from a Linux perspective, but the problem (and solutions) are not limited to Linux.
 

31.10 Stty: Set Terminal Options
 

stty lets you directly change and query the various settings of the terminal driver. There are about a zillion options, but most can be safely ignored. stty generally uses the same names for driver options as the termios man page does, but occasional discrepancies pop up.
 

A good combination of options to use for a plain-vanilla terminal is
 

solaris$ stty intr ^C kill ^U erase ^H -tabs
 

Here, -tabs prevents the terminal driver from taking advantage of the terminal’s built-in tabulation mechanism, a useful practice because many emulators are not very smart about tabs. The other options set the interrupt, kill, and erase characters to <Control-C>, <Control-U>, and <Control-H> (backspace), respectively.
 

You can use stty to examine the current modes of the terminal driver as well as to set them. stty with no arguments produces output like this:
 

[image: Image]
 

For a more verbose status report, use the -a option:
 

[image: Image]
 

The format of the output is similar but lists more information. The meaning of the output should be intuitively obvious if you’ve written a terminal driver recently.
 

stty operates on the file descriptor of its standard input, so you can set and query the modes of a terminal other than the current one by using the shell’s input redirection character (<). You must be the superuser to change the modes on someone else’s terminal.
 

31.11 Tset: Set Options Automatically
 

tset initializes the terminal driver to a mode appropriate for a given terminal type. The type can be specified on the command line; if the type is omitted, tset uses the value of the TERM environment variable.
 

tset supports a syntax for mapping certain values of the TERM environment variable into other values. This feature is useful if you often log in through a modem or data switch and would like to have the terminal driver configured correctly for the terminal you are really using on the other end of the connection rather than something generic and unhelpful such as “dialup.”
 

For example, suppose that you use xterm at home and that the system you are dialing in to is configured to think that the terminal type of a modem is “dialup.” Putting the command
 

tset -m dialup:xterm
 

in your .login or .profile file sets the terminal driver appropriately for xterm whenever you dial in.
 

Unfortunately, the tset command is not really as simple as it pretends to be. To have tset adjust your environment variables in addition to setting your terminal modes, you need lines something like this:
 

[image: Image]
 

This incantation suppresses the messages that tset normally prints (the -Q flag), and asks that shell commands to set the environment be output instead (the -s flag). The shell commands printed by tset are captured by the backquotes and fed to the shell as input with the built-in command eval, causing the commands to have the same effect as if they had been typed by the user.
 

set noglob prevents the shell from expanding any metacharacters such as * and ? that are included in tset’s output. This command is not needed by sh/ksh users (nor is the unset noglob to undo it), since these shells do not normally expand special characters within backquotes. The tset command itself is the same no matter what shell you use; tset looks at the environment variable SHELL to determine what flavor of commands to print.
 

31.12 Terminal Unwedging
 

Some programs (e.g., vi) make drastic changes to the state of the terminal driver while they are running. This meddling is normally invisible to the user, since the terminal state is restored when the program exits or is suspended. However, a program can crash or be killed without performing this housekeeping step. When this happens, the terminal may behave very strangely: it might fail to handle new-lines correctly, to echo typed characters, or to execute commands properly.
 

Another common way to confuse a terminal is to accidentally run cat or more on a binary file. Most binaries contain a mix of 8-bit characters that is guaranteed to send some of the less-robust emulators into outer space.
 

To fix this situation, use reset or stty sane. reset is actually just a link to tset on many systems, and it can accept most of tset’s arguments. However, it is usually run without arguments. Both reset and stty sane restore the default state of the terminal driver and send out an appropriate reset code from termcap/terminfo if one is available.
 

In many cases for which a reset is appropriate, the terminal has been left in a mode in which no processing is done on the characters you type. Most terminals generate carriage returns rather than newlines when the Return or Enter key is pressed. Without input processing, this key generates <Control-M> characters instead of sending off the current command to be executed. To enter newlines directly, use <Control-J> or the line feed key (if there is one) instead of Return.
 

31.13 Debugging a Serial Line
 

Debugging serial lines is not difficult. Here are some typical errors:
 

• Forgetting to tell init to reread its configuration files

 

• Forgetting to set soft carrier when using three-wire cables

 

• Using a cable with the wrong nullness

 

• Soldering or crimping connectors upside down

 

• Connecting to the wrong wire because of bad or nonexistent wire maps

 

• Setting the terminal options (including speed) incorrectly

 

A breakout box is an indispensable tool for debugging serial cabling problems. It is patched into the serial line and shows the signals on each pin as they pass through the cable. The better breakout boxes have both male and female connectors on each side and so are flexible in their positioning. LEDs associated with each “interesting” pin show when the pin is active.
 

Some breakout boxes are read-only and just let you monitor the signals; others let you rewire the connection and assert a voltage on a particular pin. For example, if you suspect that a cable needs to be nulled (crossed), you can use the breakout box to override the actual cable wiring.
 

31.14 Connecting to Serial Device Consoles
 

Perhaps the most common and useful application of RS-232 today is to connect to the serial “console” of another device. The device could be anything from a manageable UPS or network switch to an embedded Linux system such as the TiVo box under your TV. For example, you might connect a serial line to the UPS that powers your equipment rack in a remote data center so that you can shut off power remotely in an emergency.
 

The basic steps for connecting to a serial console are as follows:
 

• Attach a cable between the serial port on your UNIX system and the device you want to talk to. See the discussion earlier in this chapter about the various connector types and pinouts that might be necessary. You’ll most likely need a null modem cable. These are available at your nearest computer store.

 

• Install or identify the terminal communication software you will use on your UNIX or Linux system. Decades ago, the standard command for this was cu or tip. You can still use these in a pinch, but modern-day alternatives such as minicom and picocom are better. Linux distributions normally include one of these; on other systems, you may need to install the software yourself (see freshmeat.net/projects/minicom or freshmeat.net/projects/picocom, respectively).

 

• Configure your communication software to open the correct device file (see the discussion earlier in this chapter). Usually, names like /dev/ttya, /dev/tty1, /dev/ttyS0, or /dev/S0 are good first guesses.

 

• Set the baud rate, stop bits, and flow control to match the defaults used on the target device. These parameters are usually outlined in the manual for the device, but you can also try all possible combinations. If you don’t know the correct baud rate, an “old dog” trick is to connect and type a few characters. If you have to type multiple characters to get a single character of garbage, you’ve set the baud rate too high. If typing one or two characters produces many characters of garbage, you’ve set the baud rate too low. Shhhh… don’t tell anyone!

 

• Once you’ve successfully connected, you should be able to enter commands on the remote console. If you find that the device suddenly hangs on long output, you have probably misconfigured the flow control; typing <Control-Q> will sometimes get you by.

 

If you have trouble connecting, the first debugging step should be to remove the crossover in the cable, or to add one if you didn’t start with one. Don’t forget that if you’re connecting to a remote UNIX box, you’ll need to set up a getty on the far end to listen for your connection and present a login prompt.
 

31.15 Exercises
 

E31.1 What is a null modem cable? How is it used to connect DCE and DTE serial devices?
 

E31.2 Can you use a three-wire serial cable for a serial modem connection? For a serial printer? Why or why not?
 

E31.3 How does traditional serial hardware flow control work? What can be done if a system does not understand hardware flow control?
 

E31.4 What is a pseudo-terminal? What programs use pseudo-terminals?
 

E31.5 Devise inittab entries that
 

a) Run a program called server-fallback, wait for it to finish, and then immediately halt the system if the power fails.

 

b)Respawn a server called unstable-srv if it crashes.

 

c) Run a script called clean-temp that removes all temporary files each time the system is rebooted.

 

[image: Image] E31.6 A friend of yours carelessly left himself logged in overnight in the computing lab and is now experiencing strange problems when he runs shell applications. Programs quit or suspend, and previous input disappears when certain commands and input are given; however, some things seem to work normally. What could an unfriendly user have done to cause such behavior? Explain how you could test your answer. How could the problem be fixed? Who would do such a mean thing?
 
  


32. Management, Policy, and Politics
 

[image: Image]
 

You may run the smartest team of administrators ever, but if your technical management is inadequate, you will be miserable and so will your users. In this chapter we discuss the nontechnical aspects of running a successful information technology (IT) support organization, along with a few technical tidbits that help shore up the managerial end of system administration.
 

Most of the topics and ideas presented in this chapter are not specific to a particular environment. They apply equally to a part-time system administrator and to a large group of full-time professionals in charge of a major IT installation. Like green vegetables, they’re good for you no matter what size meal you’re preparing.
 

Good sysadmins have both technical skills and “soft skills.” The ability to organize a group of administrators and make sure they meet the organization’s needs can be the difference between an OK administrator and a great one.
 

In addition to management hints, this chapter also includes sections on topics such as IT policy, best practices, and standards compliance.
 

32.1 The Purpose of IT
 

An IT organization is more than a group of technical folks who fix printers and computers when there are problems. From a strategic perspective, IT is a collection of people and roles that serve the needs of the organization by supporting users and systems. Never forget the golden rule of system administration: enterprise needs drive IT activities, not the other way around.
 

The IT group needs to cooperate with other groups within the organization to make sure it is providing the best possible value. A few of the areas that require such cross-functional negotiation are spending, policy, management, and service level agreements (SLAs).
 

In many organizations—especially in small companies and in small divisions within large companies—the system administrator wears many hats, possibly including that of a group leader or manager. Understanding some of the key areas in which IT interfaces with the rest of the organization will help make that relationship smoother and more effective.
 

At a bare minimum, an IT organization must
 

• Maintain a list of open tasks

 

• Prioritize its task list and allocate resources

 

• Communicate task status to users and the enterprise

 

• Work with the enterprise to ensure its needs are met

 

• Monitor the computing environment, including security monitoring

 

• Track emerging technologies

 

• Develop skills in its staff

 

• Assist with regulatory compliance

 

• Document and follow repeatable processes

 

• Measure progress toward negotiated goals and report status

 

• Plan for and be ready for disasters

 

• Be flexible enough to keep users happy while being disciplined enough to keep administrators happy

 

Budgeting and Spending
 

IT spending should be aligned with the goals of the larger organization. The IT budget has a dramatic impact on the extent and quality of IT services the rest of the organization can expect to receive, so it’s critically important that the IT staff help everyone understand this connection and make appropriate tradeoffs.
 

IT spending as a percentage of the organization’s total budget varies quite a bit, but it’s generally a nontrivial component. The average organization spends between 2% and 9%. The percentage varies among industries, with the mean being approximately 4% to 5%.
 

This total budget is further subdivided into capital and operating expenses. Capital expenses generally go toward equipment purchases. Operating costs include labor and services such as WAN connectivity. Various feats of legerdemain are available to convert one type of expense into another. For example, equipment leases turn capital expenses into operating expenses, and prepaid maintenance contracts on new equipment allow service expenses to be capitalized. You probably don’t care about the distinction between these expense types, but your accountants do, so it’s your issue as well.
 

System administrators need to understand the budget because their ability to plan for the year ahead depends on it. For example, if an administrator would like to implement both a centralized logging system and a security monitoring solution, the budget is a relevant constraint. If the budget allocates only enough money for one server, the administrator will either have to prioritize the projects or come up with a solution that lets both systems run on the same server. (Virtualization is a great option in this example, but there are other situations in which sharing is not so easy or cost effective.) If the administrator can contribute to the budget planning process, he or she might lobby for more money if the expenses can be reasonably predicted to increase the business’s satisfaction with its IT infrastructure.
 

IT Policy
 

IT policies affect everyone in the organization, so they are important components of the organization’s overall strategy. System administrators are major contributors to the development and maintenance of good policies. Administrators are sometimes directly responsible for developing policy; in other cases, administrators may be asked to review policies developed by other members of the organization. Either way, the system administrators provide valuable input. Many organizations have one set of policies that end users are expected to follow and another set of policies for administrators. Administrators should be familiar with both sets of policies and should develop organizational procedures that support them.
 

Documentation, policy’s kissing cousin, can sometimes be ignored or deprioritized relative to “real work.” Most sysadmins don’t like writing documentation, but it’s important to the smooth functioning of the IT system. Set up a wiki or use other tools that make it easy for administrators to jot down short notes and make it easy for others to locate relevant information for later review or use.
 

A couple of good choices for this role are MediaWiki and Confluence. MediaWiki, the software behind Wikipedia, is a free package written in PHP (mediawiki.org). Confluence is an enterprise solution that is not free and is designed for medium-and large-sized organizations. You can install it on your own server or purchase a hosted solution if you’d rather not manage it locally (comatlassian.com). The “list of wiki software” Wikipedia page catalogs many other options, and wikimatrix.org is helpful for making detailed comparisons.
 

Specific policies, and the way that these policies play a role in compliance, are discussed later in this chapter (see page 1215).
 

Service Level Agreements
 

System administration is a service, and both people and computers are the recipients of that service. For the IT organization to successfully provide this service, keep users happy, and meet the needs of the enterprise, the exact details of the service being provided must be negotiated, agreed upon, and documented in “service level agreements” or SLAs. A good SLA sets appropriate expectations and serves as a reference when questions arise. (But remember, IT provides solutions, not roadblocks!)
 

Users are happy when
 

• Their computers are up and running and they can log in

 

• Their other resources such as printers and file servers are available

 

• Their data files stay as they left them

 

• Their application software is installed and works as it’s supposed to

 

• Friendly, knowledgeable help is available when needed

 

Users want these things 24 hours a day, 7 days a week. Preferably for free. Users are miserable when
 

• They experience downtime, whether scheduled or unscheduled

 

• Upgrades introduce sudden, incompatible changes

 

• They receive incomprehensible messages from the system or sysadmins

 

• They receive long explanations of why things aren’t working

 

When something is broken, users want to know when it’s going to be fixed. That’s it. They don’t really care which hard disk or generator broke, or why; leave that information for your managerial reports.
 

From a user’s perspective, no news is good news. The system either works or it doesn’t, and if the latter, it doesn’t matter why. Our customers are happiest when they don’t even notice that we exist! Sad, but true.
 

It’s equally important to keep your staff happy. Good administrators are hard to find, and their needs must be considered when your site’s administrative systems are designed. System administrators and other technical staff are happy when
 

• Their computers and support systems are up and running

 

• They have the resources needed to do their jobs (dual monitors!)

 

• They have the latest and greatest software and hardware tools

 

• Their work is challenging, or at least interesting (minimal drudgery)

 

• They can work without being constantly interrupted

 

• They can be creative without the boss meddling and micromanaging

 

• Their work hours and stress levels are within reason

 

Technical people need more than just a paycheck at the end of the month to keep them going. They need to feel that they have a degree of creative control over their work and that they are appreciated by their peers, their boss, and their users.
 

The requirements for happy customers and happy IT staff have some factors in common. However, a few things seem to be orthogonal or even in direct conflict. The boss must make sure that all these differing expectations can be made compatible and attainable.
 

An SLA helps align end users and support staff. A well-written SLA addresses each of the issues discussed in the following sections.
 

Scope and Descriptions of Services
 

This section is the foundation of the SLA because it describes what the organization can expect from IT. It should be written in terms that can be understood by nontechnical staff. Some example services might be
 

• Email

 

• Internet and web access

 

• File servers

 

• Business applications

 

• Printing

 

The standards that IT will adhere to when providing these services must also be defined. For example, an availability section would define the hours of operation, the agreed-upon maintenance windows, and the expectations regarding the times at which IT staff will be available to provide live support. One organization might decide that regular support should be available from 8:00 a.m. to 6:00 p.m. on weekdays but that emergency support must be available 24/7. Another organization might decide that it needs standard live support available at all times.
 

Here is a list of issues to consider when documenting your standards:
 

• Response time

 

• Service (and response times) during weekends and off-hours

 

• House calls (support for machines at home)

 

• Weird (unique or proprietary) hardware

 

• Upgrade policy (ancient hardware, software, etc.)

 

• Supported operating systems

 

• Standard configurations

 

• Expiration of backup tapes

 

• Special-purpose software

 

• Janitorial chores (cleaning screens and keyboards, vacuuming grilles)

 

When considering service standards, keep in mind that many users will want to customize their environments (or even their systems) if the software is not nailed down to prevent this. The stereotypical IT response is to forbid all user modifications, but although this policy makes things easier for IT, it isn’t necessarily the best policy for the organization.
 

Address this issue in your SLAs, and try to standardize on a few specific configurations. Otherwise, your goals of easy maintenance and scaling to grow with the organization will meet some serious impediments. Encourage your creative, OS-hacking employees to suggest modifications that they need for their work, and be diligent and generous in incorporating these suggestions into your standard configurations. If you don’t, your users will work hard to subvert your rules.
 

Queue Management Policies
 

In addition to knowing what services are provided, users must also know about the priority scheme used to manage the work queue. Priority schemes always have wiggle room, but try to design one that covers most situations with few or no exceptions. Some priority-related variables are listed below:
 

• The importance of the service to the overall organization

 

• The security impact of the situation (has there been a breach?)

 

• The service level the customer has paid or contracted for

 

• The number of users affected

 

• The importance of any relevant deadline

 

• The loudness of the affected users (squeaky wheels)

 

• The importance of the affected users (this is a tricky one, but let’s be honest: some people in your organization have more pull than others)

 

Although all these factors will influence your rankings, we recommend a simple set of rules together with some common sense to deal with the exceptions. Basically, we use the following priorities:
 

• Many people cannot work

 

• One person cannot work

 

• Requests for improvements

 

If two or more requests have top priority and the requests cannot be worked on in parallel, we base our decision regarding which problem to tackle first on the severity of the issues (e.g., email not working makes almost everybody unhappy, whereas the temporary unavailability of a web service might hinder only a few people). Queues at lower priorities are usually handled in a FIFO manner.
 

Users generally assume that all their important data is stored on backup tapes that will be archived forever. But backup media don’t last indefinitely; magnetic media in particular have a finite lifetime after which reading data becomes difficult. (You must periodically rewrite your data, possibly to newer media, if you want to keep it for a long time.) Backup tapes can also be subpoenaed, so your organization may not want old data to be available forever. It’s best to work with the people in charge of such decisions to draw up a written agreement that specifies how long backups must be kept, whether multiple copies are to be made (required? permissible? never?), and where those copies must be stored.
 

These decisions should be made in the context of an organization-wide data retention policy. This type of policy is covered later in this chapter, but in general, you need to classify your data and develop a retention schedule for each class.
 

Make your backup and retention policies available to users. This measure promotes realistic expectations regarding both backups and recoveries. It also puts users on notice that they must take precautions of their own if they feel they need better data protection than is provided for in their SLA.
 

In particular, users should understand whether or not the files on their local workstations will be backed up. Many organizations back up their centralized file servers but do not back up individual workstations. Usually, the workstations are cloned from system images and are considered disposable. Users need to know this so they can store critical information appropriately.
 

Roles and Responsibilities
 

You must document who is responsible for what. Organizations that do not divide duties become inefficient and ineffective. Problems fall through the cracks because it’s not clear who owns which problem domains. Problems can also fall prey to groupthink, where it takes two or three administrators to take care of a single task. Some examples of defined roles are the following:
 

• Backup administrator

 

• Storage area network (SAN) and file service maven

 

• Application wrangler

 

• Patching and security czar

 

• Guy who nobody is quite sure what he does1

 

Or, you might map out roles and responsibilities according to the descriptions of services you have already defined. This approach may imply that you have to delineate responsibilities from an administration perspective rather than from the user’s point of view.
 

Don’t forget to include “understudy” responsibilities in your taxonomy. Staff members won’t be in the office every day, and you need to know who to go to when a domain’s primary administrator is away.
 

Conformance Measurements
 

An SLA needs to define how the organization will measure your success at fulfilling the terms of the agreement. Targets and goals allow the staff to work toward a common outcome and can lay the groundwork for cooperation throughout the organization. Of course, you must make sure you have tools in place to measure the agreed-upon metrics.
 

At a minimum, you should track the following metrics for your IT infrastructure:
 

• Percentage or number of projects completed on time and on budget

 

• Percentage or number of SLA elements fulfilled

 

• Uptime percentage by system (e.g., email 99.92% available through Q1)

 

• Percentage or number of tickets that were satisfactorily resolved

 

• Average time to ticket resolution

 

• Percentage or number of security incidents handled according to the documented incident handling process

 

32.2 The Structure of an it Organization
 

Now that we have addressed the overall function of an IT organization, we can peek inside its structure. As a support organization grows, it becomes clear that not everybody in the group can or should know everything about the infrastructure. Instead, you must find a balance between efficiency and separation of duties.
 

Role separation adds a layer of checks and balances to the IT organization. Over time, this feature is becoming more and more important as standards and regulations creep into even the smallest of organizations.
 

Take, for example, a 20-person U.S. company that has developed a hosted application for medical facilities. If this application stores any protected health information (PHI), then the organization’s systems must all comply with the dreaded Health Insurance Portability and Accountability Act (HIPAA). Among other things, this legislation requires you to define roles to protect access to sensitive data. For example, the tasks of determining what access a user should have and of actually provisioning that access must be executed by two different people.
 

A typical structure for an IT organization centers on a ticketing system and includes a help desk, an enterprise architecture group, an operations group, and a management layer. As shown in Exhibit A, every part of the IT organization interacts with the ticketing system.
 

[image: Image]
 

Exhibit A Structure of a typical IT organization Ticket system
 

The Foundation: the Ticketing and Task Management System
 

A ticketing and task management system lies at the heart of every functioning IT group. Having a good system in place will help your staff avoid two of the most common workflow pitfalls:
 

• Tasks falling through the cracks because everyone thinks they are being taken care of by someone else

 

• Resources wasted through duplication of effort when multiple people or groups work on the same problem without coordination

 

Common Functions of Ticketing Systems
 

A trouble ticket system accepts requests through various interfaces (email, web forms, and command lines being the most common) and tracks them from submission to solution. Managers can assign tickets to staff groups or to individual staff members. Staff can query the system to see the queue of pending tickets and perhaps resolve some of them. Users can find out the status of a request and see who is working on it. Managers can extract high-level information such as
 

• The number of open tickets

 

• The average time to close a ticket

 

• The productivity of sysadmins

 

• The percentage of unresolved (rotting) tickets

 

• Workload distribution by time to solution

 

The request history stored in the ticket system becomes a history of the problems with your IT infrastructure and the solutions to those problems. If that history is easily searchable, it becomes an invaluable resource for the sysadmin staff.
 

Resolved trouble messages can be sent to novice sysadmins and trainees, inserted into a FAQ system, or just logged. New staff members can benefit from receiving copies of closed tickets because those tickets include not only technical information but also examples of the tone and communication style that are appropriate for use with customers.
 

Like all documents, your ticketing system’s historical data can potentially be used against your organization in court. Follow the document retention guidelines set up by your legal department.
 

Most request-tracking systems automatically confirm new requests and assign them a tracking number that submitters can use to follow up or inquire about the request’s status. The automated response message should clearly state that it is just a confirmation. It should be followed promptly by a message from a real person that explains the plan for dealing with the problem or request.
 

Ticket Ownership
 

Work can be shared, but in our experience, responsibility is less amenable to distribution. Every task should have a single, well-defined owner. That person need not be a supervisor or manager, just someone willing to act as a coordinator— someone willing to say, “I take responsibility for making sure this task gets done.”
 

An important side effect of this approach is that it is implicitly clear who implemented what or who made what changes. This transparency becomes important if you want to figure out why something was done in a certain way or why something is suddenly working differently or not working anymore.
 

Being “responsible” for a task should not equate to being a scapegoat if problems arise. If your organization defines responsibility as blameworthiness, you may find that the number of available project owners quickly dwindles. Your goal in assigning ownership is simply to remove ambiguity about who should be addressing each problem. Don’t punish staff members for requesting help.
 

From a customer’s point of view, a good assignment system is one that routes problems to a person who is knowledgeable and can solve the problems quickly and completely. But from a managerial perspective, assignments need to occasionally be challenging to the assignee so that the staff continue to grow and learn in the course of their jobs. Your job is to balance the need to play to employee’s strengths with the need to keep employees challenged, all while keeping both customers and employees happy.
 

Larger tasks can be anything up to and including full-blown software engineering projects. These tasks may require the use of formal project management and software engineering tools. We don’t describe these tools here; nevertheless, they’re important and should not be overlooked.
 

Sometimes sysadmins know that a particular task needs to be done, but they don’t do it because the task is unpleasant. A sysadmin who points out a neglected, unassigned, or unpopular task is likely to receive that task as an assignment. This situation creates a conflict of interest because it motivates sysadmins to remain silent regarding such situations. Don’t let that happen at your site; give your sysadmins an avenue for pointing out problems. You can allow them to open up tickets without assigning an owner or associating themselves to the issue, or you can create an email alias to which issues can be sent.
 

User Acceptance of Ticketing Systems
 

Receiving a prompt response from a real person is a critical determinant of customer satisfaction, even if the personal response contains no more information than the automated response. For most problems, it is far more important to let the submitter know that the ticket has been reviewed by a real person than it is to fix the problem immediately. Users understand that administrators receive many requests, and they’re willing to wait a fair and reasonable time for your attention. But they’re not willing to be ignored.
 

The mechanism through which users submit tickets affects their perception of the system. Make sure you understand your organization’s culture and your users’ preferences. Do they want a web interface? A custom application? An email alias? Maybe they’re only willing to make phone calls!
 

It’s also important that administrators take the time to make sure they understand what users are actually requesting. This point sounds obvious, but think back to the last five times you emailed a customer service or tech support alias. We’d bet there were at least a couple of cases in which the response seemed to have nothing to do with the question—not because those companies were especially incompetent, but because accurately parsing trouble tickets is harder than it looks.
 

Once you’ve read enough of a ticket to develop an impression of what the customer is asking about, the rest of the ticket starts to look like “blah blah blah.” Fight this! Clients hate waiting for a ticket to find its way to a human, only to learn that the request has been misinterpreted and must be resubmitted or restated. Back to square one.
 

Tickets are often vague or inaccurate because the submitter does not have the technical background needed to describe the problem in the way that a sysadmin would. That doesn’t stop users from making their own guesses as to what’s wrong, however. Sometimes these guesses are perfectly correct. Other times you must first decode the ticket to determine what the user thinks the problem is, then trace back along the user’s train of thought to intuit the underlying problem.
 

Sample Ticketing Systems
 

Tables 32.1 and 32.2 below summarize the characteristics of several well-known trouble ticketing systems. Table 32.1 shows open source systems, and Table 32.2 shows commercial systems.
 

[image: Image]
 

Table 32.1 Open source trouble ticket systems
 

We like Mantis a lot. It was originally developed to track bugs in the software for a video game. It runs on Linux, Solaris, Windows, Mac OS, and even OS/2. Mantis is lightweight, simple, easily modifiable, and customizable. It requires MySQL, PHP, and a web server. But its most important feature is good documentation!
 

Another nice system is OTRS, the Open Ticket Request System. OTRS features web interfaces for both customers and sysadmins, as well as an email interface. OTRS is highly customizable (e.g., greeting messages configurable by queue) and can even log the time spent on a ticket.
 

Table 32.2 shows some of the commercial alternatives for request management. Since the web sites for commercial offerings are mostly marketing hype, details such as the implementation language and back end are not listed.
 

[image: Image]
 

Table 32.2 Commercial trouble ticket systems
 

Some of the commercial offerings are so complex that they need a person or two dedicated to maintaining, configuring, and keeping them running (you know who you are, Remedy and ServiceDesk). These systems are appropriate for a site with a huge IT staff but are a waste for the typical small, overworked IT staff.
 

Ticket Dispatching
 

In a large group, even one with an awesome ticketing system, one problem still remains to be solved: it is inefficient for several people to divide their attention between the task they are working on right now and the request queue, especially if requests come in by email to a personal mailbox. We have experimented with two solutions to this problem.
 

Our first try was to assign half-day shifts of trouble queue duty to staff members in our sysadmin group. The person on duty would try to answer as many of the incoming queries as possible during a shift. The problem with this approach was that not everybody had the skills to answer all questions and fix all problems. Answers were sometimes inappropriate because the person on duty was new and was not really familiar with the customers, their environments, or the specific support contracts they were covered by. The result was that the more senior people had to keep an eye on things and so were not really able to concentrate on their own work. In the end, the quality of service was worse and nothing was really gained.
 

After this experience, we created a “dispatcher” role that rotates monthly among a group of senior administrators. The dispatcher is responsible for checking the ticketing system for new entries and for farming tasks out to specific staff members. If necessary, the dispatcher contacts users to extract any additional information that is necessary to prioritize requests. The dispatcher uses a home-grown staff-skills database to decide who on the support team has the appropriate skills and time to address a given ticket. The dispatcher also makes sure that requests are resolved in a timely manner.
 

Skill Sets Within IT
 

The ticketing system keeps track of work, but you must still make sure you have the right staff skills needed to perform that work. This requirement includes the help desk! Nothing is more annoying to an experienced user than a support contact who asks, “Have you plugged in the power cable?” while frantically searching a customer service database in the background. On the other hand, it’s a waste of resources to have your most experienced administrator explain to a novice user how to find the delete key in some word processing system.
 

In general, a staff member with many entries in the skill list is more “valuable.” However, there is nothing wrong with having staff with fewer skills, as long as you have enough work for them to do.
 

An accurate skill list helps you verify that you have sufficient skill-specific manpower to deal with vacations and illnesses. You can build the skill list as problems arise and are solved by members of the staff. Include the task, the staff member’s name, and the demonstrated level of expertise.
 

Skills should be defined at an appropriate level of abstraction, neither too specific nor too general. The following list of sample skills demonstrates an appropriate level of granularity:
 

• Create users, remove users, set passwords, change quotas

 

• Create CVS or SVN accounts

 

• Manage backups and restores

 

• Integrate new drivers into Windows Remote Installation Service (RIS)

 

• Package a Windows application in MSI format

 

• Create and install software application packages on Linux

 

• Install new hardware

 

• Analyze log files

 

• Debug mail server issues

 

• Debug printing problems

 

• Debug general hardware problems

 

• Create DNS entries

 

• Manage software licenses

 

• Manage security, especially antivirus software, patches, and upgrades

 

• Resolve Samba-related requests

 

• Configure DHCP

 

• Configure an LDAP server

 

• Add or remove web sites (configure Apache)

 

Time management
 

System administration involves more context switches in a day than many jobs have in a year, and user support personnel bear the brunt of this chaos. Every administrator needs good time-management skills. Without them, you won’t be able to keep up with your day-to-day responsibilities and you will become frustrated and depressed. (Or, if already frustrated and depressed, you will become more so.)
 

Sysadmin burnout is rampant. Most administrators last only a few years. No one wants to be constantly on call and continually yelled at. Finding ways to manage your time efficiently and keep your customers happy is a win/win situation.
 

32.3 The Help Desk
 

The help desk is a major component of the IT group structure shown in Exhibit A (page 1190). The task of the help desk is to deal with the human beings who use and depend on the computer systems you maintain.
 

Scope of Services
 

Help desk staff fulfill the portions of the IT SLA that define what kinds of direct assistance an individual within the organization can expect to receive. Issues addressed by the help desk include desktop support, application support, and first-tier sysadmin issues such as server outages, network problems, and file restores.
 

In addition to offering the usual ticket-based or hotline support, this division can also offer ancillary services such as training seminars. These measures help increase customers’ self-sufficiency and reduce the number of support requests.
 

It’s also important to document an escalation policy. Employees need to know what to do when their needs are not being met—or when they want to express their gratitude for a job well done.
 

Help Desk Availability
 

Good IT support means that qualified staff are available to help whenever a customer needs them.
 

Most problems are minor and can safely enter a service queue. Others are work-stoppers that merit immediate attention. Automated responses from a request-tracking system and recorded telephone messages announcing regular office hours just cause annoyance. Make sure that users can always access a path of last resort if the need arises. A cell phone that rotates among sysadmin staff outside business hours is usually sufficient.
 

Help Desk Addiction
 

Unfortunately, excellent support sometimes breeds dependence. It’s easy for users to get in the habit of consulting the help desk even when that isn’t appropriate. If you recognize that someone is using the support system for answers they could get just as easily from the man pages or from Google, you might try answering their questions by quoting the relevant man page or URL. Be careful, though: this tactic can really anger users when not presented with the utmost respect.
 

32.4 The Enterprise Architects
 

The second IT subgroup in Exhibit A, the enterprise architects, consists of the admins who hold the overall technical vision for the organization. This role almost always includes some number of UNIX or Linux administrators. These individuals consider both the immediate and long-term impacts of new systems on the overall infrastructure. They understand how the organization will evolve in coming years and how the requirements of today will feed the requirements of tomorrow.
 

The enterprise architects are also responsible for understanding how systems interact. For example, in an organization that stores sensitive information about customers, the architects must understand how enabling database encryption will impact end users and determine whether this impact is acceptable.
 

The following sections present a selection of architectural best practices to consider when planning your site’s IT design. These principles are particularly important when the configuration you will be supporting is new or unusual since these situations can be difficult to benchmark against real-world peers. Well-designed processes incorporate or foster adherence to these principles.
 

Make Processes Reproducible
 

System administration is not one of the performing arts. Whatever is done should be done consistently and repeatably. Usually, this means that the lowest level of changes should be made by scripts or by configuration programs rather than by system administrators. Variations in configuration should be captured in config files for your administrative software.
 

For example, a script that sets up a new machine should not be asking questions about IP numbers and packages to install. Instead, it should check a system configuration directory to determine what to do. It can present this information for confirmation, but the choices should be preordained. The less user interaction, the smaller the chance for human error.
 

But let us be clear: we are not describing a site at which high-level administrative priests make policy decisions to be carried out by mindless drones. Reproducibility is just as relevant if you are the only administrator at your site. It’s not a good idea to make off-the-cuff configuration decisions that leave no audit trail. If a parameter needs to be changed, modify the central configuration information and propagate outward from there.
 

Leave A Trail of Bread Crumbs
 

Who did what, and for what purpose? If there are problems with your system, fixing is much quicker when you can go back to the last working state, or at least figure out what has changed since then. Apart from the “what,” it is also important to know the “who” and “why.” Speaking with the person who implemented a troublesome change often leads to important insight. You may be able to quickly undo the change, but sometimes the change was made for a good reason and undoing it will only make things worse.
 

Revision control systems provide one useful way to keep track of changes. They provide both a historical record of the actual data over time and information about which sysadmin performed the change. If used correctly, each modification is accompanied by a comment that explains the reasoning behind it. Automated tools can check in the config files they modify and identify themselves in the comment. That way, it’s easy to identify a malfunctioning script and back out the changes it made.
 

More details about revision control systems can be found starting on page 397.

 

If your organization uses a ticketing system, that is another place to keep track of changes. You can create a ticket for every change, and that ticket can include the who, what, when, where, and why. Possibly just as important, the ticket can also include a backout plan. That way, if something goes wrong at two in the morning, the on-call administrator does not have to wake up other sysadmins.
 

You and your staff must be disciplined about opening a ticket for each change. Tracking systems only provide their full benefit if they are used by every administrator for every change.
 

Recognize the Criticality of Documentation
 

Documentation is so important to a scalable infrastructure that we have made it a major section of its own, starting on page 1200.
 

Customize and Write Code
 

The use of existing tools is a virtue, and you should exploit those tools whenever you can. But no site in the world is exactly like yours, and your organization is certain to have some unique requirements. An IT infrastructure that precisely fills the organization’s needs provides a competitive edge and increases everyone’s productivity.
 

With its excellent scriptability and cornucopia of open source tools, UNIX is the ideal basis for a well-tuned infrastructure. In our view, a system administration group without a software development function is hobbled.
 

Keep the System Clean
 

System management is not just about installing and adding and configuring; it’s also about knowing what to keep, what to throw out, and what to refurbish. We call this concept “sustainable management.” It’s wonderful to be able to add a new computer to your environment in 5 minutes, and it’s great to be able to create a new user account in 10 seconds. But if you look ahead, it’s equally important to be able to find and remove old accounts and computers in an organized way. Sustainability in system management means that you have the tools and concepts needed to run your operation over the long haul in an organized fashion.
 

32.5 The Operations Group
 

The final role we discuss in this chapter is that of operations. In business terms, operations means “doing the day-to-day schlock that constitutes the business’s essential purpose.” In an IT sense, ops is where many of the tasks that are normally referred to as “system administration” live. Some examples are backups, monitoring, patching, upgrading, installing new software, and debugging.
 

The operations division is responsible for the installation and maintenance of the IT infrastructure. As a rule of thumb, the enterprise architecture and operations groups deal with computers and wires, whereas the help desk deals with people.
 

Operations focuses on creating a stable and dependable environment for customers. Availability and reliability are its key concerns. Operations staff should not perform experiments or make quick fixes or improvements on a Friday afternoon. The chance of failure (and of nobody but customers noticing the problems over the weekend) is just too high.
 

Aim for Minimal Downtime
 

Many people depend on the computing infrastructure we provide. An internal department can probably live for a while without its web site, but an Internet mail order company such as Amazon.com cannot. Some folks won’t notice if your print server is down, but an employee with a hard deadline for completing a document or proposal will be very unhappy indeed. In most organizations, losing access to email usually makes everybody crabby. Central file servers are another potential source of disaster.
 

At some sites you will need to provide emergency service. In some types of organizations that operate around the clock—such as hospitals—this might mean 24/7 on-site coverage by experienced sysadmin staff.
 

Even if you don’t have the budget or need to explicitly provide 24/7 coverage, you should be prepared to take advantage of any administrators that happen to be around late at night or on weekends. A rotating cell phone or on-line notification system can often provide “good enough” emergency coverage. Make sure that users can access this coverage in some easy and well-known way. For example, an email alias might relay an SMS message to a floating cell phone.
 

Document Dependencies
 

To make accurate claims regarding availability or uptime, you must know not only your own strengths and weaknesses (including the reliability of the hardware you deploy) but also the dependencies of the IT systems on other hardware, software, and personnel. For example:
 

• Power: independent power sources and circuits, surge and short protection, backup power systems such as generators and UPSes, building power wiring, maps of power supplied to specific pieces of equipment

 

• Network: building wiring, backup lines, customer service numbers for ISPs, network topology, contact information for other groups within the organization that have their own network management function

 

• Hardware: high-availability systems and procedures for using them, hot/cold standbys, spare parts, hardware maintenance contracts

 

Repurpose or Eliminate Older Hardware
 

To maintain your infrastructure, you must buy new machines, repurpose older ones, and throw out ancient ones. We cover procurement later in the purchasing section, but getting rid of old favorites is just as important.
 

Because users and management can be reluctant to upgrade obsolete equipment, you sometimes have to take the initiative. Financial information is the most persuasive evidence. If you can demonstrate on paper that the cost of maintaining old equipment exceeds the cost of replacement, you can remove many of the intellectual objections to upgrading. Sometimes it’s also useful to replace heterogeneous hardware just to save the time and effort needed to keep all the different OS and software versions up to date.
 

Inexpensive Intel/PC hardware is the standard architecture base on the desktop, especially now that Apple ships on Intel hardware. The prevalence of PCs has over the years shifted the expense of computing from the hardware side to the software and support sides.
 

The best way to maintain a dependable, well-performing infrastructure is to be proactive. Develop a policy that anticipates and describes the expected lifetimes of your various systems. For example, you might keep laptops for three years, desktops for four years, and servers for five. These numbers may also vary by vendor and maintenance contract.
 

Planning the replacement of old hardware saves time and pain in the long run. If you have a policy of replacing laptops every three years, you are much less likely to get paged at midnight when a traveling executive suddenly cannot get to his or her email because the laptop has crashed.
 

Maintain Local Documentation
 

Just as most people accept the health benefits of exercise and leafy green vegetables, everyone appreciates good documentation and has a vague idea that it’s important. Unfortunately, that doesn’t necessarily mean that they’ll write or update documentation without prodding.
 

Why should we care, really?
 

• Documentation reduces the likelihood of a single point of failure. It’s wonderful to have tools that deploy workstations in no time and distribute patches with a single command, but these tools are nearly worthless if no documentation exists and the expert is on vacation or has quit.

 

• Documentation aids reproducibility. When practices and procedures aren’t stored in institutional memory, they are unlikely to be followed consistently. When administrators can’t find information about how to do something, they have to wing it.

 

• Documentation saves time. It doesn’t feel like you’re saving time as you write it, but after spending a few days re-solving a problem that has been tackled before but whose solution has been forgotten, most administrators are convinced that the time is well spent.

 

• Finally, and most importantly, documentation enhances the intelligibility of the system and allows subsequent modifications to be made in a manner that’s consistent with the way the system is supposed to work. When modifications are made on the basis of only partial understanding, they often don’t quite conform to the architecture. Entropy increases over time, and even the administrators that work on the system come to see it as a disorderly collection of hacks. The end result is often the desire to scrap everything and start again from scratch.

 

Local documentation serves many purposes. Have you ever walked into a machine room needing to reboot one server, only to face racks and racks of hardware, all alike and all unlabeled? Or had to install a piece of hardware that you’ve handled before, but all you can remember about the chore was that it was hard to figure out?
 

Local documentation should be kept in a well-defined spot. Depending on the size of your operation, this might be a directory on a file server that is mounted on all your machines, a wiki, or perhaps even in the home directory of a special system user account.
 

Once you have convinced your administrators to document configurations and administration practices, it’s important to protect this documentation as well. A malicious user can do a lot of damage by changing your organization’s documentation. Make sure that people who need the documentation can find it and read it (make it searchable), and that everyone who maintains the documentation can change it. But balance accessibility with the need for protection.
 

Wiki-type documentation is particularly nice in that you can easily undo any malicious changes. Other systems can be protected in a similar way by a revision control system.
 

Standardized Documentation
 

Our experience suggests that the easiest and most effective way to maintain documentation is to standardize on short, lightweight documents. Instead of writing a system management handbook for your organization, write many one-page documents, each of which covers a single topic. Start with the big picture and then break it down into pieces that contain additional information. If you have to go into more detail somewhere, write an additional one-page document that focuses on steps that are particularly difficult or complicated.
 

This approach has several advantages:
 

• Your boss is probably only interested in the general setup of your environment. That is all that’s needed to answer questions from above or to conduct a managerial discussion. Don’t pour on too many details or you will just tempt your boss to interfere in them.

 

• The same holds true for customers.

 

• A new employee or someone taking on new duties within your organization needs an overview of the infrastructure to become productive. It’s not helpful to bury such people in information.

 

• It’s more efficient to use the right document than to browse through a large document.

 

• You can index pages to make them easy to find. The less time administrators have to spend looking for information, the better.

 

• It’s easier to keep documentation current when you can do that by updating a single page.

 

This last point is particularly important. Keeping documentation up to date is a huge challenge; documentation is often is the first thing to be dropped when time is short. We have found that a couple of specific approaches keep the documentation flowing.
 

First, set the expectation that documentation be concise, relevant, and unpolished. Cut to the chase; the important thing is to get the information down. Nothing makes the documentation sphincter snap shut faster than the prospect of writing a dissertation on design theory. Ask for too much documentation and you may not get any. Consider developing a simple form or template for your sysadmins to use. A standard structure helps to avoid blank-page anxiety and guides sysadmins to record pertinent information rather than fluff.
 

Second, integrate documentation into processes. Comments in configuration files are some of the best documentation of all. They’re always right where you need them, and maintaining them takes virtually no time at all. Most standard configuration files allow comments, and even those that aren’t particularly comment friendly can often have some extra information sneaked into them.
 

Locally built tools can require documentation as part of their standard configuration information. For example, a tool that sets up a new computer can require information about the computer’s owner, location, support status, and billing information even if these facts aren’t directly relevant to the machine’s software configuration.
 

Documentation should not create information redundancies. For example, if you maintain a site-wide master configuration file that lists machines and their IP addresses, there should be no other place where this information is updated by hand. Not only is it a waste of your time to make updates in multiple locations, but inconsistencies are also certain to creep in over time. When this information is required in other contexts and configuration files, write a script that obtains it from (or updates) the master configuration. If you cannot completely eliminate redundancies, at least be clear about which source is authoritative. And write tools to catch inconsistencies, perhaps run regularly from cron.
 

The advent of tools such as wikis, blogs, and other simple knowledge management systems has made it much easier to keep track of IT documentation. Set up a single location where all your documents can be found and updated. Don’t forget to keep it organized, however. One wiki page with 200 child pages all in one list is cumbersome and difficult to use. Be sure to include a search function to get the most out of your system.
 

Hardware Labeling
 

Some documentation is most appropriate when written out on a piece of paper or taped to a piece of hardware. For example, emergency procedures for a complete system or network failure are not particularly useful if they are stored on a dead or unreachable machine.
 

Every computer should be identifiable without someone’s switching it on and logging in, because those activities will not always be possible. Uniquely label each workstation, server, printer, tape drive, and piece of network equipment. Labels should include the item’s name and IP address (if it has one). Labels for peripherals should identify the host on which they live and the device files through which the device is accessed.
 

In a server room it is useful to have these labels on both the front and the back of the machines (especially in cramped racks) so that you can easily find the switch of the machine you want to power-cycle.
 

If your environment includes many different types of systems, it may be useful to add additional information such as architecture, boot instructions, special key sequences, pointers to additional documentation, the vendor’s hotline, or the phone number of the person in charge. Recording key sequences may seem a bit silly, but servers are often connected to a console server rather than a dedicated monitor, and administrators need to know how to get to the correct system.
 

Be sure your central records and inventory data contain a copy of the information included on all these little sticky labels. This data is handy if you manage your machines through a TCP/IP connection to your console server instead of spending your work day in a noisy machine room.
 

In cases with extensive machine-specific data, you might consider deploying a bar coding system that lets you pull up all the relevant details for a device on a mobile laptop. (Of course, that mobile system shouldn’t itself depend on a properly functioning network or database server.)
 

Network Documentation
 

Network wiring must be scrupulously documented. Label all cables, identify patch panels and wall outlets, and mark network devices. Always make it easy for your wiring technicians to keep the documentation up to date; keep a pencil and forms hanging on the wall of wiring closets so that it’s painless to note that a cable moved from one device to another. You can transfer this data to on-line storage at regular intervals.
 

Most network devices (e.g., routers and switches) can be reconfigured over the network. Although you can now move machines among subnets from your cozy office, documentation becomes even more important. Be careful, because you can now screw up a much bigger part of your infrastructure more quickly and more thoroughly.
 

You might consider using a software package such as Rancid to help you keep track of your device configurations. These tools also catch accidental and forgotten changes, which can drastically reduce unplanned downtime.
 

User Documentation
 

Prepare a short document that you can give to new users. It should document local customs, procedures for reporting problems, the names and locations of printers, your backup and downtime schedules, and so on. This type of document can save an enormous amount of sysadmin or user services time. You should also make the information available on the web. A printed document is more likely to be read by new users, but a web page is easier to refer to at the time questions arise. Do both and keep them updated regularly. Outdated on-line documentation or FAQs are worse than useless.
 

In addition to documenting your local computing environment, you may want to prepare some introductory material about UNIX for your power users. We provide printed one-page crib sheets that list the commands and applications commonly needed by our user community.
 

Keep Environments Separate
 

Organizations that write and deploy their own software need separate development, test, and production environments so that releases can be staged into general use through a structured process. Separate, that is, but identical; make sure that when development systems are updated, the changes propagate to the test and production environments as well. Of course, the configuration updates themselves should be subject to the same kind of structured release control as the code. “Configuration changes” include everything from OS patches to application updates and administrative changes.
 

It is critical to protect your production environment by enforcing role separation throughout the promotion process. For example, the developers who have administrative privileges in the development environment should not be the same people who have administrative and promotion privileges in other environments. A disgruntled developer with code promotion permissions could conceivably insert malicious code at the development stage and then promote it through to production. By distributing approval and promotion duties to other people, you require multiple people to collude or make mistakes before problems can find their way into production systems.
 

Document your code promotion process and follow it religiously. Don’t make exceptions. If you find that the regular process is not efficient enough for emergency changes, document an emergency change process and then make sure it is followed. You should also audit the code promotion process and go back and make retroactive adjustments where necessary.
 

Developers are sometimes frustrated by the level of documentation required in this type of system. Consider holding some lunch-and-learn sessions to help them understand the motivations for your requirements. Developers who are bought in as co-conspirators are more likely to follow the standard procedures.
 

Automate, Automate, Automate
 

Your site-wide management system should contain the following major elements:
 

• Automated setup of new machines: This is not just OS installation; it also includes all the additional software and local configuration necessary to allow a machine to enter production use. It’s inevitable that your site will need to support more than one type of configuration, so include multiple machine types in your plans from the beginning.

 

• Systematic patching and updating of existing machines: When you identify a problem with your setup, you need a standardized and easy way to deploy updates to all affected machines. Note that because computers are not turned on all the time (even if they are supposed to be), your update scheme must correctly handle machines that are not on-line when the update is initiated. You can check for updates at boot time or update on a regular schedule; see Chapter 12 for more information.

 

• A monitoring system: Your users should not have to call you to tell you that the server is down. Not only is it unprofessional, but you have no idea how long the system has been down. The first person to call you is probably not the first person to have experienced problems. You need some kind of monitoring system that raises an alarm as soon as problems are evident. But alarms are tricky. If there are too many, sysadmins start to ignore them; if too few, important problems go unnoticed.

 

• A communication system: Keep in touch with the needs of your users; supporting them is the ultimate goal of everything you do as a system administrator. A request-tracking system is a necessity (see page 1191). A central location where users can find system status and contact information (typically on the web) is also helpful.

 

32.6 Management
 

The role of IT management is to define the IT group’s overall strategy and to oversee the IT organization. Many responsibilities fall on the managers’ shoulders:
 

• Leading the group, bringing vision, and providing necessary resources

 

• Hiring, firing, staff assessment, and skill development

 

• Assigning tasks to the staff and tracking progress

 

• Ensuring and measuring compliance with SLAs

 

• Negotiating changes and updates to SLAs

 

• Communicating with the managers of the overall organization

 

• Handling problems: staff conflicts, rogue users, ancient hardware, etc.

 

• Acting as a “higher authority” to whom users can escalate problems

 

• Overseeing the development of a scalable infrastructure

 

• Planning for disasters and emergencies

 

• Extracting documentation from squirrelly sysadmins’ heads

 

• Facilitating security through policy development (both for users and for administrators) and enforcement

 

It might seem that the task of interfacing with customers is missing from this list. However, we believe that this role is actually best filled by members of the technical staff. Managers frequently do not have the technical background to evaluate the difficulty and feasibility of customers’ requests. There are likely to be fewer surprises on both sides of the table when those doing the actual work have input into the deliverables and schedules that are promised to customers.
 

Leadership
 

Leadership is hard to describe. But when lacking or poorly executed, its absence is all too readily apparent. In a way, leadership is the “system administration” of organizations: it sets the direction, makes sure the components work together, and keeps the whole system running with as few error messages as possible.
 

Unfortunately, the technical prowess that makes someone a great system administrator doesn’t necessarily translate to the leadership role, which requires a more people-centered skill set. People are a lot harder to master than Perl.
 

For new managers with strong technical backgrounds, it can be particularly hard to focus on the job of management and avoid the temptation to do engineering work. It’s sometimes more comfortable and more fun to dive into solving a technical problem than to have a long-overdue conversation with a “difficult” staff member. But which is more valuable to the organization?
 

A simple (and perhaps eye-opening) check on your level of leadership is the following. Make a list of the tasks your organization is working on. Use one color to mark the areas in which you are steering the boat, and a different color to mark the areas in which you are rowing or pulling the boat. Which color is dominant?
 

Personnel Management
 

Personnel management can be particularly challenging. As part of your oversight function, you deal both with your employees’ technical and personal sides. Technically brilliant sysadmins can sometimes be poor communicators. As their manager, you need to keep them on the growth curve in both dimensions.
 

Technical growth is relatively easy to promote and quantify, but personal growth is just as important. Below are some important questions to ask when assessing an employee’s user interface:
 

• Is this person’s behavior suitable for our work environment?

 

• How does this person interact with authorities, customers, suppliers?

 

• Does this person get along with other members of the team?

 

• Does this person have leadership skills that should be developed?

 

• How does this person respond to criticism and technical disputes?

 

• Does this person actively work to address gaps in his or her knowledge?

 

• How are this person’s communication skills?

 

• Can this person plan, implement, and demonstrate a customer’s project?

 

• Does this person demonstrate ownership of his or her tasks?

 

• Does this person tend to find solutions, or roadblocks?

 

Hiring
 

It’s important to make these assessments for potential new hires as well as for existing employees. The personal qualities of job applicants are often overlooked or underweighted. Don’t take shortcuts in this area—you’ll surely regret it later!
 

There are two approaches to building a staff of system administrators:
 

• Hire experienced people.

 

• Grow your own.

 

Experienced people may come up to speed faster, but you sometimes want them to unlearn certain things or change old habits. Conversely, inexperienced administrators may require fairly extensive technical training. Regardless of which option you choose, it’s helpful to have documented, comprehensive policies and procedures. If your existing IT staff have clear direction and understand your policies and procedures, they can be leaders in their own right and help to acclimate newcomers to your organization’s way of doing things.
 

Some of the qualities of a good system administrator are contradictory. A sysadmin must be brash enough to try innovative solutions when stuck on a problem but must also be careful enough not to try anything truly destructive. Interpersonal skills and problem-solving skills are both important, but they often seem to lie on orthogonal axes. While all of your sysadmins don’t need to be stellar communicators, a few personable sysadmins will go a long way toward promoting customer satisfaction.
 

When hiring sysadmins, you will have to decide which characteristics are the most important for a particular role. For example, if you are hiring a server administrator who will be focused on back-end systems and have little interaction with customers, you might rank communication skills somewhat lower than technical skills. But since this person will be part of a larger team, you can’t ignore interpersonal skills entirely.
 

To assess technical expertise, you might try drafting a set of pertinent technical questions you can pose to interviewees. You might even try sticking a bogus question in among the real ones to measure the BS factor in an applicant’s answers.
 

We believe that in-person interviews are important. You will learn more about an applicant in the first 15 minutes of an in-person interview than you can in a longer phone conversation.
 

We also believe strongly in checking references. During the reference check, we like to ask open-ended questions that give the respondent a chance to send subtle messages about the applicant. Listen carefully! People generally do not like to say negative things during a reference check, but they may give you subtle hints if you are paying close attention.
 

Some of the questions to ask will emerge from your interview with the candidate. For example, if the interview raises concern about whether an applicant pays close attention to details, you might ask a reference something like “Would you consider the applicant more of a detail-oriented person or a big-picture thinker?”
 

Firing
 

If you make a hiring mistake, fire early. You may miss a few late bloomers, but keeping people who are not pulling their own weight can alienate your other staff members as they take up the slack and clean up the duds’ messes. Your customers will also realize that certain individuals don’t get things done and start demanding a particular system administrator for their jobs. You don’t want your customers interfering with management decisions in your daily business.
 

In many organizations it is very hard to fire someone, especially after the initial evaluation period is over. Make sure that initial evaluations are taken seriously. Later, you may have to collect data showing incompetence, give formal warnings, set performance goals, and so on.
 

Mechanics of Personnel Management
 

There is more to integrating a new employee into your infrastructure than just writing an offer letter. You must be aware of and honor your organization’s rules regarding advertising for positions, trial periods, reviews, and so on.
 

Another set of chores define the mechanics of getting a new person settled with a desk, computer, keys, accounts, and sudo access. Your processes should ensure that a system administrator hired to administer a particular set of servers is not given carte blanche to administer any system in the company.
 

Just as important are the policies and procedures to follow when a sysadmin leaves the organization. You need a checklist to ensure you don’t forget anything. Your checklist should include things such as
 

• Removing the user’s domain account (LDAP or Active Directory)

 

• Removing the user’s UNIX and Linux accounts

 

• Removing the user from all the site’s sudoers files

 

• Collecting keys and access cards (document all keys and cards collected)

 

• Collecting a company cell phone

 

Some organizations can print a definitive list of access rights and hardware that have been given to each employee. This is a great way to make sure you haven’t forgotten anything.
 

In the United States, it’s common for employees to give two weeks’ notice before quitting. Some sites forego the two-week period and walk the employee to the door, immediately revoking all physical and network access. Smart!
 

Quality Control
 

Managers set the tone for quality control. Each task should have clear criteria for completion. In addition to the work inherent in each task, completion criteria might include
 

• Testing the solution

 

• Updating local documentation

 

• Propagating the solution to all affected machines

 

• Completing the trouble ticket with details of the actions taken

 

• Getting the ticket initiator to sign off on the resolution as satisfactory

 

Even a simple task, such as creating a cron job to help with a daily administrative chore, should include a testing phase to ensure that the change works as intended. More complex tasks should include a documented test plan.
 

Ideally, your IT group would have a culture in which sysadmins take it upon themselves to ensure that each job is done well and completely. But to achieve that steady state, you may have to do some close monitoring; this is a good situation in which to apply the maxim that you should “inspect what you expect.”
 

Management Without Meddling
 

As a technically competent manager, you will frequently be tempted to advise employees on how to do their jobs. But be careful. There are situations where this is appropriate, but there are also situations where you need to let your employees grow and become fully responsible for their work.
 

We think of employee development as being a little bit like parenting. If a staff member is about to make a mistake that will give IT a black eye, cause serious damage, or otherwise cause a problem that is difficult to recover from, it’s time to investigate. Ask the staff member to explain the game plan, and make sure he or she understands the likely consequences of the plan. If the staff member still seems to be on the wrong path, you will probably need to step in.
 

On the other hand, if someone is about to make a mistake that could serve as a good learning opportunity without causing undue harm, it might be a good time to step back. Lessons learned through direct experience are retained better than those communicated by word of mouth.
 

Of course, pitfalls lie in both directions. You don’t want to be perceived as a micromanager, but you also don’t want to be seen as withholding information from your staff or as someone who lets staff fail when they could be succeeding. Support your staff even when they’ve made mistakes and help them learn. Never allow mistakes to become an ongoing source of embarrassment.
 

Community Relations
 

System administration is a funny business. If you do your job well, users take your seamless computing environment for granted and nobody notices what you do. But in today’s world of viruses, spam, bloated applications, and total dependence on the Internet, the IT staff is an indispensable part of the organization.
 

Your satisfied customers are your best marketing device. However, there are other ways to gain visibility within your organization and within the broader community. Based on our experience with tooting our own horn, we suggest the following methods as being particularly effective.
 

• Hold town hall meetings where users can express their concerns and ask questions about the computing infrastructure. You might prepare for such a meeting by analyzing users’ support requests and open the meeting with a short presentation on the most troublesome topics you’ve identified. Provide refreshments to ensure a good turnout.

 

• Leave plenty of time for questions and make sure you have knowledgeable staff available to answer them. Don’t try to bluff your way out of unexpected questions, though. If you don’t know the answer off-hand, it’s best to admit this and follow up later.

 

• Design a seminar series directed at end users within your organization. Schedule meetings at two- or three-month intervals and publish the topics to be presented well in advance.

 

• Attend conferences on system administration and give talks or write papers about the tools you develop. Such presentations not only give you feedback from your peers but they also show your customers (and your boss) that you do your job well.

 

System administration is ultimately about dealing with people and their needs. Personal relationships are as important as they are in any business. Talk to your customers and colleagues, and make time for personal discussions and exchanges.
 

If you support multiple groups of people, consider assigning a specific staff member to act as an account manager for each group. This liaison should take on responsibility for the general happiness of the customer and should speak regularly with end users. Channel news and information about changes in the computing environment through the liaison to create additional opportunities for contact.
 

Management of Upper Management
 

To effectively discharge your management duties (particularly those in the “leadership” arena), you need the respect and support of your own management. You need the ability to define your group’s structure and staffing, including decision authority over hiring and firing. You need control over task assignments, including the authority to decide when goals have been achieved and staff can be reassigned. Finally, you need to be responsible for representing your group both within the larger organization and to the world at large.
 

Upper management sometimes has no idea what system administrators do. Use your trouble ticketing system to provide this information; it can help when you or your boss needs to campaign for additional staff or equipment. Also make sure that management understands the different roles of the help desk and the operations team. They need to know that the person who answers the phone when they dial the help desk is not the same person who configures the routers and servers. This clarity will go a long way toward keeping expectations in line.
 

It may be wise to keep good records even in the absence of a particular goal. Managers, especially nontechnical managers, are often way off in their estimates of the difficulty of a task or the amount of time it will take to complete. This inaccuracy is especially noticeable for troubleshooting tasks.
 

Try to set expectations realistically. If you don’t have much experience in planning your work, double or triple your time estimates for large or crucial tasks. If an upgrade is done in two days instead of three, most users will thank you instead of cursing you as they might have if your estimate had been one day.
 

When it comes to making changes to production systems, you need to follow a documented change management process. This process should include approva from a change advisory board. Having management participate in the approval process will tend to decrease the number of user complaints. Users who see that the CEO is on-board with moving to a new email system are less likely to call you up insisting that you consider their favorite alternative.
 

Security is a common problem area. Tightening security typically means inconveniencing users, and the users often outweigh you both in number and whining ability. Increased security may reduce users’ productivity; before implementing a proposed security change, do a risk analysis to be sure both management and users understand why it is a good idea.
 

Make sure that any security change that impacts users (e.g., converting from passwords to RSA/DSA keys for remote logins) is announced well in advance, is well documented, and is well supported at changeover time. You might even consider holding workshops at which users can learn about the change and maybe even bring in a laptop so that the first time they use the new system there is someone there to help them. Documentation should be easy to understand and should provide cookbook-type recipes for dealing with the new system. Allow for extra staffing hours when you first cut over to the new system so you can deal with frustrated, panicked users.
 

Purchasing
 

In many organizations, the group of people that make purchasing decisions does not include system administrators. This is, of course, fine for many decisions, but when the purchasing team is acquiring IT-related items, system administrators should have an opportunity to express their opinions and possibly even make a case for why one system should be chosen over another.
 

Sysadmins can provide good information about compatibility with the local environment, the competence of vendors (especially third-party resellers), and the reliability of certain types of equipment. Reliability information is particularly important when ordering systems that affect the organization’s overall ability to function.
 

Another important piece of information that sysadmins can contribute is the impact that a new system will have on the organization’s IT security and regulatory compliance. A good example might be a hospital in which a clinical department orders new imaging systems without consulting the system administration group. Unfortunately, when the hardware arrives and the sysadmins are called in to configure it, they realize that it does not interact with the hospital’s authentication system. In fact, it does not require user login at all! Now the hospital has spent thousands of dollars on a system that is not HIPAA-compliant, and they will either need to purchase a new system or work with the vendor to get individual authentication capabilities incorporated. Neither of these is a good option, and the hospital would have been better off if the system administrators had been called in to foresee these problems and recommend a different vendor.
 

Sysadmins need to know about any new system (hardware or software) that’s being ordered so that they can determine how to integrate it into the current infrastructure and predict what projects and resources will be needed to support it.
 

Keep in mind that although system administrators can offer recommendations, the organization will make the ultimate purchasing decision. If the organization purchases something the system administrators think is a bad choice, that item still needs to be supported—ignoring systems you don’t like is not an option.
 

In organizations that must channel purchases to the lowest bidder, document evaluation criteria in addition to cost. Clauses such as “must be compatible with existing environment,” or “must be able to run XYZ package well” are relatively open ended and let you consider factors other than just the price when making purchasing decisions.
 

The incremental impact and cost of a piece of hardware is not constant. Is it the 60th of that architecture or the first? Does it have enough local disk space for the system files? Does it have enough memory to run today’s bloated applications? Is there a spare network port to plug it into? Is it a completely new OS? Is it compliant with relevant regulations? How does it fit into the organization’s long-range plans? Has the system been considered and approved by the enterprise architects?
 

Conflict Resolution
 

Several chores that fall on the manager’s plate have the general flavor of getting along with people (usually customers, staff, or management) in sticky situations. We first look at the general approach and then talk about the special case of dealing with “rogue” customers, sometimes known as cowboys.
 

Conflicts in the system administration world often occur between system administrators and their customers, colleagues, or suppliers. For example, a customer is not happy with the services rendered, a vendor didn’t deliver promised materials or services on time, a colleague didn’t do what was expected, or an engineering department insists that it needs control over the configurations of its desktops.
 

Mediation
 

Most people don’t like to talk about conflicts or even admit that they exist. When emotions flare, it’s generally because the conflict has been addressed much too late, after an unsatisfactory situation has been endured for a long time. During the festering phase, the parties build up resentment and ruminate on each other’s villainous motives.
 

A face-to-face meeting with a neutral mediator in attendance can sometimes de-fuse the situation. Try to constrain the session to a single topic and limit the time to no more than one hour. These measures can lower the chance of the meeting degenerating into an endless gripe session.
 

The goal of a mediation session is to find a win/win solution for both parties. Formal mediation training can be obtained through multiple organizations, but here are some basic principles:
 

• Give each party a chance to express its desired outcome. Record these points in a neutral fashion on a whiteboard that both parties can see.

 

• As mediator, your goal is to highlight areas of agreement and to find commonality between both sets of desired outcomes.

 

• You may not reach agreement in one meeting. But if you can make progress toward finding common ground, consider the meeting a success.

 

• Build on any common ground you’ve identified in subsequent sessions. After just a couple meetings, you may develop enough common ground that both parties can be satisfied with the outcome.

 

Rogue Users and Departments
 

The introduction of closely managed systems and processes often causes conflict. Technically inclined users (and sometimes entire departments) may feel that centralized system administration cannot adequately accommodate their configuration needs or their need for autonomous control over the computers they use.
 

Your first impulse may be to try and strong-arm such rogue users into accepting standard configurations in order to minimize the cost and time required to support them. However, this iron-fisted approach usually ends up creating both unhappy users and unhappy sysadmins. Keep in mind that rogue users’ desires are often perfectly legitimate and that it is the sysadmins’ job to support them or, at least, to refrain from making their lives more difficult.
 

The most desirable solution is to identify the underlying reasons for the users’ reluctance to accept managed systems. In many cases, you can address their needs and bring them back into the fold.
 

An alternative to the integration strategy is to trade support for autonomy. You might allow rogue users or groups to do what they want, with the explicit understanding that they must also take on responsibility for keeping the customized systems running. If you do this, be sure to protect your other resources. Install a firewall between the systems you manage and the systems managed by the outlaws. This precaution will help thwart break-ins and viruses emanating from the segregated network.
 

Have the residents of the segregated network sign a policy document that sets security guidelines. For example, if their systems interfere with the rest of the organization, their network connection can be turned off until they are no longer impacting the rest of the organization. The fix for such an issue might include requiring them to patch critical vulnerabilities or to install antivirus software.
 

All organizations have their “bleeding edgers,” users who are hooked on getting the latest stuff immediately. Such users are prepared to live with the inconvenience of beta versions and unstable prereleases as long as their software is up to date. Find ways to deal with these people as useful resources rather than as thorns in your side. They are ideal candidates to test new software and are often willing to feed bug reports back to you so that problems can be fixed.
 

Creative system administration is also needed to deal with the increasing number of mobile devices being brought to work. You must find ways of providing service for these (generally untrusted) devices without endangering the integrity of your systems. A separate network might be a good idea. Another option is to have the laptops run through a VPN that enforces “posture assessment.”
 

Posture assessment ensures that the laptops adhere to your most important security policies. For example, you might require all machines connecting through the VPN to have a set of critical patches installed. For Windows laptops, you might also require antivirus software.
 

32.7 Policies and Procedures
 

Comprehensive IT policies and procedures serve as the groundwork for a modern IT organization. Policies set standards for users and administrators and foster consistency for everyone involved. More and more, policies require acknowledgement in the form of a signature or other proof that the user has agreed to abide by their contents. Although this may seem excessive to some, it is actually a great way to protect administrators in the long run.
 

The ISO/IEC 27001 standard is a good basis for constructing your policy set. It weaves general IT policies with other important elements such as IT security and the role of the Human Resources department. In the next few sections, we discuss the ISO/IEC 27001 framework and highlight some of its most important and useful elements.
 

The Difference Between Policies and Procedures
 

Policies and procedures are two distinct things, but they are often confused, and the words are sometimes even used interchangeably. This sloppiness creates confusion, however. To be safe, think of them this way:
 

• Policies are documents that define requirements or rules. The requirements are usually specified at a relatively high level. An example of a policy might be that incremental backups must be performed daily, with level 0 backups being completed each week.

 

• Procedures are documents that describe how a requirement or rule will be met. So, the procedure associated with the policy above might say something like “Incremental backups are performed using Backup Exec software, which is installed on the server backups01…”

 

This distinction is important because your policies should not change very often. You might review them annually and maybe change one or two pieces. Procedures, on the other hand, evolve continuously as you change your architecture, systems, and configurations.
 

Some policy decisions are dictated by the software you are running or by the policies of external groups, such as ISPs. Some policies are mandatory if the privacy of your users’ data is to be protected. We call these topics “nonnegotiable policy.”
 

In particular, we believe that IP addresses, hostnames, UIDs, GIDs, and user-names should all be managed site-wide. Some sites (multinational corporations, for example) are clearly too large to implement this policy, but if you can swing it, site-wide management makes things a lot simpler. We know of a company that enforces site-wide management for 35,000 users and 100,000 machines, so the threshold at which an organization becomes too big for site-wide management must be pretty high.
 

Other important issues have a larger scope than just your local sysadmin group:
 

• Handling of security break-ins

 

• Filesystem export controls

 

• Password selection criteria

 

• Removal of logins for cause

 

• Copyrighted material (e.g., MP3s and DVDs)

 

• Software piracy

 

Policy Best Practices
 

Several policy frameworks are available, and they generally cover roughly the same territory. The following topics are examples of those that are typically included in an IT policy set.
 

• Information security policy

 

• External party connectivity agreements

 

• Asset management policy

 

• Information classification system

 

• Human Resources security policy

 

• Physical security policy

 

• Access control policies

 

• Security standards for development, maintenance, and new systems

 

• Incident management policy

 

• Business continuity management (disaster recovery)

 

• Regulatory compliance policy

 

Procedures
 

Procedures in the form of checklists or recipes can codify existing practice. They are useful both for new sysadmins and for old hands. Better yet are procedures that include executable scripts.
 

Several benefits accrue from standard procedures:
 

• Chores are always done in the same way.

 

• Checklists reduce the likelihood of errors or forgotten steps.

 

• It’s faster for the sysadmin to work from a recipe.

 

• Changes are self-documenting.

 

• Written procedures provide a measurable standard of correctness.

 

Here are some common tasks for which you might want to set up procedures:
 

• Adding a host

 

• Adding a user

 

• Localizing a machine

 

• Setting up backups for a new machine

 

• Securing a new machine

 

• Removing an old machine

 

• Restarting a complicated piece of software

 

• Reviving a web site that is not responding or not serving data

 

• Upgrading the operating system

 

• Patching software

 

• Installing a software package

 

• Upgrading critical software (sendmail, gcc, named, OpenSSL, etc.)

 

• Backing up and restoring files

 

• Expiring backup tapes

 

• Performing emergency shutdowns

 

Many issues sit squarely between policy and procedure. For example:
 

• Who can have an account?

 

• What happens when they leave?

 

The resolutions of such issues need to be written down so that you can stay consistent and avoid falling prey to the well-known, four-year-old’s ploy of “Mommy said no, let’s go ask Daddy!”
 

32.8 Disaster Recovery
 

Your organization depends on a working IT environment. Not only are you responsible for day-to-day operations, but you must also have plans in place to deal with any reasonably foreseeable eventuality. Preparation for such large-scale problems influences both your overall game plan and the way that you define daily operations. In this section, we look at various kinds of disasters, the data you need to gracefully recover, and the important elements of a disaster plan.
 

Risk Assessment
 

Before a disaster recovery plan is completed, it’s a good idea to pull together a risk assessment to help you understand what assets you have, what risks they face, and  what mitigation steps you already have in place. The NIST 800-30 special publication details an extensive risk assessment process. You can download it here:
 

http://csrc.nist.gov/publications/nistpubs/800-30/sp800-30.pdf
 

Part of the risk assessment process is to make an explicit, written catalog of the potential disasters you want to protect against. Disasters are not all the same, and you may need several different plans to cover the full range of possibilities. For example, some common threat categories are
 

• Floods

 

• Fires

 

• Earthquakes

 

• Hurricanes and tornadoes

 

• Electrical storms and power spikes

 

• Power failures, both short and long term

 

• Extreme heat or failure of cooling equipment

 

• Device hardware failures (dead servers, fried hard disks)

 

• Network device failures (routers, switches, cables)

 

• Malicious users, both external and internal2

 

• Accidental user errors (deleted or damaged files and databases, lost configuration information, lost passwords, etc.)

 

For each potential threat, consider and write down all the possible implications of that event.
 

Once you understand the threats, you need to prioritize the services within your IT environment. Build a table that lists your IT services and assigns a priority to each. For example, a “software as a service” company might rate its external web site as a top-priority service, while an office with a simple, informational external web site might not worry about the site’s fate during a disaster.
 

Disaster Management
 

More and more, organizations are designing their critical systems to automatically fail over to secondary servers in the case of problems. This is a great idea if you have little or no tolerance for services being down. However, don’t fall prey to the belief that because you are mirroring your data, you do not need off-line backups. Even if your data centers are miles apart, it is certainly possible that you could lose both of them. Make sure you include data backups in your disaster planning.
 

Read more about cloud computing starting on page 987.

 

Cloud computing is another disaster-planning resource that is gaining traction. Through services such as Amazon’s EC2, you can get a remote site set up and functioning within minutes, without having to pay for dedicated hardware. You pay only for what you use, when you use it. This is a great and inexpensive alternative to a dedicated warm-backup site, albeit one that requires considerable technical planning.
 

A disaster recovery plan should include the following sections (based on the NIST disaster recovery standard, 800-34):
 

• Introduction – purpose and scope of the document

 

• Concept of operations – system description, recovery objectives, information classification, line of succession, responsibilities

 

• Notification and activation – notification procedures, damage assessment procedures, plan activation

 

• Recovery – the sequence of events and procedures required for recovery of lost systems

 

• Return to normal operations – concurrent processing, reconstituted system testing, return to normal operations, plan deactivation

 

We are accustomed to using the network to communicate and to access documents. However, these facilities may be unavailable or compromised after an incident. Store all relevant contacts and procedures off-line. Know where to get recent dump tapes and how to make use of them without reference to on-line data.
 

In all disaster scenarios, you will need access to both on-line and off-line copies of essential information. The on-line copies should, if possible, be kept on a self-sufficient machine: one that has a rich complement of tools, has key sysadmins’ environments, runs its own name server, has a complete local /etc/hosts file, has no file-sharing dependencies, has a printer attached, and so on. Don’t use an old junker that’s no good for anything else; the disaster recovery storage machine should be fast and should have plenty of memory and scratch disk space you can use for restores and compares during recovery. The machine needs a complete development environment so that it can patch and recompile any compromised software. It helps if the machine also has interfaces for all the types of disk drives used at your site (IDE, SATA, SCSI, FC-AL, etc.).
 

Here’s a list of handy data to keep on the backup machine and in the form of a printed booklet or optical disc:
 

• An outline of the recovery procedure: who to call, what to say

 

• Service contract phone numbers and customer numbers

 

• Key local phone numbers: police, fire, staff, boss

 

• Inventory of backup tapes and the backup schedule that produced them

 

• Network maps

 

• Software serial numbers, licensing data, and passwords

 

• Copies of software installation media (can be kept as ISO files)

 

• A copy of your systems’ service manuals

 

• Vendor contact info for that emergency disk you need immediately

 

• Administrative passwords

 

• Data on hardware and software configurations: OS versions, patch levels, partition tables, PC hardware settings, IRQs, DMAs, and the like

 

• Startup instructions for systems that need to be brought back on-line in a particular order

 

Staff for A Disaster
 

Your disaster recovery plan should document who will be in charge in the event of a catastrophic incident. Set up a chain of command and keep the names and phone numbers of the principals off-line. We keep a little laminated card with important names and phone numbers printed in microscopic type. Very handy— and it fits in your wallet.
 

It may be that the best person to put in charge is a sysadmin from the trenches, not the IT director (who is usually a poor choice for this role).
 

The person in charge must be someone who has the authority and decisiveness to make tough decisions based on minimal information (e.g., a decision to disconnect an entire department from the network). The ability to make such decisions, communicate them in a sensible way, and lead the staff through the crisis are probably more important than having theoretical insight into system and network management.
 

An important but sometimes unspoken assumption made in most disaster plans is that sysadmin staff will be available to deal with the situation. Unfortunately, people get sick, go on vacation, leave for other jobs, and in stressful times may even turn hostile. Consider what you’d do if you needed extra emergency help. (Not having enough sysadmins around can sometimes constitute an emergency in its own right if your systems are fragile or your users unsophisticated.)
 

You might try forming a sort of NATO pact with a local consulting company that has sharable system administration talent. Of course, you must be willing to share back when your buddies have a problem. Most importantly, don’t operate close to the wire in your daily routine. Hire enough system administrators and don’t expect them to work 12-hour days.
 

Power and HVAC
 

Test your disaster recovery plan before you need to use it. An untested plan is no plan at all! Test and update the plan annually.
 

See page 1091 for more information about standby power options

 

Test your generators and UPSes on a monthly or quarterly schedule, depending on how much risk your management is willing to accept. Verify that everything you care about is plugged into a UPS, that the UPS batteries are healthy, and that the failover mechanism works. To test an individual UPS, just unplug it from the wall. To make sure that all critical equipment is properly UPSified, you may have to throw the circuit breakers. Know your power system’s dependencies and points of failure.
 

UPSes need maintenance, too. This function is probably outside the scope of your sysadmin duties, but you are responsible for ensuring that it is performed.
 

If you have a generator, contract with a local company that can deliver fuel for the generator when you need it. Keep enough fuel on hand to power your systems during an extended outage, but remember that fuel eventually goes bad. Gasoline starts to turn in as little as one month. Even when treated with a stabilizer additive, gasoline should not be stored for more than a year. Diesel is more chemically stable than gasoline but can support the growth of algae, so consider an algicidal additive for diesel that will be held for an extended period.
 

Most power outages are of short duration, but plan for two hours of battery life so that you have time to shut down machines properly in the event of a longer interruption. Most UPSes have a USB port or Ethernet interface that you can use to initiate a graceful shutdown of noncritical machines after a defined period without power.
 

Take advantage of power outages to do any five-minute upgrades that you have already tested but have not yet deployed. You’re down anyway, so people expect to be inconvenienced. In some shops, an extra five minutes during a power outage is easier to accept than a scheduled downtime with a week’s notice. If you have old machines that you suspect are not in use anymore, leave them turned off until someone complains. It might not be until weeks later—or never—that the “missing” machine is noticed.
 

Cooling systems often have a notification system that can call you if the temperature gets too high. Tune the value of “too high” so that you have time to get in before machines start to fry after the cooling system pages you; we use 76 degrees instead of 90, but some of us live in the mountains 45 minutes away (in summer, indeterminate in winter). Keep a couple of mechanical or battery-operated thermometers in the machine room—losing power means that you lose all those nifty electronic indicators that normally tell you the temperature.
 

See Chapter 28 for more information about environmental issues.

 

If you co-locate equipment at a remote site, ask to see the hosting site’s backup power facilities before you sign a contract. Verify that the generator is real and is tested regularly. Ask to be present at the next generator test; whether or not you get to see an actual test, you’re likely to get useful information.
 

Internet Connection Redundancy
 

ISPs are occasionally swallowed as part of a merger. Such mergers have demolished many companies’ carefully laid plans for maintaining redundant connections to the Internet. A post-merger ISP often consolidates circuits that belonged to the independent companies. Customers that formerly had independent paths to the Internet may then have both connections running through a single conduit and once again be at the mercy of a single backhoe fiber cut.
 

ISPs have also been known to advertise “redundant circuits” or “backup connections” of questionable value. On closer inspection you may find that yes, there are two fibers but both are in the same conduit, or it may be that the backup connection transits an already saturated ATM cloud. Hold a yearly review with your ISPs to verify that you still have genuine redundancy.
 

Security Incidents
 

System security is covered in detail in Chapter 22, Security. However, it’s worth mentioning here as well because security considerations impact the vast majority of administrative tasks. There is no aspect of your site’s management strategy that can be designed without due regard for security. For the most part, Chapter 22 concentrates on ways of preventing security incidents from occurring. However, thinking about how you might recover from a security-related incident is an equally important part of security planning.
 

Having your web site hijacked is a particularly embarrassing type of break-in. For the sysadmin at a web hosting company, a hijacking can be a calamitous event, especially when it involves sites that handle credit card data. Phone calls stream in from customers, from the media, from the company VIPs who just saw the news of the hijacking on CNN. Who will take the calls? What should that person say? Who is in charge? What role does each person play? If you are in a high-visibility business, it’s definitely worth thinking through this type of scenario, coming up with some preplanned answers, and perhaps even having a practice session to work out the details.
 

Sites that accept credit card data have legal requirements to deal with after a hijacking. Make sure your organization’s legal department is involved in security incident planning, and make sure you have relevant contact names and phone numbers to call in a time of crisis.
 

When CNN or Slashdot announces that your web site is down, the same effect that makes highway traffic slow down to look at an accident on the side of the road causes your Internet traffic to increase enormously, often to the point of breaking whatever it was that you just fixed. If your web site cannot handle an increase in traffic of 25% or more, consider having your load balancing device route excess connections to a server that presents a page that simply says “Sorry, we are too busy to handle your request right now.”
 

Develop a complete incident handling guide to take the guesswork out of managing security problems. See page 950 for more details on incident management.
 

32.9 Compliance: Regulations and Standards
 

IT auditing and governance are big issues today. Regulations and quasi-standards for specifying, measuring, and certifying compliance have spawned myriad acronyms: SOX, ITIL, COBIT, and ISO 27002, just to name a few. Unfortunately, this alphabet soup is leaving something of a bad taste in system administrators’ mouths, and software to implement all the controls deemed necessary by recent legislation is currently lacking.
 

Some of the major advisory standards, guidelines, industry frameworks, and legal requirements that may apply to system administrators are listed below. The legislative requirements are largely specific to the United States. However, the standards do contain some good advice even for organizations that are not required to adhere to them. It might be worth breezing through a few of them just to see if there are any best practices you might want to adopt. (The standards are listed in alphabetical order.)
 

• The CJIS (Criminal Justice Information Systems) standard applies to organizations that track criminal information and integrate that information with the FBI’s databases. Its requirements can be found on-line at fbi.gov/hq/cjisd/cjis.htm.

 

• COBIT is a voluntary framework for information management based on industry best practices. It is developed jointly by the Information Systems Audit and Control Association (ISACA) and the IT Governance Institute (ITGI); see isaca.org for details. COBIT’s mission is “to research, develop, publicize, and promote an authoritative, up-to-date, international set of generally accepted information technology control objectives for day-to-day use by business managers and auditors.”

 

The first edition of the framework was published in 1996, and we are now at version 4.0, published in 2005. This latest iteration was strongly influenced by the requirements of the Sarbanes-Oxley Act. It includes 34 high-level objectives that cover 215 “control objectives” categorized into four domains: Plan and Organize, Acquire and Implement, Deliver and Support, and Monitor and Evaluate.

 

• COPPA, the Children’s Online Privacy Protection Act, regulates organizations that collect or store information about children under age 13. Parental permission is required to gather certain information; see coppa.org for details.

 

• FERPA, the Family Educational Rights and Privacy Act, applies to all institutions that are recipients of federal aid administered by the Secretary of Education. This regulation protects student information and accords students specific rights with respect to their data. For details, see ed.gov/policy/gen/guid/fpco/ferpa/index.html.

 

• FISMA, the Federal Information Security Management Act, applies to all government agencies and contractors to government agencies. It’s a large and rather vague set of requirements that seek to enforce compliance with a variety of IT security publications from NIST, the National Institute of Standards and Technology. Whether or not your organization falls under the mandate of FISMA, the NIST documents are worth reviewing. See csrc.nist.gov/publications/PubsTC.html.

 

• The FTC’s Safe Harbor framework bridges the gap between the U.S. and E.U. approaches to privacy legislation and defines a way for U.S. organizations that interface with European companies to demonstrate their data security. See export.gov/safeharbor/eg_main_018236.asp.

 

• The Gramm-Leach-Bliley Act (GLBA) regulates financial institutions’ use of consumers’ private information. If you’ve been wondering why the world’s banks, credit card issuers, brokerages, and insurers have been pelting you with privacy notices, that’s the Gramm-Leach-Bliley Act at work. See ftc.gov/privacy/privacyinitiatives/glbact.html.

 

• HIPAA, the Health Insurance Portability and Accountability Act, applies to organizations that transmit or store protected health information (aka PHI). It is a broad standard that was originally intended to combat waste, fraud, and abuse in health care delivery and health insurance, but it is now used to measure and improve the security of health information as well. See hhs.gov/ocr/privacy/index.html.

 

• ISO 27001 and ISO 27002 are a voluntary (and informative) collection of security-related best practices for IT organizations. See iso.org.

 

• ITIL is the IT Infrastructure Library, a collection of manuals originally developed by the British government that outline a framework for the management of IT services. It is voluntary but has become widely used. See itil.org and the ITIL section at the end of this list for details.

 

• CIP (Critical Infrastructure Protection) is a family of standards from the North American Electric Reliability Corporation (NERC) that promote the hardening of infrastructural systems such as power, telephone, and financial grids against risks from natural disasters and terrorism.

 

In a textbook demonstration of the Nietzschean concept of organizational “will to power,” it turns out that most of the economy falls into one of NERC’s 17 “critical infrastructure and key resource” (CI/KR) sectors and is therefore richly in need of CIP guidance. Organizations within these sectors should be evaluating their systems and protecting them as appropriate. See cip.gmu.edu/cip.
 

• The Payment Card Industry Data Security Standard (PCI DSS) was created by a consortium of payment brands including American Express, Discover, MasterCard, and Visa. It covers the management of payment card data and is relevant for any organization that accepts credit card payments. The standard comes in two flavors: a self-assessment for smaller organizations and a third-party audit for organizations that process more transactions. See pcisecuritystandards.org.

 

• The FTC’s Red Flag Rules require anyone who extends credit to consumers (i.e., any organization that sends out bills) to implement a formal program to prevent and detect identity theft. The rules require credit issuers to develop heuristics for identifying suspicious account activity; hence, “red flag.” Search for “red flag” at ftc.gov for details.

 

• Last but certainly not least, the IT general controls (ITGC) portion of the Sarbanes-Oxley Act (SOX) applies to all public companies and is designed to protect shareholders from accounting errors and fraudulent practices. See sec.gov/rules/final/33-8124.htm.

 

ITIL: The Information Technology Infrastructure Library
 

Among these standards, the Information Technology Infrastructure Library (ITIL) has become a de facto standard for organizations seeking a comprehensive IT service management solution. ITIL processes are divided into six groups:
 

• Help desk – IT services for clients and for submitting problem reports and requests; also includes provisions for tracking and escalating issues

 

• Incident management – a reactive process whose goal is to restore service after an incident has caused a disruption

 

• Problem management – identifies the causes of incidents to prevent future service disruptions

 

• Configuration management – encapsulates information about the components of an infrastructure and their interdependencies

 

• Change management – processes for managing changes within the infrastructure

 

• Release management – similar to change management, but used for large-scale changes within the organization

 

Large organizations may have a formal ITIL program complete with a ticketing system that closely mirrors ITIL concepts and definitions. But even a small organization that uses an open source ticketing system can adopt policies that encourage sensible change management. All changes should require the submission of a change request, approval by a change board, and tracking through a change ticket. All incidents should be required to follow a documented process of incident handling that includes post-incident analysis to determine whether the problem was handled in the best possible way.
 

More generally, it’s fine to interpret voluntary standards in light of your site’s specific needs and constraints. The main goal is to understand the concepts embodied in the standards and to absorb some of their philosophy. Some of the standards listed above are hundreds of pages long, so they can be difficult to even approach; feel free to make use of summaries and condensed versions.
 

NIST: The National Institute for Standards and Technology
 

NIST publishes a host of standards that are useful to administrators and technologists. Some of the most commonly used ones are mentioned below, but if you are ever bored and looking for standards, you might check out their web site. You will not be disappointed.
 

NIST 800-53, Recommended Security Controls for Federal Information Systems and Organizations, describes how to assess the security of information systems. If your organization has developed an in-house application that holds sensitive information, NIST 800-53 can help you make sure you have really secured it. Beware, however: embarking on a NIST 800-53 compliance journey is not for the faint of heart. You are likely to end up with a document that is close to 100 pages long and that includes excruciating details.3
 

NIST 800-34, Contingency Planning Guide for Information Technology Systems, is NIST’s disaster recovery bible. It is directed at government agencies, but any organization can benefit from it. Following the NIST 800-34 planning process takes time, but it forces you to answer important questions such as, “Which systems are the most critical?”, “How long can we survive without these systems?”, and “How are we going to recover if our primary data center is lost?”
 

32.10 Legal Issues
 

The U.S. federal government and several states have laws regarding computer crime. At the federal level, there are two pieces of legislation from the early 1990s and two more recent ones:
 

• The Federal Communications Privacy Act

 

• The Computer Fraud and Abuse Act

 

• The No Electronic Theft Act

 

• The Digital Millennium Copyright Act

 

Some big issues in the legal arena are the liability of sysadmins, network operators, and web hosting sites; peer-to-peer file-sharing networks; copyright issues; and privacy issues. The topics in this section comment on these issues and a variety of other legal debacles related to system administration.
 

Privacy
 

Privacy has always been difficult to safeguard, but with the rise of the Internet, it is in more danger than ever. Medical records have been repeatedly disclosed by poorly protected systems, stolen laptops, and misplaced backup tapes. Databases full of credit card numbers have been compromised. Web sites purporting to offer antivirus software actually install spyware when used. Fake email arrives almost daily, appearing to be from your bank and alleging that problems with your account require you to verify your account data. Usually, a close inspection of the email reveals that the data would go to a hacker in eastern Europe or Asia and not to your bank. This type of attack is called “phishing.”
 

Technical measures can never protect against these attacks because they target your site’s most vulnerable weakness: its users. Your best defense is a well-educated user base. To a first approximation, no legitimate email or web site will ever
 

• Suggest that you have won a prize

 

• Request that you “verify” account information or passwords

 

• Ask you to forward a piece of email

 

• Ask you to install software you have not explicitly searched for

 

• Inform you of a virus or other security problem

 

Users who have a basic understanding of these dangers are more likely to make sensible choices when a pop-up window claims they have won a free MacBook.
 

Policy Enforcement
 

Log files may prove to you beyond a shadow of a doubt that person X did bad thing Y, but to a court it is all just hearsay evidence. Protect yourself with written policies. Log files sometimes include time stamps, which are useful but not necessarily admissible as evidence unless your computer is running the Network Time Protocol (NTP) to keep its clock synced to a reference standard.
 

You may need a security policy in order to prosecute someone for misuse. It should include a statement such as this: “Unauthorized use of computing systems may involve not only transgression of organizational policy but also a violation of state and federal laws. Unauthorized use is a crime and may involve criminal and civil penalties; it will be prosecuted to the full extent of the law.”
 

We advise you to display a splash screen that advises users of your snooping policy. You might say something like: “Activity may be monitored in the event of a real or suspected security incident.”
 

You may want to ensure that users see the notification at least once by including it in the startup files you give to new users. If you require the use of SSH to log in (and you should), you can configure /etc/ssh/sshd_config so that SSH always shows the splash screen.
 

Be sure to specify that by the act of using their accounts, users acknowledge your written policy. Explain where users can get additional copies of policy documents and post key documents on an appropriate web page. Also include the specific penalty for noncompliance (deletion of the account, etc.). It is more important that you demonstrate a good faith effort to notify users of their responsibilities than that you get the notifications precisely correct in a legal sense.
 

In addition to the splash screen approach, it’s a good idea to have users sign a policy agreement before they are given access to your systems. This acceptable use agreement should be crafted in conjunction with your legal department. If you don’t have signed agreements from current employees, make a sweep to collect them, then make signing the agreement a standard part of the induction process for new hires.
 

You might also consider offering periodic information security training sessions. This is a great opportunity to educate users about important issues such as phishing scams, when it’s OK to install software and when it’s not, password security, and any other points that are relevant to your environment.
 

Control = Liability
 

ISPs typically have an appropriate use policy (AUP) dictated by their upstream providers and required of their downstream customers. This “flow down” of liability assigns responsibility for users’ actions to the users themselves, not to the ISP or the ISP’s upstream provider. Such policies have been used to attempt to control spam and to protect ISPs in cases where customers have stored illegal or copyrighted material in their accounts. Check the laws in your area; your mileage may vary.
 

Your policies should explicitly state that users are not to use company resources for illegal activities. However, that’s not really enough—you also need to discipline users if you find out they are doing naughty things. Organizations that know about naughty things but do not act on them are complicit and can be prosecuted. Unenforced or inconsistent policies are worse than none, from both a practical and legal point of view.
 

Because of the risk of being found complicit in user misbehavior, some sites limit the data that they log, the length of time for which log files are kept, and the amount of log file history kept on backup tapes. Some software packages help with the implementation of this policy by including levels of logging that help the sysadmin debug problems but that do not violate users’ privacy. However, always be aware of what kind of logging might be required by local laws or by any regulatory standards that apply to you.
 

Software Licenses
 

Many sites have paid for K copies of a software package and have N copies in daily use, where K < N. Getting caught in this situation could be damaging to the company, probably more damaging than the cost of those N-minus-K other licenses. Other sites have received a demo copy of an expensive software package and hacked it (reset the date on the machine, found the license key, etc.) to make it continue working after the expiration of the demo period. How do you as a sysadmin deal with requests to violate license agreements and make copies of software on unlicensed machines? What do you do when you find that machines for which you are responsible are running pirated software?
 

It’s a very tough call. Management will often not back you up in your requests that unlicensed copies of software be either removed or paid for. Often, it is a sysadmin who signs the agreement to remove the demo copies after a certain date, but a manager who makes the decision not to remove them.
 

We are aware of several cases in which a sysadmin’s immediate manager would not deal with the situation and told the sysadmin not to rock the boat. The admin then wrote a memo to the boss asking to correct the situation and documenting the number of copies of the software that were licensed and the number that were in use. The admin quoted a few phrases from the license agreement and carbon copied the president of the company and his boss’s managers. In one case, this procedure worked and the sysadmin’s manager was let go. In another case, the sysadmin quit when even higher management refused to do the right thing. No matter what you do in such a situation, get things in writing. Ask for a written reply, or if all you get is spoken words, write a short memo documenting your understanding of your instructions and send it to the person in charge.
 

32.11 Organizations, Conferences, and Other Resources
 

Many UNIX and Linux support groups—both general and vendor specific—help you network with other people who are using the same software. Table 32.3 presents a brief list of organizations, but plenty of other national and regional groups are not listed in this table.
 

[image: Image]
 

Table 32.3 UNIX and Linux organizations of interest to system administrators
 

FSF, the Free Software Foundation, sponsors of the GNU project (“GNU’s Not Unix,” a recursive acronym). The “free” in the FSF’s name is the “free” of free speech and not that of free beer. The FSF is also the origin of the GNU Public License, which is now in its third version and covers many of the free software packages used on UNIX and Linux systems.
 

USENIX, an organization of users of Linux, UNIX, and other open source operating systems, holds one general conference and several specialized (smaller) conferences or workshops each year. The general conference has a parallel track devoted to open systems that features ongoing OS development in the Linux and BSD communities.
 

The big event for sysadmins is the USENIX LISA (Large Installation System Administration) conference held in late fall. Trade shows are often associated with these conferences.
 

As a service to the Linux community, the Linux Foundation operates a USENIX workshop dedicated to Linux kernel development. Access to this two-day event is by invitation only.
 

SAGE, USENIX’s System Administrators Guild, is the first international organization for system administrators. It promotes administration as a profession by sponsoring conferences and informal programs. See sage.org for the details.
 

SAGE, together with USENIX, its parent organization, puts on system and network administration conferences offering tutorials and technical sessions, invited talks, and help sessions. Occasionally, one-day workshops on special topics run in parallel. For information, see usenix.org.
 

The USENIX and SAGE newsletter—;login:—is produced by both organizations; it contains administrative news, tips, reviews, and announcements of interest to sysadmins. SAGE has a list of resources for sysadmins. See sage.org for current information.
 

In 2005, a falling out between USENIX and SAGE left the future of SAGE in doubt. The result was that some of the old-timers in the SAGE organization formed a separate organization called LOPSA, the League of Professional System Administrators, lopsa.org. As of early 2010, LOPSA doesn’t yet hold conferences, but they do have some training sessions scheduled. SAGE gave up its sysadmin certification program; let’s hope that LOPSA will pick it up.
 

SANS offers many courses and seminars in the security space and runs a certification program. The exam format is multiple choice, open book, with a time limit. Applicants can take two practice exams before the real thing. Individual certificates focus on narrow topics; applicants can also earn a general security (GSEC) certification. Certification is valid for only 2–3 years, so you must keep up with recent developments and recertify (for an added fee) to stay current. See giac.org for details.
 

Many local areas have regional UNIX, Linux, or open systems user groups. Some of these are affiliated with USENIX and some are not. The local groups usually have regular meetings, workshops with local or visiting speakers, and, often, dinner together before or after the meetings. They’re a good way to network with other sysadmins in your area.
 

The premier trade show for the networking industry is Interop; its tutorial series is also of high quality. Interop used to be an annual event that was eagerly awaited by techies and vendors alike. Interops now happens several times a year—a traveling network circus, so to speak. The salaries of tutorial speakers have been cut in half, but the quality of the tutorials seems to have survived.
 

32.12 Recommended Reading
 

LIMONCELLI, THOMAS A. Time Management for System Administrators. Sebastopol, CA: O’Reilly Media, 2005.
 

MACHIAVELLI, NICCOLÒ. The Prince. 1513. Available on-line from gutenberg.org/etext/1232
 

BROOKS, FREDERICK P., JR. The Mythical Man-Month: Essays on Software Engineering. Reading, MA: Addison-Wesley, 1995.
 

SENFT, SANDRA, AND FREDERICK GALLEGOS. Information Technology Control and Audit (3rd Edition). Boca Raton, FL: Auerbach Publications, 2008.
 

The site itil-toolkit.com is a good place to start if you seek to understand the mountains of jargon and management-speak associated with ITIL processes and standards.
 

The site itl.nist.gov is the landing page for the NIST Information Technology Laboratory. Lots of information about standards. Go to the publications page.
 

The web site of the Electronic Frontier Foundation, eff.org, is a great place to find commentary on the latest issues in privacy, cryptography, and legislation. Always interesting reading.
 

sans.org/resources/policies hosts the SANS security policy project. Several good sample IT policies are available from this site.
 

Lots of great resources for system administrators are also available on the SAGE site: sage.org/field/field.html.
 

32.13 Exercises
 

E32.1 What are your organization’s recurring procedures? Which are infrequently performed and reinvented each time? Which are risky?

 

E32.2 What are your dependencies on external providers? Do you need and have a plan B? Explain why or why not. Describe plan B if it exists.

 

E32.3 Briefly interview several internal customers to determine their expectations with respect to the availability of the computing infrastructure. Are the expectations consistent? Are they reasonable? Are they consistent with the system administration group’s stated goals?

 

E32.4 What organized infrastructure for system management is already established at your site? Identify the pieces that are still missing.

 

E32.5 One of your co-workers is going to leave for lunch tomorrow and never return, but you don’t yet know which one. (No, you don’t get to pick.) What critical procedures might be affected, and how prepared is your organization to cover for the missing staff member? What documentation would have to exist in order to avoid a service disruption?

 

E32.6 What would happen if you didn’t come in for the next three months? How much would your colleagues hate you when you finally came back, and why? What can you do in the next two weeks to reduce the trauma of such an event?

 

[image: Image] E32.7 Your boss orders you to cut the system administration budget by 30% by the end of the current year. Can you quantify the consequences of this cut? Present a summary that will allow the boss to make an informed decision regarding which services to reduce or discontinue.

 

[image: Image] E32.8 Who are some of the current major corporate supporters of Linux?

 

What are their interests and motivations? What sort of contributions are they making?

 

[image: Image] E32.9 You are cleaning up after a disk crash and notice files in the lost+found directory. When you investigate further, you find that some of the files are mail messages that were sent between two students who are setting up a back door around the department firewall to archive MP3 files on a remote file server. What should you do? Are there policies or regulations in place that cover such incidents?

 

[image: Image] E32.10 Evaluate your site’s local documentation for new users, sysadmins, standard procedures, and emergencies.

 

[image: Image] E32.11 Forecast the future of the various commercial and free UNIX and Linux variants over the next five years. How will the current development and distribution models hold up over time? What will be the long-term impact of the adoption of Linux by hardware vendors? Differentiate between the server and desktop markets.

 
  


Index
 

Numbers
 

389 Directory Server 728, 732–733
 

4mm backup tapes 301
 

8mm backup tapes 301
 

A
 

A DNS records 582, 596
 

AAAA DNS records 589
 

Abell, Vic 145
 

accept router, Exim 821
 

access agents, email 747–748
 

access control 103–118
 

access control lists see ACLs
 

access database, sendmail
791
 

access_db feature, sendmail
785
 

accounts see user accounts
 

aclconvert command 162
 

acledit command 162, 166
 

aclget command 162, 166
 

aclput command 162, 166
 

ACLs, DNS 609, 643–644
 

ACLs, filesystem 110, 159, 164–172
 

ACLs, firewall 932–942
 

acoustic management (disks) 229–230
 

Active Directory 1154
 

authenticating Linux with 1154–1160

 

authentication alternatives 1160
 

PAM and 1159

 

add_drv command 430, 437
 

addgroup command 193
 

address match lists, BIND 601
 

Address Resolution Protocol
 

(ARP) 450, 455, 468–469, 491

 

addresses
 

IP see IP addresses

 

broadcast 480

 

Ethernet (aka MAC) 454–455, 464

 

loopback 457, 467

 

multicast 456–457

 

SCSI 218

 

adduser command 192
 

adduser.conf file 193
 

/var/adm directory 342
 

administrative privileges see root account
 

ADSM/TSM backup system 336
 

ADSP (Author Domain Signing Practice) 572, 768
 

ADSP DNS records 591–594
 

AFR (annual failure rate) 211
 

AfriNIC 462
 

agetty process 1171–1176
 

air conditioning see cooling
 

AirPort 542
 

AIT backup tapes 302
 

AIX 13
 

disk addition recipe 209

 

disk device files 224, 226

 

documentation 19

 

filesystems 255, 257

 

installation 380

 

iSCSI support 280–281

 

kernel configuration 432–434

 

kernel tuning 434

 

log files 344

 

logical volume management 253–254

 

mandatory access control (MAC) 922

 

named
685–686

 

network configuration 506–508

 

NFS (Network File System) 702–703

 

security 507–508

 

single-user mode 87

 

startup scripts 95–96

 

AJAX (Asynchronous JavaScript and XML) 956, 960
 

Akamai Technologies 978
 

aliases file 190, 756–760
 

aliases, email 190, 756–760
 

see also email

 

see also Exim

 

see also Postfix

 

see also sendmail

 

examples 760

 

file format 757

 

hashed database 760

 

loops 758

 

and mailing lists 760–761

 

network distribution 290

 

for new users 178

 

postmaster 757

 

aliases.db file 760
 

alien command 382
 

Allman, Eric 344, 779
 

allow-update clause, DNS 613, 64
 

Alpine mail client 745
 

always_add_domain feature, sendmail 785
 

Amanda backup system 335
 

amavisd.conf file 771
 

amavisd-agent command 772
 

amavisd-nanny command 772
 

amavisd-new
769–773
 

configuration 771–772

 

DKIM 849

 

use with Exim 826

 

installation 771

 

monitoring 772

 

use with Postfix 842–843

 

use with sendmail 794–795

 

tools 772–773

 

Amazon web services 978, 1005–1009, 1106
 

additional features 1009

 

Elastic Block Store 1006

 

Elastic Compute Cloud (EC2) 1005

 

ElasticFox 1009

 

installation and configuration 1006

 

instance termination 1009

 

Simple Storage Service (S3) 1006

 

AME backup tapes 302
 

American Power Conversion (APC) 1094
 

American Registry for Internet Numbers (ARIN) 461–462, 549
 

Anaconda 365
 

Analog Apache log analyzer 967
 

Anderson, Paul 409
 

annual failure rate (AFR) 211
 

Anvin, H. Peter 364
 

anycast 457, 603
 

Apache Software Foundation 19, 964
 

APC (American Power Conversion) 1094
 

APNIC 462
 

AppArmor 924
 

applications
 

consolidating 1101

 

servers 960

 

virtualization 987

 

appropriate use policy (AUP) 1228
 

apropos command 17
 

APT (Advanced Package Tool) 24, 387–391
 

apt-get command 387–391
 

ARIN (American Registry for Internet Numbers) 461–462, 549
 

ARP (Address Resolution Protocol) 450, 455, 468–469, 491
 

arp command 469
 

ARPANET 448, 509
 

ASHRAE temperature range 1087, 1108
 

AT&T 12
 

AT&T UNIX System V 1268
 

ATA interface 213–215
 

cables 215

 

power connector 215

 

secure erase 227–228

 

SMART reporting 230–231

 

TRIM command 228

 

ATA-over-Ethernet (AoE) 276
 

Athena, Project 1011
 

atime option, turning off 1105
 

Atkins, Todd 358
 

auditing 107
 

AUP (appropriate use policy) 1228
 

/etc/security/auth_attr file 108
 

authadm command 108
 

Author Domain Signing Practice (ADSP) 572, 768
 

authorizations, Solaris 108
 

authors, contacting xlv
 

/etc/rbac/auths file 108
 

auto_master file 712
 

auto.direct file 713, 716
 

Automated Installer, Solaris 375–376
 

automount
 

direct maps 713

 

Linux 717

 

master maps 714

 

replicated filesystems 715

 

automount command 712–713
 

automounters
 

configuration 712–715

 

NFS and 711–715

 

replicated filesystems 715

 

Windows 1147

 

autonegotiation, Ethernet 539–540
 

autonomous systems 517–518
 

autoserial.conf file 1170
 

AutoYaST tool 367
 

avoid-v4-udp-ports option, DNS 605
 

AWStats Apache log analyzer 967
 

B
 

backing store 1124
 

backscatter spam 756, 765, 769
 

backup root 232
 

backup software and systems
 

see also backups

 

see also Bacula

 

ADSM/TSM 336

 

Amanda 335

 

Bacula 318–335

 

commercial systems 335

 

dd command 316

 

dump/restore command 308–314

 

EMC NetWorker 337

 

tar command 315–316

 

Veritas 336

 

backups 292–337
 

see also backup software and systems

 

see also Bacula

 

see also media, backup

 

centralized 293

 

cloud services 303

 

compression 299

 

designing data for 298

 

encryption 295, 304

 

fitting on media 294

 

full restore 313–314

 

hints 293–298

 

Internet 303

 

interval between 294

 

off-site storage 295

 

programs 315–335

 

to removable disks 300

 

restoring 293, 310–315

 

schedules 305–307

 

security 295

 

setting up 307–314

 

snapshots 296

 

for ugprades 314–315

 

when to make 296

 

for Windows 335

 

for ZFS filesystems 316

 

Bacula 318–335
 

architecture 319

 

bacula-dir.conf file 324–327

 

bacula-sd.conf file 327

 

bconsole.conf file 328

 

client file daemon 328

 

configuration files 321–329

 

installation 320–321

 

manual backup 330

 

media pools 329

 

monitoring 334

 

restoring files 330–333

 

terms 322

 

tips 334

 

troubleshooting 334–335

 

Windows clients 333

 

bad blocks, disk 227
 

Baretta, Anne 1177
 

bash shell 29
 

argument processing 40–42

 

arithmetic 47

 

basic use 30–33

 

best practices 73–74

 

command editing 30–31

 

file test operators 44

 

loops 45–46

 

pipes and redirection 31–32

 

scripting 37–48

 

search path 113

 

variables and quoting 32–33, 42–43

 

~/.bash_profile file 42, 189
 

.bashrc file 189
 

bastion hosts 796
 

BATV (bounce address tag validation) 756, 765
 

baud rate, tricks for determining 1181
 

BCP documents 450
 

BCPL (Basic Combined Programming Language) 1266
 

Berkeley DB library 308, 760, 782, 833
 

Berkeley Fast File System 254–255
 

Berkeley Internet Name Domain system see BIND
 

Berkeley see University of California at Berkeley
 

Berkeley Software Design, Inc. (BSDI) 1270
 

Bernstein, Dan 809
 

BGP protocol 516, 520–521, 523
 

bgpd daemon 523
 

/bin directory 146
 

BIND
 

see also DNS

 

see also name servers

 

see also named

 

ACLs 643–644

 

address match lists 601

 

AIX 685–686

 

client configuration 561–563

 

components 600

 

configuration examples 618–624

 

configuration files 600–624

 

control programs 674

 

debugging 667–681

 

distribution-specific information 681–683

 

DNSSEC 573, 648–667

 

.key DNSSEC key file 646

 

dnssec-keygen command 646–647, 655

 

dnssec-signzone command 657, 660

 

doc (domain obscenity control) 679–680

 

documentation 686, 688

 

forwarding zone, configuring 615

 

HP-UX 684–685

 

keys, generating 654

 

KSK (key signing key) 653

 

localhost zone configuration example 619

 

logging 612, 667–672

 

loopback address 616

 

master server, configuring 613

 

/etc/named directory 603

 

/etc/named.conf file 600–624, 643, 671

 

named-checkconf command 600, 648, 679

 

named-checkzone command 600, 679

 

notification options 603

 

differences from NSD 626

 

nsupdate command 641

 

performance 680

 

.private DNSSEC key file 646

 

query forwarding 606

 

/etc/resolv.conf file 561–562

 

RIPE DNSSEC tools 665

 

rndc command 638, 672, 674

 

/etc/rndc.conf file 616

 

/etc/rndc.key file 616

 

rndc-confgen command 616

 

root server hints 614

 

root.cache file 615

 

security 571

 

shell interfaces see dig and nslookup

 

slave server, configuring 614

 

Solaris 684

 

split DNS 617–618, 620–623

 

statistics 676

 

stub zones, configuring 614

 

/etc/syslog.conf file 668

 

updating zone files 640–642

 

versions 597–599

 

zone transfers 564, 639–640

 

BIOSes 82
 

blackhole option, DNS 606
 

blacklists 766
 

in Exim 817–818

 

in Postfix 840–841

 

in sendmail
792

 

block device files 148, 150, 418
 

blocking factor, tape 315
 

bogus directive, DNS 611
 

boot command 429
 

boot loaders 79, 82–85
 

GRUB 85–86

 

multibooting 85

 

boot.log file 353
 

bootstrapping 78–81
 

device probing 79

 

directly to bash
92

 

from the network, non-PCs 364

 

from the network, PCs 363

 

fsck and 81

 

kernel initialization 79

 

kernel options 84

 

kernel threads 79

 

mounting NFS filesystems 708

 

multibooting 85

 

PC-specific issues 82

 

single-user mode 80–81, 88

 

startup scripts 87–100

 

/etc/sysconfig directory 92–93

 

Bostic, Keith 1270
 

Bourne shell 14
 

Bourne, Steve 1266
 

Bourne-again shell see
bash
 

breakout boxes 1180
 

Bro network intrusion detection system 918
 

broadcast
 

addresses 480

 

directed 473, 508

 

domain 534

 

storms 480, 538

 

Bryant, Bill 925
 

BSD printing 1054–1065
 

see also printing

 

architecture 1054–1055

 

configuration 1059–1065

 

lpc command 1057–1059

 

lpd daemon 1056

 

lpq command 1056–1057

 

lpr command 1056

 

lprm command 1057

 

printcap file 1059–1065

 

PRINTER environment variable 1054

 

BSD UNIX 8, 12, 1268–1273
 

budgeting 1184
 

BugTraq 948
 

Burgess, Mark 408
 

bus errors 126
 

BUS signal 125
 

byte swapping 316
 

C
 

C language 1266
 

CA (Certificate Authority) 972
 

cable modems 544
 

cables
 

see also serial cables

 

10*Base* 533–535

 

Category * 545

 

Ethernet 534–536

 

labeling 549

 

PATA/IDE 215

 

SATA 216

 

Cacti performance monitor 886
 

CAIDA (Cooperative Association for Internet Data Analysis) 463
 

Canaday, Rudd 1265
 

canonical name (CNAME) DNS records 585
 

capabilities (POSIX) 109
 

capacity planning 1104
 

capital cost reduction 1098–1110
 

carbon offsets 1111
 

Card, Rémy 255
 

catman command 17
 

CBK (common body of knowledge) 945
 

CD backups 299
 

CDNs (content distribution networks) 978–979
 

CentOS Linux 10, 12
 

CERT 948, 952
 

Certificate Authority (CA) 972
 

Certificate Signing Request (CSR) 972
 

Certified Information Systems Auditor (CISA) 945
 

cf/cf directory, sendmail 780
 

cfdisk command 236
 

cfengine
408
 

cfgmgr command 263, 281, 419, 433
 

CGI scripting 959
 

chage password aging program 907
 

Challenge Handshake Authentication Protocol (CHAP) 276
 

change management 1197–1198, 1205, 1225
 

ChaosNet 577
 

CHAP (Challenge Handshake Authentication Protocol) 276
 

character device files 148, 150, 418
 

Chatsworth Products 1094
 

chattr command 159
 

chdev command 178
 

Check Point 475
 

chfn command 182
 

chgrp command 157–158
 

chkconfig command 91, 94
 

chkrootkit script 904
 

chmod command 152, 156–157, 165, 167, 169–170, 172
 

chown command 157–158
 

Christiansen, Tom 49, 66, 74
 

chrole command 108
 

chroot
913–914
 

for named
643, 645

 

for Postfix 830

 

for sendmail
800

 

chsh command 182
 

chuser command 195
 

CIA triad 944
 

CIDR (Classless Inter-Domain Routing) 458, 460–461
 

CIFS see Samba
 

CIM (Common Information Module) system configuration 410
 

CIP (Critical Infrastructure Protection) 1224
 

CISA (Certified Information Systems Auditor) 945
 

Cisco 475, 963
 

Cisco routers 525–528, 950
 

CiscoWorks 889
 

CISSP (Certified Information Systems Security Professional) 945
 

Citadel 853
 

CJIS (Criminal Justice Information Systems) 1223
 

ClamAV virus scanner 819, 903
 

Classless Inter-Domain Routing (CIDR) 458, 460–461
 

ClearEmail 755
 

Clearswift email appliance 853
 

clock synchronization 288
 

clogin command 1002
 

cloud computing 987, 1005, 1106
 

backups 303

 

hosting 978

 

cmdprivadm command 108
 

CNAME DNS records 585
 

COBIT 1223
 

code promotion 1204–1205
 

Coker, Russell 924
 

co-location web hosting 978
 

common body of knowledge (CBK) 945
 

Common Criteria 947
 

Common UNIX Printing System see CUPS
 

Communigate Pro 853
 

community relations 1210
 

Computer Systems Research Group (CSRG) 1268
 

concentrators see Ethernet, hubs
 

.config file for Linux kernel 424–425
 

configuration files
 

copying 721–727

 

network distribution 290

 

pulling 727

 

pushing 722–727

 

configuration management 1225
 

configure command 26
 

/usr/exim/configure file 812
 

conflict resolution 1213
 

ConnectionRateThrottle option, sendmail
800
 

connectors
 

DB-25 1163–1165

 

DB-9 1166

 

PATA 215

 

RJ-45 1166

 

SATA 216

 

SCSI 217

 

consoles, serial 1180
 

console-setup file 1172
 

CONT signal 125–126, 128
 

contacting the authors xlv
 

Content Control 755
 

content distribution networks (CDNs) 978–979
 

content scanning 761–773
 

using Exim 818–820

 

control characters 1177–1178
 

control terminal 123
 

controls statement, DNS 615–616
 

cookies, NFS 693
 

cooling
 

calculating load 1088–1089

 

data center 1087–1091, 1106, 1108

 

hot aisle/cold aisle 1106

 

in-row 1090

 

office temperature 1109

 

using outside air 1106

 

Cooper, Mendel 48
 

COPPA Protection Act) 1223
 

Corbato, Fernando 1265
 

core files 289
 

Courier IMAP server 747
 

CPAN 65–66
 

CPU
 

load averages 1123

 

statistics 1122

 

usage, analyzing 1116–1123

 

CRAC (computer room air conditioner) 1089
 

crfs command 209, 254, 259
 

cron daemon 283–291
 

common uses 288–290

 

configuration (crontab) files 284–287

 

logging 284, 288

 

cron.allow and cron.deny files 286–287
 

/etc/cron.d directory 287–288
 

crontab command 286–287
 

/etc/crontab file 287
 

crontab files 284–287
 

CRT 1109
 

/etc/security/crypt.conf file 194
 

cryptography
 

backups, encryption of 295, 304

 

Diffie-Hellman key exchange 648

 

in DNS 573, 645–667

 

in LDAP 735

 

MD5 algorithm 646

 

password encryption 176, 179, 1144

 

public key 927

 

in sendmail
795–801

 

SSL 972

 

tools 924

 

.cshrc file 189
 

CSMA/CD (Ethernet) 532
 

CSR (Certificate Signing Request) 972
 

ctime file attribute 154
 

CTS (clear to send) signal 1168
 

cu command 1181
 

Cummins Onan 1092
 

CUPS 1032, 1034–1043
 

see also printing

 

autoconfiguration 1040

 

configuration 1038–1043

 

cupsd daemon 1038

 

cupsd.conf file 1039

 

cupsdisable command 1042

 

cupsenable command 1042

 

filters 1037–1038

 

lpadmin command 1041

 

lpoptions command 1036

 

lpr command 1035

 

MIME types 1037

 

network printers 1040

 

network printing 1036–1037

 

print queue 1035–1036

 

printer classes 1041

 

PRINTER environment variable 1036

 

cupsd.conf file 1039
 

cut command 34
 

Cygwin X server tools 1137, 1141
 

cylinders, disk 210
 

Cyrus IMAP server 747
 

D
 

Darik’s Boot and Nuke 228
 

DARPA (Defense Advanced Research Project Agency) 948
 

DAT backup tapes 301
 

data center
 

see also cooling

 

availability 1086

 

components 1086

 

cooling load 1088–1089

 

energy use 1100

 

generators, standby 1086, 1091

 

green IT strategies for 1100–1108

 

hot aisle 1089–1091

 

humidity 1091

 

HVAC 1086

 

in-row cooling 1090

 

monitoring 1091

 

power 1091

 

preventative maintenance 1092

 

rack density 1092

 

rack power requirements 1092–1093

 

racks 1094

 

raised floor 1089, 1094

 

redundant power 1086

 

reliability tiers 1086–1087

 

remote power control 1094

 

temperature 1108

 

temperature range 1087

 

tool box 1095

 

UPSs 1086, 1091

 

wiring tracks 1094 Online Privacy

 

zones 1093

 

data leak prevention (DLP) 754–755
 

databases
 

administrative 721, 736

 

DNS 555, 574–597

 

NIS 736

 

Postfix 833–837

 

sendmail
782–783

 

/etc/datemsk file 185
 

DB-25 connectors 1163–1165
 

DB-9 connectors 1165–1166
 

dbm/ndbm library 782
 

DCC (Distributed Checksum Clearinghouses) 765
 

DCD (data carrier detect) signal 1167–1168
 

DCE (Data Communications Equipment) interface 1164–1165
 

DCiE 1099
 

dd command 316, 992 Boot
 

DDS backup tapes 301
 

.deb software package format 382
 

debconf
368
 

Debian GNU/Linux 8–11
 

debugging see troubleshooting
 

DEC VT100 terminal 1175
 

default routes 466, 501, 513, 521
 

defaultdomain file 494
 

defaultrouter file 496
 

DefaultUser option, sendmail 759, 796
 

degraded mode 1106
 

DELAY_LA option, sendmail 801, 803
 

delgroup command 193
 

deluser command 193
 

/etc/deluser.conf file 199
 

deluser.local script 199
 

denial of service (DOS) attacks 349, 583, 727, 800–801, 1132
 

Dennis, Jack 1265
 

Deraison, Renaud 916
 

desktop environments 1028–1030
 

Desktop Management Interface (DMI) 1119
 

Deutsch, L. Peter 1068
 

/dev directory 150, 417
 

devfs, Solaris 419
 

devfsadm command 419
 

devfsadmd daemon 225, 419
 

device drivers 150–151, 415–418
 

adding to Linux kernel 425–427

 

device awareness 427

 

loadable 431, 434–437

 

loadable modules 434–436

 

MODULE_DEVICE_TABLE

 

macro 427

 

for PC hardware 417

 

serial 420

 

Solaris 430

 

terminal and control characters 1177–1178

 

Windows printer 1151–1152

 

device files
 

block vs. character 148, 150–151, 418

 

creating 419

 

device numbers 418

 

for disks 207, 224–226

 

naming conventions 420

 

for serial ports 420, 1168–1170

 

Solaris 429

 

for tape drives 309, 420

 

/devices directory 150, 225
 

devices, pseudo 419
 

df command 260
 

NFS and 708

 

DFS (Distributed File System, Windows) 1147
 

dfstab file 700
 

DHCP (Dynamic Host Configuration Protocol) 469–472, 477, 480, 484, 497–498, 504, 510
 

BIND and 640

 

HP-UX 504

 

Solaris 480, 497–498

 

/etc/dhcp.* files 497
 

dhcpagent program 497
 

dhcpcd daemon 471
 

dhcpd.conf file 471–472
 

dhcpdb2conf program 504
 

dhcrelay daemon 472
 

Diffie-Hellman key exchange 648
 

dig command 597–598, 615, 677–679
 

Dihu, Habeeb 765
 

directories 147–150
 

copying 315

 

search bit 153

 

directory statement, DNS 603
 

disaster recovery 1217–1222
 

from a security incident 950–952

 

internet connectivity 1221

 

planning 298, 1217

 

power and HVAC 1220

 

risk assessment 1217

 

staffing 1220

 

standards 1226

 

test plans 1220

 

/dev/disk directory 224–225
 

disks
 

see also filesystems

 

acoustic management 229–230

 

addition 207–209

 

AIX management 209, 224, 226, 253–255, 257, 280–281

 

ATA/PATA/IDE interface 213–215

 

as backup media 303

 

configuration 220–274

 

device files 207, 224–226

 

elevator algorithm 1130

 

failure rates 211, 213, 231

 

Fibre Channel 214, 275

 

formatting 226–227

 

hardware installation 223–230

 

hardware interfaces 213–220

 

hardware overview 209–213

 

hot-plugging 223

 

HP-UX management 208, 224–226, 237, 251–253, 256–257, 280

 

hybrid 209

 

I/O analysis 1127–1130

 

labeling 233

 

Linux management see Linux

 

load balancing 1114, 1129

 

logical volume management 221–222, 246–254

 

partitioning 221–223, 231–237

 

performance 210, 212, 219–220, 1116–1130

 

quotas 698

 

RAID arrays 221–222, 234, 237–245, 1115

 

RAM 1129

 

removable 300

 

SATA interface 214–216

 

secure erase 227–228

 

SMART monitoring 230–231

 

software overview 220–223

 

solid state 206, 209–210, 212–213, 228, 300

 

traditional vs. SSD 210

 

USB 300

 

utilization of 1103

 

DISPLAY environment variable 1015, 1019
 

distance-vector routing protocols 515
 

Distfile file 723–725
 

Distributed Checksum Clearinghouses (DCC) 765
 

Distributed Management Task Force (DMTF) 410
 

DIX Ethernet II 453
 

DKIM (DomainKeys Identified Mail) 572, 768, 845–853
 

and amavisd-new
849

 

and Exim 850–852

 

and Postfix 852–853

 

and sendmail
850

 

DNS records for 846

 

miltering 846–848

 

DKIM DNS records 591–594
 

DLT backup tapes 301
 

DMI (Desktop Management Interface) 1119
 

dmidecode command 1119
 

DMTF (Distributed Management Task Force) 410
 

DNS 554–688
 

see also BIND

 

see also domain names, DNS

 

see also name servers

 

see also resource records, DNS

 

see also zones, DNS

 

adding a new machine 558–560

 

ADSP records 768, 846

 

anycast routing 603

 

architecture 568–572

 

authoritative servers 564, 569

 

caching 556–557

 

caching servers 564, 569

 

use with CIDR 585–587

 

client configuration 483–484

 

CNAME hack 585–587

 

cryptography in 573, 645–667

 

database 555, 574–597

 

delegation 555

 

denial of service (DOS) attacks 583

 

design 568–572

 

doc (domain obscenity control) 679–680

 

domain names see domain names, DNS

 

dynamic updates 640–642

 

EDNS0 protocol 574

 

efficiency 556–557

 

email security 572

 

forward mapping 554

 

internationalization 574

 

IP addresses 582–583

 

IPv6 support 573, 589

 

lame delegations 670, 678–679

 

master name server 564

 

Microsoft and 667

 

namespace 568

 

nonauthoritative servers 564

 

nonrecursive servers 565

 

Punycode 574

 

record types 578

 

recursive servers 565

 

referrals 565

 

resolver configuration 561–563

 

resource records see resource records, DNS

 

reverse mapping 554, 582–583, 623

 

RFCs 688

 

root servers configuration file 555

 

round-robin 962

 

security 571

 

server architecture 571

 

server hints 566

 

service switch file 776

 

setup 568–572

 

slave server 564

 

SOA record serial number 580

 

SOA record timeout values 580

 

Sparta DNSSEC tools 664

 

split view DNS 569, 617–618

 

SSHFP record 928

 

stub servers 564

 

stub zones 597

 

TKEY 645–648

 

traceroute and 867

 

TSIG (transaction signatures) 623, 645–648

 

TTL settings 680

 

Vantages DNSSEC framework 665

 

ZSKs (zone-signing keys) 653

 

DNSKEY DNS records 650
 

dnslookup router, Exim 822
 

DNSSEC 573, 648–667
 

dnssec-keygen command 646–647, 655
 

dnssec-signzone command 657, 660
 

doc (domain obscenity control), DNS 679–680
 

DOCSIS standard 544
 

documentation 18–20
 

BCPs 450

 

FYIs 450

 

importance of 1200

 

man pages 16–18

 

network 1204

 

package-specific 19

 

of passwords 112, 117–118

 

RFCs 449–450

 

standardization 1202

 

STDs 450

 

system-specific 18–19

 

tools for 1185

 

white papers 19

 

Doering, Gert 1171
 

domain directive, DNS 562
 

DOMAIN macro, sendmail 784
 

domain names, DNS 566–568
 

domain name length 567

 

internationalization 574

 

registration 549, 567

 

second-level 567

 

domain obscenity control 679–680
 

DomainKeys Identified Mail see DKIM 768
 

DontBlameSendmail option 796, 798
 

DOS (denial of service) attacks 349, 583, 727, 800–801, 1132
 

dot files 189–190
 

Double Choco Latte 1193
 

double-sided printing 1076
 

Dovecot IMAP server 747
 

dpkg command 383
 

DR see disaster recovery
 

drill command 625, 677
 

drivers directory, Linux kernel source tree 426
 

drivers see device drivers
 

DrWeb virus scanner 819
 

/dsk directory 226
 

DSL networks 543–544
 

DSR (data set ready) signal 1168
 

DTE (Data Terminal Equipment) interface 1164–1165
 

DTR (data terminal ready) signal 1168
 

dual booting 85, 1140
 

dump command 305–310
 

/etc/dumpdates file 309
 

dumps see backups
 

duplex printing 1076, 1109
 

DVD backups 299
 

dynamic servers 1104
 

E
 

E*Trade 10
 

e2fsck command 251
 

eco-pyramid 1099–1100
 

EdgeCast 978
 

editors, text 6–7
 

eeprom command 1168
 

EFF (Electronic Frontier Foundation) 1231
 

effective user IDs (EUIDs) 122
 

EFI (Extensible Firmware Interface) 235
 

EFI partitioning 235–236
 

EIA-232-E standard 1163
 

EIA-606 standard 546–547
 

EICAR 773
 

EIGRP protocol 516, 519, 521
 

elevator algorithm 1130
 

emacs editor 6, 30
 

.emacs file 189
 

email
 

see also Exim

 

see also MX DNS records

 

see also Postfix

 

see also
sendmail

 

aliases see aliases, email

 

appliances 853

 

architecture 753–756, 828–830

 

blacklists 766, 792, 817–818, 840–841

 

clients 745

 

components 744–746

 

content scanning 761–773

 

delivery status codes 752

 

denial of service (DOS) attacks 800–801

 

DNS security 572

 

DNS SPF records 590–591

 

envelope 748

 

fallback MX 803

 

filtering 767

 

forgery 763

 

headers 748–750

 

home mailbox 190

 

IMAP protocol 747

 

integrated solutions 853

 

Local delivery agents (LDA) 746

 

loops 758

 

mailing lists 760–761

 

managed services 743

 

market share 774

 

message checks 762

 

message stores 746–747

 

message structure 748–750

 

MX records 583–584

 

POP protocol 747

 

privacy 763

 

relaying 791–792

 

SASL 801

 

secure messaging appliances 853

 

security 572, 759, 795–801

 

server setup 754–756

 

spam see spam

 

submission agents (MSAs) 745–746

 

system components 744–746

 

system design 753–756

 

testing bulk mail 773

 

to files 759

 

to programs 759, 798–799

 

transport agents 746

 

transport layer security (TLS) 801

 

undeliverable messages 803

 

user agents 744

 

virus scanning 769–773

 

whitelists 766–767

 

embedded interpreters 959
 

EMC Ionix (Infra) 1194
 

EMC, backup tool 337
 

encryption
 

see also cryptography

 

of backups 295, 304

 

of passwords 176, 179, 1144

 

Energy Star 1108, 1110
 

Enigmail 926
 

enscript command 1068
 

enterprise architecture (EA) 1197–1199
 

environment separation 1204–1205
 

environmental monitoring 1091
 

EPEAT 1108, 1110
 

equipment racks 1094
 

errclear command 355
 

errdemon daemon 353
 

errlog circular file 354
 

errpt command 354
 

eSATA interface 216
 

ESMTP protocol 746
 

/etc directory 146
 

Ethernet 532–539
 

addresses 454–455, 464

 

autonegotiation 539–540

 

broadcast domains 534

 

cables 534–536

 

collisions 480, 532, 869

 

congestion 538, 548

 

design issues 547–549

 

DIX II 453

 

frames 452–453

 

hubs/concentrators 537

 

jumbo frames 541

 

layer 3 switches 539

 

MAC spoofing 455

 

MTU 453

 

routers 539

 

for SAN storage 275–281

 

speed and duplex 481, 533

 

standards 453, 533

 

switches 534, 538–539

 

topology 533

 

troubleshooting 544–545

 

UTP cables 534–536, 545

 

ethtool command 489–490
 

EUIDs (effective user IDs) 122
 

European Expert Group for IT-Se- curity 773
 

event correlation 359
 

/etc/event.d files 1172, 1176
 

/etc/event.d directory 94
 

example systems 10–13
 

logos 11

 

exec system call 123
 

executable maps, NFS auto-
 

mounter 714

 

execute bit 153
 

exicyclog command 811
 

exigrep command 811
 

exilog command 811
 

Exim 807–828
 

see also email

 

access control lists (ACLs) 815–818

 

aliases file 823
 

authentication 820

 

blacklists 817–818

 

command line flags for 810

 

configuration language 811–827

 

content scanning 818–820

 

debugging 827–828

 

DKIM 850–852

 

global options 813–815

 

installation of 808–810

 

logging 826–827

 

macros 814

 

monitoring status of 811

 

retry configuration file section 825

 

rewrite configuration file section 825

 

transports 824–825

 

utilities 811

 

virus scanning 825–826

 

exim_checkaccess command 811
 

exim_dbmbuild command 811
 

exim_dumpdb command 811
 

exim_fixdb command 811
 

exim_lock command 811
 

exim_tidydb command 811
 

eximon application 811
 

eximstats command 811
 

exinext command 811
 

exipick command 811
 

exiqgrep command 811
 

exiqsumm command 811
 

exiwhat command 811
 

expect command 7, 1171
 

export shell command 33
 

exportfs command 699
 

exports file 699, 702–705
 

ext* filesystems 158–159, 255–256
 

extended partitions 235
 

extendvg command 254
 

Extensible Firmware Interface (EFI) 235
 


 

F
 

F5 Networks 963
 

Fabry, Robert 1268
 

FALLBACK_MX option, sendmail 803
 

FastCGI 959–960
 

fasterase command 228
 

fax server 1171
 

faxgetty process 1171
 

FC-AL (Fibre Channel arbitrated loop) 214
 

fcntl system call 694
 

fdisk command 207, 235–237
 

FEATURE macro, sendmail 784
 

Fedora Directory Server 728
 

Fedora Linux 10, 12
 

FERPA (Family Educational Rights and Privacy Act) 1223
 

Ferraiolo, David 108
 

FHS (Filesystem Hierarchy Standard) 146
 

fiber 536–537
 

colors of 537

 

connectors 537

 

diameters of 537

 

multimode 536

 

single mode 537

 

Fibre Channel interface 214, 275
 

Fibre-Channel-over-Ethernet (FCoE) 276
 

Field, Julian 769
 

file attributes 152–159
 

ACLs 110, 159, 164–172

 

change time 154

 

changing 152, 156–158

 

of device files 155

 

directory search bit 153

 

displaying with ls 152, 154–155

 

execute bit 153

 

group owner 155

 

inode change time 154

 

inode number 155, 257

 

link count 155

 

on ext* filesystems 158–159

 

owner 155

 

permission bits 152–155

 

setuid/setgid bits 106, 153–154, 912–913

 

sticky bit 154–155

 

file descriptors 31–32
 

file statement, DNS 614
 

filenames
 

control characters in 148

 

encoding under Samba 1145

 

length restrictions 142

 

pathnames 142–143

 

pattern matching 14, 51, 148

 

spaces in 142–143

 

files
 

see also device files

 

see also directories

 

see also file attributes

 

see also filenames

 

access control 104–105

 

default permissions 158

 

deleting 148–151

 

links vs. original files 149

 

modes see file attributes

 

NFS locking 694

 

ownership 155

 

permissions 105, 110, 152–159, 164–172

 

removing temporary 289

 

servers, dedicated NFS 711

 

servers, system files 727

 

sharing with Samba 1146

 

types of 147–152

 

Filesystem Hierarchy Standard (FHS) 146
 

filesystems 254–263
 

see also partitions

 

backing up 294

 

caching 257–258

 

checking and repairing 81

 

cleaning with cron
289–290

 

copying 316

 

defined 222

 

disabling setuid execution 912

 

enabling ACLs 162

 

exporting through NFS 698–705

 

ext* (Linux) 158–159, 255–256

 

JFS (AIX) 255, 257

 

journaling 255–256

 

lazy unmounting 144

 

load balancing 1114, 1129

 

loopback 143

 

mounting 143, 260–263, 1148

 

mounting at boot time, NFS 708

 

organization 145–146

 

overview 140–172

 

page clusters 213

 

quotas 698

 

repairing 81, 258–261

 

replicated 715

 

resizing 250–251

 

root 81, 146, 232

 

smbfs 1148

 

snapshots 249, 259, 269–271

 

types 141

 

unmounting 144–145

 

VxFS (HP-UX) 256–257

 

ZFS (Solaris) 161, 166–172, 208, 222, 232, 240, 242, 264–274, 316

 

/etc/filesystems file 143, 254, 259
260, 263
 

filter commands 33
 

find command 31, 143, 289
 

findutils package 23, 143
 

finger command 181
 

firewalls 474–475, 499–500, 932–942
 

ICMP blocking 862, 867

 

Linux IP tables 935–942

 

Netfilter 935–939

 

packet-filtering 932–933

 

stateful 934

 

traceroute and 867

 

FISMA (Federal Information Security Management Act) 947, 1223
 

flash memory disks (SSDs) 206, 209–210, 212–213, 228
 

flock system call 694
 

flow control, serial line 1168
 

flow down liability 1228
 

Fluke meter 1090, 1094
 

fork system call 123
 

format command 208, 227, 236, 266
 

.forward file, email 797
 

forward mapping, DNS 554
 

forwarders option, DNS 606
 

fragmentation, of packets 454
 

FreeBSD 8
 

freegeek.org 1107
 

French Green IT 1110
 

/etc/default/fs file 258
 

fsck command 81, 258–261
 

F-Secure virus scanner 819
 

FSF (Free Software Foundation) 1229
 

/etc/fstab file 143, 208, 259–262, 708, 711, 1149
 

FSUID process parameter 122
 

FTP
 

active vs. passive 933

 

through firewalls 933–934

 

fully qualified hostnames 566
 

FUSE (Linux user-space filesystems) 258
 

fuser command 144–145, 902, 1129
 

FYI documents 450
 

G
 

gated routing daemon 502, 523
 

gconf tool 190
 

gdm display manager 1013
 

GECOS information 181
 

Geer, Dan 295
 

$GENERATE directive, DNS 587
 

generators, standby 1091
 

genfilt module 932
 

Gentoo Linux 10
 

gethostbyname routine 739
 

gethostent routine 1133
 

getpwent routine 721
 

getpwnam routine 721
 

getpwuid routine 721
 

getty process 1171–1177
 

configuration file 1173

 

gettydefs file 1173–1175
 

gettytab file 1173
 

Ghostscript 1068
 

GIAC (Global Information Assurance Certification) 945
 

gibi- prefix 15
 

GIDs see group IDs
 

Git 401–404
 

git command 401
 

GlassFish application server 961
 

GLBA (Gramm-Leach-Bliley Act) 1224
 

globbing 14, 51, 148
 

Gmail 743
 

GNOME 1029–1030
 

see also X Window System

 

Gnu PG (GPG) 925
 

GNU Software Foundation 8
 

GNU Texinfo 18
 

GNU/Linux controversy 8
 

Google 20, 963
 

gparted command 207, 236, 243
 

GPG (GNU Privacy Guard) 763
 

GPT partitioning 235–236
 

Green Grid 1106
 

green IT
 

approaches 1100

 

assessment 1099

 

benefits of 1097

 

consumables 1099

 

equipment survey 1099

 

metrics 1099

 

organizations 1110

 

pyramid 1100–1101, 1109

 

strategies 1100–1110

 

suggested measurements 1099

 

user education 1108

 

Green IT Observatory 1110
 

Green IT Promo Council 1110
 

Green Standards Trust 1110
 

greet_pause feature, sendmail
793
 

grep command 36
 

groff command 18
 

/etc/group file 104, 181, 186–187
 

group IDs 186
 

see also groups

 

in ls output 155

 

mapping to names 105

 

real, effective, and saved 105, 122

 

substitution 106–107

 

groupadd command 187
 

groupdel command 187
 

groupmod command 187
 

groups
 

see also /etc/group file

 

default 181

 

effective 122

 

GIDs (group IDs) 105, 186

 

/etc/gshadow file 186

 

individual 187

 

passwords for 186

 

of a process 122

 

see also group IDs

 

vs. RBAC 108

 

wheel or system 181

 

grpck command 187
 

GRUB boot loader
 

multiboot configuration 85

 

single-user mode 86

 

grub.conf file 83, 85
 

/etc/gshadow file 186
 

GTUBE 773
 


 

H
 

halt command 101
 

halting the system 100–101
 

Hamilton, Bruce 20
 

hard carrier 1167
 

hard links 149–150, 155
 

hardware
 

see also cables

 

see also connectors

 

see also Ethernet

 

see also networks

 

see also PC hardware

 

cooling 1087–1091

 

environment 1087–1091

 

equipment racks 1094

 

hubs 537

 

kernel adaptation 416, 964

 

memory 79, 1114

 

power supplies 1091

 

probing 79

 

routers 539

 

switches 534, 538–539, 543

 

temperature monitoring 1091

 

tools 1095

 

wiring 545–547

 

hardware flow control 1168
 

Hazel, Philip 49, 807
 

hbvm command suite 1003
 

hdparm command 228–230
 

head command 36
 

HEAT 1194
 

heaters, personal 1109
 

Hein, Trent R. 1270, 1279
 

help desk 1196–1197, 1225
 

Hesiod 577
 

HIDS (Host Intrusion Detection System) 904, 919
 

HIPAA (Health Insurance Portability and Accountability Act) 1224
 

history
 

of BSD 1268–1273

 

of Linux 1271–1273

 

of Sun Microsystems (now Oracle America) 1268

 

of system administrators 1264-1273

 

of UNIX 1265–1273

 

home directories 146, 182, 189, 233
 

creating 189

 

logging in to 182

 

missing 182

 

removing 198

 

Host Intrusion Detection System (HIDS) 904, 919
 

HOST_STATUS_DIRECTORY option, sendmail 803
 

hostname command 478
 

/etc/hostname file 486
 

/etc/hostname.* files 495
 

hostnames
 

fully qualified 566

 

mapping to IP addresses 456, 477

 

/etc/hosts file 456, 477–478, 494, 502
 

/etc/hosts.allow file 917–918
 

/etc/hosts.deny file 917–918
 

hot aisle cooling 1089–1091
 

Hotmail 743
 

hot-pluggable disks 223
 

HP 303
 

HP-UX 12
 

disk addition recipe 208

 

disk device files 224–226

 

disk partitions 237

 

documentation 19

 

filesystems 256–257

 

installation 377–379

 

iSCSI support 280

 

kernel configuration 431–432

 

log files 344

 

logical volume management 251–253

 

named
684–685

 

network configuration 501–506

 

NFS (Network File System) 700–701

 

security 505–506

 

single-user mode 87

 

startup scripts 95

 

HTTP protocol 957–959
 

httpd.conf file 965–974
 

hubs, Ethernet 537
 

humidity 1091
 

hung terminals 1179
 

HUP signal 125–126
 

HVAC see cooling
 

HylaFAX 1171
 


 

I
 

I/O channels 31–32
 

I/O schedulers 1130–1131
 

IANA (Internet Assigned Numbers Authority) 451, 567
 

IBM 701 computer 1264
 

IBM BladeCenter HS20 1093
 

ICANN (Internet Corporation for Assigned Names and Numbers) 448, 461, 549, 567
 

ICMP 450
 

error messages 454

 

firewall blocking 862, 867

 

netstat output 872

 

packets 938

 

ping and 861

 

redirects 467–468, 473, 493,

 

499, 505, 508–509, 514–515

 

sequence numbers 862

 

tracroute and 866

 

TTL and 865

 

IDE interface 213–215
 

cables 215

 

power connector 215

 

secure erase 227–228

 

SMART reporting 230–231

 

TRIM command 228

 

idisk command 237
 

idle timeout, workstation 1109
 

IEEE 802.* standards (Ethernet) 502, 533, 539–540, 542
 

IEEE P1680 1108
 

IETF (Internet Engineering Task Force) 448
 

ifconfig command 458, 478–482, 495–497, 501–502, 513, 969–970
 

ifdown command 485–486
 

ifup command 485–486
 

IGF (Internet Governance Forum) 448
 

IGMP (Internet Group Manage-ment Protocol) 456
 

IIS web server 1141
 

Image Packaging System 394
 

IMAP (Internet Message Access Protocol) 747
 

incident handling, security 950–952
 

incident management 1225
 

$INCLUDE directive, DNS 575
 

:include: directive, for email aliases 758
 

include statement, DNS 602
 

indirect maps, NFS automounter 713
 

inetd daemon 506
 

info command 18
 

information technology (IT) management
 

automation 1205

 

budgeting 1184–1185

 

community relations 1210

 

disaster recovery 1217–1222

 

documentation, tools for 1185

 

enterprise architecture (EA) 1197–1199

 

firing 1208

 

help desk 1196–1197

 

hiring 1207

 

management, role of 1206–1215

 

operations 1199–1206

 

organizational structure 1190–1196

 

personnel management 1207

 

policies and procedures 1215–1217

 

policy 1185

 

prioritization of work 1188–1189

 

purchasing 1212

 

purpose of 1184

 

quality control 1209

 

rogue users 1214

 

service level agreement 1186–1190

 

skill sets 1195

 

ticketing systems and processes 1191–1196

 

init process 78, 80–81, 88–89, 123, 1171–1175
 

AIX and 96

 

bootstrapping and 81

 

run levels and 88–91

 

Solaris and 97

 

startup scripts and 87, 93

 

Ubuntu and 94

 

zombie processes and 124, 128, 130

 

/etc/init.d directory 87, 89–91, 93
 

initlog
353
 

inittab file 89, 96, 1171, 1174–1175
 

inodes 155, 257
 

in-row cooling 1090
 

insmod command 435–436
 

installation
 

of AIX 380

 

of HPUX 377–379

 

of Linux see Linux installation

 

of Solaris 370–376

 

installp command 397
 

INT signal 125–126
 

Integrity virtual machines 1003–1004
 

intent logs 255–256
 

/etc/interfaces file 486
 

interfaces, network see networks
 

International Computer Science
 

Institute (ICSI) 918

 

International Organization for
 

Standardization (ISO) 534

 

Internet
 

Cache Protocol (ICP) 975

 

governance 448–450

 

history 447

 

protocol security (IPsec) 943

 

registries 448, 461, 549, 567

 

standards and documentation 449–450

 

system administration resources 20

 

Worm 896

 

Internet Corporation for Assigned
 

Names and Numbers (ICANN) 448, 461, 549, 567

 

Internet Engineering Task Force (IETF) 448
 

Internet Governance Forum (IGF) 448
 

Internet protocol see IP
 

Internet Society (ISOC) 448, 957
 

Interop 1230
 

ioctl
1173
 

IOS (Cisco router OS) 525–528
 

ioscan command 208, 225–226, 280, 1169
 

iostat command 1127
 

IP 447–508
 

see also IP addresses

 

see also IPv6

 

see also routing broadcast pings 493, 499, 505, 508

 

CIDR (Classless Inter-Domain

 

Routing) 458, 460–461

 

directed broadcasts 473, 508

 

firewalls 474–475, 499–500, 932–942

 

forwarding 472, 482, 493, 499, 505, 508, 511–515

 

fragmentation 863

 

IPv4 vs. IPv6 451–452

 

kernel options 490, 492–493, 498–499

 

loopback interface 457, 467, 513, 583

 

masquerading see NAT

 

NAT 462–464, 493–494, 500–501

 

netmasks 458–461, 479, 495

 

packet fragmentation 454

 

ports 456

 

protocol stack 450–452

 

routing 465–468, 511–528

 

security 467–468, 472–475, 492–493, 499, 505–506, 508–509, 514–515

 

source routing 473, 493, 499, 505, 508

 

spoofing 473–474

 

subnetting 458–461, 479, 495

 

IP addresses 454–465
 

see also IPv6

 

anycast 457

 

broadcast 480

 

CIDR (Classless Inter-Domain

 

Routing) 458, 460–461

 

classes 457

 

dynamic assignment 469–472, 477, 480, 484, 497–498, 504

 

hostnames and 456, 477

 

IPv4 vs. IPv6 451–452

 

IPv6 464–465

 

leasing 469–472, 477, 480, 484, 497–498, 504, 510

 

loopback 457, 467

 

loopback interface 583

 

multicast 456–457

 

netmasks 458–461, 479, 495

 

private 462, 569, 597, 617

 

subnetting 458–461, 479, 495

 

IP Calculator program 460
 

ipcalc command 460
 

ipf command 500, 942
 

ipf.conf file 940
 

IPFilter 499, 506, 939–942
 

host and port filtering 940

 

ipf command 942

 

keep state keywords 941

 

NAT 941

 

quick keyword 940

 

ipfstat command 500
 

ipnat command 500–501
 

IPsec 277, 943
 

IPsec protocol 475
 

iptables
935–939
 

iptables command 493
 

IPv6 451–452, 464–465, 509
 

DNS support 573, 589

 

routing protocols 518–520

 

IQNs (iSCSI Qualified Names) 277
 

IronPort email appliance 755, 853
 

ISC (Internet Software Consortium) 470
 

ISC cron
287–288
 

iSCSI 276–281

 

AIX 280–281

 

HP-UX 280

 

Linux 277–279

 

Solaris 279–280

 

iSCSI Qualified Names (IQNs) 277
 

iscsiadm command 278–279
 

iscsid daemon 278
 

/etc/iscsi/iscsid.conf file 278
 

iscsiutil command 280
 

IS-IS protocol 520, 523
 

isisd daemon 523
 

iSNS 276
 

ISO (International Organization for Standardization) 534
 

ISO network protocols 520
 

ISO/IEC 17799 see ISO/IEC 27002
 

ISO/IEC 27001 standard 946, 1215, 1224
 

ISO/IEC 27002 standard 1224
 

ISOC (Internet Society) 448, 957
 

issue file 1171
 

IT Industry Council 1110
 

ITIL (Information Technology Infrastructure Library) 1224–1225
 


 

J
 

Jachim, Ron 1278
 

Jacobson, Van 865, 875
 

jail, chroot
913
 

Jaquith, Mark 1111
 

JBOD RAID mode 238
 

JBoss application server 961
 

Jetmore, John 773
 

Jetty application server 961
 

JFS filesystem 255, 257
 

John the Ripper 916
 

Jolitz, Bill 1270
 

journals (filesystem) 255–256
 

Joy, Bill 1268
 

JSON (JavaScript Object Notation) 960
 

jukeboxes, tape media 303
 

jumbo frames 541
 

Jumpstart, Solaris 371–375
 

Justman, Ian 765
 

K
 

Karels, Mike 1270
 

Kaspersky virus scanner 819
 

kcweb command 431
 

KDE 1029–1030
 

see also X Window System

 

KDEPrint framework 1043–1045
 

kdm display manager 1013
 

Kerberos 110, 924–925
 

Kerio MailServer 853
 

/kernel directory 427
 

kernel 415–417
 

AIX configuration 432–434

 

and NFS 705

 

ARP cache 469

 

boot time options 84

 

building, Linux 423–425

 

.config file, customizing 424–425

 

device drivers 150–151, 415–418

 

device numbers 418

 

HP-UX configuration 431–432

 

initialization 79

 

IP options 490, 492–493, 498–499

 

Linux configuration 421–423

 

loadable modules 434–436

 

location 146

 

logging 352

 

monolithic vs micro 416

 

options, Linux 421, 423–425

 

saved group IDs 122

 

Solaris configuration 427–431

 

source tree, Linux 424–425

 

swappiness parameter 1125

 

threads 79

 

tuning, AIX 434

 

tuning, Linux 421–423

 

udev system 437

 

KEY DNS records 647
 

.key DNSSEC key file, DNS 646
 

key remapping
 

backspace key 1177

 

delete key 1177

 

key statement, DNS 609
 

keymap file, corrupted 92
 

keys, generating BIND 654
 

keys, SSH 926
 

kibi- prefix 15
 

Kickstart 365–367
 

Kill A Watt meter 1088, 1099
 

kill command 127, 1132
 

KILL signal 125–127
 

kinit command 1157
 

klogd daemon 352
 

KMS (kernel mode setting) 1025–1026
 

Kojm, Tomasz 903
 

Kolstad, Rob 1270
 

konqueror browser 1044
 

kprinter command 1044
 

kprinter tool 1044
 

ks.cfg file 365–367
 

Kuhn, Rick 108
 

kVA unit conversion 1093–1094
 

KVM 995–997
 

guest installation 996

 

live migration 997

 

virsh command 997

 

virt-install command 996

 

kW unit conversion 1093–1094
 

L
 

LACNIC 462
 

lame delegations, DNS 670, 678–679
 

LAMP 956
 

LAN (Local Area Network) 532–539
 

lanadmin command 96, 503
 

lanscan command 502, 1004
 

Large Installation System Administration (LISA) conference 1270
 

/var/adm/lastlog file 184
 

Lawrence Berkeley Laboratories 1100
 

layer 3 switches 539
 

LCD monitors 1109
 

LCFG (large-scale configuration system) 409
 

LDAP (Lightweight Directory Access Protocol) 728–735
 

389 Directory Server 728, 732–733

 

and Active Directory 202

 

administration tools 730

 

attribute names 729

 

documentation 731

 

mail routing architecture 754

 

OpenLDAP 731

 

query example 734

 

security 735

 

setup 731–732

 

structure of data 728

 

use with Exim 809

 

use with Postfix 833

 

use with sendmail
759, 786–787

 

and user IDs 181

 

uses of 730–731, 733

 

ldap_routing feature, sendmail
786–787
 

ldap.conf file 732–733
 

ldapsearch command 734
 

LDIF (LDAP Data Interchange Format) 729
 

ldns DNSSEC routines 664
 

leadership 1206
 

legacy systems 1162, 1180
 

Less Watts 1110
 

Levy, Stephen 924
 

lifespan, equipment 1107, 1110
 

Lightweight Directory Access Protocol see LDAP
 

Lightweight Wireless Access Point Protocol (LWAPP) 543
 

Limelight 978
 

limit shell builtin 1133
 

links
 

hard 149–150, 155

 

symbolic 148, 151

 

link-state routing protocols 516
 

Linux
 

disk addition recipe 207–208

 

disk device files 224–225

 

disk partitions 236

 

distributions 9–10

 

filesystems 158–159, 255–256

 

iSCSI support 277–279

 

kernel configuration 421–423

 

kernel tuning 421–423

 

loadable drivers 435–436

 

log files 344

 

logical volume management 247–251

 

logo 11

 

mandatory access control

 

(MAC) 109, 923–924

 

named
681–684

 

network configuration 484–494

 

NFS (Network File System) 702–705

 

RAID 240, 242–245

 

reasons to choose 1113

 

security 492

 

security-enhanced 109, 923–924

 

single-user mode 86

 

startup scripts, Red Hat 91–93

 

startup scripts, SUSE 93–94

 

startup scripts, Ubuntu 94–95

 

vendor logos 11

 

volume snapshots 249

 

vs. UNIX 7–9

 

Linux Documentation Project 20
 

Linux installation
 

see also system administration

 

see also system configuration

 

automating with AutoYaST 367–368

 

automating with debconf
368

 

automating with debian-in-staller
368–370

 

automating with Kickstart 365–367

 

ks.cfg file 365–367

 

netbooting 363–364

 

PXE protocol 363–364

 

PXELINUX 364

 

TFTP protocol 364

 

Linux Mint 10
 

Linux package management 382–393
 

alien conversion tool 382

 

APT 387–391

 

.deb format 382

 

dpkg/APT 382–383

 

Red Hat Network 387

 

repositories 385

 

RPM format 382

 

rpm/yum
382–383

 

yum
391

 

yum/Red Hat Network 382

 

Zypper
392

 

Linux Virtual Server 963
 

Lions, John 1268
 

LISA (Large Installation System Administration) conference 1230
 

LMTP protocol 830
 

ln command 149, 151–152
 

load average, sendmail
803
 

load averages 1123
 

load balancing
 

disks and filesystems 1114, 1129

 

servers 1114

 

web server 961–963

 

loadable drivers 431, 434–437
 

Linux 435–436

 

Solaris 436–437

 

loadable modules 434–437
 

Local Area Network (LAN) 532–539
 

local delivery agents (LDA), email 746
 

local domain sockets 148, 151
 

localhost 457, 467
 

localhost zone configuration example, BIND 619
 

localization
 

compilation 407

 

distribution 408

 

/usr/local hierarchy 407

 

wrapper scripts 413

 

locate command 23
 

lockd daemon 694
 

lockf system call 694
 

log files 341–344
 

see also logging

 

see also syslog

 

AIX 344

 

analyzing and searching 358–359

 

for Apache 966

 

finding 341–342

 

for cron
284

 

HP-UX 344

 

Linux 344

 

lists of 343

 

monitoring 358–359

 

rotating 290, 356–358

 

Solaris 344

 

web hosting 966

 

/dev/log socket 345
 

logcheck
358
 

logger command 351
 

logging
 

see also log files

 

see also syslog

 

for BIND 612, 667–672

 

boot-time 352–353

 

to central server 350

 

for cron
288

 

enterprise strategy and policy 359

 

for Exim 826–827

 

kernel 352–353

 

for NSD 673–674

 

for sendmail
806–807

 

storage considerations 360

 

for sudo
114

 

logging in from Windows 1135
 

logging statement, DNS 612, 667
 

logical unit numbers (SCSI) 218
 

logical volume management 221–222, 246–254
 

see also ZFS filesystem

 

AIX 253–254

 

HP-UX 251–253

 

inter-system comparison 247

 

Linux 247–251

 

login command 1171
 

.login file 189
 

/etc/default/ login file 194, 907
 

login process 1171
 

/etc/security/login.cfg file 182, 185, 195–196, 1172
 

/etc/login.defs file 182, 185, 193, 198–199
 

logins see user accounts
 

logos, vendor 11
 

logrotate
356–358
 

/etc/logrotate.conf file 357
 

/etc/logrotate.d directory 357
 

loopback
 

address 457, 467

 

address, BIND 616

 

filesystem 143

 

interface 457, 467, 513, 583

 

LOPSA (League of Professional
 

System Administrators) 1230

 

lost+found directory 260, 290
 

low-power equipment 1108
 

ls command 152, 154–155, 167, 169–171
 

lsattr command 159, 178
 

lscfg command 1120
 

lsdev command 209, 226
 

lsmod command 435
 

lsof command 145, 708, 902, 1129
 

lsusb command 441
 

lsvg command 209
 

lswpar command 1002
 

LTO backup tapes 302
 

lvchange command 250
 

lvcreate command 207–208, 248–249, 252–253
 

lvdisplay command 249
 

lvextend command 253
 

lvlnboot command 253
 

lvm command 247
 

LVM see logical volume management
 

lvmadm command 252
 

lvresize command 250
 

LWAPP (Lightweight Wireless Access Point Protocol) 543
 

M
 

m4 command 779–782, 789
 

MAC (Mandatory Access Control) 109
 

MAC addresses 454–455, 464
 

machinfo command 1120
 

Mackerras, Paul 725
 

macros, sendmail
782–795
 

magic cookies, NFS 693
 

magic cookies, X Windows 1016
 

mail command 744
 

Mail eXchanger (MX) DNS records 583–584
 

mail see email
 

mail submission agents (MSAs) 745
 

mail transport agents (MTAs) 746
 

mail user agents (MUAs) 744
 

MAIL_HUB macro, sendmail 787
 

mail.local delivery agent 798
 

Maildir format 747
 

Maildrop
746
 

MAILER macro, sendmail 784
 

mailing lists 758, 760–761
 

Mailman 761
 

mailq command 806, 830
 

.mailrc file 189
 

MailScanner 769
 

main.cf file 831
 

major device numbers 150
 

make command 25
 

makedbm command 737
 

makemap
782–783
 

makewhatis command 17
 


 

man command 17–18
 

man pages 16–18
 

sections 16

 

in Solaris 17

 

managed email providers 743
 

management see information technology (IT) management
 

management standards, networks 879–880
 

Mandatory Access Control (MAC) 109, 922
 

mandb command 17
 

Mandriva Linux 10
 

manpath command 17
 

MANPATH environment variable 18
 

Mantis 1193
 

map files, NFS automounter 713–715
 

Martinec, Mark 769
 

masks in ACLs 164
 

MASQUERADE_AS macro, sendmail 787, 805
 

masquerading, sendmail
787
 

master boot record (MBR) 82, 233–235
 

master name server, DNS 564
 

master server, NIS 736–737
 

master.cf file 828
 

masters statement, DNS 611, 614
 

match-clients clause, DNS 617
 

MAX_DAEMON_CHILDREN option, sendmail
802
 

MAX_QUEUE_CHILDREN option, sendmail
802
 

MAX_RUNNERS_PER_QUEUE option, sendmail
803
 

Maxdaemon Children Option, sendmail
800
 

Maxmessagesize Option, sendmail
800
 

Max RcptsPerMessage option, sendmail
800
 

mbox format 747
 

McCarthy, John 1265
 

McClain, Ned 1278
 

McIlroy, Doug 1266
 

McKusick, Kirk 254, 1270
 

md system (Linux RAID) 240, 242–245
 

mdadm command 240, 242–245
 

/etc/mdadm.conf file 244
 

/proc/mdstat file 243
 


 

mean time between failures (MTBF) 211
 

mebi- prefix 15
 

media, backup 299–305
 

see also tapes

 

CD and DVD 299

 

comparison of 304

 

jukeboxes 303

 

labeling 293

 

life of 297

 

magnetic tape 301

 

optical 299

 

SSD 300

 

summary of types 304

 

verifying 297

 

mediainit command 227
 

MediaWiki 1185
 

memory
 

effect on performance 138, 1114, 1116, 1125–1127

 

kernel initialization and 79

 

paging 1129, 1132

 

RAM disks 1129

 

usage, analyzing 1125–1127

 

memory management 1124–1125
 

Message Labs 763
 

message of the day 1172
 

message stores, email 746–747
 

/var/log/messages file 349, 352
 

Metcalfe, Bob 532
 

meter, power 1099
 

mgetty process 1171–1176
 

Microsoft Exchange, replacements for 853
 

Microsoft Outlook 745
 

Microsoft Windows see Windows
 

mii-tool command 489
 

Miller, Todd 114
 

miltering, email 767
 

MIME (Multipurpose Internet
 

Mail Extensions) 744

 

mingetty process 1171–1176
 

minicom command 1181
 

minor device numbers 150
 

mirroring (RAID 1) 239–240, 248, 253
 

mkboot command 251
 

mkfs command 207–208, 254, 258–259
 

mklv command 254
 

mknod command 150–151, 419
 

mkps command 264
 

mkrole command 108
 

MKS Toolkit 1141
 

mksf command 1169
 

mkswap command 264
 

mkuser command 195
 

/etc/security/mkuser.default file 195
 

mkvg command 209, 246, 254
 

mkwpar command 1002
 

mod_perl interpreter 960
 

mod_php interpreter 960
 

mod_python interpreter 960
 

modems 1167
 

modinfo command 431, 436–437
 

modload command 437
 

modprobe command 435
 

/etc/modprobe.conf file 436
 

MODULE_DEVICE_TABLE macro 427
 

modunload command 437
 

Mondo Rescue 335
 

monitoring
 

environmental 1091

 

log files 358–359

 

processes 130–135

 

temperature 1091

 

Morreale, Terry 1278
 

Morris worm 896
 

Morris, Robert, Jr. 896
 

motd file 1172
 

mount command 143–145, 258, 260–262, 706–709
 

mount points, filesystem 143
 

mount.smbfs
1149
 

mountd daemon 699
 

mountpoint ZFS property 268
 

mpstat command 1122
 

/var/spool/mqueue directory 806
 

MRTG (Multi-Router Traffic Grapher) 886
 

MSA (mail submission agent) 745
 

MSN Hotmail 743
 

mt command 317
 

MTA (mail transport agent) 746
 

MTBF (mean time between failures) 211
 

MTU (Maximum Transfer Unit) 453–454
 

mtx package 318
 

MUAs (mail user agents) 744
 

multibooting 85
 

multicast addresses 456–457
 

multicore processors 990
 

Multics 1265
 

multimode fiber 536
 

multiprocessor machines, analyzing performance 1122
 

Multipurpose Internet Mail Extensions (MIME) 744
 

multiuser mode 81
 

MX DNS records 583–584
 

MySQL 318, 320–321, 956, 1193
 

N
 

Nagios SNMP monitoring tool 887
 

name servers
 

see also DNS

 

see also BIND

 

see also
named

 

authoritative 564, 569

 

caching 556–557, 569

 

caching-only 564

 

delegation 555

 

dynamic updates 640–642

 

forwarding 606

 

hints 566

 

lame delegations 670, 678–679

 

master 564

 

nonauthoritative 564

 

recursion 565

 

resolver 561–563

 

slave 564

 

stub 564

 

switch file 682

 

zone delegation 596–597

 

name service switch 494
 

named
 

see also BIND

 

see also DNS

 

see also name servers

 

acl statement 609

 

ACLs 609, 643–644

 

AIX 685–686

 

allow-update clause 613, 641

 

avoid-v4-udp-ports option 605

 

blackhole option 606

 

bogus directive 611

 

chroot ed 643, 645

 

command-line interface see named, rndc

 

compiling with OpenSSL 655

 

configuration examples 618–624

 

controls statement 615–616

 

debugging 667–681

 

directory statement 603

 


 

domain directive 562

 

error messages 670

 

file statement 614

 

forwarders option 606

 

forwarding zone, configuring 615

 

$GENERATE directive 587

 

HP-UX 684–685

 

$INCLUDE directive 575

 

include statement 602

 

init scripts 681

 

ISC configuration example 623

 

key statement 609

 

Linux 681–684

 

localhost zone configuration example 619

 

logging 667–672

 

logging statement 612, 667

 

master server, configuring 613

 

masters statement 611, 614

 

match-clients clause 617

 

/etc/named.conf file 600–624, 643, 671

 

named.run file 672

 

named-checkconf command 600, 648, 679

 

named-checkzone command 600, 679

 

notify option 604

 

options directive 561

 

options statement 602–609

 

$ORIGIN directive 575

 

provide-ixfr option 639

 

recursion option 604

 

request-ixfr option 639

 

RHEL 684

 

rndc command 638, 672, 674

 

root server hints 614

 

root.cache file 615

 

search directive 561

 

server statement 610, 639

 

slave server, configuring 614

 

Solaris 684

 

starting 640

 

statements, list of 601

 

stub zones, configuring 614

 

SUSE 683

 

testing 667–681

 

transfer-source option 623

 

$TTL directive 575–576, 581

 

Ubuntu 682

 

update-policy clause 641

 

updating zone files 640–642

 

versions 599

 

view statement 617

 

zone commands 574–575

 

zone statement 612–615

 

zone-statistics option 613

 

named daemon 563
 

named pipes 148, 151
 

named_dump.db file 674
 

/etc/named.conf file 600–624, 643, 671
 

named.run file 672
 

named-checkconf command 600, 648, 679
 

named-checkzone command 600, 679
 

nano editor 6
 

NAT (Network Address Translation) 462–464, 493–494, 500–501
 

ncftp command 727
 

ndbm library 308
 

ndd command 468, 498–499, 504–505, 970
 

nddconf file 95
 

neigh directory 491
 

Neighbor Discovery Protocol 520
 

Nelson, T.J. 847
 

Nemeth, Evi 1269, 1279
 

NERC (North American Electric Reliability Corporation) 1224
 

Nessus 916
 

net command 1158
 

NetBIOS 1142
 

netbooting
 

non-PCs 364

 

PCs 363

 

NetBSD 8
 

netconf file 95, 501, 504
 

netdaemons file 95
 

Netfilter 935–939
 

netmasks 458–461, 479, 495
 

netmasks file 495
 

NeTraverse 1140
 

Netscape Directory Server 728
 

NET-SNMP 885–886
 

netstat command 466, 483, 503, 512–514, 868–873
 

interfaces 868

 

monitoring connections 870

 

network statistics 868–873

 

and NFS UDP overflows 705

 

open ports 871

 

routing table 871

 

Network Address Translation
 

(NAT) 462–464, 493–494, 500–501

 

Network Appliance, Inc. 711
 

Network Auto-Magic 494
 

network booting 363–364
 

network documentation 1204
 

/etc/sysconfig/network file 487
 

Network Intrusion Detection System (NIDS) 918
 

network printers 1040
 

network unreachable error 482
 

network wiring
 

building 545–547

 

cable analyzer 545

 

cable choices 533–536, 545

 

maintenance and documentation 549

 

for offices 546

 

Wireshark network sniffer 545

 

NetworkManager 485–486
 

networks
 

see also Ethernet

 

see also IP addresses

 

see also network wiring

 

see also routing

 

see also TCP/IP

 

addresses 454–455, 457, 464, 467

 

administrative databases 721, 736

 

AIX configuration 506–508

 

broadcast storms 538

 

connecting and expanding 537–539

 

design issues 547–549

 

firewalls 932–942

 

hardware options 481

 

host addition 476–484

 

HP-UX configuration 501–506

 

interface activity reports 873

 

interface configuration 478–481

 

IPfilter firewall 939–942

 

Linux configuration 484–494

 

load balancing 1114

 

loopback 457, 467, 513, 583

 

management issues 549–550, 859

 

management protocols 879–883

 

management standards 879–880

 

monitoring 869–870

 

MTU 453–454

 

ping and 861–863

 

port scanning 914–916

 

RHEL configuration 487–489

 

routing tables 871

 

scanner, Nessus 916

 

Solaris configuration 494–501

 

statistics 868–873

 

SUSE configuration 486–487

 

tools 860

 

troubleshooting 544–545, 860–873

 

Ubuntu configuration 486

 

unreachable 482

 

virtual interfaces 481

 

VLANs 539

 

VPNs 475–476

 

wireless 541–543

 

Wireshark 877

 

/etc/networks file 483
 

network-scripts directory 92, 488
 

Neumann, Peter 1266
 

newaliases command 290, 760, 830
 

newgrp command 186
 

newusers command 197
 

NFS (Network File System) 690–717
 

ACLs 161, 166–172

 

AIX 702–703

 

all_squash option 698, 704

 

anongid option 704

 

anonuid option 704

 

as a configuration file distribution method 721

 

buffer sizes 708

 

client 706–709

 

common options, Linux 704

 

configuration, server 698–705

 

cookies 693

 

dedicated file servers 711

 

disk quotas 698

 

and dump
309

 

entities 168

 

export configuration files 700

 

exporting filesystems 698–705

 

exports 693

 

file locking 694

 

firewall configuration 696

 

hard vs. soft mounts 707

 

history of 692

 

HP-UX 700–701

 

identity mapping 696, 709–710

 

insecure option 704

 

Linux 702–705

 

maintaining state 693

 

mount command 706–709

 

mounting filesystems at boot time 708

 

nfsd daemon 705

 

no_root_squash option 704

 

noaccess option 703

 

nobody account 118, 697

 

performance on wide area networks 698

 

protocol versions 692

 

pseudo-filesystem 693

 

Red Hat 717

 

root access 697

 

secure option 704

 

secure_locks option 704–705

 

security 695–698, 700, 709

 

Solaris 700–701, 708

 

statistics 710

 

subtree_check option 704

 

tuning 708

 

using to export email 756

 

version 4 features 692

 

and ZFS 271–272

 

nfsd daemon 699, 705
 

nfsstat command 710
 

nice command 129–130, 1123
 

nice value 123
 

NIDS (Network Intrusion Detection System 918
 

NIS (Network Information Service) 494, 736–738
 

architecture 736–738

 

commands 738

 

database files 736

 

files to share 720

 

map files 736

 

master server 736–737

 

slave servers 736–737

 

NIST (National Institute for Standards and Technology) 1225–1226
 

NIST 800-34 standard 1226
 

NIST 800-53 standard 1226
 

nmap port scanner 914–916
 

nmbd daemon 1143
 

nmon tool 1130
 

no command 468, 507–508
 

nobody 118, 697
 

nodename file 494
 

/etc/iscsi/nodes directory 278
 

nohup command 127
 

Nortel 963
 

notify option, DNS 604
 

Novell 13
 

NS DNS records 596
 

nscd daemon 740
 

nscd.conf file 740
 

NSD
 

architecture 625

 

configuration 625

 

configuration examples 625, 627–638

 

control programs 674

 

differences from BIND 626

 

DNSSEC performance 625

 

drill command 625

 

logging 673–674

 

nsd name server daemon 625

 

nsdc command 675

 

starting the daemon 632

 

unbound configuration 632–633

 

unbound performance tuning 636

 

unbound server 625

 

unbound.conf file 633

 

unbound-control command 675

 

nsdc command 675
 

NSEC DNS records 659
 

nslookup command 677
 

nsswitch.conf file 494, 733, 739, 776
 

nsupdate command 641
 

NTP protocol 288
 

null modem serial cable 1165, 1180
 

nullclient feature, sendmail
788
 

nwamd daemon 494
 

O
 

O’Reilly Media 1270
 

O’Reilly series (books) 19
 

O’Reilly, Tim 20, 1270
 

IBM Object Data Manager 432
 

Object Data Manager (ODM) 115, 280, 506
 

OC4J application server 961
 

ODM (Object Data Manager) 115, 280, 506
 

ODMDIR environment variable 115
 

Oetiker, Tobias 410, 886, 1278
 

office temperature 1109
 

office wiring 546
 

off-site backup storage 295
 

OM1 fiber 537
 

OM2 fiber 537
 

OM3 fiber 537
 

on-demand servers 1104
 

open source software 8
 

Open Web Application Security
 

Project 947

 

OpenBSD 8
 

Open-iSCSI 277–279
 

OpenLDAP 731
 

OpenOffice 11, 1140
 

openprom prompt 429
 

OpenSolaris 8, 12
 

OpenSSL 972–973
 

openSUSE 10–11
 

OpenVPN 475
 

operating cost reduction 1098–1110
 

operating system installation see installation
 

oprofile tool 1131
 

options directive, DNS 561
 

options statement, DNS 602–609
 

Oracle 12
 

Oracle Enterprise Linux 10
 

$ORIGIN directive, DNS 575
 

orphaned processes 124, 128, 130
 

OS1 fiber 537
 

OSI network protocols 520
 

OSPF protocol 519–521, 523
 

ospf6d daemon 523
 

ospfd daemon 523
 

OSTYPE macro, sendmail 783–784
 

OTRS 1193
 

ownership
 

of files 155, 157

 

of processes 105

 
  


P
 

pacadm command 1177
 

package management 21–26, 381–397
 

repositories 387

 

packages see software packages
 

packet forwarding 472, 482, 493, 499, 505, 508, 511–515
 

packets 452
 

dropped 862

 

filtering 904, 932

 

handling with Netfilter 935–939

 

ICMP 938

 

round trip time 863

 

sniffers 545, 874–878

 

tracing 865–867

 

PAGER environment variable 17
 

paging 1129, 1132
 

PAM (Pluggable Authentication
 

Modules) 109–110, 201, 721, 908–912, 1159

 

paper sizes 1073–1075
 

paper, recycled 1110
 

parted command 207, 225, 236
 

partitions 221–223, 231–237
 

see also filesystems

 

alignment 212

 

GPT (EFI) style 235–236

 

guidelines 232–233

 

HP-UX 237

 

Linux 236

 

load balancing 1129

 

Solaris 232–233, 236–237

 

Windows-style 233–235

 

passphrases 112
 

/etc/default/passwd file 194
 

/etc/security/passwd file 185
 

passwd command 106, 188
 

/etc/passwd file 176–183
 

editing 179, 188

 

group ID numbers 155

 

security 906–908

 

user ID numbers 105, 155

 

/etc/default/password file 907
 

passwords
 

aging 906

 

boot loader 900

 

cracking 916

 

cryptography 176, 179, 1144

 

encryption 176, 179, 1144

 

escrow 117–118

 

forcing users to change 185

 

group 186

 

initial 188

 

root 111

 

Samba 1144

 

security 906–908

 

selection 111–112, 188

 

shadow 183–185

 

strength 916

 

when to change 112

 

PAT (Port Address Translation) 493
 

PATA interface 213–215
 

cables 215

 

power connector 215

 

secure erase 227–228

 

SMART reporting 230–231

 

TRIM command 228

 

patching 901
 

path MTU discovery 454
 

pathnames 142–143
 

pattern matching 36, 48–54
 

Paxson, Vern 918
 

PC hardware
 

see also hardware

 

BIOSes 82

 

boot device priority 82

 

bootstrapping 82

 

multibooting 85

 

vs. UNIX hardware 82

 

PCI DSS (Payment Card Industry
 

Data Security Standard) 295, 946, 1224

 

PCL 1069
 

PCLinuxOS 10
 

PCRE library 49
 

PDF 1070
 

Pennock, Phil 851
 

Pen-pals 756
 

performance 1112–1133
 

see also performance analysis tools

 

analysis methodology 1117

 

application 1113

 

BIND 680

 

common issues 1114

 

CPU 1116, 1118, 1121–1123

 

of disks 210, 212, 219–220, 1116, 1127, 1129–1131

 

factors affecting 1115–1116

 

improving 1112–1117

 

load averages 1123

 

magic 1113

 

measuring and monitoring

 

memory 138, 1114, 1116, 1124–1127

 

monitoring 1115

 

NFS 708

 

nice command 129

 

SDSC Secure Syslog 352

 

sendmail
802–805

 

Squid web cache 975–976

 

SSD 1115

 

st_atime flag 159

 

syncing log files 348

 

troubleshooting 1131–1133

 

tuning rules 1113

 

web server 959–963, 967

 

performance analysis tools
 

iostat command 1127

 

mpstat command 1122

 

oprofile command 1131

 

sar command 1129

 

top command 1123

 

uptime command 1123

 

vmstat command 1121

 

Perl 7, 54–66, 956
 

add-on modules 65–66

 

best practices 73–74

 

example scripts 733

 

file test operators 62

 

as a filter 64–65

 

generating passwords 732

 

hashes 57–59

 

I/O 61

 

insecure example 900

 

regular expressions in 49, 60

 

scripting 54–66

 

and swatch 358

 

variable types 55–59

 

wrapping cron jobs 727

 

permissions
 

on files 105, 110, 152–159, 172

 

sendmail
797–798

 

umask and 158

 

PGP (Pretty Good Privacy) 763, 925
 

phishing 899, 1226
 

phpLDAPadmin 730
 

Phusion Passenger 960
 

physical volumes see logical management
 

picocom command 1181
 

PIDs 121
 

Pilgrim, Mark 67
 

ping command 473, 861–863
 

pinout, connector
 

DB-25 1164–1165

 

DB-9 1166

 

RJ-45 1167

 

pipes, named 148, 151
 

PJL 1070
 

pkgadd command 430
 

pkgutil command 23
 

pkutil command 24
 

/platform directory 427
 

Pluggable Authentication Modules PAM) 109–110, 201, 721, 908–912
 

pmadm command 1177
 

PoE (Power over Ethernet) 540
 

policy 1215–1217
 

flow down 1228

 

Postfix policy daemons 841

 

user agreement 1227–1228

 

/etc/security/policy.conf file 194
 

pooladm command 999
 

poolcfg command 999
 

POP (Post Office Protocol) 747, 1141
 

ports, network 456
 

privileged 456, 914, 933

 

scanning 914–916

 

well known 914, 933

 

ports, serial 1163–1165
 

POSIX 7
 

ACLs 160–166

 

APIs under Windows 1141

 

capabilities 109

 

Post Office Protocol (POP) 747, 1141
 

postalias command 830
 

postcat command 830
 

postconf command 830, 832
 

Postfix 828–845
 

see also email

 

access control 837–839, 845

 

architecture 828

 

authentication 839

 

blacklists 840–841

 

chrooted
830

 

command-line utilities 830

 

configuring 831–839

 

content filtering 842

 

debugging 844–845

 

DKIM 852–853

 

local delivery 834

 

lookup tables 833

 

policy daemons 841

 

queues 829–830

 

security 830

 

sending email 830

 

spam control 840–843

 

virtual domains 835–837

 

virus scanning 842–843

 

postfix command 830
 

Postini 762
 

postmap command 830
 

PostScript 1069
 

postsuper command 830
 

posture assessment 1215
 

power consumption 1099
 

power factor 1093
 

power management 1091
 

of hard disks 229–230

 

power meter 1099
 

Power over Ethernet 540
 

power saving, Linux 1104
 

power use, measurement of 1099
 

PPD (PostScript Printer Description) files 1035, 1072–1073
 

PPIDs 121
 

PPP protocol 476
 

PPPoE 476
 

Pratt, Ian 991
 

Preston, W. Curtis 337
 

Pretty Good Privacy (PGP) 763, 925
 

preventative maintenance 1092
 

printcap file 1059–1065
 

printer cartridges, recycled 1110
 

PRINTER environment variable 1036, 1054
 

printing 1032–1083
 

see also BSD printing

 

see also CUPS

 

see also System V printing

 

architecture 1033–1034

 

BSD printing 1054–1065

 

choosing a printer 1075

 

CUPS 1034–1043

 

duplex 1076

 

eDocument campaign 1109

 

from desktop environment 1043–1045

 

GDI printers 1076

 

history 1065–1066

 

languages 1068–1072

 

major printing systems 1033–1034

 

network printers 1077

 

page description languages (PDL) 1068–1072

 

paper sizes 1073–1075

 

paper, recycled 1110

 

parallel printers 1077

 

PCL 1069

 

PDF 1070

 

PJL 1070

 

PostScript 1069

 

PPD files 1072–1073

 

serial printers 1077

 

sharing printers using Samba 1149–1152

 

spooler 1033–1034

 

system identification 1034

 

System V printing 1045–1054

 

tips 1077–1081

 

tools 1067–1068

 

troubleshooting 1053–1054, 1081–1083

 

Windows driver installation 1151–1152

 

WinPrinters 1076

 

XPS 1070

 

priority, processes 123, 129–130
 

privacy 1226
 

.private DNSSEC key file 646
 

private IP addresses 462, 569, 597, 617
 

privedit command 108
 

privileged ports 456, 914, 933
 

privrun command 108
 

problem management 1225
 

/proc filesystem 135–136, 262, 439, 490, 1118
 

procedures 1215–1217
 

processes
 

control terminal 123

 

EGID (effective group ID) 122

 

EUID (effective user ID) 122

 

execution states 128

 

FSUID parameter 122

 

GID (group ID) 122

 

IDs 121

 

init
see init process

 

monitoring 130–135

 

nicing 129–130

 

orphaned 124, 128, 130

 

ownership 105, 122

 

PPID (parent PID) 121

 

priority 123, 129–130

 

runaway 138–139

 

scheduling 105

 

sending signals to 127

 

spontaneous 79

 

standard I/O channels 123

 

stopping and starting 128

 

tracing 136–137

 

UID (user ID) 122

 

zombie 124, 128, 130

 

procmail command 746, 841
 

/etc/security/prof_attr file 108
 

/etc/profile file 190
 

profiler, system 1131
 

Project Athena 1011
 

provide-ixfr option, DNS 639
 

proxies, web 974
 

prtconf command 430, 1120
 

ps command 130–133, 1123, 1132
 

pseudo-devices 419
 

pseudo-terminals 1162, 1170
 

psrinfo command 1120
 

pstat command 1125
 

PTR DNS records 582, 623
 

public key cryptography 927
 

PUE 1099
 

Punycode 574
 

purchasing 1212
 

Purdue 1269
 

PuTTY 1135
 

P-UX Security Containment 922
 

pvcreate command 207–208, 246, 248, 251
 

pwdadm command 185, 200
 

PXELINUX 364
 

pyramid, green IT 1100–1101, 1109
 

Python 7, 66–73
 

best practices 73–74

 

data types 69–70

 

indentation 67–68

 

loops 71–73

 

scripting 66–73

 

Q
 

qmgr command 830
 

qshape command 844
 

quad A DNS records 589
 

Quagga routing daemon 523–524
 

quaggaadm command 524
 

quality control 1209
 

queue groups, sendmail
802
 

QUIT signal 125, 127
 

quota ZFS property 267
 

quotas, disk 698
 

R
 

rack density 1092
 

rack power 1092–1093
 

racks, equipment 1094
 

RAID 221–222, 234, 237–245, 1115
 

failure recovery 241

 

levels 238–241

 

Linux 240, 242–245

 

RAID 5 write hole 238, 241–242

 

software vs. hardware 237–238

 

RAID-Z see ZFS filesystem
 

RAM disks 1129
 

ramd routing daemon 524
 

RANCID router config tool 528
 

RBAC (Role Based Access Control) 108–109, 190
 

RBL (Realtime Black Lists) see
 

blacklists

 

/etc/rc.boot script 95
 

/etc/rc.config.d directory 95
 

/etc/rc.log file 95
 

/etc/rc.serial file 1170
 

/etc/event.d/rc-default file 95
 

RCPT command, SMTP 763
 

rdc command 524
 

rdesktop command 1139
 

rdist command 290, 722–725
 

RDP (Remote Desktop Protocol) 1138
 

/rdsk directory 226
 

read errors, disk 227
 

real-time scheduling 123
 

RealVNC 1138
 

reboot command 101
 

rebooting 100–101
 

Recovery Point Objective (RPO) 299
 

Recovery Time Objective (RTO) 299
 

recursion option, DNS 604
 

recycling
 

equipment 1107, 1110

 

in the workplace 1110

 

paper 1110

 

Red Flag Linux 10
 

red flag rule 1224
 

Red Hat Enterprise Linux see
 

RHEL

 

redirect feature, sendmail 785
 

redirect router, Exim 823
 

redirects (ICMP) 467–468, 473, 493, 499, 505, 508–509, 514–515
 

redundant arrays of inexpensive disks see RAID
 

Reed, Darren 939
 

refquota ZFS property 267
 

refreservation ZFS property 267
 

refresh command 345
 

REFUSE_LA option, sendmail 800
 

regexes see regular expressions
 

registration of domain names see domain names, registration
 

regular expressions 36, 48–54
 

capture groups 52–53

 

examples 51–52

 

failure modes 53–54

 

lazy operators 53

 

matching process 49

 

in Perl 49, 60

 

special characters in 50–51

 

regulations, compliance with 1222–1229
 

relatime option 1105
 

/etc/mail/relay-domains file 791
 

release management 1225
 

rem_drv command 437
 

remapping
 

backspace key 1177

 

delete key 1177

 

Remedy 1194
 

Remote Desktop Protocol (RDP) 1138
 

remote power control 1094
 

renice command 129–130, 1132
 

replicated filesystems 715
 

repositories, software 385
 

reproducible processes 1197
 

request-ixfr option, DNS 639
 

reservation ZFS property 267
 

reset command 1180
 

resize2fs command 251
 

/etc/resolv.conf file
561–484
 

resolver configuration 483–484
 

resource records, DNS 555, 576–596
 

A 582, 596

 

AAAA 589

 

ADSP 591–594

 

CNAME 585

 

DKIM 591–594

 

DNSKEY 650

 

format 576

 

glue 596–597

 

KEY 647

 

MX 583–584

 

NS 596

 

NSEC 659

 

PTR 582, 623

 

quad A 589

 

RRSIG 649, 659

 

SOA 579–581, 638

 

special characters in 576

 

SPF 590–591

 

SRV 587–588

 

resource records, DNS
 

SSHFP 594–595

 

time to live 576

 

trailing dot in names 576

 

TXT 588, 603

 

WKS 588

 

restore command 310–314
 

retiring equipment 1107
 

reverse mapping, DNS 554, 582-583, 623
 

revision control 397–404
 

Git 401–404

 

Subversion 399–401

 

RFCs 20, 449–450
 

DNS-related 688

 

email-related 746

 

LDAP-related 731

 

NFS-related 717

 

overview 449–450

 

private address space 462

 

SNMP-related 893

 

RHEL 11–12
 

documentation 19

 

named
684

 

network configuration 487-489

 

Richards, Martin 1266
 

RightScale 978, 1104
 

RIP protocol 516, 518, 521–523
 

ripd daemon 523
 

RIPE DNSSEC tools 665
 

RIPE NCC 462
 

RIPng protocol 518
 

ripngd daemon 523
 

Ritchie, Dennis 1265
 

RJ-45 connectors 1166–1167
 

rm command 149–151
 

rmmod command 435
 

rmrole command 108
 

rmuser command 195
 

rndc command 638, 672, 674
 

/etc/rndc.conf file 616
 

/etc/rndc.key file 616
 

rndc-confgen command 616
 

Roesch, Marty 918
 

rogue users 1214
 

roleadd command 108
 

roleadm command 108
 

roledel command 108
 

rolelist command 108
 

rolemod command 108
 

root account 105–106, 907
 

see also RBAC

 

accessing 112–118

 

root account
 

accessing via NFS 697

 

password 111

 

user ID 105

 

root filesystem 81, 146, 232
 

backup copy 232

 

rootkits 904
 

rotating log files 356–358
 

route command 466, 481–483
 

routed daemon 496, 522
 

Router Discovery Protocol 520
 

routers 539
 

routes file 487
 

routing, network 465–468, 511–528
 

architecture design 521–522

 

autonomous systems 517–518

 

CIDR (Classless Inter-Domain Routing) 458, 460–461

 

Cisco routers 525–528

 

cost metrics 517

 

daemons 522–525

 

default routes 466, 501, 513, 521

 

forwarding 472, 482, 505, 512–515

 

ICMP redirects 467–468, 473, 493, 499, 505, 508–509, 514–515

 

multi-ISP 518

 

netmasks 458

 

protocols 515–516, 518–523

 

source routing 473, 493, 499, 505, 508

 

static routes 466, 481–483, 521

 

subnetting 458

 

tables 465–467, 511–515, 871

 

unreachable networks 482

 

XORP (eXtensible Open Router Platform) 524

 

Rowland, Craig 358
 

rpc.mountd daemon 699
 

rpc.nfsd daemon 699
 

rpm command 382–383
 

RPM software package format 382
 

RPO (Recovery Point Objective) 299
 

rquotad daemon 698
 

RRSIG DNS records 649, 659
 

RS-232 standard 1163–1165
 

rsync command 290, 335, 725–727
 

rsyncd.conf file 726
 

rsyncd.secrets file 727
 

RT (Request Tracker) 1193
 

RTO (Recovery Time Objective) 299
 

RTS (request to send) signal 1168
 

Ruby 7, 66
 

Ruby on Rails 960
 

run levels 1174
 

changing 89

 

init and 88–91, 1174

 

RunAsUser
sendmail user account 796
 

runaway processes 138–139
 

running Linux programs from Windows 1136–1137
 

rxvt command 1141
 

S
 

S/MIME 763
 

SAAS (software as a service) 987
 

sacadm command 1176–1177
 

Safe Harbor 1224
 

SafeFileEnvironment option, sendmail
799

 

SAGE (System Administrators Guild) 1230
 

SAIT backup tapes 302
 

sam sysadmin tool (now smh) 201
 

Samba 166, 1142–1160
 

see also Windows

 

Active Directory integration 1154–1160

 

CIFS 1142

 

command-line file transfer progam 1148

 

compiling for Active Directory integration 1156

 

configuration 1143

 

daemons 1143

 

debugging 1152–1154

 

displaying active connections and locked files 1153

 

file sharing 1146

 

filename encoding 1145

 

group shares 1146

 

installation 1143–1144

 

Kerberos configuration 1156

 

listing configuration options 1144

 

log files 1152

 

net command 1158

 

password encryption 1144

 

printer sharing 1149–1152

 

security 1143

 

setting up passwords 1144

 

sharing files 1142

 

troubleshooting 1152–1154

 

user authentication 1145

 

UTF-8 encoding 1145

 

winbind
1155

 

SAN see storage area networks
 

SANS Institute 945, 948, 1230, 1270
 

sar command 873, 1125, 1129
 

Sarbanes-Oxley Act (SOX) 946, 1223, 1225
 

SAS interface see SCSI interface
 

SASL (Simple Authentication and Security Layer) 801
 

SATA interface 214–216
 

cables 216

 

secure erase 227–228

 

SMART reporting 230–231

 

TRIM command 228

 

vs. SCSI 219–220

 

savelog
358
 

/sbin directory 146
 

SCA-2 connector (SCSI) 217
 

Scarab 1193
 

sched_mc_power_savings kernel parameter 1105
 

sched_smt_power_savings kernel parameter 1105
 

schedulers, I/O 1130–1131
 

scheduling classes 123
 

Schneier, Bruce 948
 

Schweikert, David 1278
 

scientific method 1117
 

scp command 926
 

scripting 29–74
 

see also
bash

 

see also Perl

 

see also Python

 

best practices 73–74

 

SCSI interface 214
 

addressing 218

 

connector diagrams 217

 

connectors 217

 

parallel 216–218

 

termination 217

 

troubleshooting 218

 

vs. SATA 219–220

 

S-DLT backup tapes 301
 

SDSC Secure Syslog 352
 

search directive, DNS 561
 

search path 22
 

SEC (Simple Event Correlator) 359
 

secondary partitions 235
 

secure erase 227–228
 

Secure Sockets Layer (SSL) 475, 801
 

secure tunnel 942
 

/etc/default/security file 195
 

security
 

see also cryptography

 

access control 103–118

 

AIX 507–508

 

of backups 295, 903

 

BIND 571

 

Bro network intrusion detection system 918

 

buffer overflows 899

 

CBK (common body of knowledge) 945

 

certifications 944–945

 

CGI scripts 960

 

chroot and 913

 

CISA (Certified Information Systems Auditor) 945

 

CISSP (Certified Information Systems Security Professional) 945

 

Common Criteria 947

 

configuration issues 900

 

of credit cards see PCI DSS (Payment Card Industry Data Security Standard)

 

cryptography 176, 179, 924, 1144

 

denial of service (DOS) attacks 583, 727, 800–801, 1132

 

of discarded disks 227–228

 

DNS 571

 

DNSSEC 573, 648–667

 

DOS attack via syslog 349

 

email 763

 

email to files 759

 

email to programs 759, 798–799

 

encryption see cryptography

 

firewalls 932–942

 

flaws in UNIX and Linux 897

 

GIAC (Global Information Assurance Certification) 945

 

handling attacks 950–952

 

hardening practices 901

 

HIDS 904, 919

 

hints 905

 

HP-UX 505–506

 

identifying open ports 871, 902

 

identity theft 1224

 

information sources 947–950

 

IP firewalls 474–475, 499–500, 932–942

 

IPFilter 939–942

 

iptables
935–939

 

Kerberos 110, 924–925

 

LDAP and 735

 

Linux 492

 

login names, uniqueness 178

 

loss from breach 897

 

mandatory access control (MAC) 922

 

monitoring 904–905, 935

 

of named
643–645

 

NFS 695–698, 700, 709

 

NIDS 918

 

NIST 800 security standards 947

 

of Exim 810

 

of networks 107

 

of passwords 906–908

 

OSSEC host intrusion detection system 919–922

 

overview 896–901

 

OWASP 947

 

packet sniffers 874–878

 

PAM 109–110, 201, 721, 908–912

 

of passwd file 906–908

 

password encryption algorithms 179

 

of passwords 111, 176, 179, 905, 916

 

PCI Data Security Standard 946

 

phishing 899

 

port scanning 914–916

 

of Postfix 830

 

removing unnecessary services 902

 

reporting break-ins 952

 

root account 907

 

rootkits 904

 

Samba 1143

 

SDSC Secure Syslog 352

 

of search paths 113

 

secure tunnel 942

 

SELinux 923–924

 

of sendmail
795–801

 

setuid programs 912–913

 

/etc/shadow file 906–908

 

shadow passwords 183–185

 

SNMP 882

 

Snort network intrusion detection system 918

 

social engineering 898

 

Solaris 499

 

SSH 926–930

 

SSHFP DNS records 594–595

 

SSL 971–974

 

standards 945–947

 

stunnel
930–932

 

sudo command 113–116

 

of TCP/IP 467–468, 472–475, 492–493, 499, 505–506, 508–509, 514–515

 

tools 914–932

 

Trojan horses 903

 

TSIG (transaction signatures) 623, 645–648

 

user account hygiene 175

 

vigilance 906

 

viruses 825–826, 842–843, 903

 

of VPNs 475–476, 942–944

 

vs. convenience 898, 900

 

web script 960

 

of wireless networks 543

 

X Window System 1015–1019, 1137

 

security incidents 1222
 

SecurityFocus.com 948
 

Seeley, Donn 1270
 

segmentation violations 126
 

SEGV signal 125
 

SELinux 109, 923–924
 

Sender ID 767
 

Sender Policy Framework (SPF) 750, 767
 

sender signing policy (SSP) 768
 

sendmail
 

see also email

 

see also spam

 

aliases see aliases, email

 

authentication and encryption 795–801

 

blacklists 792

 

chrooted
800

 

command line flags 777

 

configuration 778, 789–794

 

debugging 805–807

 

delivery modes 802

 

DKIM 850

 

documentation 779

 

envelope splitting 802

 

headers 748–750

 

HP-UX 96

 

Installation and Operation Guide
854

 

logging 806–807

 

m4 and 779–782, 789

 

masquerading 787

 

ownership, files 796–797

 

performance 802–804

 

permissions 797–798

 

privacy options 799–800

 

queue groups 802

 

queue runners 802

 

queues 777–778, 802, 806

 

rate and connection limits 793

 

Red Hat 92

 

relaying 791–792

 

security 795–801

 

and the service switch file 776

 

slamming 793

 

using SMTP to debug 750

 

spam control features 789–795

 

startup script 93

 

statistics 805

 

version of 775

 

virtusertable feature 786

 

Sendmail, Inc. 801
 

sendmail.cf file 777–778
 

serial file 1170
 

serial cables 1163–1168
 

DB-9 to DB-25 1166

 

modem 1165

 

null modem 1165

 

RJ-45 to DB-25 1167

 

straight-through 1164–1165

 

serial connectors
 

DB-25 1163–1165

 

DB-9 1166

 

RJ-45 1166

 

serial drivers 420
 

serial ports 1163–1165
 

bidirectional 1169

 

breakout boxes 1180

 

consoles 1180

 

DCE vs. DTE 1164–1165

 

debugging 1180

 

device files 1168–1170

 

drivers, special characters 1177–1180

 

flow control 1168

 

HP-UX 1169

 

parameters, setting 1169–1170

 

resetting 1179–1180

 

setting options 1178–1180

 

Solaris 1176–1177

 

Server Name Indication (SNI) 968
 

server statement, DNS 610, 639
 

server utilization 983
 

servers
 

consolidation 1102

 

DNS/BIND 563–566

 

energy optimization of 1104–1105

 

HTTP 963

 

load balancing 1114

 

master NIS 736–737

 

name see BIND, DNS, and named

 

NFS 698–705, 711

 

NIS slave 736–737

 

Squid 974–976

 

system files 727

 

virtualization 1103

 

VNC 1138

 

web proxy 974

 

X Window System for Windows 1137, 1141

 

servers on demand 1104
 

Service Access Facility 1176
 

service level agreements 1186–1190
 

measurement of 1189–1190

 

scope 1187

 

service management facility 97
 

fault management resource identifiers 97

 

manifests and profiles 98

 

predictive self-healing 99

 

service switch file 776
 

ServiceDesk 1194
 

/etc/services file 456, 933
 

setfacl command 165
 

setrlimit system call 1133
 

/etc/init.d/setserial script 1170
 

setserial command 1169
 

setuid/setgid bits 106–107, 153–154, 912–913
 

sfdisk command 207
 

sh shell see
bash
 

/etc/shadow file 183–185, 906–908, 1171
 

shadow passwords 183–185
 

Shapiro, Gregory 801
 

share (Samba) 1142
 

share command 271, 699–700
 

SHARE user group 1265
 

shareall command 699
 

shareiscsi ZFS property 272
 

sharenfs ZFS property 271
 

sharesmb ZFS property 271
 

sharing a filesystem see NFS
 

shebang 37
 

shell
 

see also
bash

 

globbing 14, 51

 

login 182

 

startup files 189

 

SHELL variable 1179
 

/etc/shells file 182–183
 

Shimpi, Anand 213
 

shocking nonsense 111
 

showmount command 706
 

shred utility 228
 

shutdown command 100–101, 349
 

signals 124–127
 

see also individual signal names

 

caught, blocked, or ignored 125

 

CONT 125–126, 128

 

HUP 125–126

 

INT 125–126

 

KILL 125–127

 

list of important 125

 

QUIT 125, 127

 

sending to a process 127

 

STOP 125–126, 128

 

TERM 125–127

 

TSTP 125–126, 128

 

WINCH 125–126

 

Simple Mail Transport Protocol see SMTP
 

single mode fiber 537
 

single sign-on systems 202
 

CAS 203

 

JOSSO 203

 

Likewise Open 203

 

single-user mode
 

AIX 87

 

booting to 80, 86

 

bypassing 80

 

HP-UX 87

 

Linux 86

 

manual booting 80

 

remounting the root filesystem 81
 

Solaris 86

 

/etc/skel directory 190
 

SLA see service level agreement
 

Slackware Linux 10
 

slamming, controlling in sendmail
793
 

slapd daemon 731
 

slave servers, NIS 736–737
 

slices see partitions
 

slurpd daemon 731
 

SMART monitoring 230–231
 

SMART_HOST macro, sendmail
787
 

smartctl command 231
 

smartd daemon 231
 

/etc/smartd.conf file 231
 

SMB protocol see Samba
 

smb.conf file 1143, 1149, 1153
 

smbclient
1148
 

smbcontrol
1153
 

smbd daemon 1143
 

smbfs filesystem 1148
 

smbpasswd
1144
 

smbstatus
1153
 

smh sysadmin tool (HP-UX) 201
 

SMP (symmetric multiprocessing) 1122
 

smrsh email delivery agent 798
 

SMTP
 

authentication 752–753, 755

 

commands 751

 

debugging using swaks 828

 

error codes 751–752

 

protocol 746, 750–753, 830, 1141

 

snapshots, backups 296
 

SNMP 879–889
 

agents 883–886

 

using Cacti 886

 

CiscoWorks and 889

 

community string 882

 

data collection 886

 

data organization 881

 

HP-UX 96

 

MIBs (Management Information Bases) 881

 

using Nagios 887

 

OIDs (object identifiers) 881–882

 

RMON MIB 883

 

security 882

 

tools 885–888

 

traps 882

 

snmpd daemon 884
 

snmpd.conf file 884
 

snmpwalk command 885
 

Snyder, Garth 1279
 

SOA DNS records 579–581, 638
 

socket system call 151
 

sockets, local domain 151
 

soft (symbolic) links 148, 151
 

soft carrier 1167, 1180
 

software
 

see also software package tools

 

see also software packages

 

compilation 25–26

 

installation 21–26

 

open source 8

 

package management 21–26

 

sharing over NFS 411

 

vulnerabilities 899

 

software as a service (SAAS) 987
 

software flow control 1168
 

software licenses 1228–1229
 

software package tools
 

see also package management

 

see also software

 

see also software packages

 

alien
382

 

APT 387–391

 

apt-get
387–391

 

dpkg
383

 

high level, Linux 384–387

 

rpm
382–383

 

/etc/apt/sources.list file 388

 

yum
391

 

Zypper 392

 

software packages
 

see also software

 

see also software package tools

 

dependencies 412

 

installers 381

 

localizations 404

 

management 381

 

namespaces 411

 

repositories 385

 

revision control 398–404

 

Solaris 12
 

ACL management 172

 

disk addition recipe 208

 

disk device files 224–225

 

disk partitions (slices) 232–233, 236–237

 

documentation 19

 

installation 370–376

 

iSCSI support 279–280

 

kernel configuration 427–431

 

loadable drivers 436–437

 

log files 344

 

mandatory access control (MAC) 922

 

named
684

 

network configuration 494–501

 

NFS (Network File System) 700–701, 708

 

security 499

 

service management facility see service management facility

 

single-user mode 86

 

startup scripts 97–100

 

trusted extensions 922

 

volume manager 246

 

ZFS filesystem 161, 166–172, 208, 222, 232, 240, 242, 264–274, 316

 

solid state disks 206, 209–210, 212–213, 228
 

Solstice DiskSuite 246
 

Sony 303
 

Sophos email appliance 819, 853
 

sort command 34
 

source routing 473, 493, 499, 505, 508
 

/etc/apt/sources.list file 388
 

SOX (Sarbanes-Oxley Act) 946, 1223, 1225
 

spam 761–773
 

see also DKIM

 

see also email

 

appliances 853

 

backscatter 756, 765, 769

 

blacklists 766–792

 

danger of replying to 763

 

Exim 819–820

 

fighting 764–768

 

filtering 767

 

message checks 754

 

outsourcing services for 762

 

Pen-pals 756

 

Postfix 840–843

 

relaying 791–792

 

robots 762

 

scanning for 761–773

 

Sender ID 767

 

sendmail
789–795

 

SpamAssassin 765

 

SPF 750, 767

 

whitelists 766

 

SpamAssassin 765, 769
 

SPARC architecture 12
 

Sparta DNSSEC tools 664
 

Spectra Logic 303
 

SPF (Sender Policy Framework) 590, 750, 767
 

SPF DNS records 590–591
 

split view DNS 617–618, 620–623
 

Squid web cache 974–976
 

SRV DNS records 587–588
 

SSDs (solid state disks) 206, 209–210, 212–213, 228, 300
 

SSH 926–930
 

authentication methods 926

 

brute-force attacks 930

 

forwarding for X 1017–1019

 

SSHFP DNS record 928

 

tunnels 929

 

X forwarding 1137

 

ssh client 926
 

sshd daemon 926
 

/etc/sshd_config file 927, 1137
 

SSHFP DNS records 594–595
 

sshfp utility 928
 

SSL (Secure Sockets Layer) 475, 801, 971–974
 

SSP (sender signing policy) 768
 

stackers, tape media 303
 

standard input 31–32
 

standards 1222–1229
 

application security 1226

 

child privacy protection 1223

 

CIP (Critical Infrastructure Protection) 1224

 

CJIS (Criminal Justice Information Systems) 1223

 

COBIT 1223

 

COPPA (Children’s Online Privacy Protection Act) 1223

 

credit card security 1224

 

disaster recovery planning 1226

 

DOCSIS 544

 

education sector 1223

 

EIA-606 546–547

 

Ethernet 453, 533

 

EU privacy 1224

 

FERPA (Family Educational Rights and Privacy Act) 1223

 

FHS (Filesystem Hierarchy Standard) 146

 

financial sector 1224

 

FISMA (Federal Information Security Management Act) 947, 1223

 

GLBA (Gramm-Leach-Bliley Act) 1224

 

government sector 1223

 

healthcare sector 1224

 

HIPAA (Health Insurance Portability and Accountability Act) 1224

 

identity theft prevention 1224

 

IEEE 802.* 533, 539–540, 542

 

Internet 449–450

 

ISO/IEC 17799 see ISO/IEC 27002

 

ISO/IEC 27001 946, 1215, 1224

 

ISO/IEC 27002 1224

 

ITIL (Information Technology Infrastructure Library) 1224–1225

 

law enforcement sector 1223

 

NERC (North American Electric Reliability Corporation) 1224

 

network management 879–880

 

NIST (National Institute for Standards and Technology) 1225–1226

 

NIST 800-34
1226

 

NIST 800-53
1226

 

PCI DSS (Payment Card Industry Data Security Standard) 295, 946, 1224

 

red flag rule 1224

 

Safe Harbor 1224

 

security 945–947

 

SOX (Sarbanes-Oxley Act) 946, 1223, 1225

 

TIA/EIA-568A 536

 

Windows email and web compliance 1141

 

wireless 542

 

wiring 546–547

 

X.500 728

 

standby generator 1221
 

star command 335
 

StarOffice 1140
 

Start of Authority (SOA) DNS records 579–581, 638
 

startup files 189–190
 

startup scripts 87–100
 

AIX 95–96

 

examples 90, 93

 

HP-UX 95

 

init and 78, 87, 93

 

/etc/init.d directory 89–91, 93

 

NFS server 699

 

Red Hat 91–93

 

sendmail
93

 

Solaris 97–100

 

SUSE 93–94

 

Ubuntu 94–95

 

startwpar command 1002
 

startx command 1013
 

statd daemon 694
 

State University of New York (SUNY) Buffalo 1269
 

stateful inspection firewalls 934
 

static routes 466, 481–483, 521
 

static_routes file 483
 

static-routes file 488–489
 

statistics
 

BIND 676

 

CPU 1122

 

network 868–873

 

NFS 710

 

sendmail
805

 

STD documents 450
 

sticky bit 154–155
 

STOP signal 125–126, 128
 

storage area networks 274–281
 

AIX 280–281

 

benefits of 1103

 

HP-UX 280

 

iSCSI 276–281

 

Linux 277–279

 

Solaris 279–280

 

utilization 1103

 

storage management see disks
 

Storage Technology 303
 

strace command 136
 

straight-through serial cables 1164–1165
 

STREAMS 509
 

striping (RAID 0) 239–240, 248, 253
 

stty command 1167, 1178, 1180
 

stunnel
930–932
 

su command 113
 

submission agents, email (MSA) 745
 

subnetting 458–461, 479, 495
 

Subversion 399–401
 

sudo command 113–116
 

/etc/sudoers file 114–116
 

Sun Microsystems 12
 

superblocks (filesystem) 257
 

superuser see root account
 

SUSE Linux 9, 11
 

documentation 19

 

named
683

 

network configuration 486–487

 

svcadm command 98
 

svccfg command 99
 

svcs command 97, 494
 

svn command 400
 

svnserve daemon, Subversion 399
 

svnserve.conf file 399
 

swaks command 773, 828
 

swap command 264, 1125
 

swap space 222, 264
 

swapinfo command 264, 1125
 

swapon command 261, 264, 1125
 

/etc/swapspaces file 264
 

swatch
358
 

swinstall command 25, 377, 395
 

switch file 682
 

switches 534, 538–539, 543
 

swrole command 108
 

symbolic links 148, 151
 

symmetric multiprocessing (SMP) 1122
 

Sympa 761
 

sync command 101
 

sync system call 101, 258
 

synchronizing files
 

copying 721

 

rdist
722–725

 

rsync
725–727

 

wget/ftp/expect
727

 

/sys directory 438
 

/proc/sys directory 421
 

/etc/sysconfig directory 92–93, 487–488
 

sysctl command 422
 

/etc/sysctl.conf file 422, 492
 

syslog 344–351
 

see also log files

 

see also logging

 

actions 348

 

alternatives 351

 

architecture 345

 

central server 350

 

configuring 345–351, 355

 

debugging 351

 

and DNS logging 667–672

 

DOS attack via 349

 

facilities and severity levels 346

 

facility names 346

 

m4 preprocessor on Solaris 348

 

network logging configuration 349

 

restarting 345

 

security 349, 352

 

severity levels 347

 

/etc/syslog.conf file 345–351

 

syslogd daemon 345

 

time stamps 347

 

/etc/syslog.conf file 345–351, 807
 

syslogd daemon 345
 

syslog-ng replacement for syslog 351
 

/etc/system file 428–429
 

system administration 26
 

disaster recovery 298

 

essential tasks 4–6

 

GUI tools 6, 13

 

Internet resources 20

 

toolbox 1095

 

system administrator
 

conferences 1229–1231

 

exit checklist 1209

 

firing 1208

 

happiness 1186

 

hiring 1207

 

history 1264–1273

 

interviewing 1208

 

legal considerations 1226–1229

 

priorities 1188–1189

 

roles and responsibilities 1189

 

skill sets 1195

 

time management 1196

 

training resources 1229–1231

 

system administrator management see information technology (IT) management
 

system configuration 404–411
 

see also hardware

 

see also Linux installation

 

see also system administration

 

cfengine
408

 

CIM (Common Information Model) 410

 

LCFG (large-scale configuration system) 409

 

management 408–411

 

Template Tree 2
410

 

System V printing 1045–1054
 

see also printing

 

accept command 1051

 

cancel command 1051

 

classes 1046

 

configuration 1048–1051

 

destinations 1046

 

disable command 1052

 

enable command 1052

 

interface programs 1052–1053

 

lp command 1047

 

lpadmin command 1048–1050

 

lpmove command 1052

 

lpsched command 1046

 

lpsched daemon 1047

 

lpshut command 1048

 

lpstat command 1051

 

reject command 1051

 

troubleshooting 1053–1054

 

System V UNIX 13
 

system-config-network command 487
 

T
 

tail command 36
 

tape drives, device names 420
 

tapes, backup
 

see also media, backup

 

4mm 301

 

8mm 301

 

AIT 302

 

AME 302

 

and multiple files 317

 

blocking factor 315

 

copying 316

 

DDS/DAT 301

 

device files 309

 

DLT/S-DLT 301

 

library, robotic 318

 

LTO 302

 

SAIT 302

 

stackers 303

 

VXA 302

 

tar command 315–316
 

target numbers (SCSI) 218
 

/etc/iscsi/targets file 280
 

TCP connection states 870
 

TCP wrappers 506
 

TCP/IP see IP
 

tcpdump command 875
 

tee command 35
 

telecommuting 1110
 

telinit command 89, 1175
 

temperature
 

data center 1087, 1108

 

effect on hard disks 211

 

office 1109

 

Template Tree 2
410
 

temporary files, removing 289
 

TERM environment variable 1178
 

TERM signal 125–127
 

termcap file 1172
 

Terminal Server service, Windows 1139
 

terminals
 

control 123

 

Linux 1175

 

pseudo 1170

 

setting options 1178–1180

 

Solaris 1176–1177

 

special characters 1177–1180

 

Ubuntu 1176

 

unwedging 1179–1180

 

terminators (SCSI) 217
 

terminfo file 1172
 

testing, system 406
 

testparm
1144
 

Texinfo 18
 

text editors 6–7
 

The Green Grid 1110
 

Third Brigade 919
 

Thompson, Ken 1265
 

threads, kernel 79
 

Thunderbird mail client 745
 

TIA (Telecommunications Industry Association) 534
 

TIA/EIA-568A standard 536
 

ticketing systems 1191–1196
 

TightVNC 1138
 

Time Slider widget 269–270
 

time to live (TTL), packets 865
 

tip command 1181
 

TLS (Transport Layer Security) 475, 801
 

TLT/S-DLT tapes 301
 

/tmp directory 146, 232
 

TO_ICONNECT option, sendmail
803
 

Tomcat application server 961
 

tools, hardware 1095
 

top command 133–135, 1123, 1132
 

Torvalds, Linus 1271
 

traceroute command 865–867
 

Track-It! 1194
 

transfer-source option, DNS 623
 

transport agents, email 746
 

Transport Layer Security (TLS) 475, 801
 

Tridgell, Andrew 725, 1142
 

TRIM command (disks) 228
 

Troan, Erik 356
 

Trojan horses 903
 

Trojnara, Michal 930
 

Trouble Ticket Express 1193
 

troubleshooting
 

see also performance

 

Bacula 334–335

 

BIND 667–681

 

disk hardware 226–227

 

Exim 827–828

 

named
667–681

 

network hardware, cable analyzers 545

 

network hardware, sniffers 545

 

network hardware, T-BERD line analyzer 545

 

networks 544–545, 860–873

 

Postfix 844–845

 

printing 1053–1054, 1081–1083

 

runaway processes 138–139

 

Samba 1152–1154

 

SCSI problems 218

 

sendmail
805–807

 

serial line 1180

 

sluggish system 1131–1133

 

Solaris kernel 430

 

syslog 351

 

wedged terminal 1179

 

X Window System 1026–1028

 

Xorg X server 1026–1028

 

Trusted AIX 922
 

TrustedUser
sendmail user account 796
 

Ts’0, Theodore 255
 

tset command 1178, 1180
 

TSIG (transaction signatures) 623, 645–648
 

TSM (Tivoli Storage Manager) 336
 

TSTP signal 125–126, 128
 

TTL (time to live), packets 865
 

$TTL directive, DNS 575–576, 581
 

TTL for DNS resource records 576
 

/dev/tty device 35
 

ttyadm command 1177
 

ttydefs file 1176
 

ttymon command 1177
 

ttytype file 1172
 

tune2fs command 256, 259
 

tuning
 

AIX kernel 434

 

Linux kernel 421–423

 

NFS 708

 

Tux logo 11
 

Tweedie, Stephen 255
 

TXT DNS records 588, 603
 

typeglobs, Perl 64
 

typographic conventions 13–14
 

U
 

Ubuntu Linux 10–11
 

documentation 19

 

named
682

 

network configuration 486

 

udev system 419, 437, 439
 

udevadm command 438–439
 

udevd daemon 150, 419
 

UDP (User Datagram Protocol) 450
 

UFS filesystem 254
 

UIDs see user IDs
 

Ultr@VNC project 1138
 

umask command 158, 190
 

umount command 144–145, 261, 708
 

uname command 435
 

unbound-control commands 675
 

undeliverable messages, sendmail
803
 

uninterruptible power supplies (UPSs) 1086, 1091, 1220
 

uniq command 35
 

units 14–15
 

University of California at Berkeley 1268
 

University of Colorado 1269
 

University of Maryland 1269
 

University of Utah 1269
 

UNIX
 

history of 1265–1273

 

origin of name 1266

 

reasons to choose 1113

 

vs. Linux 7–9

 

UNIX File System (UFS) 254
 

UNIX package management 393–397
 

AIX 396

 

HP-UX 394

 

Image Packaging System 394

 

installp command 397

 

pkg tool for Solaris 394

 

Solaris 394

 

swinstall command for HP-UX 395

 

unlink system call 151
 

unshare command 271
 

unshielded twisted pair see UTP cables
 

unsolicited commercial email see spam
 

unwedging terminals 1179
 

updatedb command 23
 

update-policy clause, DNS 641

 

update-rc.d command 94
 

updating zone files, DNS 640–642
 

upgrades 314–315
 

UPSs (uninterruptible power supplies) 1086, 1091, 1220
 

Upstart daemon 94, 1176
 

uptime command 1123, 1132
 

Uptime Institute, The 1086
 

URI (Uniform Resource Identifier) 957
 

URL (Uniform Resource Locator) 957–958
 

protocols 958

 

URN (Uniform Resource Name) 957
 

USB disks 263, 300
 

US-CERT 948
 

use_cw_file feature, sendmail
784
 

USENIX Association 1229–1230, 1270
 

/etc/security/user file 185, 195
 

user accounts
 

adding by hand 187–191

 

adding in bulk (Linux) 197

 

adding with useradd
191–197

 

AIX options 196

 

aliases, global (email) 178

 

authentication under Samba 1145

 

centralized management 201

 

daemon 118

 

disabling 200

 

email home 190

 

GECOS information 181

 

GIDs (group ID) 181

 

home directories 146, 182, 189, 233

 

hygiene 175

 

LDAP and AD 202

 

locking and unlocking 200

 

login names 176–178

 

login shell 182

 

managing with GUI tools 201

 

nobody (NFS) 118, 697

 

password encryption 179

 

passwords 188

 

policy agreements 191

 

pseudo-users 118, 180

 

RBAC 190

 

removing 198–199

 

roles and administrative privileges 190

 

sendmail use of 796

 

shared 907

 

single sign-on systems 202

 

startup files 189

 

sys 118

 

testing 191

 

UIDs (user IDs) 180–181

 

user management config files 192

 

user management tools 175, 192

 

vipw command 188

 

user agents, email 744
 

user IDs 105
 

in ls output 155

 

real, effective, and saved 105

 

user management tools 175
 

user policy agreement 1227–1228
 

user workspaces, green strategies for 1108–1110
 

/etc/user_attr file 108
 

/etc/default/useradd file 193, 195
 

useradd command 175, 187, 191
 

example 197

 

on AIX 195

 

on HP-UX 194

 

on Red Hat 193

 

on Solaris 194

 

on SUSE 193

 

on Ubuntu 192

 

useradd.local script 193
 

userdel command 175
 

userdel.local script 199
 

usermod command 184
 

usernames see user accounts
 

/usr directory 146
 

UTP cables 534–536, 545
 

UUIDs, for partitions 262
 

UW imapd IMAP server 747
 

V
 

van Rossum, Guido 67
 

Vantages DNSSEC framework 665
 

/var directory 146, 233
 

VAX 1268
 

vendor logos 11
 

vendors we like 550
 

Venema, Wietse 828, 1171
 

Veritas 246, 251, 256, 336
 

/etc/vfstab file 143, 259–260, 263, 708, 711
 

vgcreate command 207–208, 248, 252
 

vgdisplay command 208, 248, 250, 252–253
 

vgextend command 252
 

vi editor 6, 30
 

view statement, 617
 

.vimrc file 189
 

vipw command 188
 

virsh command 997
 

virt-install command 993, 996
 

virt-manager application 993
 

virtual domains, Postfix 835–837
 

virtual hosts, web 967–971
 

virtual memory 1124–1125
 

Virtual Network Computing see VNC protocol
 

virtual network interfaces 481
 

virtual terminals and X 1026
 

VirtualHost clause, Apache 971
 

virtualization
 

see also KVM

 

see also Xen

 

see also zones and containers

 

AIX workload partitions 1001-1002

 

Amazon web services 1005–1009

 

benefits of 988–989, 1103

 

challenges 1103

 

cloud computing 987

 

definition 983

 

hardware suggestions 990

 

history of 984

 

hypervisor 985

 

Integrity virtual machines 1003–1004

 

Linux 991–997

 

live migration 988

 

paravirtualization 986

 

types of 984–988

 

virtusertable feature, sendmail
786
 

virus scanning 761–773, 903
 

see also email

 

amavisd-new
769–773

 

testing 773

 

using Exim 818–819

 

using Postfix 840–843

 

using sendmail
794–795

 

visudo command 116
 

Vixie, Paul 287
 

Vixie-cron
287–288
 

VLANs 539
 

vmstat command 1121–1122, 1126–1127, 1132
 

VMware 1005, 1139
 

VNC protocol 1138
 

vncserver command 1138
 

volume groups see logical volume management
 

volume snapshots 249, 259, 269–271
 

VPNs (virtual private networks) 475–476, 942–944
 

IPsec tunnels 943

 

SSH tunnels 943

 

VRFY command 763
 

VT100 terminal 1175
 

vtysh command 524
 

VXA backup tapes 302
 

VxFS filesystem 256–257
 

W
 

wait system call 124
 

Wall, Larry 7, 54
 

Ward, Grady 111
 

WBEM (Web-Based Enterprise Management) standard 880
 

wc command 35
 

Web 2.0 956
 

web hosting 957–976
 

Apache 963–974

 

Apache configuration 965–974

 

Apache installation 964–966

 

application servers 960

 

caching server 974–976

 

CDN (content distribution network) 978–979

 

certificates 972–974

 

CGI scripting 959

 

and cloud computing 978

 

co-location 978

 

content distribution network (CDN) 978–979

 

embedded interpreters 959

 

IIS (Windows) 1141

 

load balancing 961–963

 

log files 966

 

performance 961–963, 967

 

proxy servers 974–976

 

security 960, 971–974

 

Squid cache 974–976

 

SSL 971–974

 

static content 967

 

virtual interfaces 967–971

 

WebLogic application server 961
 

WebSense 755
 

WebSphere application server 961
 

well-known ports 914, 933
 

WEP (Wired Equivalent Privacy) 543
 

wget command 23, 727
 

Whaley, Ben 1279
 

wheel group 113, 181
 

whereis command 23
 

which command 22
 

Wi-Fi Protected Access 543
 

Wikipedia 8
 

Win4Lin 1140
 

winbind Samba component 925, 1155
 

WINCH signal 125–126
 

Windows
 

see also Samba

 

accessing remote desktops 1136

 

ACLs 1146

 

Active Directory authentication 1154–1160

 

automounter 1147

 

backups 335

 

DFS (Distributed File System) 1147

 

dual booting 1140

 

email and web standards compliance 1141

 

IMAP 1141

 

logging in from 1135

 

mountingWindowsfilesystems 1148

 

multibooting with LINUX 85

 

POP (Post Office Protocol) 1141

 

printing 1151–1152

 

RDP (Remote Desktop Protocol) 1138

 

running Linux programs from 1136–1137

 

running under VMware 1139

 

running Windows programs under Linux 1139

 

sharing files 1142

 

SMTP 1141

 

Terminal Server service 1139

 

UNIX software running on 1141

 

VNC servers 1138

 

Wine project 1139

 

X forwarding 1137

 

X Window System servers 1137, 1141

 

xterm for 1141

 

Windows MBR 82, 233–235
 

Wine project 1139
 

WinSCP 1136
 

Wired Equivalent Privacy 543
 

wireless networks 541–543
 

wireless networks see networks, wireless
 

wireless standards 542
 

Wireshark packet sniffer 545, 877
 

wiring see network wiring
 

wiring standards 546–547
 

WKS DNS records 588
 

workload partitions 1001–1002
 

workstation
 

count per user 1109

 

sizing 1109

 

timeout 1109

 

World Wide Web
 

HTTP protocol 957–959

 

URIs 957

 

URLs 957

 

URNs 957

 

WPA see Wi-Fi Protected Access
 

WPAR see workload partitions
 

wrapper scripts for localization 413
 

write errors, disk 227
 

write hole (RAID 5) 238, 241–242
 

X
 

X display manager 1013–1014
 

X Window System 1011–1030
 

see also
Xorg X server

 

architecture 1012

 

client authentication 1016–1017

 

client/server model 1012

 

desktop environments 1028–1030

 

DISPLAY environment variable 1015, 1019

 

display manager 1013–1014

 

history 1011–1012

 

killing the X server 1026

 

magic cookies 1016

 

running an application 1014–1019

 

security 1015–1019

 

security under Windows 1137

 

SSH and 1017–1019

 

startup files 189

 

troubleshooting 1026–1028

 

virtual terminals 1026

 

Windows servers 1137, 1141

 

X forwarding 1137

 

X server output 1027–1028

 

X11 see X Window System
 

xargs command 143
 

xauth command 1016
 

xdd tool 1129
 

.Xdefaults file 189
 

xdm directory 1013
 

xdpyinfo command 1028
 

Xen 991–995
 

see also virtualization

 

configuration files 992

 

distribution support 991

 

dom0 991

 

live migration 994

 

virt-install command 993

 

virtual block devices 992

 

xend daemon 992

 

xm command 991, 994

 

xend daemon 992
 

XFree86 X Server 1011
 

xhost command 1016–1017
 

xinit command 1013
 

.xinitrc file 189
 

xkcd.com 1087
 

xm command 991
 

xntpd command 130
 

XON/XOFF 1168
 

Xorg X server 1019–1024
 

configuring 1019–1024

 

debugging 1026–1028

 

logging 1027–1028

 

xdpyinfo command 1028

 

xorg.conf file 1019–1024

 

xorgconfig tool 1019

 

xrandr command 1025

 

xorg.conf file 1019–1024
 

xorgconfig tool 1019
 

XORP (eXtensible Open Router Platform) 524
 

XPS 1070
 

xrandr command 1025
 

Xsession file 1014
 

~/.xsession file 1014
 

xtab file 699
 

xterm console emulator 1141
 

Y
 

Yahoo! Mail, 743
 

YaST 486
 

yast command 24
 

Yegge, Steve 7
 

Ylönen, Tatu 926
 

Yost wiring standard 1167
 

Yost, Dave 1167
 

/var/yp file 736–737
 

yp* commands 737–738
 

ypupdated daemon 738
 

yum command 24, 391
 

Z
 

Zebra routing daemon 523
 

Zend server 960
 

Zeus 963
 

zfs command 266–272
 

~/.zfs directory 269
 

ZFS filesystem 161, 166–172, 208, 222, 232, 240, 242, 264–274, 316
 

ACLs 272

 

architecture diagram 265

 

properties 267–269

 

RAID-Z implementation 265–266

 

raw volumes 271

 

snapshots and clones 269–271

 

storage pools 265, 272–274

 

Zimbra 745, 747, 853
 

Zimmermann, Phil 763, 925
 

zombie processes 124, 128, 130
 

zone statement, DNS 612–615
 

zoneadm command 999
 

zonecfg command 999
 

zones and containers 997–1001
 

see also virtualization

 

advanced features 1001

 

global zone 998

 

sparse 998

 

whole-root 998

 

zones, DNS 563
 

commands 574–575

 

files 574

 

linkage 596–597

 

transfers 564, 639–640

 

updating files 640–642

 

zone-statistics option, DNS 613
 

zpool command 208, 266, 272–274
 

zypper command 392
 
  


A Brief History of System Administration
 

From the desk of Dr. Peter H. Salus, technology historian
 

[image: Image]
 

In the modern age, most folks have at least a vague idea what system administrators do: work tirelessly to meet the needs of their users and organizations, plan and implement a robust computing environment, and pull proverbial rabbits out of many different hats. Although sysadmins are often viewed as underpaid and underappreciated, most users can at least identify their friendly local sysadmin— in many cases, more quickly than they can name their boss’s boss.
 

It wasn’t always this way. Over the last 40 years (and the 20-year history of this book), the role of the system administrator has evolved hand-in-hand with UNIX and Linux. A full understanding of system administration requires an understanding of how we got here and of some of the historical influences that have shaped our landscape. Join us as we reflect on the many wonderful years.
 

The Dawn of Computing: System Operators (1952–1960)
 

The first commercial computer, the IBM 701, was completed in 1952. Prior to the 701, all computers had been one-offs. In 1954, a redesigned version of the 701 was announced as the IBM 704. It had 4,096 words of magnetic core memory and three index registers. It used 36-bit words (as opposed to the 701’s 18-bit words) and did floating-point arithmetic. It executed 40,000 instructions every second. But the 704 was more than just an update: it was incompatible with the 701. Although deliveries were not to begin until late 1955, the operators of the eighteen 701s in existence (the predecessors of modern system administrators) were already fretful. How would they survive this “upgrade,” and what pitfalls lay ahead?
 

IBM itself had no solution to the upgrade and compatibility problem. It had hosted a “training class” for customers of the 701 in August 1952, but there were no textbooks. Several people who had attended the training class continued to meet informally and discuss their experiences with the system. IBM encouraged the operators to meet, to discuss their problems, and to share their solutions. IBM funded the meetings and made available to the members a library of 300 computer programs. This group, known as SHARE, is still the place (50+ years later) where IBM customers meet to exchange information.1
 

From Single-Purpose to Time Sharing (1961–1969)
 

Early computing hardware was physically large and extraordinarily expensive. These facts encouraged buyers to think of their computer systems as tools dedicated to some single, specific mission: whatever mission was large enough and concrete enough to justify the expense and inconvenience of the computer.
 

If a computer was a single-purpose tool—let’s say, a saw—then the staff that maintained that computer were the operators of the saw. Early system operators were viewed more as “folks that cut lumber” than as “folks that provide what’s necessary to build a house.” The transition from system operator to system administrator did not start until computers began to be seen as multipurpose tools. The advent of time sharing was a major reason for this change in viewpoint.
 

John McCarthy had begun thinking about time sharing in the mid-1950s. But it was only at MIT (in 1961–62) that he, Jack Dennis, and Fernando Corbato talked seriously about permitting “each user of a computer to behave as though he were in sole control of a computer.”
 

In 1964, MIT, General Electric, and Bell Labs embarked on a project to build an ambitious time-sharing system called Multics, the Multiplexed Information and Computing Service. Five years later, Multics was over budget and far behind schedule. Bell Labs pulled out of the project.
 

UNIX IS BORN (1969–1973)
 

Bell Labs’ abandonment of the Multics project left several researchers in Murray Hill, NJ, with nothing to work on. Three of them—Ken Thompson, Rudd Canaday, and Dennis Ritchie—had liked certain aspects of Multics but hadn’t been happy with the size and the complexity of the system. They would gather in front of a whiteboard to discuss design philosophy. The Labs had Multics running on its GE-645, and Thompson continued to work on it “just for fun.” Doug McIlroy, the manager of the group, said, “When Multics began to work, the very first place it worked was here. Three people could overload it.”
 

In the summer of 1969, Thompson became a temporary bachelor for a month when his wife, Bonnie, took their year-old son to meet his relatives on the west coast. Thompson recalled, “I allocated a week each to the operating system, the shell, the editor, and the assembler…it was totally rewritten in a form that looked like an operating system, with tools that were sort of known; you know, assembler, editor, shell—if not maintaining itself, right on the verge of maintaining itself, to totally sever the GECOS2 connection…essentially one person for a month.”
 

Steve Bourne, who joined Bell Labs the next year, described the cast-off PDP-7 used by Ritchie and Thompson: “The PDP-7 provided only an assembler and a loader. One user at a time could use the computer…The environment was crude, and parts of a single-user UNIX system were soon forthcoming…[The] assembler and rudimentary operating system kernel were written and cross-assembled for the PDP-7 on GECOS. The term UNICS was apparently coined by Peter Neumann, an inveterate punster, in 1970." The original UNIX was a single-user system, obviously an “emasculated Multics.” But although there were aspects of UNICS/UNIX that were influenced by Multics, there were also, as Dennis Ritchie said, “profound differences.”
 

“We were a bit oppressed by the big system mentality,” he said. “Ken wanted to do something simple. Presumably, as important as anything was the fact that our means were much smaller. We could get only small machines with none of the fancy Multics hardware. So, UNIX wasn’t quite a reaction against Multics…Multics wasn’t there for us anymore, but we liked the feel of interactive computing that it offered. Ken had some ideas about how to do a system that he had to work out…Multics colored the UNIX approach, but it didn’t dominate it.”
 

Ken and Dennis’s “toy” system didn’t stay simple for long. By 1971, user commands included as (the assembler), cal (a simple calendar tool), cat (catenate and print), chdir (change working directory), chmod (change mode), chown (change owner), cmp (compare two files), cp (copy file), date, dc (desk calculator), du (summarize disk usage), ed (editor), and over two dozen others. Most of these commands are still in use.
 

By February 1973, there were 16 UNIX installations. Two big innovations had occurred. The first was a “new” programming language, C, based on B, which was itself a “cut-down” version of Martin Richards’ BCPL (Basic Combined Programming Language). The other innovation was the idea of a pipe.
 

A pipe is a simple concept: a standardized way of connecting the output of one program to the input of another. The Dartmouth Time-Sharing System had communication files, which anticipated pipes, but their use was far more specific. The notion of pipes as a general facility was Doug McIlroy’s. The implementation was Ken Thompson’s, at McIlroy’s insistence. (“It was one of the only places where I very nearly exerted managerial control over UNIX,” Doug said.)
 

“It’s easy to say ‘cat into grep into…’ or ‘who into cat into grep’ and so on,” McIlroy remarked. “It’s easy to say and it was clear from the start that it would be something you’d like to say. But there are all these side parameters… And from time to time I’d say ‘How about making something like this?’ And one day I came up with a syntax for the shell that went along with piping, and Ken said ‘I’m going to do it!’”
 

In an a orgy of rewriting, Thompson updated all the UNIX programs in one night. The next morning there were one-liners. This was the real beginning of the power of UNIX—not from the individual programs, but from the relationships among them. UNIX now had a language of its own as well as a philosophy:
 

• Write programs that do one thing and do it well.

 

• Write programs to work together.

 

• Write programs that handle text streams as a universal interface.

 

A general-purpose time-sharing OS had been born, but it was trapped inside Bell Labs. UNIX offered the promise of easily and seamlessly sharing computing resources among projects, groups, and organizations. But before this multipurpose tool could be used by the world, it had to escape and multiply. Katy bar the door!
 

UNIX Hits The Big Time (1974–1990)
 

In October 1973, the ACM held its Symposium on Operating Systems Principles (SOSP) in the auditorium at IBM’s new T.J. Watson Research Center in Yorktown Heights, NY. Ken and Dennis submitted a paper, and on a beautiful autumn day, drove up the Hudson Valley to deliver it. (Thompson made the actual presentation.) About 200 people were in the audience, and the talk was a smash hit.
 

Over the next six months, the number of UNIX installations tripled. When the paper was published in the July 1974 issue of the Communications of the ACM, the response was overwhelming. Research labs and universities saw shared UNIX systems as a potential solution to their growing need for computing resources.
 

According to the terms of a 1958 antitrust settlement, the activities of AT&T (parent of Bell Labs) were restricted to running the national telephone system and to special projects undertaken on behalf of the federal government. Thus, AT&T could not sell UNIX as a product and Bell Labs had to license its technology to others. In response to requests, Ken Thompson began shipping copies of the UNIX source code. According to legend, each package included a personal note signed “love, ken.”
 

One person who received a tape from Ken was Professor Robert Fabry of the University of California at Berkeley. By January 1974, the seed of Berkeley UNIX had been planted.
 

Other computer scientists around the world also took an interest in UNIX. In 1976, John Lions (on the faculty of the University of New South Wales in Australia) published a detailed commentary on a version of the kernel called V6. This effort became the first serious documentation of the UNIX system and helped others to understand and expand upon Ken and Dennis’s work.
 

Students at Berkeley enhanced the version of UNIX they had received from Bell Labs to meet their needs. The first Berkeley tape (1BSD, short for 1st Berkeley Software Distribution) included a Pascal system and the vi editor for the PDP-11. The student behind the release was a grad student named Bill Joy. 2BSD came the next year, and 3BSD, the first Berkeley release for the DEC VAX, was distributed in late 1979.
 

In 1980, Professor Fabry struck a deal with the Defense Advanced Research Project Agency (DARPA) to continue the development of UNIX. This arrangement led to the formation of the Computer Systems Research Group (CSRG) at Berkeley. Late the next year, 4BSD was released. It became quite popular, largely because it was the only version of UNIX that ran on the DEC VAX 11/750, the commodity computing platform of the time. Another big advancement of 4BSD was the introduction of TCP/IP sockets, the generalized networking abstraction that spawned the Internet and is now used by most modern operating systems. By the mid-1980s, most major universities and research institutions were running at least one UNIX system.
 

In 1982, Bill Joy took the 4.2BSD tape with him to start Sun Microsystems (now part of Oracle America) and the SunOS operating system. In 1983, the court-ordered divestiture of AT&T began. One unanticipated side effect of the divestiture was that AT&T was now free to begin selling UNIX as a product. They released AT&T UNIX System V, a well-recognized albeit somewhat awkward commercial implementation of UNIX.
 

Now that Berkeley, AT&T, Sun, and other UNIX distributions were available to a wide variety of organizations, the foundation was laid for a general computing infrastructure built on UNIX technology. The same system that was used by the astronomy department to calculate star distances could be used by the applied math department to calculate Mandelbrot sets. And that same system was simultaneously providing email to the entire university.
 

The Rise of System Administrators
 

The management of general-purpose computing systems demanded a different set of skills than those required just two decades earlier. Gone were the days of the system operator who focused on getting a single computer system to perform a specialized task. System administrators came into their own in the early 1980s as people who ran UNIX systems to meet the needs of a broad array of applications and users.
 

Because UNIX was popular at universities, and because those environments included lots of students who were eager to learn the latest technology, universities were early leaders in the development of organized system administration groups. Universities such as Purdue, the University of Utah, the University of Colorado, the University of Maryland, and the State University of New York (SUNY) Buffalo became hotbeds of system administration.
 

System administrators also developed an array of their own processes, standards, best practices, and tools (such as sudo). Most of these products were built out of necessity; without them, unstable systems and unhappy users were the result.
 

Evi Nemeth became known as the “mother of system administration” by recruiting undergraduates to work as system administrators to support the Engineering College at the University of Colorado. Her close ties with folks at Berkeley, the University of Utah, and SUNY Buffalo created a system administration community that shared tips and tools. Her crew, often called the “munchkins” or “Evi slaves” attended USENIX and other conferences and worked as on-site staff in exchange for the opportunity to absorb information at the conference.
 

It was clear early on that system administrators had to be rabid jacks of all trades. A system administrator might start a typical day in the 1980s by using a wire-wrap tool to fix an interrupt jumper on a VAX backplane. Mid-morning tasks might include sucking spilled toner out of a malfunctioning first-generation laser printer. Lunch hour could be spent helping a grad student debug a new kernel driver, and the afternoon might consist of writing backup tapes and hassling users to clean up their home directories to make space in the filesystem. A system administrator was, and is, a fix-everything, take-no-prisoners guardian angel.
 

The 1980s were also a time of unreliable hardware. Rather than living on a single silicon chip, the CPUs of the 1980s were made up of several hundred chips, all of them prone to failure. It was the system administrator’s job to isolate failed hardware and get it replaced, quickly. Unfortunately, these were also the days before it was common to FedEx parts on a whim, so finding the right part from a local source was often a challenge.
 

In one case, our beloved VAX 11/780 was down, leaving the entire campus without email. We knew there was a business down the street that packaged VAXes to be shipped to the (then cold-war) Soviet Union “for research purposes.” Desperate, we showed up at their warehouse with a huge wad of cash in our pocket, and after about an hour of negotiation, we escaped with the necessary board. At the time, someone remarked that it felt more comfortable to buy drugs than VAX parts in Boulder.
 

System Administration Documentation and Training
 

As more individuals began to identify themselves as system administrators—and as it became clear that one might make a decent living as a sysadmin—requests for documentation and training became more common. In response, folks like Tim O’Reilly and his team (then called O’Reilly and Associates, now O’Reilly Media) began to publish UNIX documentation that was based on hands-on experience and written in a straightforward way.
 

As a vehicle for in-person interaction, the USENIX Association held its first conference focused on system administration in 1987. This Large Installation System Administration (LISA) conference catered mostly to a west coast crowd. Three years later, the SANS (SysAdmin, Audit, Network, Security) Institute was established to meet the needs of the east coast. Today, both the LISA and SANS conferences serve the entire U.S. region, and both are still going strong.
 

See Chapter 32, Management, Policy, and Politics, for more pointers to sysadmin resources.

 

In 1989, we published the first edition of this book, then titled UNIX System Administration Handbook. It was quickly embraced by the community, perhaps because of the lack of alternatives. At the time, UNIX was so unfamiliar to our publisher that their production department replaced all instances of the string “etc” with “and so on,” resulting in filenames such as /and so on/passwd. We took advantage of the situation to seize total control of the bits from cover to cover, but the publisher is admittedly much more UNIX savvy today. Our 20-year relationship with this same publisher has yielded a few other good stories, but we’ll omit them out of fear of souring our otherwise amicable relationship.
 

UNIX Hugged to Near Death, Linux is Born (1991–1995)
 

By late 1990, it seemed that UNIX was well on its way to world domination. It was unquestionably the operating system of choice for research and scientific computing, and it had been adopted by mainstream businesses such as Taco Bell and McDonald’s. Berkeley’s CSRG group, then consisting of Kirk McKusick, Mike Karels, Keith Bostic, and many others, had just released 4.3BSD-Reno, a pun on an earlier 4.3 release that added support for the CCI Power 6/32 (code named “Tahoe”) processor.
 

Commercial releases of UNIX such as SunOS were also thriving, their success driven in part by the advent of the Internet and the first glimmers of e-commerce. PC hardware had become a commodity. It was reasonably reliable, inexpensive, and relatively high-performance. Although versions of UNIX that ran on PCs did exist, all the good options were commercial and closed source. The field was ripe for an open source PC UNIX.
 

In 1991, a group of developers that had worked together on the BSD releases (Donn Seeley, Mike Karels, Bill Jolitz, and Trent R. Hein), together with a few other BSD advocates, founded Berkeley Software Design, Inc. (BSDI). Under the leadership of Rob Kolstad, BSDI provided binaries and source code for a fully functional commercial version of BSD UNIX on the PC platform. Among other things, this project proved that inexpensive PC hardware could be used for production computing. BSDI fueled explosive growth in the early Internet as it became the operating system of choice for early Internet service providers (ISPs).
 

In an effort to recapture the genie that had escaped from its bottle in 1973, AT&T filed a lawsuit against BSDI and the Regents of the University of California in 1992, alleging code copying and theft of trade secrets. It took AT&T’s lawyers over two years to identify the offending code. When all was said and done, the lawsuit was settled and three files (out of more than 18,000) were removed from the BSD code base.
 

Unfortunately, this two-year period of uncertainty had a devastating effect on the entire UNIX world, BSD and non-BSD versions alike. Many companies jumped ship to Microsoft Windows, fearful that they would end up at the mercy of AT&T as it hugged its child to near-death. By the time the dust cleared, BSDI and the CSRG were both mortally wounded. The BSD era was coming to an end.
 

Meanwhile, Linus Torvalds, a Helsinki college student, had been playing with Minix and began writing his own UNIX clone.3 By 1992, a variety of Linux distributions (including SuSE and Yggdrasil Linux) had emerged. 1994 saw the establishment of Red Hat and Linux Pro.
 

Multiple factors have contributed to the phenomenal success of Linux. The strong community support enjoyed by the system and its vast catalog of software from the GNU archive make Linux quite a powerhouse. It works well in production environments, and some folks argue that you can build a more reliable and performant system on top of Linux than you can on top of any other operating system. It’s also interesting to consider that part of Linux’s success may relate to the golden opportunity created for it by AT&T’s action against BSDI and Berkeley. That ill-timed lawsuit struck fear into the hearts of UNIX advocates right at the dawn of e-commerce and the start of the Internet bubble.
 

But who cares, right? What remained constant through all these crazy changes was the need for system administrators. A UNIX system administrator’s skill set is directly applicable to Linux, and most system administrators guided their users gracefully through the turbulent seas of the 1990s. That’s another important characteristic of a good system administrator: calm during a storm.
 

A World of Windows (1996–1999)
 

Microsoft first released Windows NT in 1993. The release of a “server” version of Windows, which had a popular user interface, generated considerable excitement just as AT&T was busy convincing the world that it might be out to fleece everyone for license fees. As a result, many organizations adopted Windows as their preferred platform for shared computing during the late 1990s. Without question, the Microsoft platform has come a long way, and for some organizations it is the best option.
 

Unfortunately, UNIX, Linux, and Windows administrators initially approached this marketplace competition in an adversarial stance. “Less filling” vs. “tastes great” arguments erupted in organizations around the world.4 Many UNIX and Linux system administrators started learning Windows, convinced they’d be put out to pasture if they didn’t. After all, Windows 2000 was on the horizon. By the close of the millennium, the future of UNIX looked grim.
 

UNIX and Linux Thrive (2000–Present)
 

As the Internet bubble burst, everyone scrambled to identify what was real and what had been only a venture-capital-fueled mirage. As the smoke drifted away, it became clear that many organizations with successful technology strategies were using UNIX or Linux along with Windows rather than one or the other. It wasn’t a war anymore.
 

UNIX and Linux system administrators who had augmented their skills with Windows became even more valuable. They were able to bridge the gap between the two worlds and leverage both for the benefit of the organization. A number of evaluations showed that the total cost of ownership (TCO) of a Linux server was significantly lower than that of a Windows server, a metric that matters in rough economic times.
 

Today, UNIX and Linux are thriving. Commercial variants of UNIX, including AIX, Solaris, and HP-UX, have continued to meet the needs of their respective markets. Linux and PC-based UNIX variants have continued to expand their market share, with Linux being the only operating system whose market share on servers is growing at the time of this writing (spring 2010). Not to be left out, Apple’s current operating system, Mac OS X, is also based on UNIX.5
 

Much of the recent growth in UNIX and Linux has occurred in the domain of virtualized and cloud computing. (See Chapter 24, Virtualization, for more information about these technologies.) Once again, these environments all share one thing in common: systems administrators. Your skills as a system administrator apply whether the box is physical or virtual!
 

UNIX and Linux Tomorrow
 

No matter what developments await UNIX and Linux over the next few years, one thing is certain: UNIX and Linux need you! System administrators hold the world’s computing infrastructure together, solve the hairy problems of efficiency and scalability, and provide expert technology advice to users and managers alike.
 

We are system administrators. Hear us roar!
 

Recommended Reading
 

MCKUSICK, MARSHALL KIRK, KEITH BOSTIC, MICHAEL J. KARELS, AND JOHN S. QUARTERMAN. The Design and Implementation of the 4.4BSD Operating System (2nd Edition). Reading, MA: Addison-Wesley, 1996.
 

SALUS, PETER H. A Quarter Century of UNIX. Reading, MA: Addison-Wesley, 1994.
 

SALUS, PETER H. Casting the Net: From ARPANET to Internet and Beyond. Reading, MA: Addison-Wesley, 1995.
 

SALUS, PETER H. The Daemon, the Gnu, and the Penguin. Marysville, WA: Reed Media Services, 2008. This book was also serialized at www.groklaw.net.
 
  


In Defense of AIX
 

A dialog with Dan Foster
 

AIX has been around since the 1980s, but this edition is the first to include it as an example system. We considered adding AIX to several previous editions, but always judged it to be too different from other versions of UNIX—and perhaps a bit too peculiar—to fit comfortably alongside them.
 

We wanted to welcome AIX with open arms. Nevertheless, careful readers may notice a certain consistency of tone regarding AIX, a tone that is not altogether laudatory. Like an unhousebroken puppy, AIX always seems to be doing something wrong and never quite understanding why everyone seems so upset.
 

We feel bad; who likes to yell at a puppy? To help balance the scales, we asked Dan Foster, one of our technical reviewers from the AIX world, to weigh in on AIX’s good side. Herewith, our indictment against AIX, and Dan’s response.
 

Our Wild Accusations
 

AIX is an IBM mainframe operating system of the 1970s that is cruelly trapped in the body of a UNIX system. Although the UNIX plumbing keeps the system running, AIX has no particular interest in being UNIX or in following UNIX conventions. It employs a variety of hairpieces, corsets, and makeup kits to project an image more consistent with IBM’s taste. It’s an open, modular system that longs to be closed and monolithic.
 

Those who approach AIX as UNIX will discover a series of impediments. AIX does not really trust administrators to understand what they are doing or to directly modify the system. Instead of simplicity, modularity, and flexibility, AIX offers structure. Considerable engineering effort has been spent to catalog administrative operations and to collect them into the System Management Interface Tool (SMIT). If what you need isn’t in the catalog…well, don’t you worry your pretty little head about that.
 

Unfortunately, SMIT isn’t AIX’s only added layer of indirection. SMIT operations map to shell commands, so every SMIT operation requires a dedicated command that implements it in one step. Hence, the rich profusion of command families (such as crfs/chfs/rmfs) that implement predefined recipes. These commands add complexity and overhead without creating much value; other UNIX systems do just fine without them.
 

Because administrative operations are mediated through software, AIX sees no need to store information in text files. Instead, it’s squirreled away in a variety of binary formats and logs, most notably the Object Data Manager. Sysadmins can use generic ODM commands to inspect and modify this data, but that’s something of a black art, and it’s generally discouraged. Overall, the ODM is a dark and mysterious continent with many backwaters, much like the Windows registry.
 

If one persists in cutting away at AIX’s carapace, one does eventually discover a sad little UNIX homunculus lying contorted therein. But it’s not a healthy creature; it’s wrinkled with age, its skin pale from lack of exposure to the outside world and to the last few decades of UNIX advancements. Clearly, IBM considers the real action to be somewhere other than the UNIX mainstream.
 

Dan Foster’s Case for the Defense
 

Ouch! You don’t paint a very charitable picture. However, I think it’s fair to characterize many of your objections as “not invented here” syndrome; in other words, as resistance to anything that doesn’t toe the standard UNIX line.
 

There’s some validity to your general point that AIX aspires to be more than just another UNIX clone. That’s not necessarily bad. AIX is not for cowboys. It’s designed to facilitate reliability, consistency, and ease of administration. It has different goals from other UNIX systems, so it looks and feels a bit different, too.
 

AIX draws a variety of useful tools from IBM’s mainframe and AS/400 systems. For example, it uses a centralized error logging facility that applications can easily hook into through an API. That system facilitates error reporting, administrator notification, and problem diagnosis. Syslog tries to implement some of these features for UNIX generally, but as this book’s many sections on logging show, it’s not consistently used. (Years later, Sun adopted a similar approach with the fault management daemon, fmd, in Solaris 10.)
 

Another case in point is hardware management. AIX gives you centralized diagnostic tools for just about any supported device. It even logs repair actions (which, in some cases, can disable fault LEDs and generate issue-resolution notifications), thus providing an audit trail. The system is easy to extend through callback hooks, but it doesn’t leave you on your own as most versions of UNIX do.
 

To address one of your specific complaints, task-specific commands are a feature, not a bug! They benefit administrators in several ways.
 

• As even your own example shows, AIX command sets are named clearly and consistently. That can’t be said of UNIX generally. mk* commands create entities, rm* commands remove them, ch* commands modify them, and ls* commands show you the current state. These structured command families yield predictable results and reduce the time needed for training. They make it less likely that you’ll use the wrong command during a 2:00 a.m. emergency while you’re bleary-eyed and new to AIX. (SMIT menus help here too, of course.)

 

• Commands can validate their arguments; configuration files cannot. A wrapper command can ensure that a proposed change won’t break the system. If it would, the command can complain or refuse to make the change. That’s much nicer than discovering problems the hard way when things break randomly after a configuration file change.

 

• Task-specific commands facilitate scripting. Not only do they combine functions and validate arguments, but they also relieve scripts of the need to parse and manage complex configuration files. That makes scripts shorter, more reliable, and easier to maintain (and teach!). Think of these commands as a high-level administration library that’s built into the operating system and that works with every scripting language.

 

• The provision of a defined administrative interface reduces dependencies on particular file formats or implementations. It frees IBM to change its back ends and to introduce new technologies without breaking legacy scripts. For example, the ODM currently stores its data in Berkeley DB files. However, IBM could easily change the ODM to use LDAP or some other future technology while keeping the ODM commands and user interface the same.

 

And don’t be a SMIT-hater! SMIT is a flexible system that implements a variety of interfaces (X11, web page, command-line client). That flexibility means you can use the same general interface whether you’re sitting at a desktop machine or working from home late at night.
 

SMIT simplifies complex procedures and gets novice administrators up to speed quickly. It’s been used and maintained for many years and has undergone a variety of user interface studies aimed at improving it. It’s easy to use regardless of your familiarity with UNIX in general or AIX in particular. And it’s a great learning tool, even for experienced administrators. You can fill out a SMIT form with your desired values and have SMIT show you the exact command it would run to implement your request. There’s nothing like this on any other system, and it’s great.
 

As for AIX not “really” being UNIX, that simply isn’t true. AIX was originally based on BSD, and some vestiges of that era (such as AIX’s use of mbufs in its networking stack) remain even in today’s systems. Later editions were refocused on the System V base. AIX has been certified as conforming to the Single Unix Specification (SUS), X/Open, and POSIX standards. IBM has also exploited UNIX’s legendary portability to bring AIX to systems ranging from PS/2 PCs to mainframes. The Deep Blue system (an IBM HPC supercomputing cluster) that beat chess grand master and world champion Garry Kasparov in widely publicized human-vs.-computer chess matches in 1996 and 1997 ran AIX!
 
  


Colophon
 

This book was for the most part written and produced on Windows systems. We used Adobe FrameMaker for layout and a variety of other Adobe applications for illustrations and production. Some contributors ran FrameMaker under Wine on Linux systems (see page 1139). One author ran FrameMaker on a virtualized Windows system under Mac OS X. (See tinyurl.com/vmwrite for details.) These virtualized environments worked well.
 

Lisa Haney drew the interior cartoons with a 0.05mm Staedtler pigment liner, then scanned them and converted them to 1200dpi bitmaps. The cover artwork was executed on black Ampersand Clayboard (a scratchboard) with Dr. Martin’s Dyes for color. After scanning, the cover art was color-corrected in Photoshop and the layout completed in Adobe Illustrator.
 

The body text is Minion Pro, designed by Robert Slimbach. Headings, tables, and illustrations are set in Myriad Pro SemiCondensed by Robert Slimbach and Carol Twombly, with Fred Brady and Christopher Slye.
 

For “code” samples, we have long sought a fixed-width font that looks similar to Courier but that lacks Courier’s many typesetting problems. Our search remains fruitless. In this book, we use Peter Matthias Noordzij’s proportional-width PMN Caecilia and line up columns manually with tabs. Unfortunately, Caecilia is missing some characters needed for technical typesetting, and its italic version is noticeably slimmer than its roman.
 

This edition marks the first time that the authors have all worked on a shared tree of source files. In the past, the sticking point has been FrameMaker’s binary file format, which makes it impossible to merge multiple sets of revisions. For this edition, we used an unholy combination of Subversion (page 399), TortoiseSVN (page 401), Miramo’s free DZbatcher utility (datazone.com), and home-grown Perl scripts to keep the authoritative documents in FrameMaker’s second-class MIF format, an XML-like alternative. This scheme sort of works, but it requires that everyone use the same version of FrameMaker and that at least one team member have a working knowledge of MIF.
 
  


About the Contributors
 

Terry Morreale is a senior engineer and director of client services at Applied Trust. She holds a degree in Computer Science from the University of Colorado as well as the following industry certifications: CISSP, GIAC Gold Certified Incident Handler, and ITILv3 Foundations. When she’s not working, Terry can be found reading, running, hanging with her two kids, or enjoying a glass of red wine.
 

Ned McClain is co-founder and CTO of Applied Trust, where he helps clients of all sizes with architecture and operations. His work focuses on performance, availability, and security, but a special place in his heart is reserved for system administration. Ned has a degree in Computer Science from Cornell University’s College of Engineering and carries CISSP, MCP, and ITIL certifications. Ned blogs regularly at barkingseal.com.
 

Ron Jachim received an MS from Wayne State University in Detroit, Michigan, where he now serves as an adjunct professor. He leverages his 20 years of real-world UNIX experience both while teaching and at his position with Ford Motor Company. He combines management skills with technical passion to architect resilient infrastructure solutions involving thousands of servers and to improve the performance of global applications.
 

David Schweikert is a product manager at Open Systems AG, a managed security services provider in Switzerland. His team is responsible for the configuration management and monitoring of more than 1,500 UNIX servers in over 100 countries. David is the developer of Mailgraph (a tool that plots mail statistics) and Postgrey (a greylisting implementation for Postfix). See david.schweikert.ch.
 

Tobi Oetiker is an engineer by education and a system administrator by vocation. For ten years he worked for the Swiss Federal Institute of Technology, where he spoiled students and staff with a deluxe UNIX environment. Since 2006, he has worked for his own company, OETIKER+PARTNER AG, where he manages UNIX servers for industry customers, improves his pet open source projects (MRTG™, RRDtool, and SmokePing) and applies these tools to solve customers’ problems. In November 2006, Tobi received the prestigious SAGE Outstanding Achievement Award for his work on MRTG and RRDtool. See tobi.oetiker.ch.
 
  


About the Authors
 

For general comments and bug reports, please contact ulsah@book.admin.com. Because of the volume of email that this alias receives, we regret that we are unable to answer technical questions.
 

[image: Image]
Evi Nemeth (sailingevi@gmail.com) has retired from the Computer Science faculty at the University of Colorado. She is currently exploring the Pacific on her 40-foot sailboat named Wonderland. This is her last edition—it’s impossible to keep up with the latest sysadmin toys when anchored in paradise with a 30 baud packet radio email connection.
 

[image: Image]
Garth Snyder (garth@garthsnyder.com) has worked at NeXT and Sun and holds a BS in Engineering from Swarthmore College and an MD and an MBA from the University of Rochester.
 

[image: Image]
Trent R. Hein (trent@atrust.com) is the co-founder of Applied Trust, a company that provides IT infrastructure consulting services. Trent holds a BS in Computer Science from the University of Colorado.
 

[image: Image]
Ben Whaley (ben@atrust.com) is the Director of Enterprise Architecture at Applied Trust, an IT consulting company based in Boulder, Colorado. Ben earned a BS in Computer Science from the University of Colorado in 2004.
 
  


Footnotes
 

Chapter 1
 

1. Since Wikipedia contains Linux information and must therefore refer to Linux frequently, the debate has particular relevance to Wikipedia itself. The discussion page for the Wikipedia article is also well worth reading.

 

2. After all, “GNU’s not UNIX!”

 

3. Several of our technical reviewers protested that we seem to be crediting GNU with the creation of most of the world’s free software. We are not! However, GNU has certainly done more than any other group to promote the idea of free software as a social enterprise and to structure ongoing debate about licensing terms and interactions between free and nonfree software.

 

4. We consider a “production” environment to be one that an organization relies on to accomplish real work (as opposed to testing, research, or development).

 

5. See page 1264 for some background on BSD, System V, and the general history of UNIX.

 

6. It’s not really a fixed-width font, but it looks like one. We liked it better than the real fixed-width fonts that we tried. That’s why the columns in some examples may not all line up perfectly.

 

7. Solaris 10’s default shell for root is the original Bourne shell, which (rather surprisingly) does not understand ~ or ~user notation.

 

8. Or worse yet, a link to Google through lmgtfy.com

 

9. OpenSolaris does offer a Linux-quality package management system and Internet repository. This feature does not exist in Solaris 10, but it’s likely to be featured in Solaris 11.

 

10. A tendency lovingly and sadistically documented in Simon Travaglia’s Bastard Operator from Hell stories; see bofh.ntk.net for the archive. (Look under BOFH.)

 

Chapter 2
 

1. sort accepts the key specification -k3 (rather than -k3,3), but it probably doesn’t do what you expect. Without the terminating field number, the sort key continues to the end of the line.

 

2. See Units on page 14 for an introduction to these units.

 

3. If your shell understands the command helloworld without the ./ prefix, that means the current directory (.) is in your search path. This is bad because it gives other users the opportunity to lay traps for you in the hope that you’ll try to execute certain commands while cd’ed to a directory on which they have write access.

 

4. The “dot” command is a synonym for source, e.g., . helloworld.

 

5. Note that the error messages and usage message go to standard output. Shouldn’t they go to standard error instead? That would in fact be more correct, but since this script isn’t intended for use as a filter, the distinction is less important.

 

6. In reality, these operations are now built into the shell and do not actually run /bin/test.

 

7. More accurately, the filename expansion is just a little bit magic in that it does maintain a notion of the atomicity of each filename. Filenames that contain spaces will go through the for loop in a single pass.

 

8. Depending on the invocation, exec can also have the more familiar meaning “stop this script and transfer control to another script or expression.” It’s yet another shell oddity that both functions are accessed through the same statement.

 

9. Perl guru Tom Christiansen commented, “I don’t know what a ‘scripting language’ is, but I agree that regular expressions are neither procedural nor functional languages. Rather, they are a logic-based or declarative language, a class of languages that also includes Prolog and Makefiles. And BNFs. One might also call them rule-based languages. I prefer to call them declarative languages myself.”

 

10. Although this section shows HTML excerpts as examples of text to be matched, regular expressions are not really the right tool for this job. Our external reviewers were uniformly aghast. Perl and Python both have excellent add-ons that parse HTML documents the proper way. You can then access the portions you’re interested in with XPath selectors. See the Wikipedia page for XPath and the respective languages’ module repositories for details.

 

11. Since semicolons are separators and not terminators, the last one in a block is optional.

 

12. Tom Christiansen commented, “That wouldn’t be my own first choice, but it is a good one. My nominee for the most common error in programs is that they are usually never rewritten. When you take English composition, you are often asked to turn in an initial draft and then a final revision, separately. This process is just as important in programming. You’ve heard the adage ‘Never ship the prototype.’ Well, that’s what’s happening: people hack things out and never rewrite them for clarity and efficiency.”

 

13. The naming of the scripts themselves is important, too. In this context, dashes are more common than underscores for simulating spaces, as in system-config-printer.

 

Chapter 3
 

1. For example, one common use of single-user mode is to reset a lost root password. This operation requires modification of the /etc/shadow file.

 

2. We once had a corrupted keymap file, and since the keymap file is loaded even in single-user mode, single-user was useless. Setting init=/bin/sh was the only way to boot the system to a usable single-user state to fix the problem. This can also be a useful trick in other situations.

 

3. YaST is a SUSE-specific graphical configuration utility that maintains many aspects of a SUSE system.

 

4. In theory, databases should be particularly resistant to this form of corruption, but our experience in practice doesn’t necessarily support this theory.

 

Chapter 4
 

1. In fact, the permissions can be set so restrictively that even the owner of a file cannot access it.

 

2. “Valid” is the operative word here. Certain operations (such as executing a file on which the execute permission bit is not set) are forbidden even to the superuser.

 

3. One of our technical reviewers commented, “That’s certainly not the intent. In fact, it’s the average sites running basic DNS/web/email service that do best with SELinux. If you’re doing unusual stuff, you end up in policy hell and turn it off. SELinux has actually gotten a lot better in recent times. Of course, I still turn it off…”

 

4. This FAQ was written for individual users of PGP. In the context of system administration, you should certainly consider the potential for offense. How will your shocking nonsense sound to the jury that’s adjudicating your sexual harassment case?

 

5. Ubuntu Linux goes even further. By default, the system has no valid root password and requires the use of sudo, detailed later in this section.

 

6. For the same reason, do not include “.” (the current directory) in your shell’s search path. Although convenient, this configuration makes it easy to inadvertently run “special” versions of system commands that a user or intruder has left lying around as a trap. Naturally, this advice goes double for root.

 

7. Or even zero people, if you have the right kind of password vault system in place.

 

Chapter 5
 

1. Pages are the units in which memory is managed, usually between 1KiB and 8KiB in size.

 

2. As pointed out by our reviewer Jon Corbet, Linux kernel 2.6.24 introduced process ID namespaces, which allow multiple processes with the same PID to exist concurrently. This feature was implemented to support container-based virtualization.

 

3. At least initially. If the original parent dies, init (process 1) becomes the new parent. See page 124.

 

4. Actually, all but one are library routines rather than system calls.

 

5. The functions of <Control-Z> and <Control-C> can be reassigned to other keys with the stty command, but this is rare in practice. In this chapter we refer to them by their conventional bindings.

 

6. More specifically, bus errors result from violations of alignment requirements or the use of nonsensical addresses. Segmentation violations represent protection violations such as attempts to write to read-only portions of the address space.

 

7. Which may be easier said than done. The terminal emulator (e.g., xterm), terminal driver, and user-level commands may all have a role in propagating SIGWINCH. Common problems include sending the signal to a terminal’s foreground process only (rather than to all processes associated with the terminal) and failing to propagate notification of a size change across the network to a remote computer. Protocols such as Telnet and SSH explicitly recognize local terminal size changes and communicate this information to the remote host. Simpler protocols (e.g., direct serial lines) cannot do this.

 

a. Uses absolute priority, but adds 20 to the value you specify.

 

8. Actually, it’s worse than this: the stand-alone nice interprets nice -5 to mean a positive increment of 5, whereas the shell built-in nice interprets this same form to mean a negative increment of 5.

 

9. Well, usually. strace can interrupt system calls. The monitored process must then be prepared to restart them. This is a standard rule of UNIX software hygiene, but it’s not always observed.

 

10. Most filesystem implementations reserve a portion (about 5%) of the storage space for “breathing room,” but processes running as root can encroach on this space, resulting in a reported usage that is greater than 100%.

 

Chapter 6
 

1. It’s perhaps more accurate to say that these entities are represented within the filesystem. In most cases, the filesystem is used as a rendezvous point to connect clients with the drivers they are seeking.

 

2. Application Programming Interface, a generic term for the set of routines that a library, operating system, or software package provides for programmers to call.

 

3. We say “in most situations” because Solaris’s ZFS filesystem has adopted a rather different approach to mounting and unmounting, not to mention many other aspects of filesystem administration. Long-time readers may be expecting a snippy comment about gratuitous incompatibility at this point, but the ZFS scheme is a clear improvement and we look forward to the day that it’s adopted by other systems. In the meantime, we must of necessity keep our ZFS coverage somewhat ghettoized. See page 264 for more details.

 

4. ls -b shows the special characters as octal numbers, which can be helpful if you need to identify them specifically. <Control-A> is 1 (\001 in octal), <Control-B> is 2, and so on.

 

5. One reviewer commented, “Nagios (see page 887) uses them, and it sometimes needs help.”

 

6. The file permissions that ls shows for a symbolic link, lrwxrwxrwx, are dummy values. Permission to create, remove, or follow the link is controlled by the containing directory, whereas read, write, and execute permission on the link target are granted by the target’s own permissions. Therefore, symbolic links do not need (and do not have) any permission information of their own.

 

7. If you think of the owner as “the user,” you can easily remember the order of the permission sets with the word Yugo (like the car). This is also the letter coding used by the mnemonic version of chmod.

 

8. The kernel understands the #! (“shebang”) syntax and acts on it directly. However, if the interpreter is not specified completely and correctly, the kernel will refuse to execute the file. The shell then makes a second attempt to execute the script by calling sh.

 

9. Try find
mountpoint
-xdev -inum
inode
-print.

 

10. If myprog were a shell script, it would need both read and execute permission turned on. For the script to be run by an interpreter, it must be opened and read like a text file. Binary files are executed directly by the kernel and therefore do not need read permission turned on.

 

11. Make sure that your PATH environment variable puts /bin before /usr/gnu/bin so that you get the Solaris-specific versions of ls and chown instead of the GNU versions.

 

12. In an effort to keep customers disoriented and docile, HP has adopted a strategy of abducting the names of existing filesystems and applying them to proprietary products. For example, HP’s HFS was so called to facilitate confusion with Apple’s Hierarchical File System, also known as HFS. HP calls its VxFS port “JFS” to forestall the possibility that users might distinguish it from IBM’s own unrelated JFS filesystem.

 

13. In addition to “allow” and “deny”, the NFSv4 specification also allows “audit” and “alarm” entries that do not affect permission calculations but are potentially useful for logging and security control. The exact meaning of these entries is implementation dependent.

 

Chapter 7
 

1. At first we could not make this work because we were using sudo (see page 113), and the environment variables set up by sudo
command are usually different from those resulting from sudo su - and then running the command in a separate step. The chdev command cares. New versions (1.70 or later) of sudo have the -i flag to address this situation.

 

2. $1$ is the tag for the BSD MD5 algorithm; Sun uses its own MD5 implementation and tags it $md5$.

 

3. Except on Solaris, where chfn does not exist. The superuser can change a user’s finger information with passwd -g.

 

4. This message appears when you log in on the console or on a terminal, but not when you log in through a display manager such as xdm, gdm, or kdm. Not only will you not see the message, but you will generally be logged out immediately because of the display manager’s inability to write to the proper directory (e.g., ~/.gnome).

 

5. Use the chsec command to change files in /etc/security rather than editing them directly.

 

6. There are 86,400 seconds in a day: 60 * 60 * 24.

 

7. Changing to a stronger encryption algorithm should be high on your to-do list for new AIX boxes.

 

8. To set a group password under Solaris, you have to use passwd and cut and paste into /etc/group. There is no /etc/gshadow or equivalent file.

 

9. Because the same password can have many encrypted representations, this method verifies only that the user has reset the password, not that it has actually been changed to a different password.

 

10. PAM is a relatively recent addition to AIX; it should be fully functional in versions 5.3 and later.

 

11. /etc/security/{passwd,group} on AIX

 

12. Now that Oracle has purchased Sun, it’s unclear if this system will survive as a product after the merger is complete.

 

Chapter 8
 

1. The 512-byte standard for hard disks may not hold out much longer; see lwn.net/Articles/377895.

 

2. That’s right: for some reason, the power cable is more complicated than the data cable.

 

3. In the United States, an excellent source for good quality but cheap SATA cables is monoprice.com.

 

4. “Daisy chaining” is the common description, but it’s perhaps a bit misleading. Parallel SCSI is physically wired as a chain, but it is electrically a single bus.

 

5. To deal with this issue, Linux uses UUIDs in the /etc/fstab file instead of device names; see page 262.

 

6. DSF = device special file

 

7. On the other hand, at $80 for a 1TB drive, why bother?

 

8. The ATA secure erase command is password-protected to make it more difficult to access. Therefore, you must set the drive password before invoking the command. Don’t bother to record the password, however; you can reset it at will. There is no danger of locking the drive.

 

9. Solaris and HP-UX even have “dynamic root disk” systems to facilitate the maintenance and use of multiple roots. See the man pages for beadm or lucreate for Solaris and drd for HP-UX.

 

10. OK, OK, it probably just says “Format” or “OK,” but this is what it should say.

 

11. Using only the outer cylinders of a disk to improve performance is known as “short stroking,” the stroke in question being the travel of the head armature.

 

12. EFI has more recently become UEFI, a “unified” EFI effort supported by multiple vendors. However, EFI remains the more common term in general use. UEFI and EFI are essentially interchangeable.

 

13. RAID is sometimes glossed as “redundant arrays of independent disks,” too. Both versions are historically accurate.

 

14. Parity data is distributed among all the drives in the array; each stripe has its parity stored on a different drive. Since there’s no dedicated parity disk, it’s unlikely that any single disk will act as a bottleneck.

 

15. Slogan: “Enough is enough. You can either join BAARF. Or not.”

 

16. HP-UX limitations require swap space to reside in the first 2GiB of the physical disk and the boot volume to be the first logical volume. The 1.5GB root and 500MB swap shown here were chosen to work around these constraints. You can have a root partition that is larger than these values, but you must then have separate boot and root volumes. See the man page for lvlnboot for more details.

 

17. In most cases, only metadata changes are journaled. The actual data to be stored is written directly to the filesystem. However, you can change this behavior with the data mount option. See the mount man page for specifics.

 

18. Some say that the recommendation for ext4 in kernel 2.6.28 was, in retrospect, premature. Current versions are solid, however.

 

19. Some systems have a mklost+found command you can use to recreate this directory if it is deleted.

 

20. The noauto mount option excludes a given filesystem from automatic mounting by mount -a.

 

21. The REFER column shows the amount of data referenced by the active copy of each filesystem. /demo and /demo/new_fs have similar REFER values because they’re both empty filesystems, not because there’s any inherent relationship between the numbers.

 

22. The reservation and quota properties take into account all storage costs of the filesystem, including the space consumed for snapshots. If you want to limit only the size of the active copy of the filesystem, use the refreservation and refquota properties instead. The ref prefix indicates “amount of data referred to” by the active filesystem, the same total shown in the REFER column in zfs list output.

 

23. This directory is hidden by default; it does not appear in ls -a output. You can make it visible with zfs set snapdir=visible
filesystem.

 

24. In this example the disks are all the same size, but the virtual devices are not (1TB vs. 500GB).

 

25. Just to be clear, many such filesystems exist. They are known generically as cluster (or clustered) file-systems. Special locking and synchronization algorithms must be used to implement clustering, so clustered filesystems are typically slower than standard filesystems on local disks. VxFS can operate in clustered or nonclustered mode, so it’s a serviceable option for either situation.

 

Chapter 9
 

1. Many sites go further than this and send a text message to an administrator’s phone as soon as a problem is detected. See Chapter 21, Network Management and Debugging, for more details.

 

2. You can configure cron to use other shells as well.

 

3. That is, the user after whom the crontab file is named. On most (but not all) systems, the actual owner of crontab files is root.

 

4. One of our contributors reports having seen a case in which cron consumed 100% of the CPU because the system date had been set to the UNIX epoch. The local time zone was a negative offset from GMT, so with the offset taken into account, the local time appeared to be a negative number, and cron was confused. Most systems power their on-board clocks with a battery, so clock resets are not as unusual as you might think. Time instability is a common symptom of a dead or dying battery.

 

5. Many systems’ kernels can be configured to put core dumps in a particular directory, or optionally, not generate them at all. For example, see man core on Linux or man coreadm on Solaris.

 

6. Not all versions of find support the -xdev argument. On some systems, it’s called -x.

 

7. Bryan Helvey, one of our technical reviewers, has worked in the oil industry and notes that core in that context is as likely to refer to a core sample as to a core dump. More generally, we acknowledge that it’s inherently dangerous to delete files base on their names alone.

 

Chapter 10
 

1. A large financial institution located in the World Trade Center kept its “off-site” backups one or two floors below their offices. When the building was bombed (the first time), the backup tapes (as well as the computers) were destroyed. Make sure “off-site” really is.

 

2. GNU versions of restore include the -C option to verify a dump tape against a directory tree.

 

3. For example, restore -t reads only the table of contents for the dump, which is stored at the beginning of the tape. When you actually restore a file, you are testing a more extensive region of the medium.

 

4. It’s helpful to treat users who request the restoration of accidentally deleted files as colleagues who are spot-checking your backup system rather than as incompetent, file-deleting annoyances. A positive attitude makes the experience more pleasant for both of you and increases the number of spot-checks.

 

5. Actually, most versions of dump do not keep track of files that have been deleted. If you restore from incremental backups, deleted files are recreated.

 

6. Holes are blocks that have never contained data. If you open a file, write one byte, seek 1MB into the file, then write another byte, the resulting “sparse” file takes up only two disk blocks even though its logical size is much bigger. Files created by Berkeley DB or ndbm contain many holes.

 

7. dump requires access to raw disk partitions. Anyone allowed to do dumps can read all the files on the system with a little work.

 

8. Legacy systems may use a separate rdump command to perform dumps to a remote tape drive. Modern dumps accept a -f
hostname:tapedevice argument.

 

9. All the entries for a tape unit use the same major device number. The minor device number tells the tape device driver about special behaviors (rewinding, byte swapping, etc.).

 

10. The star next to iamlost indicates that it has been marked for extraction.

 

11. Some versions of dump and restore are rumored to keep track of deletions. We believe Solaris and Linux to be among these.

 

12. The GNU implementation includes a filename mapping table as one of the files in the archive. Users of the standard tar can extract the contents of the archive and fix it up by hand, but the process is tedious.

 

13. GNU’s tar handles holes intelligently if you invoke the -S option when creating an archive.

 

14. On the other hand, if you zfs send -R the /home filesystem and its descendants, there’s currently no way to restore only /home/ned; you must restore /home. As an administrator, you probably don’t want to have to schedule every home directory for independent backups.

 

Chapter 11
 

1. More accurately, it uses “netloghost” as one of its hostname aliases. This setup allows the identity of the log host to be modified with little reconfiguration. An alias can be added in /etc/hosts or set up with a CNAME record in DNS. See page 585 for more information about DNS CNAME records.

 

2. Unless users running X have the xconsole program running, they won’t get these messages.

 

Chapter 12
 

1. Google “Custom JumpStart and Advanced Installations” to access Sun’s guide, which contains full details on the rules and profiles files.

 

2. A diskless client has no hard disk for local filesystems and relies on network services for storage. A dataless client has only has local swap space and perhaps /tmp and /home filesystems.

 

3. Since vendors all use approximately the same protocols and architectures, aren’t you glad that they cooperated and settled on a standard installation system? :-)

 

4. Not to be confused with Yum Fish Bait with Live Prey Technology (LPT), yum3x.com.

 

5. The development team distinguishes between the terms “repository” and “publisher,” but we’ll treat them as equivalent here.

 

6. Contrast with more than 30,000 in Ubuntu Karmic Koala.

 

7. Actually, swagentd invokes swagent, but this process is transparent to the user.

 

8. For example, suppose that sysadmins Alice and Bob both edit the same file and that each makes some changes. Alice saves first. When Bob saves his copy of the file, it overwrites Alice’s version. If Alice has quit from the editor, her changes are completely gone and unrecoverable.

 

9. Even though this command makes no changes, it must still be run as root because it creates lock files in the .git directory.

 

10. The explicit call to sh forces the redirection operator to be evaluated in the context of a root shell. If we simply typed echo mtab >> .gitignore, the shell would try to open .gitignore before running sudo.

 

11. Security patches are a possible exception to this rule. Plug security holes as soon as they are found. On the other hand, security patches do sometimes introduce bugs.

 

12. Hard-core compile-it-yourselfers should check out the Gentoo Linux distribution, which is designed to be recompiled from scratch on the destination system.

 

Chapter 13
 

1. The NDISwrapper project enables Windows drivers for some networking devices to be used under Linux. See sourceforge.net/projects/ndiswrapper for full details.

 

2. Dan Foster, one of our technical reviewers, commented, “Direct manipulation of the ODM with the odm* tools is not recommended if you don’t know exactly what you’re doing. These commands do no error checking on the data you modify, whereas the normal ch*/mk*/rm* tools validate data prior to making changes. The odm* tools are like a loaded AK-47 with no safety mechanism: one quick touch, and you’ve discharged several rounds into an eviscerated target.”

 

3. If you’re using really oddball PC hardware, it can be a challenge to create a configuration in which device interrupt request vectors (IRQs) and I/O ports do not overlap. You can view the current assignments on your system by examining the contents of /proc/interrupts and /proc/ioports, respectively. The overlap isn’t typically an issue with current mainstream PC hardware.

 

Chapter 14
 

1. A group of Linux enthusiasts from BLUG, the Bergen (Norway) Linux User Group, actually implemented the Carrier Pigeon Internet Protocol (CPIP) as specified in RFC1149. For details, see the web site blug.linux.no/rfc1149.

 

2. This is actually a little white lie. ARP is not really part of TCP/IP and can be used with other protocol suites. However, it’s an integral part of the way TCP/IP works on most LAN media.

 

3. A Google study presented at RIPE 57 in October 2008 indicated that overall IPv6 penetration (actual use, not capability) was 0.24%. No country had IPv6 penetration greater than 0.76%.

 

4. For specificity, RFCs that describe protocols often use the term “octet” instead of “byte.”

 

5. In general, an IP address identifies a specific and unique destination. However, several special cases muddy the water. NAT (page 462) uses one interface’s IP address to handle traffic for multiple machines. IP private address spaces (page 462) are addresses that multiple sites can use at once, as long as the addresses are not visible to the Internet. Anycast addressing shares one IP address among several machines.

 

6. You can find a full list of assigned ports at iana.org/assignments/port-numbers.

 

7. Of course, 0 counts as being divisible by any number…

 

8. Of course, many routers now run embedded Linux kernels. Even so, these dedicated systems are still generally more proficient and more secure than general-purpose computers that also forward packets.

 

9. CAIDA, pronounced “kay duh,” is the Cooperative Association for Internet Data Analysis at the San Diego Supercomputer Center on the UCSD campus (caida.org).

 

10. Many routers also support the Universal Plug and Play (UPnP) standards promoted by Microsoft, one feature of which allows interior hosts to set up their own dynamic NAT tunnels. This can be either a godsend or a security risk, depending on your perspective. The feature is easily disabled at the router if you wish to do so.

 

11. More specifically, it is the MAC address with the two bytes 0xFFFE inserted in the middle and one bit (bit 6 of the first byte, numbering bits from the left, starting at 0) complemented; see RFC4291. The standard for converting 48-bit MAC addresses into 64-bit IP host numbers is known as EUI-64.

 

12. The IP source routing feature is an exception to this rule; see page 473.

 

13. Except on point-to-point links, on which the identity of the destination is sometimes implicit.

 

14. Routers can in fact be configured to flood broadcast packets to other networks, but this is generally a bad idea. If you find yourself wanting to forward broadcasts, there is most likely something amiss with your network or server architecture.

 

15. Clients initiate conversations with the DHCP server by using the generic all-ones broadcast address. The clients don’t yet know their subnet masks and therefore can’t use the subnet broadcast address.

 

16. You can also use a split DNS configuration to achieve this goal; see page 617.

 

17. Broadcast storms occur because the same link-layer broadcast address must be used to transport packets no matter what the IP broadcast address has been set to. For example, suppose that machine X thinks the broadcast address is A1 and machine Y thinks it is A2. If X sends a packet to address A1, Y will receive the packet (because the link-layer destination address is the broadcast address), will see that the packet is not for itself and also not for the broadcast address (because Y thinks the broadcast address is A2), and may then forward the packet back to the net. If two machines are in Y’s state, the packet circulates until its TTL expires. Broadcast storms can erode your bandwidth, especially on a large switched net.

 

18. If you try this command in the form sudo echo 1 > icmp_echo_ignore_broadcasts, you just generate a “permission denied” message—your shell attempts to open the output file before it runs sudo. You want the sudo to apply to both the echo command and the redirection. Ergo, you must create a root subshell in which to execute the entire command.

 

19. Solaris network interfaces must be scoped out with ifconfig plumb to make them accessible. You might have to run this command by hand when performing manual configuration.

 

20. On HP-UX 11, the hop count field is not required; it defaults to 0 if not explicitly specified. Earlier versions required the count field to be present.

 

Chapter 15
 

1. IP packets can also be source-routed—at least in theory—but this is almost never done. The feature is not widely supported because of security considerations.

 

2. The problem is that changes in topology can lengthen the optimal routes. Some DV protocols such as EIGRP maintain information about multiple possible routes so that they always have a fallback plan. The exact details are not important.

 

3. Modern versions of IOS support a variety of access methods, including SSH. telnet, of course, is entirely insecure. If your site already uses Cisco routers, contact your network administrator to find out which methods have been enabled.

 

Chapter 16
 

1. Did you know that iPhones run a form of embedded UNIX?

 

2. We have omitted a few goofy Ethernet standards that have withered on the vine, such as 100BaseT4 and 100BaseVG-AnyLAN.

 

3. No kidding! Attaching a new computer involved boring a hole into the outer sheath of the cable with a special drill to reach the center conductor. A “vampire tap” that bit into the outer conductor was then clamped on with screws.

 

4. Check with your fire marshall or local fire department to determine the requirements in your area.

 

5. Sadly, we discovered during technical review that Easy-Bake ovens require a 100 watt light bulb (if they use a bulb at all; some now have heating elements), thus dashing the industry’s hopes for IEEE 802.3at compatibility. And for those of you that are wondering: yes, it is possible to boot a small Linux system off a PoE port. Specific hardware is left as an exercise for the reader.

 

6. The 600 Mb/s bandwidth of 802.11n is largely theoretical. In practice, bandwidth in the neighborhood of 400 Mb/s is a more realistic expectation for an optimized configuration. The environment and the capabilities and hardware of the client devices explain most of the difference between theoretical and real-life throughput. When it comes to wireless, your mileage may vary!

 

7. In fact, it will also connect to your stereo to play music wirelessly from your PC or laptop.

 

8. Like so many popular programs, Wireshark is often the target of attacks by hackers. Make sure you stay up to date with the current version.

 

9. This type of fire wall is a concrete, brick, or flame-retardant wall that prevents flames from spreading and burning down a building. While much different from a network security firewall, it’s probably just as important.

 

Chapter 17
 

1. dig and drill are DNS query tools: dig from the BIND distribution and drill from NLnet Labs.

 

2. The date convention also includes a two-digit change number, so you can have 99 changes per day.

 

3. In Windows, the client-side DNS information can be configured through the TCP/IP configuration panel for each network adapter. The exact procedure varies with the version of Windows.

 

4. Some sites use multiple masters or even no masters; we describe the single-master case.

 

5. Guaranteed here just means that the answer came from an authoritative server’s in-memory database and not from the cache of a random nonauthoritative server.

 

6. The in-addr.arpa portion of the name is a fixed suffix.

 

7. Technically, since you make the rules for your subdomain, one or more will do.

 

8. If a client’s /etc/resolv.conf file lists multiple name servers, the resolver should fail over to one of the backup servers. But all too often, only a single name server is configured.

 

9. See k.root-servers.org/statistics/GLOBAL/monthly for current data.

 

10. MX mail routing records fit in both the zone infrastructure pile and the basic records pile because they can refer to entire zones as well as individual hosts.

 

11. Actually, any name server for the zone can be listed in the SOA record unless you are using dynamic DNS. In that case, the SOA record must name the master server.

 

12. But really shouldn’t, for security reasons.

 

13. This rule for CNAMEs was explicitly relaxed for DNSSEC, which adds digital signatures to each DNS resource record set. The RRSIG record for the CNAME refers to the nickname.

 

14. Tony Li, an active member of the IETF community, once described IPv6 as “too little, too soon.”

 

15. This is a little white lie; Google and many other sites implement their SPF records with TXT records because the SPF resource record type is new and is only recently supported by popular name server software. But in looking to the future, we have taken editorial license and shown SPF records instead of TXT records. The digs were also for TXT records, not SPFs.

 

16. However, the given URL currently redirects to sourceforge.net’s page about DomainKeys, the old standard that has been mostly abandoned.

 

17. The 0 in the answer is the TTL for the data value. One of our reviewers reported once seeing the answer to this query come up as “Name is Bind, James Bind!”

 

18. CIDR netmasks are described starting on page 460.

 

19. Some firewalls are stateful and may be smart enough to recognize the DNS answer as being paired with the corresponding query of a second ago. Such firewalls don’t need help from this option.

 

20. You also need ingress filtering at your firewall; see page 932. Better yet, use TSIG for authentication.

 

21. Actually, the whole class A network 127/8 refers to localhost, but most folks just use 127.0.0.1.

 

22. To display the man pages without installing them, do: groff -man -T ascii
man-page-filename
| less.

 

23. The parentheses are here to show grouping; do not include them in an actual value.

 

24. It also has hooks for the Python scripting language.

 

25. Don’t make private addresses bogus if you use them and are configuring your internal DNS servers!

 

26. The number looks random, but it is really just a hash of the TSIG key.

 

27. The math involved is called the discrete log problem and relies on the fact that for modular arithmetic, taking powers is easy but taking logs to undo the powers is close to impossible.

 

28. GOST is secure (as far as we know) and has a much shorter key length than other algorithms. Since it is a symmetric cipher and not a public key system, it can replace TSIG but cannot be used for DNSSEC. Proposals to allow GOST are winding their way through the IETF standardization process.

 

29. In this section, base-64-encoded hashes and keys have all been truncated to save space and better illustrate the structure of the records.

 

30. 2,048 bits is surely overkill; many sites use 1,500 or fewer.

 

31. To make it easier to compare the BIND and NSD processes, we finagled the key footprints to make the BIND and NSD sets match. In real life, every key would have a different footprint.

 

32. Use a command like cat Kexample.com.+*.key >> zonefile. The >> appends to the zonefile rather than replacing it entirely, as > would. (Don’t mess this one up!)

 

33. The web site keylength.com tabulates a variety of organizations’ recommendations regarding the suggested lengths of cryptographic keys.

 

34. How can you tell if your parent is signed? Try dig +dnssec or drill -D.

 

Chapter 18
 

1. Technically, any transport protocol that implements congestion control can be used, but TCP is the only reasonable choice today.

 

2. Or its network database equivalent, such as NIS or LDAP.

 

3. Although the Red Hat NFS server defaults to UID -2, the nobody account in the passwd file uses UID 99. You can leave things as they are, add a passwd entry for UID -2, or change anonuid and anongid to 99 if you wish.

 

4. Of course, you should never export the root directory.

 

5. In reality, nfsd simply makes a nonreturning system call to NFS server code embedded in the kernel.

 

6. Jeff Forys, one of our technical reviewers, remarked, “Most mounts should use hard, intr, and bg, because these options best preserve NFS’s original design goals. soft is an abomination, an ugly Satanic hack! If the user wants to interrupt, cool. Otherwise, wait for the server and all will eventually be well again with no data lost.”

 

7. A direct map can also be managed as an NIS database or in an LDAP directory, but this is tricky.

 

8. The other side of this issue is the fact that it takes a certain amount of time to mount a filesystem. System response will be faster and smoother if filesystems aren’t being continually remounted.

 

Chapter 19
 

1. Though the old version disappears from the filesystem namespace, it continues to exist until all references have been released. You must also be aware of this effect when managing log files.

 

2. Although the password is encrypted for transmission across the network, the transferred files are not. If you use ssh as the transport (rsync -gopt -e ssh /etc/passwd /etc/shadow lollipop:/etc – note the single colon), the connection will be encrypted, but sshd will have to be configured not to require a password. Name your poison!

 

3. Keep in mind that both HTTP and FTP transport data in plaintext. You should consider HTTPS or SFTP, respectively, if the contents of the transferred files are sensitive.

 

4. Because of LDAP’s tortured history, many sources tend to go into great detail about LDAP’s X.500 and OSI connections. However, this history is not relevant to contemporary use of LDAP. Ignore it.

 

5. Do not confuse NIS domains with DNS domains. They are completely separate and have nothing to do with each other.

 

6. An ill-starred successor to the original NIS, now discontinued by Sun but still supported by some systems for historical reasons.

 

Chapter 20
 

1. Even as Evi is sailing in the middle of the ocean, she is almost always in email contact through her HAM/SSB radio and a “speedy” packet radio connection that approaches 30 baud at good times.

 

2. The receiving users’ mailboxes or, sometimes, a database

 

3. University of Washington, Seattle, WA.

 

4. Zimbra is not just an access agent, but rather a complete industrial-strength mail system; see page 853.

 

5. It’s important to note that many of the lines in the header, including the Received lines, may have been forged. Use this data with extreme caution.

 

6. Technically, aliases are configured only by sysadmins. A user’s control of mail routing through the use of a .forward file is not really aliasing, but we have lumped them together here.

 

7. We have been inconsistent with terminology in this chapter, sometimes calling a returned message a “bounce” and sometimes calling it an “error.” What we really mean is that a delivery status notification (DSN, a specially formatted email message) has been generated. Such a notification usually means that a message was undeliverable and is therefore being returned to the sender.

 

8. The ports that sendmail listens on are determined by DAEMON_OPTIONS; port 25 is the default.

 

9. sendmail can use multiple queues beneath mqueue to increase performance; see page 802.

 

10. So where is the OSTYPE macro itself defined? In a file in the cf/m4 directory, which is magically prepended to your config file when you run the Build script.

 

11. This form uses the default LDAP schema defined in the file cf/sendmail.schema; if you want a different schema file, use additional arguments in your FEATURE statement.

 

12. FEATURE(‘access_db’) must be there too.

 

13. Bastion hosts are specially hardened hosts intended to withstand attack when placed in a DMZ or outside a firewall.

 

14. The TRUSTED_USERS feature is typically used to support mailing list software.

 

15. If you try this command in the form sudo echo 30 > /proc/sys/net/ipv4/tcp_fin_timeout, you just generate a “permission denied” message—your shell attempts to open the output file before it runs sudo. You want the sudo to apply to both the echo command and the redirection. Ergo, you must create a root subshell in which to execute the entire command: sudo sh -c "echo…"

 

16. Wouldn’t it be nice if standardization efforts could sort out some of these random and apparently meaningless differences so our scripts could be more portable?

 

17. CDB is Dan Bernstein’s constant database system; it scales well.

 

18. For CS wizards, it’s Turing-complete; mere mortals can substitute “powerful and complicated.”

 

19. require means “deny if not matched.”

 

20. At first glance, the fact that you get to specify a username seems flexible and nice. But because the scanning is done after the DATA command instead of at the RCPT command, the message has already qualified its recipients, and if there are several recipients, whose spam profile should you use?

 

21. Don’t publish your ADSP record until outbound message signing is set up and working properly, lest other sites start to reject your email.

 

22. Phil is an active exim-users mailing list contributor.

 

Chapter 21
 

1. If a machine hangs at boot time, boots very slowly, or hangs on inbound SSH connections, DNS should be a prime suspect. Solaris and Linux use a sophisticated approach to name resolution that’s configurable in /etc/nsswitch.conf. On these systems, the name service caching daemon (nscd) is of particular interest. If it crashes or is misconfigured, name lookups are affected. With the transition to IPv6 progressing, we find that many DSL routers provide DNS forwarding services that simply drop requests for IPv6 (AAAA) DNS records. This “optimization” causes long timeouts on all name resolution requests. Use the getent command to check whether your resolver and name servers are working properly (e.g., getent hosts google.com).

 

2. Even Windows has it, but the command is spelled tracert (extra history points if you can guess why).

 

3. We removed a few fractions of milliseconds from the longer lines to keep them from folding.

 

4. Connections for “UNIX domain sockets” are also shown, but since they aren’t related to networking, we do not discuss them here.

 

5. On UNIX systems that don’t support netstat’s -p flag, the lsof command can provide this information (and more). See page 145 for more about lsof.

 

6. If your filtering needs exceed tcpdump’s capabilities, consider ngrep (ngrep.sourceforge.net), which can filter packets according to their contents.

 

7. A “talker” is the NetFlow term for a device that creates network traffic.

 

Chapter 22
 

1. This survey is conducted yearly and can be found at gocsi.com.

 

2. Of course, wireless networking technology introduces a whole new set of problems. Air gap in this context means “no networking whatsoever.”

 

3. As described in Chapter 14, a port is a numbered communication channel. An IP address identifies an entire machine, and an IP address + port number identifies a specific server or network conversation on that machine.

 

4. Actually, only the privileged ports (those with port numbers under 1,024) and the well-known ports are checked by default. Use the -p option to explicitly specify the range of ports to scan.

 

5. Especially the passwords of system administrators who have sudo privileges

 

6. The protected daemons are httpd, dhcpd, mailman, named, portmap, nscd, ntpd, mysqld, postgres, squid, winbindd, and ypbind.

 

7. In many cases, inetd or xinetd does the actual waiting on their behalf. See page 1188 for details.

 

8. Port 25 is the SMTP port as defined in /etc/services.

 

9. This summary describes traditional FTP, also known as “active FTP.” Some systems support “passive FTP,” in which the client initiates both connections.

 

10. That said, many consumer-oriented networking devices, such as Linksys’s router products, use Linux and iptables at their core.

 

11. However, you must be careful that reordering the rules for performance doesn’t modify functionality.

 

12. IBM is an exception. AIX does include a separate packet-filtering suite in its IP Security implementation, although the suite does not do stateful filtering. See the man pages for genfilt to get started.

 

13. If system backups are not a “normal” activity at your site, you have much bigger problems than the security intrusion.

 

Chapter 23
 

1. Non-Linux UNIX distributions refer to this collection simply as “AMP.” Solaris folks call it “SAMP,” and the Windows folks call it “WAMP.” Go figure.

 

2. Of course, this arrangement also gives Google access to your traffic data, which may or may not be a good thing.

 

3. A relatively new feature called Server Name Indication (SNI) enables the use of SSL with virtual hosts, but older browsers do not support it.

 

4. Transport Layer Security (TLS) is the protocol that succeeds SSL and is implemented in all modern browsers. However, the web community still refers to the overall protocol and concept as SSL.

 

5. Why “Squid”? According to the FAQ, “all the good names were taken.”

 

6. Unfortunately, some sites mark all their pages as being uncacheable, which prevents Squid from working its magic. In a similar vein, Squid isn’t able to cache dynamically generated pages.

 

Chapter 24
 

1. This is not entirely true. Solaris containers have a feature called “branded zones” that allows Linux binaries to run on a Solaris kernel.

 

2. Estimated by Jonathan Koomey in his excellent study “Estimating total power consumption by servers in the U.S. and the world.”

 

3. Install the python-virtinst package for virt-install support on Ubuntu.

 

4. Does your CPU have them? Try egrep ’(vmx|svm)’ /proc/cpuinfo to find out. If the command displays no output, the extensions are not present. On some systems, the extensions must be enabled in the system BIOS before they become visible.

 

5. You can use virsh to manage Xen domUs as well, if you wish.

 

6. This is equally true with Xen, but xend does the heavy lifting, creating interfaces in the background.

 

Chapter 25
 

1. Xsun included support for Display PostScript, which once upon a time was thought to be the display language of the future.

 

2. It is possible, but not recommended, to have both environments installed simultaneously. See page 1028 for more information about desktop environments.

 

3. Or aixterm on AIX. Clever, hmm?

 

4. Note that ssh also has a -Y flag that trusts all client connections. This feature may solve some forwarding problems, but use it only with extreme caution.

 

5. Not all options are supported by Xorg. Some options sold separately.

 

6. Recall that screens identify a monitor/video card combination at a particular color depth.

 

7. Before using xrandr for the first time, run Xorg -configure to reset the xorg.conf file to a known, clean state.

 

8. The X server requires the <Control> key to be held down along with the <Alt-Fn> key combination to switch virtual terminals, but the text console does not.

 

9. We don’t recommend logging into X as root because this operation may create a bunch of default startup files in root’s home directory, which is usually / or /root. It’s also notably insecure. Instead, log in as a regular user and use sudo. Ubuntu enforces this discipline by default.

 

Chapter 26
 

1. Older versions of CUPS use enable and disable instead of cupsenable and cupsdisable. Unfortunately, enable is also a bash built-in command, so bash assumes you mean its own enable unless you specify the full pathname of the command. As it happens, bash’s version of enable enables and disables bash built-ins, so you can use it to disable itself with enable -n enable.

 

2. Keep in mind, though, that many inexpensive printers come with “starter” cartridges that include less ink or toner than a standard replacement.

 

3. And every program can be shortened. Therefore, as the saying goes, any program can be reduced to a single line that doesn’t work.

 

Chapter 27
 

1. At least, if you want to sleep at night…

 

2. The Kill A Watt meter made by P3 is a popular choice at around $20.

 

3. See the white paper “Power and Cooling for Ultra-High Density Racks and Blade Servers” at apc.com.

 

Chapter 28
 

1. The informational work done by IT equipment is not significant in a thermodynamic sense. Computers are essentially 100% efficient at converting electricity into heat.

 

2. This product is designed for the North American market, but similar products exist for other markets. A version made for the UK can be found at reuk.co.uk/Buy-UK-Power-Meter.htm.

 

3. This metric multiplied by 100 yields the percentage of facility power delivered to IT equipment and is known in the industry as “DCiE.” It is a standard metric that can be used to compare organizations. Power usage effectiveness (PUE) is the reciprocal of DCiE and is a common benchmark for very large data centers.

 

4. See eetd.lbl.gov/emills/PUBS/PDF/ACEEE-datacenters.pdf for lots of gory details.

 

5. NTP is a special case in that its response latency must be kept low. However, that doesn’t mean you can’t run other services on the same machine. NTP server daemons are commonly niced to give them ready access to the CPU whenever they want it (see page 129). You can achieve similar ends—perhaps even a bit more reliably—through server virtualization.

 

6. If your current equipment is not energy efficient, you may be better off replacing it immediately to achieve operational energy savings, even when disposal and replacement costs are considered.

 

7. WordPress developer Mark Jaquith wrote, “It’s like killing a person, and then convincing a murderer to kill one less person. You didn’t negate your murder. You still killed the person. Convincing someone else to reduce their emissions doesn’t make up for your emissions.” We don’t necessarily endorse this view, but it is representative the anti-offset perspective.

 

Chapter 29
 

1. Current SSDs have two main weaknesses. First, they are an order of magnitude more expensive per gigabyte than traditional hard disks. Second, they may be rewritten only a limited number of times before wearing out. Their rewrite capacity is high enough to be immaterial for desktop machines (tens of thousands of writes per block), but it’s a potential stumbling block for a high-traffic server. See page 212 for more information about SSDs.

 

2. Refreshing top’s output too rapidly can itself be quite a CPU hog, so be judicious in your use of top.

 

3. Ages ago, a second process known as “swapping” could occur by which all pages for a process were pushed out to disk at the same time. Today, demand paging is used in all cases.

 

4. We assume that about half of disk operations are page-outs.

 

5. That is, it takes a long time to switch between applications, but performance is acceptable when an application is repeating a simple task.

 

6. A large virtual address space or resident set used to be a suspicious sign, but shared libraries have made these numbers less useful. ps is not very smart about separating system-wide shared library overhead from the address spaces of individual processes. Many processes wrongly appear to have tens of megabytes of active memory.

 

7. More granular resource management can be achieved through the Class-based Kernel Resource Management functionality; see ckrm.sourceforge.net.

 

Chapter 30
 

1. HP also offers a Samba derivative called the HP CIFS Server, which is available for download from the HP software depot.

 

2. Windows passes the current user’s credentials to the Samba server when establishing a connection. For this reason, users’ Samba passwords are usually set to match their Windows passwords.

 

3. Type echo $LANG to see if your system is running in UTF-8 mode.

 

4. NFSv3 security is based on the idea that the user has no root access on the client and that UIDs match on the client and server. This is not normally the case for self-managed machines. NFSv4 does better UID mapping than NFSv3 and is dramatically more secure.

 

Chapter 31
 

1. To be technically correct, this standard should now be referred to as EIA-232-E. However, no one will have the slightest idea what you are talking about.

 

2. .profile for sh and ksh; .bash_profile and .bashrc for bash; .cshrc and .login for csh/tcsh.

 

Chapter 32
 

1. OK, maybe you don’t need this role in your IT group. But it is an industry standard.

 

2. As of 2005, about half of security breaches originated with insiders.

 

3. If you plan to do business with a U.S. government agency, you may be required to complete a NIST 800-53 assessment whether you want to or not…

 

A Brief History of System Administration
 

1. Although SHARE was originally a vendor-sponsored organization, today it is independent.

 

2. GECOS was the General Electric Comprehensive Operating System.

 

3. Minix is a PC-based UNIX clone developed by Andrew S. Tanenbaum, a professor at the Free University in Amsterdam.

 

4. Just for the record, Windows is indeed less filling.

 

5. Even Apple’s iPhone runs a stripped-down cousin of UNIX, and Google’s Android operating system includes abstractions from the Linux kernel.

 
  

images/00979.jpg
SECHOL Soreer.
Identifier “Screen0”
Device “Videocard0"
Monitor *ViewSonic”
DefaultDepth 24
Subsection "Display’
Depth 8
Modes  "640x400"
EndSubsection
Subsection "Display”
Depth 16
Modes  "640x400" "640x480"
EndsSubsection
Subsection "Display”
Depth 24
Modes  "1280x1024" *1024x768" "B00X600" "640x400"
EndSubsection
EndSection

“640x480°





images/00978.jpg
section "Monitor™
Identifier  “ViewSonic’
Option “DPMS”
HorizSyne  30-65
VertRefresh 50120
Pt





images/00501.jpg





images/00743.jpg
Macro

Function

define
undefine
include
dnl
divert

Defines amacro named arg1 with value arg2
Discards a previous definition of macro named arg1
Includes interpolates) the file named arg

Discards characters up to and including the next newline
Manages output streams






images/00985.jpg
Jption IgnoreEDID “true.
Option "UseEdidFregs” “false"






images/00500.jpg
Cisco Systems ~ Juniper Networks,
(@15)326-1941  (408) 745-2000
Eiciicom juniper.net





images/00742.jpg
le contents.

of
df
i
T
of
xf

The message header and control file

The body of the message

Atemporary version of the ffile while the af file is being updated
Signifies that 32 or more failed locking attempts have occurred
Signifies that the message bounced and cold not be returned
Temporary transcript file of error messages from mailers






images/00984.jpg
AL R DCKVEL L0
Release Date: 2009-2-25
X Protocol Version 11, Revision 0
Build Operating Systern: Linux 2.6.24-23-server i686 Ubuntu
Current Operating System: Linux nutrient 2.6.28-11-generic #42-Ubuntu SMF
Fril Apr 17 015759 UTC 2009 i686
Build Date: 09 April 2009 02:10:02AM
vorg-server 2:16.0-0ubuntul4 (buildd@rothera buildd)
Before reporting problems, check http://wiki xorg
to make sure that you have the latest version
Markers: () probed, (") from config file, (-<) default setting,
(++) from command line, (1) notice, () informational,
(WW) warning, (EE) error, (NI not implemented, (??) unknown.
Log file: *var/log/Xorg 0log’, Time: Sun May 10 22:11:47 2009
-) Using config file: */etc/X11/xorg.conf”
-) ServerLayout "MainLayout"
|->Screen "Screen 0 (0)

>Input Device "Mouse0"
sInput Device "Keyboard0"

I
ull
ull

J:

It





images/00503.jpg
nubark IN A 631/3.183.1
R 5 S e AP





images/00745.jpg
divert(-1}
#### basic mc file for example.com
divert(0)

VERSIONID($1d$)

OSTYPE(Tinux)

MAILER(local)

MAILER(smtp')





images/00987.jpg





images/00502.jpg
Name Author Source. Share’  Comments.

BIND [3 iscorg 803%  Author caching
Microsoft NS Microsoft  microsoftcom  154%  Myriad sins
djbdns® Dan Bemstein  tinydns.org 26%  Violates some RFCs
PowerDNS  PowerDNSBV powerdnscom  07%  Authonly

NsD* Ninetlabs  ninetlabsnl  <0.1%  Authonly,veryfast
Unbound  Ninetlabs unbound et - Cachingonly fast

s Market share from icrg's July 2009 Intemmet Domain Survey

b.Also known s tinys, which i the server component o the djbds package
O Sahied o PSOE A ol A S W b T e





images/00744.jpg
Directory

Contents

o
dom:
feature
hack
ma
ostype
mailer
sh

Sample .mc (master configuration) files

Sample ma files for various domains at Berkeley
Fragments that implement various features

Special features of dubious value or implementation
The basic config file and other core iles
05-dependent file ocations and quirks

mAfiles that describe common mailers (delivery agents)
Shell scripts used by ma






images/00986.jpg
=) Using conhig file: “/etc/X11/xorg.conf®
Data incomplete in file /etc/X11/xorg,conf
Undefined InputDevice "Mouse0" referenced by ServerLayout *MainLayout’
(EE) Problem parsing the config file
(EE) Error parsing the config file
Fatal server error
SR B





images/00739.jpg
linux$ /usr/sbin/sendmail -d0.1 -bt < /dev/null

Version 8.13.8

Compiled with: DNSMAP HESIOD HES_GETMAILHOST LDAPMAP LOG
MAP_REGEX MATGHGECOS MILTER MIME7TO8 MIMESTO7 NAMED_BIND
NETINET NETINET6 NETUNIX NEWDB NIS PIPELINING SASLv2 SCANF

OCKETMAP STARTTLS TCPWRAPPERS USERDB USE_LDAP_INIT

SYSTEM IDENTITY (after readc)

(short domain name) $w = ross
(canonical domain name) $j = ross.atrust.com
{subdomain name) $m = atrust.com
ross.atrust.com

(node name) $






images/00981.jpg
05 Devicefile
Linux ~ /dev/input/mice
Solaris  /dev/mouse
HP-UX  /dev/deviceFileSystem/mouseMux
AX /dev/moused





images/00738.jpg
Market share

MTA Source 2009 2007 2001
Exim exim.org 30% 20% 8%
Postfix postfixorg 20% 15% 2%
MSExchange  microsoft.com/exchange  20% 2% 4%
sendmail  sendmail.org 19% 2% 60%

All others - <3%each <3%each <3%each






images/00980.jpg
secton. Inpuibence

Identifier  “Generic Keyboard"
Driver “Keyboard"

Option “AutoRepeat” 500 30
Option “XkbModel" “pe104”

Option  “Kkblayout' "us’
EndSection





images/00499.jpg
Eluke JDSU Siemon
(800) 4435853 (866) 228-3762 (860) 945-4395
fluke.com jdsu.com siemon.com





images/00741.jpg
Meaning

-Ac Usesthe submit.cf config file and acts as an MA
-Am  Uses the sendmail.cf config file and acts as an MTA

“ba  Runsin ARPANET mode (expects CRALF at the ends of lines)

-bd  Runsin daemon mode and istens for connections on port 25

D Runsin daemon mode, butin the foreground rather than the background”
-bh  Views recent connection info (same as hoststat)

b Purges disk copy of outdated connection nfo (same as purgestat)

b Initializes hashed aliases (same as newaliases)

-bm  Runsas a mailer, delivers mailin the usual way (default)

-bp  Prints mail queue (same as mailq)

-bP Prints the number of entries in queves via shared memory

-bs  Enters STP server mode (on standard input, not port 25)

bt Enters address test mode

-bv__ Verifies mail addresses only; doesn't send mail

2. This mode is used for debugging so that you can see the error and debugging messages.





images/00983.jpg
$ xrandr

VGA-O connected 1024x768+0+0 (normal left inverted right x a...) Omm x Omm
1024768 610 600 599 599
800x600 603 610 599  S62 598
6402480 599 610 594 595

DVI-0 connected 1024x768+0+0 (normal left inverted right x ...} Omm x Omm
1004768 600 600
8005600 603 599
€40x480 g9 g4





images/00498.jpg
AMP (part of Tyco) - Anixter
(800) 522-6752 (800) 264-9837
amp.com anixter.com

Belden Cable Newark Electronics
(800)235-3361  (800) 463-9275
(765) 983-5200 newark.com
belden.com

Black Box Corporation
(724) 746-5500
blackboxcom

Siemon
(860) 945-4395
siemon.com





images/00740.jpg
System
Ubuntu
SUSE
Red Hat
Solaris
HP-UX
A

Directory

Jusr/share/sendmail
Jusr/share/sendmail
lust/share/sendmail-c
Jetdmaillct
lusrinewconfiglet/mail/ct
Jusr/samples/tcpip/sendmail/cf





images/00982.jpg
section ‘ServerLayout™
Identifier “Simple Layout’
Screen “Screen 1 LeftOf "Screen 2"
Screen Screen 2" RightOf "Screen 1°

InputDevice “Generic Mouse" "CorePointer”

InputDevice “Generic Keyboard" "CoreKeyboard"

Option “BlankTime"  *10° # Blank the screen in 10 minutes

Option “StandbyTime" *20° # Turn off screen in 20 minutes (DPMS)

Option “SuspendTime" "60" # Full hibernation in 60 minutes (DPMS)

Option “OffTime" 120°# Turn off DPMS monitor in 2 hours
FiiAtadat s






images/01070.jpg
(eng]

comment = Group Share for engineering

- Everybody who is in the eng group may access this share

- People will have to log in using their Samba account.

valid users = Geng

. We have created a special user account called "eng'. Al file

writren in this directory will belong to this account as
well 28 to the eng group.

force user = eng

force group = eng

path = /home/eng

 Disable NT Acls a5 we do ot use them here.

at acl support = no

: Make sure that all files have sensible permissions
create mask = 0660

force create mask = 0660

security mask = 0000

directory mask = 2770

force directory mask = 2770

directory security mask = 0000

. Normal share parameters






images/01069.jpg
Inames]

comment = Home Directories
browseable = no
valid users = %S

writeable = yes
quest ok = 7o





images/01072.jpg
¥ S0 Chencd, ysww, gerrs, On /Dxna/eg
§ sudo chgrp eng /home/eng
o chaus: padi Thetorlane:





images/01071.jpg
(eng|
comment = Group Share for engineering

path = /home/eng
nt acl support = no
prowseable = no
writeable = yes
et Dersse






images/00736.jpg
% sudo amavisd-nanny

process-id

PID 01422:

PID 26784

PID 01422:
PID 26784

task-id  elapsed in

or state idle or busy
0:09:51

2678418 0:00:01
0:09:53
0:00:03

elapsed-bar (dots indicate idle






images/00735.jpg
use strict;

Smyhostname = 'mail.example.com';
@local_domains_maps = ([-example.com’]);
@mynetworks = qw(127.0.0.0/8 192.168.0.0/16);

Sforward_method = ‘smtp:{127.0.0.1]:10025;
Senable_db = 1
Senable_global cach
Smax _servers = 5;
SDO_SYSLOG = 1;
SSYSLOG_LEVEL = "mail info’;
Sbypass_decode_parts = 1;
$final_virus_destiny = D_REJECT;
$final_banned_destiny = D_REJEC
$final_bad_header destiny = D_PASS;
$log recip_templ = undef;

@av_scanners = (
[ClamaV-clamd',
\gask_daemon, N (e, “/var/run/clamav/clamd’]
qr/AbOK$/m, qr/\mouwus/m
qr/*"?: (Vinfected Archive)() FOUNDS/m |,






images/00977.jpg
Section "Device

Identifier “Videocardo
Driver “radeon”
aption value

P





images/01068.jpg
Ul Crlaraey = Dac0OR 1%
display charset = 1SO8859-15






images/00737.jpg
$ sudo amavisd-agent

entropy STR ipwvEIOSVA

sysContact STR

sysDescr STR amavisd-new-2.6.1 (20080629)

sysLocation STR

sysObjectiD OID 1361411531221

sysServices INT 64

sysUpTime “Timeticks 111090596 (12 days, 20:35:05.96)
ContentVirusMsgs 1274 3h 05%  (InMsgs)...
InMsgs 247458 S15h  100.0% (inMisgs)
InMsgsRecips 297574 619/  120.3% (InMsgs)
InMsgsSize 28728MB 60MB/h  100.0% (InMsgsSize).
TimeElapsedTotal 625185 0.253s/msg (InMsgs)...
virus byname W32/MyDoom N 9 o 155% (ContentVirusM...

virus byname Troj/BredoZp-H 8 om 13.8% (ContentVirusM.





images/01077.jpg
|FRCItELs).
Where to store print files before passing them to the priting syster?
path = fvar/tmp.

Everybody can use the printers
guest ok = yes
. Let Samba know this share is a printer.
printzble = yes

Show the printers to everyone looking
browseable = yes

. Tell samba what flavor of printing system the system is using.
EE O





images/01074.jpg
[rmyrecirect]
msdfs root
e Troe:

yes
Nserverd\shure






images/01073.jpg
global]
. Enable MS DFS support for this Samba server.
host msdfs = yes

[mydfs]
‘This line tells Samba that it has to look out for
DFS symlinks in the directory of this share.

msdfs 100t = yes

cath = fhome/dfs/mydts:






images/01076.jpg
ENRIGDCI IO QI OR M CIkS
OSSR e o0 A Sk=600, drtseks700,uS Er nOdIAD 00






images/01075.jpg
b smbclient //phobos/c\$ -U BOULDER\\ben

Password: password

Domain=[BOULDER] OS=[Windows Vista (TM) Business 6001 Service Pack 1]
Server=[Windows Vista (M) Business 6.0]

b e






images/00968.jpg
client$ xprogram -display server:0
Xlib: connection to "server:0.0" refused by server
sensrin: arable o open. disphay ‘eeroscl!






images/00732.jpg
mylist: include:/etc/mail/include/mylst
owner-mylist: mylist-request
mylist-request: evi

OWner-owner: postmaster





images/00974.jpg
x-client$ xeyes

debugl:
debugl:
debugl
debugl:
debugl:

client_input_channel_open: ctype X11 rchan 4 win 65536 max 16384
client_request_x11: request from 127.0.0.1 35411

channel 1: new [x11]

confirm x11

channel 1: FORCE input drain





images/00731.jpg
# General redirections for pseudo-accounts.
bin: root

daemon: oot

adm: root

abuse: root

junk: "/dev/null

root: ned

# Pager aliases
pigdog: :include:/ust/local/etc/pigdog

tierlcoverage: :include:/ust/local/etc/tierlcoverage
tier2coverage: -include:/ust/local/ete/tier2coverage

# Sysadmin conveniences
diary: *fusr/local/admin/diary"
info: "J/usr/local/bin/sendinfo"

# Class aliases that change every semester
sa-class: real-sa-class@nag cs.colorado.edu
real-sa-class' ‘include:/isr/local/adm/sa-class list





images/00973.jpg
x-chienty acho JDISFLAY
localhost:12.0

wclient$ xauth list

c-client/unix1? MIT-MAGIC-COOKIE-1 254b67121eh94c8a807f3ab0at a5 1f2





images/00734.jpg
No.of messages

Total Mail Processed by Date

ggt

_E88EEEE

b
H
w3
£
2

os






images/00976.jpg
ServerLayout

t

t

Screen

Screen

LN

TN

Monitor] [ Device

Monitor [ Device

1 1

InputDevice | | [ InputDevice
Mouse Keyboard
InputDevice

‘Graphics tablet.






images/00733.jpg
IP range
Domain/Hostname
core

IP range
Domain/Hostname
core

IP range
Domnain/Hostname
Bries

192.172.226.32/32
jungle.caida.org
med

192.172.226.36/32
fido.caida.org
med

192.172.226.78/32
rommie.caida.org
frasey





images/00975.jpg
Section

Description

ServerFlags
Module

Device
Monitor

Screen

InputDevice
ServerLayout

Lists general X server configuration parameters
Specifies dynamically loadable extensions for accelerated
graphics,font renderers, and the like:

Configures the video card, driver, and hardware information
Describes physical monitor parameters,including timing and
display resolutions

Associates a monitor with a video card (Device) and defines
the resolutions and color depths available in that configuration
Specifes input devices such as keyboards and mice

Bundles input devices with a set o screens and positions the
screens relative to each other






images/00728.jpg
Internet pmMz Internal network
Incoming Routing |———{ Message store
MTA MTAs
- e
Antispam LDAP LDAP l
&= O Outgoing || Client
L MSA/MTA
3 s [ Client
Fallback BAS) Antispam
| outgoing o fem| Clent
MTA
OLP = Data eak preverion






images/00970.jpg
chent$ xauth add server:0 MIT-MAGIC-COOKIE-1
9d888df6077819efad 788fab778dcOf





images/00969.jpg
servers xauth list

server:0 MIT-MAGIC-COOKIE-1 {9d888d6077819ef44788fab778dcof
server/unix0 MIT-MAGIC-COOKIE-1 f9d888df6077819ef4d788fab778dca
localhost-0 MIT-MAGIC-COOKIE-1 ch6chfoese24128749fedddd 7060779





images/00730.jpg
# Basic system aliases -- these MUST be present.
mailer-daemon: */dev/null’
postmaster: Toot





images/00972.jpg
x-servers ssh -v -X x-chient. mydomain.com
SSH-2.0-OpensSH_S.1

debug1: Reading configuration data /home/boges/ ssh/config
debugl: Reading configuration data /etc/ssh/ssh_config

debug1: Applying options for *

debug1: Connecting to x-client mydomain.com [192.168.15.9] port 22
debugl: Connection established.

Enter passphrase for key /home/boggs/ssh/id_rsa

debugl: read PEM private key done: type RSA

debugl: Authentication succeeded (publickey)

debugl: Entering interactive session

debug1: Requesting X11 forwarding with authentication spoofing
debugl: Requesting authentication agent forwarding

v clienté





images/00729.jpg
# Basic system aliases -- these MUST be present.
mailer-daemon:  postmaster
i “dev/null"





images/00971.jpg
SSH clent

Xserver
DISPLAY=:

Xserver machine

Secure ssH connection

SSH server

Xdlent virtual
DISPLAY=:12.0

X dlient machine






images/01081.jpg
$ sudo mkdir -p /var/lib/sambal/printers
§ sudo cd /var/liblsamba/printers

§ sudo mkdir W32X86 WIN4O x64

§ yiido oD piatadal .





images/01080.jpg
$ Sudo useradd printadm
& o bt <5 oriudny





images/01083.jpg
» rpcclient -U printadm -¢ ™\
adddriver \"Windows NT x86\" \"Our Custom PS\

PSGRIPTS.DLL:CUSTOM PPD:PSSULDLL:PSGIPT. HLPNULL:NULL:PSCRIPT.NTE"
s S





images/01082.jpg
- C fonydrive.
& prbiagt U biletudin "Huisibe i ¢






images/00725.jpg
Command

Function

HELO hostname
EHLO hostname
MAIL FROM: revpath
RCPT TO: fidpath®
VRFY address

EXPN address

DATA

Quir

RSET

HELP

Identifies the connecting host if speaking SMTP

Identifies the connecting host if speaking ESMTP
Initates a mail transaction (envelope sender)
Identifies envelope recipient(s)

Verifies that address s valid (deliverable)

Shows expansion of aliases and .forward mappings
Begins the message body”

Endsthe exchange and closes the connection
Resets the state of the connection

Prints 2 summary of SMTP commands

2. There can be multiple RCPT commands for a message.
B Yo Seevhiialis e Docks By crbriia s Aot o 16 owty e





images/00967.jpg
Display manager

‘ Xclient

| Xdlient

Widget ibrary

4

Window manager






images/00724.jpg
Delivered-To: sailingevi@gmail.com
Received: by 10.231.39.205 with SMTP id...; Mon, 19 Oct 2009 08:59:32 -0700.
Received: by 10.231.5.143 with SMTP id...; Mon, 19 Oct 2009 08:59:31 -0700..
Return-Path: <smotheringl39@sherman.dp.ua>

Received: from mail relay.atrust.com (mail-relay.atrust.com [63.173.189.2])

Received-SPF: neutral (google.com: 63.173.189.2 is neither permitted nor denied
by best guess record for domain of smotheringl39@sherman.dp.ua) client-
ip=63.173.189.2;

Authentication-Results: mx google.com; spf=neutral (google.com: 63.173.189.2 is
neither permitted nor denied by best guess record for domain of
smothering|39@sherman.dp.ua) smtp.mail-smothering39@sherman.dp.ua

Received: from SpeedTouch Jan (187-10-167-249.dsl telesp.net br
[187.10.167.249) (may be forged)) by mail-relay atrust.com

Received: from 187.10,167.249 by relay2.trifle.net; Mon, 19 Oct 2009 1359

From: "alert@atrust.com” <alert@atrust. com>

To: <ned@atrust.com>

Subject: A new settings file for the ned@atrust.com mailbox

Date: Mon. 19 Oct 2009 13:59:12 -0300 ...






images/00966.jpg





images/00727.jpg
solanis$ telnet mail-relay.atrust.com 25

Trying 192.168.2.10.

Connected to mail-relay.atrust.com

Fscape character is "'

220 mail-relay atrust.com ESMTP ATE Mail Service 24.12/24.12; Tue, 20 Oct
2009 14:28:53 -0600

ehlo solaris booklab.atrust.com

250-mail-relay atrust.com Hello solaris.booklab.atrust.com, pleased to meet
you

250-ENHANCEDSTATUSCODES

250-AUTH LOGIN PLAIN

250 HELP
quit
221 2.0.0 mail-relay.atrust.com closing connection





images/01079.jpg
[print3]
comment = Printer Driver Area

Place to store the printer drivers
path = fvar/lib/samba/printers
browseable = yes

guest ok = yes

read only
 Who can administer the printer driver repository
write Hiat = Printedm.






images/00726.jpg
Temporary Permanent Meaning

421 521 Mailboxis disabled

422 522 Mailboxis full

423 523 Messageistoolong

441 541 Noanswer from host

444 544 Unabletoroute

453 553 Toomany recipients

471 571 Delivery not authorized, message refused

47* 57 Site policy violation






images/01078.jpg
1gata,
 Who s our printer admin
printer admin = printadm
‘The following have the right value by default.
disable spoolss = no
. Don't bother showing it: you cannot add printers anyway
show add printer wizard = no
. Assuming you want everybody to be able to print
guest ok = yes
AR ST






images/01085.jpg
gtobal]
- The %m causes 2 separate file to be written for each client

g file = /varflog/samba log %m

max log size = 1000

. How much info to log. You can also specify log levels for components
- of the system (here, 3 generally, but level 10 for authentication)

log level = 3 auth:10





images/01084.jpg
b rpcclient -U printadm -c ™\
set driver \"myprinter\" \"Our Custom PS\"* samba-gerver





images/01087.jpg
$ sudo smbstatus # Some output lines condensed for clarity
Samiba version 3.4.1

PD  Username Group  Machine

10612 went  awust  tang (192.168.206)

5283 ned awust  ithaca (19216820.1)
1037 paul atust  pauldesk?  (19216820.48)
8137 wemt  awust adantc (19216813
173 jim jim  jimdesktop  (192168207)

1563 meetty  mgetty  mgetty (192168205)
6125 brian  brian  brian-desktop (192168.2016)

Service  pid  machine  Connected at

swdepot2 18335 john-desktop Fri Sep 18 1321:40 2009
swdepot2 1173 jim-desktop Thu Sep 3 15:47:58 2009
goldmine 1173 jim-deskop  Thu Sep 3 15:38:44 2000
wdepot2 1037 pauldesk2  Tue Sep 8 10:59:28 2009
admin 1037 pauldesk?  Tue Sep 8 10:59:28 2009

Locked files;
Fid  DenyMode  Access RAW  Oplock Name

1037 DENY_WRITE 0x2008 RDONLY EXCLUSIVE+BATCH /home/paul/smsi.
6125 DENY_WRITE 0x2019f RDWR ~NONE /home/trent/rdx.
1037 DENY_WRITE 0x2019f RDWR ~NONE /home/ben/sarnp.
18335 DENY WRITE 0x2019f RDWR NONE BRI Ry s





images/01086.jpg
ZO0SURI0S 16,298, 3] sutivautn ceneck atim_paiswordi s1ay
check_ntim_password: Authentication for user [oetiker] -» foetiker] FAILED
with error NT_STATUS_WRONG_PASSWORD
2009/09/05 16:29:45, 2] smbd/server c-exit_server(571)
Closing connections
2009/09/05 16:29:57, 2] auth/auth.c:check_ntlm_password(305)
check_ntim_password: authentication for user [ostiker] -> [oetiker] ->
[oetiker] succeeded
2009/09/05 16:29:57, 1] smbd/service c:make_connection_snum(648)
etsuko (127.0.0.1) connect to service oetiker initially as user oetiker
(uid=1000, gid=1000) (pid 20492)
2009/09/05 16:29:58, 1) smbd/service.c.close_cnum(837)
etsuko (127.00.1) closed connection to service oetiker
2009/09/05 16:29:58, 2] smbd/server.ciexic_server(571)
Cliig conechons






images/00721.jpg
Topic

Background info

Mail system design ssues

Spam and malware

amavisd virus/spam content filtering
sendmail configuration

Exim configuration

Postfix configuration

DKIM

Integrated emailsolutions

Page
744
753
761
769
775
807
828
845
853





images/00963.jpg
ubuntuy ec2-describe-instances

RESERVATION rseaa0sdf  default

NSTANGE  11343fb7a ami-badeaad3 _ec2-67-202-24-235 compute
Lamazonaws.com  dom-12-31-39-02-5E-55 compute-L internal
runninmykeypair O mismall 2008-12-27T01:43:2740000
us-east-1c

Jountus ssh - ~/.ec2/id_rsa-my-keypai
oA P A e o N—






images/00720.jpg





images/00962.jpg
ubuntu$ ec2-run-instances ami-badeaad3 -k my-keypair

sbuntud ec2-describe-instances

RESERVATION 5630531 default

NSTANCE [-1343b7a _ ami badeaad3 pending  my-keypair 0
mismall  2008-12-22T01-43:27+0000 us-east-1c






images/00009.jpg





images/00723.jpg
Delivered-To: sallingevi@gmail.com
Received: by 10.23139.205 with SMTP id...; Fri, 16 Oct 2009 08:14:27 -700 (PDT)
Received: by 10.114.163.26 with SMTP id__.; Fri, 16 Oct 2009 08:14:26 -700 (PDT)
Return-Path: <david@schweikert.ch>
Received: from mail-relay atrust.com (mail-relay.atrust.com [63.173.189.2])
by mx.google.com with ESMTP id 17512166978pxi.34.2000.10.16.08.14.20;
Exi, 16 Oct 2000 08:14:25 0700 (PDT)
Received-SPF: fail (google.com: domain of david@schweikert.ch does not
designate 63.173.189.2 as permitted sender) client-ip=63.173.189.2;
Authentication-Results: mx google.com; spf=hardfail (google.com: domain of
david@schweikert.ch does not designate 63.173.189.2 as permitted sender)
smtp.mail-david@schweikert ch
Received: from mail.schweikert.ch (nigel schweikert.ch [88.198.52.145)
by mail-relay atrust.com (8.12.11/812.11) with ESMTP id n9GFEDKA029250
for <evi@atrust com>; Fri, 16 Oct 2009 09:14:14 0600
Received: from localhost (localhost localdomain [127.0.0.1])
by mail.schweikert.ch (Postfix) with ESMTP id 3251112DA79;
Fri, 16 Oct 2009 17:14:12 40200 (CEST)
X-Virus-Scanned: Debian amavisd-new at mail schweikert.ch
Received: from mail schweikert.ch ([127.0.0.1])
by localhost (mail.schweikert.ch [127.0.0.1]) (amavisd-new, port 10024)
with ESMTP id dV8BpT7thJKC; Fri, 16 Oct 2009 17:14:07 40200 (CEST)
Received: by mail.schweikert.ch (Postfix, from userid 1000)
id 2A15612DB8; Fri, 16 Oct 2009 17:14:07 +0200 (CEST)
Date: Fri, 16 Oct 2009 17:14:06 +0200
From: David Schweikert <david@schweikert.ch>
To: evi@atrust.com
Ce: Garth Snyder <garth@garthsnyder.coms
Subject: Email chapter comments






images/00965.jpg
WEnhE e2-AATACT: Wi Vol SAAROCHS

ATTACHMENT vol-5Gesoc3  11343b7a  /dew/sdf
12-22T0204:014:0000

ubuntu ec2-terminate-instances i-1343fb7a

INSTANCE  i1343fb7a running _shutting-down

ubuntu ec2-delete-volume vol-5deg0c34

VOLUME  vol-Sde0c24

detaching

2008





images/00008.jpg
Ubuntu® 9.10 “Karmic Koala™

30

openSUSE* 11.2

Red Hat" Enterprise Linux* 5.5

SOlaI’IS

Solaris™ 11 and OpenSolaris™ 2009.06
HP-UX" 113

AIX 6.1






images/00722.jpg
Host A - sender

Host B - receiver

UA
Thunderbird

UA
Ms Outlook

UA
05X Mail

UA
Alpine

UA
[bin/mail

MTA WA
sendmail sendmail

Exim Exim
Ms Exchange [~ | MS Exchange

Postfix Postfix

(pont25) bont25)

1

MSA

(ports87)

AR AR

U = Useragent .

ubmission agent s Eimapd
fansportagent G vt
DA =Delivry agent B VN

A= Access agent

tolocaluser agents






images/00964.jpg
ubuntu$ sc2-create-volume -§ 1 -z ug-east-1c

UME  volSdeBdc3d 1 us-east

5340000

sbuntus ecz-attach-volume vol-5deB0c34 -i i-1343fb7a -d /dev/sdf

ATTACHMENT vol-sdesoc3t  11343b7a  /dew/sdf  attaching 2008
12-22T02:04:01+:0000

creating 2008122270202

ubuntu ec2-describe-volumes
VOLUME vol5deB0c34 1  us-eastlc in-use  2008-12.22T0202
5310000

ATTACHMENT vol-5desoc3¢  i1343fb7a  /dewsdf attached  2008-12
27T02:08:0140000






images/00011.jpg





images/00959.jpg
SXpOrt Enad HOMp-—/.8c2.
oxport PATH=SPATH $EC2_HOME/bin

export EC2_PRIVATE_KEY=$EC2_HOME/pk-<long string value> pem
export EC2_CERT=$EC2_HOME/cert-<long string value> pem
export JAVA_HOME=/path/tofjava






images/00010.jpg
%)
&)





images/00958.jpg
hpeuxy sdo hpvetreste - vl <8 hpos X 20
-a networkilan:vswitch:vm0switch -a diskiscsizfile:/vdev/vm0disk/disk1
hp-ux$ sudo hpvmstart -P vm0





images/00013.jpg
SOLarIS





images/00719.jpg
LINUX_PASSWD

{ redhatbox ubuntubox susebox }

passd
(fetc/passwd ) ->  ${LINUX_PASSWD) )
install /etc/passwd rdist;
cemdspecial /etc/passwd rdist “/ustlocal/sbin/mkpasswd';





images/00961.jpg
ubuntu$ ec2-describe-images -0 amazon

MAGE  amibadeaads Jaws-quickstart/phpa
amszon avallible public (38  machine

MAGE  amibédbafdd /aws-quickstart/rubyquickstart manitest xml
amazon avalable public 1386 machine akia7lcice ari-asledcc

MAGE  ami-1cS4b075 /aws-quickstarytomeatauickstart manifestml
amszon availsble public (386 machine aki-a7lciBce ariaSiciice

ickstart manifest xm]






images/00012.jpg





images/00718.jpg
Conditi

n

UNAVAIL  The source doesnt existor is down.
NOTFOUND  The source exists, but couldn't answer the query.
TRYAGAIN  The source exists but is busy.

SUCCESS  The source was able to answer the query.






images/00960.jpg
ubuntu$. ec2-add-keypair my-keypai

KEYPAIR my keypair bO/651 1105054330742 95 000 7E65:22 1388 2520

- BEGIN RSA PRIVATE KEY--—

MIEw 3AAKCAQEAGHHIF)UKOGeECKae u]8ny SSINUWSSOQVEXfuhEwGk:
KiuFeB7UCH

82827HZ0/9CCOKBFPEIoDARBGIVDYWoz27 AR he/ISisWBIMTDQQUIK7SM19atk7P






images/01048.jpg
Description
System information

Base board Information
Chassis information

Processor information

Cache information

Port connector information
System slotinformation

OFM strings.

System configuration options
BI0S language information
Physical memory array
Memory device

Memory array mapped address
System boot information

IPMI device information





images/00717.jpg
passwd: files ldap
hosts:  files dns
group:  files





images/01050.jpg
JOUIGIES. I <%
Status of virtual processor 0 as of; 01/31/2010 21:22:00
on-line since 07/13/2009 155548
‘The sparcv processor operates at 1200 Mz,
and has a sparcvs floating point processor.
Status of virtual processor 1 as of: 01/31/2010 21:22:00
on-line since 07/13/2009 15:55:49.
‘The sparcv9 processor operates at 1200 Mz,
and has a sparcvg floating point processor.

olaris$ prtconf
System Configuration: Sun Microsystems  sunéy
Memory size: 32640 Megabytes

System Peripherals (Software Nodes)

SUNW, Sun-Fire-T200





images/01049.jpg
SuRe o duddecods. L4
# dmidecode 2.7
SMBIOS 2.2 present.

Handle 0X0004, DMI type 4, 32 bytes.
Processor Information
Socket Designation: PGA 370
Type: Central Processor
Family. Celeron
Manufacturer. Genuinelntel
ID: 65 06 00 00 FF F9 83 01
Signature: Type 0, Family 6, Model 6, Stepping 5





images/00714.jpg
database bdb
suffix *de=mydomain, de=com”

rootdn “en=adrin, de=mydomain, de=com”
rootpw [cryptablnggxhB/yWi

directory /var/lib/idap






images/00956.jpg
hp-ux§ sudo mkfs -F vxfs -o largefiles /dev/disk/disk3
hp-ux$ sudo mount /dev/disk/disk3 fvdev/vmOdisk/
hp-ux$ sudo hpvmdevmgmt -§ 8G /vdev/vmoOdisk/disk1





images/00713.jpg
RFC__ Title

2307 An Approach for Using LDAP as a Network Information Service
2820 Access Control Requirementsfor LDAP

2849 LDAP Data Interchange Format (LDIF}—Technical Specification
3112 LDAP Authentication Password Schema

3672 Subentries in the Lightweight Directory Access Protocol (LDAP)
4511 LDAP: The Protocol

4512 LDAP: Directory Information Models

4513 LDAP: Authentication Methods and Security Mecha

4514 LDAP: String Representation of Distinguished Names

4515 LDAP: String Representation of Search Filters

4516 LDAP: Uniform Resource Locator

4517 LDAP: Syntaxes and Matching Rules

4519 LDAP: Schema for User Applications






images/00955.jpg
3ix$ sudo mkwpar -n mario -r -1 -N interface=en3 address=152.168.10.15
netmask=255.255.255.0 broadcast=192.168.10.255 R activesyes.
CPU=5%-15%,25%





images/00716.jpg
Program

Description

ypserv
ypbind
domainname
ypxfr

ypxfrd

yppush
makedbm

ypmake
pi
ypset
ypwhich
yppoll
ypeat
ypmatch
yppasswd
ypchfn
ypchsh
yppasswdd
ypupdated®

s the NI server daemon, started at boot time
Is the NIS client daemon, started at boot time

Sets the NIS domain for a machine (runs at boot time)
Downloads current version of a map from master server
Serves requests from ypxir (runs on master server)
Makes slave servers update their versions of a map
Builds 2 hashed map from a flat file

Rebuilds hashed maps from fla files that have changed
Configures a host as a master or slave server

Makes ypbind connect to a particular server”

Finds out which server the current host s using

Finds out what version of a map a servers using

Prints the values contained in an NIS map

Prints map entres for a specified key

Changes a password on the NIS master server

Changes GECOS information on the NIS master server
Changes a login shell on NIS master server

Is the server for yppasswd, ypchsh, and ypchfn

Is the server for updating NIS maps (managed by inetd)

2. Not used orsupported on alsystems
b NSt bt specilically eratled with yBbING -vboutie 67 yobisd -y et [daroessiisk





images/00715.jpg
$ ldapsearch -h atlantic.atrust.com -p 389
-x -D "cn=trent,cn=users,dc=boulder,dc=atrust,dc=com" -W
-b "CN=users,DC=boulder,DC=atrust,DC=com" "cn=ned""

Enter LDAP Password: password

# LDAPYV3
# base <CN=users,DC=boulder, DC=atrust,DC=com> with scope sub

# filter: cn-ned"

# requesting: ALL

#

# ned, Users, boulder atrust.com

dn: CN=ned CN=Users, DC=boulder DG=atrust,DC=com

objectClass: top

objectClass: person

objectClass: organizationalPerson

objectClass: user

cn: ned

sn: McClain

telephoneNurnber: 303 245 4505

givenName: Ned

distinguishedName: CN=ned CN=Users, DC=boulder, DC=atrust,DC=com
displayName: Ned McClain

rust D
memberOf: CN=Enterprise Admins,CN=Users,DC=boulder, DC=atrust,DG=com
name: ned

sAMAccountName: ned

userPrincipalName: ned@boulder atrust com

lastLogonTimestarmp: 129086952498943974

rl nadRrat Ao






images/00957.jpg
hp-uxe laracae

Hardware Station Crd Haw Netinterface NM MAC  HP-DLP! DLP
Path  Address In# State NamePPA D Type Support Mjré
0/0/3/0  OXDO30SEEAS237 O UP lan0snapd 1 ETHER Yes 119
0/1/200  OXO0I0GEEA7Z20D 1 UP lanlsnapl 2 ETHERYes 119

hp-ux sudo hpvmnet -c -S vmOswitch -n 0
hp-ux$ sudo hpvmnet -b -S vmOswitch





images/01056.jpg
linux$ mpstat -P ALL
081338 BM CPU %user Snice %sys %iowait

081338 PM
08:13:38 PM
08:13:38 PM
08-13-38 PM

0

102
028
04
038

000
000
000
0.00

049
022
036
00

129
o7
132
094

irg
004
000
000
001

sisoft
038
00
005
0.05

sridle
9679
9876
978
88 19

inr/s
47393
23286
293,85
55 02





images/01055.jpg
b vmstat 5 5

procs

T

b
o
0
o
0
o

swpd free
820 2606356
820 2570324
820 2530028
820 2472340
820 2440276

——-memory-

buff  cache
408776 487092
428812 51019
42885 535636
428920 51588
478950 605798

—-cpu-

ussy id wa

2
2
%0
o
20

173
178
19
310
277





images/01057.jpg
$ uptime
11:10am up 34 days, 18:42, 5 users

ad average: 0.95, 0.38, 0.31





images/01052.jpg
T PR






images/01051.jpg
DEEUXS Sudky Sty
CPU info:
1 Iotel(®) tanium 2 processor (1 Gz, 6 M3
400 MT/s bus, CRU version B1

Memory: 4084 MB (3.99 GB]

Firmware info:
Firmware revision: 0221
FP SWA driver revision: 1.18
BMC firmware revision: 1.50

Platform info:
Model a4 hp server rx2600"
03 info:

Nodename: hpuxil

Release  HP-UX B1131

Mt ia64






images/01054.jpg
R OB+ Sy - Ty
S RO A or AT T SRSy 15 KD






images/01053.jpg
il et <R L proe:

frequency
smt_enabled
Smt_threads
ate

type

1898100000
true

2

enable
PowerPC_POWERS

Processor Speed
Processor ST enabled
Processor SMT threads
Processor state
s

False
False
False
False
False





images/00710.jpg
#/ust/bin/perl
sleep rand() * 600; # sleep between 0 and 600 seconds (i.e., 10 minutes)
system(command_to_copy_files_down);





images/00952.jpg
Solarisy sudo zonecfg -z proprietary-zone
oneci propiietary-zone> create

Lonecig proprietary-zone> set zonepath=/zones/proprietary-zone
onecfg propristary-zone> set autobootstrue

zonecfg proprietary-zone> add net

onecfg proprietary-zone:net> set address=192.168.10.123
onectg proprietary-zone:net> set physical=e1000g0

onecty proprietary-zonenet> end

conecig proprietary-zone> set pool=proprietary-pool

Zonecfg proprietary-zone> ve

onectg proprietary-zone> commi
GicfEprapilatars e el






images/00709.jpg
# sysfiles is just an arbitrary title for the particular module.
fsysfiles]

# This is the path you allow files to be pushed to. It could be just /.

path = /etc

# This is the file specifying the user/password pair to authenticate the module
secrets file = /etc/rsyncd secrets

# Can be read only if you are pulling files

read only = false

# UID and GID under which the transfer will be done

uid = root

gid = root

# List of hosts that are allowed to connect

bts allow = thutribution. it






images/00951.jpg
Bolazis sado. pOGIER -C, (CYaRvE. peet propristary-peet: (ot pestnind; piat
psetmaxs1)’

solaris$ sudo poolcfg -c 'create pool proprietary-pool”

solaris$ sudo pooladm -c.





images/00712.jpg
Attribute _Stands for Whatitis

0 Organization Often dentiies a site's top-level entry”
ou  Organizational unit A logical subivision, e.g. ‘marketing”
1 Commonname  Themostnatural name to represent the entry
dc Domain component Used at sites that model their hierarchy on DNS
objectClass Object class Schema to which this entry’s atributes conform

. Typically not used by sites that model their LDAP hierarchy on DNS





images/00954.jpg
3ix$ sudo lswpar
Name State Type Hostname Directory

Y e Fwmmlinasa





images/00711.jpg
uid: ghopper
cn: Grace Hopper

userPassword: (crypt}$1$pZaGAZRLEMPDIocOafuh HY6ykBHQFpO
loginshell: /bin/bash

uidNumber: 1202

gidNumber: 1202

homeDirectory: /home/ghopper





images/00953.jpg
solaris$ sudo zoneadm -z proprietary-zone install
Preparing to install zone <proprietary-zone>.
Creating list of files to copy from the global zone.

o1 sudo zoneadm -2 proprietary-zone boot
olaris$ sudo zoneadm list

loba

propri

ary-zone





images/00948.jpg
NI 3048, Yl ~connc Qeonkreyi
virsh # list -all

14 Name state
3 UbuntuHardy running
7 Fedora running

Windows2003Server ~ shut off

/irsh # start Windows2003erver
Domain WindowsServer started

¢irsh # shutdown Fedoratxample
Domain FedoraExample is being shutdown

virsh-# quit





images/00708.jpg
SYS_FILES = (/etc/passwd /etc/group /etc/mail/ahiases)
GET_ALL = (chimchim lollipop barkadon)
GET_SOME = {whammo spff)

all: $5YS_FILES) -> ${GET_ALL}
notify barb;
special /etc/mail/aliases "/ust/bin/newaliases’;

some: ${SYS_FILES) -> ${GET_SOME}
except fetc/mail/aliases;
notify eddie@spiff;





images/00950.jpg
SCIEIER Sudiy pictan, .
“olaris$ sudo pooladm

system default
string
int
boolean
string

system.comment
system version 1
system bind-default
system poold dbject






images/00949.jpg
Container 1 Container2 Container 3
Global Web server sy
e 2 application

one
Default resource pool Proprietary
1CPU resource pool

Fair share scheduling 1cPU.






images/00707.jpg
install options [destdir];
notify namelist;

except pathlist;

except_pat pattemiist;
special [pathist] string;
cmdspecial [pathlist] string;





images/01059.jpg
solaris$ vmstat 5 5
‘memory

procs
Fbw
000
000
000
0 00
100

swap
338215
341784
351752
36020
266648

free

10384
11064
12968
14520
15712

page
remf pipo fr de st
0310000
0% 11100
169 09900
030 60000
0730 8 40 0

disk

56

E

faults

in
137
150
173
138
290

B4
101
215
E
76
474

o
s
100
156
7n
937





images/00706.jpg
lename Function

letc/passwd User account information database

letc/shadow®  Holds user account passwords

letcigroup Defines UNIX groups

Jetc/hosts Maps between hostnames and IP addresses
letc/maillaliases  Holds electronic mail aliases

Jetc/sudoers Grants privileges for the sudo command

Jetc/skel/* Holds defaut configuration files for new home directories

a. Not necessarlly sharable among al flavors of UNIX since the encryption can vary; see page 179,





images/01058.jpg
linux$ swapon -s
Flename Type  Size  Used Priority
jdevidbl partition 4096532 0 -1
fdev/hda? partition 4096564 0 2

solaris§ swap -1
swapfile dev swapl blocks free
Jdev/isk/cONd0st 321 16 164400 162960

hp 5§ swapinfo

Kb Kb Kb BCT START/ K
TYPE AVAL USED FREE USED  LIMIT RESERVE PRI
dev 8388608 O 8383508 0% 0 S

NAME
/devAvgoo/ivol





images/01061.jpg
AINIEY DML 5 5

cache id wa st
597972 95 10
597972 9% 00
597972 9% 00
597972 9% 00
597972 % 00





images/01060.jpg
Column _Meaning

e Number of pages reclaimed (rescued fiom the free ls)
mf Number of minor faults (minor meaning *smal number of pages”
pi Numberofkilobytes pagedin

PO Numberof kilobytes paged out

fr Number of ilobytes placed on the free st

de Number ofkiobytes of “predicted short-term memory shortfall
st Number of pages scanned by the cock algorithm






images/00703.jpg
fust/man  -Tg harp/usrshare/man maonk{l)/usy/man
Wsils o ladpartdmeneletools





images/00945.jpg
Option

end-relocation-server Enables migration; et o yes
xend-relocation-port Network port used for migration activities
xend-relocation-address  Interface to listen on or migration connections. If

unspecified, Xenlistens on all nterfaces in dom.
xend-relocation-hosts-allow _Hosts from which to allow connections*

- This thould Aever b bisnk otharwdse consections will be alowat from all hasts.





images/00702.jpg
S Is /portal
5 1s /portal/photos

art_class 2010 florissant 1003 mnpo3
blizzard2008  frozen_dead guy Oct2009  rmnp 030806
boston021130  greenville.021129 steamboat2006





images/00944.jpg
redhat$ sudo xm list

Name ID Mem(MiE| VCPUs State Time(s)
pomain-0 0 0 2 3972
chef 1 s12 1 128

redhat$ sudo xm console 19





images/00705.jpg





images/00947.jpg
ubuntu$ sudo virt-install --connect gemu://system -n UbuntuHardy
r 512 -f ~/ubuntu-hardy.img -s 12 -c /dev/dvd ~os-type linux
—accelerate ~-hvm -vnc

Would you like to enable graphies support? (yes or no)





images/00704.jpg
RFC__Title Author Date
1094 Network File System Protocol Specification Sun Microsystems  Mar 1989
1813 NFS Version 3 Protocol Specification B.Callaghanetal. ~ Jun 1995
2623 NFSVersion 2and Version 3 Security lssues M. Eisler Jun 1999
2624 NFS Version 4 Design Considerations . Shepler Jun 1999
3530 NFS Version 4 Protocol S.Shepleretal  April 2003






images/00946.jpg
P O SO S PN

DEVICE=pecho
ONBOO!
BRIDGE=e{h0
HWADDR=XX-XX XX XX XXXX

fetc/sysconfig/network-scripts/etho

ONBOOT=yes
TYPE-Bridge





images/01067.jpg
» subymaswd -1 smbasrder -1f toby
New SMB password: passuword
ok N SM DT pass o





images/01066.jpg
3. 98lo sbpnsied, <. tobl
New SMB password: password
Rkt TSI Do Do





images/01063.jpg
aix§ iostat

Device:  tps  Blkreadss Bl witn/s
ndisko 0.5 059 239
ndiskl 034 027 012
ndisk2 001 00 005

hdisk3  0.00 0.00 0.00

Bk read
304483
140912

5704
o

Bll_wrtn
1228123
216218
15320

0





images/01062.jpg
solaris} lostat 5 5

.

tin tout

1
£
2

19
16

sdo

kps tps serv

H

1
o
3
o
19

kos
1

19

sdt
s

serv
0
14
2
13

nfst
kps tps serv
0 0 0
0 0 0
0 0 0
0 0 0
o 0 o

pu
sy weid
00 %
0 0 100
00 100
11 %
o0 0 100





images/01065.jpg





images/01064.jpg
I MY

Linux 26.18-92 ELsmp (bajafur atrust.com) 01/16/2010

12:00:01 AM
12:10.01 AM
12:20:01 AM
12:30:01 AM
12:40:01 AM
12:50:01 AM
910001 AM

cru
al
al
a
al
al
an

seuser %nice %system

010
00t
0ot
009
004
005

000
000
000
000
000
000

004
003
003
003
003
003

saiowait
008
005
001
005
001
004

suidle
90,81
9088
90,89
9083
902
59.88





images/01027.jpg





images/01026.jpg
$ /usr/lib/cups/backend/usb
direct usb "Unknown" "USB Printer (usb)






images/00029.jpg
FECLIREE o KStal’ Waet:
Loaded plugins: fastestmirror

Parsing package install arguments
Package wget-110.2-7.¢l5.386 is already installed and latest version
Nothing to do





images/00699.jpg
users  harp:/harp/users
devel  -soft harp/harp/devel
Hif9 ..o BarpohseRG.





images/00941.jpg
Path

Purpose

letc/xen
xend-config.sxp
auto
scripts
Ivarflogixen
Just/sbin/xend
Jusr/sbin/xm

Primary configuration directory

Top-level xend configuration file
Guest 05 config files to autostart at boot time
Utily scrpts that create network nterfaces, etc.
Xen log files

Master Yen controller daemon

Xen guest domain management tool






images/00028.jpg
suse# yast --install wget
SR S SRR T





images/00698.jpg
5 nfsstat -c

Client rpc.
calls  badcalls retrans badxid timeout wait newcred timers
64235 1595 0 3 192 0 0 886
Client nfs

calls  badcalls nclget  nclsleep

62613 3 62643 0

null  getattr  setattr  readlink lookup  root  read
0% 3% 0% 2% 0% 0% 2%
wiite  wrcache create  remove  rename link  symlink
% 0% 0% 0% 0% 0% 0%

mkdir readdir  mmdir  fsstat
0% 6% 0% 0%





images/00940.jpg
N

05 Virtualization
(e:g. Solaris containers,
HP Integrity VM,

1BM workload partitions)

)






images/00031.jpg
OPIES gunp Srpwger-Liivoppa-1131 copat.gs
hpux swinstall -s /tmp/wget-111.4-hppa-11.31.depot wet
05/27/09 130131 EDT BEGIN swinstall SESSION
(non-interactive) (jobid=hpux11-0030)

* Session started for user “root@hpux11’,

* Beginning Selection
* Target connection succeeded for ‘hpuxi1/”

* Source: /tmp/wget-1.11.4-hppa-11,31.depot
*Targets  hpuxii/

* Software selections;

wiet wget RUNI=1114;
* Selection succeeded
* Beginni

1P-UX_B./800

‘g Analysis and Execution

is and Execution succeeded,






images/00701.jpg
# Directory Map
harp Jetc/auto harp -proto=tcp
’- Jatd s ditect





images/00943.jpg
vepus - 1
secroades - ustftin/pyEnit
on_poweroff = "destroy"

on seboo

on_crasn
o= | |
sk - [ “apaio omchet dsk s |
Vif = | "Mace00-163e:18,5779 bridgexenbrd® |






images/00030.jpg
SCACIGE /ApU/ei VDG ="IIStAT. WESt.
<multiple pages of output as seven packages are installed>





images/00700.jpg
fust/src - harp:/usr/src
/es/tools ro monk-/cs/tools





images/00942.jpg
redhat$ sudo virt-install -n chef -f /ym/chef.img -1 http://example.com/myos
T 402 nbavanics






images/00033.jpg
LI od /I guUONp wiet-1 114 g

sixi tar xfp weet-111.4.tar

sixt cd wget-1.11.4

sixt /configure ~disable-ssl --disable-nls  # See comrments below
nfigure: configuring for GNU Weet 1114

checking build system type... r36000-ibm-aix

config status: creating src/configh

generating po/POTFILES from /po/POTFILES in
eating pofMakefile

sixt make

<several pages of complation output>

sixt make install

<about a page of output>






images/00032.jpg
hpux$ wget http://samba.org/samba/docs/Samba3-HOWTO.pdf
fust/lib/did sl: Can't open shared library: /ust/local/lib/libcrypto ]
JustAlib/did sl: No such file or directory

[HP ARIES32): Core file for 32 bit PA-RISC application

[HP ARIES32): /usr/local/bin/wget saved to /tmp/core.wget.






images/00035.jpg





images/00939.jpg
Privileged _,
guest (host)

‘Guest 05 1
(modified)

Paravirtualized hypervisor
(e en Looms

System Hardware

Disk Py Memory






images/00034.jpg





images/00938.jpg





images/00026.jpg
redhat$ rpm -q python

python-2.4.3-21.6l5





images/00025.jpg
ubuntu$ locats signal.h
just/includelsignal h
fust/include/asmysignal h
fust/include/asm-generic/signal
pust/include/linux/signal h






images/00937.jpg





images/01028.jpg
Tier Generators UPSs Power feeds HVAC _Availability

T None N Single N %9671%
2 N N+1* Single NeT o 99741%
3 N#l NeT' Dualswitchable N+l 99.982%
4 N 2N Dual,simultancous 2N 99.995%

2. With redundant components





images/00027.jpg
LAt Aptget netall wiget
Reading package lists... Done
Building dependency tree

Reading state information... Done
wet is already the newest version

0 upgraded, 0 newly installed, O to re

nove and 0 not upgraded.





images/00934.jpg
b cp server.key server.key.orig
5 openssl rsa -in server.key.orig -out server.key
4 chmod 400 server.key server.key.orig





images/00933.jpg
SVINaTHOBE 13 s L0 T
ServerName www.company.com
ServerAdmin webmaster@vww.company.com
DocumentRaot /var/www/htdocs/company
ErrorLog logs/wwnw.company.com-ssl-error_log
CustomLog logs/wiw.company.com-ssl-access log combined
Seriptalias /cgi-bin/ /var/wurw/cgi-bin/company
SSLEngine on
SsLCertificatefile /usr/local/apache2/conf/ssl.crt/server.crt
SSLCertificateKeyFile /usr/local/apache2/conf/ssl key/server key
/VirtualHosts.





images/00936.jpg
<Location /rpc>
ProxyPass https://wm monkeypaw.com/rpe
ProxyPassReverse https://wm.monkeypaw.com/rpc
SSLRequireSSL

</Location>

<Location /exchange>
ProxyPass https://wm monkeypaw.com/exchange
ProxyPassReverse https://wm.monkeypaw.com/exchange
SSLRequireSSL

</Location>

<Location /exchweb>
ProxyPass hitps://wm.monkeypaw.com/exchweb
ProxyPassReverse https://wm.monkeypaw.com/exchweb
SSLRequireSSL

</Location>

<Location /public>
ProxyPass https://wm.monkeypaw.com/public
ProxyPassReverse https://wm monkeypaw.com/public
SSLRequireSSL

</Location>

<Location /oma>
ProxyPass https://wm.monkeypaw.com/oma
ProxyPassReverse https://wm monkeypaw.com/oma
SSLRequireSSL

</Location>

<Location /Microsoft-Server-ActiveSync>
ProxyPass https://wm monkeypaw.com/Microsoft-Server-ActiveSync
ProxyPassReverse https://wm monkeypaw.com/Microsoft-Server-ActiveSync
SSLRequireSsL.

el mantini.





images/00935.jpg
httpd.apache.org/docs-2.2/ssl/ssl_fag.html
httpd.apache.org/docs/2.2/mod/mod_ssLhtml





images/01034.jpg





images/01033.jpg
20,000
38,385
3276
1200

62.861

BTUH for roof, walls, and windows
BTUH for servers and other electronic gear
BTUH for light fixtures

BTUH for operators

BTUH total





images/01036.jpg
Power tier Watts/rack

Ultra-high density” 25 W
Very high densiy (e.g. blade servers)® 20 kW
High density (eg. 1U servers) 16 kW
Storage equipment 12
Network switching equipment 8w
Normal density 6k

. Prjected top tler 2015,
b. Current top tierin 2010





images/01035.jpg
Rack

Rack






images/01030.jpg
(25 servers) (452






images/01029.jpg
WE TOOKTHE HOSTAGES, | [ BUT THENTHIS GUY CLMBED UP NO, HE IBNORED THEM.
‘SECURED THE BUILDING, AND | | THE. VENTIATION DUCTS AND WALKED | | HE JUST RECONNECTED
CUT THE COMPUNKANON | | ACROSS BROKEN GUASS, KLUNG | | THE GRS WE T
LIES LKE YOO SAID. | | ANYONE LE SENTTO SToP HIM. | | MUTTERING SOMETHING.
/ K AABOUT “UPTIME".
¥+ EXCELLENT. 4
. SHIT WERE
A0 HE RESCD 3
T HosGES? s






images/01032.jpg
(4 humans)

= 1,200 BTUH





images/01031.jpg
(s ﬁx\um) (m) (M
Tihire ot

= 3276 BTUH





images/01037.jpg
General tools

Hex (Allen) wrench kit
Scissors

Small LED flashlight
Socket wrench kit
Stud finder

Tape measure
Toncwrench kit
Tweezers

Ball-peen hammer, 4 0.
Electriians knife or Swiss army knife
Phillips-head screwdrivers: 0, #1, and #2
Pliers, both flat-needlenose and regular
Ridgid SeeSnake micro inspection camera
Slot-head screwdrivers: 1/8' 3/16",and 5/16"
Teensy tiny jeweler's screwdrivers

Computer-related specialty items

Digital multimeter (DMM)
Infrared thermormeter
RI-45 end crimper
SClterminators

Spare power cord

Static grounding strap

Cable ties and their Velcro cousins)

PCscrew kit (such as those from crazype.com)
Portable network analyzer/laptop

Spare Category 5 and 6A RIS crossover cables
Spare RI-45 connectors (solid core and strandied)
Wire stripper (with an Integrated wire cutter)

Miscellaneous

Can of compressed air
Cellular telephone
Electrical tape:

QTips

Dentist's mirtor (possibly a telescoping one)
First-aid kit including ibuprofen and acetaminophen
Home phone and pager s of on-call support staff

Lst of emergency maintenance contacts*

Six-pack of good microbrew beer (suggested minimum)

i e S





images/00018.jpg
Example. Meaning

56kb/sserialline  Aserial line that transmits 56,000 bits per second
KB file Afile that contains 1,000 bytes

4KiB SSD pages SSD pages that contain 4,096 bytes

8KB of memory Not used in this book see note below

100MB filesize limit  Nominally 10° bytes; in context, ambiguous
100MB disk partition  Nominally 10° bytes; in context, probably 99,999,744 bytes'

1618 of RAM Exactly 1,073,741,824 bytes of memory”
1Gb/s Ethemet Anetwork that transmits 1,000,000,000 bits per second
178 hard disk Ahard disk that stores 1,000,000,000,000 bytes

s Thatis 10" rounded down tothe nearest whole muliple ofthe disks512-byte block size
b. But aczording to Microsoft, till not encugh memory to run the 64-bit version of Windows 7





images/00930.jpg
$ ifconfig -a

hme0: flags=863<UP BROADCAST.NOTRAILERS RUNNING MULTICAST> mtu
1500 inet 10.1.2.9 netmask ffFff00 broadcast 10.1.2.255

hme0:1: flags=863<UP,BROADCAST NOTRAILERS RUNNING MULTICAST> mtu
1500 inet 206.0.1.133 netmask FFFFFR0 broadcast 206.01 255





images/00929.jpg
$ cat /etc/hostname.hme0
overkill

§ cat fetc/hostname hme0:1
20601133

5 grep overkill /etc/hosts
10129 averkill overkill demsin





images/00020.jpg
5 man -k translate

objcopy (1) - copy and translate object files
dogettext (3) - translate message
e (1) - translate or delete characters

snmptranslate (1) - translate SNMP OID values into more useful information
i (1p) translate characters





images/00932.jpg
NameVirtualHost 128.138.243.150

<virtualHost *>
ServerName wiww company.com
ServerAdmin webmaster@vrww.company.com
DocumentRoot /var/www/htdocs/company
ExrorLog logs/www.company.com-rror_log
CustomLog logs/www.company.com-access log combined

ScriptAlias /cgi-bin/ /var/www/cgi-bin/company
ST, e Sy





images/00019.jpg
Linux_Solaris HP-UX AIX _Contents

T T 1 User-level commands and applications
System calls and kernel erro codes
Ubrary calls

Device drivers and network protocols
Standard file formats

Games and demonstrations
Miscellaneous files and documents
System administration commands
-~ Obscure kemel specs and interfaces
HP-UX general nformation

T oeawn






images/00931.jpg
<VirtualHost 128.138.243.150>
ServerName www.company.com
ServerAdmin webmaster@uwiv.company.com
DocumentRoot /var/srw/htdocs/company
Errorl.og logs/urunw company com-error_log
CustomLog logs/wurw.company.com-access log combined
Scriptalias /cgi-bin/ /var/swrw/cgi-bin/company
</VirtualHost>





images/00022.jpg
System

URL

Comments

Ubuntu
SUSE
RHEL
Solaris
HP-UX
AX

help.ubuntu.com
novellcom/documentation
redhat com/docs.
docssun.com

docshp.com
www.redbooks bm.com
ibm.com/support

Mostly user-orlented; see "server guide”
Admin stuff i in “reference guide”
Mostly documents Red Hat extensions
Extensive catalog of materials

Books, white papers,and tech guides
Numerous real books in PDF format
Support gateway to notes, FAQ, etc.






images/00021.jpg
e
e O T





images/00024.jpg
aix$ which gec
fopt/pware/bin/gee





images/00928.jpg
5 Is -1 /etc/host™
1100t 10 Nov 410:19 /etc/hostnamehmed
1700t A6 Dec9l 1994 feteMnstriame ot






images/00023.jpg
Webssite

Description

blogs sun.com
cpanorg
freshmeat et
kenelorg
finux.com
finuxorg
linuxslashdotorg
finuxhacom
Iwnnet

hercom
rootvgnet
securityfocuscom
serverfaultcom
Serverfiles.com
slashdotorg
solariscentralorg
sun.combigadmin
sunhelp.org
ugucom

Great collection of technical atices, many Solaris-elated
Authoritative collection of Perl modules

Large index of Linux and UNIX software

Offcial Linux kernel ite

Linuxforum, good for new users*

General Linux nformation clearing house
Linux-specific arm oftech news giant Slashdot
‘Compllation of kernel-related info and patches

Linux and open source news service

Linux news aggregator

Alcoriented site with lots o inks and good forums
General computer sectrity info.

Collaboratively edited database of sysadmin questions
Directory of network admin software and hardware
Tech news n a variety of categories

Open blog with Solais-elated news and articles
Sun-specific aggregation it for admin info

Very nice collection of Surelated material

UNIX Guru Universe - althings sysadmin

 This siels now W by the LI Foundaion:





images/00015.jpg





images/00927.jpg
AN A LAB A IBE S k3
NETMASK_1-255.255.255.192
STARTMODE_1="auto”
LABEL 1-0
IPADDR_2-128.138.243.150
NETMASK 2-255.255.255.192
STARTMODE_2-"auto”
LABEL 2-1






images/00014.jpg





images/00926.jpg
iface eth0:0 net static
‘address 128.138.243.150
netmask 255255255192
broadcast 128.138.243 191





images/00017.jpg
PORK:ORL./ ey B,
bork ~x off /etc/passwd Jetc/smartd.conf
Bt it NN e





images/01039.jpg
Choose
green
products and
technologies

Least effective Most expensive

Manage secondary
consumption an
output stream

Most effective / Reduce direct consumption \ ~Least expensive






images/00016.jpg
> grep Bob /pub/phonelist # Look up Bob’s phone number
B0b Knowles 555-2834
Bob Srmith 555.2311





images/01038.jpg





images/00923.jpg
Module  Function

authn_dbm Uses a DBM database to manage user/group access (recommended if
you need per-user, password-based access to areas of your web site)

rewrite  Rewrites URLs with regular expressions

expires  Lets you attach expiration dates to documents

proxy Uses Apache as a proxy server

mod_ssl _Enables support for the Secure Sockets Layer” for HTTPS

a. Also known as Transport Layer Security or TLS: see bage 971.





images/00922.jpg
System Recommended source of binaries.

Linux Installed as part of standard distribution
Solaris  /usr/apache2  Installed as part of standard distribution
HP-UX  Jopt/apache Install HP-UX 11i “Web Server Suite”

AIX Jusr/IBMIHS  Install IBM HTTPServer product






images/00925.jpg
eLh0-0
IPADDR-128.138.243.150
NETMASK=255 255 255 192
NETWORK-128.138.243.128
BROADCAST=128.138.243.191
ONBOOT=yes





images/00924.jpg
Module _Function

asis Allows designated file types to be sent without HTTP headers
autoindex Displays the contents of directories that don't have a default HTML file
env Lets you set special environment variables for CGl scripts

userdir  Allows users to have their own HTML directories






images/01045.jpg





images/01044.jpg
Organization Web site Description
Energy Star energystargov Consumer product standards
EPEAT epeatnet Green electronics manufacturing
French Green IT greenitfr French Green IT blog

GreenIT Observatory  greenitbfrmiteduau  Australian green IT research
Green T Promo Council ~ greenit-pcjp Green T for Japan and Asia
Green Standards Trust ~ greenstandards.org  Office equipment recycling

T Industry Coundil iticorg General best practices for IT

Less Watts lesswatts.org Saving power with Linux

The Green Grid thegreengrid.org Data center focus






images/01047.jpg
B CRL e et

processor o
vendor_id Genuinelntel

cpu family 6

model 15

model name  : Intel(R) Xeon(R) CPUES310® 160GHz
stepping 1

cpu MHz 1600003

cache size 4096 K8

physical id o

cpu cores 2

siblings 2





images/01046.jpg
File

Iprocicpuinfo
Iprocimeninfo
Iproc/diskstats

Contents

CPUtype and description
Memory size and usage
Disk devices and usage statistics





images/01041.jpg
Function EL_AA  EC
Accounts payable/receivable X
Benefits management X X
Employee time tracking X X X
General ledger X
Payrol X X
Time reporting X X X
Vacationysick day tracking X X






images/01040.jpg
Low-power equipment

Warmer machine room temps
Equipment e extension
Degraded mode for outages
Efficient cooling/ouside air

Cloud computing

Least effective’
Most expensive

} Energy-optimized configuration
Granular capacity planning
X / Gnly-as éeded severs
Server virtualization
Voot secive SANs instead of local disks

Server consolidation

Least expensive ‘Appiication consoldation





images/01043.jpg
Telecommuting
Recycled paper and toner

Workplace recycling
Equipment fe extension
Equipment recycling
Warmer office temperature.

Least effective
Most expensive

)

Most effective

Electronic documents.

Print duplexing and 2-up printing
Nospace heaters

Task-based workstation sizing
One workstation per person

Workstations sleep when idle
Replace CRTs with LCDs.
User education






images/01042.jpg
3 sudo sh -c ‘echo 1 > /sys/devices/system/cpu/sched_mc_power_savings'
$ sudo sh - 'echo 1 > /sys/devices/system/cpu/sched_smt_power_savings'





images/01005.jpg
Cmd _ Location _Function
Ipc  Just/sbin  Controlsa printeror queve

Ipd  Just/sbin  Schedules and prints jobs

Ipq  Just/bin  Shows print queue contents and status
lor  Justibin  Queuesjobsfor printing

lprm  Jusr/bin  Cancels a queved or printing job
Iptest /usr/bin  Generates an ASCII test pattern






images/01004.jpg
% sudo lpshut

5 sudo Ipadmin -xhoser

$ sudo find /ust/spool/lp -name hoser | xargs rm -rf  # remove queued jobs
5 sudo Ipsched

¢ suda Instat <t





images/00049.jpg
y chmiod, 42 Dillowusid
§ /helloworld
Hello, world!





images/01007.jpg
diA621xinet dequeued
cfA621xinet dequeued





images/00048.jpg
#/bm/bash
echo "Hello, world!






images/01006.jpg
5 lpq

anchor-lj is ready and printing

Rank  Owner Job Files Total Size
active garth 314 domain2xlps 298778 bytes
1st kingery 286 standard input 17691 bytes
md  evi 12 appendices 828 bytes






images/00051.jpg
b find . -name “log"

do-not touch/importantlog
admin. com-log/

foolog

genius/spew log
leather_flog





images/00919.jpg
Language _Name of embedded interpreter Learn more

perl mod_perl perlapache.org

Python mod_python modpython.org

PHP mod_php (iraditional) apache.org
Zend server (commercial accelerator) zend.com

Ruby on Rails Phusion Passenger (aka mod_rails or mod_rack) modrails.com






images/00050.jpg
+ bash helloworld
Hello, world!

§ source helloworld
Hello, world!





images/00918.jpg
» telnet localthost 80

Trying 127.0.0.1

Connected to localhostatrust.com.
Escape character is ‘A

GET / HTTP/1.1

Host: www.atrust.com

HTTP/11 200 OK
Date: Sat, 01 Aug 2009 17:43:10 GMT

Server: Apache/2.2.3 (CentOS)

Last-Modified: Sat, 01 Aug 2009 16:20:22 GMT
Content-Length: 7044

Content-Type: text/html

<contents of your default file appear here>
Connection closed by foreign host.





images/00053.jpg
¢ find . -type f -name “.log’ | grep -v .do-not-touch
fo0Jog
zenius/spewlog





images/00921.jpg
$ dig www.google.com a

 QUESTION SECTION:
www google.com,

; ANSWER SECTION:
s google com.
wrww 1 google.com,
w1 google.com,
w1 google corn.
w1 google corn.
w1 google corn.
wnlaediacon.

65
65
65
65
65
&5

N
N
N
N
N
N
N

CNAME

e

wwrw 1 google. com.
7412595104
74125 95.105
74125 95.106
74125 95147
741259599
74.125.95.103





images/00052.jpg
 find . -type f -name ".log’
do-not-touch/important log
fo0 log

penius/spew log






images/00920.jpg
Server Type Web site

Tomcat  Opensource  tomcatapache.org

GlassFish ~ Open source  glassfish devjava.net

JBoss Open source  jboss.org

ocs Commercial  oracle.com/technology/tech/java/ocj

WebSphere  Commercial  ibm.com/websphere

Weblogic ~ Commercial  oracle.com/appserver/weblogic/weblogic-suite html

Jetty

Open source

eclipse org/jetty






images/00055.jpg
$ find . -type f -name “.log" | grep -v .do-not-touch | while read iname; do
echo mv $fname ${fname/.log/.LOG/} done | bash -x

+ my foolog f0010G

+ mv genius/spew log genius/spew LOG






images/00054.jpg
$ find . -type f -name ".log" | grep -v .do-not-touch | while read fname
- do

- echo mv $fname ${fname/.log/.LOG/}

- done

my foo.log f0010G

mv genius/spew og genius/spew






images/00057.jpg
F-/oiny aaan

echo -n “Enter your name: *
read user_name

if [ -n "fuser_name" ], then
echo "Hello $user_name!”
exit0

clse
cho "You did ot tell me your name!
exit1






images/00056.jpg
5 echo "\taa\tbbitecin™

\raa\tbbitccin

§ printf “\taa\tbbitceln”
A





images/00916.jpg
Proto  Whatit does Example
fle  Accessesalocalfle file/fetc/syslog.conf

ftp Accesses aremotefile via FTP fepi/ftpadmin.com/addusertargz
bty Accesses aremotefilevia HTTP  http://admin.comyindex htmi

https  Accesses a remote file via HTTP/SSL hitps://admin.com/ordershtm

Idap  Accesses LDAP directory services  Idap/ldap.bigfoot.com:389/cn=Herb
mailto _ Sends email to a designated address _ mailtorlinux@book.admin.com






images/00047.jpg
$ sudo grep -1 mdadm /var/log/®
varflog/auth log
frarfloglayslog.0





images/00915.jpg
URI
s-kind-of is-kind-of






images/00917.jpg
b telnet localhost 80
Trying 127.00.1.

Connected to localhost atrust.com.
Escape character is ")

GET /

<contents of your default file appear here>
Connactin. clesed Ly fovsign host





images/00912.jpg
Cmd

ipmon
ipnat

Function

Manages rules and fitterlsts
Obtains satistcs about packet filtering
Monitors logged filte information
Manages NAT rules





images/00911.jpg
SRACK I QuuC: Rl
pass out quick from 192.168.10.10/32 to any keep state





images/00914.jpg





images/00913.jpg
Gy IRUT peviey AEE T
taget  prot opt source destination
bock &l -~ anywhere anywhere

Chain FORWARD (policy ACCEPT)
target prot opt source destination
all - anywhere anywhere

Chain OUTPUT (policy ACCEPT)

target  prot opt source  destination
Chain block (1 references)

target  prot opt source destination
ACCEPT all - anywhere  anywhere
ACCEPT tp - anywhere  anywhere
ACCEPT tp - anywhere  anywhere
ACCEPT tp -~ 12813800/16 anywhere
ACCEPT icmp -  anywhere  anywhere
DROP all -- anywhere  anywhere

state RELATED,ESTABLISHED
state NEW tcp dptwnw
state NEW tcp dptssh

state NEW tcp dptkerveros





images/01012.jpg
Ipc> status cer
cer:
queuing is enabled
printing is enabled
1o entries
i o s





images/01011.jpg
topq printer jopid
S viiecor sering





images/01014.jpg
Name Type Meaning Example
sd sting Spool directory sd=/var/spooV/lpd/howler-Iw.
I sting Enorlogfile f=/var/log/Ipr
Ip  sting Devicename Ip=/dev/ipo
nw  bool  Opendevicereadiwite W
af  sting  Accountingfile af-/ust/adm/Ipracct

mx  number Maximum filesize mik0

mm sting  Remote machinename  rm=beast xor.com
sting  Remote printername owlerlw

of sting Outputfilter of=/ust/libexec/lpt/lp
i sting  Inputfilter if=/ust/sbin/stylascii
sh bool  Suppress headers sh






images/01013.jpg
anchor-ljjcer|1-56|Laserjet SM In lab:\
‘Ap=/var/spool/lpd/anchor-j/.null\
sd=/var/spool/lpd/anchor-lj:\
1f=/var/adm/Ipd-errs\
srarinz#0:rm=anchorrpeanchord






images/01008.jpg
enable printer
Jisbile priniter





images/01010.jpg
down printer message
up printer





images/01009.jpg
start printer
stop pri






images/01016.jpg
@PJL SET COPIE:
@PJL. COMMENT FOO BAR MUMBLE
@PJL. SET DUPLEX=ON

@PJL. SET PAGEPROTECT=OFF

@PJL. ENTER LANGUAGE=PCL






images/01015.jpg
#./bin/bash
Aer/local/bieiekios £ | ARpocal i bere e





images/00038.jpg
Cp --preserve --recursive /etc/” /spare/backup \
|l echo "Did NOT make backup®





images/01017.jpg
%:PS-Adobe-3.0

%%BoundingBox: 0 0 612 792

%%Pages: 1

% ..

% Draw a line around the polygons,

pop pop pop dup 0 setgray 0 0 moveto dup 0 lineto 0707106781 mul dup
lineto closepath stroke

PDF:

%PDF-13

%ATAZAA"

810 obj

<<

/Linearized 1

/0 83

H [ 915 494 |

/T 125075

>>

endobj

xref

81 24

0000000016 00000 n

AN<BE>

"PAGAIA <9e>

endstream

endobj





images/00040.jpg
b echo "Saved ${revjth version of mdadm.conf.”
S B o ok e Ght






images/00908.jpg
block in all
pass in all





images/00039.jpg
5 etcdir="/etc’
§ echo $etcdir
Tote





images/00042.jpg
$ echo "There are "wc -1 /etc/passwd’ lines in the passwd file."
here are 28 lines in the passwd file.






images/00910.jpg
block out quick all
pass in quick proto tcp from any to 10.0.0.0/2¢ port = 80 keep state
pass in quick proto tep from any to 10.0.0.0/2¢ port = 443 keep state
pass in quick proto udp from any 1o 10.0.0.0/24 port = 53 keep state
hlock in all






images/00041.jpg
3 mylaogs'Peemayhrnia Dutch

§ echo "I speak ${mylang)."
speak Pennsylvania Dutch

§ echo 'l speak ${mylang).
speak ${mylang).





images/00909.jpg
St et
S





images/00044.jpg
§ oout -6 k3 . fergrony
rootx0

pincx1:daemon

daemonx2,

§ sort -t k3,3 /etelgroup
rootx0:

oinix Tdsemon
users:x100;





images/00043.jpg
Opt _Meaning

b

lgnore leading whitespace
Case insensitive sorting

Specify the columns that form the sort key
Compare felds as integer numbers

Reverse sort order

Set feld separator (the defaultis whitespace)
Output unique records only.





images/00046.jpg
$ we /etc/passwd
32 77 2003 fetc/passwd





images/00045.jpg
$ cut -d: -f7 /etc/passwd | sort | uniq -c
20 fbinbesh
12 /bin/false





images/00037.jpg
5 ps -ef | grep httpd
§ cut -d: -f7 < Jetc/passwd | sort -u





images/00905.jpg
iptables -A INPUT -1 ethl -j LOG
iptables -A FORWARD -i eth1 -j LOG





images/00036.jpg





images/00904.jpg
iptables -t nat -A PREROUTING -1 eth1 -s 10.0.0.0/8 -] DROP
ptables -t nat -A PREROUTING i eth -5 172.16.00/12 -j DROP
ptables -t nat -A PREROUTING I ethl -5 192.168.0.0/15 -} DRO?
ptables -t nat -A PREROUTING i ethl -§ 127.00.0/8 - DRO?
iptables -t nat -A PREROUTING -i ethl -s 224.0.0.0/4 -} DROP





images/00907.jpg
Condition

Meaning or possible values

on interface
proto protocol
from source-p

to destip

port = portt

flags flag-spec
icmp-type number
keep state

Applies the rule to the specified interface

Selects packet according to protocol: tcp, udp, oricmp

Filters by source: host, network,or any

Filtes by destination: host, network,or any

Filters by port name (from /etc/services) or number”

Filters according to TCP header flags bits

Filters by ICMP type and code

Retains details about the flow of  session; see comments below

2. You can use any comparison operator:






images/00906.jpg
iptables -A FORWARD -1 eth0 -p ANY -) ACCEPT
iptables -A FORWARD -m state --state ESTABLISHED,RELATED -j ACCEPT





images/00901.jpg
Iptables -A FORWARD -1 ethO -p ANY -] ACCEPT
iptables -A FORWARD -d 10112 -p tcp --dport 22  ACCEPT
iptables -A FORWARD -d 10112 -p tcp ~dport 80 - ACCEPT
iptables -A FORWARD -d 10.11.2 -p tcp --dport 443 -] ACCEPT





images/00900.jpg
Iptables -F
iptables -P INPUT DROP
iptables -P FORWARD DROP





images/00903.jpg
Ipiaties
iptables
iptables
iptables
iptables
ptables
iptables
iptables

-A INPUT -p lcmp
A INPUT -p icmp

iemp-type 3  ACCEPT
A INPUT -p icmp ~iemp-type 5 - ACCEPT

A INPUT -p icmp ~-icmp-type 11 -} ACCEPT
A FORWARD -d 10112 -p icmp --icmp-type 0 - ACCEPT

-A FORWARD -d 10.1.1.2 -p icmp ~-icmp-type 3 -j ACCEPT
-A FORWARD -d 10.0.1.2 -p icmp iemp-type & - ACCEPT
A FORWARD -d 10.1.12 -p icmp —icmp-type 11 -j ACCEPT





images/00902.jpg
Iptables -A INPUT -1 eth0 -d 10.1.1.1 -p tcp --dport 22 -) ACCEPT
iptables -A INPUT - 1o -d 127.0.0.1 -p ANY -j ACCEPT
iptables -A INPUT -i eth0 -d 10.1.1.1 -p iemp --icmp-type 8 -] ACCEPT





images/01023.jpg
b sudo stopsrc -s lpd
¢ sudo startiie & Iod





images/01022.jpg
Sizes.

£0,A1

A3,B4
A
A5

85,86
A
87
A8
88

Common uses

Posters
Newspapers

Generic “pieces of paper”

Note pads (roughly 5 » 8 inches)
Books, postcards, German toilet paper
35" index cards

Passports (even US. passports are B7)
Business cards

Playing cards





images/01025.jpg
$ /usr/lib/cups/backend/usb

direct usb "Unknown" "USB Printer (usb)’

direct usb://XEROX/Phaser%2061207serial-YGG210547 "XEROX Phaser 6120
*Bhaser £1(





images/01024.jpg
| {26/)ul/2003:18:59.08 -0600] Adding start banner page ‘none” to job 24.

| [26/Jul/2009:18:59.08 -0600] Adding end banner page "none” to job 24

| [26/1u1/2009:18:59:08 -0600] Job 24 queued on Phaser_6120' by ‘jsh

| [26/)u1/2009:18:59:08 -0600] Started filter /usr/libexec/cups/filter/pstops (PID
19985 for job 24,

| (26/)u1/2009:18:59:08 -0600] Started backend /ust/libexec/cups/backend/usb
{PID 19986) for job 24.





images/01019.jpg
A X BXORAERA AT SIACABIAAAGA T EESACAA BT HANRAC A BAS
%hAATCAN APPA@TimesNewRImnBAA?AT ATUUAZBATA? AurBAPATO<B5>A" A CAN
BALKAFA@A@AZAIAAAA A@





images/01018.jpg
*|E*{&!10001t016D"{ &11X*{'YOF*| vOn104{"p4300X*[%1BDT~,1TROTD1SP1FT10,50
CF3,1LB .~ [%1A%[C100GA[*¥2TA[&a0PApOXA['POY A[(10UA((s1p12vsb4148T(&10
E7[*pOY (7920 (10U (51p12vSb4101T~{£a0P (1008 TOEA[9%[ &:a0P{pOX[*
POYA['pA74YA[‘p14TX{(10U [(10U[(s1p12vEbA101T " pA02Y A PIBEXA[V0O"['c)
00a4b100g2P A"V 10%[*p250Y~[*v00* ['c300adb100g2PA[*v10[v0OM*c4a156b100g2
PAFYIOA D25 1Y A0 187X A 00 [*c899a 154b 10g2P A W10 D346 Y A 256X






images/01021.jpg





images/01020.jpg
5 grep cupsFilter /usr/share/ppd/ghostscript/model/pximono.ppd

‘cupsFilter
seiipsFilter:

pplication/vnd.cups-postscript 100 pstopx!”
oplicatinrradd cure - pdf-0 petomxl”






images/00069.jpg
¥:/bin/bash
suffix-BACKUP--'date +%Y%m¥%d-%HGM

for script in *sh; do
newname="§script $suffix
echo "Copying $script to $newname,
cp $script $newname

die





images/00068.jpg
# Thelog level 15 get m the global vaniable LOG_LEVEL. The choxces
# are, from most to least severe, Error, Warning, Info, and Debug.

function logMsg [
‘message_level-§1
‘message_itself=52

if [ $message level -le $LOG_LEVEL J; then
case $message level in

0) message level_te

1) message_level_te

“Error” ;.

3) message_Jevel_te
) message level text
esac
echo "${message_level_text]; $message.itself”
f





images/00071.jpg
for (( 1=0 ; 1 < SCPU_COUNT ; 1++ )); do
CPU_LIST $i'






images/00070.jpg
$ sh forexample
Copying rhelsh to rhel sh BACKUP--20091210-1708.
Copying sles sh to sles sh BACKUP--20091210-1708.






images/00073.jpg
ubuntu3 sh winleexample /etc/passwd
1 100tx.00:Superuser:/root:/bin/oash

2: bin:xc1:1-bin:/bin:/bin/oash

3 daemon:x2:2:Dacmon/sbin:fbin/bash






images/00072.jpg
#./om/bash

exec 0<§1

counter-1

while read line; do
echo “Seounter: $line’
$({counter-+))

done





images/00075.jpg
#/bm/bash

b=5((2))

c=$a+$b
G-§(82+30)

echo "$a + $b = $c \c(plus sign as string literal)”
echo "$a + $b = $d \t(plus sign as arithmetic addition)






images/00899.jpg
Clause

Meaning or possible values

“p proto
s source-p
~ddestip
~sportport¢
iport port#
—icmp-type type

Matches by protocol: tcp, udp, or icmp.
Matches host or network source IP address (CIDR notation s OK)
Matches host or network destination address

Matches by source port (note the double dashes)

Matches by destination port (note the double dashes)

Matches by ICMP type code (note the double dashes)

Negates a cause

Specifes the table to which a command applies (default s flter)






images/00074.jpg
while read line; do
echo "$(counters ) Sline
done





images/00898.jpg
iptables -F chain-name
ptables -P chain-name target
iptables -A chain-name - interfac






images/00077.jpg
#./omn/bash

acho “example[@)] = $fexample[a])”
acho “example array contains ${#example(@]] elements’

for elt in "${example(@]]’; do
echo * Element = $elt’
R





images/00076.jpg
L+ 2m 142 {plus sign 85 strng Ltcral)
3 (plus sign as arithmetic addition)






nav.xhtml

    
  
    		F OREWORD


    		P REFACE


    		
      A CKNOWLEDGMENTS
      
        		
          SECTION ONE: BASIC ADMINISTRATION
          
            		Account provisioning


            		Adding and removing hardware


            		Performing backups


            		Installing and upgrading software


            		Monitoring the system


            		Troubleshooting


            		Maintaining local documentation


            		Vigilantly monitoring security


            		Fire fighting


            		Example Linux distributions


            		Example UNIX distributions


            		Organization of the man pages


            		man : read man pages


            		Storage of man pages


            		GNU Texinfo


            		System-specific guides


            		Package-specific documentation


            		Books


            		RFCs and other Internet documents


            		The Linux Documentation Project


            		Determining whether software has already been installed


            		Adding new software


            		Building software from source code


            		System administration


            		Essential tools


            		Command editing


            		Pipes and redirection


            		Variables and quoting


            		
              Common filter commands
              
                		cut : separate lines into fields


                		sort : sort lines


                		uniq : print unique lines


                		wc : count lines, words, and characters


                		tee : copy input to two places


                		head and tail : read the beginning or end of a file


                		grep : search text


              


            


            		From commands to scripts


            		Input and output


            		Command-line arguments and functions


            		Variable scope


            		Control flow


            		Loops


            		Arrays and arithmetic


            		The matching process


            		Literal characters


            		Special characters


            		Example regular expressions


            		Captures


            		Greediness, laziness, and catastrophic backtracking


            		Variables and arrays


            		Array and string literals


            		Function calls


            		Type conversions in expressions


            		String expansions and disambiguation of variable references


            		Hashes


            		References and autovivification


            		Regular expressions in Perl


            		Input and output


            		Control flow


            		Accepting and validating input


            		Perl as a filter


            		Add-on modules for Perl


            		Python quick start


            		Objects, strings, numbers, lists, dictionaries, tuples, and files


            		Input validation example


            		Loops


            		Shell basics and bash scripting


            		Regular expressions


            		Perl scripting


            		Python scripting


            		Recovery boot to a shell


            		Steps in the boot process


            		Kernel initialization


            		Hardware configuration


            		Creation of kernel processes


            		Operator intervention (recovery mode only)


            		Execution of startup scripts


            		Boot process completion


            		Kernel options


            		Multibooting


            		Single-user mode with GRUB


            		Single-user mode on SPARC


            		HP-UX single-user mode


            		AIX single-user mode


            		init and its run levels


            		Overview of startup scripts


            		Red Hat startup scripts


            		SUSE startup scripts


            		Ubuntu startup scripts and the Upstart daemon


            		HP-UX startup scripts


            		AIX startup


            		The Solaris Service Management Facility


            		A brave new world: booting with SMF


            		shutdown : the genteel way to halt the system


            		halt and reboot : simpler ways to shut down


            		Filesystem access control


            		Process ownership


            		The root account


            		Setuid and setgid execution


            		Role-based access control


            		SELinux: security-enhanced Linux


            		POSIX capabilities (Linux)


            		PAM: Pluggable Authentication Modules


            		Kerberos: third-party cryptographic authentication


            		Access control lists


            		Choosing a root password


            		Logging in to the root account


            		su : substitute user identity


            		sudo : limited su


            		Password vaults and password escrow


            		PID: process ID number


            		PPID: parent PID


            		UID and EUID: real and effective user ID


            		GID and EGID: real and effective group ID


            		Niceness


            		Control terminal


            		Absolute and relative paths


            		Spaces in filenames


            		Regular files


            		Directories


            		Character and block device files


            		Local domain sockets


            		Named pipes


            		Symbolic links


            		The permission bits


            		The setuid and setgid bits


            		The sticky bit


            		ls : list and inspect files


            		chmod : change permissions


            		chown and chgrp : change ownership and group


            		umask : assign default permissions


            		Linux bonus flags


            		A short and brutal history of UNIX ACLs


            		ACL implementation


            		ACL support by system


            		
              POSIX ACLs
              
                		Interaction between traditional modes and ACLs


                		Access determination


                		ACL inheritance


              


            


            		
              NFSv4 ACLs
              
                		NFSv4 entities for which permissions can be specified


                		Access determination


                		ACL inheritance


                		NFSv4 ACL viewing in Solaris


                		Interactions between ACLs and modes


                		Modifying NFSv4 ACLs in Solaris


              


            


            		Login name


            		Encrypted password


            		UID (user ID) number


            		Default GID number


            		GECOS field


            		Home directory


            		Login shell


            		Editing the passwd and group files


            		Setting a password


            		Creating the home directory and installing startup files


            		Setting permissions and ownerships


            		Setting a mail home


            		Configuring roles and administrative privileges


            		Final steps


            		useradd on Ubuntu


            		useradd on SUSE


            		useradd on Red Hat


            		useradd on Solaris


            		useradd on HP-UX


            		useradd on AIX


            		useradd example


            		LDAP and Active Directory


            		Single sign-on systems


            		Identity management systems


            		Linux recipe


            		Solaris recipe


            		HP-UX recipe


            		AIX recipe


            		Hard disks


            		Solid state disks


            		The PATA interface


            		The SATA interface


            		Parallel SCSI


            		Serial SCSI


            		Which is better, SCSI or SATA?


            		Installation verification at the hardware level


            		
              Disk device files
              
                		Disk devices for Linux


                		Disk devices for Solaris


                		Disk devices for HP-UX


                		Disk devices for AIX


              


            


            		Formatting and bad block management


            		ATA secure erase


            		hdparm : set disk and interface parameters (Linux)


            		Hard disk monitoring with SMART


            		Traditional partitioning


            		Windows-style partitioning


            		GPT: GUID partition tables


            		Linux partitioning


            		Solaris partitioning


            		HP-UX partitioning


            		Software vs. hardware RAID


            		RAID levels


            		Disk failure recovery


            		Drawbacks of RAID 5


            		mdadm : Linux software RAID


            		LVM implementations


            		
              Linux logical volume management
              
                		Volume snapshots


                		Resizing filesystems


              


            


            		HP-UX logical volume management


            		AIX logical volume management


            		Linux filesystems: the ext family


            		HP-UX filesystems: VxFS and HFS


            		AIX’s JFS2


            		Filesystem terminology


            		Filesystem polymorphism


            		mkfs : format filesystems


            		fsck : check and repair filesystems


            		Filesystem mounting


            		Setup for automatic mounting


            		USB drive mounting


            		Enabling swapping


            		ZFS architecture


            		Example: Solaris disk addition


            		Filesystems and properties


            		Property inheritance


            		One filesystem per user


            		Snapshots and clones


            		Raw volumes


            		Filesystem sharing filesystem through NFS, CIFS, and iSCSI


            		Storage pool management


            		SAN networks


            		iSCSI: SCSI over IP


            		Booting from an iSCSI volume


            		Vendor specifics for iSCSI initiators


            		Simple reminders


            		Filesystem cleanup


            		Network distribution of configuration files


            		Log file rotation


            		Perform all backups from a central location


            		Label your media


            		Pick a reasonable backup interval


            		Choose filesystems carefully


            		Make daily dumps fit on one piece of media


            		Keep media off-site


            		Protect your backups


            		Limit activity during backups


            		Verify your media


            		Develop a media life cycle


            		Design your data for backups


            		Prepare for the worst


            		Optical media: CD-R/RW, DVD±R/RW, DVD-RAM, and Blu-ray


            		Portable and removable hard disks


            		Magnetic tapes in general


            		Small tape drives: 8mm and DDS/DAT


            		DLT/S-DLT


            		AIT and SAIT


            		VXA/VXA-X


            		LTO


            		Jukeboxes, stackers, and tape libraries


            		Hard disks


            		Internet and cloud backup services


            		Summary of media types


            		What to buy


            		A simple schedule


            		A moderate schedule


            		Dumping filesystems


            		Restoring from dumps with restore


            		Restoring entire filesystems


            		Restoring to new hardware


            		tar : package files


            		dd : twiddle bits


            		ZFS backups


            		The Bacula model


            		Setting up Bacula


            		Installing the database and Bacula daemons


            		Configuring the Bacula daemons


            		Common configuration sections


            		
              bacula-dir.conf : director configuration
              
                		Catalog resources


                		Storage resources


                		Pool resources


                		Schedule resources


                		Client resources


                		FileSet resources


                		Job resources


              


            


            		
              bacula-sd.conf : storage daemon configuration
              
                		The Director resource


                		The Storage resource


                		Device resources


                		Autochanger resources


              


            


            		bconsole.conf : console configuration


            		Installing and configuring the client file daemon


            		Starting the Bacula daemons


            		Adding media to pools


            		Running a manual backup


            		Running a restore job


            		Backing up Windows clients


            		Monitoring Bacula configurations


            		Bacula tips and tricks


            		Alternatives to Bacula


            		ADSM/TSM


            		Veritas NetBackup


            		EMC NetWorker


            		Other alternatives


            		Files not to manage


            		Vendor specifics


            		Syslog architecture


            		Configuring syslogd


            		
              Config file examples
              
                		Stand-alone machine


                		Network logging client


                		Central logging host


              


            


            		Syslog debugging


            		Alternatives to syslog


            		Linux kernel and boot-time logging


            		Syslog configuration under AIX


            		Netbooting PCs


            		Setting up PXE for Linux


            		Netbooting non-PCs


            		
              Using Kickstart: the automated installer for Red Hat Enterprise Linux
              
                		Setting up a Kickstart configuration file


                		Building a Kickstart server


                		Pointing Kickstart at your config file


              


            


            		Using AutoYaST: SUSE’s automated installation tool


            		Automating installation with the Ubuntu installer


            		Network installations with JumpStart


            		Network installations with the Automated Installer


            		Automating Ignite-UX installations


            		rpm : manage RPM packages


            		dpkg : manage .deb packages in Ubuntu


            		Package repositories


            		RHN: the Red Hat Network


            		APT: the Advanced Package Tool


            		apt-get configuration


            		An example /etc/apt/sources.list file


            		Creation of a local repository mirror


            		apt-get automation


            		yum : release management for RPM


            		Zypper package management for SUSE: now with more ZYpp!


            		Solaris packaging


            		HP-UX packaging


            		Software management in AIX


            		Backup file creation


            		Formal revision control systems


            		Subversion


            		Git


            		Organizing your localization


            		Testing


            		Compiling locally


            		Distributing localizations


            		cfengine : computer immune system


            		LCFG: a large-scale configuration system


            		Template Tree 2: cfengine helper


            		DMTF/CIM: the Common Information Model


            		Package namespaces


            		Dependency management


            		Wrapper scripts


            		Device files and device numbers


            		Device file creation


            		Naming conventions for devices


            		Custom kernels versus loadable modules


            		Tuning Linux kernel parameters


            		Building a Linux kernel


            		If it ain’t broke, don’t fix it


            		Configuring kernel options


            		Building the kernel binary


            		Adding a Linux device driver


            		The Solaris kernel area


            		Configuring the kernel with /etc/system


            		Adding a Solaris device driver


            		Debugging a Solaris configuration


            		The Object Data Manager


            		Kernel tuning


            		Loadable kernel modules in Linux


            		Loadable kernel modules in Solaris


            		Linux sysfs: a window into the souls of devices


            		Exploring devices with udevadm


            		Constructing rules and persistent names


          


        


      


    


    		
      C HAPTER 1 W HERE TO S TART
      
        		Essential duties of the system administrator


        		Suggested background


        		Friction between UNIX and Linux


        		Linux distributions


        		Example systems used in this book


        		System-specific administration tools


        		Notation and typographical conventions


        		Units


        		Man pages and other on-line documentation


        		Other authoritative documentation


        		Other sources of information


        		Ways to find and install software


        		System administration under duress


        		Recommended reading


        		Exercises


      


    


    		
      C HAPTER 2 S CRIPTING AND THE S HELL
      
        		Shell basics


        		bash scripting


        		Regular expressions


        		Perl programming


        		Python scripting


        		Scripting best practices


        		Recommended reading


        		Exercises


      


    


    		
      C HAPTER 3 B OOTING AND S HUTTING D OWN
      
        		Bootstrapping


        		Booting PCs


        		GRUB: The GRand Unified Boot loader


        		Booting to single-user mode


        		Working with startup scripts


        		Booting Solaris


        		Rebooting and shutting down


        		Exercises


      


    


    		
      C HAPTER 4 A CCESS C ONTROL AND R OOTLY P OWERS
      
        		Traditional UNIX access control


        		Modern access control


        		Real-world access control


        		Pseudo-users other than root


        		Exercises


      


    


    		
      C HAPTER 5 C ONTROLLING P ROCESSES
      
        		Components of a process


        		The life cycle of a process


        		Signals


        		kill : send signals


        		Process states


        		nice and renice : influence scheduling priority


        		ps : monitor processes


        		Dynamic monitoring with top , prstat , and topas


        		The /proc filesystem


        		strace , truss , and tusc : trace signals and system calls


        		Runaway processes


        		Recommended reading


        		Exercises


      


    


    		
      C HAPTER 6 T HE F ILESYSTEM
      
        		Pathnames


        		Filesystem mounting and unmounting


        		The organization of the file tree


        		File types


        		File attributes


        		Access control lists


        		Exercises


      


    


    		
      C HAPTER 7 A DDING N EW U SERS
      
        		The /etc/passwd file


        		The /etc/shadow and /etc/security/passwd files


        		The /etc/group file


        		Adding users: the basic steps


        		Adding users with useradd


        		Adding users in bulk with newusers (Linux)


        		Removing users


        		Disabling logins


        		Managing users with system-specific tools


        		Reducing risk with PAM


        		Centralizing account management


        		Recommended reading


        		Exercises


      


    


    		
      C HAPTER 8 S TORAGE
      
        		I just want to add a disk!


        		Storage hardware


        		Storage hardware interfaces


        		Peeling the onion: the software side of storage


        		Attachment and low-level management of drives


        		Disk partitioning


        		RAID: redundant arrays of inexpensive disks


        		Logical volume management


        		Filesystems


        		ZFS: all your storage problems solved


        		Storage area networking


        		Exercises


      


    


    		
      C HAPTER 9 P ERIODIC P ROCESSES
      
        		cron : schedule commands


        		The format of crontab files


        		Crontab management


        		Linux and Vixie-cron extensions


        		Some common uses for cron


        		Exercises


      


    


    		
      C HAPTER 10 B ACKUPS
      
        		Motherhood and apple pie


        		Backup devices and media


        		Saving space and time with incremental backups


        		Setting up a backup regime with dump


        		Dumping and restoring for upgrades


        		Using other archiving programs


        		Using multiple files on a single tape


        		Bacula


        		Commercial backup products


        		Recommended reading


        		Exercises


      


    


    		
      C HAPTER 11 S YSLOG AND L OG F ILES
      
        		Finding log files


        		Syslog: the system event logger


        		AIX logging and error handling


        		logrotate : manage log files


        		Condensing log files to useful information


        		Logging policies


        		Exercises


      


    


    		
      C HAPTER 12 S OFTWARE I NSTALLATION AND M ANAGEMENT
      
        		Installing Linux and OpenSolaris


        		Installing Solaris


        		Installing HP-UX


        		Installing AIX with the Network Installation Manager


        		Managing packages


        		Managing Linux packages


        		Using high-level Linux package management systems


        		Managing packages for UNIX


        		Revision control


        		Software localization and configuration


        		Using configuration management tools


        		Sharing software over NFS


        		Recommended reading


        		Exercises


      


    


    		
      C HAPTER 13 D RIVERS AND THE K ERNEL
      
        		Kernel adaptation


        		Drivers and device files


        		Linux kernel configuration


        		Solaris kernel configuration


        		HP-UX kernel configuration


        		Management of the AIX kernel


        		Loadable kernel modules


        		Linux udev for fun and profit


        		Recommended reading


        		
          Exercises
          
            		
              SECTION TWO: NETWORKING
              
                		Who runs the Internet?


                		Network standards and documentation


                		IPv4 and IPv6


                		Packets and encapsulation


                		Ethernet framing


                		Maximum transfer unit


                		Hardware (MAC) addressing


                		IP addressing


                		Hostname “addressing”


                		Ports


                		Address types


                		IPv4 address classes


                		Subnetting


                		Tricks and tools for subnet arithmetic


                		CIDR: Classless Inter-Domain Routing


                		Address allocation


                		Private addresses and network address translation (NAT)


                		IPv6 addressing


                		Routing tables


                		ICMP redirects


                		DHCP software


                		How DHCP works


                		ISC’s DHCP software


                		IP forwarding


                		ICMP redirects


                		Source routing


                		Broadcast pings and other directed broadcasts


                		IP spoofing


                		Host-based firewalls


                		Virtual private networks


                		Hostname and IP address assignment


                		ifconfig : configure network interfaces


                		Network hardware options


                		route : configure static routes


                		DNS configuration


                		NetworkManager


                		Ubuntu network configuration


                		SUSE network configuration


                		Red Hat network configuration


                		Linux network hardware options


                		Linux TCP/IP options


                		Security-related kernel variables


                		Linux NAT and packet filtering


                		Solaris basic network configuration


                		Solaris configuration examples


                		Solaris DHCP configuration


                		ndd : TCP/IP and interface tuning for Solaris


                		Solaris security


                		Solaris firewalls and filtering


                		Solaris NAT


                		Solaris networking quirks


                		Basic network configuration for HP-UX


                		HP-UX configuration examples


                		HP-UX DHCP configuration


                		HP-UX dynamic reconfiguration and tuning


                		HP-UX security, firewalls, filtering, and NAT


                		no : manage AIX network tuning parameters


                		Distance-vector protocols


                		Link-state protocols


                		Cost metrics


                		Interior and exterior protocols


                		RIP and RIPng: Routing Information Protocol


                		OSPF: Open Shortest Path First


                		EIGRP: Enhanced Interior Gateway Routing Protocol


                		IS-IS: the ISO “standard”


                		Router Discovery Protocol and Neighbor Discovery Protocol


                		BGP: the Border Gateway Protocol


                		routed : obsolete RIP implementation


                		gated : first-generation multiprotocol routing daemon


                		Quagga: mainstream routing daemon


                		ramd : multiprotocol routing system for HP-UX


                		XORP: router in a box


                		Vendor specifics


                		How Ethernet works


                		Ethernet topology


                		Unshielded twisted pair cabling


                		Optical fiber


                		
                  Connecting and expanding Ethernets
                  
                    		Hubs


                    		Switches


                    		VLAN-capable switches


                    		Routers


                  


                


                		Autonegotiation


                		Power over Ethernet


                		Jumbo frames


                		Wireless security


                		Wireless switches and lightweight access points


                		UTP cabling options


                		Connections to offices


                		Wiring standards


                		Network architecture vs. building architecture


                		Expansion


                		Congestion


                		Maintenance and documentation


                		Cables and connectors


                		Test equipment


                		Routers/switches


                		Managing your DNS


                		Resource records


                		Delegation


                		Caching and efficiency


                		Multiple answers


                		Adding a new machine to DNS


                		Configuring a DNS client


                		Authoritative and caching-only servers


                		Recursive and nonrecursive servers


                		Registering a second-level domain name


                		Creating your own subdomains


                		Namespace management


                		Authoritative servers


                		Caching servers


                		Hardware requirements


                		Security


                		Summing up


                		Commands in zone files


                		Resource records


                		The SOA record


                		NS records


                		A records


                		PTR records


                		MX records


                		CNAME records


                		The CNAME hack


                		SRV records


                		TXT records


                		
                  IPv6 resource records
                  
                    		IPv6 forward records – AAAA


                    		IPv6 reverse records – PTR


                  


                


                		SPF records


                		DKIM and ADSP records


                		SSHFP resource records


                		DNSSEC resource records


                		Glue records: links between zones


                		Version determination


                		Components of BIND


                		Configuration files


                		The include statement


                		The options statement


                		The acl statement


                		The (TSIG) key statement


                		The trusted-keys statement


                		The server statement


                		The masters statement


                		The logging statement


                		The statistics-channels statement


                		
                  The zone statement
                  
                    		Configuring the master server for a zone


                    		Configuring a slave server for a zone


                    		Setting up the root server hints


                    		Setting up a forwarding zone


                  


                


                		The controls statement for rndc


                		Split DNS and the view statement


                		The localhost zone


                		A small security company


                		The Internet Systems Consortium, isc.org


                		
                  Installing and configuring NSD
                  
                    		Fundamental differences from BIND


                    		NSD configuration example


                    		NSD key definitions


                    		NSD global configuration options


                    		NSD zone-specific configuration options


                  


                


                		Running nsd


                		Installing and configuring Unbound


                		Zone transfers


                		BIND dynamic updates


                		Access control lists in BIND, revisited


                		Open resolvers


                		Running in a chroot ed jail


                		Secure server-to-server communication with TSIG and TKEY


                		Setting up TSIG for BIND


                		TSIG in NSD


                		DNSSEC


                		DNSSEC policy


                		DNSSEC resource records


                		Turning on DNSSEC


                		Key pair generation


                		Zone signing


                		The DNSSEC chain of trust


                		DLV: domain lookaside validation


                		DNSSEC key rollover


                		
                  DNSSEC tools
                  
                    		ldns tools, nlnetlabs.nl/projects/ldns


                    		Sparta tools, dnssec-tools.org


                    		RIPE tools, ripe.net


                    		Vantages tools, vantage-points.org


                  


                


                		Debugging DNSSEC


                		
                  Logging in BIND
                  
                    		Channels


                    		Categories


                    		Log Messages


                    		Sample BIND logging configuration


                    		Debug levels in BIND


                  


                


                		Logging in NSD/Unbound


                		
                  Name server control programs
                  
                    		Using BIND’s rndc


                    		Using NSD’s nsdc


                    		Using unbound-control


                  


                


                		Name server statistics


                		Debugging with dig


                		Lame delegations


                		DNS sanity checking tools


                		Performance issues


                		Specifics for Linux


                		Specifics for Solaris


                		Specifics for HP-UX


                		Specifics for AIX


                		Mailing lists and newsgroups


                		Books and other documentation


                		On-line resources


                		The RFCs


                		Issues of state


                		Performance concerns


                		Security


                		Protocol versions and history


                		Transport protocols


                		State


                		File system exports


                		File locking


                		Security concerns


                		Identity mapping in version 4


                		Root access and the nobody account


                		Performance considerations in version


                		Disk quotas


                		The share command and dfstab file (Solaris, HP-UX)


                		The exportfs command and the exports file (Linux, AIX)


                		Exports in AIX


                		Exports in Linux


                		nfsd : serve files


                		Mounting remote filesystems at boot time


                		Restricting exports to privileged ports


                		Indirect maps


                		Direct maps


                		Master maps


                		Executable maps


                		Automount visibility


                		Replicated filesystems and automount


                		Automatic automounts (V3; all but Linux)


                		Specifics for Linux


                		The NFS option


                		Push systems vs. pull systems


                		rdist : push files


                		rsync : transfer files more securely


                		Pulling files


                		The structure of LDAP data


                		The point of LDAP


                		LDAP documentation and specifications


                		OpenLDAP: the traditional open source LDAP server


                		Directory Server: alternative open source LDAP server


                		LDAP instead of /etc/passwd and /etc/group


                		LDAP querying


                		LDAP and security


                		The NIS model


                		Understanding how NIS works


                		NIS security


                		nscd : cache the results of lookups


                		User agents


                		Submission agents


                		Transport agents


                		Local delivery agents


                		Message stores


                		Access agents


                		So many pieces, so little time


                		Reading mail headers


                		You had me at EHLO


                		SMTP error codes


                		SMTP authentication


                		Using mail servers


                		Getting aliases from files


                		Mailing to files


                		Mailing to programs


                		Aliasing by example


                		Building the hashed alias database


                		Using mailing lists and list wrangling software


                		Software packages for maintaining mailing lists


                		Spam


                		Forgeries


                		Message privacy


                		Spam filtering


                		When to filter


                		Greylisting/DCC


                		SpamAssassin


                		Blacklists


                		Whitelists


                		Miltering: mail filtering


                		SPF and Sender ID


                		DomainKeys, DKIM, and ADSP


                		MTA-specific antispam features


                		MailScanner


                		
                  amavisd-new
                  
                    		How amavisd works


                    		amavisd installation


                    		Basic amavisd configuration


                    		amavisd-new tools


                  


                


                		Tests of your MTA’s scanning effectiveness


                		The switch file


                		Starting sendmail


                		Mail queues


                		The m4 preprocessor


                		The sendmail configuration pieces


                		A configuration file built from a sample .mc file


                		Tables and databases


                		
                  Generic macros and features
                  
                    		OSTYPE macro


                    		DOMAIN macro


                    		MAILER macro


                    		FEATURE macro


                    		use_cw_file feature


                    		redirect feature


                    		always_add_domain feature


                    		access_db feature


                    		virtusertable feature


                    		ldap_routing feature


                    		Masquerading features


                    		MAIL_HUB and SMART_HOST macros


                  


                


                		Client configuration


                		Configuration options


                		
                  Spam-related features in sendmail
                  
                    		Relay control


                    		User or site blacklisting


                    		Throttles, rates, and connection limits


                  


                


                		Milter configuration in sendmail


                		amavisd and sendmail connection


                		Ownerships


                		Permissions


                		Safer mail to files and programs


                		Privacy options


                		Running a chroot ed sendmail (for the truly paranoid)


                		Denial of service attacks


                		SASL: the Simple Authentication and Security Layer


                		TLS: Transport Layer Security


                		Delivery modes


                		Queue groups and envelope splitting


                		Queue runners


                		Load average controls


                		Undeliverable messages in the queue


                		Kernel tuning


                		Queue monitoring


                		Logging


                		Exim installation


                		Exim startup


                		Exim utilities


                		Exim configuration language


                		Exim configuration file


                		
                  Global options
                  
                    		Options


                    		Lists


                    		Macros


                  


                


                		ACLs (access control lists)


                		
                  Content scanning at ACL time
                  
                    		Scanning for viruses


                    		Scanning for spam


                  


                


                		Authenticators


                		
                  Routers
                  
                    		The accept router


                    		The dnslookup router


                    		The manualroute router


                    		The redirect router


                    		Per-user filtering via .forward files


                  


                


                		
                  Transports
                  
                    		The appendfile transport


                    		The smtp transport


                  


                


                		Retry configuration


                		Rewriting configuration


                		Local scan function


                		amavisd and Exim connection


                		Logging


                		Debugging


                		
                  Postfix architecture
                  
                    		Receiving mail


                    		Managing mail-waiting queues


                    		Sending mail


                  


                


                		Security


                		Postfix commands and documentation


                		
                  Postfix configuration
                  
                    		What to put in main.cf


                    		Basic settings


                    		Use of postconf


                    		Lookup tables


                    		Local delivery


                  


                


                		
                  Virtual domains
                  
                    		Virtual alias domains


                    		Virtual mailbox domains


                  


                


                		
                  Access control
                  
                    		Access tables


                    		Authentication of clients and encryption


                  


                


                		
                  Fighting spam and viruses
                  
                    		Blacklists


                    		Spam-fighting example


                    		SpamAssassin and procmail


                    		Policy daemons


                    		Content filtering


                  


                


                		Content filtering with amavisd


                		
                  Debugging
                  
                    		Looking at the queue


                    		Soft-bouncing


                    		Testing access control


                  


                


                		DKIM: DomainKeys Identified Mail


                		DKIM miltering


                		DKIM configuration in amavisd-new


                		DKIM in sendmail


                		
                  DKIM in Exim
                  
                    		Signing outgoing messages


                    		Verifying incoming signed messages


                    		A complete example


                  


                


                		DKIM in Postfix


                		General spam references


                		sendmail references


                		Exim references


                		Postfix references


                		RFCs


                		sendmail -specific exercises


                		Exim-specific exercises


                		Postfix-specific exercises


                		Inspecting interface configuration information


                		Monitoring the status of network connections


                		Identifying listening network services


                		Examining the routing table


                		Viewing operational statistics for network protocols


                		tcpdump : industry-standard packet sniffer


                		Wireshark and TShark: tcpdump on steroids


                		SNMP organization


                		SNMP protocol operations


                		RMON: remote monitoring MIB


                		The NET-SNMP tools


                		SNMP data collection and graphing


                		Nagios: event-based service monitoring


                		The ultimate network monitoring package: still searching


                		Commercial management platforms


                		Monitoring NetFlow data with nfdump and NfSen


                		Setting up NetFlow on a Cisco router


                		Social engineering


                		Software vulnerabilities


                		Configuration errors


                		Patches


                		Unnecessary services


                		Remote event logging


                		Backups


                		Viruses and worms


                		Trojan horses


                		Rootkits


                		Packet filtering


                		Passwords


                		Vigilance


                		General philosophy


                		Password aging


                		Group logins and shared logins


                		User shells


                		Rootly entries


                		System support for PAM


                		PAM configuration


                		A detailed Linux configuration example


                		Nmap: network port scanner


                		Nessus: next-generation network scanner


                		John the Ripper: finder of insecure passwords


                		hosts_access : host access control


                		Bro: the programmable network intrusion detection system


                		Snort: the popular network intrusion detection system


                		
                  OSSEC: host-based intrusion detection
                  
                    		OSSEC basic concepts


                    		OSSEC installation


                    		OSSEC configuration


                  


                


                		Security-enhanced Linux (SELinux)


                		Kerberos: a unified approach to network security


                		PGP: Pretty Good Privacy


                		SSH: the secure shell


                		Stunnel


                		Packet-filtering firewalls


                		How services are filtered


                		Stateful inspection firewalls


                		Firewalls: how safe are they?


                		Rules, chains, and tables


                		Rule targets


                		iptables firewall setup


                		A complete example


                		IPsec tunnels


                		All I need is a VPN, right?


                		Certifications


                		
                  Security standards
                  
                    		ISO 27002


                    		PCI DSS


                    		NIST 800 series


                    		Common Criteria


                    		OWASP


                  


                


                		CERT: a registered service mark of Carnegie Mellon University


                		SecurityFocus.com and the BugTraq mailing list


                		Schneier on Security


                		SANS: the System Administration, Networking, and Security Institute


                		Vendor-specific security resources


                		Other mailing lists and web sites


                		Resource locations on the web


                		Uniform resource locators


                		How HTTP works


                		
                  Content generation on the fly
                  
                    		Embedded interpreters


                    		FastCGI


                    		Script security


                  


                


                		Application servers


                		Load balancing


                		Choosing a server


                		Installing Apache


                		Configuring Apache


                		Running Apache


                		Analyzing log files


                		Optimizing for high-performance hosting of static content


                		Using name-based virtual hosts


                		
                  Configuring virtual interfaces
                  
                    		Linux virtual interfaces


                    		Solaris virtual interfaces


                    		HP-UX virtual interfaces


                    		AIX virtual interfaces


                  


                


                		Telling Apache about virtual interfaces


                		Generating a Certificate Signing Request


                		Configuring Apache to use SSL


                		Using the Squid cache and proxy server


                		Setting up Squid


                		Reverse-proxying with Apache


                		Cloud computing


                		Co-lo hosting


                		Content distribution networks


              


            


          


        


      


    


    		
      C HAPTER 14 TCP/IP N ETWORKING
      
        		TCP/IP and its relationship to the Internet


        		Networking road map


        		Packet addressing


        		IP addresses: the gory details


        		Routing


        		ARP: the Address Resolution Protocol


        		DHCP: the Dynamic Host Configuration Protocol


        		Security issues


        		PPP: the Point-to-Point Protocol


        		Basic network configuration


        		System-specific network configuration


        		Linux networking


        		Solaris networking


        		HP-UX networking


        		AIX networking


        		Recommended reading


        		Exercises


      


    


    		
      C HAPTER 15 R OUTING
      
        		Packet forwarding: a closer look


        		Routing daemons and routing protocols


        		Protocols on parade


        		Routing strategy selection criteria


        		Routing daemons


        		Cisco routers


        		Recommended reading


        		Exercises


      


    


    		
      C HAPTER 16 N ETWORK H ARDWARE
      
        		Ethernet: the Swiss Army knife of networking


        		Wireless: ethernet for nomads


        		DSL and cable modems: the last mile


        		Network testing and debugging


        		Building wiring


        		Network design issues


        		Management issues


        		Recommended vendors


        		Recommended reading


        		Exercises


      


    


    		
      C HAPTER 17 DNS: T HE D OMAIN N AME S YSTEM
      
        		Who needs DNS?


        		How DNS works


        		DNS for the impatient


        		Name servers


        		The DNS namespace


        		Designing your DNS environment


        		What’s new in DNS


        		The DNS database


        		The BIND software


        		BIND configuration examples


        		The NSD/Unbound software


        		Updating zone files


        		Security issues


        		Microsoft and DNS


        		Testing and debugging


        		Vendor specifics


        		Recommended reading


        		Exercises


      


    


    		
      C HAPTER 18 T HE N ETWORK F ILE S YSTEM
      
        		Introduction to network file services


        		The NFS approach


        		Server-side NFS


        		Client-side NFS


        		Identity mapping for NFS version 4


        		nfsstat : dump NFS statistics


        		Dedicated NFS file servers


        		Automatic mounting


        		Recommended reading


        		Exercises


      


    


    		
      C HAPTER 19 S HARING S YSTEM F ILES
      
        		What to share


        		Copying files around


        		LDAP: the Lightweight Directory Access Protocol


        		NIS: the Network Information Service


        		Prioritizing sources of administrative information


        		Recommended reading


        		Exercises


      


    


    		
      C HAPTER 20 E LECTRONIC M AIL
      
        		Mail systems


        		The anatomy of a mail message


        		The SMTP protocol


        		Mail system design


        		Mail aliases


        		Content scanning: spam and malware


        		Email configuration


        		sendmail


        		sendmail configuration


        		sendmail configuration primitives


        		Security and sendmail


        		sendmail performance


        		sendmail testing and debugging


        		Exim


        		Postfix


        		DKIM Configuration


        		Integrated email solutions


        		Recommended reading


        		Exercises


      


    


    		
      C HAPTER 21 N ETWORK M ANAGEMENT AND D EBUGGING
      
        		Network troubleshooting


        		ping : check to see if a host is alive


        		SmokePing: gather ping statistics over time


        		traceroute : trace IP packets


        		netstat : get network statistics


        		Inspection of live interface activity


        		Packet sniffers


        		The ICSI Netalyzr


        		Network management protocols


        		SNMP: the Simple Network Management Protocol


        		The NET-SNMP agent


        		Network management applications


        		NetFlow: connection-oriented monitoring


        		Recommended reading


        		Exercises


      


    


    		
      C HAPTER 22 S ECURITY
      
        		Is UNIX secure?


        		How security is compromised


        		Security tips and philosophy


        		Passwords and user accounts


        		PAM: cooking spray or authentication wonder?


        		Setuid programs


        		Effective use of chroot


        		Security power tools


        		Mandatory Access Control (MAC)


        		Cryptographic security tools


        		Firewalls


        		Linux firewall features


        		IPFilter for UNIX systems


        		Virtual private networks (VPNs)


        		Certifications and standards


        		Sources of security information


        		What to do when your site has been attacked


        		Recommended reading


        		Exercises


      


    


    		
      C HAPTER 23 W EB H OSTING
      
        		Web hosting basics


        		HTTP server installation


        		Virtual interfaces


        		The Secure Sockets Layer (SSL)


        		Caching and proxy servers


        		Scaling beyond your limits


        		
          Exercises
          
            		
              SECTION THREE: BUNCH O’ STUFF
              
                		Full virtualization


                		Paravirtualization


                		Operating system virtualization


                		Native virtualization


                		Cloud computing


                		Live migration


                		Comparison of virtualization technologies


                		Introduction to Xen


                		Xen essentials


                		Xen guest installation with virt-install


                		Xen live migration


                		KVM


                		KVM installation and usage


                		Creating and installing virtual machines


                		The DISPLAY environment variable


                		Client authentication


                		X connection forwarding with SSH


                		Device sections


                		Monitor sections


                		Screen sections


                		InputDevice sections


                		ServerLayout sections


                		xrandr : not your father’s X server configurator


                		Kernel mode setting


                		Special keyboard combinations for X


                		When X servers attack


                		KDE


                		GNOME


                		Which is better, GNOME or KDE?


                		Major printing systems


                		Print spoolers


                		Interfaces to the printing system


                		The print queue


                		Multiple printers and queues


                		Printer instances


                		Network printing


                		Filters


                		CUPS server administration


                		Network print server setup


                		Printer autoconfiguration


                		Network printer configuration


                		Printer configuration examples


                		Printer class setup


                		Service shutoff


                		Other configuration tasks


                		kprinter : print documents


                		Konqueror and printing


                		Overview


                		Destinations and classes


                		A brief description of lp


                		lpsched and lpshut : start and stop printing


                		lpadmin : configure the printing environment


                		lpadmin examples


                		lpstat : get status information


                		cancel : remove print jobs


                		accept and reject : control spooling


                		enable and disable : control printing


                		lpmove : transfer jobs


                		Interface programs


                		What to do when the printing system is completely hosed


                		An overview of the BSD printing architecture


                		Printing environment control


                		lpd : spool print jobs


                		lpr : submit print jobs


                		lpq : view the printing queue


                		lprm : remove print jobs


                		lpc : make administrative changes


                		The /etc/printcap file


                		
                  printcap variables
                  
                    		sd: spool directory


                    		lf: error log file


                    		lp: device name


                    		rw: device open mode


                    		af: accounting file


                    		mx: file size limits


                    		rm and rp: remote access information


                    		of, if: printing filters


                    		printcap variables for serial devices


                    		printcap extensions


                  


                


                		Printing history and the rise of print systems


                		Printer diversity


                		PostScript


                		PCL


                		PDF


                		XPS


                		PJL


                		Printer drivers and their handling of PDLs


                		Printer selection


                		GDI printers


                		Double-sided printing


                		Other printer accessories


                		Serial and parallel printers


                		Network printers


                		
                  Other printer advice
                  
                    		Use banner pages only if you have to


                    		Fan your paper


                    		Provide recycling bins


                    		Use previewers


                    		Buy cheap printers


                    		Keep extra toner cartridges on hand


                    		Pay attention to the cost per page


                    		Consider printer accounting


                    		Secure your printers


                  


                


                		Restarting a print daemon


                		Logging


                		Problems with direct printing


                		Network printing problems


                		Distribution-specific problems


                		Electronic gear


                		Light fixtures


                		Operators


                		Total heat load


                		Hot aisles and cold aisles


                		Humidity


                		Environmental monitoring


                		Rack power requirements


                		kVA vs. kW


                		Remote control


                		Application consolidation


                		Server consolidation


                		SAN storage


                		Server virtualization


                		Only-as-needed servers


                		Granular utilization and capacity planning


                		
                  Energy-optimized server configuration
                  
                    		Power-saving options for Linux


                    		Filesystem power savings


                  


                


                		Cloud computing


                		Free cooling


                		Efficient data center cooling


                		Degraded mode for outages


                		Equipment life extension


                		Warmer temperature in the data center


                		Low-power equipment


                		Taking stock of your hardware


                		Gathering performance data


                		Analyzing CPU usage


                		How the system manages memory


                		Analyzing memory usage


                		Analyzing disk I/O


                		xdd : analyze disk subsystem performance


                		sar : collect and report statistics over time


                		nmon and nmon_analyser : monitor in AIX


                		Choosing a Linux I/O scheduler


                		oprofile : profile Linux systems in detail


                		X server running on a Windows computer


                		VNC: Virtual Network Computing


                		Windows RDP: Remote Desktop Protocol


                		Dual booting, or why you shouldn’t


                		Microsoft Office alternatives


                		Samba: CIFS server for UNIX


                		Samba installation


                		Filename encoding


                		User authentication


                		Basic file sharing


                		Group shares


                		Transparent redirection with MS DFS


                		smbclient : a simple CIFS client


                		Linux client-side support for CIFS


                		Installing a printer driver from Windows


                		Installing a printer driver from the command line


                		Getting ready for Active Directory integration


                		Configuring Kerberos for Active Directory integration


                		Samba as an Active Directory domain member


                		PAM configuration


                		Alternatives to winbind


                		The DB-9 variant


                		The RJ-45 variant


                		The login process


                		The /etc/ttytype file


                		The /etc/gettytab file


                		The /etc/gettydefs file


                		The /etc/inittab file


                		getty configuration for Linux


                		Ubuntu Upstart


                		Solaris and sacadm


                		Budgeting and spending


                		IT policy


                		
                  Service level agreements
                  
                    		Scope and descriptions of services


                    		Queue management policies


                    		Roles and responsibilities


                    		Conformance measurements


                  


                


                		The foundation: the ticketing and task management system


                		Common functions of ticketing systems


                		Ticket ownership


                		User acceptance of ticketing systems


                		Sample ticketing systems


                		Ticket dispatching


                		Skill sets within IT


                		Time management


                		Scope of services


                		Help desk availability


                		Help desk addiction


                		Make processes reproducible


                		Leave a trail of bread crumbs


                		Recognize the criticality of documentation


                		Customize and write code


                		Keep the system clean


                		Aim for minimal downtime


                		Document dependencies


                		Repurpose or eliminate older hardware


                		
                  Maintain local documentation
                  
                    		Standardized documentation


                    		Hardware labeling


                    		Network documentation


                    		User documentation


                  


                


                		Keep environments separate


                		Automate, automate, automate


                		Leadership


                		Personnel management


                		Hiring


                		Firing


                		Mechanics of personnel management


                		Quality control


                		Management without meddling


                		Community relations


                		Management of upper management


                		Purchasing


                		
                  Conflict resolution
                  
                    		Mediation


                    		Rogue users and departments


                  


                


                		The difference between policies and procedures


                		Policy best practices


                		Procedures


                		Risk assessment


                		Disaster management


                		Staff for a disaster


                		Power and HVAC


                		Internet connection redundancy


                		Security incidents


                		ITIL: the Information Technology Infrastructure Library


                		NIST: the National Institute for Standards and Technology


                		Privacy


                		Policy enforcement


                		Control = liability


                		
                  Software licenses
                  
                    		I NDEX


                  


                


              


            


          


        


      


    


    		
      C HAPTER 24 V IRTUALIZATION
      
        		Virtual vernacular


        		Benefits of virtualization


        		A practical approach


        		Virtualization with Linux


        		Solaris zones and containers


        		AIX workload partitions


        		Integrity Virtual Machines in HP-UX


        		VMware: an operating system in its own right


        		Amazon Web Services


        		Recommended reading


        		Exercises


      


    


    		
      C HAPTER 25 T HE X W INDOW S YSTEM
      
        		The display manager


        		Process for running an X application


        		X server configuration


        		X server troubleshooting and debugging


        		A brief note on desktop environments


        		Recommended reading


        		Exercises


      


    


    		
      C HAPTER 26 P RINTING
      
        		Printing-system architecture


        		CUPS printing


        		Printing from desktop environments


        		System V printing


        		BSD and AIX printing


        		What a long, strange trip it’s been


        		Common printing software


        		Printer languages


        		PPD files


        		Paper sizes


        		Printer practicalities


        		Troubleshooting tips


        		Recommended reading


        		Exercises


      


    


    		
      C HAPTER 27 D ATA C ENTER B ASICS
      
        		Data center reliability tiers


        		Cooling


        		Power


        		Racks


        		Tools


        		Recommended reading


        		Exercises


      


    


    		
      C HAPTER 28 G REEN IT
      
        		Green IT initiation


        		The green IT eco-pyramid


        		Green IT strategies: data center


        		Green IT strategies: user workspace


        		Green IT friends


        		Exercises


      


    


    		
      C HAPTER 29 P ERFORMANCE A NALYSIS
      
        		What you can do to improve performance


        		Factors that affect performance


        		How to analyze performance problems


        		System performance checkup


        		Help! My system just got really slow!


        		Recommended reading


        		Exercises


      


    


    		
      C HAPTER 30 C OOPERATING WITH W INDOWS
      
        		Logging in to a UNIX system from Windows


        		Accessing remote desktops


        		Running Windows and Windows-like applications


        		Using command-line tools with Windows


        		Windows compliance with email and web standards


        		Sharing files with Samba and CIFS


        		Sharing printers with Samba


        		Debugging Samba


        		Active Directory authentication


        		Recommended reading


        		Exercises


      


    


    		
      C HAPTER 31 S ERIAL D EVICES AND T ERMINALS
      
        		The RS-232C standard


        		Alternative connectors


        		Hard and soft carrier


        		Hardware flow control


        		Serial device files


        		setserial : set serial port parameters under Linux


        		Pseudo-terminals


        		Configuration of terminals


        		Special characters and the terminal driver


        		stty : set terminal options


        		tset : set options automatically


        		Terminal unwedging


        		Debugging a serial line


        		Connecting to serial device consoles


        		Exercises


      


    


    		
      C HAPTER 32 M ANAGEMENT , P OLICY , AND P OLITICS
      
        		The purpose of IT


        		The structure of an IT organization


        		The help desk


        		The enterprise architects


        		The operations group


        		Management


        		Policies and procedures


        		Disaster recovery


        		Compliance: regulations and standards


        		Legal issues


        		Organizations, conferences, and other resources


        		Recommended Reading


        		Exercises


        		A B RIEF H ISTORY OF S YSTEM A DMINISTRATION


        		I N D EFENSE OF AIX


        		C OLOPHON


        		A BOUT THE C ONTRIBUTORS


        		A BOUT THE A UTHORS


      


    


  





images/00058.jpg
5.8 TERCERAmpLe:
Enter your name: Ron
Hello Ron!





images/00060.jpg
$ mkdir aaa bbb
§ sh showusage aaa bbb

Source directory is aaa

Destination directory is bbb

§ sh showusage foo bar

imvalid source directory

Usage: showusage source_dir dest_dir





images/00059.jpg
¥:/bin/bash

function show_usage {
echo "Usage: $0 source_dir dest_dir"
exit 1

)
# Main program starts here

f [ $# -ne 2; then

show_usage
clse # There are two arguments
if (491 ; then
source_dir=§1
else
echo ‘Invalid source directory’
show_usage
fi
if[ 492 ; then
dest dir=§2
else
echo ‘Invalid destination directory’
show_usage
f

fi

printf "Source directory is ${source_dirjn"
printf “Destination directory is ${dest_dirJ\n"






images/00062.jpg
RIOCOOR G {
Jusr/bin/ssh -p 7988 §°
|





images/00061.jpg
YINCDR BHOW_1BAge |
echo "Usage: $0 source_dir dest_dir
if [ $# e 0 J; then
exit 99 # Exit with arbitrary nonzero return code
else
exit $1
i





images/00064.jpg
¥ ks, WEopIL

Before calling localizer, a is ‘test’

In function localizer, a starts as ‘test’
After local declaration, a is

> Leaving localizer,  is ‘localizer version
After calling localizer, a is "test’






images/00063.jpg
#:/bin/bash

function localizer [

echo "==> In function localizer, a starts as '§a’”
local a
echo "==> After local declaration, a is '$a”

a="localizer version"
echo "==> Leaving localizer, 2 is 'Sa

st
echo "Before calling localizer, a is ‘$a’
ocalizer

echo "After calling localizer, a is '$a™






images/00066.jpg
String
x=y
Xloy
x<y
x<=y
x>y
x>=y
nx
2x

Numeric
x-eqy
x-ney
x-ty
xley
x-gty
x-gey

Trueif

xisequaltoy
xisnotequal oy
xislessthany

xis less than or equal to y

xis greater than

xis greater than or equal to
xis not null

xis null





images/00065.jpg
i [ $oase -eq 1] && [ $am -¢q 1] then
installDMBase

Slif [ $base -ne 1] && [ $dm -eq 1 ]; then
installzase

Glif [ $base -eq 1] && [ $dm -ne 1 ; then
installDM

clse
echo

> Installing nothing’
6





images/00067.jpg
Operator

dfie
efile
fhle
rhile
siile
wfile

filel -nt file2

file1 -ot file2

Trueif

fil exists and i a directory

fie exists

file exists and i a regular file
You have read permission on fle
file exists and is not empty

You have write permission on fie
fie? i newer than file2

file is older than file2





images/00089.jpg
#./usr/bin/perl

“huey dewey louie’
i (s s’

if (Snames =- m/fregex/) {
print 15t name is $1.\n2nd name is $2\n3rd name is $3n’;
Snames =- s/regex/\2 \V/;
print "New names are \'${namesj\\n';
) else (
print qgf'$names” did not match "$regex"\n;






images/00088.jpg
bext =- s/etc\./and so on/g;  # Substitute text in $text, OR
s/etc\ Jand so on/g: # Apply 10 §_






images/00091.jpg
chiperliloted v dd

open(INFILE, *</etc/passwat) or die "Couldn't open /ete/passwa
open(OUTFILE, ">/tmp/passwd') or die ‘Couldn't open /tmp/passwil’,

while (<INFILES)
(Sname, $pw, $uid, $gid, Sgecos, $path, $sh) = split //;
print OUTEILE "$uid\t$name\n’;





images/00090.jpg
5Pl DelTNgRY
15t name is huey.

2nd name is dewey.

31d name s louie,

New namaes are "dewey huey’.





images/00093.jpg
String

Numeric

Trueif

Xisequaltoy

xeqy
xney
xIty
xley
xgty

x s not equal oy
isless thany

x s less than o equal to
x ks greater thany

s greater than or equal oy

xgey





images/00092.jpg
FUuE Iy pert.

sub show_usage |
print shift, "n* if scalar(@.);
print "Usage: $0 source_dir dest_dinn’;
exit scalar(8) 7 shift : 1;

)
f (@ARGV 1= 2) |
show_usage;
) else  # There are two arguments
(Ssource_dir, $dest_dir) = GARGY:
show_usage "Invalid source directory” unless -d $source_dir
~d $dest_dir or show_usage ‘Invalid destination directory”;





images/00095.jpg
for (Scounter=1; Jcounter <= 10; Jcounter++) |
printf “$counter *;
}





images/00094.jpg
@animals = qw{lions tigers bears),

foreach $animal (@animals) {
print ‘$animal \n®

|






images/00097.jpg
¥ us/om/perl.
gmaratt = 3; ¥ Maximum tries to supply valid input

sub get_string

my (Sprompt, $response) = shift

# Try t0 read input up to $maxatt times

for (my Satrempts = 0; Sattempts < $maxatt; $attempts+) |
print "Please try again " if $attempts;
print “Sprompt. ",
$response = readline('STDIN);
chompigresponse);
seturn $response if $response;

]

die *Too many failed input attempts™;

)

# Get names with get_string and convert to uppercase
$fname = uc get_string "First name"
$iname = uc get_string "Last name";
printf “Whole name: $fname $lname\






images/00096.jpg
for (SARGVIO]) {

m/~websphere/  && do [ print “Install for websphere\n” last; )
m/vomeat/ & do { print “Install for tomcatin' ; last; )
mysgeronimo/ & do [ print “Install for geronimo\n’ last, ).

print "Invalid option supplied \n'; exit 1;





images/00078.jpg
» sh arrays
example[@] = 2a bb cc dd ee
example array contains ¢ elements

Element = aa
Element = bb cc
Element = dd

Element





images/00080.jpg
Mo F & mboaelir ¥ THEL DR MnaIraner, Mo, 81c
\s # Whitespace; can't use 2 literal space here

( # Group for optional last name prefix
AEze] 1 # ALELalorel
1] #  Followed by dash or space
?
[GKQ) 7 [zeul+ # Initial syllable of last name: Kha, Qua, etc.
# Group for consonants at start of 2nd syllable
[dtz] [dnz]? ¥ dd dh, etc

-

af fiy)





images/00079.jpg
Symbol _ What it matches or does
Matches any character
[chars]  Matches any character from a given set
[*chars]  Matches any character not in a iven set
" Matchesthe beginning of a line
§  Matchestheend of a line
\w  Matches any “word" character (same as [A-Za-20-9._])
A5 Matches any whitespace character (same as [ \At\n\))*
' Matches any digit (same a5 [0-9])
| Matches either the element to tsleftor the one to ts right
fexpr)  Limits scope, groups elements, allows matches to be captured
7 llows zero or one match of the preceding element
* Allowszero, one, or many matches of the preceding element
+ Allows one or more matches of the preceding element
{n)  Matches exactly n instances of the preceding element
{min,)  Matches at least min instances (note the comma)
{minmax) _ Matches any number of instances from min to max

TR A0 AL G NI & St





images/00082.jpg
y chmiod, 4% Dsllowusid
§ ./helloworld
Hello, world!





images/00081.jpg
#/usr/oin/perl
print "Hello, world!\






images/00084.jpg
$ perl clothes
There are 3 articles of clothing
Pt on. ahorts ket thin soeks aisd: shoes:





images/00083.jpg
Fuaan/perl

aitem:
printf “There are %d articles of clothing ", $#items + 1;
print "Put on ${items|2]) first, then *, join(" and ", @items[0,1]}, "\n"






images/00086.jpg
> perl hashexample /etc/passwd
snames_by_uid(0)is root
§usids. by, namelroot] is 0





images/00085.jpg
FUaT/ B/ pen.

while (§_ = <5) {
(sname, $pw, Suid, $gid, Sgecos, $path, $sh) = split /-
$names_by_uid$uid] = $name;

)

%uids_by_name = reverse %names_by_uid;

print "\gnames_by_uid(0} is $names_by_uid{opn’;
rint "\Guids by namelroot] is. Suids: by name(root






images/00087.jpg
while (<) {
Sarray_ref = [ split // ;
: Spasswa_by_uid($array_ref->[2]] = $array_ref





images/01092.jpg
Blana’
security = ads
realm = ULSAH.COM
password server = 192.168.7.120
workgroup = ULSAH
winbind separator = +
idmap uid = 10000-20000
idmap gid = 1000020000
winbind enum users = yes
winbind enum groups = yes
template horedir = /home/%D/5U
template shell = /bin/bash
client use spnego = yes
client ntlmv2 auth = yes
encrypt passwords = yes
winbind use default domain = yes
Yestrict anonymous = 2






images/01091.jpg
DEsritius eliat
Ticket cache: FILE/tmp/krbSce_1000
Default principal: administrator@ULSAH COM

Valid starting  Expires Service principal
10/11/09 13:40:19 10/11/09 23:40:21 krbigt/ULSAH.COMBULSAH.COM
renew until 10/12/09 13:40:19

erberos 4 ticket cache: /tmp/tkt1000
R e MR R SR





images/01094.jpg
[RisWG..  EOmpAt Winano
oup:  compat winbind
chidow:  Comiat winbind





images/01093.jpg
ubuntu$ sudo net ads join -S DC.ULSAH.COM -U administrator
Enter administrator's password: <password>

Using short domain name - ULSAH

Joined 'UBUNTU' to realm ‘ulsah com'






images/01088.jpg
ubuntu$ 1s -1 /lib/libnss_winbind.so.2

W-T--1-- 1 To0t Toot 21884 2009-10-08 00:28 /ib/libnss winbind so.2






images/01090.jpg
ubuntu$ kinit administrator@ULSAH.COM
Password for administrator@ULSAHLCOM: <pisioris





images/01089.jpg
logging|
default = FILE:Avar/log/krbs log
libdefaults]
clockskew = 300
default_realm = ULSAH.COM
kdc_timesync
ceache_type
forwardable - true
proxiable = true
realms]
ULSAH.COM = (
kdc = deulsah.com
admin_server = dc.ulsah.com
default_domain = ULSAH

domain_realm]
ulsah.com = ULSAH.COM
“leah com <= ULSAH COM





images/01096.jpg
System _Authentication Session

Ubuntu  common-account, common-auth, sudo common-session
SUSE common-auth, common-password, common-account common-session
RedHat _system-auth system-auth






images/01095.jpg
ubuntu$ getent passwd
ro0t:x:0.0:r00t /o0t /bin/bash
daemonx1:1:daemon: fust/sbin:/bin/sh

bwhaley:x10006:10018:/home/bwhaley:/bin/sh
guest:* 1000110001 Guest:/home/ULSAH/guest:/bin/bash
pen:*110002:10000:Ben Whaley:/home/ULSAH/ven:/bin/bash
krbtgt:*10003:10000-krbtgt-/home/ULSAH/krbtet:/bin/bash





images/01097.jpg
session required /lib/security/$ISA/pam_winbind.so use_first_pass
Teciuire membarshin o






images/00185.jpg
solaris$ Is -dV /var/tmp/example
drexrarx 2 garth staff 2Jan 110719 /var/mplexample

owner@: - deny
ownerd!  rwxp--AW-Co allow
goupa: -w-p- deny
groupd: r-x- allow

--deny

everyone@: -w-p---A-W-Co-:-
allow

everyone@: r-x---a-R-c--s:






images/00184.jpg
solaris$ mkdir /var/tmp/example
solariss Is -dv /var/tmplexample
drwxrxex 2 garth staff 2Jan 110719 fvar/mplexample
0.owner@:deny
Towner@list_directory/read_data/add_filefwrite_data/add_subdirectory
Jappend_data/write_xattr/executefwrite_atuributes/write_acl
Jwrite_owner:allow
2group@add_file/write_data/add_subdirectory/append_data:deny
Igroup@list_directory/read_data/executezallow
‘everyone@add file/write_data/add_subdirectory/append._data/iwrite _xattr
Jrite_attributes/write_acl/fwrite_owner:deny
Sreveryone@list_directory/read_data/read_xattr/execute/read_attributes
Jread_aclisynchronize:allow






images/00187.jpg
var
boot
<swap>
fusr

2GB
100MB

100MB

2GB

remaining space





images/00186.jpg
Operation Function

A Replaces the entire ACL with tstrivalverson from the mode
Ainder- Deletes asingle access control entry by position
Deletes a given access control entry wherever t appears
cel,ace...]  Replaces one or more entir access control entries
‘Adds an access control entry o the top of the ACL
Aindex+acel,ace...]  Adds access control entries n front of index






images/00181.jpg
$ chmod 770 /tmp/example
§ 1s -1 /tmplexample
rwxwx— 1 garth staff 0 Jun 14 1557 /umplexample
§ getfacl --omit-header /tmp/example
user:rwx
user-trentrw-
oupr
padminirw-






images/00180.jpg
$ 1s -1 /tmp/example
Tw-r--- 1 ganth gar 0 Jun 14 15:57 /mp/example

§ setfacl -m user:r,user:trent:rw,groupradminrw /tmp/example
§1s -1 /tmplexample

rorw+ 1garth garth 0 Jun 14 1
§ getfacl --omit-header /tmp/example
user:r--

user trentrw-

group:r

group adminrw-

mask 1w

b

7 umplexample






images/00183.jpg
Code _Verbose name

file _inherit
dir_inherit

inherit_only
no_propagate

Propagate this ACE to newly created files
Propagate this ACE to newly created subdirectorles
Propagate, but don't apply to the current directory
Propagate to new subdirectories, but not theirchildren






images/00182.jpg
Code Verbosename _Permission
T read data Read data () o lstdirectory contents (directory)
list_directory
W write data Wiite data fle) or create fle (directory)
add_file
p  append_data Append data (ile)or create subdiectory (directory)
add_subdirectory
R read xatr Read named (‘extended") attibutes
W write xattr Wiite named (‘extended") atributes
X execute Execute as a program
D delete child Delete child withina irectory
a  read_attributes  Read nonextended atrbutes
A write_auributes  Wiite nonextended attributes
4 delete Delete
read_acl Read access control st
C write acl Wiite access control st
o write_owner Change ownership
s synchronize Force wries to complete synchronously






images/00179.jpg
sroup:r--
proupstaffow-
other:





images/00178.jpg
$ touch /tmp/example
S1s -1 tmplexample
W 1garth gard
S getfacl femplexample
setfacl: Removing leading '/ from absclute path names
¢ file: tmpfexample

¢ owner: garth

¢ group: garth

aser:rw

groupirw-

other-1-

5 chmod 640 /ump/example

5 getfacl --omit-header /tmplexample

group:x

T

0 Jun 14 15:57 /tmplexample






images/00174.jpg
$ sudo chown -R matt ~matt/restore
$ sudo chgrp -R staff ~matt/restore





images/00173.jpg
SOLe





images/00176.jpg
Flag Mear

A

we—aos

Never update access ime (st_atime; for performance)
Allow writing only in append mode (only root can set)
Force directory updates to be witten synchronously

No backup—make dump ignore this file

Make fle immutable and undeletable (ony root can set)
Keepa journal for data changes as wellas metadata
Force changes to be written synchronously (no buffering)






images/00175.jpg
Octal_Binary Perms.
410 —wx
5000 w-
6 10 —x
7 m






images/00170.jpg
b 1s -1 /bin/gzip
rwxr-xrx 3 root root 62100 May 28 2010






images/00169.jpg
5 1s -1 /varflog/secure
rwwrwx ¥ oot oot 18 20000705 TE:54 Faloufacie - Arckived/icine®





images/00172.jpg
Octal Binary Perms  Octal Binary Perms

0 oo 4 100
100 s 0
2 o 6 1m0
3 o 7






images/00171.jpg
%10 (den/uy0
1 root root 4,0 Jun 1120:41 /devitty0






images/00177.jpg
Format Example

Sets permissions for

user:zperms user:nw
userusemame:perms  User-trent:ri-
group:zperms groupiirx
group:groupname:perms  groupstaffny
other::perms other:-

mask:rwx

The il owner
Aspecic user

The group that owns thefle
Aspecific group

Allothers

Allbut owner and other®

2 My aom sosasliat 1icks; 2o aom eiplaie st atur e S5 snction:





images/00168.jpg
v 18
footbar  foose  kde-root

$ rm i foo*
rm: remove 'f00\004bar”? y
rm: remove ‘foose’? n





images/00163.jpg
5 ps -fp "157 315 5049"
UID PID PPID C STIME TTY TIME
oot 5049490 0 Oct1d 2 000
ot 157 1 0 Jun27 ? 52
310 jun2 2 000

cMD
Justibin/X11/xdm
fusr/sbin/named
fustfib/ipsched





images/00162.jpg
Meaning

The process has a file open for reading or writing.
The process'scurrent diectory is on the flesystem.

The process is currently executing a .

The process’s oot difectory (set with chroot) is on the filesyster.
The process has mapped a fle or shared library.






images/00165.jpg
Pathname 05" Contents
Ibin Al Core operating system commands*
Iboot LS Kernel and file needed to load the kernel
Idev Al Deviceentries or disks,printers, pseudo-terminas,etc
lete Al Criical startup and configuration files
Thome Al Default home directories for users
Ikernel S Kerel components
lib Al Libraries, shared libraries, and parts of the C compiler
Imedia LS Mount points for filesystems on removable media
Imnt LSA  Temporary mount points, mounts for removable media
lopt Al Optional software packages (ot consistently used)
Iproc LA Information about all unning processes
Iroot LS Home ditectory of the superuser (often just
Isbin Al Commands needed for minimal system operability*
Istand H  Stand-alone utiltes,disk formaters, diagnostics, etc.
fmp. Al Temporary filesthat may disappear between reboots
Tusr Al Hierarchy of secondary files and commands
Iust/bin Al Most commands and executable files
Iustfindude Al Header ile for compiling C programs
Tustfiib Al Libraries; also, supportfiles for standard programs
Tust/lib64 L 64-bitlibrares on 64-bit inux distibutions
Iustflocal Al Software you write orinstall; mirrors structure of /usr
Iust/sbi Al Less essential commands for administrtion and repair
Iust/share Al Items that might be common to multiple systems
Iustishare/man  All  On-line manual pages
Iustlsre LSA - Source code for nonlocal software (not widely used)
Iustitmp All More temporary space (preserved between reboots)
Ivar Al System-specific data and configuration fles
Ivarfadm Al Varies:logs,setup records,strange administratve bits
Iarllog LSA- Various system log fles
Ivar/spool Al Spooling directories for prnters, mail etc.
Ivarftmp All_ More temporary space (preserved between reboots)

i, S = Solaris,H = H-UX, A= AIX_
5. 0n HP-UXand AN, fbin s a symbolcnk o fustbin.

¢ The istinguishing characteristcof commands n/sbin s usually hat thy e lnked it “Statc ver-
Thons 0 the svstms fibiares s thatidine doa' e imaiy GRpehdenciak ori otler parts of s Sieri.





images/00164.jpg
$ fuser -cv /ust

USER PID ACCESS COMMAND
just oot 444 .m  awd

ot 499 .m  sshd

ot 520 .m Ipd





images/00159.jpg





images/00158.jpg
i i R

tme() = 1242507670
orK(0¥00024D30)

ork(0x00026D30)

open( fust/share/lib/zoneinfo/US/Mountai
fStat6a(3, OxFFBFFARO]

read(3, " T i AO\O\DONND"., 877)
close(3)

oct(1, TCGETA, OxFFBFFASA)

fStateA(1, OXFFBFFIED)

write(1, *Sat May 16 10,29
Sat May 16 14:56:46 MDT 2009

exit(0)

. O_LRDONLY) = 3






images/00161.jpg
5 fuser -c /usr
usr  157tm  31Sctom  474tom  S049tom  84tm  496ctom  490tm
16938c  16002ctm  3SRctom  484tm





images/00160.jpg
A Q





images/00167.jpg
File type Symbol _Createdby  Removed by
Regular file editors,cp,etc. m
Directory 4 mkd rmdir, im -1
Character devicefle ¢ mknod m

Block device file b mknod m
Localdomainsocket 5 socket(2) m

Nemed pipe P mknod m

Symbolic link 1 s m






images/00166.jpg
$ Is -ld /usrfinclude
@vwxrxrx 27 root  toot 4096 Jul 15 20557 fusrfinclude





images/00152.jpg
Contents

-0

N
ADDR
sz
WCHAN

Process flags; possible values vary by system (rarely useful fo sysadmins)
Process status;
urrently running S

leeping (waiting for event)

ligible torun T = Stopped or being traced

ombie D =Uninterruptible sleep (disk, usually)
Process CPU utilization/scheduling info

Scheduling priorty (internal to the kernel, different from nice value)
Nice value or SY for system processes

Memory address of the process

Size (in pages) of the process in main memory

Address of the object the process is waiting for






images/00394.jpg
Name Type' Meaning
To0tfs D Specifies e filesystem type of the root partition
rootdev D Specifies thelocation of the root partition
forceload D Specifies drivers (‘modules”) that should be loaded
exclude D Specifies modules that should not be loaded
moddir D Specifiesanew path to modules
set D Setskemel tuning varibles such as maxusers)
maxusers V. Controlstable sizes and various other parameters
ptent V. Setsthe number of available PTYs
max nproc V. Sets the maximum number of processes
maxuprc \ Sets the maximum number of user processes
S Vbl






images/00151.jpg
PID PPD G P NI ADDR 52 WCHAN TIME COMD
0 0 80 0 SY MOc2fdE 0 002 sched
10 65 1 20 f6a%0 8 126328 432 init-
12 1 41 1 20 f2e8000 176 f00cb69 000 syslogd





images/00393.jpg
Subdir

What it contains

drv

misc
cpu
strmod
sparcvy
fs

exec
sched
sys
genunix
unix

Loadable object files for device drivers

Configuration files that st probe addresses for each device
Loadable object files for miscellaneous kernel routines
CPU-specific module for UltraSPARC

STREAMS modules

The 64-bit kernel

Filesystem-related kernel modules

Modules for decoding executable fil formats
Operating system schedulers

Loadable system calls

Generic platform-independent kernel

The base platform-specific kernel






images/00154.jpg
File

Contents.

amd
cmdiine’
owd
environ
oxe

fd

maps
root
stat
statm

Command or program the process i executing
Complete command line of the process (nullseparated)
Symboliclink tothe process's current directory

The process's environment variables (null-separated)
symboliclink o the ile being executed

Subdirectory containing links for each open file descriptor
Memory mapping information (shared segments, libraries, etc)
symboliclink to the process's root directory (set with chroot)
General process status nformation (best decoded with ps)
Memory usage information

S50 A T B oo A T





images/00396.jpg
moddir: /plattorm/SUNW,Sun-Fire-T200/kernel:/platform/sun4v/kernel:/kernel:
husr/kernel





images/00153.jpg
ubuntu$ top

iop - 16:37:08 up 142, 2 users, load average: 0.01, 002, 0.06

Tasks; 76 total, 1 running, 74 sleeping, 1 stopped, 0 zombie
Cpuls:: 11%us, 6.3% sy, 0.6% ni, 88.6% id, 2.1% wa, 0.1% hi, 13%si
Mem: 256044k total, 254080k used, 1064k free, 15044k buffers
Swap: 524280k total, Ok vsed, 524280k free, 153192 cached

PID USER PR NI VIRT RES SHR S %CPU %MEMTIME+ COMMAND
3175 root 15 0 3543 10m 4896 S 40 52 01419 X

321 root 25 10 29916 15m 9808 S 20 62 01105 rhn-appletgui
1root 16 0 33 560 480 S 00 02 00009 init
2ro0t 34 19 0 00 500 0 00000 ksoftirgd/0
3rot 50 0 00 S 00 0 00007 events/0
4rot 50 0 00 500 0 00000 khelper
Sroot 150 0 00 S 00 0 00000 kacpid
Brot 50 0 00 S5 00 0 00000 kblockd/o
Brot 5 0 0 00 500 0 00000 pdflush
Dot 50 0 00 S 00 0 00003 pdflush
3root 130 0 00 500 0 00000 aiod
Wt 50 0 00 500 0 00000 knubd
0ot 5 0 0 00 S 00 0 00002 kswapdo
1 root 60 0 00 5 0 0 00000 kmimord/0
Weroot 15 0 0 00 5 0O 0 00013 Kounald





images/00395.jpg
rootts:uts
rootdev:/sbus@1,f8000000/esp@0,800000/sd@3,0:a





images/00148.jpg
sotans [7}





images/00390.jpg
linux$ Is -F path_to_kernel_src/drivers

acom/  char/  i2c/
acpi/  dio/  ide/

atm/ fot/  ieee1394/
block/ gsc/ input/
bluctooth/ hil/ isdn/
ohom) et o)

Makefile
ma/
media/
message/
misc/
mtdd

net/
nubus/
parport/
pei/
pemcia/
-

390/
sbus/
sesi/
sgi/
sound/
te/

telephony/
usb/
video/
zorro/





images/00389.jpg
# Automatically generated make config: dont edit
# Code maturity level options

CONFIG_EXPERIMENTAL=y
# Processor type and features

# CONFIG_M386 is not set
# CONFIG_M486 is not set

# CONFIG_MS86 is not set

# CONFIG_MSB6TSC is not set
CONFIG_M686-=y
CONFIG_X86_WP_WORKS_OK=y
CONFIG_X86_INVLPG=y
CONFIG_X86_BSWAP=y
CONFIG_X86_POPAD_OK=y
CONFIG_X86_TSC=y
CONFIG_X86_GOOD_APIC=y






images/00150.jpg
Field Content Field  Content

UID  Username of the owner STIME Time the process was started
PID ProcessID TTY  Control terminal
PPID PIDofthe parentprocess  TIME  CPU time consumed

C CPUuse/scheduling info COMD  Command and arguments






images/00392.jpg
solaris$ uname -1
SUNW, Sun-Fire-T200
solaris$ uname -m
e





images/00149.jpg
solansy ps -

uD
ro0t
root
root
root
trent
went

)
o

1

2
171
8482
8444

FPID

C STIME
8 Dec2i
2 Decat
8 Dec2l
8 Dec2i
35 143410
203 143250

™ ™

0:02
? 432
? 0:00
? 002
Pz 000

P 001

coMp
sched

Jetc/init-

pageout
fust/ib/sendmail-bd
pscef

“csh





images/00391.jpg
config SNARF_DEV'
L i e T





images/00156.jpg
Solaris* AIX

Description

pered [pid | corel  proccred pid]
PIdd [l pid | corel  procldd [pid]

psig pid] procsig pid
pfiles [pid] prociles [pid]
pwx [pid] procwdx [pid]
pwait [pid] procwait [pid]

Prnts/sets eal, effective, and saved UID/GID
Shows ibrary dependencies (ke ldd)

ists signal actions and handlers

Prints open files

Prints the current working directory

Waits for a process to exit

S e of e Skais procSoaliacvnts ot AN o M oun This s prienina Adlicudino okl





images/00155.jpg





images/00397.jpg
exclude: lofs
R





images/00157.jpg
redhat$ sudo strace -p 5810

settimeofday([1116193814, 213881], (300, 0}) =0
openf/proc’, O_RDONLYIO_NONBLOCKIO_LARGEFILE|Q_DIRECTORY) = 7
fstat6a(7, (st_mode=S_IFDIRIOSSS, st size=0, ..J) =0

fentl6#(7, F_SETFD, FD_CLOEXEC) o
gerdents64(7, /36 entries *, 1024) 1016
setdents64(7, /39 entries ¥, 1024) 1016
stat64{/proc/1", [st_mode=S_IFDIROSSS, st_size=0, .J) =0

open('/proc/1/stat’, O_RDONLY) -8
read(8, "1 {init) $ 0.0 0 0 -1 4194560 73".., 1023) 191
closels) =0






images/00388.jpg
Dir® Fil

Function and commentary

autoeject

F inode-max
K ctrl-alt-del

K- printk_ratelimit

K- printk_ratelimit_burst

K shmmax

N conf/default/rp_filter

N iemp_echo_ignore_all

N icmp_echo._ignore_broadcasts
N ip_forward

N ip_local_port_range

N tep_syncookies

Autoejects CD-ROM on dismount

Sets the maximum number of open iles; on a
system that handles a large number offiles, try
increasing this to 16384

Sets the maximum number of open inodes per
process; useful to tinker with if an app opens
tens of thousands of file handles

Reboots on Ctrl-Alt-Delete sequence; may be a
matter of personal preference or may increase
security on unsecured consoles

Minimum seconds between kemel messages
Sets the number of messages n succession
before the printk rate limit i actualy enforced
Sets the maximum amount of shared memory
Enables IP source route verification; this anti-
spoofing mechanism makes the kemel drop
packets received from ‘impossible” paths
Ignores ICMP pings when setto 1

Ignores broadcast pings when setto 1; almost
always a good idea toset thisto 1

Allows P forwarding when setto 1; only setto 1
if you'e using your Linux box as a router
Specifes local port range allocated during con-
nection setup; for servers that initiate many out-
bound connections, enlarge this to 1024-65000
forimproved performance

Specifies seconds to wait for a final FIN packet;
settoalower value (~20) on high-trafic servers
toincrease peformance

Protects against SYN flood attacks; turn on if
you suspect denial of service (DOS) attacks

srociondia. = Rabecicvenatie. i

Rl C o e iiasiotiom





images/00141.jpg
State Meaning

Runnable  The process can be executed.
Sleeping  The process i waiting for some resource.

Zombie  The process i trying to die.

Stopped  The process is suspended (not allowed to execute)






images/00383.jpg





images/00140.jpg
4 Name Description Dafmuch N CHY B SR AuIE
T OHP  Hangup Teminate Yes  Yes  No
2 N Intemupt Teminate  Yes  Yes  No
3 Qur Quit Terminate  Yes  Yes  Yes
9 KWL Kl Teminte  No  No  No
b oBUS  Busemor Terminate  Yes  Yes  Yes
T SEGV  Segmentationfault  Teminate  Yes  Yes  Yes
15 TERM  Softwareterminatin Teminate  Yes  Yes  No
= STOP Stop Stop No Mo Mo
TSP Keyboardstop stop Yes  Yes  No
= CONT  Continveafterstop  Ignore Y No Mo
- WINCH  Windowchanged  lgnore Y Yes Mo
USRI Userdefined#1  Teminate  Yes  Yes  No
o USR2 Userdefined#2  Teminate  Yes  Yes  No

2. Alst o ignalnames and numbers s aso avallable rom the bash buit-in command kil

I Vi oo i e S it v i ksl Kot s e Jikigtion.





images/00382.jpg
$0an/en:

# make sure the program finds any files co-packaged with i
# first even if it does not use an explicit path.
PATH=/tools/util/bar-1.0/bin SPATH

export PATH

axec /tools/util/foo-1.0/bin/foo.real *$@"





images/00143.jpg
System Range  OSnice cshnice _ renice

Linux 201019 -incror-niner  +incror-incr  prio

Solarls  0t039 -incror-nincr tincror-incr  incror-nincr
HPUX 01039 prioor-nprio -+incror-incr - prio®

A 201019 incror-nincr _tincror-incr _-mincr

2. Uses absaleba pricnit et adidk 20146 tha valis you specty.





images/00385.jpg
linux$ ls -1 /dev/sda
brw-rw---- 1 root disk 8, 0 Jul 13 01:38 /dev/sda






images/00142.jpg
$ nice -n 5 ~/binflongtask // Lowers prionty (raise mice) by 5
i sudo renice -5 8829 71 Sets e value @0 -5
§ Audin rertios 5 7 Bogm: 4/ et o iitkun oF BN pOEN 105






images/00384.jpg
System _Build directory  Kernel

Linux  fusr/src/linux  /vmlinuz or /boot/vmlinuz

Solaris Iplatform/hardware-ciass-namelunix
HP-UX Istand Istand/vmunix
AIX -* Jusr/lib/boot/unix

2. Administrators rarely build Solaris kernels, and when they do, the administrator
creates an arbitrary build directory.

b The ADC karmel i naver lebullt. esen she e midiies and deiicas wa addas





images/00379.jpg
5 sudo git rm --cached mtab
e St





images/00378.jpg
b sudo git commit passwd -m "Checking in existing passwd changes"
Created commit 6£7853c: Checking in existing passwd changes
1 Fle changed. 1 insertionsty). 0 deletionst)





images/00139.jpg





images/00381.jpg
control.
actionsequence = ( links tidy )
links:
sund.
Jbin > Jusr/bin
# other links
osf:
# some osf specific links
tdy:
prfEerateh Pt






images/00138.jpg
FBeling ausads J0F MacIines 1o, £y fe PIYSICH. departmenis
Host Alias  CS = tigger, anchor, piper, moe, sigi
Host_Alias  PHYSICS = eprince, pprince, icarus

# Define collections of commands
Crnd_Alias DUMP = /sbin/dump, /Sbin/restore.

Cnd_Alias  PRINTING = /ust/sbin/lpe, /ust/bin/iprm

Crnd_Alias SHELLS = /bin/sh, /bin/tcsh, /bin/bash, /bin/ksh, /bin/bsh

# Permissions
mark, ed  PHYSICS = ALL

herb CS = fusr/sbin/tepdump : PHYSICS = (operator) DUMP
lynda ALL = (ALL) AL, ISHELLS

%wheel  ALL, 'PHYSICS = NOPASSWD: PRINTING






images/00380.jpg
$ sudo git add .
$ sudo git commit -m "Installed foobard; added RAID spare’
Created commit 32978e6: Installed foobard; added RAID spare

4 files changed, 3 insertions(s). 1 deletion()

create mode 100644 gitignore

create mode 100644 foobard/foobard conf

Aidarti: oo A ORI N ool





images/00145.jpg
redhaty ps aux

USER
Toot
root
root
root
root
root
root

root
root
root
root
root
root
root
root
e
rpeuser
root
root
root
root
root
root

PID %CPU%MEM VSZ

1
2

1%
1050
1472
1646
733
2124
2182
2186
207
27
2260
2336
2248
2384
2399
219

01

02

0z
03

0z
02
01
02
02
04
02
08
06
03
11

7356
[

2652
048
3012

2004
2264
2957
2824
2100
5668
3268
9100
4080
2780
7776

RSS TTY STAT TIME

560
0

1008
1012

1008
59
484
580
760
1084
556
2108
1660
28
3004

5
SN
5<
5<
5<
5<
H

s
S
Ses
S<s

5o
S5
S5
Ss
S
Ss
5o
Ss
Ss
5o
ss

000
000
000
000
000
000
000

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

COMMAND
init 5]
[ksoftirqd/o]
[events/0]
[khelper]
[kacpid)
[kblocka/o]
[pdflush]

[kjournald)
udevd
Jsbin/dnlient -1
Jsbin/dnlient -1
[kjournald]
Jsbin/dhlient -1
syslogd -m 0
Klogd x
portmap
rpestatd
rpcidmapd
fust/sbin/acpid
cupsd
Justisbin/sshd
xinetd -stayalive
sendmail: accept





images/00387.jpg
linux$ cat /proc/sys/fs/file-max
34916
linux$ sudo sh -c "echo 32768 > /proc/sys/fs/file-max"





images/00144.jpg





images/00386.jpg
attach  close  dump loctd  open  probe
psize read receive reset  select  stop
stiasil  Hirdegidt. bRRemit W





images/00147.jpg
redhat$ ps lax
F UID PID PPIDPRINI VSZ RSS WCHAN STAT TIME COMMAND
4 0 1 0160335 560 selct S 000 init[s]

10 ) 13419 0 0 ksofi SN  0:00 [ksoftirqd/0
10 3 1 510 0 0 woker S< 000 [events/0]
1 0 4 3510 0 0 woker S< 000 [khelper]
S 0 218 116 02952 484 syslog Ss 000 Klogd -x

5 32 2207 115 0 2824 580 - Ss 000 portmap
S 29 2227 118 0 2100 760 select Ss 000 rpc.statd
10 2260 116 0 5668 1084 - Ss 000 rpcidmapd
10 2336 121 0328 556 selct S5 000 acpid

S 0 2384 117 04080 1660 select Ss 000 sshd
10 2399 115 02780 88 select Ss  0:00 xinetd -sta
S 0 2419 116 0 7776 3004 select Ss 000 sendmail: a






images/00146.jpg
Field Contents

USER Username of the process's owner

PID Process 1D

%CPU Percentage of the CPU this process is using

FMEM Percentage of real memory this process i using

vsz Virtual size of the process

RSS Resident set size (number of pages in memory)

TTY Control terminal ID

STAT Current process status:
R=Runnable D= In uninterruptible sleep
5 =Sleeping (< 20seq) T =Traced or stopped

Z=Zombie
Additional flags:

rocess is swapped out

rocess has higher than normal priority
= Process has lower than normal priority
ome pages are locked in core

rocess is a session leader

TIME CPU time the process has consumed
COMMAND __ Command name and arguments™

2 Programs can my this nf, 5o s not ecessarly an accurat representation of the
i e dvnctal el





images/00130.jpg
ubuntu$ sudo update-rc.d cups start 80 2 34 5. stop 20516 .
Adding system startup for /etc/init d/cups

Jetc/rc.d/K20cups -> . /init d/cups

fetc/nce d/K20cups -> _/init d/cups

Jetc/1cS.d/K20cups -> /init d/cups

Jetc/rc2.4/S80cups > ./init. d/cups

Jetc/1ca.d/s80cups -> /init dicups
Jetc/tck.d/s80cups > /init dicups
Jetc/rcs.d/S80cups -> .. finit.d/cups





images/00372.jpg
b svn checkout --username tobi svn://server.atrust.com/admin checkout

Authentication realm: <svn://server atrust.com:3690> The Sysadmin Repository
Passwortd for Yobi: <paEsiords






images/00129.jpg
ubuntu$ 1s /etc/eventd
control-alt-delete last-good-boot logd 1c0 rcl 1c2 1c3 red rcS 1c6
re-default rcS rcS-sulogin sulogin ttyl tty2 tty3 ttyd ttyS tiy6






images/00371.jpg
[users|

tobi = Ikadslfigasdljkhe8938uhau7623rhkdfndf
evi = 03uqalkhikasdgfprghkjhsdfjjs3yyouhfuhe
fritz = kd93ohjahkjaj3hkuyasdfaadfk3ijdkjhf





images/00132.jpg
solarish sves -1 svei/network/ssh:

frari
name
enabled
state
next_state
state_time
logfile
restarter
contract id
dependency
dependency
dependency
dependency
dependency
dependency
Hependency:

lefault
svemetwork/ssh default
SSH server

true

online

none

Mon Jul 13 15:56:19 2009
Jvarfsve/log/network-sshidefault log
sve/system/svc/restarter default

65

require_all/none svcysystem/filesystern/local (online)
optional_all/none sve-/system/flesystem/autofs (online)
require_all/none svc:/metwork/loopback (online)
require_all/none sv/network/physical (online)
require_all/none svesystem/cryptosve (online)
require_all/none s /system/utmp (online)

require all/restart. file-/Mocalkiostfete/eeh/sshd: config {online)






images/00374.jpg
5 git config --global user.name “John Q. Ulsah™
ot confia --alobal user sineil "nlah@book adiiiicoa"





images/00131.jpg
File(s) Purpose

‘SnmpMaster A master switch that turs all SNMP support on or off

Snmp* Hold other SNMP-related options
act Turms process accounting on or of;see acet(IM)
auditing  Configures system auditing; see audsys and audevent
de Holds CDE (Common Desktop Environment) settings
dlean® Control various boot-time cleanup operations
hpetherconf Configures Ethemet interfaces; see lanadmin

I Tums the print spooler on or off

mailservs  Starts sendmail or specifies a mil server
nameservs  Configures/starts the name server daemon

nddconf  Sets tunable kemel parameters at startup time using ndd
netconf  Specifies network device configuration (IP address, etc)
netdaemons Tells which networking daemons to start

nettl Configures network tracing and logging®

nfsconf  Sets NFS configuration options

sshd Configures the SSH daemon

v Starts vtdaemon; depends on ptydaemon

xfs Tums the X Windows font server on or off

a. See nettl(1M), netticonf(1M), and nettigen.conf(4) for more information.





images/00373.jpg
$ cd checkout
$ vi foo.c
£ im add R





images/00368.jpg
function backup () {
newname=$1. date +%Y%me4d %H%M bak
my $1 $newname;
echo "Backed up $1 to $newname.”;
<p -p $newname $1;





images/00128.jpg
## Path: Desktop/Window manager

## Type: stringlgnome startkde startkde3 startxfced,twm)
## Default kde
## Config profiles kde susewm

# Here you can set the default window manager (kde, fwm, )
# changes here require at least a re-login

DEFAULT_WM="gnome’
## Type: yesno
#4 Default yes

# install the SuSE extension for new users
# (theme and additional functions)

INSTALL_DESKTOP_EXTENSIONS=yes"

#4 Path Desktop
## Description:  default mouse cursor theme
## Type: string

## Defaulc

# Name of mouse cursor theme for X11. Possible themes can be found
# in Just/shareficons/

KDE_USE, IPV6="yes"





images/00370.jpg
igeneral]
anon-access = none

auth-access = write

password-db = passwd

realm = The Sysadmin Repository





images/00369.jpg
¥ d, soameyaem
+ mkdir repositories

# cd repositories

+ svnadmin create admin
3 divnod 700 admin





images/00137.jpg
Dec 7 10:57:19 tigger suda: randy: TTY=ttyp0 ; PWD=/tgger/users/randy;
USER=r00t - COMMAND=/bin/cat fetc/sudoers






images/00134.jpg
System_Pathname Tme R H S F
Linux /sbinishutdown  time o+ h - A
Solaris fusrisbin/shutdown -gsecs -6 40 -iS —
HP-UX fetcishutdown — secs o+ h - -
AX_sbin/shutdown  +time -t -h -m -~

2. A= Reboot, H = Halt, = Ente single-user mode, = kip fack

b. Red Hat and SUSE, but not Ubunty





images/00376.jpg
$ sudo vi mdadm/mdadm.conf
§ sudo git commit mdadm/mdadm.conf -m "Added spare to svr4west array"
Created commit 901bd39: Added spare to svedwest array

1 files changed, 1 insertions(s), 0 deletions(-)





images/00133.jpg
<exec_method
type=method’
name=start’
exec=lib/svc/method/sshd start
tirneout secorids='50/>






images/00375.jpg
5 cd fetc
§ sudo git init
initialized empty Git repository in /etc/.git/
$ sudo git add .
$ sudo git commit -m "Initial commit"
Created initial commit ed25c29: Initial commit
2538 files changed, 259122 insertions(+), 0 deletions()
create mode 100644 javal systemprefs/ system lock
create mode 100644 javal systemPrefs/ systemRootModFile





images/00136.jpg





images/00135.jpg
$ sudo shutdown -h 09:30 "Going down for scheduled maintenance.
Expected downtime is 1 hour."





images/00377.jpg
> sudo git status
¢ On branch master

# Changed but not updated.

¢ (use 'git add <file>.." to update what will be committed)

¢
¢ modified:  mdadm/mdadm.conf
¢ modified:  mtab

¢ modified:  passwd

# Untracked files:

+ (use "git add <file>.." to include in what will be committed)
g

g foobard/

e g added 15 ORI (s Gt adt

andfor ik conmnit sa)






images/00119.jpg
Command _ Meaning

reboot  Reboots the system

find Finds files on all mountable parttions

root Specifes the root device (a partition)

kernel Loads a kernelfrom the root device

help Gets interactive help for a command

boot Boots the system from the specified kemel image






images/00361.jpg
ubuntu$ sudo apt-mirror
Downloading 57 index files using 20 threads,
Begin time: Sat Aug 29 18:53:44 2009

(20]... [19]... [18]... [17]... [16]... [15]... [14].





images/00118.jpg
splashimage=(hd0,0)/boot/grublsplash xpm.gz
itle Red Hat Enterprise Linux Server (26.18-92.1.10.¢l5)
root (hd0.0)

kernel Amlinuz-2 6.18-92 1 10.6l5 o root—LABEL=/






images/00360.jpg
# General format: type un distribution |components|

deb http://us.archive ubuntu.com/ubuntu/ karmic main restricted

deb-src http://us.archive ubuntu com/ubuntu/ karmic main restricted

deb http://us archive ubuntu com/ubuntu/ karmic-updates main restricted
deb-src http://us.archive ubuntu.com/ubuntu/ karmic-updates main restricted
deb http://us archive ubuntu com/ubuntu/ karmic universe

deb-src http://us archive ubuntucom/ubuntu/ karmic universe

deb http://us.archive ubuntu com/ubuntu/ karmic-updates universe
deb-src http://us archive ubuntu.com/ubuntu/ karmic-updates universe
deb http://us archive ubuntu com/ubuntu/ karmic multiverse

deb-src http://us archive ubuntu.com/ubuntu/ karmic multiverse

deb http://us archive ubuntu com/ubuntu/ karmic-updates multiverse
deb-src http://us.archive ubuntu.com/ubuntu/ karmic-updates multiverse
deb http://security ubuntu.com/ubuntu karmic-security main restricted
deb-src http://security.ubuntu.com/ubuntu karmic-security main restricted
deb http://security.ubuntu.com/ubuntu karmic-security universe

deb-src http://security.ubuntu.com/ubuntu karmic-security universe

deb http://security.ubuntu.com/ubuntu karmic-security multiverse

deb-sre http:/security ubuntu.com/ubuntu karmic-security multiverse





images/00121.jpg
bile Wmdows. XP
rootnoverify (hd0,0)
ohain sy e





images/00363.jpg
Command

What it does

2ypper addrepo ur
2ypper dist-upgrade
2ypper info packages
2ypper install packages
2ypperlist-updates
2ypper modifyrepo url
2ypperrefresh

2ypper remove packages
zypper repos

2ypper searchtiing
zypper shell (orsh)
zypper update

‘Adds a repository to the working set
Updatesto the current distibution release
Displays information about packages
Downloads and instals packages

Listsall updated packages in the repository
Modifes the properties of a repository
Updatesthe local cache's repository metadata
Uninstalls packages

Listsrepositories in the current working set
Searches for packages with matching names
Starts an interactive zypper session

Installs updated versions of all current packages






images/00120.jpg
Disables Advanced Configuration and Power Interface components
Starts only the bash shel; useful for emergency recovery

Tells the kemel to use /devifoo as the root device

Boots to single-user mode

3 inux only. Use 5 on Solaris—this s  arry-ove for adminstators who arefamillar with OpenBoot on
R e





images/00362.jpg
*./om/sh
apt-get update
it it e R





images/00359.jpg
ubuntu$ sudo apt-get install sudo

Reading Package Lists... Done

Building Dependency Tree... Done

1 packages upgraded, 0 newly installed, 0 to remove and 191 not upgraded.
Need to get 08/122kB of archives. After unpacking 131kB will be used.
(Reading database ... 24359 files and directories currently installed )
Preparing to replace sudo 16.1-1 {using ../sudo_16.9p10-tubuntu3 4. i386.deb

Unpacking replacement sudo
Setting up sudo (1.6.2p2-2)
istalling reew werion of cohfi fls el deadi





images/00358.jpg
ubuntu$ sudo apt-get update
Get:1 http://hitp.us debian org stable/main Packages [24kB]
Get:2 http://non-us.debian.org stable/non-US/main Release [1028]





images/00127.jpg
File/Dir

Function or contents.

dock
console

aond

i1gn

init

keyboard
mouse
network
network-scripts
sendmail

Specifies the type of clock that the system has (almost aways UTC)"
Is amysterious directory that s always empty

Lists arguments to pass to the cron daemon

Contains the systens locale settings (date formats, languages, etc)
Configures the way messages from startup scripts are displayed

Sets keyboard type (use “us” for the standard 101-key USS. keyboard)
Sets the mouse type; used by X and gpm

Sets global network options (hostname, gateway,forwarding, etc)
Contains accessory scripts and network config files

Sets options for sendmail

e i v I 2 s sra ol S o how S i kel B,





images/00126.jpg
# In -s /etc/init.d/cups /etc/rc2.d/S80cups
# In -s /etc/init.d/cups /etc/rc0.d/K80cups





images/00123.jpg
7o Mo RN XA CIRTOCN0,
Irxrxwx 1700t Toot 55 Jan 151998 /dev/rdsk/c0t0d050 >
/./devices/sbus@1f.0/SUNW . fas@e, 8800000/5d@0,0:a raw





images/00365.jpg
solanis$ pkg publisher
PUBLISHER TYPE  STATUS URI
speteslari dfe (GielETsd) orign: Dhline:  BHbkE apEnECIATE B EE:





images/00122.jpg
splashimay
niddenrmenu

~(1d0,2)/boot/grub/splash xpm gz

title Windows X
rootnoverify (hd0.0)
chainloader +1

title Red Hat
root (d0,1)
T





images/00364.jpg
suse$ zypper sh
zypper> repos

# | Alias | Name | Enabled | Refresh
1| 0penSUSE 111-0 | openSUSE 111-0 Ives  |No
2 | repo-debug | openSUSE-111-Debug | No | Yes
3| repononoss | openSUSE-11.1-Non-Oss | Yes | Yes
4 | repo-oss | opensUSE-11.1-0ss IYes | Yes
S | repo-source | opensSUSE-111-Source | No | Yes

6 | repo-update | openSUSE-11.1-Update | Yes | Yes





images/00125.jpg
F/onsm.
test - /usr/bin/sshd || exit 0
case 1" in
start)
echo -n "Starting sshd: sshd"
Just/sbin/sshd
echo

stop)
‘echo -n "Stopping sshd: sshd"
Kill cat fvar/run/sshd pid”
echo

restart)
echo -n "Stopping sshd: sshd
Kill cat fvar/run/sshd pid”
echo
echo -n “Starting sshd: sshd"
fusr/sbin/sshd
echo "

echo "Usage: /etc/init d/sshd startstopirestart
exit 1

—





images/00367.jpg
hp-ux$ sudo swlist ‘Java™
# Initializing
# Contacting target "hpux11".

# Target: hpuxi1/

# Java1sjDK 1501100 Java 1.5 JDK for HP-UX
Java15jDKJdk15 1501100 Java 15 JDK
Javals|DK Jre15 1501100 Java 15 JRE

¢ JavatSJRE 1501100 Java 1.5 JRE for HP-UX
JavalSJREJrels 15.0.11.00 Java 1.5 JRE





images/00124.jpg
Command Function

boot /path_to_kerel  Boots an altemative kemel

boot s Boots intosingle-user mode

boot -+ Reconfigures the kemel and probes for new devices

boot -a fetc/system.bak Makes kemel read fetc/system.bak instead of /etc/system
probe-scsi Shows alst of al attached SCS| devices






images/00366.jpg
Command

GUIZ_ Whatit does

install-sd
sd

swad
swask
sweonfig
sweopy
swinstall
swjob
swiist
swmodify
swpackage
swreg
swremove
swverify
swagentd

~ Reinstalls the Software Distributor system

Y* Manages remote jobs: creation, scheduling, monitoring
- Configures SD security options

Runs interactive installation scripts

Configures (or reconfigures) installed software

Y Copies packages to a repository for future installation
Y Installssoftware packages from a repository

~ Command-line alternative to the sd command

Y Listsinstalled software or software located in a depot

Modifies the catalog of software Installed on the system’
Creates new software packages

Registers  software depot

Y Removes packages from the system o from a depot

~ Confirms the integrity of installed software

- Actsas the SD command agent (starts at boot time)

2 This oo s GUL-only; t has o command line. swjob s the command-lne equivalen.
B Ak kb 16 e actaied PRodicts BHREE OrIPD:





images/00108.jpg
3 python objects
name: Guen

rating; 10

characters: ~ [SpongeBob, Patrick’, ‘Squidward
dleniente  (lithiuie’, ‘carbon’, haron’






images/00350.jpg
Filename

Purpose

Jetcbootptab
Jetclopt/ignite/instl_boottab
Joptiignite/bin/bootsys
Joptiignite/bin/make_config
Joptiignite/bin/make_depots
Joptiignite/bin/manage._index
Joptiignite/lbin/setup_server
Ivarfoptiignitelclients
Ivarfoptiignite/data
Ivar/opt/ignite/INDEX

Acts s a plain-text “database’ for bootpd
Records IP addresses for booting PA-RISC dlents
Updates clients that ae already running HP-UX
Creates confi info fle using an instalation depot
Creates nstall depotsfrom some source media
Adds a depotto the lgnite-UX index

Shares /var/opt/ignite/clients over NES

Stores dlient configuration iles dir)

Traditionally used for nstallation depots (din)
Indexes all installation depots known to lgnite-UX






images/00592.jpg
options §
directory */var/domain’,
version "root@atrust.com’.
allow-transfer (82.165.230.84; 7133.249.193; 127.00.1; );
listen-on ( 192.168.2.10; 192.168.2.1; 127.00.1; 192.1682.12; };

include “atrustkey"; /1 Defn of atkey in mode 600 file

controls |
inet 127.00.1 allow [ 127.00.1; ) keys | atkey; )

view "internal® {

‘match-clients { 192.168.0.0/16; 206.168.198.192/28; 172.29.0.0/24; );
recursion yes;

include “infrastructurezones”  // Root hints, localhost forw + rev
zone "atrust.com” { /1 internal forward zone
type master;
file “internal/atrust com’,
k
zone "1168.192in-addrarpa’ {  // Internal reverse zone

type master.
file “internal/192 168.1.xev’;
allow-update { none; );






images/00349.jpg
fp-ux) sudo swhist Ignite-UX

# Ignite-UX
ignite-UX BOOT-COMMON-1A
ignite-UX BOOT-COMMON-PA
ignite-UX BOOT-KRN-11-11
Ignite-UX BOOT KRN-11.23
Ignite-UX BOOT KRN-11-31
Ignite-UX BOOT-SERVICES

C75142
C75142
C75142
C75142
C75142
C75142
C75142

HP-UX System Installation Services
Boot Components for IPF clients
Boot Components for PA-RISC clients
Boot Kemnel for 1111 clients

Boot Kernel for B.11.23 clients

Boot Kernel for B.11.31 clients

Boot Services for Installations





images/00591.jpg
$TTL 30d
00127 in-addr arpa

) IN SOA localhost. postmaster localhost.
1998050801  serial
3600 refresh
1800 retry
604800 expiration
3600 ) minimum

NS localhost
1 PTR  localhost.





images/00110.jpg
$ python dictionary
The ordinal array contains
The ordinal of 1 is first

[1: 'first, 2: 'second’, 3; 'third}





images/00352.jpg
Tool

What it does

nim_master_setup
nim_update_all
nim_clients_setup
nim_master_recover
nim

nimelient

Installs and configures a NIM master server

Updates installation resources and clents

Defines new dlents and initiates 05 installation

Restores the master NIM database to a new server
Multiple: configures resources, defines dients, etc.

Pulls resources (e.g, updates) from a server (run on clents)






images/00594.jpg
sEY atkey |
algorithm hmac-mds;
secret "shared secret key goes here”






images/00109.jpg
#!/usr/bin/python

ordinal = { 1 : first’ 2 : ‘second’, 3 : 'third' |
print “The ordinal array contains”, ordinal
print *The ordinal of 1 15", ordinal[1]





images/00351.jpg
hp-uxs cd /opt/ignite/bin
hp-ux$ sudo /make_depots -s /dev/dsk/c2t2d0
-d /var/opt/ignite/depots/Rel B.11.31/0e_media
hp-ux$ sudo /make_config -5 /var/opt/ignite/depots/Rel_B.11.31/core_media
~c /var/optiignite/data/Rel B.11.31/oe_media_clg
hp-ux$ sudo /manage index -n "HP-UX B.11.31 Default" - "11i v3"
hp-ux$ sudo /manage index -a
f /var/opt/ignite/data/Rel B.11.31/oe_media_cfg -c "11i v3"





images/00593.jpg
/1 Lots of zones omitted

include “internal/trademark zones"; // atrust net, atrust org, etc. slaves

) #/ End of internal view
view "world" {

‘match-clients { any; |
recursion no;

zone “atrust.com” {
type master;
file "world/atrust com’;
allow-update { none; );

b

zone *189.173 63 in-addr.arpa” [
type master;
file "world/63.173.189.rev";
allow-update { none; )

b

include “world/trademark zones";
zone “admin.com’ (
type master;
fle *world/admin cor’;
allow-update { none; )

\: #/ End of external view

/1 External view

1/ External forward zone

1/ External reverse zone

1/ atrustnet, atrustorg, etc. masters
1/ Master zones only in world view

1/ Lots of mastersslave zones omitted





images/00588.jpg
view . miefng. if
‘match-clients { our_nets; J;
recursion yes;
zone "example.com’ (
type master;
file “example-internal db’;

view "external {
match-clients { any; J;
recursion no;
zone "example com” [
type master;
file “example-external db';

/7 Only internal networks
J/ Internal clients only
J/ Complete view of zone

J/ Allow all queries
J/ But no recursion
J/ Only "public” hosts





images/00348.jpg
solariss sudo installadm create-service -s ~/0s0l-0906-x86.iso
-i 192.168.1.200 -¢ 10 /export/install

Setting up the target image at /export/install

Warning: Using default manifest </ust/share/auto_install/default xrnl>

Registering the service _install_service 46501 _OSinstall._tcplocal

Creating DHCP Server

Created DHCP configuration file.

Created dheptab.

Added “Locale” macro to dheptab,

Added server macto to dheptab - opensolaris,

DHCP server started

dhtadm: Unable to signal the daemon to reload the dhcptab

Added network macro to dhcptab - 192.168.10.

Created network table.

adding tftp to /etc/inetd.conf

Converting /etc/inetd conf

copying boot file to /tftpboot/pxegrub,I86PC.OpenSolaris-1

Service diEciery. fallback mechanir set up





images/00590.jpg
STTL 30d

Tocalhost.
@ IN SOA localhost. postmaster localhost.
1998050801 ;serial
3600 refiesh
1800 retry
604800 expiration
3600 ) ;minimum

NS localhost
A 197001





images/00589.jpg
zone “localhost” { /1 localhost forward zone
type master;
file "localhost”
allow-update ( none; J

3

zone "0.0127 in-addrarpa” [ // localhost reverse zone
type master;
file "127.0.0",

allow-update ( none; };





images/00116.jpg





images/00115.jpg
b python dwarfsearch '[aeiou}{2)'

Sn_ee_zy's dwarf suit is gr_ee_n

5 python dwarfsearch go
No dwarves or dwarf suits matched the pattern.






images/00357.jpg
ubuntu$ dpkg -1 nvi
Desired=Unknown/Install/Remove/Purge

| Status=Not/Installed/Config:files/Unpacked/Failed-config/Half-installed

|/ Err?=(none)/Hold/Reinst-required/X=both-problers (Status Err: uppercase=bad)
1/ Name Version Description

4.4BSD re-implementation of vi.





images/00117.jpg
Thread  Whatit does

Kjournald  Commitsfilesystem ournal updates to disk"

kswapd  Swaps processes when physical memory i low

ksoftirqd  Handles softinterrupts if they can't be dealt with at context switch time
Kkhubd  Configures USB devices

& Thie s oha Bisu el for shdl incanel eins or ol Mlaivisens.






images/00112.jpg
#./usr/bin/python

import sys
import o5

def show_usage(message, code = 1)
print message
print "%s: source_dir dest_dir” % sys.argv[0]
sys exit(code)
f lenisys.argy) = 3
show_usage(2 arguments required; you supplied %d" % (len(sys.argy) - 1)
elif not os.path isdir(sys argv[1])
show_usage('Invalid source directory’)
Slif not os path isdir(sys argv[2])
show_usage(Invalid destination directory’)

source, dest = sys.argy(1:3]

print "Source Directory is', source
print “Destination Directory is', dest





images/00354.jpg
redhat$ rpm -q --whatrequires openssh
openssh-askpass-2 9p2-7
openssh-askpass-gnorme-2.9p2-7
openssh-clients-2 9p2-7
openssh-server-2.9p2-7





images/00596.jpg
;- atrust.com - external flle

$TTL 57600

SORIGIN atrust.com.

@ S0A
NS
NS
MX
A

nslatrustcom. A

ns2atrustcom. A

wurw A

mailserver A

secure. A

| reverse maps

exterior1 A

209198168206 PTR

exterior2 A

213198168206 PTR

nsLatrust,com. trent atrust.com. (
2010030400 10800 1200 3600000 3600 )

NS1atrust com.

NS2 atrust com.

10 mailserver atrust.com

66.77.122.161

206.168.198.209

6677.122.161

66.77.122.161

206.168.198.209

66.77.122.161

206.168.198.209
exteriorl atrust.com.
206.168.198.213

exterior2.atrust.com.





images/00111.jpg
F g ey

e,

f = open(/etc/passwd, )
print £ readline(),

print { readline(),

fclose(

§ python fleio
atix25:25:Batch jobs daemon:/var/spool/atjobs:/bin/true
binex-1:4-bin: /bl Abintrie:





images/00353.jpg
redhat$ sudo rpm -U openssh-2.9p2-12.1386.rpm
error. failed dependencies

openssh = 2927 is needed by openssh-askpass-2.9p2-7
openssh = 2927 is needed by openssh-askpass-gnome-2.9p2-7
openssh = 29927 is needed by openssh-clients-2.9p2-7

SDRER o 2 81107 S e e D Spanasl, Ak GodF





images/00595.jpg
; atrust.com - mternal file

$TTL 86400

SORIGIN atrust.com.

@

ns1
s

i
mailserver
exchange
secure

3600

3600
3600
3600
3600

504

NS
NS
MX
A

s

nslatrust.com. trentatrust.com. (
2010032900 10800 1200 3600000 3600

NS1atrust.com.

NS2.atrust.com.

10 mailserver atrust.com.

66.77.122.161

192.168.2.11
66.77.122.161
66.77.122.161
192.168.2.11

192.168.2.100
66.77.122.161





images/00114.jpg
#!/usr/bin/python

import sys
import e

suits = [ ‘Bashful"'red', 'Sneezy'green’, 'Doc’blue’, ‘Dopey’ orange’,
‘Grumpy'yellow, ‘Happy"'taupe’, ‘Sleepy’puce’ |
pattern = re.compile('(ks)" % sys.argv[1])

for dwart, color in suits items()
if pattern search(dwarf) or pattern searchicolor):
print “%s's dwarf suit is %s." %\
(patern.sub(P M, dwarf), pattern sub(i" A1, color)
break
clse:
print "No dwarves or dwarf suits matched the pattern.”





images/00356.jpg
ubuntu$ sudo dpkg --install ./nvi_1.79-16a.1_1386.deb

(Reading database .. 24368 files and directories currently installed )

Preparing to replace nvi 1.79-14 (using /nvi_1.79-16a.1.i386.deb)

Unpacking replacement nvi

Setting up nvi (1.79-16a.1)

Checking available versions of ex, updating links in /etc/altematives

(You may modify the symlinks there yourself if desired - see ‘man In’)

Leaving ex (/usr/bin/ex) pointing to /usr/bin/nex.

Leaving ex 1.gz (/ust/share/man/man1/ex 1 gz) pointing to
Jusr/share/man/mant/nex.1 gz.





images/00113.jpg
iax eaunfer 3 rangeld, 10
‘print counter,





images/00355.jpg
ubuntu$ dpkg -1 | grep -1 http
i lighttpd 14.13-9ubuntu4 A fast webserver with minimal memory footpri





images/00597.jpg
// 1sc.org TLD name server

options (
directory “/var/named’;
datasize 1000M;
listen-on { 204.152.184.64; };
listen-on-v6 { 2001:4f802:15; J;
recursion no;
transfer-source 204.152.184.64;
transfer-source-v6 2001:4f8:0:2:13;

3

I/ ndc key

key mdc_key {
algorithm hmac-mds;
secret "<secret>";

3

// TSIG key for name server ns-ext
key ns-ext [

algorithm hmac-mds;

secret "<secrets";

Ji
server 204.152.188.234 { keys { ns-ext; }; )

controls {
inet 204.152.184.64 allow [ any: } keys { rdc key: )

include “inf/named zones’; // Roat, localhost, 127.00.1, :1
include “master zones” // Zones we master
O Ry ¥ Tota of slaves.





images/00339.jpg
ubuntu$ sudo debconf-get-selections --installer > preseed.cfg
ubuntu$ sudo deboonf-get-selections >> preseed.cfg





images/00581.jpg
aare OMEnLRIME"§;
type slave;
fle "path’;
masters ( ip_addr [port ip_port] [key keynamel; .. | [no defaul]
allow-query { address_match_list }; [any]






images/00338.jpg
7packages
@ Networked Workstation
@ X Window System

@ GNOME.
mylocalpackage





images/00580.jpg
zone "example.com” {
type master;
file "forward/example. com’;
allow-query | any; };
allow-transfer | my-slaves; |





images/01107.jpg
ubuntu$ setserial -g /dev/ttySO
fdev/ttySO, UART: 165504, Port: 0x03f8, IRQ: 4





images/00099.jpg
ubuntu$ perl -pe 's#/bin/sh$#/bin/bash#’ /etc/passwd
r00t:.0:0:r00t: /00t /bin/bash
daemoncx1:1:daemon:/usr/sbiny/bin/bash






images/00341.jpg
network 132.168.10.0 - profile a
arch sparc && memsize 2048-4096 begin profile b end





images/00583.jpg
zone
type hint
file "path






images/00098.jpg
$ perl validate
First name: John Ball

Last name: Park

Whole name: JOHN BALL PARK





images/00340.jpg
d-1 debian-mstaller/locale string en_US

d-i console-setup/ask_detect boolean false

d-i console-setup/layoutcode string us

4 netcfy/choose_interface select auto

i netcfg/get_hostname string unassigned-hostname
4 netcfg/get_domain string unassigned-domain

d-i netcfg/wireless_wep string

4 partman-auto/disk string /devisda
- partman-auto/method string lvm
d- partman-auto/choose_recipe select atomic

- passwd/user-fullname string Daffy Duck
- passwd/username string dduck

d- passwd/user-password-crypted password $18/mka9/§G//i6tN x6670.951VSM/
- user-setup/enciypt-home boolean false

tasksel tasksel/first multiselect ubuntu-desktop

- grub-installer/only_debian boolean true

- grub-installer/with_other_os boolean true

- finish-install/reboot in_progress note

Xserver-xorg xserver-xorg/autodetect_monitor boolean true





images/00582.jpg
128.138.243.151.cs.colorado.edu.
anchor cs.colorado.edu.cs.colorado.edu.






images/01104.jpg
Pin numbers

Top
View

8=






images/01103.jpg
D

8

-9

Signal
DCD
RD
™
DIR
G
DSR
RTS
15

Function

Data carrier detect
Received data
Transmitted data
Data terminal ready
Signal ground

Data set ready
Request to send
Clear to send





images/00579.jpg
alow-query { address_match _list };  [any]
allow-transfer [ address_match Jist ), [any)
allow-update ( address_match list ) [none
zone-statistics yes | no [no]





images/01106.jpg
solaris$ Is -IL /dev/term/a /dev/cua/a
ctw------- 1 uucp uucp 37, 131072 Jan 1116:35 /devicua/a
W 1 oot S O70 Jan 11 16:35 /dev/term/a






images/00578.jpg
anne: goRmivL name:
type master;
file “path’;






images/01105.jpg
RJ-45 DB-25 Signal

@ oW

DSR
e
DTR
6
RD

s
RTS

Function

Data set ready
Data carrier detect
Data terminal ready
Signal ground
Received data
Transmitted data
Cleartosend
Request to send





images/00105.jpg
et Ay A on:

import sys
2 = sys.argul1]

if a
print 'a is one'
print “This is still the then clause of the i statement.
else:
print 2 is' 2
print “This is still the else clause of the if statement.

print "This is after the if statement.’





images/00347.jpg
solaris$ cd /jumpstart/s10sparc/Solans_10/Tools
solaris$ sudo fadd_install_client -¢ serversjumpstart sake sundv





images/00104.jpg
3 chmod +x helloworld
§ /helloworld
Hello, world!





images/00346.jpg
solanis$ Is -1

Twrxex 1 oot
rwrer 1100t
rwrer 1100t
1 100t
1100t

Toot 52152
oot 413
oot 48
oot 62
root 314

Aug 23 1942 check
Aug 23 1929 profile_a
Aug 23 1913 rules

Aug 23 19:43 rules.ok
‘Aug 23 17:35 sysidcfg






images/00107.jpg
Y Us/om/pyion

name = ‘Gwen'
rating = 10

characters = | 'SpongeBob, ‘Patrick’, 'Squidward' |
clements = ( lithium, ‘carbon’, boron’ )

print "name:\ts\nrating\t%d" % (name, rating)






images/00106.jpg
ke, Mockasmmple. 1
2 is one

This is stil the then clause
his s after the if statement

the if statement,

$ python blockexample 2
s 2

This is stil the else clause of the if statement
Tica i afia the o statisats






images/00101.jpg
#/usr/oin/perl

for (split(Any, ‘df -h) {
aF - split
$h_part{$F(O]} = [ @F[0.4] ];

for (split{An/, 'df i) {
@F = spli
print join(\t", @{$h_part{SE(0]}), $F(1], SF[4]), "
]






images/00343.jpg
Keyword

‘Whatit specifies

keyboard
name service
network _interface
nfs4_domain
1o0t_passwiord
security_policy
service_profile
system locale
terminal
timeserver
timezone

Keyboard layout and language
Name service onfiguration for NS, DNS, o LDAP
Net connection detail: hostname, IP adress, etc.
Domain to usefor NFS version 4

Encrypted root password

Kerberos network authentication

Available network srvices

System language

Terminal type

Network date and time server

System time zone






images/00585.jpg
controls {
inet ip_addr port ip-port allow { address_match_Jist ) keys { key.ist )
|





images/00100.jpg
susej df -h | perl -ane 'print join("\t", GF|0..4]), "\n™ > tmp1l

sused df
suse§ join tmp1 tmp2

Filesyst Size  Used  Avail
jdevihdas  3.0G 931M
udev 126M 126M
fdev/ndal  S2M 61m
fdev/hdas 479 446M

Used%

68%

30%
2

Inodes
393215
32086
2409
126976

i | perl -ane ‘print join("\t", GF[0,1,4), "\n" > tmp2

1Useds
7%
2%
1%
1%





images/00342.jpg
install_type initial_install
system_type standalone

partitioning default

flesys any 512 swap  # Specify size of /swap
cluster SUNWCpall





images/00584.jpg
zone “domamn_name" {
type forward;
forward only | first;
forwarders { ip_addr; ip_addr;






images/00103.jpg
¥~/ LT DA/ Ay yon
print "Hello, world!"





images/00345.jpg
solariss sudo cp /jumpstart/s10sparc/Solaris_10/Misc/jumpstart_sample/check
fjumpstart/config

solaris § sudo /check

validating rules.

Validating profile profile A

The custom JumpStart configuration is ok.





images/00587.jpg
view view-name |

match-clients ( address_match_list } ;

match-destinations { address_match_list ] ;

‘match-recursive-only yes | no;
view_option;
zone_statement;

[any
[any
[no]





images/00102.jpg
b sudo perl -MCPAN -e shell

cpan shell -~ CPAN exploration and modules installation (+1.9205)
ReadLine support available (maybe install Bundle::CPAN or Bundle: CPANXxI?)

cpan(1]> install Class:Date

CPAN: Storabie loaded ok (v2.18)

CPAN: LWP: Useragent loaded ok (v5.815)

CPAN: Time:HiRes loaded ok (vL.9711)
‘several more pages of status updates






images/00344.jpg
keyboard=US-English

timeserver=time.nist.gov
NS {domain_name=solaris booklab atrust com

nfs4_domain=dynamic

ro01_password=m4QPOWNY

network_interface=e1000g0 (hostname=sake
default_route=192168.10.254
ip_address=192.168.10.15
netmask=255.255.255.0]






images/00586.jpg
$ ./indc-confgen -b 256
# Start of mdc.conf
key "radc-key" (

algorithm hmac-mds;

secret “orZuzsamkUnEps2zIHxD6cdShACIOGSG/elP/dvaIY=";

options
default-key “rdc-key";
default server 127.00.1;
default-port 953;
3
# End of mdc.conf
¢ Use with the following in named.conf, adjusting the allow list as needed:
¢ key "mdckey” (
¢ algorithm hmac-mds;
¢ sectet "orZuzsamkUnEps2zIHxD6cdShACIOGSG/elP/dvaIY=";
¢ );
4 )
# controls {
¢ inet 127.0.0.1 port 953
¢ allow ( 127.00.1;] keys [ "mdckey’; );
)
S P of narmadicont





images/01111.jpg
console# BI600 HUPCL # B3600 SANE IXANY #login: #console
192004 B19200 HUPCL # B19200 SANE IXANY #login: #9600

9600# BIE00 HUPCL # BIEOD SANE IXANY HUPCL #login: #4800
1800# BA80D HUPCL # BABOD SANE IXANY HUPCL #login: #2400
24004 B2400 HUPCL # B2400 SANE IXANY HUPCL #login: #1200
1200# B1200 HUFCL # B1200 SANE IXANY HUPCL #login: #300
300# B300 HUPCL # B300 SANE IXANY TAB3 HUPCL #login: #9600





images/01110.jpg
# The default entry, used to set defaults for other entries, and in cases
# where getty is called with no specific entry name.

default\
apim=\rin%h login\72 :sp#9600:

# Fixed-speed entries

2/5td.9600]9600-baud:\
SpH9600:

histd 38400[38400-baud:\
.Sp#38400:





images/01113.jpg
Value Wait? _Meaning

initdefault  ~  Setsthe iniial run level

boot No  Runs wheninittab is read for the frst time

bootwait  Yes  Runswhen inittab s read for the first time
ctrlaltdel  No  Runsin response to a keyboard <Control-Alt-Delete>*

once No  Starts the process once
wait Yes  Starts the process once

tespawn  No  Always keeps the process running

powerfail  No  Runswhen it receives a power-fai signal
powerwait  Yes  Runswhen init receives a power-fail signal

sysinit Yes  Runs before accessing the console

off ~ Terminates the process ftis anning, on some systems

T ——





images/01112.jpg
# Trap CTRL-ALT-DELETE
caz:ctrlaltdel:/sbin/shutdown -t3 - now

¢ Run gettys in standard runlevels
1:2345 xespawn:/sbin/mingetty ttyl
2:2345:respawn:/sbin/mingetty tty2





images/01109.jpg
wyse  console
dialup  ttyi0
dialup  tryil
V0 tyi2
Mo iz
dialout ttyid





images/01108.jpg
System _ On/off Terminal type Parameters Monitor
Ubuntu' /etclevent.d/tty’ /etc/ttytype letc/gettydefs  getty
SUSE  letdinittab  [etc/ttytype Jetc/gettydefs  getty
RedHat /etdinittab [etc/ttytype Jetc/gettydefs  getty
Solaris® _sactab _sactab zsmon/_pmtab  ttymon
HPUX  Jetdinittab  [etc/ttytype letc/gettydefs  getty
AIX' Jetdinittab /etc/security/login.cfg ODM database _getty

2. Ubuntu has moved from init to upstart for TTY/getty management;see page 1175
b.Virtual consoles are defined n /etc/default/console-setup.

¢ Solris configuratio fles ar I Jetc/saf and should be managed with sacadm.
5 avinh Ay S AT 5 Aol TYE Parniier OH AL






images/00328.jpg
FSymog.conl fue Ior AU RaeT STRCmcs.

# Emergencies: tel everyone who is logged on
“emerguser none

# Forward important messages to the central logger
“warninglpr locall none @netloghost
dacmon auth info @netloghost

# Send some local stuff to the central logger too
local2 infolocal debug @netloghost

¢ Keep printer errors local
ipr-debug arflog/lpd-emrs

# sudo logs 1o local2 - keep a copy here 00
local2 info frarflog/sudo log

# Keep kernel messages local
kerninfo arflog/kernlog





images/00570.jpg
zone-statistics yes | no





images/00569.jpg
dnssec-enable yes | no; Lyes]
dnssec-validation yes | no; [yes]
dnssec-lookaside domain trust-anchor domain; [~ “dlv.isc.org”
dnssec-must-be-secure domain yes | no: [none]





images/00330.jpg
RIS ERpE 8

LABEL: DMPCHK_NOSPACE

IDENTIFIER: FE9FB99
Date/Time: Sat Mar 21 150001 MST 2009
Sequence Number, 224

Machine Id 0001A4C4D700

Node Id im

Class: o

Type: PEND

WPAR: Global

Resource Narme: dumpcheck

Description

The copy directory is too small

Probable Causes
There is not enough free space in the file system containing the copy
directory to accommodate the durnp.

Recommended Actions
Increase the size of that file system.

Detail Data
File system name
fvarfadm/ras

Current free space in kb
108475

Gurrent estimated durnp size in Kb

197836






images/00572.jpg
max-cache-ttl mt; [tweek]  # Max TTL for caching positive data
max-journal-size int; [ ] # Max size of transaction journal file
max-ncache-ttl int; [3hrs]  # Max TTL for caching negative data
oo climnte it 100] # Max Fimultansous TCP dients





images/00329.jpg
# syslog.cont fiie for master logging host:

# Emergencies to the console and log file, with timing marks
“emerg Jdevjconsole
“ertkern,mark debugauthnotice  /dev/console
“ertkem,mark debuguser.none  /var/log/console log

auth notice Aar/loglconsole log
# Send non-emergency messages to the usual log files
“erruser none kern. debug rar/log/messages
daemon auth notice;mail crit Juarflog/messages

ipr debug Juarflog/ipd-es

mail debug Mar/log/mail log

# Local authorization messages, . sudo and npasswd
local2 debug Hvarflog/sudolog

local2 alert Iarflog/sudo-ettslog
auth.info Hvar/log/auth log.

# Other local stuff

local0 info Irarfadminbllog

locald notice fvarfadmlog/da log
local debug fvarfadm/annex-isn log
local? debug fverfadmlogteplog

# Local messages (the default f o facilty is specified)
el Fankiaioatserlog





images/00571.jpg
chents-per-query mt;

20

max-clients-per-query int; [100]

datasize int,
files int;

lame-ttl int;
max-acache-size int;
i i ChR e e

[unlimited]
[unlimited]
[10min]

9]
11

# Chents waiting on the same query
# Max clients before server drops ‘em
# Max memory server may use

# Max no. of concurrent open files

# Seconds to cache lame server data
# Cache size for additional data

¥ Kk Sieuiory for rachied answars





images/01115.jpg
solaris$ sudo sacadm -a -p myttymon -t ttymon -c /usr/lib/saf/ttymon -v 1
solaris$ sudo pmadm -a -p myttymon - b -i root -fu -v 1 -m "ttyadm -d
/dev/term/b -1 9600 -T vt100 -s /usr/bin/logir






images/01114.jpg
¥ IR = gt

¢ This service maintains a getty on ttySO from the point when
# the system is started until it is shut down again.

start on runlevel 2
start on runlevel 3
start on runlevel 4
start on runlevel 5

stop on runlevel 0
stop on runlevel 1
stop on runlevel 6 respawn






images/00568.jpg
SRS AMID-Sae: Ruyr, ! )
thiix. i sive wmiber: [4096]





images/01117.jpg
solaris$ stty

speed 38400 baud;

erase = *H; eol = M-"?; e0l2 = M-"2; swich = <undef>
ixany

tab3.





images/01116.jpg
Name Default Function

erase  <Control7> Erases one character of input

werase  <ControhW>  Erases one word of input

Kill <Control-U>  Erases the entire ine of input

eof <Control-D>  Sends an “end of file" indication

it <ControlC>  Interrupts the currently running process
quit  <Control\>  Killsthe current process with a core dump
stop  <ControhS>  Stopsoutput to the sreen

start  <Control-Q>  Restarts output to the screen

susp  <Control-Z>  Suspendsthe current process

Inext__ <Control-V> _ Interprets the next character lteraly






images/00336.jpg
Distribution Documentation source

Red Hat Enterprise Linux  redhat.com/docs/manuals/enterprise
SUSE en.opensuse.org/Installation

Ubuntu help.ubuntu.com/community/installation
Opensolaris dic.sun.com/osol/docs/content/dev/getstart






images/00335.jpg





images/00577.jpg
statistics-channels {
inet (ip-addr | *) port port# allow  address_match_lst )





images/00337.jpg
o

lang en_US # lang is used during the installation
langsupport en_US # _and langsupport at run time.
keyboard us # Use an American keyboard

timezone -utc America/EST  # --utc means hardware clock is on UTC (GMT)
mouse
rootpw ~-iscrypted $1§NaCISXSJRIREyIDGNTCK]HpO7S/

reboot # Reboo after installation. Always a good idea.
bootloader —location=mbr ~# Install default boot loader in the MBR.
install # Install a new system instead of upgrading
url —url httpe/installserver/redhat

clearpart —all ~initlabel # Clear all existing partitions.

part / —fstype ext3 —size 409

part swap —size 1024

part fvar --fstype ext3 -size 1 --grow

network --bootproto dhep

auth --useshadow --enablemds

firewall --disabled

xconfig --defaultdesktop=GNOME -startxoiboot ~resolution 1280x1024
depth 24





images/00332.jpg
# Rotate at S00MB, keep 4 files
mail debug  /var/log/mail rotate size S00m files 4

# Rotate after 1 week, keep 10 files, compress the file
user.debug /var/log/user rotate files 10 time 1w compress

# Rotate after 100KB or 2 months, whichever occurs first, keeping 4 files
kerndebug /var/loghkemn  rotate size 100k files 4 time 2m

# Keep 1 year of weekly logs, compress the file, move the file to /logs
syslog.debug /var/log/messages rotate files 52 time 1w compress archive /logs





images/00574.jpg
key key-d {
algorithm string;
secret string;

I





images/00331.jpg
Option Meaning

Totate Indicates that the specifed fle should be rotated
size N[km]" Rotates when the file reaches the spefied size”
filesN Keeps the specified number of versions in the rotation
time N[hdwmy]*  Rotates after the specified time interval has elapsed®

compress Compressesthe rotated file with compress
archive location Movesthe rotated file to location

s k=Kiobytes,m = megabytes
b There must be no pace btuieen N and the unt.For example, i crrect,but 2 1 s not.
I Tk .






images/00573.jpg
acl acl_name {
address_match_ist
I





images/00334.jpg
Option

Meaning

compress
daily, weekly, monthly
delaycompress
endscript

errors emailaddr
missingok

notifempty

olddir dir

postrotate

prerotate

rotate n
sharedseripts

size logsize

‘Compresses allnoncurrent versions ofthe log file
Rotates log files on the specified schedule.

Compresses all versions but current and next-most-recent
Marks the end of a prerotate or postrotate script
Emals error notifications to the spedified emafladd
Doesnit complain fthe log il does not exist
Doesnitrotate the log file ifitis empty

Specifiesthat older versions of the log file be placed n dir
Introduces ascrpt to run afterthe log has been rotated
Introduces ascript to run before any changes are made
Includes n versions of the log n the rotation scheme
Runs scripts only ance for the entire log group

Rotates i log file size > logsize (eg, 100K, 4)






images/00576.jpg
server ip_addr {
bogus yes | no;
provide-ixfr yes | no;
request-ixfr yes | no;
Keys { key-id; key-id; .. );
transfer-source ip-address [port];
transfer-source-v6 ipu6-address [port;

[no]

yes]

yes]

frone]

[closest interface]
[closest interface]





images/00333.jpg
¥ Globly: tptioos.
ervors errors@book admin com
rotate §
weekly

# Logfile rotation definitions and options
frarfiog/messages |
postrotate
Join/kill -HUP “cat fvarfrun/eyslogd pid”
endscript

)
fvarflog/sammbar* log [

notifempty

copytruncate
sharedscripts

postrotate
/oin/kill HUP “cat /varflock/samba/* pid
endscript





images/00575.jpg
trusted-keys {
domain flags protocol algorithm key,
domain flags protocol algorithm key;





images/01122.jpg
Name Input' Lang Back® Website
DoubleChocolatte W PHP  PM _ dclsourceforgenet
Mantis WE  PHP M mantisbtorg

oTRS WE  Pal  PMOD otrsorg
Rl:RequestTacker ~ WE  Perl M bestpracticalcom
Scarab, Wl M sabiligisorg

Trouble Ticket Express  WE Perl  FM°__ troubleticketexpress.com

s Inputtypes: W= web, =emal
b Backend: M = WySQL,

ostgresaL, 0 = Onade,

¢ Erivadl aovl MySCL options reauise the parchase of s add-on inodulé (but theye dhéapk





images/01121.jpg





images/01124.jpg
Name  URL Whatitis

FSF fsforg Free Software Foundation, sponsor of GNU

USENK usenixorg UNIX users group, quite technical

SAGE sagerg The System Administrators Guild associated
with USENIX; holds the yearly LISA conference

LOPSA lopsaorg League of Professional System Administators,
aspinofffrom USENIX/SAGE

SANS sansorg Runs sysadmin and security conferences; less
technicalthan SAGE, with a focus on tutorials

The Linux  linuxfoundation.org A nonprofit consortium dedicated to fostering

Foundation the growth of Linux

AUG  auwgorgau Austalian UNIX Users Group, covers both tech-
nical and managerial aspects of computing

SAGEAU  sage-auorgau  Australian SAGE, holds yearly conferences in Oz

SANE sanenl System Administration and Network Engineer-

ing group, has yearly conferences in Europe.






images/01123.jpg
Webssite

EMC loni (Inra)
HEAT

Remedy (now BMC)
ServiceDesk
Track It

Huge
Medium
Huge
Huge
Medium

infra-corp.com/solutions
frontrange.com

remedy.com
ca.com/usfservice-desk aspx
numarasoftware.com






images/01118.jpg
solaris$ stty -a

speed 38400 baud; rows 24; columns 80;

intr = *C; quit = ~\; erase = "H; kill = *U; eof
swich = <undef>; start = Q; stop = A5; susp = »
werase = "W Inext = AV; flush = ~0;

parenb -parodd cs8 hupcl -cstopb cread -clocal -crtscts

ignbrk brkint -ignpar -parmrk -inpck -istrip -inler -igner icml ixon -ixoff
fuclc ixany imaxbel

opost -olcuc -ocml onler -onocr -onlret -ofill -ofdel nl0 cr0 tab3 bso vt0 ff0
isig icanon iexten echo echoe echok -echonl -noflsh -xcase -tostop -echoprt
STl b

“D; eol = M-"?; eol2 = M-"
; dsusp = °Y; rpmt = ~






images/01120.jpg





images/01119.jpg
set noglob
eval “tset -5 -Q -m dialup:xterm’
unset noglob





images/00559.jpg
options §
option
option






images/00558.jpg
|!1.23.13; 1.2.3/24; )
(128.138/16: 198.11,16/24: 204.228.69/24: 127.0.0.1: )





images/00319.jpg





images/00561.jpg
version .stTing {rea: version number of the server|
hostname "string’; [real hostrarme of the server]
Serverd g™ fronel





images/00318.jpg
/dev/hdad
/dev/dat
/dev/hda?
fdev/ndas
/dev/ndas
/dev/hda7
/dev/ndab
/dev/nda8
/dev/ndab
/dev/ndal
/dev/da7
/dev/ndal
/dev/hda?
/dev/ndas
/dev/ndal
/dev/nda8
/dev/hdal
/dev/hda6

4 Sunjan
3 SunJan
3 Sun Jan
9 Sun Jan
1 Tue Jan
0 Tue jan
1 Tue jan
1 Tue Jan
0 5un Jan
1Frijan

1 Thu Jan
4 Sun Jan
2 Thu Dec
0 Tue Nov
0 Mon Sep
0 Mon Aug
3 Wed Jul
2 Wed Jul

17
7
7
7
12
12
12
12
1

2

2
2
2
20

42:59:23 2010
2251:51 2010
225024 2010
2246:25 2010
22:45:42 2010
2314:47 2010
231432 2010
231417 2010
2247:31 2010
22:16:05 2010
220809 2010
22:51:53 2010
225352 2009
22:46:21 2009
22:46:29 2009
2301:24 2009
22:52:20 2009
23:01:32 2008





images/00560.jpg
Iirectony Whye: InE JEvIET AR Starley]
{came us ittty entyil






images/00325.jpg
Selector Meaning

mailinfo Mal-elated messages of info priority and higher
mail =info Only messages at info priorty
mail info;mail.terr Only priortis info, notice, and warning

mail debug;mail l-warning _ Al priorites except warning






images/00567.jpg
allow-query { address_match_list }; latl hosts]

allow-query-cache | address_match st J; ~ [al hosts
allow-transfer [ address_match_lit ); all osts]
allow-update ( address_match_list J; [none]

hlackhole {address, matihi it 3 Tempty]





images/00324.jpg
Level
emerg
alert
ait

e
warning
notice
info
debug

Approximate meaning
Panicsituations

Urgent stuations

ritcal conditions

Other error conditions

Warning messages

Things that might merit investigation
Informational messages

For debugging only





images/00566.jpg
forwarders { in_addr; in_addr; ... };  [empty hst
Forwxd only | Tt [first]





images/00327.jpg
¥ yRI0gLonk e, 200 smal. DETWOIR. OF ST alone: Maciine

# emergencies: tel everyone who is logged on
“emerg’

¢ important messages

* warning daemon,auth.infouser none fvar/log/messages
¢ printer errors

ok daihin FearNoaNiod.ets:





images/00326.jpg
Action Meaning

flename  Appendsthe message toa file on the local machine
@hostname  Forwards the message to the syslogd on hostrame
@ipaddress  Forwards the message to the syslogd on host jpaddress

|ffoname  Wiites the message to the named pipe ffoname*
user,user2...Wites the message to the screens of users i they are logged in
¥ Wites the message to all users who are currently logged in

S TP SUR T NreY





images/00321.jpg
secure. sshdetc S M R Private authorization messages
sulog su F— SAH susuccesses and failures
syslog* various S W SUH Themain systemlog file

warn various S W Z Allwamingferror-level messages
wpars/* wpar F = A Workload partition events
wtmp, login H M all Login records binary)

xen/* Xen F 1m RZU  Xen virtual machine information
Xorgndog  Xorg F W RS XWindows server errors
yum.log yum F_M_R_Package managementlog

3 Where: 5 = yslog,H = Hardwired, F = Configuaton e

Freq:D=Dally W = Weekly M= Monthly, NNlkm] =ize-based, in & or MB
Systems: U= Ubunt, 2= SUSE, R = Red Hatand Cent0S, = Solaris, H = HP-UY, A

b passwa,login,and shutdown als0 it o the authorzaton og. It n /vatjadm,
¢ Actallylogs through syslog,but th acity andlevel are confiqured n fetcfnitogsconf.
4. Bary Sl that mwst be read witt the felliog Lelity.

i






images/00563.jpg
FECUrsion yes | no; Lyest
il rcriraion: | fidres wand el [all Aeas





images/00320.jpg
el
File Program HHE G eay
acpid acpld F 6o RZ Powerrclated events
authlog sudoetc® S M U Authorizations
apache2  httpd(v2) F D ZU  Apache HTTPserverlogs (v2)
aptt AT F M U Aptitude package installations
bootlog resaipts F MR Output from system startup scrpts
bootmsg  kemel H - 7 Dumpofkemel message buffer
cron, cronflog  cron S W RAH conexccutionsand ermors
cups/* cups F W ZRU Printing-related messages (CUPS)
daemonlog  varous S W U Alldaemonfaclitymessages
debug varous S DU Debugging output
dmesg kemel H — RU Dump of kemel message buffer
dpkglog dpkg F M U Package managementlog
faillog* login H W RZU Unsuccessful login attempts
httpdr* httpd F D R Apache HTTPserverlogs (i fetc)
kern.log Kernel S W U Allkemfaciity messages
lastlog fogin H ~ RZ Lastlogin time per user (binary)
mail* mallelated S W all Al mai facity messages
messages  various S W RZUS Themain systemlog fle
rpmpkgs ondally H D R Listofinstalled RPM packages
samba/® smbdet. F W -  Samba(Windows/CIFS file-sharing)





images/00562.jpg
Douby Yes | masteronly | exprot ooy yes)
also-notify servers_ipaddrs; ermpty]
Tiow-nntify addess-motch- Tt {oty!





images/00323.jpg
Facility

Programs that use it

auth
authpriv
caon
daemon
fip

kem
local0-7
o

mail
mark
news
syslog
user
wep

Alfacilties except ‘mark
Security and authorization-related commands.
Sensitive/private authorization messages

The cron daemon

System daemons

The FTP daemon, ftpd

The kernel

Eight flavors of local message:

The line printer spooling system

sendmall and other mail-related software
Time stamps generated at regular intervals
The Usenet news system (obsolete)

syslogd internal messages

User processes (the default if not specified)
Obsolete, ignore






images/00565.jpg
UEe-Ve-Upp-poris | range beg end, ),
use-v6-udp-ports [ range beg end; )

avoid-va-udp-ports | port lst J;
avoid-v6-udp-ports | port_list J;

query-source vé-address [ port |
ATy soaroEvE vhuddriss Fpoitd

jrange 2024 63535)
[range 1024 65535]

[empty]
[empty]

fany) # CAUTION, don't use port
fany} # CAUTION. don’t use port





images/00322.jpg
Jacwity.evel. actn

facility1, facility2 level action
facility1 levelfacility2 level2 action
“level action

albadi e hetion





images/00564.jpg
recursive-chents number; (1000}
ik I EhE s uhber untimited]





images/00317.jpg
/dev/hda8
/dev/ndal
/dev/nda6
/dev/hdat0
/dev/ndas
/devihda7

256194
21929
3571696
131734
1815580
256194

1103
4918
24336
5797
1113348
17013

161863
15879
3365021
119135
610004
225053

33%
24%
1%
5%
65%
7%

fboot
Nocal

femp
fust
NAF





images/00548.jpg
host.example,  SSHFP 2 1 12345678%abcdet6/789012345678%abcdett /7890





images/00790.jpg
smarthost:
driver = manualroute
domains = !+local_domains
transport = remote_snmp
route_data = smarthost.example.com






images/00789.jpg
OB ERETS:
driver = dnslookup
domains = lexample.com
transport = my,_remote_delivery






images/00308.jpg
_Ton ap
Run Backup job
JobName: harp

levl:  Ful
Clent:  harp
FleSet:  hamp
Pool  FullPool

Storage:  Surestore
When:  2009-10.08 10:56:41
priority: 10

OK to run? (yes/mod/no): yes
Ruft eoririand sihmittad:





images/00550.jpg
b dig @ns-ext.isc.org version.bind txt chaos
s Ay Moo ol






images/00792.jpg
system_aliases:
driver = redirect
data = $flookup(§local_part) Isearch (/etc/aliases)]

user_forward;
driver = redirect
check local_user
file = $home/.forward
no_verify





images/00549.jpg
 Sujdomgin: intormation:

booklab

testlab.

 ghue records

ubuntu booklab
EESEIRIE

N
N
N
N
N

N
NS
NS
NS
N

nst.atrust.com,
ubuntubooklab.atrust.com
ns.cs.colorado.edu.
nsl.atrust.com,

ns testlab.atrust.com.

63.173.189.194
€3173 189 17





images/00791.jpg
firewall:
driver = manualroute
transport = remote-smtp
route_data = ${lookup{$domain} cdb finternal/host/routes}}





images/00788.jpg
localusers:
driver = accept
domains = example.com
check_local_user

transport = my local_delivery
save_to.file:
driver = accept

domains = dialup.example.com
transport = batchsmtp_appendfile





images/00314.jpg
OK to run? (yee/mod/no). mod.
Parameters to modify:
Level
Storage
Job
Fileset
Restore Client
When
Priority
Bootstrap
Where
10: File Relocation
11: Replace
12: Jobld
Select parameter to modify (112 9
Flease enter path prefix for restore (/ for none): /tmp
Run Restore job

jobNarme: RestoreFiles
Bootstrap: /var/Bacula/working/restore bsr
Where: fmp

OK t0 run? (yes/mod/no): yes
Run command submitted
B Ao ah s i





images/00556.jpg
(TS 18 3 comment and can gpan ineg. /-
// Everything to the end of the line is a comment
erything to the end of the Jine is & comment.






images/00313.jpg
Run Restore Joo

JobName: Restorefiles
Bootstrap: foaculafbacula/workingjf-dir restore 4 bsr
Where Ivarirestore

Replace: always

FileSet Full Set

Backup Client: harp
Restore Client:  harp

Storage: LTO3-TL4000
When: 2009-11-23 151305
Catalog; MYSQL

priority. 10

G . um? {yenfmcdfni):





images/00555.jpg
System OSvers BINDvers _BIND release date.
IsC - 961k January, 2010
Ubuntu 90 9512 March, 2009

SUSE 102 942 November, 2007
RHEL 53 934P1 July, 2007

Solaris 510 93491 July, 2007
OpenSolaris 200906 96.1-P1 July, 2009

HP-UX noo9x December, 2005
AX 61 B33+0r921 January,2004






images/00797.jpg
Amavis:
no_verify_recipient
driver = manualroute
condition = ${if or [eq (Sinterface_port) (10025 \
{eq {§received_protocol) (scanned-ok} } } (0} (1} )
domain = local_domains
transport = amavis
routelist = * localhost byname
self = send






images/00316.jpg
BO-MRY S301 M-6a JONG 1545 10O SaieiNE 20030 0653 050007
‘waiting. Cannot find any appendable volumes.
Please use the “label’ command to create a new Volume for:
Storage:  "TL4000-Drived” (idev/nsto)
pool Full_Pool
Media type: LTO-3





images/00315.jpg
SD termination status: Waiting on FD
Termination: = Backup Error **

11-Nov 21:06 bull-dir Jobld 259: Warning: bsock 123 Could ot connect to
Client. harp on 192.168.1.39102. ERR=Connection refused Retrying

11-Nov 21:31 bull-dir Jobid 259: Warning: bsock.c:123 Could ot connect to
Client: harp on 192.168.1.3:9102. ERR=Connection refused






images/00557.jpg
Statement Page Function
include 602 Interpolatesa file

options 602 Sets global configuration options/defaults

acl 609 Defines access controllsts

key 609 Defines authentication information
trusted-keys 610 Uses preconfigured cryptographic keys

server 610 Specifes per-server options

masters 611 Defines alist of masters or stub and slave zones
logging 612 Specifes logging categories and their destinations
statistics-channels 612 Outputs realtime tatistics in XML

zone 612 Defines a zone ofresource records

controls 615 Defines channels used to control named with rdc
view 617 Defines aview of the zone data

Iwres - Specifies that named should be a resolver, too






images/00310.jpg
" restore

To select the Jobids, you have the following choices:
1: List last 20 jobs run

2: List Jobs where a given File is saved

Select item: (1-12) 2
Defined Clients

1 bull

2 harp

Select the Client (1-12): 2

Enter Filename (no path): pw_expirepl

| Jobid | Name | StrtTime | JobType.

| 4484 | /home/jim/development/pw_expire pl | 2009-11-03 20:1135 | B
| 4251 | /home/jim/development/pw_expire pl | 2009-10-21 18:0301 | B
| 4006 | /home/jim/development/pw_expire.pl | 2009-10-06 20:10:02 | B






images/00552.jpg
b dig @k.root-servers.net version.bind txt chaos
rii hard 0 CH TXT "NSD 237"





images/00794.jpg
my_local_dehvery:
driver = appendiile
file = /var/mail/local_part
delivery_date_add
envelope_to_add
retum_path_add
group = mail
mode = 0660





images/00309.jpg
" restore
To select the Joblds, you have the following choices
List last 20 Jobs run
List Jobs where a given File is saved
Enter list of comma separated Jobids to select
Enter SQL list command
Select the most recent backup for a client
Select backup for a client before a specified time
Enter a lst of files to restore
Enter a lst of fles to restore before a specified time
Find the Joblds of the most recent backup for a client
10; Find the Joblds for a backup for a client before a specified time
11: Enter a list of directories to restore for found Joblds
12: Cancel
Select item; (1-12):





images/00551.jpg
% dig @mroe.cs.colorado.edu version.bind txt chaos
version_bind. 0 CH TXT ‘*wouldn’t you like to know...""





images/00793.jpg
#Exam hilter
if  $header_subject: contains SAGE or $header_subject: contains sysadmin
then
save $home/mail/sage-sysadmin
endif





images/00312.jpg
Bootstrap recards written to /var/bacula/working/restore. bar
The restore job will require the following Volumes

00087913
1 file selected to be restored.

Defined Clients:
1: bull
2 harp

Select the Client (1-2): 2





images/00554.jpg
$ dig @k.root-servers.net id.server txt chaos
e 0 CH TXT "k2nap.k.ripe.net’





images/00796.jpg
begin retry
w * F. 2h. 15m: F, 24h 1h: F. 4d. 6h





images/00311.jpg
SelRer dtem (1-19) %
Enter Jobld(s), comma separated, to restore: 4484

You have selected the following Jobld: 4484

Building directory tree for Jobld 4484 .. 1Job, 779,470 files

You are now entering file Selection mode where you add (mark] and
remove (unmark) files to be restored. No files are initially added, unless
you used the "all" keyword on the command line.

Enter "done’ to leave this mode.

cwd is: /

§ cd /home/jim/development

cwd is: fhome/jim/development

§ dir

e 1 fim atrust 923 20001025 1205:43 /home iy development/pw_exp.
§ mark pw_expire.pl

1 files marked.

§ done





images/00553.jpg
$ dig @k.root-servers.net hostname.bind txt chaos
hostnamebind. 0 CH TXT “k2.napkripe.net"





images/00795.jpg
my_remote_delivery:
driver = smtp

my_remote_delivery_port587:
driver = smtp
port = 587
headers_add = X-processed-by: MACRO_HEADER port 587





images/00307.jpg
$ sudo ./beonsole

Connecting to Director bull 9101

1000 OK: bull-dir Version: 2.4.4 (23 December 2009)
Enter a period to cancel a command.






images/00306.jpg
# Console conhiguration file, beonsole.cont

Director {
Name = bull-dir
DIRport = 9101

Address = bull
Password = “ZHpSCUnHNS"






images/01100.jpg
Pin_Name _Function Pin_ Name Function

1 FG  Fameground 14 SO SecondaryTD

2 T Tnsmitted data 15 1C  Transmitdlock

3 RD  Receiveddata 16 SRD  SecondaryRD

4 RIS Requesttosend 17 RC Receiveclock

5 TS Cleartosend B - Not assigned

6 DSR  Datasetready 19 SRTS  Secondary RTS
756 Signalground 20 DR Dataterminal ready

8 DD Datacarierdetect 21 SQ Signal quality detector
9 - Positive voltage 2 R Ringindicator

0 - Negative voltage 23 DRS  Datarateselector
no- Notassigned 24 SCTE  Clock transmit external
12 SDCD  SecondaryDCD 25 BUSY Busy

13 SCTS  Secondary CTS






images/01099.jpg
Connector Pin numbers

1 —_ 1

0000000000000
000000000000

14 —_— 25






images/01102.jpg
Connector Pin numbers

0,0,0,0,0,

0/ @, (6. 0}






images/01101.jpg
Legend Straight Null modem
Fameground £ a—n —E
Tansmitted data 1D 21— = 2
Received data RD = s
Requesttosend TS = :
Cleartosend CTS H—Fl >k
Datasetready DSR B — 6 6 6

Signa ground 56 =l 7

Data carer detect DCD e — s |[s 8
Data temmina ready DTR 0 — of | 2






images/01098.jpg





images/00779.jpg
ALIAS_QUERY =\
select mailbox from user where login = ‘${quote_mysql:$local_part)
data = ${lookup mysql{ALIAS QUERY}}





images/00778.jpg
DOSLURE Yoy _re ay. st
hoerlist wiy pelay. Jit

ILIBEL T - ITIEN EXETORE-Om
fosrilocallexim/ralay. gt et






images/00539.jpg
gmaill.com. 300 IN SPF

-_spf.google.com”





images/00781.jpg
deny

condition = 3f 1sip4{$sender_host_address]}

tauthenticated = *

thosts = +rny_whitelist_ips

Idnslists = list.dnswl.org

domains = +local domains

verify = recipient

message = You are on RBL Sdnslist_domain: $dnslist_text

dnslists = zen spamhaus.org

logwrite = Blacklisted sender [$sender host_address] \
$dnslist domain: $dnslist text






images/00538.jpg
1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.£.2.0.0.0.0.5.0.1.0.0.2.1p6 .arpa.
AR PR Y





images/00780.jpg
begin acl

my_acl_check rcpt

accept

deny

deny

accept

require

accept

accept

require

require
accept

hosts =
control = dkim_disable._verify

message = Restricted characters in address
domains = +local_domains

Tocal_parts = (] : *{@%!]

message = Restricted characters in address
domains = +local_domains

local_parts = AL/ : ~7[@%!] : “AMN/

local_parts = postmaster
domains = +local_domains

verify = sender

hosts = +relay_from _hosts
control = submission
control = dkim_disable_verify

authenticate
control = submission
control = dkim_disable_verify

message = Relay not permitted
domains = +local_domains : +relay_to_domains

verify = recipient





images/00303.jpg
storage |
Name = bull-sd
SDPort = 9103
WorkingDirectory = */var/bacula/working
Pid Directory = “/var/run®
Maximum Concurrent Jobs






images/00545.jpg
b openssl genrsa -out rsa.private 1024
¢ apenssl Tea i s privats -out Tea.public Hibaut outiti PO





images/00787.jpg
begin authenticators

my_dlient_fixed login
driver = plaintext
public_name = LOGIN|

client_send = : myusername : mypasswi

my_server_fixed_login:
driver = plaintext
public_name = LOGIN

server_advertise_condition = $(if deftis_cipher]
server_prompts = User Name : Password

server_condition = ${if and {{eq($authi}{usemare]] \
{eqi$auth2}{myp:

server set id






images/00302.jpg
Director {
Name = bull-dir
Password = "iKkIZuE00"






images/00544.jpg
gamma._domainkey.gmail.com. 300 IN TXT “k=rsa\; t=y\
P=MIGEMAOGCSqGSIb3DQEBAQUAA4GNADCBIQKBEQDIhyR301t0y22Z0abrl
Ve9m/iME3RqOJeasANSpg2Y THT YV + XtpaxwfSgTjCmHQEMOS0G Y uOF YiNGP
Qogj2tOMfx9zNU0GHRBDJIUItpx2T+NGIWZ8qhbiL.osBysaplavLyqTLavyPSty
SxOB3YZzC63T4Ape?CDAZY A+OwSMWQIDAQA]






images/00786.jpg
deny message = This message was classified as spam
condition = ${if < [§message_size}{10K)}
o — rbady





images/00305.jpg
ALIDCOANEER{
Narne = TL400O
Device = TL4000-Drive0, TL4000-Drivel
Changer Command = */etc/bacula/mtx-changer e %0 %S %a %d
Changer Device = /dev/changer






images/00547.jpg
51023 domaintey.yanoo.com.. BOSll. INCTET SXSrRdy
P=MIGIMAOGCSqGSIb3DQEBAQUAA4GNADCBIQKBEQDIEeeORMuz+ QfiW Yui
/E9UGSXau/2PELINTDEVAUNN+2FAZVGE3KL23bzeol LY v4PeleB3gfm™
"JIDJOKU3NSSLAKJAUUHJFWDEbtONP+sBKOVKETATLYr/S30T/xhy+ 1xtj4Rkd.
V7fVXTnS6Lb4udUnwuxK4VsbsPAOKi/+ XcwIDAQAB\: n=A 1024 bit key\:






images/00304.jpg
Jpacey
Name = TL4000-Drived
Media Type = LTO3
Archive Device = /dev/nst0
AutomaticMount = yes
AlwaysOpen
RemovableMedia
RendomAccess = no
Autochanger






images/00546.jpg
damalnkey.yanoa.com, 7200 INTXT
n=http://antispam yahoo.com/domainkeys"






images/00299.jpg
Chent {

Name = harp
Address = 192.168.1.28
FDPort = 9102

Catalog = MYSQL
Password = "TbEpJqreqy’





images/00541.jpg
Fenmall con, AN LT r=EpiT IPEIUS. 6076, 1) Ip=0. 206 7041 Aps.
63.211.143.38 ip4:209.246.26.36 ip4:209.246.26.39 ip4:209.246.26.24 ipé
209.246.26.25 ip4:209.246.26.10 ip4:209.246.26.53 ip:72.32.154.224/27
i carstintoontact po<al





images/00783.jpg
deny message = This message contains malware (Smalware_name]
demime = *
malware = *





images/00298.jpg
Schedule {
Name = "Nightly"
Run = Level=Full Pool=FullPool 1st tue at 20:10
Run = Level=Incremental Pool=IncrementalPool wed-mon at 20:10






images/00540.jpg
-sptf.google.com. 300 IN SPF ‘v=spfl 1p4:216.239.32.0/13 1p4:64.233.160.0/13
ip4:66.249.80.0/20 ip4:72.14.192.0/18 ip4:209.85.128.0/17 ip4:66.102.0.0/20
ip4:74.125.0.0/16 ip4:64.18.0.0/20 ip4:207.126.144.0/20 ?all"





images/00782.jpg
ac. check mall
deny message = 503 Bad sequence of cmds - must send HELO/EHLO first
condition = ${if !def:sender_helo name]
aceept





images/00301.jpg
Defaulyob
Level = Full
Write Bootstrap = */bacula/bootstraps/harp bt

Incremental Backup Pool = Incremental_Pool
Schedule = "Nightly'

Prefer Mounted Volumes = no

Max Run Time = 36000






images/00543.jpg
Tag Examplevalue  Whatitis

Vo1 Version number; must be 1
a  1sashase Encryption algorithm: rsa-shat or rsa-sha2s6
¢ relaxed/relaxed  Canonicalization algorithms simple or relaxed
d  gmailcom Domain of the sender

s gamma Selector or key name

h  domain Header felds to include in the header signature
bh 24HfUVIL Cryptographic hash of the body of the message
b UtyWupx. Cryptographic signature of the whole message

o Thi iooilthes Greciles howi tie hasder dind body. i ringed ki eiyition.





images/00785.jpg
deny message = This message was classified as spam
spam = nobody





images/00300.jpg
FileSet {
Narne = "harp’
Include |
Options {
signature=SHAL
compression=GZIP

t
Exclude = [ /proc /tmp /journal /.fsck }





images/00542.jpg
DKIM-Signature: v=1; a=rsa-shasg; c=relaxed/relaxed; d=gmail.com; s=gamma,
h=domainkey-signature-rmime-version:received-reply-tordate:message-id
subject:from:to:content-type;
bh=24HfUv11AO4)XRNBmg94pNGZIUPdqSbkOd4Zppoudsi=;
b=UtYWupx/Udqi75d1n0h52IDKq7R/Ggs HwYBxMOLcshlwhqrhyHyleadsos
ENMXJEY13jy2j3VNGemOAOSUGHIMmdISLAP7 AvxptYOVLgYGMIIDAuW
BOl4a7 Z)uoi VHImSEA/EXK48rva102)Y + AgRADDbx6/S6phSFVIts a+ A=






images/00784.jpg
Scanner specification

Daemon or service

aveserver. path-to-socket
clamd:ip-address port or path-to-socket
cmdline: path found-regex name-regex
drweb:ip-address port or path-to-socket
fsecure: path-to-fsav-file
kavdaemon: path-to-socket
sophie:path-to-socket

Kaspersky scanner daemon version 5
ClamAV through TCP or local socket
Generic command-line interface

Drieb daemon scanner (sald.com)
F-Secure daemon scanner (f-secure.com)
Kaspersky scanner daemon version 4
Sophie interface to Sophos*

. Sovclanelibiksonhie: This seanmer i te deaul twith veth Anwinaioel






images/00537.jpg
ftp._tcp SRV 0 0 21  ftp-serveratrust.com.

. 1/4 of the connections to old box, 3/4 to the new one
“ssh._tep SRV 0 122 oldslowboxatrust.com
SRV 0 322  newfastboxatrustcom.

: main server on port 80, backup on new box, port 8000
_http._tep SRV 0 0 80  www-serveratrust.com.
SRY 10 0 8000 new-fast-box atrust com

+ 50 both httpy//www.atrust.com and http://atrust.com work
itp_tepwww SRV 0 0 80  www-serveratrust.com.
SRV 10 0 8000 new-fast-box atrust.com

: block all other services (target = )
‘_tcp SRV 0 00
* “udp SRV 0 00





images/00768.jpg
TS SIVACCITE CRSTge oo KIELIZ
TLS Cltlaptop example.com  PERMsVERIFY:112





images/00528.jpg
, Start of authority record for atrust.com

atrustcom,  IN SOA  nslatrust.com, hostmaster atrust.com. (
2009070200 ; Serial number
10800 i Refresh (3 hours)
1200 ; Retry (20 minutes)
3600000 Expire  (40+ days)

3600 ) - NEnEE (1 houn)





images/00770.jpg
$ sudo mailq
Jvar/spool/mquene (3 requests)
QID-—  -Siz QTime--— — ender/Recipient-
K623gYYKO08732 23217 SatJul 12142 MAILER-DAEMON
BBITMIME  (Deferred: Connection refused by agribusinessonline.com)
<Nimtz@agribusinessonline com>
KSULKAHB032374 279 Fri Jun 30 15:46 <randy@atrust.com>
(Deferted: Name server: K2wireless.com.: host name lookup fa)
<relder@kwireless com>
KSUJDM72023576 2485 Fri Jun 30 13:13 MAILER-DAEMON
(reply: read error from mx4 level3.com.)
dfinistebbnpknetcns






images/00769.jpg
Variable (relative to /proc/sys) _ Default _Suggested

net/ipv4/tcp_fin_timeout 180 30
net/ipva/tcp_keepalive_time 7200 1800
net/core/netdev_max_backlog 300 1024
fs/file_max 409 16384

fs/inode_max 16384 65536






images/00534.jpg
65 2 M0 BSsCUSIOIICY L.Cou.
0-63 IN NS ns2customerlcom





images/00776.jpg
include absolute-path
include_if_exists absol

ce-path





images/00533.jpg
WHCIN: 343138125 m-ardr arpa.

1 N
2 N
53 N
2 N

65 N

CNAME
CNAME

CNAME
CNAME
CNAME

1063
2063

63063
64.64-127
65.64-127





images/00775.jpg
acl_smtp_rcpt = ${if =(25}{Sinterface_port} \
Todl chisck- nopt} facl chisck ept subtGg ]






images/00536.jpg
PORIGIN 243.138.128.1n-addr.arpa.
SGENERATE 0-63 $ CNAME $.0-63

0-63 NS nstcustomert com
.63 T B ettty S





images/00535.jpg
IN PTR  hostl.customerl.com
IN PTR  host2.customerl.com,





images/00777.jpg
local_interfaces
ol Antfacss.

127.001 © 1
< 127001 : 1






images/00530.jpg
somehost IN MX 10 mailserver.atrust.com.
IN MX 20 mail-relay3.atrust.com.





images/00772.jpg
System _Logfile location
Ubuntu /var/log/mail.log

SUSE Ivarflog/mail

RedHat /var/log/maillog

Solaris  /var/log/syslog and /var/adm/messages
HP-UX  Ivar/admisyslog/mail.log

AIX Ivar/log/mail






images/00529.jpg
Bslatrust.oom,
NS ns2 atrust com.

booklab NS ubuntu booklab atrust.com
B el atein Ao





images/00771.jpg
erforwaming

L Sysloglevels L Sysloglevels
0 Nologging 4 notice

1 alertorcrit 5-11  info

2 ait 212 debug

3






images/00532.jpg
Hp

IN CNAME anchor
IN CNAME kibblesnbite





images/00774.jpg
Flag

bd
-bfor -bF
-bi
-bp
bt
bV
~d+-category
-q

Runs in daemon mode and lstens for connections on port 25
Runs i user or system filter test mode

Rebuilds hashed aliases (same as newaliases)

Prints the mail queue (same as mailq)

Enters address test mode

Checks for syntax errors in the configuration file

Runs in debug mode, very lexible category-based configuration
Starts a queue runner (same as runq)






images/00531.jpg
IN MX 10 mauserver atrust corm.





images/00773.jpg
BIN_DIRECTORY=/usr/exim/bin
SPOOL_DIRECTORY=/var/spool/exim
CONFIGURE_FILE=/usr/exim/configure
SYSTEM_ALIASES_FILE~/etc/aliases
EXIM_USER=ref.exim

ROUTER_ACCEPT=yes
ROUTER_DNSLOOKUP=yes
ROUTER_IPLITERAL=yes
ROUTER_MANUALROUT
ROUTER_QUERYPROGRAN-=yes
ROUTER_REDIRECT=yes

TRANSPORT_APPENDFILE=yes
TRANSPORT_AUTOREPLY=yes
TRANSPORT_PIPE=yes
TRANSPORT_SMTP=yes

SUPPORT_MAILDIR=yes
SUPPORT_MAILSTORE=yes
SUPPORT_MBX-yes

LOOKUP_DBM=yes
LOOKUP_LSEARCH=yes
LOOKUP_DNSDB=yes
LOOKUP_CDB=yes.
USE_DB=yes

DBMLIB=-Idb
WITH_CONTENT_SCAN=yes

EXPERIMENTAL SPF=yes
CFLAGS += -/ust/local/include
LDFLAGS += -lspf2

LOG_FILE_PATH=/var/log/exim %slog
LOG_FILE_PATH=syslog

# Where the exim binary should hive
# Mail spool directory

# Exim's configuration file

# Location of aliases file

# User to run as after rootly chores

# Router drivers to include

# Transport drivers to include

# Mailbox formats to understand

# Database lookup methods to include
# Linear search lookup

# Allow almost arbitrary DNS lookups
# Dan Bernstein's constant DB lookups
# Use Berkeley DB (from README)

# (from README)

# Include content scanning via ACLs

# Include SPF support, needs libspf2
# From www libspf2.org,

# Log files: file, syslog, o both

LOG_FILE_PATH=syslog/var/log/exim %slog

EXICYCLOG MA:

0

¥ Compresslovile Tog Hles, ke 10





images/00527.jpg
Type  Name Function

@ SOA  StartOfAuthorty Definesa NS zone
S N Name Server Identifies servers,delegates subdomains
A 1Pva Address Name-to-address translation
S AMA IPY6 Address Name-to-1Pv6-address translation
& em Pointer Address-to-name translation
MX_ MailEchanger  Controls email routing
[ Delegation Signer _Hash of signed child zone's key signing key
& DNSKEY PublicKey Public ey for a DNS name
3 NSEC  Nextseare Used with DNSSEC fo negative answers
5 NSEC®  NextSecurev3 Used with DNSSEC for negative answers
T ARG Signatue Signed, authenticated resource record set
2 oo Lookside Nonroot trust anchor for DNSSEC
S SSHFP  SSHFingerprint  SSHhost key, allows vrlfcation via DNS
&SP SenderPolcy Identifies mail servrs, inhibits forging
DKM Domain Keys Verify emal sender and message integrity
= CNAME CanonicalName  Nicknames or aliases for ahost
S SRV sewices Gives locations of well-known services
8 ™ Text Comments or untyped information®

. The original NSEC sstem allows hackers handy with the dig command to eally lstall of a zone’s
ecords NSECS hasfied this weakness but s more expensive o compute; oth are curenty i use

b TXT records are ncreasingly being use 10ty out new deas without having o get ul ETF blesing
o U N e e ol ST s U rooode Wiio M Rk banto 3 TET seonrilt





images/00526.jpg
frogie.cnm, 200 NG A CZORETLUR
soogle.com 345600 IN NS nslgoogle.com
nslgoogle.com. 345600 IN A 216.239.32.10





images/00759.jpg
ClientConn:192.168.2.8
ClientConn:175.14.4.1
b

7
10





images/00758.jpg
ClientRate:192.168.6.17
ClientRate:170.653.4 10





images/00523.jpg
PORIGIN domain-name
$INCLUDE filename [origir]
$TTL defauit-ttl






images/00765.jpg
FRCRtian Bxc & EXEULR (UST @amn; S, D0/ OCO LN eric
cat fetc/passwd # Rejected, cat not in sm.bin
itabion eic < isciioasied. @ Rected, no < sllowed





images/00522.jpg
Page RFCs Description

603 5001 NSID, name server identifcation for anycast servers.

591 5518,5016, DKIM requirements, signatures,third-party signing,
4871, 4686 ADSP sender signing practice

500 4470 SPF mail server dentification

504 4255 SSHEP, SSH host key fingerprint

574 5198,4952,4690, Intemationalized domain names (via Punycode, in top-
4290,4185,3492  level domains, exchange format)

8 4724339, 1Pv6, operational ssues, host configuration, ip6.arpa
4159,3901 notip6.nt for reverse mappings,current best practices

648 51555011, DNSSEC, authentication, delegation signer (D)
4641, 4509, resource records, operational practices,trust anchors,
4470,4033-5  denial of existence (NXDOMAIN)






images/00764.jpg
o0s smrsh ‘mail.local sm.bin

sendmail /usr/libexec Iusrlibexec Just/adm
Ubuntu  /usr/lib/sm.bin Iustlib/sm.bin Just/adm
SUSE /usr/lib/sendmail.d/bin /ust/liblsendmail.d/bin

RedHat  /usr/sbin - Jetc/smrsh
Solaris  fusrllib tustlib Ivatfadm

HP-UX  Just/sbin - Justladm*
AIX Justsbin - Just/adm’

T





images/00525.jpg
Character Meaning

Introduces a comment

@ The current zone name
() Alows data tospanlines
N Wild card® (name field only)

3 Son i 5 or Koine CHAIGHAMY SARRMNIE.





images/00767.jpg
define( confPRIVACY_OPTIONS
restrictqrun’

‘goaway, authwarnings, restrictmailq,





images/00524.jpg
$TTL 86400
STTL 24h
STTL 1d





images/00766.jpg
Value

Meaning

public
needmailhelo
noexpn
novrfy
needexpnhelo
needvrfyhelo
noverb*
restrictmailq
restrictqrun
restrictexpand
noetm*
authwamings
noreceipts
nobodyreturn
oaway

Does no privacy/security checking

Requires SMTP HELO (dentifies remote host)

Disallows the SMTP EXPN command

Disallows the SMTP VRFY command

Does not expand addresses (EXPN) withouta HELO
Does not verify addresses (VRFY) without a HELO
Disallows verbose mode for EXPN

Allows only mqueue directory's group o see the queue
Allows only mqueue directory's owner to run the queue
Restricts info displayed by the -bv and -v flags®
Disallows asynchronous queue runs

Adds warning header if outgoing message seems forged
Turns off delivery status notification for success return receipts
Does not return message body in a DSN

Disables all SMTP status queries (EXPN, VRFY, etc)

2. Verbose mode follows forward fles when an EXPN commandis given and reports more informa-
tion on the whereabouts ofa ser's mal. Use r0verb o, better yet, noexpr, on any machine.
exposed tothe autside world

b.Unless executed by root o the Trusted User

c. ETRN s an ESMITP command intended for ue by diak-up host. It requests that the queue be run
just for messages to that host.





images/00519.jpg
Type of server

Description

authoritative:
master
primary
slave
secondary
stub
distribution
nonauthoritative®
caching
forwarder
recursive
nonrecursive

An official representative of a zone

The master server for a zone; gets ts data from a disk file
Another name for the master server

Coples s data from the master

Another name for a slave server

Like aslave, but coples only name server data (not host data)
Aserver advertised only within a domain (aka ‘stealth server’)
Answers a query from cache; doesnit know ifthe data s still valid
Caches data from previous queries; usually has no local zones
Performs queries on behalf of many clients; bulds a arge cache
Queries on your behalfuntil it returns either an answer or an efror
Refers youto another server if it cant answer  query

S Sttty sonbiii: “sonuuthotciive i i Thitiuns oCE DNG Rty NeGii e, Rot B Se:





images/00761.jpg
EEATURE(3tickyhaet )
define( MAIL_HUB', esmtp:[127.0.0.1])

define( SMART_HOST', “esmtp:[127.0.0.1])
define( confDELIVERY_MODE', 'q)

define( ESMTP_MAILER_ARGS', “TCP $h 10024
DAEMON_OPTIONS( Name=receivingMTA')





images/00518.jpg
05 MaxNS Maxsearchlength  Timeout Retries

Unx 3 6domains256chars  Ssec 2
Solaris 3 6domains2s6chars  Ssec 2
HPUX 3 6domains2s6chars  Ssec 4
AX 3 Gdomains 1024 chars  5sec 2






images/00760.jpg
gnl.# Enable spamAsgasgin
INPUT_MAIL_FILTER(spamassassin’,
‘S=local:/var/run/spamass-milter sock, F=, T=C:15m;S:4m R 4m;E:10m)

dnl # Enable DomainKeys and DKIM
INPUT_MAIL_FILTER(dkim-filter’

1€1:8699@127.0.0.1, T=R:2m)

define( confMILTER_MACROS_CONNECT", Y, {daemon_name})
define( confMILTER_ MACROS_ENVEROM, ‘i, auth._type])






images/00521.jpg





images/00763.jpg
FLATURE( Bmirsh., ‘path-&-smreiy:
FEATURE(local_lmtp', “path-to-mail.local)





images/00520.jpg
#(pir/sh

PATH=/ust/local/sbin:/ust/sbin:/sbin $PATH
export PATH

trap ** 1
while : do
named -f -c fvar/named/named.conf > /var/log/named 2>&1
< /dev/oull
logger "named restart”
sleep 15
done
i





images/00762.jpg
Path Owner Mode _Whatit contains
Ivar/spool/clientmqueue smmsp:smmsp 770 Queue for initial submissions
Ivarispool/mqueue RunAsU 700 Mail queue directory

1, Ivar, Ivar/spool root 755 Pathto mqueue
Jetc/mail/* TrustedUser 644 Maps, the config file, aliases
Jet/mail TrustedUser 755 Parent directory for maps
letc root 755 Path to mail directory






images/00516.jpg
search atrust.com booklab.atrust.com
nameserver 631731891 ; nst
nameserver 174.129.219.225 - ns2





images/00515.jpg
SeaICh domamnane.
option optionname
nameserver ipaddr





images/00757.jpg
FEATURE( ratecontrol, nodelay’, terminate’)
FEATURE( conncontrol’, ‘nodelay’, terminate’)






images/00517.jpg
retrans timeout-value-in-milhseconds
ety Eofditots





images/00988.jpg
PCITerOL Sl
BrowsePoll jj
BrowseRelay 127.0.0.1 192.168.3.255





images/00748.jpg
localnost  RELAY

127001  RELAY

192.168.11  RELAY

192.168.1.17 RELAY

66.77.1231 OK

faxcom  OK

61 ERROR550 We don't accept mail from spammers’
67.106.63  ERROR:"S50 We don't accept mail from spammers®






images/00990.jpg
<Location />

Order Deny,Allow
Deny From All

Allow From 127.0.0.1
Allow From netaddress
S ocRtionS:





images/00989.jpg
<Location />

Order Deny,Allow
Deny From All
Allow From 127.0.0.1
-~





images/00512.jpg
100 IN PTR template.example.com.





images/00754.jpg
AUTH_MECHANISMS. SMTP auth mechanisms for Cyrus SASL®

£ CONNECTION_RATE_THROTTLE Slows DOS attacks by limiting the rate at which

2 mail connections are accepted (no limit)

B DONT_BLAME_SENDMAIL  Overrides sendmail’ security and file checking;

5 don't change casually! (safe)

£ MAX_MIME_HEADER_LENGTH ~Sets max ize of MIME headers (no limit)

$ MAX_RCPTS_PER_MESSAGE Slows spam delivery; defers extra recipients and

s sends a temporary etror msg (infinite)
PRIVACY_FLAGS Limits info given out by SMTP (authwarnings)
DOUBLE_BOUNCE_ADDRESS  Catches a lot of spam; some sites use /dev/null,

3 but that can hide serious problems (postmaster)

= LDAP_DEFAULT_SPEC Map spec for LDAP database, including the host

and port the server i unning on (undefined)

2. More specificall, the maximum number of child processes that can run at once. When the limitis
reached, sendmal refuses connections. This option can prevent (orcreate) denial of service atacke.

b. The default value Is EXTERNAL GSSAPI KERBEROS_VA4 DIGEST-MDS CRANMDS; don'tadd PLAIN LOGIN,
because the password is transmitted ascleartext, That may be OK nternally, but not on the Intemet.
unless the connection i also secured through the use of SSL.

c. This option can prevent user agent buffer overflows. 256/128" i 3 good value to use—it means 256
bytes per header and 128 bytes per parameter to that header,





images/00996.jpg
Cmd Location  Function
accept Jusrisbin Turns on acceptance of jobs nto a queue
cancel  /bin Removes print jobs from a queue
disable  /bin Disables printing of jobs from a queue
enable  /bin Enables printing of jobs from a queve.

s Ip Ibin Queues jobs for printing

2 Ipadmin /usr/sbin  Configures the printing system

& Ipmove /ustisbin  Moves jobs between queues
Ipsched /usr/lib  Schedules and prints jobs
Ipshut  /usr/sbin  Stops printing services
Ipstat  /bin Reports the status of printing services
reject  /usr/shin  Stopsacceptance of jobs into a queue
Ipfilter /usr/sbin _Controls rint filters

= lpforms fusrisbin  Controls the use of preprinted forms

£ Ipget /bin Reads configuration settings

S lpset  /bin Modifies configuration settings
Ipusers  Jusr/sbin  Controls queue priorities
Ipalt Ibin Modifies jobs in a queue

X lpana  /usrisbin  Analyzes performance logs

S Ipfence /usrisbin  Sets the minimum job priorty or a pinter
Ipr Ibin Supports BSD printing






images/00511.jpg
template  IN A 208.77.188.100
IN MX 10 mail-hub
IN MX 20 template





images/00753.jpg
Option name

Description (default value)

MAX_DAEMON_CHILDREN

Max number of child processes® (no limit)

S MAX_MESSAGE_SIZE Max size in bytes of a single message (infinite)

S MIN_FREE_BLOCKS Min filesystem space to accept mail (100)

& T0_lots_of_stuff Timeouts for all kinds of things (various)
DELAY_LA Load avg. to slow down dellveries (0 =no limit)
FALLBACK_MX See page 803 for description (no default)
FAST_SPLIT Suppresses MX lookups as recipients are sorted

and split actoss queues (1 =true)

£ HOST_STATUS_DIRECTORY See page 803 for description (no default)

£ MCI_CACHE SIZE #of open outgoing TCP connections cached (2)

S MCI_CACHE_TIMEOUT Time to keep cached connections open (5m)

& MIN_QUEUE_AGE Minimum time jobs must stay in queue; makes a

QUEVE_LA

REFUSE_LA

busy machine handle the queue better (0)
Load average at which mail should be queued
instead of delivered immediately (8 * #CPUs)
Load avg. at which to refuse mail (12 * #CPUs)






images/00995.jpg
Command

Function

cups-config'  Prints API, compiler,directory, and link information
cupsdconf®  Configures CUPS through a KDE interface

., cupsdisable’  Stops printing on a printer or class

S cupsenable®  Restarts printing on a printer or class

© Ipinfo Shows available devices or drivers
Ipoptions Displays or sets printer options and defaults
Ippasswd Adds, changes, or deletes digest passwords
accept, reject  Accepts or rejects queue submissions

- cncl Cancels print jobs

£ Ip Enqueues jobs for printing

% Ipadmin Configures printers and classes

Y Ipmove Moves an existing print job to a new destination
Ipstat Prints status information
Ipc Acts as a general printer-control program

a lpq Displays print queues

B 1pr Enqueues jobs for printing
Iprm Cancels print jobs

2. Don't confuse these tools. cups-contig s a command-{ine tool that's included with
CUPS, and cupsdconf s 2 GUI tool in KDEPrint.

b These are ackally just the disalble and isble conmands fron Syt ¥, e





images/00514.jpg
$ sudo rndc reload forward-zone-name
§ adh Siin nalnadl oolres Baa aE





images/00756.jpg
Primitive Description

BAD_RCPT_THROTTLE Slows down spammers collecting addresses
MAX_RCPTS_PER_MESSAGE Defers delivery if a message has too many recipients
ratecontrol feature Limits the rate of incoming connections
conncontrol feature Limits the number of simultaneous connections

greet_pause feature Delays HELO response, requires strict SMTP compliance






images/00513.jpg
100.188 @ IN PTR template.example.com.





images/00755.jpg
Tomobody@ ERROR:550 Mailbox disabled for this user
To:printer mydomain ERROR:550 This host does not accept mail
To:user@host. mydomain ERROR:550 Mailbox disabled for this user





images/00997.jpg
- LD LOG: JuL 6 12:05 7
pr107  gath  pri Jule 1210
pe112  scott  pri Jule 1222
pe1l7 e pr2 Jule 1222
P18  gath  pri Jule 1235
P19 gath  pri Jule 1338
br132 evi  prl Jul6 1342





images/00508.jpg
zone "188.77.208.n-addr.arpa” |
type master;
file “flename’;





images/00750.jpg
define( confLDAP_DEFAULT_SPEC,, "-h server -b searchbase)
FEATURE(1dap_routing)
LDAPROUTE_DOMAIN(my_¢

main’)





images/00992.jpg
5 sudo lpadmin -p riley -c haemer
5 sudo Ipadmin -p gilly -c haemer
$ sudo lpadmin -p zoe -c haemer





images/00749.jpg
@appliedtrust.com
unix@hook admin.com
linux@book admin.com
webmaster@example.com
Ry

“el@atrust.com
sa-book-authors@atrust.com
sa-book-authors@atrust.com
billy.q zakowski@colorado.edu
ausername@hotmail com





images/00991.jpg
5 sudo lpadmin -p groucho -E -v parallel:/dev/lp0 -m pxlcolor.ppd
¢ Siiddo Inadrmitt -5 feamio <E -v socket/ABZASR0A7 < laseriet ppd






images/00510.jpg
sone
name: 188.77.208 in-addr arpa
zonefile: /var/nsd/primary/188.77 208 in-addr arpa
providexfr: ip-addr tsig.keyname
TNotify: ip-addr NOKEY





images/00752.jpg
FEATURE(nocanonify’)
FEATURE( nullclient’, ‘matlserver)
EXPOSED. USER(root’

')





images/00994.jpg
% sudo cupsdisable groucho
$ sudo reject corbet





images/00509.jpg
Aone:
name: example.com
zonefile: /var/nsd/primary/example. com
providexfr: ip-addr tsig.keyname
Totify: ip-addr NOKEY





images/00751.jpg
MASQUERADE AS{ Rtrust.com:)
EXPOSED_USER(Toot)
EXPOSED_USER(Mailer-Daemon’





images/00993.jpg
5 sudo lpadmin -x fezmo
$ sudo lpadmin -x haemer





images/00505.jpg
Recursive Nonrecursive

20 =
root (“.
s
w
e E
Tair =] ns.cs.colorado.edu | T
oA &
s«
= ”‘ g berkeley.edu
Q=Query —
A=Answer
R=Reforal cs.berkeley.edu






images/00747.jpg
Primitive Used? Description
OSTYPE Yes Includes 05-specific paths and mailer flags
DOMAIN No. Includes site-specific configuration detalls
MAILER Yes Enables mailers, typically smtp and local
FEATURE Maybe Enables a variety of sendmail features.
use_cw_file Yes (servers) Lists hosts for which you accept mail
redirect Maybe (servers) Bounces mail nicely when users move

always_add_domain
access_db
virtusertable
Idap_routing
MASQUERADE_AS
EXPOSED_USER
MAIL_HUB
SMART_HOST

Yes

Maybe (servers)
Maybe (servers)
Maybe (servers)
Yes

Yes

Yes (servers)
Yes (clients)

Fully qualifies hostnames if UA didnt
Sets database of hosts to relay mail for
Turns on domain aliasing (virtual domains)
Routes incoming mail using LDAP

Makes all mail seem to come from one place
Lists users who shouldn't be masqueraded
Specifies mail server for incoming mail
Specifies mall server for outgoing mail






images/00504.jpg
IN FTR nubark atrust.com.





images/00746.jpg
VERSIONID
OSTYPE

DOMAIN

FEATURE

local macro definitions
MAIL ER





images/00507.jpg
zone “example.com”
type master;
file “filename”;





images/00506.jpg
WA

g
N A
N A

s
192.168.0.2
192.168.0.3





images/00858.jpg
processes in the run queue

bytes per second

W ~ Load Average

VUeek 25 week 23 veek 30 week 51 week 32 week 35
From 2008/05/28 22161:02 To 2008/08/2 22:51:02

O wute suerage  currents 075
B Minute duerage  Currents 050
B S e fuerage currents 038

HOU-52-SV6509-2 - Traffic - 1/1

@ imbound  curren:
Woutbouns current:






images/00622.jpg
fude-dentity: yes | no Ino}

identity: string [hostmame]
hide-version: yes | no [no]

It iy e mErier verEn]





images/00864.jpg
os# mis flow ip interface-full
os# mls flow ipv6 interface-full
ol soe e L e






images/00621.jpg
chroot: directory |/ust/local/etc/unbound]
SIS e Turibound]





images/00863.jpg
£6F AP SoW SKpOKL. eemon. 5.
ios# ip flow-cache timeout active





images/00624.jpg
module-config: module-names
trust-anchor-file: flename
trust-anchor. resource-record
trusted-keys-file: filename
dlv-anchor-file: filenarme
div-anchor Tesnise TRl

{none}
rone]
rone]
rone]
[rone]
Trondl





images/00866.jpg
Deqtiafion.  Gateemy:  foumadk CEags M3 Window i Hace
1281382020 0,000 252552550 U 40 0 0 etho
127000 0000 scc000 0 U 40 0 %





images/00623.jpg
interface: ip-address [tocalhost]
ot POt aveRd: Tibe e [none]





images/00865.jpg
AEE I ARG T me 4 thinshowd 2
os¢ mls aging normal 32
ios# mls aging long 900





images/00618.jpg
use-SYSIO8: ye6 | 10, Lyes]
logfile: filename frone]
log-time-ascii: yes | no no]
verbosity: ievel n





images/00860.jpg
linux$ nfdump -M /data/nfsen/profiles-data/live/upstream
r 2009/07/28/12/nfcapd. 200907281205 -n 10 -s ip/flows
1P Addr ordered by flows

Top 10

Date first seen

2009-07-28
2009-07-28
2009-07-28
2009-07-28
2009-07-28
2009-07-28
2009-07-28
2009-07-28
2009-07-28
2009-07-28

1202
1202
1202
1202
1202
1202
1202
1202
1202
1202

Durat'n
46759
462,700
464443
454299
362,586
393,600
452,353
456.306
459.732
466.782

1P Addr
192.168.96.92
192.168.96.107
192.168.96.198
172.16.152.40
192.168.97.203
17216220139
192.168.96.43
192.168.96.88
192.168.96.108
192.168.96.197

Summary: total flows: 98290, total bytes:

bps: 5.3 M, avg pps: 1623, avg bpp: 430
Time window: 2009-07-28 12:02:12 - 2009-07-28 12:09:59
Total flows processed: 98290, skipped: 0, Bytes read: 5111164
Sys: 0.310s flows/second: 3170645 Wall: 0.327s flows/second: 300366.1

Flows
27873
18928
17321
11554
6839
4802
4477
3416
2544
2143

Pkts
67420
43878
45454
29093
11104
12883
144

6642

25555
24103

Bytes pps
2BM 144
47M 94
a5M 97
13M 64
12M 30
618384 32
554709 11
697776 14
22M 55
53M 51

bps
67347
85522
63884
239%
28883
12568
9810

12233
saa78
94988

bpp
58
12
81
%
17
r
107
105
131
29

3116 M, total packets: 759205, avg





images/00859.jpg
State History For Service "I On Host “nsts”
Tus g 25 O8I00E53 2008 15 TuA e oBiRMESH 006

wrning
tritical
Insetarsinate.

|
H
]
$
$

Tue g 29 206
Tue fug 29 2006
T g 31 2006
Fri s 1 2006
St s 2 e
Sn s 3 2008
ron sep & 2006
Tue Sep 5 2006
Tus sep 5 2006,

Fl
g
2.
5

ved fug 30 2006
sat s 2 2006

State Breakdomns:
o £ 60D 6t don 120 Criticel ¢ QL7 03 190 dae

0.0002) 0 0n 0n G5 Ineterninate: (0.0000) 0 O 0n 0
o.00u 0 on 0w 0x

taming






images/00620.jpg
access-control: netbiock action latlow onty [ocalhost)





images/00862.jpg
los# Interface fastethernet 0/0
i0s# ip route-cache flow





images/00619.jpg
statistics-interval: seconds [0, Le., disabled]
statistics-cumulative: yes | no  [no]
sxtendid statetie vee | ho . Inol





images/00861.jpg
o e g T e o O O o

OLnsck @smie
Otog Sk oL






images/00615.jpg
Item Directory

Binaries Justflocal/sbin
Libraries Justflocal/lib

Configurationfile /usr/local/etc/unbound/unbound.conf
Man pages Justflocalishare

Secure jal Just/local/etc/unbound

PID file fust/local/etc/unbound






images/00857.jpg
3 snmpwalk -c secret813community -v1 tuva
SNMPv2-MIB:sysDescr 0 = STRING: Linux tuva atrust com 2.6.9-11 ELsmp #1
SNMPv2-MIB:sysUpTime 0 = Timeticks: (1447) 0:00:14.42
SNMPv2-MIB;sysName 0 = STRING; tuva atrust.com
ifDescr 1 = STRING: lo
ifDescr 2 = STRING: eth0
ifDescr 3 = STRING: ethi
ifType.1 = INTEGER: softwareLoopback(24)
ifType2 = INTEGER: ethernetCsmacd(e)
ifType3 = INTEGER: ethernetCsmacd(e)
ifPhysAddress.1 = STRING:
ifPhysAddress.2 = STRING: 0:11:43:d3:1e:f5
:ifPhysAddress 3 = STRING: 0:11:43:d8:1e:f6
ifinOctets 1 = Counter32: 2605613514
#finOctets 2 = Counterd2: 1543105654
ifinOctets3 = Counter32: 46312345
ifinUcastPkts.1 = Counter32: 389536156
iflnlcastPkts.2 = Counter32: 892959265
#finUcastPkts.3 = Counter32: 7712325






images/00614.jpg
$ ./configure
5 make
R





images/00856.jpg
Command

Function

snmpdelta
snmpdf
snmpget
snmpgetnext
snmpset
snmptable
snmptranslate
snmptrap
snmpwalk

Monitors changes in SNMP variables over time
Monitors disk space on a remote host via SNMP
Gets the value of an SNMP variable from an agent
Gets the next variable in sequence

Sets an SNMP variable on an agent

Getsa table of SNMP variables

Searches for and describes OIDs in the MIB hierarchy
Generates atrap alert

Traverses a MIB starting at a particular OID






images/00617.jpg
directory: directory |/usr/local/etc/unbound]
pidfile: filename /ust/local/etc/unbound/unbound.pid]
oot hints: Alennme frione]





images/00616.jpg
s
directory: */var/unbound/etc"
username: unbound
chroot: */var/unbound
pidfile: */var/run/unbound pid"

root-hints: “root cache”
interface: 0.0.0.0 # Listen on all IPvd interfaces
interface: 0 # And on all IPV6 interfaces
access-control: 100.0.0/8 allow # Local private networks
aocis romtrol: JVLTRE: 168 allow ' Tocal TvE netaarks:





images/00611.jpg
notify: ip-address ( key-name | NOKEY )™
provide-xfr: ip-spec ( key-name | NOKEY | BLOCKED )





images/00853.jpg
he ICSI Netalyzr sas

A

- Fesute

Result Summary
ads|-133-194.dsl.init7.net /213.144,133.194

Bicoried al 12:33 EDT 16:33 UTC) on St Augue 08 2009, Permalnk. Trn

Noteworthy Events
Minor Absrrations
 Network packet bufiering may be excsssive &

+ AnHTTP proy was detected based on added or changed HTTP raffic 1
 The detacted HTTP proxy blocks malformed HTTP requests

Address-based Tests
NAT detection: NAT Detected

Yourglobal IP acdross s 213.144.133.194 while your local one is 182.168.0.203. You are
behind a NAT. Yourlocal address is in unroutable addross space.

Your NAT renumbers TCP source ports sequentially. The ollowing graph shows connecton
atompts on the X-axis and thir corresponding source ports o the Y-axis.






images/00610.jpg
B S <
zonefile: filename





images/00852.jpg
B G Vew Go Cpure Anchoe Sistiice Help
S cEXes ceswTFLrEREQQQ[ -
Wter [T o= v e | & resnen. | s cw S |

No[tme [sarcs _[oesoaton Provoal i E

D i, s 1 4108 0 0, . o 0 (0330
préemiceny

a1 Ty

e






images/00613.jpg
$ sudo nsdc rebuild
$ 20l nede start





images/00855.jpg
Flag

Function

Hogile
a
-d

Logs information to logfile
Logs the addresses of all SNMP connections
Logs the contents of every SNMP packet
Enables verbose logging

Logs debugging information (ots of it
Displays all arguments to snmpd

Displays allconfiguration file directives
Appends tothe log fileinstead of overriting it
Logs to syslog (uses the daemon facility)






images/00612.jpg
allow-notuly: tp-spec ( key-name | NOKEY | BLOCKED )™
request-xfr- [ AXER | UDP | ip-address ( keyname | NOKEY )





images/00854.jpg
oip* Type

Contents

systemsysDescr g
systemsysLocation  string
systemsysContact  string

system sysame string
interfaces ifNumber  int
interfacesiffable  table
ipipForwarding int
ipipAddrTable table
ipipRouteTable table
icmpcmpinRedirects  int
icmpicmplnEchos  int
tptcpConnTable  table
udpudpTable table

Systeminfo: vendor, model, 05 type, etc.
Physical location of the machine
Contact info for the machine’s owner
System name, usually the full DNS name.
Number of network interfaces present
Table of infobits about each interface

1if system s a gateway; otherwise, 2
Table of IP addressing data (masks, etc)
The system’ routing table

Number of ICMP redirects received
Number of pings received

Table of current TCP connections

Table of UDP sackets with servers listening

2 Relative 0 00idod eIt raomL b2





images/00849.jpg
redhats sar -n DEV 2 30
17:50:43 TFACE Txpckis txpck/s
175045 o 361 361
175045 eth0 1856 1186
17.5045 oth1 000 000

Tbyts txbys Tcmp/s txemp/s Tmcsts

26340

263.40

136443 143433

000

000

000
000
000

000
000
000

0.
052
0.00





images/00848.jpg
b netstat -i 2
(1an0)-> input
packers
5053713

8

2

o

output
packets
5052513
8

2

o

(Total)-> input
packets
10115002

s

2

9

output
packets
10113803
8

2

E





images/00609.jpg
username: login nsd]
chroot: directory [none]





images/00851.jpg
SCIRNIRE Wnaop-

Using device /dev/e1000g0) (promiscuous mode)

nubark -> solaris TCP D=22 S=5868% Ack=2141650294 Seq=3569652094 Len:
Win=15008 Options=<nopnop,tstarnp 292567745 289381342>

nubark -> solaris TCP D=72 5=58689 Ack=2141650358 5eq=3563652094 Len:
‘Win=15008 Options=<nop,nop, stamp 292567745 2833813425

? -> (multicast) ETHER Type=023C (LLC/B02.3), size = 53 bytes






images/00608.jpg
fep connt. it 110]
server-count: int 0]
wfril-reload: tifmeout: #5¢  [10]





images/00850.jpg
$ sudo tcpdump host bull
12:35:73519339 bull 41537 > nubark domain: A? atrust
12:35.23.519961 nubark domain > bull 41537: A 66.77.12

m, (28) (DF
161 (112) (D1






images/00607.jpg
tatatcise: JLEnImE.
difffile: fllename
xfrdfile: flename
pid-file: filenane
RO dRacty

FYAua, TRNTIRG, ab]
[/var/db/nsd/ixfr db]

[/var/db/nsd/xfrd state]

[05-specific, usually /var/run/nsd.pid
[Vete/nsd]





images/00604.jpg
P BIOTeES; . AGATecses 181 JF: aaoresses)
ipa-only: yes | no no]
ip6-only: yes | no [no]
DOt pvh 53]





images/00846.jpg
udp:

4442780 active connections openings
1023086 passive connection openings
50399 failed connection attempts

0 connection resets received

44 connections established
666674854 segments received
585111784 segments send out
107368 segments retransmited

86 bad segments received.

3047240 resets sent.

4395827 packets received

31586 packets to unknown port received.
0 packet receive errors

4289260 packets sent





images/00603.jpg
I (XPY AE,
slgorithrm: alg
sacral Dassord-Bice 64





images/00845.jpg
Icmp;
242023 ICMP messages received
912 input ICMP message failed.
ICMP input histogram:
destination unreachable: 72120
timeout in transit: 573
echo requests: 17135
echo replies: 152195
66049 [CMP messages sent
0 ICMP messages failed
ICMP output histogram:
destination unreachable: 48914
echo replies: 17135





images/00606.jpg
logiile: jilename Istderr and syslog]
verbosity: level 0]

debug mode: yes | no Ino]

iatistice: fasoe [0] # no statistics





images/00605.jpg
MienuLy. string [hosinarney
Bid voren: veu ] 6 no]





images/00847.jpg
BT Hwint 4 2 3
input 10005 output  imput  (Totall _output
packets errs packets emrs colls packets ems packets errs. coll
7851 0 26208 0 O 1951 0 269 0 0
¢ 0 2 0 0 4 0o 2 0 0
1 0 1 0 o 1 o1 0 o





images/00600.jpg
b Jconfigure
5 make
£ A ek Y





images/00842.jpg
linux$ netstat -lp

tcp
tep
udp
udp

cooo

[
[
0
0

000.0:22
000.0:25
000,053
000.0:962

0000
0000
0000
00002

LISTEN
LISTEN

23858/sshd.
10342/sendmail
0016/named
38221/mudd





images/00599.jpg
BODE UECROMY: |
type slave;
file "secondary/vix.corn’;
masters ( 204.152.188.234;

)

zome "cix net” (
type slave;
file "secondary/cix net’;
masters  204.152.188.234;






images/00841.jpg
linux$ netstat -a
Active Intemet connections (servers and established)
Proto  Recv-Q Send-Q Local Address ForeignAddress

wp 0 0 “1dap &
wp 0 0 “mysql o

wp 0 0 +imaps 2

wp 0 0 bullssh dhcp-32hw:4208
wp 0 0 bullimaps  nubarki54195
w0 0 bullhttp dhep-30hw:2563
wp 0 0 bullimaps  dhep-18hw:2851
wp 0 0 “http 2

wp 0 0 bull37203  baikal:mysal
wp 0 0 “ssh =

state
LISTEN
LISTEN
LISTEN
ESTABLISHED
ESTABLISHED
ESTABLISHED
ESTABLISHED
LISTEN
ESTABLISHED
LISTEN





images/00602.jpg
SETvEr

username: nsd # User nsd should run as after chroot
database: /var/db/nsd/nsd.db  # Precompiled zone database file
logfile: /var/log/nsd log # Log file, default is to stderr + syslog
pidile: /var/run/nsd pid #nsd process id

key
name: tsig atrust com. ¥ Key for atrust..com zone transfers

algorithm: hmac-mds
Secret: “baset4 secret goes here’
zome:
name: atrust com # Name of the zone
zonefile: /var/nsd/primary/atrust.com
provide-xfr: 12.3.4 tsigatrustcom.  # Address of atrust com slave

notify: 1.2.3.4 tsigatrust.com # And key for notify or xfis.
provide-xfr: 1.2.3040 tsigatrust.com. # Address of another slave
notify: 1.2.30.40 tsigatrust com # And key for notify or xfis.

key.
name: tsig admin com. # Key to get admin com slave data

algorithm: hmac-mds
secret: "base6e secret goes here”

zone:
name: admin.com # Zone we are a slave for
zonefile: */var/nsd/secondary/admin.com signed”
allow-notify: 5.6.7.8 NOKEY # Its master server

Tequesiods SETE o sinineom: 8 And ke far sbe





images/00844.jpg
671349985 total packets received
0 forwarded

345 incoming packets discarded
667912993 incoming packets delivered
589623972 requests sent out

60 dropped because of missing route
208 fragments dropped after timeout





images/00601.jpg
Binaries
Sample config file
Man pages

Text zone files
Compiled zone files
PIDfile

Directory
Iustllocal
leteinsd
Iustllocalishare
fete/nsd
Iaridbinsd
varfrun






images/00843.jpg
redhat§ netstat -rn
Kernel [P routing table

Destination
192.168.1.0
10250
127000
0000

Gateway
0000
0000
0000
192.168.1.25¢

Genmask  Flags MSS Window
2552552550 U 0 0
255.255.2550 U 00
255000 U 00
0000 G 00

it

0

Iface
etho
etht

ethd





images/00838.jpg
linux$ traceroute caida.org

traceroute to caida.org (192.172.226.78), 30 hops max, 46 byte packets

1 gur-oetikerinit7.net (213144138.193) 1122 ms 0.182 ms 0170 ms

2 rizurl coreinit7.net (77.109.128209) 0527 ms 0.204 ms 0202 ms

3 rifral.coreinity net (77.109.12850) 18279 ms 6.992 ms 16597 ms

4 rlams1 coreinity.net (77.109.128.154) 19.549 ms 21855 ms 13514 ms

5 rilon.corenit7.net (77.109128.150) 19.165 ms 21157 ms 24.866 ms

6 rilaxiceinity net (82.197.168.69) 158232 ms 158.224 ms 158.271 ms

7 ceniclaap.net (198.32.146.32) 158349 ms 158309 ms 158248 ms

8 dclax-core2--lax-peerl-ge cenicnet (137.164.46.119) 158,60 ms * 158.71 ms
9 de-tus-aggl--lax-cored-10ge cenic.net (137.164.46.7) 159 ms 159 ms 15 ms
10 de-sdsc-sdsc2--tus-dc-ge.cenic.net (137.164.24.174) 161 ms 161 ms 161 ms
11 pinotsdscedu (19817.46.56) 161559 ms 161381 ms 161439 ms
12 rommie.caida.org (192.172.226.78) 161442 ms 161.445 ms 161532 ms






images/00598.jpg
zone 1sc.org’ {
type master;
file "master/isc org’;
allow-update | none; )
allow-transfer { none; J;

zone "sfo2isc.org’ (
type master;
file "master/sfo? isc.org’
allow-update [ none; )
allow-transfer [ none; J;

Y TAOR, NN





images/00840.jpg
brrpy Heonfig -9

eth0

eth1

Link encapEthemetHWaddr 00:1517 4c:44:00
inet addr-192.168 0 203Bcast: 192 168.0.255Mask 255 255.255.0

inet6 addr: eB0:215:17 fe4c:4400/64 ScoperLink

UP BROADCAST RUNNING MULTICASTMTU:1500Metric:1

RX packets:559543852 errors:0 dropped:62 overruns0 frame:0

TX packets:457050867 errors:0 dropped:0 overruns0 carrier0
collisions:0 txqueuelen:1000

RX byles:478438325085 (178.4 GBJTX bytes:228502292340 (228.5 GB)
Memory:b8820000-b8840000

Link encap:EthernetHWaddr 00:15:17:4¢:4d:01
BROADCAST MULTICASTMTU-1500Metric:1

RX packets0 errors:0 dropped overrunsi frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier.0
collisions:0 txqueuelen:1000

RX bytes0 (0.0 BITX bytes:0 (0.0 B)

‘Memory bB800000-b8520000

Link encap:Local Loopback
inet addr:127.0.0.1Mask:255.0.0.0

inets addr. 1/128 ScopeHost

UP LOOPBACK RUNNINGMTU 16436 Metric 1

RX packets:1441988 errors0 dropped0 overruns:) frame:0
TX packets:1441988 errors0 dropped:0 overruns ) carrier0
collisions:0 txqueuelen

RX bytes:327048609 (327.0 MBJTX bytes:327048609 (327.0 MB)





images/00839.jpg
sotaris

solaris$ netstat -i

Name Mt Net/Dest Address Ipkis lerrs Opkt

15

Oerrs Collis Queue

lo0 8232 loapback localhost 319589661 0 319583661 O

€1000g1 1500 hostifi host-ifi 369842112 0 34557584 O
€1000g2 1500 hostif2 hostifz 33141891 O 121107161 O

hp-ux netstat -i

Name Mt Network  Addres ipkts Terrs Opkts
Jan0 1500 192.168.10.0 hpuxit 2611259 0 2609847
100 32808 loopback  hpuxt1atrust.com

aixt netstat -

Name Mtu  Network Address ZonelD Ipkts  lems Opkis
en3 1500 link#2  0112539e0b6 41312 0 14173

en3 192.168.10 (M 3w 0 143

100 15121 0 1087387
100 Ioopback 145121 0 1087387
160 0 1145121 0 1087387

[
[
[

Oerrs Coll
o 0

Oenrs Coll
30
30
o o
o o
& o





images/00835.jpg
iz ping beast
PING beast (10.11.46): 56 bytes of data

64 bytes from beast (10.1.1.46); icmp_seq=D ttl=54 tim
64 bytes from beast (10.1.146): icrnp_seq=1 trl=54 time==46 4ms
64 bytes from beast (10.1146): icmp_seq=2 ttl=54 time=88 7ms
"c

— beast ping stati
3 packets transmmitted, 3 received, 0% packet loss, time 2026ms
rtt min/avg/max/mdev = 46.490/61.202/88.731/19.481 ms






images/00834.jpg





images/00837.jpg
§ traceroute nubark
traceroute to nubark (192.168.2.10), 30 hops max, 38 byte packets
1 lab-gw (172168.254) 0.840 ms 0693 ms 0,671 ms

2 dmz-gw (192.168.1254) 4642 ms 4582 ms 4674 ms

3 nubark (192.168.2.10) 7.959 ms 5.949 ms 5.908 ms





images/00836.jpg
feon
Faon
Wi T W WEE e n e T Ve n e n
median ret: 37,0 w5 og 521 s max 25,7 s win 0.6 s oo 5.3 m zd 7.0 aws
Toss cotar: W0 W20 B2/20 W32 B0 Wivo @19/20
prase 20108 Eeno Pings (56 ytes) every 3






images/00831.jpg
Delivered-To: sailingevi@gmail.com

Received: by 10.231.143.81 with SMTP id 117cs175323ibu;
Mon, 28 Dec 2009 20:15:20 -0800 (PST)

Received: by 10.231.157.131 with SMTP id
b3mr2134004ibx.19.1262060119841;
Mon, 28 Dec 2009 20:15:19 -0800 (PST)

Return-Path: <garth@grsweb.us>

Received: from mail-relay atrust.com (mail-relay atrust.com
63.173.189.2)) by mix google.com with ESMTP id
1251190922491wn.27.2009.12.28.20.15.19;

Mon, 28 Dec 2009 20:15:19 -0800 (PST)

Received-SPF: neutral (google.com: 63.173.189.2 is neither permitted nor
denied by best guess record for domain of garth@grsweb.us) client-
ip=63.173.189.2;

Authentication-Results: mx google.com; spf-neutral (google.com:
63.173.189.2 is neither permitted nor denied by best guess record for
domain of garth@grsweb.us) smtp.mail-garth@grsweb.us

Received: from mout perforanet (mout.perfora.net [74208.4.194]) by
mail-relay.atrust.com (8.12.11/8.12.11) with ESMTP id nBT4FI91017821
for <evi@atrust.com>; Mon, 28 Dec 2009 21:15:19 -0700






images/00830.jpg
SItpd_milters = inet:localhost.5591
non_smtpd_milters = inet-Iocalhost:8891
milter_protocol = 2
milter_default_action = accept





images/00833.jpg
Smtp_sender_dependent_authentication
sender_dependent_relayhost_maps
smtp_sasl_auth_enable
smtp_sas]_password maps





images/00832.jpg
Received: from grsweb.us (wolverine dreamhost.com [75.119.201.185]) by
mrelay perfora.net (node=mrus1) with ESMTP (Nemesis) id OMaORD-
INgKS52KT9-00LeuN; Mon, 28 Dec 2009 23:15:17 -0500

Date: Mon, 28 Dec 2000 20:15:13 -0800

From: UNIX and Linux System Administration Handbook
<garth@grsweb.us>

Reply-To: garth@grsweb.us

To: evi@atrust.com

Ce: garth@grsweb.us

Message-1d; <4b398251b11ab_e92383578b2d9b036f@vwolverine tmail>

Subject: New comments on Printing

Mime Version: 1.0

Content-Type: text/html; charset=utf-8

X-Provags-ID:
VO1U2FsdGVKX18poui YXif/bVfh+ DOwWF XMr24TahAZDNZqM+jAOHLR7S4
OIDXRpXIbQMbINOZf5j0fedc+ WIGCSFidhdsAk15VBARASOF QY xN]Wead
85yQg==

X-Spam-Status: No, hits=-99.3 required=4.0 tests=BAYES 30, HTML 20_30,
MIME_HTML_ONLY,USER_IN_WHITELIST version=2.55

X-Spam-Level:

X-Spam-Checker-Version: SpamAssassin 2.55 (1.174.2.19-2003-05-19-exp)






images/00829.jpg
#i#HiHHH acTos to define the directones for databases and keys
CONFIG_DIR = path_to_config_dir
DKKEY_DIR = path_to_key_dir

####### main section: define the domains to sign and required DKIM acl
domainlist dksign_domains = cdb;CONFIG_DIR/dk selector.cdb
acl_smtp_dkim = acl_process_dkim

#####R## ACL section: verify signature on incoming mail, add a header
acl_process_dkim:
warn dkim_status = none
add_header = -at_start:X-DKIM-Report: $dkim_verify_status \
Sfif teq($dkim_verify_status](pass}$dkim_verify_reason J{j \
(Signer=$dkim_cur_signer) (Testing=$dkim _key_testing)

#####RES Router section: put just before “dnslookup” router, sign nonlocal
dnslookup_signed:

driver = dnslookup

domains = +local_domains

transport = remote_dksign

condition = $fif match_domain{$sender_address_domain} \

(+dksign_domains]}
no_verify

#it##AR# Transport section: does the actual signing
remote._dksign:
driver = smtp
dkim_domain = $sender_address_domain
dkim_selector = Sflockup ($sender_address_domain] \
cdb[CONFIG_DIR/dk selector.cdb} {$valuelfail}
dkim_private key = DKKEY_DIR/rsa private $dkim_selector $dkim_domain
A, Strick = 1






images/00828.jpg
Option Type Reqd Contents

dkim_domain String
dkim s String
dkim_private key  Sting
dkim_canon String

String

dkim sign_headers_String

Yes
Yes
Yes
No
No
No

Domain tosign with

Key selector (name)

Private key o filename that contains it
Canonicalzation method: simple or relaxed
If truse, signing errors defer mail back to queue
Headers to include in signature






images/00827.jpg
ssigned_header_fields( received |
Ssigned_header_fields['sender’) =
Ssigned_header_fields('to) = 1;
Ssigned_header_fields['cc’) = 1






images/00824.jpg
S telnet localhost 25
Trying 127.0.0.1

Connected to localhost.

Escape character is ).

220 tardis.ee.ethz.ch ESMTP Postfix

XCLIENT NAME=mail.cs.colorado.edu ADDR=192.168.1.1
250 Ok

HELO mail.cs.colorado.edu

250 tardis.ee.ethz.ch

MAIL FROM: <evi@colorado.edu>

250 Ok

RCPT TO: <david@colorado.edu>

554 <david@colorado.edus: Relay access denied






images/00823.jpg
$ sudo qshape deferred

T

TOTAL 78
expn.com 34

chinabank.ph
mobihelper:bi:

5
3

cooB

coool

0 8

onow

160 320 640 1280 1280+

3
0
1
0

2
0
2
0

12
9
0
0

2

0
0
0

49
25
0
3





images/00826.jpg
senable_dkim_venficatior
Senable_dkim_signing
dkim_key(example.com’, 'email, ‘/var/db/dkim/example.com-email key.pem);
@dkim_signature options_bysender_maps = (

[ { ttl => 2124'3600, ¢ => 'relaxed/simple’ ] } );
@mynetworks = qw(127.0.0.0/8 10.0.0.0/8 172.16.0.0/12 192.168.0.0/16):






images/00825.jpg
Lanonicaization gimpie
Domain mail example.com

KeyFile /etc/mail/dkim/keys/email key pem
MTA MSA

PidFile /var/run/dkim-flter.pid

Selector email

Socket inet:8891@localhost
SignatureAlgorithm rsa-shal

syslog Yes

UserID dkim

X-Header Yes

Mode sv

Internallicets: Zeteimailidbm i nnsiial Boats





images/00820.jpg
sinet_socket_port
Snotify_method = 'smtp:[127.0.0.1):10025';
Sforward_method = ‘smtp:[127.0.0.1]:10025"
Sinterface_policy[10026) = 'ORIGINATING
Spolicy_bank('ORIGINATING'| = {
originating => 1, # indicates client is ours

[10024,10026];






images/00819.jpg
strict_ric321_envelopes = yes
smipd_helo required = yes
smtpd_recipient_restrictions =
reject_unknown_sender_domain
reject non_fadn_sender
reject_non_fqdn recipient
permit_mynetworks
permit_sas_authenticated
check_client_access hashy/etc/postfix/relaying access
reject_unauth_destination
reject_unauth_pipelining
teject_unknown_reverse_client_hostname
reject_tbl_client zen spamhaus org
it





images/00822.jpg
4133 nova postfix/cleanup: OE4A93688: message-id=
<20040818204132.GA11444@ee ethz ch>

Aug 18 22:41:33 nova postfix/qmer: OE4A93688: from=<dws@ee ethz.ch>,
size=577,nrept=1 (queue active)

Aug 18 22:41:33 nova postfix/smtp: OE4A93688;
to=<evi@ee ethz.ch> relay=tardis ee ethz.ch[129.132.2.217],delay=(
status=sent (250 Ok: queued as 154D4D930B)

Aug 18 22:41:33 nova postfix/qmgr: OE4A93688: removed






images/00821.jpg
Smtpd_recipient_restrictions =
reject_unknown_sender_domain
reject_non_fadn_sender
reject_non_fadn_recipient
check_sender_access regexpi/etc/postfix/tag_as_originating.re
permit_mynetworks
permit_sas]_authenticated
check_sender_access regexp:/etc/postfix/tag as_foreign.re
check_client_access hash:/etc/postfix/relaying access
reject_unauth_destination
reject_unauth_pipelining
reject_unknown_teverse_client_hostname
reject_rbl_client zen spamhaus.org
permit





images/00818.jpg
SItp_t's_secunty_level = may
smtp_tls_loglevel = 1





images/00817.jpg
smtpd_tls_secunty_level = may
smtpd_tls_auth_only = yes
smtpd_tls_loglevel = 1
smtpd_tls_received_header = yes
smtpd_tls_cert_file = /etc/certs/smtp.pem
smtpd_tls_key_file = $smtpd_tls_cert_file
smtpd_tls_protocols = 1SSLv2





images/00816.jpg
smtpd_sasl_auth_enable = yes

smtpd_recipient_testrictions =
permit_mynetworks
permit_sas]_authenticated





images/00813.jpg
Restriction Function

check_client_access Checks client host address by using a lookup table
check_recipient access  Checks recipient mail address by using a lookup table
permit_mynetworks Grants access to addresses listed in mynetworks

reject_unauth_destination Rejects mail for nonlocal recipients; no relaying






images/00812.jpg
Parameter When applied

smtpd_client_restrictions On connection request
smtpd_helo_restrictions On HELO/EHLO command (start of the session)
smipd_sender_restrictions  On MAIL FROM command (sender specification)
smipd_recipient restrictions  On RCPT TO command (recipient specification)
smtpd_data_restrictions On DATA command (mail body)
smtpd_etrn_restrictions On ETRN command®

a. Thi

b i Chr i e R e TR R i





images/00815.jpg
Smtpd_recipient_restnictions =
permit_mynetworks
check_client_access hash:/etc/postfix/relaying access
reject_unauth_destination
check_recipient_access hash:/etc/postfix/restricted_recipients






images/00814.jpg
Action Meaning

ann text Returns temporary error code 4nn and message text
Snn text Returns permanent error code Sin and message text
DEFER_IF_PERMIT  Ifrestrictions result in PERMIT, changes it to a temp error
DEFER_IF_REJECT If restrictions result in REJECT, changes it to a temp error

DISCARD Accepts the message but silently discards it

DUNNO Pretends the key was not found; tests further restrictions
FILTER transportdest ~Passes the mail through the filter transport:dest”

HOLD Blocks the mail i the queue

OK Accepts the mail

PREPEND header Adds a header to the message

REDIRECT addr Forwards this mail to a specified address

REJECT Rejects the mail

WARN message Enters the given warning message in the logs

3 Seéthesackon abaut aan and vinis Fondiing in Postfi startng on paoe 340,





images/00809.jpg
virtual_alias_domains = $virtual_alias_maps
virtiml aliss maoe = hashiebfagal i comAviil





images/00808.jpg
postmaster@admin.com £vi, david@admiin.corm
david@admin.com david@schweikert.ch
SRR PR, -





images/00811.jpg
virtual mailbox_domains = admin.com
virtual_mailbox_base = /var/mail/virtual
virtual_mailbox_maps = hash:/etc/mail/admin.com/vmailboxes
virtual_alias_maps = hash:/etc/mail/admin.com/valiases






images/00810.jpg
admin.com notused
postmaster@admin.com evi, david@admin com





images/00806.jpg
Parameter Description

mail_spool_directory  Delivers mail to a central directory serving all users
home_mailbox Delivers mal to ~user under the specified relative path
mailbox_command  Delivers mil with an extemal program, typically procmail
mailbox_transport  Delivers mal through a service as defined in master.cf*
recipient_delimiter Allows extended usernames (see description below)

. This oxition irtirficeswth fnaibok srwers s s thi s Seapi.





images/00805.jpg
5 postmap -q blabla hash:/etc/postfix/access
§ postmap -q .cs.colorado.edu hashi/etc/postfix/access
ax





images/00807.jpg
myorgn = cs.colorado.edu

mydestination = cs colorado edu

virtual_alias_domains = admin.com
virtual_alias_maps = hash:/etc/mail/admin.com/virtual





images/00802.jpg
Type

Description

dbm/sdbm
cidr
hash/btree
ldap
mysql

nis

pere

pesql
proxy
regexp
static
unix

Traditional dbm or gdbm database file
Network addresses in CIDR form

Berkeley DB hash table or B-tre fil (replaces dbm)
LDAP directory service

MySQL database

NIS directory service

Perl-Compatible Regular Expressions

PostgreSQL database

Access through proxymap, e.g, to escape a chroot
POSIX regular expressions

Returns the value specified as path regardess of the key
The fetc/passwd and /etc/group files; uses NIS syntax”

wuAbcpasswd byriarae i the passw fil; and untcgroup bynacie s the group ik:





images/00801.jpg
5 postconf mydestination

mydestination =

§ postconf -d mydestination

mydestination = $myhostname, localhost $mydomain, localhost





images/00804.jpg
postmaster: «david, tobias
e R i





images/00803.jpg
alias_database = hash:/etc/mail/aliases
alias_maps = hash:/ete/mail/aliases





images/01126.jpg





images/01125.jpg





images/01127.jpg





images/00798.jpg
Amavis:
driver = smtp
port = 10024
eilowr tocalbomt





images/00800.jpg
mydomain = cs.colorado.edu
tyorigin = $mydomain





images/00799.jpg
smtp

trivial-rewrite

smtpd

T T Imtp

cleanup |—»[ qmar local

O

pickup

1! virtual
bounce

pipe






images/01129.jpg





images/01128.jpg





images/00196.jpg
system.:1:0:root,peonsole, esaadrun
staff.!:1ipsec.esaadmin.trent ben garth evi
bin1:2:x00t,bin

sys:1:3:100t bin,sys

adm: | 4:bin adm
nobody:!:4294967294:ncbody Ipd





images/00195.jpg
password = u10.0aYxRdg]
lastupdate = 1224876639
flags = ADMCHG

evi
password = Pilr2q0PabZ.Q
Tastupdate = 1235785246
flags





images/00197.jpg
Command _Filename _Typical uses
sh profile Sets search path, terminal type and environment
bash® “bashrc Sets the termina type (f needed)
Sets biff and mesg switches
‘bash_profile  Sets up environment variables
Sets command aliases
Sets the search path
Sets the umask value to control permissions.
Sets CDPATH for ilename searches
Sets the PS1 (prompt) and HISTCONTROL variables
whitsh login Similarto .bashre for csh
scshre Similarto login for csh
vilvim exrcl.vimre__ Sets vi/vim editor options
emacs emacs Sets emacs editor options and key bindings
mailimailx mailrc Defines personal mail liases
Sets mail reader options (original UNIX mail client)
GNOME .gconf ‘GNOME environment; user configuration via gconf
.geonfpath _Path for additional user configuration via geonf
KDE del KDE environment: directory of configuration files

S R SO A R O





images/00192.jpg
aix§ sudo su -
aixk chdev -1 8780 <& max_logaams






images/00191.jpg
Ry, Jaaric <8 aynd. e e, Igudae
max_logname 9 Maximum login name length at boot time True





images/00194.jpg





images/00193.jpg
System Min Max _Algorithms. Where set

Lnox 5 8 caypt, MDS, Blowish” Tetcllogin.defs

Solaris 6 8 crypt, MDS, Blowish,SHA256 /etelsecurity/policy.conf
Jetdsecurity/crypt.conf

HPUX 6 8 aypt Iusrfinclude/limitsh"

AX 0 8 crypt,MD5(BSD) Apache Argument to passwd command

o Blowfish i the defaul o SUSE and operSUSE systems; most others use MDS.
b Maximum length depends o theagorithm chosen,

C Root ca st a user's paswiord 10 ay lenglh.

o Thes B ks W e EEE A comint s s ik it s bt





images/00188.jpg





images/00190.jpg
System Len Characterset  First Specialrules

Linux 32 2209 az_ Somedistros aremore generous

Solaris 8 AZa20-9+. AZez  Atleastone lowercase letter

HP-UX 8 AZa20-9_ AZaz

AIX 8 POSKGnospaces, not-@~ Notalluppercase letters
quotes, or £=/\ Not "default” or "ALL"

2 Although Linux allows 32 charactrs legacy software (e, top and rsh) expects 8o evr.
b I being nceased.
o Ot b inriond e AT 508 s bkt e it o





images/00189.jpg
IOk X.0,0- T e SYSIEm, X000, /b ah.
1:100:0:Jim Lane ECOTS-3, -/staff/j:/bin/sh
dotty:x-101:20::/home/dotty-/bin/tcsh





cover.jpeg
| UNIXAND LINUX SYSTEM
ADMINISTRATION
HANDBOOK

=== FOURTH EDITION

EVI NEMETH * GARTH SNYDER + TRENT R. HEIN +BEN WHALEY

with Terry Morreale, Ned McClain, Ron Jachim, David Schweikert, and Tobi Oetiker






images/00295.jpg
-atalog L
Name = MYSQL
dbname = "bacula’; dbuser

“bacula’; dbpassword = *3peNLmECnQ’





images/00294.jpg
Meagages. |
Name = Standard
‘mailcommand = "/sbin/bsmtp -h localhost - V\(Bacula)

bacula@admin com’ -5 \'Bacula: %t %e of %c %I %
operatorcommand = "/sbin/bsmtp - localhost -f \\(Bacula)
bacula@admin.com\' -5 \'Bacula: Intervention needed for %)\' %
mail = backups-admins@admin com = all, skipped
aperator = backups-tapeadmins@admin.com = mount
console = all, ‘skipped, saved
append = */var/log/bacula log

all, Iskipped





images/00297.jpg
Pool {
Name = Full_Pool
Pool Type = Backup
Recycle = yes
AutoPrune = yes
Storage = TL4000
Volume Retention = 365 days






images/00296.jpg
StRrage |
Narne = TL4000
Address = bull
SDort = 9103
Password = ‘JKkrZuE0D"
Device = TL400O
Autochanger = yes
Maximur Concurrent Jobs
Media Type = LTO3






images/00291.jpg
FSRmpe FAcia Grecion canliguration: The, et Dacuia-dineony-

Director
Narne = bull-dir # & canonical name for our Bacula director
DIRport = 9101
Query File = */ete/bacula/query sql*

Working Directory = "fvar/Bacula/working"

Fid Directory = “/var/run®
Maximur Concurrent Jobs
Password = ‘ZHpSCUNHN
Messages = Standard






images/00290.jpg
Component File Which machines

Director daemon bacula-dir.conf  The server that runs the director daemon
Storage daemon bacula-sd.conf  Every server that has a storage device.
File daemon bacula-fd.conf  Every clien that s o be backed up

Management console  beonsole.conf  Every machine used as a control console






images/00293.jpg
Messages {
Name = Standard
director = bul-dir =





images/00292.jpg
bacula-dircont weadteentposorstor | beonsolecont
anthedrectormachine cochdentand storogesev | on the consolemachinets

o — N

Password ndFQIM

bacula-sd.conf

on each sorage srver
Storsge
Fassword Fosccer” (41T
} bacula-fdconf
on each dient
ROl S| R






images/00289.jpg
N—
Director

Glenefie
PR @ S






images/00288.jpg
5 dd if=/dev/st0 of=tfile cbs=16b
/* Change tapes. */

§ dd if=tfile of=/dev/st0 cbs=16b
& rm thile





images/00284.jpg
+ Sudo midir /warreston:
§ cd fvar/restore

§ sudo ssh tapehost mt -f /dev/nsto fsf 3
§ sudo restore -i -f tapehost/dev/nsto
restore> Is

janet/ garth/ lost+found/ lynda/
restore> cd janet

restore> ls

afile bfile cfile iamlost

restore> add iamlost

o ls

afile bfile cflle famlost®

restore> extract

You have not read any volumes yet

Unless you know which volume your files are on you sh
tart with the last volume and work towards the first.
Specify next volume # 1

set owner/mode for "7 [yn] n






images/00283.jpg
Fraummpc =3 -8 A0000 = S5 /IR [WorE
DUMP: Date of this level 5 dump: Wed Nov 18 14:28:05 2009
DUMP: Date of last level 0 dump: Sun Nov 15 21:11:05 2009
Dumping /dev/hda2 (/work) to /devinst0

mapping (Pass ) [regular files]

‘mapping (Pass ] [directories]

estimated 18750003 tape blocks on 23 tape(s)






images/00286.jpg
3 sudo mkdir /var/restore
§ cd fvarfrestore

§ sudo ssh tapehost mt -f /dev/nsto fsf 3

$ sudo restore -x -f tapehost:/dev/nst0 ./janet/iamlost





images/00285.jpg
5 cd /var/restore
§ 1s janet

jamiost

§ Is ~janet

afile bfile cfile

$ sudo cp -p janet/iamlost ~janet/iamlost restored

§ sudo chown janet ~janet/iamlost restored

§ sudo chgrp staff ~janet/iamlost restored

§ cd /; sudo rm -1f /var/restore

§ mail janet

Your file iamiost has been restored as requested and has
been placed in /users/janet/iamlost restored.

Your name, Humble System Administrator





images/00280.jpg





images/00279.jpg
L AR B 4 “RSHE .. £ TUIE JOSEHEN RS O T 1
—siac fbinifem 2 [}





images/00282.jpg
Syst
Linux.
Solaris
HP-UX
AX

Rewinding _ Non-rewinding
/devisto  /devinst0
Idevirmt/0  [devirmt/on
/dev/rmt/om /dev/emt/omn
[devirmt0  /devirmto.1





images/00281.jpg
Medium  Capacity’ Speed® Drive Cost/GB® Reuse? Random?"
R 700M8 MBS $15 15 21c  No Ve
D-RW T00MB  aMB/s  $20  30C 42 Yes  Yes
DVD:R 4768 30MB/s 530 30¢ 6 No Ve
DVDROL  85GB 30MB/s $30  $1 1 No  Yes
DVD:RW  47GB 10MB/s  $30 4o 9 Yes  Yes
Blu-ray 2568 30MBs  $100 3 12 No  Yes
DDS-4(4mm) 208 30MB/s $100 S5 25¢  Yes  No
DIT/SDIT  160GB 16MB/s $500 $10  6¢  Yes  No
DIT54 800GB 6OMB/s 52500 $100 13  Yes  No
AT4(8mm) 20068 24MB/s $1200 $40  20¢  Yes  No
AT 4006B  24MB/s $2500 S50 13¢  Yes  No
VXA320 160GB 12MB/s %800  S60  38¢  Yes  No
1103 400GB  8OMB/s $200 $25 &  Yes  No
1104 800GB 120MB/s $1.600  $40  5¢  Yes Mo

2 Uncompressed capacity and speed
b Allows random access o any partofthe media
& Dih Enir





images/00287.jpg
$ sudo mkfs /dev/vg01/lvols
$ sudo mount /dev/vg01/lvols /home

$ cd /home

/* Mount first tape of level 0 dump of /home. */
$ sudo restore -r

/" Mount the tapes requested by restore. */

/" Mount first tape of level 3 monthly dump. */
$ sudo restore -r





images/00278.jpg
ROEL [~ SME 1% (" O
-name “-' -0 -name ".nfs" }' -exec rm -f {}






images/00273.jpg
Field Description Range

minute Minuteof the hour 01059
hour  Hourofthedsy 01023
dom  Dayofthemonth  1to31
month  Monthoftheyear 11012

weekday  Dayof theweek 0106 (0= Sunday)





images/00272.jpg





images/00275.jpg
System _ Allow/deny  Default  Defaultlog
Lnox — Jetc Allusers — via syslog

Solaris  /etdron.d  Allusers  Avar/cron/log
HP-UX  fusiflibleron  Onlyroot  Avar/adm/cronflog
AX Ivarfadm/cron  Allusers  /var/admicron/log






images/00274.jpg
echiy Tne THOE -8 [ GRIE" 2 Aev/eanenie
mail -5 Reminder evi@anchor % Don' forget to write your chapters.
cd /etc; /oin/mail -5 "Password file" evi < passwd





images/00269.jpg
ubuntu$ sudo iscsiadm -m node -o new -p iserver
T iqn.1994-11.com adminctest

New iSCSI node [tcp:hw=default,ip=net_if=defaultiscsi_if-default]
iserver,3260,-1 iqn.1994-11.com admin:test] added






images/00268.jpg
ubuntu$ sudo iscsiadm -m discovery -t st -p iserver
192.168.0.75:3260,1 iqn.1994-11 com admin:test






images/00271.jpg
solaris$ sudo iscgiadm modify initiator-node -a CHAP -H testclient
solaris$ sudo iscsiadm modify initiator-node -C
Enter secret: <password for testclient>
Re-enter secret: <passward for testclent>
solaris$ sudo iscsiadm modify discovery -s enable
solaris$ sudo iscsiadm add static-config iqn.1994-11.com.admin:test, server
solaris$ sudo iscsiadm list target -5
Target: iqn.1984-11.com admintest
Alas:
TRGT. 1
ISID: 400000220000
Connections: 1
LUN: 0
Vendor: IE
Product: VIRTUAL-DISK
0S Device Name: /dev/rdsk/c1(

10s2





images/00270.jpg
ubuntu$ sudo iscsiadm -m node -1

Logging in t0 [iface: default, target: iqn.1994-11.com.admintest, portal
192.168.0.75,3260]

Login to [iface: default, target: iqn.1994-11 com.admintest, portal:
192.168.0.75,3260): successful






images/00277.jpg
s it |l W e e e i e o o o O
-atime +7 ~exec rm -f {} %'





images/00276.jpg
30 4 25 ° °  /usr/bin/mall -5 "Time to do the TPS reports

owen@atrust com%TPS reports are due at the end of the month! Get
‘busy!%%Sincerely %cron





images/00002.jpg
PRENTICE
VAL





images/00001.jpg
| UNIXAND LINUX SYSTEM
ADMINISTRATION
HANDBOOK

=== FOURTH EDITION

EVI NEMETH * GARTH SNYDER + TRENT R. HEIN +BEN WHALEY

with Terry Morreale, Ned McClain, Ron Jachim, David Schweikert, and Tobi Oetiker






images/00004.jpg
Ron Aitchison  Peter Haag Jeremy C. Reed

Eric Allman Bryan Helvey Andy Rudoff

Clay Baenziger  Matthijs Mekking  Michael Sinatra
Adam Boggs Randall Munroe  Paul Vixie

Tom Christiansen Eric Osterweil  Wouter Wijngaards
Dan Foster Phil Pennock

Steve Gaede Williain Potiit





images/00003.jpg
no stars should be straightforward
% Harder or longer, may require lab work
i Hardest or longest, requires lab work and digging

emester-long projects (only in a few chapters)

S %k






images/00006.jpg





images/00005.jpg





images/00007.jpg
Distribution Website Comments

Centos centosorg Free analog of Red Hat Enterprise
Debian debian org Closestto GNU

Fedora fedoraprojectorg  De-corporatized Red Hat Linux
Gentoo gentooorg Compile-ityourself,optinized
Linux Mint linusmintcom  Ubuntu-based, elegant apps
Mandiva mandrivacom  Long history,“easy to try”
opensUSE opensuse.org Free analog of SUSE Linux Enterprise
Oracle Enterprise Linux  oracle.com Oracle-supported version of RHEL
PCLinuX0S pinusoscom  Fork of Mandriva, KDE-oriented

Red Flag tedflag-linuxcom  Chinese disto, similar o Red Hat
Red Hat Enterprise  redhat.com Reliable, sow-changing, commercial
Slackware slackwarecom  Grizzed, long-surviving distio

SUSE Linux Enterprise
Ubuntu

novell.com/linux
ubuntucom

strong in Europe, multiingual
Cleaned-up version of Debian






images/00262.jpg
NAME SIZE  USED AVAIL CAP HEALTH
demo 496G 240K 496G 0% ONLINE
mool 748G 2378G 724G 3% ONLINE

ALTROOT






images/00261.jpg
SOIANEY Budc K8 coow demo/new fsletap] decho/ubeios
lari§ ls foptidemolsubclone

now_you_see_me
solar sudo touch /optdemo/subelone/and me_too
solars$ I foptidemolsubclone






images/00264.jpg
solaris$ sudo zpool destroy demo
solaris$ sudo zpool create monster raidzl c910d0 c9t1d0 c912d0
solaris 2fs list monster

USED AVAIL REFER MOUNTPOINT
ister 012K 081G 253K  /mo






images/00263.jpg
solaris$ zpool status demo
pool: derno
state: ONLINE
scrub: none requested
config

NAME  STATE READ WRITE
demo  ONLNE 0 o
8d1  ONLINE 0 o

cKsuM





images/00258.jpg
solaris$ sudo zfs set mountpoint=/opt/demo demo

olaris$ 2fs lst -t demo
NAME USED AVAIL REFER
Gemo 1006 487G 21K
demo/new_fs 19K 1028M 15K
olaris$ Is foptidemo

—

MOUNTZOINT
fopt/demo
/opt/demo/new_fs





images/00260.jpg
solaris$ sudo touch /opt/demo/new_fs/now_you_see_me
olarisé Is fopt/demolnew fs

now_you_see_me

solaris$ sudo zfs snapshot demo/new_fs@snapl
solaris sudo rm /opt/demo/new fs/now you see me
solaris$ Is opt/demolnew_fs

solaris$ Is /opt/demolnew_fs/.zfs/snapshot/snapl
now_you_see_me

solaris$ sudo zfs rollback demolnew_fs@snap1
solariss Is fopt/demolnew.fs

NOW_you_see.me






images/00259.jpg
solarisy zfs get all demo/new_fs
solaris$ zfs get all demo/new fs

NAME PROPERTY  VALUE SOURCE
type flesystem
creation Wed Mar 17 17:57 201
demo/new _fs used 19K
demo/new_fs  available 1024M
demo/new_fs referenced 19K
demo/new_fs compressratio  100x
mounted yes
demo/new_fs  quota 16 Tocal
demo/new_fs reservation 16 local
demo/new_fs mountpoint  /opt/demo/new_fs inerited from demo

<many more, about 40 in all>





images/00266.jpg
solaris} zpool status monster

pool: monster
state: ONLINE

scrub: none requested

config

NAME
monster
raidz1
9n0d0
oudo
91200
mirror
condo
corad0

STATE
ONLINE
ONLINE
ONLINE
ONLINE
ONLINE
ONLINE
ONLINE
ONLINE

READ WRITE CKSUM





images/00265.jpg
solansy sudo xpool add monster mirvor ¢H30 40
nvalid vdev specification

use -f o overrde the following errors

mismatched replication level: pool uses raidz and new vdev is mirror
colaric$ sudo zpool add -f monster mirror c9t3d0 c9t4d0






images/00267.jpg
RIS BURT UL = PUlRLe
node session auth authmethod = CHAP
node session auth username = chap_name
node.session.auth password = chap_pessword






images/00251.jpg
b df -h /mnt/webl
Filesystem Size Used Available Use% Mounted on
/dev/mapper-DEMO-webl 109G 188M 103G 1% /mnt/webl





images/00493.jpg
UTP switch

link to backbone

===

Workstation Workstation Ethernet printer






images/00250.jpg
$ sudo /sbin/tune2fs -c 50 /dev/sda3
tuneafs 1419 (22-Aug-2009)
Setting maximal mount count to 50





images/00492.jpg
Year Speed  Commonname IEEE#  Dist Media®
1973 3Mbls  Xerox Etheret - 7 Coax
1976 10Mb/s  Ethemet 1 - 500m  RG-11 coax
1982 10Mb/s  DIX Ethemet (Ethernet ) ~ 500m  RG-11 coax
1985 10Mb/s  10Bases (Thicknet’) 8023  500m RG-11coax
1985 10Mb/s  10Base2 (‘Thinnet’) 8023 180m  RG-58coax
1989 10Mb/s  10BaseT 8023 100m Cat3UTP copper
1993 10Mb/s  10BaseF 8023 Zkm  MMfiber
25km  SMfiber
1994 100Mb/s 100BaseTX (‘100meg”) 8023u  100m  Cat5 UTP copper
1994 100Mb/s  100BaseFX 8023u  Zkm MM fiber
20k SMfiber
1998 1Gbjs  1000BasesX 8023z 260m  625-um MM fiber
550m  50-um MM fiber
1998 1Gbjs  1000BaselX 8023z 440m  625-um MM fiber
550m  50-um MM fiber
3km SMfiber
1998 1Gbjs  1000BaseCx 8023z 25m  Twinax
1999 1Gb/s  1000BaseT (‘Gigabit) ~ 8023ab 100m CatSe, 6 UTP copper
2002 10Gbs  10GBase-SR 80233 300m MM fiber
10GBase-LR 10km  SM fiber
10GBase-£R 8023aq 40km  SM fiber
10GBase-ZR 80km  SM fiber
2006 10Gb/s  10GBaseT(10Gig")  8023an 100m  Catea,7,7aUTP
2009 40Gbis  40GBase-CR4 P§023ba 10m TP Copper
40GBase-5R4 100m MM fiber
2009 100Gb/s  100GBase-CR10 Pg023ba 10m  UTP Copper
100Gbase-SR10 100m MM fiber
2012° 1Tbis  TBD TBD  TBD  CWDMfiber
2015 10Tb/s TBD TeD  TBD  DWDM fiber

3. MM = Multimode, M1 = ingle-mode, UTP = Unshielded twisted pai,
WO = Coarse wavelength divison multplexing, DWDM = Dense wavelength divsion multiplexing

¢ industay peojection





images/00253.jpg
proc

FErac

UUID-a8e3. 8f8a /

uuit
fdev/scdd
/dev/scdl
fdevifdo

9. b3d2 none

/media/cdrom0
/media/cdrom1
Jmedia/floppy0

proc.
extt

swap
udfiso9660
udfis09660
auto

defaults
errors=remount-ro

sw

user,noauto executfs
user noauto exec utfs
TW,user.noauto,exec,utf8





images/00495.jpg
Pair__Colors Wiredto Pair__Colors.

T WhieBue  Pnssd4 3 White/Green
2 White/Orange Pins3/6 4 White/Brown






images/00252.jpg
# Device

/dev/vg00/lvol3
/dev/vg00/lvoll
/dev/vg00/lvol4
/dev/vg00/lvols
/dev/vg00/lvole
Jdev/vg00/tvol7
/dev/vg00/1vol8

Mount point

/
/stand
/tmp
/home
/fopt
Just
Jvar

Iype

vxfs
vxfs
vxfs
vxfs
vxfs
vxfs
vxfs

Options

delaylog
tranflush
delaylog
delaylog
delaylog
delaylog
delaylog

coooocoo

BE AN b B mekinih





images/00494.jpg
Cats .5, Cat6 Catéa Cat7 Cat7a
Class D ClassE ClassEA ClassF ClassFA

Parameter* u

Frequencyrange  MHz 100 100 250 500 600 1000

Attenuation d8 24 24 217 184 208 60
NEXT d8 2721 301 399 59 61 604
ELFEXT @ 17 174 22 431 460 350
Return loss. @ 8 10 12 R 141 619

Propagationdelay  ns 548 543 548 543 504 534

2. NEXT = Near-end crosstalk, ELFEXT = Equal level fa-end crosstak
b. Includes additional TIA and ISO requirements TSB95 and FDAM 2, respectively





images/00489.jpg
RFC__ Title Authors
1075 Distance Vector Multicast Routing Protocol — Waitzman et al
1256 ICMP Router Discovery Messages Deering

1724 RIP Version 2 MIB Extension Malkin, Baker
2080 RiPngfor IPv6 Malkin, Minnear
2328 OSPF Version 2 Moy

2453 Routing Information Protocol Version 2 Malkin

4271 ABorder Gateway Protocol 4 (BGP-4) Rekhter, i, etal.
4552 Authentication/Confidentialiy for OSPFY3  Gupta, Melam
4822 RIPv2 Cryptographic Authentication Atkinson, Fanto
4861 Neighbor Discovery for IPY6 Narten etal

5175 1Pv6 Router Advertisernent Flags Option  Haberman, Hinden
5308 Routing IPV6 with 1515 Hopps

5340 OSPF for V6 Coltun etal.

5643 Management Information Base for OSPFv3  Joyal, Manral, et al.






images/00488.jpg
interface Etnernetd
ip address 192.225.40.253 255.255.255.0





images/00249.jpg
& sudo mivg -y webreg hdiskl
webvg

§ sudo crfs -v jfs2 -g webvg -m /mntiwebi. -a size=256
File systern created st

26213396 Kilobytes total

New File Syster size is 52428800
§ sudo mkdir /mnt/web1

§ indo mount fmbtiabl






images/00491.jpg





images/00248.jpg
¥ SNCIRNE o X oF Rk JS00) R TOOUL VI

Logical volume */dev/vg01/root” has been successfully created with character
device "/dev/vg01/root

Logical volume */dev/vg01/root” has been successfully extended

Volume Group configuration for /dev/vg01 has been saved in
Jetcflvmconfvgol.conf

# Ivereate -C y -1 n -L 500 -n swap vgo1

Logical volume */dev/vg01/swap" has been successfully created with character
device "/dev/vg0l/rswap






images/00490.jpg
Destination ~ Gateway Genmask  Flags MS5 Window irtt Iface
10000 0000 2552552550 U 40 0 0 ethl
10110 0000 2552552550 U 40 0 0 etho
0000 10001 0000 uec 40 0 0 ethl





images/00255.jpg
Storage pools

Filesystems, swap areas, database storage

L

Virtual devices

i

f

RAID-Z arrays

RAID 1 arrays (mirrors)

f

f

Partitions

L

Storage devices






images/00497.jpg
Terminationtype _ Color Code* Comments

Demarcation point  Orange 150C ~ Central office terminations

Network connections ~ Green  353C  Also used for aux circuit terminations
Common equipment’  Purple  264C  Major switching/data eqpt. terminations
Fistlevel backbone  White  —  Cable terminations

Second-level backbone Gray  422C  Cable terminations

Station Blue  291C  Horizontal cable terminations.
Interbuilding backbone Brown 465  Campus cable terminations.
Miscellaneous Yellow 101C  Maintenance, alarms, etc.

Key telephone systems _Red _184C

2 According to the Panton Matching System

& Poiac-hosts. LANS. Tackes: otc.





images/00254.jpg
Pt

dev
vis

Tog
mount
check
ol
Fas

= /dev/hd10opt






images/00496.jpg
Core  Cladding

Mode ISOname® , core  Caceld  Color
Mot OM1  625um  125pm  Orange
Moli OM2 sopm  125um  Orange
Mol OM3 sopm®  125um  Aqua

Single  0S1__ 8-10pm _ 125pm _ Yellow

5. According 0150 11801
B OM3 & ordiraizod Sar couning 1asit bt





images/00257.jpg
solarish sudo zfs set reservation=1g demo/new_fs
solaris$ sudo zfs set quota=1g demo/new.fs

solaris$ fs list -+ demo

NAME USED AVAIL REFER MOUNTPOINT
demo 100G 487G 21K /demo

ofnew fs 19K 1024M 19K /demo/new.






images/00256.jpg
solaris$ sudo 2fs create demo/new._fs
solaris$ 2fs list -r demo
USED AVAIL REFER  MOUNTPOINT
100K 488G 21K /demo

19K 488G 19K  /demofnew fs






images/00240.jpg
$ sudo umount /mnt/webl
¢ sudo Ivchange -an DEMO/webl
5 sudo Ivresize -L +10G DEMO/web1
§ sudo Ivchange -ay DEMO/webl
Extending logical volume webl to 110.00 GB
e oal spimknie-wHbt isc cusaRallesise






images/00482.jpg





images/00239.jpg
$ sudo vgdisplay DEMO
Volume group

VG Name

System ID

Format

Metadata Areas

Metadata Sequence No

VG Access

VG Status

MAX LV

Cur LV

Open LV

Max BV

Cur BV

Act PV

VG size

I3

tal PE
Alloc PE / Size

DEMO

m2
1

=
readfwrite
resizable
0

2

97599 GB

400 MB

249854

51200 / 200.00 GB

Free

T / S To86s4 / 77503 GE |

VG UUID

NtbRLu-RqiQ-3Urt-iQZn-vEv)-ul






images/00481.jpg
BS netstat -rn
Kemel IP routing table

Destination ~ Gateway Genmask  Flags MSS Window intt Iface
127000 0000 255000 U 00 [

199.165.146.0 0.0.0.0 255.255.255.0 U 00 0 etho
0.00.0 199 165 1463 0.0.0.0 uc 00 0 ethod





images/00242.jpg
3 sudo e2fsck -f /dev/DEMO/webl
efsck 1419 (22-Aug-2009)
Pass 1 Checking inodes, blocks, and sizes

/dev/DEMO/web1: 6432/6553600 files (0.1% non-contiguous), 473045/26214400
blocks

§ 5udo resize2fs /dev/DEMO/web1

resizedfs 1.41.9 (22-Aug-200)

Resizing the filesystem on /dev/DEMO/web to 28835840 (4K) blocks

The filesystem on /dev/DEMO/web1 is now 28835840 blocks long.





images/00484.jpg
$ telnet acme-gw.acme.com”
Connected to acme-gw acme.com
Escape character is "

User Access Verification
RN





images/00241.jpg
$ sudo resize2fs /dev/DEMO/webl
resizedfs 1419 (22-Aug-2009)
Please run 'e2fsck -f /dev/DEMO/web1' first





images/00483.jpg
Proto_Long name Application

RIP Routing Information Protocol Internal LANS (i that)
RIPng  Routing Information Protocol, next generation — Pv6 LANS

FIGRP*  Enhanced Interior Gateway Routing Protocol  WANS, corporate LANs
BGP_ Border Gateway Protocol Intemet backbone routing

& Tl pibcel BIGHPY IS Bioarietari o Ce.





images/00478.jpg
Ethernet

hondart | 1Pheader UDP header and data
From: A From: 19916514517 | -,
To: R1 To: 199.165.146.4 1 1
Type: 1P Type: UDP 1 1 a
OPPACKET
PRAGET

ETHERNET FRAVE






images/00238.jpg
$ sudo mkfs /dev/DEMO/web1

§ sudo mkdir /mnt/web1
¢ sudo mount /dev/DEMO/web1 /mnt/web1





images/00480.jpg
BS netstat -rn

Kemnel IP routing table
Destination ~ Gateway
127000 0000

199.165.145.0 199.165.146.1

199.165.146.0 0.0.0.0

0000 199 165 146 3

255.255.255.0 U
255.255.255.0 U

Iface

etho
etho
oth0





images/00479.jpg
R1$ netstat -rn.
Kemel IP routing table

Destination ~ Gateway ~ Genmask  Flags MSS Window intt Iface
127000 0000 255000 U 00 0 1o
199.165.1450 0.0.00 255.255.255.0 U etho

00 0
1991651460 0.0.0.0 255.255.255.0 U 00 0 ethl
0.00.0 199 1651463 0.0.0.0 uc 00 0 ethl





images/00247.jpg
$ sudo lvcreate -1 25000 -n web1 vg0l

Logical volume */dev/vg01/web1" has been successfully created with character
device */devvg01/rweb>

Logical volume */dev/vg01/web1" has been successfully extended

Volume Group configuration for /dev/vgo1 has been saved in
Jetc/lvmconf/vg01.conf






images/00244.jpg
$ sudo pvcreate /dev/rdisk/disk4
Creating */etc/lvmtzb_p"
Physical volume "/dev/rdisk/disk4" has been succes

fully created





images/00486.jpg
line aux 0
transport input telnet
fne vty 0 4
password xooocc
login

s





images/00243.jpg
3 sudo mount /dev/DEMO/web1 /mnt/webl

§ df -h /mnt/webl

Filesystem Size Used Avail Use% Mounted on
fdev/mapper/DEMO-web %  /mnt/web1






images/00485.jpg
2CIE-FWLACIRG COMS Mow Timing
Current configuration:

version 12.1

hostname acrme-gw

enable secret oo

ip subnet-zero

interface Etherneto
description Acme internal network
ip address 192.108.21.254 255.255.255.0
1o ip directed-broadcast
interface Ethernetl
description Acme backbone network
ip address 192.225.33.754 255.255.255.0
1o ip directed-broadcast

ip classless
line con 0
I S———





images/00246.jpg
$ sudo vgcreate vgo1 /dev/disk/disk4

Increased the number of physical extents per physical volurne

Volurne group */dev/vg01" has been successfully created.

Volume Group configuration for /dev/vg01 has been saved in
Fatc/menntivglon

17501,






images/00245.jpg
& sudo hadm -t -V 1.0
- LVM Limits -

VG Version

Max VG Size (Tbytes)
Max LV Size (Tbytes)
Max PV Size (Tbytes)
Max VGs

Max LV

Max Vs

Max Mirrors

Max Stripes

Max Stripe Size (Kbytes)
Max Ls per LV

Max PXs per PV

es) 256






images/00487.jpg
dcme-gw.acme.com# config term
Enter configuration commands, one per line. End with CNTL/Z
- Cirie g lconfiE





images/00229.jpg
buntu$ sudo update-rc.d mdadm enable
usc$ sudo chiconfig -s mdadmd on
recihath wado chironts mdmanitor o





images/00471.jpg
Feature Default _Control through ndd

1P forwarding dynamic* Setip_forwarding: 0= off, 1 = on, 2= dynamic
ICMP redirects obeys®  Setip_ire_redirect_interval toOto disable
Source fouting ignores  Setip_forward_src_routed to 1 toenable

Broadcast ping (forward)  blocked ~ Setip_forward_directed_broadcasts
Broadcast ping (respond) _ignores _ Setip_respond._to_echo_ broadcast

2. On with >1 network Interface;off thernise
B TG et iTies b il bewencind oo D Filoii





images/00228.jpg
linux$ sudo sh -c ‘echo DEVICE /dev/sdbl /dev/sdcl /dev/sdd1 >
fetc/mdadm.conf'

linux$ sudo sh -c 'mdadm --detail --scan >> /etc/mdadm.conf'

linuxt cat /etc/mdadm.conf

1CE /dev/sdvt /dev/sdel /devisdd1

etadata=00.20 spares:






images/00470.jpg
5 ndd -get /dev/ip ip_forward src_routed
§ sudo ndd -set /dev/ip ip_forward_src_ routed 1
§ ndd -get /devlip ip_forward src routed

1





images/00231.jpg
$ sudo mdadm /dev/md0 -r /dev/sdcl
AR AmS hak cartaved. Idaviaded





images/00473.jpg
aix$ lsattr -H -E -1 en3

attribute
aliasd

aliass

arp

authority
proadeast
meu

netaddr
netaddr6
netmask
prefixlen
remmtu
security

state
cep_mssdflt
rcp_nodelay
tep_recvspace
tep_sendspace

value

on

192168.10.255
1500
192168.10.11

255.255.255.0
576

none
up

description
IPu4 Alias including Subnet Mask
176 Alias including Prefix Length
‘Address Resolution Protocol (ARE)
Authorized Users

Broadcast Address

Maximum [P Packet Size

Internet Address

IPY6 Internet Address

Subnet Mask

Prefix Length for [Pv6 Address

Max. Packet Size for REMOTE Nets
Security Level

Current Interface Status

Set TCP Maximurn Segment Size
Enable/Disable TCP_NODELAY Option
Set Socket Buffer Space for Recelving
Set Socket Buffer Space for Sending

settable
True
True
True
True
True
True
True
True
True
True
True
True
True
True
True
True
True





images/00230.jpg
$ sudo mdadm /dev/mdo0 -f /dev/sdc1
mdadm: set /dev/sdct faulty in /dev/md0

§ sudo tail /var/log/messages

May 30 16:14:55 harp kernel: raids: Disk failure on sde, disabling device
Operation continuing on 2 devices

kernel: RAIDS conf prinout

kernel: - rd3 wd2 fd:1

emel: disk 0, 011, devisdbl

kernel: disk 1, .0, devisdcl

emel: disk 2, o1, devsdd

kernel: RAIDS conf printout:

kermel: - rd3 w2 f:1

kernel: disk 0, o1, devsdbl

kenel: disk 2, o1, devisdd

§ cat /proc/mdstat
personalities : (raid] [raids) [raid¢] [linear] [multipath) [raido] [raid)] [raid10
md0 : active raids sdb1(0] sdd1[2] sdc1(3)F)

1023404544 blocks level 5, 64k chunk, algorithm 2 [3/2) [U_U]

TORPTe B o P e





images/00472.jpg
Affects  Affects
Cobwnand Current? _Boot?
smitty mltcpip (and il ot the form) e Yes
mktcpip -ien3 -2 192.168.0.1 Yoo Yes
chdev-1 en3 -2 netaddr=192.168.0.1 Yes Ve
chdev-len3-anetaddr=192.16801-P  No  Yes
chdev-len3-anetaddr=19216801T  Yes  No
ifconfig en3 inet 192.168.0.1 Yo Mo
odmchange -0 Cut-qame=en3 AND  No  Yes
attribute-netaddr < config®
echoHey! I setthe networkaddresst _ No___No

2 odmchange requies an atrbute/value st a nput, You cannot speclfy

b e ey





images/00469.jpg
e e ek il S
NDD_NAME[2]-ip_forward_src_routed
NDD_VALUE[2]=0






images/00468.jpg
$ ndd -h | grep source
ip_forward_src_routed - Controls forwarding of source routed packets

§ ndd -h ip_forward_sc_routed

ip_forward_src_routed:
Set to 1 to forward source-routed packets; set t0 0 to
disable forwarding, If disabled, an ICMP Destination
Unreachable message is sent to the sender of source.
routed packets needing to be forwarded. (0,1] Default: 1






images/00237.jpg
5 sudo lvcreate -L 100G -n webl DEMO
Logical volume "web1® created





images/00236.jpg
$ sudo vgdisplay DEMO
- Volume group

VG Name DEMO
System ID

Format Tom2

Metadata Areas 1

Metadata Sequence No 1

VG Access read/write

VG Status resizable

MAX LV 0

Cur LV 0

Open LV 0

Max BV 0

Cur BV 1

Act PV 1

VG size 97599 GB

PE Size 400 MB

Total PE. 249854

Alloc PE / Size 0/0

Free PE/ Size249854 / 975.99 GB

VG UUID NtbRLu-RqiQ-3Urt-iQZn-vEv)-u0Th-EVYKWE





images/00233.jpg
Operation _ Linux HP-UX AIX
S Ceate  puereate pucreate B
= Inspect  pudisplay pudisplay Ispv
2 Modify puchange pvchange chpy
& Check puck pvck -
Create  vgereate vgareate mkvg
g Modify vgchange vgchange chvg
S Btend  vgextend  vgextend extendvg
2 inspect vadisplay vadisplay Isvg
3 Check vgek & -
Enable  vgscan vgscan varyonvg
S Gete  Ivareate Waeate midy
= Modify Ivchange Ivchange chlv
S Resize Ivresize Ivextend, Ivreduce extendlv
S inspect  Ivdisplay Ivdisplay Islv.






images/00475.jpg





images/00232.jpg
5 sudo mdadm /dev/md0 -r /dev/sdcl
mdadm: hot removed /dev/sdc1





images/00474.jpg
Variable Meaning Default

beastping Respond to broadcast pings [
directed_broadcast  Allow forwarding of broadcast packets 0
ipforwarding Allow IPforwarding 0
ipignoreredirects  lgnore ICMP redirects o
ipsterouteforward  Forward source-routed IP packets ”
ipsrcrouterecy Accept source-routed IP packets 0

ipstcroutesend Block sending of source routed packets 1

3 Itk siMahis th ehaicn





images/00235.jpg
5 sudo vgcreate DEMO /dev/md0
Volume group "DEMO" successfully created






images/00477.jpg
A$ netstat -

Kemel IP routing table

Destination  Gateway Genmask  Flags MSS Window intt Iface
199.165.145.0 0,000 255.255.255.0 U 00 0 etho
127000 0000 255000 U 0o 01
0000 199 165 145 74 0000 uec 00 o0 eothd





images/00234.jpg
P MRL0 pYELcacE idesndl
Physical






images/00476.jpg
Host

14517

14524

Router

199165146

199165145
network

network
1464 _[Host
1461 3
1463 [Fouter] to the Internet
B2 _[ 61211180






images/00218.jpg
uxs ¥ado tagmn -1 Iqen ot
fdev/sat:

ATA evice, with non-removable media
Model Number.  WDC WD1001FALS-00]780

Serial Number:  WD-WMATV0998277
Firmware Revision: 05,00K05
Transport Serial, SATA 10a, SATA Il Extensions, SATA Rev 2.5
Capabilities

1BA, IORDY(can be disabled)
Queue depth: 32
Standby timer values: spec'd by Standard, with device specific minimum
R/W multiple sector transfer. Max = 16_Current = 16
Recommended acoustic management value: 128, current value: 254
DMA: mdma0 mdma1 mdma? udma0 udmal udma? udma3 udmad
udmas *udmas
Cycle time: rmin=120ns recommended=120ns
PIO: pio piot pio2 piod piod
Cycle time: no flow control=120ns IORDY flow control=120ns





images/00460.jpg
maj el 19516810 ->-148. L8, 190.0046. porixiap Ty iup 200000
map ethl 192.168.1.0/24 -> 128,138,198.0/26





images/00459.jpg
Feature Default_ndd variable

1P forwarding off ip_forwarding
ICMP redirects obeys  Can'tbe changed"

Source routing ignores ip_forward_src_routed
Broadcast ping (respond) on  ip_respond._to_echo_broadcast
Broadcast ping (forward) off _ip_forward_directed_broadcasts

. Voul s oniy iodiy the entiied ine-io-dhie





images/00220.jpg
RAIDO

s,
dom





images/00462.jpg
EESY THUANMLSbLEL
INTEREACE_NAME[0]-lan0
IP_ADDRESS[0}-192.108.21.99
SUBNET_MASK]0]=255.255.255.0






images/00219.jpg
$ sudo /sbin/hdparm -Tt /dev/hdb

fdevisdf:
‘Timing cached reads: 2092 MB in 2,00 seconds = 1046.41 MB/sec
Timing buffered disk reads: 304 MB in 3.00 seconds = 101.30 MB/sec





images/00461.jpg
ERA LML
INTERFACE_NAME[J
IP_ADDRESS[0]
SUBNET MASK[0]






images/00458.jpg
RIBEERN.

ndd -set /dev/e1000g0 adv_autoneg_cap 0
ndd -set /dev/21000g0 adv_1000fdx_cap 0
ndd -set /dev/e1000g0 adv_100fdx_cap 1
ndd -set /dev/e1000g0 adv_100hdx_cap 0
ndd -set /dev/21000g0 adv_10fdx_cap 0
ndd -set /dev/e1000g0 adv_10hdx_cap 0





images/00226.jpg
linux3 cat /proc/mdstat
personalities : [linear] [multipath] [raid0] [raid1] [raide] [raids] [raide] [raid10]
md0 ; active raids sdd13] sdci1] sdb1[o]
1023404544 blocks level 5, 64k chunk, algorithm 2 [3/2] [UU]
> ) recovery = 0.1% (572640/511702272) finish=75.9min
speed=112106K/sec

i Aavbonis: eriopims:





images/00225.jpg
linux3 sudo mdadm --create /dev/md0
Idevisde1 /devisdd1
mdadm: array /dev/md0 started.






images/00467.jpg
Enter command: display

LAN INTERFACE STATUS DISPLAY
Tue , Jun 2,2009 00:41:24

PPA Number o
Description Tan0 Intel PCI Pro 10/100T Server Adapter
Type (valug) ethernet-csmacd()

MTU Size 1500

Speed 100000000

Station Address - 0x0030622a9237

Administration Status (value) = up(1)

Operation Status (value) = upl1)
Inbound Unicast Packets - 45691
Inbound Non-Unicast Packets = 2630

Deferred Transmissions
Late Collisions
Excessive Collisions E






images/00227.jpg
ERADS Con.. prmtouf:
143 wd:2

disk 0, 01, devsdbl

disk 1, 011, devisde1

disk 2, 011, devisdd1

md: recovery of RAID array md0

md: minimum _guaranteed_ speed: 1000 KB/sec/disk.

md: using max available idle 10 bandwidth (but not more than 200000 KB/sec)

for recovery.
md: using 128k window, over a total of 511702272 blocks.





images/00222.jpg
RAID 0+1:
Mirror of
stripes

RAID 140:
Stripe of
mirrors.






images/00464.jpg
5 lanscan
Hardware Station Crd Hdw Netint  NM MAC HP-DLPI DLPI

path  Address In# State NamePPA 1D Type  Support Mjr#
$0/20/0 0x001. 0 UP lan0snapd 1 ETHER Yes 130
§ ifconfig lan0

/an0: flags=B43<1IP BROADCAST RUNNING MULTICAST> inet 192.108.21.99
netmask ffffffo) broadcast 192.108.21755

§ ifconfig snap0
ifconfig: no such interface





images/00221.jpg
RAID 1

)
)





images/00463.jpg
ROUTE_GATEWAY(0]-192,108.21.254
ROUTE_COUNTI(0]






images/00224.jpg
RAID 6

EEE S
ap aq 2a ab ac






images/00466.jpg
2% SnmdY
LOCAL AREA NETWORK ONLINE ADMINISTRATION, Version 10
Copyright 1994 Hewlett Packard Company.
All rights are reserved.
Test Selection mode.

Tan LAN Interface Administration
menu = Displey this menu
quit Terminate the Administration

terse = Do not display command menu
verbose = Display command menu

Enter command: lan

LAN Interface test mode. LAN Interface PPA Number

clear = Clear statistics registers
display = Display LAN Interface status/statistics
end = End LAN Interface Admin., go up 1 Jevel
menu = Displey this menu

ppa PPA Number of the LAN Interface

quit = Terminate the Admin, retur to shell
reset = Reset LAN Interface, execute selfiest

specific = Go to Driver specific menu





images/00223.jpg
RAID 5

3
b,
b,
ha)






images/00465.jpg
5 netstat -i
Name  Mtu
an0 1500
00 4136

§ netstat -nr
Routing tables
Dest/Netmask
127.00.1
1921082199
192,108 210
127,000
dafauli

Network  Address

192108210  disasteratrust.com

127000 localhostatrust.com
Gateway Flags Refs
127001 UH 0
1921082199 UH 8
1921082198 U 2
127001 U 0
19710821954 UG O

Ipkts Opkts
5047 3648
21 731
Use It Pm
21 10 413
lano 4136
0 lan0 1500
0 lo 4136
0 lan0 1500





images/00449.jpg
RRCIDY IR IOrWRTE=Y.
ki e






images/00691.jpg
Sisteid i b
Moimelben. i)





images/00448.jpg
ubuntu$ cd neigh/default; Is -F

anycast_delay

app_solicit
base_reachable._time
base_reachable._time_ms

delay_first_probe_time
gc_interval

ge_stale_time
ge_thresh
ge_thresh2
ge_thresh
Tocktime
meast_solicit

proxy_delay
proxy_glen
retrans_time
retrans_time_ms
ucast_solicit
unres_glen





images/00690.jpg
Option

Description

0
w

100t_squash

no_root_squash
all squash

anonuid=xxx
anongid=xxx
secure
insecure
noaccess
wdelay
no_wdelay
async

nohide

hide
subtree_check
no_subtree_check
secure_locks
insecure_locks
sec=flavor

fsid=num

Exports read-only.

Exports for reading and writing (the default)

Exports read-mostly. The st enumerates the hosts allowed to
‘mount for writing; all others must mount read-only.

Maps (*squashes") UID 0 and GID 0 to the values specified by
anonuid and anongid.* Thi s the default.

Allows normal access by root. Dangerous

Maps all UIDs and GID:s to their anonymous versions. Useful
for supporting PCs and untrusted single-user hosts.

Specifes the UID to which remote roots should be squashed
Specifies the GID to which remote roots should be squashed
Requires remote access to originate at a privileged port
Allows remote access from any port

Blocks access to this dir and subdis (used with nested exports)
Delays writes in hopes of coalescing multiple updates

Writes data to disk as soon as possible

Makes server reply to wiite requests before actual disk write
Reveals filesystems mounted within exported fil trees
Opposite of nohide

Verifies that each requested fil is within an exported subtree
Verifies only that fle requests refer to an exported filesystem
Requires authorization for allock requests

Specifies less stringent locking criteria (supports older clients)

Specifies a ist of security methods for the exported directory.
Values include sys (UNIX authentication), dh (DES), krbs
(Kerberos authentication), krbsi (Kerberos authentication
and integrity), krbsp (Kerberos authentication, integrity, and
privacy), and none (anonymous access, not recommended).
Specifies the V4 pseudo-filesystem root (usually 0)

Unlike most operating systems,Linux allows UIDs other than root o be colapsed. Lok up the

a1l 90

optton Foermare detalls





images/00209.jpg
Centronics
50 pins, SCSI-1/2, external

Ribbon connector (female)
50 pins, SCSI-1/2, internal

Mini-micro, aka HD50
50 pins, SCSI-2, external

Wide mini-micro, aka HD68
68 pins, SCSI-2/3,int/ext
sca-2

80 pins, SCSI-3,internal






images/00451.jpg
ubuntu$ sudo /sbin/modprobe iptable_nat
wbuntu$ sudo /sbin/modprobe ip._conntrack
ubuntu$ sudo /sbin/modprobe ip_conntrack fip





images/00693.jpg
$ showmount -e monk
Export list for monk:
fhorne/ben harpatrost.con





images/00208.jpg
Characteristic

Size

Random access time
Sequential read

Random read
Cost

Reliabilty
Limited writes

HD

Terabytes
8ms.
100M8/s
2M8/5
50.10/G8
Moderate
No

sSD.

Gigabytes
025ms
250 MB/s
250 MB/s
$3/68
Unknown
Yes





images/00450.jpg
Feature Host _ Gateway Control file (in /proc/sys/net/ipv4)

IPforwarding  off on ip_forward for the whole system
conf/interface orwarding per interface®

ICMP redirects  obeys ignores  conflinterface/accept_redirects
Sourcerouting varies  varies  conflinterface/accept_source_route
Broadcast ping _ignores ignores _icmp_echo_ignore_broadcasts

5. The ierfion o b ekl & Epaciic WierEace s orall





images/00692.jpg
System _Config file (in /etc) Option toset Default
Ubuntu  default/nfskernel-server  RPCNFSDCOUNT 8
SUSE sysconfig/nfs USE_KERNEL_NFSD_NUMBER 4
RedHat  sysconfig/nfs RPCNFSDCOUNT 8
Solaris  default/nfs NESD_SERVERS 16
HP-UX default/nfs NFSD_SERVERS 16
AIX Use SMIT or chnfs to change the number of nfsd daemons.






images/00689.jpg
Type Syntax Meaning

Hostname  hostname Individual hosts
Netgroup @groupname  NIS netgroups (not frequently used)
Wildcards ~ *and ? FQDNs* with wild cards; “** will not match a dot

1P networks _ipaddr/mask _ CIDR-style specifications (e.g. 128.138.92.128/25)

& Fulyicuialifed dornali narees





images/00688.jpg
/home ‘harp{rw,no_root_squash} monk{rw)
fusr/share/man  *.atrust.com(ro)





images/00215.jpg
hp-ux3 joscan -m dsf
Persistent DSF”

(dev/rdisk/disk3
(dev/rdisk/disks

fdev/rdisk/disk:
(devirdisk/disks p2
(devirdisk/disks p3
[devirdisk/disks

fdeviidisk/disks_p1
/devisdisk/disks_p2
dev/rdisk/disk5_p3

Legacy DSF(s)

/dev/xdsk/c0t0d0
/devixdsk/c2t1d0

/devirdsk/cat1dost
/dev/rdsk/c2t1d0s2
/devixdsk/c2t1d0s3
/devirdsk/c210d0

/devixdsk/c210d0s1
/devixdsk/c2t0d0s2
fdevirdsk/c2t0d0s3





images/00457.jpg
Device

Description

Variable names

Jdevitcp
/deviudp
Ideviip
Ideviicmp.
Idevirawip
Idev/arp

TCP protocol variables.
UDP protocol variables
1P protocol variables
ICMP protocol variables
Identical to /deviicmp
ARP protocol variables

tp
udp.*
ip_*andips
icmp_*
icmp_*
arp_*






images/00214.jpg
sl fnwcae: M, 0. duk;
Class I H/W Path Driver /W State KW TypeDescription

disk 3 64000/0xfa00/0x0 esdisk CLAIMED DEVICE TEACDV-28E-B
Jdev/diskidiska  /fdevirdisk/disk3

disk 4 64000/0xfa00/0x1 esdisk CLAIMED DEVICE HP 73 4GMAS3735NC
Jdevidisk/disks  /devirdisk/disks
/dev/disk/disks_p1  fdevirdisk/disk_p1
Jdev/aisk/disks_p2 /devirdisk/diskd_p2
Jdev/disk/diskd_p3 _/dev/rdisk/diskd_p3

disk 5 64000/0xfa00/0x2 esdisk CLAIMED DEVICE HP 734GMAS3735NC
Jdev/disk/disks  /dew/rdisk/disks
Jdev/disk/disk5_p1 /dev/rdisk/disk5_p1
Jdev/diskidisks_p2 /dev/rdisk/disks_p2
/dev/disk/disks_p3 /dev/rdisk/disk5_p3





images/00456.jpg
solaris} netstat -nr
Routing Table: [Pv4
Destination  Gateway Flags

default 1921082125¢ UG

192108210 1921082148 U
127001 127001 UH

solaris$ sudo route get google.com
Toute to: gu-in-T100.google.com
destination: default
mask: default
gateway: 19210821254
interface: 100080

Ref

Use

9959
4985
107

flags: <UP,GATEWAY DONE STATIC>

recvpipe sendpipe ssthresh rttms rtvarms
0

o 0 o

o

Interface

hopeount mtu expire
o 1500 0





images/00217.jpg
Option

Function

Mvalue
S value

Dumps lots of dentifying and status information
Sets acoustic management options.

Sets time delay for automatic standby (spin-down) mode
Puts drive into standby mode immediately

Queries the drive's current power management state
Quick-tests interface bandwidth (no actual disk reads)
Quick-tests overall platter-to-host sequential reads

This s an apperchse hetter Sve® asinindia.





images/00216.jpg
5 uulo halpaem ~tenr-miiel U —Sacurity-set pads. priwont /oev/dx
6 wiifio; Winrin “aisersalr i “sscuriyarins Jassword fasviads






images/00211.jpg
Filesystem
layer

Partition
layer

Physical
layer

/home Jopt Ispare
/dev/sdal Idev/sda2 /dev/sdb1
Hard disk 1 Hard disk 2.






images/00453.jpg
¥:La Depaiment ATRUIL Iaaks: daeoase

# Network netmask
¢
’
128.138.00 255.255.255.192
¢

12813819264 255255255192
128138192192 255.255.255.192
1281381930 295.285.255.224
12813819332 255255255224
1281381980  295.255.255.0

# default for dept

# drag
# csops

# borg

# database
# slip





images/00695.jpg
$ df /nfs/ben
Filesystem kblocks  Used Available Use% Mounted on
leopard;/home/ben 17212156 1694128 14643692 11% /nfs/ben





images/00210.jpg
Filesystems, swap areas, database storage

L 3

Logical volumes

[ —

1

Partitions

—

RAIDarmays |+

Volume groups

Storage devices






images/00452.jpg
solaris} svcs svc:/network/physical

STATE STIME  FMRI
sabled  Mar 31 sve/network/physicaldefault
online Mar 31 sve/network/physicalnwam

solaris$ sudo sveadm disable sve:/network/physical:nwam
solaris$ sudo sveadm ensble sve:/network/physical:default





images/00694.jpg
Description

w
10
bg

hard

soft

intr
nointr
retrans=n

proto=proto

Mounts the filesystem read-wite (must be exported that way)
Mounts the filesystem read-only

If the mount fais (server doesn't respond), keeps trying it n the
background and continues with other mount requests

Ifa server goes down, causes operations that try o access it to
block until the server comes back up

If a server goes down, causes operations that try to access t to
fail and return an error, thereby avoiding processes *hanging” on
inessential mounts

Allows users to interrupt blocked operations (and return an error)
Does not allow user interrupts

Specifies the number of times to repeat a request before return-
ing an error on a soft-mounted flesystem

Sets the timeout period (in 10ths of a second) for requests

Sets the read buffer size to n bytes

Sets the wite buffer size to  bytes

Specifies the security flavor

Sets the NFS protocol version

Selects a transport protocol; must be tcp for NFS version 4

Although the vers flag ssted in the mount man pages on Linux systems, using it esults n an
i gonhinres dpysesma st - 06 by





images/00213.jpg
System _ Block device Raw device Partition

Linox  /devisda notused Idevisdal

Solarls  /dev/dsk/c0t0d0s2 /dev/rdsk/cOt0d0s2 /dev/dsk/cOtod0s0
HPUX'  [devidiskidisko  [devirdisk/disk0  /dev/disk/disko_p1”
AX Idevihdisko Idevirhdisko notused

3. HP-UX s usesSolrs styledevice names for egacy compatibiiy
el grtarstsor temstipdantiopindoog durmsknmn Ty





images/00455.jpg
solaris$ ifconfig -a

100: flags=2001000843<UP. LOOPBACK RUNNING MULTICAST, IPv4 VIRTUAL>
mtu 8232 index 1 inet 127.00.1 netmask 000000

21000g0: flags=1000843<U/P.BROADCAST,RUNNING MULTICAST [Pv4> mtu 1500
index 2 inet 192.108.21.48 netmask Fffff00 broadcast 192.108.21.255

solaris$ sudo ifconfig €1000g0

21000g0: flags=1000843<UP.BROADCAST RUNNING MULTICAST.IPv> mtu
index 2 inet 192.108.21.48 netmask FfFf00 broadcast 192.108.21.255
ether 0:14:4f e-e6:1c.






images/00697.jpg
System _Daemon Configuration

Linux  /usrisbin/rpc.idmapd /etc/idmapd.conf
Solaris  Jusr/lib/nfs/nfsmapid /etc/default/nfs’
HP-UX  /usrisbin/nfsmapid /etc/default/nfs’
AIX Iust/sbin/nfsrgyd chnfsdom domain

2. The domain is set in the NFSMAPID_ DOMAIN parameter,





images/00212.jpg
ECELL: - DASLORIC B9

scsi : 1 host.
Vendor: SEAGATE  Model: ST446452W/ Rev: 0001
Type: Direct-Access ANSI SCS revision: 02

Detected scsi disk sda at scsi0, channel 0, id 3, lun 0
scsi0: Target 3: Queue Depth 28, Asynchronous
SCSI device sda: hdwr sector=512 bytes. Sectors=91923356 [44884 MB] [44.9 GB]






images/00454.jpg
laris$ sudo ifconfig 1000g0 plumb
solaris$ sudo ifconfig e1000g0 192.108.21.48 netmask 255.255.255.0 up
solaris$ sudo route add default 192.108.21.254





images/00696.jpg
#fesysten  mountpoint  fstype Tags g, sk
monk/home  /nfshome  nfs  rwbgintrhardnodevnosuid 0 0
suslocl fustlocsl nfs:  robgintrschuodevneswd O 0 0





images/00207.jpg
3 Swdo oikvg oy vgname hiiekel # Create volume group
§ Isvg ugname # Note freespace value
MAX LVs: 256  FREE PPs: 325 (fieespace megabytes)

§ sudo crfs ~v jfs2 -g vgnane -m mountpoint -a size=freespaceM
§ sudo mkdir mounipoint
§ sl DAL SN





images/01001.jpg
b lpstat -r
scbiadnler {5 Fitwiie





images/01000.jpg
b lpstat -phowler-lw
howler-lw is now printing pr-125. enabled since Jul 4 12:25





images/01003.jpg
5 1p -dhowler-lw myfile
Ip: cannot accept requests for destination "howler 1w’
= hewlerlw will be down until Toesdey





images/01002.jpg
Flag

Function

-
-d
~cdlass
-oarg
-uuser
~pprinter
~vprinter
-adest
B

t

Shows the status of the Ipsched daemon
Shows the default destination

Lists the members of class

Shows the status of output requests for arg
Shows the status of jobs submitted by user
Shows the status of printer

Lists the output device associated with printer
Shows the acceptance status of dest

Shows a summary of status information
Shows all status information






images/00999.jpg
Flag

Function

-pprinter
~ddest
xdest
~cclass
-rdlass
-edest
interface
-mmodel
-

~ville
-Ddesc”
Location”

Specifies the printer to which other options apply
Makes dest the system's default printing destination
Removes dest from the printing system

Adds the printer to class

Removes the printer from class

Copies another printer'sinterface program

Makes interface the interface progra for the printer
Makes the printer use the interface program for model
Signifies that the printer is hardwired

Specifies the full path of the printer devicefile

Sets the printer description string to desc

Sets a textual description of where a priner lives






images/00998.jpg
$ sudo lpadmin -pprinter -vdevice { -eprinter | -mmodel | -iinterface }
T oeclass= 1111 -h1





images/00438.jpg
File What's set there

network Hostname, default oute
static-routes static routes
network-scripts/ifcfg-ifname  Per-interface parameters: P address, netmask, etc.






images/00680.jpg
Pvww
www/domain1
Jwww/domain2

fvar
var/logs

var/logs/httpd





images/00679.jpg
/www/domainl
fwwwidomain2
fwww/domain3

var/logs/httpd

fvar/spool





images/00198.jpg
spwd /" To verify the home directory %/
$1s-la  / To check ownerfgroup of startup files ¥





images/00440.jpg
[PADDR=192.168.1.13
NETMASK=255 255.255.0
NETWORK=192.168.1.0
BROADCAST=192.168.1.255
ONBOOT=yes






images/00682.jpg
System

Paths to startup scripts

Ubuntu

SUSE
Red Hat
Solaris
HP-UX
AIX

Jetc/init.d/nfs-kernel-server
/etc/init.d/nfs-common

Jetc/init.d/nfsserver®
Jetc/rc.d/init.d/nfs
Jetc/init.d/nfs.server
Isbin/init.d/nfs.server
Jetc/rc.nfs

2. febcTimit.dfnls mounts NS dient fllesystemns.





images/00439.jpg
NETWORKING_[PV6=no
HOSTNAME=redhat toadranch.com
DOMAINNAME=toadranch.com  ### optional
S ATEWAY=197 168 1 254





images/00681.jpg
[ben@nis-client]$ id ben
uid=1000{ben) gid=1000(ben) groups=1000(ben)

[ben@nfs-client)$ id john
id=1010(john) gid=1010(ohn) groups=1010(ohn)

[ben@nfs-client]$ ls -1d ben
drwxr-xrx 2 john root 409 May 27 1642 ben

[ben@nfs-client]$ touch ben/file
[ben@nfs-client]$ 1s -1 ben/file
w-rw-r-- 1 john nfsnobody 0  May 27 17:07 ben/file






images/00678.jpg





images/00204.jpg





images/00446.jpg
ubuntu$ cd /proc/sys/net/ipvd; Is

conf/
cnp_echo ignore all
icmp_echo_jgnore_broadcasts

crnp_ratelimit
cmp_ratemask
jgmp_max_mermberships
igmp_max_msf
net_peer_gc_maxtime
inet_peer_g_mintime
inet_peer_maxttl
inet_peer_minttl
inet_peer_threshold
p_default_trl
ip_dynaddr

ip_forward

neigh/
route/

-F

tep._congestion_control
tep_dma_copybreak
top_dsack

tep_ecn

tep_fack
tep_fin_timeout
tep_fito
tep_frto_response
tep_keepalive_intvl
tep_keepalive_probes
tep_keepalive_time
tep_low_latency
top_max_orphans
tep_max_ssthresh
tcp_max_syn_backlog
top_max_tw_buckets
tepmem
tep_moderate._revbuf
tep ity peobie:

tcp_no_metrics_save
tcp_orphan_retries
tcp_reordering
tep_retrans_collapse
tep_retries]
tep_retries2
teprfc13zy
tcp_rmem

tep_sack

tep_stdurg
tep_synack _retries
tep_syncookies
tep_syn_retries
tep_timestamps

udp_mem
udp_rmern_min
udp_wmem_min





images/00203.jpg





images/00445.jpg
MERIBIUE SEADES FIn0
Settings for etho.

Supported ports: [ TP Mil |

Supported link modes:  10baseT/Half  10baseT/Full
100BaseT/Half  100baseT/Full
1000baseT/Half  1000baseT/Full

Supports auto-negotiation: Yes

Advertised link modes:  10baseT/Half  10baseT/Full
100baseT/Half  100baseT/Full
1000baseT/Half  1000baseT/Full

Advertised auto-negotiation: Yes

Speed: 1000Mb/s

Duplex: Full

Port: Ml

PHYAD, 0

Transceiver. internal

Auto-negotiation: on

Supports Wake-on: purmbg

Wake-on: g

Current message level: 0x00000033 (51)

Link detected: yes.





images/00687.jpg
Lists the hosts that can mount the filesystem.
Exports read-only to everyone; no clients may write on the filesystem.
Exports for eading and wiiting to everyone (the default)

Exports read-mostly. The st enumerates the hosts allowed to mount
for writing; al others must mount read-only.

1oot=list  Lists hosts that can access the filesystem as root. Without this option,
oot access from a client is equivalent to access by the user nobody.
vers=n Exports the directory to clients using version n. Valid values are 2,3,

and 4. Specifying either 2 or 3 includes both 2and 3.

sec=flavor  Specifies a ist of security methods for the exported directory. Values
include s (UNIX authentication), dh (DES), kb5 (Kerberos authenti-
aation), krbsi Kerberos authentication and integrity), krbsp (Ker-
beros authentication, ntegrity, and privacy), and nione (anonymous
access, not recommended)

anon=r Specifies the UID to which remote roots are mapped. Defaults to -2
(nobody). Setting this value to -1 denies root access entirely.






images/00206.jpg
b sudo pvcreate /dev/rdisk/disk4
: sudo vgereate ugnaine /devidiskidiska
5 vedisplay gname

Free BE freespace

$ sudo Ivereate -1 freespace -n uolname ugname
$ sudo mkfs /dev/ugrane/uolnare

$ sudo mkdir mouripoint

§ ol i fatcHivtal;

# Prepare for use w/LVM
# Create volume group
# View VG stats

# Note this value

# Create logical volume

# Create filesystem
# Create mount point dir
# Set mounting options





images/00205.jpg
$ sudo pvcreate /dev/sdcl
§ sudo vgereate ugname /devisdct

§ sudo Ivereate -| 100%FREE -n volrarre ugrame
§ sudo mkfs -t extd /dev/ugname/ucinarne.

§ sudo mkdir mounipoint

$ sudo vi /etc/fstab

& Prepare e eg MyLVIE
# Create volume group

# Create logical volume

# Create flesystem

# Create mount point

# Set mount opts, mntpoint





images/00447.jpg
ubuntu$ cd coni/default; 1s -F

accept_redirects disable_policy
accept_source route  disable_xfrm
arp_accept force._igmp_version
arp_announce forwarding
arp_filter log_martians

arp ignore me_forwarding

hekatss Zulay tuedii i

‘promote_secondaries
proxy_arp

p_flter
secure_redirects
send_redirects
shared_media

g





images/00200.jpg
label:
attribute = value
next-attribute = value

next-label:
P N





images/00442.jpg
583 S OMELN
BOOTPROTO=dhep
ONBOOT=yes





images/00684.jpg
share -F nis -0 rw=monk.atrust.com:leopard.atrust.com,root=monk.atrust.com
/home
shiiye Fnbi -5

e REr U eots o ARt chn A e Than





images/00199.jpg
System Cmds  Configuration files Comments
Ubuntu  useradd /etc/login.defs
Jetc/defaultjuseradd
adduser /etc/adduser.conf Friendier Perl version
SUSE  useradd fetcllogin.defs
Jetc/defaultjuseradd
Jetc/default/passwd
Just/sbin/useradd.local Forlocal customizations
Just/sbin/userdel.Jocal For local customizations
Just/sbinjuserdel-preocal For local customizations
Just/sbinjuserdel-postlocal _For local customizations
RedHat useradd /etc/login.defs
Jetc/defaultjuseradd
Solaris  useradd fetc/default/(login,passwd)
Jetc/security/policy.conf
HP-UX  useradd /etc/defaultjuseradd
Jetc/default/security
smh GUItool, also called sam
AKX useradd fetc/security/user
Jetc/security/login.cfg
Jetd/security/mkuser.defaut”
mkuser Called by useradd
chuser Called by usermod
rmuser Called by userdel
M GUItool

a. This file i in Aust/lib/security on older AIX systems.





images/00441.jpg
PADDR=127.0.0.1

BROADCAST=127.255 255,255
ONBOOT=yes
NAME=loopback





images/00683.jpg
System  Exportsinfoin _ What to do after changing it
Linux  fetc/exports  Run /ust/shin/exportfs -a
Solaris  /etc/dfs/dfstab  Run shareall

HP-UX  fetc/dfs/dfstab  Run shareall

AX Jetc/exports Run fust/shin/exportfs-a






images/00202.jpg
$ sudo useradd -c "David Hilbert" -d /home/math/hilbert -g faculty -G
‘famous -2 - fbinftesh hilbert





images/00444.jpg
route add -net 130.22.204,48 netmask 255.232.252.248 gw 130.22,.202.49 et
route add -net 192.38.8.0 netmask 255.255.255.224 gw 192.38.8.129 ethl





images/00686.jpg
Type Syntax Meaning

Hostname  hostname  Individual hosts (must be fully qualified)
Netgroup  groupname  NIS netgroups (not frequently used)

DNS domains domain.com  Any host within the domain

IPnetworks  @netname _ Network names as defined in /etc/networks’

2. CIDR-style specifications are also accepted: for example, @128.138.92.128/25.





images/00201.jpg
Option Type Meaning
accountlocked  Boolean  Prevents login f true

admin Boolean  Gives admin privleges ftrue

autht Method st Primary authentication method

auth? Method st Secondary authentication method
dictionlist Filenames  Dictionaries that must exclude passwords
expires Date Expiration date of the user account
histexpire Weeks Period when a user cannot reuse a pwdt
histsize Number  #of previous pwds that can't be reused
login Boolean  Can log in? Good for logins ke bin
loginretries Number  #oflogin ries before account s locked
logintimes Time range  Limits when the user can log in
maxexpired Weeks Grace period or expired pwds
‘maxrepeats Number  #of times a cheracter can appear in pwd
minage, maxage  Weeks Minimum and maximum age of a pwel
minalpha Number  Minimum # of alpha characters in pwd
‘mindiff Chars #ofold pwd chars allowed in new pwd
minlen Number  Minimum length of pwd (don't st to 0)
minother Number  Minimum # of nonalpha character in pwd
puwdchecks Filenames  Functions to call o check for safe pwis
pudwamtime  Days Grace period warning user to change pwd
rlogin Boolean  Can user rlogin or telnet o this account?
su Boolean  Can other users su to this account?

ty Devicellst  Terminals on which this user can log in
umask Octal Default permissions for user-created files






images/00443.jpg
FT00 et TR0 SAAR NEtany 755,233 7. 405 B 131255 2089
eth1 net 192.38.8.0 netmask 255.255.255.224 gw 102.38.8129





images/00685.jpg
Option

Description

o
ro=list
w
rw=list
root=ist

Exports read-only to the entire world (not recommended)

Exports read-only with access only by listed hosts

Exports read-rite to the entire world (not recommended)

Exports read-wirite with access only by listed hosts

Lists hosts permitted to access this filesystem as root; otherwise, root
access from a client s equivalent to access by "nobody” (usually UID-2)
Specifies the UID to which root is remapped; the defaultis “nobody”
Forbids clients to mount subdirectories of the exported directory
Prevents setuid and setgid files from being created through NFS






images/00669.jpg
HHE SAtS DUh +he (LS 190200)
++ Incoming Queries ++

2650862 A

9105 NS

104378 SOA

5744 PTR

246258 MX

3208092 TXT

++ Name Server Statistics ++
10028960 1Pv4 requests received

333015 [PV6 requests received

5896039 requests with EDNS(0) received
92403 TCP requests received

4363730 queries resulted in successful answer
766435 queries resulted in nxrset

599672 queries resulted in NXDOMAIN





images/00668.jpg
Command _Function

start Starts the nsd server

stop Stops the nsd server (sends SIGTERM)

reload  Reloads the compiled zone database

rebuild  Rebuilds the zone database with zonec

restart  Restarts nsd; thatis, stops it and then starts it

running  Checks whether nsd i running; no output means alls well
update Tries to update allslave zones

notify  Sends notify messages toallslave servers

patch

Merges zone transfer changes (database) back to zone files text)






images/00429.jpg
¥ ey Sf. O IR0 EINAL RLTAEY TR Le
W 132.236.212.6 etht
# route add default gw 132.236.227.1 eth0





images/00671.jpg
$ dig @e.gtld-servers.net w3w3.com ns
 ANSWER SECTION:

wiwd.com. 172800 IN NS nsO.nameservices.net
Caia i ofamGne TRE RIS st et g e





images/00428.jpg
redhats netstat -m
ernel IF routing table

Destination
132.236.227.0
default
132.236212.0
132.236.220.64
177001

Genmask
255.255.255.0
0000
255.295.255.192
255.255.255.192
565 955 955 JET

Gateway
13223622793
132236.227.1
1322362121
1322362126
127001

"

e

UG

MSS
1500
1500
1500
1500
3584

lface
etho
etho
eth1
eth1





images/00670.jpg
Jul 19 14:37:50 nubark namec{757): lame server resolving ‘'w3w3.com' (in
“wiw3.com'?): 216.117.131.52#53





images/00435.jpg
auto lo etn®

face 1o inet loopback

face eth inet static
address 192.168.1.102
netmask 255.255.255.0
gateway 192.168.1.254





images/00677.jpg
File

rectory

Description

resolv.conf
nameds
named9
named
named.conf
netsve.conf
irs.conf
NSORDER

letc
Iusrisbin
Iusrisbin
Iusrisbin
letc

letc

letc
environment

Resolvr lbrary configuration file
BIND 8 name server daemon

BIND 9 name server daemon

Link to named8 [default] or named9
Configuration fle for name server
Service switch file

Anotherservice switch file

Service switch environment variable






images/00434.jpg
File What's set there

hostname Hostname
network/interfaces P address, netmask, default route






images/00676.jpg
File Directory _Description
resolv.conf Jetc Resolver library configuration file
named Justfsbin  Nameserver daemon

Iwresd Justlsbin  Lightweight resolver daemon
named-checkeonf  /usrisbin  Checks the confiy fle syntax
named-checkzone /usrisbin  Checks zone file syntax
named.conf Jetc/namedb  Configuration fle for name server
nsswitch.conf letc Service switch file






images/00437.jpg
HOUTITEID=staur.  #SEEE 1 SOpHel UL QUSRI TIMIL 1 8. VErtOee,
IPADDR=192.168.1.4/24' # The /2¢ defines the NETWORK and NETMASK vars
NAME='AMD PCnet - Fast 79C371" # Used to start and stop the interface.
STARTMODE=auto'  # Start automatically at boot

USERCONTROL=no'  # Disable control through kinternet/cinternet GUI






images/00436.jpg
File What's set there

ifclg-interface  Hostname, IP address, netmask, and more.
ifroute-interface ~ Interface-specific oute definitions

routes Default oute and static routes for allinterfaces
config Lots of less commonly used network variables






images/00431.jpg
122004 0catRer:
1921082148 lollipop atrust.com lllipop loghost
19210821254  chimchim-gw atrust.com chimchim.gw
192108211  nsatrust.com ns

192275335 licenses atrust com license-server





images/00673.jpg
$ doc w3w3.com
Doc-223: doc w3w3.com
Doc-2.23: Starting test of wiw3.com. parent is com
Doc-2.23: Test date - Tue Jul 21 21:15:11 MDT 2009
Summary:
ERRORS found for w3w3.com. {count: 1)
WARNINGS issued for wawa.com. (count: 1)
Done testing w3w3.com. Tue Jul 21 21:15:21 MDT 2009






images/00430.jpg
# global options

option domain-name “synack net’
option domain-name servers gw synack net;
option subnet-mask 255.255.255.0;
default-lease-time 600;

max-lease-time 7200,

subnet 192,168 1.0 netmask 255.255 255.0 (
Yange 192168151 1921681 60;
option broadcast-address 192.168.1255;
option routers gw synacknet

)

subnet 209.180.251.0 netmask 255.25.255.0 |

1

host gandalf (
hardware ethernet 0800.07:12:34:56,
fixed-address gandalfsynack net;





images/00672.jpg
$ dig @nsO.nameservices.net w3w3.com ns
+ ANSWER SECTION

wiwicom. 14400 IN NS nsonameservices.net.
wiwicom. 14400 IN NS nslnameservices.net

§ dig @ns1.nameservices.net w3w3.com ns
 QUESTION SECTION:
wiwicom. IN NS

AUTHORITY SECTION:
com. 92152 IN NS M.GTLD-SERVERS.NET
com. 92152 IN NS LGTLD-SERVERS.NET.
oy 92152 IN NS E GTLD-SERVERS NET.






images/00433.jpg
search cs.colorado.edu colorado.edu
nameserver 128.138242.1
nameserver 128138 243,151

S fieaae e AN RGO





images/00675.jpg
File Directory _Description
resolv.conf Jetc Resolver library configuration file
named Justisbin  Name server daemon
named-checkconf  /ust/sbin  Checks configuration file syntax
named-checkzone /ustisbin  Checks zone file syntax
‘named.conf Jetc Configuration file for name server
nsswitch.conf Jetc Service switch file






images/00432.jpg
solaris$ ifconfig €1000g0

©1000g0: lags=1000843<UUP,BROADCAST RUNNING MULTICAST,[Pv4> mtu 1500
index 2 inet 192.168.10.10 netmask ffffFf00 broadcast 192.168.10.255

redhats ifconfig eth0

eth0 Link encap:Ethernet HWaddr 00:02:B3:19:C8:86
inet addr192.1681.13 Bcast192.168.1255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:206983 errors:0 dropped:0 overruns0 frame:0
TX packets:218292 errors0 dropped:0 overruns.0 carrier0
collisions 0 txqueuelen:100
Interrupt:7 Base address:0xef00





images/00674.jpg
Directory

Description

resolv.conf
named, lwres
Iwresd
named.conf

named-checkconf
named-checkzone
namedGetForwarders
namedSetForwarders
nsswitch.conf

Jetc
Iustisbin
Iusrisbin

letc
letc/bind

Iustisbin
Iustisbin
Iustisbin
Iusrisbin
Jete

Resolver library configuration file
Name server daemon

Lightweight resolver

named config file (RHEL and SUSE)
named config file (Ubuntu)

Checks the syntax of the config fle
Checks the syntax of zone files

Red Hat only, for Network Manager tool
Red Hat only, for Network Manager tool
Service switch file






images/00427.jpg
IPcass From  To CIDR range

CassA 10000 10255255255 1000.0/8
ClassB 1721600 17231255255  172.1600/12
ClassC 192.1680.0 192168255255 192.168.0.0/16






images/00658.jpg
$ drill -5 -k ksk.keyfile example.net SOA
DNSSEC Trust tree:
example.net. (SOA)
|-—example.net. (DNSKEY keytag: 17000)
example net. (DNSKEY keytag;: 49656)
example net. (DS keytag: 49656)

|--net. (DNSKEY keytag: 6297)
-net. (DNSKEY keytag: 13467)
-net. (DS keytag: 13467)

-~ (DNSKEY keytag: 63380)
(DNSKEY keytag: 63276)

< Chase successful





images/00418.jpg
APPLICATION
LaveR

TRANSPORT
e

NETWORK
LaveR

N
e

PHYSICAL
Laven

arp | | SSH, FTR HTTP DN, Halo 3 traceroute
13 13
TP uop ._I
K13 13
P [$] 1cmp
K13
ARP, device drivers
13

Copper, optical fiber, radio waves






images/00660.jpg
logging {
channel_def;
channel_def:

category category_name |
‘channel name;
channel_name;





images/00659.jpg
Term What it means

channel A place where messages can go: syslog, il or /dev/null*
category A class of messages that named can generate;for example, messages
‘about dynamic updates or messages about answering querles.

module  The name of the source module that generates a message

facilty  Asyslog faciity name. DNS does not have ts own specifc facilty, but
you have your pick of al the standard ones.

severity  The "badness” of an error message; what syslog refers to as a priority

£ ibialn & e i AN





images/00424.jpg
IP address Netmask Network Broadcast

128138243.100/16  255.255.00 12813800 12813825555
128138243.10024 2552552550 1281382430 128138243255
128.138243.100/26  255.255.255.192 128.138.243.64 128.138.243.127






images/00666.jpg
logging {

channel default_log ( # Default channel, to a file
file “log/named log versions 3 size 10m;
print-time yes;
print-category yes:
print-severity yes;
severity info;

k

channel xfer-log [ # Zone transfers channel, to a fil
file “log/xfer log” versions 3 size 10m;
print-category yes,
print-severity yes;
print-time yes;
severity info;

k

channel dnssec-log [ # DNSSEC channel, to a file
file log/dnssec log” versions 3 size 1M;
severity debug 1
print-severity yes;
print-time yes;

i

category default [ default log; default_debug:

category dnssec [ dnssec-log }

category xfer-in | xfer-log };

category xfer-out [ xfer-log; |

category notify [ xfer-log:






images/00423.jpg
128.138.243.0/26
128.138.243.64126

128.138.243.128126
128.138.243.192/26

{0 In decimal is 00000000 in binary)
(64 in decimal is 01000000 in binary)

(128 in decimal is 10000000 in binary)
(192 in decimal is 11000000 in binary)





images/00665.jpg
% sudo rndc stop
& suda hassloblningisig:






images/00426.jpg
Region covered

ARIN arinnet  North America, partof the Caribbean

APNIC  apnicnet  Asia/Pacific region, including Australia and New Zealand
ARNIC affinicnet Afica

LACNIC  lacnicnet  Central and South America, part of the Caribbean
RIPENCC ripenet  Europe and surounding areas






images/00425.jpg
Address: 24.8.175.65 00011000.00001000.10101111 .01000101
Netmask: 255.255.255.0 = 24 11111111.11111111.11111111 00000000

Wildcard: 0.0.0.255 00000000.00000000.00000000 11111111
>

Network: 2481750/24  00011000.00001000.10101111 00000000 (Class A)
Broadcast: 24.8.175.255 00011000.00001000.10101111 11111111

HostMin:  24.8.175.1 00011000.00001000,10101111 00000001

HostMax: 24 8 175254 00011000.00001000.10101111 11111110





images/00667.jpg
Command Function

dumpdb Dumps the DN database to named_dump.db
flush [view] Flushes allcaches or those for a specified view
flushname name [view]  Flushes the specified name from the server's cache
freeze zone [class[viewl]  Suspends updates to a dynamic zone

thaw zone class view]] Resumes updates to a dynamic zone

halt Halts named without writing pending updates
querylog Toggles tracing of incoming queries

notify zone[class [view]]  Resends notification messages for zone

notrace Turns off debugging

reconfi Reloads the config file and loads any new zones
recursing Dumps queries currently recursing, named.recursing
refresh zone [clss [view]]  Schedules maintenance for a zone

reload Reloads named.conf and zone files

reload zone class [view]]  Reloads only the specified zone orview

restart” Restarts the server

vetransfer zone [class [view]] Recopies the data for zone from the master server
stats Dumps satistics to named.stats

status Displays the current status of the running named
stop Saves pending updates and then stops named
trace Increments the debug level by 1

trace level Changes the debug level to the value fevel
validation newstate Enables/disables DNSSEC validation on the fly

2. The clss argument hre i the same asfor esource record,typcally I for Intrnet.
I ok Yo i e 1 BN .78 Bt e ik b oo et Formimars-tmncit b it





images/00420.jpg
Network type Maximum transfer unit

Ethernet 1,500 bytes (1,492 with 8022 framing)”
FDDI 4470 bytes (4,352 for IP/FDDI)

Token fing Configurable®

PPP modem link Configurable, often 512 or 576 bytes

Point-to-point WAN links (T1,T3)_Configurable, often 1,500 or 4,500 bytes

s See page 541 for some commens on Jumba” Ehemet packets.
b. Common values are 552: 1,064; 2,088: 4,508: and 8.232. Sometimes 1,500 to match Ethemet.





images/00662.jpg
Channelname  What it does

default_sy

log.~ Sends tosyslog,facilty daemon, severity info
default_debug  Logs to the file named.run, severty setto dynamic

default_stderr  Sends to standard error of the named process, severity info
null Discards all messages






images/00419.jpg
Application data

100 bytes

UDP packet (108 bytes)
194 packet (128 bytes)
Ethernet fame (146 bytcs)






images/00661.jpg
ERIATEL CRARMENOME |
file path [versions numvers | unlirited] [size sizespec].

syslog faclity;
severity severity;

print-category yes | no;
print-severity yes | no;
print-time yes | no;






images/00422.jpg
1Paddress 5 5 5
Decimal netmask 25 . 25 . 255 .
Hexnetmask TN\ . AANA . FETO\ . AT
Binarynetmask 1111 1111 . 1111 1111 . 1111 1111 . 1100 0000






images/00664.jpg
Category Whatitincludes

client Client requests

config Configuration file parsing and processing

database Messages about database operations

default Defaultfor categories without specific logging options
delegation-only  Queries forced to NXDOMAIN by delegation-only zones
dispatch Dispatching of incoming packets to server modules.
dnssec DNSSEC messages

edns-disabled  Info about broken servers

general Catchallfor unlassfied messages

lame servers  Servers that are supposed to be serving a zone, butaren't*
network Network operations

notify Messages about the “zone changed" notification protocol
queries Ashort log message for every query the server receives ()
resolver DNS resolution, e.g, recursive lookups for clients
security Approved/unapproved requests

unmatched Queries named cannot classify (bad class, no view)
update Messages about dynamic updates

update-security  Approval or denial of update requests

xferin Zone transfers that the server s receiving

xferout Zone transfers that the server is sending

&, Eilser i Baser 2 o e child 23ne Gould e B TR0l KnioassiBle v till withicut Bbestiouig.





images/00421.jpg
Class_1%byte’ Format _Comments
A 1127 NHHH  Very early networks, or reserved for DoD.
B 128191 NNHH  Lagesites,usually subneted, were hard to get
€ 192223 NNNH  Easytoget,often obtained insets
D 24239 - Multicast addresses, not permanently assigned
E 240255 - Experimental addresses

2 The value i special andis not used as th first byteofregulr [P aresses 127 i reserved for

“thislodipliaick addsies





images/00663.jpg
logging
category default { default_syslog; default_debug; )






images/00417.jpg





images/00416.jpg





images/00889.jpg
Option Meth* Dfit_Meaning when turned on

RhostsAuthentication A No Obeys ~/.shosts,/etc/shosts.equiv, etc.
RhostsRSAAuthentication B Yes ~Allows ~.shosts et al. but equires host key
IgnoreRhosts. AB No Ignoresthe ~L.rhosts and hosts.equiv files”
IgnoreRootRhosts AB No' Prevents rhosts/shosts authentication for root
RSAAuthentication € Yes Allows per-user public key authentication

PasswordAuthentication D Yes _Allows use of normal login password

2. The authenticaion methods to which this varable i relevant
b.But continues to honor ~.shosts an shosts.equiv
= Derfits th the Galia g Aoy





images/00888.jpg
SELINLIE=sniorcuy
SELINUXTYPE-targeted





images/00649.jpg
example.com. 3600 IN DS 23301 1 1 5bd844108f8d8fea341b3bc2{2135.
example.com. 3600 IN DS 00682 1 1 0dbf80886b7168633ff8273255de09.





images/00891.jpg
solarisy sship solaris.booklab.atrust.com
Solaris booklabatrust.com IN SSHEP 1 1 84a26278ee713a376a78110f1adbd
olaris booklab atrust com IN SSHEP 2 1 7cf72d02e3d3fa047712beS6fd0e0asi.






images/00648.jpg
example.com.  IN DNSKEY 256 3 5 AwEAAex/tHebOwSva8sPpnRe4RX8Mgl.





images/00890.jpg
RhostsAuthentication no
RhostsRSAAuthentication no
RSAAuthentication yes

PasswordAuthentication yes





images/00413.jpg
ib/udev/vol_id -t %N', RESULT:
Alat Tdevmik hntit it floalids






images/00655.jpg
example.com.dlv.iscorg. 3600 IN DLV 25069 1 1 Odbi80886b716863de09.





images/00897.jpg
client$ telnet locathost 23
Trying 127,001

Connected to localhost (127.0.0.).

Escape character is '’

Red Hat Enterprise Linux WS release 4 (Nahant Update 2)
ernel 26 9-SEL on an 685

login:






images/00412.jpg
ATTRS{model}=="USB2FlashStorage’, KERNEL=="sd[a-z]1", SYMLINK+="ate-
flasho%n"





images/00654.jpg
example.com. 3600 IN DS 25069 1 1 Odbf80886b716863de09,





images/00896.jpg
PEIL = JefsamnelstinneL pe.
chroot = /varfrun/stunnel/
pid = /stunnel pid

setuid = nobody
setgid = nobody

fearflog/stunnel log

yes
telnets]

sccept
connect = server.example. com:992





images/00415.jpg
ubuntus Is -1 /dev/ate®
Irwxrwaxrvix 1 oot oot 4 2009-08-09 21:22 /dev/ate-flash1 > sdb1

ubuntu$ mount | grep ate
Kol oo Funtiatesfaeil trpe vk frwh





images/00657.jpg
channel dnssec-log {
file */var/log/named/dnsseclog” versions 4 size 10m
print-time yes ;
print-category yes ;
print-severity yes;
severity debug 3;

) :

category dnssec { dnssec-log: )





images/00414.jpg
ALTION==Temove:, ATTRNnDde::
RUN+="/bin/umount -1 /mnt/ate-flash%n"

ACTION=="remove", ATTRS[model|-="USB2FlashStorage, KERNEL=="sd[a-2]1",
RUN+="/bin/rmdir /mnt/ate-flash%rs






images/00656.jpg
trusted-keys {
divisc.com 257 3 5 "hex mumbo jumbo of the key goes here";
div.isc.com 257 3 5 "hex mumbo jumbo of another key goes here”





images/00409.jpg
ubuntu$ lsusb

Bus 001 Device 007: ID 1307:0163 Transcend, Inc. USB Flash Drive
Bus 001 Device 001: D 1d6b:0002 Linux Foundation 2.0 root hub
Bus 002 Device 001 1D 1d6b-0001 Linux Foundation 11 oot hub





images/00651.jpg
$ sudo ldns-signzone example.com Kexample.com.+005+00682
Kexample.com.+005+23301





images/00893.jpg
=
=
=

Internet Enterprise i)
side side






images/00408.jpg
Match key Function

ACTION Matches the event type, e.g, add or remove

DEVPATH Matches a specific device path

KERNEL* Matches the kernel's name for the device

SUBSYSTEM* Matches a specific subsystem

DRIVER" Matches the driver used by a device

ATTR{filena Matches a device'ssysfs values; the flename s a leaf i the
sysfs tree that corresponds to a specific attribute

ENV{key} Matches the value of an environment variable

TEST{omask]  Tests whetherafile exists; the omask i optional

PROGRAM Runs an external command; matches if the return code is 0

RESULT Matches the output of the last cal through PROGRAM

o A okl viarsion s alko avalliible: Msarches i T device suthite fiatch thavalie:





images/00650.jpg
$ sudo dnssec-signzone -0 example.com -N increment
-k Kexample.com+005+00682 example.com Kexample.com-+005+23301





images/00892.jpg
solaris$ dig solaris.booklab.atrust.com. IN SSHFP | grep SSHFP
<<>> DIG 9.5.1-P2 <<>> solaris booklab atrust com. IN SSHFP
solaris booklab.atrust.com. IN SSHFP

Solaris booklabatrust.com. 38400 IN SSHFP 1 194a26278¢e
solaris booklab. atrust com. 38400 IN SSHEP 2 1 7of72d02e%

23776a78110f.
047717beSEf.






images/00411.jpg
ubuntu$ udevadm info -a -p /block/sdb/sdb1l
looking at device '/devices/pci0000:00/0000:00:11.0/0000:02:03.0/usb1/1-1/1-1:
1.0/host30/target30:0:0/30:0:0:0/block/sdb/sdb1';
KERNEL

ATTR[partitio

ATTR(start)
ATTR(size}=="1974208"
ATTR(stat}=" 71 792 18 808 0 0 0
o 0 s sog

Tooking at parent device ‘devices/pci0000:00/0000:00:11.0/0000:02:03.0/usb1/1
1/1-1:1.0/host30/target30:0:0/30:0:0:0/block/sdb"

ATTRS{scsi_level)=
ATTRS|vendor]-="U163
ATTRS{model)=="USB2FlashStorage"






images/00653.jpg
mail-relgy.examplecom.. 376004 631731892
57600 RRSIG A 5 3 57600 20090722234636 (
2009062223463 23301 example com.
Y79)DW YuuXvozeU72GRAFClarzUScLiwoey
OI2TGILIbhSREIKPEYFVRUB7KKVRNGUE Y wk
A2RSKDJSQzRQw==)
3600 NSEC mail-relay? example com. A RRSIG NSEC
3600 RRSIG NSEC 5 3 3600 2090722234636 (
2090622234636 23301 example.com.
42QrXP8VpOChSGPsePrOBMZ twi7eSSWK+40
WNSN84hFOnotymRxZRIZypqWzLIPBZAUJ77R
HPOhLfBDogmZYw-






images/00895.jpg
PEIT = Jefryamel/sTunneL pem

chroot = /var/run/stunnel/
pid = /stunnel pid
setuid = nobody

etgid = nobody

debug

fearflog/stunnel log
no

telnets]
sccept
coinsct






images/00410.jpg
Aug 9 13:30:03 ubuntu kernel: 42653.253554] scsl 5:0:0:0: Direct-Access
Utl63  USB2FlashStorage 0.00 PQ: 0 ANSI: 2

Aug 9 19:50:03 ubuntu kernel: [42689.292226] sd
byte hardware sectors: (101 GB/963 MiB)

0: [sdb] 1974271 512-

Aug 9 19:50:03 ubuntu kerel: [42689.304749] sd 8:0:0:0: [sdb] 1974271 512-
byte hardware sectors: (1.01 GB/963 MiB)

Aug 9 19:5003 ubuntu kemel: [42689.307182] sdb: sdb1

Aug 9 19:50:03 ubuntu kernel: [42689.427785] sd 8:0:0:0: [sdb] Attached S
removable disk

Aug 9 19:50:03 ubuntu kernel: [42689.428405] sd 8:0:0:0: Attached scsi generic
563 type 0

1





images/00652.jpg
mail-relay A 6317318972





images/00894.jpg
RETYer3 SIKID OPENNEL Ten) cue -X40 -2y D65 -hodas; -out Suanel.peny
~keyout stunnel pem
Generating 2 1024 bit RSA private key

writing new private key to ‘stunnel pem|

You ate about to be asked to enter information that will be incorporated
into your centificate request,
What you are about to enter is what is called a Distinguished Name or a DN
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you er e field will be left blank
Country Name (2 letter code) [GB-US

ne) [Berkshire] Colorado
Locality Name (eg, city) [Newbury|Boulder
Organization Name (eg, company) [My Company Ltd]:Booklab, Inc.
Organizational Unit Name (eg, section) [}
Common Name (eg, your name or server's hostnae) [J:server.example.com
Email Address [|:






images/00406.jpg
Directory

Description

block
bus
dlass.

devices
firmware

Kernel
module
power

Information about block devices such as hard disks
Buses known to the kernel: PCIE, SCSI, USB, and others

Atree organized by functional types of devices, e.g, sound and
graphic cards, input devices, and network interfaces

Device information split between character and block devices
An ancestrally correct representation of alldiscovered devices
Interfaces to platform-specific subsystems such as ACPI
Adirectory for some, but not al filesystems known to the kemel
Kernelinternals sich as cache and virtual memory status
Dynamic modules loaded by the kemel

Afew details about the system's power state; mostly unused






images/00405.jpg
solaris$ modinfo

i
1

Loadaddr
1072000
11086000
082000
11084000
095000
10bB000
1084200
108dc00
££08c000

Size
3ba0
1340
1a56
43¢

Info

1

1

15248 2

2060
170
264
968

1
57
62
59

Rev

ModuleName

specfs (filesystem for specfs)
swapgeneric (ro0/swap config)
TS (time sharing sched class)
TS_DPTBL (Timesharing dispatch)
ufs (filesystem for ufs)

rootex (sunde oot nexus)
options (options driver)

dma (Direct Memory Access)
sbus (SBus nexus driver)





images/00647.jpg
Kexample.com. +005+23301.key
Kexample.com. +005+23301.private
Kexample.com.+005+23301.ds

Kexample.com. +005+00682.key
Kexample.com. +005+00682.private
Kexample.com.+005+00682.ds

# Public zone-sigming key
# Private zone-signing key
# DS record for ZSK (NSD only)

# Public key-signing key
# Private key-signing key
# DS record for KSK (NSD only)





images/00407.jpg
linux$ udevadm info -a -n sdb

looking at device '/devices/pci0000:00/0000:00:11.0/0000:02:03.0/usb1/1-1/1-1
1.0/host6/target6:0:0/6:0:0:0/block/sdb':
KERNEL=="sdb"

DRIVER=="
ATTR[range}
ATTR{ext_range}
ATTR{removable}==
ATTR{ro]=="0"

ATTR{capability)
ATTR(stat): 71 98 1561 860 1 0 1
12 o s 872






images/00878.jpg
Mty omap AT sacuve baokish.stet com.

Starting Nmap 420 { hitpy/insecure.org ) at 2009-11-01 1242 MST
interesting ports on secure booklab atrust com (192.168.20.35)

Not shown: 1691 closed ports

PORT  STATE SERVICE

25/t open  smip

sty open  http

Nmap finished: 1 IP address (1 host up) scanned in 0,143 seconds





images/00638.jpg
Frivate-fey-tommat: 1.3
Algorithrm: 157 (HMAC_MDS)
Key: jxopbeb+aPc71IMm2vcIRIs






images/00880.jpg
3 sudo ./john /etc/shadow
Loaded 25 password hashes with 25 differen
password  (jsmith)
badpass  (tjones)

salts (FreeBSD MDS [32/32)





images/00879.jpg
ubuntu$ sudo nmap -sV -0 secure.booklab.atrust.com

Starting Nmap 420 ( hitpy/insecure org ) at 2009-11-01 12:44 MST
interesting ports on secure booklabatrust.com (192.168.20.35)

Not shown: 1681 closed ports

PORT  STATE SERVICE VERSION

25/tcp  open  smip  Postfix smipd

S0/tcp open  htp  lighttpd 1413

Device type: general purpose

Running: Linux 24 X125 X|2.6X

05 details: Linux 2616 - 26,24

Nmap finished: 1 IP address {1 host up) scanned in 8095 seconds





images/00402.jpg





images/00644.jpg
options {
dsnsecenable yes:
dnssec-validation yes





images/00886.jpg
* OSSEC HIDS v2.3 Agent manager.
* The following options are available:

(mport key from the server ().
(Quit.
Choose your action: 1 or @





images/00401.jpg
Command

Domain

Examples of things you can configure

ioo

schedo

no

nfso

raso

Virtual memory
Input/Output

Process scheduling

Network

NFS

Reliabilty

Minimum rumber offree pages
Asynchronous /0 behavior

JFS2 configuraion

Process time slices and prorites
Virtual process management

1P forwarding

TCP and UDP socket bulfer sizes
Packet time-to-ive values

UTF8 support

Delegation support

Maximum number of NFS connections
Only a few tunables, none of which are
particulaly valuable to administrators






images/00643.jpg
options {
dsnsec-enable yes
|





images/00885.jpg
fydlatie agenis:
ID: 001, Name: linuxclient1, IP: 192.168.743

Provide the ID of the agent to extract the key (or \q' to quit): 001

Agent key information for ‘001" is:

MDAYIGRpbnV4Y 2KpZWSOMSAXO TIUMTY4LjcOLMEZ]k4YjMy Y2IkMjgsMWIIMT





images/00404.jpg
#This file was generated by: modprobe -
path[pemcial=/lib/modules/preferred
path|pemcial-/lib/modules/default
path[pemeial=/lib/modules/2.6.6
path[misc|=/lib/modules/2.6.6

# Aliases
alias block-major-1 rd
alias block-major-2 floppy

alias char-major-4 serial
alias char-major-5 serial
alias char-major-6 Ip

alias dos msdos
alias plipo plip

alias ppp0 ppp

options ne 10=x0340 i






images/00646.jpg
5 ldns-keygen -a RSASHA1 -b 1024 example.com
Kexample.com.+005+23301

§ ldns-keygen -a RSASHA1 -b 2048 -k example.com
Kexample.com. +005+00682





images/00403.jpg
redhaty sudo /sbin/lsmod

Module
ipmi_devintf
ipmi_si
ipmi_msghandler
iptable_filter
ip_tables

Size
13064
36648
31848

6721
21441

Used by
2

1

2 ipmi_devintf ipmi_si
o

1 iptable_flter





images/00645.jpg
> dnssec-keygen -a RSASHA1 -b 1024 -n ZONE example.com
Kexample.com.+005+23301
5 dnssec-keygen -a RSASHAL -b 2048 -n ZONE -f KSK example.com
Kexample.com.+005+00682






images/00887.jpg
SESEReCE:
<ignore>/varflog/customapp log</ignore>
</syschecks





images/00398.jpg
solaris§ sudo prtconf

System Configuration: Sun Microsystems  i86pc
Memory size: 580 Megabytes

System Peripherals (Software Nodes):

iB6pc
scsi_vh, instance #0
isa, instance #0
18042, instance #0
keyboard, instance #0
mouse, instance #0
Ip, instance #0 (driver not attached)
asy, instance #0 (driver not attached)
asy, instance #1 (driver not attached)
fdc, instance #0

fd, instance #0 (driver not attached)
it been. instarice $0°





images/00640.jpg
5 dig +short rs.dns-oarc.net txt
rst x1014.15.dns-oarc net.

rst x1202 X1014 15 dns-oarc.net

rst X1382.X1202.x1014.15.dns-oarc net.

'63.231.83.113 DNS reply size limit s at least 1382 bytes’
*63 931 83 113 sent EDNS buffer size 4096"





images/00882.jpg
Subject: OSSEC Notification - courtesy - Alert level 7
Date; Fri, 15 Jan 2010 14:53:04 -0700

From: OSSEC HIDS <ossecm@courtesy atrust, com>
To: <courtesy-admin@atrust.com>

OSSEC HIDS Notification.

2010 Jan 15 145252

Received From; courtesy->syscheck

Rule: 554 fired (level 7) -> "File added to the system.
Portion of the logls)

New file

courtesy/htepd/barkingseal comyhtm/up-content/uploads/2010/01/hbird jpg
added 1o the file system.

END OF NOTIEICATION






images/00639.jpg
SEY INASEE-SENel. |
algorithm hmac-mds ;
secret "shared-key-you-generated”

}:





images/00881.jpg
sshd: 132.168.0.0/255.255.0.0
TR






images/00400.jpg
Variable Type  Default Meaning

maxfiles lim Dynamic 4096 Hard limit on openfiles per process
maxfiles Static 2048 Softlimit on openfiles per process
maxuprc  Dynamic 256 Maximum number of user processes
nproc Dynamic 4200 Maximum number of processes

nflocks Dynamic 4096 Maximum number of file locks

ninode Static 8192 Maximum number of open inodes

npty Sttic 60 Maximum number of PTYs

nstrtel Static 60 Maximum number of telnet session devices
nkihread  Dynamic 8416 Maximum number of kemel threads






images/00642.jpg
RRSIG NS 5 2 57600 20090919182841 {
20090820182841 23301 example.com.
PMKZ76waPVTblguEQNUoiNVIVewHaudp.






images/00884.jpg
* OSSEC HIDS v23 Agent manager.
* The following options are available:
(A)dd an agent (4).
(Ejxtract key for an agent (E).
(Ljist already added agents ().
(®emove an agent [
Quit.
Choose your action: AELR or Q:






images/00399.jpg
solaris§ sudo prtconf -D
System Configuration: Sun Microsystems  i86pc
Memory size: 580 Megabytes

System Peripherals (Software Nodes)

i86pc (driver name: rootnex)
sesi_vhci, instance #0 (driver name: sesi_vhi)
isa, instance #0 (driver name: isa)

18042, instance #0 (driver name: i8042)
keyboard, instance #0 (driver name: kb8042)
mouse, instance #0 (driver name: mouse8042

Ip, instance #0 (driver name: ecpp)

asy, instance 40 (driver name: asy)

asy, instance #1 (driver name: asy)

fdc, instance #0 (driver name: fdc)

d, instance #0 (driver name: fd)
pit_beep, instance #0 (driver name: pit_beep)





images/00641.jpg
example.com. IN DS 682 5 1 12898DCFIF7AD20DBCE159E7.
example.com.dlviscorg.  IN DLV 682 5 1 12898DCFOF7AD20DBCE159E7.





images/00883.jpg
¥ wget http://ossec.net/files/ossec-hids-lntest.tar.g=
§ tar -zxvf ossec-hids-latest.tar.gz

§ cd ossec-hids*

§ sudo finstall.sh





images/00637.jpg
acl ourslaves {

128.138.242.1 ; J/ anchor
:
acl measurements |

198.32.4.0/24 ; J/ Bill manning’s measurements, v4 address

2001:478:6:0:/48 ;  // Bill manning’s measurements, v6 address
} -





images/00636.jpg
allow-recursion { cunets; } ;
blackhole { bogusnets: } ;





images/00869.jpg
#!/usr/bmn/perl
# Example user input validation error

open(HTMLFILE, "/var/www/html/$ARGVIO]) or die "trying\n’;
while(<HTMLFILE) ( print; |
close HTMLEILE:





images/00868.jpg
Security = —————————
Security = o Convenience)





images/00633.jpg
I} SREEAEh DEL
zone "saclass net” |
type master;
file "saclass/saclass net’;
update-policy {
grant feanor_mroe. subdomain saclass net.;
grant mojo_mroe. subdomain saclass.net;
grant dawdle_mioe. subdomain saclass net.
grant pirate_mroe. subdomain saclass.net;






images/00875.jpg
s fegusie paRLOOOFNE0

auth [user_unknown=ignore success=ok ignore=ignore auth_e
default=bad] pam securetty so

auth required  pam_env.so

auth required  pam_unix2so

account  required  pam_unix2so
password  requisite  pam_pwcheck.so nullok cracklib
password  required  pam_unix2 50 use_authtok nullok
session  required  pam_loginuid so

session  required  pam_limits 50

session required  pam_unix2 s0

session  optionel  pam_umask so
session  required  pam_lastlog 5o nowtmp
session  optional  pam_mail so standerd

session  optional  pam_ck_connector.so





images/00632.jpg
b nsupdate
> update add newhost.cs.colorado.edu 86400 A 128138.243.16

- prereq nxdomain gypsy.cs.colorado.edu

+ update 280 kytey.cs cilorade:eda CNAME si-laptop e rolcrdoedu





images/00874.jpg
kgL sexvice:

login
login
login
login
login

auth
auth
auth
auth
auth

requisite
required
required
required
required

pam_authtok_get50.1
pam_dhkeys 5.1
pam_unix_credso1
pam_unix_ authso.1
pam_dial_auth.s0.1





images/00635.jpg
acl bogusnets {
0.000/8 ;
10.00/8 ;
200078 ;
169.254.00/16 ;
19202.0/24 ;
2240003 ;
100.0.0/8
172160012 ;
192.168.0.0/16 ;

acl cunets {
128138.0.0/16 ;
198.11.16/24
204.228.69/24 ;

// ACL for bogus networks

// Default, wild card addresses

1/ Reserved addresses

1/ Reserved addresses

1/ Link-local delegated addresses

// Sample addresses, like example.com
J/ Multicast address space

J/ Private address space (REC1918)">

J/ Private address space (REC1918)

7/ Private address space (REC1918)

J//ACL for University of Colorado networks
1/ Main campus network





images/00877.jpg
ubuntu$ nmap -sT ubuntu.booklab.atrust.com

Starting Nmap 4.20 { http://insecure org | at 2009-11-01 1231 MST
nteresting ports on ubuntubooklab atrust.com (192.168.20.25)
Not shown: 1691 closed ports

PORT  STATE  SERVICE

25/cp  open  smip

0/tcp  open hitp

1114cp open  rpchind

139cp open  metbios-ssn

45/1cp open  microsoft-ds

306/tcp open  mysql

Nitip fitiahied: 4 15 nddress {1 hort ug) scanmed G185 secands:





images/00634.jpg
Context Page  What it specifies
Various 609 Access controlsts
options, zone 606 Who can query a zone or server
allow-recursion  options 604 Who can make recursive queries
2 allow-trnsfer  options, zone 606 Who can request zone transfers
& allowupdate  zone 613 Who can make dynamic updates
blackhole options 606 Serversto completelyignore
bogus server 611 Servers never to query
update-policy _ zone 641 Useof dynamic updates
access-control _ server 634 Permitted querters (Unbound)
g allownotify  Slavezone 631 Permitted notifers (NSD)
g chroot server 631/635  Directory o chroot to
£ notify Masterzone 631 Slave servers to notify (NSD)
& provide xfr Masterzone 631 Zone transfer receivers (NSD)
2 requestxfr Slave zone. 631 Zone transfer providers (NSD)
username server 631/635 User to run as from chroot jail






images/00876.jpg
fusr/bin/find / -uger root -perm -4000 -print |
bin/mail -5 "Setuid root files® netadmin





images/00629.jpg
AN Z00E.
‘name: domain-name rone
forward-host: server-name rone]
forward:addr: io-sddressiamiont] N





images/00871.jpg
WAIELS. Sads’ fawes 22/b-p.
22/1cp: 2454 8387

ibuntu$ sudo Isof -i:22
COMMAND PID USEE
sshd 2454 root

sshd 2454 oot

FD TYPE DEVICE

2

1Pvd
1PV

5730
5732

E

NODE NAME
TCP "ssh(LISTEN)
TCP *ssh(LISTEN)






images/00628.jpg
5tub-zone:
name: domain-name [rone]
stub-host: hostrame [none]
‘Stubiadir i-adinesi@uort: Tiane]





images/00870.jpg
SIS Dtk -an Lt LI TEN

"1t
30171
30172
2

+ 4045

9152
49152
49152
49152
49157

0 LISTEN
0 LISTEN
0 LIS
0 LISTEN
0 LISTEN






images/00631.jpg
dhcp-hostl.domain, IN A 132168.0.1
dhep-host2 domain. IN A 19216802





images/00873.jpg
Stopon Stopon

Flag failure? success? Comments
binding'  No  Yes Likesufficient, but can'fail without failing the stack
include’ - - Includes another confiy file 2t this point n the stack
optional  No  No Significantonly i thisis the lone module

requied  No  No Failure eventually causes the stack o fal

requisite Yes  No  Sameas required, butfals stack immediately
sufficient _No  Yes Thenameis kind of a ie;see comments below

2. Linux and Sokaris only for include, Solasts only for binding





images/00630.jpg
[RCUMIE DET PR | # 10 RN Server. Blalerhent
ot e e - # In BIND server stitement





images/00872.jpg
t-login garvice

ogin
ogin
login
ogin
ogin

auth
auth
auth
auth
auth

requisiie
required
required
required
required

pam_authtok get 501
pam_dhkeys s0.1
pam_unix_cred.s0.1
pam_unix_auth.so.1
pam_dial_auth.s0.1





images/00626.jpg
private-address: ip-address-or-subnet Inone]
vt domais Homohaaine. o





images/00625.jpg
val-*; <varnous> |signature options, defaults are ok]|





images/00867.jpg





images/00627.jpg
control-enable: yes | no
control-interface: ip-address
control-port: port

server-key-file: private key file
server-cert file: certificate file-pem
control-key-file: private-key file
kbl P o e Sl b

[no}
{focathost (127.0.0.1 and =)
[953]

[unbound_server key]
[unbound_server pern]
[unbound_control key]
Totibound Lon ol el





