

[image: cover-image]

Developer’s Library: Essential References for Programming Professionals

Developer’s Library books are designed to provide practicing programmers with unique, high-quality references and tutorials on the programming languages and technologies they use in their daily work.

All books in the Developer’s Library are written by expert technology practitioners who are especially skilled at organizing and presenting information in a way that’s useful for other programmers.

Key titles include some of the best, most widely acclaimed books within their topic areas:

PHP and MySQL Web Development
Luke Welling & Laura Thomson
ISBN 978-0-672-32916-6

MySQL
Paul DuBois
ISBN-13: 978-0-672-32938-8

Linux Kernel Development
Robert Love
ISBN-13: 978-0-672-32946-3

Python Essential Reference
David Beazley
ISBN-13: 978-0-672-32862-6

Programming in Objective-C
Stephen G. Kochan
ISBN-13: 978-0-321-56615-7

PostgreSQL
Korry Douglas
ISBN-13: 978-0-672-33015-5

Developer’s Library books are available at most retail and online bookstores, as well as by subscription from Safari Books Online at safari.informit.com

Developer’s Library
informit.com/devlibrary

Python

Essential Reference

Fourth Edition

David M. Beazley

[image: image]

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Cape Town • Sydney • Tokyo • Singapore • Mexico City

Python Essential Reference

Fourth Edition

Copyright © 2009 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without written permission from the publisher. No patent liability is assumed with respect to the use of the information contained herein. Although every precaution has been taken in the preparation of this book, the publisher and author assume no responsibility for errors or omissions. Nor is any liability assumed for damages resulting from the use of the information contained herein.

ISBN-13: 978-0-672-32978-4
ISBN-10: 0-672-32978-6

Printed in the United States of America

First Printing June 2009

Acquisitions Editor
Mark Taber

Development Editor
Michael Thurston

Managing Editor
Patrick Kanouse

Project Editor
Seth Kerney

Copy Editor
Lisa Thibault

Indexer
David Beazley

Proofreader
Megan Wade

Technical Editors
Noah Gift
Kurt Grandis

Publishing Coordinator
Vanessa Evans

Book Designer
Gary Adair

Compositor
Bronkella Publishing

Library of Congress Cataloging-in-Publication data is on file.

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized. Addison-Wesley cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no warranty or fitness is implied. The information provided is on an “as is” basis. The author and the publisher shall have neither liability nor responsibility to any person or entity with respect to any loss or damages arising from the information contained in this book.

Bulk Sales

Addison-Wesley offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales. For more information, please contact

 U.S. Corporate and Government Sales
 1-800-382-3419
 corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

 International Sales
 international@pearson.com

To register this product and gain access to bonus content, go to www.informit.com/register to sign in and enter the ISBN. After you register the product, a link to the additional content will be listed on your Account page, under Registered Products.

For Paula, Thomas., and his brother on the way.

Contents at a Glance

Introduction

Part I: The Python Language

 1 A Tutorial Introduction

 2 Lexical Conventions and Syntax

 3 Types and Objects

 4 Operators and Expressions

 5 Program Structure and Control Flow

 6 Functions and Functional Programming

 7 Classes and Object-Oriented Programming

 8 Modules, Packages, and Distribution

 9 Input and Output

 10 Execution Environment

 11 Testing, Debugging, Profiling, and Tuning

Part II: The Python Library

 12 Built-In Functions

 13 Python Runtime Services

 14 Mathematics

 15 Data Structures, Algorithms, and Code Simplification

 16 String and Text Handling

 17 Python Database Access

 18 File and Directory Handling

 19 Operating System Services

 20 Threads and Concurrency

 21 Network Programming and Sockets

 22 Internet Application Programming

 23 Web Programming

 24 Internet Data Handling and Encoding

 25 Miscellaneous Library Modules

Part III: Extending and Embedding

 26 Extending and Embedding Python

Appendix: Python 3

Index

Table of Contents

Introduction

I: The Python Language

 1 A Tutorial Introduction

Running Python

Variables and Arithmetic Expressions

Conditionals

File Input and Output

Strings

Lists

Tuples

Sets

Dictionaries

Iteration and Looping

Functions

Generators

Coroutines

Objects and Classes

Exceptions

Modules

Getting Help

 2 Lexical Conventions and Syntax

Line Structure and Indentation

Identifiers and Reserved Words

Numeric Literals

String Literals

Containers

Operators, Delimiters, and Special Symbols

Documentation Strings

Decorators

Source Code Encoding

 3 Types and Objects

Terminology

Object Identity and Type

Reference Counting and Garbage Collection

References and Copies

First-Class Objects

Built-in Types for Representing Data

The None Type

Numeric Types

Sequence Types

Mapping Types

Set Types

Built-in Types for Representing Program Structure

Callable Types

Classes, Types, and Instances

Modules

Built-in Types for Interpreter Internals

Code Objects

Frame Objects

Traceback Objects

Generator Objects

Slice Objects

Ellipsis Object

Object Behavior and Special Methods

Object Creation and Destruction

Object String Representation

Object Comparison and Ordering

Type Checking

Attribute Access

Attribute Wrapping and Descriptors

Sequence and Mapping Methods

Iteration

Mathematical Operations

Callable Interface

Context Management Protocol

Object Inspection and dir()

 4 Operators and Expressions

Operations on Numbers

Operations on Sequences

String Formatting

Advanced String Formatting

Operations on Dictionaries

Operations on Sets

Augmented Assignment

The Attribute (.) Operator

The Function Call () Operator

Conversion Functions

Boolean Expressions and Truth Values

Object Equality and Identity

Order of Evaluation

Conditional Expressions

 5 Program Structure and Control Flow

Program Structure and Execution

Conditional Execution

Loops and Iteration

Exceptions

Built-in Exceptions

Defining New Exceptions

Context Managers and the with Statement

Assertions and _ _debug_ _

 6 Functions and Functional Programming

Functions

Parameter Passing and Return Values

Scoping Rules

Functions as Objects and Closures

Decorators

Generators and yield

Coroutines and yield Expressions

Using Generators and Coroutines

List Comprehensions

Generator Expressions

Declarative Programming

The lambda Operator

Recursion

Documentation Strings

Function Attributes

eval(), exec(), and compile()

 7 Classes and Object-Oriented Programming

The class Statement

Class Instances

Scoping Rules

Inheritance

Polymorphism Dynamic Binding and Duck Typing

Static Methods and Class Methods

Properties

Descriptors

Data Encapsulation and Private Attributes

Object Memory Management

Object Representation and Attribute Binding

_ _slots_ _

Operator Overloading

Types and Class Membership Tests

Abstract Base Classes

Metaclasses

Class Decorators

 8 Modules, Packages, and Distribution

Modules and the import Statement

Importing Selected Symbols from a Module

Execution as the Main Program

The Module Search Path

Module Loading and Compilation

Module Reloading and Unloading

Packages

Distributing Python Programs and Libraries

Installing Third-Party Libraries

 9 Input and Output

Reading Command-Line Options

Environment Variables

Files and File Objects

Standard Input, Output, and Error

The print Statement

The print() Function

Variable Interpolation in Text Output

Generating Output

Unicode String Handling

Unicode I/O

Unicode Data Encodings

Unicode Character Properties

Object Persistence and the pickle Module

10 Execution Environment

Interpreter Options and Environment

Interactive Sessions

Launching Python Applications

Site Configuration Files

Per-user Site Packages

Enabling Future Features

Program Termination

11 Testing, Debugging, Profiling, and Tuning

Documentation Strings and the doctest Module

Unit Testing and the unittest Module

The Python Debugger and the pdb Module

Debugger Commands

Debugging from the Command Line

Configuring the Debugger

Program Profiling

Tuning and Optimization

Making Timing Measurements

Making Memory Measurements

Disassembly

Tuning Strategies

II: The Python Library

12 Built-In Functions and Exceptions

Built-in Functions and Types

Built-In Exceptions

Exception Base Classes

Exception Instances

Predefined Exception Classes

Built-In Warnings

future_builtins

13 Python Runtime Services

atexit

copy

Notes

gc

Notes

inspect

marshal

Notes

pickle

Notes

sys

Variables

Functions

traceback

types

Notes

warnings

Notes

weakref

Example

Notes

14 Mathematics

decimal

Decimal Objects

Context Objects

Functions and Constants

Examples

Notes

fractions

math

Notes

numbers

Notes

random

Seeding and Initialization

Random Integers

Random Sequences

Real-Valued Random Distributions

Notes

15 Data Structures, Algorithms, and Code Simplification

abc

array

Notes

bisect

collections

deque and defaultdict

Named Tuples

Abstract Base Classes

contextlib

functools

heapq

itertools

Examples

operator

16 String and Text Handling

codecs

Low-Level codecs Interface

I/O-Related Functions

Useful Constants

Standard Encodings

Notes

re

Pattern Syntax

Functions

Regular Expression Objects

Match Objects

Example

Notes

string

Constants

Formatter Objects

Template Strings

Utility Functions

struct

Packing and Unpacking Functions

Struct Objects

Format Codes

Notes

unicodedata

17 Python Database Access

Relational Database API Specification

Connections

Cursors

Forming Queries

Type Objects

Error Handling

Multithreading

Mapping Results into Dictionaries

Database API Extensions

sqlite3 Module

Module-Level Functions

Connection Objects

Cursors and Basic Operations

DBM-Style Database Modules

shelve Module

18 File and Directory Handling

bz2

filecmp

fnmatch

Examples

glob

Example

gzip

Notes

shutil

tarfile

Exceptions

Example

tempfile

zipfile

zlib

19 Operating System Services

commands

Notes

configParser, Configparser

The ConfigParser Class

Example

Notes

datetime

date Objects

time Objects

datetime objects

timedelta objects

Mathematical Operations Involving Dates

tzinfo Objects

Date and Time Parsing

errno

POSIX Error Codes

Windows Error Codes

fcntl

Example

Notes

io

Base I/O Interface

Raw I/O

Buffered Binary I/O

Text I/O

The open() Function

Abstract Base Classes

logging

Logging Levels

Basic Configuration

Logger Objects

Handler Objects

Message Formatting

Miscellaneous Utility Functions

Logging Configuration

Performance Considerations

Notes

mmap

Notes

msvcrt

optparse

Example

Notes

os

Process Environment

File Creation and File Descriptors

Files and Directories

Process Management

System Configuration

Exceptions

os.path

signal

Example

Notes

subprocess

Examples

Notes

time

Notes

winreg

Notes

20 Threads and Concurrency

Basic Concepts

Concurrent Programming and Python

multiprocessing

Processes

Interprocess Communication

Process Pools

Shared Data and Synchronization

Managed Objects

Connections

Miscellaneous Utility Functions

General Advice on Multiprocessing

threading

Thread Objects

Timer Objects

Lock Objects

RLock

Semaphore and Bounded Semaphore

Events

Condition Variables

Working with Locks

Thread Termination and Suspension

Utility Functions

The Global Interpreter Lock

Programming with Threads

queue, Queue

Queue Example with Threads

Coroutines and Microthreading

21 Network Programming and Sockets

Network Programming Basics

asynchat

asyncore

Example

select

Advanced Module Features

Advanced Asynchronous I/O Example

When to Consider Asynchronous Networking

socket

Address Families

Socket Types

Addressing

Functions

Exceptions

Example

Notes

ssl

Examples

SocketServer

Handlers

Servers

Defining Customized Servers

Customization of Application Servers

22 Internet Application Programming

ftplib

Example

http Package

http.client (httplib)

http.server (BaseHTTPServer, CGIHTTPServer, SimpleHTTPServer)

http.cookies (Cookie)

http.cookiejar (cookielib)

smtplib

Example

urllib Package

urllib.request (urllib2)

urllib.response

urllib.parse

urllib.error

urllib.robotparser (robotparser)

Notes

xmlrpc Package

xmlrpc.client (xmlrpclib)

xmlrpc.server (SimpleXMLRPCServer, DocXMLRPCServer)

23 Web Programming

cgi

CGI Programming Advice

Notes

cgitb

wsgiref

The WSGI Specification

wsgiref Package

webbrowser

24 Internet Data Handling and Encoding

base64

binascii

csv

Dialects

Example

email Package

Parsing Email

Composing Email

Notes

hashlib

hmac

Example

HTMLParser

Example

json

mimetypes

quopri

xml Package

XML Example Document

xml.dom.minidom

xml.etree.ElementTree

xml.sax

xml.sax.saxutils

25 Miscellaneous Library Modules

Python Services

String Processing

Operating System Modules

Network

Internet Data Handling

Internationalization

Multimedia Services

Miscellaneous

III: Extending and Embedding

26 Extending and Embedding Python

Extension Modules

An Extension Module Prototype

Naming Extension Modules

Compiling and Packaging Extensions

Type Conversion from Python to C

Type Conversion from C to Python

Adding Values to a Module

Error Handling

Reference Counting

Threads

Embedding the Python Interpreter

An Embedding Template

Compilation and Linking

Basic Interpreter Operation and Setup

Accessing Python from C

Converting Python Objects to C

ctypes

Loading Shared Libraries

Foreign Functions

Datatypes

Calling Foreign Functions

Alternative Type Construction Methods

Utility Functions

Example

Advanced Extending and Embedding

Jython and IronPython

Appendix Python 3

Who Should Be Using Python 3?

New Language Features

Source Code Encoding and Identifiers

Set Literals

Set and Dictionary Comprehensions

Extended Iterable Unpacking

Nonlocal Variables

Function Annotations

Keyword-Only Arguments

Ellipsis as an Expression

Chained Exceptions

Improved super()

Advanced Metaclasses

Common Pitfalls

Text Versus Bytes

New I/O System

print() and exec() Functions

Use of Iterators and Views

Integers and Integer Division

Comparisons

Iterators and Generators

File Names, Arguments, and Environment Variables

Library Reorganization

Absolute Imports

Code Migration and 2to3

Porting Code to Python 2.6

Providing Test Coverage

Using the 2to3 Tool

A Practical Porting Strategy

Simultaneous Python 2 and Python 3 Support

Participate

Index

About the Author

David M. Beazley is a long-time Python enthusiast, having been involved with the Python community since 1996. He is probably best known for his work on SWIG, a popular software package for integrating C/C++ programs with other programming languages, including Python, Perl, Ruby, Tcl, and Java. He has also written a number of other programming tools, including PLY, a Python implementation of lex and yacc. Dave spent seven years working in the Theoretical Physics Division at Los Alamos National Laboratory, where he helped pioneer the use of Python with massively parallel supercomputers. After that, Dave went off to work as an evil professor, where he enjoyed tormenting college students with a variety of insane programming projects. However, he has since seen the error of his ways and is now working as an independent software developer, consultant, Python trainer, and occasional jazz musician living in Chicago. He can be contacted at http://www.dabeaz.com.

About the Technical Editor

Noah Gift is the co-author of Python For UNIX and Linux System Administration (O’Reilly) and is also working on Google App Engine In Action (Manning). He is an author, speaker, consultant, and community leader, writing for publications such as IBM developerWorks, Red Hat Magazine, O’Reilly, and MacTech. His consulting company’s website is http://www.giftcs.com, and much of his writing can be found at http://noahgift.com. You can also follow Noah on Twitter.

Noah has a master’s degree in CIS from Cal State, Los Angeles, a B.S. in nutritional science from Cal Poly San Luis Obispo, is an Apple and LPI-certified SysAdmin, and has worked at companies such as Caltech, Disney Feature Animation, Sony Imageworks, and Turner Studios. He is currently working at Weta Digital in New Zealand. In his free time he enjoys spending time with his wife Leah and their son Liam, composing for the piano, running marathons, and exercising religiously.

Acknowledgments

This book would not be possible without the support of many people. First and foremost, I’d like to thank Noah Gift for jumping into the project and providing his amazing feedback on the fourth edition. Kurt Grandis also provided useful comments for many chapters. I’d also like to acknowledge past technical reviewers Timothy Boronczyk, Paul DuBois, Mats Wichmann, David Ascher, and Tim Bell for their valuable comments and advice that made earlier editions a success. Guido van Rossum, Jeremy Hylton, Fred Drake, Roger Masse, and Barry Warsaw also provided tremendous assistance with the first edition while hosting me for a few weeks back in the hot summer of 1999. Last, but not least, this book would not be possible without all of the feedback I received from readers. There are far too many people to list individually, but I have done my best to incorporate your suggestions for making the book even better. I’d also like to thank all the folks at Addison-Wesley and Pearson Education for their continued commitment to the project and assistance. Mark Taber, Michael Thurston, Seth Kerney, and Lisa Thibault all helped out to get this edition out the door in good shape. A special thanks is in order for Robin Drake, whose tremendous effort in editing previous editions made the third edition possible. Finally, I’d like to acknowledge my amazing wife and partner Paula Kamen for all of her encouragement, diabolical humor, and love.

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value your opinion and want to know what we’re doing right, what we could do better, what areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass our way.

You can email or write me directly to let me know what you did or didn’t like about this book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and that due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as well as your name and phone or email address. I will carefully review your comments and share them with the author and editors who worked on the book.

Email: feedback@developers-library.info

Mail: Mark Taber
 Associate Publisher
 Pearson Education
 800 East 96th Street
 Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at informit.com/register for convenient access to any updates, downloads, or errata that might be available for this book.

Introduction

This book is intended to be a concise reference to the Python programming language. Although an experienced programmer will probably be able to learn Python from this book, it’s not intended to be an extended tutorial or a treatise on how to program. Rather, the goal is to present the core Python language, and the most essential parts of the Python library in a manner that’s accurate and concise. This book assumes that the reader has prior programming experience with Python or another language such as C or Java. In addition, a general familiarity with systems programming topics (for example, basic operating system concepts and network programming) may be useful in understanding certain parts of the library reference.

Python is freely available for download at http://www.python.org. Versions are available for almost every operating system, including UNIX, Windows, and Macintosh. In addition, the Python website includes links to documentation, how-to guides, and a wide assortment of third-party software.

This edition of Python Essential Reference comes at a pivotal time in Python’s evolution. Python 2.6 and Python 3.0 are being released almost simultaneously. Yet, Python 3 is a release that breaks backwards compatibility with prior Python versions. As an author and programmer, I’m faced with a dilemma: do I simply jump forward to Python 3.0 or do I build upon the Python 2.x releases that are more familiar to most programmers?

Years ago, as a C programmer I used to treat certain books as the ultimate authority on what programming language features should be used. For example, if you were using something that wasn’t documented in the K&R book, it probably wasn’t going to be portable and should be approached with caution. This approach served me very well as a programmer and it’s the approach I have decided to take in this edition of the Essential Reference. Namely, I have chosen to omit features of Python 2 that have been removed from Python 3. Likewise, I don’t focus on features of Python 3 that have not been back-ported (although such features are still covered in an appendix). As a result, I hope this book can be a useful companion for Python programmers, regardless of what Python version is being used.

The fourth edition of Python Essential Reference also includes some of the most exciting changes since its initial publication nearly ten years ago. Much of Python’s development throughout the last few years has focused on new programming language features—especially related to functional and meta programming. As a result, the chapters on functions and object-oriented programming have been greatly expanded to cover topics such as generators, iterators, coroutines, decorators, and metaclasses. The library chapters have been updated to focus on more modern modules. Examples and code fragments have also been updated throughout the book. I think most programmers will be quite pleased with the expanded coverage.

Finally, it should be noted that Python already includes thousands of pages of useful documentation. The contents of this book are largely based on that documentation, but with a number of key differences. First, this reference presents information in a much more compact form, with different examples and alternative descriptions of many topics. Second, a significant number of topics in the library reference have been expanded to include outside reference material. This is especially true for low-level system and networking modules in which effective use of a module normally relies on a myriad of options listed in manuals and outside references. In addition, in order to produce a more concise reference, a number of deprecated and relatively obscure library modules have been omitted.

In writing this book, it has been my goal to produce a reference containing virtually everything I have needed to use Python and its large collection of modules. Although this is by no means a gentle introduction to the Python language, I hope that you find the contents of this book to be a useful addition to your programming reference library for many years to come. I welcome your comments.

 David Beazley
 Chicago, Illinois
 June, 2009

I. The Python Language

 1 A Tutorial Introduction

 2 Lexical Conventions and Syntax

 3 Types and Objects

 4 Operators and Expressions

 5 Program Structure and Control Flow

 6 Functions and Functional Programming

 7 Classes and Object-Oriented Programming

 8 Modules, Packages, and Distribution

 9 Input and Output

10 Execution Environment

11 Testing, Debugging, Profiling, and Tuning

1. A Tutorial Introduction

This chapter provides a quick introduction to Python. The goal is to illustrate most of Python’s essential features without getting too bogged down in special rules or details. To do this, the chapter briefly covers basic concepts such as variables, expressions, control flow, functions, generators, classes, and input/output. This chapter is not intended to provide comprehensive coverage. However, experienced programmers should be able to extrapolate from the material in this chapter to create more advanced programs. Beginners are encouraged to try a few examples to get a feel for the language. If you are new to Python and using Python 3, you might want to follow this chapter using Python 2.6 instead. Virtually all the major concepts apply to both versions, but there are a small number of critical syntax changes in Python 3—mostly related to printing and I/O—that might break many of the examples shown in this section. Please refer to Appendix A, “Python 3,” for further details.

Running Python

Python programs are executed by an interpreter. Usually, the interpreter is started by simply typing python into a command shell. However, there are many different implementations of the interpreter and Python development environments (for example, Jython, IronPython, IDLE, ActivePython, Wing IDE, pydev, etc.), so you should consult the documentation for startup details. When the interpreter starts, a prompt appears at which you can start typing programs into a simple read-evaluation loop. For example, in the following output, the interpreter displays its copyright message and presents the user with the >>> prompt, at which the user types the familiar “Hello World” command:

[image: image]

Note

If you try the preceding example and it fails with a SyntaxError, you are probably using Python 3. If this is the case, you can continue to follow along with this chapter, but be aware that the print statement turned into a function in Python 3. Simply add parentheses around the items to be printed in the examples that follow. For instance:

[image: image]

Putting parentheses around the item to be printed also works in Python 2 as long as you are printing just a single item. However, it’s not a syntax that you commonly see in existing Python code. In later chapters, this syntax is sometimes used in examples in which the primary focus is a feature not directly related to printing, but where the example is supposed to work with both Python 2 and 3.

Python’s interactive mode is one of its most useful features. In the interactive shell, you can type any valid statement or sequence of statements and immediately view the results. Many people, including the author, even use interactive Python as their desktop calculator. For example:

[image: image]

When you use Python interactively, the special variable _ holds the result of the last operation. This can be useful if you want to save or use the result of the last operation in subsequent statements. However, it’s important to stress that this variable is only defined when working interactively.

If you want to create a program that you can run repeatedly, put statements in a file such as the following:

[image: image]

Python source files are ordinary text files and normally have a .py suffix. The # character denotes a comment that extends to the end of the line.

To execute the helloworld.py file, you provide the filename to the interpreter as follows:

[image: image]

On Windows, Python programs can be started by double-clicking a .py file or typing the name of the program into the Run command on the Windows Start menu. This launches the interpreter and runs the program in a console window. However, be aware that the console window will disappear immediately after the program completes its execution (often before you can read its output). For debugging, it is better to run the program within a Python development tool such as IDLE.

On UNIX, you can use #! on the first line of the program, like this:

[image: image]

The interpreter runs statements until it reaches the end of the input file. If it’s running interactively, you can exit the interpreter by typing the EOF (end of file) character or by selecting Exit from pull-down menu of a Python IDE. On UNIX, EOF is Ctrl+D; on Windows, it’s Ctrl+Z. A program can request to exit by raising the SystemExit exception.

>>> raise SystemExit

Variables and Arithmetic Expressions

The program in Listing 1.1 shows the use of variables and expressions by performing a simple compound-interest calculation.

Listing 1.1 Simple Compound-Interest Calculation

[image: image]

The output of this program is the following table:

[image: image]

Python is a dynamically typed language where variable names are bound to different values, possibly of varying types, during program execution. The assignment operator simply creates an association between a name and a value. Although each value has an associated type such as an integer or string, variable names are untyped and can be made to refer to any type of data during execution. This is different from C, for example, in which a name represents a fixed type, size, and location in memory into which a value is stored. The dynamic behavior of Python can be seen in Listing 1.1 with the principal variable. Initially, it’s assigned to an integer value. However, later in the program it’s reassigned as follows:

principal = principal * (1 + rate)

This statement evaluates the expression and reassociates the name principal with the result. Although the original value of principal was an integer 1000, the new value is now a floating-point number (rate is defined as a float, so the value of the above expression is also a float). Thus, the apparent “type” of principal dynamically changes from an integer to a float in the middle of the program. However, to be precise, it’s not the type of principal that has changed, but rather the value to which the principal name refers.

A newline terminates each statement. However, you can use a semicolon to separate statements on the same line, as shown here:

principal = 1000; rate = 0.05; numyears = 5;

The while statement tests the conditional expression that immediately follows. If the tested statement is true, the body of the while statement executes. The condition is then retested and the body executed again until the condition becomes false. Because the body of the loop is denoted by indentation, the three statements following while in Listing 1.1 execute on each iteration. Python doesn’t specify the amount of required indentation, as long as it’s consistent within a block. However, it is most common (and generally recommended) to use four spaces per indentation level.

One problem with the program in Listing 1.1 is that the output isn’t very pretty. To make it better, you could right-align the columns and limit the precision of principal to two digits. There are several ways to achieve this formatting. The most widely used approach is to use the string formatting operator (%) like this:

[image: image]

Now the output of the program looks like this:

[image: image]

Format strings contain ordinary text and special formatting-character sequences such as "%d", "%s", and "%f". These sequences specify the formatting of a particular type of data such as an integer, string, or floating-point number, respectively. The special-character sequences can also contain modifiers that specify a width and precision. For example, "%3d" formats an integer right-aligned in a column of width 3, and "%0.2f" formats a floating-point number so that only two digits appear after the decimal point. The behavior of format strings is almost identical to the C printf() function and is described in detail in Chapter 4, “Operators and Expressions.”

A more modern approach to string formatting is to format each part individually using the format() function. For example:

[image: image]

format() uses format specifiers that are similar to those used with the traditional string formatting operator (%). For example, "3d" formats an integer right-aligned in a column of width 3, and "0.2f" formats a float-point number to have two digits of accuracy. Strings also have a format() method that can be used to format many values at once. For example:

[image: image]

In this example, the number before the colon in "{0:3d}" and "{1:0.2f}" refers to the associated argument passed to the format() method and the part after the colon is the format specifier.

Conditionals

The if and else statements can perform simple tests. Here’s an example:

[image: image]

The bodies of the if and else clauses are denoted by indentation. The else clause is optional.

To create an empty clause, use the pass statement, as follows:

[image: image]

You can form Boolean expressions by using the or, and, and not keywords:

[image: image]

Note

Writing complex test cases commonly results in statements that involve an annoyingly long line of code. To improve readability, you can continue any statement to the next line by using a backslash (\) at the end of a line as shown. If you do this, the normal indentation rules don’t apply to the next line, so you are free to format the continued lines as you wish.

Python does not have a special switch or case statement for testing values. To handle multiple-test cases, use the elif statement, like this:

[image: image]

To denote truth values, use the Boolean values True and False. Here’s an example:

[image: image]

All relational operators such as < and > return True or False as results. The in operator used in this example is commonly used to check whether a value is contained inside of another object such as a string, list, or dictionary. It also returns True or False, so the preceding example could be shortened to this:

has_spam = 'spam' in s

File Input and Output

The following program opens a file and reads its contents line by line:

[image: image]

The open() function returns a new file object. By invoking methods on this object, you can perform various file operations. The readline() method reads a single line of input, including the terminating newline. The empty string is returned at the end of the file.

In the example, the program is simply looping over all the lines in the file foo.txt. Whenever a program loops over a collection of data like this (for instance input lines, numbers, strings, etc.), it is commonly known as iteration. Because iteration is such a common operation, Python provides a dedicated statement, for, that is used to iterate over items. For instance, the same program can be written much more succinctly as follows:

[image: image]

To make the output of a program go to a file, you can supply a file to the print statement using >>, as shown in the following example:

[image: image]

The >> syntax only works in Python 2. If you are using Python 3, change the print statement to the following:

print("%3d %0.2f" % (year,principal),file=f)

In addition, file objects support a write() method that can be used to write raw data. For example, the print statement in the previous example could have been written this way:

f.write("%3d %0.2f\n" % (year,principal))

Although these examples have worked with files, the same techniques apply to the standard output and input streams of the interpreter. For example, if you wanted to read user input interactively, you can read from the file sys.stdin. If you want to write data to the screen, you can write to sys.stdout, which is the same file used to output data produced by the print statement. For example:

[image: image]

In Python 2, this code can also be shortened to the following:

name = raw_input("Enter your name :")

In Python 3, the raw_input() function is called input(), but it works in exactly the same manner.

Strings

To create string literals, enclose them in single, double, or triple quotes as follows:

[image: image]

The same type of quote used to start a string must be used to terminate it. Triple-quoted strings capture all the text that appears prior to the terminating triple quote, as opposed to single- and double-quoted strings, which must be specified on one logical line. Triple-quoted strings are useful when the contents of a string literal span multiple lines of text such as the following:

[image: image]

Strings are stored as sequences of characters indexed by integers, starting at zero. To extract a single character, use the indexing operator s[i] like this:

[image: image]

To extract a substring, use the slicing operator s[i:j]. This extracts all characters from s whose index k is in the range i <= k < j. If either index is omitted, the beginning or end of the string is assumed, respectively:

[image: image]

Strings are concatenated with the plus (+) operator:

g = a + " This is a test"

Python never implicitly interprets the contents of a string as numerical data (i.e., as in other languages such as Perl or PHP). For example, + always concatenates strings:

[image: image]

To perform mathematical calculations, strings first have to be converted into a numeric value using a function such as int() or float(). For example:

z = int(x) + int(y) # z = 79 (Integer +)

Non-string values can be converted into a string representation by using the str(), repr(), or format() function. Here’s an example:

[image: image]

Although str() and repr() both create strings, their output is usually slightly different. str() produces the output that you get when you use the print statement, whereas repr() creates a string that you type into a program to exactly represent the value of an object. For example:

[image: image]

The inexact representation of 3.4 in the previous example is not a bug in Python. It is an artifact of double-precision floating-point numbers, which by their design can not exactly represent base-10 decimals on the underlying computer hardware.

The format() function is used to convert a value to a string with a specific formatting applied. For example:

[image: image]

Lists

Lists are sequences of arbitrary objects. You create a list by enclosing values in square brackets, as follows:

names = ["Dave", "Mark", "Ann", "Phil"]

Lists are indexed by integers, starting with zero. Use the indexing operator to access and modify individual items of the list:

[image: image]

To append new items to the end of a list, use the append() method:

names.append("Paula")

To insert an item into the middle of a list, use the insert() method:

names.insert(2, "Thomas")

You can extract or reassign a portion of a list by using the slicing operator:

[image: image]

Use the plus (+) operator to concatenate lists:

a = [1,2,3] + [4,5] # Result is [1,2,3,4,5]

An empty list is created in one of two ways:

[image: image]

Lists can contain any kind of Python object, including other lists, as in the following example:

a = [1,"Dave",3.14, ["Mark", 7, 9, [100,101]], 10]

Items contained in nested lists are accessed by applying more than one indexing operation, as follows:

[image: image]

The program in Listing 1.2 illustrates a few more advanced features of lists by reading a list of numbers from a file specified on the command line and outputting the minimum and maximum values.

Listing 1.2 Advanced List Features

[image: image]

The first line of this program uses the import statement to load the sys module from the Python library. This module is being loaded in order to obtain command-line arguments.

The open() function uses a filename that has been supplied as a command-line option and placed in the list sys.argv. The readlines() method reads all the input lines into a list of strings.

The expression [float(line) for line in lines] constructs a new list by looping over all the strings in the list lines and applying the function float() to each element. This particularly powerful method of constructing a list is known as a list comprehension. Because the lines in a file can also be read using a for loop, the program can be shortened by converting values using a single statement like this:

fvalues = [float(line) for line in open(sys.argv[1])]

After the input lines have been converted into a list of floating-point numbers, the built-in min() and max() functions compute the minimum and maximum values.

Tuples

To create simple data structures, you can pack a collection of values together into a single object using a tuple. You create a tuple by enclosing a group of values in parentheses like this:

[image: image]

Python often recognizes that a tuple is intended even if the parentheses are missing:

[image: image]

For completeness, 0- and 1-element tuples can be defined, but have special syntax:

[image: image]

The values in a tuple can be extracted by numerical index just like a list. However, it is more common to unpack tuples into a set of variables like this:

[image: image]

Although tuples support most of the same operations as lists (such as indexing, slicing, and concatenation), the contents of a tuple cannot be modified after creation (that is, you cannot replace, delete, or append new elements to an existing tuple). This reflects the fact that a tuple is best viewed as a single object consisting of several parts, not as a collection of distinct objects to which you might insert or remove items.

Because there is so much overlap between tuples and lists, some programmers are inclined to ignore tuples altogether and simply use lists because they seem to be more flexible. Although this works, it wastes memory if your program is going to create a large number of small lists (that is, each containing fewer than a dozen items). This is because lists slightly overallocate memory to optimize the performance of operations that add new items. Because tuples are immutable, they use a more compact representation where there is no extra space.

Tuples and lists are often used together to represent data. For example, this program shows how you might read a file consisting of different columns of data separated by commas:

[image: image]

The split() method of strings splits a string into a list of fields separated by the given delimiter character. The resulting portfolio data structure created by this program looks like a two-dimension array of rows and columns. Each row is represented by a tuple and can be accessed as follows:

[image: image]

Individual items of data can be accessed like this:

[image: image]

Here’s an easy way to loop over all of the records and expand fields into a set of variables:

[image: image]

Sets

A set is used to contain an unordered collection of objects. To create a set, use the set() function and supply a sequence of items such as follows:

[image: image]

Unlike lists and tuples, sets are unordered and cannot be indexed by numbers. Moreover, the elements of a set are never duplicated. For example, if you inspect the value of t from the preceding code, you get the following:

[image: image]

Notice that only one 'l' appears.

Sets support a standard collection of operations, including union, intersection, difference, and symmetric difference. Here’s an example:

[image: image]

New items can be added to a set using add() or update():

[image: image]

An item can be removed using remove():

t.remove('H')

Dictionaries

A dictionary is an associative array or hash table that contains objects indexed by keys. You create a dictionary by enclosing the values in curly braces ({ }), like this:

[image: image]

To access members of a dictionary, use the key-indexing operator as follows:

[image: image]

Inserting or modifying objects works like this:

[image: image]

Although strings are the most common type of key, you can use many other Python objects, including numbers and tuples. Some objects, including lists and dictionaries, cannot be used as keys because their contents can change.

A dictionary is a useful way to define an object that consists of named fields as shown previously. However, dictionaries are also used as a container for performing fast lookups on unordered data. For example, here’s a dictionary of stock prices:

[image: image]

An empty dictionary is created in one of two ways:

[image: image]

Dictionary membership is tested with the in operator, as in the following example:

[image: image]

This particular sequence of steps can also be performed more compactly as follows:

p = prices.get("SCOX",0.0)

To obtain a list of dictionary keys, convert a dictionary to a list:

syms = list(prices) # syms = ["AAPL", "MSFT", "IBM", "GOOG"]

Use the del statement to remove an element of a dictionary:

del prices["MSFT"]

Dictionaries are probably the most finely tuned data type in the Python interpreter. So, if you are merely trying to store and work with data in your program, you are almost always better off using a dictionary than trying to come up with some kind of custom data structure on your own.

Iteration and Looping

The most widely used looping construct is the for statement, which is used to iterate over a collection of items. Iteration is one of Python’s richest features. However, the most common form of iteration is to simply loop over all the members of a sequence such as a string, list, or tuple. Here’s an example:

[image: image]

In this example, the variable n will be assigned successive items from the list [1,2,3,4,...,9] on each iteration. Because looping over ranges of integers is quite common, the following shortcut is often used for that purpose:

[image: image]

The range(i,j
[,stride]) function creates an object that represents a range of integers with values i to j-1. If the starting value is omitted, it’s taken to be zero. An optional stride can also be given as a third argument. Here’s an example:

[image: image]

One caution with range() is that in Python 2, the value it creates is a fully populated list with all of the integer values. For extremely large ranges, this can inadvertently consume all available memory. Therefore, in older Python code, you will see programmers using an alternative function xrange(). For example:

[image: image]

The object created by xrange() computes the values it represents on demand when lookups are requested. For this reason, it is the preferred way to represent extremely large ranges of integer values. In Python 3, the xrange() function has been renamed to range() and the functionality of the old range() function has been removed.

The for statement is not limited to sequences of integers and can be used to iterate over many kinds of objects including strings, lists, dictionaries, and files. Here’s an example:

[image: image]

The for loop is one of Python’s most powerful language features because you can create custom iterator objects and generator functions that supply it with sequences of values. More details about iterators and generators can be found later in this chapter and in Chapter 6, “Functions and Functional Programming.”

Functions

You use the def statement to create a function, as shown in the following example:

[image: image]

To invoke a function, simply use the name of the function followed by its arguments enclosed in parentheses, such as result = remainder(37,15). You can use a tuple to return multiple values from a function, as shown here:

[image: image]

When returning multiple values in a tuple, you can easily unpack the result into separate variables like this:

quotient, remainder = divide(1456,33)

To assign a default value to a function parameter, use assignment:

[image: image]

When default values are given in a function definition, they can be omitted from subsequent function calls. When omitted, the argument will simply take on the default value. Here’s an example:

connect('www.python.org', 80)

You also can invoke functions by using keyword arguments and supplying the arguments in arbitrary order. However, this requires you to know the names of the arguments in the function definition. Here’s an example:

connect(port=80,hostname="www.python.org")

When variables are created or assigned inside a function, their scope is local. That is, the variable is only defined inside the body of the function and is destroyed when the function returns. To modify the value of a global variable from inside a function, use the global statement as follows:

[image: image]

Generators

Instead of returning a single value, a function can generate an entire sequence of results if it uses the yield statement. For example:

[image: image]

Any function that uses yield is known as a generator. Calling a generator function creates an object that produces a sequence of results through successive calls to a next() method (or _ _next_ _() in Python 3). For example:

[image: image]

The next() call makes a generator function run until it reaches the next yield statement. At this point, the value passed to yield is returned by next(), and the function suspends execution. The function resumes execution on the statement following yield when next() is called again. This process continues until the function returns.

Normally you would not manually call next() as shown. Instead, you hook it up to a for loop like this:

[image: image]

Generators are an extremely powerful way of writing programs based on processing pipelines, streams, or data flow. For example, the following generator function mimics the behavior of the UNIX tail -f command that’s commonly used to monitor log files:

[image: image]

Here’s a generator that looks for a specific substring in a sequence of lines:

[image: image]

Here’s an example of hooking both of these generators together to create a simple processing pipeline:

[image: image]

A subtle aspect of generators is that they are often mixed together with other iterable objects such as lists or files. Specifically, when you write a statement such as for
item
in
s, s could represent a list of items, the lines of a file, the result of a generator function, or any number of other objects that support iteration. The fact that you can just plug different objects in for s can be a powerful tool for creating extensible programs.

Coroutines

Normally, functions operate on a single set of input arguments. However, a function can also be written to operate as a task that processes a sequence of inputs sent to it. This type of function is known as a coroutine and is created by using the yield statement as an expression (yield) as shown in this example:

[image: image]

To use this function, you first call it, advance it to the first (yield), and then start sending data to it using send(). For example:

[image: image]

A coroutine is suspended until a value is sent to it using send(). When this happens, that value is returned by the (yield) expression inside the coroutine and is processed by the statements that follow. Processing continues until the next (yield) expression is encountered—at which point the function suspends. This continues until the coroutine function returns or close() is called on it as shown in the previous example.

Coroutines are useful when writing concurrent programs based on producer-consumer problems where one part of a program is producing data to be consumed by another part of the program. In this model, a coroutine represents a consumer of data. Here is an example of using generators and coroutines together:

[image: image]

Further details about coroutines can be found in Chapter 6.

Objects and Classes

All values used in a program are objects. An object consists of internal data and methods that perform various kinds of operations involving that data. You have already used objects and methods when working with the built-in types such as strings and lists. For example:

[image: image]

The dir() function lists the methods available on an object and is a useful tool for interactive experimentation. For example:

[image: image]

When inspecting objects, you will see familiar methods such as append() and insert() listed. However, you will also see special methods that always begin and end with a double underscore. These methods implement various language operations. For example, the _ _add_ _() method implements the + operator:

[image: image]

The class statement is used to define new types of objects and for object-oriented programming. For example, the following class defines a simple stack with push(), pop(), and length() operations:

[image: image]

In the first line of the class definition, the statement class Stack(object) declares Stack to be an object. The use of parentheses is how Python specifies inheritance—in this case, Stack inherits from object, which is the root of all Python types. Inside the class definition, methods are defined using the def statement. The first argument in each method always refers to the object itself. By convention, self is the name used for this argument. All operations involving the attributes of an object must explicitly refer to the self variable. Methods with leading and trailing double underscores are special methods. For example, _ _init_ _ is used to initialize an object after it’s created.

To use a class, write code such as the following:

[image: image]

In this example, an entirely new object was created to implement the stack. However, a stack is almost identical to the built-in list object. Therefore, an alternative approach would be to inherit from list and add an extra method:

[image: image]

Normally, all of the methods defined within a class apply only to instances of that class (that is, the objects that are created). However, different kinds of methods can be defined such as static methods familiar to C++ and Java programmers. For example:

[image: image]

In this case, @staticmethod declares the method that follows to be a static method. @staticmethod is an example of using an a decorator, a topic that is discussed further in Chapter 6.

Exceptions

If an error occurs in your program, an exception is raised and a traceback message such as the following appears:

[image: image]

The traceback message indicates the type of error that occurred, along with its location. Normally, errors cause a program to terminate. However, you can catch and handle exceptions using try and except statements, like this:

[image: image]

If an IOError occurs, details concerning the cause of the error are placed in e and control passes to the code in the except block. If some other kind of exception is raised, it’s passed to the enclosing code block (if any). If no errors occur, the code in the except block is ignored. When an exception is handled, program execution resumes with the statement that immediately follows the last except block. The program does not return to the location where the exception occurred.

The raise statement is used to signal an exception. When raising an exception, you can use one of the built-in exceptions, like this:

raise RuntimeError("Computer says no")

Or you can create your own exceptions, as described in the section “Defining New Exceptions” in Chapter 5, “Program Structure and Control Flow.”

Proper management of system resources such as locks, files, and network connections is often a tricky problem when combined with exception handling. To simplify such programming, you can use the with statement with certain kinds of objects. Here is an example of writing code that uses a mutex lock:

[image: image]

In this example, the message_lock object is automatically acquired when the with statement executes. When execution leaves the context of the with block, the lock is automatically released. This management takes place regardless of what happens inside the with block. For example, if an exception occurs, the lock is released when control leaves the context of the block.

The with statement is normally only compatible with objects related to system resources or the execution environment such as files, connections, and locks. However, user-defined objects can define their own custom processing. This is covered in more detail in the “Context Management Protocol” section of Chapter 3, “Types and Objects.”

Modules

As your programs grow in size, you will want to break them into multiple files for easier maintenance. To do this, Python allows you to put definitions in a file and use them as a module that can be imported into other programs and scripts. To create a module, put the relevant statements and definitions into a file that has the same name as the module. (Note that the file must have a .py suffix.) Here’s an example:

[image: image]

To use your module in other programs, you can use the import statement:

[image: image]

The import statement creates a new namespace and executes all the statements in the associated .py file within that namespace. To access the contents of the namespace after import, simply use the name of the module as a prefix, as in div.divide() in the preceding example.

If you want to import a module using a different name, supply the import statement with an optional as qualifier, as follows:

[image: image]

To import specific definitions into the current namespace, use the from statement:

[image: image]

To load all of a module’s contents into the current namespace, you can also use the following:

from div import *

As with objects, the dir() function lists the contents of a module and is a useful tool for interactive experimentation:

[image: image]

Getting Help

When working with Python, you have several sources of quickly available information. First, when Python is running in interactive mode, you can use the help() command to get information about built-in modules and other aspects of Python. Simply type help() by itself for general information or help('modulename') for information about a specific module. The help() command can also be used to return information about specific functions if you supply a function name.

Most Python functions have documentation strings that describe their usage. To print the doc string, simply print the _ _doc_ _ attribute. Here’s an example:

[image: image]

Last, but not least, most Python installations also include the command pydoc, which can be used to return documentation about Python modules. Simply type pydoc
topic at a system command prompt.

2. Lexical Conventions and Syntax

This chapter describes the syntactic and lexical conventions of a Python program. Topics include line structure, grouping of statements, reserved words, literals, operators, tokens, and source code encoding.

Line Structure and Indentation

Each statement in a program is terminated with a newline. Long statements can span multiple lines by using the line-continuation character (\), as shown in the following example:

[image: Image]

You don’t need the line-continuation character when the definition of a triple-quoted string, list, tuple, or dictionary spans multiple lines. More generally, any part of a program enclosed in parentheses (...), brackets [...], braces {...}, or triple quotes can span multiple lines without use of the line-continuation character because they clearly denote the start and end of a definition.

Indentation is used to denote different blocks of code, such as the bodies of functions, conditionals, loops, and classes. The amount of indentation used for the first statement of a block is arbitrary, but the indentation of the entire block must be consistent. Here’s an example:

[image: Image]

If the body of a function, conditional, loop, or class is short and contains only a single statement, it can be placed on the same line, like this:

[image: Image]

To denote an empty body or block, use the pass statement. Here’s an example:

[image: Image]

Although tabs can be used for indentation, this practice is discouraged. The use of spaces is universally preferred (and encouraged) by the Python programming community. When tab characters are encountered, they’re converted into the number of spaces required to move to the next column that’s a multiple of 8 (for example, a tab appearing in column 11 inserts enough spaces to move to column 16). Running Python with the -t option prints warning messages when tabs and spaces are mixed inconsistently within the same program block. The -tt option turns these warning messages into TabError exceptions.

To place more than one statement on a line, separate the statements with a semicolon (;). A line containing a single statement can also be terminated by a semicolon, although this is unnecessary.

The # character denotes a comment that extends to the end of the line. A # appearing inside a quoted string doesn’t start a comment, however.

Finally, the interpreter ignores all blank lines except when running in interactive mode. In this case, a blank line signals the end of input when typing a statement that spans multiple lines.

Identifiers and Reserved Words

An identifier is a name used to identify variables, functions, classes, modules, and other objects. Identifiers can include letters, numbers, and the underscore character (_) but must always start with a nonnumeric character. Letters are currently confined to the characters A–Z and a–z in the ISO–Latin character set. Because identifiers are case-sensitive, FOO is different from foo. Special symbols such as $, %, and @ are not allowed in identifiers. In addition, words such as if, else, and for are reserved and cannot be used as identifier names. The following list shows all the reserved words:

[image: Image]

Identifiers starting or ending with underscores often have special meanings. For example, identifiers starting with a single underscore such as _foo are not imported by the from module import * statement. Identifiers with leading and trailing double underscores such as _ _init_ _ are reserved for special methods, and identifiers with leading double underscores such as _ _bar are used to implement private class members, as described in Chapter 7, “Classes and Object-Oriented Programming.” General-purpose use of similar identifiers should be avoided.

Numeric Literals

There are four types of built-in numeric literals:

• Booleans

• Integers

• Floating-point numbers

• Complex numbers

The identifiers True and False are interpreted as Boolean values with the integer values of 1 and 0, respectively. A number such as 1234 is interpreted as a decimal integer. To specify an integer using octal, hexadecimal, or binary notation, precede the value with 0, 0x, or 0b, respectively (for example, 0644, 0x100fea8, or 0b11101010).

Integers in Python can have an arbitrary number of digits, so if you want to specify a really large integer, just write out all of the digits, as in 12345678901234567890. However, when inspecting values and looking at old Python code, you might see large numbers written with a trailing l (lowercase L) or L character, as in 12345678901234567890L. This trailing L is related to the fact that Python internally represents integers as either a fixed-precision machine integer or an arbitrary precision long integer type depending on the magnitude of the value. In older versions of Python, you could explicitly choose to use either type and would add the trailing L to explicitly indicate the long type. Today, this distinction is unnecessary and is actively discouraged. So, if you want a large integer value, just write it without the L.

Numbers such as 123.34 and 1.2334e+02 are interpreted as floating-point numbers. An integer or floating-point number with a trailing j or J, such as 12.34J, is an imaginary number. You can create complex numbers with real and imaginary parts by adding a real number and an imaginary number, as in 1.2 + 12.34J.

String Literals

String literals are used to specify a sequence of characters and are defined by enclosing text in single ('), double ("), or triple (''' or """) quotes. There is no semantic difference between quoting styles other than the requirement that you use the same type of quote to start and terminate a string. Single- and double-quoted strings must be defined on a single line, whereas triple-quoted strings can span multiple lines and include all of the enclosed formatting (that is, newlines, tabs, spaces, and so on). Adjacent strings (separated by white space, newline, or a line-continuation character) such as "hello" 'world' are concatenated to form a single string "helloworld".

Within string literals, the backslash (\) character is used to escape special characters such as newlines, the backslash itself, quotes, and nonprinting characters. Table 2.1 shows the accepted escape codes. Unrecognized escape sequences are left in the string unmodified and include the leading backslash.

Table 2.1 Standard Character Escape Codes

[image: image]

The escape codes \OOO and \x are used to embed characters into a string literal that can’t be easily typed (that is, control codes, nonprinting characters, symbols, international characters, and so on). For these escape codes, you have to specify an integer value corresponding to a character value. For example, if you wanted to write a string literal for the word “Jalapeño”, you might write it as "Jalape\xf1o" where \xf1 is the character code for ñ.

In Python 2 string literals correspond to 8-bit character or byte-oriented data. A serious limitation of these strings is that they do not fully support international character sets and Unicode. To address this limitation, Python 2 uses a separate string type for Unicode data. To write a Unicode string literal, you prefix the first quote with the letter “u”. For example:

s = u"Jalape\u00f1o"

In Python 3, this prefix character is unnecessary (and is actually a syntax error) as all strings are already Unicode. Python 2 will emulate this behavior if you run the interpreter with the -U option (in which case all string literals will be treated as Unicode and the u prefix can be omitted).

Regardless of which Python version you are using, the escape codes of \u, \U, and \N in Table 2.1 are used to insert arbitrary characters into a Unicode literal. Every Unicode character has an assigned code point, which is typically denoted in Unicode charts as U+XXXX where XXXX is a sequence of four or more hexadecimal digits. (Note that this notation is not Python syntax but is often used by authors when describing Unicode characters.) For example, the character ñ has a code point of U+00F1. The \u escape code is used to insert Unicode characters with code points in the range U+0000 to U+FFFF (for example, \u00f1). The \U escape code is used to insert characters in the range U+10000 and above (for example, \U00012345). One subtle caution concerning the \U escape code is that Unicode characters with code points above U+10000 usually get decomposed into a pair of characters known as a surrogate pair. This has to do with the internal representation of Unicode strings and is covered in more detail in Chapter 3, “Types and Objects.”

Unicode characters also have a descriptive name. If you know the name, you can use the \N{character name} escape sequence. For example:

s = u"Jalape\N{LATIN SMALL LETTER N WITH TILDE}o"

For an authoritative reference on code points and character names, consult http://www.unicode.org/charts.

Optionally, you can precede a string literal with an r or R, such as in r'\d'. These strings are known as raw strings because all their backslash characters are left intact—that is, the string literally contains the enclosed text, including the backslashes. The main use of raw strings is to specify literals where the backslash character has some significance. Examples might include the specification of regular expression patterns with the re module or specifying a filename on a Windows machine (for example, r'c:\newdata\tests').

Raw strings cannot end in a single backslash, such as r"\". Within raw strings, \uXXXX escape sequences are still interpreted as Unicode characters, provided that the number of preceding \ characters is odd. For instance, ur"\u1234" defines a raw Unicode string with the single character U+1234, whereas ur"\\u1234" defines a seven-character string in which the first two characters are slashes and the remaining five characters are the literal "u1234". Also, in Python 2.2, the r must appear after the u in raw Unicode strings as shown. In Python 3.0, the u prefix is unnecessary.

String literals should not be defined using a sequence of raw bytes that correspond to a data encoding such as UTF-8 or UTF-16. For example, directly writing a raw UTF-8 encoded string such as 'Jalape\xc3\xb1o' simply produces a nine-character string U+004A, U+0061, U+006C, U+0061, U+0070, U+0065, U+00C3, U+00B1, U+006F, which is probably not what you intended. This is because in UTF-8, the multibyte sequence \xc3\xb1 is supposed to represent the single character U+00F1, not the two characters U+00C3 and U+00B1. To specify an encoded byte string as a literal, prefix the first quote with a "b" as in b"Jalape\xc3\xb1o". When defined, this literally creates a string of single bytes. From this representation, it is possible to create a normal string by decoding the value of the byte literal with its decode() method. More details about this are covered in Chapter 3 and Chapter 4, “Operators and Expressions.”

The use of byte literals is quite rare in most programs because this syntax did not appear until Python 2.6, and in that version there is no difference between a byte literal and a normal string. In Python 3, however, byte literals are mapped to a new bytes datatype that behaves differently than a normal string (see Appendix A, “Python 3”).

Containers

Values enclosed in square brackets [...], parentheses (...), and braces {...} denote a collection of objects contained in a list, tuple, and dictionary, respectively, as in the following example:

[image: Image]

List, tuple, and dictionary literals can span multiple lines without using the line-continuation character (\). In addition, a trailing comma is allowed on the last item. For example:

[image: Image]

Operators, Delimiters, and Special Symbols

The following operators are recognized:

[image: Image]

The following tokens serve as delimiters for expressions, lists, dictionaries, and various parts of a statement:

[image: Image]

For example, the equal (=) character serves as a delimiter between the name and value of an assignment, whereas the comma (,) character is used to delimit arguments to a function, elements in lists and tuples, and so on. The period (.) is also used in floating-point numbers and in the ellipsis (...) used in extended slicing operations.

Finally, the following special symbols are also used:

[image: Image]

The characters $ and ? have no meaning in Python and cannot appear in a program except inside a quoted string literal.

Documentation Strings

If the first statement of a module, class, or function definition is a string, that string becomes a documentation string for the associated object, as in the following example:

[image: Image]

Code-browsing and documentation-generation tools sometimes use documentation strings. The strings are accessible in the _ _doc_ _ attribute of an object, as shown here:

[image: Image]

The indentation of the documentation string must be consistent with all the other statements in a definition. In addition, a documentation string cannot be computed or assigned from a variable as an expression. The documentation string always has to be a string literal enclosed in quotes.

Decorators

Function, method, or class definitions may be preceded by a special symbol known as a decorator, the purpose of which is to modify the behavior of the definition that follows. Decorators are denoted with the @ symbol and must be placed on a separate line immediately before the corresponding function, method, or class. Here’s an example:

[image: Image]

More than one decorator can be used, but each one must be on a separate line. Here’s an example:

[image: Image]

More information about decorators can be found in Chapter 6, “Functions and Functional Programming,” and Chapter 7, “Classes and Object-Oriented Programming.”

Source Code Encoding

Python source programs are normally written in standard 7-bit ASCII. However, users working in Unicode environments may find this awkward—especially if they must write a lot of string literals with international characters.

It is possible to write Python source code in a different encoding by including a special encoding comment in the first or second line of a Python program:

[image: Image]

When the special coding: comment is supplied, string literals may be typed in directly using a Unicode-aware editor. However, other elements of Python, including identifier names and reserved words, should still be restricted to ASCII characters.

3. Types and Objects

All the data stored in a Python program is built around the concept of an object. Objects include fundamental data types such as numbers, strings, lists, and dictionaries. However, it’s also possible to create user-defined objects in the form of classes. In addition, most objects related to program structure and the internal operation of the interpreter are also exposed. This chapter describes the inner workings of the Python object model and provides an overview of the built-in data types. Chapter 4, “Operators and Expressions,” further describes operators and expressions. Chapter 7, “Classes and Object-Oriented Programming,” describes how to create user-defined objects.

Terminology

Every piece of data stored in a program is an object. Each object has an identity, a type (which is also known as its class), and a value. For example, when you write a = 42, an integer object is created with the value of 42. You can view the identity of an object as a pointer to its location in memory. a is a name that refers to this specific location.

The type of an object, also known as the object’s class, describes the internal representation of the object as well as the methods and operations that it supports. When an object of a particular type is created, that object is sometimes called an instance of that type. After an instance is created, its identity and type cannot be changed. If an object’s value can be modified, the object is said to be mutable. If the value cannot be modified, the object is said to be immutable. An object that contains references to other objects is said to be a container or collection.

Most objects are characterized by a number of data attributes and methods. An attribute is a value associated with an object. A method is a function that performs some sort of operation on an object when the method is invoked as a function. Attributes and methods are accessed using the dot (.) operator, as shown in the following example:

[image: Image]

Object Identity and Type

The built-in function id() returns the identity of an object as an integer. This integer usually corresponds to the object’s location in memory, although this is specific to the Python implementation and no such interpretation of the identity should be made. The is operator compares the identity of two objects. The built-in function type() returns the type of an object. Here’s an example of different ways you might compare two objects:

[image: Image]

The type of an object is itself an object known as the object’s class. This object is uniquely defined and is always the same for all instances of a given type. Therefore, the type can be compared using the is operator. All type objects are assigned names that can be used to perform type checking. Most of these names are built-ins, such as list, dict, and file. Here’s an example:

[image: Image]

Because types can be specialized by defining classes, a better way to check types is to use the built-in isinstance(object,
type) function. Here’s an example:

[image: Image]

Because the isinstance() function is aware of inheritance, it is the preferred way to check the type of any Python object.

Although type checks can be added to a program, type checking is often not as useful as you might imagine. For one, excessive checking severely affects performance. Second, programs don’t always define objects that neatly fit into an inheritance hierarchy. For instance, if the purpose of the preceding isinstance(s,list) statement is to test whether s is “list-like,” it wouldn’t work with objects that had the same programming interface as a list but didn’t directly inherit from the built-in list type. Another option for adding type-checking to a program is to define abstract base classes. This is described in Chapter 7.

Reference Counting and Garbage Collection

All objects are reference-counted. An object’s reference count is increased whenever it’s assigned to a new name or placed in a container such as a list, tuple, or dictionary, as shown here:

[image: Image]

This example creates a single object containing the value 37. a is merely a name that refers to the newly created object. When b is assigned a, b becomes a new name for the same object and the object’s reference count increases. Likewise, when you place b into a list, the object’s reference count increases again. Throughout the example, only one object contains 37. All other operations are simply creating new references to the object.

An object’s reference count is decreased by the del statement or whenever a reference goes out of scope (or is reassigned). Here’s an example:

[image: Image]

The current reference count of an object can be obtained using the sys.getrefcount() function. For example:

[image: Image]

In many cases, the reference count is much higher than you might guess. For immutable data such as numbers and strings, the interpreter aggressively shares objects between different parts of the program in order to conserve memory.

When an object’s reference count reaches zero, it is garbage-collected. However, in some cases a circular dependency may exist among a collection of objects that are no longer in use. Here’s an example:

[image: Image]

In this example, the del statements decrease the reference count of a and b and destroy the names used to refer to the underlying objects. However, because each object contains a reference to the other, the reference count doesn’t drop to zero and the objects remain allocated (resulting in a memory leak). To address this problem, the interpreter periodically executes a cycle detector that searches for cycles of inaccessible objects and deletes them. The cycle-detection algorithm runs periodically as the interpreter allocates more and more memory during execution. The exact behavior can be fine-tuned and controlled using functions in the gc module (see Chapter 13, “Python Runtime Services”).

References and Copies

When a program makes an assignment such as a = b, a new reference to b is created. For immutable objects such as numbers and strings, this assignment effectively creates a copy of b. However, the behavior is quite different for mutable objects such as lists and dictionaries. Here’s an example:

[image: Image]

Because a and b refer to the same object in this example, a change made to one of the variables is reflected in the other. To avoid this, you have to create a copy of an object rather than a new reference.

Two types of copy operations are applied to container objects such as lists and dictionaries: a shallow copy and a deep copy. A shallow copy creates a new object but populates it with references to the items contained in the original object. Here’s an example:

[image: Image]

In this case, a and b are separate list objects, but the elements they contain are shared. Therefore, a modification to one of the elements of a also modifies an element of b, as shown.

A deep copy creates a new object and recursively copies all the objects it contains. There is no built-in operation to create deep copies of objects. However, the copy.deepcopy() function in the standard library can be used, as shown in the following example:

[image: Image]

First-Class Objects

All objects in Python are said to be “first class.” This means that all objects that can be named by an identifier have equal status. It also means that all objects that can be named can be treated as data. For example, here is a simple dictionary containing two values:

[image: Image]

The first-class nature of objects can be seen by adding some more unusual items to this dictionary. Here are some examples:

[image: Image]

In this example, the items dictionary contains a function, a module, an exception, and a method of another object. If you want, you can use dictionary lookups on items in place of the original names and the code will still work. For example:

[image: Image]

The fact that everything in Python is first-class is often not fully appreciated by new programmers. However, it can be used to write very compact and flexible code. For example, suppose you had a line of text such as "GOOG,100,490.10" and you wanted to convert it into a list of fields with appropriate type-conversion. Here’s a clever way that you might do it by creating a list of types (which are first-class objects) and executing a few simple list processing operations:

[image: Image]

Built-in Types for Representing Data

There are approximately a dozen built-in data types that are used to represent most of the data used in programs. These are grouped into a few major categories as shown in Table 3.1. The Type Name column in the table lists the name or expression that you can use to check for that type using isinstance() and other type-related functions. Certain types are only available in Python 2 and have been indicated as such (in Python 3, they have been deprecated or merged into one of the other types).

Table 3.1 Built-In Types for Data Representation

[image: image]

The None Type

The None type denotes a null object (an object with no value). Python provides exactly one null object, which is written as None in a program. This object is returned by functions that don’t explicitly return a value. None is frequently used as the default value of optional arguments, so that the function can detect whether the caller has actually passed a value for that argument. None has no attributes and evaluates to False in Boolean expressions.

Numeric Types

Python uses five numeric types: Booleans, integers, long integers, floating-point numbers, and complex numbers. Except for Booleans, all numeric objects are signed. All numeric types are immutable.

Booleans are represented by two values: True and False. The names True and False are respectively mapped to the numerical values of 1 and 0.

Integers represent whole numbers in the range of –2147483648 to 2147483647 (the range may be larger on some machines). Long integers represent whole numbers of unlimited range (limited only by available memory). Although there are two integer types, Python tries to make the distinction seamless (in fact, in Python 3, the two types have been unified into a single integer type). Thus, although you will sometimes see references to long integers in existing Python code, this is mostly an implementation detail that can be ignored—just use the integer type for all integer operations. The one exception is in code that performs explicit type checking for integer values. In Python 2, the expression isinstance(x, int) will return False if x is an integer that has been promoted to a long.

Floating-point numbers are represented using the native double-precision (64-bit) representation of floating-point numbers on the machine. Normally this is IEEE 754, which provides approximately 17 digits of precision and an exponent in the range of –308 to 308. This is the same as the double type in C. Python doesn’t support 32-bit single-precision floating-point numbers. If precise control over the space and precision of numbers is an issue in your program, consider using the numpy extension (which can be found at http://numpy.sourceforge.net).

Complex numbers are represented as a pair of floating-point numbers. The real and imaginary parts of a complex number z are available in z.real and z.imag. The method z.conjugate() calculates the complex conjugate of z (the conjugate of a+bj is a-bj).

Numeric types have a number of properties and methods that are meant to simplify operations involving mixed arithmetic. For simplified compatibility with rational numbers (found in the fractions module), integers have the properties x.numerator and x.denominator. An integer or floating-point number y has the properties y.real and y.imag as well as the method y.conjugate() for compatibility with complex numbers. A floating-point number y can be converted into a pair of integers representing a fraction using y.as_integer_ratio(). The method y.is_integer() tests if a floating-point number y represents an integer value. Methods y.hex() and y.fromhex() can be used to work with floating-point numbers using their low-level binary representation.

Several additional numeric types are defined in library modules. The decimal module provides support for generalized base-10 decimal arithmetic. The fractions module adds a rational number type. These modules are covered in Chapter 14, “Mathematics.”

Sequence Types

Sequences represent ordered sets of objects indexed by non-negative integers and include strings, lists, and tuples. Strings are sequences of characters, and lists and tuples are sequences of arbitrary Python objects. Strings and tuples are immutable; lists allow insertion, deletion, and substitution of elements. All sequences support iteration.

Operations Common to All Sequences

Table 3.2 shows the operators and methods that you can apply to all sequence types. Element i of sequence s is selected using the indexing operator s[i], and subsequences are selected using the slicing operator s[i:j] or extended slicing operator s[i:j:stride] (these operations are described in Chapter 4). The length of any sequence is returned using the built-in len(s) function. You can find the minimum and maximum values of a sequence by using the built-in min(s) and max(s) functions. However, these functions only work for sequences in which the elements can be ordered (typically numbers and strings). sum(s) sums items in s but only works for numeric data.

Table 3.2 Operations and Methods Applicable to All Sequences

[image: image]

Table 3.3 shows the additional operators that can be applied to mutable sequences such as lists.

Table 3.3 Operations Applicable to Mutable Sequences

[image: image]

Lists

Lists support the methods shown in Table 3.4. The built-in function list(s) converts any iterable type to a list. If s is already a list, this function constructs a new list that’s a shallow copy of s. The s.append(x) method appends a new element, x, to the end of the list. The s.index(x) method searches the list for the first occurrence of x. If no such element is found, a ValueError exception is raised. Similarly, the s.remove(x) method removes the first occurrence of x from the list or raises ValueError if no such item exists. The s.extend(t) method extends the list s by appending the elements in sequence t.

Table 3.4 List Methods

[image: image]

The s.sort() method sorts the elements of a list and optionally accepts a key function and reverse flag, both of which must be specified as keyword arguments. The key function is a function that is applied to each element prior to comparison during sorting. If given, this function should take a single item as input and return the value that will be used to perform the comparison while sorting. Specifying a key function is useful if you want to perform special kinds of sorting operations such as sorting a list of strings, but with case insensitivity. The s.reverse() method reverses the order of the items in the list. Both the sort() and reverse() methods operate on the list elements in place and return None.

Strings

Python 2 provides two string object types. Byte strings are sequences of bytes containing 8-bit data. They may contain binary data and embedded NULL bytes. Unicode strings are sequences of unencoded Unicode characters, which are internally represented by 16-bit integers. This allows for 65,536 unique character values. Although the Unicode standard supports up to 1 million unique character values, these extra characters are not supported by Python by default. Instead, they are encoded as a special two-character (4-byte) sequence known as a surrogate pair—the interpretation of which is up to the application. As an optional feature, Python may be built to store Unicode characters using 32-bit integers. When enabled, this allows Python to represent the entire range of Unicode values from U+000000 to U+110000. All Unicode-related functions are adjusted accordingly.

Strings support the methods shown in Table 3.5. Although these methods operate on string instances, none of these methods actually modifies the underlying string data. Thus, methods such as s.capitalize(), s.center(), and s.expandtabs() always return a new string as opposed to modifying the string s. Character tests such as s.isalnum() and s.isupper() return True or False if all the characters in the string s satisfy the test. Furthermore, these tests always return False if the length of the string is zero.

Table 3.5 String Methods

[image: image]

[image: image]

[image: image]

The s.find(), s.index(), s.rfind(), and s.rindex() methods are used to search s for a substring. All these functions return an integer index to the substring in s. In addition, the find() method returns -1 if the substring isn’t found, whereas the index() method raises a ValueError exception. The s.replace() method is used to replace a substring with replacement text. It is important to emphasize that all of these methods only work with simple substrings. Regular expression pattern matching and searching is handled by functions in the re library module.

The s.split() and s.rsplit() methods split a string into a list of fields separated by a delimiter. The s.partition() and s.rpartition() methods search for a separator substring and partition s into three parts corresponding to text before the separator, the separator itself, and text after the separator.

Many of the string methods accept optional start and end parameters, which are integer values specifying the starting and ending indices in s. In most cases, these values may be given negative values, in which case the index is taken from the end of the string.

The s.translate() method is used to perform advanced character substitutions such as quickly stripping all control characters out of a string. As an argument, it accepts a translation table containing a one-to-one mapping of characters in the original string to characters in the result. For 8-bit strings, the translation table is a 256-character string. For Unicode, the translation table can be any sequence object s where s[n] returns an integer character code or Unicode character corresponding to the Unicode character with integer value n.

The s.encode() and s.decode() methods are used to transform string data to and from a specified character encoding. As input, these accept an encoding name such as 'ascii', 'utf-8', or 'utf-16'. These methods are most commonly used to convert Unicode strings into a data encoding suitable for I/O operations and are described further in Chapter 9, “Input and Output.” Be aware that in Python 3, the encode() method is only available on strings, and the decode() method is only available on the bytes datatype.

The s.format() method is used to perform string formatting. As arguments, it accepts any combination of positional and keyword arguments. Placeholders in s denoted by {item} are replaced by the appropriate argument. Positional arguments can be referenced using placeholders such as {0} and {1}. Keyword arguments are referenced using a placeholder with a name such as {name}. Here is an example:

[image: Image]

Within the special format strings, the {item} placeholders can also include simple index and attribute lookup. A placeholder of {item[n]} where n is a number performs a sequence lookup on item. A placeholder of {item[key]} where key is a nonnumeric string performs a dictionary lookup of item["key"]. A placeholder of {item.attr} refers to attribute attr of item. Further details on the format() method can be found in the “String Formatting” section of Chapter 4.

xrange() Objects

The built-in function xrange([i,]j
[,stride]) creates an object that represents a range of integers k such that i
<=
k
<
j. The first index, i, and the stride are optional and have default values of 0 and 1, respectively. An xrange object calculates its values whenever it’s accessed and although an xrange object looks like a sequence, it is actually somewhat limited. For example, none of the standard slicing operations are supported. This limits the utility of xrange to only a few applications such as iterating in simple loops.

It should be noted that in Python 3, xrange() has been renamed to range(). However, it operates in exactly the same manner as described here.

Mapping Types

A mapping object represents an arbitrary collection of objects that are indexed by another collection of nearly arbitrary key values. Unlike a sequence, a mapping object is unordered and can be indexed by numbers, strings, and other objects. Mappings are mutable.

Dictionaries are the only built-in mapping type and are Python’s version of a hash table or associative array. You can use any immutable object as a dictionary key value (strings, numbers, tuples, and so on). Lists, dictionaries, and tuples containing mutable objects cannot be used as keys (the dictionary type requires key values to remain constant).

To select an item in a mapping object, use the key index operator m[k], where k is a key value. If the key is not found, a KeyError exception is raised. The len(m) function returns the number of items contained in a mapping object. Table 3.6 lists the methods and operations.

Table 3.6 Methods and Operations for Dictionaries

[image: image]

Most of the methods in Table 3.6 are used to manipulate or retrieve the contents of a dictionary. The m.clear() method removes all items. The m.update(b) method updates the current mapping object by inserting all the (key,value) pairs found in the mapping object b. The m.get(k
[,v]) method retrieves an object but allows for an optional default value, v, that’s returned if no such key exists. The m.setdefault(k
[,v]) method is similar to m.get(), except that in addition to returning v if no object exists, it sets m[k] =
v. If v is omitted, it defaults to None. The m.pop() method returns an item from a dictionary and removes it at the same time. The m.popitem() method is used to iteratively destroy the contents of a dictionary.

The m.copy() method makes a shallow copy of the items contained in a mapping object and places them in a new mapping object. The m.fromkeys(s
[,value]) method creates a new mapping with keys all taken from a sequence s. The type of the resulting mapping will be the same as m. The value associated with all of these keys is set to None unless an alternative value is given with the optional value parameter. The fromkeys() method is defined as a class method, so an alternative way to invoke it would be to use the class name such as dict.fromkeys().

The m.items() method returns a sequence containing (key,value) pairs. The m.keys() method returns a sequence with all the key values, and the m.values() method returns a sequence with all the values. For these methods, you should assume that the only safe operation that can be performed on the result is iteration. In Python 2 the result is a list, but in Python 3 the result is an iterator that iterates over the current contents of the mapping. If you write code that simply assumes it is an iterator, it will be generally compatible with both versions of Python. If you need to store the result of these methods as data, make a copy by storing it in a list. For example, items = list(m.items()). If you simply want a list of all keys, use keys = list(m).

Set Types

A set is an unordered collection of unique items. Unlike sequences, sets provide no indexing or slicing operations. They are also unlike dictionaries in that there are no key values associated with the objects. The items placed into a set must be immutable. Two different set types are available: set is a mutable set, and frozenset is an immutable set. Both kinds of sets are created using a pair of built-in functions:

[image: Image]

Both set() and frozenset() populate the set by iterating over the supplied argument. Both kinds of sets provide the methods outlined in Table 3.7.

Table 3.7 Methods and Operations for Set Types

[image: image]

The s.difference(t), s.intersection(t), s.symmetric_difference(t), and s.union(t) methods provide the standard mathematical operations on sets. The returned value has the same type as s (set or frozenset). The parameter t can be any Python object that supports iteration. This includes sets, lists, tuples, and strings. These set operations are also available as mathematical operators, as described further in Chapter 4.

Mutable sets (set) additionally provide the methods outlined in Table 3.8.

Table 3.8 Methods for Mutable Set Types

[image: image]

All these operations modify the set s in place. The parameter t can be any object that supports iteration.

Built-in Types for Representing Program Structure

In Python, functions, classes, and modules are all objects that can be manipulated as data. Table 3.9 shows types that are used to represent various elements of a program itself.

Table 3.9 Built-in Python Types for Program Structure

[image: image]

Note that object and type appear twice in Table 3.9 because classes and types are both callable as a function.

Callable Types

Callable types represent objects that support the function call operation. There are several flavors of objects with this property, including user-defined functions, built-in functions, instance methods, and classes.

User-Defined Functions

User-defined functions are callable objects created at the module level by using the def statement or with the lambda operator. Here’s an example:

[image: Image]

A user-defined function f has the following attributes:

[image: image]

In older versions of Python 2, many of the preceding attributes had names such as func_code, func_defaults, and so on. The attribute names listed are compatible with Python 2.6 and Python 3.

Methods

Methods are functions that are defined inside a class definition. There are three common types of methods—instance methods, class methods, and static methods:

[image: Image]

An instance method is a method that operates on an instance belonging to a given class. The instance is passed to the method as the first argument, which is called self by convention. A class method operates on the class itself as an object. The class object is passed to a class method in the first argument, cls. A static method is a just a function that happens to be packaged inside a class. It does not receive an instance or a class object as a first argument.

Both instance and class methods are represented by a special object of type types.MethodType. However, understanding this special type requires a careful understanding of how object attribute lookup (.) works. The process of looking something up on an object (.) is always a separate operation from that of making a function call. When you invoke a method, both operations occur, but as distinct steps. This example illustrates the process of invoking f.instance_method(arg) on an instance of Foo in the preceding listing:

[image: Image]

In this example, meth is known as a bound method. A bound method is a callable object that wraps both a function (the method) and an associated instance. When you call a bound method, the instance is passed to the method as the first parameter (self). Thus, meth in the example can be viewed as a method call that is primed and ready to go but which has not been invoked using the function call operator ().

Method lookup can also occur on the class itself. For example:

[image: Image]

In this example, umeth is known as an unbound method. An unbound method is a callable object that wraps the method function, but which expects an instance of the proper type to be passed as the first argument. In the example, we have passed f, a an instance of Foo, as the first argument. If you pass the wrong kind of object, you get a TypeError. For example:

[image: Image]

For user-defined classes, bound and unbound methods are both represented as an object of type types.MethodType, which is nothing more than a thin wrapper around an ordinary function object. The following attributes are defined for method objects:

[image: image]

One subtle feature of Python 3 is that unbound methods are no longer wrapped by a types.MethodType object. If you access Foo.instance_method as shown in earlier examples, you simply obtain the raw function object that implements the method. Moreover, you’ll find that there is no longer any type checking on the self parameter.

Built-in Functions and Methods

The object types.BuiltinFunctionType is used to represent functions and methods implemented in C and C++. The following attributes are available for built-in methods:

[image: image]

For built-in functions such as len(), _ _self_ _ is set to None, indicating that the function isn’t bound to any specific object. For built-in methods such as x.append, where x is a list object, _ _self_ _ is set to x.

Classes and Instances as Callables

Class objects and instances also operate as callable objects. A class object is created by the class statement and is called as a function in order to create new instances. In this case, the arguments to the function are passed to the _ _init_ _() method of the class in order to initialize the newly created instance. An instance can emulate a function if it defines a special method, _ _call_ _(). If this method is defined for an instance, x, then x(args) invokes the method x._ _call_ _(args).

Classes, Types, and Instances

When you define a class, the class definition normally produces an object of type type. Here’s an example:

[image: Image]

The following table shows commonly used attributes of a type object t:

[image: image]

When an object instance is created, the type of the instance is the class that defined it. Here’s an example:

[image: Image]

The following table shows special attributes of an instance i:

[image: image]

The _ _dict_ _ attribute is normally where all of the data associated with an instance is stored. When you make assignments such as i.attr
=
value, the value is stored here. However, if a user-defined class uses _ _slots_ _, a more efficient internal representation is used and instances will not have a _ _dict_ _ attribute. More details on objects and the organization of the Python object system can be found in Chapter 7.

Modules

The module type is a container that holds objects loaded with the import statement. When the statement import foo appears in a program, for example, the name foo is assigned to the corresponding module object. Modules define a namespace that’s implemented using a dictionary accessible in the attribute _ _dict_ _. Whenever an attribute of a module is referenced (using the dot operator), it’s translated into a dictionary lookup. For example, m.x is equivalent to m._ _dict_ _["x"]. Likewise, assignment to an attribute such as m.x
=
y is equivalent to m._ _dict_ _["x"] =
y. The following attributes are available:

[image: image]

Built-in Types for Interpreter Internals

A number of objects used by the internals of the interpreter are exposed to the user. These include traceback objects, code objects, frame objects, generator objects, slice objects, and the Ellipsis as shown in Table 3.10. It is relatively rare for programs to manipulate these objects directly, but they may be of practical use to tool-builders and framework designers.

Table 3.10 Built-in Python Types for Interpreter Internals

[image: image]

Code Objects

Code objects represent raw byte-compiled executable code, or bytecode, and are typically returned by the built-in compile() function. Code objects are similar to functions except that they don’t contain any context related to the namespace in which the code was defined, nor do code objects store information about default argument values. A code object, c, has the following read-only attributes:

[image: image]

Frame Objects

Frame objects are used to represent execution frames and most frequently occur in traceback objects (described next). A frame object, f, has the following read-only attributes:

[image: image]

The following attributes can be modified (and are used by debuggers and other tools):

[image: image]

Traceback Objects

Traceback objects are created when an exception occurs and contain stack trace information. When an exception handler is entered, the stack trace can be retrieved using the sys.exc_info() function. The following read-only attributes are available in traceback objects:

[image: image]

Generator Objects

Generator objects are created when a generator function is invoked (see Chapter 6, “Functions and Functional Programming”). A generator function is defined whenever a function makes use of the special yield keyword. The generator object serves as both an iterator and a container for information about the generator function itself. The following attributes and methods are available:

[image: image]

Slice Objects

Slice objects are used to represent slices given in extended slice syntax, such as a[i:j:stride], a[i:j,
n:m], or a[...,
i:j]. Slice objects are also created using the built-in slice([i,]
j
[,stride]) function. The following read-only attributes are available:

[image: Image]

Slice objects also provide a single method, s.indices(length). This function takes a length and returns a tuple (start,stop,stride) that indicates how the slice would be applied to a sequence of that length. Here’s an example:

[image: Image]

Ellipsis Object

The Ellipsis object is used to indicate the presence of an ellipsis (...) in an index lookup []. There is a single object of this type, accessed through the built-in name Ellipsis. It has no attributes and evaluates as True. None of Python’s built-in types make use of Ellipsis, but it may be useful if you are trying to build advanced functionality into the indexing operator [] on your own objects. The following code shows how an Ellipsis gets created and passed into the indexing operator:

[image: Image]

Object Behavior and Special Methods

Objects in Python are generally classified according to their behaviors and the features that they implement. For example, all of the sequence types such as strings, lists, and tuples are grouped together merely because they all happen to support a common set of sequence operations such as s[n], len(s), etc. All basic interpreter operations are implemented through special object methods. The names of special methods are always preceded and followed by double underscores (_ _). These methods are automatically triggered by the interpreter as a program executes. For example, the operation x
+
y is mapped to an internal method, x._ _add_ _(y), and an indexing operation, x[k], is mapped to x._ _getitem_ _(k). The behavior of each data type depends entirely on the set of special methods that it implements.

User-defined classes can define new objects that behave like the built-in types simply by supplying an appropriate subset of the special methods described in this section. In addition, built-in types such as lists and dictionaries can be specialized (via inheritance) by redefining some of the special methods.

The next few sections describe the special methods associated with different categories of interpreter features.

Object Creation and Destruction

The methods in Table 3.11 create, initialize, and destroy instances. _ _new_ _() is a class method that is called to create an instance. The _ _init_ _() method initializes the attributes of an object and is called immediately after an object has been newly created. The _ _del_ _() method is invoked when an object is about to be destroyed. This method is invoked only when an object is no longer in use. It’s important to note that the statement del
x only decrements an object’s reference count and doesn’t necessarily result in a call to this function. Further details about these methods can be found in Chapter 7.

Table 3.11 Special Methods for Object Creation and Destruction

[image: image]

The _ _new_ _() and _ _init_ _() methods are used together to create and initialize new instances. When an object is created by calling A(args), it is translated into the following steps:

[image: Image]

In user-defined objects, it is rare to define _ _new_ _() or _ _del_ _(). _ _new_ _() is usually only defined in metaclasses or in user-defined objects that happen to inherit from one of the immutable types (integers, strings, tuples, and so on). _ _del_ _() is only defined in situations in which there is some kind of critical resource management issue, such as releasing a lock or shutting down a connection.

Object String Representation

The methods in Table 3.12 are used to create various string representations of an object.

Table 3.12 Special Methods for Object Representation

[image: image]

The _ _repr_ _() and _ _str_ _() methods create simple string representations of an object. The _ _repr_ _() method normally returns an expression string that can be evaluated to re-create the object. This is also the method responsible for creating the output of values you see when inspecting variables in the interactive interpreter. This method is invoked by the built-in repr() function. Here’s an example of using repr() and eval() together:

[image: Image]

If a string expression cannot be created, the convention is for _ _repr_ _() to return a string of the form <...message...>, as shown here:

[image: Image]

The _ _str_ _() method is called by the built-in str() function and by functions related to printing. It differs from _ _repr_ _() in that the string it returns can be more concise and informative to the user. If this method is undefined, the _ _repr_ _() method is invoked.

The _ _format_ _() method is called by the format() function or the format() method of strings. The format_spec argument is a string containing the format specification. This string is the same as the format_spec argument to format(). For example:

[image: Image]

The syntax of the format specification is arbitrary and can be customized on an object-by-object basis. However, a standard syntax is described in Chapter 4.

Object Comparison and Ordering

Table 3.13 shows methods that can be used to perform simple tests on an object. The _ _bool_ _() method is used for truth-value testing and should return True or False. If undefined, the _ _len_ _() method is a fallback that is invoked to determine truth. The _ _hash_ _() method is defined on objects that want to work as keys in a dictionary. The value returned is an integer that should be identical for two objects that compare as equal. Furthermore, mutable objects should not define this method; any changes to an object will alter the hash value and make it impossible to locate an object on subsequent dictionary lookups.

Table 3.13 Special Methods for Object Testing and Hashing

[image: image]

Objects can implement one or more of the relational operators (<, >, <=, >=, ==, !=). Each of these methods takes two arguments and is allowed to return any kind of object, including a Boolean value, a list, or any other Python type. For instance, a numerical package might use this to perform an element-wise comparison of two matrices, returning a matrix with the results. If a comparison can’t be made, these functions may also raise an exception. Table 3.14 shows the special methods for comparison operators.

Table 3.14 Methods for Comparisons

[image: image]

It is not necessary for an object to implement all of the operations in Table 3.14. However, if you want to be able to compare objects using == or use an object as a dictionary key, the _ _eq_ _() method should be defined. If you want to be able to sort objects or use functions such as min() or max(), then _ _lt_ _() must be minimally defined.

Type Checking

The methods in Table 3.15 can be used to redefine the behavior of the type checking functions isinstance() and issubclass(). The most common application of these methods is in defining abstract base classes and interfaces, as described in Chapter 7.

Table 3.15 Methods for Type Checking

[image: image]

Attribute Access

The methods in Table 3.16 read, write, and delete the attributes of an object using the dot (.) operator and the del operator, respectively.

Table 3.16 Special Methods for Attribute Access

[image: image]

Whenever an attribute is accessed, the _ _getattribute_ _() method is always invoked. If the attribute is located, it is returned. Otherwise, the _ _getattr_ _() method is invoked. The default behavior of _ _getattr_ _() is to raise an AttributeError exception. The _ _setattr_ _() method is always invoked when setting an attribute, and the _ _delattr_ _() method is always invoked when deleting an attribute.

Attribute Wrapping and Descriptors

A subtle aspect of attribute manipulation is that sometimes the attributes of an object are wrapped with an extra layer of logic that interact with the get, set, and delete operations described in the previous section. This kind of wrapping is accomplished by creating a descriptor object that implements one or more of the methods in Table 3.17. Keep in mind that descriptions are optional and rarely need to be defined.

Table 3.17 Special Methods for Descriptor Object

[image: image]

The _ _get_ _(), _ _set_ _(), and _ _delete_ _() methods of a descriptor are meant to interact with the default implementation of _ _getattribute_ _(), _ _setattr_ _(), and _ _delattr_ _() methods on classes and types. This interaction occurs if you place an instance of a descriptor object in the body of a user-defined class. In this case, all access to the descriptor attribute will implicitly invoke the appropriate method on the descriptor object itself. Typically, descriptors are used to implement the low-level functionality of the object system including bound and unbound methods, class methods, static methods, and properties. Further examples appear in Chapter 7.

Sequence and Mapping Methods

The methods in Table 3.18 are used by objects that want to emulate sequence and mapping objects.

Table 3.18 Methods for Sequences and Mappings

[image: image]

Here’s an example:

[image: Image]

The _ _len_ _ method is called by the built-in len() function to return a nonnegative length. This function also determines truth values unless the _ _bool_ _() method has also been defined.

For manipulating individual items, the _ _getitem_ _() method can return an item by key value. The key can be any Python object but is typically an integer for sequences. The _ _setitem_ _() method assigns a value to an element. The _ _delitem_ _() method is invoked whenever the del operation is applied to a single element. The _ _contains_ _() method is used to implement the in operator.

The slicing operations such as x =
s[i:j] are also implemented using _ _getitem_ _(), _ _setitem_ _(), and _ _delitem_ _(). However, for slices, a special slice object is passed as the key. This object has attributes that describe the range of the slice being requested. For example:

[image: Image]

The slicing features of Python are actually more powerful than many programmers realize. For example, the following variations of extended slicing are all supported and might be useful for working with multidimensional data structures such as matrices and arrays:

[image: Image]

The general format for each dimension of an extended slice is i:j[:stride], where stride is optional. As with ordinary slices, you can omit the starting or ending values for each part of a slice. In addition, the ellipsis (written as ...) is available to denote any number of trailing or leading dimensions in an extended slice:

[image: Image]

When using extended slices, the _ _getitem_ _(), _ _setitem_ _(), and _ _delitem_ _() methods implement access, modification, and deletion, respectively. However, instead of an integer, the value passed to these methods is a tuple containing a combination of slice or Ellipsis objects. For example,

a = m[0:10, 0:100:5, ...]

invokes _ _getitem_ _() as follows:

a = m._ _getitem_ _((slice(0,10,None), slice(0,100,5), Ellipsis))

Python strings, tuples, and lists currently provide some support for extended slices, which is described in Chapter 4. Special-purpose extensions to Python, especially those with a scientific flavor, may provide new types and objects with advanced support for extended slicing operations.

Iteration

If an object, obj, supports iteration, it must provide a method, obj._ _iter_ _(), that returns an iterator object. The iterator object iter, in turn, must implement a single method, iter.next() (or iter._ _next_ _() in Python 3), that returns the next object or raises StopIteration to signal the end of iteration. Both of these methods are used by the implementation of the for statement as well as other operations that implicitly perform iteration. For example, the statement for x in s is carried out by performing steps equivalent to the following:

[image: Image]

Mathematical Operations

Table 3.19 lists special methods that objects must implement to emulate numbers. Mathematical operations are always evaluated from left to right according the precedence rules described in Chapter 4; when an expression such as x
+
y appears, the interpreter tries to invoke the method x._ _add_ _(y). The special methods beginning with r support operations with reversed operands. These are invoked only if the left operand doesn’t implement the specified operation. For example, if x in x
+
y doesn’t support the _ _add_ _() method, the interpreter tries to invoke the method y._ _radd_ _(x).

Table 3.19 Methods for Mathematical Operations

[image: image]

[image: image]

The methods _ _iadd_ _(), _ _isub_ _(), and so forth are used to support in-place arithmetic operators such as a+=b and a-=b (also known as augmented assignment). A distinction is made between these operators and the standard arithmetic methods because the implementation of the in-place operators might be able to provide certain customizations such as performance optimizations. For instance, if the self parameter is not shared, the value of an object could be modified in place without having to allocate a newly created object for the result.

The three flavors of division operators—_ _div_ _(), _ _truediv_ _(), and _ _floordiv_ _()—are used to implement true division (/) and truncating division (//) operations. The reasons why there are three operations deal with a change in the semantics of integer division that started in Python 2.2 but became the default behavior in Python 3. In Python 2, the default behavior of Python is to map the / operator to _ _div_ _(). For integers, this operation truncates the result to an integer. In Python 3, division is mapped to _ _truediv_ _() and for integers, a float is returned. This latter behavior can be enabled in Python 2 as an optional feature by including the statement from _ _future_ _ import division in a program.

The conversion methods _ _int_ _(), _ _long_ _(), _ _float_ _(), and _ _complex_ _() convert an object into one of the four built-in numerical types. These methods are invoked by explicit type conversions such as int() and float(). However, these methods are not used to implicitly coerce types in mathematical operations. For example, the expression 3 +
x produces a TypeError even if x is a user-defined object that defines _ _int_ _() for integer conversion.

Callable Interface

An object can emulate a function by providing the _ _call_ _(self
[,*args
[,
**kwargs]]) method. If an object, x, provides this method, it can be invoked like a function. That is, x(arg1,
arg2, ...) invokes x._ _call_ _(self,
arg1,
arg2, ...). Objects that emulate functions can be useful for creating functors or proxies. Here is a simple example:

[image: Image]

In this example, the DistanceFrom class creates instances that emulate a single-argument function. These can be used in place of a normal function—for instance, in the call to sort() in the example.

Context Management Protocol

The with statement allows a sequence of statements to execute under the control of another object known as a context manager. The general syntax is as follows:

[image: Image]

The context object shown here is expected to implement the methods shown in Table 3.20. The _ _enter_ _() method is invoked when the with statement executes. The value returned by this method is placed into the variable specified with the optional as
var specifier. The _ _exit_ _() method is called as soon as control-flow leaves from the block of statements associated with the with statement. As arguments, _ _exit_ _() receives the current exception type, value, and traceback if an exception has been raised. If no errors are being handled, all three values are set to None.

Table 3.20 Special Methods for Context Managers

[image: image]

Object Inspection and dir()

The dir() function is commonly used to inspect objects. An object can supply the list of names returned by dir() by implementing _ _dir_ _(self). Defining this makes it easier to hide the internal details of objects that you don’t want a user to directly access. However, keep in mind that a user can still inspect the underlying _ _dict_ _ attribute of instances and classes to see everything that is defined.

4. Operators and Expressions

This chapter describes Python’s built-in operators, expressions, and evaluation rules. Although much of this chapter describes Python’s built-in types, user-defined objects can easily redefine any of the operators to provide their own behavior.

Operations on Numbers

The following operations can be applied to all numeric types:

[image: Image]

The truncating division operator (//, also known as floor division) truncates the result to an integer and works with both integers and floating-point numbers. In Python 2, the true division operator (/) also truncates the result to an integer if the operands are integers. Therefore, 7/4 is 1, not 1.75. However, this behavior changes in Python 3, where division produces a floating-point result. The modulo operator returns the remainder of the division x
//
y. For example, 7 % 4 is 3. For floating-point numbers, the modulo operator returns the floating-point remainder of x
//
y, which is x
– (x
//
y)
*
y. For complex numbers, the modulo (%) and truncating division operators (//) are invalid.

The following shifting and bitwise logical operators can be applied only to integers:

[image: Image]

The bitwise operators assume that integers are represented in a 2’s complement binary representation and that the sign bit is infinitely extended to the left. Some care is required if you are working with raw bit-patterns that are intended to map to native integers on the hardware. This is because Python does not truncate the bits or allow values to overflow—instead, the result will grow arbitrarily large in magnitude.

In addition, you can apply the following built-in functions to all the numerical types:

[image: Image]

The abs() function returns the absolute value of a number. The divmod() function returns the quotient and remainder of a division operation and is only valid on non-complex numbers. The pow() function can be used in place of the ** operator but also supports the ternary power-modulo function (often used in cryptographic algorithms). The round() function rounds a floating-point number, x, to the nearest multiple of 10 to the power minus n. If n is omitted, it’s set to 0. If x is equally close to two multiples, Python 2 rounds to the nearest multiple away from zero (for example, 0.5 is rounded to 1.0 and -0.5 is rounded to -1.0). One caution here is that Python 3 rounds equally close values to the nearest even multiple (for example, 0.5 is rounded to 0.0, and 1.5 is rounded to 2.0). This is a subtle portability issue for mathematical programs being ported to Python 3.

The following comparison operators have the standard mathematical interpretation and return a Boolean value of True for true, False for false:

[image: Image]

Comparisons can be chained together, such as in w
<
x
<
y
<
z. Such expressions are evaluated as w
<
x
and
x
<
y
and
y
<
z. Expressions such as x
<
y
>
z are legal but are likely to confuse anyone reading the code (it’s important to note that no comparison is made between x and z in such an expression). Comparisons involving complex numbers are undefined and result in a TypeError.

Operations involving numbers are valid only if the operands are of the same type. For built-in numbers, a coercion operation is performed to convert one of the types to the other, as follows:

1. If either operand is a complex number, the other operand is converted to a complex number.

2. If either operand is a floating-point number, the other is converted to a float.

3. Otherwise, both numbers must be integers and no conversion is performed.

For user-defined objects, the behavior of expressions involving mixed operands depends on the implementation of the object. As a general rule, the interpreter does not try to perform any kind of implicit type conversion.

Operations on Sequences

The following operators can be applied to sequence types, including strings, lists, and tuples:

[image: Image]

The + operator concatenates two sequences of the same type. The s
*
n operator makes n copies of a sequence. However, these are shallow copies that replicate elements by reference only. For example, consider the following code:

[image: Image]

Notice how the change to a modified every element of the list c. In this case, a reference to the list a was placed in the list b. When b was replicated, four additional references to a were created. Finally, when a was modified, this change was propagated to all the other “copies” of a. This behavior of sequence multiplication is often unexpected and not the intent of the programmer. One way to work around the problem is to manually construct the replicated sequence by duplicating the contents of a. Here’s an example:

[image: Image]

The copy module in the standard library can also be used to make copies of objects.

All sequences can be unpacked into a sequence of variable names. For example:

[image: Image]

When unpacking values into variables, the number of variables must exactly match the number of items in the sequence. In addition, the structure of the variables must match that of the sequence. For example, the last line of the example unpacks values into six variables, organized into two 3-tuples, which is the structure of the sequence on the right. Unpacking sequences into variables works with any kind of sequence, including those created by iterators and generators.

The indexing operator s[n] returns the nth object from a sequence in which s[0] is the first object. Negative indices can be used to fetch characters from the end of a sequence. For example, s[-1] returns the last item. Otherwise, attempts to access elements that are out of range result in an IndexError exception.

The slicing operator s[i:j] extracts a subsequence from s consisting of the elements with index k, where i
<=
k
<
j. Both i and j must be integers or long integers. If the starting or ending index is omitted, the beginning or end of the sequence is assumed, respectively. Negative indices are allowed and assumed to be relative to the end of the sequence. If i or j is out of range, they’re assumed to refer to the beginning or end of a sequence, depending on whether their value refers to an element before the first item or after the last item, respectively.

The slicing operator may be given an optional stride, s[i:j:stride], that causes the slice to skip elements. However, the behavior is somewhat more subtle. If a stride is supplied, i is the starting index; j is the ending index; and the produced subsequence is the elements s[i], s[i+stride], s[i+2*stride], and so forth until index j is reached (which is not included). The stride may also be negative. If the starting index i is omitted, it is set to the beginning of the sequence if stride is positive or the end of the sequence if stride is negative. If the ending index j is omitted, it is set to the end of the sequence if stride is positive or the beginning of the sequence if stride is negative. Here are some examples:

[image: Image]

The x
in
s operator tests to see whether the object x is in the sequence s and returns True or False. Similarly, the x
not in
s operator tests whether x is not in the sequence s. For strings, the in and not in operators accept subtrings. For example, 'hello' in 'hello world' produces True. It is important to note that the in operator does not support wildcards or any kind of pattern matching. For this, you need to use a library module such as the re module for regular expression patterns.

The for
x
in
s operator iterates over all the elements of a sequence and is described further in Chapter 5, “Program Structure and Control Flow.” len(s) returns the number of elements in a sequence. min(s) and max(s) return the minimum and maximum values of a sequence, respectively, although the result may only make sense if the elements can be ordered with respect to the < operator (for example, it would make little sense to find the maximum value of a list of file objects). sum(s) sums all of the items in s but usually works only if the items represent numbers. An optional initial value can be given to sum(). The type of this value usually determines the result. For example, if you used sum(items, decimal.Decimal(0)), the result would be a Decimal object (see more about the decimal module in Chapter 14, “Mathematics”).

Strings and tuples are immutable and cannot be modified after creation. Lists can be modified with the following operators:

[image: Image]

The s[i] =
x operator changes element i of a list to refer to object x, increasing the reference count of x. Negative indices are relative to the end of the list, and attempts to assign a value to an out-of-range index result in an IndexError exception. The slicing assignment operator s[i:j] =
r replaces element k, where i
<=
k
<
j, with elements from sequence r. Indices may have the same values as for slicing and are adjusted to the beginning or end of the list if they’re out of range. If necessary, the sequence s is expanded or reduced to accommodate all the elements in r. Here’s an example:

[image: Image]

Slicing assignment may be supplied with an optional stride argument. However, the behavior is somewhat more restricted in that the argument on the right side must have exactly the same number of elements as the slice that’s being replaced. Here’s an example:

[image: Image]

The del
s[i] operator removes element i from a list and decrements its reference count. del
s[i:j] removes all the elements in a slice. A stride may also be supplied, as in del
s[i:j:stride].

Sequences are compared using the operators <, >, <=, >=, ==, and !=. When comparing two sequences, the first elements of each sequence are compared. If they differ, this determines the result. If they’re the same, the comparison moves to the second element of each sequence. This process continues until two different elements are found or no more elements exist in either of the sequences. If the end of both sequences is reached, the sequences are considered equal. If a is a subsequence of b, then a
<
b.

Strings are compared using lexicographical ordering. Each character is assigned a unique numerical index determined by the character set (such as ASCII or Unicode). A character is less than another character if its index is less. One caution concerning character ordering is that the preceding simple comparison operators are not related to the character ordering rules associated with locale or language settings. Thus, you would not use these operations to order strings according to the standard conventions of a foreign language (see the unicodedata and locale modules for more information).

Another caution, this time involving strings. Python has two types of string data: byte strings and Unicode strings. Byte strings differ from their Unicode counterpart in that they are usually assumed to be encoded, whereas Unicode strings represent raw unencoded character values. Because of this, you should never mix byte strings and Unicode together in expressions or comparisons (such as using + to concatenate a byte string and Unicode string or using == to compare mixed strings). In Python 3, mixing string types results in a TypeError exception, but Python 2 attempts to perform an implicit promotion of byte strings to Unicode. This aspect of Python 2 is widely considered to be a design mistake and is often a source of unanticipated exceptions and inexplicable program behavior. So, to keep your head from exploding, don’t mix string types in sequence operations.

String Formatting

The modulo operator (s
%
d) produces a formatted string, given a format string, s, and a collection of objects in a tuple or mapping object (dictionary) d. The behavior of this operator is similar to the C sprintf() function. The format string contains two types of objects: ordinary characters (which are left unmodified) and conversion specifiers, each of which is replaced with a formatted string representing an element of the associated tuple or mapping. If d is a tuple, the number of conversion specifiers must exactly match the number of objects in d. If d is a mapping, each conversion specifier must be associated with a valid key name in the mapping (using parentheses, as described shortly). Each conversion specifier starts with the % character and ends with one of the conversion characters shown in Table 4.1.

Table 4.1 String Formatting Conversions

[image: Image]

Between the % character and the conversion character, the following modifiers may appear, in this order:

1. A key name in parentheses, which selects a specific item out of the mapping object. If no such element exists, a KeyError exception is raised.

2. One or more of the following:

• - sign, indicating left alignment. By default, values are right-aligned.

• + sign, indicating that the numeric sign should be included (even if positive).

• 0, indicating a zero fill.

3. A number specifying the minimum field width. The converted value will be printed in a field at least this wide and padded on the left (or right if the – flag is given) to make up the field width.

4. A period separating the field width from a precision.

5. A number specifying the maximum number of characters to be printed from a string, the number of digits following the decimal point in a floating-point number, or the minimum number of digits for an integer.

In addition, the asterisk (*) character may be used in place of a number in any width field. If present, the width will be read from the next item in the tuple.

The following code illustrates a few examples:

[image: Image]

When used with a dictionary, the string formatting operator % is often used to mimic the string interpolation feature often found in scripting languages (e.g., expansion of $var symbols in strings). For example, if you have a dictionary of values, you can expand those values into fields within a formatted string as follows:

[image: Image]

The following code shows how to expand the values of currently defined variables within a string. The vars() function returns a dictionary containing all of the variables defined at the point at which vars() is called.

[image: Image]

Advanced String Formatting

A more advanced form of string formatting is available using the s.format(*args, *kwargs) method on strings. This method collects an arbitrary collection of positional and keyword arguments and substitutes their values into placeholders embedded in s. A placeholder of the form '{n}', where n is a number, gets replaced by positional argument n supplied to format(). A placeholder of the form '{name}' gets replaced by keyword argument name supplied to format. Use '{{' to output a single '{' and '}}' to output a single '}'. For example:

[image: Image]

With each placeholder, you can additionally perform both indexing and attribute lookups. For example, in '{name[n]}' where n is an integer, a sequence lookup is performed and in '{name[key]}' where key is a non-numeric string, a dictionary lookup of the form name['key'] is performed. In '{name.attr}', an attribute lookup is performed. Here are some examples:

[image: Image]

In these expansions, you are only allowed to use names. Arbitrary expressions, method calls, and other operations are not supported.

You can optionally specify a format specifier that gives more precise control over the output. This is supplied by adding an optional format specifier to each placeholder using a colon (:), as in '{place:format_spec}'. By using this specifier, you can specify column widths, decimal places, and alignment. Here is an example:

[image: Image]

The general format of a specifier is [[fill[align]][sign][0][width][.precision][type] where each part enclosed in [] is optional. The width specifier specifies the minimum field width to use, and the align specifier is one of '<', '>’, or '^' for left, right, and centered alignment within the field. An optional fill character fill is used to pad the space. For example:

[image: Image]

The type specifier indicates the type of data. Table 4.2 lists the supported format codes. If not supplied, the default format code is 's' for strings, 'd' for integers, and 'f' for floats.

Table 4.2 Advanced String Formatting Type Specifier Codes

[image: Image]

The sign part of a format specifier is one of '+', '-', or ' '. A '+' indicates that a leading sign should be used on all numbers. '-' is the default and only adds a sign character for negative numbers. A ' ' adds a leading space to positive numbers. The precision part of the specifier supplies the number of digits of accuracy to use for decimals. If a leading '0' is added to the field width for numbers, numeric values are padded with leading 0s to fill the space. Here are some examples of formatting different kinds of numbers:

[image: Image]

Parts of a format specifier can optionally be supplied by other fields supplied to the format function. They are accessed using the same syntax as normal fields in a format string. For example:

[image: Image]

This nesting of fields can only be one level deep and can only occur in the format specifier portion. In addition, the nested values cannot have any additional format specifiers of their own.

One caution on format specifiers is that objects can define their own custom set of specifiers. Underneath the covers, advanced string formatting invokes the special method _ _format_ _(self,
format_spec) on each field value. Thus, the capabilities of the format() operation are open-ended and depend on the objects to which it is applied. For example, dates, times, and other kinds of objects may define their own format codes.

In certain cases, you may want to simply format the str() or repr() representation of an object, bypassing the functionality implemented by its _ _format_ _() method. To do this, you can add the '!s' or '!r' modifier before the format specifier. For example:

[image: Image]

Operations on Dictionaries

Dictionaries provide a mapping between names and objects. You can apply the following operations to dictionaries:

[image: Image]

Key values can be any immutable object, such as strings, numbers, and tuples. In addition, dictionary keys can be specified as a comma-separated list of values, like this:

[image: Image]

In this case, the key values represent a tuple, making the preceding assignments identical to the following:

[image: Image]

Operations on Sets

The set and frozenset type support a number of common set operations:

[image: Image]

The result of union, intersection, and difference operations will have the same type as the left-most operand. For example, if s is a frozenset, the result will be a frozenset even if t is a set.

Augmented Assignment

Python provides the following set of augmented assignment operators:

[image: Image]

These operators can be used anywhere that ordinary assignment is used. Here’s an example:

[image: Image]

Augmented assignment doesn’t violate mutability or perform in-place modification of objects. Therefore, writing x
+=
y creates an entirely new object x with the value x
+
y. User-defined classes can redefine the augmented assignment operators using the special methods described in Chapter 3, “Types and Objects.”

The Attribute (.) Operator

The dot (.) operator is used to access the attributes of an object. Here’s an example:

[image: Image]

More than one dot operator can appear in a single expression, such as in foo.y.a.b. The dot operator can also be applied to the intermediate results of functions, as in a = foo.bar(3,4,5).spam.

User-defined classes can redefine or customize the behavior of (.). More details are found in Chapter 3 and Chapter 7, “Classes and Object-Oriented Programming.”

The Function Call () Operator

The f(args) operator is used to make a function call on f. Each argument to a function is an expression. Prior to calling the function, all of the argument expressions are fully evaluated from left to right. This is sometimes known as applicative order evaluation.

It is possible to partially evaluate function arguments using the partial() function in the functools module. For example:

[image: Image]

The partial() function evaluates some of the arguments to a function and returns an object that you can call to supply the remaining arguments at a later point. In the previous example, the variable f represents a partially evaluated function where the first two arguments have already been calculated. You merely need to supply the last remaining argument value for the function to execute. Partial evaluation of function arguments is closely related to a process known as currying, a mechanism by which a function taking multiple arguments such as f(x,y) is decomposed into a series of functions each taking only one argument (for example, you partially evaluate f by fixing x to get a new function to which you give values of y to produce a result).

Conversion Functions

Sometimes it’s necessary to perform conversions between the built-in types. To convert between types, you simply use the type name as a function. In addition, several built-in functions are supplied to perform special kinds of conversions. All of these functions return a new object representing the converted value.

[image: Image]

Note that the str() and repr() functions may return different results. repr() typically creates an expression string that can be evaluated with eval() to re-create the object. On the other hand, str() produces a concise or nicely formatted representation of the object (and is used by the print statement). The format(x, [format_spec]) function produces the same output as that produced by the advanced string formatting operations but applied to a single object x. As input, it accepts an optional format_spec, which is a string containing the formatting code. The ord() function returns the integer ordinal value of a character. For Unicode, this value will be the integer code point. The chr() and unichr() functions convert integers back into characters.

To convert strings back into numbers, use the int(), float(), and complex() functions. The eval() function can also convert a string containing a valid expression to an object. Here’s an example:

[image: Image]

In functions that create containers (list(), tuple(), set(), and so on), the argument may be any object that supports iteration used to generate all the items used to populate the object that’s being created.

Boolean Expressions and Truth Values

The and, or, and not keywords can form Boolean expressions. The behavior of these operators is as follows:

[image: Image]

When you use an expression to determine a true or false value, True, any nonzero number, nonempty string, list, tuple, or dictionary is taken to be true. False; zero; None; and empty lists, tuples, and dictionaries evaluate as false. Boolean expressions are evaluated from left to right and consume the right operand only if it’s needed to determine the final value. For example, a and b evaluates b only if a is true. This is sometimes known as “short-circuit” evaluation.

Object Equality and Identity

The equality operator (x
==
y) tests the values of x and y for equality. In the case of lists and tuples, all the elements are compared and evaluated as true if they’re of equal value. For dictionaries, a true value is returned only if x and y have the same set of keys and all the objects with the same key have equal values. Two sets are equal if they have the same elements, which are compared using equality (==).

The identity operators (x
is
y and x
is not
y) test two objects to see whether they refer to the same object in memory. In general, it may be the case that x
==
y, but x
is not
y.

Comparison between objects of noncompatible types, such as a file and a floating-point number, may be allowed, but the outcome is arbitrary and may not make any sense. It may also result in an exception depending on the type.

Order of Evaluation

Table 4.3 lists the order of operation (precedence rules) for Python operators. All operators except the power (**) operator are evaluated from left to right and are listed in the table from highest to lowest precedence. That is, operators listed first in the table are evaluated before operators listed later. (Note that operators included together within subsections, such as x
*
y, x
/
y, x
/
y, and x
%
y, have equal precedence.)

Table 4.3 Order of Evaluation (Highest to Lowest)

[image: Image]

The order of evaluation is not determined by the types of x and y in Table 4.3. So, even though user-defined objects can redefine individual operators, it is not possible to customize the underlying evaluation order, precedence, and associativity rules.

Conditional Expressions

A common programming pattern is that of conditionally assigning a value based on the result of an expression. For example:

[image: Image]

This code can be shortened using a conditional expression. For example:

minvalue = a if a <=b else b

In such expressions, the condition in the middle is evaluated first. The expression to the left of the if is then evaluated if the result is True. Otherwise, the expression after the else is evaluated.

Conditional expressions should probably be used sparingly because they can lead to confusion (especially if they are nested or mixed with other complicated expressions). However, one particularly useful application is in list comprehensions and generator expressions. For example:

[image: Image]

5. Program Structure and Control Flow

This chapter covers the details of program structure and control flow. Topics include conditionals, iteration, exceptions, and context managers.

Program Structure and Execution

Python programs are structured as a sequence of statements. All language features, including variable assignment, function definitions, classes, and module imports, are statements that have equal status with all other statements. In fact, there are no “special” statements, and every statement can be placed anywhere in a program. For example, this code defines two different versions of a function:

[image: Image]

When loading source files, the interpreter always executes every statement in order until there are no more statements to execute. This execution model applies both to files you simply run as the main program and to library files that are loaded via import.

Conditional Execution

The if, else, and elif statements control conditional code execution. The general format of a conditional statement is as follows:

[image: Image]

If no action is to be taken, you can omit both the else and elif clauses of a conditional. Use the pass statement if no statements exist for a particular clause:

[image: Image]

Loops and Iteration

You implement loops using the for and while statements. Here’s an example:

[image: Image]

The while statement executes statements until the associated expression evaluates to false. The for statement iterates over all the elements of s until no more elements are available. The for statement works with any object that supports iteration. This obviously includes the built-in sequence types such as lists, tuples, and strings, but also any object that implements the iterator protocol.

An object, s, supports iteration if it can be used with the following code, which mirrors the implementation of the for statement:

[image: Image]

In the statement for
i
in
s, the variable i is known as the iteration variable. On each iteration of the loop, it receives a new value from s. The scope of the iteration variable is not private to the for statement. If a previously defined variable has the same name, that value will be overwritten. Moreover, the iteration variable retains the last value after the loop has completed.

If the elements used in iteration are sequences of identical size, you can unpack their values into individual iteration variables using a statement such as the following:

[image: Image]

In this example, s must contain or produce sequences, each with three elements. On each iteration, the contents of the variables x, y, and z are assigned the items of the corresponding sequence. Although it is most common to see this used when s is a sequence of tuples, unpacking works if the items in s are any kind of sequence including lists, generators, and strings.

When looping, it is sometimes useful to keep track of a numerical index in addition to the data values. Here’s an example:

[image: Image]

Python provides a built-in function, enumerate(), that can be used to simplify this code:

[image: Image]

enumerate(s) creates an iterator that simply returns a sequence of tuples (0,
s[0]), (1,
s[1]), (2,
s[2]), and so on.

Another common looping problem concerns iterating in parallel over two or more sequences—for example, writing a loop where you want to take items from different sequences on each iteration as follows:

[image: Image]

This code can be simplified using the zip() function. For example:

[image: Image]

zip(s,t) combines sequences s and t into a sequence of tuples (s[0],t[0]), (s[1],t[1]), (s[2],
t[2]), and so forth, stopping with the shortest of the sequences s and t should they be of unequal length. One caution with zip() is that in Python 2, it fully consumes both s and t, creating a list of tuples. For generators and sequences containing a large amount of data, this may not be what you want. The function itertools.izip() achieves the same effect as zip() but generates the zipped values one at a time rather than creating a large list of tuples. In Python 3, the zip() function also generates values in this manner.

To break out of a loop, use the break statement. For example, this code reads lines of text from a file until an empty line of text is encountered:

[image: Image]

To jump to the next iteration of a loop (skipping the remainder of the loop body), use the continue statement. This statement tends to be used less often but is sometimes useful when the process of reversing a test and indenting another level would make the program too deeply nested or unnecessarily complicated. As an example, the following loop skips all of the blank lines in a file:

[image: Image]

The break and continue statements apply only to the innermost loop being executed. If it’s necessary to break out of a deeply nested loop structure, you can use an exception. Python doesn’t provide a “goto” statement.

You can also attach the else statement to loop constructs, as in the following example:

[image: Image]

The else clause of a loop executes only if the loop runs to completion. This either occurs immediately (if the loop wouldn’t execute at all) or after the last iteration. On the other hand, if the loop is terminated early using the break statement, the else clause is skipped.

The primary use case for the looping else clause is in code that iterates over data but which needs to set or check some kind of flag or condition if the loop breaks prematurely. For example, if you didn’t use else, the previous code might have to be rewritten with a flag variable as follows:

[image: Image]

Exceptions

Exceptions indicate errors and break out of the normal control flow of a program. An exception is raised using the raise statement. The general format of the raise statement is raise
Exception([value]), where Exception is the exception type and value is an optional value giving specific details about the exception. Here’s an example:

raise RuntimeError("Unrecoverable Error")

If the raise statement is used by itself, the last exception generated is raised again (although this works only while handling a previously raised exception).

To catch an exception, use the try and except statements, as shown here:

[image: Image]

When an exception occurs, the interpreter stops executing statements in the try block and looks for an except clause that matches the exception that has occurred. If one is found, control is passed to the first statement in the except clause. After the except clause is executed, control continues with the first statement that appears after the try-except block. Otherwise, the exception is propagated up to the block of code in which the try statement appeared. This code may itself be enclosed in a try-except that can handle the exception. If an exception works its way up to the top level of a program without being caught, the interpreter aborts with an error message. If desired, uncaught exceptions can also be passed to a user-defined function, sys.excepthook(), as described in Chapter 13, “Python Runtime Services.”

The optional as
var modifier to the except statement supplies the name of a variable in which an instance of the exception type supplied to the raise statement is placed if an exception occurs. Exception handlers can examine this value to find out more about the cause of the exception. For example, you can use isinstance() to check the exception type. One caution on the syntax: In previous versions of Python, the except statement was written as except
ExcType,
var where the exception type and variable were separated by a comma (,). In Python 2.6, this syntax still works, but it is deprecated. In new code, use the as
var syntax because it is required in Python 3.

Multiple exception-handling blocks are specified using multiple except clauses, as in the following example:

[image: Image]

A single handler can catch multiple exception types like this:

[image: Image]

To ignore an exception, use the pass statement as follows:

[image: Image]

To catch all exceptions except those related to program exit, use Exception like this:

[image: Image]

When catching all exceptions, you should take care to report accurate error information to the user. For example, in the previous code, an error message and the associated exception value is being logged. If you don’t include any information about the exception value, it can make it very difficult to debug code that is failing for reasons that you don’t expect.

All exceptions can be caught using except with no exception type as follows:

[image: Image]

Correct use of this form of except is a lot trickier than it looks and should probably be avoided. For instance, this code would also catch keyboard interrupts and requests for program exit—things that you may not want to catch.

The try statement also supports an else clause, which must follow the last except clause. This code is executed if the code in the try block doesn’t raise an exception. Here’s an example:

[image: Image]

The finally statement defines a cleanup action for code contained in a try block. Here’s an example:

[image: Image]

The finally clause isn’t used to catch errors. Rather, it’s used to provide code that must always be executed, regardless of whether an error occurs. If no exception is raised, the code in the finally clause is executed immediately after the code in the try block. If an exception occurs, control is first passed to the first statement of the finally clause. After this code has executed, the exception is re-raised to be caught by another exception handler.

Built-in Exceptions

Python defines the built-in exceptions listed in Table 5.1.

Table 5.1 Built-in Exceptions

[image: Image]

Exceptions are organized into a hierarchy as shown in the table. All the exceptions in a particular group can be caught by specifying the group name in an except clause. Here’s an example:

[image: Image]

or

[image: Image]

At the top of the exception hierarchy, the exceptions are grouped according to whether or not the exceptions are related to program exit. For example, the SystemExit and KeyboardInterrupt exceptions are not grouped under Exception because programs that want to catch all program-related errors usually don’t want to also capture program termination by accident.

Defining New Exceptions

All the built-in exceptions are defined in terms of classes. To create a new exception, create a new class definition that inherits from Exception, such as the following:

class NetworkError(Exception): pass

To use your new exception, use it with the raise statement as follows:

raise NetworkError("Cannot find host.")

When raising an exception, the optional values supplied with the raise statement are used as the arguments to the exception’s class constructor. Most of the time, this is simply a string indicating some kind of error message. However, user-defined exceptions can be written to take one or more exception values as shown in this example:

[image: Image]

When you create a custom exception class that redefines _ _init_ _(), it is important to assign a tuple containing the arguments to _ _init_ _() to the attribute self.args as shown. This attribute is used when printing exception traceback messages. If you leave it undefined, users won’t be able to see any useful information about the exception when an error occurs.

Exceptions can be organized into a hierarchy using inheritance. For instance, the NetworkError exception defined earlier could serve as a base class for a variety of more specific errors. Here’s an example:

[image: Image]

In this case, the except NetworkError statement catches any exception derived from NetworkError. To find the specific type of error that was raised, examine the type of the execution value with type(). Alternatively, the sys.exc_info() function can be used to retrieve information about the last raised exception.

Context Managers and the with Statement

Proper management of system resources such as files, locks, and connections is often a tricky problem when combined with exceptions. For example, a raised exception can cause control flow to bypass statements responsible for releasing critical resources such as a lock.

The with statement allows a series of statements to execute inside a runtime context that is controlled by an object that serves as a context manager. Here is an example:

[image: Image]

In the first example, the with statement automatically causes the opened file to be closed when control-flow leaves the block of statements that follows. In the second example, the with statement automatically acquires and releases a lock when control enters and leaves the block of statements that follows.

The with
obj statement allows the object obj to manage what happens when control-flow enters and exits the associated block of statements that follows. When the with
obj statement executes, it executes the method obj._ _enter_ _() to signal that a new context is being entered. When control flow leaves the context, the method obj._ _exit_ _(type,value,traceback) executes. If no exception has been raised, the three arguments to _ _exit_ _() are all set to None. Otherwise, they contain the type, value, and traceback associated with the exception that has caused control-flow to leave the context. The _ _exit_ _() method returns True or False to indicate whether the raised exception was handled or not (if False is returned, any exceptions raised are propagated out of the context).

The with
obj statement accepts an optional as
var specifier. If given, the value returned by obj._ _enter_ _() is placed into var. It is important to emphasize that obj is not necessarily the value assigned to var.

The with statement only works with objects that support the context management protocol (the _ _enter_ _() and _ _exit_ _() methods). User-defined classes can implement these methods to define their own customized context-management. Here is a simple example:

[image: Image]

This class allows one to make a sequence of modifications to an existing list. However, the modifications only take effect if no exceptions occur. Otherwise, the original list is left unmodified. For example:

[image: Image]

The contextlib module allows custom context managers to be more easily implemented by placing a wrapper around a generator function. Here is an example:

[image: Image]

In this example, the value passed to yield is used as the return value from _ _enter_ _(). When the _ _exit_ _() method gets invoked, execution resumes after the yield. If an exception gets raised in the context, it shows up as an exception in the generator function. If desired, an exception could be caught, but in this case, exceptions will simply propagate out of the generator to be handled elsewhere.

Assertions and _ _debug_ _

The assert statement can introduce debugging code into a program. The general form of assert is

assert test [, msg]

where test is an expression that should evaluate to True or False. If test evaluates to False, assert raises an AssertionError exception with the optional message msg supplied to the assert statement. Here’s an example:

[image: Image]

The assert statement should not be used for code that must be executed to make the program correct because it won’t be executed if Python is run in optimized mode (specified with the -O option to the interpreter). In particular, it’s an error to use assert to check user input. Instead, assert statements are used to check things that should always be true; if one is violated, it represents a bug in the program, not an error by the user.

For example, if the function write_data(), shown previously, were intended for use by an end user, the assert statement should be replaced by a conventional if statement and the desired error-handling.

In addition to assert, Python provides the built-in read-only variable _ _debug_ _, which is set to True unless the interpreter is running in optimized mode (specified with the -O option). Programs can examine this variable as needed—possibly running extra error-checking procedures if set. The underlying implementation of the _ _debug_ _ variable is optimized in the interpreter so that the extra control-flow logic of the if statement itself is not actually included. If Python is running in its normal mode, the statements under the if _ _debug_ _ statement are just inlined into the program without the if statement itself. In optimized mode, the if _ _debug_ _ statement and all associated statements are completely removed from the program.

The use of assert and _ _debug_ _ allow for efficient dual-mode development of a program. For example, in debug mode, you can liberally instrument your code with assertions and debug checks to verify correct operation. In optimized mode, all of these extra checks get stripped, resulting in no extra performance penalty.

6. Functions and Functional Programming

Substantial programs are broken up into functions for better modularity and ease of maintenance. Python makes it easy to define functions but also incorporates a surprising number of features from functional programming languages. This chapter describes functions, scoping rules, closures, decorators, generators, coroutines, and other functional programming features. In addition, list comprehensions and generator expressions are described—both of which are powerful tools for declarative-style programming and data processing.

Functions

Functions are defined with the def statement:

[image: image]

The body of a function is simply a sequence of statements that execute when the function is called. You invoke a function by writing the function name followed by a tuple of function arguments, such as a
= add(3,4). The order and number of arguments must match those given in the function definition. If a mismatch exists, a TypeError exception is raised.

You can attach default arguments to function parameters by assigning values in the function definition. For example:

[image: image]

When a function defines a parameter with a default value, that parameter and all the parameters that follow are optional. If values are not assigned to all the optional parameters in the function definition, a SyntaxError exception is raised.

Default parameter values are always set to the objects that were supplied as values when the function was defined. Here’s an example:

[image: image]

In addition, the use of mutable objects as default values may lead to unintended behavior:

[image: image]

Notice how the default argument retains modifications made from previous invocations. To prevent this, it is better to use None and add a check as follows:

[image: image]

A function can accept a variable number of parameters if an asterisk (*) is added to the last parameter name:

[image: image]

In this case, all the remaining arguments are placed into the args variable as a tuple. To pass a tuple args to a function as if they were parameters, the *args syntax can be used in a function call as follows:

[image: image]

Function arguments can also be supplied by explicitly naming each parameter and specifying a value. These are known as keyword arguments. Here is an example:

[image: image]

With keyword arguments, the order of the parameters doesn’t matter. However, unless there are default values, you must explicitly name all of the required function parameters. If you omit any of the required parameters or if the name of a keyword doesn’t match any of the parameter names in the function definition, a TypeError exception is raised. Also, since any Python function can be called using the keyword calling style, it is generally a good idea to define functions with descriptive argument names.

Positional arguments and keyword arguments can appear in the same function call, provided that all the positional arguments appear first, values are provided for all non-optional arguments, and no argument value is defined more than once. Here’s an example:

[image: image]

If the last argument of a function definition begins with **, all the additional keyword arguments (those that don’t match any of the other parameter names) are placed in a dictionary and passed to the function. This can be a useful way to write functions that accept a large number of potentially open-ended configuration options that would be too unwieldy to list as parameters. Here’s an example:

[image: image]

You can combine extra keyword arguments with variable-length argument lists, as long as the ** parameter appears last:

[image: image]

[image: image]

Keyword arguments can also be passed to another function using the **kwargs syntax:

[image: image]

This use of *args and **kwargs is commonly used to write wrappers and proxies for other functions. For example, the callfunc() accepts any combination of arguments and simply passes them through to func().

Parameter Passing and Return Values

When a function is invoked, the function parameters are simply names that refer to the passed input objects. The underlying semantics of parameter passing doesn’t neatly fit into any single style, such as “pass by value” or “pass by reference,” that you might know about from other programming languages. For example, if you pass an immutable value, the argument effectively looks like it was passed by value. However, if a mutable object (such as a list or dictionary) is passed to a function where it’s then modified, those changes will be reflected in the original object. Here’s an example:

[image: image]

Functions that mutate their input values or change the state of other parts of the program behind the scenes like this are said to have side effects. As a general rule, this is a programming style that is best avoided because such functions can become a source of subtle programming errors as programs grow in size and complexity (for example, it’s not obvious from reading a function call if a function has side effects). Such functions interact poorly with programs involving threads and concurrency because side effects typically need to be protected by locks.

The return statement returns a value from a function. If no value is specified or you omit the return statement, the None object is returned. To return multiple values, place them in a tuple:

[image: image]

Multiple return values returned in a tuple can be assigned to individual variables:

x, y = factor(1243) # Return values placed in x and y.

or

(x, y) = factor(1243) # Alternate version. Same behavior.

Scoping Rules

Each time a function executes, a new local namespace is created. This namespace represents a local environment that contains the names of the function parameters, as well as the names of variables that are assigned inside the function body. When resolving names, the interpreter first searches the local namespace. If no match exists, it searches the global namespace. The global namespace for a function is always the module in which the function was defined. If the interpreter finds no match in the global namespace, it makes a final check in the built-in namespace. If this fails, a NameError exception is raised.

One peculiarity of namespaces is the manipulation of global variables within a function. For example, consider the following code:

[image: image]

When this code executes, a returns its value of 42, despite the appearance that we might be modifying the variable a inside the function foo. When variables are assigned inside a function, they’re always bound to the function’s local namespace; as a result, the variable a in the function body refers to an entirely new object containing the value 13, not the outer variable. To alter this behavior, use the global statement. global simply declares names as belonging to the global namespace, and it’s necessary only when global variables will be modified. It can be placed anywhere in a function body and used repeatedly. Here’s an example:

[image: image]

Python supports nested function definitions. Here’s an example:

[image: image]

Variables in nested functions are bound using lexical scoping. That is, names are resolved by first checking the local scope and then all enclosing scopes of outer function definitions from the innermost scope to the outermost scope. If no match is found, the global and built-in namespaces are checked as before. Although names in enclosing scopes are accessible, Python 2 only allows variables to be reassigned in the innermost scope (local variables) and the global namespace (using global). Therefore, an inner function can’t reassign the value of a local variable defined in an outer function. For example, this code does not work:

[image: image]

In Python 2, you can work around this by placing values you want to change in a list or dictionary. In Python 3, you can declare n as nonlocal as follows:

[image: image]

The nonlocal declaration does not bind a name to local variables defined inside arbitrary functions further down on the current call-stack (that is, dynamic scope). So, if you’re coming to Python from Perl, nonlocal is not the same as declaring a Perl local variable.

If a local variable is used before it’s assigned a value, an UnboundLocalError exception is raised. Here’s an example that illustrates one scenario of how this might occur:

[image: image]

In this function, the variable i is defined as a local variable (because it is being assigned inside the function and there is no global statement). However, the assignment i = i + 1 tries to read the value of i before its local value has been first assigned. Even though there is a global variable i in this example, it is not used to supply a value here. Variables are determined to be either local or global at the time of function definition and cannot suddenly change scope in the middle of a function. For example, in the preceding code, it is not the case that the i in the expression i + 1 refers to the global variable i, whereas the i in print(i) refers to the local variable i created in the previous statement.

Functions as Objects and Closures

Functions are first-class objects in Python. This means that they can be passed as arguments to other functions, placed in data structures, and returned by a function as a result. Here is an example of a function that accepts another function as input and calls it:

[image: image]

Here is an example of using the above function:

[image: image]

When a function is handled as data, it implicitly carries information related to the surrounding environment where the function was defined. This affects how free variables in the function are bound. As an example, consider this modified version foo.py that now contains a variable definition:

[image: image]

Now, observe the behavior of this example:

[image: image]

In this example, notice how the function helloworld() uses the value of x that’s defined in the same environment as where helloworld() was defined. Thus, even though there is also an x defined in foo.py and that’s where helloworld() is actually being called, that value of x is not the one that’s used when helloworld() executes.

When the statements that make up a function are packaged together with the environment in which they execute, the resulting object is known as a closure. The behavior of the previous example is explained by the fact that all functions have a _ _globals_ _ attribute that points to the global namespace in which the function was defined. This always corresponds to the enclosing module in which a function was defined. For the previous example, you get the following:

[image: image]

When nested functions are used, closures capture the entire environment needed for the inner function to execute. Here is an example:

[image: image]

Closures and nested functions are especially useful if you want to write code based on the concept of lazy or delayed evaluation. Here is another example:

[image: image]

In this example, the page() function doesn’t actually carry out any interesting computation. Instead, it merely creates and returns a function get() that will fetch the contents of a web page when it is called. Thus, the computation carried out in get() is actually delayed until some later point in a program when get() is evaluated. For example:

[image: image]

In this example, the two variables python and jython are actually two different versions of the get() function. Even though the page() function that created these values is no longer executing, both get() functions implicitly carry the values of the outer variables that were defined when the get() function was created. Thus, when get()
executes, it calls urlopen(url) with the value of url that was originally supplied to page(). With a little inspection, you can view the contents of variables that are carried along in a closure. For example:

[image: image]

A closure can be a highly efficient way to preserve state across a series of function calls. For example, consider this code that runs a simple counter:

[image: image]

In this code, a closure is being used to store the internal counter value n. The inner function next() updates and returns the previous value of this counter variable each time it is called. Programmers not familiar with closures might be inclined to implement similar functionality using a class such as this:

[image: image]

However, if you increase the starting value of the countdown and perform a simple timing benchmark, you will find that that the version using closures runs much faster (almost a 50% speedup when tested on the author’s machine).

The fact that closures capture the environment of inner functions also make them useful for applications where you want to wrap existing functions in order to add extra capabilities. This is described next.

Decorators

A decorator is a function whose primary purpose is to wrap another function or class. The primary purpose of this wrapping is to transparently alter or enhance the behavior of the object being wrapped. Syntactically, decorators are denoted using the special @ symbol as follows:

[image: image]

The preceding code is shorthand for the following:

[image: image]

In the example, a function square() is defined. However, immediately after its definition, the function object itself is passed to the function trace(), which returns an object that replaces the original square. Now, let’s consider an implementation of trace that will clarify how this might be useful:

[image: image]

In this code, trace() creates a wrapper function that writes some debugging output and then calls the original function object. Thus, if you call square(), you will see the output of the write() methods in the wrapper. The function callf that is returned from trace() is a closure that serves as a replacement for the original function. A final interesting aspect of the implementation is that the tracing feature itself is only enabled through the use of a global variable enable_tracing as shown. If set to False, the trace() decorator simply returns the original function unmodified. Thus, when tracing is disabled, there is no added performance penalty associated with using the decorator.

When decorators are used, they must appear on their own line immediately prior to a function or class definition. More than one decorator can also be applied. Here’s an example:

[image: image]

In this case, the decorators are applied in the order listed. The result is the same as this:

[image: image]

A decorator can also accept arguments. Here’s an example:

[image: image]

If arguments are supplied, the semantics of the decorator are as follows:

[image: image]

In this case, the decorator function only accepts the arguments supplied with the @ specifier. It then returns a function that is called with the function as an argument. Here’s an example:

[image: image]

Decorators can also be applied to class definitions. For example:

[image: image]

For class decorators, you should always have the decorator function return a class object as a result. Code that expects to work with the original class definition may want to reference members of the class directly such as Bar.spam. This won’t work correctly if the decorator function foo() returns a function.

Decorators can interact strangely with other aspects of functions such as recursion, documentation strings, and function attributes. These issues are described later in this chapter.

Generators and yield

If a function uses the yield keyword, it defines an object known as a generator. A generator is a function that produces a sequence of values for use in iteration. Here’s an example:

[image: image]

If you call this function, you will find that none of its code starts executing. For example:

[image: image]

Instead, a generator object is returned. The generator object, in turn, executes the function whenever next() is called (or _ _next_ _() in Python 3). Here’s an example:

[image: image]

When next() is invoked, the generator function executes statements until it reaches a yield statement. The yield statement produces a result at which point execution of the function stops until next() is invoked again. Execution then resumes with the statement following yield.

You normally don’t call next() directly on a generator but use it with the for statement, sum(), or some other operation that consumes a sequence. For example:

[image: image]

A generator function signals completion by returning or raising StopIteration, at which point iteration stops. It is never legal for a generator to return a value other than None upon completion.

A subtle problem with generators concerns the case where a generator function is only partially consumed. For example, consider this code:

[image: image]

In this example, the for loop aborts by calling break, and the associated generator never runs to full completion. To handle this case, generator objects have a method close() that is used to signal a shutdown. When a generator is no longer used or deleted, close() is called. Normally it is not necessary to call close(), but you can also call it manually as shown here:

[image: image]

Inside the generator function, close() is signaled by a GeneratorExit exception occurring on the yield statement. You can optionally catch this exception to perform cleanup actions.

[image: image]

Although it is possible to catch GeneratorExit, it is illegal for a generator function to handle the exception and produce another output value using yield. Moreover, if a program is currently iterating on generator, you should not call close() asynchronously on that generator from a separate thread of execution or from a signal handler.

Coroutines and yield Expressions

Inside a function, the yield statement can also be used as an expression that appears on the right side of an assignment operator. For example:

[image: image]

A function that uses yield in this manner is known as a coroutine, and it executes in response to values being sent to it. Its behavior is also very similar to a generator. For example:

[image: image]

In this example, the initial call to next() is necessary so that the coroutine executes statements leading to the first yield expression. At this point, the coroutine suspends, waiting for a value to be sent to it using the send() method of the associated generator object r. The value passed to send() is returned by the (yield) expression in the coroutine. Upon receiving a value, a coroutine executes statements until the next yield statement is encountered.

The requirement of first calling next() on a coroutine is easily overlooked and a common source of errors. Therefore, it is recommended that coroutines be wrapped with a decorator that automatically takes care of this step.

[image: image]

Using this decorator, you would write and use coroutines using:

[image: image]

A coroutine will typically run indefinitely unless it is explicitly shut down or it exits on its own. To close the stream of input values, use the close() method like this:

[image: image]

Once closed, a StopIteration exception will be raised if further values are sent to a coroutine. The close() operation raises GeneratorExit inside the coroutine as described in the previous section on generators. For example:

[image: image]

Exceptions can be raised inside a coroutine using the throw(exctype
[,
value
[,
tb]]) method where exctype is an exception type, value is the exception value, and tb is a traceback object. For example:

[image: image]

Exceptions raised in this manner will originate at the currently executing yield statement in the coroutine. A coroutine can elect to catch exceptions and handle them as appropriate. It is not safe to use throw() as an asynchronous signal to a coroutine—it should never be invoked from a separate execution thread or in a signal handler.

A coroutine may simultaneously receive and emit return values using yield if values are supplied in the yield expression. Here is an example that illustrates this:

[image: image]

In this case, we use the coroutine in the same way as before. However, now calls to send() also produce a result. For example:

[image: image]

Understanding the sequencing of this example is critical. The first next() call advances the coroutine to (yield result), which returns None, the initial value of result. On subsequent send() calls, the received value is placed in line and split into result. The value returned by send() is the value passed to the next yield statement encountered. In other words, the value returned by send() comes from the next yield expression, not the one responsible for receiving the value passed by send().

If a coroutine returns values, some care is required if exceptions raised with throw() are being handled. If you raise an exception in a coroutine using throw(), the value passed to the next yield in the coroutine will be returned as the result of throw(). If you need this value and forget to save it, it will be lost.

Using Generators and Coroutines

At first glance, it might not be obvious how to use generators and coroutines for practical problems. However, generators and coroutines can be particularly effective when applied to certain kinds of programming problems in systems, networking, and distributed computation. For example, generator functions are useful if you want to set up a processing pipeline, similar in nature to using a pipe in the UNIX shell. One example of this appeared in the Introduction. Here is another example involving a set of generator functions related to finding, opening, reading, and processing files:

[image: image]

Here is an example of using these functions to set up a processing pipeline:

[image: image]

In this example, the program is processing all lines in all "access-log*" files found within all subdirectories of a top-level directory "www". Each "access-log" is tested for file compression and opened using an appropriate file opener. Lines are concatenated together and processed through a filter that is looking for a substring "python". The entire program is being driven by the for statement at the end. Each iteration of this loop pulls a new value through the pipeline and consumes it. Moreover, the implementation is highly memory-efficient because no temporary lists or other large data structures are ever created.

Coroutines can be used to write programs based on data-flow processing. Programs organized in this way look like inverted pipelines. Instead of pulling values through a sequence of generator functions using a for loop, you send values into a collection of linked coroutines. Here is an example of coroutine functions written to mimic the generator functions shown previously:

[image: image]

[image: image]

Here is how you would link these coroutines to create a dataflow processing pipeline:

[image: image]

In this example, each coroutine sends data to another coroutine specified in the target argument to each coroutine. Unlike the generator example, execution is entirely driven by pushing data into the first coroutine find_files(). This coroutine, in turn, pushes data to the next stage. A critical aspect of this example is that the coroutine pipeline remains active indefinitely or until close() is explicitly called on it. Because of this, a program can continue to feed data into a coroutine for as long as necessary—for example, the two repeated calls to send() shown in the example.

Coroutines can be used to implement a form of concurrency. For example, a centralized task manager or event loop can schedule and send data into a large collection of hundreds or even thousands of coroutines that carry out various processing tasks. The fact that input data is “sent” to a coroutine also means that coroutines can often be easily mixed with programs that use message queues and message passing to communicate between program components. Further information on this can be found in Chapter 20, “Threads.”

List Comprehensions

A common operation involving functions is that of applying a function to all of the items of a list, creating a new list with the results. For example:

[image: image]

Because this type of operation is so common, it is has been turned into an operator known as a list comprehension. Here is a simple example:

[image: image]

The general syntax for a list comprehension is as follows:

[image: image]

This syntax is roughly equivalent to the following code:

[image: image]

To illustrate, here are some more examples:

[image: image]

The sequences supplied to a list comprehension don’t have to be the same length because they’re iterated over their contents using a nested set of for loops, as previously shown. The resulting list contains successive values of expressions. The if clause is optional; however, if it’s used, expression is evaluated and added to the result only if condition is true.

If a list comprehension is used to construct a list of tuples, the tuple values must be enclosed in parentheses. For example, [(x,y) for x in a for y in b] is legal syntax, whereas [x,y for x in a for y in b] is not.

Finally, it is important to note that in Python 2, the iteration variables defined within a list comprehension are evaluated within the current scope and remain defined after the list comprehension has executed. For example, in [x for x in a], the iteration variable x overwrites any previously defined value of x and is set to the value of the last item in a after the resulting list is created. Fortunately, this is not the case in Python 3 where the iteration variable remains private.

Generator Expressions

A generator expression is an object that carries out the same computation as a list comprehension, but which iteratively produces the result. The syntax is the same as for list comprehensions except that you use parentheses instead of square brackets. Here’s an example:

[image: image]

Unlike a list comprehension, a generator expression does not actually create a list or immediately evaluate the expression inside the parentheses. Instead, it creates a generator object that produces the values on demand via iteration. Here’s an example:

[image: image]

The difference between list and generator expressions is important, but subtle. With a list comprehension, Python actually creates a list that contains the resulting data. With a generator expression, Python creates a generator that merely knows how to produce data on demand. In certain applications, this can greatly improve performance and memory use. Here’s an example:

[image: image]

In this example, the generator expression that extracts lines and strips whitespace does not actually read the entire file into memory. The same is true of the expression that extracts comments. Instead, the lines of the file are actually read when the program starts iterating in the for loop that follows. During this iteration, the lines of the file are produced upon demand and filtered accordingly. In fact, at no time will the entire file be loaded into memory during this process. Therefore, this would be a highly efficient way to extract comments from a gigabyte-sized Python source file.

Unlike a list comprehension, a generator expression does not create an object that works like a sequence. It can’t be indexed, and none of the usual list operations will work (for example, append()). However, a generator expression can be converted into a list using the built-in list() function:

clist = list(comments)

Declarative Programming

List comprehensions and generator expressions are strongly tied to operations found in declarative languages. In fact, the origin of these features is loosely derived from ideas in mathematical set theory. For example, when you write a statement such as [x*x for x in a if x > 0], it’s somewhat similar to specifying a set such as { x2 | x εa, x > 0 }.

Instead of writing programs that manually iterate over data, you can use these declarative features to structure programs as a series of computations that simply operate on all of the data all at once. For example, suppose you had a file “portfolio.txt” containing stock portfolio data like this:

[image: image]

Here is a declarative-style program that calculates the total cost by summing up the second column multiplied by the third column:

[image: image]

In this program, we really aren’t concerned with the mechanics of looping line-by-line over the file. Instead, we just declare a sequence of calculations to perform on all of the data. Not only does this approach result in highly compact code, but it also tends to run faster than this more traditional version:

[image: image]

The declarative programming style is somewhat tied to the kinds of operations a programmer might perform in a UNIX shell. For instance, the preceding example using generator expressions is similar to the following one-line awk command:

[image: image]

The declarative style of list comprehensions and generator expressions can also be used to mimic the behavior of SQL select statements, commonly used when processing databases. For example, consider these examples that work on data that has been read in a list of dictionaries:

[image: image]

In fact, if you are using a module related to database access (see Chapter 17), you can often use list comprehensions and database queries together all at once. For example:

[image: image]

The lambda Operator

Anonymous functions in the form of an expression can be created using the lambda statement:

lambda args : expression

args is a comma-separated list of arguments, and expression is an expression involving those arguments. Here’s an example:

[image: image]

The code defined with lambda must be a valid expression. Multiple statements and other non-expression statements, such as for and while, cannot appear in a lambda statement. lambda expressions follow the same scoping rules as functions.

The primary use of lambda is in specifying short callback functions. For example, if you wanted to sort a list of names with case-insensitivity, you might write this:

names.sort(key=lambda n: n.lower())

Recursion

Recursive functions are easily defined. For example:

[image: image]

However, be aware that there is a limit on the depth of recursive function calls. The function sys.getrecursionlimit() returns the current maximum recursion depth, and the function sys.setrecursionlimit() can be used to change the value. The default value is 1000. Although it is possible to increase the value, programs are still limited by the stack size limits enforced by the host operating system. When the recursion depth is exceeded, a RuntimeError exception is raised. Python does not perform tail-recursion optimization that you often find in functional languages such as Scheme.

Recursion does not work as you might expect in generator functions and coroutines. For example, this code prints all items in a nested collection of lists:

[image: image]

However, if you change the print operation to a yield, it no longer works. This is because the recursive call to flatten() merely creates a new generator object without actually iterating over it. Here’s a recursive generator version that works:

[image: image]

Care should also be taken when mixing recursive functions and decorators. If a decorator is applied to a recursive function, all inner recursive calls now get routed through the decorated version. For example:

[image: image]

If the purpose of the decorator was related to some kind of system management such as synchronization or locking, recursion is something probably best avoided.

Documentation Strings

It is common practice for the first statement of function to be a documentation string describing its usage. For example:

[image: image]

The documentation string is stored in the _ _doc_ _ attribute of the function that is commonly used by IDEs to provide interactive help.

If you are using decorators, be aware that wrapping a function with a decorator can break the help features associated with documentation strings. For example, consider this code:

[image: image]

If a user requests help on this version of factorial(), he will get a rather cryptic explanation:

[image: image]

To fix this, write decorator functions so that they propagate the function name and documentation string. For example:

[image: image]

Because this is a common problem, the functools module provides a function wraps that can automatically copy these attributes. Not surprisingly, it is also a decorator:

[image: image]

The @wraps(func) decorator, defined in functools, propagates attributes from func to the wrapper function that is being defined.

Function Attributes

Functions can have arbitrary attributes attached to them. Here’s an example:

[image: image]

Function attributes are stored in a dictionary that is available as the _ _dict_ _ attribute of a function.

The primary use of function attributes is in highly specialized applications such as parser generators and application frameworks that would like to attach additional information to function objects.

As with documentation strings, care should be given if mixing function attributes with decorators. If a function is wrapped by a decorator, access to the attributes will actually take place on the decorator function, not the original implementation. This may or may not be what you want depending on the application. To propagate already defined function attributes to a decorator function, use the following template or the functools.wraps() decorator as shown in the previous section:

[image: image]

eval(), exec(), and compile()

The eval(str
[,globals
[,locals]]) function executes an expression string and returns the result. Here’s an example:

a = eval('3*math.sin(3.5+x) + 7.2')

Similarly, the exec(str
[,
globals
[,
locals]]) function executes a string containing arbitrary Python code. The code supplied to exec() is executed as if the code actually appeared in place of the exec operation. Here’s an example:

[image: image]

One caution with exec is that in Python 2, exec is actually defined as a statement. Thus, in legacy code, you might see statements invoking exec without the surrounding parentheses, such as exec "for i in a: print i". Although this still works in Python 2.6, it breaks in Python 3. Modern programs should use exec() as a function.

Both of these functions execute within the namespace of the caller (which is used to resolve any symbols that appear within a string or file). Optionally, eval() and exec() can accept one or two mapping objects that serve as the global and local namespaces for the code to be executed, respectively. Here’s an example:

[image: image]

If you omit one or both namespaces, the current values of the global and local namespaces are used. Also, due to issues related to nested scopes, the use of exec() inside of a function body may result in a SyntaxError exception if that function also contains nested function definitions or uses the lambda operator.

When a string is passed to exec() or eval() the parser first compiles it into bytecode. Because this process is expensive, it may be better to precompile the code and reuse the bytecode on subsequent calls if the code will be executed multiple times.

The compile(str,filename,kind) function compiles a string into bytecode in which str is a string containing the code to be compiled and filename is the file in which the string is defined (for use in traceback generation). The kind argument specifies the type of code being compiled—'single' for a single statement, 'exec' for a set of statements, or 'eval' for an expression. The code object returned by the compile() function can also be passed to the eval() function and exec() statement. Here’s an example:

[image: image]

7. Classes and Object-Oriented Programming

Classes are the mechanism used to create new kinds of objects. This chapter covers the details of classes, but is not intended to be an in-depth reference on object-oriented programming and design. It’s assumed that the reader has some prior experience with data structures and object-oriented programming in other languages such as C or Java. (Chapter 3, “Types and Objects,” contains additional information about the terminology and internal implementation of objects.)

The class Statement

A class defines a set of attributes that are associated with, and shared by, a collection of objects known as instances. A class is most commonly a collection of functions (known as methods), variables (which are known as class variables), and computed attributes (which are known as properties).

A class is defined using the class statement. The body of a class contains a series of statements that execute during class definition. Here’s an example:

[image: image]

The values created during the execution of the class body are placed into a class object that serves as a namespace much like a module. For example, the members of the Account class are accessed as follows:

[image: image]

It’s important to note that a class statement by itself doesn’t create any instances of the class (for example, no accounts are actually created in the preceding example). Rather, a class merely sets up the attributes that will be common to all the instances that will be created later. In this sense, you might think of it as a blueprint.

The functions defined inside a class are known as instance methods. An instance method is a function that operates on an instance of the class, which is passed as the first argument. By convention, this argument is called self, although any legal identifier name can be used. In the preceding example, deposit(), withdraw(), and inquiry() are examples of instance methods.

Class variables such as num_accounts are values that are shared among all instances of a class (that is, they’re not individually assigned to each instance). In this case, it’s a variable that’s keeping track of how many Account instances are in existence.

Class Instances

Instances of a class are created by calling a class object as a function. This creates a new instance that is then passed to the _ _init_ _() method of the class. The arguments to _ _init_ _() consist of the newly created instance self along with the arguments supplied when calling the class object. For example:

[image: image]

Inside _ _init_ _(), attributes are saved in the instance by assigning to self. For example, self.name = name is saving a name attribute in the instance. Once the newly created instance has been returned to the user, these attributes as well as attributes of the class are accessed using the dot (.) operator as follows:

[image: image]

The dot (.) operator is responsible for attribute binding. When you access an attribute, the resulting value may come from several different places. For example, a.name in the previous example returns the name attribute of the instance a. However, a.deposit returns the deposit attribute (a method) of the Account class. When you access an attribute, the instance is checked first and if nothing is known, the search moves to the instance’s class instead. This is the underlying mechanism by which a class shares its attributes with all of its instances.

Scoping Rules

Although classes define a namespace, classes do not create a scope for names used inside the bodies of methods. Therefore, when you’re implementing a class, references to attributes and methods must be fully qualified. For example, in methods you always reference attributes of the instance through self. Thus, in the example you use self.balance, not balance. This also applies if you want to call a method from another method, as shown in the following example:

[image: image]

The lack of scoping in classes is one area where Python differs from C++ or Java. If you have used those languages, the self parameter in Python is the same as the this pointer. The explicit use of self is required because Python does not provide a means to explicitly declare variables (that is, a declaration such as int x or float y in C). Without this, there is no way to know whether an assignment to a variable in a method is supposed to be a local variable or if it’s supposed to be saved as an instance attribute. The explicit use of self fixes this—all values stored on self are part of the instance and all other assignments are just local variables.

Inheritance

Inheritance is a mechanism for creating a new class that specializes or modifies the behavior of an existing class. The original class is called a base class or a superclass. The new class is called a derived class or a subclass. When a class is created via inheritance, it “inherits” the attributes defined by its base classes. However, a derived class may redefine any of these attributes and add new attributes of its own.

Inheritance is specified with a comma-separated list of base-class names in the class statement. If there is no logical base class, a class inherits from object, as has been shown in prior examples. object is a class which is the root of all Python objects and which provides the default implementation of some common methods such as _ _str_ _(), which creates a string for use in printing.

Inheritance is often used to redefine the behavior of existing methods. As an example, here’s a specialized version of Account that redefines the inquiry() method to periodically overstate the current balance with the hope that someone not paying close attention will overdraw his account and incur a big penalty when making a payment on their subprime mortgage:

[image: image]

In this example, instances of EvilAccount are identical to instances of Account except for the redefined inquiry() method.

Inheritance is implemented with only a slight enhancement of the dot (.) operator. Specifically, if the search for an attribute doesn’t find a match in the instance or the instance’s class, the search moves on to the base class. This process continues until there are no more base classes to search. In the previous example, this explains why c.deposit() calls the implementation of deposit() defined in the Account class.

A subclass can add new attributes to the instances by defining its own version of _ _init_ _(). For example, this version of EvilAccount adds a new attribute evilfactor:

[image: image]

When a derived class defines _ _init_ _(), the _ _init_ _() methods of base classes are not automatically invoked. Therefore, it’s up to a derived class to perform the proper initialization of the base classes by calling their _ _init_ _() methods. In the previous example, this is shown in the statement that calls Account._ _init_ _(). If a base class does not define _ _init_ _(), this step can be omitted. If you don’t know whether the base class defines _ _init_ _(), it is always safe to call it without any arguments because there is always a default implementation that simply does nothing.

Occasionally, a derived class will reimplement a method but also want to call the original implementation. To do this, a method can explicitly call the original method in the base class, passing the instance self as the first parameter as shown here:

[image: image]

A subtlety in this example is that the class EvilAccount doesn’t actually implement the deposit() method. Instead, it is implemented in the Account class. Although this code works, it might be confusing to someone reading the code (e.g., was EvilAccount supposed to implement deposit()?). Therefore, an alternative solution is to use the super() function as follows:

[image: image]

super(cls, instance) returns a special object that lets you perform attribute lookups on the base classes. If you use this, Python will search for an attribute using the normal search rules that would have been used on the base classes. This frees you from hard-coding the exact location of a method and more clearly states your intentions (that is, you want to call the previous implementation without regard for which base class defines it). Unfortunately, the syntax of super() leaves much to be desired. If you are using Python 3, you can use the simplified statement super().deposit(amount) to carry out the calculation shown in the example. In Python 2, however, you have to use the more verbose version.

Python supports multiple inheritance. This is specified by having a class list multiple base classes. For example, here are a collection of classes:

[image: image]

When multiple inheritance is used, attribute resolution becomes considerably more complicated because there are many possible search paths that could be used to bind attributes. To illustrate the possible complexity, consider the following statements:

[image: image]

In this example, methods such as deposit_fee() and withdraw_fee() are uniquely named and found in their respective base classes. However, the withdraw_fee() function doesn’t seem to work right because it doesn’t actually use the value of fee that was initialized in its own class. What has happened is that the attribute fee is a class variable defined in two different base classes. One of those values is used, but which one? (Hint: it’s DepositCharge.fee.)

To find attributes with multiple inheritance, all base classes are ordered in a list from the “most specialized” class to the “least specialized” class. Then, when searching for an attribute, this list is searched in order until the first definition of the attribute is found. In the example, the class EvilAccount is more specialized than Account because it inherits from Account. Similarly, within MostEvilAccount, DepositCharge is considered to be more specialized than WithdrawCharge because it is listed first in the list of base classes. For any given class, the ordering of base classes can be viewed by printing its _ _mro_ _ attribute. Here’s an example:

[image: image]

In most cases, this list is based on rules that “make sense.” That is, a derived class is always checked before its base classes and if a class has more than one parent, the parents are always checked in the same order as listed in the class definition. However, the precise ordering of base classes is actually quite complex and not based on any sort of “simple” algorithm such as depth-first or breadth-first search. Instead, the ordering is determined according to the C3 linearization algorithm, which is described in the paper “A Monotonic Superclass Linearization for Dylan” (K. Barrett, et al, presented at OOPSLA’96). A subtle aspect of this algorithm is that certain class hierarchies will be rejected by Python with a TypeError. Here’s an example:

[image: image]

In this case, the method resolution algorithm rejects class Z because it can’t determine an ordering of the base classes that makes sense. For example, the class X appears before class Y in the inheritance list, so it must be checked first. However, class Y is more specialized because it inherits from X. Therefore, if X is checked first, it would not be possible to resolve specialized methods in Y. In practice, these issues should rarely arise—and if they do, it usually indicates a more serious design problem with a program.

As a general rule, multiple inheritance is something best avoided in most programs. However, it is sometimes used to define what are known as mixin classes. A mixin class typically defines a set of methods that are meant to be “mixed in” to other classes in order to add extra functionality (almost like a macro). Typically, the methods in a mixin will assume that other methods are present and will build upon them. The DepositCharge and WithdrawCharge classes in the earlier example illustrate this. These classes add new methods such as deposit_fee() to classes that include them as one of the base classes. However, you would never instantiate DepositCharge by itself. In fact, if you did, it wouldn’t create an instance that could be used for anything useful (that is, the one defined method wouldn’t even execute correctly).

Just as a final note, if you wanted to fix the problematic references to fee in this example, the implementation of deposit_fee() and withdraw_fee() should be changed to refer to the attribute directly using the class name instead of self (for example, DepositChange.fee).

Polymorphism Dynamic Binding and Duck Typing

Dynamic binding (also sometimes referred to as polymorphism when used in the context of inheritance) is the capability to use an instance without regard for its type. It is handled entirely through the attribute lookup process described for inheritance in the preceding section. Whenever an attribute is accessed as obj.attr, attr is located by searching within the instance itself, the instance’s class definition, and then base classes, in that order. The first match found is returned.

A critical aspect of this binding process is that it is independent of what kind of object obj is. Thus, if you make a lookup such as obj.name, it will work on any obj that happens to have a name attribute. This behavior is sometimes referred to as duck typing in reference to the adage “if it looks like, quacks like, and walks like a duck, then it’s a duck.”

Python programmers often write programs that rely on this behavior. For example, if you want to make a customized version of an existing object, you can either inherit from it or you can simply create a completely new object that looks and acts like it but is otherwise unrelated. This latter approach is often used to maintain a loose coupling of program components. For example, code may be written to work with any kind of object whatsoever as long as it has a certain set of methods. One of the most common examples is with various “file-like” objects defined in the standard library. Although these objects work like files, they don’t inherit from the built-in file object.

Static Methods and Class Methods

In a class definition, all functions are assumed to operate on an instance, which is always passed as the first parameter self. However, there are two other common kinds of methods that can be defined.

A static method is an ordinary function that just happens to live in the namespace defined by a class. It does not operate on any kind of instance. To define a static method, use the @staticmethod decorator as shown here:

[image: image]

To call a static method, you just prefix it by the class name. You do not pass it any additional information. For example:

x = Foo.add(3,4) # x = 7

A common use of static methods is in writing classes where you might have many different ways to create new instances. Because there can only be one _ _init_ _() function, alternative creation functions are often defined as shown here:

[image: image]

Class methods are methods that operate on the class itself as an object. Defined using the @classmethod decorator, a class method is different than an instance method in that the class is passed as the first argument which is named cls by convention. For example:

[image: image]

In this example, notice how the class TwoTimes is passed to mul() as an object. Although this example is esoteric, there are practical, but subtle, uses of class methods. As an example, suppose that you defined a class that inherited from the Date class shown previously and customized it slightly:

[image: image]

Because the class inherits from Date, it has all of the same features. However, the now() and tomorrow() methods are slightly broken. For example, if someone calls EuroDate.now(), a Date object is returned instead of a EuroDate object. A class method can fix this:

[image: image]

One caution about static and class methods is that Python does not manage these methods in a separate namespace than the instance methods. As a result, they can be invoked on an instance. For example:

[image: image]

This is potentially quite confusing because a call to d.now() doesn’t really have anything to do with the instance d. This behavior is one area where the Python object system differs from that found in other OO languages such as Smalltalk and Ruby. In those languages, class methods are strictly separate from instance methods.

Properties

Normally, when you access an attribute of an instance or a class, the associated value that is stored is returned. A property is a special kind of attribute that computes its value when accessed. Here is a simple example:

[image: image]

The resulting Circle object behaves as follows:

[image: image]

In this example, Circle instances have an instance variable c.radius that is stored. c.area and c.perimeter are simply computed from that value. The @property decorator makes it possible for the method that follows to be accessed as a simple attribute, without the extra () that you would normally have to add to call the method. To the user of the object, there is no obvious indication that an attribute is being computed other than the fact that an error message is generated if an attempt is made to redefine the attribute (as shown in the AttributeError exception above).

Using properties in this way is related to something known as the Uniform Access Principle. Essentially, if you’re defining a class, it is always a good idea to make the programming interface to it as uniform as possible. Without properties, certain attributes of an object would be accessed as a simple attribute such as c.radius whereas other attributes would be accessed as methods such as c.area(). Keeping track of when to add the extra () adds unnecessary confusion. A property can fix this.

Python programmers don’t often realize that methods themselves are implicitly handled as a kind of property. Consider this class:

[image: image]

When a user creates an instance such as f = Foo("Guido") and then accesses f.spam, the original function object spam is not returned. Instead, you get something known as a bound method, which is an object that represents the method call that will execute when the () operator is invoked on it. A bound method is like a partially evaluated function where the self parameter has already been filled in, but the additional arguments still need to be supplied by you when you call it using (). The creation of this bound method object is silently handled through a property function that executes behind the scenes. When you define static and class methods using @staticmethod and @classmethod, you are actually specifying the use of a different property function that will handle the access to those methods in a different way. For example, @staticmethod simply returns the method function back “as is” without any special wrapping or processing.

Properties can also intercept operations to set and delete an attribute. This is done by attaching additional setter and deleter methods to a property. Here is an example:

[image: image]

In this example, the attribute name is first defined as a read-only property using the @property decorator and associated method. The @name.setter and @name.deleter decorators that follow are associating additional methods with the set and deletion operations on the name attribute. The names of these methods must exactly match the name of the original property. In these methods, notice that the actual value of the name is stored in an attribute _ _name. The name of the stored attribute does not have to follow any convention, but it has to be different than the property in order to distinguish it from the name of the property itself.

In older code, you will often see properties defined using the property(getf=None,
setf=None,
delf=None,
doc=None) function with a set of uniquely named methods for carrying out each operation. For example:

[image: image]

This older approach is still supported, but the decorator version tends to lead to classes that are a little more polished. For example, if you use decorators, the get, set, and delete functions aren’t also visible as methods.

Descriptors

With properties, access to an attribute is controlled by a series of user-defined get, set, and delete functions. This sort of attribute control can be further generalized through the use of a descriptor object. A descriptor is simply an object that represents the value of an attribute. By implementing one or more of the special methods _ _get_ _(), _ _set_ _(), and _ _delete_ _(), it can hook into the attribute access mechanism and can customize those operations. Here is an example:

[image: image]

In this example, the class TypedProperty defines a descriptor where type checking is performed when the attribute is assigned and an error is produced if an attempt is made to delete the attribute. For example:

[image: image]

Descriptors can only be instantiated at the class level. It is not legal to create descriptors on a per-instance basis by creating descriptor objects inside _ _init_ _() and other methods. Also, the attribute name used by the class to hold a descriptor takes precedence over attributes stored on instances. In the previous example, this is why the descriptor object takes a name parameter and why the name is changed slightly by inserting a leading underscore. In order for the descriptor to store a value on the instance, it has to pick a name that is different than that being used by the descriptor itself.

Data Encapsulation and Private Attributes

By default, all attributes and methods of a class are “public.” This means that they are all accessible without any restrictions. It also implies that everything defined in a base class is inherited and accessible within a derived class. This behavior is often undesirable in object-oriented applications because it exposes the internal implementation of an object and can lead to namespace conflicts between objects defined in a derived class and those defined in a base class.

To fix this problem, all names in a class that start with a double underscore, such as _ _Foo, are automatically mangled to form a new name of the form _Classname_ _Foo. This effectively provides a way for a class to have private attributes and methods because private names used in a derived class won’t collide with the same private names used in a base class. Here’s an example:

[image: image]

Although this scheme provides the illusion of data hiding, there’s no strict mechanism in place to actually prevent access to the “private” attributes of a class. In particular, if the name of the class and corresponding private attribute are known, they can be accessed using the mangled name. A class can make these attributes less visible by redefining the _ _dir_ _() method, which supplies the list of names returned by the dir() function that’s used to inspect objects.

Although this name mangling might look like an extra processing step, the mangling process actually only occurs once at the time a class is defined. It does not occur during execution of the methods, nor does it add extra overhead to program execution. Also, be aware that name mangling does not occur in functions such as getattr(), hasattr(), setattr(), or delattr() where the attribute name is specified as a string. For these functions, you need to explicitly use the mangled name such as _Classname_ _name to access the attribute.

It is recommended that private attributes be used when defining mutable attributes via properties. By doing so, you will encourage users to use the property name rather than accessing the underlying instance data directly (which is probably not what you intended if you wrapped it with a property to begin with). An example of this appeared in the previous section.

Giving a method a private name is a technique that a superclass can use to prevent a derived class from redefining and changing the implementation of a method. For example, the A.bar() method in the example only calls A._ _spam(), regardless of the type of self or the presence of a different _ _spam() method in a derived class.

Finally, don’t confuse the naming of private class attributes with the naming of “private” definitions in a module. A common mistake is to define a class where a single leading underscore is used on attribute names in an effort to hide their values (e.g., _name). In modules, this naming convention prevents names from being exported by the from module import * statement. However, in classes, this naming convention does not hide the attribute nor does it prevent name clashes that arise if someone inherits from the class and defines a new attribute or method with the same name.

Object Memory Management

When a class is defined, the resulting class is a factory for creating new instances. For example:

[image: image]

The creation of an instance is carried out in two steps using the special method _ _new_ _(), which creates a new instance, and _ _init_ _(), which initializes it. For example, the operation c = Circle(4.0) performs these steps:

[image: image]

The _ _new_ _() method of a class is something that is rarely defined by user code. If it is defined, it is typically written with the prototype _ _new_ _(cls, *args, **kwargs) where args and kwargs are the same arguments that will be passed to _ _init_ _(). _ _new_ _() is always a class method that receives the class object as the first parameter. Although _ _new_ _() creates an instance, it does not automatically call _ _init_ _().

If you see _ _new_ _() defined in a class, it usually means the class is doing one of two things. First, the class might be inheriting from a base class whose instances are immutable. This is common if defining objects that inherit from an immutable built-in type such as an integer, string, or tuple because _ _new_ _() is the only method that executes prior to the instance being created and is the only place where the value could be modified (in _ _init_ _(), it would be too late). For example:

[image: image]

The other major use of _ _new_ _() is when defining metaclasses. This is described at the end of this chapter.

Once created, instances are managed by reference counting. If the reference count reaches zero, the instance is immediately destroyed. When the instance is about to be destroyed, the interpreter first looks for a _ _del_ _() method associated with the object and calls it. In practice, it’s rarely necessary for a class to define a _ _del_ _() method. The only exception is when the destruction of an object requires a cleanup action such as closing a file, shutting down a network connection, or releasing other system resources. Even in these cases, it’s dangerous to rely on _ _del_ _() for a clean shutdown because there’s no guarantee that this method will be called when the interpreter exits. A better approach may be to define a method such as close() that a program can use to explicitly perform a shutdown.

Occasionally, a program will use the del statement to delete a reference to an object. If this causes the reference count of the object to reach zero, the _ _del_ _() method is called. However, in general, the del statement doesn’t directly call _ _del_ _().

A subtle danger involving object destruction is that instances for which _ _del_ _() is defined cannot be collected by Python’s cyclic garbage collector (which is a strong reason not to define _ _del_ _ unless you need to). Programmers coming from languages without automatic garbage collection (e.g., C++) should take care not to adopt a programming style where _ _del_ _() is unnecessarily defined. Although it is rare to break the garbage collector by defining _ _del_ _(), there are certain types of programming patterns, especially those involving parent-child relationships or graphs, where this can be a problem. For example, suppose you had an object that was implementing a variant of the “Observer Pattern.”

[image: image]

In this code, the Account class allows a set of AccountObserver objects to monitor an Account instance by receiving an update whenever the balance changes. To do this, each Account keeps a set of the observers and each AccountObserver keeps a reference back to the account. Each class has defined _ _del_ _() in an attempt to provide some sort of cleanup (such as unregistering and so on). However, it just doesn’t work. Instead, the classes have created a reference cycle in which the reference count never drops to 0 and there is no cleanup. Not only that, the garbage collector (the gc module) won’t even clean it up, resulting in a permanent memory leak.

One way to fix the problem shown in this example is for one of the classes to create a weak reference to the other using the weakref module. A weak reference is a way of creating a reference to an object without increasing its reference count. To work with a weak reference, you have to add an extra bit of functionality to check whether the object being referred to still exists. Here is an example of a modified observer class:

[image: image]

In this example, a weak reference accountref is created. To access the underlying Account, you call it like a function. This either returns the Account or None if it’s no longer around. With this modification, there is no longer a reference cycle. If the Account object is destroyed, its _ _del_ _ method runs and observers receive notification. The gc module also works properly. More information about the weakref module can be found in Chapter 13, “Python Runtime Services.”

Object Representation and Attribute Binding

Internally, instances are implemented using a dictionary that’s accessible as the instance’s _ _dict_ _ attribute. This dictionary contains the data that’s unique to each instance. Here’s an example:

[image: image]

New attributes can be added to an instance at any time, like this:

a.number = 123456 # Add attribute 'number' to a._ _dict_ _

Modifications to an instance are always reflected in the local _ _dict_ _ attribute. Likewise, if you make modifications to _ _dict_ _ directly, those modifications are reflected in the attributes.

Instances are linked back to their class by a special attribute _ _class_ _. The class itself is also just a thin layer over a dictionary which can be found in its own _ _dict_ _ attribute. The class dictionary is where you find the methods. For example:

[image: image]

Finally, classes are linked to their base classes in a special attribute _ _bases_ _, which is a tuple of the base classes. This underlying structure is the basis for all of the operations that get, set, and delete the attributes of objects.

Whenever an attribute is set using obj.name
=
value, the special method obj._ _setattr_ _("name",
value) is invoked. If an attribute is deleted using del obj.name, the special method obj._ _delattr_ _("name") is invoked. The default behavior of these methods is to modify or remove values from the local _ _dict_ _ of obj unless the requested attribute happens to correspond to a property or descriptor. In that case, the set and delete operation will be carried out by the set and delete functions associated with the property.

For attribute lookup such as obj.name, the special method obj._ _getattrribute_ _("name") is invoked. This method carries out the search process for finding the attribute, which normally includes checking for properties, looking in the local _ _dict_ _ attribute, checking the class dictionary, and searching the base classes. If this search process fails, a final attempt to find the attribute is made by trying to invoke the _ _getattr_ _() method of the class (if defined). If this fails, an AttributeError exception is raised.

User-defined classes can implement their own versions of the attribute access functions, if desired. For example:

[image: image]

A class that reimplements these methods should probably rely upon the default implementation in object to carry out the actual work. This is because the default implementation takes care of the more advanced features of classes such as descriptors and properties.

As a general rule, it is relatively uncommon for classes to redefine the attribute access operators. However, one application where they are often used is in writing general-purpose wrappers and proxies to existing objects. By redefining _ _getattr_ _(), _ _setattr_ _(), and _ _delattr_ _(), a proxy can capture attribute access and transparently forward those operations on to another object.

_ _slots_ _

A class can restrict the set of legal instance attribute names by defining a special variable called _ _slots_ _. Here’s an example:

[image: image]

When _ _slots_ _ is defined, the attribute names that can be assigned on instances are restricted to the names specified. Otherwise, an AttributeError exception is raised. This restriction prevents someone from adding new attributes to existing instances and solves the problem that arises if someone assigns a value to an attribute that they can’t spell correctly.

In reality, _ _slots_ _ was never implemented to be a safety feature. Instead, it is actually a performance optimization for both memory and execution speed. Instances of a class that uses _ _slots_ _ no longer use a dictionary for storing instance data. Instead, a much more compact data structure based on an array is used. In programs that create a large number of objects, using _ _slots_ _ can result in a substantial reduction in memory use and execution time.

Be aware that the use of _ _slots_ _ has a tricky interaction with inheritance. If a class inherits from a base class that uses _ _slots_ _, it also needs to define _ _slots_ _ for storing its own attributes (even if it doesn’t add any) to take advantage of the benefits _ _slots_ _ provides. If you forget this, the derived class will run slower and use even more memory than what would have been used if _ _slots_ _ had not been used on any of the classes!

The use of _ _slots_ _ can also break code that expects instances to have an underlying _ _dict_ _ attribute. Although this often does not apply to user code, utility libraries and other tools for supporting objects may be programmed to look at _ _dict_ _ for debugging, serializing objects, and other operations.

Finally, the presence of _ _slots_ _ has no effect on the invocation of methods such as _ _getattribute_ _(), _ _getattr_ _(), and _ _setattr_ _() should they be redefined in a class. However, the default behavior of these methods will take _ _slots_ _ into account. In addition, it should be stressed that it is not necessary to add method or property names to _ _slots_ _, as they are stored in the class, not on a per-instance basis.

Operator Overloading

User-defined objects can be made to work with all of Python’s built-in operators by adding implementations of the special methods described in Chapter 3 to a class. For example, if you wanted to add a new kind of number to Python, you could define a class in which special methods such as _ _ add_ _() were defined to make instances work with the standard mathematical operators.

The following example shows how this works by defining a class that implements the complex numbers with some of the standard mathematical operators.

Note

Because Python already provides a complex number type, this class is only provided for the purpose of illustration.

[image: image]

In the example, the _ _repr_ _() method creates a string that can be evaluated to re-create the object (that is, "Complex(real,imag)"). This convention should be followed for all user-defined objects as applicable. On the other hand, the _ _str_ _() method creates a string that’s intended for nice output formatting (this is the string that would be produced by the print statement).

The other operators, such as _ _add_ _() and _ _sub_ _(), implement mathematical operations. A delicate matter with these operators concerns the order of operands and type coercion. As implemented in the previous example, the _ _add_ _() and _ _sub_ _() operators are applied only if a complex number appears on the left side of the operator. They do not work if they appear on the right side of the operator and the left-most operand is not a Complex. For example:

[image: image]

The operation c + 4.0 works partly by accident. All of Python’s built-in numbers already have .real and .imag attributes, so they were used in the calculation. If the other object did not have these attributes, the implementation would break. If you want your implementation of Complex to work with objects missing these attributes, you have to add extra conversion code to extract the needed information (which might depend on the type of the other object).

The operation 4.0 + c does not work at all because the built-in floating point type doesn’t know anything about the Complex class. To fix this, you can add reversed-operand methods to Complex:

[image: image]

These methods serve as a fallback. If the operation 4.0 + c fails, Python tries to execute c._ _radd_ _(4.0) first before issuing a TypeError.

Older versions of Python have tried various approaches to coerce types in mixed-type operations. For example, you might encounter legacy Python classes that implement a _ _coerce_ _() method. This is no longer used by Python 2.6 or Python 3. Also, don’t be fooled by special methods such as _ _int_ _(), _ _float_ _(), or _ _complex_ _(). Although these methods are called by explicit conversions such as int(x) or float(x), they are never called implicitly to perform type conversion in mixed-type arithmetic. So, if you are writing classes where operators must work with mixed types, you have to explicitly handle the type conversion in the implementation of each operator.

Types and Class Membership Tests

When you create an instance of a class, the type of that instance is the class itself. To test for membership in a class, use the built-in function isinstance(obj,cname). This function returns True if an object, obj, belongs to the class cname or any class derived from cname. Here’s an example:

[image: image]

Similarly, the built-in function issubclass(A,B) returns True if the class A is a subclass of class B. Here’s an example:

[image: image]

A subtle problem with type-checking of objects is that programmers often bypass inheritance and simply create objects that mimic the behavior of another object. As an example, consider these two classes:

[image: image]

In this example, FooProxy is functionally identical to Foo. It implements the same methods, and it even uses Foo underneath the covers. Yet, in the type system, FooProxy is different than Foo. For example:

[image: image]

If a program has been written to explicitly check for a Foo using isinstance(), then it certainly won’t work with a FooProxy object. However, this degree of strictness is often not exactly what you want. Instead, it might make more sense to assert that an object can simply be used as Foo because it has the same interface. To do this, it is possible to define an object that redefines the behavior of isinstance() and issubclass() for the purpose of grouping objects together and type-checking. Here is an example:

[image: image]

In this example, the class IClass creates an object that merely groups a collection of other classes together in a set. The register() method adds a new class to the set. The special method _ _instancecheck_ _() is called if anyone performs the operation isinstance(x, IClass). The special method _ _subclasscheck_ _() is called if the operation issubclass(C,IClass) is called.

By using the IFoo object and registered implementers, one can now perform type checks such as the following:

[image: image]

In this example, it’s important to emphasize that no strong type-checking is occurring. The IFoo object has overloaded the instance checking operations in a way that allows a you to assert that a class belongs to a group. It doesn’t assert any information on the actual programming interface, and no other verification actually occurs. In fact, you can simply register any collection of objects you want to group together without regard to how those classes are related to each other. Typically, the grouping of classes is based on some criteria such as all classes implementing the same programming interface. However, no such meaning should be inferred when overloading _ _instancecheck_ _() or _ _subclasscheck_ _(). The actual interpretation is left up to the application.

Python provides a more formal mechanism for grouping objects, defining interfaces, and type-checking. This is done by defining an abstract base class, which is defined in the next section.

Abstract Base Classes

In the last section, it was shown that the isinstance() and issubclass() operations can be overloaded. This can be used to create objects that group similar classes together and to perform various forms of type-checking. Abstract base classes build upon this concept and provide a means for organizing objects into a hierarchy, making assertions about required methods, and so forth.

To define an abstract base class, you use the abc module. This module defines a metaclass (ABCMeta) and a set of decorators (@abstractmethod and @abstractproperty) that are used as follows:

[image: image]

The definition of an abstract class needs to set its metaclass to ABCMeta as shown (also, be aware that the syntax differs between Python 2 and 3). This is required because the implementation of abstract classes relies on a metaclass (described in the next section). Within the abstract class, the @abstractmethod and @abstractproperty decorators specify that a method or property must be implemented by subclasses of Foo.

An abstract class is not meant to be instantiated directly. If you try to create a Foo for the previous class, you will get the following error:

[image: image]

This restriction carries over to derived classes as well. For instance, if you have a class Bar that inherits from Foo but it doesn’t implement one or more of the abstract methods, attempts to create a Bar will fail with a similar error. Because of this added checking, abstract classes are useful to programmers who want to make assertions on the methods and properties that must be implemented on subclasses.

Although an abstract class enforces rules about methods and properties that must be implemented, it does not perform conformance checking on arguments or return values. Thus, an abstract class will not check a subclass to see whether a method has used the same arguments as an abstract method. Likewise, an abstract class that requires the definition of a property does not check to see whether the property in a subclass supports the same set of operations (get, set, and delete) of the property specified in a base.

Although an abstract class can not be instantiated, it can define methods and properties for use in subclasses. Moreover, an abstract method in the base can still be called from a subclass. For example, calling Foo.spam(a,b) from the subclass is allowed.

Abstract base classes allow preexisting classes to be registered as belonging to that base. This is done using the register() method as follows:

[image: image]

When a class is registered with an abstract base, type-checking operations involving the abstract base (such as isinstance() and issubclass()) will return True for instances of the registered class. When a class is registered with an abstract class, no checks are made to see whether the class actually implements any of the abstract methods or properties. This registration process only affects type-checking. It does not add extra error checking to the class that is registered.

Unlike many other object-oriented languages, Python’s built-in types are organized into a relatively flat hierarchy. For example, if you look at the built-in types such as int or float, they directly inherit from object, the root of all objects, instead of an intermediate base class representing numbers. This makes it clumsy to write programs that want to inspect and manipulate objects based on a generic category such as simply being an instance of a number.

The abstract class mechanism addresses this issue by allowing preexisting objects to be organized into user-definable type hierarchies. Moreover, some library modules aim to organize the built-in types according to different capabilities that they possess. The collections module contains abstract base classes for various kinds of operations involving sequences, sets, and dictionaries. The numbers module contains abstract base classes related to organizing a hierarchy of numbers. Further details can be found in Chapter 14, “Mathematics,” and Chapter 15, “Data Structures, Algorithms, and Utilities.”

Metaclasses

When you define a class in Python, the class definition itself becomes an object. Here’s an example:

[image: image]

If you think about this long enough, you will realize that something had to create the Foo object. This creation of the class object is controlled by a special kind of object called a metaclass. Simply stated, a metaclass is an object that knows how to create and manage classes.

In the preceding example, the metaclass that is controlling the creation of Foo is a class called type. In fact, if you display the type of Foo, you will find out that it is a type:

[image: image]

When a new class is defined with the class statement, a number of things happen. First, the body of the class is executed as a series of statements within its own private dictionary. The execution of statements is exactly the same as in normal code with the addition of the name mangling that occurs on private members (names that start with _ _). Finally, the name of the class, the list of base classes, and the dictionary are passed to the constructor of a metaclass to create the corresponding class object. Here is an example of how it works:

[image: image]

The final step of class creation where the metaclass type() is invoked can be customized. The choice of what happens in the final step of class definition is controlled in a number of ways. First, the class can explicitly specify its metaclass by either setting a _ _metaclass_ _ class variable (Python 2), or supplying the metaclass keyword argument in the tuple of base classes (Python 3).

[image: image]

If no metaclass is explicitly specified, the class statement examines the first entry in the tuple of base classes (if any). In this case, the metaclass is the same as the type of the first base class. Therefore, when you write

class Foo(object): pass

Foo will be the same type of class as object.

If no base classes are specified, the class statement checks for the existence of a global variable called _ _metaclass_ _. If this variable is found, it will be used to create classes. If you set this variable, it will control how classes are created when a simple class statement is used. Here’s an example:

[image: image]

Finally, if no _ _metaclass_ _ value can be found anywhere, Python uses the default metaclass. In Python 2, this defaults to types.ClassType, which is known as an old-style class. This kind of class, deprecated since Python 2.2, corresponds to the original implementation of classes in Python. Although these classes are still supported, they should be avoided in new code and are not covered further here. In Python 3, the default metaclass is simply type().

The primary use of metaclasses is in frameworks that want to assert more control over the definition of user-defined objects. When a custom metaclass is defined, it typically inherits from type() and reimplements methods such as _ _init_ _() or _ _new_ _(). Here is an example of a metaclass that forces all methods to have a documentation string:

[image: image]

In this metaclass, the _ _init_ _() method has been written to inspect the contents of the class dictionary. It scans the dictionary looking for methods and checking to see whether they all have documentation strings. If not, a TypeError exception is generated. Otherwise, the default implementation of type._ _init_ _() is called to initialize the class.

To use this metaclass, a class needs to explicitly select it. The most common technique for doing this is to first define a base class such as the following:

[image: image]

This base class is then used as the parent for all objects that are to be documented. For example:

[image: image]

This example illustrates one of the major uses of metaclasses, which is that of inspecting and gathering information about class definitions. The metaclass isn’t changing anything about the class that actually gets created but is merely adding some additional checks.

In more advanced metaclass applications, a metaclass can both inspect and alter the contents of a class definition prior to the creation of the class. If alterations are going to be made, you should redefine the _ _new_ _() method that runs prior to the creation of the class itself. This technique is commonly combined with techniques that wrap attributes with descriptors or properties because it is one way to capture the names being used in the class. As an example, here is a modified version of the TypedProperty descriptor that was used in the “Descriptors” section:

[image: image]

In this example, the name attribute of the descriptor is simply set to None. To fill this in, we’ll rely on a meta class. For example:

[image: image]

In this example, the metaclass scans the class dictionary and looks for instances of TypedProperty. If found, it sets the name attribute and builds a list of names in slots. After this is done, a _ _slots_ _ attribute is added to the class dictionary, and the class is constructed by calling the _ _new_ _() method of the type() metaclass. Here is an example of using this new metaclass:

[image: image]

Although metaclasses make it possible to drastically alter the behavior and semantics of user-defined classes, you should probably resist the urge to use metaclasses in a way that makes classes work wildly different from what is described in the standard Python documentation. Users will be confused if the classes they must write don’t adhere to any of the normal coding rules expected for classes.

Class Decorators

In the previous section, it was shown how the process of creating a class can be customized by defining a metaclass. However, sometimes all you want to do is perform some kind of extra processing after a class is defined, such as adding a class to a registry or database. An alternative approach for such problems is to use a class decorator. A class decorator is a function that takes a class as input and returns a class as output. For example:

[image: image]

In this example, the register function looks inside a class for a _ _clsid_ _ attribute. If found, it’s used to add the class to a dictionary mapping class identifiers to class objects. To use this function, you can use it as a decorator right before the class definition. For example:

[image: image]

Here, the use of the decorator syntax is mainly one of convenience. An alternative way to accomplish the same thing would have been this:

[image: image]

Although it’s possible to think of endless diabolical things one might do to a class in a class decorator function, it’s probably best to avoid excessive magic such as putting a wrapper around the class or rewriting the class contents.

8. Modules, Packages, and Distribution

Large Python programs are organized into modules and packages. In addition, a large number of modules are included in the Python standard library. This chapter describes the module and package system in more detail. In addition, it provides information on how to install third-party modules and distribute source code.

Modules and the import Statement

Any Python source file can be used as a module. For example, consider the following code:

[image: Image]

To load this code as a module, use the statement import spam. The first time import is used to load a module, it does three things:

1. It creates a new namespace that serves as a container for all the objects defined in the corresponding source file. This is the namespace accessed when functions and methods defined within the module use the global statement.

2. It executes the code contained in the module within the newly created namespace.

3. It creates a name within the caller that refers to the module namespace. This name matches the name of the module and is used as follows:

[image: Image]

It is important to emphasize that import executes all of the statements in the loaded source file. If a module carries out a computation or produces output in addition to defining variables, functions, and classes, you will see the result. Also, a common confusion with modules concerns the access to classes. Keep in mind that if a file spam.py defines a class Spam, you must use the name spam.Spam to refer to the class.

To import multiple modules, you can supply import with a comma-separated list of module names, like this:

import socket, os, re

The name used to refer to a module can be changed using the as qualifier. Here’s an example:

[image: Image]

When a module is loaded using a different name like this, the new name only applies to the source file or context where the import statement appeared. Other program modules can still load the module using its original name.

Changing the name of the imported module can be a useful tool for writing extensible code. For example, suppose you have two modules, xmlreader.py and csvreader.py, that both define a function read_data(filename) for reading some data from a file, but in different input formats. You can write code that selectively picks the reader module like this:

[image: Image]

Modules are first class objects in Python. This means that they can be assigned to variables, placed in data structures such as a list, and passed around in a program as a data. For instance, the reader variable in the previous example simply refers to the corresponding module object. Underneath the covers, a module object is a layer over a dictionary that is used to hold the contents of the module namespace. This dictionary is available as the _ _dict_ _ of a module, and whenever you look up or change a value in a module, you’re working with this dictionary.

The import statement can appear at any point in a program. However, the code in each module is loaded and executed only once, regardless of how often you use the import statement. Subsequent import statements simply bind the module name to the module object already created by the previous import. You can find a dictionary containing all currently loaded modules in the variable sys.modules. This dictionary maps module names to module objects. The contents of this dictionary are used to determine whether import loads a fresh copy of a module.

Importing Selected Symbols from a Module

The from statement is used to load specific definitions within a module into the current namespace. The from statement is identical to import except that instead of creating a name referring to the newly created module namespace, it places references to one or more of the objects defined in the module into the current namespace:

[image: Image]

The from statement also accepts a comma-separated list of object names. For example:

from spam import foo, bar

If you have a very long list of names to import, the names can be enclosed in parentheses. This makes it easier to break the import statement across multiple lines. Here’s an example:

[image: Image]

In addition, the as qualifier can be used to rename specific objects imported with from. Here’s an example:

[image: Image]

The asterisk (*) wildcard character can also be used to load all the definitions in a module, except those that start with an underscore. Here’s an example:

from spam import * # Load all definitions into current namespace

The from
module
import * statement may only be used at the top level of a module. In particular, it is illegal to use this form of import inside function bodies due to the way in which it interacts with function scoping rules (e.g., when functions are compiled into internal bytecode, all of the symbols used within the function need to be fully specified).

Modules can more precisely control the set of names imported by from
module
import * by defining the list _ _all_ _. Here’s an example:

[image: Image]

Importing definitions with the from form of import does not change their scoping rules. For example, consider this code:

[image: Image]

In this example, the definition of foo() in spam.py refers to a global variable a. When a reference to foo is placed into a different namespace, it doesn’t change the binding rules for variables within that function. Thus, the global namespace for a function is always the module in which the function was defined, not the namespace into which a function is imported and called. This also applies to function calls. For example, in the following code, the call to bar() results in a call to spam.foo(), not the redefined foo() that appears in the previous code example:

[image: Image]

Another common confusion with the from form of import concerns the behavior of global variables. For example, consider this code:

[image: Image]

Here, it is important to understand that variable assignment in Python is not a storage operation. That is, the assignment to a in the earlier example is not storing a new value in a, overwriting the previous value. Instead, a new object containing the value 42 is created and the name a is made to refer to it. At this point, a is no longer bound to the value in the imported module but to some other object. Because of this behavior, it is not possible to use the from statement in a way that makes variables behave similarly as global variables or common blocks in languages such as C or Fortran. If you want to have mutable global program parameters in your program, put them in a module and use the module name explicitly using the import statement (that is, use spam.a explicitly).

Execution as the Main Program

There are two ways in which a Python source file can execute. The import statement executes code in its own namespace as a library module. However, code might also execute as the main program or script. This occurs when you supply the program as the script name to the interpreter:

% python spam.py

Each module defines a variable, _ _name_ _, that contains the module name. Programs can examine this variable to determine the module in which they’re executing. The top-level module of the interpreter is named _ _main_ _. Programs specified on the command line or entered interactively run inside the _ _main_ _ module. Sometimes a program may alter its behavior, depending on whether it has been imported as a module or is running in _ _main_ _. For example, a module may include some testing code that is executed if the module is used as the main program but which is not executed if the module is simply imported by another module. This can be done as follows:

[image: Image]

It is common practice for source files intended for use as libraries to use this technique for including optional testing or example code. For example, if you’re developing a module, you can put code for testing the features of your library inside an if statement as shown and simply run Python on your module as the main program to run it. That code won’t run for users who import your library.

The Module Search Path

When loading modules, the interpreter searches the list of directories in sys.path. The first entry in sys.path is typically an empty string '', which refers to the current working directory. Other entries in sys.path may consist of directory names, .zip archive files, and .egg files. The order in which entries are listed in sys.path determines the search order used when modules are loaded. To add new entries to the search path, simply add them to this list.

Although the path usually contains directory names, zip archive files containing Python modules can also be added to the search path. This can be a convenient way to package a collection of modules as a single file. For example, suppose you created two modules, foo.py and bar.py, and placed them in a zip file called mymodules.zip. The file could be added to the Python search path as follows:

[image: Image]

Specific locations within the directory structure of a zip file can also be used. In addition, zip files can be mixed with regular pathname components. Here’s an example:

sys.path.append("/tmp/modules.zip/lib/python")

In addition to .zip files, you can also add .egg files to the search path. .egg files are packages created by the setuptools library. This is a common format encountered when installing third-party Python libraries and extensions. An .egg file is actually just a .zip file with some extra metadata (e.g., version number, dependencies, etc.) added to it. Thus, you can examine and extract data from an .egg file using standard tools for working with .zip files.

Despite support for zip file imports, there are some restrictions to be aware of. First, it is only possible import .py, .pyw, .pyc, and .pyo files from an archive. Shared libraries and extension modules written in C cannot be loaded directly from archives, although packaging systems such as setuptools are sometimes able to provide a workaround (typically by extracting C extensions to a temporary directory and loading modules from it). Moreover, Python will not create .pyc and .pyo files when .py files are loaded from an archive (described next). Thus, it is important to make sure these files are created in advance and placed in the archive in order to avoid poor performance when loading modules.

Module Loading and Compilation

So far, this chapter has presented modules as files containing pure Python code. However, modules loaded with import really fall into four general categories:

• Code written in Python (.py files)

• C or C++ extensions that have been compiled into shared libraries or DLLs

• Packages containing a collection of modules

• Built-in modules written in C and linked into the Python interpreter

When looking for a module (for example, foo), the interpreter searches each of the directories in sys.path for the following files (listed in search order):

1. A directory, foo, defining a package

2. foo.pyd, foo.so, foomodule.so, or foomodule.dll (compiled extensions)

3. foo.pyo (only if the -O or -OO option has been used)

4. foo.pyc

5. foo.py (on Windows, Python also checks for .pyw files.)

Packages are described shortly; compiled extensions are described in Chapter 26, “Extending and Embedding Python.” For .py files, when a module is first imported, it’s compiled into bytecode and written back to disk as a .pyc file. On subsequent imports, the interpreter loads this precompiled bytecode unless the modification date of the .py file is more recent (in which case, the .pyc file is regenerated). .pyo files are used in conjunction with the interpreter’s -O option. These files contain bytecode stripped of line numbers, assertions, and other debugging information. As a result, they’re somewhat smaller and allow the interpreter to run slightly faster. If the -OO option is specified instead of -O, documentation strings are also stripped from the file. This removal of documentation strings occurs only when .pyo files are created—not when they’re loaded. If none of these files exists in any of the directories in sys.path, the interpreter checks whether the name corresponds to a built-in module name. If no match exists, an ImportError exception is raised.

The automatic compilation of files into .pyc and .pyo files occurs only in conjunction with the import statement. Programs specified on the command line or standard input don’t produce such files. In addition, these files aren’t created if the directory containing a module’s .py file doesn’t allow writing (e.g., either due to insufficient permission or if it’s part of a zip archive). The -B option to the interpreter also disables the generation of these files.

If .pyc and .pyo files are available, it is not necessary for a corresponding .py file to exist. Thus, if you are packaging code and don’t wish to include source, you can merely bundle a set of .pyc files together. However, be aware that Python has extensive support for introspection and disassembly. Knowledgeable users will still be able to inspect and find out a lot of details about your program even if the source hasn’t been provided. Also, be aware that .pyc files tend to be version-specific. Thus, a .pyc file generated for one version of Python might not work in a future release.

When import searches for files, it matches filenames in a case-sensitive manner—even on machines where the underlying file system is case-insensitive, such as on Windows and OS X (such systems are case-preserving, however). Therefore, import foo will only import the file foo.py and not the file FOO.PY. However, as a general rule, you should avoid the use of module names that differ in case only.

Module Reloading and Unloading

Python provides no real support for reloading or unloading of previously imported modules. Although you can remove a module from sys.modules, this does not generally unload a module from memory. This is because references to the module object may still exist in other program components that used import to load that module. Moreover, if there are instances of classes defined in the module, those instances contain references back to their class object, which in turn holds references to the module in which it was defined.

The fact that module references exist in many places makes it generally impractical to reload a module after making changes to its implementation. For example, if you remove a module from sys.modules and use import to reload it, this will not retroactively change all of the previous references to the module used in a program. Instead, you’ll have one reference to the new module created by the most recent import statement and a set of references to the old module created by imports in other parts of the code. This is rarely what you want and never safe to use in any kind of sane production code unless you are able to carefully control the entire execution environment.

Older versions of Python provided a reload() function for reloading a module. However, use of this function was never really safe (for all of the aforementioned reasons), and its use was actively discouraged except as a possible debugging aid. Python 3 removes this feature entirely. So, it’s best not to rely upon it.

Finally, it should be noted that C/C++ extensions to Python cannot be safely unloaded or reloaded in any way. No support is provided for this, and the underlying operating system may prohibit it anyways. Thus, your only recourse is to restart the Python interpreter process.

Packages

Packages allow a collection of modules to be grouped under a common package name. This technique helps resolve namespace conflicts between module names used in different applications. A package is defined by creating a directory with the same name as the package and creating the file _ _init_ _.py in that directory. You can then place additional source files, compiled extensions, and subpackages in this directory, as needed. For example, a package might be organized as follows:

[image: Image]

The import statement is used to load modules from a package in a number of ways:

• import Graphics.Primitive.fill

This loads the submodule Graphics.Primitive.fill. The contents of this module have to be explicitly named, such as Graphics.Primitive.fill.floodfill(img,x,y,color).

• from Graphics.Primitive import fill

This loads the submodule fill but makes it available without the package prefix; for example, fill.floodfill(img,x,y,color).

• from Graphics.Primitive.fill import floodfill

This loads the submodule fill but makes the floodfill function directly accessible; for example, floodfill(img,x,y,color).

Whenever any part of a package is first imported, the code in the file _ _init_ _.py is executed. Minimally, this file may be empty, but it can also contain code to perform package-specific initializations. All the _ _init_ _.py files encountered during an import are executed. Therefore, the statement import Graphics.Primitive.fill, shown earlier, would first execute the _ _init_ _.py file in the Graphics directory and then the _ _init_ _.py file in the Primitive directory.

One peculiar problem with packages is the handling of this statement:

from Graphics.Primitive import *

A programmer who uses this statement usually wants to import all the submodules associated with a package into the current namespace. However, because filename conventions vary from system to system (especially with regard to case sensitivity), Python cannot accurately determine what modules those might be. As a result, this statement just imports all the names that are defined in the _ _init_ _.py file in the Primitive directory. This behavior can be modified by defining a list, _ _all_ _, that contains all the module names associated with the package. This list should be defined in the package _ _init_ _.py file, like this:

[image: Image]

Now when the user issues a from Graphics.Primitive import * statement, all the listed submodules are loaded as expected.

Another subtle problem with packages concerns submodules that want to import other submodules within the same package. For example, suppose the Graphics.Primitive.fill module wants to import the Graphics.Primitive.lines module. To do this, you can simply use the fully specified named (e.g., from Graphics.Primitives import lines) or use a package relative import like this:

[image: Image]

In this example, the . used in the statement from . import lines refers to the same directory of the calling module. Thus, this statement looks for a module lines in the same directory as the file fill.py. Great care should be taken to avoid using a statement such as import
module to import a package submodule. In older versions of Python, it was unclear whether the import
module statement was referring to a standard library module or a submodule of a package. Older versions of Python would first try to load the module from the same package directory as the submodule where the import statement appeared and then move on to standard library modules if no match was found. However, in Python 3, import assumes an absolute path and will simply try to load module from the standard library. A relative import more clearly states your intentions.

Relative imports can also be used to load submodules contained in different directories of the same package. For example, if the module Graphics.Graph2D.plot2d wanted to import Graphics.Primitives.lines, it could use a statement like this:

[image: Image]

Here, the .. moves out one directory level and Primitives drops down into a different package directory.

Relative imports can only be specified using the from
module
import
symbol form of the import statement. Thus, statements such as import ..Primitives.lines or import .lines are a syntax error. Also, symbol has to be a valid identifier. So, a statement such as from .. import Primitives.lines is also illegal. Finally, relative imports can only be used within a package; it is illegal to use a relative import to refer to modules that are simply located in a different directory on the filesystem.

Importing a package name alone doesn’t import all the submodules contained in the package. For example, the following code doesn’t work:

[image: Image]

However, because the import Graphics statement executes the _ _init_ _.py file in the Graphics directory, relative imports can be used to load all the submodules automatically, as follows:

[image: Image]

Now the import Graphics statement imports all the submodules and makes them available using their fully qualified names. Again, it is important to stress that a package relative import should be used as shown. If you use a simple statement such as import
module, standard library modules may be loaded instead.

Finally, when Python imports a package, it defines a special variable, _ _path_ _, which contains a list of directories that are searched when looking for package submodules (_ _path_ _ is a package-specific version of the sys.path variable). _ _path_ _ is accessible to the code contained in _ _init_ _.py files and initially contains a single item with the directory name of the package. If necessary, a package can supply additional directories to the _ _path_ _ list to alter the search path used for finding submodules. This might be useful if the organization of a package on the file system is complicated and doesn’t neatly match up with the package hierarchy.

Distributing Python Programs and Libraries

To distribute Python programs to others, you should use the distutils module. As preparation, you should first cleanly organize your work into a directory that has a README file, supporting documentation, and your source code. Typically, this directory will contain a mix of library modules, packages, and scripts. Modules and packages refer to source files that will be loaded with import statements. Scripts are programs that will run as the main program to the interpreter (e.g., running as python
scriptname). Here is an example of a directory containing Python code:

[image: Image]

You should organize your code so that it works normally when running the Python interpreter in the top-level directory. For example, if you start Python in the spam directory, you should be able to import modules, import package components, and run scripts without having to alter any of Python’s settings such as the module search path.

After you have organized your code, create a file setup.py in the top most directory (spam in the previous examples). In this file, put the following code:

[image: Image]

In the setup() call, the py_modules argument is a list of all of the single-file Python modules, packages is a list of all package directories, and scripts is a list of script files. Any of these arguments may be omitted if your software does not have any matching components (i.e., there are no scripts). name is the name of your package, and version is the version number as a string.

The call to setup() supports a variety of other parameters that supply various metadata about your package. Table 8.1 shows the most common parameters that can be specified. All values are strings except for the classifiers parameter, which is a list of strings such as ['Development Status :: 4 - Beta', 'Programming Language :: Python'] (a full list can be found at http://pypi.python.org).

Table 8.1 Parameters to
setup()

[image: Image]

Creating a setup.py file is enough to create a source distribution of your software. Type the following shell command to make a source distribution:

[image: Image]

This creates an archive file such as spam-1.0.tar.gz or spam-1.0.zip in the directory spam/dist. This is the file you would give to others to install your software. To install, a user simply unpacks the archive and performs these steps:

[image: Image]

This installs the software into the local Python distribution and makes it available for general use. Modules and packages are normally installed into a directory called "site-packages" in the Python library. To find the exact location of this directory, inspect the value of sys.path. Scripts are normally installed into the same directory as the Python interpreter on UNIX-based systems or into a "Scripts" directory on Windows (found in "C:\Python26\Scripts" in a typical installation).

On UNIX, if the first line of a script starts with #! and contains the text "python", the installer will rewrite the line to point to the local installation of Python. Thus, if you have written scripts that have been hard-coded to a specific Python location such as /usr/local/bin/python, they should still work when installed on other systems where Python is in a different location.

The setup.py file has a number of other commands concerning the distribution of software. If you type 'python setup.py bdist', a binary distribution is created in which all of the .py files have already been precompiled into .pyc files and placed into a directory structure that mimics that of the local platform. This kind of distribution is needed only if parts of your application have platform dependencies (for example, if you also have C extensions that need to be compiled). If you run 'python setup.py bdist_wininst' on a Windows machine, an .exe file will be created. When opened, a Windows installer dialog will start, prompting the user for information about where the software should be installed. This kind of distribution also adds entries to the registry, making it easy to uninstall your package at a later date.

The distutils module assumes that users already have a Python installation on their machine (downloaded separately). Although it is possible to create software packages where the Python runtime and your software are bundled together into a single binary executable, that is beyond the scope of what can be covered here (look at a third-party module such as py2exe or py2app for further details). If all you are doing is distributing libraries or simple scripts to people, it is usually unnecessary to package your code with the Python interpreter and runtime as well.

Finally, it should be noted that there are many more options to distutils than those covered here. Chapter 26 describes how distutils can be used to compile C and C++ extensions.

Although not part of the standard Python distribution, Python software is often distributed in the form of an .egg file. This format is created by the popular setuptools extension (http://pypi.python.org/pypi/setuptools). To support setuptools, you can simply change the first part of your setup.py file as follows:

[image: Image]

Installing Third-Party Libraries

The definitive resource for locating third-party libraries and extensions to Python is the Python Package Index (PyPI), which is located at http://pypi.python.org. Installing third-party modules is usually straightforward but can become quite involved for very large packages that also depend on other third-party modules. For the more major extensions, you will often find a platform-native installer that simply steps you through the process using a series of dialog screens. For other modules, you typically unpack the download, look for the setup.py file, and type python setup.py install to install the software.

By default, third-party modules are installed in the site-packages directory of the Python standard library. Access to this directory typically requires root or administrator access. If this is not the case, you can type python setup.py install --user to have the module installed in a per-user library directory. This installs the package in a per-user directory such as "/Users/beazley/.local/lib/python2.6/site-packages" on UNIX.

If you want to install the software somewhere else entirely, use the --prefix option to setup.py. For example, typing python setup.py install --prefix=/home/beazley/pypackages installs a module under the directory /home/beazley/pypackages. When installing in a nonstandard location, you will probably have to adjust the setting of sys.path in order for Python to locate your newly installed modules.

Be aware that many extensions to Python involve C or C++ code. If you have downloaded a source distribution, your system will have to have a C++ compiler installed in order to run the installer. On UNIX, Linux, and OS X, this is usually not an issue. On Windows, it has traditionally been necessary to have a version of Microsoft Visual Studio installed. If you’re working on that platform, you’re probably better off looking for a precompiled version of your extension.

If you have installed setuptools, a script easy_install is available to install packages. Simply type easy_install
pkgname to install a specific package. If configured correctly, this will download the appropriate software from PyPI along with any dependencies and install it for you. Of course, your mileage might vary.

If you would like to add your own software to PyPI, simply type python
setup.py register. This will upload metadata about the latest version of your software to the index (note that you will have to register a username and password first).

9. Input and Output

This chapter describes the basics of Python input and output (I/O), including command-line options, environment variables, file I/O, Unicode, and how to serialize objects using the pickle module.

Reading Command-Line Options

When Python starts, command-line options are placed in the list sys.argv. The first element is the name of the program. Subsequent items are the options presented on the command line after the program name. The following program shows a minimal prototype of manually processing simple command-line arguments:

[image: Image]

In this program, sys.argv[0] contains the name of the script being executed. Writing an error message to sys.stderr and raising SystemExit with a non-zero exit code as shown is standard practice for reporting usage errors in command-line tools.

Although you can manually process command options for simple scripts, use the optparse module for more complicated command-line handling. Here is a simple example:

[image: Image]

In this example, two types of options are added. The first option, -o or --output, has a required argument. This behavior is selected by specifying action='store' in the call to p.add_option(). The second option, -d or --debug, is merely setting a Boolean flag. This is enabled by specifying action='store_true' in p.add_option(). The dest argument to p.add_option() selects an attribute name where the argument value will be stored after parsing. The p.set_defaults() method sets default values for one or more of the options. The argument names used with this method should match the destination names selected for each option. If no default value is selected, the default value is set to None.

The previous program recognizes all of the following command-line styles:

[image: Image]

Parsing is performed using the p.parse_args() method. This method returns a 2-tuple (opts, args) where opts is an object containing the parsed option values and args is a list of items on the command line not parsed as options. Option values are retrieved using opts.dest where dest is the destination name used when adding an option. For example, the argument to the -o or --output argument is placed in opts.outfile, whereas args is a list of the remaining arguments such as ['infile1', ..., 'infileN']. The optparse module automatically provides a -h or --help option that lists the available options if requested by the user. Bad options also result in an error message.

This example only shows the simplest use of the optparse module. Further details on some of the more advanced options can be found in Chapter 19, “Operating System Services.”

Environment Variables

Environment variables are accessed in the dictionary os.environ. Here’s an example:

[image: Image]

To modify the environment variables, set the os.environ variable. For example:

os.environ["FOO"] = "BAR"

Modifications to os.environ affect both the running program and subprocesses created by Python.

Files and File Objects

The built-in function open(name
[,mode [,bufsize]]) opens and creates a file object, as shown here:

[image: Image]

The file mode is 'r' for read, 'w' for write, or 'a' for append. These file modes assume text-mode and may implicitly perform translation of the newline character '\n'. For example, on Windows, writing the character '\n' actually outputs the two-character sequence '\r\n' (and when reading the file back, '\r\n' is translated back into a single '\n' character). If you are working with binary data, append a 'b' to the file mode such as 'rb' or 'wb'. This disables newline translation and should be included if you are concerned about portability of code that processes binary data (on UNIX, it is a common mistake to omit the 'b' because there is no distinction between text and binary files). Also, because of the distinction in modes, you might see text-mode specified as 'rt', 'wt', or 'at', which more clearly expresses your intent.

A file can be opened for in-place updates by supplying a plus (+) character, such as 'r+' or 'w+'. When a file is opened for update, you can perform both input and output, as long as all output operations flush their data before any subsequent input operations. If a file is opened using 'w+' mode, its length is first truncated to zero.

If a file is opened with mode 'U' or 'rU', it provides universal newline support for reading. This feature simplifies cross-platform work by translating different newline encodings (such as '\n', '\r', and '\r\n') to a standard '\n' character in the strings returned by various file I/O functions. This can be useful if, for example, you are writing scripts on UNIX systems that must process text files generated by programs on Windows.

The optional bufsize parameter controls the buffering behavior of the file, where 0 is unbuffered, 1 is line buffered, and a negative number requests the system default. Any other positive number indicates the approximate buffer size in bytes that will be used.

Python 3 adds four additional parameters to the open() function, which is called as open(name
[,mode
[,bufsize
[,
encoding
[,
errors
[,
newline
[,
closefd]]]]]]). encoding is an encoding name such as 'utf-8' or 'ascii'. errors is the error-handling policy to use for encoding errors (see the later sections in this chapter on Unicode for more information). newline controls the behavior of universal newline mode and is set to None, '', '\n', '\r', or '\r\n'. If set to None, any line ending of the form '\n', '\r', or '\r\n' is translated into '\n'. If set to '' (the empty string), any of these line endings are recognized as newlines, but left untranslated in the input text. If newline has any other legal value, that value is what is used to terminate lines. closefd controls whether the underlying file descriptor is actually closed when the close() method is invoked. By default, this is set to True.

Table 9.1 shows the methods supported by file objects.

Table 9.1 File Methods

[image: Image]

The read() method returns the entire file as a string unless an optional length parameter is given specifying the maximum number of characters. The readline() method returns the next line of input, including the terminating newline; the readlines() method returns all the input lines as a list of strings. The readline() method optionally accepts a maximum line length, n. If a line longer than n characters is read, the first n characters are returned. The remaining line data is not discarded and will be returned on subsequent read operations. The readlines() method accepts a size parameter that specifies the approximate number of characters to read before stopping. The actual number of characters read may be larger than this depending on how much data has been buffered.

Both the readline() and readlines() methods are platform-aware and handle different representations of newlines properly (for example, '\n' versus '\r\n'). If the file is opened in universal newline mode ('U' or 'rU'), newlines are converted to '\n'.

read() and readline() indicate end-of-file (EOF) by returning an empty string. Thus, the following code shows how you can detect an EOF condition:

[image: Image]

A convenient way to read all lines in a file is to use iteration with a for loop. For example:

[image: Image]

Be aware that in Python 2, the various read operations always return 8-bit strings, regardless of the file mode that was specified (text or binary). In Python 3, these operations return Unicode strings if a file has been opened in text mode and byte strings if the file is opened in binary mode.

The write() method writes a string to the file, and the writelines() method writes a list of strings to the file. write() and writelines() do not add newline characters to the output, so all output that you produce should already include all necessary formatting. These methods can write raw-byte strings to a file, but only if the file has been opened in binary mode.

Internally, each file object keeps a file pointer that stores the byte offset at which the next read or write operation will occur. The tell() method returns the current value of the file pointer as a long integer. The seek() method is used to randomly access parts of a file given an offset and a placement rule in whence. If whence is 0 (the default), seek() assumes that offset is relative to the start of the file; if whence is 1, the position is moved relative to the current position; and if whence is 2, the offset is taken from the end of the file. seek() returns the new value of the file pointer as an integer. It should be noted that the file pointer is associated with the file object returned by open() and not the file itself. The same file can be opened more than once in the same program (or in different programs). Each instance of the open file has its own file pointer that can be manipulated independently.

The fileno() method returns the integer file descriptor for a file and is sometimes used in low-level I/O operations in certain library modules. For example, the fcntl module uses the file descriptor to provide low-level file control operations on UNIX systems.

File objects also have the read-only data attributes shown in Table 9.2.

Table 9.2 File Object Attributes

[image: Image]

Standard Input, Output, and Error

The interpreter provides three standard file objects, known as standard input, standard output, and standard error, which are available in the sys module as sys.stdin, sys.stdout, and sys.stderr, respectively. stdin is a file object corresponding to the stream of input characters supplied to the interpreter. stdout is the file object that receives output produced by print. stderr is a file that receives error messages. More often than not, stdin is mapped to the user’s keyboard, whereas stdout and stderr produce text onscreen.

The methods described in the preceding section can be used to perform raw I/O with the user. For example, the following code writes to standard output and reads a line of input from standard input:

[image: Image]

Alternatively, the built-in function raw_input(prompt) can read a line of text from stdin and optionally print a prompt:

name = raw_input("Enter your name : ")

Lines read by raw_input() do not include the trailing newline. This is different than reading directly from sys.stdin where newlines are included in the input text. In Python 3, raw_input() has been renamed to input().

Keyboard interrupts (typically generated by Ctrl+C) result in a KeyboardInterrupt exception that can be caught using an exception handler.

If necessary, the values of sys.stdout, sys.stdin, and sys.stderr can be replaced with other file objects, in which case the print statement and input functions use the new values. Should it ever be necessary to restore the original value of sys.stdout, it should be saved first. The original values of sys.stdout, sys.stdin, and sys.stderr at interpreter startup are also available in sys._ _stdout_ _, sys._ _stdin_ _, and sys._ _stderr_ _, respectively.

Note that in some cases sys.stdin, sys.stdout, and sys.stderr may be altered by the use of an integrated development environment (IDE). For example, when Python is run under IDLE, sys.stdin is replaced with an object that behaves like a file but is really an object in the development environment. In this case, certain low-level methods, such as read() and seek(), may be unavailable.

The print Statement

Python 2 uses a special print statement to produce output on the file contained in sys.stdout. print accepts a comma-separated list of objects such as the following:

print "The values are", x, y, z

For each object, the str() function is invoked to produce an output string. These output strings are then joined and separated by a single space to produce the final output string. The output is terminated by a newline unless a trailing comma is supplied to the print statement. In this case, the next print statement will insert a space before printing more items. The output of this space is controlled by the softspace attribute of the file being used for output.

[image: Image]

To produce formatted output, use the string-formatting operator (%) or the .format() method as described in Chapter 4, “Operators and Expressions.” Here’s an example:

[image: Image]

You can change the destination of the print statement by adding the special >>file modifier followed by a comma, where file is a file object that allows writes. Here’s an example:

[image: Image]

The print() Function

One of the most significant changes in Python 3 is that print is turned into a function. In Python 2.6, it is also possible to use print as a function if you include the statement from _ _future_ _ import print_function in each module where used. The print() function works almost exactly the same as the print statement described in the previous section.

To print a series of values separated by spaces, just supply them all to print() like this:

print("The values are", x, y, z)

To suppress or change the line ending, use the end=ending keyword argument. For example:

print("The values are", x, y, z, end='') # Suppress the newline

To redirect the output to a file, use the file=outfile keyword argument. For example:

print("The values are", x, y, z, file=f) # Redirect to file object f

To change the separator character between items, use the sep=sepchr keyword argument. For example:

print("The values are", x, y, z, sep=',') # Put commas between the values

Variable Interpolation in Text Output

A common problem when generating output is that of producing large text fragments containing embedded variable substitutions. Many scripting languages such as Perl and PHP allow variables to be inserted into strings using dollar-variable substitutions (that is, $name, $address, and so on). Python provides no direct equivalent of this feature, but it can be emulated using formatted I/O combined with triple-quoted strings. For example, you could write a short form letter, filling in a name, an item name, and an amount, as shown in the following example:

[image: Image]

This produces the following output:

[image: Image]

The format() method is a more modern alternative that cleans up some of the previous code. For example:

[image: Image]

For certain kinds of forms, you can also use Template strings, as follows:

[image: Image]

In this case, special $ variables in the string indicate substitutions. The form.substitute() method takes a dictionary of replacements and returns a new string. Although the previous approaches are simple, they aren’t always the most powerful solutions to text generation. Web frameworks and other large application frameworks tend to provide their own template string engines that support embedded control-flow, variable substitutions, file inclusion, and other advanced features.

Generating Output

Working directly with files is the I/O model most familiar to programmers. However, generator functions can also be used to emit an I/O stream as a sequence of data fragments. To do this, simply use the yield statement like you would use a write() or print statement. Here is an example:

[image: Image]

Producing an output stream in this manner provides great flexibility because the production of the output stream is decoupled from the code that actually directs the stream to its intended destination. For example, if you wanted to route the above output to a file f, you could do this:

[image: Image]

If, instead, you wanted to redirect the output across a socket s, you could do this:

[image: Image]

Or, if you simply wanted to capture all of the output in a string, you could do this:

out = "".join(count)

More advanced applications can use this approach to implement their own I/O buffering. For example, a generator could be emitting small text fragments, but another function could be collecting the fragments into large buffers to create a larger, more efficient I/O operation:

[image: Image]

For programs that are routing output to files or network connections, a generator approach can also result in a significant reduction in memory use because the entire output stream can often be generated and processed in small fragments as opposed to being first collected into one large output string or list of strings. This approach to output is sometimes seen when writing programs that interact with the Python Web Services Gateway Interface (WSGI) that’s used to communicate between components in certain web frameworks.

Unicode String Handling

A common problem associated with I/O handling is that of dealing with international characters represented as Unicode. If you have a string s of raw bytes containing an encoded representation of a Unicode string, use the s.decode([encoding
[,errors]]) method to convert it into a proper Unicode string. To convert a Unicode string, u, to an encoded byte string, use the string method u.encode([encoding
[,
errors]]). Both of these conversion operators require the use of a special encoding name that specifies how Unicode character values are mapped to a sequence of 8-bit characters in byte strings, and vice versa. The encoding parameter is specified as a string and is one of more than a hundred different character encodings. The following values, however, are most common:

[image: Image]

The default encoding is set in the site module and can be queried using sys.getdefaultencoding(). In many cases, the default encoding is 'ascii', which means that ASCII characters with values in the range [0x00,0x7f] are directly mapped to Unicode characters in the range [U+0000, U+007F]. However, 'utf-8' is also a very common setting. Technical details concerning common encodings appears in a later section.

When using the s.decode() method, it is always assumed that s is a string of bytes. In Python 2, this means that s is a standard string, but in Python 3, s must be a special bytes type. Similarly, the result of t.encode() is always a byte sequence. One caution if you care about portability is that these methods are a little muddled in Python 2. For instance, Python 2 strings have both decode() and encode() methods, whereas in Python 3, strings only have an encode() method and the bytes type only has a decode() method. To simplify code in Python 2, make sure you only use encode() on Unicode strings and decode() on byte strings.

When string values are being converted, a UnicodeError exception might be raised if a character that can’t be converted is encountered. For instance, if you are trying to encode a string into 'ascii' and it contains a Unicode character such as U+1F28, you will get an encoding error because this character value is too large to be represented in the ASCII character set. The errors parameter of the encode() and decode() methods determines how encoding errors are handled. It’s a string with one of the following values:

[image: Image]

The default error handling is 'strict'.

The 'xmlcharrefreplace’ error handling policy is often a useful way to embed international characters into ASCII-encoded text on web pages. For example, if you output the Unicode string 'Jalape\u00f1o' by encoding it to ASCII with 'xmlcharrefreplace' handling, browsers will almost always correctly render the output text as “Jalapeño” and not some garbled alternative.

To keep your brain from exploding, encoded byte strings and unencoded strings should never be mixed together in expressions (for example, using + to concatenate). Python 3 prohibits this altogether, but Python 2 will silently go ahead with such operations by automatically promoting byte strings to Unicode according to the default encoding setting. This behavior is often a source of surprising results or inexplicable error messages. Thus, you should carefully try to maintain a strict separation between encoded and unencoded character data in your program.

Unicode I/O

When working with Unicode strings, it is never possible to directly write raw Unicode data to a file. This is due to the fact that Unicode characters are internally represented as multibyte integers and that writing such integers directly to an output stream causes problems related to byte ordering. For example, you would have to arbitrarily decide if the Unicode character U+HHLL is to be written in “little endian” format as the byte sequence LL HH or in “big endian” format as the byte sequence HH LL. Moreover, other tools that process Unicode would have to know which encoding you used.

Because of this problem, the external representation of Unicode strings is always done according to a specific encoding rule that precisely defines how Unicode characters are to be represented as a byte sequence. Thus, to support Unicode I/O, the encoding and decoding concepts described in the previous section are extended to files. The built-in codecs module contains a collection of functions for converting byte-oriented data to and from Unicode strings according to a variety of different data-encoding schemes.

Perhaps the most straightforward way to handle Unicode files is to use the codecs.open(filename
[,
mode
[,
encoding
[,
errors]]]) function, as follows:

[image: Image]

This creates a file object that reads or writes Unicode strings. The encoding parameter specifies the underlying character encoding that will be used to translate data as it is read or written to the file. The errors parameter determines how errors are handled and is one of 'strict', 'ignore', 'replace', 'backslashreplace', or 'xmlcharrefreplace' as described in the previous section.

If you already have a file object, the codecs.EncodedFile(file,
inputenc
[,
outputenc
[,
errors]]) function can be used to place an encoding wrapper around it. Here’s an example:

[image: Image]

In this case, data read from the file will be interpreted according to the encoding supplied in inputenc. Data written to the file will be interpreted according to the encoding in inputenc and written according to the encoding in outputenc. If outputenc is omitted, it defaults to the same as inputenc. errors has the same meaning as described earlier. When putting an EncodedFile wrapper around an existing file, make sure that file is in binary mode. Otherwise, newline translation might break the encoding.

When you’re working with Unicode files, the data encoding is often embedded in the file itself. For example, XML parsers may look at the first few bytes of the string '<?xml ...>' to determine the document encoding. If the first four values are 3C 3F 78 6D ('<?xm'), the encoding is assumed to be UTF-8. If the first four values are 00 3C 00 3F or 3C 00 3F 00, the encoding is assumed to be UTF-16 big endian or UTF-16 little endian, respectively. Alternatively, a document encoding may appear in MIME headers or as an attribute of other document elements. Here’s an example:

<?xml ... encoding="ISO-8859-1" ... ?>

Similarly, Unicode files may also include special byte-order markers (BOM) that indicate properties of the character encoding. The Unicode character U+FEFF is reserved for this purpose. Typically, the marker is written as the first character in the file. Programs then read this character and look at the arrangement of the bytes to determine encoding (for example, '\xff\xfe' for UTF-16-LE or '\xfe\xff' UTF-16-BE). Once the encoding is determined, the BOM character is discarded and the remainder of the file is processed. Unfortunately, all of this extra handling of the BOM is not something that happens behind the scenes. You often have to take care of this yourself if your application warrants it.

When the encoding is read from a document, code similar to the following can be used to turn the input file into an encoded stream:

[image: Image]

Unicode Data Encodings

Table 9.3 lists some of the most commonly used encoders in the codecs module.

Table 9.3 Encoders in the codecs Module

[image: Image]

The following sections describe each of the encoders in more detail.

'ascii' Encoding

In 'ascii' encoding, character values are confined to the ranges [0x00,0x7f] and [U+0000, U+007F]. Any character outside this range is invalid.

'iso-8859-1', 'latin-1' Encoding

Characters can be any 8-bit value in the ranges [0x00,0xff] and [U+0000, U+00FF]. Values in the range [0x00,0x7f] correspond to characters from the ASCII character set. Values in the range [0x80,0xff] correspond to characters from the ISO-8859-1 or extended ASCII character set. Any characters with values outside the range [0x00,0xff] result in an error.

'cp437' Encoding

This encoding is similar to 'iso-8859-1' but is the default encoding used by Python when it runs as a console application on Windows. Certain characters in the range [x80,0xff] correspond to special symbols used for rendering menus, windows, and frames in legacy DOS applications.

'cp1252' Encoding

This is an encoding that is very similar to 'iso-8859-1' used on Windows. However, this encoding defines characters in the range [0x80-0x9f] that are undefined in 'iso-8859-1' and which have different code points in Unicode.

'utf-8' Encoding

UTF-8 is a variable-length encoding that allows all Unicode characters to be represented. A single byte is used to represent ASCII characters in the range 0–127. All other characters are represented by multibyte sequences of 2 or 3 bytes. The encoding of these bytes is shown here:

[image: Image]

For 2-byte sequences, the first byte always starts with the bit sequence 110. For 3-byte sequences, the first byte starts with the bit sequence 1110. All subsequent data bytes in multibyte sequences start with the bit sequence 10.

In full generality, the UTF-8 format allows for multibyte sequences of up to 6 bytes. In Python, 4-byte UTF-8 sequences are used to encode a pair of Unicode characters known as a surrogate pair. Both characters have values in the range [U+D800, U+DFFF] and are combined to encode a 20-bit character value. The surrogate encoding is as follows: The 4-byte sequence 11110nnn
10nnnnnn
10nmmmm
10mmmmm is encoded as the pair U+D800 + N, U+DC00 + M, where N is the upper 10 bits and M is the lower 10 bits of the 20-bit character encoded in the 4-byte UTF-8 sequence. Five- and 6-byte UTF-8 sequences (denoted by starting bit sequences of 111110 and 1111110, respectively) are used to encode character values up to 32 bits in length. These values are not supported by Python and currently result in a UnicodeError exception if they appear in an encoded data stream.

UTF-8 encoding has a number of useful properties that allow it to be used by older software. First, the standard ASCII characters are represented in their standard encoding. This means that a UTF-8–encoded ASCII string is indistinguishable from a traditional ASCII string. Second, UTF-8 doesn’t introduce embedded NULL bytes for multibyte character sequences. Therefore, existing software based on the C library and programs that expect NULL-terminated 8-bit strings will work with UTF-8 strings. Finally, UTF-8 encoding preserves the lexicographic ordering of strings. That is, if a and b are Unicode strings and a < b, then a < b also holds when a and b are converted to UTF-8. Therefore, sorting algorithms and other ordering algorithms written for 8-bit strings will also work for UTF-8.

'utf-16', 'utf-16-be', and 'utf-16-le' Encoding

UTF-16 is a variable-length 16-bit encoding in which Unicode characters are written as 16-bit values. Unless a byte ordering is specified, big endian encoding is assumed. In addition, a byte-order marker of U+FEFF can be used to explicitly specify the byte ordering in a UTF-16 data stream. In big endian encoding, U+FEFF is the Unicode character for a zero-width nonbreaking space, whereas the reversed value U+FFFE is an illegal Unicode character. Thus, the encoder can use the byte sequence FE FF or FF FE to determine the byte ordering of a data stream. When reading Unicode data, Python removes the byte-order markers from the final Unicode string.

'utf-16-be' encoding explicitly selects UTF-16 big endian encoding. 'utf-16-le' encoding explicitly selects UTF-16 little ending encoding.

Although there are extensions to UTF-16 to support character values greater than 16 bits, none of these extensions are currently supported.

'unicode-escape' and 'raw-unicode-escape' Encoding

These encoding methods are used to convert Unicode strings to the same format as used in Python Unicode string literals and Unicode raw string literals. Here’s an example:

[image: Image]

Unicode Character Properties

In addition to performing I/O, programs that use Unicode may need to test Unicode characters for various properties such as capitalization, numbers, and whitespace. The unicodedata module provides access to a database of character properties. General character properties can be obtained with the unicodedata.category(c) function. For example, unicodedata.category(u"A") returns 'Lu', signifying that the character is an uppercase letter.

Another tricky problem with Unicode strings is that there might be multiple representations of the same Unicode string. For example, the character U+00F1 (ñ), might be fully composed as a single character U+00F1 or decomposed into a multicharacter sequence U+006e U+0303 (n, ~). If consistent processing of Unicode strings is an issue, use the unicodedata.normalize() function to ensure a consistent character representation. For example, unicodedata.normalize('NFC',
s) will make sure that all characters in s are fully composed and not represented as a sequence of combining characters.

Further details about the Unicode character database and the unicodedata module can be found in Chapter 16, “Strings and Text Handling.”

Object Persistence and the pickle Module

Finally, it’s often necessary to save and restore the contents of an object to a file. One approach to this problem is to write a pair of functions that simply read and write data from a file in a special format. An alternative approach is to use the pickle and shelve modules.

The pickle module serializes an object into a stream of bytes that can be written to a file and later restored. The interface to pickle is simple, consisting of a dump() and load() operation. For example, the following code writes an object to a file:

[image: Image]

To restore the object, you can use the following code:

[image: Image]

A sequence of objects can be saved by issuing a series of dump() operations one after the other. To restore these objects, simply use a similar sequence of load() operations.

The shelve module is similar to pickle but saves objects in a dictionary-like database:

[image: Image]

Although the object created by shelve looks like a dictionary, it also has restrictions. First, the keys must be strings. Second, the values stored in a shelf must be compatible with pickle. Most Python objects will work, but special-purpose objects such as files and network connections maintain an internal state that cannot be saved and restored in this manner.

The data format used by pickle is specific to Python. However, the format has evolved several times over Python versions. The choice of protocol can be selected using an optional protocol parameter to the pickle dump(obj,
file,
protocol) operation. By default, protocol 0 is used. This is the oldest pickle data format that stores objects in a format understood by virtually all Python versions. However, this format is also incompatible with many of Python’s more modern features of user-defined classes such as slots. Protocol 1 and 2 use a more efficient binary data representation. To use these alternative protocols, you would perform operations such as the following:

[image: Image]

It is not necessary to specify the protocol when restoring an object using load(). The underlying protocol is encoded into the file itself.

Similarly, a shelve can be opened to save Python objects using an alternative pickle protocol like this:

[image: Image]

It is not normally necessary for user-defined objects to do anything extra to work with pickle or shelve. However, the special methods _ _getstate_ _() and _ _setstate_ _() can be used to assist the pickling process. The _ _getstate_ _() method, if defined, will be called to create a value representing the state of an object. The value returned by _ _getstate_ _() should typically be a string, tuple, list, or dictionary. The _ _setstate_ _() method receives this value during unpickling and should restore the state of an object from it. Here is an example that shows how these methods could be used with an object involving an underlying network connection. Although the actual connection can’t be pickled, the object saves enough information to reestablish it when it’s unpickled later:

[image: Image]

Because the data format used by pickle is Python-specific, you would not use this feature as a means for exchanging data between applications written in different programming languages. Moreover, due to security concerns, programs should not process pickled data from untrusted sources (a knowledgeable attacker can manipulate the pickle data format to execute arbitrary system commands during unpickling).

The pickle and shelve modules have many more customization features and advanced usage options. For more details, consult Chapter 13, “Python Runtime Services.”

10. Execution Environment

This chapter describes the environment in which Python programs are executed. The goal is to describe the runtime behavior of the interpreter, including program startup, configuration, and program termination.

Interpreter Options and Environment

The interpreter has a number of options that control its runtime behavior and environment. Options are given to the interpreter on the command line as follows:

python [options] [-c cmd | filename | -] [args]

Here’s a list of the most common command-line options:

Table 10.1 Interpreter Command-Line Arguments

[image: Image]

The -i option starts an interactive session immediately after a program has finished execution and is useful for debugging. The -m option runs a library module as a script which executes inside the _ _main_ _ module prior to the execution of the main script. The -O and -OO options apply some optimization to byte-compiled files and are described in Chapter 8, “Modules, Packages, and Distribution.” The -S option omits the site initialization module described in the later section “Site Configuration Files.” The -t, -tt, and -v options report additional warnings and debugging information. -x ignores the first line of a program in the event that it’s not a valid Python statement (for example, when the first line starts the Python interpreter in a script).

The program name appears after all the interpreter options. If no name is given, or the hyphen (-) character is used as a filename, the interpreter reads the program from standard input. If standard input is an interactive terminal, a banner and prompt are presented. Otherwise, the interpreter opens the specified file and executes its statements until an end-of-file marker is reached. The -c
cmd option can be used to execute short programs in the form of a command-line option—for example, python -c "print('hello world')".

Command-line options appearing after the program name or hyphen (-) are passed to the program in sys.argv, as described in the section “Reading Options and Environment Variables” in Chapter 9, “Input and Output.”

Additionally, the interpreter reads the following environment variables:

Table 10.2 Interpreter Environment Variables

[image: Image]

PYTHONPATH specifies a module search path that is inserted into the beginning of sys.path, which is described in Chapter 9. PYTHONSTARTUP specifies a file to execute when the interpreter runs in interactive mode. The PYTHONHOME variable is used to set the location of the Python installation but is rarely needed because Python knows how to find its own libraries and the site-packages directory where extensions are normally installed. If a single directory such as /usr/local is given, the interpreter expects to find all files in that location. If two directories are given, such as /usr/local:/usr/local/sparc-solaris-2.6, the interpreter searches for platform-independent files in the first directory and platform-dependent files in the second. PYTHONHOME has no effect if no valid Python installation exists at the specified location.

The PYTHONIOENCODING environment setting might be of interest to users of Python 3 because it sets both the encoding and error handling of the standard I/O streams. This might be important because Python 3 directly outputs Unicode while running the interactive interpreter prompt. This, in turn, can cause unexpected exceptions merely while inspecting data. For example:

[image: Image]

To fix this, you can set the environment variable PYTHONIOENCODING to something such as 'ascii:backslashreplace' or 'utf-8'. Now, you will get this:

[image: Image]

On Windows, some of the environment variables such as PYTHONPATH are additionally read from registry entries found in HKEY_LOCAL_MACHINE/Software/Python.

Interactive Sessions

If no program name is given and the standard input to the interpreter is an interactive terminal, Python starts in interactive mode. In this mode, a banner message is printed and the user is presented with a prompt. In addition, the interpreter evaluates the script contained in the PYTHONSTARTUP environment variable (if set). This script is evaluated as if it’s part of the input program (that is, it isn’t loaded using an import statement). One application of this script might be to read a user configuration file such as .pythonrc.

When interactive input is being accepted, two user prompts appear. The >>> prompt appears at the beginning of a new statement; the ... prompt indicates a statement continuation. Here’s an example:

[image: Image]

In customized applications, you can change the prompts by modifying the values of sys.ps1 and sys.ps2.

On some systems, Python may be compiled to use the GNU readline library. If enabled, this library provides command histories, completion, and other additions to Python’s interactive mode.

By default, the output of commands issued in interactive mode is generated by printing the output of the built-in repr() function on the result. This can be changed by setting the variable sys.displayhook to a function responsible for displaying results. Here’s an example that truncates long results:

[image: Image]

Finally, in interactive mode, it is useful to know that the result of the last operation is stored in a special variable (_). This variable can be used to retrieve the result should you need to use it in subsequent operations. Here’s an example:

[image: Image]

The setting of the _ variable occurs in the displayhook() function shown previously. If you redefine displayhook(), your replacement function should also set _ if you want to retain that functionality.

Launching Python Applications

In most cases, you’ll want programs to start the interpreter automatically, rather than first having to start the interpreter manually. On UNIX, this is done by giving the program execute permission and setting the first line of a program to something like this:

[image: Image]

On Windows, double-clicking a .py, .pyw, .wpy, .pyc, or .pyo file automatically launches the interpreter. Normally, programs run in a console window unless they’re renamed with a .pyw suffix (in which case the program runs silently). If it’s necessary to supply options to the interpreter, Python can also be started from a .bat file. For example, this .bat file simply runs Python on a script and passes any options supplied on the command prompt along to the interpreter:

[image: Image]

Site Configuration Files

A typical Python installation may include a number of third-party modules and packages. To configure these packages, the interpreter first imports the module site. The role of site is to search for package files and to add additional directories to the module search path sys.path. In addition, the site module sets the default encoding for Unicode string conversions.

The site module works by first creating a list of directory names constructed from the values of sys.prefix and sys.exec_prefix as follows:

[image: Image]

In addition, if enabled, a user-specific site packages directory may be added to this list (described in the next section).

For each directory in the list, a check is made to see whether the directory exists. If so, it’s added to the sys.path variable. Next, a check is made to see whether it contains any path configuration files (files with a .pth suffix). A path configuration file contains a list of directories, zip files, or .egg files relative to the location of the path file that should be added to sys.path. For example:

[image: Image]

Each directory in the path configuration file must be listed on a separate line. Comments and blank lines are ignored. When the site module loads the file, it checks to see whether each directory exists. If so, the directory is added to sys.path. Duplicated items are added to the path only once.

After all paths have been added to sys.path, an attempt is made to import a module named sitecustomize. The purpose of this module is to perform any additional (and arbitrary) site customization. If the import of sitecustomize fails with an ImportError, the error is silently ignored. The import of sitecustomize occurs prior to adding any user directories to sys.path. Thus, placing this file in your own directory has no effect.

The site module is also responsible for setting the default Unicode encoding. By default, the encoding is set to 'ascii'. However, the encoding can be changed by placing code in sitecustomize.py that calls sys.setdefaultencoding() with a new encoding such as 'utf-8'. If you’re willing to experiment, the source code of site can also be modified to automatically set the encoding based on the machine’s locale settings.

Per-user Site Packages

Normally, third-party modules are installed in a way that makes them accessible to all users. However, individual users can install modules and packages in a per-user site directory. On UNIX and Macintosh systems, this directory is found under ~/.local and is named something such as ~/.local/lib/python2.6/site-packages. On Windows systems, this directory is determined by the %APPDATA% environment variable, which is usually something similar to C:\Documents and Settings\David Beazley\Application Data. Within that folder, you will find a "Python\Python26\site-packages" directory.

If you are writing your own Python modules and packages that you want to use in a library, they can be placed in the per-user site directory. If you are installing third-party modules, you can manually install them in this directory by supplying the --user option to setup.py. For example: python setup.py install --user.

Enabling Future Features

New language features that affect compatibility with older versions of Python are often disabled when they first appear in a release. To enable these features, the statement from_ _future_ _ import
feature can be used. Here’s an example:

[image: Image]

When used, this statement should appear as the first statement of a module or program. Moreover, the scope of a _ _future_ _ import is restricted only to the module in which it is used. Thus, importing a future feature does not affect the behavior of Python’s library modules or older code that requires the previous behavior of the interpreter to operate correctly.

Currently, the following features have been defined:

Table 10.3 Feature Names in the _ _future_ _ Module

[image: Image]

It should be noted that no feature name is ever deleted from _ _future_ _. Thus, even if a feature is turned on by default in a later Python version, no existing code that uses that feature name will break.

Program Termination

A program terminates when no more statements exist to execute in the input program, when an uncaught SystemExit exception is raised (as generated by sys.exit()), or when the interpreter receives a SIGTERM or SIGHUP signal (on UNIX). On exit, the interpreter decrements the reference count of all objects in all the currently known namespaces (and destroys each namespace as well). If the reference count of an object reaches zero, the object is destroyed and its _ _del_ _() method is invoked.

It’s important to note that in some cases the _ _del_ _() method might not be invoked at program termination. This can occur if circular references exist between objects (in which case objects may be allocated but accessible from no known namespace). Although Python’s garbage collector can reclaim unused circular references during execution, it isn’t normally invoked on program termination.

Because there’s no guarantee that _ _del_ _() will be invoked at termination, it may be a good idea to explicitly clean up certain objects, such as open files and network connections. To accomplish this, add specialized cleanup methods (for example, close()) to user-defined objects. Another possibility is to write a termination function and register it with the atexit module, as follows:

[image: Image]

The garbage collector can also be invoked in this manner:

[image: Image]

One final peculiarity about program termination is that the _ _del_ _ method for some objects may try to access global data or methods defined in other modules. Because these objects may already have been destroyed, a NameError exception occurs in _ _del_ _, and you may get an error such as the following:

[image: Image]

If this occurs, it means that _ _del_ _ has aborted prematurely. It also implies that it may have failed in an attempt to perform an important operation (such as cleanly shutting down a server connection). If this is a concern, it’s probably a good idea to perform an explicit shutdown step in your code, rather than rely on the interpreter to destroy objects cleanly at program termination. The peculiar NameError exception can also be eliminated by declaring default arguments in the declaration of the _ _del_ _() method:

[image: Image]

In some cases, it may be useful to terminate program execution without performing any cleanup actions. This can be accomplished by calling os._exit(status). This function provides an interface to the low-level exit() system call responsible for killing the Python interpreter process. When it’s invoked, the program immediately terminates without any further processing or cleanup.

11. Testing, Debugging, Profiling, and Tuning

Unlike programs in languages such as C or Java, Python programs are not processed by a compiler that produces an executable program. In those languages, the compiler is the first line of defense against programming errors—catching mistakes such as calling functions with the wrong number of arguments or assigning improper values to variables (that is, type checking). In Python, however, these kinds of checks do not occur until a program runs. Because of this, you will never really know if your program is correct until you run and test it. Not only that, unless you are able to run your program in a way that executes every possible branch of its internal control-flow, there is always some chance of a hidden error just waiting to strike (fortunately, this usually only happens a few days after shipping, however).

To address these kinds of problems, this chapter covers techniques and library modules used to test, debug, and profile Python code. At the end, some strategies for optimizing Python code are discussed.

Documentation Strings and the doctest Module

If the first line of a function, class, or module is a string, that string is known as a documentation string. The inclusion of documentation strings is considered good style because these strings are used to supply information to Python software development tools. For example, the help() command inspects documentation strings, and Python IDEs look at the strings as well. Because programmers tend to view documentation strings while experimenting in the interactive shell, it is common for the strings to include short interactive examples. For example:

[image: Image]

A common problem with writing documentation is keeping the documentation synchronized with the actual implementation of a function. For example, a programmer might modify a function but forget to update the documentation.

To address this problem, use the doctest module. doctest collects documentation strings, scans them for interactive sessions, and executes them as a series of tests. To use doctest, you typically create a separate module for testing. For example, if the previous function is in a file splitter.py, you would create a file testsplitter.py for testing, as follows:

[image: Image]

In this code, the call to doctest.testmod(module) runs tests on the specified module and returns the number of failures and total number of tests executed. No output is produced if all of the tests pass. Otherwise, you will get a failure report that shows the difference between the expected and received output. If you want to see verbose output of the tests, you can use testmod(module, verbose=True).

As an alternative to creating a separate testing file, library modules can test themselves by including code such as this at the end of the file:

[image: Image]

With this code, documentation tests will run if the file is run as the main program to the interpreter. Otherwise, the tests are ignored if the file is loaded with import.

doctest expects the output of functions to literally match the exact output you get in the interactive interpreter. As a result, it is quite sensitive to issues of white space and numerical precision. For example, consider this function:

[image: Image]

If you run doctest on this function, you will get a failure report such as this:

[image: Image]

To fix this, you either need to make the documentation exactly match the output or need to pick a better example in the documentation.

Because using doctest is almost trivial, there is almost no excuse for not using it with your own programs. However, keep in mind that doctest is not a module you would typically use for exhaustive program testing. Doing so tends to result in excessively long and complicated documentation strings—which defeats the point of producing useful documentation (e.g., a user will probably be annoyed if he asks for help and the documentation lists 50 examples covering all sorts of tricky corner cases). For this kind of testing, you want to use the unittest module.

Last, the doctest module has a large number of configuration options that concerns various aspects of how testing is performed and how results are reported. Because these options are not required for the most common use of the module, they are not covered here. Consult http://docs.python.org/library/doctest.html for more details.

Unit Testing and the unittest Module

For more exhaustive program testing, use the unittest module. With unit testing, a developer writes a collection of isolated test cases for each element that makes up a program (for example, individual functions, methods, classes, and modules). These tests are then run to verify correct behavior of the basic building blocks that make up larger programs. As programs grow in size, unit tests for various components can be combined to create large testing frameworks and testing tools. This can greatly simplify the task of verifying correct behavior as well as isolating and fixing problems when they do occur. Use of this module can be illustrated by the code listing in the previous section:

[image: Image]

If you wanted to write unit tests for testing various aspects of the split() function, you would create a separate module testsplitter.py, like this:

[image: Image]

To run tests, simply run Python on the file testsplitter.py. Here’s an example:

[image: Image]

Basic use of unittest involves defining a class that inherits from unittest.TestCase. Within this class, individual tests are defined by methods starting with the name 'test'—for example, 'testsimplestring', 'testtypeconvert', and so on. (It is important to emphasize that the names are entirely up to you as long as they start with 'test'.) Within each test, various assertions are used to check for different conditions.

An instance, t, of unittest.TestCase has the following methods that are used when writing tests and for controlling the testing process:

t.setUp()

Called to perform set-up steps prior to running any of the testing methods.

t.tearDown()

Called to perform clean-up actions after running the tests.

[image: Image]

Signals a test failure if expr evaluates as False. msg is a message string giving an explanation for the failure (if any).

[image: Image]

Signals a test failure if x and y are not equal to each other. msg is a message explaining the failure (if any).

[image: Image]

Signals a test failure if x and y are equal to each other. msg is a message explaining the failure (if any).

[image: Image]

Signals a test failure if numbers x and y are not within places decimal places of each other. This is checked by computing the difference of x and y and rounding the result to the given number of places. If the result is zero, x and y are almost equal. msg is a message explaining the failure (if any).

[image: Image]

Signals a test failure if x and y are not at least places decimal places apart. msg is a message explaining the failure (if any).

[image: Image]

Signals a test failure if the callable object callable does not raise the exception exc. Remaining arguments are passed as arguments to callable. Multiple exceptions can be checked by using a tuple of exceptions as exc.

t. failIf (expr [, msg])

Signals a test failure if expr evaluates as True. msg is a message explaining the failure (if any).

t.fail([msg])

Signals a test failure. msg is a message explaining the failure (if any).

t.failureException

This attribute is set to the last exception value caught in a test. This may be useful if you not only want to check that an exception was raised, but that the exception raises an appropriate value—for example, if you wanted to check the error message generated as part of raising an exception.

It should be noted that the unittest module contains a large number of advanced customization options for grouping tests, creating test suites, and controlling the environment in which tests run. These features are not directly related to the process of writing tests for your code (you tend to write testing classes as shown independently of how tests actually get executed). Consult the documentation at http://docs.python.org/library/unittest.html for more information on how to organize tests for larger programs.

The Python Debugger and the pdb Module

Python includes a simple command-based debugger which is found in the pdb module. The pdb module supports post-mortem debugging, inspection of stack frames, breakpoints, single-stepping of source lines, and code evaluation.

There are several functions for invoking the debugger from a program or from the interactive Python shell.

run(statement [, globals [, locals]])

Executes the string statement under debugger control. The debugger prompt will appear immediately before any code executes. Typing 'continue' will force it to run. globals and locals define the global and local namespaces, respectively, in which the code runs.

runeval(expression [, globals [, locals]])

Evaluates the expression string under debugger control. The debugger prompt will appear before any code executes, so you will need to type 'continue' to force it to execute as with run(). On success, the value of the expression is returned.

runcall(function [, argument, ...])

Calls a function within the debugger. function is a callable object. Additional arguments are supplied as the arguments to function. The debugger prompt will appear before any code executes. The return value of the function is returned upon completion.

set_trace()

Starts the debugger at the point at which this function is called. This can be used to hard-code a debugger breakpoint into a specific code location.

post_mortem(traceback)

Starts post-mortem debugging of a traceback object. traceback is typically obtained using a function such as sys.exc_info().

pm()

Enters post-mortem debugging using the traceback of the last exception.

Of all of the functions for launching the debugger, the set_trace() function may be the easiest to use in practice. If you are working on a complicated application but you have detected a problem in one part of it, you can insert a set_trace() call into the code and simply run the application. When encountered, this will suspend the program and go directly to the debugger where you can inspect the execution environment. Execution resumes after you leave the debugger.

Debugger Commands

When the debugger starts, it presents a (Pdb) prompt such as the following:

[image: Image]

(Pdb) is the debugger prompt at which the following commands are recognized. Note that some commands have a short and a long form. In this case, parentheses are used to indicate both forms. For example, h(elp) means that either h or help is acceptable.

[!]statement

Executes the (one-line) statement in the context of the current stack frame. The exclamation point may be omitted, but it must be used to avoid ambiguity if the first word of the statement resembles a debugger command. To set a global variable, you can prefix the assignment command with a “global” command on the same line:

[image: Image]

[image: Image]

Prints the argument list of the current function.

alias [name [command]]

Creates an alias called name that executes command. Within the command string, the substrings '%1','%2', and so forth are replaced by parameters when the alias is typed. '%*' is replaced by all parameters. If no command is given, the current alias list is shown. Aliases can be nested and can contain anything that can be legally typed at the Pdb prompt. Here’s an example:

[image: Image]

[image: Image]

Sets a breakpoint at location loc. loc either specifies a specific filename and line number or is the name of a function within a module. The following syntax is used:

[image: Image]

If loc is omitted, all the current breakpoints are printed. condition is an expression that must evaluate to true before the breakpoint is honored. All breakpoints are assigned numbers that are printed as output upon the completion of this command. These numbers are used in several other debugger commands that follow.

cl(ear) [bpnumber [bpnumber ...]]

Clears a list of breakpoint numbers. If breakpoints are specified, all breaks are cleared.

commands [bpnumber]

Sets a series of debugger commands to execute automatically when the breakpoint bpnumber is encountered. When listing the commands to execute, simply type them on the subsequent lines and use end to mark the end of the command sequence. If you include the continue command, the execution of the program will resume automatically when the breakpoint is encountered. If bpnumber is omitted, the last breakpoint set is used.

condition bpnumber [condition]

Places a condition on a breakpoint. condition is an expression that must evaluate to true before the breakpoint is recognized. Omitting the condition clears any previous condition.

c(ont(inue))

Continues execution until the next breakpoint is encountered.

disable [bpnumber [bpnumber ...]]

Disables the set of specified breakpoints. Unlike with clear, they can be reenabled later.

d(own)

Moves the current frame one level down in the stack trace.

enable [bpnumber [bpnumber ...]]

Enables a specified set of breakpoints.

h(elp) [command]

Shows the list of available commands. Specifying a command returns help for that command.

ignore bpnumber [count]

Ignores a breakpoint for count executions.

j(ump) lineno

Sets the next line to execute. This can only be used to move between statements in the same execution frame. Moreover, you can’t jump into certain statements, such as statements in the middle of a loop.

l(ist) [first [, last]]

Lists source code. Without arguments, this command lists 11 lines around the current line (5 lines before and 5 lines after). With one argument, it lists 11 lines around that line. With two arguments, it lists lines in a given range. If last is less than first, it’s interpreted as a count.

n(ext)

Executes until the next line of the current function. Skips the code contained in function calls.

p expression

Evaluates the expression in the current context and prints its value.

pp expression

The same as the p command, but the result is formatted using the pretty-printing module (pprint).

q(uit)

Quits from the debugger.

r(eturn)

Runs until the current function returns.

run [args]

Restarts the program and uses the command-line arguments in args as the new setting of sys.argv. All breakpoints and other debugger settings are preserved.

s(tep)

Executes a single source line and stops inside called functions.

tbreak [loc [, condition]]

Sets a temporary breakpoint that’s removed after its first hit.

u(p)

Moves the current frame one level up in the stack trace.

unalias name

Deletes the specified alias.

until

Resumes execution until control leaves the current execution frame or until a line number greater than the current line number is reached. For example, if the debugger was stopped at the last line in a loop body, typing until will execute all of the statements in the loop until the loop is finished.

w(here)

Prints a stack trace.

Debugging from the Command Line

An alternative method for running the debugger is to invoke it on the command line. Here’s an example:

% python -m pdb someprogram.py

In this case, the debugger is launched automatically at the beginning of program startup where you are free to set breakpoints and make other configuration changes. To make the program run, simply use the continue command. For example, if you wanted to debug the split() function from within a program that used it, you might do this:

[image: Image]

Configuring the Debugger

If a .pdbrc file exists in the user’s home directory or in the current directory, it’s read in and executed as if it had been typed at the debugger prompt. This can be useful for specifying debugging commands that you want to execute each time the debugger is started (as opposed to having to interactively type the commands each time).

Program Profiling

The profile and cProfile modules are used to collect profiling information. Both modules work in the same way, but cProfile is implemented as a C extension, is significantly faster, and is more modern. Either module is used to collect both coverage information (that is, what functions get executed) as well as performance statistics. The easiest way to profile a program is to execute it from the command line as follows:

% python -m cProfile someprogram.py

Alternatively, the following function in the profile module can be used:

run(command [, filename])

Executes the contents of command using the exec statement under the profiler. filename is the name of a file in which raw profiling data is saved. If it’s omitted, a report is printed to standard output.

The result of running the profiler is a report such as the following:

[image: Image]

Different parts of the report generated by run() are interpreted as follows:

[image: Image]

When there are two numbers in the first column (for example, "121/1"), the latter is the number of primitive calls and the former is the actual number of calls.

Simply inspecting the generated report of the profiler is often enough for most applications of this module—for example, if you simply want to see how your program is spending its time. However, if you want to save the data and analyze it further, the pstats module can be used. Consult http://docs.python.org/library/profile.html for more details about saving and analyzing the profile data.

Tuning and Optimization

This section covers some general rules of thumb that can be used to make Python programs run faster and use less memory. The techniques described here are by no means exhaustive but should give programmers some ideas when looking at their own code.

Making Timing Measurements

If you simply want to time a long-running Python program, the easiest way to do it is often just to run it until the control of something like the UNIX time command. Alternatively, if you have a block of long-running statements you want to time, you can insert calls to time.clock() to get a current reading of the elapsed CPU time or calls to time.time() to read the current wall-clock time. For example:

[image: Image]

Keep in the mind that this technique really works only if the code to be timed runs for a reasonable period of time. If you have a fine-grained statement you want to benchmark, you can use the timeit(code [, setup]) function in the timeit module. For example:

[image: Image]

In this example, the first argument to timeit() is the code you want to benchmark. The second argument is a statement that gets executed once in order to set up the execution environment. The timeit() function runs the supplied statement one million times and reports the execution time. The number of repetitions can be changed by supplying a number=count keyword argument to timeit().

The timeit module also has a function repeat() that can be used to make measurements. This function works the same way as timeit() except that it repeats the timing measurement three times and returns a list of the results. For example:

[image: Image]

When making performance measurement, it is common to refer to the associated speedup, which usually refers to the original execution time divided by the new execution time. For example, in the previous timing measurements, using sqrt(2.0) instead of math.sqrt(2.0) represents a speedup of 0.20388/0.14494 or about 1.41. Sometimes this gets reported as a percentage by saying the speedup is about 41 percent.

Making Memory Measurements

The sys module has a function getsizeof() that can be used to investigate the memory footprint (in bytes) of individual Python objects. For example:

[image: Image]

For containers such as lists, tuples, and dictionaries, the size that gets reported is just for the container object itself, not the cumulative size of all objects contained inside of it. For instance, in the previous example, the reported size of the list [1,2,3,4] is actually smaller than the space required for four integers (which are 14 bytes each). This is because the contents of the list are not included in the total. You can use sum() as shown here to calculate the total size of the list contents.

Be aware that the getsizeof() function is only going to give you a rough idea of overall memory use for various objects. Internally, the interpreter aggressively shares objects via reference counting so the actual memory consumed by an object might be far less than you first imagine. Also, given that C extensions to Python can allocate memory outside of the interpreter, it may be difficult to precisely get a measurement of overall memory use. Thus, a secondary technique for measuring the actual memory footprint is to inspect your running program from an operating system process viewer or task manager.

Frankly, a better way to get a handle on memory use may be to sit down and be analytical about it. If you know your program is going to allocate various kinds of data structures and you know what kinds of data will be stored in those structures (that is, ints, floats, strings, and so on), you can use the results of the getsizeof() function to obtain figures for calculating an upper bound on your program’s memory footprint—or at the very least, you can get enough information to carry out a “back of the envelope” estimate.

Disassembly

The dis module can be used to disassemble Python functions, methods, and classes into low-level interpreter instructions. The module defines a function dis() that can be used like this:

[image: Image]

Expert programmers can use this information in two ways. First, a disassembly will show you exactly what operations are involved in executing a function. With careful study, you might spot opportunities for making speedups. Second, if you are programming with threads, each line printed in the disassembly represents a single interpreter operation—each of which has atomic execution. Thus, if you are trying to track down a tricky race condition, this information might be useful.

Tuning Strategies

The following sections outline a few optimization strategies that, in the opinion of the author, have proven to be useful with Python code.

Understand Your Program

Before you optimize anything, know that speedup obtained by optimizing part of a program is directly related to that part’s total contribution to the execution time. For example, if you optimize a function by making it run 10 times as fast but that function only contributes to 10 percent of the program’s total execution time, you’re only going to get an overall speedup of about 9%–10%. Depending on the effort involved in making the optimization, this may or may not be worth it.

It is always a good idea to first use the profiling module on code you intend to optimize. You really only want to focus on functions and methods where your program spends most of its time, not obscure operations that are called only occasionally.

Understand Algorithms

A poorly implemented O(n log n) algorithm will outperform the most finely tuned O(n3) algorithm. Don’t optimize inefficient algorithms—look for a better algorithm first.

Use the Built-In Types

Python’s built-in tuple, list, set, and dictionary types are implemented entirely in C and are the most finely tuned data structures in the interpreter. You should actively use these types to store and manipulate data in your program and resist the urge to build your own custom data structures that mimic their functionality (that is, binary search trees, linked lists, and so on).

Having said that, you should still look more closely at types in the standard library. Some library modules provide new types that outperform the built-ins at certain tasks. For instance, the collection.deque type provides similar functionality to a list but has been highly optimized for the insertion of new items at both ends. A list, in contrast, is only efficient when appending items at the end. If you insert items at the front, all of the other elements need to be shifted in order to make room. The time required to do this grows as the list gets larger and larger. Just to give you an idea of the difference, here is a timing measurement of inserting one million items at the front of a list and a deque:

[image: Image]

Don’t Add Layers

Any time you add an extra layer of abstraction or convenience to an object or a function, you will slow down your program. However, there is also a trade-off between usability and performance. For instance, the whole point of adding an extra layer is often to simplify coding, which is also a good thing.

To illustrate with a simple example, consider a program that makes use of the dict() function to create dictionaries with string keys like this:

[image: Image]

A programmer might create dictionaries in this way to save typing (you don’t have to put quotes around the key names). However, this alternative way of creating a dictionary also runs much more slowly because it adds an extra function call.

[image: Image]

If your program creates millions of dictionaries as it runs, then you should know that the first approach is faster. With few exceptions, any feature that adds an enhancement or changes the way in which an existing Python object works will run more slowly.

Know How Classes and Instances Build Upon Dictionaries

User-defined classes and instances are built using dictionaries. Because of this, operations that look up, set, or delete instance data are almost always going to run more slowly than directly performing these operations on a dictionary. If all you are doing is building a simple data structure for storing data, a dictionary may be a more efficient choice than defining a class.

Just to illustrate the difference, here is a simple class that represents a holding of stock:

[image: Image]

If you compare the performance of using this class against a dictionary, the results are interesting. First, let’s compare the performance of simply creating instances:

[image: Image]

Here, the speedup of creating new objects is about 3.5. Next, let’s look at the performance of performing a simple calculation:

[image: Image]

Here, the speedup is about 1.2. The lesson here is that just because you can define a new object using a class, it’s not the only way to work with data. Tuples and dictionaries are often good enough. Using them will make your program run more quickly and use less memory.

Use _ _slots_ _

If your program creates a large number of instances of user-defined classes, you might consider using the _ _slots_ _ attribute in a class definition. For example:

[image: Image]

_ _slots_ _ is sometimes viewed as a safety feature because it restricts the set of attribute names. However, it is really more of a performance optimization. Classes that use _ _slots_ _ don’t use a dictionary for storing instance data (instead, a more efficient internal data structure is used). So, not only will instances use far less memory, but access to instance data is also more efficient. In some cases, simply adding _ _slots_ _ will make a program run noticeably faster without making any other changes.

There is one caution with using _ _slots_ _, however. Adding this feature to a class may cause other code to break mysteriously. For example, it is generally well-known that instances store their data in a dictionary that can be accessed as the _ _dict_ _ attribute. When slots are defined, this attribute doesn’t exist so any code that relies on _ _dict_ _ will fail.

Avoid the (.) Operator

Whenever you use the (.) to look up an attribute on an object, it always involves a name lookup. For example, when you say x.name, there is a lookup for the variable name "x" in the environment and then a lookup for the attribute "name" on x. For user-defined objects, attribute lookup may involve looking in the instance dictionary, the class dictionary, and the dictionaries of base-classes.

For calculations involving heavy use of methods or module lookups, it is almost always better to eliminate the attribute lookup by putting the operation you want to perform into a local variable first. For example, if you were performing a lot of square root operations, it is faster to use 'from math import sqrt' and 'sqrt(x)' rather than typing 'math.sqrt(x)'. In the first part of this section, we saw that this approach resulted in speedup of about 1.4.

Obviously you should not try to eliminate attribute lookups everywhere in your program because it will make your code very difficult to read. However, for performance-critical sections, this is a useful technique.

Use Exceptions to Handle Uncommon Cases

To avoid errors, you might be inclined to add extra checks to a program. For example:

[image: Image]

However, an alternative way to handle errors is to simply let the program generate an exception and to catch it. For example:

[image: Image]

If you benchmark both versions on a properly formatted line, the second version of code runs about 10 percent faster. Setting up a try block for code that normally doesn’t raise an exceptions runs more quickly than executing an if statement.

Avoid Exceptions for Common Cases

Don’t write code that uses exception handling for the common case. For example, suppose you had a program that performed a lot of dictionary lookups, but most of these lookups were for keys that didn’t exist. Now, consider two approaches to performing a lookup:

[image: Image]

In a simple performance measurement where the key is not found, the second approach runs more than 17 times faster! In case you were wondering, this latter approach also runs almost twice as fast as using items.get(key) because the in operator is faster to execute than a method call.

Embrace Functional Programming and Iteration

List comprehensions, generator expressions, generators, coroutines, and closures are much more efficient than most Python programmers realize. For data processing especially, list comprehensions and generator expressions run significantly more quickly than code that manually iterates over data and carries out similar operations. These operations also run much more quickly than legacy Python code that uses functions such as map() and filter(). Generators can be used to write code that not only runs fast, but which makes efficient use of memory.

Use Decorators and Metaclasses

Decorators and metaclasses are features that are used to modify functions and classes. However, because they operate at the time of function or class definition, they can be used in ways that lead to improved performance—especially if a program has many optional features that might be turned on or off. Chapter 6, “Functions and Functional Programming,” has an example of using a decorator to enable logging of functions, but in a way that does not impact performance when logging is disabled.

II. The Python Library

12 Built-In Functions

13 Python Runtime Services

14 Mathematics

15 Data Structures, Algorithms, and Utilities

16 String and Text Handling

17 Python Database Access

18 File and Directory Handling

19 Operating System Services

20 Threads and Concurrency

21 Network Programming and Sockets

22 Internet Application Programming

23 Web Programming

24 Internet Data Handling and Encoding

25 Miscellaneous Library Modules

12. Built-In Functions and Exceptions

This chapter describes Python’s built-in functions and exceptions. Much of this material is covered less formally in earlier chapters of this book. This chapter merely consolidates all this information into one section and expands upon some of the more subtle features of certain functions. Also, Python 2 includes a number of built-in functions that are considered to be obsolete and which have been removed from Python 3. Those functions are not documented here—instead the focus is on modern functionality.

Built-in Functions and Types

Certain types, functions, and variables are always available to the interpreter and can be used in any source module. Although you don’t need to perform any extra imports to access these functions, they are contained in a module _ _builtin_ _ in Python 2 and in a module builtins in Python 3. Within other modules that you import, the variable _ _builtins_ _ is also bound to this module.

abs(x)

Returns the absolute value of x.

all(s)

Returns True if all of the values in the iterable s evaluate as True.

any(s)

Returns True if any of the values in the iterable s evaluate as True.

ascii(x)

Creates a printable representation of the object x just like the repr(), but only uses ASCII characters in the result. Non-ASCII characters are turned into appropriate escape sequences. This can be used to view Unicode strings in a terminal or shell that doesn’t support Unicode. Python 3 only.

basestring

This is an abstract data type that is the superclass of all strings in Python 2 (str and unicode). It is only used for type testing of strings. For example, isinstance(s,basestring) returns True if s is either kind of string. Python 2 only.

bin(x)

Returns a string containing the binary representation of the integer x.

bool([x])

Type representing Boolean values True and False. If used to convert x, it returns True if x evaluates to true using the usual truth-testing semantics (that is, nonzero number, non-empty list, and so on). Otherwise, False is returned. False is also the default value returned if bool() is called without any arguments. The bool class inherits from int so the Boolean values True and False can be used as integers with values 1 and 0 in mathematical calculations.

bytearray([x])

A type representing a mutable array of bytes. When creating an instance, x may be an iterable sequence of integers in the range 0 to 255, an 8-bit string or bytes literal, or an integer that specifies the size of the byte array (in which case every entry will be initialized to 0). A bytearray object a looks like an array of integers. If you perform a lookup such as a[i], you will get an integer value representing the byte value at index i. Assignments such as a[i] =
v also require v to be an integer byte value. However, a bytearray also provides all of the operations normally associated with strings (that is, slicing, find(), split(), replace(), and so on). When using these string operations, you should be careful to preface all string literals with b in order to indicate that you’re working with bytes. For example, if you wanted to split a byte array a into fields using a comma character separator, you would use a.split(b',') not a.split(','). The result of these operations is always new bytearray objects, not strings. To turn a bytearray
a into a string, use the a.decode(encoding) method. An encoding of 'latin-1' will directly turn a bytearray of 8-bit characters into a string without any modification of the underlying character values.

bytearray(s ,encoding)

An alternative calling convention for creating a bytearray instance from characters in a string s where encoding specifies the character encoding to use in the conversion.

bytes([x])

A type representing an immutable array of bytes. In Python 2, this is an alias for str() which creates a standard 8-bit string of characters. In Python 3, bytes is a completely separate type that is an immutable version of the bytearray type described earlier. In that case, the argument x has the same interpretation and can be used in the same manner. One portability caution is that even though bytes is defined in Python 2, the resulting object does not behave consistently with Python 3. For example, if a is an instance created by bytes(), then a[i] returns a character string in Python 2, but returns an integer in Python 3.

bytes(s, encoding)

An alternative calling convention for creating a bytes instance from characters in a string s where encoding specifies the character encoding to use. Python 3 only.

chr(x)

Converts an integer value, x, into a one-character string. In Python 2, x must be in the range 0 <= x <= 255, and in Python 3, x must represent a valid Unicode code point. If x is out of range, a ValueError exception is raised.

classmethod(func)

This function creates a class method for the function func. It is typically only used inside class definitions where it is implicitly invoked by the @classmethod decorator. Unlike a normal method, a class method receives the class as the first argument, not an instance. For example, if you had an object, f, that is an instance of class Foo, invoking a class method on f will pass the class Foo as the first argument to the method, not the instance f.

cmp(x, y)

Compares x and y and returns a negative number if x
<
y, a positive number if x > y, or 0 if x
==
y. Any two objects can be compared, although the result may be meaningless if the two objects have no meaningful comparison method defined (for example, comparing a number with a file object). In certain circumstances, such comparisons may also raise an exception.

compile(string, filename, kind [, flags [, dont_inherit]])

Compiles string into a code object for use with exec() or eval(). string is a string containing valid Python code. If this code spans multiple lines, the lines must be terminated by a single newline ('\n') and not platform-specific variants (for example, '\r\n' on Windows). filename is a string containing the name of the file in which the string was defined. kind is 'exec' for a sequence of statements, 'eval' for a single expression, or 'single' for a single executable statement. The flags parameter determines which optional features (associated with the _ _future_ _ module) are enabled. Features are specified using the bitwise OR of flags defined in the _ _future_ _ module. For example, if you wanted to enable new division semantics, you would set flags to _ _future_ _.division.compiler_flag. If flags is omitted or set to 0, the code is compiled with whatever features are currently in effect. If flags is supplied, the features specified are added to those features already in effect. If dont_inherit is set, only those features specified in flags are enabled—features currently enabled are ignored.

complex([real [, imag]])

Type representing a complex number with real and imaginary components, real and imag, which can be supplied as any numeric type. If imag is omitted, the imaginary component is set to zero. If real is passed as a string, the string is parsed and converted to a complex number. In this case, imag should be omitted. If no arguments are given, 0j is returned.

delattr(object, attr)

Deletes an attribute of an object. attr is a string. Same as del
object.attr.

dict([m]) or dict(key1
=
value1, key2 = value2, ...)

Type representing a dictionary. If no argument is given, an empty dictionary is returned. If m is a mapping object (such as a dictionary), a new dictionary having the same keys and same values as m is returned. For example, if m is a dictionary, dict(m) simply makes a shallow copy of it. If m is not a mapping, it must support iteration in which a sequence of (key,value) pairs is produced. These pairs are used to populate the dictionary. dict() can also be called with keyword arguments. For example, dict(foo=3, bar=7) creates the dictionary { 'foo' : 3, 'bar' : 7 }.

dir([object])

Returns a sorted list of attribute names. If object is a module, it contains the list of symbols defined in that module. If object is a type or class object, it returns a list of attribute names. The names are typically obtained from the object’s _ _dict_ _ attribute if defined, but other sources may be used. If no argument is given, the names in the current local symbol table are returned. It should be noted that this function is primarily used for informational purposes (for example, used interactively at the command line). It should not be used for formal program analysis because the information obtained may be incomplete. Also, user-defined classes can define a special method _ _dir_ _() that alters the result of this function.

divmod(a, b)

Returns the quotient and remainder of long division as a tuple. For integers, the value (a
//
b,
a
%
b) is returned. For floats, (math.floor(a
/
b),
a
%
b) is returned. This function may not be called with complex numbers.

enumerate(iter[, initial value)

Given an iterable object, iter, returns a new iterator (of type enumerate) that produces tuples containing a count and the value produced from iter. For example, if iter produces a, b, c, then enumerate(iter) produces (0,a), (1,b), (2,c).

eval(expr [, globals [, locals]])

Evaluates an expression. expr is a string or a code object created by compile(). globals and locals are mapping objects that define the global and local namespaces, respectively, for the operation. If omitted, the expression is evaluated in the namespace of the caller. It is most common for globals and locals to be specified as dictionaries, but advanced applications can supply custom mapping objects.

exec(code [, global [, locals]])

Executes Python statements. code is a string, a file, or a code object created by compile(). globals and locals define the global and local namespaces, respectively, for the operation. If omitted, the code is executed in the namespace of the caller. If no global or local dictionaries are given, the behavior of this function is a little muddled between Python versions. In Python 2, exec is actually implemented as a special language statement, whereas Python 3 implements it as a standard library function. A subtle side effect of this implementation difference is that in Python 2, code evaluated by exec can freely mutate local variables in the caller’s namespace. In Python 3, you can execute code that makes such changes, but they don’t seem to have any lasting effect beyond the exec() call itself. This is because Python 3 uses locals() to obtain the local namespace if one isn’t supplied. As you will note in the documentation for locals(), the returned dictionary is only safe to inspect, not modify.

filter(function, iterable)

In Python 2, this creates a list consisting of the objects from iterable for which function evaluates to true. In Python 3, the result is an iterator that produces this result. If function is None, the identity function is used and all the elements of iterable that are false are removed. iterable can be any object that supports iteration. As a general rule, it is significantly faster to use a generator expression or list comprehension to filter data (refer to Chapter 6).

float([x])

Type representing a floating-point number. If x is a number, it is converted to a float. If x is a string, it is parsed into a float. If no argument is supplied, 0.0 is returned.

format(value [, format_spec])

Converts value to a formatted string according to the format specification string in format_spec. This operation invokes value._ _format_ _(), which is free to interpret the format specification as it sees fit. For simple types of data, the format specifier typically includes an alignment character of '<', '>’, or '^'; a number (which indicates the field width); and a character code of 'd', 'f', or 's' for integer, floating point, or string values, respectively. For example, a format specification of 'd' formats an integer, a specification of '8d' right aligns an integer in an 8-character field and '<8d' left aligns an integer in an 8-character field. More details on format() and format specifiers can be found in Chapter 3, “Types and Objects,” and Chapter 4, “Operators and Expressions.”

frozenset([items])

Type representing an immutable set object populated with values taken from items that must be an iterable. The values must also be immutable. If no argument is given, an empty set is returned.

getattr(object, name [,default])

Returns the value of a named attribute of an object. name is a string containing the attribute name. default is an optional value to return if no such attribute exists. Otherwise, AttributeError is raised. Same as object.name.

globals()

Returns the dictionary of the current module that represents the global namespace. When called inside another function or method, it returns the global namespace of the module in which the function or method was defined.

hasattr(object, name)

Returns True if name is the name of an attribute of object. False is returned otherwise. name is a string.

hash(object)

Returns an integer hash value for an object (if possible). The hash value is primarily used in the implementation of dictionaries, sets, and other mapping objects. The hash value is the same for any two objects that compare as equals. Mutable objects don’t define a hash value, although user-defined classes can define a method _ _hash_ _() to support this operation.

help([object])

Calls the built-in help system during interactive sessions. object may be a string representing the name of a module, class, function, method, keyword, or documentation topic. If it is any other kind of object, a help screen related to that object will be produced. If no argument is supplied, an interactive help tool will start and provide more information.

hex(x)

Creates a hexadecimal string from an integer x.

id(object)

Returns the unique integer identity of object. You should not interpret the return value in any way (that is, as a memory location).

input([prompt])

In Python 2, this prints a prompt, reads a line of input, and processes it through eval() (that is, it’s the same as eval(raw_input(prompt)). In Python 3, a prompt is printed to standard output and a single line of input is read without any kind of evaluation or modification.

int(x [,base])

Type representing an integer. If x is a number, it is converted to an integer by truncating toward 0. If it is a string, it is parsed into an integer value. base optionally specifies a base when converting from a string. In Python 2, a long integer is created if the value exceeds the 32-bit range of the int type.

isinstance(object, classobj)

Returns True if object is an instance of classobj, is a subclass of classobj, or belongs to an abstract base class classobj. The classobj parameter can also be a tuple of possible types or classes. For example, isinstance(s, (list,tuple)) returns True if s is a tuple or a list.

issubclass(class1, class2)

Returns True if class1 is a subclass of (derived from) class2 or if class1 is registered with an abstract base class class2. class2 can also be a tuple of possible classes, in which case each class will be checked. Note that issubclass(A,
A) is true.

iter(object [,sentinel])

Returns an iterator for producing items in object. If the sentinel parameter is omitted, the object must either provide the method _ _iter_ _(), which creates an iterator, or implement _ _getitem_ _(), which accepts integer arguments starting at 0. If sentinel is specified, object is interpreted differently. Instead, object should be a callable object that takes no parameters. The returned iterator object will call this function repeatedly until the returned value is equal to sentinel, at which point iteration will stop. A TypeError will be generated if object does not support iteration.

len(s)

Returns the number of items contained in s. s should be a list, tuple, string, set, or dictionary. A TypeError is generated if s is an iterable such as a generator.

list([items])

Type representing a list. items may be any iterable object, the values of which are used to populate the list. If items is already a list, a copy is made. If no argument is given, an empty list is returned.

locals()

Returns a dictionary corresponding to the local namespace of the caller. This dictionary should only be used to inspect the execution environment—it is not safe to modify the contents of this dictionary.

long([x[, base]])

Type representing long integers in Python 2. If x is a number, it is converted to an integer by truncating toward 0. If x is a string, it is parsed into a long value. If no argument is given, this function returns 0L. For portability, you should avoid direct use of long. Using int(x) will create a long as necessary. For type checking, use isinstance(x, numbers.Integral) to check if x is any integer type.

map(function, items, ...)

In Python 2, this applies function to every item of items and returns a list of results. In Python 3, an iterator producing the same results is created. If multiple input sequences are supplied, function is assumed to take that many arguments, with each argument taken from a different sequence. The behavior when processing multiple input sequences differs between Python 2 and Python 3. In Python 2, the result is the same length as the longest input sequence with None used as a padding value when the shorter input sequences are exhausted. In Python 3, the result is only as long as the shortest sequence. The functionality provided by map() is almost always better expressed using a generator expression or list comprehension (both of which provide better performance). For example, map(function, s) can usually be replaced by [function(x) for
x
in
s].

max(s [, args, ...])

For a single argument, s, this function returns the maximum value of the items in s, which may be any iterable object. For multiple arguments, it returns the largest of the arguments.

min(s [, args, ...])

For a single argument, s, this function returns the minimum value of the items in s, which may be any iterable object. For multiple arguments, it returns the smallest of the arguments.

next(s [, default])

Returns the next item from the iterator s. If the iterator has no more items, a StopIteration exception is raised unless a value is supplied to the default argument. In that case, default is returned instead. For portability, you should always use this function instead of calling s.next() directly on an iterator s. In Python 3, the name of the underlying iterator method changed to s._ _next_ _(). If you write your code to use the next() function, you won’t have to worry about this difference.

object()

The base class for all objects in Python. You can call it to create an instance, but the result isn’t especially interesting.

oct(x)

Converts an integer, x, to an octal string.

open(filename [, mode [, bufsize]])

In Python 2, opens the file filename and returns a new file object (refer to Chapter 9, “Input and Output”). mode is a string that indicates how the file should be opened: 'r' for reading, 'w' for writing, and 'a' for appending. A second character 't' or 'b' is used to indicate text-mode (the default) or binary mode. For example, 'r' or 'rt' opens a file in text mode, whereas 'rb' opens a file in binary mode. An optional '+' can be added to the mode to open the file for updating (which allows both reading and writing). A mode of 'w+' truncates the file to zero length if it already exists. A mode of 'r+' or 'a+' opens the file for both reading and writing but leaves the original contents intact when the file is opened. If a mode of 'U' or 'rU' is specified, the file is opened in universal newline mode. In this mode, all variants of a newline ('\n', '\r', '\r\n') are converted to the standard '\n' character. If the mode is omitted, a mode of 'rt' is assumed. The bufsize argument specifies the buffering behavior, where 0 is unbuffered, 1 is line buffered, and any other positive number indicates an approximate buffer size in bytes. A negative number indicates that the system default buffering should be used (this is the default behavior).

open(filename [, mode [, bufsize [, encoding [, errors [, newline [, closefd]]]]]])

In Python 3, this opens the file filename and returns a file object. The first three arguments have the same meaning as for the Python 2 version of open() described earlier. encoding is an encoding name such as 'utf-8'. errors is the error handling policy and is one of 'strict', 'ignore', 'replace', 'backslashreplace', or 'xmlcharrefreplace'. newline controls the behavior of universal newline mode and is set to None, '', '\n', '\r', or '\r\n'. closefd is a Boolean flag that specifies whether the underlying file descriptor is closed when the close() method executes. Unlike Python 2, different kinds of objects are returned depending on the selected I/O mode. For example, if you open a file in binary mode, you get an object where I/O operations such as read() and write() operate on byte arrays instead of strings. File I/O is one area where there are significant differences between Python 2 and 3. Consult Appendix A, “Python 3,” for more details.

ord(c)

Returns the integer ordinal value of a single character, c. For ordinary characters, a value in the range [0,255] is returned. For single Unicode characters, a value in the range [0,65535] is usually returned. In Python 3, c may also be a Unicode surrogate pair, in which case it is converted into the appropriate Unicode code point.

pow(x, y [, z])

Returns x ** y. If z is supplied, this function returns (x
**
y) %
z. If all three arguments are given, they must be integers and y must be nonnegative.

print(value, ... [, sep=separator, end=ending, file=outfile])

Python 3 function for printing a series of values. As input, you can supply any number of values, all of which are printed on the same line. The sep keyword argument is used to specify a different separator character (a space by default). The end keyword argument specifies a different line ending ('\n' by default). The file keyword argument redirects the output to a file object. This function can be used in Python 2 if you add the statement from _ _future_ _ import print_function to your code.

property([fget [,fset [,fdel [,doc]]]])

Creates a property attribute for classes. fget is a function that returns the attribute value, fset sets the attribute value, and fdel deletes an attribute. doc provides a documentation string. These parameters may be supplied using keyword arguments—for example, property(fget=getX, doc="some text").

range([start,] stop [, step])

In Python 2, this creates a fully populated list of integers from start to stop. step indicates a stride and is set to 1 if omitted. If start is omitted (when range() is called with one argument), it defaults to 0. A negative step creates a list of numbers in descending order. In Python 3, range() creates a special range object that computes its values on demand (like xrange() in previous Python versions).

raw_input([prompt])

Python 2 function that reads a line of input from standard input (sys.stdin) and returns it as a string. If prompt is supplied, it’s first printed to standard output (sys.stdout). Trailing newlines are stripped, and an EOFError exception is raised if an EOF is read. If the readline module is loaded, this function will use it to provide advanced line-editing and command-completion features. Use input() to read input in Python 3.

repr(object)

Returns a string representation of object. In most cases, the returned string is an expression that can be passed to eval() to re-create the object. Be aware that in Python 3, the result of this function may be a Unicode string that can’t be displayed in the terminal or shell window (resulting in an exception). Use the ascii() function to create an ASCII representation of object.

reversed(s)

Creates a reverse iterator for sequence s. This function only works if s implements the sequence methods _ _len_ _() and _ _getitem_ _(). In addition, s must index items starting at 0. It does not work with generators or iterators.

round(x [, n])

Rounds the result of rounding the floating-point number x to the closest multiple of 10 to the power minus n. If n is omitted, it defaults to 0. If two multiples are equally close, Python 2 rounds away from 0 (for example, 0.5 is rounded to 1.0 and -0.5 is rounded to -1.0). Python 3 rounds toward 0 if the previous digit is even and away from 0 otherwise (for example, 0.5 is rounded to 0.0 and 1.5 is rounded to 2).

set([items])

Creates a set populated with items taken from the iterable object items. The items must be immutable. If items contains other sets, those sets must be of type frozenset. If items is omitted, an empty set is returned.

setattr(object, name, value)

Sets an attribute of an object. name is a string. Same as object.name
=
value.

slice([start,] stop [, step])

Returns a slice object representing integers in the specified range. Slice objects are also generated by the extended slice syntax a[i:i:k]. Refer to the section “Sequence and Mapping Methods” in Chapter 3 for details.

sorted(iterable [, key=keyfunc [, reverse=reverseflag]])

Creates a sorted list from items in iterable. The keyword argument key is a single-argument function that transforms values before they are passed to the compare function. The keyword argument reverse is a Boolean flag that specifies whether or not the resulting list is sorted in reverse order. The key and reverse arguments must be specified using keywords—for example, sorted(a,key=get_name).

staticmethod(func)

Creates a static method for use in classes. This function is implicitly invoked by the @staticmethod decorator.

str([object])

Type representing a string. In Python 2, a string contains 8-bit characters, whereas in Python 3 strings are Unicode. If object is supplied, a string representation of its value is created by calling its _ _str_ _() method. This is the same string that you see when you print the object. If no argument is given, an empty string is created.

sum(items [,initial])

Computes the sum of a sequence of items taken from the iterable object items. initial provides the starting value and defaults to 0. This function only works with numbers.

super(type [, object])

Returns an object that represents the superclasses of type. The primary purpose of this object is to invoke methods in base classes. Here’s an example:

[image: image]

If object is an object, then isinstance(object,
type) must be true. If object is a type, then it must be a subclass of type. Refer to Chapter 7, “Classes and Object-Oriented Programming,” for more details. In Python 3, you can use super() in a method with no arguments. In this case, type is set to the class in which the method is defined and object is set to the first argument of the method. Although this cleans up the syntax, it’s not backwards-compatible with Python 2 so it should be avoided if you’re concerned about portability.

tuple([items])

Type representing a tuple. If supplied, items is an iterable object that is used to populate the tuple. However, if items is already a tuple, it’s simply returned unmodified. If no argument is given, an empty tuple is returned.

type(object)

The base class of all types in Python. When called as a function, returns the type of object. This type is the same as the object’s class. For common types such as integers, floats, and lists, the type will refer to one of the other built-in classes such as int, float, list, and so forth. For user-defined objects, the type is the associated class. For objects related to Python’s internals, you will typically get a reference to one of the classes defined in the types module.

type(name,bases,dict)

Creates a new type object (which is the same as defining a new class). name is the name of the type, bases is a tuple of base classes, and dict is a dictionary containing definitions corresponding to a class body. This function is most commonly used when working with metaclasses. This is described further in Chapter 7.

unichr(x)

Converts the integer or long integer x, where 0 <=
x
<= 65535, to a single Unicode character. Python 2 only. In Python 3, just use chr(x).

unicode(string [,encoding [,errors]])

In Python 2, this converts string to a Unicode string. encoding specifies the data encoding of string. If omitted, the default encoding as returned by sys.getdefaultencoding() is used. errors specifies how encoding errors are handled and is one of 'strict', 'ignore', 'replace', 'backslashreplace', or 'xmlcharrefreplace'. Refer to Chapter 9 and Chapter 3 for details. Not available in Python 3.

vars([object])

Returns the symbol table of object (usually found in its _ _dict_ _ attribute). If no argument is given, a dictionary corresponding to the local namespace is returned. The dictionary returned by this function should be assumed to be read-only. It’s not safe to modify its contents.

xrange([start,] stop [, step])

A type representing a range of integer values from start to stop that is not included. step provides an optional stride. The values are not actually stored but are computed on demand when accessed. In Python 2, xrange() is the preferred function to use when you want to write loops over ranges of integer values. In Python 3, xrange() has been renamed to range() and xrange() is unavailable. start, stop, and step are limited to the set of values supported by machine integers (typically 32 bits).

zip([s1 [, s2 [,..]]])

In Python 2, returns a list of tuples where the nth tuple is (s1[n],
s2[n], ...). The resulting list is truncated to the length of the shortest argument sequence. If no arguments are given, an empty list is returned. In Python 3, the behavior is similar, but the result is an iterator that produces a sequence of tuples. In Python 2, be aware that using zip() with long input sequences is something that can unintentionally consume large amounts of memory. Consider using itertools.izip() instead.

Built-In Exceptions

Built-in exceptions are contained in the exceptions module, which is always loaded prior to the execution of any program. Exceptions are defined as classes.

Exception Base Classes

The following exceptions serve as base classes for all the other exceptions:

BaseException

The root class for all exceptions. All built-in exceptions are derived from this class.

Exception

The base class for all program-related exceptions that includes all built-in exceptions except for SystemExit, GeneratorExit, and KeyboardInterrupt. User-defined exceptions should be defined by inheriting from Exception.

ArithmeticError

The base class for arithmetic exceptions, including OverflowError, ZeroDivisionError, and FloatingPointError.

LookupError

The base class for indexing and key errors, including IndexError and KeyError.

EnvironmentError

The base class for errors that occur outside Python, including IOError and OSError.

The preceding exceptions are never raised explicitly. However, they can be used to catch certain classes of errors. For instance, the following code would catch any sort of numerical error:

[image: image]

Exception Instances

When an exception is raised, an instance of an exception class is created. This instance is placed in the optional variable supplied to the except statement. Here’s an example:

[image: image]

Instances of an exception e have a few standard attributes that can be useful to inspect and/or manipulate in certain applications.

e.args

The tuple of arguments supplied when raising the exception. In most cases, this is a one-item tuple with a string describing the error. For EnvironmentError exceptions, the value is a 2-tuple or 3-tuple containing an integer error number, a string error message, and an optional filename. The contents of this tuple might be useful if you need to re-create the exception in a different context; for example, to raise an exception in a different Python interpreter process.

e.message

A string representing the error message that gets printed when the exception is displayed (Python 2 only).

e._ _cause_ _

Previous exception when using explicit chained exceptions (Python 3 only). See Appendix A.

e._ _context_ _

Previous exception for implicitly chained exceptions (Python 3 only). See Appendix A.

e._ _traceback_ _

Traceback object associated with the exception (Python 3 only). See Appendix A.

Predefined Exception Classes

The following exceptions are raised by programs:

AssertionError

Failed assert statement.

AttributeError

Failed attribute reference or assignment.

EOFError

End of file. Generated by the built-in functions input() and raw_input(). It should be noted that most other I/O operations such as the read() and readline() methods of files return an empty string to signal EOF instead of raising an exception.

FloatingPointError

Failed floating-point operation. It should be noted that floating-point exception-handling is a tricky problem and only that this exception only gets raised if Python has been configured and built in a way that enables it. It is more common for floating-point errors to silently produce results such as float('nan') or float('inf'). A subclass of ArithmeticError.

GeneratorExit

Raised inside a generator function to signal termination. This happens when a generator is destroyed prematurely (before all generator values are consumed) or the close() method of a generator is called. If a generator ignores this exception, the generator is terminated and the exception is silently ignored.

IOError

Failed I/O operation. The value is an IOError instance with the attributes errno, strerror, and filename. errno is an integer error number, strerror is a string error message, and filename is an optional filename. A subclass of EnvironmentError.

ImportError

Raised when an import statement can’t find a module or when from can’t find a name in a module.

IndentationError

Indentation error. A subclass of SyntaxError.

IndexError

Sequence subscript out of range. A subclass of LookupError.

KeyError

Key not found in a mapping. A subclass of LookupError.

KeyboardInterrupt

Raised when the user hits the interrupt key (usually Ctrl+C).

MemoryError

Recoverable out-of-memory error.

NameError

Name not found in local or global namespaces.

NotImplementedError

Unimplemented feature. Can be raised by base classes that require derived classes to implement certain methods. A subclass of RuntimeError.

OSError

Operating system error. Primarily raised by functions in the os module. The value is the same as for IOError. A subclass of EnvironmentError.

OverflowError

Result of an integer value being too large to be represented. This exception usually only arises if large integer values are passed to objects that internally rely upon fixed-precision machine integers in their implementation. For example, this error can arise with range or xrange objects if you specify starting or ending values that exceed 32 bits in size. A subclass of ArithmeticError.

ReferenceError

Result of accessing a weak reference after the underlying object has been destroyed. See the weakref module.

RuntimeError

A generic error not covered by any of the other categories.

StopIteration

Raised to signal the end of iteration. This normally happens in the next() method of an object or in a generator function.

SyntaxError

Parser syntax error. Instances have the attributes filename, lineno, offset, and text, which can be used to gather more information.

SystemError

Internal error in the interpreter. The value is a string indicating the problem.

SystemExit

Raised by the sys.exit() function. The value is an integer indicating the return code. If it’s necessary to exit immediately, os._exit() can be used.

TabError

Inconsistent tab usage. Generated when Python is run with the -tt option. A subclass of SyntaxError.

TypeError

Occurs when an operation or a function is applied to an object of an inappropriate type.

UnboundLocalError

Unbound local variable referenced. This error occurs if a variable is referenced before it’s defined in a function. A subclass of NameError.

UnicodeError

Unicode encoding or decoding error. A subclass of ValueError.

UnicodeEncodeError

Unicode encoding error. A subclass of UnicodeError.

UnicodeDecodeError

Unicode decoding error. A subclass of UnicodeError.

UnicodeTranslateError

Unicode error occurred during translation. A subclass of UnicodeError.

ValueError

Generated when the argument to a function or an operation is the right type but an inappropriate value.

WindowsError

Generated by failed system calls on Windows. A subclass of OSError.

ZeroDivisionError

Dividing by zero. A subclass of ArithmeticError.

Built-In Warnings

Python has a warnings module that is typically used to notify programmers about deprecated features. Warnings are issued by including code such as the following:

[image: image]

Although warnings are issued by a library module, the names of the various warnings are built-in. Warnings are somewhat similar to exceptions. There is a hierarchy of built-in warnings that all inherit from Exception.

Warning

The base class of all warnings. A subclass of Exception.

UserWarning

A generic user-defined warning. A subclass of Warning.

DeprecationWarning

A warning for deprecated features. A subclass of Warning.

SyntaxWarning

A warning for deprecated Python syntax. A subclass of Warning.

RuntimeWarning

A warning for potential runtime problems. A subclass of Warning.

FutureWarning

A warning that the behavior of a feature will change in the future. A subclass of Warning.

Warnings are different than exceptions in that the issuing of a warning with the warn() function may or may not cause a program to stop. For example, a warning may just print something to the output or it may raise an exception. The actual behavior can be configured with the warnings module or with the -W option to the interpreter. If you are using someone else’s code that generates a warning, but you would like to proceed anyways, you can catch warnings that have been turned into exceptions using try and except. For example:

[image: image]

It should be emphasized that code such as this is rare. Although it will catch a warning that has been turned into an exception, it doesn’t suppress warning messages (you have to use the warnings module to control that). Plus, ignoring warnings is a good way to write code that doesn’t work correctly when new versions of Python are released.

future_builtins

The future_builtins module, only available in Python 2, provides implementations of the built-in functions whose behavior is changed in Python 3. The following functions are defined:

ascii(object)

Produces the same output as repr(). Refer to the description in the “Built-In Functions” section of this chapter.

filter(function, iterable)

Creates an iterator instead of a list. The same as itertools.ifilter().

hex(object)

Creates a hexadecimal string, but uses the _ _index_ _() special method to get an integer value instead of calling _ _hex_ _().

map(function, iterable, ...)

Creates an iterator instead of a list. The same as itertools.imap().

oct(object)

Creates an octal string, but uses the _ _index_ _() special method to get an integer value instead of calling _ _oct_ _().

zip(iterable, iterable, ...)

Creates an iterator instead of a list. The same as itertools.izip().

Be aware that the functions listed in this module are not a complete list of changes to the built-in module. For instance, Python 3 also renames raw_input() to input() and xrange() to range().

13. Python Runtime Services

This chapter describes modules that are related to the Python interpreter runtime. Topics include garbage collection, basic management of objects (copying, marshalling, and so on), weak references, and interpreter environment.

atexit

The atexit module is used to register functions to execute when the Python interpreter exits. A single function is provided:

register(func [,args [,kwargs]])

Adds function func to a list of functions that will execute when the interpreter exits. args is a tuple of arguments to pass to the function. kwargs is a dictionary of keyword arguments. The function is invoked as func(*args,**kwargs). Upon exit, functions are invoked in reverse order of registration (the most recently added exit function is invoked first). If an error occurs, an exception message will be printed to standard error but will otherwise be ignored.

copy

The copy module provides functions for making shallow and deep copies of compound objects, including lists, tuples, dictionaries, and instances of user-defined objects.

copy(x)

Makes a shallow copy of x by creating a new compound object and duplicating the members of x by reference. For built-in types, it is somewhat uncommon to use this function. Instead, you use calls such as list(x), dict(x), set(x), and so forth to create a shallow copy of x (it should be noted that using the type name directly like this is also significantly faster than using copy()).

deepcopy(x [, visit])

Makes a deep copy of x by creating a new compound object and recursively duplicating all the members of x. visit is an optional dictionary that’s used to keep track of visited objects in order to detect and avoid cycles in recursively defined data structures. This argument is typically only supplied if deepcopy() is being called recursively as described later in this chapter.

Although it is not usually necessary, a class can implement customized copy methods by implementing the methods _ _copy_ _(self) and _ _deepcopy_ _(self,
visit), which implement the shallow and deep copy operations respectively. The _ _deepcopy_ _() method must accept a dictionary, visit, which is used to keep track of previously encountered objects during the copy process. It’s not necessary for _ _deepcopy_ _() to do anything with visit other than pass it to other deepcopy() operations carried out in the implementation (if any).

If a class implements the methods _ _getstate_ _() and _ _setstate_ _() that are used by the pickle module, they will be used by the copy module to create copies.

Notes

• This module can be used with simple types such as integers and strings, but there’s little need to do so.

• The copy functions don’t work with modules, class objects, functions, methods, tracebacks, stack frames, files, sockets, and other similar types. When an object can’t be copied, the copy.error exception is raised.

gc

The gc module provides an interface for controlling the garbage collector used to collect cycles in objects such as lists, tuples, dictionaries, and instances. As various types of container objects are created, they’re placed on a list that’s internal to the interpreter. Whenever container objects are deallocated, they’re removed from this list. If the number of allocations exceeds the number of deallocations by a user-definable threshold value, the garbage collector is invoked. The garbage collector works by scanning this list and identifying collections of objects that are no longer being used but haven’t been deallocated due to circular dependencies. In addition, the garbage collector uses a three-level generational scheme in which objects that survive the initial garbage-collection step are placed onto lists of objects that are checked less frequently. This provides better performance for programs that have a large number of long-lived objects.

collect([generation])

Runs a full garbage collection. This function checks all generations and returns the number of unreachable objects found. generation is an optional integer in the range 0 - 2 that specifies the generation to collect.

disable()

Disables garbage collection.

enable()

Enables garbage collection.

garbage

A variable containing a read-only list of user-defined instances that are no longer in use, but which cannot be garbage collected because they are involved in a reference cycle and they define a _ _del_ _() method. Such objects cannot be garbage-collected because in order to break the reference cycle, the interpreter must arbitrarily destroy one of the objects first. However, there is no way to know if the _ _del_ _() method of the remaining objects in the cycle needs to perform critical operations on the object that was just destroyed.

get_count()

Returns a tuple (count0,
count1,
count2) containing the number of objects currently in each generation.

get_debug()

Returns the debugging flags currently set.

get_objects()

Returns a list of all objects being tracked by the garbage collector. Does not include the returned list.

get_referrers(obj1, obj2, ...)

Returns a list of all objects that directly refer to the objects obj1, obj2, and so on. The returned list may include objects that have not yet been garbage-collected as well as partially constructed objects.

get_referents(obj1, obj2, ...)

Returns a list of objects that the objects obj1, obj2, and so on refer to. For example, if obj1 is a container, this would return a list of the objects in the container.

get_threshold()

Returns the current collection threshold as a tuple.

isenabled()

Returns True if garbage collection is enabled.

set_debug(flags)

Sets the garbage-collection debugging flags, which can be used to debug the behavior of the garbage collector. flags is the bitwise OR of the constants DEBUG_STATS, DEBUG_COLLECTABLE, DEBUG_UNCOLLECTABLE, DEBUG_INSTANCES, DEBUG_OBJECTS, DEBUG_SAVEALL, and DEBUG_LEAK. The DEBUG_LEAK flag is probably the most useful because it will have the collector print information useful for debugging programs with memory leaks.

set_threshold(threshold0 [, threshold1[, threshold2]])

Sets the collection frequency of garbage collection. Objects are classified into three generations, where generation 0 contains the youngest objects and generation 2 contains the oldest objects. Objects that survive a garbage-collection step are moved to the next-oldest generation. Once an object reaches generation 2, it stays in that generation. threshold0 is the difference between the number of allocations and deallocations that must be reached before garbage collection occurs in generation 0. threshold1 is the number of collections of generation 0 that must occur before generation 1 is scanned. threshold2 is the number of collections that must occur in generation 1 before generation 2 is collected. The default threshold is currently set to (700,10,10). Setting threshold0 to 0 disables garbage collection.

Notes

• Circular references involving objects with a _ _del_ _() method are not garbage-collected and are placed on the list gc.garbage (uncollectable objects). These objects are not collected due to difficulties related to object finalization.

• The functions get_referrers() and get_referents() only apply to objects that support garbage collection. In addition, these functions are only intended for debugging. They should not be used for other purposes.

inspect

The inspect module is used to gather information about live Python objects such as attributes, documentation strings, source code, stack frames, and so on.

cleandoc(doc)

Cleans up a documentation string doc by changing all tabs into whitespace and removing indentation that might have been inserted to make the docstring line up with other statements inside a function or method.

currentframe()

Returns the frame object corresponding to the caller’s stack frame.

formatargspec(args [, varags [, varkw [, defaults]]])

Produces a nicely formatted string representing the values returned by getargspec().

formatargvalues(args [, varargs [, varkw [, locals]]])

Produces a nicely formatted string representing the values returned by getargvalues().

getargspec(func)

Given a function, func, returns a named tuple ArgSpec(args,
varargs,
varkw,
defaults). args is a list of argument names, and varargs is the name of the * argument (if any). varkw is the name of the ** argument (if any), and defaults is a tuple of default argument values or None if there are no default argument values. If there are default argument values, the defaults tuple represents the values of the last n arguments in args, where n is the len(defaults).

getargvalues(frame)

Returns the values of arguments supplied to a function with execution frame frame. Returns a tuple ArgInfo(args,
varargs,
varkw,
locals). args is a list of argument names, varargs is the name of the * argument (if any), and varkw is the name of the ** argument (if any). locals is the local dictionary of the frame.

getclasstree(classes [, unique])

Given a list of related classes, classes, this function organizes the classes into a hierarchy based on inheritance. The hierarchy is represented as a collection of nested lists, where each entry in the list is a list of classes that inherit from the class that immediately precedes the list. Each entry in the list is a 2-tuple (cls,
bases), where cls is the class object and bases is a tuple of base classes. If unique is True, each class only appears once in the returned list. Otherwise, a class may appear multiple times if multiple inheritance is being used.

getcomments(object)

Returns a string consisting of comments that immediately precede the definition of object in Python source code. If object is a module, comments defined at the top of the module are returned. Returns None if no comments are found.

getdoc(object)

Returns the documentation string for object. The documentation string is first processed using the cleandoc() function before being returned.

getfile(object)

Returns the name of the file in which object was defined. May return TypeError if this information is not applicable or available (for example, for built-in functions).

getframeinfo(frame [, context])

Returns a named tuple Traceback(filename,
lineno,
function,
code_context,
index) containing information about the frame object frame. filename and line specify a source code location. The context parameter specifies the number of lines of context from the source code to retrieve. The contextlist field in the returned tuple contains a list of source lines corresponding to this context. The index field is a numerical index within this list for the line corresponding to frame.

getinnerframes(traceback [, context])

Returns a list of frame records for the frame of a traceback and all inner frames. Each frame-record is a 6-tuple consisting of (frame,
filename,
line,
funcname,
contextlist,
index). filename, line, context, contextlist, and index have the same meaning as with getframeinfo().

getmembers(object [, predicate])

Returns all of the members of object. Typically, the members are obtained by looking in the _ _dict_ _ attribute of an object, but this function may return attributes of object stored elsewhere (for example, docstrings in _ _doc_ _, objects’ names in _ _name_ _, and so on). The members are returned a list of (name,
value) pairs. predicate is an optional function that accepts a member object as an argument and returns True or False. Only members for which predicate returns True are returned. Functions such as isfunction() and isclass() can be used as predicate functions.

getmodule(object)

Returns the module in which object was defined (if possible).

getmoduleinfo(path)

Returns information about how Python would interpret the file path. If path is not a Python module, None is returned. Otherwise, a named tuple ModuleInfo(name,
suffix,
mode,
module_type) is returned where name is the name of the module, suffix is the filename suffix, mode is the file mode that would be used to open the module, and module_type is an integer code specifying the module type. Module type codes are defined in the imp module as follows:

[image: image]

getmodulename(path)

Returns the name of the module that would be used for the file path. If path does not look like a Python module, None is returned.

getmro(cls)

Returns a tuple of classes that represent the method-resolution ordering used to resolve methods in class cls. Refer to Chapter 7, “Classes and Object-Oriented Programming,” for further details.

getouterframes(frame [, context])

Returns a list of frame records for frame and all outer frames. This list represents the calling sequence where the first entry contains information for frame. Each frame record is a 6-tuple (frame,
filename,
line,
funcname,
contextlist,
index) where the fields have the same meaning as for getinnerframes() The context argument has the same meaning as for getframeinfo().

getsourcefile(object)

Returns the name of the Python source file in which object was defined.

getsourcelines(object)

Returns a tuple (sourcelines,
firstline) corresponding to the definition of object. sourcelines is a list of source code lines, and firstline is the line number of the first source code line. Raises IOError if source code can’t be found.

getsource(object)

Returns source code of object as a single string. Raises IOError if the source code can’t be found.

isabstract(object)

Returns True if object is an abstract base class.

isbuiltin(object)

Returns True if object is a built-in function.

isclass(object)

Returns True if object is a class.

iscode(object)

Returns True if object is a code object.

isdatadescriptor(object)

Returns True if object is a data descriptor object. This is the case if object defines both a _ _get_ _() and _ _set_ _() method.

isframe(object)

Returns True if object is a frame object.

isfunction(object)

Returns True if object is a function object.

isgenerator(object)

Returns True if object is a generator object.

isgeneratorfunction(object)

Returns True if object is a generator function. This is different than isgenerator() in that it tests if object is a function that creates a generator when called. It is not used to check if object is an actively running generator.

ismethod(object)

Returns True if object is a method.

ismethoddescriptor(object)

Returns True if object is a method descriptor object. This is the case if object is not a method, class, or function and it defines a _ _get_ _() method but does not define _ _set_ _().

ismodule(object)

Returns True if object is a module object.

isroutine(object)

Returns True if object is a user-defined or built-in function or method.

istraceback(object)

Returns True if object is a traceback object.

stack([context])

Returns a list of frame records corresponding to the stack of the caller. Each frame record is a 6-tuple (frame,
filename,
line,
funcname,
contextlist,
index), which contains the same information as returned by getinnerframes(). context specifies the number of lines of source context to return in each frame record.

trace([context])

Returns a list of frame records for the stack between the current frame and the frame in which the current exception was raised. The first frame record is the caller, and the last frame record is the frame where the exception occurred. context specifies the number of lines of source context to return in each frame record.

marshal

The marshal module is used to serialize Python objects in an “undocumented” Python-specific data format. marshal is similar to the pickle and shelve modules, but it is less powerful and intended for use only with simple objects. It shouldn’t be used to implement persistent objects in general (use pickle instead). However, for simple built-in types, the marshal module is a very fast approach for saving and loading data.

dump(value, file [, version])

Writes the object value to the open file object file. If value is an unsupported type, a ValueError exception is raised. version is an integer that specifies the data format to use. The default output format is found in marshal.version and is currently set to 2. Version 0 is an older format used by earlier versions of Python.

dumps(value [,version])

Returns the string written by the dump() function. If value is an unsupported type, a ValueError exception is raised. version is the same as described previously.

load(file)

Reads and returns the next value from the open file object file. If no valid value is read, an EOFError, ValueError, or TypeError exception will be raised. The format of the input data is automatically detected.

loads(string)

Reads and returns the next value from the string string.

Notes

• Data is stored in a binary architecture-independent format.

• Only None, integers, long integers, floats, complex numbers, strings, Unicode strings, tuples, lists, dictionaries, and code objects are supported. Lists, tuples, and dictionaries can only contain supported objects. Class instances and recursive references in lists, tuples, and dictionaries are not supported.

• Integers may be promoted to long integers if the built-in integer type doesn’t have enough precision—for example, if the marshalled data contains a 64-bit integer, but the data is being read on a 32-bit machine.

• marshal is not intended to be secure against erroneous or maliciously constructed data and should not be used to unmarshal data from untrusted sources.

• marshal is significantly faster than pickle, but it isn’t as flexible.

pickle

The pickle module is used to serialize Python objects into a stream of bytes suitable for storing in a file, transferring across a network, or placing in a database. This process is variously called pickling, serializing, marshalling, or flattening. The resulting byte stream can also be converted back into a series of Python objects using an unpickling process.

The following functions are used to turn an object into a byte-stream.

dump(object, file [, protocol])

Dumps a pickled representation of object to the file object file. protocol specifies the output format of the data. Protocol 0 (the default) is a text-based format that is backwards-compatible with earlier versions of Python. Protocol 1 is a binary protocol that is also compatible with most earlier Python versions. Protocol 2 is a newer protocol that provides more efficient pickling of classes and instances. Protocol 3 is used by Python 3 and is not backwards-compatible. If protocol is negative, the most modern protocol will be selected. The variable pickle.HIGHEST_PROTOCOL contains the highest protocol available. If object doesn’t support pickling, a pickle.PicklingError exception is raised.

dumps(object [, protocol])

Same as dump(), but returns a string containing the pickled data.

The following example shows how you use these functions to save objects to a file:

[image: image]

The following functions are used to restore a pickled object.

load(file)

Loads and returns a pickled representation of an object from the file object file. It is not necessary to specify the input protocol as it is automatically detected. A pickle.UnpicklingError exception is raised if the file contains corrupted data that can’t be decoded. If an end-of-file is detected, an EOFError exception is raised.

loads(string)

Same as load(), but reads the pickled representation of an object from a string.

The following example shows how you use these functions to load data:

[image: image]

When loading, it is not necessary to specify the protocol or any information about the type of object being loaded. That information is saved as part of the pickle data format itself.

If you are pickling more than one Python object, you can simply make repeated calls to dump() and load() as shown in the previous examples. When making multiple calls, you simply have to make sure the sequence of load() calls matches the sequence of dump() calls that were used to write the file.

When working with complicated data structures involving cycles or shared references, using dump() and load() can be problematic because they don’t maintain any internal state about objects that have already been pickled or restored. This can result in output files that are excessively large and that don’t properly restore the relationship between objects when loaded. An alternative approach is to use Pickler and Unpickler objects.

Pickler(file [, protocol])

Creates a pickling object that writes data to the file object file with the specified pickle protocol. An instance p of Pickler has a method p.dump(x) that dumps an object x to file. Once x has been dumped, its identity is remembered. If a subsequent p.dump() operation is used to write the same object, a reference to the previously dumped object is saved instead of writing a new copy. The method p.clear_memo() clears the internal dictionary used to track previously dumped objects. You would use this if you wanted to write a fresh copy of a previously dumped object (that is, if its value changed since the last dump() operation).

Unpickler(file)

Creates an unpickling object that reads data from the file object file. An instance u of Unpickler has a method u.load() that loads and returns a new object from file. An Unpickler keeps track of objects it has returned because the input source might contain an object reference created by the Pickler object. In this case, u.load() returns a reference to the previously loaded object.

The pickle module works with most kinds of normal Python objects. This includes:

• None

• Numbers and strings

• Tuples, lists, and dictionaries containing only pickleable objects

• Instances of user-defined classes defined at the top level of a module

When instances of a user-defined class are pickled, the instance data is the only part that gets pickled. The corresponding class definition is not saved—instead, the pickled data merely contains the name of the associated class and module. When instances are unpickled, the module in which the class is defined is automatically imported in order to access the class definition when re-creating instances. It should also be noted that when restoring an instance, the _ _init_ _() method of a class is not invoked. Instead, the instance is re-created through other means and the instance data restored.

One restriction on instances is that the corresponding class definition must appear at the top level of a module (that is, no nested classes). In addition, if the instance’s class definition was originally defined in _ _main_ _, that class definition must be manually reloaded prior to unpickling a saved object (because there’s no way for the interpreter to know how to automatically load the necessary class definitions back into _ _main_ _ when unpickling).

It is not normally necessary to do anything to make a user-defined class work with pickle. However, a class can define customized methods for saving and restoring its state by implementing the special methods _ _getstate_ _() and _ _setstate_ _(). The _ _getstate_ _() method must return a pickleable object (such as a string or tuple) representing the state of the object. The _ _setstate_ _() method accepts the pickled object and restores its state. If these methods are undefined, the default behavior is to pickle an instance’s underlying _ _dict_ _ attribute. It should be noted that if these methods are defined, they will also be used by the copy module to implement the shallow and deep copy operations.

Notes

• In Python 2, a module called cPickle contains a C implementation of functions in the pickle module. It is significantly faster than pickle, but is restricted in that it doesn’t allow subclassing of the Pickler and Unpickler objects. Python 3 has a support module that also contains C implementation, but it is used more transparently (pickle takes advantage of it automatically as appropriate).

• The data format used by pickle is Python-specific and shouldn’t be assumed to be compatible with any external standards such as XML.

• Whenever possible, the pickle module should be used instead of the marshal module because pickle is more flexible, the data encoding is documented, and additional error-checking is performed.

• Due to security concerns, programs should not unpickle data received from untrusted sources.

• Use of the pickle module with types defined in extension modules is much more involved than what is described here. Implementers of extension types should consult the online documentation for details concerning the low-level protocol required to make these objects work with pickle—in particular, details on how to implement the _ _reduce_ _() and _ _reduce_ex_ _() special methods that pickle uses to create the serialized byte sequences.

sys

The sys module contains variables and functions that pertain to the operation of the interpreter and its environment.

Variables

The following variables are defined.

api_version

An integer representing the C API version of the Python interpreter. Used when working with extension modules.

argv

List of command-line options passed to a program. argv[0] is the name of the program.

builtin_module_names

Tuple containing names of modules built into the Python executable.

byteorder

Native byte-ordering of the machine—'little' for little-endian or 'big' for big-endian.

copyright

String containing copyright message.

_ _displayhook_ _

Original value of the displayhook() function.

dont_write_bytecode

Boolean flag that determines whether or not Python writes bytecode (.pyc or .pyo files) when importing modules. The initial value is True unless the -B option to the interpreter is given. The setting can be changed as needed in your own program.

dllhandle

Integer handle for the Python DLL (Windows).

_ _excepthook_ _

Original value of the excepthook() function.

exec_prefix

Directory where platform-dependent Python files are installed.

executable

String containing the name of the interpreter executable.

flags

An object representing the settings of different command-line options supplied to the Python interpreter itself. The following table lists the attributes of flags along with the corresponding command-line option that turns the flag on. These attributes are read-only.

[image: image]

float_info

An object that holds information about internal representation of floating-point numbers. The values of these attributes are taken from the float.h C header file.

[image: image]

hexversion

Integer whose hexadecimal representation encodes the version information contained in sys.version_info. The value of this integer is always guaranteed to increase with newer versions of the interpreter.

last_type, last_value, last_traceback

These variables are set when an unhandled exception is encountered and the interpreter prints an error message. last_type is the last exception type, last_value is the last exception value, and last_traceback is a stack trace. Note that the use of these variables is not thread-safe. sys.exc_info() should be used instead.

maxint

Largest integer supported by the integer type (Python 2 only).

maxsize

Largest integer value supported by the C size_t datatype on the system. This value determines the largest possible length for strings, lists, dicts, and other built-in types.

maxunicode

Integer that indicates the largest Unicode code point that can be represented. The default value is 65535 for the 16-bit UCS-2 encoding. A larger value will be found if Python has been configured to use UCS-4.

modules

Dictionary that maps module names to module objects.

path

List of strings specifying the search path for modules. The first entry is always set to the directory in which the script used to start Python is located (if available). Refer to Chapter 8, “Iterators and Generators.”

platform

Platform identifier string, such as 'linux-i386'.

prefix

Directory where platform-independent Python files are installed.

ps1, ps2

Strings containing the text for the primary and secondary prompts of the interpreter. Initially, ps1 is set to '>>> ' and ps2 is set to '... '. The str() method of whatever object is assigned to these values is evaluated to generate the prompt text.

py3kwarning

Flag set to True in Python 2 when the interpreter is run with the -3 option.

stdin, stdout, stderr

File objects corresponding to standard input, standard output, and standard error. stdin is used for the raw_input() and input() functions. stdout is used for print and the prompts of raw_input() and input(). stderr is used for the interpreter’s prompts and error messages. These variables can be assigned to any object that supports a write() method operating on a single string argument.

_ _stdin_ _, _ _stdout_ _, _ _stderr_ _

File objects containing the values of stdin, stdout, and stderr at the start of the interpreter.

tracebacklimit

Maximum number of levels of traceback information printed when an unhandled exception occurs. The default value is 1000. A value of 0 suppresses all traceback information and causes only the exception type and value to be printed.

version

Version string.

version_info

Version information represented as a tuple (major,
minor,
micro,
releaselevel,
serial). All values are integers except releaselevel, which is the string 'alpha', 'beta', 'candidate', or 'final'.

warnoptions

List of warning options supplied to the interpreter with the –W command-line option.

winver

The version number used to form registry keys on Windows.

Functions

The following functions are available:

_clear_type_cache()

Clears the internal type cache. To optimize method lookups, a small 1024-entry cache of recently used methods is maintained inside the interpreter. This cache speeds up repeated method lookups—especially in code that has deep inheritance hierarchies. Normally, you don’t need to clear this cache, but you might do so if you are trying to track down a really tricky memory reference counting issue. For example, if a method in the cache was holding a reference to an object that you were expecting to be destroyed.

_current_frames()

Returns a dictionary mapping thread identifiers to the topmost stack frame of the executing thread at the time of call. This information can be useful in writing tools related to thread debugging (that is, tracking down deadlock). Keep in mind that the values returned by this function only represent a snapshot of the interpreter at the time of call. Threads may be executing elsewhere by the time you look at the returned data.

displayhook([value])

This function is called to print the result of an expression when the interpreter is running in interactive mode. By default, the value of repr(value) is printed to standard output and value is saved in the variable _ _builtin_ _._. displayhook can be redefined to provide different behavior if desired.

excepthook(type,value,traceback)

This function is called when an uncaught exception occurs. type is the exception class, value is the value supplied by the raise statement, and traceback is a traceback object. The default behavior is to print the exception and traceback to standard error. However, this function can be redefined to provide alternative handling of uncaught exceptions (which may be useful in specialized applications such as debuggers or CGI scripts).

exc_clear()

Clears all information related to the last exception that occurred. It only clears information specific to the calling thread.

exc_info()

Returns a tuple (type,
value,
traceback) containing information about the exception that’s currently being handled. type is the exception type, value is the exception parameter passed to raise, and traceback is a traceback object containing the call stack at the point where the exception occurred. Returns None if no exception is currently being handled.

exit([n])

Exits Python by raising the SystemExit exception. n is an integer exit code indicating a status code. A value of 0 is considered normal (the default); nonzero values are considered abnormal. If a noninteger value is given to n, it’s printed to sys.stderr and an exit code of 1 is used.

getcheckinterval()

Returns the value of the check interval, which specifies how often the interpreter checks for signals, thread switches, and other periodic events.

getdefaultencoding()

Gets the default string encoding in Unicode conversions. Returns a value such as 'ascii' or 'utf-8'. The default encoding is set by the site module.

getdlopenflags()

Returns the flags parameter that is supplied to the C function dlopen() when loading extension modules on UNIX. See dl module.

getfilesystemencoding()

Returns the character encoding used to map Unicode filenames to filenames used by the underlying operating system. Returns 'mbcs' on Windows or 'utf-8' on Macintosh OS X. On UNIX systems, the encoding depends on locale settings and will return the value of the locale CODESET parameter. May return None, in which case the system default encoding is used.

_getframe([depth])

Returns a frame object from the call stack. If depth is omitted or zero, the topmost frame is returned. Otherwise, the frame for that many calls below the current frame is returned. For example, _getframe(1) returns the caller’s frame. Raises ValueError if depth is invalid.

getprofile()

Returns the profile function set by the setprofile() function.

getrecursionlimit()

Returns the recursion limit for functions.

getrefcount(object)

Returns the reference count of object.

getsizeof(object [, default])

Returns the size of object in bytes. This calculation is made by calling the _ _sizeof_ _() special method of object. If undefined, a TypeError will be generated unless a default value has been specified with the default argument. Because objects are free to define _ _sizeof_ _() however they wish, there is no guarantee that the result of this function is a true measure of memory use. However, for built-in types such as lists or string, it is correct.

gettrace()

Returns the trace function set by the settrace() function.

getwindowsversion()

Returns a tuple (major,minor,build,platform,text) that describes the version of Windows being used. major is the major version number. For example, a value of 4 indicates Windows NT 4.0, and a value of 5 indicates Windows 2000 and Windows XP variants. minor is the minor version number. For example, 0 indicates Windows 2000, whereas 1 indicates Windows XP. build is the Windows build number. platform identifies the platform and is an integer with one of the following common values: 0 (Win32s on Windows 3.1), 1 (Windows 95,98, or Me), 2 (Windows NT, 2000, XP), or 3 (Windows CE). text is a string containing additional information such as "Service Pack 3".

setcheckinterval(n)

Sets the number of Python virtual machine instructions that must be executed by the interpreter before it checks for periodic events such as signals and thread context switches. The default value is 10.

setdefaultencoding(enc)

Sets the default encoding. enc is a string such as 'ascii' or 'utf-8'. This function is only defined inside the site module. It can be called from user-definable sitecustomize modules.

setdlopenflags(flags)

Sets the flags passed to the C dlopen() function, which is used to load extension modules on UNIX. This will affect the way in which symbols are resolved between libraries and other extension modules. flags is the bitwise OR of values that can be found in the dl module (see Chapter 19, “Network Programming”)—for example, sys.setdlopenflags(dl.RTLD_NOW | dl.RTLD_GLOBAL).

setprofile(pfunc)

Sets the system profile function that can be used to implement a source code profiler.

setrecursionlimit(n)

Changes the recursion limit for functions. The default value is 1000. Note that the operating system may impose a hard limit on the stack size, so setting this too high may cause the Python interpreter process to crash with a Segmentation Fault or Access Violation.

settrace(tfunc)

Sets the system trace function, which can be used to implement a debugger. Refer to Chapter 11 for information about the Python debugger.

traceback

The traceback module is used to gather and print stack traces of a program after an exception has occurred. The functions in this module operate on traceback objects such as the third item returned by the sys.exc_info() function. The main use of this module is in code that needs to report errors in a non-standard way—for example, if you were running Python programs deeply embedded within a network server and you wanted to redirect tracebacks to a log file.

print_tb(traceback [, limit [, file]])

Prints up to limit stack trace entries from traceback to the file file. If limit is omitted, all the entries are printed. If file is omitted, the output is sent to sys.stderr.

print_exception(type, value, traceback [, limit [, file]])

Prints exception information and a stack trace to file. type is the exception type, and value is the exception value. limit and file are the same as in print_tb().

print_exc([limit [, file]])

Same as print_exception() applied to the information returned by the sys.exc_info() function.

format_exc([limit [, file]])

Returns a string containing the same information printed by print_exc().

print_last([limit [, file]])

Same as print_exception (sys.last_type, sys.last_value, sys.last_traceback, limit, file).

print_stack([frame [, limit [, file]]])

Prints a stack trace from the point at which it’s invoked. frame specifies an optional stack frame from which to start. limit and file have the same meaning as for print_tb().

extract_tb(traceback [, limit])

Extracts the stack trace information used by print_tb(). The return value is a list of tuples of the form (filename,
line,
funcname,
text) containing the same information that normally appears in a stack trace. limit is the number of entries to return.

extract_stack([frame [, limit]])

Extracts the same stack trace information used by print_stack(), but obtained from the stack frame frame. If frame is omitted, the current stack frame of the caller is used and limit is the number of entries to return.

format_list(list)

Formats stack trace information for printing. list is a list of tuples as returned by extract_tb() or extract_stack().

format_exception_only(type, value)

Formats exception information for printing.

format_exception(type, value, traceback [, limit])

Formats an exception and stack trace for printing.

format_tb(traceback [, limit])

Same as format_list(extract_tb(traceback,
limit)).

format_stack([frame [, limit]])

Same as format_list(extract_stack(frame,
limit)).

tb_lineno(traceback)

Returns the line number set in a traceback object.

types

The types module defines names for the built-in types that correspond to functions, modules, generators, stack frames, and other program elements. The contents of this module are often used in conjunction with the built-in isinstance() function and other type-related operations.

[image: image]

Most of the preceding type objects serve as constructors that can be used to create an object of that type. The following descriptions provide the parameters used to create functions, modules, code objects, and methods. Chapter 3 contains detailed information about the attributes of the objects created and the arguments that need to be supplied to the functions described next.

FunctionType(code, globals [, name [, defarags [, closure]]])

Creates a new function object.

[image: image]

Creates a new code object.

MethodType(function, instance, class)

Creates a new bound instance method.

ModuleType(name [, doc])

Creates a new module object.

Notes

• The types module should not be used to refer the type of built-in objects such as integers, lists, or dictionaries. In Python 2, types contains other names such as IntType and DictType. However, these names are just aliases for the built-in type names of int and dict. In modern code, you should just use the built-in type names because the types module only contains the names listed previously in Python 3.

warnings

The warnings module provides functions to issue and filter warning messages. Unlike exceptions, warnings are intended to alert the user to potential problems, but without generating an exception or causing execution to stop. One of the primary uses of the warnings module is to inform users about deprecated language features that may not be supported in future versions of Python. For example:

[image: image]

Like exceptions, warnings are organized into a class hierarchy that describes general categories of warnings. The following lists the currently supported categories:

[image: image]

Each of these classes is available in the _ _builtin_ _ module as well as the exceptions module. In addition, they are also instances of Exception. This makes it possible to easily convert warnings into errors.

Warnings are issued using the warn() function. For example:

[image: image]

If desired, warnings can be filtered. The filtering process can be used to alter the output behavior of warning messages, to ignore warnings, or to turn warnings into exceptions. The filterwarnings() function is used to add a filter for a specific type of warning. For example:

[image: image]

Limited forms of filtering can also be specified using the –W option to the interpreter. For example:

% python –Wignore:the\ regex:DeprecationWarning

The following functions are defined in the warnings module:

warn(message[, category[, stacklevel]])

Issues a warning. message is a string containing the warning message, category is the warning class (such as DeprecationWarning), and stacklevel is an integer that specifies the stack frame from which the warning message should originate. By default, category is UserWarning and stacklevel is 1.

warn_explicit(message, category, filename, lineno[, module[, registry]])

This is a low-level version of the warn() function. message and category have the same meaning as for warn(). filename, lineno, and module explicitly specify the location of the warning. registry is an object representing all the currently active filters. If registry is omitted, the warning message is not suppressed.

showwarning(message, category, filename, lineno[, file])

Writes a warning to a file. If file is omitted, the warning is printed to sys.stderr.

formatwarning(message, category, filename, lineno)

Creates the formatted string that is printed when a warning is issued.

filterwarnings(action[, message[, category[, module[, lineno[, append]]]]])

Adds an entry to the list of warning filters. action is one of 'error', 'ignore', 'always', 'default', 'once', or 'module'. The following list provides an explanation of each:

[image: image]

message is a regular expression string that is used to match against the warning message. category is a warning class such as DeprecationError. module is a regular expression string that is matched against the module name. lineno is a specific line number or 0 to match against all lines. append specifies that the filter should be appended to the list of all filters (checked last). By default, new filters are added to the beginning of the filter list. If any argument is omitted, it defaults to a value that matches all warnings.

resetwarnings()

Resets all the warning filters. This discards all previous calls to filterwarnings() as well as options specified with –W.

Notes

• The list of currently active filters is found in the warnings.filters variable.

• When warnings are converted to exceptions, the warning category becomes the exception type. For instance, an error on DeprecationWarning will raise a DeprecationWarning exception.

• The –W option can be used to specify a warning filter on the command line. The general format of this option is

-Waction:message:category:module:lineno

where each part has the same meaning as for the filterwarning() function. However, in this case, the message and module fields specify substrings (instead of regular expressions) for the first part of the warning message and module name to be filtered, respectively.

weakref

The weakref module is used to provide support for weak references. Normally, a reference to an object causes its reference count to increase—effectively keeping the object alive until the reference goes away. A weak reference, on the other hand, provides a way of referring to an object without increasing its reference count. This can be useful in certain kinds of applications that must manage objects in unusual ways. For example, in an object-oriented program, where you might implement a relationship such as the Observer pattern, a weak reference can be used to avoid the creation of reference cycles. An example of this is shown in the “Object Memory Management” section of Chapter 7.

A weak reference is created using the weakref.ref() function as follows:

[image: image]

Once a weak reference is created, the original object can be obtained from the weak reference by simply calling it as a function with no arguments. If the underlying object still exists, it will be returned. Otherwise, None is returned to indicate that the original object no longer exists. For example:

[image: image]

The following functions are defined by the weakref module:

ref(object[, callback])

Creates a weak reference to object. callback is an optional function that will be called when object is about to be destroyed. If supplied, this function should accept a single argument, which is the corresponding weak reference object. More than one weak reference may refer to the same object. In this case, the callback functions will be called in order from the most recently applied reference to the oldest reference. object can be obtained from a weak reference by calling the returned weak reference object as a function with no arguments. If the original object no longer exists, None
will be returned. ref() actually defines a type, ReferenceType, that can be used for type-checking and subclasses.

proxy(object[, callback])

Creates a proxy using a weak reference to object. The returned proxy object is really a wrapper around the original object that provides access to its attributes and methods. As long as the original object exists, manipulation of the proxy object will transparently mimic the behavior of the underlying object. On the other hand, if the original object has been destroyed, operations on the proxy will raise a weakref.ReferenceError to indicate that the object no longer exists. callback is a callback function with the same meaning as for the ref() function. The type of a proxy object is either ProxyType or CallableProxyType, depending on whether or not the original object is callable.

getweakrefcount(object)

Returns the number of weak references and proxies that refer to object.

getweakrefs(object)

Returns a list of all weak reference and proxy objects that refer to object.

WeakKeyDictionary([dict])

Creates a dictionary in which the keys are referenced weakly. When there are no more strong references to a key, the corresponding entry in the dictionary is automatically removed. If supplied, the items in dict are initially added to the returned WeakKeyDictionary object. Because only certain types of objects can be weakly referenced, there are numerous restrictions on acceptable key values. In particular, built-in strings cannot be used as weak keys. However, instances of user-defined classes that define a _ _hash_ _() method can be used as keys. An instance of WeakKeyDictionary has two methods, iterkeyrefs() and keyrefs(), that return the weak key references.

WeakValueDictionary([dict])

Creates a dictionary in which the values are referenced weakly. When there are no more strong references to a value, corresponding entries in the dictionary will be discarded. If supplied, the entries in dict are added to the returned WeakValueDictionary. An instance of WeakValueDictionary has two methods, itervaluerefs() and valuerefs(), that return the weak value references.

ProxyTypes

This is a tuple (ProxyType, CallableProxyType) that can be used for testing if an object is one of the two kinds of proxy objects created by the proxy() function—for example, isinstance(object, ProxyTypes).

Example

One application of weak references is to create caches of recently computed results. For instance, if a function takes a long time to compute a result, it might make sense to cache these results and to reuse them as long as they are still in use someplace in the application. For example:

[image: image]

Notes

• Only class instances, functions, methods, sets, frozen sets, files, generators, type objects, and certain object types defined in library modules (for example, sockets, arrays, and regular expression patterns) support weak references. Built-in functions and most built-in types such as lists, dictionaries, strings, and numbers cannot be used.

• If iteration is ever used on a WeakKeyDictionary or WeakValueDictionary, great care should be taken to ensure that the dictionary does not change size because this may produce bizarre side effects such as items mysteriously disappearing from the dictionary for no apparent reason.

• If an exception occurs during the execution of a callback registered with ref() or proxy(), the exception is printed to standard error and ignored.

• Weak references are hashable as long as the original object is hashable. Moreover, the weak reference will maintain its hash value after the original object has been deleted, provided that the original hash value is computed while the object still exists.

• Weak references can be tested for equality but not for ordering. If the objects are still alive, references are equal if the underlying objects have the same value. Otherwise, references are equal if they are the same reference.

14. Mathematics

This chapter describes modules for performing various kinds of mathematical operations. In addition, the decimal module, which provides generalized support for decimal floating-point numbers, is described.

decimal

The Python float data type is represented using a double-precision binary floating-point encoding (usually as defined by the IEEE 754 standard). A subtle consequence of this encoding is that decimal values such as 0.1 can’t be represented exactly. Instead, the closest value is 0.10000000000000001. This inexactness carries over to calculations involving floating-point numbers and can sometimes lead to unexpected results (for example, 3*0.1 == 0.3 evaluates as False).

The decimal module provides an implementation of the IBM General Decimal Arithmetic Standard, which allows for the exact representation of decimals. It also gives precise control over mathematical precision, significant digits, and rounding behavior. These features can be useful if interacting with external systems that precisely define properties of decimal numbers. For example, if writing Python programs that must interact with business applications.

The decimal module defines two basic data types: a Decimal type that represents a decimal number and a Context type that represents various parameters concerning computation such as precision and round-off error-handling. Here are a few simple examples that illustrate the basics of how the module works:

[image: image]

Decimal Objects

Decimal numbers are represented by the following class:

Decimal([value [, context]])

value is the value of the number specified as either an integer, a string containing a decimal value such as '4.5', or a tuple (sign, digits, exponent). If a tuple is supplied, sign is 0 for positive, 1 for negative; digits is a tuple of digits specified as integers; and exponent is an integer exponent. The special strings 'Infinity', '-Infinity', 'NaN', and 'sNaN' may be used to specify positive and negative infinity as well as Not a Number (NaN). 'sNaN' is a variant of NaN that results in an exception if it is ever subsequently used in a calculation. An ordinary float object may not be used as the initial value because that value may not be exact (which defeats the purpose of using decimal in the first place). The context parameter is a Context object, which is described later. If supplied, context determines what happens if the initial value is not a valid number—raising an exception or returning a decimal with the value NaN.

The following examples show how to create various decimal numbers:

[image: image]

Decimal objects are immutable and have all the usual numeric properties of the built-in int and float types. They can also be used as dictionary keys, placed in sets, sorted, and so forth. For the most part, you manipulate Decimal objects using the standard Python math operators. However, the methods in the following list can be used to carry out several common mathematical operations. All operations take an optional context parameter that controls the behavior of precision, rounding, and other aspects of the calculation. If omitted, the current context is used.

[image: image]

Context Objects

Various properties of decimal numbers, such as rounding and precision, are controlled through the use of a Context object:

[image: image]

This creates a new decimal context. The parameters should be specified using keyword arguments with the names shown. prec is an integer that sets the number of digits of precision for arithmetic operations, rounding determines the rounding behavior, and traps is a list of signals that produce a Python exception when certain events occur during computation (such as division by zero). flags is a list of signals that indicate the initial state of the context (such as overflow). Normally, flags is not specified. Emin and Emax are integers representing the minimum and maximum range for exponents, respectively. capitals is a boolean flag that indicates whether to use 'E' or 'e' for exponents. The default is 1 ('E').

Normally, new Context objects aren’t created directly. Instead, the function getcontext() or localcontext() is used to return the currently active Context object. That object is then modified as needed. Examples of this appear later in this section. However, in order to better understand those examples, it is necessary to explain these context parameters in further detail.

Rounding behavior is determined by setting the rounding parameter to one of the following values:

[image: image]

The traps and flags parameters of Context() are lists of signals. A signal represents a type of arithmetic exception that may occur during computation. Unless listed in traps, signals are ignored. Otherwise, an exception is raised. The following signals are defined:

[image: image]

These signal names correspond to Python exceptions that can be used for error checking. Here’s an example:

[image: image]

Like exceptions, the signals are organized into a hierarchy:

[image: image]

The Overflow and Underflow signals appear more than once in the table because those signals also result in the parent signal (for example, an Underflow also signals Subnormal). The decimal.DivisionByZero signal also derives from the built-in DivisionByZero exception.

In many cases, arithmetic signals are silently ignored. For instance, a computation may produce a round-off error but generate no exception. In this case, the signal names can be used to check a set of sticky flags that indicate computation state. Here’s an example:

[image: image]

When flags get set, they stay set until they are cleared using the clear_flags() method. Thus, one could perform an entire sequence of calculations and only check for errors at the end.

The settings on an existing Context object c can be changed through the following attributes and methods:

c.capitals

Flag set to 1 or 0 that determines whether to use E or e as the exponent character.

c.Emax

Integer specifying maximum exponent.

c.Emin

Integer specifying minimum exponent.

c.prec

Integer specifying digits of precision.

c.flags

Dictionary containing current flag values corresponding to signals. For example, c.flags[Rounded] returns the current flag value for the Rounded signal.

c.rounding

Rounding rule in effect. An example is ROUND_HALF_EVEN.

c.traps

Dictionary containing True/False settings for the signals that result in Python exceptions. For example, c.traps[DivisionByZero] is usually True, whereas c.traps[Rounded] is False.

c.clear_flags()

Resets all sticky flags (clears c.flags).

c.copy()

Returns a copy of context c.

c.create_decimal(value)

Creates a new Decimal object using c as the context. This may be useful in generating numbers whose precision and rounding behavior override that of the default context.

Functions and Constants

The following functions and constants are defined by the decimal module.

getcontext()

Returns the current decimal context. Each thread has its own decimal context so this returns the context of the calling thread.

localcontext([c])

Creates a context manager that sets the current decimal context to a copy of c for statements defined inside the body of a with statement. If c is omitted, a copy of the current context is created. Here is an example of using this function that temporarily sets the precision to five decimal places for a series of statements:

[image: image]

setcontext(c)

Sets the decimal context of the calling thread to c.

BasicContext

A premade context with nine digits of precision. Rounding is ROUND_HALF_UP; Emin is -999999999; Emax is 999999999; and all traps are enabled except for Inexact, Rounded, and Subnormal.

DefaultContext

The default context used when creating new contexts (the values stored here are used as default values for the new context). Defines 28 digits of precision; ROUND_HALF_EVEN rounding; and traps for Overflow, InvalidOperation, and DivisionByZero.

ExtendedContext

A premade context with nine digits of precision. Rounding is ROUND_HALF_EVEN, Emin is -999999999, Emax is 999999999, and all traps are disabled. Never raises exceptions. Instead, results may be set to NaN or Infinity.

Inf

The same as Decimal("Infinity").

negInf

The same as Decimal("-Infinity").

NaN

The same as Decimal("NaN").

Examples

Here are some more examples showing basic usage of decimal numbers:

[image: image]

Here’s an example of changing parameters in the context:

[image: image]

Notes

• The Decimal and Context objects have a large number of methods related to low-level details concerning the representation and behavior of decimal operations. These have not been documented here because they are not essential for the basic use of this module. However, you should consult the online documentation at http://docs.python.org/library/decimal.html for more information.

• The decimal context is unique to each thread. Changes to the context only affect that thread and not others.

• A special number, Decimal("sNaN"), may be used as a signaled-NaN. This number is never generated by any of the built-in functions. However, if it appears in a computation, an error is always signaled. You can use this to indicate invalid computations that must result in an error and must not be silently ignored. For example, a function could return sNaN as a result.

• The value of 0 may be positive or negative (that is, Decimal(0) and Decimal ("-0")). The distinct zeros still compare as equals.

• This module is probably unsuitable for high-performance scientific computing due to the significant amount of overhead involved in calculations. Also, there is often little practical benefit in using decimal floating point over binary floating point in such applications.

• A full mathematical discussion of floating-point representation and error analysis is beyond the scope of this book. Readers should consult a book on numerical analysis for further details. The article “What Every Computer Scientist Should Know About Floating-Point Arithmetic” by David Goldberg, in Computing Surveys, Association for Computing Machinery, March 1991 is also a worthy read (this article is easy to find on the Internet if you simply search for the title).

• The IBM General Decimal Arithmetic Specification contains more information and can be easily located online through search engines.

fractions

The fractions module defines a class Fraction that represents a rational number. Instances can be created in three different ways using the class constructor:

Fraction([numerator [,denominator]])

Creates a new rational number. numerator and denominator have integral values and default to 0 and 1, respectively.

Fraction(fraction)

If fraction is an instance of numbers.Rational, creates a new rational number with the same value as fraction.

Fraction(s)

If s is a string containing a fraction such as "3/7" or "-4/7", a fraction with the same value is created. If s is a decimal number such as "1.25", a fraction with that value is created (e.g., Fraction(5,4)).

The following class methods can create Fraction instances from other types of objects:

Fraction.from_float(f)

Creates a fraction representing the exact value of the floating-point number f.

Fraction.from_decimal(d)

Creates a fraction representing the exact value of the Decimal number d.

Here are some examples of using these functions:

[image: image]

An instance f of Fraction supports all of the usual mathematical operations. The numerator and denominator are stored in the f.numerator and f.denominator attributes, respectively. In addition, the following method is defined:

f.limit_denominator([max_denominator])

Returns the fraction that has the closest value to f.max_denominator specifies the largest denominator to use and defaults to 1000000.

Here are some examples of using Fraction instances (using the values created in the earlier example):

[image: image]

The fractions module also defines a single function:

gcd(a, b)

Computes the greatest common divisor of integers a and b. The result has the same sign as b if b is nonzero; otherwise, it’s the same sign as a.

math

The math module defines the following standard mathematical functions. These functions operate on integers and floats but don’t work with complex numbers (a separate module cmath can be used to perform similar operations on complex numbers). The return value of all functions is a float. All trigonometric functions assume the use of radians.

[image: image]

The following constants are defined:

[image: image]

Notes

• The floating-point values +inf, -inf, and nan can be created by passing strings into the float() function—for example, float("inf"), float("-inf"), or float("nan").

• The math.fsum() function is more accurate than the built-in sum() function because it uses a different algorithm that tries to avoid floating-point errors introduced by cancellation effects. For example, consider the sequence s = [1, 1e100, -1e100]. If you use sum(s), you will get a result of 0.0 (because the value of 1 is lost when added to the large value 1e100). However, using math.sum(s) produces the correct result of 1.0. The algorithm used by math.sum() is described in “Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates” by Jonathan Richard Shewchuk, Carnegie Mellon University School of Computer Science Technical Report CMU-CS-96-140, 1996.

numbers

The numbers module defines a series of abstract base classes that serve to organize various kinds of numbers. The numeric classes are organized into a hierarchy in which each level progressively adds more capabilities.

Number

A class that serves as the top of the numeric hierarchy.

Complex

A class that represents the complex numbers. Numbers of this type have real and imag attributes. This class inherits from Number.

Real

A class that represents the real numbers. Inherits from Complex.

Rational

A class that represents fractions. Numbers of this type have numerator and denominator attributes. Inherits from Real.

Integral

A class that represents the integers. Inherits from Rational.

The classes in this module are not meant to be instantiated. Instead, they can be used to perform various kinds of type checks on values. For example:

[image: image]

If one of these type checks returns True, it means that x is compatible with all of the usual mathematical operations associated with that type and that a conversion to one of the built-in types such as complex(), float(), or int() will work.

The abstract base classes can also be used as a base class for user-defined classes that are meant to emulate numbers. Doing this is not only just a good idea for type checking, but it adds extra safety checks that make sure you implement all of the required methods. For example:

[image: image]

Notes

• Refer to Chapter 7 (“Classes and Object-Oriented Programming”) for more information on abstract base classes.

• PEP 3141 (http://www.python.org/dev/peps/pep-3141) has more information about the type hierarchy and intended use of this module.

random

The random module provides a variety of functions for generating pseudo-random numbers as well as functions for randomly generating values according to various distributions on the real numbers. Most of the functions in this module depend on the function random(), which generates uniformly distributed numbers in the range [0.0, 1.0) using the Mersenne Twister generator.

Seeding and Initialization

The following functions are used to control the state of the underlying random number generator:

seed([x])

Initializes the random number generator. If x is omitted or None, the system time is used to seed the generator. Otherwise, if x is an integer or long integer, its value is used. If x is not an integer, it must be a hashable object and the value of hash(x) is used as a seed.

getstate()

Returns an object representing the current state of the generator. This object can later be passed to setstate() to restore the state.

setstate(state)

Restores the state of the random number generator from an object returned by getstate().

jumpahead(n)

Quickly changes the state of the generator to what it would be if random() were called n times in a row. n must be a nonnegative integer.

Random Integers

The following functions are used to manipulate random integers.

getrandbits(k)

Creates a long integer containing k random bits.

randint(a,b)

Returns a random integer, x, in the range a <= x <= b.

randrange(start,stop [,step])

Returns a random integer in range(start,stop,step). Does not include the endpoint.

Random Sequences

The following functions are used to randomize sequence data.

choice(seq)

Returns a random element from the nonempty sequence seq.

sample(s, len)

Returns a sequence length, len, containing elements chosen randomly from the sequence s. The elements in the resulting sequence are placed in the order in which they were selected.

shuffle(x [,random])

Randomly shuffles the items in the list x in place. random is an optional argument that specifies a random generation function. If supplied, it must be a function that takes no arguments and returns a floating-point number in the range [0.0, 1.0).

Real-Valued Random Distributions

The following functions generate random numbers on real numbers. Distribution and parameter names correspond to the standard names used in probability and statistics. You will need to consult an appropriate text to find out more details.

random()

Returns a random number in the range [0.0, 1.0).

uniform(a,b)

Returns a uniformly distributed random number in the range [a, b).

betavariate(alpha, beta)

Returns a value between 0 and 1 from the Beta distribution. alpha
> -1 and beta
> -1.

cunifvariate(mean, arc)

Circular uniform distribution. mean is the mean angle, and arc is the range of the distribution, centered around the mean angle. Both of these values must be specified in radians in the range between 0 and pi. Returned values are in the range (mean
-
arc/2,
mean
+
arc/2).

expovariate(lambd)

Exponential distribution. lambd is 1.0 divided by the desired mean. Returns values in the range [0, +Infinity).

gammavariate(alpha, beta)

Gamma distribution. alpha
> -1,
beta
> 0.

gauss(mu, sigma)

Gaussian distribution with mean mu and standard deviation sigma. Slightly faster than normalvariate().

lognormvariate(mu, sigma)

Log normal distribution. Taking the natural logarithm of this distribution results in a normal distribution with mean mu and standard deviation sigma.

normalvariate(mu, sigma)

Normal distribution with mean mu and standard deviation sigma.

paretovariate(alpha)

Pareto distribution with shape parameter alpha.

triangular([low [, high [, mode]]])

Triangular distribution. A random number n in the range low
<=
n
<
high with mode mode. By default, low is 0, high is 1.0, and mode is set to the midpoint of low and high.

vonmisesvariate(mu, kappa)

von Mises distribution, where mu is the mean angle in radians between 0 and 2 * pi and kappa is a nonnegative concentration factor. If kappa is zero, the distribution reduces to a uniform random angle over the range 0 to 2 * pi.

weibullvariate(alpha, beta)

Weibull distribution with scale parameter alpha and shape parameter beta.

Notes

• The functions in this module are not thread-safe. If you are generating random numbers in different threads, you should use locking to prevent concurrent access.

• The period of the random number generator (before numbers start repeating) is 2**19937–1.

• The random numbers generated by this module are deterministic and should not be used for cryptography.

• New types of random number generators can be created by subclassing random.Random and implementing the random(), seed(), getstate(), getstate(), and jumpahead() methods. All the other functions in this module are actually internally implemented as methods of Random. Thus, they could be accessed as methods of an instance of the new random number generator.

• The module provides two alternative random number generators classes—WichmannHill and SystemRandom—that are used by instantiating the appropriate class and calling the preceding functions as methods. The WichmannHill class implements the Wichmann-Hill generator that was used in earlier Python releases. The SystemRandom class generates random numbers using the system random number generator os.urandom().

15. Data Structures, Algorithms, and Code Simplification

The modules in this chapter are used to address common programming problems related to data structures; algorithms; and the simplification of code involving iteration, function programming, context managers, and classes. These modules should be viewed as a extension of Python’s built-in types and functions. In many cases, the underlying implementation is highly efficient and may be better suited to certain kinds of problems than what is available with the built-ins.

abc

The abc module defines a metaclass and a pair of decorators for defining new abstract base classes.

ABCMeta

A metaclass that represents an abstract base class. To define an abstract class, you define a class that uses ABCMeta as a metaclass. For example:

[image: image]

A class created in this manner differs from an ordinary class in a few critical ways:

• First, if the abstract class defines methods or properties that are decorated with the abstractmethod and abstractproperty decorators described later, then instances of derived classes can’t be created unless those classes provide a non-abstract implementation of those methods and properties.

• Second, an abstract class has a class method register(subclass) that can be used to register additional types as a logical subclass. For any type subclass registered with this function, the operation isinstance(x,
AbstractClass) will return True if x is an instance of subclass.

• A final feature of abstract classes is that they can optionally define a special class method _ _subclasshook_ _(cls,
subclass). This method should return True if the type subclass is considered to be a subclass, return False if subclass is not a subclass, or raise a NotImplemented exception if nothing is known.

abstractmethod(method)

A decorator that declares method to be abstract. When used in an abstract base class, derived classes defined directly via inheritance can only be instantiated if they define a nonabstract implementation of the method. This decorator has no effect on subclasses registered using the register() method of an abstract base.

abstractproperty(fget [, fset [, fdel [, doc]]])

Creates an abstract property. The parameters are the same as the normal property() function. When used in an abstract base, derived classes defined directly via inheritance can only be instantiated if they define a nonabstract implementation of the property.

The following code provides an example of defining a simple abstract class:

[image: image]

Here is an example of a class that derives from Stackable:

[image: image]

Here is the error message that you get if you try to create a Stack:

[image: image]

This error can be fixed by adding a size() property to Stack. You can either do this by modifying the definition of Stack itself or inheriting from it and adding the required method or property:

[image: image]

Here is an example of using the complete stack object:

[image: image]

See Also:

Chapter 7, “Classes and Object-Oriented Programming,” numbers (p. 252), collections (p. 262).

array

The array module defines a new object type, array, that works almost exactly like a list, except that its contents are constrained to a single type. The type of an array is determined at the time of creation, using one of the type codes shown in Table 15.1.

Table 15.1 Type Codes

[image: image]

The representation of integers and long integers is determined by the machine architecture (they may be 32 or 64 bits). When values stored as 'L' or 'I' are returned, they’re returned as long integers in Python 2.

The module defines the following type:

array(typecode [, initializer])

Creates an array of type typecode. initializer is a string or list of values used to initialize values in the array. The following attributes and methods apply to an array object, a:

[image: image]

When items are inserted into an array, a TypeError exception is generated if the type of the item doesn’t match the type used to create the array.

The array module is useful if you need to have space-efficient storage for lists of data and you know that all items in the list are going to be the same type. For example, storing 10 million integers in a list requires about 160MB of memory whereas an array of 10 million integers requires only 40MB. Despite this space savings, none of the basic operations on an array tend to be faster than their list counterparts—in fact, they may be slower.

In performing calculations with arrays, you will want to be careful with operations that create lists. For example, using a list comprehension on an array will convert the entire array into a list, defeating any space-saving benefit. A better way to handle this is to create new arrays using generator expressions. For example:

[image: image]

Because the point of using an array is to save space, it may be more desirable to perform “in-place” operations. An efficient way to do this is with code that uses enumerate(), like this:

[image: image]

For large arrays, this in-place modification runs about 15 percent faster than the code that creates a new array with a generator expression.

Notes

• The arrays created by this module are not suitable for numeric work such as matrix or vector math. For example, the addition operator doesn’t add the corresponding elements of the arrays; instead, it appends one array to the other. To create storage and calculation efficient arrays, use the numpy extension available at http://numpy.sourceforge.net/. Note that the numpy API is completely different.

• The += operator can be used to append the contents of another array. The *= operator can be used to repeat an array.

See Also:

struct (p. 290)

bisect

The bisect module provides support for keeping lists in sorted order. It uses a bisection algorithm to do most of its work.

bisect(list, item [, low [, high]])

Returns the index of the insertion point for item to be placed in list in order to maintain list in sorted order. low and high are indices specifying a subset of the list to examine. If items is already in the list, the insertion point will always be to the right of existing entries in the list.

bisect_left(list, item [, low [, high]])

Returns the index of the insertion point for item to be placed in list in order to maintain list in sorted order. low and high are indices specifying a subset of the list to examine. If items is already in the list, the insertion point will always be to the left of existing entries in the list.

bisect_right(list, item [, low [, high]])

The same as bisect().

insort(list, item [, low [, high]])

Inserts item into list in sorted order. If item is already in the list, the new entry is inserted to the right of any existing entries.

insort_left(list, item [, low [, high]])

Inserts item into list in sorted order. If item is already in the list, the new entry is inserted to the left of any existing entries.

insort_right(list, item [, low [, high]])

The same as insort().

collections

The collections module contains high-performance implementations of a few useful container types, abstract base classes for various kinds of containers, and a utility function for creating name-tuple objects. Each is described in the sections that follow.

deque and defaultdict

Two new containers are defined in the collections module: deque and defaultdict.

deque([iterable [, maxlen]])

Type representing a double-ended queue (deque, pronounced “deck”) object. iterable is an iterable object used to populate the deque. A deque allows items to be inserted or removed from either end of the queue. The implementation has been optimized so that the performance of these operations is approximately the same as (O(1)). This is slightly different from a list where operations at the front of the list may require shifting of all the elements that follow. If the optional maxlen argument is supplied, the resulting deque object becomes a circular buffer of that size. That is, if new items are added, but there is no more space, items are deleted from the opposite end to make room.

An instance, d, of deque has the following methods:

d.append(x)

Adds x to the right side of d.

d.appendleft(x)

Adds x to the left side of d.

d.clear()

Removes all items from d.

d.extend(iterable)

Extends d by adding all the items in iterable on the right.

d.extendleft(iterable)

Extends d by adding all the items in iterable on the left. Due to the sequence of left appends that occur, items in iterable will appear in reverse order in d.

d.pop()

Returns and removes an item from the right side of d. Raises IndexError if d is empty.

d.popleft()

Returns and removes an item from the left side of d. Raises IndexError if d is empty.

d.remove(item)

Removes the first occurrence of item. Raises ValueError if no match is found.

d.rotate(n)

Rotates all the items n steps to the right. If n is negative, items are rotated to the left.

Deques are often overlooked by many Python programmers. However, this type offers many advantages. First, the implementation is highly efficient—even to a level of using internal data structures that provide good processor cache behavior. Appending items at the end is only slightly slower than the built-in list type, whereas inserting items at the front is significantly faster. Operations that add new items to a deque are also thread-safe, making this type appropriate for implementing queues. deques can also be serialized using the pickle module.

defaultdict([default_factory], ...)

A type that is exactly the same as a dictionary except for the handling of missing keys. When a lookup occurs on a key that does not yet exist, the function supplied as default_factory is called to provide a default value which is then saved as the value of the associated key. The remaining arguments to defaultdict are exactly the same as the built-in dict() function. An instance d of defaultdictionary has the same operations as a built-in dictionary. The attribute d.default_factory contains the function passed as the first argument and can be modified as necessary.

A defaultdict object is useful if you are trying to use a dictionary as a container for tracking data. For example, suppose you wanted to keep track of the position of each word in a string s. Here is how you could use a defaultdict to do this easily:

[image: image]

In this example, the lookup wordlocations[w] will “fail” the first time a word is encountered. However, instead of raising a KeyError, the function list supplied as default_factory is called to create a new value. Built-in dictionaries have a method setdefault() that can be used to achieve a similar result, but it often makes code confusing to read and run slower. For example, the statement that appends a new item shown previously could be replaced by wordlocations.setdefault(w,[]).append(n). This is not nearly as clear and in a simple timing test, it runs nearly twice as slow as using a defaultdict object.

Named Tuples

Tuples are frequently used to represent simple data structures. For example, a network address might be represented as a tuple addr = (hostname,
port). A common complaint with tuples is that the individual items have to be accessed by numerical index—for example, addr[0] or addr[1]. This leads to code that is confusing to read and hard to maintain unless you can remember what all of the index values mean (and the problem gets worse the larger the tuple gets).

The collections module contains a function namedtuple() that is used to create subclasses of tuple in which attribute names can be used to access tuple elements.

namedtuple(typename, fieldnames [, verbose])

Creates a subclass of tuple with name typename. fieldnames is a list of attribute names specified as strings. The names in this list must be valid Python identifiers, must not start with an underscore, and are specified in the same order as the items appearing in the tuple—for example, ['hostname','port']. Alternatively, fieldnames can be specified as a string such as 'hostname port' or 'hostname, port'. The value returned by this function is a class whose name has been set to the value supplied in typename. You use this class to create instances of named tuples. The verbose flag, if set to True, prints the resulting class definition to standard output.

Here is an example of using this function:

[image: image]

In this example, the named tuple NetworkAddress is, in every way, indistinguished from a normal tuple except for the added support of being able to use attribute lookup such as a.hostname or a.port to access tuple components. The underlying implementation is efficient—the class that is created does not use an instance dictionary or add any additional memory overhead in a built-in tuple. All of the normal tuple operations still work.

A named tuple can be useful if defining objects that really only serve as a data structures. For example, instead of a defining a class, like this:

[image: image]

you could define a named tuple instead:

[image: image]

Both versions are going to work in a nearly identical manner. For example, in either case, you would access fields by writing s.name, s.shares, and so on. However, the benefit of the named tuple is that it is more memory-efficient and supports various tuple operations such as unpacking (for example, if you had a list of named tuples, you could unpack values in a for-loop with a statement such as for name, shares, price in stockList). The downside to a named tuple is that attribute access is not as efficient as with a class. For example, accessing s.shares is more than twice as slow if s is an instance of a named tuple instead of an ordinary class.

Named tuples are frequently used in other parts of the Python standard library. Here, their use is partly historical—in many library modules, tuples were originally used as the return value of various functions that would return information about files, stack frames, or other low-level details. Code that used these tuples wasn’t always so elegant. Thus, the switch to a named tuple was made to clean up their usage without breaking backwards compatibility. Another subtle problem with tuples is that once you start using a tuple, the expected number of fields is locked forever (e.g., if you suddenly add a new field, old code will break). Variants of named tuples have been used in the library to add new fields to the data returned by certain functions. For example, an object might support a legacy tuple interface, but then provide additional values that are only available as named attributes.

Abstract Base Classes

The collections module defines a series of abstract base classes. The purpose of these classes is to describe programming interfaces on various kinds of containers such as lists, sets, and dictionaries. There are two primary uses of these classes. First, they can be used as a base class for user-defined objects that want to emulate the functionality of built-in container types. Second, they can be used for type checking. For example, if you wanted to check that s worked like a sequence, you could use isinstance(s, collections.Sequence).

Container

Base class for all containers. Defines a single abstract method _ _contains_ _(), which implements the in operator.

Hashable

Base class for objects that can be used as a hash table key. Defines a single abstract method _ _hash_ _().

Iterable

Base class for objects that support the iteration protocol. Defines a single abstract method _ _iter_ _().

Iterator

Base class for iterator objects. Defines the abstract method next() but also inherits from Iterable and provides a default implementation of _ _iter_ _() that simply does nothing.

Sized

Base class for containers whose size can be determined. Defines the abstract method _ _len_ _().

Callable

Base class for objects that support function call. Defines the abstract method _ _call_ _().

Sequence

Base class for objects that look like sequences. Inherits from Container, Iterable, and Sized and defines the abstract methods _ _getitem_ _() and _ _len_ _(). Also provides a default implementation of _ _contains_ _(), _ _iter_ _(), _ _reversed_ _(), index(), and count() that are implemented using nothing but the _ _getitem_ _() and _ _len_ _() methods.

MutableSequence

Base class for mutable sequences. Inherits from Sequence and adds the abstract methods _ _setitem_ _() and _ _delitem_ _(). Also provides a default implementation of append(), reverse(), extend(), pop(), remove(), and _ _iadd_ _().

Set

Base class for objects that work like sets. Inherits from Container, Iterable, and Sized and defines the abstract methods _ _len_ _(), _ _iter_ _(), and _ _contains_ _(). Also provides a default implementation of the set operators _ _le_ _(), _ _lt_ _(), _ _eq_ _(), _ _ne_ _(), _ _gt_ _(), _ _ge_ _(), _ _and_ _(), _ _or_ _(), _ _xor_ _(), _ _sub_ _(), and isdisjoint().

MutableSet

Base class for mutable sets. Inherits from Set and adds the abstract methods add() and discard(). Also provides a default implementation of clear(), pop(), remove(), _ _ior_ _(), _ _iand_ _(), _ _ixor_ _(), and _ _isub_ _().

Mapping

Base class for objects that support mapping (dictionary) lookup. Inherits from Sized, Iterable, and Container and defines the abstract methods _ _getitem_ _(), _ _len_ _(), and _ _iter_ _(). A default implementation of _ _contains_ _(), keys(), items(), values(), get(), _ _eq_ _(), and _ _ne_ _() is also provided.

MutableMapping

Base class for mutable mapping objects. Inherits from Mapping and adds the abstract methods _ _setitem_ _() and _ _delitem_ _(). An implementation of pop(), popitem(), clear(), update(), and setdefault() is also added.

MappingView

Base class for mapping views. A mapping view is an object that is used for accessing the internals of a mapping object as a set. For example, a key view is a set-like object that shows the keys in a mapping. See Appendix A, “Python 3” for more details.

KeysView

Base class for a key view of a mapping. Inherits from MappingView and Set.

ItemsView

Base class for item view of a mapping. Inherits from MappingView and Set.

ValuesView

Base class for a (key,
item) view of a mapping. Inherits from MappingView and Set.

Python’s built-in types are already registered with all of these base classes as appropriate. Also, by using these base classes, it is possible to write programs that are more precise in their type checking. Here are some examples:

[image: image]

See Also:

Chapter 7, “Classes and Object-Oriented Programming.”

contextlib

The contextlib module provides a decorator and utility functions for creating context managers used in conjunction with the with statement.

contextmanager(func)

A decorator that creates a context manager from a generator function func. The way in which you use this decorator is as follows:

[image: image]

When the statement with foo(args) as
value appears, the generator function is executed with the supplied arguments until the first yield statement is reached. The value returned by yield is placed into the variable value. At this point, the body of the with statement executes. Upon completion, the generator function resumes. If any kind of exception is raised inside the with-body, that exception is raised inside the generator function where it can be handled as appropriate. If the error is to be propagated, the generator should use raise to re-raise the exception. An example of using this decorator can be found in the “Context Managers” section of Chapter 5.

nested(mgr1, mgr2, ..., mgrN)

A function that invokes more than one context manager mgr1, mgr2, and so on as a single operation. Returns a tuple containing the different return values of the with statements. The statement with nested(m1,m2) as (x,y): statements is the same as saying with m1 as x: with m2 as y:
statements. Be aware that if an inner context manager traps and suppresses an exception, no exception information is passed along to the outer managers.

closing(object)

Creates a context manager that automatically executes object.close() when execution leaves the body of the with statement. The value returned by the with statement is the same as object.

functools

The functools module contains functions and decorators that are useful for creating higher-order functions, functional programming, and decorators.

partial(function [, *args [, **kwargs]])

Creates a function-like object, partial, that when called, calls function with positional arguments args, keyword arguments kwargs, and any additional positional or keyword arguments that are supplied. Additional positional arguments are added to the end of args, and additional keyword arguments are merged into kwargs, overwriting any previously defined values (if any). A typical use of partial() is when making a large number of function calls where many of the arguments are held fixed. For example:

[image: image]

An instance p of the object created by partial has the following attributes:

[image: image]

Use caution when using a partial object as a stand-in for a regular function. The result is not exactly the same as a normal function. For instance, if you use partial() inside a class definition, it behaves like a static method, not an instance method.

reduce(function, items [, initial])

Applies a function, function, cumulatively to the items in the iterable items and returns a single value. function must take two arguments and is first applied to the first two items of items. This result and subsequent elements of items are then combined one at a time in a similar manner, until all elements of items have been consumed. initial is an optional starting value used in the first computation and when items is empty. This function is the same as the reduce() function that was a built-in in Python 2. For future compatibility, use this version instead.

update_wrapper(wrapper, wrapped [, assigned [, updated]])

This is a utility function that is useful when writing decorators. Copies attributes from a function wrapped to a wrapper function wrapper in order to make the wrapped function look like the original function. assigned is a tuple of attribute names to copy and is set to ('_ _name_ _','_ _module_ _','_ _doc_ _') by default. updated is a tuple containing the names of function attributes that are dictionaries and which you want values merged in the wrapper. By default, it is a tuple ('_ _dict_ _',).

wraps(function [, assigned [, updated]])

A decorator carries out the same task as update_wrapper() on the function to which it is applied. assigned and updated have the same meaning. A typical use of this decorator is when writing other decorators. For example:

[image: image]

See Also:

Chapter 6, “Functions and Functional Programming.”

heapq

The heapq module implements a priority queue using a heap. Heaps are simply lists of ordered items in which the heap condition has been imposed. Specifically, heap[n]
<=
heap[2*n+1] and heap[n] <= heap[2*n+2] for all n, starting with n
= 0. heap[0] always contains the smallest item.

heapify(x)

Converts a list, x, into a heap, in place.

heappop(heap)

Returns and removes the smallest item from heap, preserving the heap condition. Raises IndexError if heap is empty.

heappush(heap, item)

Adds item to the heap, preserving the heap condition.

heappushpop(heap, item)

Adds item to the heap and removes the smallest item from heap in a single operation. This is more efficient than calling heappush() and heappop() separately.

heapreplace(heap, item)

Returns and removes the smallest item from the heap. At the same time, a new item is added. The heap condition is preserved in the process. This function is more efficient than calling heappop() and heappush() in sequence. In addition, the returned value is obtained prior to adding the new item. Therefore, the return value could be larger than item. Raises IndexError if heap is empty.

merge(s1, s2, ...)

Creates an iterator that merges the sorted iterables s1, s2, and so on into a single sorted sequence. This function does not consume the inputs but returns an iterator that incrementally processes the data.

nlargest(n, iterable [, key])

Creates a list consisting of the n largest items in iterable. The largest item appears first in the returned list. key is an optional function that takes a single input parameter and computes the comparison key for each item in iterable.

nsmallest(n, iterable [, key])

Creates a list consisting of the n smallest items in iterable. The smallest item appears first in the returned list. key is an optional key function.

Note

The theory and implementation of heap queues can be found in most books on algorithms.

itertools

The itertools module contains functions for creating efficient iterators, useful for looping over data in various ways. All the functions in this module return iterators that can be used with the for statement and other functions involving iterators such as generators and generator expressions.

chain(iter1, iter2, ..., iterN)

Given a group of iterators (iter1, ... , iterN), this function creates a new iterator that chains all the iterators together. The returned iterator produces items from iter1 until it is exhausted. Then items from iter2 are produced. This continues until all the items in iterN are exhausted.

chain.from_iterable(iterables)

An alternative constructor for a chain where the iterables is an iterable that produces a sequence of iterable objects. The result of this operation is the same as what would be produced by the following fragment of generator code:

[image: image]

combinations(iterable, r)

Creates an iterator that returns all r-length subsequences of items taken from iterable. The items in the returned subsequences are ordered in the same way in which they were ordered in the input iterable. For example, if iterable is the list [1,2,3,4], the sequence produced by combinations([1,2,3,4], 2) is [1,2], [1,3], [1,4], [2,3], [3,4].

count([n])

Creates an iterator that produces consecutive integers starting with n. If n is omitted, counting starts at 0. (Note that this iterator does not support long integers. If sys.maxint is exceeded, the counter overflows and continues to count starting with -sys.maxint - 1.)

cycle(iterable)

Creates an iterator that cycles over the elements in iterable over and over again. Internally, a copy of the elements in iterable is made. This copy is used to return the repeated items in the cycle.

dropwhile(predicate, iterable)

Creates an iterator that discards items from iterable as long as the function predicate(item) is True. Once predicate returns False, that item and all subsequent items in iterable are produced.

groupby(iterable [, key])

Creates an iterator that groups consecutive items produced by iterable. The grouping process works by looking for duplicate items. For instance, if iterable produces the same item on several consecutive iterations, that defines a group. If this is applied to a sorted list, the groups would define all the unique items in the list. key, if supplied, is a function that is applied to each item. If present, the return value of this function is used to compare successive items instead of the items themselves. The iterator returned by this function produces tuples (key,
group), where key is the key value for the group and group is an iterator that yields all the items that made up the group.

ifilter(predicate, iterable)

Creates an iterator that only produces items from iterable for which predicate(item) is True. If predicate is None, all the items in iterable that evaluate as True are returned.

ifilterfalse(predicate, iterable)

Creates an iterator that only produces items from iterable for which predicate(item) is False. If predicate is None, all the items in iterable that evaluate as False are returned.

imap(function, iter1, iter2, ..., iterN)

Creates an iterator that produces items function(i1,i2, .. iN), where i1,
i2, ...,
iN are items taken from the iterators iter1,
iter2, ...,
iterN, respectively. If function is None, the tuples of the form (i1, i2, ..., iN) are returned. Iteration stops whenever one of the supplied iterators no longer produces any values.

islice(iterable, [start,] stop [, step])

Creates an iterator that produces items in a manner similar to what would be returned by a slice, iterable[start:stop:step]. The first start items are skipped and iteration stops at the position specified in stop. step specifies a stride that’s used to skip items. Unlike slices, negative values may not be used for any of start, stop, or step. If start is omitted, iteration starts at 0. If step is omitted, a step of 1 is used.

izip(iter1, iter2, ... iterN)

Creates an iterator that produces tuples (i1, i2, ..., iN), where i1, i2, ..., iN are taken from the iterators iter1, iter2, ..., iterN, respectively. Iteration stops whenever one of the supplied iterators no longer produces any values. This function produces the same values as the built-in zip() function.

izip_longest(iter1, iter2, ..., iterN [,fillvalue=None])

The same as izip() except that iteration continues until all of the input iterables iter1, iter2, and so on are exhausted. None is used to fill in values for the iterables that are already consumed unless a different value is specified with the fillvalue keyword argument.

permutations(iterable [, r])

Creates an iterator that returns all r-length permutations of items from iterable. If r is omitted, then permutations have the same length as the number of items in iterable.

product(iter1, iter2, ... iterN, [repeat=1])

Creates an iterator that produces tuples representing the Cartesian product of items in item1, item2, and so on. repeat is a keyword argument that specifies the number of times to repeat the produced sequence.

repeat(object [, times])

Creates an iterator that repeatedly produces object. times, if supplied, specifies a repeat count. Otherwise, the object is returned indefinitely.

starmap(func [, iterable])

Creates an iterator that produces the values func(*item), where item is taken from iterable. This only works if iterable produces items suitable for calling a function in this manner.

takewhile(predicate [, iterable])

Creates an iterator that produces items from iterable as long as predicate(item) is True. Iteration stops immediately once predicate evaluates as False.

tee(iterable [, n])

Creates n independent iterators from iterable. The created iterators are returned as an n-tuple. The default value of n is 2. This function works with any iterable object. However, in order to clone the original iterator, the items produced are cached and used in all the newly created iterators. Great care should be taken not to use the original iterator iterable after tee() has been called. Otherwise, the caching mechanism may not work correctly.

Examples

The following examples illustrate how some of the functions in the itertools module operate:

[image: image]

operator

The operator module provides functions that access the built-in operators and special methods of the interpreter described in Chapter 3, “Types and Objects.” For example, add(3, 4) is the same as 3 + 4. For operations that also have an in-place version, you can use a function such as iadd(x,y) which is the same as x += y. The following list shows functions defined in the operator module and how they are mapped onto various operators:

[image: image]

At first glance, it might not be obvious why anyone would want to use these functions because the operations they perform can easily be accomplished by simply typing the normal syntax. Where these functions are useful is when working with code uses callback functions and where you might otherwise be defining an anonymous function with lambda. For example, consider the following timing benchmark that uses the functools.reduce() function:

[image: image]

In the example, notice how using operator.add as the callback runs more than twice as fast as the version that uses lambda x,y: x+y.

The operator module also defines the following functions that create wrappers around attribute access, item lookup, and method calls.

attrgetter(name [, name2 [, ... [, nameN]]])

Creates a callable object, f, where a call to f(obj) returns obj.name. If more than one argument is given, a tuple of results is returned. For example, attrgetter('name','shares') returns (obj.name, obj.shares) when called. name can also include additional dot lookups. For example, if name is "address.hostname", then f(obj) returns obj.address.hostname.

itemgetter(item [, item2 [, ... [, itemN]]])

Creates a callable object, f, where a call to f(obj) returns obj[item]. If more than one item is given as arguments, a call to f(obj) returns a tuple containing (obj[item],
obj[item2], ...,
obj[itemN]).

methodcaller(name [, *args [, **kwargs]])

Creates a callable object, f, where a call to f(obj) returns obj.name(*args, **kwargs).

These functions are also useful for optimizing the performance of operations involving callback function, especially those involving common data processing operations such as sorting. For example, if you wanted to sort a list of tuples rows on column 2, you could either use sorted(rows, key=lambda r: r[2]) or use sorted(rows, key=itemgetter(2)). The second version runs much faster because it avoids the overhead associated with lambda.

16. String and Text Handling

This chapter describes the most commonly used Python modules related to basic string and text processing. The focus of this chapter is on the most common string operations such as processing text, regular expression pattern matching, and text formatting.

codecs

The codecs module is used to handle different character encodings used with Unicode text I/O. The module is used both to define new character encodings and to process character data using a wide range of existing encodings such as UTF-8, UTF-16, etc. It is far more common for programmers to simply use one of the existing encodings, so that is what is discussed here. If you want to create new encodings, consult the online documentation for further details.

Low-Level codecs Interface

Each character encoding is assigned a common name such as 'utf-8' or 'big5'. The following function is used to perform a lookup.

lookup(encoding)

Looks up a codec in the codec registry. encoding is a string such as 'utf-8'. If nothing is known about the requested encoding, LookupError is raised. Otherwise, an instance c of CodecInfo is returned.

A CodecInfo instance c has the following methods:

c.encode(s [, errors])

A stateless encoding function that encodes the Unicode string s and returns a tuple (bytes, length_consumed). bytes is an 8-bit string or byte-array containing the encoded data. length_consumed is the number of characters in s that were encoded. errors is the error handling policy and is set to 'strict' by default.

c.decode(bytes [, errors])

A stateless encoding function that decodes a byte string bytes and returns a tuple (s, length_consumed). s is a Unicode string, and length_consumed is the number of bytes in bytes that were consumed during decoding. errors is the error-handling policy and is set to 'strict’ by default.

c.streamreader(bytestream [, errors])

Returns a StreamReader instance that is used to read encoded data. bytestream is a file-like object that has been opened in binary mode. errors is the error-handling policy and is 'strict' by default. An instance r of StreamReader supports the following low-level I/O operations:

[image: image]

c.streamwriter(bytestream [, errors])

Returns a StreamWriter instance that is used to write encoded data. bytestream is a file-like object that has been opened in byte-mode. errors is the error handling policy and is 'strict' by default. An instance w of StreamWriter supports the following low-level I/O operations:

[image: image]

c.incrementalencoder([errors])

Returns an IncrementalEncoder instance that can be used to encode strings in multiple steps. errors is 'strict' by default. An instance e of IncrementalEncoder has these methods:

[image: image]

c.incrementaldecoder([errors])

Returns an IncrementalDecoder instance that can be used to decode byte strings in multiple steps. errors is 'strict' by default. An instance d of IncrementalDecoder has these methods:

[image: image]

I/O-Related Functions

The codecs module provides a collection of high-level functions that are used to simplify I/O involving encoded text. Most programmers will use one of these functions instead of the low-level codecs interface described in the first section.

open(filename, mode[, encoding[, errors[, buffering]]])

Opens filename in the given mode and provides transparent data encoding/decoding according to the encoding specified in encoding. errors is one of 'strict', 'ignore', 'replace', 'backslashreplace', or 'xmlcharrefreplace'. The default is 'strict'. buffering has the same meaning as for the built-in open() function. Regardless of the mode specified in mode, the underlying file is always opened in binary mode. In Python 3, you can use the built-in open() function instead of codecs.open().

EncodedFile(file, inputenc[, outputenc [, errors]])

A class that provides an encoding wrapper around an existing file object, file. Data written to the file is first interpreted according to the input encoding inputenc and then written to the file using the output encoding outputenc. Data read from the file is decoded according to inputenc. If outputenc is omitted, it defaults to inputenc. errors has the same meaning as for open() and defaults to 'strict'.

iterencode(iterable, encoding [, errors])

A generator function that incrementally encodes all of the strings in iterable to the specified encoding. errors is 'strict' by default.

iterdecode(iterable, encoding [, errors])

A generator function that incrementally decodes all of the byte strings in iterable according to the specified encoding. errors is 'strict' by default.

Useful Constants

codecs defines the following byte-order marker constants that can be used to help interpret files when you don’t know anything about the underlying encoding. These byte-order markers are sometimes written at the beginning of a file to indicate its character encoding and can be used to pick an appropriate codec to use.

[image: image]

Standard Encodings

The following is a list of some of the most commonly used character encodings. The encoding name is what you would pass to functions such as open() or lookup() when specifying an encoding. A full list of encodings can be found by consulting the online documentation for the codecs module (http://docs.python.org/library/codecs).

[image: image]

Notes

• Further use of the codecs module is described in Chapter 9, “Input and Output.”

• Consult the online documentation for information on how to create new kinds of character encodings.

• Great care needs to be taken with the inputs to encode() and decode() operations. All encode() operations should be given Unicode strings, and all decode() operations should be given byte strings. Python 2 is not entirely consistent in this regard, whereas Python 3 strictly enforces the distinction between strings. For example, Python 2 has some codecs that map byte-strings to byte-strings (e.g., the “bz2” codec). These are unavailable in Python 3 and should not be used if you care about compatibility.

re

The re module is used to perform regular-expression pattern matching and replacement in strings. Both unicode and byte-strings are supported. Regular-expression patterns are specified as strings containing a mix of text and special-character sequences. Because patterns often make extensive use of special characters and the backslash, they’re usually written as “raw” strings, such as r'(?P<int>\d+)\.(\d*)'. For the remainder of this section, all regular-expression patterns are denoted using the raw string syntax.

Pattern Syntax

The following special-character sequences are recognized in regular expression patterns:

[image: image]

[image: image]

Standard character escape sequences such as '\n' and '\t' are recognized as standard characters in a regular expression (for example, r'\n+' would match one or more newline characters). In addition, literal symbols that normally have special meaning in a regular expression can be specified by preceding them with a backslash. For example, r'*' matches the character *. In addition, a number of backslash sequences correspond to special sets of characters:

[image: image]

The \d, \D, \s, \S, \w, and \W special characters are interpreted differently if matching Unicode strings. In this case, they match all Unicode characters that match the described property. For example, \d matches any Unicode character that is classified as a digit such as European, Arabic, and Indic digits which each occupy a different range of Unicode characters.

Functions

The following functions are used to perform pattern matching and replacement:

compile(str [, flags])

Compiles a regular-expression pattern string into a regular-expression object. This object can be passed as the pattern argument to all the functions that follow. The object also provides a number of methods that are described shortly. flags is the bitwise OR of the following:

[image: image]

escape(string)

Returns a string with all nonalphanumerics backslashed.

findall(pattern, string [,flags])

Returns a list of all nonoverlapping matches of pattern in string, including empty matches. If the pattern has groups, a list of the text matched by the groups is returned.

If more than one group is used, each item in the list is a tuple containing the text for each group. flags has the same meaning as for compile().

finditer(pattern, string, [, flags])

The same as findall(), but returns an iterator object instead. The iterator returns items of type MatchObject.

match(pattern, string [, flags])

Checks whether zero or more characters at the beginning of string match pattern. Returns a MatchObject on success or None otherwise. flags has the same meaning as for compile().

search(pattern, string [, flags])

Searches string for the first match of pattern. flags has the same meaning as for compile(). Returns a MatchObject on success or None if no match was found.

split(pattern, string [, maxsplit = 0])

Splits string by the occurrences of pattern. Returns a list of strings including the text matched by any groups in the pattern. maxsplit is the maximum number of splits to perform. By default, all possible splits are performed.

sub(pattern, repl, string [, count = 0])

Replaces the leftmost nonoverlapping occurrences of pattern in string by using the replacement repl. repl can be a string or a function. If it’s a function, it’s called with a MatchObject and should return the replacement string. If repl is a string, back-references such as '\6' are used to refer to groups in the pattern. The sequence '\g<name>' is used to refer to a named group. count is the maximum number of substitutions to perform. By default, all occurrences are replaced. Although these functions don’t accept a flags parameter like compile(), the same effect can be achieved by using the (?iLmsux) notation described earlier in this section.

subn(pattern, repl, string [, count = 0])

Same as sub(), but returns a tuple containing the new string and the number of substitutions.

Regular Expression Objects

A compiled regular-expression object, r, created by the compile() function has the following methods and attributes:

r.flags

The flags argument used when the regular expression object was compiled, or 0 if no flags were specified.

r.groupindex

A dictionary mapping symbolic group names defined by r'(?P<id>)' to group numbers.

r.pattern

The pattern string from which the regular expression object was compiled.

r.findall(string [, pos [, endpos]])

Identical to the findall() function. pos and endpos specify the starting and ending positions for the search.

r.finditer(string [, pos [, endpos]])

Identical to the finditer() function. pos and endpos specify the starting and ending positions for the search.

r.match(string [, pos] [, endpos])

Checks whether zero or more characters at the beginning of string match. pos and endpos specify the range of string to be searched. Returns a MatchObject for a match and returns None otherwise.

r.search(string [, pos] [, endpos])

Searches string for a match. pos and endpos specify the starting and ending positions for the search. Returns a MatchObject for a match and returns None otherwise.

r.split(string [, maxsplit = 0])

Identical to the split() function.

r.sub(repl, string [, count = 0])

Identical to the sub() function.

r.subn(repl, string [, count = 0])

Identical to the subn() function.

Match Objects

The MatchObject instances returned by search() and match() contain information about the contents of groups as well as positional data about where matches occurred. A MatchObject instance, m, has the following methods and attributes:

m.expand(template)

Returns a string that would be obtained by doing regular-expression backslash substitution on the string template. Numeric back-references such as "\1" and "\2" and named references such as "\g<n>" and "\g<name>" are replaced by the contents of the corresponding group. Note that these sequences should be specified using raw strings or with a literal backslash character such as r'\1' or '\\1'.

m.group([group1, group2, ...])

Returns one or more subgroups of the match. The arguments specify group numbers or group names. If no group name is given, the entire match is returned. If only one group is given, a string containing the text matched by the group is returned. Otherwise, a tuple containing the text matched by each of the requested groups is returned. An IndexError is raised if an invalid group number or name is given.

m.groups([default])

Returns a tuple containing the text matched by all groups in a pattern. default is the value returned for groups that didn’t participate in the match (the default is None).

m.groupdict([default])

Returns a dictionary containing all the named subgroups of the match. default is the value returned for groups that didn’t participate in the match (the default is None).

m.start([group])
m.end([group])

These two methods return the indices of the start and end of the substring matched by a group. If group is omitted, the entire matched substring is used. Returns None if the group exists but didn’t participate in the match.

m.span([group])

Returns a 2-tuple (m.start(group),
m.end(group)). If group didn’t contribute to the match, this returns (None, None). If group is omitted, the entire matched substring is used.

m.pos

The value of pos passed to the search() or match() function.

m.endpos

The value of endpos passed to the search() or match() function.

m.lastindex

The numerical index of the last group that was matched. It’s None if no groups were matched.

m.lastgroup

The name of the last named group that was matched. It’s None if no named groups were matched or present in the pattern.

m.re

The regular-expression object whose match() or search() method produced this MatchObject instance.

m.string

The string passed to match() or search().

Example

The following example shows how to use the re module to search for, extract data from, and replace a text pattern in a string.

[image: image]

Notes

• Detailed information about the theory and implementation of regular expressions can be found in textbooks on compiler construction. The book Mastering Regular Expressions by Jeffrey Friedl (O’Reilly & Associates, 1997) may also be useful.

• The most difficult part of using the re module is writing the regular expression patterns. For writing patterns, consider using a tool such as Kodos (http://kodos.sourceforget.net).

string

The string module contains a number of useful constants and functions for manipulating strings. It also contains classes for implementing new string formatters.

Constants

The following constants define various sets of characters that may be useful in various string processing operations.

[image: image]

Note that some of these constants (for example, letters and uppercase) will vary depending on the locale settings of the system.

Formatter Objects

The str.format() method of strings is used to perform advanced string formatting operations. As seen in Chapter 3, “Types and Objects,” and Chapter 4, “Operators and Expressions,” this method can access items of sequences or mappings, attributes of objects, and other kinds of related operations. The string module defines a class Formatter that can be used to implement your own customized formatting operation. This class exposes the pieces that implement the string formatting operation and allow you to customize them.

Formatter()

Creates a new Formatter instance. An instance f of Formatter supports the following operations.

f.format(format_string, *args, **kwargs)

Formats the string format_string. By default, the output is the same as calling format_string.format(*args, **kwargs). For example, f.format("{name} is {0:d} years old", 39,name="Dave") creates the string "Dave is 39 years old".

f.vformat(format_string, args, kwargs)

A method that actually carries out the work of f.format(). args is a tuple of positional arguments, and kwargs is a dictionary of keyword arguments. This is a faster method to use if you have already captured argument information in a tuple and dictionary.

f.parse(format_string)

A function that creates an iterator for parsing the contents of the format string format_string. The iterator sweeps over the format string and produces tuples of the format (literal_text,
field_name,
format_spec,
conversion). literal_text is any literal text that precedes the next format specifier enclosed in braces { ... }. It may be an empty string if there is no leading text. field_name is a string that specifies the field name in the format specifier. For example, if the specifier is '{0:d}', then the field name is '0'. format_spec is the format specifier that appears after the colon—for example, 'd' in the previous example. It will be an empty string if it wasn’t specified. conversion is a string containing the conversion specifier (if any). In the previous example, it is None, but if the specifier was '{0!s:d}', it would be set to 's'. field_name, format_spec, and conversion will all be None for the last fragment of the format string.

f.get_field(fieldname, args, kwargs)

Extracts the value associated with a given fieldname from args and kwargs. fieldname is a string such as "0" or "name" as returned by the parse() method shown previously. Returns a tuple (value, key) where value is the field value and key is used to locate the value in args or kwargs. If key is an integer, it is an index in args. If it is a string, it is the key used in kwargs. The fieldname may include additional indexing and attribute lookup such as '0.name’ or '0[name]'. In this case, the method carries out the extra lookup and returns the appropriate value. However, the value of key in the returned tuple is just set to '0'.

f.get_value(key, args, kwargs)

Extracts the object from args or kwargs corresponding to key. If key is an integer, the object is taken from args. If it is a string, it is taken from kwargs.

f.check_unused_args(used_args, args, kwargs)

Checks for unused arguments in the format() operation. used_args is a set of all of the used argument keys (see get_field()) that were found in the format string. args and kwargs are the positional and keyword arguments passed to format(). The default behavior is to raise a TypeError for unused arguments.

f.format_value(value, format_spec)

Formats a single value according to the given format specification. By default, this simply executes the built-in function format(value, format_spec).

f.convert_field(value, conversion)

Converts a value returned by get_field() according to the specified conversion code. If conversion is None, value is returned unmodified. If conversion is 's' or 'r', value is converted to a string using str() or repr(), respectively.

If you want to create your own customized string formatting, you can create a Formatter object and simply use the default methods to carry out the formatting as you wish. It is also possible to define a new class that inherits from Formatter and reimplements any of the methods shown earlier.

For details on the syntax of format specifiers and advanced string formatting, refer to Chapter 3 and Chapter 4.

Template Strings

The string module defines a new string type, Template, that simplifies certain string substitutions. An example can be found in Chapter 9.

The following creates a new template string object:

Template(s)

Here, s is a string and Template is defined as a class.

A Template object, t, supports the following methods:

t.substitute(m [, **kwargs])

This method takes a mapping object, m (for example, a dictionary), or a list of keyword arguments and performs a keyword substitution on the string t. This substitution replaces the string '$$' with a single '$' and the strings '$key' or '${key}' with m['key’] or kwargs['key'] if keyword arguments were supplied. key must spell a valid Python identifier. If the final string contains any unresolved '$key' patterns, a KeyError exception is raised.

t.safe_substitute(m [, **kwargs])

The same as substitute() except that no exceptions or errors will be generated. Instead, unresolved $key references will be left in the string unmodified.

t.template

Contains the original strings passed to Template().

The behavior of the Template class can be modified by subclassing it and redefining the attributes delimiter and idpattern. For example, this code changes the escape character $ to @ and restricts key names to letters only:

[image: image]

Utility Functions

The string module also defines a couple of functions for manipulating strings that aren’t defined as a method on string objects.

capwords(s)

Capitalizes the first letter of each word in s, replaces repeated whitespace characters with a single space, and removes leading and trailing whitespace.

maketrans(from, to)

Creates a translation table that maps each character in from to the character in the same position in to. from and to must be the same length. This function is used to create arguments suitable for use with the translate() method of strings.

struct

The struct module is used to convert data between Python and binary data structures (represented as Python byte strings). These data structures are often used when interacting with functions written in C, binary file formats, network protocols, or binary communication over serial ports.

Packing and Unpacking Functions

The following module-level functions are used to pack and unpack data in byte strings. If your program is repeatedly performing these operations, consider the use of a Struct object described in the next section.

pack(fmt, v1, v2, ...)

Packs the values v1, v2, and so on into a byte string according to the format string in fmt.

pack_into(fmt, buffer, offset, v1, v2 ...)

Packs the values v1, v2, and so forth into a writable buffer object buffer starting at byte offset offset. This only works with objects that support the buffer interface. Examples include array.array and bytearray objects.

unpack(fmt, string)

Unpacks the contents of a byte string according to the format string in fmt. Returns a tuple of the unpacked values. The length of string must exactly match the size of the format as determined by the calcsize() function.

unpack_from(fmt, buffer, offset)

Unpacks the contents of a buffer object according to the format string in fmt starting at offset offset. Returns a tuple of the unpacked values.

calcsize(fmt)

Calculates the size in bytes of the structure corresponding to a format string fmt.

Struct Objects

The struct module defines a class Struct that provides an alternative interface for packing and unpacking. Using this class is more efficient because the format string is only interpreted once.

Struct(fmt)

Creates a Struct instance representing data packed according to the given format code. An instance s of Struct has the following methods that work exactly the same as their functional counterparts described in the previous section:

[image: image]

Format Codes

The format strings used in the struct module are a sequence of characters with the following interpretations:

[image: image]

Each format character can be preceded by an integer to indicate a repeat count (for example, '4i' is the same as 'iiii'). For the 's' format, the count represents the maximum length of the string, so '10s' represents a 10-byte string. A format of '0s' indicates a string of zero length. The 'p' format is used to encode a string in which the length appears in the first byte, followed by the string data. This is useful when dealing with Pascal code, as is sometimes necessary on the Macintosh. Note that the length of the string in this case is limited to 255 characters.

When the 'I' and 'L' formats are used to unpack a value, the return value is a Python long integer. In addition, the 'P' format may return an integer or long integer, depending on the word size of the machine.

The first character of each format string can also specify a byte ordering and alignment of the packed data, as shown here:

[image: image]

Native byte ordering may be little-endian or big-endian, depending on the machine architecture. The native sizes and alignment correspond to the values used by the C compiler and are implementation-specific. The standard alignment assumes that no alignment is needed for any type. The standard size assumes that short is 2 bytes, int is 4 bytes, long is 4 bytes, float is 32 bits, and double is 64 bits. The 'P' format can only use native byte ordering.

Notes

• Sometimes it’s necessary to align the end of a structure to the alignment requirements of a particular type. To do this, end the structure-format string with the code for that type with a repeat count of zero. For example, the format 'llh0l' specifies a structure that ends on a 4-byte boundary (assuming that longs are aligned on 4-byte boundaries). In this case, two pad bytes would be inserted after the short value specified by the 'h' code. This only works when native size and alignment are being used—standard size and alignment don’t enforce alignment rules.

• The 'q’ and 'Q' formats are only available in “native” mode if the C compiler used to build Python supports the long long data type.

See Also:

array (p. 259), ctypes (p. 612)

unicodedata

The unicodedata module provides access to the Unicode character database, which contains character properties for all Unicode characters.

bidirectional(unichr)

Returns the bidirectional category assigned to unichr as a string or an empty string if no such value is defined. Returns one of the following:

[image: image]

category(unichr)

Returns a string describing the general category of unichr. The returned string is one of the following values:

[image: image]

combining(unichr)

Returns an integer describing the combining class for unichr or 0 if no combining class is defined. One of the following values is returned:

[image: image]

decimal(unichr[, default])

Returns the decimal integer value assigned to the character unichr. If unichr is not a decimal digit, default is returned or ValueError is raised.

decomposition(unichr)

Returns a string containing the decomposition mapping of unichr or the empty string if no such mapping is defined. Typically, characters containing accent marks can be decomposed into multicharacter sequences. For example, decomposition(u"\u00fc") ("ü") returns the string "0075 0308" corresponding to the letter u and the umlaut (¨) accent mark. The string returned by this function may also include the following strings:

[image: image]

digit(unichr[, default])

Returns the integer digit value assigned to the character unichr. If unichr is not a digit, default is returned or ValueError is raised. This function differs from decimal() in that it works with characters that may represent digits but that are not decimal digits.

east_asian_width(unichr)

Returns the east Asian width assigned to unichr.

lookup(name)

Looks up a character by name. For example, lookup('COPYRIGHT SIGN') returns the corresponding Unicode character. Common names can be found at http://www.unicode.org/charts.

mirrored(unichr)

Returns 1 if unichr is a “mirrored” character in bidirectional text and returns 0 otherwise. A mirrored character is one whose appearance might be changed to appear properly if text is rendered in reverse order. For example, the character '(' is mirrored because it might make sense to flip it to ')' in cases where text is printed from right to left.

name(unichr [, default])

Returns the name of a Unicode character, unichr. Raises ValueError if no name is defined or returns default if provided. For example, name(u'\xfc') returns 'LATIN SMALL LETTER U WITH DIAERESIS'.

normalize(form, unistr)

Normalizes the Unicode string unistr according to normal form form. form is one of 'NFC', 'NFKC', 'NFD', or 'NFKD'. The normalization of a string partly pertains to the composition and decomposition of certain characters. For example, the Unicode string for the word “resumé” could be represented as u'resum\u00e9' or as the string u'resume\u0301'. In the first string, the accented character é is represented as a single character. In the second string, the accented character is represented by the letter e followed by a combining accent mark (`). 'NFC' normalization converts the string unistr so that all of the characters are fully composed (for example, é is a single character). 'NFD' normalization converts unistr so that characters are decomposed (for example, é is the letter e followed by an accent). 'NFKC' and 'NFKD' perform the same function as 'NFC' and 'NFD' except that they additionally transform certain characters that may be represented by more than one Unicode character value into a single standard value. For example, Roman numerals have their own Unicode character values but are also just represented by the Latin letters I, V, M, and so on. 'NFKC' and 'NFKD' would convert the special Roman numeral characters into their Latin equivalents.

numeric(unichr[, default])

Returns the value assigned to the Unicode character unichr as a floating-point number. If no numeric value is defined, default is returned or ValueError is raised. For example, the numeric value of U+2155 (the character for the fraction "1/5") is 0.2.

unidata_version

A string containing the Unicode database version used (for example, '5.1.0').

Note

For further details about the Unicode character database, see http://www.unicode.org.

17. Python Database Access

This chapter describes the programming interfaces that Python uses to interface with relational and hash table style databases. Unlike other chapters that describe specific library modules, the material in this chapter partly applies to third-party extensions. For example, if you want Python to interface with a MySQL or Oracle database, you would first have to download a third-party extension module. That module, in turn, would then follow the basic conventions described here.

Relational Database API Specification

For accessing relational databases, the Python community has developed a standard known as the Python Database API Specification V2.0, or PEP 249 for short (the formal description can be found at http://www.python.org/dev/peps/pep-249/). Specific database modules (e.g., MySQL, Oracle, and so on) follow this specification, but may add even more features. This section covers the essential elements needed to use it for most applications.

At a high level, the database API defines a set of functions and objects for connecting to a database server, executing SQL queries, and obtaining results. Two primary objects are used for this: a Connection object that manages the connection to the database and a Cursor object that is used to perform queries.

Connections

To connect to a database, every database module provides a module-level function connect(parameters). The exact parameters depend on the database but typically include information such as the data source name, user name, password, host name, and database name. Typically these are provided with keyword arguments dsn, user, password, host, and database, respectively. So, a call to connect() might look like this:

connect(dsn="hostname:DBNAME",user="michael",password="peekaboo")

If successful, a Connection object is returned. An instance c of Connection has the following methods:

c.close()

Closes the connection to the server.

c.commit()

Commits all pending transactions to the database. If the database supports transactions, this must be called for any changes to take effect. If the underlying database does not support transactions, this method does nothing.

c.rollback()

Rolls back the database to the start of any pending transactions. This method is sometimes used in databases that do not support transactions in order to undo any changes made to the database. For example, if an exception occurred in code that was in the middle of updating a database, you might use this to undo changes made before the exception.

c.cursor()

Creates a new Cursor object that uses the connection. A cursor is an object that you will use to execute SQL queries and obtain results. This is described in the next section.

Cursors

In order to perform any operations on the database, you first create a connection c and then you call c.cursor() method to create a Cursor object. An instance cur of a Cursor has a number of standard methods and attributes that are used to execute queries:

cur.callproc(procname [, parameters])

Calls a stored procedure with name procname. parameters, which is a sequence of values that are used as the arguments to the procedure. The result of this function is a sequence with the same number of items as parameters. This sequence is a copy of parameters where the values of any output arguments have been replaced with their modified values after execution. If a procedure also produces an output set, it can be read using the fetch*() methods described next.

cur.close()

Closes the cursor, preventing any further operations on it.

cur.execute(query [, parameters])

Executes a query or command query on the database. query is a string containing the command (usually SQL), and parameters is either a sequence or mapping that is used to supply values to variables in the query string (this is described in the next section).

cur.executemany(query [, parametersequence])

Repeatedly executes a query or command. query is a query string, and parametersquence is a sequence of parameters. Each item in this sequence is a sequence or mapping object that you would have used with the execute() method shown earlier.

cur.fetchone()

Returns the next row of the result set produced by execute() or executemany(). The result is typically a list or tuple containing values for the different columns of the result. None is returned if there are no more rows available. An exception is raised if there is no pending result or if the previously executed operation didn’t create a result set.

cur.fetchmany([size])

Returns a sequence of result rows (e.g., a list of tuples). size is the number of rows to return. If omitted, the value of cur.arraysize is used as a default. The actual number of rows returned may be less than requested. An empty sequence is returned if no more rows are available.

cur.fetchall()

Returns a sequence of all remaining result rows (e.g., a list of tuples).

cur.nextset()

Discards all remaining rows in the current result set and skips to the next result set (if any). Returns None if there are no more result sets; otherwise, a True value is returned and subsequent fetch*() operations return data from the new set.

cur.setinputsize(sizes)

Gives the cursor a hint about the parameters to be passed on subsequent execute*() methods. sizes is a sequence of type objects (described shortly) or integers which give the maximum expected string length for each parameter. Internally, this is used to predefine memory buffers for creating the queries and commands sent to the database. Using this can speed up subsequent execute*() operations.

cur.setoutputsize(size [, column])

Sets the buffer size for a specific column in result sets. column is an integer index into the result row, and size is the number of bytes. A typical use of this method is to set limits on large database columns such as strings, BLOBs, and LONGs prior to making any execute*() calls. If column is omitted, it sets a limit for all columns in the result.

Cursors have a number of attributes that describe the current result set and give information about the cursor itself.

cur.arraysize

An integer that gives the default value used for the fetchmany() operation. This value may vary between database modules and may be initially set to a value that the module considers to be “optimal.”

cur.description

A sequence of tuples that give information about each column in the current result set. Each tuple has the form (name,
type_code,
display_size,
internal_size,
precision,
scale,
null_ok). The first field is always defined and corresponds to the column name. The type_code can be used in comparisons involving the type objects described in the “Type Objects” section. The other fields may be set to None if they don’t apply to the column.

cur.rowcount

The number of rows in the last result produced by one of the execute*() methods. If set to -1, it means that there is either no result set or that the row count can’t be determined.

Although not required by the specification, the Cursor object in most database modules also implements the iteration protocol. In this case, a statement such as for
row in cur: will iterate over the rows the result set created by the last execute*() method.

Here is a simple example showing how some of these operations are used with the sqlite3 database module, which is a built-in library:

[image: image]

Forming Queries

A critical part of using the database API involves forming SQL query strings to pass into the execute*() methods of cursor objects. Part of the problem here is that you need to fill in parts of the query string with parameters supplied by the user. For example, you might be inclined to write code like this:

[image: image]

Although this “works,” you should never manually form queries using Python string operations like this. If you do, it opens up your code to a potential SQL injection attack—a vulnerability that someone can use to execute arbitrary statements on the database server. For example, in the previous code, someone might supply a value for symbol that looks like "EVIL LAUGH'; drop table portfolio;--" which probably does something other than what you anticipated.

All database modules provide their own mechanism for value substitution. For example, instead of forming the entire query as shown, you might do this instead:

[image: image]

Here, the '?' placeholders are successively replaced with values from the tuple (symbol, account).

Sadly, there is no standard convention for placeholders across database module implementations. However, each module defines a variable paramstyle that indicates the formatting of value substitutions to be used in queries. Possible values of this variable are as follows:

[image: image]

Type Objects

When working with database data, built-in types such as integers and strings are usually mapped to an equivalent type in the database. However, for dates, binary data, and other special types, data management is more tricky. To assist with this mapping, database modules implement a set of constructor functions for creating objects of various types.

Date(year, month, day)

Creates an object representing a date.

Time(hour, minute, second)

Creates an object representing a time.

Timestamp(year, month, day, hour, minute, second)

Creates an object representing a timestamp.

DateFromTicks(ticks)

Creates a date object from a value of the system time. ticks is the number of seconds as returned by a function such as time.time().

TimeFromTicks(ticks)

Creates a time object from a value of the system time.

TimestampFromTicks(ticks)

Creates a timestamp object from a value of the system time.

Binary(s)

Creates a binary object from a byte-string s.

In addition to these constructor functions, the following type objects might be defined. The purpose of these codes is to perform type checking against the type_code field of cur.description, which describes the contents of the current result set.

[image: image]

Error Handling

Database modules define a top-level exception Error that is a base class for all other errors. The following exceptions are for more specific kinds of database errors:

[image: image]

Modules may also define a Warning exception that is used by the database module to warn about things such as data truncation during updates.

Multithreading

If you are mixing database access with multithreading, the underlying database module may or may not be thread-safe. The following variable is defined in each module to provide more information.

threadsafety

An integer that indicates the thread safety of the module. Possible values are:

[image: image]

Mapping Results into Dictionaries

A common issue concerning database results is the mapping of tuples or lists into a dictionary of named fields. For example, if the result set of a query contains a large number of columns, it may be easier to work with this data using descriptive field names instead of hard-coding the numeric index of specific fields within a tuple.

There are many ways to handle this, but one of the most elegant ways to process result data is through the use of generator functions. For example:

[image: image]

Be aware that the naming of columns is not entirely consistent between databases—especially with respect to things such as case sensitivity. So, you’ll need to be a little careful if you try to apply this technique to code that’s meant to work with a variety of different database modules.

Database API Extensions

Finally, many extensions and advanced features can be added to specific database modules—for example, support for two-phase commits and extended error handling. PEP-249 has additional information about the recommended interface for these features and should be consulted by advanced users. Third-party library modules also may simplify the use of relational database interfaces.

sqlite3 Module

The sqlite3 module provides a Python interface to the SQLite database library (http://www.sqlite.org). SQLite is a C library that implements a self-contained relational database entirely within a file or in memory. Although it is simple, this library is attractive for various reasons. For one, it does not rely upon a separate database server nor does it require any kind of special configuration—you can start to use it right away in your programs by simply connecting to a database file (and if it doesn’t exist, a new file is created). The database also supports transactions for improved reliability (even across system crashes) as well as locking to allow the same database file to be simultaneously accessed from multiple processes.

The programming interface to the library follows the conventions described in the previous section on the Database API, so much of that detail is not repeated here. Instead, this section focuses on the technical details of using this module as well as features that are specific to the sqlite3 module.

Module-Level Functions

The following functions are defined by the sqlite3 module:

connect(database [, timeout [, isolation_level [, detect_types]]])

Creates a connection to a SQLite database. database is a string that specifies the name of the database file. It can also be a string ":memory:", in which case an in-memory database is used (note that this kind of database only persists as long as the Python process remains running and would be lost on program exit). The timeout parameter specifies the amount of time to wait for an internal reader-writer lock to be released when other connections are updating the database. By default, timeout is 5 seconds. When SQL statements such as INSERT or UPDATE are used, a new transaction is automatically started if one wasn’t already in effect. The isolation_level parameter is a string that provides an optional modifier to the underlying SQL BEGIN statement that is used to start this transaction. Possible values are "" (the default), "DEFERRED", "EXCLUSIVE", or "IMMEDIATE". The meaning of these settings is related to the underlying database lock and is as follows:

[image: image]

The detect_types parameter enables some extra type detection (implemented by extra parsing of SQL queries) when returning results. By default it is 0 (meaning no extra detection). It can be set to the bitwise-or of PARSE_DECLTYPES and PARSE_COLNAMES. If PARSE_DECLTYPES is enabled, queries are examined for SQL typenames such as "integer" or "number(8)" in order to determine the type of result columns. If PARSE_COLNAMES is enabled, special strings of the form "colname
[typename]" (including the double quotes) can be embedded into queries where colname is the column name and typename is the name of a type registered with the register_converter() function described next. These strings are simply transformed into colname when passed to the SQLite engine, but the extra type specifier is used when converting values in the results of a query. For example, a query such as 'select price as "price [decimal]" from portfolio' is interpreted as 'select price as price from portfolio', and the results will be converted according to the “decimal” conversion rule.

register_converter(typename, func)

Registers a new type name for use with the detect_types option to connect(). typename is a string containing the type name as it will be used in queries, and func is a function that takes a single bytestring as input and returns a Python datatype as a result.

For example, if you call sqlite3.register_converter('decimal', decimal.Decimal), then you can have values in queries converted to Decimal objects by writing queries such as 'select price as "price [decimal]" from stocks'.

register_adapter(type, func)

Registers an adapter function for a Python type type that is used when storing values of that type in the datatype. func is a function that accepts an instance of type type as input and returns a int, float, UTF-8–encoded byte string, Unicode string, or buffer as a result. For example, if you wanted to store Decimal objects, you might use sqlite3.register_adapter(decimal.Decimal,float).

complete_statement(s)

Returns True if the string s represents one or more complete SQL statements separated by semicolons. This might be useful if writing an interactive program that reads queries from the user.

enable_callback_tracebacks(flag)

Determines the handling of exceptions in user-defined callback functions such as converters and adapters. By default, exceptions are ignored. If flag is set to True, traceback messages will be printed on sys.stderr.

Connection Objects

The Connection object c returned by the connect() function supports the standard operations described in the Database API. In addition, the following methods specific to the sqlite3 module are provided.

c.create_function(name, num_params, func)

Creates a user-defined function that can be used in SQL statements. name is a string containing the name of the function, num_params is an integer giving the number of parameters, and func is a Python function that provides the implementation. Here is a simple example:

[image: image]

Although a Python function is being defined, the parameters and inputs of this function should only be int, float, str, unicode, buffer, or None.

c.create_aggregate(name, num_params, aggregate_class)

Creates a user-defined aggregation function for use in SQL statements. name is a string containing the name of the function, and num_params is an integer giving the number of input parameters. aggregate_class is a class that implements the aggregation operation. This class must support initialization with no arguments and implements a step(params) method that accepts the same number of parameters as given in num_params and a finalize() method that returns the final result. Here is a simple example:

[image: image]

Aggregation works by making repeated calls to the step() method with input values and then calling finalize() to obtain the final value.

c.create_collation(name, func)

Registers a user-defined collation function for use in SQL statements. name is a string containing the name of the collation function, and func is a function that accepts two inputs and returns -1, 0, 1 depending on whether or not the first input is below, equal to, or above the second input. You use the user-defined function using a SQL expression such as "select* from
table
order by
colname
collate
name".

c.execute(sql [, params])

A shortcut method that creates a cursor object using c.cursor() and executes the cursor’s execute() method with SQL statements in sql with the parameters in params.

c.executemany(sql [, params])

A shortcut method that creates a cursor object using c.cursor() and executes the cursor’s executemany() method with SQL statements in sql with the parameters in params.

c.executescript(sql)

A shortcut method that creates a cursor object using c.cursor() and executes the cursor’s executescript() method with SQL statements in sql.

c.interrupt()

Aborts any currently executing queries on the connection. This is meant to be called from a separate thread.

c.iterdump()

Returns an iterator that dumps the entire database contents to a series of SQL statements that could be executed to recreate the database. This could be useful if exporting the database elsewhere or if you need to dump the contents of an in-memory database to a file for later restoration.

c.set_authorizer(auth_callback)

Registers an authorization callback function that gets executed on every access to a column of data in the database. The callback function must take five arguments as auth_callback(code, arg1, arg2, dbname, innername). The value returned by this callback is one of SQLITE_OK if access is allowed, SQLITE_DENY if the SQL statement should fail with an error, or SQLITE_IGNORE if the column should be ignored by treating it as a Null value. The first argument code is an integer action code. arg1 and arg2 are parameters whose values depend on the value of code. dbname is a string containing the name of the database (usually "main"), and innername is the name of the innermost view or trigger that is attempting access or None if no view or trigger is active. The following table lists the values for code and meaning of the arg1 and arg2 parameters:

[image: image]

c.set_progress_handler(handler, n)

Registers a callback function that gets executed every n instructions of the SQLite virtual machine. handler is a function that takes no arguments.

The following attributes are also defined on connection objects.

c.row_factory

A function that gets called to create the object representing the contents of each result row. This function takes two arguments: the cursor object used to obtain the result and a tuple with the raw result row.

c.text_factory

A function that is called to create the objects representing text values in the database. The function must take a single argument that is a UTF-8–encoded byte string. The return value should be some kind of string. By default, a Unicode string is returned.

c.total_changes

An integer representing the number of rows that have been modified since the database connection was opened.

A final feature of connection objects is that they can be used with the context-manager protocol to automatically handle transactions. For example:

[image: image]

In this example, a commit() operation is automatically performed after all statements in the with block have executed and no errors have occurred. If any kind of exception is raised, a rollback() operation is performed and the exception is reraised.

Cursors and Basic Operations

To perform basic operations on a sqlite3 database, you first have to create a cursor object using the cursor() method of a connection. You then use the execute(), executemany(), or executescript() methods of the cursor to execute SQL statements. See the Database API section for further details about the general operation of these methods. Instead of repeating that information here, a set of common database use cases are presented along with sample code. The goal is to show both the operation of cursor objects and some common SQL operations for those programmers who might need a brief refresher on the syntax.

Creating New Database Tables

The following code shows how to open a database and create a new table:

[image: image]

When defining tables, a few primitive SQLite datatypes should be used: text, integer, real, and blob. The blob type is a bytestring, whereas the text type is assumed to be UTF-8–encoded Unicode.

Inserting New Values into a Table

The following code shows how to insert new items into a table:

[image: image]

When inserting values, you should always use the ? substitutions as shown. Each ? is replaced by a value from a tuple of values supplied as parameters.

If you have a sequence of data to insert, you can use the executemany() method of a cursor like this:

[image: image]

Updating an Existing Row

The following code shows how you might update columns for an existing row:

cur.execute("update stocks set shares=? where symbol=?",(50,'IBM'))

Again, when you need to insert values into the SQL statement, make sure you use the ? placeholders and supply a tuple of values as parameters.

Deleting Rows

The following code shows how to delete rows:

cur.execute("delete from stocks where symbol=?",('SCOX',))

Performing Basic Queries

The following code shows how you can perform basic queries and obtain the results:

[image: image]

DBM-Style Database Modules

Python includes a number of library modules for supporting UNIX DBM-style database files. Several standard types of these databases are supported. The dbm module is used to read standard UNIX-dbm database files. The gdbm module is used to read GNU dbm database files (http://www.gnu.org/software/gdbm). The dbhash module is used to read database files created by the Berkeley DB library (http://www.oracle.com/database/berkeley-db/index.html). The dumbdbm module is a pure-Python module that implements a simple DBM-style database on its own.

All of these modules provide an object that implements a persistent string-based dictionary. That is, it works like a Python dictionary except that all keys and values are restricted to strings. A database file is typically opened using a variation of the open() function.

open(filename [, flag [, mode]])

This function opens the database file filename and returns a database object. flag is 'r' for read-only access, 'w' for read-write access, 'c' to create the database if it doesn’t exist, or 'n' to force the creation of a new database. mode is the integer file-access mode used when creating the database (the default is 0666 on UNIX).

The object returned by the open() function minimally supports the following dictionary-like operations:

[image: image]

Specific implementations may also add additional features (consult the appropriate module reference for details).

One issue with the various DBM-style database modules is that not every module is installed on every platform. For example, if you use Python on Windows, the dbm and gdbm modules are typically unavailable. However, a program may still want to create a DBM-style database for its own use. To address this issue, Python provides a module anydbm that can be used to open and create a DBM-style database file. This module provides an open() function as described previously, but it is guaranteed to work on all platforms. It does this by looking at the set of available DBM modules and picking the most advanced library that is available (typically dbhash if it’s installed). As a fallback, it uses the dumbdbm module which is always available.

Another module is whichdb, which has a function whichdb(filename) that can be used to probe a file in order to determine what kind of DBM-database created it.

As a general rule, it is probably best not to rely upon these low-level modules for any application where portability is important. For example, if you create a DBM database on one machine and then transfer the database file to another machine, there is a chance that Python won’t be able to read it if the underlying DBM module isn’t installed. A high degree of caution is also in order if you are using these database modules to store large amounts of data, have a situation where multiple Python programs might be opening the same database file concurrently, or need high reliability and transactions (the sqlite3 module might be a safer choice for that).

shelve Module

The shelve module provides support for persistent objects using a special “shelf” object. This object behaves like a dictionary except that all the objects it contains are stored on disk using a hash-table based database such as dbhash, dbm or gdbm. Unlike those modules, however, the values stored in a shelf are not restricted to strings. Instead, any object that is compatible with the pickle module may be stored. A shelf is created using the shelve.open() function.

open(filename [,flag='c' [, protocol [, writeback]]])

Opens a shelf file. If the file doesn’t exist, it’s created. filename should be the database filename and should not include a suffix. flag has the same meaning as described in the chapter introduction and is one of 'r', 'w', 'c', or 'n'. If the database file doesn’t exist, it is created. protocol specifies the protocol used to pickle objects stored in the database. It has the same meaning as described in the pickle module. writeback controls the caching behavior of the database object. If True, all accessed entries are cached in memory and only written back when the shelf is closed. The default value is False. Returns a shelf object.

Once a shelf is opened, the following dictionary operations can be performed on it:

[image: image]

The key values for a shelf must be strings. The objects stored in a shelf must be serializable using the pickle module.

Shelf(dict [, protocol [, writeback]])

A mixin class that implements the functionality of a shelf on top of a dictionary object, dict. When this is used, objects stored in the returned shelf object will be pickled and stored in the underlying dictionary dict. Both protocol and writeback have the same meaning as for shelve.open().

The shelve module uses the anydbm module to select an appropriate DBM module for use. In most standard Python installations, it is likely to be the dbhash, which relies upon the Berkeley DB library.

18. File and Directory Handling

This chapter describes Python modules for high-level file and directory handling. Topics include modules for processing various kinds of basic file encodings such as gzip and bzip2 files, modules for extracting file archives such as zip and tar files, and modules for manipulating the file system itself (e.g., directory listings, moving, renaming, copying, and so on). Low-level operating system calls related to files are covered in Chapter 19, “Operating System Services.” Modules for parsing the contents of files such as XML and HTML are mostly covered in Chapter 24, “Internet Data Handling and Encoding.”

bz2

The bz2 module is used to read and write data compressed according to the bzip2 compression algorithm.

[image: image]

Opens a .bz2 file, filename, and returns a file-like object. mode is 'r' for reading or 'w' for writing. Universal newline support is also available by specifying a mode of 'rU'. buffering specifies the buffer size in bytes with a default value of 0 (no buffering). compresslevel is a number between 1 and 9. A value of 9 (the default) provides the highest level of compression but consumes the most processing time. The returned object supports all the common file operations, including close(), read(), readline(), readlines(), seek(), tell(), write(), and writelines().

BZ2Compressor([compresslevel])

Creates a compressor object that can be used to sequentially compress a sequence of data blocks. compresslevel specifies the compression level as a number between 1 and 9 (the default).

An instance, c, of BZ2Compressor has the following two methods:

c.compress(data)

Feeds new string data to the compressor object, c. Returns a string of compressed data if possible. Because compression involves chunks of data, the returned string may not include all the data and may include compressed data from previous calls to compress(). The flush() method should be used to return any remaining data stored in the compressor after all input data has been supplied.

c.flush()

Flushes the internal buffers and returns a string containing the compressed version of all remaining data. After this operation, no further compress() calls should be made on the object.

BZ2Decompressor()

Creates a decompressor object.

An instance, d, of BZ2Decompressor supports just one method:

d.decompress(data)

Given a chunk of compressed data in the string data, this method returns uncompressed data. Because data is processed in chunks, the returned string may or may not include a decompressed version of everything supplied in data. Repeated calls to this method will continue to decompress data blocks until an end-of-stream marker is found in the input. If subsequent attempts are made to decompress data after that, an EOFError exception will be raised.

compress(data [, compresslevel])

Returns a compressed version of the data supplied in the string data. compresslevel is a number between 1 and 9 (the default).

decompress(data)

Returns a string containing the decompressed data in the string data.

filecmp

The filecmp module provides the following functions, which can be used to compare files and directories:

cmp(file1, file2 [, shallow])

Compares the files file1 and file2 and returns True if they’re equal, False if not. By default, files that have identical attributes as returned by os.stat() are considered to be equal. If the shallow parameter is specified and is False, the contents of the two files are compared to determine equality.

cmpfiles(dir1, dir2, common [, shallow])

Compares the contents of the files contained in the list common in the two directories dir1 and dir2. Returns a tuple containing three lists of filenames (match, mismatch, errors). match lists the files that are the same in both directories, mismatch lists the files that don’t match, and errors lists the files that could not be compared for some reason. The shallow parameter has the same meaning as for cmp().

dircmp(dir1, dir2 [, ignore[, hide]])

Creates a directory comparison object that can be used to perform various comparison operations on the directories dir1 and dir2. ignore is a list of filenames to ignore and has a default value of ['RCS','CVS','tags']. hide is a list of filenames to hide and defaults to the list [os.curdir, os.pardir] (['.', '..'] on UNIX).

A directory object, d, returned by dircmp() has the following methods and attributes:

d.report()

Compares directories dir1 and dir2 and prints a report to sys.stdout.

d.report_partial_closure()

Compares dir1 and dir2 and common immediate subdirectories. Results are printed to sys.stdout.

d.report_full_closure()

Compares dir1 and dir2 and all subdirectories recursively. Results are printed to sys.stdout.

d.left_list

Lists the files and subdirectories in dir1. The contents are filtered by hide and ignore.

d.right_list

Lists the files and subdirectories in dir2. The contents are filtered by hide and ignore.

d.common

Lists the files and subdirectories found in both dir1 and dir2.

d.left_only

Lists the files and subdirectories found only in dir1.

d.right_only

Lists the files and subdirectories found only in dir2.

d.common_dirs

Lists the subdirectories that are common to dir1 and dir2.

d.common_files

Lists the files that are common to dir1 and dir2.

d.common_funny

Lists the files in dir1 and dir2 with different types or for which no information can be obtained from os.stat().

d.same_files

Lists the files with identical contents in dir1 and dir2.

d.diff_files

Lists the files with different contents in dir1 and dir2.

d.funny_files

Lists the files that are in both dir1 and dir2 but that could not be compared for some reason (for example, insufficient permission to access).

d.subdirs

A dictionary that maps names in d.common_dirs to additional dircmp objects.

Note

The attributes of a dircmp object are evaluated lazily and not determined at the time the dircmp object is first created. Thus, if you’re interested in only some of the attributes, there’s no added performance penalty related to the other unused attributes.

fnmatch

The fnmatch module provides support for matching filenames using UNIX shell-style wildcard characters. This module only performs filename matching, whereas the glob module can be used to actually obtain file listings. The pattern syntax is as follows:

[image: image]

The following functions can be used to test for a wildcard match:

fnmatch(filename, pattern)

Returns True or False depending on whether filename matches pattern. Case sensitivity depends on the operating system (and may be non–case-sensitive on certain platforms such as Windows).

fnmatchcase(filename, pattern)

Performs a case-sensitive comparison of filename against pattern.

filter(names, pattern)

Applies the fnmatch() function to all of the names in the sequence names and returns a list of all names that match pattern.

Examples

[image: image]

glob

The glob module returns all filenames in a directory that match a pattern specified using the rules of the UNIX shell (as described in the fnmatch module).

glob(pattern)

Returns a list of pathnames that match pattern.

iglob(pattern)

Returns the same results as glob() but using an iterator.

Example

[image: image]

Note

Tilde (~) and shell variable expansion are not performed. Use os.path.expanduser() and os.path.expandvars(), respectively, to perform these expansions prior to calling glob().

gzip

The gzip module provides a class, GzipFile, that can be used to read and write files compatible with the GNU gzip program. GzipFile objects work like ordinary files except that data is automatically compressed or decompressed.

GzipFile([filename [, mode [, compresslevel [, fileobj]]]])

Opens a GzipFile. filename is the name of a file, and mode is one of 'r', 'rb', 'a', 'ab', 'w', or 'wb'. The default is 'rb'. compresslevel is an integer from 1 to 9 that controls the level of compression. 1 is the fastest and produces the least compression; 9 is the slowest and produces the most compression (the default). fileobj is an existing file object that should be used. If supplied, it’s used instead of the file named by filename.

open(filename [, mode [, compresslevel]])

Same as GzipFile(filename, mode, compresslevel). The default mode is 'rb'. The default compresslevel is 9.

Notes

• Calling the close() method of a GzipFile object doesn’t close files passed in fileobj. This allows additional information to be written to a file after the compressed data.

• Files produced by the UNIX compress program are not supported.

• This module requires the zlib module.

shutil

The shutil module is used to perform high-level file operations such as copying, removing, and renaming. The functions in this module should only be used for proper files and directories. In particular, they do not work for special kinds of files on the file system such as named pipes, block devices, etc. Also, be aware that these functions don’t always correctly deal with advanced kinds of file metadata (e.g., resource forks, creator codes, etc.).

copy(src,dst)

Copies the file src to the file or directory dst, retaining file permissions. src and dst are strings.

copy2(src, dst)

Like copy() but also copies the last access and modification times.

copyfile(src, dst)

Copies the contents of src to dst. src and dst are strings.

copyfileobj(f1, f2 [, length])

Copies all data from open file object f1 to open file object f2. length specifies a maximum buffer size to use. A negative length will attempt to copy the data entirely with one operation (that is, all data will be read as a single chunk and then written).

copymode(src, dst)

Copies the permission bits from src to dst.

copystat(src, dst)

Copies the permission bits, last access time, and last modification time from src to dst. The contents, owner, and group of dst are unchanged.

copytree(src, dst, symlinks [,ignore]])

Recursively copies an entire directory tree rooted at src. The destination directory dst will be created (and should not already exist). Individual files are copied using copy2(). If symlinks is true, symbolic links in the source tree are represented as symbolic links in the new tree. If symlinks is false or omitted, the contents of linked files are copied to the new directory tree. ignore is an optional function that can be used to filter out specific files. As input, this function should accept a directory name and a list of directory contents. As a return value, it should return a list of filenames to be ignored. If errors occur during the copy process, they are collected and the Error exception is raised at the end of processing. The exception argument is a list of tuples containing (srcname, dstname, exception) for all errors that occurred.

ignore_pattern(pattern1, pattern2, ...)

Creates a function that can be used for ignoring all of the glob-style patterns given in pattern1, pattern2, etc. The returned function accepts as input two arguments, the first of which is a directory name and the second of which is a list of directory contents. As a result, a list of filenames to be ignored is returned. The primary use of the returned function is as the ignore parameter to the copytree() function shown earlier. However, the resulting function might also be used for operations involving the os.walk() function.

move(src, dst)

Moves a file or directory src to dst. Will recursively copy src if it is being moved to a different file system.

rmtree(path [, ignore_errors [, onerror]])

Deletes an entire directory tree. If ignore_errors is true, errors will be ignored. Otherwise, errors are handled by the onerror function (if supplied). This function must accept three parameters (func, path, and excinfo), where func is the function that caused the error (os.remove() or os.rmdir()), path is the pathname passed to the function, and excinfo is the exception information returned by sys.exc_info(). If an error occurs and onerror is omitted, an exception is raised.

tarfile

The tarfile module is used to manipulate tar archive files. Using this module, it is possible to read and write tar files, with or without compression.

is_tarfile(name)

Returns True if name appears to be a valid tar file that can be read by this module.

open([name [, mode [, fileobj [, bufsize]]]])

Creates a new TarFile object with the pathname name. mode is a string that specifies how the tar file is to be opened. The mode string is a combination of a file mode and a compression scheme specified as 'filemode[:compression]'. Valid combinations include the following:

[image: image]

The following modes are used when creating a TarFile object that only allows sequential I/O access (no random seeks):

[image: image]

If the parameter fileobj is specified, it must be an open file object. In this case, the file overrides any filename specified with name. bufsize specifies the block size used in a tar file. The default is 20*512 bytes.

A TarFile instance, t, returned by open() supports the following methods and attributes:

t.add(name [, arcname [, recursive]])

Adds a new file to the tar archive. name is the name of any kind of file (directory, symbolic link, and so on). arcname specifies an alternative name to use for the file inside the archive. recursive is a Boolean flag that indicates whether or not to recursively add the contents of directories. By default, it is set to True.

t.addfile(tarinfo [, fileobj])

Adds a new object to the tar archive. tarinfo is a TarInfo structure that contains information about the archive member. fileobj is an open file object from which data will be read and saved in the archive. The amount of data to read is determined by the size attribute of tarinfo.

t.close()

Closes the tar archive, writing two zero blocks to the end if the archive was opened for writing.

t.debug

Controls the amount of debugging information produced, with 0 producing no output and 3 producing all debugging messages. Messages are written to sys.stderr.

t.dereference

If this attribute is set to True, symbolic and hard links are dereferenced and the entire contents of the referenced file are added to the archive. If it’s set to False, just the link is added.

t.errorlevel

Determines how errors are handled when an archive member is being extracted. If this attribute is set to 0, errors are ignored. If it’s set to 1, errors result in OSError or IOError exceptions. If it’s set to 2, nonfatal errors additionally result in TarError exceptions.

t.extract(member [, path])

Extracts a member from the archive, saving it to the current directory. member is either an archive member name or a TarInfo instance. path is used to specify a different destination directory.

t.extractfile(member)

Extracts a member from the archive, returning a read-only file-like object that can be used to read its contents using read(), readline(), readlines(), seek(), and tell() operations. member is either an archive member name or a TarInfo object. If member refers to a link, an attempt will be made to open the target of the link.

t.getmember(name)

Looks up archive member name and returns a TarInfo object containing information about it. Raises KeyError if no such archive member exists. If member name appears more than once in the archive, information for the last entry is returned (which is assumed to be the more recent).

t.getmembers()

Returns a list of TarInfo objects for all members of the archive.

t.getnames()

Returns a list of all archive member names.

t.gettarinfo([name [, arcname [, fileobj]]])

Returns a TarInfo object corresponding to a file, name, on the file system or an open file object, fileobj. arcname is an alternative name for the object in the archive. The primary use of this function is to create an appropriate TarInfo object for use in methods such as add().

t.ignore_zeros

If this attribute is set to True, empty blocks are skipped when reading an archive. If it’s set to False (the default), an empty block signals the end of the archive. Setting this method to True may be useful for reading a damaged archive.

t.list([verbose])

Lists the contents of the archive to sys.stdout. verbose determines the level of detail. If this method is set to False, only the archive names are printed. Otherwise, full details are printed (the default).

t.next()

A method used for iterating over the members of an archive. Returns the TarInfo structure for the next archive member or None.

t.posix

If this attribute is set to True, the tar file is created according to the POSIX 1003.1-1990 standard. This places restrictions on filename lengths and file size (filenames must be less than 256 characters and files must be less than 8GB in size). If this attribute is set to False, the archive is created using GNU extensions that lift these restrictions. The default value is False.

Many of the previous methods manipulate TarInfo instances. The following table shows the methods and attributes of a TarInfo instance ti.

[image: image]

Exceptions

The following exceptions are defined by the tarfile module:

TarError

Base class for all other exceptions.

ReadError

Raised when an error occurs while opening a tar file (for example, when opening an invalid file).

CompressionError

Raised when data can’t be decompressed.

StreamError

Raised when an unsupported operation is performed on a stream-like TarFile object (for instance, an operation that requires random access).

ExtractError

Raised for nonfatal errors during extraction (only if errorlevel is set to 2).

Example

[image: image]

tempfile

The tempfile module is used to generate temporary filenames and files.

mkdtemp([suffix [,prefix [, dir]]])

Creates a temporary directory accessible only by the owner of the calling process and returns its absolute pathname. suffix is an optional suffix that will be appended to the directory name, prefix is an optional prefix that will be inserted at the beginning of the directory name, and dir is a directory where the temporary directory should be created.

mkstemp([suffix [,prefix [, dir [,text]]]])

Creates a temporary file and returns a tuple (fd, pathname), where fd is an integer file descriptor returned by os.open() and pathname is absolute pathname of the file. suffix is an optional suffix appended to the filename, prefix is an optional prefix inserted at the beginning of the filename, dir is the directory in which the file should be created, and text is a boolean flag that indicates whether to open the file in text mode or binary mode (the default). The creation of the file is guaranteed to be atomic (and secure) provided that the system supports the O_EXCL flag for os.open().

mktemp([suffix [, prefix [,dir]]])

Returns a unique temporary filename. suffix is an optional file suffix to append to the filename, prefix is an optional prefix inserted at the beginning of the filename, and dir is the directory in which the file is created. This function only generates a unique filename and doesn’t actually create or open a temporary file. Because this function generates a name before the file is actually opened, it introduces a potential security problem. To address this, consider using mkstemp() instead.

gettempdir()

Returns the directory in which temporary files are created.

gettempprefix()

Returns the prefix used to generate temporary files. Does not include the directory in which the file would reside.

TemporaryFile([mode [, bufsize [, suffix [,prefix [, dir]]]]])

Creates a temporary file using mkstemp() and returns a file-like object that supports the same methods as an ordinary file object. mode is the file mode and defaults to 'w+b'. bufsize specifies the buffering behavior and has the same meaning as for the open() function. suffix, prefix, and dir have the same meaning as for mkstemp(). The object returned by this function is only a wrapper around a built-in file object that’s accessible in the file attribute. The file created by this function is automatically destroyed when the temporary file object is destroyed.

NamedTemporaryFile([mode [, bufsize [, suffix [,prefix [, dir [, delete]]]]]])

Creates a temporary file just like TemporaryFile() but makes sure the filename is visible on the file system. The filename can be obtained by accessing the name attribute of the returned file object. Note that certain systems may prevent the file from being reopened using this name until the temporary file has been closed. The delete parameter, if set to True (the default), forces the temporary file to be deleted as soon as it is closed.

SpooledTemporaryFile([max_size [, mode [, bufsize [, suffix [, prefix [, dir]]]]]])

Creates a temporary file such as TemporaryFile except that the file contents are entirely held in memory until they exceed the size given in max_size. This internal spooling is implemented by first holding the file contents in a StringIO object until it is necessary to actually go to the file system. If any kind of low-level file I/O operation is performed involving the fileno() method, the memory contents are immediately written to a proper temporary file as defined by the TemporaryFile object. The file object returned by SpooledTemporaryFile also has a method rollover() that can be used to force the contents to be written to the file system.

Two global variables are used to construct temporary names. They can be assigned to new values if desired. Their default values are system-dependent.

[image: image]

Note

By default, the tempfile module creates files by checking a few standard locations. For example, on UNIX, files are created in one of /tmp, /var/tmp, or /usr/tmp. On Windows, files are created in one of C:\TEMP, C:\TMP, \TEMP, or \TMP. These directories can be overridden by setting one or more of the TMPDIR, TEMP, and TMP environment variables. If, for whatever reason, temporary files can’t be created in any of the usual locations, they will be created in the current working directory.

zipfile

The zipfile module is used to manipulate files encoded in the popular zip format (originally known as PKZIP, although now supported by a wide variety of programs). Zip files are widely used by Python, mainly for the purpose of packaging. For example, if zip files containing Python source code are added to sys.path, then files contained within the zip file can be loaded via import (the zipimport library module implements this functionality, although it’s never necessary to use that library directly). Packages distributed as .egg files (created by the setuptools extension) are also just zip files in disguise (an .egg file is actually just a zip file with some extra metadata added to it).

The following functions and classes are defined by the zipfile module:

is_zipfile(filename)

Tests filename to see if it’s a valid zip file. Returns True if filename is a zip file; returns False otherwise.

ZipFile(filename [, mode [, compression [,allowZip64]]])

Opens a zip file, filename, and returns a ZipFile instance. mode is 'r' to read from an existing file, 'w' to truncate the file and write a new file, or 'a' to append to an existing file. For 'a' mode, if filename is an existing zip file, new files are added to it. If filename is not a zip file, the archive is simply appended to the end of the file. compression is the zip compression method used when writing to the archive and is either ZIP_STORED or ZIP_DEFLATED. The default is ZIP_STORED. The allowZip64 argument enables the use of ZIP64 extensions, which can be used to create zip files that exceed 2GB in size. By default, this is set to False.

PyZipFile(filename [, mode[, compression [,allowZip64]]])

Opens a zip file like ZipFile() but returns a special PyZipFile instance with one extra method, writepy(), used to add Python source files to the archive.

ZipInfo([filename [, date_time]])

Manually creates a new ZipInfo instance, used to contain information about an archive member. Normally, it’s not necessary to call this function except when using the z.writestr() method of a ZipFile instance (described later). The filename and date_time arguments supply values for the filename and date_time attributes described below.

An instance, z, of ZipFile or PyZipFile supports the following methods and attributes:

z.close()

Closes the archive file. This must be called in order to flush records to the zip file before program termination.

z.debug

Debugging level in the range of 0 (no output) to 3 (most output).

z.extract(name [, path [, pwd]])

Extracts a file from the archive and places it in the current working directory. name is either a string that fully specifies the archive member or a ZipInfo instance. path specifies a different directory in which the file will extracted, and pwd is the password to use for encrypted archives.

z.extractall([path [members [, pwd]]])

Extracts all members of an archive into the current working directory. path specifies a different directory, and pwd is a password for encrypted archives. members is a list of members to extract, which must be a proper subset of the list returned by the namelist() method (described next).

z.getinfo(name)

Returns information about the archive member name as a ZipInfo instance (described shortly).

z.infolist()

Returns a list of ZipInfo objects for all the members of the archive.

z.namelist()

Returns a list of the archive member names.

z.open(name [, mode [, pwd]])

Opens an archive member named name and returns a file-like object for reading the contents. name can either be a string or a ZipInfo instance describing one of the archive members. mode is the file mode and must be one of the read-only file modes such as 'r', 'rU', or 'U'. pwd is the password to use for encrypted archive members. The file object that is returned supports the read(), readline(), and readlines() methods as well as iteration with the for statement.

z.printdir()

Prints the archive directory to sys.stdout.

z.read(name [,pwd])

Reads archive contents for member name and returns the data as a string. name is either a string or a ZipInfo instance describing the archive member. pwd is the password to use for encrypted archive members.

z.setpassword(pwd)

Sets the default password used to extract encrypted files from the archive.

z.testzip()

Reads all the files in the archive and verifies their CRC checksums. Returns the name of the first corrupted file or None if all files are intact.

z.write(filename[, arcname[, compress_type]])

Writes filename to the archive with the archive name arcname. compress_type is the compression parameter and is either ZIP_STORED or ZIP_DEFLATED. By default, the compression parameter given to the ZipFile() or PyZipFile() function is used. The archive must be opened in 'w' or 'a' mode for writes to work.

z.writepy(pathname)

This method, available only with PyZipFile instances, is used to write Python source files (*.py files) to a zip archive and can be used to easily package Python applications for distribution. If pathname is a file, it must end with .py. In this case, one of the corresponding .pyo, .pyc, or .py files will be added (in that order). If pathname is a directory and the directory is not a Python package directory, all the corresponding .pyo, .pyc, or .py files are added at the top level. If the directory is a package, the files are added under the package name as a file path. If any subdirectories are also package directories, they are added recursively.

z.writestr(arcinfo, s)

Writes the string s into the zip file. arcinfo is either a filename within the archive in which the data will be stored or a ZipInfo instance containing a filename, date, and time.

ZipInfo instances i returned by the ZipInfo(), z.getinfo(), and z.infolist() functions have the following attributes:

[image: image]

Note

Detailed documentation about the internal structure of zip files can be found as a PKZIP Application Note at http://www.pkware.com/appnote.html.

zlib

The zlib module supports data compression by providing access to the zlib library.

adler32(string [, value])

Computes the Adler-32 checksum of string. value is used as the starting value (which can be used to compute a checksum over the concatenation of several strings). Otherwise, a fixed default value is used.

compress(string [, level])

Compresses the data in string, where level is an integer from 1 to 9 controlling the level of compression. 1 is the least (fastest) compression, and 9 is the best (slowest) compression. The default value is 6. Returns a string containing the compressed data or raises error if an error occurs.

compressobj([level])

Returns a compression object. level has the same meaning as in the compress() function.

crc32(string [, value])

Computes a CRC checksum of string. If value is present, it’s used as the starting value of the checksum. Otherwise, a fixed value is used.

decompress(string [, wbits [, buffsize]])

Decompresses the data in string. wbits controls the size of the window buffer, and buffsize is the initial size of the output buffer. Raises error if an error occurs.

decompressobj([wbits])

Returns a compression object. The wbits parameter controls the size of the window buffer.

A compression object, c, has the following methods:

c.compress(string)

Compresses string. Returns a string containing compressed data for at least part of the data in string. This data should be concatenated to the output produced by earlier calls to c.compress() to create the output stream. Some input data may be stored in internal buffers for later processing.

c.flush([mode])

Compresses all pending input and returns a string containing the remaining compressed output. mode is Z_SYNC_FLUSH, Z_FULL_FLUSH, or Z_FINISH (the default). Z_SYNC_FLUSH and Z_FULL_FLUSH allow further compression and are used to allow partial error recovery on decompression. Z_FINISH terminates the compression stream.

A decompression object, d, has the following methods and attributes:

d.decompress(string [,max_length])

Decompresses string and returns a string containing uncompressed data for at least part of the data in string. This data should be concatenated with data produced by earlier calls to decompress() to form the output stream. Some input data may be stored in internal buffers for later processing. max_length specifies the maximum size of returned data. If exceeded, unprocessed data will be placed in the d.unconsumed_tail attribute.

d.flush()

All pending input is processed, and a string containing the remaining uncompressed output is returned. The decompression object cannot be used again after this call.

d.unconsumed_tail

String containing data not yet processed by the last decompress() call. This would contain data if decompression needs to be performed in stages due to buffer size limitations. In this case, this variable would be passed to subsequent decompress() calls.

d.unused_data

String containing extra bytes that remain past the end of the compressed data.

Note

The zlib library is available at http://www.zlib.net.

19. Operating System Services

The modules in this chapter provide access to a wide variety of operating system services with an emphasis on low-level I/O, process management, and the operating environment. Modules that are commonly used in conjunction with writing systems programs are also included—for example, modules to read configuration files, write log files, and so forth. Chapter 18, “File and Directory Handling,” covers high-level modules related to file and filesystem manipulation—the material presented here tends be at a lower level than that.

Most of Python’s operating system modules are based on POSIX interfaces. POSIX is a standard that defines a core set of operating system interfaces. Most UNIX systems support POSIX, and other platforms such as Windows support large portions of the interface. Throughout this chapter, functions and modules that only apply to a specific platform are noted as such. UNIX systems include both Linux and Mac OS X. Windows systems include all versions of Windows unless otherwise noted.

Readers may want to supplement the material presented here with additional references. The C Programming Language, Second Edition by Brian W. Kernighan and Dennis M. Ritchie (Prentice Hall, 1989) provides a good overview of files, file descriptors, and the low-level interfaces on which many of the modules in this section are based. More advanced readers may want to consult a book such as Advanced Programming in the UNIX Environment, 2nd Edition by W. Richard Stevens and Stephen Rago (Addison Wesley, 2005). For an overview of general concepts, you may want to locate a college textbook on operating systems. However, given the high cost and limited day-to-day practical utility of these books, you’re probably better off asking a nearby computer science student to loan you their copy for a weekend.

commands

The commands module is used to execute simple system commands specified as a string and return their output as a string. It only works on UNIX systems. The functionality provided by this module is somewhat similar to using backquotes (`) in a UNIX shell script. For example, typing x = commands.getoutput('ls –l') is similar to saying x=`ls –l`.

getoutput(cmd)

Executes cmd in a shell and returns a string containing both the standard output and standard error streams of the command.

getstatusoutput(cmd)

Like getoutput(), except that a 2-tuple (status,
output) is returned, where status is the exit code, as returned by the os.wait() function, and output is the string returned by getoutput().

Notes

• This module is only available in Python 2. In Python 3, both of the previous functions are found in the subprocess module.

• Although this module can be used for simple shell operations, you are almost always better off using the subprocess module for launching subprocesses and collecting their output.

See Also:

subprocess (p. 402)

ConfigParser, configparser

The ConfigParser module (called configparser in Python 3) is used to read .ini format configuration files based on the Windows INI format. These files consist of named sections, each with its own variable assignments such as the following:

[image: Image]

The ConfigParser Class

The following class is used to manage configuration variables:

ConfigParser([defaults [, dict_type]])

Creates a new ConfigParser instance. defaults is an optional dictionary of values that can be referenced in configuration variables by including string format specifiers such as '%(key)s’ where key is a key of defaults. dict_type specifies the type of dictionary that is used internally for storing configuration variables. By default, it is dict (the built-in dictionary).

An instance c of ConfigParser has the following operations:

c.add_section(section)

Adds a new section to the stored configuration parameters. section is a string with the section name.

c.defaults()

Returns the dictionary of default values.

c.get(section, option [, raw [, vars]])

Returns the value of option option from section section as a string. By default, the returned string is processed through an interpolation step where format strings such as '%(option)s' are expanded. In this case, option may the name of another configuration option in the same section or one of the default values supplied in the defaults parameter to ConfigParser. raw is a Boolean flag that disables this interpolation feature, returning the option unmodified. vars is an optional dictionary containing more values for use in '%' expansions.

c.getboolean(section, option)

Returns the value of option from section section converted to Boolean value. Values such as "0", "true", "yes", "no", "on", and "off" are all understood and checked in a case-insensitive manner. Variable interpolation is always performed by this method (see c.get()).

c.getfloat(section, option)

Returns the value of option from section section converted to a float with variable interpolation.

c.getint(section, option)

Returns the value of option from section section converted to an integer with variable interpolation.

c.has_option(section, option)

Returns True if section section has an option named option.

c.has_section(section)

Returns True if there is a section named section.

c.items(section [, raw [, vars]])

Returns a list of (option,
value) pairs from section section. raw is a Boolean flag that disables the interpolation feature if set to True. vars is a dictionary of additional values that can be used in '%’ expansions.

c.options(section)

Returns a list of all options in section section.

c.optionxform(option)

Transforms the option name option to the string that’s used to refer to the option. By default, this is a lowercase conversion.

c.read(filenames)

Reads configuration options from a list of filenames and stores them. filenames is either a single string, in which case that is the filename that is read, or a list of filenames. If any of the given filenames can’t be found, they are ignored. This is useful if you want to read configuration files from many possible locations, but where such files may or may not be defined. A list of the successfully parsed filenames is returned.

c.readfp(fp [, filename])

Reads configuration options from a file-like object that has already been opened in fp. filename specifies the filename associated with fp (if any). By default, the filename is taken from fp.name or is set to '<???>' if no such attribute is defined.

c.remove_option(section, option)

Removes option from section section.

c.remove_section(section)

Removes section section.

c.sections()

Returns a list of all section names.

c.set(section, option, value)

Sets a configuration option option to value in section section. value should be a string.

c.write(file)

Writes all of the currently held configuration data to file. file is a file-like object that has already been opened.

Example

The ConfigParser module is often overlooked, but it is an extremely useful tool for controlling programs that have an extremely complicated user configuration or runtime environment. For example, if you’re writing a component that has to run inside of a large framework, a configuration file is often an elegant way to supply runtime parameters. Similarly, a configuration file may be a more elegant approach than having a program read large numbers of command-line options using the optparse module. There are also subtle, but important, differences between using configuration files and simply reading configuration data from a Python source script.

The following few examples illustrate some of the more interesting features of the ConfigParser module. First, consider a sample .ini file:

[image: Image]

The following code illustrates how you read a configuration file and supply default values to some of the variables:

[image: Image]

After you have read a configuration file, you use the get() method to retrieve option values. For example:

[image: Image]

Here, you immediately see some interesting features. First, configuration parameters are case insensitive. Thus, if your program is reading a parameter 'logfile', it does not matter if the configuration file uses 'logfile', 'LOGFILE', or 'LogFile'. Second, configuration parameters can include variable substitutions such as '%(BASEDIR)s' and '%(LOGDIR)s' as seen in the file. These substitutions are also case insensitive. Moreover, the definition order of configuration parameters does not matter in these substitutions. For example, in appconfig.ini, the LOGFILE parameter makes a reference to the LOGDIR parameter, which is defined later in the file. Finally, values in configuration files are often interpreted correctly even if they don’t exactly match Python syntax or datatypes. For example, the 'on' value of the LOGGING parameter is interpreted as True by the cfg.getboolean() method.

Configuration files also have the ability to be merged together. For example, suppose the user had their own configuration file with custom settings:

[image: Image]

You can merge the contents of this file in with already loaded configuration parameters. For example:

[image: Image]

Here, you will notice that the newly loaded configuration selectively replaces the parameters that were already defined. Moreover, if you change one of the configuration parameters that’s used in variable substitutions of other configuration parameters, the changes correctly propagate. For example, the new setting of BASEDIR in the input section affects previously defined configuration parameters in that section such as INFILE. This behavior is an important but subtle difference between using a config file and simply defining a set of program parameters in a Python script.

Notes

Two other classes can be used in place of ConfigParser. The class RawConfigParser provides all of the functionality of ConfigParser but doesn’t perform any variable interpolation. The SafeConfigParser class provides the same functionality as ConfigParser, but it addresses some subtle problems that arise if configuration values themselves literally include special formatting characters used by the interpolation feature (e.g., '%').

datetime

The datetime module provides a variety of classes for representing and manipulating dates and times. Large parts of this module are simply related to different ways of creating and outputting date and time information. Other major features include mathematical operations such as comparisons and calculations of time deltas. Date manipulation is a complex subject, and readers would be strongly advised to consult Python’s online documentation for an introductory background concerning the design of this module.

date Objects

A date object represents a simple date consisting of a year, month, and day. The following four functions are used to create dates:

date(year, month, day)

Creates a new date object. year is an integer in the range datetime.MINYEAR to datetime.MAXYEAR. month is an integer in the range 1 to 12, and day is an integer in the range 1 to the number of days in the given month. The returned date object is immutable and has the attributes year, month, and day corresponding to the values of the supplied arguments.

date.today()

A class method that returns a date object corresponding to the current date.

date.fromtimestamp(timestamp)

A class method that returns a date object corresponding to the timestamp timestamp. timestamp is a value returned by the time.time() function.

date.fromordinal(ordinal)

A class method that returns a date object corresponding to an ordinal number of days from the minimum allowable date (January 1 of year 1 has ordinal value 1 and January 1, 2006 has ordinal value 732312).

The following class attributes describe the maximum rate and resolution of date instances.

date.min

Class attribute representing the earliest date that can be represented (datetime.date(1,1,1)).

date.max

Class attribute representing the latest possible date (datetime.date(9999,12,31)).

date.resolution

Smallest resolvable difference between non-equal date objects (datetime.timedelta(1)).

An instance, d, of date has read-only attributes d.year, d.month, and d.day and additionally provides the following methods:

d.ctime()

Returns a string representing the date in the same format as normally used by the time.ctime() function.

d.isocalendar()

Returns the date as a tuple (iso_year,
iso_week,
iso_weekday), where iso_week is in the range 1 to 53 and iso_weekday is the range 1 (Monday) to 7 (Sunday). The first iso_week is the first week of the year that contains a Thursday. The range of values for the three tuple components are determined by the ISO 8601 standard.

d.isoformat()

Returns an ISO 8601–formatted string of the form 'YYYY-MM-DD' representing the date.

d.isoweekday()

Returns the day of the week in the range 1 (Monday) to 7 (Sunday).

d.replace([year [, month [, day]]])

Returns a new date object with one or more of the supplied components replaced by a new value. For example, d.replace(month=4) returns a new date where the month has been replaced by 4.

d.strftime(format)

Returns a string representing the date formatted according to the same rules as the time.strftime() function. This function only works for dates later than the year 1900. Moreover, format codes for components missing from date objects (such as hours, minutes, and so on) should not be used.

d.timetuple()

Returns a time.struct_time object suitable for use by functions in the time module. Values related to the time of day (hours, minutes, seconds) will be set to 0.

d.toordinal()

Converts d to an ordinal value. January 1 of year 1 has ordinal value 1.

d.weekday()

Returns the day of the week in the range 0 (Monday) to 6 (Sunday).

time Objects

time objects are used to represent a time in hours, minutes, seconds, and microseconds. Times are created using the following class constructor:

time(hour [, minute [, second [, microsecond [, tzinfo]]]])

Creates a time object representing a time where 0 <=
hour
< 24, 0 <=
minute
< 60, 0 <=
second
< 60, and 0 <=
microsecond
< 1000000. tzinfo provides time zone information and is an instance of the tzinfo class described later in this section. The returned time object has the attributes hour, minute, second, microsecond, and tzinfo, which hold the corresponding values supplied as arguments.

The following class attributes of time describe the range of allowed values and resolution of time instances:

time.min

Class attribute representing the minimum representable time (datetime.time(0,0)).

time.max

Class attribute representing the maximum representable time (datetime.time(23,59, 59, 999999)).

time.resolution

Smallest resolvable difference between non-equal time objects (datetime.timedelta(0,0,1)).

An instance, t, of a time object has attributes t.hour, t.minute, t.second, t.microsecond, and t.tzinfo in addition to the following methods:

t.dst()

Returns the value of t.tzinfo.dst(None). The returned object is a timedelta object. If no time zone is set, None is returned.

t.isoformat()

Returns a string representing the time as 'HH:MM:SS.mmmmmm'. If the microseconds are 0, that part of the string is omitted. If time zone information has been supplied, the time may have an offset added to it (for example, 'HH:MM:SS.mmmmmm+HH:MM').

t.replace([hour [, minute [, second [, microsecond [, tzinfo]]]]])

Returns a new time object, where one or more components have been replaced by the supplied values. For example, t.replace(second=30) changes the seconds field to 30 and returns a new time object. The arguments have the same meaning as those supplied to the time() function shown earlier.

t.strftime(format)

Returns a string formatted according to the same rules as the time.strftime() function in the time module. Because date information is unavailable, only the formatting codes for time-related information should be used.

t.tzname()

Returns the value of t.tzinfo.tzname(). If no time zone is set, None is returned.

t.utcoffset()

Returns the value of t.tzinfo.utcoffset(None). The returned object is a timedelta object. If no time zone has been set, None is returned.

datetime objects

datetime objects are used to represent dates and times together. There are many possible ways to create a datetime instance:

datetime(year, month, day [, hour [, minute [, second [, microsecond [, tzinfo]]]]])

Creates a new datetime object that combines all the features of date and time objects. The arguments have the same meaning as arguments provided to date() and time().

datetime.combine(date,time)

A class method that creates a datetime object by combining the contents of a date object, date, and a time object, time.

datetime.fromordinal(ordinal)

A class method that creates a datetime object given an ordinal day (integer number of days since datetime.min). The time components are all set to 0, and tzinfo is set to None.

datetime.fromtimestamp(timestamp [, tz])

A class method that creates a datetime object from a timestamp returned by the time.time() function. tz provides optional time zone information and is a tzinfo instance.

datetime.now([tz])

A class method that creates a datetime object from the current local date and time. tz provides optional time zone information and is an instance of tzinfo.

datetime.strptime(datestring, format)

A class method that creates a datetime object by parsing the date string in datestring according to the date format in format. The parsing is performed using the strptime() function in the time module.

datetime.utcfromtimestamp(timestamp)

A class method that creates a datetime object from a timestamp typically returned by time.gmtime().

datetime.utcnow()

A class method that creates a datetime object from the current UTC date and time.

The following class attributes describe the range of allowed dates and resolution:

datetime.min

Earliest representable date and time (datetime.datetime(1,1,1,0,0)).

datetime.max

Latest representable date and time (datetime.datetime(9999,12,31,23,59,59,999999)).

datetime.resolution

Smallest resolvable difference between non-equal datetime objects (datetime.timedelta(0,0,1)).

An instance, d, of a datetime object has the same methods as date and time objects combined. In additional, the following methods are available:

d.astimezone(tz)

Returns a new datetime object but in a different time zone, tz. The members of the new object will be adjusted to represent the same UTC time but in the time zone tz.

d.date()

Returns a date object with the same date.

d.replace([year [, month [, day [, hour [, minute [, second [, microsecond [, tzinfo]]]]]]])

Returns a new datetime object with one or more of the listed parameters replaced by new values. Use keyword arguments to replace an individual value.

d.time()

Returns a time object with the same time. The resulting time object has no time zone information set.

d.timetz()

Returns a time object with the same time and time zone information.

d.utctimetuple()

Returns a time.struct_time object containing date and time information normalized to UTC time.

timedelta objects

timedelta objects represent the difference between two dates or times. These objects are normally created as the result of computing a difference between two datetime instances using the - operator. However, they can be manually constructed using the following class:

timedelta([days [, seconds [, microseconds [, milliseconds [, minutes [, hours [, weeks]]]]]]])

Creates a timedelta object that represents the difference between two dates and times. The only significant parameters are days, seconds, and microseconds, which are used internally to represent a difference. The other parameters, if supplied, are converted into days, seconds, and microseconds. The attributes days, seconds, and microseconds of the returned timedelta object contain these values.

The following class attributes describe the maximum range and resolution of timedelta instances:

timedelta.min

The most negative timedelta object that can be represented (timedelta(-999999999))

timedelta.max

The most positive timedelta object that can be represented (timedelta(days=999999999, hours=23, minutes=59, seconds=59, microseconds=999999)).

timedelta.resolution

A timedelta object representing the smallest resolvable difference between non-equal timedelta objects (timedelta(microseconds=1)).

Mathematical Operations Involving Dates

A significant feature of the datetime module is that it supports mathematical operations involving dates. Both date and datetime objects support the following operations:

[image: image]

When comparing dates, you must use care when time zone information has been supplied. If a date includes tzinfo information, that date can only be compared with other dates that include tzinfo; otherwise, a TypeError is generated. When two dates in different time zones are compared, they are first adjusted to UTC before being compared.

timedelta objects also support a variety of mathematical operations:

[image: image]

Here are some examples:

[image: image]

In addition to these operations, all date, datetime, time, and timedelta objects are immutable. This means that they can be used as dictionary keys, placed in sets, and used in a variety of other operations.

tzinfo Objects

Many of the methods in the datetime module manipulate special tzinfo objects that represent information about a time zone. tzinfo is merely a base class. Individual time zones are created by inheriting from tzinfo and implementing the following methods:

tz.dst(dt)

Returns a timedelta object representing daylight savings time adjustments, if applicable. Returns None if no information is known about DST. The argument dt is either a datetime object or None.

tz.fromutc(dt)

Converts a datetime object, dt, from UTC time to the local time zone and returns a new datetime object. This method is called by the astimezone() method on datetime objects. A default implementation is already provided by tzinfo, so it’s usually not necessary to redefine this method.

tz.tzname(dt)

Returns a string with the name of the time zone (for example, "US/Central"). dt is either a datetime object or None.

tz.utcoffset(dt)

Returns a timedelta object representing the offset of local time from UTC in minutes east of UTC. The offset incorporates all elements that make up the local time, including daylight savings time, if applicable. The argument dt is either a datetime object or None.

The following example shows a basic prototype of how one would define a time zone:

[image: Image]

A number of examples of defining time zones can also be found in the online documentation for datetime.

Date and Time Parsing

A common question that arises with date handling is how to parse different kinds of time and date strings into an appropriate datetime object. The only parsing function that is really provided by the datetime module is datetime.strptime(). However, in order to use this, you need to specify the precise date format using various combinations of format codes (see time.strptime()). For example, to parse the date string s="Aug 23, 2008", you would have to use d = datetime.datetime.strptime(s, "%b %d, %Y").

For “fuzzy” date parsing that automatically understands a number of common date formats, you must turn to third-party modules. Go to the Python Package Index (http://pypi.python.org) and do a search for “datetime” to find a wide variety of utility modules that expand the feature set of the datetime module.

See also:

time (p. 405)

errno

The errno module defines symbolic names for the integer error codes returned by various operating system calls, especially those found in the os and socket modules. These codes are typically found in the errno attribute of an OSError or IOError exception. The os.strerror() function can be used to translate an error code into a string error message. The following dictionary can also be used to translate an integer error code into its symbolic name:

errorcode

This dictionary maps errno integers to symbolic names (such as 'EPERM').

POSIX Error Codes

The following table shows the POSIX symbolic names for common system error codes. The error codes listed here are supported on almost every version of UNIX, Macintosh OS-X, and Windows. Different UNIX systems may provide additional error codes that are less common and not listed here. If such errors occur, you can consult the errorcode dictionary to find the appropriate symbolic name to use in your program.

[image: image]

[image: image]

[image: image]

Windows Error Codes

The error codes in the following table are only available on Windows.

[image: image]

[image: image]

fcntl

The fcntl module performs file and I/O control on UNIX file descriptors. File descriptors can be obtained using the fileno() method of a file or socket object.

fcntl(fd, cmd [, arg])

Performs a command, cmd, on an open file descriptor, fd. cmd is an integer command code. arg is an optional argument that’s either an integer or a string. If arg is passed as an integer, the return value of this function is an integer. If arg is a string, it’s interpreted as a binary data structure, and the return value of the call is the contents of the buffer converted back into a string object. In this case, the supplied argument and return value should be less than 1,024 bytes to avoid possible data corruption. The following commands are available:

[image: image]

An IOError exception is raised if the fcntl() function fails. The F_GETLK and F_SETLK commands are supported through the lockf() function.

ioctl(fd, op, arg [, mutate_flag])

This function is like the fcntl() function, except that the operations supplied in op are generally defined in the library module termios. The extra mutate_flag controls the behavior of this function when a mutable buffer object is passed as an argument. Further details about this can be found in the online documentation. Because the primary use of ioctl() is to interact with device-drivers and other low-level components of the operating system, its use depends highly on the underlying platform. It should not be used in code that aims to be portable.

flock(fd, op)

Performs a lock operation, op, on the file descriptor fd. op is the bitwise OR of the following constants, which are found in fnctl:

[image: image]

In nonblocking mode, an IOError exception is raised if the lock cannot be acquired. On some systems, the process of opening and locking a file can be performed in a single operation by adding special flags to the os.open() operation. Consult the os module for more details.

lockf(fd, op [, len [, start [, whence]]])

Performs record or range locking on part of a file. op is the same as for the flock() function. len is the number of bytes to lock. start is the starting position of the lock relative to the value of whence. whence is 0 for the beginning of the file, 1 for the current position, and 2 for the end of the file.

Example

[image: Image]

Notes

• The set of available fcntl() commands and options is system-dependent. The fcntl module may contain more than 100 constants on some platforms.

• Although locking operations defined in other modules often make use of the context-manager protocol, this is not the case for file locking. If you acquire a file lock, make sure your code is written to properly release the lock.

• Many of the functions in this module can also be applied to the file descriptors of sockets.

io

The io module implements classes for various forms of I/O as well as the built-in open() function that is used in Python 3. The module is also available for use in Python 2.6.

The central problem addressed by the io module is the seamless handling of different forms of basic I/O. For example, working with text is slightly different than working with binary data because of issues related to newlines and character encodings. To handle these differences, the module is built as a series of layers, each of which adds more functionality to the last.

Base I/O Interface

The io module defines a basic I/O programming interface that all file-like objects implement. This interface is defined by a base class IOBase. An instance f of IOBase supports these basic operations:

[image: image]

Raw I/O

The lowest level of the I/O system is related to direct I/O involving raw bytes. The core object for this is FileIO, which provides a fairly direct interface to low-level system calls such as read() and write().

FileIO(name [, mode [, closefd]])

A class for performing raw low-level I/O on a file or system file descriptor. name is either a filename or an integer file descriptor such as that returned by the os.open() function or the fileno() method of other file objects. mode is one of 'r' (the default); 'w'; or 'a' for reading, writing, or appending. A '+’ can be added to the mode for update mode in which both reading and writing is supported. closefd is a flag that determines if the close() method actually closes the underlying file. By default, this is True, but it can be set False if you’re using FileIO to put a wrapper around a file that was already opened elsewhere. If a filename was given, the resulting file object is opened directly using the operating system’s open() call. There is no internal buffering, and all data is processed as raw byte strings. An instance f of FileIO has all of the basic I/O operations described earlier plus the following attributes and methods:

[image: image]

It is important to emphasize that FileIO objects are extremely low-level, providing a rather thin layer over operating system calls such as read() and write(). Specifically, users of this object will need to diligently check return codes as there is no guarantee that the f.read() or f.write() operations will read or write all of the requested data. The fcntl module can be used to change low-level aspects of files such as file locking, blocking behavior, and so forth.

FileIO objects should not be used for line-oriented data such as text. Although methods such as f.readline() and f.readlines() are defined, these come from the IOBase base class where they are both implemented entirely in Python and work by issuing f.read() operations for a single byte at a time. Needless to say, the resulting performance is horrible. For example, using f.readline() on a FileIO object f is more than 750 times slower than using f.readline() on a standard file object created by the open() function in Python 2.6.

Buffered Binary I/O

The buffered I/O layer contains a collection of file objects that read and write raw binary data, but with in-memory buffering. As input, these objects all require a file object that implements raw I/O such as the FileIO object in the previous section. All of the classes in this section inherit from BufferedIOBase.

BufferedReader(raw [, buffer_size])

A class for buffered binary reading on a raw file specified in raw. buffer_size specifies the buffer size to use in bytes. If omitted, the value of DEFAULT_BUFFER_SIZE is used (8,192 bytes as of this writing). An instance f of BufferedReader supports all of the operations provided on IOBase in addition to these operations:

[image: image]

BufferedWriter(raw [, buffer_size [, max_buffer_size]])

A class for buffered binary writing on a raw file specified in raw. buffer_size specifies the number of bytes that can be saved in the buffer before data is flushed to the underlying I/O stream. The default value is DEFAULT_BUFFER_SIZE. max_buffer_size specifies the maximum buffer size to use for storing output data that is being written to a non-blocking stream and defaults to twice the value of buffer_size. This value is larger to allow for continued writing while the previous buffer contents are written to the I/O stream by the operating system. An instance f of BufferedWriter supports the following operations:

[image: image]

BufferedRWPair(reader, writer [, buffer_size [, max_buffer_size]])

A class for buffered binary reading and writing on a pair of raw I/O streams. reader is a raw file that supports reading, and writing is a raw file that supports writing. These files may be different, which may be useful for certain kinds of communication involving pipes and sockets. The buffer size parameters have the same meaning as for BufferedWriter. An instance f of BufferedRWPair supports all of the operations for BufferedReader and BufferedWriter.

BufferedRandom(raw [, buffer_size [, max_buffer_size]])

A class for buffered binary reading and writing on a raw I/O stream that supports random access (e.g., seeking). raw must be a raw file that supports both read, write, and seek operations. The buffer size parameters have the same meaning as for BufferedWriter. An instance f of BufferedRandom supports all of the operations for BufferedReader and BufferedWriter.

BytesIO([bytes])

An in-memory file that implements the functionality of a buffered I/O stream. bytes is a byte string that specifies the initial contents of the file. An instance b of BytesIO supports all of the operations of BufferedReader and BufferedWriter objects. In addition, a method b.getvalue() can be used to return the current contents of the file as a byte string.

As with FileIO objects, all the file objects in this section should not be used with line-oriented data such as text. Although it’s not quite as bad due to buffering, the resulting performance is still quite poor (e.g., more than 50 times slower than reading lines with files created using the Python 2.6 built-in open() function). Also, because of internal buffering, you need to take care to manage flush() operations when writing. For example, if you use f.seek() to move the file pointer to a new location, you should first use f.flush() to flush any previously written data (if any).

Also, be aware that the buffer size parameters only specify a limit at which writes occur and do not necessarily set a limit on internal resource use. For example, when you do a f.write(data) on a buffered file f, all of the bytes in data are first copied into the internal buffers. If data represents a very large byte array, this copying will substantially increase the memory use of your program. Thus, it is better to write large amounts of data in reasonably sized chunks, not all at once with a single write() operation. It should be noted that because the io module is relatively new, this behavior might be different in future versions.

Text I/O

The text I/O layer is used to process line-oriented character data. The classes defined in this section build upon buffered I/O streams and add line-oriented processing as well as Unicode character encoding and decoding. All of the classes here inherit from TextIOBase.

TextIOWrapper(buffered [, encoding [, errors [, newline [, line_buffering]]]])

A class for a buffered text stream. buffered is a buffered I/O as described in the previous section. encoding is a string such as 'ascii' or 'utf-8' that specifies the text encoding. errors specifies the Unicode error-handling policy and is 'strict' by default (see Chapter 9, “Input and Output,” for a description). newline is the character sequence representing a newline and may be None, '', '\n', '\r', or '\r\n'. If None is given, then universal newline mode is enabled in which any of the other line endings are translated into '\n' when reading and os.linesep is used as the newline on output. If newline is one of the other values, then all '\n' characters are translated into the specified newline on output. line_buffering is a flag that controls whether or not a flush() operation is performed when any write operation contains the newline character. By default, this is False. An instance f of TextIOWrapper supports all of the operations defined on IOBase as well as the following:

[image: image]

StringIO([initial [, encoding [, errors [, newline]]]])

An in-memory file object with the same behavior as a TextIOWrapper. initial is a string that specifies the initial contents of the file. The other parameters have the same meaning as with TextIOWrapper. An instance s of StringIO supports all of the usual file operations, in addition to a method s.getvalue() that returns the current contents of the memory buffer.

The open() Function

The io module defines the following open() function, which is the same as the built-in open() function in Python 3.

open(file [, mode [, buffering [, encoding [, errors [, newline [, closefd]]]]]])

Opens file and returns an appropriate I/O object. file is either a string specifying the name of a file or an integer file descriptor for an I/O stream that has already been opened. The result of this function is one of the I/O classes defined in the io module depending on the settings of mode and buffering. If mode is any of the text modes such as 'r', 'w', 'a', or 'U', then an instance of TextIOWrapper is returned. If mode is a binary mode such as 'rb' or 'wb', then the result depends on the setting of buffering. If buffering is 0, then an instance of FileIO is returned for performing raw unbuffered I/O. If buffering is any other value, then an instance of BufferReader, BufferedWriter, or BufferedRandom is returned depending on the file mode. The encoding, errors, and errors parameters are only applicable to files opened in text mode and passed to the TextIOWrapper constructor. The closefd is only applicable if file is an integer descriptor and is passed to the FileIO constructor.

Abstract Base Classes

The io module defines the following abstract base classes that can be used for type checking and defining new I/O classes:

[image: image]

It is rare for most programmers to work with these classes directly. You should refer to the online documentation for details concerning their use and definition.

Note

The io module is a new addition to Python, first appearing in Python 3 and backported to Python 2.6. As of this writing, the module is immature and has extremely poor runtime performance—especially for any application that involves heavy amounts of text I/O. If you are using Python 2, you will be better served by the built-in open() function than using the I/O classes defined in the io module. If you are using Python 3, there seems to be no other alternative. Although performance improvements are likely in future releases, this layered approach to I/O coupled with Unicode decoding is unlikely to match the raw I/O performance found in the C standard library, which is the basis for I/O in Python 2.

logging

The logging module provides a flexible facility for applications to log events, errors, warnings, and debugging information. This information can be collected, filtered, written to files, sent to the system log, and even sent over the network to remote machines. This section covers the essential details of using this module for most common cases.

Logging Levels

The main focus of the logging module concerns the issuing and handling of log messages. Each message consists of some text along with an associated level that indicates its severity. Levels have both a symbolic name and numerical value as follows:

[image: image]

These different levels are the basis for various functions and methods throughout the logging module. For example, there are methods to issue log messages at each level as well as filters that work by blocking messages that don’t meet a certain threshold value.

Basic Configuration

Before using any other functions in the logging module, you should first perform some basic configuration of a special object known as the root logger. The root logger is responsible for managing the default behavior of log messages including the logging level, output destination, message format, and other basic details. The following function is used for configuration:

basicConfig([**kwargs])

Performs basic configuration of the root logger. This function should be called before any other logging calls are made. The function accepts a number of keyword arguments:

[image: image]

Most of these parameters are self-explanatory. The format argument is used to specify the format of log messages along with optional contextual information such as filenames, levels, line numbers, and so forth. datefmt is a date format string compatible with the time.strftime() function. If omitted, the date format is set to the ISO8601 format.

The following expansions are recognized in format:

[image: image]

Here is an example that illustrates a single configuration where log messages with a level of INFO or higher are appended to a file:

[image: Image]

With this configuration, a CRITICAL log message of 'Hello World' will appear as follows in the log file 'app.log'.

CRITICAL 2005-10-25 20:46:57,126 Hello World

Logger Objects

In order to issue log messages, you have to obtain a Logger object. This section describes the process of creating, configuring, and using these objects.

Creating a Logger

To create a new Logger object, you use the following function:

getLogger([logname])

Returns a Logger instance associated with the name logname. If no such object exists, a new Logger instance is created and returned. logname is a string that specifies a name or series of names separated by periods (for example 'app' or 'app.net'). If you omit logname, you will get the Logger object associated with the root logger.

The creation of Logger instances is different than what you find in most other library modules. When you create a Logger, you always give it a name which is passed to getLogger() as the logname parameter. Internally, getLogger() keeps a cache of the Logger instances along with their associated names. If another part of the program requests a logger with the same name, the previously created instance is returned. This arrangement greatly simplifies the handling of log messages in large applications because you don’t have to figure out how to pass Logger instances around between different program modules. Instead, in each module where you want logging, you just use getLogger() to get a reference to the appropriate Logger object.

Picking Names

For reasons that will become clear later, you should always pick meaningful names when using getLogger(). For example, if your application is called 'app', then you should minimally use getLogger('app') at the top of every program module that makes up the application. For example:

[image: Image]

You might also consider adding the module name to the logger such as getLogger('app.net') or getLogger('app.user') in order to more clearly indicate the source of log messages. This can be done using statements such as this:

[image: Image]

Adding the module name makes it easier to selectively turn off or reconfigure the logging for specific program modules as will be described later.

Issuing Log Messages

If log is an instance of a Logger object (created using the getLogger() function in the previous section), the following methods are used to issue log messages at the different logging levels:

[image: image]

The fmt argument is a format string that specifies the format of the log message. Any remaining arguments in args serve as arguments for format specifiers in the format string. The string formatting operator % is used to form the resulting message from these arguments. If multiple arguments are provided, they are placed into a tuple for formatting. If a single argument is provided, it is placed directly after the % when formatting.

Thus, if you pass a single dictionary as an argument, the format string can include dictionary key names. Here are a few examples that illustrate how this works:

[image: Image]

The keyword argument exc_info, if set to True, adds exception information from sys.exc_info() to the log message. If exc_info is set to an exception tuple such as that returned by sys.exc_info(), then that information is used. The extra keyword argument is a dictionary that supplies additional values for use in log message format strings (described later). Both exc_info and extra must be specified as keyword arguments.

When issuing log messages, you should avoid code that carries out string formatting at the time the message is issued (that is, formatting a message and then passing the result into the logging module). For example,

log.critical("Can't connect to %s at port %d" % (host, port))

In this example, the string formatting operation always occurs before the call to log.critical() because the arguments to a function or method have to be fully evaluated. However, in the example at the top of the page, the parameters used for string formatting operation are merely passed to the logging module and used only if the log message is actually going to be handled. This is a very subtle distinction, but because many applications choose to filter log messages or only emit logs during debugging, the first approach performs less work and runs faster when logging is disabled.

In addition to the methods shown, there are a few additional methods for issuing log messages on a Logger instance log.

log.exception(fmt [, *args])

Issues a message at the ERROR level but adds exception information from the current exception being handled. This can only be used inside except blocks.

log.log(level, fmt [, *args [, exc_info [, extra]]])

Issues a logging message at the level specified by level. This can be used if the logging level is determined by a variable or if you want to have additional logging levels not covered by the five basic levels.

log.findCaller()

Returns a tuple (filename,
lineno,
funcname) corresponding to the caller’s source filename, line number, and function name. This information is sometimes useful when issuing log messages—for example, if you want to add information about the location of the logging call to a message.

Filtering Log Messages

Each Logger object log has an internal level and filtering mechanism that determines which log messages get handled. The following two methods are used to perform simple filtering based on the numeric level of log messages:

log.setLevel(level)

Sets the level of log. Only logging messages with a level greater than or equal to level will be handled. All other messages are simply ignored. By default, the level is logging.NOTSET which processes all log messages.

log.isEnabledFor(level)

Returns True if a logging message at level level would be processed.

Logging messages can also be filtered based on information associated with the message itself—for example, the filename, the line number, and other details. The following methods are used for this:

log.addFilter(filt)

Adds a filter object, filt, to the logger.

log.removeFilter(filt)

Removes a filter object, filt, from the logger.

In both methods, filt is an instance of a Filter object.

Filter(logname)

Creates a filter that only allows log messages from logname or its children to pass through. For example, if logname is 'app', then messages from loggers such as 'app', 'app.net', or 'app.user' will pass, but messages from a logger such as 'spam' will not.

Custom filters can be created by subclassing Filter and implementing the method filter(record) that receives as input a record containing information about a logging message. As output, True or False is returned depending on whether or not the message should be handled. The record object passed to this method typically has the following attributes:

[image: image]

The following example illustrates how you create a custom filter:

[image: Image]

Message Propagation and Hierarchical Loggers

In advanced logging applications, Logger objects can be organized into a hierarchy. This is done by giving a logger object a name such as 'app.net.client'. Here, there are actually three different Logger objects called 'app', 'app.net', and 'app.net.client'. When a message is issued on any of the loggers and it successfully passes that logger’s filter, it propagates to and is handled by all of the parents. For example, a message successfully issued on 'app.net.client' also propagates to 'app.net', 'app' and the root logger.

The following attributes and methods of a Logger object log control this propagation.

log.propagate

A Boolean flag that indicates whether or not messages propagate to the parent logger. By default, this is set to True.

log.getEffectiveLevel()

Returns the effective level of the logger. If a level has been set using setLevel(), that level is returned. If no level has been explicitly set (the level is logging.NOTSET in this case), this function returns the effective level of the parent logger instead. If none of the parent loggers have a level set, the effective level of the root logger will be returned.

The primary purpose of hierarchical logging is to be able to more easily filter log messages originating from different parts of a large application. For example, if you wanted to shut down log messages from the 'app.net.client' part of an application, you might add configuration code such as the following:

[image: Image]

Or, in this code, we’re ignoring all but the most severe messages from a program module:

[image: Image]

A subtle aspect of hierarchical loggers is that the decision to handle a log message is made entirely by the level and filters on the Logger object on which the message was issued, not by the filters on any of the parents. Thus, if a message passes the first set of filters, it is propagated to and handled by all the parent loggers regardless of their own filter and level settings—even if these filters would have rejected the message. At first glance, the behavior is counterintuitive and might even seem like a bug. However, setting the level of a child logger to a value that is lower than its parent is one way to override the settings on the parent, achieving a kind of level promotion. Here is an example:

[image: Image]

When using hierarchical loggers, you only have to configure the logging objects where you want to change the filtering or propagation behavior. Because messages naturally propagate to the root logger, it will ultimately be responsible for producing the output and any configuration that you made using basicConfig() will apply.

Message Handling

Normally, messages are handled by the root logger. However, any Logger object can have special handlers added to it that receive and process log messages. This is done using these methods of a Logger instance log.

log.addHandler(handler)

Adds a Handler object to the logger.

log.removeHandler(handler)

Removes the Handler object handler from the logger.

The logging module has a variety of pre-built handlers for writing log messages to files, streams, system logs, and so forth. These are described in further detail in the next section. However, the following example shows how loggers and handlers are hooked together using these methods.

[image: Image]

When you add your own handlers to process messages, it is often your intent to override the behavior of the root logger. This is why message propagation is disabled in the previous example (i.e., the 'app' logger is simply going to handle all of the messages).

Handler Objects

The logging module provides a collection of pre-built handlers that can process log messages in various in ways. These handlers are added to Logger objects using their addHandler() method. In addition, each handler can be configured with its own filtering and levels.

Built-In Handlers

The following handler objects are built-in. Some of these handlers are defined in a sub-module logging.handlers, which must be imported specifically if necessary.

handlers.DatagramHandler(host,port)

Sends log messages to a UDP server located on the given host and port. Log messages are encoded by taking the dictionary of the corresponding LogRecord object and encoding it using the pickle module. The transmitted network message consists of a 4-byte network order (big-endian) length followed by the pickled record data. To reconstruct the message, the receiver must strip the length header, read the entire message, unpickle the contents, and call logging.makeLogRecord(). Because UDP is unreliable, network errors may result in lost log messages.

FileHandler(filename [, mode [, encoding [, delay]]])

Writes log messages to the file filename. mode is the file mode to use when opening the file and defaults to 'a'. encoding is the file encoding. delay is a Boolean flag that, if set True, defers the opening of the log file until the first log message is issued. By default, it is False.

handlers.HTTPHandler(host, url [, method])

Uploads log messages to an HTTP server using HTTP GET or POST methods. host specifies the host machine, url is the URL to use, and method is either 'GET' (the default) or 'POST'. The log message is encoded by taking the dictionary of the corresponding LogRecord object and encoding it as a set of URL query-string variables using the urllib.urlencode() function.

handlers.MemoryHandler(capacity [, flushLevel [, target]])

This handler is used to collect log messages in memory and to flush them to another handler, target, periodically. capacity is the size of the memory buffer in bytes. flushLevel is a numeric logging level that forces a memory flush should a logging message of that level or higher appear. The default value is ERROR. target is another Handler object that receives the messages. If target is omitted, you will need to set a target using the setTarget() method of the resulting handler object in order for this handler to do anything.

handlers.NTEventLogHandler(appname [, dllname [, logtype]])

Sends messages to the event log on Windows NT, Windows 2000, or Windows XP. appname is the name of the application name to use in the event log. dllname is a full path name to a .DLL or .EXE file that provides message definitions to hold in the log. If omitted, dllname is set to 'win32service.pyd'. logtype is either 'Application', 'System', or 'Security'. The default value is 'Application'. This handler is only available if Win32 extensions for Python have been installed.

handlers.RotatingFileHandler(filename [, mode [, maxBytes [, backupCount [, encoding [, delay]]]]])

Writes log messages to the file filename. However, if the file exceeds the size specified by maxBytes, the file is rotated to filename.1 and a new log file, filename, is opened. backupCount specifies the maximum number of backup files to create. By default, the value of backupCount is 0. However, when specified, backup files are rotated through the sequence filename.1, filename.2, ... ,filename.N, where filename.1 is always the most recent backup and filename.N is always the oldest backup. mode specifies the file mode to use when opening the log file. The default mode is 'a'. If maxBytes is 0 (the default), the log file is never rolled over and is allowed to grow indefinitely. encoding and delay have the same meaning as with FileHandler.

handlers.SMTPHandler(mailhost, fromaddr, toaddrs, subject [, credentials])

Sends log messages to a remote host using email. mailhost is the address of an SMTP server that can receive the message. The address can be a simple host name specified as a string or a tuple (host,
port). fromaddr is the from address, toaddrs is the destination address, and subject is the subject to use in the message. credentials is a tuple (username,
password) with the username and password.

handlers.SocketHandler(host, port)

Sends log messages to a remote host using a TCP socket connection. host and port specify the destination. Messages are sent in the same format as described for DatagramHandler. Unlike DatagramHandler, this handler reliably delivers log messages.

StreamHandler([fileobj])

Writes log messages to an already open file-like object, fileobj. If no argument is provided, messages are written to sys.stderr.

handlers.SysLogHandler([address [, facility]])

Sends log messages to a UNIX system logging daemon. address specifies the destination as a (host,
port) tuple. If omitted, a destination of ('localhost', 514) is used. facility is an integer facility code and is set to SysLogHandler.LOG_USER by default. A full list of facility codes can be found in the definition of SysLogHandler.

handlers.TimedRotatingFileHandler(filename [, when [, interval [, backupCount [, encoding [, delay [, utc]]]]]])

The same as RotatingFileHandler, but the rotation of files is controlled by time instead of file size. interval is a number, and when is a string that specifies units. Possible values for when are 'S' (seconds), 'M' (minutes), 'H' (hours), 'D' (days), 'W' (weeks), and 'midnight' (roll over at midnight). For example, setting interval to 3 and when to 'D' rolls the log every three days. backupCount specifies the maximum number of backup files to keep. utc is a Boolean flag that determines whether or not to use local time (the default) or UTC time.

handlers.WatchedFileHandler(filename [, mode [, encoding [, delay]]])

The same as FileHandler, but the inode and device of the opened log file is monitored. If it changes since the last log message was issued, the file is closed and reopened again using the same filename. These changes might occur if a log file has been deleted or moved as a result of a log rotation operation carried out externally to the running program. This handler only works on UNIX systems.

Handler Configuration

Each Handler object h can be configured with its own level and filtering. The following methods are used to do this:

h.setLevel(level)

Sets the threshold of messages to be handled. level is a numeric code such as ERROR or CRITICAL.

h.addFilter(filt)

Adds a Filter object, filt, to the handler. See the addFilter() method of Logger objects for more information.

h.removeFilter(filt)

Removes a Filter object, filt, from the handler.

It is important to stress that levels and filters can be set on handlers independently from any settings used on the Logger objects to which handlers are attached. Here is an example that illustrates this:

[image: Image]

In this example, there is a single logger called 'app’ with a level of INFO. Two handlers are attached to it, but one of the handlers (crit_handler) has its own level setting of CRITICAL. Although this handler will receive log messages with a level of INFO or higher, it selectively discards those that are not CRITICAL.

Handler Cleanup

The following methods are used on handlers to perform cleanup.

h.flush()

Flushes all logging output.

h.close()

Closes the handler.

Message Formatting

By default, Handler objects emit log messages exactly as they are formatted in logging calls. However, sometimes you want to add additional contextual information to the messages such as timestamps, filenames, line numbers, and so forth. This section describes how this extra information can be automatically added to log messages.

Formatter Objects

To change the log message format, you must first create a Formatter object:

Formatter([fmt [, datefmt]])

Creates a new Formatter object. fmt provides a format string for messages. Within fmt, you can place various expansions as previously described for the basicConfig() function. datefmt is a date format string compatible with the time.strftime() function. If omitted, the date format is set to the ISO8601 format.

To take effect, Formatter objects must be attached to handler objects. This is done using the h.setFormatter() method of a Handler instance h.

h.setFormatter(format)

Sets the message formatter object used to create log messages on the Handler instance h. format must be an instance of Formatter.

Here is an example that illustrates how to customize the log message format on a handler:

[image: Image]

In this example, a custom Formatter is set on the crit_hand handler. If a logging message such as "Creeping death detected." is processed by this handler, the following log message is produced:

CRITICAL 2005-10-25 20:46:57,126 Creeping death detected.

Adding Extra Context to Messages

In certain applications, it is useful to add additional context information to log messages. This extra information can be provided in one of two ways. First, all of the basic logging operations (e.g., log.critical(), log.warning(), etc.) have a keyword parameter extra that is used to supply a dictionary of additional fields for use in message format strings. These fields are merged in with the context data previously described for Formatter objects. Here is an example:

[image: Image]

The downside of this approach is that you have to make sure every logging operation includes the extra information or else the program will crash. An alternative approach is to use the LogAdapter class as a wrapper for an existing logger.

LogAdapter(log [, extra])

Creates a wrapper around a Logger object log. extra is a dictionary of extra context information to be supplied to message formatters. An instance of LogAdapter has the same interface as a Logger object. However, operations that issue log messages will automatically add the extra information supplied in extra.

Here is an example of using a LogAdapter object:

[image: Image]

Miscellaneous Utility Functions

The following functions in logging control a few other aspects of logging:

disable(level)

Globally disables all logging messages below the level specified in level. This can be used to turn off logging on a applicationwide basis—for instance, if you want to temporarily disable or reduce the amount of logging output.

addLevelName(level, levelName)

Creates an entirely new logging level and name. level is a number and levelName is a string. This can be used to change the names of the built-in levels or to add more levels than are supported by default.

getLevelName(level)

Returns the name of the level corresponding to the numeric value level.

shutdown()

Shuts down all logging objects, flushing output if necessary.

Logging Configuration

Setting an application to use the logging module typically involves the following basic steps:

1. Use getLogger() to create various Logger objects. Set parameters such as the level, as appropriate.

2. Create Handler objects by instantiating one of the various types of handlers (FileHandler, StreamHandler, SocketHandler, and so on) and set an appropriate level.

3. Create message Formatter objects and attach them to the Handler objects using the setFormatter() method.

4. Attach the Handler objects to the Logger objects using the addHandler() method.

Because the configuration of each step can be somewhat involved, your best bet is to put all the logging configuration into a single well-documented location. For example, you might create a file applogconfig.py that is imported by the main program of your application:

[image: Image]

If changes need to be made to any part of the logging configuration, having everything in one location makes things easier to maintain. Keep in mind that this special file only needs to be imported once and in only one location in the program. In other parts of the code where you want to issue log messages, you simply include code like this:

[image: Image]

The logging.config Submodule

As an alternative to hard-coding the logging configuration in Python code, it is also possible to configure the logging module through the use of an INI-format configuration file. To do this, use the following functions found in logging.config.

fileConfig(filename [, defaults [, disable_existing_loggers]])

Reads the logging configuration from the configuration file filename. defaults is a dictionary of default configuration parameters for use in the config file. The specified filename is read using the ConfigParser module. disable_existing_loggers is a Boolean flag that specifies whether or not any existing loggers are disabled when new configuration data is read. By default, this is True.

The online documentation for the logging module goes into some detail on the expected format of configuration files. However, experienced programmers can probably extrapolate from the following example, which is a configuration file version of applogconfig.py shown in the previous section.

[image: Image]

To read this configuration file and set up logging, you would use this code:

[image: Image]

As before, modules that want to issue log messages do not need to worry about the details of loading the logging configuration. They merely import the logging module and get a reference to the appropriate Logger object. For example:

[image: Image]

Performance Considerations

Adding logging to an application can severely degrade its performance if you aren’t careful. However, there are some techniques that can be used to reduce the overhead.

First, Python’s optimized mode (-O) removes all code that is conditionally executed using statements such as if _ _debug_ _:
statements. If the sole purpose of logging is debugging, you could conditionally execute all of the logging calls and have the calls removed in optimized mode.

A second technique would be to use a Null object in place of a Logger object when logging is to be completely disabled. This is different than using None. Instead, you want to use an instance of an object that silently swallows all operations that get performed on it. For example:

[image: Image]

Depending on your cleverness, logging can also be managed through the use of decorators and metaclasses. Because these features of Python operate at the time that functions, methods, and classes are defined, they can be used to selectively add or remove logging features from parts of a program in a way that does not impact performance when logging is disabled. Please refer to Chapter 6, “Functions and Functional Programming,” and Chapter 7, “Classes and Object-Oriented Programming,” for further details.

Notes

• The logging module provides a large number of customization options not discussed here. Readers should consult online documentation for further details.

• It is safe to use the logging module with programs that use threads. In particular, it is not necessary to add locking operations around code that is issuing log messages.

mmap

The mmap module provides support for a memory-mapped file object. This object behaves both like a file and a byte string and can be used in most places where an ordinary file or byte string is expected. Furthermore, the contents of a memory-mapped file are mutable. This means that modifications can be made using index-assignment and slice-assignment operators. Unless a private mapping of the file has been made, such changes directly alter the contents of the underlying file.

A memory-mapping file is created by the mmap() function, which is slightly different on UNIX and Windows.

mmap(fileno, length [, flags, [prot [,access [, offset]]]])

(UNIX). Returns an mmap object that maps length bytes from the file with an integer file descriptor, fileno. If fileno is -1, anonymous memory is mapped. flags specifies the nature of the mapping and is one of the following:

[image: image]

The default flags setting is MAP_SHARED. prot specifies the memory protections of the object and is the bitwise OR of the following:

[image: image]

The default value of prot is PROT_READ | PROT_WRITE. The modes specified in prot must match the access permissions used to open the underlying file descriptor fileno. In most cases, this means that the file should be opened in read/write mode (for example, os.open(name, os.O_RDWR)).

The optional access parameter may be used as an alternative to flags and prot. If given, it has one of the following values:

[image: image]

When access is supplied, it is typically given as a keyword argument—for example, mmap(fileno,
length, access=ACCESS_READ). It is an error to supply values for both access and flags. The offset parameter specifies the number of bytes from the start of the file and defaults to 0. It must be a multiple of mmap.ALLOCATIONGRANULARITY.

mmap(fileno, length[, tagname [,access [, offset]]])

(Windows) Returns an mmap object that maps length bytes from the file specified by the integer file descriptor fileno. Use a fileno of -1 for anonymous memory. If length is larger than the current size of the file, the file is extended to length bytes. If length is 0, the current length of the file is used as the length as long as the file is non-empty (otherwise, an exception will be raised). tagname is an optional string that can be used to name the mapping. If tagname refers to an existing mapping, that mapping is opened. Otherwise, a new mapping is created. If tagname is None, an unnamed mapping is created. access is an optional parameter that specifies the access mode. It takes the same values for access as described for the UNIX version of mmap() shown earlier. By default, access is ACCESS_WRITE. offset is the number of bytes from the beginning of the file and defaults to 0. It must be a multiple of mmap.ALLOCATIONGRANULARITY.

A memory-mapped file object, m, supports the following methods.

m.close()

Closes the file. Subsequent operations will result in an exception.

m.find(string[, start])

Returns the index of the first occurrence of string. start specifies an optional starting position. Returns -1 if no match is found.

m.flush([offset, size])

Flushes modifications of the in-memory copy back to the file system. offset and size specify an optional range of bytes to flush. Otherwise, the entire mapping is flushed.

m.move(dst,src,count)

Copies count bytes starting at index src to the destination index dst. This copy is performed using the C memmove() function, which is guaranteed to work correctly when the source and destination regions happen to overlap.

m.read(n)

Reads up to n bytes from the current file position and returns the data as a string.

m.read_byte()

Reads a single byte from the current file position and returns as a string of length 1.

m.readline()

Returns a line of input starting at the current file position.

m.resize(newsize)

Resizes the memory-mapped object to contain newsize bytes.

m.seek(pos[, whence])

Sets the file position to a new value. pos and whence have the same meaning as for the seek() method on file objects.

m.size()

Returns the length of the file. This value may be larger than the size of the memory-mapped region.

m.tell()

Returns the value of the file pointer.

m.write(string)

Writes a string of bytes to the file at the current file pointer.

m.write_byte(byte)

Writes a single byte into memory at the current file pointer.

Notes

• Although UNIX and Windows supply slightly different mmap() functions, this module can be used in a portable manner by relying on the optional access parameter that is common to both functions. For example, mmap(fileno,length,access=ACCESS_WRITE) will work on both UNIX and Windows.

• Certain memory mapping may only work with a length that’s a multiple of the system page size, which is contained in the constant mmap.PAGESIZE.

• On UNIX SVR4 systems, anonymous mapped memory can be obtained by calling mmap() on the file /dev/zero, opened with appropriate permissions.

• On UNIX BSD systems, anonymous mapped memory can be obtained by calling mmap() with a negative file descriptor and the flag mmap.MAP_ANON.

msvcrt

The msvcrt module provides access to a number of useful functions in the Microsoft Visual C runtime library. This module is available only on Windows.

getch()

Reads a keypress and returns the resulting character. This call blocks if a keypress is not available. If the pressed key was a special function key, the call returns '\000' or '\xe0' and the next call returns the keycode. This function doesn’t echo characters to the console, nor can the function be used to read Ctrl+C.

getwch()

The same as getch() except that a Unicode character is returned.

getche()

Like getch() except that characters are echoed (if printable).

getwche()

The same as getche() except that a Unicode character is returned.

get_osfhandle(fd)

Returns the file handle for file descriptor fd. Raises IOError if fd is not recognized.

heapmin()

Forces the internal Python memory manager to return unused blocks to the operating system. This works only on Windows NT and raises IOError on failure.

kbhit()

Returns True if a keypress is waiting to be read.

locking(fd, mode, nbytes)

Locks part of a file, given a file descriptor from the C runtime. nbytes is the number of bytes to lock relative to the current file pointer. mode is one of the following integers:

[image: image]

Attempts to acquire a lock that takes more than approximately 10 seconds results in an IOError exception.

open_osfhandle(handle, flags)

Creates a C runtime file descriptor from the file handle handle. flags is the bitwise OR of os.O_APPEND, os.O_RDONLY, and os.O_TEXT. Returns an integer file descriptor that can be used as a parameter to os.fdopen() to create a file object.

putch(char)

Prints the character char to the console without buffering.

putwch(char)

The same as putch() except that char is a Unicode character.

setmode(fd, flags)

Sets the line-end translation mode for file descriptor fd. flags is os.O_TEXT for text mode and os.O_BINARY for binary mode.

ungetch(char)

Causes the character char to be “pushed back” into the console buffer. It will be the next character read by getch() or getche().

ungetwch(char)

The same as ungetch() except that char is a Unicode character.

Note

A wide variety of Win32 extensions are available that provide access to the Microsoft Foundation Classes, COM components, graphical user interfaces, and so forth. These topics are far beyond the scope of this book, but detailed information about many of these topics is available in Python Programming on Win32 by Mark Hammond and Andy Robinson (O’Reilly & Associates, 2000). Also, http://www.python.org maintains an extensive list of contributed modules for use under Windows.

See Also:

winreg (p. 408)

optparse

The optparse module provides high-level support for processing UNIX-style command-line options supplied in sys.argv. A simple example of using the module is found in Chapter 9. Use of optparse primarily focuses on the OptionParser class.

OptionParser([**args])

Creates a new command option parser and returns an OptionParser instance. A variety of optional keyword arguments can be supplied to control configuration. These keyword arguments are described in the following list:

[image: image]

Unless you really need to customize option processing in some way, an OptionParser will usually be created with no arguments. For example:

p = optparse.OptionParser()

An instance, p, of OptionParser supports the following methods:

p.add_option(name1, ..., nameN [, **parms])

Adds a new option to p. The arguments name1, name2, and so on are all of the various names for the option. For example, you might include short and long option names such as '-f' and '--file’. Following the option names, an optional set of keyword arguments is supplied that specifies how the option will be processed when parsed. These keyword arguments are described in the following list:

[image: image]

[image: image]

p.disable_interspersed_args()

Disallows the mixing of simple options with positional arguments. For example, if '-x’ and '-y' are options that take no parameters, the options must appear before any arguments (for example, 'prog -x -y arg1 arg2 arg3').

p.enable_interspersed_args()

Allows the mixing of options with positional arguments. For example, if '-x’ and '-y' are simple options that take no parameters, they may be mixed with the arguments, such as in 'prog -x arg1 arg2 -y arg3'. This is the default behavior.

p.parse_args([arglist])

Parses command-line options and returns a tuple (options,
args) where options is an object containing the values of all the options and args is a list of all the remaining positional arguments left over. The options object stores all the option data in attributes with names that match the option name. For example, the option '--output' would have its value stored in options.output. If the option does not appear, the value will be None. The name of the attribute can be set using the dest keyword argument to add_option(), described previously. By default, arguments are taken from sys.argv[1:]. However, a different source of arguments can be supplied as an optional argument, arglist.

p.set_defaults(dest=value, ... dest=value)

Sets the default values of particular option destinations. You simply supply keyword arguments that specify the destinations you wish to set. The name of the keyword arguments should match the names specified using the dest parameter in add_option(), described earlier.

p.set_usage(usage)

Changes the usage string displayed in text produced by the --help option.

Example

[image: Image]

Here is a short interactive UNIX session that shows how the previous code works:

[image: Image]

Notes

• When specifying option names, use a single dash to specify a short name such as '-x' and a double-dash to specify a long name such as '--exclude'. An OptionError exception will be raised if you attempt to define an option that is a mix of the two styles, such as '-exclude'.

• Python also includes a module getopt that provides support for command-line parsing in a style similar to a C library of the same name. For all practical purposes, there is no benefit to using that module over optparse (which is much higher level and requires far less coding).

• The optparse module contains a considerable number of advanced features related to customization and specialized handling of certain kinds of command-line options. However, none of these features are required for the most common types of command-line option parsing. Readers should consult the online library documentation for more details and additional examples.

os

The os module provides a portable interface to common operating-system services. It does this by searching for an OS-dependent built-in module such as nt or posix and exporting the functions and data as found there. Unless otherwise noted, functions are available on Windows and UNIX. UNIX systems include both Linux and Mac OS X.

The following general-purpose variables are defined:

environ

A mapping object representing the current environment variables. Changes to the mapping are reflected in the current environment. If the putenv() function is also available, then changes are also reflected in subprocesses.

linesep

The string used to separate lines on the current platform. May be a single character such as '\n' for POSIX or multiple characters such as '\r\n' for Windows.

name

The name of the OS-dependent module imported: 'posix', 'nt', 'dos', 'mac', 'ce', 'java', 'os2', or 'riscos'.

path

The OS-dependent standard module for pathname operations. This module can also be loaded using import os.path.

Process Environment

The following functions are used to access and modify various parameters related to the environment in which a process runs. Process, group, process group, and session IDs are integers unless otherwise noted.

chdir(path)

Changes the current working directory to path.

chroot(path)

Changes the root directory of the current process (UNIX).

ctermid()

Returns a string with the filename of the control terminal for the process (UNIX).

fchdir(fd)

Changes the current working directory. fd is a file descriptor to an opened directory (UNIX).

getcwd()

Returns a string with the current working directory.

getcwdu()

Returns a Unicode string with the current working directory.

getegid()

Returns the effective group ID (UNIX).

geteuid()

Returns the effective user ID (UNIX).

getgid()

Returns the real group ID of the process (UNIX).

getgroups()

Returns a list of integer group IDs to which the process owner belongs (UNIX).

getlogin()

Returns the user name associated with the effective user ID (UNIX).

getpgid(pid)

Returns the process group ID of the process with process ID pid. If pid is 0, the process group of the calling process is returned (UNIX).

getpgrp()

Returns the ID of the current process group. Process groups are typically used in conjunction with job control. The process group is not necessarily the same as the group ID of the process (UNIX).

getpid()

Returns the real process ID of the current process (UNIX and Windows).

getppid()

Returns the process ID of the parent process (UNIX).

getsid(pid)

Returns the process session identifier of process pid. If pid is 0, the identifier of the current process is returned (UNIX).

getuid()

Returns the real user ID of the current process (UNIX).

putenv(varname, value)

Sets environment variable varname to value. Changes affect subprocesses started with os.system(), popen(), fork(), and execv(). Assignments to items in os.environ automatically call putenv(). However, calls to putenv() don’t update os.environ (UNIX and Windows).

setegid(egid)

Sets the effective group id (UNIX).

seteuid(euid)

Sets the effective user ID (UNIX).

setgid(gid)

Sets the group ID of the current process (UNIX).

setgroups(groups)

Sets the group access list of the current process. groups is a sequence of integers specifying group identifiers. Can only be called by root (UNIX).

setpgrp()

Creates a new process group by calling the system call setpgrp() or setpgrp(0, 0), depending on which version is implemented (if any). Returns the ID of the new process group (UNIX).

setpgid(pid, pgrp)

Assigns process pid to process group pgrp. If pid is equal to pgrp, the process becomes a new process group leader. If pid is not equal to pgrp, the process joins an existing group. If pid is 0, the process ID of the calling process is used. If pgrp is 0, the process specified by pid becomes a process group leader (UNIX).

setreuid(ruid,euid)

Sets the real and effective user ID of the calling process (UNIX).

setregid(rgid,egid)

Sets the real and effective group ID of the calling process (UNIX).

setsid()

Creates a new session and returns the newly created session ID. Sessions are typically associated with terminal devices and the job control of processes that are started within them (UNIX).

setuid(uid)

Sets the real user ID of the current process. This function is privileged and often can be performed only by processes running as root (UNIX).

strerror(code)

Returns the error message corresponding to the integer error code (UNIX and Windows). The errno module defines symbolic names for these error codes.

umask(mask)

Sets the current numeric umask and returns the previous umask. The umask is used to clear permissions bits on files that are created by the process (UNIX and Windows).

uname()

Returns a tuple of strings (sysname,
nodename,
release,
version,
machine) identifying the system type (UNIX).

unsetenv(name)

Unsets the environment variable name.

File Creation and File Descriptors

The following functions provide a low-level interface for manipulating files and pipes. In these functions, files are manipulated in terms of an integer file descriptor, fd. The file descriptor can be extracted from a file object by invoking its fileno() method.

close(fd)

Closes the file descriptor fd previously returned by open() or pipe().

closerange(low, high)

Closes all file descriptors fd in the range low<=
fd
<
high. Errors are ignored.

dup(fd)

Duplicates file descriptor fd. Returns a new file descriptor that’s the lowest-numbered unused file descriptor for the process. The new and old file descriptors can be used interchangeably. Furthermore, they share state, such as the current file pointer and locks (UNIX and Windows).

dup2(oldfd, newfd)

Duplicates file descriptor oldfd to newfd. If newfd already corresponds to a valid file descriptor, it’s closed first (UNIX and Windows).

fchmod(fd, mode)

Changes the mode of the file associated with fd to mode. See the description of os.open() for a description of mode (UNIX).

fchown(fd, uid, gid)

Changes the owner and group ID of the file associated with fd to uid and gid. Use a valid of -1 for uid or gid to keep the value unchanged (UNIX).

fdatasync(fd)

Forces all cached data written to fd to be flushed to disk (UNIX).

fdopen(fd [, mode [, bufsize]])

Creates an open file object connected to file descriptor fd. The mode and bufsize arguments have the same meaning as in the built-in open() function. mode should be a string such as 'r', 'w', or 'a'. On Python 3, this function accepts any additional parameters that work with the built-in open() function such as specifications for the encoding and line ending. However, if portability with Python 2 is a concern, you should only use the mode and bufsize arguments described here.

fpathconf(fd, name)

Returns configurable pathname variables associated with the open file with descriptor fd. name is a string that specifies the name of the value to retrieve. The values are usually taken from parameters contained in system header files such as <limits.h> and <unistd.h>. POSIX defines the following constants for name:

[image: image]

Not all names are available on all platforms, and some systems may define additional configuration parameters. However, a list of the names known to the operating system can be found in the dictionary os.pathconf_names. If a known configuration name is not included in os.pathconf_names, its integer value can also be passed as name. Even if a name is recognized by Python, this function may still raise an OSError if the host operating system doesn’t recognize the parameter or associate it with the file fd. This function is only available on some versions of UNIX.

fstat(fd)

Returns the status for file descriptor fd. Returns the same values as the os.stat() function (UNIX and Windows).

fstatvfs(fd)

Returns information about the file system containing the file associated with file descriptor fd. Returns the same values as the os.statvfs() function (UNIX).

fsync(fd)

Forces any unwritten data on fd to be written to disk. Note that if you are using an object with buffered I/O (for example, a Python file object), you should first flush the data before calling fsync(). Available on UNIX and Windows.

ftruncate(fd, length)

Truncates the file corresponding to file descriptor fd so that it’s at most length bytes in size (UNIX).

isatty(fd)

Returns True if fd is associated with a TTY-like device such as a terminal (UNIX).

lseek(fd, pos, how)

Sets the current position of file descriptor fd to position pos. Values of how are as follows: SEEK_SET sets the position relative to the beginning of the file, SEEK_CUR sets it relative to the current position, and SEEK_END sets it relative to the end of the file. In older Python code, it is common to see these constants replaced with their numeric values of 0, 1, or 2, respectively.

open(file [, flags [, mode]])

Opens the file file. flags is the bitwise OR of the following constant values:

[image: image]

Synchronous I/O modes (O_SYNC, O_DSYNC, O_RSYNC) force I/O operations to block until they’ve been completed at the hardware level (for example, a write will block until the bytes have been physically written to disk). The mode parameter contains the file permissions represented as the bitwise OR of the following octal values (which are defined as constants in the stat module as indicated):

[image: image]

The default mode of a file is (0777 & ~umask), where the umask setting is used to remove selected permissions. For example, a umask of 0022 removes the write permission for groups and others. The umask can be changed using the os.umask() function. The umask setting has no effect on Windows.

openpty()

Opens a psuedo-terminal and returns a pair of file descriptors (master,slave) for the PTY and TTY. Available on some versions of UNIX.

pipe()

Creates a pipe that can be used to establish unidirectional communication with another process. Returns a pair of file descriptors (r,
w) usable for reading and writing, respectively. This function is usually called prior to executing a fork() function. After the fork(), the sending process closes the read end of the pipe and the receiving process closes the write end of the pipe. At this point, the pipe is activated and data can be sent from one process to another using read() and write() functions (UNIX).

read(fd, n)

Reads at most n bytes from file descriptor fd. Returns a byte string containing the bytes read.

tcgetpgrp(fd)

Returns the process group associated with the control terminal given by fd (UNIX).

tcsetpgrp(fd, pg)

Sets the process group associated with the control terminal given by fd (UNIX).

ttyname(fd)

Returns a string that specifies the terminal device associated with file descriptor fd. If fd is not associated with a terminal device, an OSError exception is raised (UNIX).

write(fd, str)

Writes the byte string str to file descriptor fd. Returns the number of bytes actually written.

Files and Directories

The following functions and variables are used to manipulate files and directories on the file system. To handle variances in filenaming schemes, the following variables contain information about the construction of path names:

[image: image]

The following functions are used to manipulate files:

access(path, accessmode)

Checks read/write/execute permissions for this process to access the file path. accessmode is R_OK, W_OK, X_OK, or F_OK for read, write, execute, or existence, respectively. Returns 1 if access is granted, 0 if not.

chflags(path, flags)

Changes the file flags on path. flags is the bitwise-or of the constants listed next. Flags starting with UF_ can be set by any user, whereas SF_ flags can only be changed by the superuser (UNIX).

[image: image]

chmod(path, mode)

Changes the mode of path. mode has the same values as described for the open() function (UNIX and Windows).

chown(path, uid, gid)

Changes the owner and group ID of path to the numeric uid and gid. Setting uid or gid to -1 causes that parameter to remain unmodified (UNIX).

lchflags(path, flags)

The same as chflags(), but doesn’t follow symbolic links (UNIX).

lchmod(path, mode)

The same as chmod() except that if path is a symbolic link, it modifies the link itself, not the file the link refers to.

lchown(path, uid, gid)

The same as chown() but doesn’t follow symbolic links (UNIX).

link(src, dst)

Creates a hard link named dst that points to src (UNIX).

listdir(path)

Returns a list containing the names of the entries in the directory path. The list is returned in arbitrary order and doesn’t include the special entries of '.' and '..'. If path is Unicode, the resulting list will only contain Unicode strings. Be aware that if any filenames in the directory can’t be properly encoded into Unicode, they are silently skipped. If path is given as a byte string, then all filenames are returned as a list of byte strings.

lstat(path)

Like stat() but doesn’t follow symbolic links (UNIX).

makedev(major, minor)

Creates a raw device number given major and minor device numbers (UNIX).

major(devicenum)

Returns the major device number from a raw device number devicenum created by makedev().

minor(devicenum)

Returns the minor device number from a raw device number devicenum created by makedev().

makedirs(path [, mode])

Recursive directory-creation function. Like mkdir() but makes all the intermediate-level directories needed to contain the leaf directory. Raises an OSError exception if the leaf directory already exists or cannot be created.

mkdir(path [, mode])

Creates a directory named path with numeric mode mode. The default mode is 0777. On non-UNIX systems, the mode setting may have no effect or be ignored.

mkfifo(path [, mode])

Creates a FIFO (a named pipe) named path with numeric mode mode. The default mode is 0666 (UNIX).

mknod(path [, mode, device])

Creates a device-special file. path is the name of the file, mode specifies the permissions and type of file, and device is the raw device number created using os.makedev(). The mode parameter accepts the same parameters as open() when setting the file’s access permissions. In addition, the flags stat.S_IFREG, stat.S_IFCHR, stat.S_IFBLK, and stat.S_IFIFO are added to mode to indicate a file type (UNIX).

pathconf(path, name)

Returns configurable system parameters related to the path name path. name is a string that specifies the name of the parameter and is the same as described for the fpathconf() function (UNIX).

readlink(path)

Returns a string representing the path to which a symbolic link, path, points (UNIX).

remove(path)

Removes the file path. This is identical to the unlink() function.

removedirs(path)

Recursive directory-removal function. Works like rmdir() except that, if the leaf directory is successfully removed, directories corresponding to the rightmost path segments will be pruned away until either the whole path is consumed or an error is raised (which is ignored because it generally means that a parent directory isn’t empty). Raises an OSError exception if the leaf directory could not be removed successfully.

rename(src, dst)

Renames the file or directory src to dst.

renames(old, new)

Recursive directory-renaming or file-renaming function. Works like rename() except it first attempts to create any intermediate directories needed to make the new path name. After the rename, directories corresponding to the rightmost path segments of the old name will be pruned away using removedirs().

rmdir(path)

Removes the directory path.

stat(path)

Performs a stat() system call on the given path to extract information about a file. The return value is an object whose attributes contain file information. Common attributes include:

[image: image]

However, additional attributes may be available depending on the system. The object returned by stat() also looks like a 10-tuple containing the parameters (st_mode,
st_ino,
st_dev,
st_nlink,
st_uid,
st_gid,
st_size,
st_atime,
st_mtime,
st_ctime). This latter form is provided for backward compatibility. The stat module defines constants that are used to extract fields from this tuple.

stat_float_times([newvalue])

Returns True if the times returned by stat() are floating-point numbers instead of integers. The behavior can be changed by supplying a Boolean value for newvalue.

statvfs(path)

Performs a statvfs() system call on the given path to get information about the file system. The return value is an object whose attributes describe the file system. Common attributes include:

[image: image]

The returned object also behaves like a tuple containing these attributes in the order listed. The standard module statvfs defines constants that can be used to extract information from the returned statvfs data (UNIX).

symlink(src, dst)

Creates a symbolic link named dst that points to src.

unlink(path)

Removes the file path. Same as remove().

utime(path, (atime, mtime))

Sets the access and modified time of the file to the given values. (The second argument is a tuple of two items.) The time arguments are specified in terms of the numbers returned by the time.time() function.

walk(top [, topdown [, onerror [,followlinks]]])

Creates a generator object that walks through a directory tree. top specifies the top of the directory, and topdown is a Boolean that indicates whether to traverse directories in a top-down (the default) or bottom-up order. The returned generator produces tuples (dirpath,
dirnames,
filenames) where dirpath is a string containing the path to the directory, dirnames is a list of all subdirectories in dirpath, and filenames is a list of the files in dirpath, not including directories. The onerror parameter is a function accepting a single argument. If any errors occur during processing, this function will be called with an instance of os.error. The default behavior is to ignore errors. If a directory is walked in a top-down manner, modifications to dirnames will affect the walking process. For example, if directories are removed from dirnames, those directories will be skipped. By default, symbolic links are not followed unless the followlinks argument is set to True.

Process Management

The following functions and variables are used to create, destroy, and manage processes:

abort()

Generates a SIGABRT signal that’s sent to the calling process. Unless the signal is caught with a signal handler, the default is for the process to terminate with an error.

defpath

This variable contains the default search path used by the exec*p*() functions if the environment doesn’t have a 'PATH' variable.

execl(path, arg0, arg1, ...)

Equivalent to execv(path, (arg0,
arg1, ...)).

execle(path, arg0, arg1, ..., env)

Equivalent to execve(path, (arg0,
arg1, ...),
env).

execlp(path, arg0, arg1, ...)

Equivalent to execvp(path, (arg0,
arg1, ...)).

execv(path, args)

Executes the program path with the argument list args, replacing the current process (that is, the Python interpreter). The argument list may be a tuple or list of strings.

execve(path, args, env)

Executes a new program like execv() but additionally accepts a dictionary, env, that defines the environment in which the program runs. env must be a dictionary mapping strings to strings.

execvp(path, args)

Like execv(path,
args) but duplicates the shell’s actions in searching for an executable file in a list of directories. The directory list is obtained from environ['PATH'].

execvpe(path, args, env)

Like execvp() but with an additional environment variable as in the execve() function.

_exit(n)

Exits immediately to the system with status n, without performing any cleanup actions. This is typically only done in child processes created by fork(). This is also different than calling sys.exit(), which performs a graceful shutdown of the interpreter. The exit code n is application-dependent, but a value of 0 usually indicates success, whereas a nonzero value indicates an error of some kind. Depending on the system, a number of standard exit code values may be defined:

[image: image]

fork()

Creates a child process. Returns 0 in the newly created child process and the child’s process ID in the original process. The child process is a clone of the original process and shares many resources such as open files (UNIX).

forkpty()

Creates a child process using a new pseudo-terminal as the child’s controlling terminal. Returns a pair (pid,
fd), in which pid is 0 in the child and fd is a file descriptor of the master end of the pseudo-terminal. This function is available only in certain versions of UNIX.

kill(pid, sig)

Sends the process pid the signal sig. A list of signal names can be found in the signal module (UNIX).

killpg(pgid, sig)

Sends the process group pgid the signal sig. A list of signal names can be found in the signal module (UNIX).

nice(increment)

Adds an increment to the scheduling priority (the “niceness”) of the process. Returns the new niceness. Typically, users can only decrease the priority of a process because increasing the priority requires root access. The effect of changing the priority is system-dependent, but decreasing the priority is commonly done to make a process run in the background in a way such that it doesn’t noticeably impact the performance of other processes (UNIX).

plock(op)

Locks program segments into memory, preventing them from being swapped. The value of op is an integer that determines which segments are locked. The value of op is platform-specific but is typically one of UNLOCK, PROCLOCK, TXTLOCK, or DATLOCK. These constants are not defined by Python but might be found in the <sys/lock.h> header file. This function is not available on all platforms and often can be performed only by a process with an effective user ID of 0 (root) (UNIX).

popen(command [, mode [, bufsize]])

Opens a pipe to or from a command. The return value is an open file object connected to the pipe, which can be read or written depending on whether mode is 'r' (the default) or 'w'. bufsize has the same meaning as in the built-in open() function. The exit status of the command is returned by the close() method of the returned file object, except that when the exit status is zero, None is returned.

spawnv(mode, path, args)

Executes the program path in a new process, passing the arguments specified in args as command-line parameters. args can be a list or a tuple. The first element of args should be the name of the program. mode is one of the following constants:

[image: image]

spawnv() is available on Windows and some versions of UNIX.

spawnve(mode, path, args, env)

Executes the program path in a new process, passing the arguments specified in args as command-line parameters and the contents of the mapping env as the environment. args can be a list or a tuple. mode has the same meaning as described for spawnv().

spawnl(mode, path, arg1, ..., argn)

The same as spawnv() except that all the arguments are supplied as extra parameters.

spawnle(mode, path, arg1, ... , argn, env)

The same as spawnve() except that the arguments are supplied as parameters. The last parameter is a mapping containing the environment variables.

spawnlp(mode, file, arg1, ... , argn)

The same as spawnl() but looks for file using the settings of the PATH environment variable (UNIX).

spawnlpe(mode, file, arg1, ... , argn, env)

The same as spawnle() but looks for file using the settings of the PATH environment variable (UNIX).

spawnvp(mode, file, args)

The same as spawnv() but looks for file using the settings of the PATH environment variable (UNIX).

spawnvpe(mode, file, args, env)

The same as spawnve() but looks for file using the settings of the PATH environment variable (UNIX).

startfile(path [, operation])

Launches the application associated with the file path. This performs the same action as would occur if you double-clicked the file in Windows Explorer. The function returns as soon as the application is launched. Furthermore, there is no way to wait for completion or to obtain exit codes from the application. path is a relative to the current directory. operation is an optional string that specifies the action to perform when opening path. By default, it is set to 'open’, but it may be set to 'print', 'edit', 'explore', or 'find' (the exact list depends on the type of path (Windows)).

system(command)

Executes command (a string) in a subshell. On UNIX, the return value is the exit status of the process as returned by wait(). On Windows, the exit code is always 0. The subprocess module provides considerably more power and is the preferred way to launch subprocesses.

times()

Returns a 5-tuple of floating-point numbers indicating accumulated times in seconds. On UNIX, the tuple contains the user time, system time, children’s user time, children’s system time, and elapsed real time in that order. On Windows, the tuple contains the user time, system time, and zeros for the other three values.

wait([pid])

Waits for completion of a child process and returns a tuple containing its process ID and exit status. The exit status is a 16-bit number whose low byte is the signal number that killed the process and whose high byte is the exit status (if the signal number is zero). The high bit of the low byte is set if a core file was produced. pid, if given, specifies the process to wait for. If it’s omitted, wait() returns when any child process exits (UNIX).

waitpid(pid, options)

Waits for a change in the state of a child process given by process ID pid and returns a tuple containing its process ID and exit status indication, encoded as for wait(). options should be 0 for normal operation or WNOHANG to avoid hanging if no child process status is available immediately. This function can also be used to gather information about child processes that have only stopped executing for some reason. Setting options to WCONTINUED gathers information from a child when it resumes operation after being stopped via job control. Setting options to WUNTRACED gathers information from a child that has been stopped, but from which no status information has been reported yet.

wait3([options])

The same as waitpid() except that the function waits for a change in any child process. Returns a 3-tuple (pid,
status,
rusage), where pid is the child process ID, status is the exit status code, and rusage contains resource usage information as returned by resource.getrusage(). The options parameter has the same meaning as for waitpid().

wait4(pid, options)

The same as waitpid() except that the return result is the same tuple as returned by wait3().

The following functions take a process status code as returned by waitpid(), wait3(), or wait4() and are used to examine the state of the process (UNIX).

WCOREDUMP(status)

Returns True if the process dumped core.

WIFEXITED(status)

Returns True if the process exited using the exit() system call.

WEXITSTATUS(status)

If WIFEXITED(status) is true, the integer parameter to the exit() system call is returned. Otherwise, the return value is meaningless.

WIFCONTINUED(status)

Returns True if the process has resumed from a job-control stop.

WIFSIGNALED(status)

Returns True if the process exited due to a signal.

WIFSTOPPED(status)

Returns True if the process has been stopped.

WSTOPSIG(status)

Returns the signal that caused the process to stop.

WTERMSIG(status)

Returns the signal that caused the process to exit.

System Configuration

The following functions are used to obtain system configuration information:

confstr(name)

Returns a string-valued system configuration variable. name is a string specifying the name of the variable. The acceptable names are platform-specific, but a dictionary of known names for the host system is found in os.confstr_names. If a configuration value for a specified name is not defined, the empty string is returned. If name is unknown, ValueError is raised. An OSError may also be raised if the host system doesn’t support the configuration name. The parameters returned by this function mostly pertain to the build environment on the host machine and include paths of system utilities, compiler options for various program configurations (for example, 32-bit, 64-bit, and large-file support), and linker options (UNIX).

getloadavg()

Returns a 3-tuple containing the average number of items in the system run-queue over the last 1, 5, and 15 minutes (UNIX).

sysconf(name)

Returns an integer-valued system-configuration variable. name is a string specifying the name of the variable. The names defined on the host system can be found in the dictionary os.sysconf_names. Returns -1 if the configuration name is known but the value is not defined. Otherwise, a ValueError or OSError may be raised. Some systems may define more than 100 different system parameters. However, the following list details the parameters defined by POSIX.1 that should be available on most UNIX systems:

[image: image]

urandom(n)

Returns a string containing n random bytes generated by the system (for example, /dev/urandom on UNIX). The returned bytes are suitable for cryptography.

Exceptions

The os module defines a single exception to indicate errors.

error

Exception raised when a function returns a system-related error. This is the same as the built-in exception OSError. The exception carries two values: errno and strerr. The first contains the integer error value as described for the errno module. The latter contains a string error message. For exceptions involving the file system, the exception also contains a third attribute, filename, which is the filename passed to the function.

os.path

The os.path module is used to manipulate pathnames in a portable manner. It’s imported by the os module.

abspath(path)

Returns an absolute version of the path name path, taking the current working directory into account. For example, abspath('../Python/foo') might return '/home/beazley/Python/foo'.

basename(path)

Returns the base name of path name path. For example, basename('/usr/local/python') returns 'python'.

commonprefix(list)

Returns the longest string that’s a prefix of all strings in list. If list is empty, the empty string is returned.

dirname(path)

Returns the directory name of path name path. For example, dirname('/usr/local/ python') returns '/usr/local'.

exists(path)

Returns True if path refers to an existing path. Returns False if path refers to a broken symbolic link.

expanduser(path)

Replaces path names of the form '~user' with a user’s home directory. If the expansion fails or path does not begin with '~', the path is returned unmodified.

expandvars(path)

Expands environment variables of the form '$name' or '${name}' in path. Malformed or nonexistent variable names are left unchanged.

getatime(path)

Returns the time of last access as the number of seconds since the epoch (see the time module). The return value may be a floating-point number if os.stat_float_times() returns True.

getctime(path)

Returns the time of last modification on UNIX and the time of creation on Windows. The time is returned as the number of seconds since the epoch (see the time module). The return value may be a floating-point number in certain cases (see getatime()).

getmtime(path)

Returns the time of last modification as the number of seconds since the epoch (see the time module). The return value may be a floating-point number in certain cases (see getatime()).

getsize(path)

Returns the file size in bytes.

isabs(path)

Returns True if path is an absolute path name (begins with a slash).

isfile(path)

Returns True if path is a regular file. This function follows symbolic links, so both islink() and isfile() can be true for the same path.

isdir(path)

Returns True if path is a directory. Follows symbolic links.

islink(path)

Returns True if path refers to a symbolic link. Returns False if symbolic links are unsupported.

ismount(path)

Returns True if path is a mount point.

join(path1 [, path2 [, ...]])

Intelligently joins one or more path components into a pathname. For example, join('home', 'beazley', 'Python') returns 'home/beazley/Python'.

lexists(path)

Returns True if path exists. Returns True for all symbolic links, even if the link is broken.

normcase(path)

Normalizes the case of a path name. On non-case-sensitive file systems, this converts path to lowercase. On Windows, forward slashes are also converted to backslashes.

normpath(path)

Normalizes a path name. This collapses redundant separators and up-level references so that 'A//B', 'A/./B', and 'A/foo/../B' all become 'A/B'. On Windows, forward slashes are converted to backslashes.

realpath(path)

Returns the real path of path, eliminating symbolic links if any (UNIX).

relpath(path [, start])

Returns a relative path to path from the current working directory. start can be supplied to specify a different starting directory.

samefile(path1, path2)

Returns True if path1 and path2 refer to the same file or directory (UNIX).

sameopenfile(fp1, fp2)

Returns True if the open file objects fp1 and fp2 refer to the same file (UNIX).

samestat(stat1, stat2)

Returns True if the stat tuples stat1 and stat2 as returned by fstat(), lstat(), or stat() refer to the same file (UNIX).

split(path)

Splits path into a pair (head,
tail), where tail is the last pathname component and head is everything leading up to that. For example, '/home/user/foo' gets split into ('/home/ user', 'foo'). This tuple is the same as would be returned by (dirname(), basename()).

splitdrive(path)

Splits path into a pair (drive,
filename) where drive is either a drive specification or the empty string. drive is always the empty string on machines without drive specifications.

splitext(path)

Splits a path name into a base filename and suffix. For example, splitext('foo.txt') returns ('foo', '.txt').

splitunc(path)

Splits a path name into a pair (unc,rest) where unc is a UNC (Universal Naming Convention) mount point and rest the remainder of the path (Windows).

supports_unicode_filenames

Variable set to True if the file system allows Unicode filenames.

Note

On Windows, some care is required when working with filenames that include a drive letter (for example, 'C:spam.txt'). In most cases, filenames are interpreted as being relative to the current working directory. For example, if the current directory is 'C:\Foo\', then the file 'C:spam.txt' is interpreted as the file 'C:\Foo\C:spam.txt', not the file 'C:\spam.txt'.

See Also:

fnmatch (p. 316), glob (p. 317), os (p. 378).

signal

The signal module is used to write signal handlers in Python. Signals usually correspond to asynchronous events that are sent to a program due to the expiration of a timer, arrival of incoming data, or some action performed by a user. The signal interface emulates that of UNIX, although parts of the module are supported on other platforms.

alarm(time)

If time is nonzero, a SIGALRM signal is scheduled to be sent to the program in time seconds. Any previously scheduled alarm is canceled. If time is zero, no alarm is scheduled and any previously set alarm is canceled. Returns the number of seconds remaining before any previously scheduled alarm or zero if no alarm was scheduled (UNIX).

getsignal(signalnum)

Returns the signal handler for signal signalnum. The returned object is a callable Python object. The function may also return SIG_IGN for an ignored signal, SIG_DFL for the default signal handler, or None if the signal handler was not installed from the Python interpreter.

getitimer(which)

Returns the current value of an internal timer identified by which.

pause()

Goes to sleep until the next signal is received (UNIX).

set_wakeup_fd(fd)

Sets a file descriptor fd on which a '\0' byte will be written when a signal is received. This, in turn, can be used to handle signals in programs that are polling file descriptors using functions such as those found in the select module. The file described by fd must be opened in non-blocking mode for this to work.

setitimer(which, seconds [, interval])

Sets an internal timer to generate a signal after seconds seconds and repeatedly thereafter every interval seconds. Both of these parameters are specified as floating-point numbers. The which parameter is one of ITIMER_REAL, ITIMER_VIRTUAL, or ITIMER_PROF. The choice of which determines what signal is generated after the timer has expired. SIGALRM is generated for ITIMER_REAL, SIGVTALRM is generated for ITIMER_VIRTUAL, and SIGPROF is generated for ITIMER_PROF. Set seconds to 0 to clear a timer. Returns a tuple (seconds,
interval) with the previous settings of the timer.

siginterrupt(signalnum, flag)

Sets the system call restart behavior for a given signal number. If flag is False, system calls interrupted by signal signalnum will be automatically restarted. If set True, the system call will be interrupted. An interrupted system call will typically result in an OSError or IOError exception where the associated error number is set to errno.EINTR or errno.EAGAIN.

signal(signalnum, handler)

Sets a signal handler for signal signalnum to the function handler. handler must be a callable Python object taking two arguments: the signal number and frame object. SIG_IGN or SIG_DFL can also be given to ignore a signal or use the default signal handler, respectively. The return value is the previous signal handler, SIG_IGN, or SIG_DFL. When threads are enabled, this function can only be called from the main thread. Otherwise, a ValueError exception is raised.

Individual signals are identified using symbolic constants of the form SIG*. These names correspond to integer values that are machine-specific. Typical values are as follows:

[image: image]

In addition, the module defines the following variables:

[image: image]

Example

The following example illustrates a timeout on establishing a network connection (the socket module already provides a timeout option so this example is merely meant to illustrate the basic concept of using the signal module).

[image: Image]

Notes

• Signal handlers remain installed until explicitly reset, with the exception of SIGCHLD (whose behavior is implementation-specific).

• It’s not possible to temporarily disable signals.

• Signals are only handled between the atomic instructions of the Python interpreter. The delivery of a signal can be delayed by long-running calculations written in C (as might be performed in an extension module).

• If a signal occurs during an I/O operation, the I/O operation may fail with an exception. In this case, the errno value is set to errno.EINTR to indicate an interrupted system call.

• Certain signals such as SIGSEGV cannot be handled from Python.

• Python installs a small number of signal handlers by default. SIGPIPE is ignored, SIGINT is translated into a KeyboardInterrupt exception, and SIGTERM is caught in order to perform cleanup and invoke sys.exitfunc.

• Extreme care is needed if signals and threads are used in the same program. Currently, only the main thread of execution can set new signal handlers or receive signals.

• Signal handling on Windows is of only limited functionality. The number of supported signals is extremely limited on this platform.

subprocess

The subprocess module contains functions and objects that generalize the task of creating new processes, controlling input and output streams, and handling return codes. The module centralizes functionality contained in a variety of other modules such as os, popen2, and commands.

Popen(args, **parms)

Executes a new command as a subprocess and returns a Popen object representing the new process. The command is specified in args as either a string, such as 'ls -l', or as a list of strings, such as ['ls', '-l']. parms represents a collection of keyword arguments that can be set to control various properties of the subprocess. The following keyword parameters are understood:

[image: image]

[image: image]

call(args, **parms)

This function is exactly the same as Popen(), except that it simply executes the command and returns its status code instead (that is, it does not return a Popen object). This function is useful if you just want to execute a command but are not concerned with capturing its output or controlling it in other ways. The parameters have the same meaning as with Popen().

check_call(args, **parms)

The same as call() except that if the exit code is non-zero, the CalledProcessError exception is raised. This exception has the exit code stored in its returncode attribute.

The Popen object p returned by Popen() has a variety of methods and attributes that can be used for interacting with the subprocess.

p.communicate([input])

Communicates with the child process by sending the data supplied in input to the standard input of the process. Once data is sent, the method waits for the process to terminate while collecting output received on standard output and standard error. Returns a tuple (stdout,
stderr) where stdout and stderr are strings. If no data is sent to the child process, input is set to None (the default).

p.kill()

Kills the subprocess by sending it a SIGKILL signal on UNIX or calling the p.terminate() method on Windows.

p.poll()

Checks to see if p has terminated. If so, the return code of the subprocess is returned. Otherwise, None is returned.

p.send_signal(signal)

Sends a signal to the subprocess. signal is a signal number as defined in the signal module. On Windows, the only supported signal is SIGTERM.

p.terminate()

Terminates the subprocess by sending it a SIGTERM signal on UNIX or calling the Win32 API TerminateProcess function on Windows.

p.wait()

Waits for p to terminate and returns the return code.

p.pid

Process ID of the child process.

p.returncode

Numeric return code of the process. If None, the process has not terminated yet. If negative, it indicates the process was terminated by a signal (UNIX).

p.stdin, p.stdout, p.stderr

These three attributes are set to open file objects whenever the corresponding I/O stream is opened as a pipe (for example, setting the stdout argument in Popen() to PIPE). These file objects are provided so that the pipe can be connected to other subprocesses. These attributes are set to None if pipes are not in use.

Examples

[image: Image]

Notes

• As a general rule, it is better to supply the command line as a list of strings instead of a single string with a shell command (for example, ['wc','filename'] instead of 'wc filename'). On many systems, it is common for filenames to include funny characters and spaces (for example, the “Documents and Settings” folder on Windows). If you stick to supplying command arguments as a list, everything will work normally. If you try to form a shell command, you will have to take additional steps to make sure special characters and spaces are properly escaped.

• On Windows, pipes are opened in binary file mode. Thus, if you are reading text output from a subprocess, line endings will include the extra carriage return character ('\r\n' instead of '\n'). If this is a concern, supply the universal_newlines option to Popen().

• The subprocess module can not be used to control processes that expect to be running in a terminal or TTY. The most common example is any program that expects a user to enter a password (such as ssh, ftp, svn, and so on). To control these programs, look for third-party modules based on the popular “Expect” UNIX utility.

time

The time module provides various time-related functions. In Python, time is measured as the number of seconds since the epoch. The epoch is the beginning of time (the point at which time = 0 seconds). The epoch is January 1, 1970, on UNIX and can be determined by calling time.gmtime(0) on other systems.

The following variables are defined:

accept2dyear

A Boolean value that indicates whether two-digit years are accepted. Normally this is True, but it’s set to False if the environment variable $PYTHONY2K is set to a non-empty string. The value can be changed manually as well.

altzone

The time zone used during daylight saving time (DST), if applicable.

daylight

Is set to a nonzero value if a DST time zone has been defined.

timezone

The local (non-DST) time zone.

tzname

A tuple containing the name of the local time zone and the name of the local daylight saving time zone (if defined).

The following functions can be used:

asctime([tuple])

Converts a tuple representing a time as returned by gmtime() or localtime() to a string of the form 'Mon Jul 12 14:45:23 1999'. If no arguments are supplied, the current time is used.

clock()

Returns the current CPU time in seconds as a floating-point number.

ctime([secs])

Converts a time expressed in seconds since the epoch to a string representing local time. ctime(secs) is the same as asctime(localtime(secs)). If secs is omitted or None, the current time is used.

gmtime([secs])

Converts a time expressed in seconds since the epoch to a time in UTC Coordinated Universal Time (a.k.a. Greenwich Mean Time). This function returns a struct_time object with the following attributes:

[image: image]

The tm_isdst attribute is 1 if DST is in effect, 0 if not, and -1 if no information is available. If secs is omitted or None, the current time is used. For backward compatibility, the returned struct_time object also behaves like a 9-tuple containing the preceding attribute values in the same order as listed.

localtime([secs])

Returns a struct_time object as with gmtime(), but corresponding to the local time zone. If secs is omitted or None, the current time is used.

mktime(tuple)

This function takes a struct_time object or tuple representing a time in the local time zone (in the same format as returned by localtime()) and returns a floating-point number representing the number of seconds since the epoch. An OverflowError exception is raised if the input value is not a valid time.

sleep(secs)

Puts the current process to sleep for secs seconds. secs is a floating-point number.

strftime(format [, tm])

Converts a struct_time object tm representing a time as returned by gmtime() or localtime() to a string (for backwards compatibility, tm may also be a tuple representing a time value). format is a format string in which the following format codes can be embedded:

[image: image]

The format codes can include a width and precision in the same manner as used with the % operator on strings. ValueError is raised if any of the tuple fields are out of range. If tuple is omitted, the time tuple corresponding to the current time is used.

strptime(string [, format])

Parses a string representing a time and returns a struct_time object as returned by localtime() or gmtime(). The format parameter uses the same specifiers as used by strftime() and defaults to '%a %b %d %H:%M:%S %Y'. This is the same format as produced by the ctime() function. If the string cannot be parsed, a ValueError exception is raised.

time()

Returns the current time as the number of seconds since the epoch in UTC (Coordinated Universal Time).

tzset()

Resets the time zone setting based on the value of the TZ environment variable on UNIX. For example:

[image: Image]

Notes

• When two-digit years are accepted, they’re converted to four-digit years according to the POSIX X/Open standard, where the values 69-99 are mapped to 1969-1999 and the values 0-68 are mapped to 2000-2068.

• The accuracy of the time functions is often much less than what might be suggested by the units in which time is represented. For example, the operating system might only update the time 50–100 times a second.

See Also:

datetime (p. 336)

winreg

The winreg module (_winreg in Python 2) provides a low-level interface to the Windows registry. The registry is a large hierarchical tree in which each node is called a key. The children of a particular key are known as subkeys and may contain additional subkeys or values. For example, the setting of the Python sys.path variable is typically contained in the registry as follows:

\HKEY_LOCAL_MACHINE\Software\Python\PythonCore\2.6\PythonPath

In this case, Software is a subkey of HKEY_LOCAL_MACHINE, Python is a subkey of Software, and so forth. The value of the PythonPath key contains the actual path setting.

Keys are accessed through open and close operations. Open keys are represented by special handles (which are wrappers around the integer handle identifiers normally used by Windows).

CloseKey(key)

Closes a previously opened registry key with handle key.

ConnectRegistry(computer_name, key)

Returns a handle to a predefined registry key on another computer. computer_name is the name of the remote machine as a string of the \\computername. If computer_name is None, the local registry is used. key is a predefined handle such as HKEY_CURRENT_USER or HKEY_ USERS. Raises EnvironmentError on failure. The following list shows all HKEY_* values defined in the _winreg module:

• HKEY_CLASSES_ROOT

• HKEY_CURRENT_CONFIG

• HKEY_CURRENT_USER

• HKEY_DYN_DATA

• HKEY_LOCAL_MACHINE

• HKEY_PERFORMANCE_DATA

• HKEY_USERS

CreateKey(key, sub_key)

Creates or opens a key and returns a handle. key is a previously opened key or a predefined key defined by the HKEY_* constants. sub_key is the name of the key that will be opened or created. If key is a predefined key, sub_key may be None, in which case key is returned.

DeleteKey(key, sub_key)

Deletes sub_key. key is an open key or one of the predefined HKEY_* constants. sub_key is a string that identifies the key to delete. sub_key must not have any subkeys; otherwise, EnvironmentError is raised.

DeleteValue(key, value)

Deletes a named value from a registry key. key is an open key or one of the predefined HKEY_* constants. value is a string containing the name of the value to remove.

EnumKey(key, index)

Returns the name of a subkey by index. key is an open key or one of the predefined HKEY_* constants. index is an integer that specifies the key to retrieve. If index is out of range, an EnvironmentError is raised.

EnumValue(key, index)

Returns a value of an open key. key is an open key or a predefined HKEY_* constant. index is an integer specifying the value to retrieve. The function returns a tuple (name,
data,
type) in which name is the value name, data is an object holding the value data, and type is an integer that specifies the type of the value data. The following type codes are currently defined:

[image: image]

ExpandEnvironmentStrings(s)

Expands environment strings of the form %name% in Unicode string s.

FlushKey(key)

Writes the attributes of key to the registry, forcing changes to disk. This function should only be called if an application requires absolute certainty that registry data is stored on disk. It does not return until data is written. It is not necessary to use this function under normal circumstances.

RegLoadKey(key, sub_key, filename)

Creates a subkey and stores registration information from a file into it. key is an open key or a predefined HKEY_* constant. sub_key is a string identifying the subkey to load. filename is the name of the file from which to load data. The contents of this file must be created with the SaveKey() function, and the calling process must have SE_RESTORE_PRIVILEGE for this to work. If key was returned by ConnectRegistry(), filename should be a path that’s relative to the remote computer.

OpenKey(key, sub_key[, res [, sam]])

Opens a key. key is an open key or an HKEY_* constant. sub_key is a string identifying the subkey to open. res is a reserved integer that must be zero (the default). sam is an integer defining the security access mask for the key. The default is KEY_READ. Here are the other possible values for sam:

• KEY_ALL_ACCESS

• KEY_CREATE_LINK

• KEY_CREATE_SUB_KEY

• KEY_ENUMERATE_SUB_KEYS

• KEY_EXECUTE

• KEY_NOTIFY

• KEY_QUERY_VALUE

• KEY_READ

• KEY_SET_VALUE

• KEY_WRITE

OpenKeyEx()

Same as OpenKey().

QueryInfoKey(key)

Returns information about a key as a tuple (num_subkeys,
num_values,
last_modified) in which num_subkeys is the number of subkeys, num_values is the number of values, and last_modified is a long integer containing the time of last modification. Time is measured from January 1, 1601, in units of 100 nanoseconds.

QueryValue(key,sub_key)

Returns the unnamed value for a key as a string. key is an open key or an HKEY_* constant. sub_key is the name of the subkey to use, if any. If omitted, the function returns the value associated with key instead. This function returns the data for the first value with a null name. However, the type is returned (use QueryValueEx instead).

QueryValueEx(key, value_name)

Returns a tuple (value,
type) containing the data value and type for a key. key is an open key or HKEY_* constant. value_name is the name of the value to return. The returned type is one of the integer codes as described for the EnumValue() function.

SaveKey(key, filename)

Saves key and all its subkeys to a file. key is an open key or a predefined HKEY_* constant. filename must not already exist and should not include a filename extension. Furthermore, the caller must have backup privileges for the operation to succeed.

SetValue(key, sub_key, type, value)

Sets the value of a key. key is an open key or HKEY_* constant. sub_key is the name of the subkey with which to associate the value. type is an integer type code, currently limited to REG_SZ. value is a string containing the value data. If sub_key does not exist, it is created. key must have been opened with KEY_SET_VALUE access for this function to succeed.

SetValueEx(key, value_name, reserved, type, value)

Sets the value field of a key. key is an open key or an HKEY_* constant. value_name is the name of the value. type is an integer type code as described for the EnumValue() function. value is a string containing the new value. When the values of numeric types (for example, REG_DWORD) are being set, value is still a string containing the raw data. This string can be created using the struct module. reserved is currently ignored and can be set to anything (the value is not used).

Notes

• Functions that return a Windows HKEY object return a special registry handle object described by the class PyHKEY. This object can be converted into a Windows handle value using int(). This object can also be used with the context-management protocol to automatically close the underlying handle—for example:

with winreg.OpenKey(winreg.HKEY_LOCAL_MACHINE, "spam") as key:
 statements

20. Threads and Concurrency

This chapter describes library modules and programming strategies for writing concurrent programs in Python. Topics include threads, message passing, multiprocessing, and coroutines. Before covering specific library modules, some basic concepts are first described.

Basic Concepts

A running program is called a process. Each process has its own system state, which includes memory, lists of open files, a program counter that keeps track of the instruction being executed, and a call stack used to hold the local variables of functions. Normally, a process executes statements one after the other in a single sequence of control flow, which is sometimes called the main thread of the process. At any given time, the program is only doing one thing.

A program can create new processes using library functions such as those found in the os or subprocess modules (e.g., os.fork(), subprocess.Popen(), etc.). However, these processes, known as subprocesses, run as completely independent entities—each with their own private system state and main thread of execution. Because a subprocess is independent, it executes concurrently with the original process. That is, the process that created the subprocess can go on to work on other things while the subprocess carries out its own work behind the scenes.

Although processes are isolated, they can communicate with each other—something known as interprocess communication (IPC). One of the most common forms of IPC is based on message passing. A message is simply a buffer of raw bytes. Primitive operations such as send() and recv() are then used to transmit or receive messages through an I/O channel such as a pipe or network socket. Another somewhat less common IPC mechanism relies upon memory-mapped regions (see the mmap module). With memory mapping, processes can create shared regions of memory. Modifications to these regions are then visible in all processes that happen to be viewing them.

Multiple processes can be used by an application if it wants to work on multiple tasks at the same time—with each process responsible for part of the processing. However, another approach for subdividing work into tasks is to use threads. A thread is similar to a process in that it has its own control flow and execution stack. However, a thread runs inside the process that created it, sharing all of the data and system resources. Threads are useful when an application wants to perform tasks concurrently, but there is a potentially large amount of system state that needs to be shared by the tasks.

When multiple processes or threads are used, the host operating system is responsible for scheduling their work. This is done by giving each process (or thread) a small time slice and rapidly cycling between all of the active tasks—giving each a portion of the available CPU cycles. For example, if your system had 10 active processes running, the operating system would allocate approximately 1/10th of its CPU time to each process and cycle between processes in rapid succession. On systems with more than one CPU core, the operating system can schedule processes so that each CPU is kept busy, executing processes in parallel.

Writing programs that take advantage of concurrent execution is something that is intrinsically complicated. A major source of complexity concerns synchronization and access to shared data. In particular, attempts to update a data structure by multiple tasks at approximately the same time can lead to a corrupted and inconsistent program state (a problem formally known as a race condition). To fix these problems, concurrent programs must identify critical sections of code and protect them using mutual-exclusion locks and other similar synchronization primitives. For example, if different threads were trying to write data to the same file at the same time, you might use a mutual exclusion lock to synchronize their operation so that once one of the threads starts writing, the other threads have to wait until it has finished before they are allowed to start writing. The code for this scenario typically looks like this:

[image: Image]

There’s a joke attributed to Jason Whittington that goes as like this: “Why did the multithreaded chicken cross the road? to To other side. get the”. This joke typifies the kinds of problems that arise with task synchronization and concurrent programming. If you’re scratching your head saying, “I don’t get it,” then it might be wise to do a bit more reading before diving into the rest of this chapter.

Concurrent Programming and Python

Python supports both message passing and thread-based concurrent programming on most systems. Although most programmers tend to be familiar with the thread interface, Python threads are actually rather restricted. Although minimally thread-safe, the Python interpreter uses an internal global interpreter lock (the GIL) that only allows a single Python thread to execute at any given moment. This restricts Python programs to run on a single processor regardless of how many CPU cores might be available on the system. Although the GIL is often a heated source of debate in the Python community, it is unlikely to be removed at any time in the foreseeable future.

The presence of the GIL has a direct impact on how many Python programmers address concurrent programming problems. If an application is mostly I/O bound, it is generally fine to use threads because extra processors aren’t going to do much to help a program that spends most of its time waiting for events. For applications that involve heavy amounts of CPU processing, using threads to subdivide work doesn’t provide any benefit and will make the program run slower (often much slower than you would guess). For this, you’ll want to rely on subprocesses and message passing.

Even when threads are used, many programmers find their scaling properties to be rather mysterious. For example, a threaded network server that works fine with 100 threads may have horrible performance if it’s scaled up to 10,000 threads. As a general rule, you really don’t want to be writing programs with 10,000 threads because each thread requires its own system resources and the overhead associated with thread context switching, locking, and other matters starts to become significant (not to mention the fact that all threads are constrained to run on a single CPU). To deal with this, it is somewhat common to see such applications restructured as asynchronous event-handling systems. For example, a central event loop might monitor all of the I/O sources using the select module and dispatch asynchronous events to a large collection of I/O handlers. This is the basis for library modules such as asyncore as well as popular third-party modules such as Twisted (http://twistedmatrix/com).

Looking forward, message passing is a concept that you should probably embrace for any kind of concurrent programming in Python. Even when working with threads, an often-recommended approach is to structure your application as a collection of independent threads that exchange data through message queues. This particular approach tends to be less error-prone because it greatly reduces the need to use locks and other synchronization primitives. Message passing also naturally extends into networking and distributed systems. For example, if part of a program starts out as a thread to which you send messages, that component can later be migrated to a separate process or onto a different machine by sending the messages over a network connection. The message passing abstraction is also tied to advanced Python features such as coroutines. For example, a coroutine is a function that can receive and processe messages that are sent to it. So, by embracing message passing, you will find that you can write programs that have a great deal of flexibility.

The remainder of this chapter looks at different library modules for supporting concurrent programming. At the end, more detailed information on common programming idioms is provided.

multiprocessing

The multiprocessing module provides support for launching tasks in a subprocess, communicating and sharing data, and performing various forms of synchronization. The programming interface is meant to mimic the programming interface for threads in the threading module. However, unlike threads, it is important to emphasize that processes do not have any shared state. Thus, if a process modifies data, that change is local only to that process.

The features of the multiprocessing module are vast, making it one of the larger and most advanced built-in libraries. Covering every detail of the module is impossible here, but the essential parts of it along with examples will be given. Experienced programmers should be able to take the examples and expand them to larger problems.

Processes

All of the features of the multiprocessing module are focused on processes. They are described by the following class.

Process([group [, target [, name [, args [, kwargs]]]]])

A class that represents a task running in a subprocess. The arguments in the constructor should always been specified using keyword arguments. target is a callable object that will execute when the process starts, args is a tuple of positional arguments passed to target, and kwargs is a dictionary of keyword arguments passed to target. If args and kwargs are omitted, target is called with no arguments. name is a string that gives a descriptive name to the process. group is unused and is always set to None. Its presence here is simply to make the construction of a Process mimic the creation of a thread in the threading module.

An instance p of Process has the following methods:

p.is_alive()

Returns True if p is still running.

p.join([timeout])

Waits for process p to terminate. timeout specifies an optional timeout period. A process can be joined as many times as you wish, but it is an error for a process to try and join itself.

p.run()

The method that runs when the process starts. By default, this invokes target that was passed to the Process constructor. As an alternative, a process can be defined by inheriting from Process and reimplementing run().

p.start()

Starts the process. This launches the subprocess that represents the process and invokes p.run() in that subprocess.

p.terminate()

Forcefully terminates the process. If this is invoked, the process p is terminated immediately without performing any kind of cleanup actions. If the process p created subprocesses of its own, those processes will turn into zombies. Some care is required when using this method. If p holds a lock or is involved with interprocess communication, terminating it might cause a deadlock or corrupted I/O.

A Process instance p also has the following data attributes:

p.authkey

The process’ authentication key. Unless explicitly set, this is a 32-character string generated by os.urandom(). The purpose of this key is to provide security for low-level interprocess communication involving network connections. Such connections only work if both ends have the same authentication key.

p.daemon

A Boolean flag that indicates whether or not the process is daemonic. A daemonic process is automatically terminated when the Python process that created it terminates. In addition, a daemonic process is prohibited from creating new processes on its own. The value of p.daemon must be set before a process is started using p.start().

p.exitcode

The integer exit code of the process. If the process is still running, this is None. If the value is negative, a value of –N means the process was terminated by signal N.

p.name

The name of the process.

p.pid

The integer process ID of the process.

Here is an example that shows how to create and launch a function (or other callable) as a separate process:

[image: Image]

Here is an example that shows how to define this process as a class that inherits from Process:

[image: Image]

In both examples, the time should be printed by the subprocess every 15 seconds. It is important to emphasize that for cross-platform portability, new processes should only be created by the main program as shown. Although this is optional on UNIX, it is required on Windows. It should also be noted that on Windows, you will probably need to run the preceding examples in the command shell (command.exe) instead of a Python IDE, such as IDLE.

Interprocess Communication

Two primary forms of interprocess communication are supported by the multiprocessing module: pipes and queues. Both methods are implemented using message passing. However, the queue interface is meant to mimic the use of queues commonly used with thread programs.

Queue([maxsize])

Creates a shared process queue. maxsize is the maximum number of items allowed in the queue. If omitted, there is no size limit. The underlying queue is implemented using pipes and locks. In addition, a support thread is launched in order to feed queued data into the underlying pipe.

An instance q of Queue has the following methods:

q.cancel_join_thread()

Don’t automatically join the background thread on process exit. This prevents the join_thread() method from blocking.

q.close()

Closes the queue, preventing any more data from being added to it. When this is called, the background thread will continue to write any queued data not yet written but will shut down as soon as this is complete. This method is called automatically if q is garbage-collected. Closing a queue does not generate any kind of end-of-data signal or exception in queue consumers. For example, if a consumer is blocking on a get() operation, closing the queue in the producer does not cause the get() to return with an error.

q.empty()

Returns True if q is empty at the time of the call. If other processes or threads are being used to add queue items, be aware that the result is not reliable (e.g., new items could have been added to the queue in between the time that the result is returned and used).

q.full()

Returns True if q is full. The result is also not reliable due to threads (see q.empty()).

q.get([block [, timeout]])

Returns an item from q. If q is empty, blocks until a queue item becomes available. block controls the blocking behavior and is True by default. If set to False, a Queue.Empty exception (defined in the Queue library module) is raised if the queue is empty. timeout is an optional timeout to use in blocking mode. If no items become available in the specified time interval, a Queue.Empty exception is raised.

q.get_nowait()

The same as q.get(False).

q.join_thread()

Joins the queue’s background thread. This is used to wait for all queue items to be consumed after q.close() has been called. This method gets called by default in all processes that are not the original creator of q. This behavior can be disabled by called q.cancel_join_thread().

q.put(item [, block [, timeout]])

Puts item onto the queue. If the queue is full, block until space becomes available. block controls the blocking behavior and is True by default. If set to False, a Queue.Full exception (defined in the Queue library module) is raised if the queue is full. timeout specifies how long to wait for space to become available in blocking mode. A Queue.Full exception is raised on timeout.

q.put_nowait(item)

The same as q.put(item, False).

q.qsize()

Returns the approximate number of items currently in the queue. The result of this function is not reliable because items may have been added or removed from the queue in between the time the result is returned and later used in a program. On some systems, this method may raise an NotImplementedError.

JoinableQueue([maxsize])

Creates a joinable shared process queue. This is just like a Queue except that the queue allows a consumer of items to notify the producer that the items have been successfully been processed. The notification process is implemented using a shared semaphore and condition variable.

An instance q of JoinableQueue has the same methods as Queue, but it has the following additional methods:

q.task_done()

Used by a consumer to signal that an enqueued item returned by q.get() has been processed. A ValueError exception is raised if this is called more times than have been removed from the queue.

q.join()

Used by a producer to block until all items placed in a queue have been processed. This blocks until q.task_done() is called for every item placed into the queue.

The following example shows how you set up a process that runs forever, consuming and processing items on a queue. The producer feeds items into the queue and waits for them to be processed.

[image: Image]

In this example, the consumer process is set to daemonic because it runs forever and we want it to terminate when the main program finishes (if you forget this, the program will hang). A JoinableQueue is being used so that the producer actually knows when all of the items put in the queue have been successfully processed. The join() operation ensures this; if you forget this step, the consumer will be terminated before it has had time to complete all of its work.

If desired, multiple processes can put and get items from the same queue. For example, if you wanted to have a pool of consumer processes, you could just write code like this:

[image: Image]

When writing code such as this, be aware that every item placed into the queue is pickled and sent to the process over a pipe or socket connection. As a general rule, it is better to send fewer large objects than many small objects.

In certain applications, a producer may want to signal consumers that no more items will be produced and that they should shut down. To do this, you should write code that uses a sentinel—a special value that indicates completion. Here is an example that illustrates this concept using None as a sentinel:

[image: Image]

If you are using sentinels as shown in this example, be aware that you will need to put a sentinel on the queue for every single consumer. For example, if there were three consumer processes consuming items on the queue, the producer needs to put three sentinels on the queue to get all of the consumers to shut down.

As an alternative to using queues, a pipe can be used to perform message passing between processes.

Pipe([duplex])

Creates a pipe between processes and returns a tuple (conn1,
conn2) where conn1 and conn2 are Connection objects representing the ends of the pipe. By default, the pipe is bidirectional. If duplex is set False, then conn1 can only be used for receiving and conn2 can only be used for sending. Pipe() must be called prior to creating and launching any Process objects that use the pipe.

An instance c of a Connection object returned by Pipe() has the following methods and attributes:

c.close()

Closes the connection. Called automatically if c is garbage collected.

c.fileno()

Returns the integer file descriptor used by the connection.

c.poll([timeout])

Returns True if data is available on the connection. timeout specifies the maximum amount of time to wait. If omitted, the method returns immediately with a result. If timeout is set to None, then the operation will wait indefinitely for data to arrive.

c.recv()

Receives an object sent by c.send(). Raises EOFError if the other end of the connection has been closed and there is no more data.

c.recv_bytes([maxlength])

Receives a complete byte message sent by c.send_bytes(). maxlength specifies the maximum number of bytes to receive. If an incoming message exceeds this, an IOError is raised and no further reads can be made on the connection. Raises EOFError if the other end of the connection has been closed and there is no more data.

c.recv_bytes_into(buffer [, offset])

Receives a complete byte message and stores it in the object buffer, which supports the writable buffer interface (e.g., a bytearray object or similar). offset specifies the byte offset into the buffer where to place the message. Returns the number of bytes received. Raises BufferTooShort if the length of the message exceeds available buffer space.

c.send(obj)

Sends an object through the connection. obj is any object that is compatible with pickle.

c.send_bytes(buffer [, offset [, size]])

Sends a buffer of byte data through the connection. buffer is any object that supports the buffer interface, offset is the byte offset into the buffer, and size is the number of bytes to send. The resulting data is sent as a single message to be received using a single call to c.recv_bytes().

Pipes can be used in a similar manner as queues. Here is an example that shows the previous producer-consumer problem implemented using pipes:

[image: Image]

Great attention should be given to proper management of the pipe endpoints. If one of the ends of the pipe is not used in either the producer or consumer, it should be closed. This explains, for instance, why the output end of the pipe is closed in the producer and the input end of the pipe is closed in the consumer. If you forget one of these steps, the program may hang on the recv() operation in the consumer. Pipes are reference counted by the operating system and have to be closed in all processes to produce the EOFError exception. Thus, closing the pipe in the producer doesn’t have any effect unless the consumer also closes the same end of the pipe.

Pipes can be used for bidirectional communication. This can be used to write programs that interact with a process using a request/response model typically associated with client/server computing or remote procedure call. Here is an example:

[image: Image]

In this example, the adder() function runs as a server waiting for messages to arrive on its end of the pipe. When received, it performs some processing and sends the result back on the pipe. Keep in mind that send() and recv() use the pickle module to serialize objects. In the example, the server receives a tuple (x,
y) as input and returns the result x
+
y. For more advanced applications that use remote procedure call, however, you should use a process pool as described next.

Process Pools

The following class allows you to create a pool of processes to which various kind of data processing tasks can be submitted. The functionality provided by a pool is somewhat similar to that provided by list comprehensions and functional programming operations such as map-reduce.

Pool([numprocess [,initializer [, initargs]]])

Creates a pool of worker processes. numprocess is the number of processes to create. If omitted, the value of cpu_count() is used. initializer is a callable object that will be executed in each worker process upon startup. initargs is a tuple of arguments to pass to initializer. By default, initializer is None.

An instance p of Pool supports the following operations:

p.apply(func [, args [, kwargs]])

Executes func(*args,
**kwargs) in one of the pool workers and returns the result. It is important to emphasize this does not execute func in parallel in all pool workers. If you want func to execute concurrently with different arguments, you either have to call p.apply() from different threads or use p.apply_async().

p.apply_async(func [, args [, kwargs [, callback]]])

Executes func(*args, **kwargs) in one of the pool workers and returns the result asynchronously. The result of this method is an instance of AsyncResult which can be used to obtain the final result at a later time. callback is a callable object that accepts a single input argument. When the result of func becomes available, it is immediately passed to callback. callback should not perform any blocking operations or else it will block the reception of results in other asynchronous operations.

p.close()

Closes the process pool, preventing any further operations. If any operations are still pending, they will be completed before the worker processes terminate.

p.join()

Waits for all worker processes to exit. This can only be called after close() or terminate().

p.imap(func, iterable [, chunksize])

A version of map() that returns an iterator instead of a list of results.

p.imap_unordered(func, iterable [, chunksize]])

The same as imap() except that the results are returned in an arbitrary order based on when they are received from the worker processes.

p.map(func, iterable [, chunksize])

Applies the callable object func to all of the items in iterable and returns the result as a list. The operation is carried out in parallel by splitting iterable into chunks and farming out the work to the worker processes. chunksize specifies the number of items in each chunk. For large amounts of data, increasing the chunksize will improve performance.

p.map_async(func, iterable [, chunksize [, callback]])

The same as map() except that the result is returned asynchronously. The return value is an instance of AsyncResult that can be used to later obtain the result. callback is a callable object accepting a single argument. If supplied, callback is called with the result when it becomes available.

p.terminate()

Immediately terminates all of the worker processes without performing any cleanup or finishing any pending work. If p is garbage-collected, this is called.

The methods apply_async() and map_async() return an AsyncResult instance as a result. An instance a of AsyncResult has the following methods:

a.get([timeout])

Returns the result, waiting for it to arrive if necessary. timeout is an optional timeout. If the result does not arrive in the given time, a multiprocessing.TimeoutError exception is raised. If an exception was raised in the remote operation, it is reraised when this method is called.

a.ready()

Returns True if the call has completed.

a.sucessful()

Returns True if the call completed without any exceptions. An AssertionError is raised if this method is called prior to the result being ready.

a.wait([timeout])

Waits for the result to become available. timeout is an optional timeout.

The following example illustrates the use of a process pool to build a dictionary mapping filenames to SHA512 digest values for an entire directory of files:

[image: Image]

In the example, a sequence of pathnames for all files in a directory tree is specified using a generator expression. This sequence is then chopped up and farmed out to a process pool using the imap_unordered() function. Each pool worker computes a SHA512 digest value for its files using the compute_digest() function. The results are sent back to the master and collected into a Python dictionary. Although it’s by no means a scientific result, this example gives a 75 percent speedup over a single-process solution when run on the author’s dual-core Macbook.

Keep in mind that it only makes sense to use a process pool if the pool workers perform enough work to justify the extra communication overhead. As a general rule, it would not make sense to use a pool for simple calculations such as just adding two numbers together.

Shared Data and Synchronization

Normally, processes are completed isolated from each other with the only means of communication being queues or pipes. However, two objects can be used to represent shared data. Underneath the covers, these objects use shared memory (via mmap) to make access possible in multiple processes.

Value(typecode, arg1, ... argN, lock)

Creates a ctypes object in shared memory. typecode is either a string containing a type code as used by the array module (e.g., 'i', 'd', etc.) or a type object from the ctypes module (e.g., ctypes.c_int, ctypes.c_double, etc.). All extra positional arguments arg1,
arg2, ...
argN are passed to the constructor for the given type. lock is a keyword-only argument that if set to True (the default), a new lock is created to protect access to the value. If you pass in an existing lock such as a Lock or RLock instance, then that lock is used for synchronization. If v is an instance of a shared value created by Value, then the underlying value is accessed used v.value. For example, reading v.value will get the value and assigning v.value will change the value.

RawValue(typecode, arg1, ..., argN)

The same as Value except that there is no locking.

Array(typecode, initializer, lock)

Creates a ctypes array in shared memory. typecode describes the contents of the array and has the same meaning as described for Value(). initializer is either an integer that sets the initial size of the array or a sequence of items whose values and size are used to initialize the array. lock is a keyword-only argument with the same meaning as described for Value(). If a is an instance of a shared array created by Array, then you access its contents using the standard Python indexing, slicing, and iteration operations, each of which are synchronized by the lock. For byte strings, a will also have an a.value attribute to access the entire array as a single string.

RawArray(typecode, initializer)

The same as Array except that there is no locking. If you are writing programs that must manipulate a large number of array items all at once, the performance will be significantly better if you use this datatype along with a separate lock for synchronization (if needed).

In addition to shared values created using Value() and Array(), the multiprocessing module provides shared versions of the following synchronization primitives:

[image: image]

The behavior of these objects mimics the synchronization primitives defined in the threading module with identical names. Please refer to the threading documentation for further details.

It should be noted that with multiprocessing, it is not normally necessary to worry about low-level synchronization with locks, semaphores, or similar constructs to the same degree as with threads. In part, send() and receive() operations on pipes and put() and get() operations on queues already provide synchronization. However, shared values and locks can have uses in certain specialized settings. Here is an example that sends a Python list of floats to another process using a shared array instead of a pipe:

[image: Image]

Further study of this example is left to the reader. However, in a performance test on the author’s machine, sending a large list of floats through the FloatChannel is about 80 percent faster than sending the list through a Pipe (which has to pickle and unpickle all of the values).

Managed Objects

Unlike threads, processes do not support shared objects. Although you can create shared values and arrays as shown in the previous section, this doesn’t work for more advanced Python objects such as dictionaries, lists, or instances of user-defined classes. The multiprocessing module does, however, provide a way to work with shared objects if they run under the control of a so-called manager. A manager is a separate subprocess where the real objects exist and which operates as a server. Other processes access the shared objects through the use of proxies that operate as clients of the manager server.

The most straightforward way to work with simple managed objects is to use the Manager() function.

Manager()

Creates a running manager server in a separate process. Returns an instance of type SyncManager which is defined in the multiprocessing.managers submodule.

An instance m of SyncManager as returned by Manager() has a series of methods for creating shared objects and returning a proxy which can be used to access them. Normally, you would create a manager and use these methods to create shared objects before launching any new processes. The following methods are defined:

m.Array(typecode, sequence)

Creates a shared Array instance on the server and returns a proxy to it. See the “Shared Data and Synchronization” section for a description of the arguments.

m.BoundedSemaphore([value])

Creates a shared threading.BoundedSemaphore instance on the server and returns a proxy to it.

m.Condition([lock])

Creates a shared threading.Condition instance on the server and returns a proxy to it. lock is a proxy instance created by m.Lock() or m.Rlock().

m.dict([args])

Creates a shared dict instance on the server and returns a proxy to it. The arguments to this method are the same as for the built-in dict() function.

m.Event()

Creates a shared threading.Event instance on the server and returns a proxy to it.

m.list([sequence])

Creates a shared list instance on the server and returns a proxy to it. The arguments to this method are the same as for the built-in list() function.

m.Lock()

Creates a shared threading.Lock instance on the server and returns a proxy to it.

m.Namespace()

Creates a shared namespace object on the server and returns a proxy to it. A namespace is an object that is somewhat similar to a Python module. For example, if n is a namespace proxy, you can assign and read attributes using (.) such as n.name
=
value or value
=
n.name. However, the choice of name is significant. If name starts with a letter, then that value is part of the shared object held by the manager and is accessible in all other processes. If name starts with an underscore, it is only part of the proxy object and is not shared.

m.Queue()

Creates a shared Queue.Queue object on the server and returns a proxy to it.

m.RLock()

Creates a shared threading.Rlock object on the server and returns a proxy to it.

m.Semaphore([value])

Creates a shared threading.Semaphore object on the server and returns a proxy to it.

m.Value(typecode, value)

Creates a shared Value object on the server and returns a proxy to it. See the “Shared Data and Synchronization” section for a description of the arguments.

The following example shows how you would use a manager in order to create a dictionary shared between processes.

[image: Image]

If you run this example, the watch() function prints out the value of d every time the passed event gets set. In the main program, a shared dictionary and event are created and manipulated in the main process. When you run this, you will see the child process printing data.

If you want to have shared objects of other types such as instances of user-defined classes, you have to create your custom manager object. To do this, you create a class that inherits from BaseManager, which is defined in the multiprocessing.managers submodule.

managers.BaseManager([address [, authkey]])

Base class used to create custom manager servers for user-defined objects. address is an optional tuple (hostname,
port) that specifies a network address for the server. If omitted, the operating system will simply assign an address corresponding to some free port number. authkey is a string that is used to authenticate clients connecting to the server. If omitted, the value of current_process().authkey is used.

If mgrclass is a class that inherits from BaseManager, the following class method is used to create methods for returning proxies to shared objects.

[image: Image]

Registers a new data type with the manager class. typeid is a string that is used to name a particular kind of shared object. This string should be a valid Python identifier. callable is a callable object that creates or returns the instance to be shared. proxytype is a class that provides the implementation of the proxy objects to be used in clients. Normally, these classes are generated by default so this is normally set to None. exposed is a sequence of method names on the shared object that will be exposed to proxy objects. If omitted, the value of proxytype._exposed_ is used and if that is undefined, then all public methods (all callable methods that don’t start with an underscore (_) are used). method_to_typeid is a mapping from method names to type IDS that is used to specify which methods should return their results using proxy objects. If a method is not found in this mapping, the return value is copied and returned. If method_to_typeid is None, the value of proxytype._method_to_typeid_ is used if it is defined. create_method is a Boolean flag that specifies whether a method with the name typeid should be created in mgrclass. By default, this is True.

An instance m of a manager derived from BaseManager must be manually started to operate. The following attributes and methods are related to this:

m.address

A tuple (hostname,
port) that has the address being used by the manager server.

m.connect()

Connects to a remote manager object, the address of which was given to the BaseManager constructor.

m.serve_forever()

Runs the manager server in the current process.

m.shutdown()

Shuts down a manager server launched by the m.start() method.

m.start()

Starts a separate subprocess and starts the manager server in that process.

The following example shows how to create a manager for a user-defined class:

[image: Image]

In this example, the last statement creates an instance of A that lives on the manager server. The variable a in the previous code is only a proxy for this instance. The behavior of this proxy is similar to (but not completely identical to) referent, the object on the server. First, you will find that data attributes and properties cannot be accessed. Instead, you have to use access functions:

[image: Image]

With proxies, the repr() function returns a string representing the proxy, whereas str() returns the output of _ _repr_ _() on the referent. For example:

[image: Image]

Special methods and any method starting with an underscore (_) are not accessible on proxies. For example, if you tried to invoke a._ _iadd_ _(), it doesn’t work:

[image: Image]

In more advanced applications, it is possible to customize proxies to more carefully control access. This is done by defining a class that inherits from BaseProxy, which is defined in multiprocessing.managers. The following code shows how you could make a custom proxy to the A class in the previous example that properly exposes the _ _iadd_ _() method and which uses a property to expose the x attribute:

[image: Image]

An instance proxy of a class derived from BaseProxy has the following methods:

proxy._callmethod(name [, args [, kwargs]])

Calls the method name on the proxy’s referent object. name is a string with the method name, args is a tuple containing positional arguments, and kwargs is a dictionary of keyword arguments. The method name must be explicitly exposed. Normally this is done by including the name in the _exposed_ class attribute of the proxy class.

proxy._getvalue()

Returns a copy of the referent in the caller. If this call is made in a different process, the referent object is pickled, sent to the caller, and is unpickled. An exception is raised if the referent can’t be pickled.

Connections

Programs that use the multiprocessing module can perform message passing with other processes running on the same machine or with processes located on remote systems. This can be useful if you want to take a program written to work on a single system and expand it work on a computing cluster. The multiprocessing.connection submodule has functions and classes for this purpose:

[image: Image]

Connects to another process which must already be listening at address address. address is a tuple (hostname
,
port) representing a network address, a file name representing a UNIX domain socket, or a string of the form r'\\servername\pipe\pipename' representing a Windows named pipe on a remote system servername (use a servername of '.' for the local machine). family is a string representing the addess format and is typically one of 'AF_INET', 'AF_UNIX', or 'AF_PIPE'. If omitted, the family is inferred from the format of address. authentication is a Boolean flag that specifies whether digest authentication is to be used. authkey is a string containing the authentication key. If omitted, then the value of current_process().authkey is used. The return value from this function is a Connection object, which was previously described in the pipes section of “Interprocess Communication.”

[image: Image]

A class that implements a server for listening for and handling connections made by the Client() function. The address,
family,
authenticate, and authkey arguments have the same meaning as for Client(). backlog is an integer corresponding to the value passed to the listen() method of sockets if the address parameter specifies a network connection. By default, backlog is 1. If address is omitted, then a default address is chosen. If both address and family are omitted, then the fastest available communications scheme on the local system is chosen.

An instance s of Listener supports the following methods and attributes:

s.accept()

Accepts a new connection and returns a Connection object. Raises AuthenticationError if authentication fails.

s.address

The address that the listener is using.

s.close()

Closes the pipe or socket being used by the listener.

s.last_accepted

The address of the last client that was accepted.

Here is an example of a server program that listens for clients and implements a simple remote operation (adding):

[image: Image]

Here is a simple client program that connects to this server and sends some messages:

[image: Image]

Miscellaneous Utility Functions

The following utility functions are also defined:

active_children()

Returns a list of Process objects for all active child processes.

cpu_count()

Returns the number of CPUs on the system if it can be determined.

current_process()

Returns the Process object for the current process.

freeze_support()

A function that should be included as the first statement of the main program in an application that will be “frozen” using various packaging tools such as py2exe. This is needed to prevent runtime errors associated with launching subprocesses in a frozen application.

get_logger()

Returns the logging object associated with the multiprocessing module, creating it if it doesn’t already exist. The returned logger does not propagate messages to the root logger, has a level of logging.NOTSET, and prints all logging messages to standard error.

set_executable(executable)

Sets the name of the Python executable used to execute subprocesses. This is only defined on Windows.

General Advice on Multiprocessing

The multiprocessing module is one of the most advanced and powerful modules in the Python library. Here are some general tips for keeping your head from exploding:

• Carefully read the online documentation before building a large application. Although this section has covered the essential basics, the official documentation covers some of the more sneaky issues that can arise.

• Make sure that all data passed between processes is compatible with pickle.

• Avoid shared data and learn to love message passing and queues. With message passing, you don’t have to worry so much about synchronization, locking, and other issues. It also tends to provide better scaling as the number of processes increases.

• Don’t use global variables inside functions that are meant to run in separate processes. It is better to explicitly pass parameters instead.

• Try not to mix threads and multiprocessing together in the same program unless you’re vastly trying to improve your job security (or to have it reduced depending on who is doing the code review).

• Pay very careful attention to how processes get shut down. As a general rule, you will want to explicitly close processes and have a well-defined termination scheme in place as opposed to just relying on garbage collection or having to forcefully terminate children using the terminate() operation.

• The use of managers and proxies is closely related to a variety of concepts in distributed computing (e.g., distributed objects). A good distributed computing book might be a useful reference.

• The multiprocessing module originated from a third-party library known as pyprocessing. Searching for usage tips and information on this library may be a useful resource.

• Although this module works on Windows, you should carefully read the official documentation for a variety of subtle details. For example, to launch a new process on Windows, the multiprocessing module implements its own clone of the UNIX fork() operation, in which process state is copied to the child process over a pipe. As a general rule, this module is much more tuned to UNIX systems.

• Above all else, try to keep things as simple as possible.

threading

The threading module provides a Thread class and a variety of synchronization primitives for writing multithreaded programs.

Thread Objects

The Thread class is used to represent a separate thread of control. A new thread can be created as follows:

Thread(group=None, target=None, name=None, args=(), kwargs={})

This creates a new Thread instance. group is None and is reserved for future extensions. target is a callable object invoked by the run() method when the thread starts. By default, it’s None, meaning that nothing is called. name is the thread name. By default, a unique name of the form "Thread-N" is created. args is a tuple of arguments passed to the target function. kwargs is a dictionary of keyword arguments passed to target.

A Thread instance t supports the following methods and attributes:

t.start()

Starts the thread by invoking the run() method in a separate thread of control. This method can be invoked only once.

t.run()

This method is called when the thread starts. By default, it calls the target function passed in the constructor. This method can also be redefined in subclasses of Thread.

t.join([timeout])

Waits until the thread terminates or a timeout occurs. timeout is a floating-point number specifying a timeout in seconds. A thread cannot join itself, and it’s an error to join a thread before it has been started.

t.is_alive()

Returns True if the thread is alive and False otherwise. A thread is alive from the moment the start() method returns until its run() method terminates. t.isAlive() is an alias for this method in older code.

t.name

The thread name. This is a string that is used for identification only and which can be changed to a more meaningful value if desired (which may simplify debugging). In older code, t.getName() and t.setName(name) are used to manipulate the thread name.

t.ident

An integer thread identifier. If the thread has not yet started, the value is None.

t.daemon

The thread’s Boolean daemonic flag. This must be set prior to calling start() and the initial value is inherited from daemonic status of the creating thread. The entire Python program exits when no active non-daemon threads are left. All programs have a main thread that represents the initial thread of control and which is not daemonic. In older code, t.setDaemon(flag) and t.isDaemon() are used to manipulate this value.

Here is an example that shows how to create and launch a function (or other callable) as a thread:

[image: Image]

Here is an example that shows how to define the same thread as a class:

[image: Image]

If you define a thread as a class and define your own _ _init_ _() method, it is critically important to call the base class constructor Thread._ _init_ _() as shown. If you forget this, you will get a nasty error. Other than run(), it is an error to override any of the other methods already defined for a thread.

The setting of the daemon attribute in these examples is a common feature of threads that will run forever in the background. Normally, Python waits for all threads to terminate before the interpreter exits. However, for nonterminating background tasks, this behavior is often undesirable. Setting the daemon flag makes the interpreter quit immediately after the main program exits. In this case, the daemonic threads are simply destroyed.

Timer Objects

A Timer object is used to execute a function at some later time.

Timer(interval, func [, args [, kwargs]])

Creates a timer object that runs the function func after interval seconds have elapsed. args and kwargs provide the arguments and keyword arguments passed to func. The timer does not start until the start() method is called.

A Timer object, t, has the following methods:

t.start()

Starts the timer. The function func supplied to Timer() will be executed after the specified timer interval.

t.cancel()

Cancels the timer if the function has not executed yet.

Lock Objects

A primitive lock (or mutual exclusion lock) is a synchronization primitive that’s in either a “locked” or “unlocked” state. Two methods, acquire() and release(), are used to change the state of the lock. If the state is locked, attempts to acquire the lock are blocked until the lock is released. If more than one thread is waiting to acquire the lock, only one is allowed to proceed when the lock is released. The order in which waiting threads proceed is undefined.

A new Lock instance is created using the following constructor:

Lock()

Creates a new Lock object that’s initially unlocked.

A Lock instance, lock, supports the following methods:

lock.acquire([blocking])

Acquires the lock, blocking until the lock is released if necessary. If blocking is supplied and set to False, the function returns immediately with a value of False if the lock could not be acquired or True if locking was successful.

lock.release()

Releases a lock. It’s an error to call this method when the lock is in an unlocked state or from a different thread than the one that originally called acquire().

RLock

A reentrant lock is a synchronization primitive that’s similar to a Lock object, but it can be acquired multiple times by the same thread. This allows the thread owning the lock to perform nested acquire() and release() operations. In this case, only the outermost release() operation resets the lock to its unlocked state.

A new RLock object is created using the following constructor:

RLock()

Creates a new reentrant lock object. An RLock object, rlock, supports the following methods:

rlock.acquire([blocking])

Acquires the lock, blocking until the lock is released if necessary. If no thread owns the lock, it’s locked and the recursion level is set to 1. If this thread already owns the lock, the recursion level of the lock is increased by one and the function returns immediately.

rlock.release()

Releases a lock by decrementing its recursion level. If the recursion level is zero after the decrement, the lock is reset to the unlocked state. Otherwise, the lock remains locked. This function should only be called by the thread that currently owns the lock.

Semaphore and Bounded Semaphore

A semaphore is a synchronization primitive based on a counter that’s decremented by each acquire() call and incremented by each release() call. If the counter ever reaches zero, the acquire() method blocks until some other thread calls release().

Semaphore([value])

Creates a new semaphore. value is the initial value for the counter. If omitted, the counter is set to a value of 1.

A Semaphore instance, s, supports the following methods:

s.acquire([blocking])

Acquires the semaphore. If the internal counter is larger than zero on entry, this method decrements it by 1 and returns immediately. If it’s zero, this method blocks until another thread calls release(). The blocking argument has the same behavior as described for Lock and RLock objects.

s.release()

Releases a semaphore by incrementing the internal counter by 1. If the counter is zero and another thread is waiting, that thread is awakened. If multiple threads are waiting, only one will be returned from its acquire() call. The order in which threads are released is not deterministic.

BoundedSemaphore([value])

Creates a new semaphore. value is the initial value for the counter. If value is omitted, the counter is set to a value of 1. A BoundedSemaphore works exactly like a Semaphore except the number of release() operations cannot exceed the number of acquire() operations.

A subtle difference between a semaphore and a mutex lock is that a semaphore can be used for signaling. For example, the acquire() and release() methods can be called from different threads to communicate between producer and consumer threads.

[image: Image]

The kind of signaling shown in this example is often instead carried out using condition variables, which will be described shortly.

Events

Events are used to communicate between threads. One thread signals an “event,” and one or more other threads wait for it. An Event instance manages an internal flag that can be set to true with the set() method and reset to false with the clear() method. The wait() method blocks until the flag is true.

Event()

Creates a new Event instance with the internal flag set to false. An Event instance, e, supports the following methods:

e.is_set()

Returns true only if the internal flag is true. This method is called isSet() in older code.

e.set()

Sets the internal flag to true. All threads waiting for it to become true are awakened.

e.clear()

Resets the internal flag to false.

e.wait([timeout])

Blocks until the internal flag is true. If the internal flag is true on entry, this method returns immediately. Otherwise, it blocks until another thread calls set() to set the flag to true or until the optional timeout occurs. timeout is a floating-point number specifying a timeout period in seconds.

Although Event objects can be used to signal other threads, they should not be used to implement the kind of notification that is typical in producer/consumer problems. For example, you should avoid code like this:

[image: Image]

This code does not work reliably because the producer might produce a new item in between the evt.wait() and evt.clear() operations. However, by clearing the event, this new item won’t be seen by the consumer until the producer creates a new item. In the best case, the program will experience a minor hiccup where the processing of an item is inexplicably delayed. In the worst case, the whole program will hang due to the loss of an event signal. For these types of problems, you are better off using condition variables.

Condition Variables

A condition variable is a synchronization primitive, built on top of another lock that’s used when a thread is interested in a particular change of state or event occurring. A typical use is a producer-consumer problem where one thread is producing data to be consumed by another thread. A new Condition instance is created using the following constructor:

Condition([lock])

Creates a new condition variable. lock is an optional Lock or RLock instance. If not supplied, a new RLock instance is created for use with the condition variable.

A condition variable, cv, supports the following methods:

cv.acquire(*args)

Acquires the underlying lock. This method calls the corresponding acquire(*args) method on the underlying lock and returns the result.

cv.release()

Releases the underlying lock. This method calls the corresponding release() method on the underlying lock.

cv.wait([timeout])

Waits until notified or until a timeout occurs. This method is called after the calling thread has already acquired the lock. When called, the underlying lock is released, and the thread goes to sleep until it’s awakened by a notify() or notifyAll() call performed on the condition variable by another thread. Once awakened, the thread reacquires the lock and the method returns. timeout is a floating-point number in seconds. If this time expires, the thread is awakened, the lock reacquired, and control returned.

cv.notify([n])

Wakes up one or more threads waiting on this condition variable. This method is called only after the calling thread has acquired the lock, and it does nothing if no threads are waiting. n specifies the number of threads to awaken and defaults to 1. Awakened threads don’t return from the wait() call until they can reacquire the lock.

cv.notify_all()

Wakes up all threads waiting on this condition. This method is called notifyAll() in older code.

Here is an example that provides a template of using condition variables:

[image: Image]

A subtle aspect of using condition variables is that if there are multiple threads waiting on the same condition, the notify() operation may awaken one or more of them (this behavior often depends on the underlying operating system). Because of this, there is always a possibility that a thread will awaken only to find that the condition of interest no longer holds. This explains, for instance, why a while loop is used in the consumer() function. If the thread awakens, but the produced item is already gone, it just goes back to waiting for the next signal.

Working with Locks

Great care must be taken when working with any of the locking primitives such as Lock, RLock, or Semaphore. Mismanagement of locks is a frequent source of deadlock or race conditions. Code that relies on a lock should always make sure locks get properly released even when exceptions occur. Typical code looks like this:

[image: Image]

Alternatively, all of the locks also support the context management protocol which is a little cleaner:

[image: Image]

In this last example, the lock is automatically acquired by the with statement and released when control flow leaves the context.

Also, as a general rule you should avoid writing code where more than one lock is acquired at any given time. For example:

[image: Image]

This is usually a good way to have your application mysteriously deadlock. Although there are strategies for avoiding this (for example, hierarchical locking), you’re often better off writing code that avoids this altogether.

Thread Termination and Suspension

Threads do not have any methods for forceful termination or suspension. This omission is by design and due to the intrinsic complexity of writing threaded programs. For example, if a thread has acquired a lock, forcefully terminating or suspending it before it is able to release the lock may cause the entire application to deadlock. Moreover, it is generally not possible to simply “release all locks” on termination either because complicated thread synchronization often involves locking and unlocking operations that must be carried out in a very precise sequence to work.

If you want to support termination or suspension, you need to build these features yourself. Typically, it’s done by making a thread run in a loop that periodically checks its status to see if it should terminate. For example:

[image: Image]

Keep in mind that to make this approach work reliability, the thread should take great care not to perform any kind of blocking I/O operation. For example, if the thread blocks waiting for data to arrive, it won’t terminate until it wakes up from that operation. Because of this, you would probably want to make the implementation use timeouts, non-blocking I/O, and other advanced features to make sure that that the termination check executes every so often.

Utility Functions

The following utility functions are available:

active_count()

Returns the number of currently active Thread objects.

current_thread()

Returns the Thread object corresponding to the caller’s thread of control.

enumerate()

Returns a list of all currently active Thread objects.

local()

Returns a local object that allows for the storage of thread-local data. This object is guaranteed to be unique in each thread.

setprofile(func)

Sets a profile function that will be used for all threads created. func is passed to sys.setprofile() before each thread starts running.

settrace(func)

Sets a tracing function that will be used for all threads created. func is passed to sys.settrace() before each thread starts running.

stack_size([size])

Returns the stack size used when creating new threads. If an optional integer size is given, it sets the stack size to be used for creating new threads. size can be a value that is 32768 (32KB) or greater and a multiple of 4096 (4KB) for maximum portability. A ThreadError exception is raised if this operation isn’t supported on the system.

The Global Interpreter Lock

The Python interpreter is protected by a lock that only allows one thread to execute at a time even if there are multiple processors available. This severely limits the usefulness of threads in compute-intensive programs—in fact, the use of threads will often make CPU-bound programs run significantly worse than would be the case if they just sequentially carried out the same work. Thus, threads should really only be reserved for programs that are primarily concerned with I/O such as network servers. For more compute-intensive tasks, consider using C extension modules or the multiprocessing module instead. C extensions have the option of releasing the interpreter lock and running in parallel, provided that they don’t interact with the interpreter when the lock is released. The multiprocessing module farms work out to independent subprocesses that aren’t restricted by the lock.

Programming with Threads

Although it is possible to write very traditional multithreaded programs in Python using various combinations of locks and synchronization primitives, there is one style of programming that is recommended over all others—and that’s to try and organize multithreaded programs as a collection of independent tasks that communicate through message queues. This is described in the next section (the queue module) along with an example.

queue, Queue

The queue module (named Queue in Python 2) implements various multiproducer, multiconsumer queues that can be used to safely exchange information between multiple threads of execution.

The queue module defines three different queue classes:

Queue([maxsize])

Creates a FIFO (first-in first-out) queue. maxsize is the maximum number of items that can be placed in the queue. If maxsize omitted or 0, the queue size is infinite.

LifoQueue([maxsize])

Creates a LIFO (last-in, first-out) queue (also known as a stack).

PriorityQueue([maxsize])

Creates a priority queue in which items are ordered from lowest to highest priority. When working with this queue, items should be tuples of the form (priority,
data) where priority is a number.

An instance q of any of the queue classes has the following methods:

q.qsize()

Returns the approximate size of the queue. Because other threads may be updating the queue, this number is not entirely reliable.

q.empty()

Returns True if the queue is empty and returns False otherwise.

q.full()

Returns True if the queue is full and returns False otherwise.

q.put(item [, block [, timeout]])

Puts item into the queue. If optional argument block is True (the default), the caller blocks until a free slot is available. Otherwise (block is False), the Full exception is raised if the queue is full. timeout supplies an optional timeout value in seconds. If a timeout occurs, the Full exception is raised.

q.put_nowait(item)

Equivalent to q.put(item, False).

q.get([block [, timeout]])

Removes and returns an item from the queue. If optional argument block is True (the default), the caller blocks until an item is available. Otherwise (block is False), the Empty exception is raised if the queue is empty. timeout supplies an optional timeout value in seconds. If a timeout occurs, the Empty exception is raised.

q.get_nowait()

Equivalent to get(0).

q.task_done()

Used by consumers of queued data to indicate that processing of an item has been finished. If this is used, it should be called once for every item removed from the queue.

q.join()

Blocks until all items on the queue have been removed and processed. This will only return once q.task_done() has been called for every item placed on the queue.

Queue Example with Threads

Multithreaded programs are often simplified with the use of queues. For example, instead of relying upon shared state that must be protected by locks, threads can be linked together using shared queues. In this model, worker threads typically operate as consumers of data. Here is an example that illustrates the concept:

[image: Image]

The design of this class has been chosen very carefully. First, you will notice that the programming API is a subset of the Connection objects that get created by pipes in the multiprocessing module. This allows for future expansion. For example, workers could later be migrated into a separate process without breaking the code that sends them data.

Second, the programming interface allows for thread termination. The close() method places a sentinel onto the queue which, in turn, causes the thread to shut down when processed.

Finally, the programming API is also almost identical to a coroutine. If the work to be performed doesn’t involve any blocking operations, you could reimplement the run() method as a coroutine and dispense with threads altogether. This latter approach might run faster because there would no longer be any overhead due to thread context switching.

Coroutines and Microthreading

In certain kinds of applications, it is possible to implement cooperative user-space multithreading using a task scheduler and a collection of generators or coroutines. This is sometimes called microthreading, although the terminology varies—sometimes this is described in the context of tasklets, green threads, greenlets, etc. A common use of this technique is in programs that need to manage a large collection of open files or sockets. For example, a network server that wants to simultaneously manage 1,000 client connections. Instead of creating 1,000 threads to do that, asynchronous I/O or polling (using the select module) is used in conjunction with a task scheduler that processes I/O events.

The underlying concept that drives this programming technique is the fact that the yield statement in a generator or coroutine function suspends the execution of the function until it is later resumed with a next() or send() operation. This makes it possible to cooperatively multitask between a set of generator functions using a scheduler loop. Here is an example that illustrates the idea:

[image: Image]

It is uncommon for a program to define a series of CPU-bound coroutines and schedule them as shown. Instead, you are more likely to see this technique used with I/O bound tasks, polling, or event handling. An advanced example showing this technique is found in the select module section of Chapter 21, “Network Programming and Sockets.”

21. Network Programming and Sockets

This chapter describes the modules used to implement low-level network servers and clients. Python provides extensive network support, ranging from programming directly with sockets to working with high-level application protocols such as HTTP. To begin, a very brief (and admittedly terse) introduction to network programming is presented. Readers are advised to consult a book such as UNIX Network Programming, Volume 1: Networking APIs: Sockets and XTI by W. Richard Stevens (Prentice Hall, 1997, ISBN 0-13-490012-X) for many of the advanced details. Chapter 22, “Internet Application Programming,” describes modules related to application-level protocols.

Network Programming Basics

Python’s network programming modules primarily support two Internet protocols: TCP and UDP. The TCP protocol is a reliable connection-oriented protocol used to establish a two-way communications stream between machines. UDP is a lower-level packet-based protocol (connectionless) in which machines send and receive discrete packets of information without formally establishing a connection. Unlike TCP, UDP communication is unreliable and thus inherently more complicated to manage in applications that require reliable communications. Consequently, most Internet applications utilize TCP connections.

Both network protocols are handled through a programming abstraction known as a socket. A socket is an object similar to a file that allows a program to accept incoming connections, make outgoing connections, and send and receive data. Before two machines can communicate, both must create a socket object.

The machine receiving the connection (the server) must bind its socket object to a known port number. A port is a 16-bit number in the range 0–65535 that’s managed by the operating system and used by clients to uniquely identify servers. Ports 0–1023 are reserved by the system and used by common network protocols. The following table shows the port assignments for a couple of common protocols (a more complete list can be found at http://www.iana.org/assignments/port-numbers):

[image: Image]

The process of establishing a TCP connection involves a precise sequence of steps on both the server and client, as shown in Figure 21.1.

Figure 21.1 TCP connection protocol.

[image: Image]

For TCP servers, the socket object used to receive connections is not the same socket used to perform subsequent communication with the client. In particular, the accept() system call returns a new socket object that’s actually used for the connection. This allows a server to manage connections from a large number of clients simultaneously.

UDP communication is performed in a similar manner, except that clients and servers don’t establish a “connection” with each other, as shown in Figure 21.2.

Figure 21.2 UDP connection protocol.

[image: Image]

The following example illustrates the TCP protocol with a client and server written using the socket module. In this case, the server simply returns the current time to the client as a string.

[image: Image]

Here’s the client program:

[image: Image]

An example of establishing a UDP connection appears in the socket module section later in this chapter.

It is common for network protocols to exchange data in the form of text. However, great attention needs to be given to text encoding. In Python 3, all strings are Unicode. Therefore, if any kind of text string is to be sent across the network, it needs to be encoded. This is why the server is using the encode('ascii') method on the data it transmits. Likewise, when a client receives network data, that data is first received as raw unencoded bytes. If you print it out or try to process it as text, you’re unlikely to get what you expected. Instead, you need to decode it first. This is why the client code is using decode('ascii') on the result.

The remainder of this chapter describes modules that are related to socket programming. Chapter 22 describes higher-level modules that provide support for various Internet applications such as email and the Web.

asynchat

The asynchat module simplifies the implementation of applications that implement asynchronous networking using the asyncore module. It does this by wrapping the low-level I/O functionality of asyncore with a higher-level programming interface that is designed for network protocols based on simple request/response mechanisms (for example, HTTP).

To use this module, you must define a class that inherits from async_chat. Within this class, you must define two methods: collect_incoming_data() and found_terminator(). The first method is invoked whenever data is received on the network connection. Typically, it would simply take the data and store it someplace. The found_terminator() method is called when the end of a request has been detected. For example, in HTTP, requests are terminated by a blank line.

For data output, async_chat maintains a producer FIFO queue. If you need to output data, it is simply added to this queue. Then, whenever writes are possible on the network connection, data is transparently taken from this queue.

async_chat([sock])

Base class used to define new handlers. async_chat inherits from asyncore.dispatcher and provides the same methods. sock is a socket object that’s used for communication.

An instance, a, of async_chat has the following methods in addition to those already provided by the asyncore.dispatcher base class:

a.close_when_done()

Signals an end-of-file on the outgoing data stream by pushing None onto the producer FIFO queue. When this is reached by the writer, the channel will be closed.

a.collect_incoming_data(data)

Called whenever data is received on the channel. data is the received data and is typically stored for later processing. This method must be implemented by the user.

a.discard_buffers()

Discards all data held in input/output buffers and the producer FIFO queue.

a.found_terminator()

Called when the termination condition set by set_terminator() holds. This method must be implemented by the user. Typically, it would process data previously collected by the collect_incoming_data() method.

a.get_terminator()

Returns the terminator for the channel.

a.push(data)

Pushes data onto the channel’s outgoing producer FIFO queue. data is a string containing the data to be sent.

a.push_with_producer(producer)

Pushes a producer object, producer, onto the producer FIFO queue. producer may be any object that has a simple method, more(). The more() method should produce a string each time it is invoked. An empty string is returned to signal the end of data. Internally, the async_chat class repeatedly calls more() to obtain data to write on the outgoing channel. More than one producer object can be pushed onto the FIFO by calling push_with_producer() repeatedly.

s.set_terminator(term)

Sets the termination condition on the channel. term may either be a string, an integer, or None. If term is a string, the method found_terminator() is called whenever that string appears in the input stream. If term is an integer, it specifies a byte count. After many bytes have been read, found_terminator() will be called. If term is None, data is collected forever.

The module defines one class that can produce data for the a.push_with_producer() method.

simple_producer(data [, buffer_size])

Creates a simple producer object that produces chunks from a byte string data. buffer_size specifies the chunk size and is 512 by default.

The asynchat module is always used in conjunction with the asyncore module. For instance, asyncore is used to set up the high-level server, which accepts incoming connections. asynchat is then used to implement handlers for each connection. The following example shows how this works by implementing a minimalistic web server that handles GET requests. The example omits a lot of error checking and details but should be enough to get you started. Readers should compare this example to the example in the asyncore module, which is covered next.

[image: Image]

[image: Image]

[image: Image]

[image: Image]

To test this example, you will need to supply a URL corresponding to a file in the same directory as where you are running the server.

asyncore

The asyncore module is used to build network applications in which network activity is handled asynchronously as a series of events dispatched by an event loop, built using the select() system call. Such an approach is useful in network programs that want to provide concurrency, but without the use of threads or processes. This method can also provide high performance for short transactions. All the functionality of this module is provided by the dispatcher class, which is a thin wrapper around an ordinary socket object.

dispatcher([sock])

Base class defining an event-driven nonblocking socket object. sock is an existing socket object. If omitted, a socket must be created using the create_socket() method (described shortly). Once it’s created, network events are handled by special handler methods. In addition, all open dispatcher objects are saved in an internal list that’s used by a number of polling functions.

The following methods of the dispatcher class are called to handle network events. They should be defined in classes derived from dispatcher.

d.handle_accept()

Called on listening sockets when a new connection arrives.

d.handle_close()

Called when the socket is closed.

d.handle_connect()

Called when a connection is made.

d.handle_error()

Called when an uncaught Python exception occurs.

d.handle_expt()

Called when out-of-band data for a socket is received.

d.handle_read()

Called when new data is available to be read from a socket.

d.handle_write()

Called when an attempt to write data is made.

d.readable()

This function is used by the select() loop to see whether the object is willing to read data. Returns True if so, False if not. This method is called to see if the handle_read() method should be called with new data.

d.writable()

Called by the select() loop to see if the object wants to write data. Returns True if so, False otherwise. This method is always called to see whether the handle_write() method should be called to produce output.

In addition to the preceding methods, the following methods are used to perform low-level socket operations. They’re similar to those available on a socket object.

d.accept()

Accepts a connection. Returns a pair (client,
addr) where client is a socket object used to send and receive data on the connection and addr is the address of the client.

d.bind(address)

Binds the socket to address. address is typically a tuple (host,
port), but this depends the address family being used.

d.close()

Closes the socket.

d.connect(address)

Makes a connection. address is a tuple (host,
port).

d.create_socket(family, type)

Creates a new socket. Arguments are the same as for socket.socket().

d.listen([backlog])

Listens for incoming connections. backlog is an integer that is passed to the underlying socket.listen() function.

d.recv(size)

Receives at most size bytes. An empty string indicates the client has closed the channel.

d.send(data)

Sends data. data is a byte string.

The following function is used to start the event loop and process events:

loop([timeout [, use_poll [, map [, count]]]])

Polls for events indefinitely. The select() function is used for polling unless the use_poll parameter is True, in which case poll() is used instead. timeout is the timeout period and is set to 30 seconds by default. map is a dictionary containing all the channels to monitor. count specifies how many polling operations to perform before returning. If count is None (the default), loop() polls forever until all channels are closed. If count is 1, the function will execute a single poll for events and return.

Example

The following example implements a minimalistic web server using asyncore. It implements two classes—asynhttp for accepting connections and asynclient for processing client requests. This should be compared with the example in the asynchat module. The main difference is that this example is somewhat lower-level—requiring us to worry about breaking the input stream into lines, buffering excess data, and identifying the blank line that terminates the request header.

[image: Image]

[image: Image]

[image: Image]

See Also:

socket (p. 469), select (p. 459), http (p. 500), SocketServer (p. 489)

select

The select module provides access to the select() and poll() system calls. select() is typically used to implement polling or to multiplex processing across multiple input/output streams without using threads or subprocesses. On UNIX, it works for files, sockets, pipes, and most other file types. On Windows, it only works for sockets.

select(iwtd, owtd, ewtd [, timeout])

Queries the input, output, and exceptional status of a group of file descriptors. The first three arguments are lists containing either integer file descriptors or objects with a method, fileno(), that can be used to return a file descriptor. The iwtd parameter specifies objects waiting for input, owtd specifies objects waiting for output, and ewtd specifies objects waiting for an exceptional condition. Each list may be empty. timeout is a floating-point number specifying a timeout period in seconds. If timeout is omitted, the function waits until at least one file descriptor is ready. If it’s 0, the function merely performs a poll and returns immediately. The return value is a tuple of lists containing the objects that are ready. These are subsets of the first three arguments. If none of the objects is ready before the timeout occurs, three empty lists are returned. If an error occurs, a select.error exception raised. Its value is the same as that returned by IOError and OSError.

poll()

Creates a polling object that utilizes the poll() system call. This is only available on systems that support poll().

A polling object, p, returned by poll() supports the following methods:

p.register(fd [, eventmask])

Registers a new file descriptor, fd. fd is either an integer file descriptor or an object that provides the fileno() method from which the descriptor can be obtained. eventmask is the bitwise OR of the following flags, which indicate events of interest:

[image: Image]

If eventmask is omitted, the POLLIN, POLLPRI, and POLLOUT events are checked.

p.unregister(fd)

Removes the file descriptor fd from the polling object. Raises KeyError if the file is not registered.

p.poll([timeout])

Polls for events on all the registered file descriptors. timeout is an optional timeout specified in milliseconds. Returns a list of tuples (fd,
event), where fd is a file descriptor and event is a bitmask indicating events. The fields of this bitmask correspond to the constants POLLIN, POLLOUT, and so on. For example, to check for the POLLIN event, simply test the value using event
& POLLIN. If an empty list is returned, it means a timeout occurred and no events occurred.

Advanced Module Features

The select() and poll() functions are the most generally portable functions defined by this module. On Linux systems, the select module also provides an interface to the edge and level trigger polling (epoll) interface which can offer significantly better performance. On BSD systems, access to kernel queue and event objects is provided. These programming interfaces are described in the online documentation for select at http://docs.python.org/library/select.

Advanced Asynchronous I/O Example

The select module is sometimes used to implement servers based on tasklets or coroutines—a technique that can be used to provide concurrent execution without threads or processes. The following advanced example illustrates this concept by implementing an I/O-based task scheduler for coroutines. Be forewarned—this is the most advanced example in the book and it will require some study for it to make sense. You might also want to consult my PyCON’09 tutorial “A Curious Course on Coroutines and Concurrency” (http://www.dabeaz.com/coroutines) for additional reference material.

[image: Image]

[image: Image]

[image: Image]

The code in this example implements a very tiny “operating system.” Here are some details concerning its operation:

• All work is carried out by coroutine functions. Recall that a coroutine uses the yield statement like a generator except that instead of iterating on it, you send it values using a send(value) method.

• The Task class represents a running task and is just a thin layer on top of a coroutine. A Task object task has only one operation, task.run(). This resumes the task and runs it until it hits the next yield statement, at which point the task suspends. When running a task, the task.sendval attribute contains the value that is to be sent into the task’s corresponding yield expression. Tasks run until they encounter the next yield statement. The value produced by this yield controls what happens next in the task:

• If the value is another coroutine (type.GeneratorType), it means that the task wants to temporarily transfer control to that coroutine. The stack attribute of Task objects represents a call-stack of coroutines that is built up when this happens. The next time the task runs, control will be transferred into this new coroutine.

• If the value is a SystemCall instance, it means that the task wants the scheduler to do something on its behalf (such as launch a new task, wait for I/O, and so on). The purpose of this object is described shortly.

• If the value is any other value, one of two things happens. If the currently executing coroutine was running as a subroutine, it is popped from the task call stack and the value saved so that it can be sent to the caller. The caller will receive this value the next time the task executes. If the coroutine is the only executing coroutine, the return value is simply discarded.

• The handling of StopIteration is to deal with coroutines that have terminated. When this happens, control is returned to the previous coroutine (if there was one) or the exception is propagated to the scheduler so that it knows that the task terminated.

• The SystemCall class represents a system call in the scheduler. When a running task wants the scheduler to carry out an operation on its behalf, it yields a SystemCall instance. This object is called a “system call” because it mimics the behavior of how programs request the services of a real multitasking operating system such as UNIX or Windows. In particular, if a program wants the services of the operating system, it yields control and provides some information back to the system so that it knows what to do. In this respect, yielding a SystemCall is similar to executing a kind of system “trap.”

• The Scheduler class represents a collection of Task objects that are being managed. At its core, the scheduler is built around a task queue (the task_queue attribute) that keeps track of tasks that are ready to run. There are four basic operations concerning the task queue. new() takes a new coroutine, wraps it with a Task object, and places it on the work queue. schedule() takes an existing Task and puts it back on the work queue. mainloop() runs the scheduler in a loop, processing tasks one by one until there are no more tasks. The readwait() and writewait() methods put a Task object into temporary staging areas where it will wait for I/O events. In this case, the Task isn’t running, but it’s not dead either—it’s just sitting around biding its time.

• The mainloop() method is the heart of the scheduler. This method first checks to see if any tasks are waiting for I/O events. If so, it arranges a call to select() in order to poll for I/O activity. If there are any events of interest, the associated tasks are placed back onto the task queue so that they can run. Next, the mainloop() method pops tasks off of the task queue and calls their run()
method. If any task exits (StopIteration), it is discarded. If a task merely yields, it is just placed back onto the task queue so that it can run again. This continues until there are either no more tasks or all tasks are blocked, waiting for more I/O events. As an option, the mainloop() function accepts a count parameter that can be used to make it return after a specified number of I/O polling operations. This might be useful if the scheduler is to be integrated into another event loop.

• Perhaps the most subtle aspect of the scheduler is the handling of SystemCall instances in the mainloop() method. If a task yields a SystemCall instance, the scheduler invokes its handle() method, passing in the associated Scheduler and Task objects as parameters. The purpose of a system call is to carry out some kind of internal operation concerning tasks or the scheduler itself. The ReadWait(), WriteWait(), and NewTask() classes are examples of system calls that suspend a task for I/O or create a new task. For example, ReadWait() takes a task and invokes the readwait() method on the scheduler. The scheduler then takes the task and places it into an appropriate holding area. Again, there is a critical decoupling of objects going on here. Tasks yield SystemCall objects to request service, but do not directly interact with the scheduler. SystemCall objects, in turn, can perform operations on tasks and schedulers but are not tied to any specific scheduler or task implementation. So, in theory, you could write a completely different scheduler implementation (maybe using threads) that could just be plugged into this whole framework and it would still work.

Here is an example of a simple network time server implemented using this I/O task scheduler. It will illuminate many of the concepts described in the previous list:

[image: Image]

In this example, two different servers are running concurrently—each listening on a different port number (use telnet to connect and test). The yield ReadWait() and yield WriteWait() statements cause the coroutine running each server to suspend until I/O is possible on the associated socket. When these statements return, the code immediately proceeds with an I/O operation such as accept() or send().

The use of ReadWait and WriteWait might look rather low-level. Fortunately, our design allows these operations to be hidden behind library functions and methods—provided that they are also coroutines. Consider the following object that wraps a socket object and mimics its interface:

[image: Image]

Here is a reimplementation of the time server using the CoSocket class:

[image: Image]

In this example, the programming interface of a CoSocket object looks a lot like a normal socket. The only difference is that every operation must be prefaced with yield (since every method is defined as a coroutine). At first, it looks crazy so you might ask what does all of this madness buy you? If you run the above server, you will find that it is able to run concurrently without using threads or subprocesses. Not only that, it has “normal” looking control flow as long as you ignore all of the yield keywords.

Here is an asynchronous web server that concurrently handles multiple client connections, but which does not use callback functions, threads, or processes. This should be compared to examples in the asynchat and asyncore modules.

[image: Image]

[image: Image]

Careful study of this example will yield tremendous insight into coroutines and concurrent programming techniques used by some very advanced third-party modules. However, excessive usage of these techniques might get you fired after your next code review.

When to Consider Asynchronous Networking

Use of asynchronous I/O (asyncore and asynchat), polling, and coroutines as shown in previous examples remains one of the most mysterious aspects of Python development. Yet, these techniques are used more often than you might think. An often-cited reason for using asynchronous I/O is to minimize the perceived overhead of programming with a large number of threads, especially when managing a large number of clients and in light of restrictions related to the global interpreter lock (refer to Chapter 20, “Threads and Concurrency”).

Historically, the asyncore module was one of the first library modules to support asynchronous I/O. The asynchat module followed some time later with the aim of simplifying much of the coding. However, both of these modules take the approach of processing I/O as events. For example, when an I/O event occurs, a callback function is triggered. The callback then reacts in response to the I/O event and carries out some processing. If you build a large application in this style, you will find that event handling infects almost every part of the application (e.g., I/O events trigger callbacks, which trigger more callbacks, which trigger other callbacks, ad nauseum). One of the more popular networking packages, Twisted (http://twistedmatrix.com), takes this approach and significantly builds upon it.

Coroutines are more modern but less commonly understood and used since they were only first introduced in Python 2.5. An important feature of coroutines is that you can write programs that look more like threaded programs in their overall control flow. For instance, the web server in the example does not use any callback functions and looks almost identical to what you would write if you were using threads—you just have to become comfortable with the use of the yield statement. Stackless Python (http://www.stackless.com) takes this idea even further.

As a general rule, you probably should resist the urge to use asynchronous I/O techniques for most network applications. For instance, if you need to write a server that constantly transmits data over hundreds or even thousands of simultaneous network connections, threads will tend to have superior performance. This is because the performance of select() degrades significantly as the number of connections it must monitor increases. On Linux, this penalty can be reduced using special functions such as epoll(), but this limits the portability of your code. Perhaps the main benefit of asynchronous I/O is in applications where networking needs to be integrated with other event loops (e.g., GUIs) or in applications where networking is added into code that also performs a significant amount of CPU processing. In these cases, the use of asynchronous networking may result in quicker response time.

Just to illustrate, consider the following program that carries out the task described in the song “10 million bottles of beer on the wall”:

[image: Image]

Now, suppose you wanted to add a remote monitoring capability to this code that allows clients to connect and see how many bottles are remaining. One approach is to launch a server in its own thread and have it run alongside the main application like this:

[image: Image]

The other approach is to write a server based on I/O polling and embed a polling operation directly into the main computation loop. Here is an example that uses the coroutine scheduler developed earlier:

[image: Image]

If you write a separate program that periodically connects to the bottles of beer program and measures the response time required to receive a status message, the results are surprising. On the author’s machine (a dual-core 2 GHZ MacBook), the average response time (measured over 1,000 requests) for the coroutine-based server is about 1ms versus 5ms for threads. This difference is explained by the fact that the coroutine-based code is able to respond as soon as it detects a connection whereas the threaded server doesn’t get to run until it is scheduled by the operating system. In the presence of a CPU-bound thread and the Python global interpreter lock, the server may be delayed until the CPU-bound thread exceeds its allotted time slice. On many systems, the time slice is about 10ms so the above rough measurement of thread response time is exactly the average time you might expect to wait for a CPU-bound task to be preempted by the operating system.

The downside to polling is that it introduces significant overhead if it occurs too often. For instance, even though the response time is lower in this example, the program instrumented with polling takes more than 50% longer to run to completion. If you change the code to only poll after every six-pack of beer, the response time increases slightly to 1.2ms whereas the run time of the program is only 3% greater than the program without any polling. Unfortunately, there is often no clear-cut way to know how often to poll other than to make measurements of your application.

Even though this improved response time might look like a win, there are still horrible problems associated with trying to implement your own concurrency. For example, tasks need to be especially careful when performing any kind of blocking operation. In the web server example, there is a fragment of code that opens and reads data from a file. When this operation occurs, the entire program will be frozen—potentially for a long period of time if the file access involves a disk seek. The only way to fix this would be to additionally implement asynchronous file access and add it as a feature to the scheduler. For more complicated operations such as performing a database query, figuring out how to carry out the work in an asynchronous manner becomes rather complex. One way to do it would be to carry out the work in a separate thread and to communicate the results back to the task scheduler when available—something that could be carried out with careful use of message queues. On some systems, there are low-level system calls for asynchronous I/O (such as the aio_* family of functions on UNIX). As of this writing, the Python library provides no access to those functions, although you can probably find bindings through third-party modules. In the author’s experience, using such functionality is a lot trickier than it looks and is not really worth the added complexity that gets introduced into your program—you’re often better off letting the thread library deal with such matters.

socket

The socket module provides access to the standard BSD socket interface. Although it’s based on UNIX, this module is available on all platforms. The socket interface is designed to be generic and is capable of supporting a wide variety of networking protocols (Internet, TIPC, Bluetooth, and so on). However, the most common protocol is the Internet Protocol (IP), which includes both TCP and UDP. Python supports both IPv4 and IPv6, although IPv4 is far more common.

It should be noted that this module is relatively low-level, providing direct access to the network functions provided by the operating system. If you are writing a network application, it may be easier to use the modules described in Chapter 22 or the SocketServer module described at the end of this chapter.

Address Families

Some of the socket functions require the specification of an address family. The family specifies the network protocol being used. The following constants are defined for this purpose:

[image: Image]

Of these, AF_INET and AF_INET6 are the most commonly used because they represent standard Internet connections. AF_BLUETOOTH is only available on systems that support it (typically embedded systems). AF_NETLINK, AF_PACKET, and AF_TIPC are only supported on Linux. AF_NETLINK is used for fast interprocess communication between user applications and the Linux kernel. AF_PACKET is used for working directly at the data-link layer (e.g., raw ethernet packets). AF_TIPC is a protocol used for high-performance IPC on Linux clusters (http://tipc.sourceforge.net/).

Socket Types

Some socket functions also require the specification of a socket type. The socket type specifies the type of communications (streams or packets) to be used within a given protocol family. The following constants are used for this purpose:

[image: Image]

The most common socket types are SOCK_STREAM and SOCK_DGRAM because they correspond to TCP and UDP in the Internet Protocol suite. SOCK_RDM is a reliable form of UDP that guarantees the delivery of a datagram but doesn’t preserve ordering (datagrams might be received in a different order than sent). SOCK_SEQPACKET is used to send packets through a stream-oriented connection in a manner that preserves their order and packet boundaries. Neither SOCK_RDM or SOCK_SEQPACKET are widely supported, so it’s best not to use them if you care about portability. SOCK_RAW is used to provide low-level access to the raw protocol and is used if you want to carry out special-purpose operations such as sending control messages (e.g., ICMP messages). Use of SOCK_RAW is usually restricted to programs running with superuser or administrator access.

Not every socket type is supported by every protocol family. For example, if you’re using AF_PACKET to sniff ethernet packets on Linux, you can’t establish a stream-oriented connection using SOCK_STREAM. Instead, you have to use SOCK_DGRAM or SOCK_RAW. For AF_NETLINK sockets, SOCK_RAW is the only supported type.

Addressing

In order to perform any communication on a socket, you have to specify a destination address. The form of the address depends on the address family of the socket.

AF_INET (IPv4)

For Internet applications using IPv4, addresses are specified as a tuple (host,
port). Here are two examples:

[image: Image]

If host is the empty string, it has the same meaning as INADDR_ANY, which means any address. This is typically used by servers when creating sockets that any client can connect to. If host is set to '<broadcast>', it has the same meaning as the INADDR_BROADCAST constant in the socket API.

Be aware that when host names such as 'www.python.org' are used, Python uses DNS to resolve the host name into an IP address. Depending on how DNS has been configured, you may get a different IP address each time. Use a raw IP address such as '66.113.130.182' to avoid this behavior, if needed.

AF_INET6 (IPv6)

For IPv6, addresses are specified as a 4-tuple (host,
port,
flowinfo,
scopeid). With IPv6, the host and port components work in the same way as IPv4, except that the numerical form of an IPv6 host address is typically specified by a string of eight colon-separated hexadecimal numbers, such as 'FEDC:BA98:7654:3210:FEDC:BA98:7654:3210' or '080A::4:1' (in this case, the double colon fills in a range of address components with 0s).

The flowinfo parameter is a 32-bit number consisting of a 24-bit flow label (the low 24 bits), a 4-bit priority (the next 4 bits), and four reserved bits (the high 4 bits). A flow label is typically only used when a sender wants to enable special handling by routers. Otherwise, flowinfo is set to 0.

The scopeid parameter is a 32-bit number that’s only needed when working with link-local and site-local addresses. A link-local address always starts with the prefix 'FE80:...' and is used between machines on the same LAN (routers will not forward link-local packets). In this case, scopeid an interface index that identifies a specific network interface on the host. This information can be viewed using a command such as 'ifconfig' on UNIX or 'ipv6 if' on Windows. A site-local address always starts with the prefix 'FEC0:...' and is used between machines within the same site (for example, all machines on a given subnet). In this case, scopeid is a site-identifier number.

If no data is given for flowinfo or scopeid, an IPv6 address can be given as the tuple (host,
port), as with IPv4.

AF_UNIX

For UNIX domain sockets, the address is a string containing a path name—for example, '/tmp/myserver'.

AF_PACKET

For the Linux packet protocol, the address is a tuple (device,
protonum
[,
pkttype
[,
hatype
[,
addr]]]) where device is a string specifying the device name such as "eth0" and protonum is an integer specifying the ethernet protocol number as defined in the <linux/if_ether.h> header file (e.g., 0x0800 for an IP packet). packet_type is an integer specifying the packet type and is one of the following constants:

[image: Image]

hatype is an integer specifying the hardware address type as used in the ARP protocol and defined in the <linux/if_arp.h> header file. addr is a byte string containing a hardware address, the structure of which depends on the value of hatype. For ethernet, addr will be a 6-byte string holding the hardware address.

AF_NETLINK

For the Linux Netlink protocol, the address is a tuple (pid,
groups) where pid and groups are both unsigned integers. pid is the unicast address of the socket and is usually the same as the process ID of the process that created the socket or 0 for the kernel. groups is a bit mask used to specify multicast groups to join. Refer to the Netlink documentation for more information.

AF_BLUETOOTH

Bluetooth addresses depend on the protocol being used. For L2CAP, the address is a tuple (addr,
psm) where addr is a string such as '01:23:45:67:89:ab' and psm is an unsigned integer. For RFCOMM, the address is a tuple (addr,
channel) where addr is an address string and channel is an integer. For HCI, the address is a 1-tuple (deviceno,) where deviceno is an integer device number. For SCO, the address is a string host.

The constant BDADDR_ANY represents any address and is a string '00:00:00:00:00:00'. The constant BDADDR_LOCAL is a string '00:00:00:ff:ff:ff'.

AF_TIPC

For TIPC sockets, the address is a tuple (addr_type,
v1,
v2,
v3
[,
scope]) where all fields are unsigned integers. addr_type is one of the following values, which also determines the values of v1, v2, and v3:

[image: Image]

The optional scope field is one of TIPC_ZONE_SCOPE, TIPC_CLUSTER_SCOPE, or TIPC_NODE_SCOPE.

Functions

The socket module defines the following functions:

create_connection(address [, timeout])

Establishes a SOCK_STREAM connection to address and returns an already connected socket object. address is tuple of the form (host,
port), and timeout specifies an optional timeout. This function works by first calling getaddrinfo() and then trying to connect to each of the tuples that gets returned.

fromfd(fd, family, socktype [, proto])

Creates a socket object from an integer file descriptor, fd. The address family, socket type, and protocol number are the same as for socket(). The file descriptor must refer to a previously created socket. It returns an instance of SocketType.

getaddrinfo(host, port [,family [, socktype [, proto [, flags]]]])

Given host and port information about a host, this function returns a list of tuples containing information needed to open up a socket connection. host is a string containing a host name or numerical IP address. port is a number or a string representing a service name (for example, "http", "ftp", "smtp"). Each returned tuple consists of five elements (family,
socktype,
proto,
canonname,
sockaddr). The family, socktype, and proto items have the same values as would be passed to the socket() function. canonname is a string representing the canonical name of the host. sockaddr is a tuple containing a socket address as described in the earlier section on Internet addresses. Here’s an example:

[image: Image]

In this example, getaddrinfo() has returned information about two possible socket connections. The first one (proto=17) is a UDP connection, and the second one (proto=6) is a TCP connection. The additional parameters to getaddrinfo() can be used to narrow the selection. For instance, this example returns information about establishing an IPv4 TCP connection:

[image: Image]

The special constant AF_UNSPEC can be used for the address family to look for any kind of connection. For example, this code gets information about any TCP-like connection and may return information for either IPv4 or IPv6:

[image: Image]

getaddrinfo() is intended for a very generic purpose and is applicable to all supported network protocols (IPv4, IPv6, and so on). Use it if you are concerned about compatibility and supporting future protocols, especially if you intend to support IPv6.

getdefaulttimeout()

Returns the default socket timeout in seconds. A value of None indicates that no timeout has been set.

getfqdn([name])

Returns the fully qualified domain name of name. If name is omitted, the local machine is assumed. For example, getfqdn("foo") might return "foo.quasievil.org".

gethostbyname(hostname)

Translates a host name such as 'www.python.org' to an IPv4 address. The IP address is returned as a string, such as '132.151.1.90'. It does not support IPv6.

gethostbyname_ex(hostname)

Translates a host name to an IPv4 address but returns a tuple (hostname,
aliaslist,
ipaddrlist) in which hostname is the primary host name, aliaslist is a list of alternative host names for the same address, and ipaddrlist is a list of IPv4 addresses for the same interface on the same host. For example, gethostbyname_ex('www.python.org') returns something like ('fang.python.org', ['www.python.org'], ['194.109.137.226']). This function does not support IPv6.

gethostname()

Returns the host name of the local machine.

gethostbyaddr(ip_address)

Returns the same information as gethostbyname_ex(), given an IP address such as '132.151.1.90'. If ip_address is an IPv6 address such as 'FEDC:BA98:7654:3210:FEDC:BA98:7654:3210', information regarding IPv6 will be returned.

getnameinfo(address, flags)

Given a socket address, address, this function translates the address into a 2-tuple (host,
port), depending on the value of flags. The address parameter is a tuple specifying an address—for example, ('www.python.org',80). flags is the bitwise OR of the following constants:

[image: Image]

The main purpose of this function is to get additional information about an address. Here’s an example:

[image: Image]

getprotobyname(protocolname)

Translates an Internet protocol name (such as 'icmp') to a protocol number (such as the value of IPPROTO_ICMP) that can be passed to the third argument of the socket() function. Raises socket.error if the protocol name isn’t recognized. Normally, this is only used with raw sockets.

getservbyname(servicename [, protocolname])

Translates an Internet service name and protocol name to a port number for that service. For example, getservbyname('ftp', 'tcp') returns 21. The protocol name, if supplied, should be 'tcp' or 'udp’. Raises socket.error if servicename doesn’t match any known service.

getservbyport(port [, protocolname])

This is the opposite of getservbyname(). Given a numeric port number, port, this function returns a string giving the service name, if any. For example, getservbyport(21, 'tcp') returns 'ftp'. The protocol name, if supplied, should be 'tcp' or 'udp'. Raises socket.error if no service name is available for port.

has_ipv6

Boolean constant that is True if IPv6 support is available.

htonl(x)

Converts 32-bit integers from host to network byte order (big-endian).

htons(x)

Converts 16-bit integers from host to network byte order (big-endian).

inet_aton(ip_string)

Converts an IPv4 address provided as a string (for example, '135.128.11.209') to a 32-bit packed binary format for use as the raw-encoding of the address. The returned value is a four-character string containing the binary encoding. This may be useful if passing the address to C or if the address must be packed into a data structure passed to other programs. Does not support IPv6.

inet_ntoa(packedip)

Converts a binary-packaged IPv4 address into a string that uses the standard dotted representation (for example, '135.128.11.209'). packedip is a four-character string containing the raw 32-bit encoding of an IP address. The function may be useful if an address has been received from C or is being unpacked from a data structure. It does not support IPv6.

inet_ntop(address_family, packed_ip)

Converts a packed binary string packed_ip representing an IP network address into a string such as '123.45.67.89'. address_family is the address family and is usually AF_INET or AF_INET6. This can be used to obtain a network address string from a buffer of raw bytes (for instance, from the contents of a low-level network packet).

inet_pton(address_family, ip_string)

Converts an IP address such as '123.45.67.89' into a packed byte string. address_family is the address family and is usually AF_INET or AF_INET6. This can be used if you’re trying to encode a network address into a raw binary data packet.

ntohl(x)

Converts 32-bit integers from network (big-endian) to host byte order.

ntohs(x)

Converts 16-bit integers from network (big-endian) to host byte order.

setdefaulttimeout(timeout)

Sets the default timeout for newly created socket objects. timeout is a floating-point number specified in seconds. A value of None may be supplied to indicate no timeout (this is the default).

socket(family, type [, proto])

Creates a new socket using the given address family, socket type, and protocol number. family is the address family and type is the socket type as discussed in the first part of this section. To open a TCP connection, use socket(AF_INET, SOCK_STREAM). To open a UDP connection, use socket(AF_INET, SOCK_DGRAM). The function returns an instance of SocketType (described shortly).

The protocol number is usually omitted (and defaults to 0). This is typically only used with raw sockets (SOCK_RAW) and is set to a constant that depends on the address family being used. The following list shows all of the protocol numbers that Python may define for AF_INET and AF_INET6, depending on their availability on the host system:

[image: Image]

The following protocol numbers are used with AF_BLUETOOTH:

[image: Image]

socketpair([family [, type [, proto]]])

Creates a pair of connected socket objects using the given family, type, and proto options, which have the same meaning as for the socket() function. This function only applies to UNIX domain sockets (family=AF_UNIX). type may be either SOCK_DGRAM or SOCK_STREAM. If type is SOCK_STREAM, an object known as a stream pipe is created. proto is usually 0 (the default). The primary use of this function would be to set up interprocess communication between processes created by os.fork(). For example, the parent process would call socketpair() to create a pair of sockets and call os.fork(). The parent and child processes would then communicate with each other using these sockets.

Sockets are represented by an instance of type SocketType. The following methods are available on a socket, s:

s.accept()

Accepts a connection and returns a pair (conn,
address), where conn is a new socket object that can be used to send and receive data on the connection and address is the address of the socket on the other end of the connection.

s.bind(address)

Binds the socket to an address. The format of address depends on the address family. In most cases, it’s a tuple of the form (hostname,
port). For IP addresses, the empty string represents INADDR_ANY and the string '<broadcast>' represents INADDR_BROADCAST. The INADDR_ANY host name (the empty string) is used to indicate that the server allows connections on any Internet interface on the system. This is often used when a server is multihomed. The INADDR_BROADCAST host name ('<broadcast>') is used when a socket is being used to send a broadcast message.

s.close()

Closes the socket. Sockets are also closed when they’re garbage-collected.

s.connect(address)

Connects to a remote socket at address. The format of address depends on the address family, but it’s normally a tuple (hostname,
port). It raises socket.error if an error occurs. If you’re connecting to a server on the same computer, you can use the name 'localhost' as hostname.

s.connect_ex(address)

Like connect(address), but returns 0 on success or the value of errno on failure.

s.fileno()

Returns the socket’s file descriptor.

s.getpeername()

Returns the remote address to which the socket is connected. Usually the return value is a tuple (ipaddr,
port), but this depends on the address family being used. This is not supported on all systems.

s.getsockname()

Returns the socket’s own address. Usually this is a tuple (ipaddr,
port).

s.getsockopt(level, optname [, buflen])

Returns the value of a socket option. level defines the level of the option and is SOL_SOCKET for socket-level options or a protocol number such as IPPROTO_IP for protocol-related options. optname selects a specific option. If buflen is omitted, an integer option is assumed and its integer value is returned. If buflen is given, it specifies the maximum length of the buffer used to receive the option. This buffer is returned as a byte string, where it’s up to the caller to decode its contents using the struct module or other means.

The following tables list the socket options defined by Python. Most of these options are considered part of the Advanced Sockets API and control low-level details of the network. You will need to consult other documentation to find more detailed descriptions. When type names are listed in the value column, that name is same as the standard C data structure associated with the value and used in the standard socket programming interface. Not all options are available on all machines.

The following are commonly used option names for level SOL_SOCKET:

[image: Image]

The following options are available for level IPPROTO_IP:

[image: Image]

The following options are available for level IPPROTO_IPV6:

[image: Image]

[image: Image]

[image: Image]

The following options are available for level SOL_TCP:

[image: Image]

s.gettimeout()

Returns the current timeout value if any. Returns a floating-point number in seconds or None if no timeout is set.

s.ioctl(control, option)

Provides limited access to the WSAIoctl interface on Windows. The only supported value for control is SIO_RCVALL which is used to capture all received IP packets on the network. This requires Administrator access. The following values can be used for options:

[image: Image]

s.listen(backlog)

Starts listening for incoming connections. backlog specifies the maximum number of pending connections the operating system should queue before connections are refused. The value should be at least 1, with 5 being sufficient for most applications.

s.makefile([mode [, bufsize]])

Creates a file object associated with the socket. mode and bufsize have the same meaning as with the built-in open() function. The file object uses a duplicated version of the socket file descriptor, created using os.dup(), so the file object and socket object can be closed or garbage-collected independently. The socket s should not have a timeout and should not be configured in nonblocking mode.

s.recv(bufsize [, flags])

Receives data from the socket. The data is returned as a string. The maximum amount of data to be received is specified by bufsize. flags provides additional information about the message and is usually omitted (in which case it defaults to zero). If used, it’s usually set to one of the following constants (system-dependent):

[image: Image]

s.recv_into(buffer [, nbytes [, flags]])

The same as recv() except that data is written into a an object buffer supporting the buffer interface. nbytes is the maximum number of bytes to receive. If omitted, the maximum size is taken from the buffer size. flags has the same meaning as for recv().

s.recvfrom(bufsize [, flags])

Like the recv() method except that the return value is a pair (data,
address) in which data is a string containing the data received and address is the address of the socket sending the data. The optional flags argument has the same meaning as for recv(). This function is primarily used in conjunction with the UDP protocol.

s.recvfrom_info(buffer [, nbytes [, flags]])

The same as recvfrom() but the received data is stored in the buffer object buffer. nbytes specifies the maximum number of bytes of receive. If omitted, the maximum size is taken from the size of buffer. flags has the same meaning as for recv().

s.send(string [, flags])

Sends data in string to a connected socket. The optional flags argument has the same meaning as for recv(), described earlier. Returns the number of bytes sent, which may be fewer than the number of bytes in string. Raises an exception if an error occurs.

s.sendall(string [, flags])

Sends data in string to a connected socket, except that an attempt is made to send all of the data before returning. Returns None on success; raises an exception on failure. flags has the same meaning as for send().

s.sendto(string [, flags], address)

Sends data to the socket. flags has the same meaning as for recv(). address is a tuple of the form (host,
port), which specifies the remote address. The socket should not already be connected. Returns the number of bytes sent. This function is primarily used in conjunction with the UDP protocol.

s.setblocking(flag)

If flag is zero, the socket is set to nonblocking mode. Otherwise, the socket is set to blocking mode (the default). In nonblocking mode, if a recv() call doesn’t find any data or if a send() call cannot immediately send the data, the socket.error exception is raised. In blocking mode, these calls block until they can proceed.

s.setsockopt(level, optname, value)

Sets the value of the given socket option. level and optname have the same meaning as for getsockopt(). The value can be an integer or a string representing the contents of a buffer. In the latter case, it’s up to the caller to ensure that the string contains the proper data. See getsockopt() for socket option names, values, and descriptions.

s.settimeout(timeout)

Sets a timeout on socket operations. timeout is a floating-point number in seconds. A value of None means no timeout. If a timeout occurs, a socket.timeout exception is raised. As a general rule, timeouts should be set as soon as a socket is created because they can be applied to operations involved in establishing a connection (such as connect()).

s.shutdown(how)

Shuts down one or both halves of the connection. If how is 0, further receives are disallowed. If how is 1, further sends are disallowed. If how is 2, further sends and receives are disallowed.

In addition to these methods, a socket instance s also has the following read-only properties which correspond to the arguments passed to the socket() function.

[image: Image]

Exceptions

The following exceptions are defined by the socket module.

error

This exception is raised for socket- or address-related errors. It returns a pair (errno,
mesg) with the error returned by the underlying system call. Inherits from IOError.

herror

Error raised for address-related errors. Returns a tuple (herrno,
hmesg) containing an error number and error message. Inherits from error.

gaierror

Error raised for address-related errors in the getaddrinfo() and getnameinfo() functions. The error value is a tuple (errno,
mesg), where errno is an error number and mesg is a string containing a message. errno is set to one of the following constants defined in the socket module:

[image: Image]

timeout

Exception raised when a socket operation times out. This only occurs if a timeout has been set using the setdefaulttimeout() function or settimeout() method of a socket object. Exception value is a string, 'timeout'. Inherits from error.

Example

A simple example of a TCP connection is shown in the introduction to this chapter. The following example illustrates a simple UDP echo server:

[image: Image]

Here a client that sends messages to the previous server:

[image: Image]

Notes

• Not all constants and socket options are available on all platforms. If portability is your goal, you should only rely upon options that are documented in major sources such as the W. Richard Stevens UNIX Network Programming book cited at the beginning of this section.

• Notable omissions from the socket module are recvmsg() and sendmsg() system calls, commonly used to work with ancillary data and advanced network options related to packet headers, routing, and other details. For this functionality, you must install a third-party module such as PyXAPI (http://pypi.python.org/pypi/PyXAPI).

• There is a subtle difference between nonblocking socket operations and operations involving a timeout. When a socket function is used in nonblocking mode, it will return immediately with an error if the operation would have blocked. When a timeout is set, a function returns an error only if the operation doesn’t complete within a specified timeout.

ssl

The ssl module is used to wrap socket objects with the Secure Sockets Layer (SSL), which provides data encryption and peer authentication. Python uses the OpenSSL library (http://www.openssl.org) to implement this module. A full discussion concerning the theory and operation of SSL is beyond the scope of what can be covered here. So, just the essential elements of using this module are covered here with the assumption that you know what you’re doing when it comes to SSL configuration, keys, certificates, and other related matters:

wrap_socket(sock [, **opts])

Wraps an existing socket sock (created by the socket module) with SSL support and returns an instance of SSLSocket. This function should be used before subsequent connect() or accept() operations are made. opts represents a number of keyword arguments that are used to specify additional configuration data.

[image: Image]

An instance s of SSLSocket inherits from socket.socket and additionally supports the following operations:

s.cipher()

Returns a tuple (name,
version,
secretbits) where name is the cipher name being used, version is the SSL protocol, and secretbits is the number of secret bits being used.

s.do_handshake()

Performs the SSL handshake. Normally this is done automatically unless the do_handshake_on_connect option was set to False in the wrap_socket() function. If the underlying socket s is nonblocking, an SSLError exception will be raised if the operation couldn’t be completed. The e.args[0] attribute of an SSLError exception e will have the value SSL_ERROR_WANT_READ or SSL_ERROR_WANT_WRITE depending on the operation that needs to be performed. To continue the handshake process once reading or writing can continue, simply call s.do_handshake() again.

s.getpeercert([binary_form])

Returns the certificate from the other end of the connection, if any. If there is no certificate None is returned. If there was a certificate but it wasn’t validated, an empty dictionary is returned. If a validated certificate is received, a dictionary with the keys 'subject' and 'notAfter' is returned. If binary_form is set True, the certificate is returned as a DER-encoded byte sequence.

s.read([nbytes])

Reads up to nbytes of data and returns it. If nbytes is omitted, up to 1,024 bytes are returned.

s.write(data)

Writes the byte string data. Returns the number of bytes written.

s.unwrap()

Shuts down the SSL connection and returns the underlying socket object on which further unencrypted communication can be carried out.

The following utility functions are also defined by the module:

cert_time_to_seconds(timestring)

Converts a string timestring from the format used in certificates to a floating-point number as compatible with the time.time() function.

DER_cert_to_PEM_cert(derbytes)

Given a byte string derbytes containing a DER-encoded certificate, returns a PEM-encoded string version of the certificate.

PEM_cert_to_DER_cert(pemstring)

Given a string pemstring containing a PEM-encoded string version of a certificate, returns a DER-encoded byte string version of the certificate.

get_server_certificate(addr [, ssl_version [, ca_certs]])

Retrieves the certificate of an SSL server and returns it as a PEM-encoded string. addr is an address of the form (hostname,
port). ssl_version is the SSL version number, and ca_certs is the name of a file containing certificate authority certificates as described for the wrap_socket() function.

RAND_status()

Returns True or False if the SSL layer thinks that the pseudorandom number generator has been seeded with enough randomness.

RAND_egd(path)

Reads 256 bytes of randomness from an entropy-gathering daemon and adds it to the pseudorandom number generator. path is the name of a UNIX-domain socket for the daemon.

RAND_add(bytes, entropy)

Adds the bytes in byte string bytes into the pseudorandom number generator. entropy is a nonnegative floating-point number giving the lower bound on the entropy.

Examples

The following example shows how to use this module to open an SSL-client connection:

[image: Image]

Here is an example of an SSL-secured time server:

[image: Image]

In order to run this server, you will need to have a signed server certificate in the file timecert.pem. For the purposes of testing, you can create one using this UNIX command:

% openssl req –new –x509 –days 30 –nodes –out timecert.pem –keyout timecert.pem

To test this server, try connecting with a browser using a URL such as 'https://localhost:1234'. If it works, the browser will issue a warning message about you using a self-signed certificate. If you agree, you should see the output of the server.

SocketServer

This module is called socketserver in Python 3. The SocketServer module provides classes that simplify the implementation of TCP, UDP, and UNIX domain socket servers.

Handlers

To use the module, you define a handler class that inherits from the base class BaseRequestHandler. An instance h of BaseRequestHandler implements one or more of the following methods:

h.finish()

Called to perform cleanup actions after the handle() method has completed. By default, it does nothing. It’s not called if either the setup() or handle() method generates an exception.

h.handle()

This method is called to perform the actual work of a request. It’s called with no arguments, but several instance variables contain useful values. h.request contains the request, h.client_address contains the client address, and h.server contains an instance of the server that called the handler. For stream services such as TCP, the h.request attribute is a socket object. For datagram services, it’s a byte string containing the received data.

h.setup()

This method is called before the handle() method to perform initialization actions. By default, it does nothing. If you wanted a server to implement further connection setup such as establishing a SSL connection, you could implement it here.

Here is an example of a handler class that implements a simple time server that operates with streams or datagrams:

[image: Image]

If you know that a handler is only going to operate on stream-oriented connections such as TCP, have it inherit from StreamRequestHandler instead of BaseRequestHandler. This class sets two attributes: h.wfile is a file-like object that writes data to the client, and h.rfile is a file-like object that reads data from the client. Here is an example:

[image: Image]

If you are writing a handler that only operates with packets and always sends a response back to the sender, have it inherit from DatagramRequestHandler instead of BaseRequestHandler. It provides the same file-like interface as StreamRequestHandler. For example:

[image: Image]

In this case, all of the data written to self.wfile is collected into a single packet that is returned after the handle() method returns.

Servers

To use a handler, it has to be plugged into a server object. There are four basic server classes defined:

TCPServer(address, handler)

A server supporting the TCP protocol using IPv4. address is a tuple of the form (host,
port). handler is an instance of a subclass of the BaseRequestHandler class described later.

UDPServer(address, handler)

A server supporting the Internet UDP protocol using IPv4. address and handler are the same as for TCPServer().

UnixStreamServer(address, handler)

A server implementing a stream-oriented protocol using UNIX domain sockets. Inherits from TCPServer.

UnixDatagramServer(address, handler)

A server implementing a datagram protocol using UNIX domain sockets. This inherits from UDPServer.

Instances of all four server classes have the following basic methods:

s.fileno()

Returns the integer file descriptor for the server socket. The presence of this method makes it legal to use server instances with polling operations such as the select() function.

s.serve_forever()

Handles an infinite number of requests.

s.shutdown()

Stops the serve_forever() loop.

The following attributes give some basic information about the configuration of a running server:

s.RequestHandlerClass

The user-provided request handler class that was passed to the server constructor.

s.server_address

The address on which the server is listening, such as the tuple ('127.0.0.1', 80).

s.socket

The socket object being used for incoming requests.

Here is an example of running the TimeHandler as a TCP server:

[image: Image]

Here is an example of running the handler as a UDP server:

[image: Image]

A key aspect of the SocketServer module is that handlers are decoupled from servers. That is, once you have written a handler, you can plug it into many different kinds of servers without having to change its implementation.

Defining Customized Servers

Servers often need special configuration to account for different network address families, timeouts, concurrency, and other features. This customization is carried out by inheriting from one of the four basic servers described in the previous section. The following class attributes can be defined to customize basic settings of the underlying network socket:

Server.address_family

The address family used by the server socket. The default value is socket.AF_INET. Use socket.AF_INET6 if you want to use IPv6.

Server.allow_reuse_address

A Boolean flag that indicates whether or not a socket should reuse an address. This is useful when you want to immediately restart a server on the same port after a program has terminated (otherwise, you have to wait a few minutes). The default value is False.

Server.request_queue_size

The size of the request queue that’s passed to the socket’s listen() method. The default value is 5.

Server.socket_type

The socket type used by the server, such as socket.SOCK_STREAM or socket.SOCK_DGRAM.

Server.timeout

Timeout period in seconds that the server waits for a new request. On timeout, the server calls the handle_timeout() method (described below) and goes back to waiting. This timeout is not used to set a socket timeout. However, if a socket timeout has been set, its value is used instead of this value.

Here is an example of how to create a server that allows the port number to be reused:

[image: Image]

If desired, the following methods are most useful to extend in classes that inherit from one of the servers. If you define any of these methods in your own server, make sure you call the same method in the superclass.

Server.activate()

Method that carries out the listen() operation on the server. The server socket is referenced as self.socket.

Server.bind()

Method that carries out the bind() operation on the server.

Server.handle_error(request, client_address)

Method that handles uncaught exceptions that occur in handling. To get information about the last exception, use sys.exc_info() or functions in the traceback module.

Server.handle_timeout()

Method that is called when the server timeout occurs. By redefining this method and adjusting the timeout setting, you can integrate other processing into the server event loop.

Server.verify_request(request, client_address)

Redefine this method if you want to verify the connection before any further processing. This is what you define if you wanted to implement a firewall or perform some other kind of a validation.

Finally, addition server features are available through the use of mixin classes. This is how concurrency via threads or processing forking is added. The following classes are defined for this purpose:

ForkingMixIn

A mixin class that adds UNIX process forking to a server, allowing it to serve multiple clients. The class variable max_children controls the maximum number of child processes, and the timeout variable determines how much time elapses between attempts to collect zombie processes. An instance variable active_children keeps track of how many active processes are running.

ThreadingMixIn

A mixin class that modifies a server so that it can serve multiple clients with threads. There is no limit placed on the number of threads that can be created. By default, threads are non-daemonic unless the class variable daemon_threads is set to True.

To add these features to a server, you use multiple inheritance where the mixin class is listed first. For example, here is a forking time server:

[image: Image]

Since concurrent servers are relatively common, the SocketServer predefines the following server classes for this purpose.

• ForkingUDPServer(address,
handler)

• ForkingTCPServer(address,
handler)

• ThreadingUDPServer(address,
handler)

• ThreadingTCPServer(address,
handler)

These classes are actually just defined in terms of the mixins and server classes. For example, here is the definition of ForkingTCPServer:

class ForkingTCPServer(ForkingMixIn, TCPServer): pass

Customization of Application Servers

Other library modules often use the SocketServer class to implement servers for application-level protocols such as HTTP and XML-RPC. Those servers can also be customized via inheritance and extending the methods defined for basic server operation. For example, here is a forking XML-RPC server that only accepts connections originating on the loopback interface:

[image: Image]

To test this, you will need to use the xmlrpclib module. Run the previous server and then start a separate Python process:

[image: Image]

To test the rejection of connections, try the same code, but from a different machine on the network. For this, you will need to replace “localhost” with the hostname of the machine that’s running the server.

22. Internet Application Programming

This chapter describes modules related to Internet application protocols including HTTP, XML-RPC, FTP, and SMTP. Web programming topics such as CGI scripting are covered in Chapter 23, “Web Programming.” Modules related to dealing with common Internet-related data formats are covered in Chapter 24, “Internet Data Handling and Encoding.”

The organization of network-related library modules is one area where there are significant differences between Python 2 and 3. In the interest of looking forward, this chapter assumes the Python 3 library organization because it is more logical. However, the functionality provided by the library modules is virtually identical between Python versions as of this writing. When applicable, Python 2 module names are noted in each section.

ftplib

The ftplib module implements the client side of the FTP protocol. It’s rarely necessary to use this module directly because the urllib package provides a higher-level interface. However, this module may still be useful if you want to have more control over the low-level details of an FTP connection. In order to use this module, it may be helpful to know some of the details of the FTP protocol which is described in Internet RFC 959.

A single class is defined for establishing an FTP connection:

FTP([host [, user [, passwd [, acct [, timeout]]]]])

Creates an object representing an FTP connection. host is a string specifying a host name. user,
passwd, and acct optionally specify a username, password, and account. If no arguments are given, the connect() and login() methods must be called explicitly to initiate the actual connection. If host is given, connect() is automatically invoked. If user, passwd, and acct are given, login() is invoked. timeout is a timeout period in seconds.

An instance f of FTP has the following methods:

f.abort()

Attempts to abort a file transfer that is in progress. This may or may not work depending the remote server.

f.close()

Closes the FTP connection. After this has been invoked, no further operations can be performed on the FTP object f.

f.connect(host [, port [, timeout]])

Opens an FTP connection to a given host and port. host is a string specifying the host name. port is the integer port number of the FTP server and defaults to port 21. timeout is the timeout period in seconds. It is not necessary to call this if a host name was already given to FTP().

f.cwd(pathname)

Changes the current working directory on the server to pathname.

f.delete(filename)

Removes the file filename from the server.

f.dir([dirname [, ... [, callback]]])

Generates a directory listing as produced by the 'LIST' command. dirname optionally supplies the name of a directory to list. In addition, if any additional arguments are supplied, they are simply passed as additional arguments to 'LIST’. If the last argument callback is a function, it is used as a callback function to process the returned directory listing data. This callback function works in the same way as the callback used by the retrlines() method. By default, this method prints the directory list to sys.stdout.

f.login([user, [passwd [, acct]]])

Logs in to the server using the specified username, password, and account. user is a string giving the username and defaults to 'anonymous'. passwd is a string containing the password and defaults to the empty string ''. acct is a string and defaults to the empty string. It is not necessary to call this method if this information was already given to FTP().

f.mkd(pathname)

Creates a new directory on the server.

f.ntransfercmd(command [, rest])

The same as transfercmd() except that a tuple (sock, size) is returned where sock is a socket object corresponding to the data connection and size is the expected size of the data in bytes, or None if the size could not be determined.

f.pwd()

Returns a string containing the current working directory on the server.

f.quit()

Closes the FTP connection by sending the 'QUIT' command to the server.

f.rename(oldname,newname)

Renames a file on the server.

f.retrbinary(command, callback [, blocksize [, rest]])

Returns the results of executing a command on the server using binary transfer mode. command is a string that specifies the appropriate file retrieval command and is almost always 'RETR
filename'. callback is a callback function that is invoked each time a block of data is received. This callback function is invoked with a single argument which is the received data in the form of a string. blocksize is the maximum block size to use and defaults to 8192 bytes. rest is an optional offset into the file. If supplied, this specifies the position in the file where you want to start the transfer. However, this is not supported by all FTP servers so this may result in an error_reply exception.

f.retrlines(command [, callback])

Returns the results of executing a command on the server using text transfer mode. command is a string that specifies the command and is usually something like 'RETR
filename'. callback is a callback function that is invoked each time a line of data is received. This callback function is called with a single argument which is a string containing the received data. If callback is omitted, the returned data is printed to sys.stdout.

f.rmd(pathname)

Removes a directory from the server.

f.sendcmd(command)

Sends a simple command to the server and returns the server response. command is a string containing the command. This method should only be used for commands that don’t involve the transfer of data.

f.set_pasv(pasv)

Sets passive mode. pasv is a Boolean flag that turns passive mode on if True or off if False. By default, passive mode is on.

f.size(filename)

Returns the size of filename in bytes. Returns None if the size can’t be determined for some reason.

f.storbinary(command, file [, blocksize])

Executes a command on the server and transmits data using binary transfer mode. command is a string that specifies the low-level command. It is almost always set to 'STOR
filename', where filename is the name of a file you want to place on the server. file is an open file-object from which data will be read using file.read(blocksize) and transferred to the server. blocksize is the blocksize to use in the transfer. By default, it is 8192 bytes.

f.storlines(command, file)

Executes a command on the server and transfers data using text transfer mode. command is a string which specifies the low-level command. It is usually 'STOR
filename'. file is an open file-object from which data will be read using file.readline() and sent to the server.

f.transfercmd(command [, rest])

Initiates a transfer over the FTP data connection. If active mode is being used, this sends a 'PORT' or 'EPRT' command and accepts the resulting connection from the server. If passive mode is being used, this sends a 'EPSV' or 'PASV' command followed by a connection to the server. In either case, once the data connection has been established, the FTP command in command is then issued. This function returns a socket object corresponding to the open data connection. The optional rest parameter specifies a starting byte offset into files requested on the server. However, this is not supported on all servers and could result in an error_reply exception.

Example

The following example shows how to use this module to upload a file to a FTP server:

[image: Image]

To fetch documents from an FTP server, use the urllib package. For example:

[image: Image]

http Package

The http package consists of modules for writing HTTP clients and servers as well as support for state management (cookies). The Hypertext Transfer Protocol (HTTP) is a simple text-based protocol that works as follows:

1. A client makes a connection to an HTTP server and sends a request header of the following form:

[image: Image]

The first line defines the request type, document (the selector), and protocol version. Following the request line is a series of header lines containing various information about the client, such as passwords, cookies, cache preferences, and client software. Following the header lines, a single blank line indicates the end of the header lines. After the header, data may appear in the event that the request is sending information from a form or uploading a file. Each of the lines in the header should be terminated by a carriage return and a newline ('\r\n').

2. The server sends a response of the following form:

[image: Image]

The first line of the server response indicates the HTTP protocol version, a success code, and a return message. Following the response line is a series of header fields that contain information about the type of the returned document, the document size, web server software, cookies, and so forth. The header is terminated by a single blank line followed by the raw data of the requested document.

The following request methods are the most common:

[image: Image]

The response codes detailed in Table 22.1 are most commonly returned by servers. The Symbolic Constant column is the name of a predefined variable in http.client that holds the integer response code value and which can be used in code to improve readability.

Table 22.1 Response Codes Commonly Returned by Servers

[image: Image]

The headers that appear in both requests and responses are encoded in a format widely known as RFC-822. Then general form of each header is Headername: data, although further details can be found in the RFC. It is almost never necessary to parse these headers as Python usually does it for you when applicable.

http.client (httplib)

The http.client module provides low-level support for the client side of HTTP. In Python 2, this module is called httplib. Use functions in the urllib package instead. The module supports both HTTP/1.0 and HTTP/1.1 and additionally allows connections via SSL if Python is built with OpenSSL support. Normally, you do not use this package directly; instead, you should consider using the urllib package. However, because HTTP is such an important protocol, you may encounter situations where you need to work with the low-level details in a way that urllib cannot easily address—for example, if you wanted to send requests with commands other than GET or POST. For more details about HTTP, consult RFC 2616 (HTTP/1.1) and RFC 1945 (HTTP/1.0).

The following classes can be used to establish an HTTP connection with a server:

HTTPConnection(host [,port])

Creates an HTTP connection. host is the host name, and port is the remote port number. The default port is 80. Returns an HTTPConnection instance.

HTTPSConnection(host [, port [, key_file=kfile [, cert_file=cfile]]])

Creates an HTTP connection but uses a secure socket. The default port is 443. key_file and cert_file are optional keyword arguments that specify client PEM-formatted private-key and certificate chain files, should they be needed for client authentication. However, no validation of server certificates is performed. Returns an HTTPSConnection instance.

An instance, h, of HTTPConnection or HTTPSConnection supports the following methods:

h.connect()

Initializes the connection to the host and port given to HTTPConnection() or HTTPSConnection(). Other methods call this automatically if a connection hasn’t been made yet.

h.close()

Closes the connection.

h.send(bytes)

Sends a byte string, bytes, to the server. Direct use of this function is discouraged because it may break the underlying response/request protocol. It’s most commonly used to send data to the server after h.endheaders() has been called.

h.putrequest(method, selector [, skip_host [, skip_accept_encoding]])

Sends a request to the server. method is the HTTP method, such as 'GET' or 'POST'. selector specifies the object to be returned, such as '/index.html'. The skip_host and skip_accept_encoding parameters are flags that disable the sending of Host: and Accept-Encoding: headers in the HTTP request. By default, both of these arguments are False. Because the HTTP/1.1 protocol allows multiple requests to be sent over a single connection, a CannotSendRequest exception may be raised if the connection is in a state that prohibits new requests from being issued.

h.putheader(header, value, ...)

Sends an RFC-822–style header to the server. It sends a line to the server, consisting of the header, a colon and a space, and the value. Additional arguments are encoded as continuation lines in the header. Raises a CannotSendHeader exception if h is not in a state that allows headers to be sent.

h.endheaders()

Sends a blank line to the server, indicating the end of the header lines.

h.request(method, url [, body [, headers]])

Sends a complete HTTP request to the server. method and url have the same meaning as for h.putrequest(). body is an optional string containing data to upload to the server after the request has been sent. If body is supplied, the Context-length: header will automatically be set to an appropriate value. headers is a dictionary containing header:value pairs to be given to the h.putheader() method.

h.getresponse()

Gets a response from the server and returns an HTTPResponse instance that can be used to read data. Raises a ResponseNotReady exception if h is not in a state where a response would be received.

An HTTPResponse instance, r, as returned by the getresponse() method, supports the following methods:

r.read([size])

Reads up to size bytes from the server. If size is omitted, all the data for this request is returned.

r.getheader(name [,default])

Gets a response header. name is the name of the header. default is the default value to return if the header is not found.

r.getheaders()

Returns a list of (header,
value) tuples.

An HTTPResponse instance r also has the following attributes:

r.version

HTTP version used by the server.

r.status

HTTP status code returned by the server.

r.reason

HTTP error message returned by the server.

r.length

Number of bytes left in the response.

Exceptions

The following exceptions may be raised in the course of handling HTTP connections:

[image: Image]

The following exceptions are related to the state of HTTP/1.1 connections. Because HTTP/1.1 allows multiple requests/responses to be sent over a single connection, extra rules are imposed as to when requests can be sent and responses received. Performing operations in the wrong order will generate an exception.

[image: Image]

Example

The following example shows how the HTTPConnection class can be used to perform a memory-efficient file upload to a server using a POST request—something that is not easily accomplished within the urllib framework.

[image: Image]

[image: Image]

[image: Image]

http.server (BaseHTTPServer, CGIHTTPServer, SimpleHTTPServer)

The http.server module provides various classes for implementing HTTP servers. In Python 2, the contents of this module are split across three library modules: BaseHTTPServer, CGIHTTPServer, and SimpleHTTPServer.

HTTPServer

The following class implements a basic HTTP server. In Python 2, it is located in the BaseHTTPServer module.

HTTPServer(server_address, request_handler)

Creates a new HTTPServer object. server_address is a tuple of the form (host,
port) on which the server will listen. request_handler is a handler class derived from BaseHTTPRequestHandler, which is described later.

HTTPServer inherits directly from TCPServer defined in the socketserver module. Thus, if you want to customize the operation of the HTTP server in any way, you inherit from HTTPServer and extend it. Here is how you would define a multithreaded HTTP server that only accepts connections from a specific subnet:

[image: Image]

The HTTPServer class only deals with the low-level HTTP protocol. To get the server to actually do anything, you have to supply a handler class. There are two built-in handlers and a base class that can be used for defining your own custom handling. These are described next.

SimpleHTTPRequestHandler and CGIHTTPRequestHandler

Two prebuilt web server handler classes can be used if you want to quickly set up a simple stand-alone web server. These classes operate independently of any third-party web server such as Apache.

CGIHTTPRequestHandler(request, client_address, server)

Serves files from the current directory and all its subdirectories. In addition, the handler will run a file as a CGI script if it’s located in a special CGI directory (defined by the cgi_directories class variable which is set to ['/cgi-bin', '/htbin'] by default). The handler supports GET, HEAD, and POST methods. However, it does not support HTTP redirects (HTTP code 302), which limits its use to only more simple CGI applications. For security purposes, CGI scripts are executed with a UID of nobody. In Python 2, this class is defined in the CGIHTTPServer module.

SimpleHTTPRequestHandler(request, client_address, server)

Serves files from the current directory and all its subdirectories. The class provides support for HEAD and GET requests, respectively. All IOError exceptions result in a "404 File not found" error. Attempts to access a directory result in a "403 Directory listing not supported" error. In Python 2, this class is defined in the SimpleHTTPServer module.

Both of these handlers define the following class variables that can be changed via inheritance if desired:

handler.server_version

Server version string returned to clients. By default, this is set to a string such as 'SimpleHTTP/0.6'.

handler.extensions_map

A dictionary mapping suffixes to MIME types. Unrecognized file types are considered to be of type 'application/octet-stream'.

Here is an example of using these handler classes to run a stand-alone web server capable of running CGI scripts:

[image: Image]

BaseHTTPRequestHandler

The BaseHTTPRequestHandler class is a base class that’s used if you want to define your own custom HTTP server handling. The prebuilt handlers such as SimpleHTTPRequestHandler and CGIHTTPRequestHandler inherit from this. In Python 2, this class is defined in the BaseHTTPServer module.

BaseHTTPRequestHandler(request, client_address, server)

Base handler class used to handle HTTP requests. When a connection is received, the request and HTTP headers are parsed. An attempt is then made to execute a method of the form do_REQUEST based on the request type. For example, a 'GET' method invokes do_GET() and a 'POST' method invokes do_POST. By default, this class does nothing, so these methods are expected to be defined in subclasses.

The following class variables are defined for BaseHTTPRequestHandler and can be redefined in subclasses.

BaseHTTPRequestHandler.server_version

Specifies the server software version string that the server reports to clients—for example, 'ServerName/1.2'.

BaseHTTPRequestHandler.sys_version

Python system version, such as 'Python/2.6'.

BaseHTTPRequestHandler.error_message_format

Format string used to build error messages sent to the client. The format string is applied to a dictionary containing the attributes code, message, and explain. For example:

[image: Image]

BaseHTTPRequestHandler.protocol_version

HTTP protocol version used in responses. The default is 'HTTP/1.0'.

BaseHTTPRequestHandler.responses

Mapping of integer HTTP error codes to two-element tuples (message,
explain) that describe the problem. For example, the integer code 404 is mapped to ("Not Found", "Nothing matches the given URI"). The integer code and strings in this mapping are use when creating error messages as defined in the error_message_format attribute shown previously.

When created to handle a connection, an instance, b, of BaseHTTPRequestHandler has the following attributes:

[image: Image]

The following methods are commonly used or redefined in subclasses:

b.send_error(code [, message])

Sends a response for an unsuccessful request. code is the numeric HTTP response code. message is an optional error message. log_error() is called to record the error. This method creates a complete error response using the error_message_format class variable, sends it to the client, and closes the connection. No further operations should be performed after calling this.

b.send_response(code [, message])

Sends a response for a successful request. The HTTP response line is sent, followed by Server and Date headers. code is an HTTP response code, and message is an optional message. log_request() is called to record the request.

b.send_header(keyword, value)

Writes a MIME header entry to the output stream. keyword is the header keyword, and value is its value. This should only be called after send_response().

b.end_headers()

Sends a blank line to signal the end of the MIME headers.

b.log_request([code [, size]])

Logs a successful request. code is the HTTP code, and size is the size of the response in bytes (if available). By default, log_message() is called for logging.

b.log_error(format, ...)

Logs an error message. By default, log_message() is called for logging.

b.log_message(format, ...)

Logs an arbitrary message to sys.stderr. format is a format string applied to any additional arguments passed. The client address and current time are prefixed to every message.

Here is an example of creating a custom HTTP server that runs in a separate thread and lets you monitor the contents of a dictionary, interpreting the request path as a key.

[image: Image]

To test this example, run the server and then enter a URL such as http://localhost:9000/name or http://localhost:9000/values into a browser. If it works, you’ll see the contents of the dictionary being displayed.

This example also shows a technique for how to get servers to instantiate handler classes with extra parameters. Normally, servers create handlers using a predefined set of arguments that are passed to _ _init_ _(). If you want to add additional parameters, use the functools.partial() function as shown. This creates a callable object that includes your extra parameter but preserves the calling signature expected by the server.

http.cookies (Cookie)

The http.cookies module provides server-side support for working with HTTP cookies. In Python 2, the module is called Cookie.

Cookies are used to provide state management in servers that implement sessions, user logins, and related features. To drop a cookie on a user’s browser, an HTTP server typically adds an HTTP header similar to the following to an HTTP response:

[image: Image]

Alternatively, a cookie can be set by embedding JavaScript in the <head> section of an HTML document:

[image: Image]

The http.cookies module simplifies the task of generating cookie values by providing a special dictionary-like object which stores and manages collections of cookie values known as morsels. Each morsel has a name, a value, and a set of optional attributes containing metadata to be supplied to the browser {expires, path, comment, domain, max-age, secure, version, httponly}. The name is usually a simple identifier such as "name" and must not be the same as one of the metadata names such as "expires" or "path". The value is usually a short string. To create a cookie, simply create a cookie object like this:

c = SimpleCookie()

Next, cookie values (morsels) can be set using ordinary dictionary assignment:

[image: Image]

Additional attributes of a specific morsel are set as follows:

[image: Image]

To create output representing the cookie data as a set of HTTP headers, use the c.output() method. For example:

[image: Image]

When a browser sends a cookie back to an HTTP server, it is encoded as a string of key=value pairs, such as "session=8273612; user=beazley". Optional attributes such as expires, path, and domain are not returned. The cookie string can usually be found in the HTTP_COOKIE environment variable, which can be read by CGI applications. To recover cookie values, use code similar to the following:

[image: Image]

The following documentation describes the SimpleCookie object in more detail.

SimpleCookie([input])

Defines a cookie object in which cookie values are stored as simple strings.

A cookie instance, c, provides the following methods:

c.output([attrs [,header [,sep]]])

Generates a string suitable for use in setting cookie values in HTTP headers. attrs is an optional list of the optional attributes to include ("expires", "path", "domain", and so on). By default, all cookie attributes are included. header is the HTTP header to use ('Set-Cookie:' by default). sep is the character used to join the headers together and is a newline by default.

c.js_output([attrs])

Generates a string containing JavaScript code that will set the cookie if executed on a browser supporting JavaScript. attrs is an optional list of the attributes to include.

c.load(rawdata)

Loads the cookie c with data found in rawdata. If rawdata is a string, it’s assumed to be in the same format as the HTTP_COOKIE environment variable in a CGI program. If rawdata is a dictionary, each key-value pair is interpreted by setting c[key]=value.

Internally, the key/value pairs used to store a cookie value are instances of a Morsel class. An instance, m, of Morsel behaves like a dictionary and allows the optional "expires", "path", "comment", "domain", "max-age", "secure", "version", and "httponly" keys to be set. In addition, the morsel m has the following methods and attributes:

m.value

A string containing the raw value of the cookie.

m.coded_value

A string containing the encoded value of the cookie that would be sent to or received from the browser.

m.key

The cookie name.

m.set(key,value,coded_value)

Sets the values of m.key, m.value, and m.coded_value shown previously.

m.isReservedKey(k)

Tests whether k is a reserved keyword, such as "expires", "path", "domain", and so on.

m.output([attrs [,header]])

Produces the HTTP header string for this morsel. attrs is an optional list of the additional attributes to include ("expires", "path", and so on). header is the header string to use ('Set-Cookie:' by default).

m.js_output([attrs])

Outputs JavaScript code that sets the cookie when executed.

m.OutputString([attrs])

Returns the cookie string without any HTTP headers or JavaScript code.

Exceptions

If an error occurs during the parsing or generation of cookie values, a CookieError exception is raised.

http.cookiejar (cookielib)

The http.cookiejar module provides client-side support for storing and managing HTTP cookies. In Python 2, the module is called cookielib.

The primary role of this module is to provide objects in which HTTP cookies can be stored so that they can be used in conjunction with the urllib package, which is used to access documents on the Internet. For instance, the http.cookiejar module can be used to capture cookies and to retransmit them on subsequent connection requests. It can also be used to work with files containing cookie data such as files created by various browsers.

The following objects are defined by the module:

CookieJar()

An object that manages HTTP cookie values, storing cookies received as a result of HTTP requests, and adding cookies to outgoing HTTP requests. Cookies are stored entirely in memory and lost when the CookieJar instance is garbage-collected.

FileCookieJar(filename [, delayload])

Creates a FileCookieJar instance that retrieves and stores cookie information to a file. filename is the name of the file. delayload, if True, enables lazy access to the file. That is, the file won’t be read or stored except by demand.

MozillaCookieJar(filename [, delayload])

Creates a FileCookieJar instance that is compatible with the Mozilla cookies.txt file.

LWPCookieJar(filename [, delayload])

Creates a FileCookieJar instance that is compatible with the libwww-perl Set-Cookie3 file format.

It is somewhat rare to work with the methods and attributes of these objects directly. If you need to know their low-level programming interface, consult the online documentation. Instead, it is more common to simply instantiate one of the cookie jar objects and plug it into something else that wants to work with cookies. An example of this is shown in the urllib.request section of this chapter.

smtplib

The smtplib module provides a low-level SMTP client interface that can be used to send mail using the SMTP protocol described in RFC 821 and RFC 1869. This module contains a number of low-level functions and methods that are described in detail in the online documentation. However, the following covers the most useful parts of this module:

SMTP([host [, port]])

Creates an object representing a connection to an SMTP server. If host is given, it specifies the name of the SMTP server. port is an optional port number. The default port is 25. If host is supplied, the connect() method is called automatically. Otherwise, you will need to manually call connect() on the returned object to establish the connection.

An instance s of SMTP has the following methods:

s.connect([host [, port]])

Connects to the SMTP server on host. If host is omitted, a connection is made to the local host ('127.0.0.1'). port is an optional port number that defaults to 25 if omitted. It is not necessary to call connect() if a host name was given to SMTP().

s.login(user, password)

Logs into the server if authentication is required. user is a username, and password is a password.

s.quit()

Terminates the session by sending a 'QUIT' command to the server.

s.sendmail(fromaddr, toaddrs, message)

Sends a mail message to the server. fromaddr is a string containing the email address of the sender. toaddrs is a list of strings containing the email addresses of recipients. message is a string containing a completely formatted RFC-822 compliant message. The email package is commonly used to create such messages. It is important to note that although message can be given as a text string, it should only contain valid ASCII characters with values in the range 0 to 127. Otherwise, you will get an encoding error. If you need to send a message in a different encoding such as UTF-8, encode it into a byte string first and supply the byte string as message.

Example

The following example shows how the module can be used to send a message:

[image: Image]

urllib Package

The urllib package provides a high-level interface for writing clients that need to interact with HTTP servers, FTP servers, and local files. Typical applications include scraping data from web pages, automation, proxies, web crawlers, and so forth. This is one of the most highly configurable library modules, so every last detail is not presented here. Instead, the most common uses of the package are described.

In Python 2, the urllib functionality is spread across several different library modules including urllib, urllib2, urlparse, and robotparser. In Python 3, all of this functionality has been consolidated and reorganized under the urllib package.

urllib.request (urllib2)

The urllib.request module provides functions and classes to open and fetch data from URLs. In Python 2, this functionality is found in a module urllib2.

The most common use of this module is to fetch data from web servers using HTTP. For example, this code shows the easiest way to simply fetch a web page:

[image: Image]

Of course, many complexities arise when interacting with servers in the real world. For example, you might have to worry about proxy servers, authentication, cookies, user agents, and other matters. All of these are supported, but the code is more complicated (keep reading).

urlopen() and Requests

The most straightforward way to make a request is to use the urlopen() function.

urlopen(url [, data [, timeout]])

Opens the URL url and returns a file-like object that can be used to read the returned data. url may either be a string containing a URL or an instance of the Request class, described shortly. data is a URL-encoded string containing form data to be uploaded to the server. When supplied, the HTTP 'POST' method is used instead of 'GET' (the default). Data is generally created using a function such as urllib.parse.urlencode(). timeout is an optional timeout in seconds for all blocking operations used internally.

The file-like object u returned by urlopen() supports the following methods:

[image: Image]

It is important to emphasize that the file-like object u operates in binary mode. If you need to process the response data as text, you will need to decode it using the codecs module or some other means.

If an error occurs during download, an URLError exception is raised. This includes errors related to the HTTP protocol itself such as forbidden access or requests for authentication. For these kinds of errors, a server typically returns content that gives more descriptive information. To get this content, the exception instance itself operates as a file-like object that can be read. For example:

[image: Image]

A very common error that arises with urlopen() is accessing web pages through a proxy server. For example, if your organization routes all web traffic through a proxy, requests may fail. If the proxy server doesn’t require any kind of authentication, you may be able to fix this by merely setting the HTTP_PROXY environment variable in the os.environ dictionary. For example, os.environ['HTTP_PROXY'] = 'http://example.com:12345'.

For simple requests, the url parameter to urlopen() is a string such as 'http://www.python.org'. If you need to do anything more complicated such as make modifications to HTTP request headers, create a Request instance and use that as the url parameter.

Request(url [, data [, headers [, origin_req_host [, unverifiable]]]])

Creates a new Request instance. url specifies the URL (for example, 'http://www.foo.bar/spam.html'). data is URL-encoded data to be uploaded to the server in HTTP requests. When this is supplied, it changes the HTTP request type from 'GET' to 'POST'. headers is a dictionary containing key-value mappings representing the contents of the HTTP headers. origin_req_host is set to the request-host of the transaction—typically it’s the host name from which the request is originating. unverifiable is set to True if the request is for an unverifiable URL. An unverifiable URL is informally defined as a URL not directly entered by the user—for instance, a URL embedded within a page that loads an image. The default value of unverifiable is False.

An instance r of Request has the following methods:

r.add_data(data)

Adds data to a request. If the request is an HTTP request, the method is changed to 'POST'. data is URL-encoded data as described for Request(). This does not append data to any previously set data; it simply replaces the old data with data.

r.add_header(key, val)

Adds header information to the request. key is the header name, and val is the header value. Both arguments are strings.

r.add_unredirected_header(key, val)

Adds header information to a request that will not be added to redirected requests. key and val have the same meaning as for add_header().

r.get_data()

Returns the request data (if any).

r.get_full_url()

Returns the full URL of a request.

r.get_host()

Returns the host to which the request will be sent.

r.get_method()

Returns the HTTP method, which is either 'GET' or 'POST'.

r.get_origin_req_host()

Returns the request-host of the originating transaction.

r.get_selector()

Returns the selector part of the URL (for example, '/index.html').

r.get_type()

Returns the URL type (for example, 'http').

r.has_data()

Returns True if data is part of the request.

r.is_unverifiable()

Returns True if the request is unverifiable.

r.has_header(header)

Returns True if the request has header header.

r.set_proxy(host, type)

Prepares the request for connecting to a proxy server. This replaces the original host with host and the original type of the request with type. The selector part of the URL is set to the original URL.

Here is an example that uses a Request object to change the 'User-Agent' header used by urlopen(). You might use this if you wanted a server to think you were making a connection from Internet Explorer, Firefox, or some other browser.

[image: Image]

Custom Openers

The basic urlopen() function does not provide support for authentication, cookies, or other advanced features of HTTP. To add support, you must create your own custom opener object using the build_opener() function:

build_opener([handler1 [, handler2, ...]])

Builds a custom opener object for opening URLs. The arguments handler1, handler2, and so on are all instances of special handler objects. The purpose of these handlers is to add various capabilities to the resulting opener object. The following lists all the available handler objects:

[image: Image]

By default, an opener is always created with the handlers ProxyHandler, UnknownHandler, HTTPHandler, HTTPSHandler, HTTPDefaultErrorHandler, HTTPRedirectHandler, FTPHandler, FileHandler, and HTTPErrorProcessor. These handlers provide a basic level of functionality. Extra handlers supplied as arguments are added to this list. However, if any of the extra handlers are of the same type as the defaults, they take precedence. For example, if you added an instance of HTTPHandler or some class that derived from HTTPHandler, it would be used instead of the default.

The object returned by build_opener() has a method, open(url
[, data
[,
timeout]]), that is used to open URLs according to all the rules provided by the various handlers. The arguments to open() are the same as what are passed to the urlopen() function.

install_opener(opener)

Installs a different opener object for use as the global URL opener used by urlopen(). opener is usually of an opener object created by build_opener().

The next few sections show how to create custom openers for some of the more common scenarios that arise when using urlib.request module.

Password Authentication

To handle requests involving password authentication, you create an opener with some combination of HTTPBasicAuthHandler, HTTPDigestAuthHandler, ProxyBasicAuthHandler, or ProxyDigestAuthHandler handlers added to it. Each of these handlers has the following method which can be used to set password:

h.add_password(realm, uri, user, passwd)

Adds user and password information for a given realm and URI. All parameters are strings. uri can optionally be a sequence of URIs, in which case the user and password information is applied to all the URIs in the sequence. The realm is a name or description associated with the authentication. Its value depends on the remote server. However, it’s usually a common name associated with a collection of related web pages. uri is a base URL associated with the authentication. Typical values for realm and uri might be something like ('Administrator', 'http://www.somesite.com'). user and password specify a username and password, respectively.

Here is an example of how to set up an opener with basic authentication:

[image: Image]

HTTP Cookies

To manage HTTP cookies, create an opener object with an HTTPCookieProcessor handler added to it. For example:

[image: Image]

By default, the HTTPCookieProcessor uses the CookieJar object found in the http.cookiejar module. Different types of cookie processing can be supported by supplying a different CookieJar object as an argument to HTTPCookieProcessor. For example:

[image: Image]

Proxies

If requests need to be redirected through a proxy, create an instance of ProxyHandler.

ProxyHandler([proxies])

Creates a proxy handler that routes requests through a proxy. The argument proxies is a dictionary that maps protocol names (for example, 'http', 'ftp', and so on) to the URLs of the corresponding proxy server.

The following example shows how to use this:

[image: Image]

urllib.response

This is an internal module that implements the file-like objects returned by functions in the urllib.request module. There is no public API.

urllib.parse

The urllib.parse module is used to manipulate URL strings such as "http://www.python.org".

URL Parsing (urlparse Module in Python 2)

The general form of a URL is "scheme://netloc/path;parameters?query#fragment". In addition, the netloc part of a URL may include a port number such as "hostname:port" or user authentication information such as "user:pass@hostname". The following function is used to parse a URL:

urlparse(urlstring [, default_scheme [, allow_fragments]])

Parses the URL in urlstring and returns a ParseResult instance. default_scheme specifies the scheme ("http", "ftp", and so on) to be used if none is present in the URL. If allow_fragments is zero, fragment identifiers are not allowed. A ParseResult instance r is a named tuple the form (scheme,
netloc,
path,
parameters,
query,
fragment). However, the following read-only attributes are also defined:

[image: Image]

A ParseResult instance can be turned back into a URL string using r.geturl().

urlunparse(parts)

Constructs a URL string from a tuple-representation of a URL as returned by urlparse(). parts must be a tuple or iterable with six components.

urlsplit(url [, default_scheme [, allow_fragments]])

The same as urlparse() except that the parameters portion of a URL is left unmodified in the path. This allows for parsing of URLs where parameters might be attached to individual path components such as 'scheme://netloc/path1;param1/path2;param2/path3?query#fragment'. The result is an instance of SplitResult, which is a named tuple containing (scheme, netloc, path, query, fragment). The following read-only attributes are also defined:

[image: Image]

A SplitResult instance can be turned back into a URL string using r.geturl().

urlunsplit(parts)

Constructs a URL from the tuple-representation created by urlsplit(). parts is a tuple or iterable with the five URL components.

urldefrag(url)

Returns a tuple (newurl,
fragment) where newurl is url stripped of fragments and fragment is a string containing the fragment part (if any). If there are no fragments in url, then newurl is the same as url and fragment is an empty string.

urljoin(base, url [, allow_fragments])

Constructs an absolute URL by combining a base URL, base, with a relative URL. url. allow_fragments has the same meaning as for urlparse(). If the last component of the base URL is not a directory, it’s stripped.

parse_qs(qs [, keep_blank_values [, strict_parsing]])

Parses a URL-encoded (MIME type application/x-www-form-urlencoded) query string qs and returns a dictionary where the keys are the query variable names and the values are lists of values defined for each name. keep_blank_values is a Boolean flag that controls how blank values are handled. If True, they are included in the dictionary with a value set to the empty string. If False (the default), they are discarded. strict_parsing is a Boolean flag that if True, turns parsing errors into a ValueError exception. By default, errors are silently ignored.

parse_qsl(qs [, keep_blank_values [, strict_parsing]])

The same as parse_qs() except that the result is a list of pairs (name,
value) where name is the name of a query variable and value is the value.

URL Encoding (urllib Module in Python 2)

The following functions are used to encode and decode data that make up URLs.

quote(string [, safe [, encoding [, errors]]])

Replaces special characters in string with escape sequences suitable for including in a URL. Letters, digits, and the underscore (_), comma (,), period (.), and hyphen (-) characters are unchanged. All other characters are converted into escape sequences of the form '%xx'. safe provides a string of additional characters that should not be quoted and is '/' by default. encoding specifies the encoding to use for non-ASCII characters. By default, it is 'utf-8'. errors specifies what to do when encoding errors are encountered and is 'strict' by default. The encoding and errors parameters are only available in Python 3.

quote_plus(string [, safe [, encoding [, errors]]])

Calls quote() and additionally replaces all spaces with plus signs. string and safe are the same as in quote(). encoding and errors are the same as with quote().

quote_from_bytes(bytes [, safe])

The same as quote() but accepts a byte-string and performs no encoding. The return result is a text string. Python 3 only.

unquote(string [, encoding [, errors]])

Replaces escape sequences of the form '%xx' with their single-character equivalent. encoding and errors specify the encoding and error handling for decoding data in '%xx' escapes. The default encoding is 'utf-8', and the default errors policy is 'replace'. encoding and errors are Python 3 only.

unquote_plus(string [, encoding [, errors]])

Like unquote() but also replaces plus signs with spaces.

unquote_to_bytes(string)

The same as unquote() but performs no decoding and returns a byte string.

urlencode(query [, doseq])

Converts query values in query to a URL-encoded string suitable for inclusion as the query parameter of a URL or for uploading as part of a POST request. query is either a dictionary or a sequence of (key,
value) pairs. The resulting string is a series of 'key=value' pairs separated by '&' characters, where both key and value are quoted using quote_plus(). The doseq parameter is a Boolean flag that should be set to True if any value in query is a sequence, representing multiple values for the same key. In this case, a separate 'key=v' string is created for each v in value.

Examples

The following examples show how to turn a dictionary of query variables into a URL suitable for use in an HTTP GET request and how you can parse a URL:

[image: Image]

urllib.error

The urllib.error module defines exceptions used by the urllib package.

ContentTooShort

Raised when the amount of downloaded data is less than the expected amount (as defined by the 'Content-Length' header). Defined in the urllib module in Python 2.

HTTPError

Raised to indicate problems with the HTTP protocol. This error may be used to signal events such as authentication required. This exception can also be used as a file object to read the data returned by the server that’s associated with the error. This is a subclass of URLError. It is defined in the urllib2 module in Python 2.

URLError

Error raised by handlers when a problem is detected. This is a subclass of IOError. The reason attribute of the exception instance has more information about the problem. This is defined in the urllib2 module in Python 2.

urllib.robotparser (robotparser)

The urllib.robotparser module (robotparser in Python 2) is used to fetch and parse the contents of 'robots.txt' files used to instruct web crawlers. Consult the online documentation for further usage information.

Notes

• Advanced users of the urllib package can customize its behavior in almost every way imaginable. This includes creating new kinds of openers, handlers, requests, protocols, etc. This topic is beyond the scope of what can be covered here, but the online documentation has some further details.

• Users of Python 2 should take note that the urllib.urlopen() function, which is in widespread use, is officially deprecated in Python 2.6 and eliminated in Python 3. Instead of using urllib.urlopen(), you should use urllib2.urlopen(), which provides the same functionality as urllib.request.urlopen() described here.

xmlrpc Package

The xmlrpc package contains modules for implement XML-RPC servers and clients. XML-RPC is a remote procedure call mechanism that uses XML for data encoding and HTTP as a transport mechanism. The underlying protocol is not specific to Python so programs using these modules can potentially interact with programs written in other languages. More information about XML-RPC can be obtained at http://www.xmlrpc.com.

xmlrpc.client (xmlrpclib)

The xmlrpc.client module is used to write XML-RPC clients. In Python 2, this module is called xmlrpclib. To operate as a client, you create an instance of ServerProxy:

[image: Image]

uri is the location of the remote XML-RPC server—for example, "http://www.foo.com/RPC2". If necessary, basic authentication information can be added to the URI using the format "http://user:pass@host:port/path", where user:pass is the username and password. This information is base-64 encoded and put in an 'Authorization:' header on transport. If Python is configured with OpenSSL support, HTTPS can also be used. transport specifies a factory function for creating an internal transport object used for low-level communication. This argument is only used if XML-RPC is being used over some kind of connection other than HTTP or HTTPS. It is almost never necessary to supply this argument in normal use (consult the online documentation for details). encoding specifies the encoding, which is UTF-8 by default. verbose displays some debugging information if True. allow_none, if True, allows the value None to be sent to remote servers. By default, this is disabled because it’s not universally supported. use_datetime is a Boolean flag that if set to True, uses the datetime module to represent dates and times. By default, this is False.

An instance, s, of ServerProxy transparently exposes all the methods on the remote server. The methods are accessed as attributes of s. For example, this code gets the current time from a remote server providing that service:

[image: image]

For the most part, RPC calls work just like ordinary Python functions. However, only a limited number of argument types and return values are supported by the XML-RPC protocol:

[image: image]

When dates are received, they are stored in an xmlrpc.client.DateTime instance d. The d.value attribute contains the date as an ISO 8601 time/date string. To convert it into a time tuple compatible with the time module, use d.timetuple(). When binary data is received, it is stored in an xmlrpc.client.Binary instance b. The b.data attribute contains the data as a byte string. Be aware that strings are assumed to be Unicode and that you will have to worry about using proper encodings. Sending raw Python 2 byte strings will work if they contain ASCII but will break otherwise. To deal with this, convert to a Unicode string first.

If you make an RPC call with arguments involving invalid types, you may get a TypeError or an xmlrpclib.Fault exception.

If the remote XML-RPC server supports introspection, the following methods may be available:

s.system.listMethods()

Returns a list of strings listing all the methods provided by the XML-RPC server.

s.methodSignatures(name)

Given the name of a method, name, returns a list of possible calling signatures for the method. Each signature is a list of types in the form of a comma-separated string (for example, 'string, int, int'), where the first item is the return type and the remaining items are argument types. Multiple signatures may be returned due to overloading. In XML-RPC servers implemented in Python, signatures are typically empty because functions and methods are dynamically typed.

s.methodHelp(name)

Given the name of a method, name, returns a documentation string describing the use of that method. Documentation strings may contain HTML markup. An empty string is returned if no documentation is available.

The following utility functions are available in the xmlrpclib module:

boolean(value)

Creates an XML-RPC Boolean object from value. This function predates the existence of the Python Boolean type, so you may see it used in older code.

Binary(data)

Creates an XML-RPC object containing binary data. data is a string containing the raw data. Returns a Binary instance. The returned Binary instance is transparently encoded/decoded using base 64 during transmission. To extract binary from Binary instance b, use b.data.

DateTime(daytime)

Creates an XML-RPC object containing a date. daytime is either an ISO 8601 format date string, a time tuple or struct as returned by time.localtime(), or a datetime instance from the datetime module.

[image: image]

Converts params into an XML-RPC request or response, where params is either a tuple of arguments or an instance of the Fault exception. methodname is the name of the method as a string. methodresponse is a Boolean flag. If True, then the result is an XML-RPC response. In this case, only one value can be supplied in params. encoding specifies the text encoding in the generated XML and defaults to UTF-8. allow_none is a flag that specifies whether or not None is supported as a parameter type. None is not explicitly mentioned by the XML-RPC specification, but many servers support it. By default, allow_none is False.

loads(data)

Converts data containing an XML-RPC request or response into a tuple (params,
methodname) where params is a tuple of parameters and methodname is a string containing the method name. If the request represents a fault condition instead of an actual value, then the Fault exception is raised.

MultiCall(server)

Creates a MultiCall object that allows multiple XML-RPC requests to be packaged together and sent as a single request. This can be a useful performance optimization if many different RPC requests need to be made on the same server. server is an instance of ServerProxy, representing a connection to a remote server. The returned MultiCall object is used in exactly the same way as ServerProxy. However, instead of immediately executing the remote methods, the method calls as queued until the MultiCall object is called as a function. Once this occurs, the RPC requests are transmitted. The return value of this operation is a generator that yields the return result of each RPC operation in sequence. Note that MultiCall() only works if the remote server provides a system.multicall() method.

Here is an example that illustrates the use of MultiCall:

[image: image]

Exceptions

The following exceptions are defined in xmlrpc.client:

Fault

Indicates an XML-RPC fault. The faultCode attribute contains a string with the fault type. The faultString attribute contains a descriptive message related to the fault.

ProtocolError

Indicates a problem with the underlying networking—for example, a bad URL or a connection problem of some kind. The url attribute contains the URI that triggered the error. The errcode attribute contains an error code. The errmsg attribute contains a descriptive string. The headers attribute contains all the HTTP headers of the request that triggered the error.

xmlrpc.server (SimpleXMLRPCServer, DocXMLRPCServer)

The xmlrpc.server module contains classes for implementing different variants of XML-RPC servers. In Python 2, this functionality is found in two separate modules: SimpleXMLRPCServer and DocXMLRPCServer.

SimpleXMLRPCServer(addr [, requestHandler [, logRequests]])

Creates an XML-RPC server listening on the socket address addr (for example, ('localhost',8080)). requestHandler is factory function that creates handler request objects when connections are received. By default, it is set to SimpleXMLRPCRequestHandler, which is currently the only available handler. logRequests is a Boolean flag that indicates whether or not to log incoming requests. The default value is True.

DocXMLRPCServer(addr [, requestHandler [, logRequest])

Creates a documenting XML-RPC that additionally responds to HTTP GET requests (normally sent by a browser). If received, the server generates documentation from the documentation strings found in all of the registered methods and objects. The arguments have the same meaning as for SimpleXMLRPCServer.

An instance, s, of SimpleXMLRPCServer or DocXMLRPCServer has the following methods:

s.register_function(func [, name])

Registers a new function, func, with the XML-RPC server. name is an optional name to use for the function. If name is supplied, it’s the name clients will use to access the function. This name may contain characters that are not part of valid Python identifiers, including periods (.). If name is not supplied, then the actual function name of func is used instead.

s.register_instance(instance [, allow_dotted_names])

Registers an object that’s used to resolve method names not registered with the register_function() method. If the instance instance defines the method _dispatch(self,
methodname,
params), it is called to process requests. methodname is the name of the method, and params is a tuple containing arguments. The return value of _dispatch() is returned to clients. If no _dispatch() method is defined, the instance is checked to see if the method name matches the names of any methods defined for instance. If so, the method is called directly. The allow_dotted_names parameter is a flag that indicates whether a hierarchical search should be performed when checking for method names. For example, if a request for method 'foo.bar.spam' is received, this determines whether or not a search for instance.foo.bar.spam is made. By default, this is False. It should not be set to True unless the client has been verified. Otherwise, it opens up a security hole that can allow intruders to execute arbitrary Python code. Note that, at most, only one instance can be registered at a time.

s.register_introspection_functions()

Adds XML-RPC introspection functions system.listMethods(), system.methodHelp(), and system.methodSignature() to the XML-RPC server. system.methodHelp() returns the documentation string for a method (if any). The system.methodSignature() function simply returns a message indicating that the operation is unsupported (because Python is dynamically typed, type information is available).

s.register_multicall_functions()

Adds XML-RPC multicall function support by adding the system.multicall() function to the server.

An instance of DocXMLRPCServer additionally provides these methods:

s.set_server_title(server_title)

Sets the title of the server in HTML documentation. The string is placed in the HTML <title> tag.

s.set_server_name(server_name)

Sets the name of the server in HTML documentation. The string appears at the top of the page in an <h1> tag.

s.set_server_documentation(server_documentation)

Adds a descriptive paragraph to the generated HTML output. This string is added right after the server name, but before a description of the XML-RPC functions.

Although it is common for an XML-RPC server to operate as a stand-alone process, it can also run inside a CGI script. The following classes are used for this:

CGIXMLRPCRequestHandler([allow_none [, encoding]])

A CGI Request handler that operates in the same manner as SimpleXMLRPCServer. The arguments have the same meaning as described for SimpleXMLRPCServer.

DocCGIXMLRPCRequestHandler()

A CGI Request handler that operates in the same manner as DocXMLRPCServer. Please note that as of this writing, the calling arguments are different than CGIXMLRPCRequestHandler(). This might be a Python bug so you should consult the online documentation in future releases.

An instance, c, of either CGI handler has the same methods as a normal XML-RPC server for registering functions and instances. However, they additionally define the following method:

c.handle_request([request_text])

Processes an XML-RPC request. By default, the request is read from standard input. If request_text is supplied, it contains the request data in the form received by an HTTP POST request.

Examples

Here is a very simple example of writing a standalone server. It adds a single function, add. In addition, it adds the entire contents of the math module as an instance, exposing all the functions it contains.

[image: image]

Here is the same functionality implemented as CGI-script:

[image: image]

To access XML-RPC functions from other Python programs, use the xmlrpc.client or xmlrpclib module. Here is a short interactive session that shows how it works:

[image: image]

Advanced Server Customization

The XML-RPC server modules are easy to use for basic kinds of distributed computing. For example, XML-RPC could be used as a protocol for high-level control of other systems on the network, provided they were all running a suitable XML-RPC server. More interesting objects can also be passed between systems if you additionally use the pickle module.

One concern with XML-RPC is that of security. By default, an XML-RPC server runs as an open service on the network, so anyone who knows the address and port of the server can connect to it (unless it’s shielded by a firewall). In addition, XML-RPC servers place no limit on the amount of data that can be sent in a request. An attacker could potentially crash the server by sending an HTTP POST request with a payload so large as to exhaust memory.

If you want to address any of these issues, you will need to customize the XML-RPC server classes or request handlers. All of the server classes inherit from TCPServer in the socketserver module. Thus, the servers can be customized in the same manner as other socket server classes (for example, adding threading, forking, or validating client addresses). A validation wrapper can be placed around the request handlers by inheriting from SimpleXMLRPCRequestHandler or DocXMLRPCRequestHandler and extending the do_POST() method. Here is an example that limits the size of incoming requests:

[image: image]

If you wanted to add any kind of HTTP-based authentication, it could also be implemented in a similar manner.

23. Web Programming

Python is widely used when building websites and serves several different roles in this capacity. First, Python scripts are often a useful way to simply generate a set of static HTML pages to be delivered by a web server. For example, a script can be used to take raw content and decorate it with additional features that you typically see on a website (navigation bars, sidebars, advertisements, stylesheets, etc.). This is mainly just a matter of file handling and text processing—topics that have been covered in other sections of the book.

Second, Python scripts are used to generate dynamic content. For example, a website might operate using a standard webserver such as Apache but would use Python scripts to dynamically handle certain kinds of requests. This use of Python is primarily associated with form processing. For example, an HTML page might include a form like this:

[image: Image]

Within the form, the ACTION attribute names a Python script 'subscribe.py' that will execute on the server when the form is submitted.

Another common scenario involving dynamic content generation is with AJAX (Asynchronous Javascript and XML). With AJAX, JavaScript event handlers are associated with certain HTML elements on a page. For example, when the mouse hovers over a specific document element, a JavaScript function might execute and send an HTTP request to the webserver that gets processed (possibly by a Python script). When the associated response is received, another JavaScript function executes to process the response data and displays the result. There are many ways in which results might be returned. For example, a server might return data as plaintext, XML, JSON, or any number of other formats. Here is an example HTML document that illustrates one way to implement a hover popup where moving the mouse over selected elements causes a popup window to appear.

[image: Image]

[image: Image]

In this example, the JavaScript function ShowPopup() initiates a request to a Python script popupdata.py on the server. The result of this script is just a fragment of HTML, which is then displayed in a popup window. Figure 23.1 shows what this might look like in the browser.

Figure 23.1 Possible browser display where the background text is just an ordinary HTML document and the pop-up window is dynamically generated by the popupdata.py script.

[image: Image]

Finally, the entire website might run under the control of Python within the context of a framework written in Python. It has been humorously noted that Python has “more web programming frameworks than language keywords.” The topics of web frameworks is far beyond the scope of this book, but http://wiki.python.org/moin/WebFrameworks is a good starting point for finding more information.

The rest of this chapter describes built-in modules related to the low-level interface by which Python interfaces with webservers and frameworks. Topics include CGI scripting, a technique used to access Python from third-party web servers and WSGI, a middleware layer used for writing components that integrate with Python’s various web frameworks.

cgi

The cgi module is used to implement CGI scripts, which are programs typically executed by a webserver when it wants to process user input from a form or generate dynamic content of some kind.

When a request corresponding to a CGI script is submitted, the webserver executes the CGI program as a subprocess. CGI programs receive input from two sources: sys.stdin and environment variables set by the server. The following list details common environment variables set by webservers:

[image: Image]

As output, a CGI program writes to standard output sys.stdout. The gory details of CGI programming can be found in a book such as CGI Programming with Perl, 2nd Edition, by Shishir Gundavaram (O’Reilly & Associates, 2000). For our purposes, there are really only two things to know. First, the contents of an HTML form are passed to a CGI program in a sequence of text known as a query string. In Python, the contents of the query string are accessed using the FieldStorage class. For example:

[image: Image]

Second, the output of a CGI program consists of two parts: an HTTP header and the raw data (which is typically HTML). A blank line always separates these two components. A simple HTTP header looks like this:

[image: Image]

The rest of the output is the raw output. For example:

[image: Image]

It is standard practice that HTTP headers are terminated using the Windows line-ending convention of '\r\n'. That is why the '\r' appears in the example. If you need to signal an error, include a special 'Status:' header in the output. For example:

[image: Image]

If you need to redirect the client to a different page, create output like this:

[image: Image]

Most of the work in the cgi module is performed by creating an instance of the FieldStorage class.

FieldStorage([input [, headers [, outerboundary [, environ [, keep_blank_values [, strict_parsing]]]]]])

Read the contents of a form by reading and parsing the query string passed in an environment variable or standard input. input specifies a file-like object from which form data will be read in a POST request. By default, sys.stdin is used. headers and outerboundary are used internally and should not be given. environ is a dictionary from which CGI environment variables are read. keep_blank_values is a Boolean flag that controls whether blank values are retained or not. By default, it is False. strict_parsing is a Boolean flag that causes an exception to be raised if there is any kind of parsing problem. By default, it is False.

A FieldStorage instance form works similarly to a dictionary. For example, f
=
form
[key] will extract an entry for a given parameter key. An instance f extracted in this manner is either another instance of FieldStorage or an instance of MiniFieldStorage. The following attributes are defined on f:

[image: Image]

Values from a form can be extracted using the following methods:

form.getvalue(fieldname [, default])

Returns the value of a given field with the name fieldname. If a field is defined twice, this function will return a list of all values defined. If default is supplied, it specifies the value to return if the field is not present. One caution with this method is that if the same form field name is included twice in the request, the returned value will be a list containing both values. To simplify programming, you can use form.getfirst(), which simply returns the first value found.

form.getfirst(fieldname [, default])

Returns the first value defined for a field with the name fieldname. If default is supplied, it specifies the value to return if the field is not present.

form.getlist(fieldname)

Returns a list of all values defined for fieldname. It always returns a list, even if only one value is defined, and returns an empty list if no values exist.

In addition, the cgi module defines a class, MiniFieldStorage, that contains only the attribute’s name and value. This class is used to represent individual fields of a form passed in the query string, whereas FieldStorage is used to contain multiple fields and multipart data.

Instances of FieldStorage are accessed like a Python dictionary, where the keys are the field names on the form. When accessed in this manner, the objects returned are themselves an instance of FieldStorage for multipart data (content type is 'multipart/form-data') or file uploads, an instance of MiniFieldStorage for simple fields (content type is 'application/x-www-form-urlencoded'), or a list of such instances in cases where a form contains multiple fields with the same name. For example:

[image: Image]

If a field represents an uploaded file, accessing the value attribute reads the entire file into memory as a byte string. Because this may consume a large amount of memory on the server, it may be preferable to read uploaded data in smaller pieces by reading from the file attribute directly. For instance, the following example reads uploaded data line by line:

[image: Image]

The following utility functions are often used in CGI scripts:

escape(s [, quote])

Converts the characters '&', '<', and '>' in string s to HTML-safe sequences such as '&', '<', and '>'. If the optional flag quote is true, the double-quote character (") is also translated to '"'.

parse_header(string)

Parses the data supplied after an HTTP header field such as 'content-type'. The data is split into a primary value and a dictionary of secondary parameters that are returned in a tuple. For example, the command

parse_header('text/html; a=hello; b="world"')

returns this result:

[image: Image]

Parses input of type 'multipart/form-data' as is commonly used with file uploads. fp is the input file, and pdict is a dictionary containing parameters of the content-type header. It returns a dictionary mapping field names to lists of values. This function doesn’t work with nested multipart data. The FieldStorage class should be used instead.

print_directory()

Formats the name of the current working directory in HTML and prints it out. The resulting output will be sent back to the browser, which can be useful for debugging.

print_environ()

Creates a list of all environment variables formatted in HTML and is used for debugging.

print_environ_usage()

Prints a more selected list of useful environment variables in HTML and is used for debugging.

print_form(form)

Formats the data supplied on a form in HTML. form must be an instance of FieldStorage. Used for debugging.

test()

Writes a minimal HTTP header and prints all the information provided to the script in HTML format. Primarily used for debugging to make sure your CGI environment is set up correctly.

CGI Programming Advice

In the current age of web frameworks, CGI scripting seems to have fallen out of fashion. However, if you are going to use it, there are a couple of programming tips that can simplify your life.

First, don’t write CGI scripts where you are using a huge number of print statements to produce hard-coded HTML output. The resulting program will be a horrible tangled mess of Python and HTML that is not only impossible to read, but also impossible to maintain. A better approach is to rely on templates. Minimally, the string.Template object can be used for this. Here is an example that outlines the concept:

[image: Image]

In this example, the files 'error.html' and 'success.html' are HTML pages that have all of the output but include $variable substitutions corresponding to dynamically generated values used in the CGI script. For example, the 'success.html' file might look like this:

[image: Image]

The temp.substitute() operation in the script is simply filling in the variables in this file. An obvious benefit of this approach is that if you want to change the appearance of the output, you just modify the template files, not the CGI script. There are many third-party template engines available for Python—maybe in even greater numbers than web frameworks. These take the templating concept and build upon it in substantial ways. See http://wiki.python.org/moin/Templating more details.

Second, if you need to save data from a CGI script, try to use a database. Although it is easy enough to write data directly to files, webservers operate concurrently, and unless you’ve taken steps to properly lock and synchronize resources, it is possible that files will get corrupted. Database servers and their associated Python interface usually don’t have this problem. So if you need to save data, try to use a module such as sqlite3 or a third-party module for something like MySQL.

Finally, if you find yourself writing dozens of CGI scripts and code that has to deal with low-level details of HTTP such as cookies, authentication, encoding, and so forth, you may want to consider a web framework instead. The whole point of using a framework is so that you don’t have to worry about those details—well, at least not as much. So, don’t reinvent the wheel.

Notes

• The process of installing a CGI program varies widely according to the type of webserver being used. Typically programs are placed in a special cgi-bin directory. A server may also require additional configuration. You should consult the documentation for the server or the server’s administrator for more details.

• On UNIX, Python CGI programs may require appropriate execute permissions to be set and a line such as the following to appear as the first line of the program:

[image: Image]

• To simplify debugging, import the cgitb module—for example, import cgitb; cgitb.enable(). This modifies exception handling so that errors are displayed in the web browser.

• If you invoke an external program—for example, via the os.system() or os.popen() function—be careful not to pass arbitrary strings received from the client to the shell. This is a well-known security hole that hackers can use to execute arbitrary shell commands on the server (because the command passed to these functions is first interpreted by the UNIX shell as opposed to being executed directly). In particular, never pass any part of a URL or form data to a shell command unless it has first been thoroughly checked by making sure that the string contains only alphanumeric characters, dashes, underscores, and periods.

• On UNIX, don’t give a CGI program setuid mode. This is a security liability and not supported on all machines.

• Don’t use 'from cgi import *' with this module. The cgi module defines a wide variety of names and symbols that you probably don’t want in your namespace.

cgitb

This module provides an alternative exception handler that displays a detailed report whenever an uncaught exception occurs. The report contains source code, values of parameters, and local variables. Originally, this module was developed to help debug CGI scripts, but it can be used in any application.

enable([display [, logdir [, context [, format]]]])

Enables special exception handling. display is a flag that determines whether any information is displayed when an error occurs. The default value is 1. logdir specifies a directory in which error reports will be written to files instead of printed to standard output. When logdir is given, each error report is written to a unique file created by the tempfile.mkstemp() function. context is an integer specifying the number of lines of source code to display around lines upon which the exception occurred. format is a string that specifies the output format. A format of 'html' specifies HTML (the default). Any other value results in plain-text format.

handle([info])

Handles an exception using the default settings of the enable() function. info is a tuple (exctype,
excvalue,
tb) where exctype is an exception type, excvalue is an exception value, and tb is a traceback object. This tuple is normally obtained using sys.exc_info(). If info is omitted, the current exception is used.

Note

To enable special exception handling in CGI scripts, include the line import cgitb; enable() at the beginning of the script.

wsgiref

WSGI (Python Web Server Gateway Interface) is a standardized interface between webservers and web applications that is designed to promote portability of applications across different webservers and frameworks. An official description of the standard is found in PEP 333 (http://www.python.org/dev/peps/pep-0333). More information about the standard and its use can also be found at http://www.wsgi.org. The wsgiref package is a reference implementation that can be used for testing, validation, and simple deployments.

The WSGI Specification

With WSGI, a web application is implemented as a function or callable object webapp(environ,
start_response) that accepts two arguments. environ is a dictionary of environment settings that is minimally required to have the following values which have the same meaning and names as is used in CGI scripting:

[image: Image]

In addition, the environ dictionary is required to contain the following WSGI-specific values:

[image: Image]

The start_response parameter is a callable object of the form start_response(status, headers) that is used by the application to start a response. status is a string such as '200 OK' or '404 Not Found'. headers is a list of tuples, each of the form (name,
value) corresponding to a HTTP header to be included in the response—for example, ('Content-type','text/html').

The data or body of a response is returned by the web application function as an iterable object that produces a sequence of byte strings or text strings that only contain characters which can be encoded as a single byte (e.g., compatible with the ISO-8859-1 or Latin-1 character set). Examples include a list of byte strings or a generator function producing byte strings. If an application needs to do any kind of character encoding such as UTF-8, it must do this itself.

Here is an example of a simple WSGI application that reads form fields and produces some output, similar to what was shown in the cgi module section:

[image: Image]

There are a few critical details in this example. First, WSGI application components are not tied to specific framework, webserver, or set of library modules. In the example, we’re only using one library module, cgi, simply because it has some convenience functions for parsing query variables. The example shows how the start_response() function is used to initiate a response and supply headers. The response itself is constructed as a list of strings. The final statement in this application is a generator expression that turns all strings into byte strings. If you’re using Python 3, this is a critical step—all WSGI applications are expected to return encoded bytes, not unencoded Unicode data.

To deploy a WSGI application, it has to be registered with the web programming framework you happen to be using. For this, you’ll have to read the manual.

wsgiref Package

The wsgiref package provides a reference implementation of the WSGI standard that allows applications to be tested in stand-alone servers or executed as normal CGI scripts.

wsgiref.simple_server

The wsgiref.simple_server module implements a simple stand-alone HTTP server that runs a single WSGI application. There are just two functions of interest:

make_server(host, port, app)

Creates an HTTP server that accepts connections on the given host name host and port number port. app is a function or callable object that implements a WSGI application. To run the server, use s.serve_forever() where s is an instance of the server that is returned.

demo_app(environ, start_response)

A complete WSGI application that returns a page with a “Hello World” message on it. This can be used as the app argument to make_server() to verify that the server is working correctly.

Here is an example of running a simple WSGI server:

[image: Image]

wsgiref.handlers

The wsgiref.handlers module contains handler objects for setting up a WSGI execution environment so that applications can run within another webserver (e.g., CGI scripting under Apache). There are few different objects.

CGIHandler()

Creates a WSGI handler object that runs inside a standard CGI environment. This handler collects information from the standard environment variables and I/O streams as described in the cgi library module.

BaseCGIHandler(stdin, stdout, stderr, environ [, multithread [, multiprocess]])

Creates a WSGI handler that operates within a CGI environment, but where the standard I/O streams and environment variables might be set up in a different way. stdin, stdout, and stderr specify file-like objects for the standard I/O streams. environ is a dictionary of environment variables that is expected to already contain the standard CGI environment variables. multithread and multiprocess are Boolean flags that are used to set the wsgi.multithread and wsgi.multiprocess environment variables. By default, multithread is True and multiprocess is False.

SimpleHandler(stdin, stdout, stderr, environ [, multithread [, multiprocess]])

Creates a WSGI handler that is similar to BaseCGIHandler, but which gives the underlying application direct access to stdin, stdout, stderr, and environ. This is slightly different than BaseCGIHandler that provides extra logic to process certain features correctly (e.g., in BaseCGIHandler, response codes are translated into Status: headers).

All of these handlers have a method run(app) that is used to run a WSGI application within the handler. Here is an example of a WSGI application running as a traditional CGI script:

[image: Image]

wsgiref.validate

The wsgiref.validate module has a function that wraps a WSGI application with a validation wrapper to ensure that both it and the server are operating according to the standard.

validator(app)

Creates a new WSGI application that wraps the WSGI application app. The new application transparently works in the same way as app except that extensive error-checking is added to make sure the application and the server are following the WSGI standard. Any violation results in an AssertionError exception.

Here is an example of using the validator:

[image: Image]

Note

The material in this section is primarily aimed at users of WSGI who want to create application objects. If, on the other hand, you are implementing yet another web framework for Python, you should consult PEP 333 for official details on precisely what is needed to make your framework support WSGI. If you are using a third-party web framework, you will need to consult the framework documentation for details concerning its support for WSGI objects. Given that WSGI is an officially blessed specification with a reference implementation in the standard library, it is increasingly common for frameworks to provide some level of support for it.

webbrowser

The webbrowser module provides utility functions for opening documents in a web browser in a platform-independent manner. The main use of this module is in development and testing situations. For example, if you wrote a script that generated HTML output, you could use the functions in this module to automatically direct your system’s browser to view the results.

open(url [, new [, autoraise]])

Displays url with the default browser on the system. If new is 0, the URL is opened in the same window as a running browser, if possible. If new is 1, a new browser window is created. If new is 2, the URL is opened within a new tab within the browser. If autoraise is True, the browser window is raised.

open_new(url)

Displays url in a new window of the default browser. The same as open(url, 1).

open_new_tab(url)

Displays url in a new tab of the default browser. The same as open(url, 2).

get([name])

Returns a controller object for manipulating a browser. name is the name of the browser type and is typically a string such as 'netscape', 'mozilla', 'kfm', 'grail', 'windows-default', 'internet-config', or 'command-line'. The returned controller object has methods open() and open_new() that accept the same arguments and perform the same operation as the two previous functions. If name is omitted, a controller object for the default browser is returned.

register(name, constructor[, controller])

Registers a new browser type for use with the get() function. name is the name of the browser. constructor is called without arguments to create a controller object for opening pages in the browser. controller is a controller instance to use instead. If supplied, constructor is ignored and may be None.

A controller instance, c, returned by the get() function has the following methods:

c.open(url[, new])

Same as the open() function.

c.open_new(url)

Same as the open_new() function.

24. Internet Data Handling and Encoding

This chapter describes modules related to processing common Internet data formats and encodings such as base 64, HTML, XML, and JSON.

base64

The base64 module is used to encode and decode binary data into text using base 64, base 32, or base 16 encoding. Base 64 is commonly used to embed binary data in mail attachments and with parts of the HTTP protocol. Official details can be found in RFC-3548 and RFC-1421.

Base 64 encoding works by grouping the data to be encoded into groups of 24 bits (3 bytes). Each 24-bit group is then subdivided into four 6-bit components. Each 6-bit value is then represented by a printable ASCII character from the following alphabet:

[image: image]

If the number of bytes in the input stream is not a multiple of 3 (24 bits), the data is padded to form a complete 24-bit group. The extra padding is then indicated by special '=' characters that appear at the end of the encoding. For example, if you encode a 16-byte character sequence, there are five 3-byte groups with 1 byte left over. The remaining byte is padded to form a 3-byte group. This group then produces two characters from the base 64 alphabet (the first 12 bits, which include 8 bits of real data), followed by the sequence '==', representing the bits of extra padding. A valid base 64 encoding will only have zero, one (=), or two (==) padding characters at the end of the encoding.

Base 32 encoding works by grouping binary data into groups of 40 bits (5 bytes). Each 40-bit group is subdivided into eight 5-bit components. Each 5-bit value is then encoded using the following alphabet:

[image: image]

As with base 64, if the end of the input stream does not form a 40-bit group, it is padded to 40 bits and the '=' character is used to represent the extra padding in the output. At most, there will be six padding characters ('======'), which occurs if the final group only includes 1 byte of data.

Base 16 encoding is the standard hexadecimal encoding of data. Each 4-bit group is represented by the digits '0'–'9' and the letters 'A'–'F'. There is no extra padding or pad characters for base 16 encoding.

b64encode(s [, altchars])

Encodes a byte string s using base 64 encoding. altchars, if given, is a two-character string that specifies alternative characters to use for '+' and '/' characters that normally appear in base 64 output. This is useful if base 64 encoding is being used with filenames or URLs.

b64decode(s [, altchars])

Decodes string s, which is encoded as base 64 and returns a byte string with the decoded data. altchars, if given, is a two-character string that specifies the alternative characters for '+' and '/' that normally appear in base 64–encoded data. TypeError is raised if the input s contains extraneous characters or is incorrectly padded.

standard_b64encode(s)

Encodes a byte string s using the standard base 64 encoding.

standard_b64decode(s)

Decodes string s using standard base 64 encoding.

urlsafe_b64encode(s)

Encodes a byte string s using base 64 but uses the characters '-' and '_' instead of '+' and '/', respectively. The same as b64encode(s,
'-_').

urlsafe_b64decode(s)

Decodes string s encoded with a URL-safe base 64 encoding.

b32encode(s)

Encodes a byte string s using base 32 encoding.

b32decode(s [, casefold [, map01]])

Decodes string s using base 32 encoding. If casefold is True, both uppercase and lowercase letters are accepted. Otherwise, only uppercase letters may appear (the default). map01, if present, specifies which letter the digit 1 maps to (for example, the letter 'I' or the letter 'L'). If this argument is given, the digit '0' is also mapped to the letter 'O'. A TypeError is raised if the input string contains extraneous characters or is incorrectly padded.

b16encode(s)

Encodes a byte string s using base 16 (hex) encoding.

b16decode(s [,casefold])

Decodes string s using base 16 (hex) encoding. If casefold is True, letters may be uppercase or lowercase. Otherwise, hexadecimal letters 'A'–'F' must be uppercase (the default). Raises TypeError if the input string contains extraneous characters or is malformed in any way.

The following functions are part of an older base 64 module interface that you may see used in existing Python code:

decode(input, output)

Decodes base 64–encoded data. input is a filename or a file object open for reading. output is a filename or a file object open for writing in binary mode.

decodestring(s)

Decodes a base 64–encoded string, s. Returns a string containing the decoded binary data.

encode(input, output)

Encodes data using base 64. input is a filename or a file object open for reading in binary mode. output is a filename or a file object open for writing.

encodestring(s)

Encodes a byte string, s, using base 64.

binascii

The binascii module contains low-level functions for converting data between binary and a variety of ASCII encodings, such as base 64, BinHex, and UUencoding.

a2b_uu(s)

Converts a line of uuencoded text s to binary and returns a byte string. Lines normally contain 45 (binary) bytes, except for the last line that may be less. Line data may be followed by whitespace.

b2a_uu(data)

Converts a string of binary data to a line of uuencoded ASCII characters. The length of data should not be more than 45 bytes. Otherwise, the Error exception is raised.

a2b_base64(string)

Converts a string of base 64–encoded text to binary and returns a byte string.

b2a_base64(data)

Converts a string of binary data to a line of base 64–encoded ASCII characters. The length of data should not be more than 57 bytes if the resulting output is to be transmitted through email (otherwise it might get truncated).

a2b_hex(string)

Converts a string of hexadecimal digits to binary data. This function is also called as unhexlify(string).

b2a_hex(data)

Converts a string of binary data to a hexadecimal encoding. This function is also called as hexlify(data).

a2b_hqx(string)

Converts a string of BinHex 4–encoded data to binary without performing RLE (Run-Length Encoding) decompression.

rledecode_hqx(data)

Performs an RLE decompression of the binary data in data. Returns the decompressed data unless the data input is incomplete, in which case the Incomplete exception is raised.

rlecode_hqx(data)

Performs a BinHex 4 RLE compression of data.

b2a_hqx(data)

Converts the binary data to a string of BinHex 4–encoded ASCII characters. data should already be RLE-coded. Also, unless data is the last data fragment, the length of data should be divisible by 3.

crc_hqx(data, crc)

Computes the BinHex 4 CRC checksum of the byte string data. crc is a starting value of the checksum.

crc32(data [, crc])

Computes the CRC-32 checksum of the byte string data. crc is an optional initial CRC value. If omitted, crc defaults to 0.

csv

The csv module is used to read and write files consisting of comma-separated values (CSV). A CSV file consists of rows of text, each row consisting of values separated by a delimiter character, typically a comma (,) or a tab. Here’s an example:

[image: image]

Variants of this format commonly occur when working with databases and spreadsheets. For instance, a database might export tables in CSV format, allowing the tables to be read by other programs. Subtle complexities arise when fields contain the delimiter character. For instance, in the preceding example, one of the fields contains a comma and must be placed in quotes. This is why using basic string operations such as split(',') are often not enough to work with such files.

reader(csvfile [, dialect [, **fmtparams])

Returns a reader object that produces the values for each line of input of the input file csvfile. csvfile is any iterable object that produces a complete line of text on each iteration. The returned reader object is an iterator that produces a list of strings on each iteration. The dialect parameter is either a string containing the name of a dialect or a Dialect object. The purpose of the dialect parameter is to account for differences between different CSV encodings. The only built-in dialects supported by this module are 'excel' (which is the default value) and 'excel-tab', but others can be defined by the user as described later in this section. fmtparams is a set of keyword arguments that customize various aspects of the dialect. The following keyword arguments can be given:

[image: image]

writer(csvfile [, dialect [, **fmtparam]])

Returns a writer object that can be used to create a CSV file. csvfile is any file-like object that supports a write() method. dialect has the same meaning as for reader() and is used to handle differences between various CSV encodings. fmtparams has the same meaning as for readers. However, one additional keyword argument is available:

[image: image]

A writer instance, w, supports the following methods:

w.writerow(row)

Writes a single row of data to the file. row must be a sequence of strings or numbers.

w.writerows(rows)

Writes multiple rows of data. rows must be a sequence of rows as passed to the writerow() method.

[image: image]

Returns a reader object that operates like the ordinary reader but returns dictionary objects instead of lists of strings when reading the file. fieldnames provides a list of field names used as keys in the returned dictionary. If omitted, the dictionary key names are taken from the first row of the input file. restkey provides the name of a dictionary key that’s used to store excess data—for instance, if a row has more data fields than field names. restval is a default value that’s used as the value for fields that are missing from the input—for instance, if a row does not have enough fields. The default value of restkey and restval is None. dialect and fmtparams have the same meaning as for reader().

[image: image]

Returns a writer object that operates like the ordinary writer but writes dictionaries into output rows. fieldnames specifies the order and names of attributes that will be written to the file. restval is the value that’s written if the dictionary being written is missing one of the field names in fieldnames. extrasaction is a string that specifies what to do if a dictionary being written has keys not listed in fieldnames. The default value of extrasaction is 'raise', which raises a ValueError exception. A value of 'ignore' may be used, in which case extra values in the dictionary are ignored. dialect and fmtparams have the same meaning as with writer().

A DictWriter instance, w, supports the following methods:

w.writerow(row)

Writes a single row of data to the file. row must be a dictionary that maps field names to values.

w.writerows(rows)

Writes multiple rows of data. rows must be a sequence of rows as passed to the writerow() method.

Sniffer()

Creates a Sniffer object that is used to try and automatically detect the format of a CSV file.

A Sniffer instance, s, has the following methods:

s.sniff(sample [, delimiters])

Looks at data in sample and returns an appropriate Dialect object representing the data format. sample is a portion of a CSV file containing at least one row of data. delimiters, if supplied, is a string containing possible field delimiter characters.

s.has_header(sample)

Looks at the CSV data in sample and returns True if the first row looks like a collection of column headers.

Dialects

Many of the functions and methods in the csv module involve a special dialect parameter. The purpose of this parameter is to accommodate different formatting conventions of CSV files (for which there is no official “standard” format)—for example, differences between comma-separated values and tab-delimited values, quoting conventions, and so forth.

Dialects are defined by inheriting from the class Dialect and defining the same set of attributes as the formatting parameters given to the reader() and writer() functions (delimiter, doublequote, escapechar, lineterminator, quotechar, quoting, skipinitialspace).

The following utility functions are used to manage dialects:

register_dialect(name, dialect)

Registers a new Dialect object, dialect, under the name name.

unregister_dislect(name)

Removes the Dialect object with name name.

get_dialect(name)

Returns the Dialect object with name name.

list_dialects()

Returns a list of all registered dialect names. Currently, there are only two built-in dialects: 'excel' and 'excel-tab'.

Example

[image: image]

email Package

The email package provides a wide variety of functions and objects for representing, parsing and manipulating email messages encoded according to the MIME standard.

Covering every detail of the email package is not practical here, nor would it be of interest to most readers. Thus, the rest of this section focuses on two common practical problems—parsing email messages in order to extract useful information and creating email messages so that they can be sent using the smtplib module.

Parsing Email

At the top level, the email module provides two functions for parsing messages:

message_from_file(f)

Parses an email message read from the file-like object f which must be opened in text mode. The input message should be a complete MIME-encoded email message including all headers, text, and attachments. Returns a Message instance.

message_from_string(str)

Parses an email message by reading an email message from the text string str. Returns a Message instance.

A Message instance m returned by the previous functions emulates a dictionary and supports the following operations for looking up message data:

[image: image]

In addition to these operators, m has the following methods that can be used to extract information:

m.get_all(name [, default])

Returns a list of all values for a header with name name. Returns default if no such header exists.

m.get_boundary([default])

Returns the boundary parameter found within the 'Content-type' header of a message. Typically the boundary is a string such as '===============0995017162==' that’s used to separate the different subparts of a message. Returns default if no boundary parameter could be found.

m.get_charset()

Returns the character set associated with the message payload (for instance, 'iso-8859-1').

m.get_charsets([default])

Returns a list of all character sets that appear in the message. For multipart messages, the list will represent the character set of each subpart. The character set of each part is taken from 'Content-type' headers that appear in the message. If no character set is specified or the content-type header is missing, the character set for that part is set to the value of default (which is None by default).

m.get_content_charset([default])

Returns the character set from the first 'Content-type' header in the message. If the header is not found or no character set is specified, default is returned.

m.get_content_maintype()

Returns the main content type (for example, 'text' or 'multipart').

m.get_content_subtype()

Returns the subcontent type (for example, 'plain' or 'mixed').

m.get_content_type()

Returns a string containing the message content type (for example, 'multipart/mixed' or 'text/plain').

m.get_default_type()

Returns the default content type (for example, 'text/plain' for simple messages).

m.get_filename([default])

Returns the filename parameter from a 'Content-Disposition' header, if any. Returns default if the header is missing or does not have a filename parameter.

m.get_param(param [, default [, header [, unquote]]])

Email headers often have parameters attached to them such as the 'charset' and 'format' parts of the header 'Content-Type: text/plain; charset="utf-8"; format=flowed'. This method returns the value of a specific header parameter. param is a parameter name, default is a default value to return if the parameter is not found, header is the name of the header, and unquote specifies whether or not to unquote the parameter. If no value is given for header, parameters are taken from the 'Content-type' header. The default value of unquote is True. The return value is either a string or a 3-tuple (charset,
language,
value) in the event the parameter was encoded according to RFC-2231 conventions. In this case, charset is a string such as 'iso-8859-1', language is a string containing a language code such as 'en', and value is the parameter value.

m.get_params([default [, header [, unquote]]])

Returns all parameters for header as a list. default specifies the value to return if the header isn’t found. If header is omitted, the 'Content-type' header is used. unquote is a flag that specifies whether or not to unquote values (True by default). The contents of the returned list are tuples (name,
value) where name is the parameter name and value is the value as returned by the get_param() method.

m.get_payload([i [, decode]])

Returns the payload of a message. If the message is a simple message, a byte string containing the message body is returned. If the message is a multipart message, a list containing all the subparts is returned. For multipart messages, i specifies an optional index in this list. If supplied, only that message component will be returned. If decode is True, the payload is decoded according to the setting of any 'Content-Transfer-Encoding' header that might be present (for example, 'quoted-printable', 'base64', and so on). To decode the payload of a simple non-multipart message, set i to None and decode to True or specify decode using a keyword argument. It should be emphasized that the payload is returned as a byte string containing the raw content. If the payload represents text encoded in UTF-8 or some other encoding, you will need to use the decode() method on the result to convert it.

m.get_unixfrom()

Returns the UNIX-style 'From ...' line, if any.

m.is_multipart()

Returns True if m is a multipart message.

m.walk()

Creates a generator that iterates over all the subparts of a message, each of which is also represented by a Message instance. The iteration is a depth-first traversal of the message. Typically, this function could be used to process all the components of a multipart message.

Finally, Message instances have a few attributes that are related to low-level parsing process.

m.preamble

Any text that appears in a multipart message between the blank line that signals the end of the headers and the first occurrence of the multipart boundary string that marks the first subpart of the message.

m.epilogue

Any text in the message that appears after the last multipart boundary string and the end of the message.

m.defects

A list of all message defects found when parsing the message. Consult the online documentation for the email.errors module for further details.

The following example illustrates how the Message class is used while parsing an email message. The following code reads an email message, prints a short summary of useful headers, prints the plain text portions of the message, and saves any attachments.

[image: image]

In this example, it is important to emphasize that operations that extract the payload of a message always return byte strings. If the payload represents text, you also need to decode it according to some character set. The m.get_content_charset() and payload.decode() operations in the example are carrying out this conversion.

Composing Email

To compose an email message, you can either create an empty instance of a Message object, which is defined in the email.message module, or you can use a Message object that was created by parsing an email message (see the previous section).

Message()

Creates a new message that is initially empty.

An instance m of Message supports the following methods for populating a message with content, headers, and other information.

m.add_header(name, value, **params)

Adds a new message header. name is the name of the header, value is the value of the header, and params is a set of keyword arguments that supply additional optional parameters. For example, add_header('Foo','Bar',spam='major') adds the header line 'Foo: Bar; spam="major"' to the message.

m.as_string([unixfrom])

Converts the entire message to a string. unixfrom is a Boolean flag. If this is set to True, a UNIX-style 'From ...’ line appears as the first line. By default, unixfrom is False.

m.attach(payload)

Adds an attachment to a multipart message. payload must be another Message object (for example, email.mime.text.MIMEText). Internally, payload is appended to a list that keeps track of the different parts of the message. If the message is not a multipart message, use set_payload() to set the body of a message to a simple string.

m.del_param(param [, header [, requote]])

Deletes the parameter param from header header. For example, if a message has the header 'Foo: Bar; spam="major"', del_param('spam','Foo') would delete the 'spam="major"' portion of the header. If requote is True (the default), all remaining values are quoted when the header is rewritten. If header is omitted, the operation is applied to the 'Content-type' header.

m.replace_header(name, value)

Replaces the value of the first occurrence of the header name with value value. Raises KeyError if the header is not found.

m.set_boundary(boundary)

Sets the boundary parameter of a message to the string boundary. This string gets added as the boundary parameter to the 'Content-type' header in the message. Raises HeaderParseError if the message has no content-type header.

m.set_charset(charset)

Sets the default character set used by a message. charset may be a string such as 'iso-8859-1' or 'euc-jp'. Setting a character set normally adds a parameter to the 'Content-type' header of a message (for example, 'Content-type: text/html; charset="iso-8859-1"').

m.set_default_type(ctype)

Sets the default message content type to ctype. ctype is a string containing a MIME type such as 'text/plain’ or 'message/rfc822'. This type is not stored in the 'Content-type' header of the message.

[image: image]

Sets the value of a header parameter. param is the parameter name, and value is the parameter value. header specifies the name of the header and defaults to 'Content-type'. requote specifies whether or not to requote all the values in the header after adding the parameter. By default, this is True. charset and language specify optional character set and language information. If these are supplied, the parameter is encoded according to RFC-2231. This produces parameter text such as param*="'iso-8859-1'en-us'some%20value".

m.set_payload(payload [, charset])

Sets the entire message payload to payload. For simple messages, payload can be a byte string containing the message body. For multipart messages, payload is a list of Message objects. charset optionally specifies the character set that was used to encode the text (see set_charset).

m.set_type(type [, header [, requote]])

Sets the type used in the 'Content-type' header. type is a string specifying the type, such as 'text/plain' or 'multipart/mixed'. header specifies an alternative header other than the default 'Content-type' header. requote quotes the value of any parameters already attached to the header. By default, this is True.

m.set_unixfrom(unixfrom)

Sets the text of the UNIX-style 'From ...' line. unixfrom is a string containing the complete text including the 'From' text. This text is only output if the unixfrom parameter of m.as_string() is set to True.

Rather than creating raw Message objects and building them up from scratch each time, there are a collection of prebuilt message objects corresponding to different types of content. These message objects are especially useful for creating multipart MIME messages. For instance, you would create a new message and attach different parts using the attach() method of Message. Each of these objects is defined in a different submodule, which is noted in each description.

[image: image]

Defined in email.mime.application. Creates a message containing application data. data is a byte string containing the raw data. subtype specifies the data subtype and is 'octet-stream' by default. encoder is an optional encoding function from the email.encoders subpackage. By default, data is encoded as base 64. params represents optional keyword arguments and values that will be added to the 'Content-type' header of the message.

MIMEAudio(data [, subtype [, encoder [, **params]]])

Defined in email.mime.audio. Creates a message containing audio data. data is a byte string containing the raw binary audio data. subtype specifies the type of the data and is a string such as 'mpeg' or 'wav'. If no subtype is provided, the audio type will be guessed by looking at the data using the sndhdr module. encoder and params have the same meaning as for MIMEApplication.

MIMEImage(data [, subtype [, encoder [, **params]]])

Defined in email.mime.image. Creates a message containing image data. data is a byte string containing the raw image data. subtype specifies the image type and is a string such as 'jpg' or 'png'. If no subtype is provided, the type will be guessed using a function in the imghdr module. encoder and params have the same meaning as for MIMEApplication.

MIMEMessage(msg [, subtype])

Defined in email.mime.message. Creates a new non-multipart MIME message. msg is a message object containing the initial payload of the message. subtype is the type of the message and defaults to 'rfc822'.

[image: image]

Defined in email.mime.multipart. Creates a new MIME multipart message. subtype specifies the optional subtype to be added to the ‘Content-type: multipart/subtype' header. By default, subtype is 'mixed'. boundary is a string that specifies the boundary separator used to make each message subpart. If set to None
or omitted, a suitable boundary is determined automatically. subparts is a sequence of Message objects that make up the contents of the message. params represents optional keyword arguments and values that are added to the 'Content-type' header of the message. Once a multipart message has been created, additional subparts can be added using the Message.attach() method.

MIMEText(data [, subtype [, charset]])

Defined in email.mime.text. Creates a message containing textual data. data is a string containing the message payload. subtype specifies the text type and is a string such as 'plain' (the default) or 'html'. charset is the character set, which defaults to 'us-ascii'. The message may be encoded depending on the contents of the message.

The following example shows how to compose and send an email message using the classes in this section:

[image: image]

Notes

• A number of advanced customization and configuration options have not been discussed. Readers should consult the online documentation for advanced uses of this module.

• The email package has gone through at least four different versions, where the underlying programming interface has been changed (i.e., submodules renamed, classes moved to different locations, etc.). This section has documented version 4.0 of the interface that is used in both Python 2.6 and Python 3.0. If you are working with legacy code, the basic concepts still apply, but you may have to adjust the locations of classes and submodules.

hashlib

The hashlib module implements a variety of secure hash and message digest algorithms such as MD5 and SHA1. To compute a hash value, you start by calling one of the following functions, the name of which is the same as represented algorithm:

[image: image]

An instance d of the digest object returned by any of these functions has the following interface:

[image: image]

An alternative construction interface is also provided by the module:

new(hashname)

Creates a new digest object. hashname is a string such as 'md5' or 'sha256' specifying the name of the hashing algorithm to use. The name of the hash can minimally be any of the previous hashing algorithms or a hashing algorithm exposed by the OpenSSL library (which depends on the installation).

hmac

The hmac module provides support for HMAC (Keyed-Hashing for Message Authentication), which is described in RFC-2104. HMAC is a mechanism used for message authentication that is built upon cryptographic hashing functions such as MD5 and SHA-1.

new(key [, msg [, digest]])

Creates a new HMAC object. Here, key is a byte string containing the starting key for the hash, msg contains initial data to process, and digest is the digest constructor that should be used for cryptographic hashing. By default, digest is hashlib.md5. Normally, the initial key value is determined at random using a cryptographically strong random number generator.

An HMAC object, h, has the following methods:

h.update(msg)

Adds the string msg to the HMAC object.

h.digest()

Returns the digest of all data processed so far and returns a byte string containing the digest value. The length of the string depends on the underlying hashing function. For MD5, it is 16 characters; for SHA-1, it is 20 characters.

h.hexdigest()

Returns the digest as a string of hexadecimal digits.

h.copy()

Makes a copy of the HMAC object.

Example

The primary use of the hmac module is in applications that need to authenticate the sender of a message. To do this, the key parameter to new() is a byte string representing a secret key known by both the sender and receiver of a message. When sending a message, the sender will create a new HMAC object with the given key, update the object with message data to be sent, and then send the message data along with the resulting HMAC digest value to the receiver. The receiver can verify the message by computing its own HMAC digest value (using the same key and message data) and comparing the result to the digest value received. Here is an example:

[image: image]

HTMLParser

In Python 3, this module is called html.parser. The HTMLParser module defines a class HTMLParser that can be used to parse HTML and XHTML documents. To use this module, you define your own class that inherits from HTMLParser and redefines methods as appropriate.

HTMLParser()

This is a base class that is used to create HTML parsers. It is initialized without any arguments.

An instance h of HTMLParser has the following methods:

h.close()

Closes the parser and forces the processing of any remaining unparsed data. This method is called after all HTML data has been fed to the parser.

h.feed(data)

Supplies new data to the parser. This data will be immediately parsed. However, if the data is incomplete (for example, it ends with an incomplete HTML element), the incomplete portion will be buffered and parsed the next time feed() is called with more data.

h.getpos()

Returns the current line number and character offset into that line as a tuple (line,
offset).

h.get_starttag_text()

Returns the text corresponding to the most recently opened start tag.

h.handle_charref(name)

This handler method is called whenever a character reference such as '&#ref;' is encountered. name is a string containing the name of the reference. For example, when parsing 'å', name will be set to '229'.

h.handle_comment(data)

This handler method is called whenever a comment is encountered. data is a string containing the text of the comment. For example, when parsing the comment '<!--comment-->', data will contain the text 'comment'.

h.handle_data(data)

This handler is called to process data that appears between tags. data is a string containing text.

h.handle_decl(decl)

This handler is called to process declarations such as '<!DOCTYPE HTML ...>'. decl is a string containing the text of the declaration not including the leading '<!' and trailing '>'.

h.handle_endtag(tag)

This handler is called whenever end tags are encountered. tag is the name of the tag converted to lowercase. For example, if the end tag is '</BODY>', tag is the string 'body'.

h.handle_entityref(name)

This handler is called to handle entity references such as '&name;'. name is a string containing the name of the reference. For example, if parsing '<', name will be set to 'lt'.

h.handle_pi(data)

This handler is called to handle processing instructions such as '<?processing instruction>'. data is a string containing the text of the processing instruction not including the leading '<?' or trailing '>'. When called on XHTML-style instructions of the form '<?...?>', the last '?' will be included in data.

h.handle_startendtag(tag, attrs)

This handler processes XHTML-style empty tags such as '<tag name="value"... />'. tag is a string containing the name of the tag. attrs contains attribute information and is a list of tuples of the form (name,
value) where name is the attribute name converted to lowercase and value is the attribute value. When extracting values, quotes and character entities are replaced. For example, if parsing '', tag is 'a' and attrs is [('href','http://www.foo.com')]. If not defined in derived classes, the default implementation of this method simply calls handle_starttag() and handle_endtag().

h.handle_starttag(tag, attrs)

This handler processes start tags such as '<tag name="value" ...>'. tag and attrs have the same meaning as described for handle_startendtag().

h.reset()

Resets the parser, discarding any unprocessed data.

The following exception is provided:

HTMLParserError

Exception raised as a result of parsing errors. The exception has three attributes. The msg attribute contains a message describing the error, the lineno attribute is the line number where the parsing error occurred, and the offset attribute is the character offset into the line.

Example

The following example fetches an HTML document using the urllib package and prints all links that have been specified with '' declarations:

[image: image]

In the example, it must be noted that any HTML fetched using urllib is returned as a byte string. To properly parse it, it must be decoded into text according to the document character set encoding. The example shows how to obtain this in Python 2 and Python 3.

Note

The parsing capabilities of HTMLParser tend to be rather limited. In fact, with very complicated and/or malformed HTML, the parser can break. Users also find this module to be lower-level than is useful. If you are writing programs that must scrape data from HTML pages, consider the Beautiful Soup package (http://pypi.python.org/pypi/BeautifulSoup).

json

The json module is used to serialize and unserialize objects represented using JavaScript Object Notation (JSON). More information about JSON is available at http://json.org, but the format is really just a subset of JavaScript syntax. Incidentally, it’s almost the same as Python syntax for representing lists and dictionaries. For example, a JSON array is written as [value1,
value2, ...], and a JSON object is written as {name:value,
name:value, }.

The following list shows how JSON values and Python values are mapped. The Python types listed in parentheses are accepted when encoding but are not returned when decoding (instead, the first listed type is returned).

[image: image]

For string data, you should assume the use of Unicode. If byte strings are encountered during encoding, they will be decoded into a Unicode string using 'utf-8' by default (although this can be controlled). JSON strings are always returned as Unicode when decoding.

The following functions are used to encode/decode JSON documents:

dump(obj, f, **opts)

Serializes obj to a file-like object f. opts represents a collection of keyword arguments that can be specified to control the serialization process:

[image: image]

dumps(obj, **opts)

The same as dump() except that a string containing the result is returned.

load(f, **opts)

Deserializes a JSON object on the file-like object f and returns it. opts represents a set of keyword arguments that can be specified to control the decoding process and are described next. Be aware that this function calls f.read() to consume the entire contents of f. Because of this, it should not be used on any kind of streaming file such as a socket where JSON data might be received as part of a larger or ongoing data stream.

[image: image]

loads(s, **opts)

The same as load() except that an object is deserialized from the string s.

Although these functions share the same names as functions from the pickle and marshal modules and they serialize data, they are not used in the same way. Specifically, you should not use dump() to write more than one JSON-encoded object to the same file. Similarly, load() cannot be used to read more than one JSON-encoded object from the same file (if the input file has more than one object in it, you’ll get an error). JSON-encoded objects should be treated in the same manner as HTML or XML. For example, you usually don’t take two completely separate XML documents and just concatenate them together in the same file.

If you want to customize the encoding or decoding process, inherit from these base classes:

JSONDecoder(**opts)

A class that decodes JSON data. opts represents a set of keyword arguments that are identical to those used by the load() function. An instance d of JSONDecoder has the following two methods:

d.decode(s)

Returns the Python representation of the JSON object in s. s is a string.

d.raw_decode(s)

Returns a tuple (pyobj,
index) where pyobj is the Python representation of a JSON object in s and index is the position in s where the JSON object ended. This can be used if you are trying to parse an object out of an input stream where there is extra data at the end.

JSONEncoder(**opts)

A class that encodes a Python object into JSON. opts represents a set of keyword arguments that are identical to those used by the dump() function. An instance e of JSONEncoder has the following methods:

e.default(obj)

Method called when a Python object obj can’t be encoded according to any of the normal encoding rules. The method should return a result which is one of the types that can be encoded (for example, a string, list, or dictionary).

e.encode(obj)

Method that’s called to create a JSON representation of Python object obj.

e.iterencode(obj)

Creates an iterator that produces the strings making up the JSON representation of Python object obj as they are computed. The process of creating a JSON string is highly recursive in nature. For instance, it involves iterating over the keys of a dictionary and traversing down into other dictionaries and lists found along the way. If you use this method, you can process the output in a piecemeal manner as opposed to having everything collected into a huge in-memory string.

If you define subclasses that inherit from JSONDecoder or JSONEncoder, you need to exercise caution if your class also defines _ _init_ _(). To deal with all of the keyword arguments, here is how you should define it:

[image: image]

mimetypes

The mimetypes module is used to guess the MIME type associated with a file, based on its filename extension. It also converts MIME types to their standard filename extensions. MIME types consist of a type/subtype pair—for example 'text/html', 'image/png', or 'audio/mpeg'.

guess_type(filename [, strict])

Guesses the MIME type of a file based on its filename or URL. Returns a tuple (type,
encoding) in which type is a string of the form "type/subtype" and encoding is the program used to encode the data for transfer (for example, compress or gzip). Returns (None, None) if the type cannot be guessed. If strict is True (the default), then only official MIME types registered with IANA are recognized (see http://www.iana.org/assignments/media-types). Otherwise, some common, but unofficial MIME types are also recognized.

guess_extension(type [, strict])

Guesses the standard file extension for a file based on its MIME type. Returns a string with the filename extension including the leading dot (.). Returns None for unknown types. If strict is True (the default), then only official MIME types are recognized.

guess_all_extensions(type [, strict])

The same as guess_extension() but returns a list of all possible filename extensions.

init([files])

Initializes the module. files is a sequence of filenames that are read to extract type information. These files contain lines that map a MIME type to a list of acceptable file suffixes such as the following:

[image: image]

read_mime_types(filename)

Loads type mapping from a given filename. Returns a dictionary mapping filename extensions to MIME type strings. Returns None if filename doesn’t exist or cannot be read.

add_type(type, ext [, strict])

Adds a new MIME type to the mapping. type is a MIME type such as 'text/plain', ext is a filename extension such as '.txt', and strict is a Boolean indicating whether the type is an officially registered MIME type. By default, strict is True.

quopri

The quopri module performs quoted-printable transport encoding and decoding of byte strings. This format is used primarily to encode 8-bit text files that are mostly readable as ASCII but which may contain a small number of non-printing or special characters (for example, control characters or non-ASCII characters in the range 128-255). The following rules describe how the quoted-printable encoding works:

• Any printable non-whitespace ASCII character, with the exception of '=', is represented as is.

• The '=' character is used as an escape character. When followed by two hexadecimal digits, it represents a character with that value (for example, '=0C'). The equals sign is represented by '=3D'. If '=' appears at the end of a line, it denotes a soft line break. This only occurs if a long line of input text must be split into multiple output lines.

• Spaces and tabs are left as is but may not appear at the end of line.

It is fairly common to see this format used when documents make use of special characters in the extended ASCII character set. For example, if a document contained the text “Copyright © 2009”, this might be represented by the Python byte string b'Copyright \xa9 2009'. The quoted-printed version of the string is b'Copyright =A9 2009' where the special character '\xa9' has been replaced by the escape sequence '=A9'.

decode(input, output [, header])

Decodes bytes into quopri format. input and output are file objects opened in binary mode. If header is True, then the underscore (_) will be interpreted as a space. Otherwise, it is left alone. This is used when decoding MIME headers that have been encoded. By default, header is False.

decodestring(s [, header])

Decodes a string s. s may be a Unicode or byte string, but the result is always a byte string. header has the same meaning as with decode().

encode(input, output, quotetabs [, header])

Encodes bytes into quopri format. input and output are file objects opened in binary mode. quotetabs, if set to True, forces tab characters to be quoted in addition to the normal quoting rules. Otherwise, tabs are left as is. By default, quotetabs is False. header has the same meaning as for decode().

encodestring(s [, quotetabs [, header]])

Encodes byte string s. The result is also a byte string. quotetabs and header have the same meaning as with encode().

Notes

The quoted-printable data encoding predates Unicode and is only applicable to 8-bit data. Even though it is most commonly applied to text, it really only applies to ASCII and extended ASCII characters represented as single bytes. When you use this module, make sure all files are in binary mode and that you are working with byte strings.

xml Package

Python includes a variety of modules for processing XML data. The topic of XML processing is large, and covering every detail is beyond the scope of this book. This section assumes the reader is already familiar with some basic XML concepts. A book such as Inside XML by Steve Holzner (New Riders) or XML in a Nutshell by Elliotte Harold and W. Scott Means (O’Reilly and Associates) will be useful in explaining basic XML concepts. Several books discuss XML processing with Python including Python & XML by Christopher Jones (O’Reilly and Associates) and XML Processing with Python by Sean McGrath (Prentice Hall).

Python provides two kinds of XML support. First, there is basic support for two industry-standard approaches to XML parsing—SAX and DOM. SAX (Simple API for XML) is based on event handling where an XML document is read sequentially and as XML elements are encountered, handler functions get triggered to perform processing. DOM (Document Object Model) builds a tree structure representing an entire XML document. Once the tree has been built, DOM provides an interface for traversing the tree and extracting data. Neither the SAX nor DOM APIs originate with Python. Instead, Python simply copies the standard programming interface that was developed for Java and JavaScript.

Although you can certainly process XML using the SAX and DOM interfaces, the most convenient programming interface in the standard library is the ElementTree interface. This is a Python-specific approach to XML parsing that takes full advantage of Python language features and which most users find to be significantly easier and faster than SAX or DOM. The rest of this section covers all three XML parsing approaches, but the ElementTree approach is given the most detail.

Readers are advised that the coverage here is really only focused on basic parsing of XML data. Python also includes XML modules related to implementing new kinds of parsers, building XML documents from scratch, and so forth. In addition, a variety of third-party extensions extend Python’s capabilities with additional XML features such as support for XSLT and XPATH. Links to further information can be found at http://wiki.python.org/moin/PythonXml.

XML Example Document

The following example illustrates a typical XML document, in this case a description of a recipe.

[image: image]

The document consists of elements that start and end with tags such as <title>...</title>. Elements are typically nested and organized into a hierarchy—for example, the <item> elements that appear under <ingredients>. Within each document, a single element is the document root. In the example, this is the <receipe> element. Elements optionally have attributes as shown for the item elements <item num="4">Large avocados, chopped</item>.

Working with XML documents typically involves all of these basic features. For example, you may want to extract text and attributes from specific element types. To locate elements, you have to navigate through the document hierarchy starting at the root element.

xml.dom.minidom

The xml.dom.minicom module provides basic support for parsing an XML document and storing it in memory as a tree structure according to the conventions of DOM. There are two parsing functions:

parse(file [, parser])

Parses the contents of file and returns a node representing the top of the document tree. ile is a filename or an already-open file object. parser is an optional SAX2-compatible parser object that will be used to construct the tree. If omitted, a default parser will be used.

parseString(string [, parser])

The same as parse(), except that the input data is supplied in a string instead of a file.

Nodes

The document tree returned by the parsing functions consists of a collection of nodes linked together. Each node n has the following attributes which can be used to extract information and navigate through the tree structure:

[image: image]

In addition to these attributes, all nodes have the following methods. Typically, these are used to manipulate the tree structure.

n.appendChild(child)

Adds a new child node, child, to n. The new child is added at the end of any other children.

n.cloneNode(deep)

Makes a copy of the node n. If deep is True, all child nodes are also cloned.

n.hasAttributes()

Returns True if the node has any attributes.

n.hasChildNodes()

Returns True if the node has any children.

n.insertBefore(newchild, ichild)

Inserts a new child, newchild, before another child, ichild. ichild must already be a child of n.

n.isSameNode(other)

Returns True if the node other refers to the same DOM node as n.

n.normalize()

Joins adjacent text nodes into a single text node.

n.removeChild(child)

Removes child child from n.

n.replaceChild(newchild,oldchild)

Replaces the child oldchild with newchild. oldchild must already be a child of n.

Although there are many different types of nodes that might appear in a tree, it is most common to work with Document, Element, and Text nodes. Each is briefly described next.

Document Nodes

A Document node d appears at the top of the entire document tree and represents the entire document as a whole. It has the following methods and attributes:

d.documentElement

Contains the root element of the entire document.

d.getElementsByTagName(tagname)

Searches all child nodes and returns a list of elements with a given tag name tagname.

d.getElementsByTagNameNS(namespaceuri, localname)

Searches all child nodes and returns a list of elements with a given namespace URI and local name. The returned list is an object of type NodeList.

Element Nodes

An Element node e represents a single XML element such as '<foo>...</foo>'. To get the text from an element, you need to look for Text nodes as children. The following attributes and methods are defined to get other information:

e.tagName

The tag name of the element. For example, if the element is defined by '<foo ...>', the tag name is 'foo'.

e.getElementsByTagName(tagname)

Returns a list of all children with a given tag name.

e.getElementsByTagNameNS(namespaceuri, localname)

Returns a list of all children with a given tag name in a namespace. namespaceuri and localname are strings that specify the namespace and tag name. If a namespace has been declared using a declaration such as '<foo xmlns:foo="http://www.spam.com/foo">', namespaceuri is set to 'http://www.spam.com/foo'. If searching for a subsequent element '<foo:bar>', localname is set to 'bar'. The returned object is of type NodeList.

e.hasAttribute(name)

Returns True if an element has an attribute with name name.

e.hasAttributeNS(namespaceuri, localname)

Returns True if an element has an attribute named by namespaceuri and localname. The arguments have the same meaning as described for getElementsByTagNameNS().

e.getAttribute(name)

Returns the value of attribute name. The return value is a string. If the attribute doesn’t exist, an empty string is returned.

e.getAttributeNS(namespaceuri, localname)

Returns the value of the attributed named by namespaceuri and localname. The return value is a string. An empty string is returned if the attribute does not exist. The arguments are the same as described for getElementsByTagNameNS().

Text Nodes

Text nodes are used to represent text data. Text data is stored in the t.data attribute of a Text object t. The text associated with a given document element is always stored in Text nodes that are children of the element.

Utility Functions

The following utility methods are defined on nodes. These are not part of the DOM standard, but are provided by Python for general convenience and for debugging.

n.toprettyxml([indent [, newl]])

Creates a nicely formatted string containing the XML represented by node n and its children. indent specifies an indentation string and defaults to a tab ('\t'). newl specifies the newline character and defaults to '\n'.

n.toxml([encoding])

Creates a string containing the XML represented by node n and its children. encoding specifies the encoding (for example, 'utf-8'). If no encoding is given, none is specified in the output text.

n.writexml(writer [, indent [, addindent [, newl]]])

Writes XML to writer. writer can be any object that provides a write() method that is compatible with the file interface. indent specifies the indentation of n. It is a string that is prepended to the start of node n in the output. addindent is a string that specifies the incremental indentation to apply to child nodes of n. newl specifies the newline character.

DOM Example

The following example shows how to use the xml.dom.minidom module to parse and extract information from an XML file:

[image: image]

Note

The xml.dom.minidom module has many more features for changing the parse tree and working with different kinds of XML node types. More information can be found in the online documentation.

xml.etree.ElementTree

The xml.etree.ElementTree module defines a flexible container object ElementTree for storing and manipulating hierarchical data. Although this object is commonly used in conjunction with XML processing, it is actually quite general-purpose—serving a role that’s a cross between a list and dictionary.

ElementTree objects

The following class is used to define a new ElementTree object and represents the top level of a hierarchy.

ElementTree([element [, file]])

Creates a new ElementTree object. element is an instance representing the root node of the tree. This instance supports the element interface described next. file is either a filename or a file-like object from which XML data will be read to populate the tree.

An instance tree of ElementTree has the following methods:

tree._setroot(element)

Sets the root element to element.

tree.find(path)

Finds and returns the first top-level element in the tree whose type matches the given path. path is a string that describes the element type and its location relative to other elements. The following list describes the path syntax:

[image: image]

If you are working with a document involving XML namespaces, the tag strings in a path should have the form '{uri}tag' where uri is a string such as 'http://www.w3.org/TR/html4/'.

tree.findall(path)

Finds all top-level elements in the tree that match the given path and returns them in document order as a list or an iterator.

tree.findtext(path [, default])

Returns the element text for the first top-level element in the tree matching the given path. default is a string to return if no matching element can be found.

tree.getiterator([tag])

Creates an iterator that produces all elements in the tree, in section order, whose tag matches tag. If tag is omitted, then every element in the tree is returned in order.

tree.getroot()

Returns the root element for the tree.

tree.parse(source [, parser])

Parses external XML data and replaces the root element with the result. source is either a filename or file-like object representing XML data. parser is an optional instance of TreeBuilder, which is described later.

tree.write(file [, encoding])

Writes the entire contents of the tree to a file. file is either a filename or a file-like object opened for writing. encoding is the output encoding to use and defaults to the interpreter default encoding if not specified ('utf-8' or 'ascii' in most cases).

Creating Elements

The types of elements held in an ElementTree are represented by instances of varying types that are either created internally by parsing a file or with the following construction functions:

Comment([text])

Creates a new comment element. text is a string or byte string containing the element text. This element is mapped to XML comments when parsing or writing output.

Element(tag [, attrib [, **extra]])

Creates a new element. tag is the name of the element name. For example, if you were creating an element '<foo>....</foo>', tag would be 'foo'. attrib is a dictionary of element attributes specified as strings or byte strings. Any extra keyword arguments supplied in extra are also used to set element attributes.

fromstring(text)

Creates an element from a fragment of XML text in text—the same as XML() described next.

ProcessingInstruction(target [, text])

Creates a new element corresponding to a processing instruction. target and text are both strings or byte strings. When mapped to XML, this element corresponds to '<?target text?>'.

SubElement(parent, tag [, attrib [, **extra]])

The same as Element(), but it automatically adds the new element as a child of the element in parent.

XML(text)

Creates an element by parsing a fragment of XML code in text. For example, if you set text to '<foo>....</foo>', this will create a standard element with a tag of 'foo'.

XMLID(text)

The same as XML(text) except that 'id' attributes are collected and used to build a dictionary mapping ID values to elements. Returns a tuple (elem,
idmap) where elem is the new element and idmap is the ID mapping dictionary. For example, XMLID('<foo id="123"><bar id="456">Hello</bar></foo>') returns (<Element foo>, {'123': <Element foo>, '456': <Element bar>}).

The Element Interface

Although the elements stored in an ElementTree may have varying types, they all support a common interface. If elem is any element, then the following Python operators are defined:

[image: image]

All elements have the following basic data attributes:

[image: image]

Elements support the following methods, some of which emulate methods on dictionaries:

elem.append(subelement)

Appends the element subelement to the list of children.

elem.clear()

Clears all of the data in an element including attributes, text, and children.

elem.find(path)

Finds the first subelement whose type matches path.

elem.findall(path)

Finds all subelements whose type matches path. Returns a list or an iterable with the matching elements in document order.

elem.findtext(path [, default])

Finds the text for the first element whose type patches path. default is a string giving the value to return if there is no match.

elem.get(key [, default])

Gets the value of attribute key. default is a default value to return if the attribute doesn’t exist. If XML namespaces are involved, then key will be a string of the form '{uri}key}' where uri is a string such as 'http://www.w3.org/TR/html4/'.

elem.getchildren()

Returns all subelements in document order.

elem.getiterator([tag])

Returns an iterator that produces all subelements whose type matches tag.

elem.insert(index, subelement)

Inserts a subelement at position index in the list of children.

elem.items()

Returns all element attributes as a list of (name,
value) pairs.

elem.keys()

Returns a list of all of the attribute names.

elem.remove(subelement)

Removes element subelement from the list of children.

elem.set(key, value)

Sets attribute key to value value.

Tree Building

An ElementTree object is easy to create from other tree-like structures. The following object is used for this purpose.

TreeBuilder([element_factory])

A class that builds an ElementTree structure using a series of start(), end(), and data() calls as would be triggered while parsing a file or traversing another tree structure. element_factory is an operation function that is called to create new element instances.

An instance t of TreeBuilder has these methods:

t.close()

Closes the tree builder and returns the top-level ElementTree object that has been created.

t.data(data)

Adds text data to the current element being processed.

t.end(tag)

Closes the current element being processed and returns the final element object.

t.start(tag, attrs)

Creates a new element. tag is the element name, and attrs is a dictionary with the attribute values.

Utility Functions

The following utility functions are defined:

dump(elem)

Dumps the element structure of elem to sys.stdout for debugging. The output is usually XML.

iselement(elem)

Checks if elem is a valid element object.

iterparse(source [, events])

Incrementally parses XML from source. source is a filename or a file-like object referring to XML data. events is a list of event types to produce. Possible event types are 'start', 'end', 'start-ns', and 'end-ns'. If omitted, only 'end' events are produced. The value returned by this function is an iterator that produces tuples (event,
elem) where event is a string such as 'start' or 'end' and elem is the element being processed. For 'start' events, the element is newly created and initially empty except for attributes. For 'end' events, the element is fully populated and includes all subelements.

parse(source)

Fully parses an XML source into an ElementTree object. source is a filename or file-like object with XML data.

tostring(elem)

Creates an XML string representing elem and all of its subelements.

XML Examples

Here is an example of using ElementTree to parse the sample recipe file and print an ingredient list. It is similar to the example shown for DOM.

[image: image]

The path syntax of ElementTree makes it easier to simplify certain tasks and to take shortcuts as necessary. For example, here is a different version of the previous code that uses the path syntax to simply extract all <item>...</item> elements.

[image: image]

Consider an XML file 'recipens.xml' that makes use of namespaces:

[image: image]

To work with the namespaces, it is usually easiest to use a dictionary that maps the namespace prefix to the associated namespace URI. You then use string formatting operators to fill in the URI as shown here:

[image: image]

For small XML files, it is fine to use the ElementTree module to quickly load them into memory so that you can work with them. However, suppose you are working with a huge XML file with a structure such as this:

[image: image]

Reading a large XML file into memory tends to consume vast amounts of memory. For example, reading a 10MB XML file may result in an in-memory data structure of more than 100MB. If you’re trying to extract information from such files, the easiest way to do it is to use the ElementTree.iterparse() function. Here is an example of iteratively processing <album> nodes in the previous file:

[image: image]

The key to using iterparse() effectively is to get rid of data that you’re no longer using. The last statement musicNode.remove(album) is throwing away each <album> element after we are done processing it (by removing it from its parent). If you monitor the memory footprint of the previous program, you will find that it stays low even if the input file is massive.

Notes

• The ElementTree module is by far the easiest and most flexible way of handling simple XML documents in Python. However, it does not provide a lot of bells and whistles. For example, there is no support for validation, nor does it provide any apparent way to handle complex aspects of XML documents such as DTDs. For these things, you’ll need to install third-party packages. One such package, lxml.etree (at http://codespeak.net/lxml/), provides an ElementTree API to the popular libxml2 and libxslt libraries and provides full support for XPATH, XSLT, and other features.

• The ElementTree module itself is a third-party package maintained by Fredrik Lundh at http://effbot.org/zone/element-index.htm. At this site you can find versions that are more modern than what is included in the standard library and which offer additional features.

xml.sax

The xml.sax module provides support for parsing XML documents using the SAX2 API.

parse(file, handler [, error_handler])

Parses an XML document, file. file is either the name of a file or an open file object. handler is a content handler object. error_handler is an optional SAX errorhandler object that is described further in the online documentation.

parseString(string, handler [, error_handler])

The same as parse() but parses XML data contained in a string instead.

Handler Objects

To perform any processing, you have to supply a content handler object to the parse() or parseString() functions. To define a handler, you define a class that inherits from ContentHandler. An instance c of ContentHandler has the following methods, all of which can be overridden in your handler class as needed:

c.characters(content)

Called by the parser to supply raw character data. content is a string containing the characters.

c.endDocument()

Called by the parser when the end of the document is reached.

c.endElement(name)

Called when the end of element name is reached. For example, if '</foo>’ is parsed, this method is called with name set to 'foo'.

c.endElementNS(name, qname)

Called when the end of an element involving an XML namespace is reached. name is a tuple of strings (uri,
localname) and qname is the fully qualified name. Usually qname is None unless the SAX namespace-prefixes feature has been enabled. For example, if the element is defined as '<foo:bar xmlns:foo="http://spam.com">', then the name tuple is (u'http://spam.com', u'bar').

c.endPrefixMapping(prefix)

Called when the end of an XML namespace is reached. prefix is the name of the namespace.

c.ignorableWhitespace(whitespace)

Called when ignorable whitespace is encountered in a document. whitespace is a string containing the whitespace.

c.processingInstruction(target, data)

Called when an XML processing instruction enclosed in <? ... ?> is encountered. target is the type of instruction, and data is the instruction data. For example, if the instruction is '<?xml-stylesheet href="mystyle.css" type="text/css"?>, target is set to 'xml-stylesheet' and data is the remainder of the instruction text 'href="mystyle.css" type="text/css"'.

c.setDocumentLocator(locator)

Called by the parser to supply a locator object that can be used for tracking line numbers, columns, and other information. The primary purpose of this method is simply to store the locator someplace so that you can use it later—for instance, if you needed to print an error message. The locator object supplied in locator provides four methods—getColumnNumber(), getLineNumber(), getPublicId(), and getSystemId()—that can be used to get location information.

c.skippedEntity(name)

Called whenever the parser skips an entity. name is the name of the entity that was skipped.

c.startDocument()

Called at the start of a document.

c.startElement(name, attrs)

Called whenever a new XML element is encountered. name is the name of the element, and attrs is an object containing attribute information. For example, if the XML element is '<foo bar="whatever" spam="yes">', name is set to 'foo' and attrs contains information about the bar and spam attributes. The attrs object provides a number of methods for obtaining attribute information:

[image: image]

c.startElementNS(name, qname, attrs)

Called when a new XML element is encountered and XML namespaces are being used. name is a tuple (uri,
localname) and qname is a fully qualified element name (normally set to None unless the SAX2 namespace-prefixes feature has been enabled). attrs is an object containing attribute information. For example, if the XML element is '<foo:bar xmlns:foo="http://spam.com" blah="whatever">', then name is (u'http://spam.com', u'bar'), qname is None, and attrs contains information about the attribute blah. The attrs object has the same methods as used in when accessing attributes in the startElement() method shown earlier. In addition, the following additional methods are added to deal with namespaces:

[image: image]

c.startPrefixMapping(prefix, uri)

Called at the start of an XML namespace declaration. For example, if an element is defined as '<foo:bar xmlns:foo="http://spam.com">', then prefix is set to 'foo' and uri is set to 'http://spam.com'.

Example

The following example illustrates a SAX-based parser, by printing out the ingredient list from the recipe file shown earlier. This should be compared with the example in the xml.dom.minidom section.

[image: image]

Notes

The xml.sax module has many more features for working with different kinds of XML data and creating custom parsers. For example, there are handler objects that can be defined to parse DTD data and other parts of the document. More information can be found in the online documentation.

xml.sax.saxutils

The xml.sax.saxutils module defines some utility functions and objects that are often used with SAX parsers, but are often generally useful elsewhere.

escape(data [, entities])

Given a string, data, this function replaces certain characters with escape sequences. For example, '<' gets replaced by '<'. entities is an optional dictionary that maps characters to the escape sequences. For example, setting entities to { u'\xf1' : 'ñ' } would replace occurences of ñ with 'ñ'.

unescape(data [, entities])

Unescapes special escape sequences that appear in data. For instance, '<' is replaced by '<'. entities is an optional dictionary mapping entities to unescaped character values. entities is the inverse of the dictionary used with escape()—for example, { 'ñ' : u'\xf1' }.

quoteattr(data [, entities])

Escapes the string data, but performs additional processing that allows the result value to be used as an XML attribute value. The return value can be printed directly as an attribute value—for example, print "<element attr=%s>" % quoteattr(somevalue). entities is a dictionary compatible for use with the escape() function.

XMLGenerator([out [, encoding]])

A ContentHandler object that merely echoes parsed XML data back to the output stream as an XML document. This re-creates the original XML document. out is the output document and defaults to sys.stdout. encoding is the character encoding to use and defaults to 'iso-8859-1'. This can be useful if you’re trying to debug your parsing code and use a handler that is known to work.

25. Miscellaneous Library Modules

The modules listed in this section are not covered in detail in this book but are still considered to be part of the standard library. These modules have mostly been omitted from previous chapters because they are either extremely low-level and of limited use, restricted to very specific platforms, obsolete, or so complicated that coverage would require a complete book on the topic. Although these modules are have been omitted from this book, online documentation is available for each module at http://docs.python.org/library/modname. An index of all modules is also available at http://docs.python.org/library/modindex.html.

The modules listed here represent a common subset of functionality between Python 2 and Python 3. If you are using a module that is not listed here, chances are it has been officially deprecated. Some modules have changed names in Python 3. The new name is shown in parentheses, if applicable.

Python Services

The following modules provide additional services related to the Python language and execution of the Python interpreter. Many of these modules are related to parsing and compilation of Python source code.

[image: Image]

[image: Image]

String Processing

The following modules are some older, now obsolete, modules used for string processing.

[image: Image]

Operating System Modules

These modules provide additional operating system services. In some cases, the functionality of a module listed here is already incorporated into the functionality of other modules covered in Chapter 19, “Operating System Services.”

[image: Image]

Network

The following modules provide support for lesser-used network protocols:

[image: Image]

Internet Data Handling

The following modules provide additional support for Internet data processing not covered in Chapter 24, “Internet Data Handling and Encoding.”

[image: Image]

Internationalization

The following modules are used for writing internationalized applications:

[image: Image]

Multimedia Services

The following modules provide support for handling various kinds of multimedia files:

[image: Image]

Miscellaneous

The following modules round out the list and don’t really neatly fall into any of the other categories:

[image: Image]

III. Extending and Embedding

26 Extending and Embedding Python

 Appendix: Python 3

26. Extending and Embedding Python

One of the most powerful features of Python is its ability to interface with software written in C. There are two common strategies for integrating Python with foreign code. First, foreign functions can be packaged into a Python library module for use with the import statement. Such modules are known as extension modules because they extend the interpreter with additional functionality not written in Python. This is, by far, the most common form of Python-C integration because it gives Python applications access to high-performance programming libraries. The other form of Python-C integration is embedding. This is a process by which Python programs and the interpreter are accessed as a library from C. This latter approach is sometimes used by programmers who want to embed the Python interpreter into an existing C application framework for some reason—usually as some kind of scripting engine.

This chapter covers the absolute basics of the Python-C programming interface. First, the essential parts of the C API used to build extension modules and embed the Python interpreter are covered. This section is not intended to be a tutorial, so readers new to this topic should consult the “Embedding and Extending the Python Interpreter” document available at http://docs.python.org/extending, as well as the “Python/C API Reference Manual” available at http://docs.python.org/c-api. Next, the ctypes library module is covered. This is an extremely useful module that allows you to access functions in C libraries without writing any additional C code or using a C compiler.

It should be noted that for advanced extension and embedding applications, most programmers tend to turn to advanced code generators and programming libraries. For example, the SWIG project (http://www.swig.org) is a compiler that creates Python extension modules by parsing the contents of C header files. References to this and other extension building tools can be found at http://wiki.python.org/moin/IntegratingPythonWithOtherLanguages.

Extension Modules

This section outlines the basic process of creating a handwritten C extension module for Python. When you create an extension module, you are building an interface between Python and existing functionality written in C. For C libraries, you usually start from a header file such as the following:

[image: Image]

These function prototypes have some kind of implementation in a separate file. For example:

[image: Image]

Here is a C main() program that illustrates the use of these functions:

[image: Image]

Here is the output of the previous program:

[image: Image]

An Extension Module Prototype

Extension modules are built by writing a separate C source file that contains a set of wrapper functions which provide the glue between the Python interpreter and the underlying C code. Here is an example of a basic extension module called _example:

[image: Image]

[image: Image]

[image: Image]

Extension modules always need to include "Python.h". For each C function to be accessed, a wrapper function is written. These wrapper functions accept either two arguments (self and args, both of type PyObject *) or three arguments (self, args, and kwargs, all of type PyObject *). The self parameter is used when the wrapper function is implementing a built-in method to be applied to an instance of some object. In this case, the instance is placed in the self parameter. Otherwise, self is set to NULL.args is a tuple containing the function arguments passed by the interpreter. kwargs is a dictionary containing keyword arguments.

Arguments are converted from Python to C using the PyArg_ParseTuple() or PyArg_ParseTupleAndKeywords() function. Similarly, the Py_BuildValue() function is used to construct an acceptable return value. These functions are described in later sections.

Documentation strings for extension functions should be placed in separate string variables such as py_gcd_doc and py_replace_doc as shown. These variables are referenced during module initialization (described shortly).

Wrapper functions should never, under penalty of certain flaming death, mutate data received by reference from the interpreter. This is why the py_replace() wrapper is making a copy of the received string before passing it to the C function (which modifies it in place). If this step is omitted, the wrapper function may violate Python’s string immutability.

If you want to raise an exception, you use the PyExc_SetString() function as shown in the py_distance() wrapper. NULL is returned to signal that an error has occurred.

The method table _examplemethods is used to associate Python names with the C wrapper functions. These are the names used to call the function from the interpreter. The METH_VARARGS flag indicates the calling conventions for a wrapper. In this case, only positional arguments in the form of a tuple are accepted. It can also be set to METH_VARARGS | METH_KEYWORDS to indicate a wrapper function accepting keyword arguments. The method table additionally sets the documentation strings for each wrapper function.

The final part of an extension module performs an initialization procedure that varies between Python 2 and Python 3. In Python 2, the module initialization function init_example is used to initialize the contents of the module. In this case, the Py_InitModule("_example",_examplemethods) function creates a module, _example, and populates it with built-in function objects corresponding to the functions listed in the method table. For Python 3, you have to create an PyModuleDef object _examplemodule that describes the module. You then write a function PyInit_ _example() that initializes the module as shown. The module initialization function is also the place where you install constants and other parts of a module, if necessary. For example, the PyModule_AddIntMacro() is adding the value of a preprocessor to the module.

It is important to note that naming is critically important for module initialization. If you are creating a module called modname, the module initialization function must be called initmodname() in Python 2 and PyInit_modname() in Python 3. If you don’t do this, the interpreter won’t be able to correctly load your module.

Naming Extension Modules

It is standard practice to name C extension modules with a leading underscore such as '_example'. This convention is followed by the Python standard library itself. For instance, there are modules named _socket, _thread, _sre, and _fileio corresponding to the C programming components of the socket, threading, re, and io modules. Generally, you do not use these C extension modules directly. Instead, you create a high-level Python module such as the following:

[image: Image]

The purpose of this Python wrapper is to supply additional support code for your module or to provide a higher-level interface. In many cases, it is easier to implement parts of an extension module in Python instead of C. This design makes it easy to do this. If you look at many standard library modules, you will find that they have been implemented as a mix of C and Python in this manner.

Compiling and Packaging Extensions

The preferred mechanism for compiling and packaging an extension module is to use distutils. To do this, you create a setup.py file that looks like this:

[image: Image]

In this file, you need to include the high-level Python file (example.py) and the source files making up the extension module (pyexample.c, example.c). To build the module for testing, type the following:

% python setup.py build_ext --inplace

This will compile the extension code into a shared library and leave it in the current working directory. The name of this library will be _examplemodule.so, _examplemodule.pyd, or some similar variant.

If the compilation was successful, using your module is straightforward. For example:

[image: Image]

More complicated extension modules may need to supply additional build information, such as include directories, libraries, and preprocessor macros. They can also be included in setup.py, as follows:

[image: Image]

If you want to install an extension module for general use, you simply type python setup.py install. Further details about this are found in Chapter 8, “Modules, Packages, and Distribution.”

In some situations, you may want to build an extension module manually. This almost always requires advanced knowledge of various compiler and linker options. The following is an example on Linux:

[image: Image]

Type Conversion from Python to C

The following functions are used by extension modules to convert arguments passed from Python to C. Their prototypes are defined by including the Python.h header file.

int PyArg_ParseTuple(PyObject *args, char *format, ...);

Parses a tuple of positional arguments in args into a series of C variables. format is a format string containing zero or more of the specifier strings from Tables 26.1–26.3, which describe the expected contents of args. All the remaining arguments contain the addresses of C variables into which the results will be placed. The order and types of these arguments must match the specifiers used in format. Zero is returned if the arguments could not be parsed.

[image: Image]

Table 26.1 Numeric Conversions and Associated C Data Types for PyArg_Parse*

[image: Image]

Table 26.2 String Conversions and Associated C Data Types for PyArg_Parse*

[image: Image]

Table 26.3 Python Object Conversions and Associated C Data Types for PyArg_Parse*

[image: Image]

Parses both a tuple of positional arguments and a dictionary of keyword arguments contained in kwargs. format has the same meaning as for PyArg_ParseTuple(). The only difference is that kwlist is a null-terminated list of strings containing the names of all the arguments. Returns 1 on success, 0 on error.

Table 26.1 lists the format codes that are placed in the format argument to convert numbers. The C argument type column lists the C data type that should be passed to the PyArg_Parse*() functions. For numbers, it is always a pointer to a location where the result should be stored.

When signed integer values are converted, an OverflowError exception is raised if the Python integer is too large to fit into the requested C data type. However, conversions that accept unsigned values (e.g., 'I', 'H', 'K', and so on) do not check for overflow and will silently truncate the value if it exceeds the supported range. For floating-point conversions, a Python int or float may be supplied as input. In this case, integers will be promoted to a float. User-defined classes are accepted as numbers as long as they provide appropriate conversion methods such as _ _int_ _() or _ _float_ _(). For example, a user-defined class that implements _ _int_ _() will be accepted as input for any of the previously shown integer conversions (and _ _int_ _() invoked automatically to do the conversion).

Table 26.2 shows the conversions that apply to strings and bytes. Many of the string conversions return both a pointer and length as a result.

String handling presents a special problem for C extensions because the char * datatype is used for many different purposes. For instance, it might refer to text, a single character, or a buffer of raw binary data. There is also the issue of what to do with embedded NULL characters ('\x00') that C uses to signal the end of text strings.

In Table 26.2, the conversion codes of "s", "z", "u", "es", and "et" should be used if you are passing text. For these codes, Python assumes that the input text does not contain any embedded NULLs—if so, a TypeError exception is raised. However, the resulting string in C can be safely assumed to be NULL-terminated. In Python 2, both 8-bit and Unicode strings can be passed, but in Python 3, all conversions except for "et" require the Python str type and do not work with bytes. When Unicode strings are passed to C, they are always encoded using the default Unicode encoding used by the interpreter (usually UTF-8). The one exception is the "u" conversion code that returns a string using Python’s internal Unicode representation. This is an array of Py_UNICODE values where Unicode characters are typically represented by the wchar_t type in C.

The "es" and "et" codes allow you to specify an alternative encoding for the text. For these, you supply an encoding name such as 'utf-8' or 'iso-8859-1', and the text will be encoded into a buffer and returned in that format. The "et" code differs from "es" in that if a Python byte-string is given, it is assumed to have already been encoded and is passed through unmodified. One caution with "es" and "et" conversions is that they dynamically allocate memory for the result and require the user to explicitly release it using PyMem_Free(). Thus, code that uses these conversions should look similar to this:

[image: Image]

For handling text or binary data, use the "s#", "z#", "u#", "es#", or "et#" codes. These conversions work exactly the same as before except that they additionally return a length. Because of this, the restriction on embedded NULL characters is lifted. In addition, these conversions add support for byte strings and any other objects that support something known as the buffer interface. The buffer interface is a means by which a Python object can expose a raw binary buffer representing its contents. Typically, you find it on strings, bytes, and arrays (e.g., the arrays created in the array module support it). In this case, if an object provides a readable buffer interface, a pointer to the buffer and its size is returned. Finally, if a non-NULL pointer and length are given to the "es#" and "et#" conversions, it is assumed that these represent a pre-allocated buffer into which the result of the encoding can be placed. In this case, the interpreter does not allocate new memory for the result and you don’t have to call PyMem_Free().

The conversion codes of "s*" and "z*" are similar to "s#" and "z#" except that they populate a Py_buffer structure with information about the received data. More information about this can be found in PEP-3118, but this structure minimally has attributes char *buf, int len, and int itemsize that point to the buffer, the buffer length (in bytes), and the size of items held in the buffer. In addition, the interpreter places a lock on the buffer that prevents it from being changed by other threads as long as it is held by extension code. This allows the extension to work with the buffer contents independently, possibly in a different thread than the interpreter. It is up to the user to call PyBuffer_Release() on the buffer after all processing is complete.

The conversion codes of "t#", "w", "w#", and "w*" are just like the "s" family of codes except that they only accept objects implementing the buffer interface. "t#" requires the buffer to be readable. The "w" code requires the buffer to be both readable and writable. A Python object supporting a writable buffer is assumed to be mutable. Thus, it is legal for a C extension to overwrite or modify the buffer contents.

The conversion codes of "y", "y#", and "y*" are just like the "s" family of codes except that they only accept byte strings. Use these to write functions that must only take bytes, not Unicode strings. The "y" code only accepts byte strings that do not contain embedded NULL characters.

Table 26.3 lists conversion codes that are used to accept arbitrary Python objects as input and to leave the result as type PyObject *. These are sometimes used for C extensions that need to work with Python objects that are more complicated than simple numbers or strings—for example, if you needed a C extension function to accept an instance of a Python class or dictionary.

The "O", "S", and "U" specifiers return raw Python objects of type PyObject *. "S" and "U" restrict this object to be a string or Unicode string, respectively.

The "O!" conversion requires two C arguments: a pointer to a Python type object and a pointer to a PyObject * into which a pointer to the object is placed. A TypeError is raised if the type of the object doesn’t match the type object. For example:

[image: Image]

The following list shows the C type names corresponding to some Python container types that might be commonly used with this conversion.

[image: Image]

The "O&" conversion takes two arguments (converter, addr) and uses a function to convert a PyObject * to a C data type. converter is a pointer to a function with the prototype int
converter(PyObject
*obj, void
*addr), where obj is the passed Python object and addr is the address supplied as the second argument in PyArg_ParseTuple().
converter() should return 1 on success, 0 on failure. On error, the converter should also raise an exception. This kind of conversion can be used to map Python objects such as lists or tuples into C data structures. For example, here is a possible implementation of the distance() wrapper from our earlier code:

[image: Image]

Finally, argument format strings can contain a few additional modifiers related to tuple unpacking, documentation, error messages, and default arguments. The following is a list of these modifiers:

[image: Image]

The "(items)" unpacks values from a Python tuple. This can be a useful way to map tuples into simple C structures. For example, here is another possible implementation of the py_distance() wrapper function:

[image: Image]

The modifier "|" specifies that all remaining arguments are optional. This can appear only once in a format specifier and cannot be nested. The modifier ":" indicates the end of the arguments. Any text that follows is used as the function name in any error messages. The modifier ";" signals the end of the arguments. Any following text is used as the error message. Note that only one of : and ; should be used. Here are some examples:

[image: Image]

Type Conversion from C to Python

The following C function is used to convert the values contained in C variables to a Python object:

PyObject *Py_BuildValue(char *format, ...)

This constructs a Python object from a series of C variables. format is a string describing the desired conversion. The remaining arguments are the values of C variables to be converted.

The format specifier is similar to that used with the PyArg_ParseTuple* functions, as shown in Table 26.4.

Table 26.4 Format Specifiers for
Py_BuildValue()

[image: Image]

[image: Image]

[image: Image]

Here are some examples of building different kinds of values:

[image: Image]

For Unicode string conversions involving char *, it is assumed that the data consists of a series of bytes encoded using the default Unicode encoding (usually UTF-8). The data will be automatically decoded into a Unicode string when passed to Python. The only exceptions are the "y" and "y#" conversions that return a raw byte string.

Adding Values to a Module

In the module initialization function of an extension module, it is common to add constants and other support values. The following functions can be used to do this:

int PyModule_AddObject(PyObject *module, const char *name, PyObject *value)

Adds a new value to a module. name is the name of the value, and value is a Python object containing the value. You can build this value using Py_BuildValue().

int PyModule_AddIntConstant(PyObject *module, const char *name, long value)

Adds an integer value to a module.

[image: Image]

Adds a string value to a module. value must be a null-terminated string.

void PyModule_AddIntMacro(PyObject *module, macro)

Adds a macro value to a module as an integer. macro must be the name of preprocessor macro.

void PyModule_AddStringMacro(PyObject *module, macro)

Adds a macro value to a module as a string.

Error Handling

Extension modules indicate errors by returning NULL to the interpreter. Prior to returning NULL, an exception should be set using one of the following functions:

void PyErr_NoMemory()

Raises a MemoryError exception.

void PyErr_SetFromErrno(PyObject *exc)

Raises an exception. exc is an exception object. The value of the exception is taken from the errno variable in the C library.

void PyErr_SetFromErrnoWithFilename(PyObject *exc, char *filename)

Like PyErr_SetFromErrno(), but includes the file name in the exception value as well.

void PyErr_SetObject(PyObject *exc, PyObject *val)

Raises an exception. exc is an exception object, and val is an object containing the value of the exception.

void PyErr_SetString(PyObject *exc, char *msg)

Raises an exception. exc is an exception object, and msg is a message describing what went wrong.

The exc argument in these functions can be set to one of the following:

[image: Image]

The following functions are used to query or clear the exception status of the interpreter:

void PyErr_Clear()

Clears any previously raised exceptions.

PyObject *PyErr_Occurred()

Checks to see whether or not an exception has been raised. If so, the current exception value is returned. Otherwise, NULL is returned.

int PyErr_ExceptionMatches(PyObject *exc)

Checks to see if the current exception matches the exception exc. Returns 1 if true, 0 otherwise. This function follows the same exception matching rules as in Python code. Therefore, exc could be a superclass of the current exception or a tuple of exception classes.

The following prototype shows how to implement a try-except block in C:

[image: Image]

Reference Counting

Unlike programs written in Python, C extensions may have to manipulate the reference count of Python objects. This is done using the following macros, all of which are applied to objects of type PyObject *.

[image: Image]

Manipulating the reference count of Python objects in C is a delicate topic, and readers are strongly advised to consult the “Extending and Embedding the Python Interpreter” document available at http://docs.python.org/extending before proceeding any further. As a general rule, it is not necessary to worry about reference counting in C extension functions except in the following cases:

• If you save a reference to a Python object for later use or in a C structure, you must increase the reference count.

• Similarly, to dispose of an object that was previously saved, decrease its reference count.

• If you are manipulating Python containers (lists, dicts, and so on) from C, you may have to manually manipulate reference counts of the individual items. For example, high-level operations that get or set items in a container typically increase the reference count.

You will know that you have a reference counting problem if your extension code crashes the interpreter (you forgot to increase the reference count) or the interpreter leaks memory as your extension functions are used (you forgot to decrease a reference count).

Threads

A global interpreter lock is used to prevent more than one thread from executing in the interpreter at once. If a function written in an extension module executes for a long time, it will block the execution of other threads until it completes. This is because the lock is held whenever an extension function is invoked. If the extension module is thread-safe, the following macros can be used to release and reacquire the global interpreter lock:

Py_BEGIN_ALLOW_THREADS

Releases the global interpreter lock and allows other threads to run in the interpreter. The C extension must not invoke any functions in the Python C API while the lock is released.

Py_END_ALLOW_THREADS

Reacquires the global interpreter lock. The extension will block until the lock can be acquired successfully in this case.

The following example illustrates the use of these macros:

[image: Image]

Embedding the Python Interpreter

The Python interpreter can also be embedded into C applications. With embedding, the Python interpreter operates as a programming library where C programs can initialize the interpreter, have the interpreter run scripts and code fragments, load library modules, and manipulate functions and objects implemented in Python.

An Embedding Template

With embedding, your C program is in charge of the interpreter. Here is a simple C program that illustrates the most minimal embedding possible:

[image: Image]

In this example, the interpreter is initialized, a short script is executed as a string, and the interpreter is shut down. Before proceeding any further, it is usually a good idea to get the prior example working first.

Compilation and Linking

To compile an embedded interpreter on UNIX, your code must include the "Python.h" header file and link against the interpreter library such as libpython2.6.a. The header file is typically found in /usr/local/include/python2.6, and the library is typically found in /usr/local/lib/python2.6/config. For Windows, you will need to locate these files in the Python installation directory. Be aware that the interpreter may depend on other libraries you need to include when linking. Unfortunately, this tends to be platform-specific and related to how Python was configured on your machine—you may have to fiddle around for a bit.

Basic Interpreter Operation and Setup

The following functions are used to set up the interpreter and to run scripts:

int PyRun_AnyFile(FILE *fp, char *filename)

If fp is an interactive device such as tty in UNIX, this function calls PyRun_InteractiveLoop(). Otherwise, PyRun_SimpleFile() is called. filename is a string that gives a name for the input stream. This name will appear when the interpreter reports errors. If filename is NULL, a default string of "???" is used as the file name.

int PyRun_SimpleFile(FILE *fp, char *filename)

Similar to PyRun_SimpleString(), except that the program is read from the file fp.

int PyRun_SimpleString(char *command)

Executes command in the _ _main_ _ module of the interpreter. Returns 0 on success, -1 if an exception occurred.

int PyRun_InteractiveOne(FILE *fp, char *filename)

Executes a single interactive command.

int PyRun_InterativeLoop(FILE *fp, char *filename)

Runs the interpreter in interactive mode.

void Py_Initialize()

Initializes the Python interpreter. This function should be called before using any other functions in the C API, with the exception of Py_SetProgramName(), PyEval_InitThreads(), PyEval_ReleaseLock(), and PyEval_AcquireLock().

int Py_IsInitialized()

Returns 1 if the interpreter has been initialized, 0 if not.

void Py_Finalize()

Cleans up the interpreter by destroying all the sub-interpreters and objects that were created since calling Py_Initialize(). Normally, this function frees all the memory allocated by the interpreter. However, circular references and extension modules may introduce memory leaks that cannot be recovered by this function.

void Py_SetProgramName(char *name)

Sets the program name that’s normally found in the argv[0] argument of the sys module. This function should only be called before Py_Initialize().

char *Py_GetPrefix()

Returns the prefix for installed platform-independent files. This is the same value as found in sys.prefix.

char *Py_GetExecPrefix()

Returns the exec-prefix for installed platform-dependent files. This is the same value as found in sys.exec_prefix.

char *Py_GetProgramFullPath()

Returns the full path name of the Python executable.

char *Py_GetPath()

Returns the default module search path. The path is returned as a string consisting of directory names separated by a platform-dependent delimiters (: on UNIX, ; on DOS/Windows).

int PySys_SetArgv(int argc, char **argv)

Sets command-line options used to populate the value of sys.argv. This should only be called before Py_Initialize().

Accessing Python from C

Although there are many ways that the interpreter can be accessed from C, four essential tasks are the most common with embedding:

• Importing Python library modules (emulating the import statement)

• Getting references to objects defined in modules

• Calling Python functions, classes, and methods

• Accessing the attributes of objects (data, methods, and so on)

All of these operations can be carried out using these basic operations defined in the Python C API:

PyObject *PyImport_ImportModule(const char *modname)

Imports a module modname and returns a reference to the associated module object.

PyObject *PyObject_GetAttrString(PyObject *obj, const char *name)

Gets an attribute from an object. This is the same as obj.name.

int PyObject_SetAttrString(PyObject *obj, const char *name, PyObject *value)

Sets an attribute on an object. This is the same as obj.name
=
value.

PyObject *PyEval_CallObject(PyObject *func, PyObject *args)

Calls func with arguments args. func is a Python callable object (function, method, class, and so on). args is a tuple of arguments.

[image: Image]

Calls func with positional arguments args and keyword arguments kwargs. func is a callable object, args is a tuple, and kwargs is a dictionary.

The following example illustrates the use of these functions by calling and using various parts of the re module from C. This program prints out all of the lines read from stdin that contain a Python regular expression supplied by the user.

[image: Image]

[image: Image]

In any embedding code, it is critically important to properly manage reference counts. In particular, you will need to decrease the reference count on any objects created from C or returned to C as a result of evaluating functions.

Converting Python Objects to C

A major problem with embedded use of the interpreter is converting the result of a Python function or method call into a suitable C representation. As a general rule, you need to know in advance exactly what kind of data an operation is going to return. Sadly, there is no high-level convenience function like PyArg_ParseTuple() for converting a single object value. However, the following lists some low-level conversion functions that will convert a few primitive Python data types into an appropriate C representation as long as you know exactly what kind of Python object you are working with:

[image: Image]

For any types more complicated than this, you will need to consult the C API documentation (http://docs.python.org/c-api).

ctypes

The ctypes module provides Python with access to C functions defined in DLLs and shared libraries. Although you need to know some details about the underlying C library (names, calling arguments, types, and so on), you can use ctypes to access C code without having to write C extension wrapper code or compile anything with a C compiler. ctypes is a sizable library module with a lot of advanced functionality. Here, we cover the essential parts of it that are needed to get going.

Loading Shared Libraries

The following classes are used to load a C shared library and return an instance representing its contents:

CDLL(name [, mode [, handle [, use_errno [, use_last_error]]]])

A class representing a standard C shared library. name is the name of the library such as 'libc.so.6' or 'msvcrt.dll'.mode provides flags that determine how the library is loaded and are passed to the underlying dlopen() function on UNIX. It can be set to the bitwise-or of RTLD_LOCAL, RTLD_GLOBAL, or RTLD_DEFAULT (the default). On Windows, mode is ignored. handle specifies a handle to an already loaded library (if available). By default, it is None.use_errno is a Boolean flag that adds an extra layer of safety around the handling of the C errno variable in the loaded library. This layer saves a thread-local copy of errno prior to calling any foreign function and restores the value afterwards. By default, use_errno is False.use_last_error is a Boolean flag that enables a pair of functions get_last_error() and set_last_error() that can be used to manipulate the system error code. These are more commonly used on Windows. By default, use_last_error is False.

WinDLL(name [, mode [, handle [, use_errno [, use_last_error]]]])

The same as CDLL() except that the functions in the library are assumed to follow the Windows stdcall calling conventions (Windows).

The following utility function can be used to locate shared libraries on the system and construct a name suitable for use as the name parameter in the previous classes. It is defined in the ctypes.util submodule:

find_library(name)

Defined in ctypes.util. Returns a path name corresponding to the library name.name is a library name without any file suffix such as 'libc', 'libm', and so on The string returned by the function is a full path name such as '/usr/lib/libc.so.6'. The behavior of this function is highly system-dependent and depends on the underlying configuration of shared libraries and environment (for example, the setting of LD_LIBRARY_PATH and other parameters). Returns None if the library can’t be located.

Foreign Functions

The shared library instances created by the CDLL() class operates as a proxy to the underlying C library. To access library contents, you just use attribute lookup (the operator). For example:

[image: Image]

In this example, operations such as libc.rand() and libc.atoi() are directly calling functions in the loaded C library.

ctypes assumes that all functions accept parameters of type int or char * and return results of type int. Thus, even though the previous function calls “worked,” calls to other C library functions do not work as expected. For example:

[image: Image]

To address this problem, the type signature and handling of any foreign function func can be set by changing the following attributes:

func.argtypes

A tuple of ctypes datatypes (described here) describing the input arguments to func.

func.restype

A ctypes datatype describing the return value of func.None is used for functions returning void.

func.errcheck

A Python callable object taking three parameters (result, func, args) where result is the value returned by a foreign function, func is a reference to the foreign function itself, and args is a tuple of the input arguments. This function is called after a foreign function call and can be used to perform error checking and other actions.

Here is an example of fixing the atof() function interface, as shown in the previous example:

[image: Image]

The ctypes.d_double is a reference to a predefined datatype. The next section describes these datatypes.

Datatypes

Table 26.5 shows the ctypes datatypes that can be used in the argtypes and restype attributes of foreign functions. The “Python Value” column describes the type of Python data that is accepted for the given data type.

Table 26.5 ctypes Datatypes

[image: Image]

To create a type representing a C pointer, apply the following function to one of the other types:

POINTER(type)

Defines a type that is a pointer to type type. For example, POINTER(c_int) represents the C type int *.

To define a type representing a fixed-size C array, multiply an existing type by the number of array dimensions. For example, c_int*4 represents the C datatype int[4].

To define a type representing a C structure or union, you inherit from one of the base classes Structure or Union. Within each derived class, you define a class variable _fields_ that describes the contents. _fields_ is a list of 2 or 3 tuples of the form (name, ctype) or (name, ctype, width), where name is an identifier for the structure field, ctype is a ctype class describing the type, and width is an integer bit-field width. For example, consider the following C structure:

[image: Image]

The ctypes description of this structure is

[image: Image]

Calling Foreign Functions

To call functions in a library, you simply call the appropriate function with a set of arguments that are compatible with its type signature. For simple datatypes such as c_int, c_double, and so forth, you can just pass compatible Python types as input (integers, floats, and so on). It is also possible to pass instances of c_int, c_double and similar types as input. For arrays, you can just pass a Python sequence of compatible types.

To pass a pointer to a foreign function, you must first create a ctypes instance that represents the value that will be pointed at and then create a pointer object using one of the following functions:

byref(cvalue [, offset])

Represents a lightweight pointer to cvalue. cvalue must be an instance of a ctypes datatype. offset is a byte offset to add to the pointer value. The value returned by the function can only be used in function calls.

pointer(cvalue)

Creates a pointer instance pointing to cvalue. cvalue must be an instance of a ctypes datatype. This creates an instance of the POINTER type described earlier.

Here is an example showing how you would pass a parameter of type double * into a C function:

[image: Image]

It should be noted that you cannot create pointers to built-in types such as int or float. Passing pointers to such types would violate mutability if the underlying C function changed the value.

The cobj.value attribute of a ctypes instance cobj contains the internal data. For example, the reference to dval.value in the previous code returns the floating-point value stored inside the ctypes c_double instance dval.

To pass a structure to a C function, you must create an instance of the structure or union. To do this, you call a previous defined structure or union type StructureType as follows:

StructureType(*args, **kwargs)

Creates an instance of StructureType where StructureType is a class derived from Structure or Union. Positional arguments in *args are used to initialize the structure members in the same order as they are listed in _fields_. Keyword arguments in **kwargs initialize just the named structure members.

Alternative Type Construction Methods

All instances of ctypes types such as c_int, POINTER, and so forth have some class methods that are used to create instances of ctypes types from memory locations and other objects.

ty.from_buffer(source [,offset])

Creates an instance of ctypes type ty that shares the same memory buffer as source.source must be any other object that supports the writable buffer interface (e.g., bytearray, array objects in the array module, mmap, and so on). offset is the number of bytes from the start of the buffer to use.

ty.from_buffer_copy(source [, offset])

The same as ty.from_buffer() except that a copy of the memory is made and that source can be read-only.

ty.from_address(address)

Creates an instance of ctypes type ty from a raw memory address address specified as an integer.

ty.from_param(obj)

Creates an instance of ctypes type ty from a Python object obj. This only works if the passed object obj can be adapted into the appropriate type. For example, a Python integer can be adapted into a c_int instance.

ty.in_dll(library, name)

Creates an instance of ctypes type ty from a symbol in a shared library. library is an instance of the loaded library such as the object created by the CDLL class. name is the name of a symbol. This method can be used to put a ctypes wrapper around global variables defined in a library.

The following example shows how you might create a reference to a global variable int status defined in a library libexample.so.

[image: Image]

Utility Functions

The following utility functions are defined by ctypes:

addressof(cobj)

Returns the memory address of cobj as an integer. cobj must be an instance of a ctypes type.

alignment(ctype_or_obj)

Returns the integer alignment requirements of a ctypes type or object. ctype_or_obj must be a ctypes type or an instance of a type.

cast(cobj, ctype)

Casts a ctypes object cobj to a new type given in ctype. This only works for pointers, so cobj must be a pointer or array and ctype must be a pointer type.

create_string_buffer(init [, size])

Creates a mutable character buffer as a ctypes array of type c_char.
init is either an integer size or a string representing the initial contents. size is an optional parameter that specifies the size to use if init is a string. By default, the size is set to be one greater than the number of characters in init. Unicode strings are encoded into bytes using the default encoding.

create_unicode_buffer(init [, size])

The same as create_string_buffer(), except that a ctypes array of type c_wchar is created.

get_errno()

Returns the current value of the ctypes private copy of errno.

get_last_error()

Returns the current value of the ctypes private copy of LastError on Windows.

memmove(dst, src, count)

Copies count bytes from src to dst.src and dst are either integers representing memory addresses or instances of ctypes types that can be converted to pointers. The same as the C memmove() library function.

memset(dst, c, count)

Sets count bytes of memory starting at dst to the byte value c. dst is either an integer or a ctypes instance. c is an integer representing a byte in the range 0-255.

resize(cobj, size)

Resizes the internal memory used to represent ctypes object cobj. size is the new size in bytes.

set_conversion_mode(encoding, errors)

Sets the Unicode encoding used when converting from Unicode strings to 8-bit strings. encoding is the encoding name such as 'utf-8', and errors is the error-handling policy such as 'strict' or 'ignore'. Returns a tuple (encoding,
errors) with the previous setting.

set_errno(value)

Sets the ctypes-private copy of the system errno variable. Returns the previous value.

set_last_error(value)

Sets the Windows LastError variable and returns the previous value.

sizeof(type_or_cobj)

Returns the size of a ctypes type or object in bytes.

string_at(address [, size])

Returns a byte string representing size bytes of memory starting at address address. If size is omitted, it is assumed that the byte string is NULL-terminated.

wstring_at(address [, size])

Returns a Unicode string representing size wide characters starting at address address. If size is omitted, the character string is assumed to be NULL-terminated.

Example

The following example illustrates the use of the ctypes module by building an interface to the set of C functions used in the very first part of this chapter that covered the details of creating Python extension modules by hand.

[image: Image]

As a general note, usage of ctypes is always going to involve a Python wrapper layer of varying complexity. For example, it may be the case that you can call a C function directly. However, you may also have to implement a small wrapping layer to account for certain aspects of the underlying C code. In this example, the replace() function is taking extra steps to account for the fact that the C library mutates the input buffer. The distance() function is performing extra steps to create Point instances from tuples and to pass pointers.

Note

The ctypes module has a large number of advanced features not covered here. For example, the library can access many different kinds of libraries on Windows, and there is support for callback functions, incomplete types, and other details. The online documentation is filled with many examples so that should be a starting point for further use.

Advanced Extending and Embedding

Creating handwritten extension modules or using ctypes is usually straightforward if you are extending Python with simple C code. However, for anything more complex, it can quickly become tedious. For this, you will want to look for a suitable extension building tool. These tools either automate much of the extension building process or provide a programming interface that operates at a much higher level. Links to a variety of such tools can be found at http://wiki.python.org/moin/IntegratingPythonWithOtherLanguages. However, a short example with SWIG (http://www.swig.org) will be shown just to illustrate. In the interest of full disclosure, it should be noted that SWIG was originally created by the author.

With automated tools, you usually just describe the contents of an extension module at a high level. For example, with SWIG, you write a short interface specification that looks like this:

[image: Image]

Using this specification, SWIG automatically generates everything needed to make a Python extension module. To run SWIG, you just invoke it like a compiler:

[image: Image]

As output, it generates a set of .c and .py files. However, you often don’t have to worry much about this. If you are using distutils and include a .i file in the setup specification, it will run SWIG automatically for you when building an extension. For example, this setup.py file automatically runs SWIG on the listed example.i file.

[image: Image]

It turns out that this example.i file and the setup.py file are all that are needed to have a working extension module in this example. If you type python setup.py build_ext --inplace, you will find that you have a fully working extension in your directory.

Jython and IronPython

Extending and embedding is not restricted to C programs. If you are working with Java, consider the use of Jython (http://www.jython.org), a complete reimplementation of the Python interpreter in Java. With jython, you can simply import Java libraries using the import statement. For example:

[image: Image]

If you are working with the .NET framework on Windows, consider the use of IronPython (http://www.codeplex.com/Wiki/View.aspx?ProjectName=IronPython), a complete reimplementation of the Python interpreter in C#. With IronPython, you can easily access all of the .NET libraries from Python in a similar manner. For example:

[image: Image]

Covering jython and IronPython in more detail is beyond the scope of this book. However, just keep in mind that they’re both Python—the most major differences are in their libraries.

Appendix. Python 3

In December 2008, Python 3.0 was released—a major update to the Python language that breaks backwards compatibility with Python 2 in a number of critical areas. A fairly complete survey of the changes made to Python 3 can be found in the “What’s New in Python 3.0” document available at http://docs.python.org/3.0/whatsnew/3.0.html. In some sense, the first 26 chapters of this book can be viewed as the polar opposite of the “What’s New” document. That is, all of the material covered so far has focused on features that are shared by both Python 2 and Python 3. This includes all of the standard library modules, major language features, and examples. Aside from a few minor naming differences and the fact that print() is a function, no unique Python 3 features have been described.

The main focus of this appendix is to describe new features to the Python language that are only available in version 3 as well as some important differences to keep in mind if you are going to migrate existing code. At the end of this appendix, some porting strategies and use of the 2to3 code conversion tool is described.

Who Should Be Using Python 3?

Before going any further, it is important to address the question of who should be using the Python 3.0 release. Within the Python community, it has always been known that the transition to Python 3 would not happen overnight and that the Python 2 branch would continue to be maintained for some time (years) into the future. So, as of this writing, there is no urgent need to drop Python 2 code. I suspect that huge amounts of Python 2 code will continue to be in development when the 5th edition of this book is written years from now.

A major problem facing Python 3.0 concerns the compatibility of third-party libraries. Much of Python’s power comes from its large variety of frameworks and libraries. However, unless these libraries are explicitly ported to Python 3, they are almost certain not to work. This problem is amplified by the fact that many libraries depend upon other libraries that depend on yet more libraries. As of this writing (2009), there are major libraries and frameworks for Python that haven’t even been ported to Python 2.4, let alone 2.6 or 3.0. So, if you are using Python with the intention of running third-party code, you are better off sticking with Python 2 for now. If you’ve picked up this book and it’s the year 2012, then hopefully the situation will have improved.

Although Python 3 cleans up a lot of minor warts in the language, it is unclear if Python 3 is currently a wise choice for new users just trying to learn the basics. Almost all existing documentation, tutorials, cookbooks, and examples assume Python 2 and use coding conventions that are incompatible. Needless to say, someone is not going to have a positive learning experience if everything appears to be broken. Even the official documentation is not entirely up-to-date with Python 3 coding requirements; while writing this book, the author submitted numerous bug reports concerning documentation errors and omissions.

Finally, even though Python 3.0 is described as the latest and greatest, it suffers from numerous performance and behavioral problems. For example, the I/O system in the initial release exhibits truly horrific and unacceptable runtime performance. The separation of bytes and Unicode is also not without problem. Even some of the built-in library modules are broken due to changes related to I/O and string handling. Obviously these issues will improve with time as more programmers stress-test the release. However, in the opinion of this author, Python 3.0 is really only suitable for experimental use by seasoned Python veterans. If you’re looking for stability and production quality code, stick with Python 2 until some of the kinks have had time to be worked out of the Python 3 series.

New Language Features

This section outlines some features of Python 3 that are not supported in Python 2.

Source Code Encoding and Identifiers

Python 3 assumes that source code is encoded as UTF-8. In addition, the rules on what characters are legal in an identifier have been relaxed. Specifically, identifiers can contain any valid Unicode character with a code point of U+0080 or greater. For example:

[image: image]

Just because you can use such characters in your source code doesn’t mean that it’s a good idea. Not all editors, terminals, or development tools are equally adept at Unicode handling. Plus, it is extremely annoying to force programmers to type awkward key sequences for characters not visibly present on a standard keyboard (not to mention the fact that it might make some of the gray-bearded hackers in the office tell everyone another amusing APL story). So, it’s probably better to reserve the use of Unicode characters for comments and string literals.

Set Literals

A set of items can now be defined by enclosing a collection of values in braces {
items
}. For example:

days = { 'Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun' }

This syntax is the same as using the set() function:

days = set(['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'])

Set and Dictionary Comprehensions

The syntax {
expr
for
x
in
s
if
conditional
} is a set comprehension. It applies an operation to all of the elements of a set s and can be used in a similar manner as list comprehensions. For example:

[image: image]

The syntax {
kexpr:vexpr
for
k, v
in
s
if
condition
} is a dictionary comprehension. It applies an operation to all of the keys and values in sequence s of (key, value) tuples and returns a dictionary. The keys of the new dictionary are described by an expression kexpr, and the values are described by the expression vexpr. This can be viewed as a more powerful version of the dict() function.

To illustrate, suppose you had a file of stock prices 'prices.dat' like this:

[image: image]

Here is a program that reads this file into a dictionary mapping stock names to price using a dictionary comprehension:

[image: image]

Here is an example that converts all of the keys of the prices dictionary to lowercase:

d = {sym.lower():price for sym,price in prices.items()}

Here is an example that creates a dictionary of prices for stocks over $100.00:

[image: image]

Extended Iterable Unpacking

In Python 2, items in an iterable can be unpacked into variables using syntax such as the following:

[image: image]

In order for this unpacking to work, the number of variables and items to be unpacked must exactly match.

In Python 3, you can use a wildcard variable to only unpack some of the items in a sequence, placing any remaining values in a list. For example:

[image: image]

In these examples, the variable prefixed by a * receives all of the extra values and places them in a list. The list may be empty if there are no extra items. One use of this feature is in looping over lists of tuples (or sequences) where the tuples may have differing sizes. For example:

[image: image]

No more than one starred variable can appear in any expansion.

Nonlocal Variables

Inner functions can modify variables in outer functions by using the nonlocal declaration. For example:

[image: image]

In Python 2, inner functions can read variables in outer functions but cannot modify them. The nonlocal declaration enables this.

Function Annotations

The arguments and return value of functions can be annotated with arbitrary values. For example:

[image: image]

The function attribute _ _annotations_ _ is a dictionary mapping argument names to the annotation values. The special 'return' key is mapped to the return value annotation. For example:

[image: image]

The interpreter does not attach any significance to these annotations. In fact, they can be any values whatsoever. However, it is expected that type information will be most useful in the future. For example, you could write this:

[image: image]

Annotations are not limited to single values. An annotation can be any valid Python expression. For variable positional and keyword arguments, the same syntax applies. For example:

[image: image]

Again, it is important to emphasize that Python does not attach any significance to annotations. The intended use is in third-party libraries and frameworks that may want to use them for various applications involving metaprogramming. Examples include, but are not limited to, static analysis tools, documentation, testing, function overloading, marshalling, remote procedure call, IDEs, contracts, etc. Here is an example of a decorator function that enforces assertions on function arguments and return values:

[image: image]

Here is an example of code that uses the previous decorator:

[image: image]

Following is some sample output of using the function:

[image: image]

Keyword-Only Arguments

Functions can specify keyword-only arguments. This is indicated by defining extra parameters after the first starred parameter. For example:

[image: image]

When calling this function, the strict parameter can only be specified as a keyword. For example:

a = foo(1, strict=True)

Any additional positional arguments would just be placed in args and not used to set the value of strict. If you don’t want to accept a variable number of arguments but want keyword-only arguments, use a bare * in the parameter list. For example:

[image: image]

Here is an example of usage:

[image: image]

Ellipsis as an Expression

The Ellipsis object (...) can now appear as an expression. This allows it to be placed in containers and assigned to variables. For example:

[image: image]

The interpretation of the ellipsis is still left up to the application that uses it. This feature allows the ... to be used as an interesting piece of syntax in libraries and frameworks (for example, to indicate a wild-card, continuation, or some similar concept).

Chained Exceptions

Exceptions can now be chained together. Essentially this is a way for the current exception to carry information about the previous exception. The from qualifier is used with the raise statement to explicitly chain exceptions. For example:

[image: image]

When the SyntaxError exception is raised, a traceback message such as the following will be generated—showing both exceptions:

[image: image]

Exception objects have a _ _cause_ _ attribute, which is set to the previous exception. Use of the from qualifier with raise sets this attribute.

A more subtle example of exception chaining involves exceptions raised within another exception handler. For example:

[image: image]

If you try this in Python 2, you only get an exception related to the NameError in error(). In Python 3, the previous exception being handled is chained with the result. For example, you get this message:

[image: image]

For implicit chaining, the _ _context_ _ attribute of an exception instance e contains a reference to previous exception.

Improved super()

The super() function, used to look up methods in base classes, can be used without any arguments in Python 3. For example:

[image: image]

In Python 2, you had to use super(C,self).bar(). The old syntax is still supported but is significantly more clunky.

Advanced Metaclasses

In Python 2, you can define metaclasses that alter the behavior of classes. A subtle facet of the implementation is that the processing carried out by a metaclass only occurs after the body of a class has executed. That is, the interpreter executes the entire body of a class and populates a dictionary. Once the dictionary has been populated, the dictionary is passed to the metaclass constructor (after the body of the class has executed).

In Python 3, metaclasses can additionally carry out extra work before the class body executes. This is done by defining a special class method called _ _prepare_ _(cls, name, bases, **kwargs) in the metaclass. This method must return a dictionary as a result. This dictionary is what gets populated as the body of the class definition executes. Here is an example that outlines the basic procedure:

[image: image]

Python 3 uses an alternative syntax for specifying a metaclass. For example, to define a class that uses MyMeta, you use this:

[image: image]

If you run the following code, you will see the following output that illustrates the control flow:

[image: image]

The additional keyword arguments on the _ _prepare_ _() method of the metaclass are passed from keyword arguments used in the bases list of a class statement. For example, the statement class Foo(metaclass=MyMeta,spam=42,blah="Hello") passes the keyword arguments spam and blah to MyMeta._ _prepare_ _(). This convention can be used to pass arbitrary configuration information to a metaclass.

To perform any kind of useful processing with the new _ _prepare_ _() method of metaclasses, you generally have the method return a customized dictionary object. For example, if you wanted to perform special processing as a class is defined, you define a class that inherits from dict and reimplements the _ _setitem_ _() method to capture assignments to the class dictionary. The following example illustrates this by defining a metaclass that reports errors if any method or class variable is multiply defined.

[image: image]

If you apply this metaclass to another class definition, it will report an error if any method is redefined. For example:

[image: image]

Common Pitfalls

If you are migrating from Python 2 to 3, be aware that Python 3 is more than just new syntax and language features. Major parts of the core language and library have been reworked in ways that are sometimes subtle. There are aspects of Python 3 that may seem like bugs to a Python 2 programmer. In other cases, things that used to be “easy” in Python 2 are now forbidden.

This section outlines some of the most major pitfalls that are likely to be encountered by Python 2 programmers making the switch.

Text Versus Bytes

Python 3 makes a very strict distinction between text strings (characters) and binary data (bytes). A literal such as "hello" represents a text string stored as Unicode, whereas b"hello" represents a string of bytes (containing ASCII letters in this case).

Under no circumstances can the str and bytes type be mixed in Python 3. For example, if you try to concatenate strings and bytes together, you will get a TypeError exception. This differs from Python 2 where byte strings would be automatically coerced into Unicode as needed.

To convert a text string s into bytes, you must use s.encode(encoding). For example, s.encode('utf-8') converts s into a UTF-8 encoded byte string. To convert a byte string t back into text, you must use t.decode(encoding). You can view the encode() and decode() methods as a kind of “type cast” between strings and bytes.

Keeping a clean separation between text and bytes is ultimately a good thing—the rules for mixing string types in Python 2 were obscure and difficult to understand at best. However, one consequence of the Python 3 approach is that byte strings are much more restricted in their ability to actually behave like “text.” Although there are the standard string methods like split() and replace(), other aspects of byte strings are not the same as in Python 2. For instance, if you print a byte string, you simply get its repr() output with quotes such as b'contents'. Similarly, none of the string formatting operations (%, .format()) work. For example:

[image: image]

The loss of text-like behavior with bytes is a potential pitfall for system programmers. Despite the invasion of Unicode, there are many cases where one actually does want to work with and manipulate byte-oriented data such as ASCII. You might be inclined to use the bytes type to avoid all of the overhead and complexity of Unicode. However, this will actually make everything related to byte-oriented text handling more difficult. Here is an example that illustrates the potential problems:

[image: image]

In the example, you can see how Python 3 is strictly enforcing the text/bytes separation. Even operations that seem like they should be simple, such as converting an integer into ASCII characters, are much more complicated with bytes.

The bottom line is that if you’re performing any kind of text-based processing or formatting, you are probably always better off using standard text strings. If you need to obtain a byte-string after the completion of such processing, you can use s.encode('latin-1') to convert from Unicode.

The text/bytes distinction is somewhat more subtle when working with various library modules. Some libraries work equally well with text or bytes, while some forbid bytes altogether. In other cases, the behavior is different depending on what kind of input is received. For example, the os.listdir(dirname) function only returns filenames that can be successfully decoded as Unicode if dirname is a string. If dirname is a byte string, then all filenames are returned as byte strings.

New I/O System

Python 3 implements an entirely new I/O system, the details of which are described in the io module section of Chapter 19, “Operating System Services.” The new I/O system also reflects the strong distinction between text and binary data present with strings.

If you are performing any kind of I/O with text, Python 3 forces you to open files in “text mode” and to supply an optional encoding if you want anything other than the default (usually UTF-8). If you are performing I/O with binary data, you must open files in “binary mode” and use byte strings. A common source of errors is passing output data to a file or I/O stream opened in the wrong mode. For example:

[image: image]

Sockets, pipes, and other kinds of I/O channels should always be assumed to be in binary mode. One potential problem with network code in particular is that many network protocols involve text-based request/response processing (e.g., HTTP, SMTP, FTP, etc.). Given that sockets are binary, this mix of binary I/O and text processing can lead to some of the problems related to mixing text and bytes that were described in the previous section. You’ll need to be careful.

print() and exec() Functions

The print and exec statements from Python 2 are now functions. Use of the print() function compared to its Python 2 counterpart is as follows:

[image: image]

The fact that print() is a function that means you can replace it with an alternative definition if you want.

exec() is also now a function, but its behavior in Python 3 is subtly different than in Python 2. For example, consider this code:

[image: image]

In Python 2, calling foo() will print the number '42'. In Python 3, you get a NameError exception with the variable a being undefined. What has happened here is that exec(), as a function, only operates on the dictionaries returned by the globals() and locals() functions. However, the dictionary returned by locals() is actually a copy of the local variables. The assignment made in the exec() function is merely modifying this copy of the locals, not the local variables themselves. Here is one workaround:

[image: image]

As a general rule, don’t expect Python 3 to support the same degree of “magic” that was possible using exec(), eval(), and execfile() in Python 2. In fact, execfile() is gone entirely (you can emulate its functionality by passing an open file-like object to exec()).

Use of Iterators and Views

Python 3 makes much greater use of iterators and generators than Python 2. Built-in functions such as zip(), map(), and range() that used to return lists now return iterables. If you need to make a list from the result, use the list() function.

Python 3 takes a slightly different approach to extracting key and value information from a dictionary. In Python 2, you could use methods such as d.keys(), d.values(), or d.items() to obtain lists of keys, values, or key/value pairs, respectively. In Python 3, these methods return so-called view objects. For example:

[image: image]

These objects support iteration so if you want to view the contents, you can use a for loop. For example:

[image: image]

View objects are always tied back to the dictionary from which they were created. A subtle aspect of this is that if the underlying dictionary changes, the items produced by the view change as well. For example:

[image: image]

Should it be necessary to build a list of dictionary keys or values, simply use the list() function—for example, list(s.keys()).

Integers and Integer Division

Python 3 no longer has an int type for 32-bit integers and a separate long type for long integers. The int type now represents an integer of arbitrary precision (the internal details of which are not exposed to the user).

In addition, integer division now always produces a floating-point result. For example, 3/5 is 0.6, not 0. The conversion to a float applies even if the result would have been an integer. For example, 8/2 is 4.0, not 4.

Comparisons

Python 3 is much more strict about how values are compared. In Python 2, it is the case that any two objects can be compared even if it doesn’t make sense. For example:

[image: image]

In Python 3, this results in a TypeError. For example:

[image: image]

This change is minor, but it means that in Python 3, you have to be much more careful about making sure data is of appropriate types. For example, if you use the sort() method of a list, all of the items in the list must be compatible with the < operator, or you get an error. In Python 2, the operation would be silently carried out anyways with a usually meaningless result.

Iterators and Generators

Python 3 has made a slight change to the iterator protocol. Instead of calling _ _iter_ _() and the next() method to perform iteration, the next() method has been renamed to _ _next_ _(). Most users will be unaffected by this change except if you have written code that manually iterates over an iterable or if you have defined your own custom iterator objects. You will need to make sure you change the name of the next() method in your classes. Use the built-in next() function to invoke the next() or _ _next_ _() method of an iterator in a portable manner.

File Names, Arguments, and Environment Variables

In Python 3, filenames, command-line arguments in sys.argv, and environment variables in os.environ may or may not be treated as Unicode depending on local settings. The only problem is that the usage of Unicode within the operating system environment is not entirely universal. For example, on many systems it may be technically possible to specify filenames, command-line options, and environment variables that are just a raw sequence of bytes that don’t correspond to a valid Unicode encoding. Although these situations might be rare in practice, it may be of some concern for programming using Python to perform tasks related to systems administration. As previously noted, supplying file and directory names as byte strings will fix many of the problems. For example, os.listdir(b'/foo').

Library Reorganization

Python 3 reorganizes and changes the names of several parts of the standard library, most notably modules related to networking and Internet data formats. In addition, a wide variety of legacy modules have been dropped from the library (e.g., gopherlib, rfc822, and so on).

It is now standard practice to use lowercase names for modules. Several modules such as ConfigParser, Queue, and SocketServer have been renamed to configparser, queue, and socketserver, respectively. You should try to follow similar conventions in your own code.

Packages have been created to reorganize code that was formerly contained in disparate modules—for example, the http package containing all the module used to write HTTP servers, the html package has modules for parsing HTML, the xmlrpc package has modules for XML-RPC, and so forth.

As for deprecated modules, this book has been careful to only document modules that are in current use with Python 2.6 and Python 3.0. If you are working with existing Python 2 code and see it using a module not documented here, there is a good chance that the module has been deprecated in favor of something more modern. Just as an example, Python 3 doesn’t have the popen2 module commonly used in Python 2 to launch subprocesses. Instead, you should use the subprocess module.

Absolute Imports

Related to library reorganization, all import statements appearing in submodules of a package use absolute names. This is covered in more detailed in Chapter 8, “Modules, Packages, and Distribution,” but suppose you have a package organized like this:

[image: image]

If the file spam.py uses the statement import bar, you get an ImportError exception even though bar.py is located in the same directory. To load this submodule, spam.py either needs to use import foo.bar or a package relative import such as from . import bar.

This differs from Python 2 where import always checks the current directory for a match before moving onto checking other directories in sys.path.

Code Migration and 2to3

Converting code from Python 2 to Python 3 is a delicate topic. Just to be absolutely clear, there are no magic imports, flags, environment variables, or tools that will enable Python 3 to run an arbitrary Python 2 program. However, there are some very specific steps that can be taken to migrate code, each of which is now described.

Porting Code to Python 2.6

It is recommended that anyone porting code to Python 3 first port to Python 2.6. Python 2.6 is not only backwards-compatible with Python 2.5, but it also supports a subset of new features found in Python 3. Examples include advanced string formatting, the new exception syntax, byte literals, I/O library, and abstract base classes. Thus, a Python 2 program can start to take advantage of useful Python 3 features now even if it is not yet ready to make the full migration.

The other reason to port to Python 2.6 is that Python 2.6 issues warning messages for deprecated features if you run it with the -3 command-line option. For example:

[image: image]

Using these warning messages as a guide, you should take great care to make sure that your program runs warning-free on Python 2.6 before moving forward with a Python 3 port.

Providing Test Coverage

Python has useful testing modules including doctest and unittest. Make sure your application has thorough test coverage before attempting a Python 3 port. If your program has not had any tests to this point, now would be a good time to start. You will want to make sure your tests cover as much as possible and that all tests pass without any warning messages when run on Python 2.6.

Using the 2to3 Tool

Python 3 includes a tool called 2to3 that can assist with code migration from Python 2.6 to Python 3. This tool is normally found in the Tools/scripts directory of the Python source distribution and is also installed in the same directory as the python3.0 binary on most systems. It is a command-line tool that would normally run from a UNIX or Windows command shell.

As an example, consider the following program that contains a number of deprecated features.

[image: image]

To run 2to3 on this program, type “2to3 example.py”. For example:

[image: image]

As output, 2to3 will identify parts of the program that it considers to be problematic and that might need to be changed. These are shown as context-diffs in the output. Although we have used 2to3 on a single file, if you give it the name of a directory, it recursively looks for all Python files contained in the directory structure and generates a report for everything.

By default, 2to3 does not actually fix any of the source code it scans—it merely reports parts of the code that might need to be changed. A challenge faced by 2to3 is that it often only has incomplete information. For example, consider the spam() function in the example code. This function calls a method d.has_key(). For dictionaries, has_key() has been removed in favor of the in operator. 2to3 reports this change, but without more information, it is not clear if spam() is actually manipulating a dictionary or not. It might be the case that d is some other kind of object (a database perhaps) that happens to provide a has_key() method, but where using the in operator would fail. Another problematic area for 2to3 is in the handling of byte strings and Unicode. Given that Python 2 would automatically promote byte strings to Unicode, it is somewhat common to see code that carelessly mixes the two string types together. Unfortunately, 2to3 is unable to sort all of this out. This is one reason why it’s important to have good unit test coverage. Of course, all of this depends on the application.

As an option, 2to3 can be instructed to fix selected incompatibilities. First, a list of “fixers” can be obtained by typing 2to3 -l. For example:

[image: image]

Using names from this list, you can see what a selected fix would actually change by simply typing “2to3 -f
fixname filename”. If you want to apply multiple fixes, just specify each one with a separate -f option. If you actually want to apply the fix to a source file, add the -w option as in 2to3 -f
fixname
-w
filename. Here is an example:

[image: image]

If you look at example.py after this operation, you will find that xrange() has been changed to range() and that no other changes have been made. A backup of the original example.py file is found in example.py.bak.

A counterpart to the -f option is the -x option. If you use 2to3 -x
fixname filename, it will run all of the fixers except for the ones you listed with the -x option.

Although it is possible to instruct 2to3 to fix everything and to overwrite all of your files, this is probably something best avoided in practice. Keep in mind that code translation is an inexact science and that 2to3 is not always going to do the “right thing.” It is always better to approach code migration in a methodical calculated manner as opposed to crossing your fingers and hoping that it all just magically “works.”

2to3 has a couple of additional options that may be useful. The -v option enables a verbose mode that prints additional information that might be useful for debugging. The -p option tells 2to3 that you are already using the print statement as a function in your code and that it shouldn’t be converted (enabled by the from _ _future_ _ import print_statement statement).

A Practical Porting Strategy

Here is a practical strategy for porting Python 2 code to Python 3. Again, it is better to approach migration in a methodical manner as opposed to doing everything at once.

1. Make sure your code has an adequate unit testing suite and that all tests pass under Python 2.

2. Port your code and testing suite to Python 2.6 and make sure that all tests still pass.

3. Turn on the -3 option to Python 2.6. Address all warning messages and make sure your program runs and passes all tests without any warning messages. If you’ve done this correctly, chances are that your code will still work with Python 2.5 and maybe even earlier releases. You’re really just cleaning out some of the cruft that’s accumulated in your program.

4. Make a backup of your code (this goes without saying).

5. Port the unit testing suite to Python 3 and make sure that the testing environment itself is working. The individual unit tests themselves will fail (because you haven’t yet ported any code). However, a properly written test suite should be able to deal with test failures without having an internal crash of the test software itself.

6. Convert the program itself to Python 3 using 2to3. Run the unit testing suite on the resulting code and fix all of the issues that arise. There are varying strategies for doing this. If you’re feeling lucky, you can always tell 2to3 to just fix everything and see what happens. If you’re more cautious, you might start by having 2to3 fix the really obvious things (print, except statements, xrange(), library module names, etc.) and then proceed in a more piecemeal manner with the remaining issues.

By the end of this process, your code should pass all unit tests and operate in the same manner as before.

In theory, it is possible to structure code in a way so that it both runs in Python 2.6 and automatically translates to Python 3 without any user intervention. However, this will require very careful adherence to modern Python coding conventions—at the very least you will absolutely need to make sure there are no warnings in Python 2.6. If the automatic translation process requires very specific use of 2to3 (such as running only a selected set of fixers), you should probably write a shell script that automatically carries out the required operations as opposed to requiring users to run 2to3 on their own.

Simultaneous Python 2 and Python 3 Support

A final question concerning Python 3 migration is whether or not it’s possible to have a single code base that works unmodified on Python 2 and Python 3. Although this is possible in certain cases, the resulting code runs the risk of becoming a contorted mess. For instance, you will have to avoid all print statements and make sure all except clauses never take any exception values (extracting them from sys.exc_info() instead). Other Python features can’t be made to work at all. For example, due to syntax differences, there is no possible way to use metaclasses in a way that would be portable between Python 2 and Python 3.

Thus, if you’re maintaining code that must work on Python 2 and 3, your best bet is to make sure your code is as clean as possible and runs under Python 2.6, make sure you have a unit testing suite, and try to develop a set of 2to3 fixes to make automatic translation possible.

One case where it might make sense to have a single code base is with unit testing. A test suite that operates without modification on Python 2.6 and Python 3 could be useful in verifying the correct behavior of the application after being translated by 2to3.

Participate

As an open-source project, Python continues to be developed with the contributions of its users. For Python 3, especially, it is critically to report bugs, performance problems, and other issues. To report a bug, go to http://bugs.python.org. Don’t be shy—your feedback makes Python better for everyone.

Index

Symbols & Numbers

! debugger command, pdb module, 187

!= not equal to operator, 66

‘ single quotes, 11, 27

‘’’ triple quotes, 11, 27

“ double quotes, 11, 27

“”” triple quotes, 11, 27

comment, 6, 26

#! in Unix shell scripts, 6, 176

rewriting on package installation, 153

% modulo operator, 65

% string formatting operator, 8, 70, 162

%= operator, 75

& bitwise-and operator, 65

& set intersection operator, 15, 75

&= operator, 75

() function call operator, 76

() tuple, 14, 29

* keyword only arguments, Python 3, 625

* multiplication operator, 65

* passing sequences as function arguments, 94

* sequence replication operator, 67

* variable arguments in function definition, 94

* wildcard

from module import, 24, 145

iterable unpacking in Python 3, 623

** passing dictionaries as keyword arguments, 95

** power operator, 65

** variable keyword arguments in function definition, 95

**= operator, 75

*= operator, 75

+ addition operator, 65

+ list concatenation operator, 12

+ sequence concatenation operator, 67

+ string concatenation operator, 11

+ unary plus operator, 65

+= operator, 75

- hyphen character, used as filename, 174

- set difference operator, 15, 75

- subtraction operator, 65

- unary minus operator, 65

-*- coding: comment, in source code, 31

-= operator, 75

. attribute binding operator, 33, 48, 76, 118

and modules, 51

special methods for, 57

. directory reference in relative import statements, 150

... Ellipsis, 30, 54, 59

... interpreter prompt, 175

/ division operator, 65

// truncating division operator, 65

//= operator, 75

/= operator, 75

: colon in string formatting specifiers, 72

; semicolon, 7, 26

< left alignment in string format specifiers, 73

< less than operator, 66

<< left shift operator, 65

<<= operator, 75

<= less than or equal to operator, 66

== equal to operator, 66, 78

> greater than operator, 66

> right alignment in string format specifiers, 73

>= greater than or equal to operator, 66

>> file redirection modifier to print, 10, 163

>> right shift operator, 65

>>= operator, 75

>>> interpreter prompt, 5, 175

@ decorator, 30, 101

[::] extended slicing operator, 39-40, 67-68

[:] slicing operator, 39-40, 67-68

[] indexing operator, 39-40, 67

and special methods, 58

on mappings, 45

on sequences, 68

[] list, 12, 29

\ line continuation character, 9, 25, 29

\ string escape codes, 27

^ bitwise-xor operator, 65

^ centered alignment in string format specifiers, 73

^ set symmetric difference operator, 15, 75

^= operator, 75

_ variable, interactive mode, 6, 176

{} dict, 16, 29

{} placeholder in format strings, 72

{} set literal, Python 3, 622

| bitwise-or operator, 65

| set union operator, 15, 75

|= operator, 75

~ bitwise-negation operator, 65

~ expanding user home directory in filenames, 397

$variables in strings, 72

0b binary integer literal, 27

0o octal integer literal, 27

0x hexadecimal integer literal, 27

2’s complement and integers, 66

2to3 tool, 635-637

limitations of, 636

-3 command line option, 173, 635

A

‘a’ mode, to open() function, 159

a(args) debugger command, pdb module, 187

a2b_base64() function, binascii module, 547

a2b_hex() function, binascii module, 548

a2b_hqx() function, binascii module, 548

a2b_uu() function, binascii module, 547

abc module, 136, 257

ABCMeta metaclass, 136, 257

abort() function, os module, 390

abort() method, of FTP objects, 497

abs() function, 66, 201

operator module, 273

__abs__() method, 61

absolute imports, 151

Python 3, 634

compared to relative imports, 151

absolute value, 66

abspath() function, os.path module, 396

abstract base class, 34, 136, 257

calling methods in subclasses, 137

checking performed, 137

container objects, 265

error if instantiated, 137

example, 258

files and I/O, 354

numeric types, 253

registering pre-existing classes, 137

special methods for, 57

@abstractmethod decorator, 136-137, 257-258

__abstractmethods__ attribute, of types, 50

@abstractproperty decorator, 136-137, 257-258

accept() method

of Listener objects, 433

of dispatcher objects, 456

of socket objects, 478

accept2dyear variable, time module, 405

access control specifiers, lack of, 127

access() function, os module, 386

acos() function, math module, 251

acosh() function, math module, 251

acquire() method

of Condition objects, 441

of Lock objects, 438

of RLock objects, 438

of Semaphore objects, 439

activate() method, of SocketServer class, 493

active_children() function, multiprocessing module, 434

active_count() function, threading module, 443

ActivePython, 5

add() function, operator module, 273

add() method

of TarFile objects, 320

of sets, 15, 46

__add__() method, 60

add_data() method, of Request objects, 516

add_header() method

of Message objects, 555

of Request objects, 516

add_option() method, of OptionParser objects, 158, 375

add_password() method, of AuthHandler objects, 519

add_section() method, of ConfigParser objects, 332

add_type() function, mimetypes module, 567

add_unredirected_header() method, of Request objects, 517

addfile() method, of TarFile objects, 320

addFilter() method

of Handler objects, 364

of Logger objects, 359

addHandler() method, of Logger objects, 361

addition operator +, 65

addLevelName() function, logging module, 366

address attribute

of BaseManager objects, 431

of Listener objects, 433

address families, of sockets, 470

address_family attribute, of SocketServer class, 492

addresses, network, 471

addressof() function, ctypes module, 617

adjacent string literals, concatenation of, 27

adler32() function, zlib module, 328

advanced string formatting, 8, 42, 72

AF_* constants, socket module, 470

aifc module, 588

aio_* family of system calls, lack of, 469

AJAX, example of, 531

alarm() function, signal module, 399

alarms, 399

alias debugger command, pdb module, 187

alignment() function, ctypes module, 617

__all__ variable

and import statements, 145

in packages, 150

all() function, 40, 67, 201

allow_reuse_address attribute, of SocketServer class, 492

altsep variable, os module, 386

altzone variable, time module, 405

and operator, boolean expressions, 9, 77

and_() function, operator module, 274

__and__() method, 60

__annotations__ attribute, of functions, 624

anonymous functions, 112

any() function, 40, 67, 201

anydbm module, 310

api_version variable, sys module, 229

%APPDATA% environment variable, Windows, 177

append() method

of Element objects, 576

of array objects, 259

of deque objects, 262

of lists, 12, 40

appendChild() method, of DOM Node objects, 571

appendleft() method, of deque objects, 262

application logging, 355

applications, WSGI, 540

applicative order evaluation, 76

apply() method, of Pool objects, 424

apply_async() method, of Pool objects, 424

args attribute

of Exception objects, 213

of exceptions, 88

of partial objects, 268

argtypes attribute, of ctypes function objects, 613

argv variable, sys module, 13, 157, 174, 229

ArithmeticError exception, 87, 212

array module, 259

Array() function, multiprocessing module, 426

Array() method, of Manager objects, 428

array() function, array module, 259

arrays, creating from uniform type, 259

arraysize attribute, of Cursor objects, 299

as qualifier

of except statement, 22, 85

of from-import statement, 145

of import statement, 24, 144

of with statement, 62, 90

as_integer_ratio() method, of floating point, 39

as_string() method, of Message objects, 555

ascii encoding, description of, 169

ascii() function, 201

and Python 3, 201

future_builtins module, 217

ASCII, and compatibility with UTF-8, 170

ascii_letters variable, string module, 287

ascii_lowercase variable, string module, 287

ascii_uppercase variable, string module, 287

asctime() function, time module, 405

asin() function, math module, 251

asinh() function, math module, 251

assert statement, 91

assert_() method, of TestCase objects, 185

assertAlmostEqual() method, of TestCase objects, 185

assertEqual() method, of TestCase objects, 185

AssertionError exception, 87, 91, 213

assertions, 91

stripping with -O option, 148

assertNotAlmostEqual() method, of TestCase objects, 185

assertNotEqual() method, of TestCase objects, 185

assertRaises() method, of TestCase objects, 185

assignment

and reference counting, 34

augmented, 61

in-place operators, 61

of instance attributes, 131

of variables, 7

to variables in nested functions, 97

associative array, 16, 44

associativity of operators, 78

astimezone() method, of datetime objects, 340

asynchat class, asynchat module, 452

asynchat module, 452

use of, 467

asynchronous I/O, 415

asynchronous networking

and blocking operations, 469

when to consider, 467

asyncore module, 415, 455

use of, 467

AsyncResult objects, multiprocessing module, 425

atan() function, math module, 251

atan2() function, math module, 251

atanh() function, math module, 251

atexit module, 179, 219

atomic operations, disassembly, 193

attach() method, of Message objects, 556

attrgetter() function, operator module, 275

attrib attribute, of Element objects, 576

attribute assignment, on instances, 131

attribute binding operator ., 33, 76

optimization of, 196

attribute binding

and inheritance, 119

and methods, 48

instances and classes, 118

of user-defined objects, 131

process of, 57

redefining in classes, 132

special methods for, 57

attribute deletion, on instances, 131

attribute lookup in string formatting, 72

AttributeError exception, 87, 213

and attribute binding, 132

attributes attribute, of DOM Node objects, 570

attributes

computed as properties, 117, 124

creation in __init__() method, 118

descriptors, 58, 126

encapsulation of, 127

lookup in composite string formatting, 42

of objects, 33

private, 127

restricting names with __slots__, 132

user defined on functions, 114

audioop module, 588

augmented assignment operators, 61, 75

authentication, fetching URLs, 519

authkey attribute, of Process objects, 416

awk UNIX command, similarity to list comprehensions, 111

B

-B command line option, 173

b character, before a string literal, 29

b(reak) debugger command, pdb module, 187

b16decode() function, base64 module, 547

b16encode() function, base64 module, 547

b2a_base64() function, binascii module, 547

b2a_hex() function, binascii module, 548

b2a_hqx() function, binascii module, 548

b2a_uu() function, binascii module, 547

b32decode() function, base64 module, 546

b32encode() function, base64 module, 546

b64decode() function, base64 module, 546

b64encode() function, base64 module, 546

backslash rules, and raw strings, 29

‘backslashreplace’ error handling, Unicode encoding, 166

BadStatusLine exception, http.client module, 504

base class, 21

base-10 decimals, 243

and floating point, 12

base64 encoding, description of, 545

base64 module, 545

BaseCGIHandler() function, wsgiref.handlers module, 542

BaseException class, 212

BaseException exception, 87

BaseHTTPRequestHandler class, http.server module, 508

BaseHTTPserver module, see http.server, 506

BaseManager() function, multiprocessing module, 430

basename() function, os.path module, 396, 398

BaseProxy class, multiprocessing module, 432

BaseRequestHandler class, SocketServer module, 490

__bases__ attribute

of classes, 131

of types, 50

basestring variable, 202

basicConfig() function, logging module, 355

BasicContext variable, decimal module, 248

.bat files, Windows, 176

bdb module, 585

Beautiful Soup package, 563

betavariate() function, random module, 255

bidirectional() function, unicodedata module, 293

big endian format, 167

big endian, packing and unpacking, 292

bin() function, 77, 202

binary data structures, packing and unpacking, 290

binary distribution, creating with distutils, 153

binary file mode, 159

binary files, 350

buffered I/O, 351

caution on using line-oriented functions, 351-352

binary integer literals, 27

Binary() function

database API, 301

xmlrpc.client module, 526

binascii module, 547

bind() method

of SocketServer class, 493

of dispatcher objects, 456

of socket objects, 478

binhex module, 587

bisect module, 261

bisect() function, bisect module, 261

bisect_left() function, bisect module, 261

bisect_right() function, bisect module, 261

bitwise operations and native integers, 66

bitwise-and operator &, 65

bitwise-negation operator ~, 65

bitwise-or operator |, 65

bitwise-xor operator ^, 65

blank lines, 26

block_size attribute, of digest objects, 559

blocking operations, and asynchronous networking, 469

Bluetooth protocol, 470

address format, 472

BOM (byte order marker), 280

and Unicode, 168

BOM_* constants, codecs module, 280

bool type, 38

bool() function, 202

__bool__() method, 56, 58

boolean expressions, 9, 77

evaluation rules, 78

boolean operators, 66

boolean values, 27, 38

boolean() function, xmlrpc.client module, 525

bound method, 49, 125

BoundedSemaphore object

multiprocessing module, 427

threading module, 439

BoundedSemaphore() method, of Manager objects, 428

break statement, 83-84

and generators, 103

breaking long statements on multiple lines, 9

breakpoint

setting in debugger, 187

setting manually, 186

browser, launching from Python, 544

BSD, kqueue interface, 460

BTPROTO_* constants, socket module, 477

buffer, circular, 262

buffer_info() method, of array objects, 259

buffered binary I/O, 351

BufferedIOBase abstract base class, 354

BufferedRandom class, io module, 352

BufferedReader class, io module, 351

BufferedRWPair class, io module, 352

BufferedWriter class, io module, 352

buffering, and generators, 165

build_opener() function, urllib.request module, 518

built-in exceptions, 23, 87

built-in functions and types, 201

built-in functions, using Python 3 functions in Python 2, 217

built-in types, 37

__builtin__ module, 201

builtin_module_names variable, sys module, 229

BuiltinFunctionType, 49

BuiltinFunctionType type, 47, 237

builtins module, Python 3, 201

byref() function, ctypes module, 615

byte literals, 29

byte strings, 41

and WSGI, 541

and files, 160

and system interfaces in Python 3, 630

as in-memory binary files, 352

decoding as Unicode, 165

different behavior in Python 3, 629

lack of formatting in Python 3, 629

mixing with Unicode strings, 70, 167

mutable byte arrays, 202

use in system interfaces, 633

bytearray() function, 202

byteorder variable, sys module, 229

bytes datatype, Python 3, 29

bytes() function, 202-203

bytes, escape code in strings, 28

BytesIO class, io module, 352

byteswap() method, of array objects, 259

bz2 module, 313

BZ2Compressor() function, bz2 module, 313

BZ2Decompressor() function, bz2 module, 314

BZ2File() function, bz2 module, 313

C

C extensions, 591

and .egg files, 147

and module reloading, 149

compiling with distutils, 596

creating with SWIG, 619

example with ctypes, 618

releasing global interpreter lock, 444

-c command line option, 173-174

C#, 620

c(ont(inue)) debugger command, pdb module, 188

C++, difference in class system, 119

C

Python variables compared to, 7

implementation of functions, 49

C/C++ code, in third-party packages, 154

C3 linearization algorithm, and inheritance, 121

c_* datatypes, ctypes module, 614

CacheFTPHandler class, urllib.request module, 518

caching results of a function, 242

calcsize() function, struct module, 291

calendar module, 588

call() function, subprocess module, 403

__call__() method, 50, 62

Callable abstract base class, 265

callable objects

and __call__() method, 62

classes, 50

instances, 50

types of, 47

callback functions, 98

and lambda, 112

calling Python functions from C, 610

calling a function, 18, 93

_callmethod() method, of BaseProxy objects, 433

callproc() method, of Cursor objects, 298

cancel() method, of Timer objects, 438

cancel_join_thread() method, of Queue objects, 418

CannotSendHeader exception, http.client module, 504

CannotSendRequest exception, http.client module, 504

capitalize() method, of strings, 41-42

capitals attribute, of Context objects, 247

capwords() function, string module, 290

case conversion, of strings, 43-44

case sensitivity, of identifiers, 26

case statement, lack of, 9

cast() function, ctypes module, 617

catching all exceptions, 85

catching multiple exceptions, 85

category() function, unicodedata module, 170, 293

__cause__ attribute, of Exception objects, 213, 627

caution with range() function, 17

CDLL() function, ctypes module, 612

ceil() function, math module, 251

center() method, of strings, 41-42

cert_time_to_seconds() function, ssl module, 488

CGI script, 533

advice for writing, 537

environment variables, 533

executing XML-RPC server within, 529

running WSGI application, 542

use of databases, 538

web frameworks, 538

cgi module, 533

CGIHandler() function, wsgiref.handlers module, 542

CGIHTTPRequestHandler class, http.server module, 507

CGIHTTPServer module, see http.server, 506

cgitb module, 539

CGIXMLRPCRequestHandler class, xmlrpc.server module, 528

chain() function, itertools module, 270

chained comparisons, 66

chained exceptions, Python 3, 627

changing display of results, interactive mode, 176

changing module name on import, 144

changing the working directory, 379

changing user-agent header in HTTP requests, 517

character substitution, 42

characters() method, of ContentHandler objects, 581

characters

escape codes, 28

specifying Unicode, 28

chdir() function, os module, 379

check_call() function, subprocess module, 403

check_unused_args() method, of Formatter objects, 289

checking if running as main program, 146

checking multiple cases with a conditional, 9

chflags() function, os module, 386

chicken, multithreaded, 414

childNodes attribute, of DOM Node objects, 570

chmod() function, os module, 387

choice() function, random module, 254

chown() function, os module, 387

chr() function, 77, 203

chroot() function, os module, 379

chunk module, 588

cipher() method, of ssl objects, 487

circular buffer or queue with deque objects, 262

cl(ear) debugger command, pdb module, 188

class decorators, 102, 141

class method, 48, 123

attribute binding of, 124

practical use of, 124

class statement, 21, 117

and inheritance, 21, 119

execution of class body, 138

class variables, 117

sharing by all instances, 118

__class__ attribute

of instances, 50, 131

of methods, 49

classes, 21

__del__() method and garbage collection, 221-222

__init__() method, 118

__init__() method and inheritance, 120

__slots__ attribute, 132

abstract base class, 136, 257

access control specifiers, lack of, 127

accessing in modules, 144

and metaclasses, 138

as callable, 50

as namespaces, 117

attribute binding rules, 118

class method, 203

creation of instances, 22, 55, 118

customizing attribute access, 57-58

decorators applied to, 102, 141

defining methods, 21

descriptor attributes, 58, 126

difference from C++ or Java, 119

inheritance, 21, 119

inheriting from built-in types, 22

memory management, 128

mixin, 122

multiple inheritance, 120-121

object base class, 119

old-style, 139

operating overloading, 54

optimization of, 195

optimization of inheritance, 233

performance of __slots__, 196

pickling of, 228

private members, 26

redefining attribute binding, 132

scoping rules within, 118

self parameter of methods, 119

special methods, 54

static methods, 22

super() function in methods, 120

supporting pickle module, 228

type of, 47

uniform access principle, 125

versus dicts for storing data, 195

@classmethod decorator, 48, 123, 125, 203

ClassType type, old-style classes, 139

cleandoc() function, inspect module, 222

clear() method

of Element objects, 576

of Event objects, 440

of deque objects, 262

of dicts, 45

of sets, 46

clear_flags() method, of Context objects, 247

clear_memo() method, of Pickler objects, 228

_clear_type_cache() function, sys module, 233

clearing a dictionary, 45

clearing last exception, 233

Client class, multiprocessing module, 433

client program, 449

TCP example, 451

UDP example, 486

client_address attribute

of BaseHTTPRequestHandler objects, 509

of BaseRequestHandler objects, 490

clock() function, time module, 191, 405

cloneNode() method, of DOM Node objects, 571

close() function, os module, 381

close() method

of Connection objects, 297, 421

of Cursor objects, 298

of FTP objects, 498

of HTMLParser objects, 561

of HTTPConnection objects, 503

of Handler objects, 364

of IOBase objects, 349

of Listener objects, 434

of Pool objects, 424

of Queue objects, 418

of TarFile objects, 320

of TreeBuilder objects, 577

of ZipFile objects, 325

of dbm-style database objects, 310

of dispatcher objects, 456

of files, 159

of generators, 20, 53, 103, 105

of generators and synchronization, 104

of mmap objects, 371

of shelve objects, 311

of socket objects, 478

of urlopen objects, 515

close_when_done() method, of asynchat objects, 452

closed attribute

of IOBase objects, 349

of files, 161

closefd attribute, of FileIO objects, 350

closefd parameter, to open() function, 159

CloseKey() function, winreg module, 408

closerange() function, os module, 382

closing() function, contextlib module, 268

__closure__ attribute, of functions, 48, 100

closures, 98-99

and decorators, 101

and nested functions, 99

and wrappers, 100

speedup over classes, 100

cmath module, 251

cmd module, 588

cmp() function, 203

filecmp module, 314

cmpfiles() function, filecmp module, 314

co_* attributes, of code objects, 51-52

code execution, in modules, 143-144

code migration

Python 2 to 3, 634

practical strategy for, 637

code module, 585

code objects, 51

attributes of, 51

creating with compile() function, 115

code point, Unicode, 28

__code__ attribute, of functions, 48

code, executing strings, 115

CodecInfo class, codecs module, 277

codecs module, 167, 277

removal of compression codecs, 280

use of byte strings, 280

coded_value attribute, of Morsel objects, 512

codeop module, 585

CodeType type, 51, 237

__coerce__() method, deprecation of, 134

coercion of numeric types, 66-67

collect function, gc module, 179

collect() function, gc module, 220

collect_incoming_data() method, of asynchat objects, 452

collection, definition of, 33

collections module, 138, 262

colorsys module, 588

combinations() function, itertools module, 271

combine() method, of datetime class, 339

combining() function, unicodedata module, 294

command attribute, of BaseHTTPRequestHandler objects, 509

command line options, 13, 157

Python 3, 633

detecting settings in a program, 230

for interpreter, 173

parsing with optparse, 374

commands debugger command, pdb module, 188

commands module, 331

comment attribute, of ZipInfo objects, 327

Comment() function, xml.etree.ElementTree module, 575

comments, 6, 26

commit() method, of Connection objects, 298

common attribute, of dircmp objects, 315

common_dirs attribute, of dircmp objects, 315

common_files attribute, of dircmp objects, 315

common_funny attribute, of dircmp objects, 315

commonprefix() function, os.path module, 396

communicate() method, of Popen objects, 403

comparison operators, 56

comparison, 66

Python 3, 633

chained, 66

of incompatible objects, 78

of objects, 34

of sequences, 70

of weak references, 242

compilation into bytecode, 148

compile() function, 115, 203

re module, 283-284

compileall module, 585

compiler, lack of, 181

complete_statement() function, sqlite3 module, 305

Complex abstract base class, 253

complex numbers, 27, 39

cmath library module, 251

comparison of, 66

complex type, 38

complex() function, 76, 203

__complex__() method, 61-62

and type coercion, 134

composing email messages, 555

composite string formatting, 8, 42, 72

and __format__(), 56

and lookups, 42

compress() function

bz2 module, 314

zlib module, 328

compress() method

of BZ2Compressor objects, 313

of compressobj objects, 328

compress_size attribute, of ZipInfo objects, 327

compress_type attribute, of ZipInfo objects, 327

compression

of files, 313, 317

zlib compression, 328

CompressionError exception, tarfile module, 322

compressobj() function, zlib module, 328

computed attributes and properties, 124

concat() function, operator module, 274

concatenation

of adjacent string literals, 27

of lists, 12

of strings, 11

concurrency, 413

advice on multiprocessing, 435

and Python programs, 414

and side effects, 96

coroutines, 446

global interpreter lock, 414

limitations on multicore, 414

message passing, 413-415

multitasking with generators, 447

scaling issues, 415

synchronization problems, 414

concurrent programming, 413

Condition object

multiprocessing module, 427

threading module, 441

condition debugger command, pdb module, 188

condition variable, 441

Condition() method, of Manager objects, 429

conditional expressions, 79

conditionals, 9, 81

ConfigParser class, configparser module, 332

configparser module, 332

configuration files, 332

difference from Python script, 334-335

for logging module, 368

variable substitution, 335

confstr() function, os module, 395

conjugate() method

of complex numbers, 39

of floating point, 39

connect() function

database API, 297

sqlite3 module, 304

connect() method

of BaseManager objects, 431

of FTP objects, 498

of HTTPConnection objects, 503

of SMTP objects, 514

of dispatcher objects, 456

of socket objects, 478

connect_ex() method, of socket objects, 478

connecting processes, multiprocessing module, 433

Connection class

database API, 297

sqlite3 module, 305

ConnectRegistry() function, winreg module, 408

console window, Windows, 176

Container abstract base class, 265

container objects, 29

and reference counting, 34

definition of, 33

containment test, in operator, 9

contains() function, operator module, 274

__contains__() method, 58

ContentHandler class, xml.sax module, 581

ContentTooShort exception, urllib.error module, 523

Context class, decimal module, 244

context management protocol, 62

context managers, 62, 89

decimal module, 248

defining with generator, 267

locking, 442

nested, 267

__context__ attribute, of Exception objects, 213, 627

contextlib module, 90, 267

@contextmanager decorator, 90

continue statement, 83-84

control characters, stripping from a string, 42

conversion of strings to numbers, 11

conversion operations, 76

convert_field() method, of Formatter objects, 289

converting Python types to C, 611

converting dictionaries to a list, 16

converting sequences to a list, 77

converting sequences to a set, 15

converting sequences to a tuple, 77

converting types from C to Python, 602

converting types from Python to C, 597

Cookie module, see http.cookies, 511

CookieError exception, http.cookies module, 513

CookieJar class, http.cookiejar module, 513

cookielib module, see http.cookiejar, 513

cookies

HTTP, 511

fetching URLs with cookie support, 519

copy module, 36, 67, 219

limitations of, 220

copy() function

copy module, 219

shutil module, 318

copy() method

of Context objects, 247

of dicts, 45

of digest objects, 559

of hmac objects, 560

of sets, 46

copy2() function, shutil module, 318

__copy__() method, 220

copy_reg module, 585

copyfile() function, shutil module, 318

copyfileobj() function, shutil module, 318

copying directories, 318

copying files, 318

copying

and reference counting, 35

deep copy, 36

dictionary, 45

of mutable objects, 35

shallow copy, 36

copymode() function, shutil module, 318

copyright variable, sys module, 230

copysign() function, math module, 251

copystat() function, shutil module, 318

copytree() function, shutil module, 318

@coroutine decorator example, 105

coroutines, 20, 104

advanced example, 460

asynchronous I/O handling, 460

building a call stack of, 463

concurrency, 108

concurrent programming, 446

example of, 20

execution behavior, 105

message passing, 108, 415

multitasking example, 447

practical use of, 107

recursion, 112

sending and returning values, 106

task scheduler with select(), 460

transferring control to another coroutine, 463

use of next() method, 104

use with network programming, 467

cos() function, math module, 251

cosh() function, math module, 251

count() function, itertools module, 271

count() method

of array objects, 260

of lists, 40

of strings, 42

counting, in loops, 83

countOf() function, operator module, 274

cp1252 encoding, description of, 169

cp437 encoding, description of, 169

cPickle module, 229

cProfile module, 190

CPU time, obtaining, 191, 405

CPU, obtaining number on system, 434

CPU-bound tasks and threads, 444

cpu_count() function, multiprocessing module, 434

CRC attribute, of ZipInfo objects, 327

crc32() function

binascii module, 548

zlib module, 328

crc_hqx() function, binascii module, 548

create_aggregate() method, of Connection objects, 305

create_collation() method, of Connection objects, 306

create_connection() function, socket module, 473

create_decimal() method, of Context objects, 247

create_function() method, of Connection objects, 305

create_socket() method, of dispatcher objects, 456

create_string_buffer() function, ctypes module, 617

create_system attribute, of ZipInfo objects, 327

create_unicode_buffer() function, ctypes module, 617

create_version attribute, of ZipInfo objects, 327

created attribute, of Record objects, 359

CreateKey() function, winreg module, 408

creating a Windows installer, 153

creating a binary distribution, 153

creating a source distribution, 153

creating custom string formatters, 288

creating programs, 6

creating random numbers, 254

creating user-defined instances, 22

creation of instances, 118

steps involved, 129

creation of .pyc and .pyo files, 148

critical sections, locking of, 414

critical() method, of Logger objects, 357

crypt module, 586

crytographic hashing functions, 559

CSV data, example of reading, 14

CSV files

parsing, 548

type conversion of columns, 37

csv module, 548

ctermid() function, os module, 379

ctime() function, time module, 405

ctime() method, of date objects, 337

Ctrl-C, keyboard interrupt, 162

ctypes module, 612

array types, 614

available datatypes, 614

casting datatypes, 617

creating byte strings, 617

creating objects from buffers, 616

example of, 618

finding library modules, 612

loading shared libraries, 612

memory copying, 617

passing pointers and references, 615

pointer types, 614

setting function prototypes, 613

shared data with multiprocessing, 426

structure types, 615

cunifvariate() function, random module, 255

curdir variable, os module, 386

curly braces, and dictionary, 16

current time, obtaining, 405

_current_frames() function, sys module, 233

current_process() function, multiprocessing module, 434

current_thread() function, threading module, 443

currentframe() function, inspect module, 222

currying, and partial function evaluation, 76

curses module, 586

Cursor class, database API, 298

cursor() method, of Connection objects, 298

cwd() method, of FTP objects, 498

cycle() function, itertools module, 271

cycles, and garbage collection, 35

cyclic data structures, and __del__() method, 129

D

d(own) debugger command, pdb module, 188

daemon attribute

of Process objects, 416

of Thread objects, 436

daemonic process, 415

daemonic thread, 436

dangling comma

and print statement, 10

and tuples, 14

print statement, 162

data attribute, of DOM Text objects, 572

data encapsulation, 127

data structures

and dictionaries, 16

lists and tuples, 14

named tuples, 264

data() method, of TreeBuilder objects, 577

data-flow processing, and coroutines, 107

database API, 297

database interface, 297

and threads, 302

database results, converting into dictionaries, 303

database

and CGI script, 538

persistent dictionary, 171

DatabaseError exception, database API, 302

databases, DBM-style, 310

DataError exception, database API, 302

DatagramHandler class, logging module, 362

DatagramRequestHandler class, SocketServer module, 491

datagrams, 470

date and time manipulation, 336

date class, datetime module, 336

date parsing, 343, 407

Date() function, database API, 301

date() method, of datetime objects, 340

date_time attribute, of ZipInfo objects, 327

DateFromTicks() function, database API, 301

datetime class, datetime module, 339

datetime module, 336

DateTime() function, xmlrpc.client module, 526

day attribute, of date objects, 337

daylight variable, time module, 405

dbhash module, 310

dbm module, 310

DBM-style databases, 310

deadlock, source with locking, 442

debug attribute

of TarFile objects, 320

of ZipFile objects, 325

of sys.flags, 230

__debug__ variable, 91, 369

debug() method, of Logger objects, 357

debugging

CGI scripts, 539

after an uncaught exception, 186

checking for memory leaks, 221

configuring the debugger, 190

entire programs from command shell, 189

manually setting a breakpoint, 186

pdb module, 186

running a function, 186

specifying a breakpoint, 187

use of logging module, 355

Decimal class, decimal module, 243

Decimal object, converting to a fraction, 250

decimal module, 39, 243

and sum() function, 69

and threads, 249

rounding behavior, 245

decimal() function, unicodedata module, 295

declarative programming, 110

decode() function

base64 module, 547

quopri module, 568

decode() method

in Python 3, 629

of CodecInfo objects, 277

of IncrementalDecoder objects, 279

of JSONDecoder objects, 565

of strings, 29, 42, 165-166

proper use of, 166

decodestring() function

base64 module, 547

quopri module, 568

decomposition() function, unicodedata module, 295

decompress() function

bz2 module, 314

zlib module, 328

decompress() method

of BZ2Decompressor objects, 314

of decompressobj objects, 328

decompressobj() function, zlib module, 328

decorators, 22, 101

applied to class definitions, 102, 141

copying function attributes, 269

documentation strings, 102, 113

example of, 101

multiple, 31

performance benefits, 197

placement of, 30, 101

recursive functions, 102, 113

user-defined function attributes, 102, 114

with arguments, 102

deep copy, 36

deepcopy() function, copy module, 219

__deepcopy__() method, 220

def statement, 18, 48, 93

default Unicode encoding, 166, 177

default Unicode error handling policy, 167

default arguments, 18, 93

and mutable values, 94

binding of values, 93

default() method, of JSONEncoder objects, 566

default_factory attribute, of defaultdict objects, 263

DefaultContext variable, decimal module, 248

defaultdict() function, collections module, 263

__defaults__ attribute, of functions, 48

defaults() method, of ConfigParser objects, 333

defects attribute, of Message objects, 554

defining functions, 18

defining multiple instance creation methods, 123

defining new exceptions, 88

degrees() function, math module, 251

del operator, on dictionaries, 16, 74

del statement, 35, 69

and __del__() method, 129

and slices, 40

deleting mapping items, 45

__del__() method, 55, 129

and program termination, 179

danger of defining, 129

garbage collection, 129, 221-222

uses of, 55

del_param() method, of Message objects, 556

delattr() function, 203

and private attributes, 128

__delattr__() method, 57-58, 131

delayed evaluation, 99

delayed execution, using threads, 437

delete() method, of FTP objects, 498

__delete__() method, of descriptors, 58, 126

DeleteKey() function, winreg module, 409

@deleter decorator of properties, 126

DeleteValue() function, winreg module, 409

deleting items from a dictionary, 16

deleting sequence items, 40

deleting slices, 40, 69

deletion of instance attributes, 131

delimiters, 30

delitem() function, operator module, 274

__delitem__() method, 58-59

and slices, 59

delslice() function, operator module, 274

demo_app() function, wsgiref.simple_server module, 542

denominator attribute

of Fraction objects, 250

of integers, 39

DeprecationWarning warning, 216, 238

deque object

collections module, 194

versus list, 194

deque() function, collections module, 262

DER_cert_to_PEM_cert() function, ssl module, 488

dereference attribute, of TarFile objects, 320

derived class, 119

description attribute, of Cursor objects, 299

descriptors, 58, 126

and metaclasses, 140

detecting end of file (EOF), 160

detecting the settings of interpreter command line options, 230

devnull variable, os module, 386

Dialect class, csv module, 551

dict type, 38

__dict__ attribute

of classes, 131

of functions, 48, 114

of instances, 50, 131

of modules, 51, 144

of types, 50

of user-defined objects, 63

dict() function, 16, 77, 204

performance properties, 195

dict() method, of Manager objects, 429

dictionary comprehension, Python 3, 623

dictionary, 16, 44

acceptable key types, 16

accessing items, 16

and Python 3 caution, 45

and __hash__() method, 56

and string formatting, 70, 72

automatic creation of initial values, 263

clearing, 45

compared to defaultdict objects, 263

converting to a list, 16

copying, 45

creating from database results, 303

creation with dict() function, 204

defining empty, 16

deleting items, 16, 45

equality of, 78

indexing operator, 74

inserting items, 16

item assignment, 74

item deletion, 74

iterating over keys, 17

key values, 44, 74

list of items, 45

lookup in composite string formatting, 42, 72

lookup with default value, 16

obtaining keys, 45-46

obtaining values, 45

performance of, 16

performance of in operator, 197

persistent with shelve module, 171

removing items, 16

shared by multiple processes, 429

tuples as keys, 74

updating, 45

use as a data structure, 16

use as a lookup table, 16

using functions as values, 37

using to pass keyword function arguments, 95

view objects in Python 3, 632

DictReader() function, csv module, 550

dicts, versus classes for storing data, 195

DictWriter() function, csv module, 550

diff_files attribute, of dircmp objects, 315

difference operator -, of sets, 15

difference() method, of sets, 46

difference_update() method, of sets, 46

difflib module, 586

dig attribute, of sys.float_info, 231

digest() method

of digest objects, 559

of hmac objects, 560

digest_size attribute, of digest objects, 559

digit() function, unicodedata module, 295

digits variable, string module, 287

dir() function, 21, 24, 204

hiding attribute names in classes, 128, 204

dir() method, of FTP objects, 498

__dir__() method, 63, 128, 204

dircmp() function, filecmp module, 314

directories

comparing, 314

copying, 318

reading files with shell wildcards, 317

recursive traversal, 390

system functions for accessing, 386

temporary, 323

testing filenames for, 397

dirname() function, os.path module, 396

dis module, 585

dis(), dis module, 193

disable debugger command, pdb module, 188

disable() function

gc module, 220

logging module, 366

disable_interspersed_args() method, of OptionParser objects, 376

disabling garbage collection, 220

disabling newline translation, 159

disassembly, 193

discard() method, of sets, 47

discard_buffers() method, of asynchat objects, 452

dispatcher class, asyncore module, 455

__displayhook__ variable, sys module, 230

displayhook() function, sys module, 176, 233

disposition attribute, of FieldStorage objects, 535

disposition_options attribute, of FieldStorage objects, 535

distributed computing, and multiprocessing module, 435

distributing programs, 152

distutils module, 152-153, 585, 596

and extension modules, 596

creating binary distributions, 153

creating extensions with SWIG, 620

div() function, operator module, 273

__div__() method, 60

division of integers, Python 3, 633

division operator /, 65

division operator, Python 2 versus Python 3, 61

division, truncation of integers, 61-62, 65

division_new attribute, of sys.flags, 230

division_warning attribute, of sys.flags, 230

divmod() function, 66, 204

__divmod__() method, 60

dllhandle variable, sys module, 230

DLLs

creating with distutils, 596

extension modules, 148

loading with ctypes, 612

do_handshake() method, of ssl objects, 487

__doc__ attribute

of built-in functions, 49

of functions, 24, 48, 113

of methods, 49

of modules, 51

of objects, 30

of types, 50

DocCGIXMLRPCRequestHandler class, xmlrpc.server module, 528

doctest module, 181-182

verbose option, 182

Document class, xml.dom.minidom module, 571

documentation string, copying to decorator, 269

documentation strings, 24, 30, 48, 113

and XML-RPC, 527

and decorators, 102, 113

and indentation, 30

doctest module, 181

in extension modules, 595

stripping with -OO option, 148

testing, 181

documentElement attribute, of DOM Document objects, 571

DocXMLRPCServer class, xmlrpc.server module, 527

DocXMLRPCServer module, 527

dollar-variable substitution, 163

DOM interface

XML parsing, 568

example of, 573

dont_write_bytecode attribute, of sys.flags, 230

dont_write_bytecode variable, sys module, 230

double precision floating point, 38

double-clicking on .py files, 6

double-underscores, use in identifiers, 26

dropwhile() function, itertools module, 271

dst() method

of time objects, 338

of tzinfo objects, 342

duck typing, 122

dumbdbm module, 310

dump() function

json module, 564

marshal module, 226

pickle module, 171, 227

xml.etree.ElementTree module, 578

dump() method, of Pickler objects, 228

dumps() function

json module, 564

marshal module, 226

pickle module, 227

xmlrpc.client module, 526

dup() function, os module, 382

dup2() function, os module, 382

dynamic binding, of object attributes, 122

dynamic loading, of modules, 144

dynamic scope, lack of, 97

dynamic typing of variables, 7

E

-E command line option, 173

e variable, math module, 252

EAI_* constants, socket module, 485

east_asian_width() function, unicodedata module, 296

easy_install command, setuptools package, 155

.egg files, 154

and modules, 147

and site configuration, 177

structure of, 147

Element class, xml.dom.minidom module, 572

Element() function, xml.etree.ElementTree module, 575

ElementTree class, xml.etree.ElementTree module, 573

ElementTree interface, XML parsing, 569

ElementTree, examples of, 578

elif statement, 9, 81

Ellipsis, 30, 51, 54

expression in Python 3, 626

type of, 51

use in extended slicing, 59

use in indexing methods, 54

else clause

of try statement, 86

of while and for loops, 84

else statement, 9, 81

email messages

composing, 555

example of composing and sending, 558

example of sending, 514

parsing, 552

email package, 552

Emax attribute, of Context objects, 247

embedding Unicode characters in web pages, 167

embedding the interpreter in C programs, 591, 608

embedding

calling functions from C, 610

converting Python types to C, 611

Emin attribute, of Context objects, 247

Empty exception, Queue module, 418, 445

empty dictionary, 16

empty list, 12

empty() method, of Queue objects, 418, 445

enable debugger command, pdb module, 188

enable() function

cgitb module, 539

gc module, 220

enable_callback_tracebacks() function, sqlite3 module, 305

enable_interspersed_args() method, of OptionParser objects, 376

enabling the print() function in Python 2.6, 163

encapsulation, 127

encode() function

base64 module, 547

quopri module, 568

encode() method

in Python 3, 629

of CodecInfo objects, 277

of IncrementalEncoder objects, 278

of JSONEncoder objects, 566

of strings, 42, 165-166

proper use of, 166

EncodedFile class, codecs module, 279

EncodedFile object, codecs module, 167

encodestring() function

base64 module, 547

quopri module, 568

encoding argument to open() function, 159

encoding attribute

of TextIOWrapper objects, 353

of files, 161

encoding issues with network programming, 452

encoding, of source code, 31

end attribute, of slices, 54

end keyword argument, to print() function, 163

end() method

of MatchObject objects, 286

of TreeBuilder objects, 577

end_headers() method, of BaseHTTPRequestHandler objects, 509

endDocument() method, of ContentHandler objects, 581

endElement() method, of ContentHandler objects, 581

endElementNS() method, of ContentHandler objects, 581

endheaders() method, of HTTPConnection objects, 503

endpos attribute, of MatchObject objects, 286

endPrefixMapping() method, of ContentHandler objects, 581

endswith() method, of strings, 42

__enter__() method, of context managers, 62, 89

enumerate() function, 83, 204

threading module, 443

EnumKey() function, winreg module, 409

EnumValue() function, winreg module, 409

environ variable, os module, 158

environ variable, os module, 379

environment variables, 158, 379

Python 3, 633

WSGI, 540

expanding in filenames, 397

in CGI script, 533

unsetting, 381

used by interpreter, 174

EnvironmentError exception, 87, 212

EOF character, interactive mode, 7

EOF indication, file I/O, 160

EOFError exception, 87, 213

epilogue attribute, of Message objects, 554

epoll interface, Linux, 460

epsilon attribute, of sys.float_info, 231

eq() function, operator module, 274

__eq__() method, 57

equal to operator ==, 66, 78

equality comparison of objects, 34

errcheck attribute, of ctypes function objects, 613

errno module, 343

error codes, list of system errors, 344

error exception, 396

socket module, 485

error messages, 157

error() method, of Logger objects, 357

error_message_format attribute, of BaseHTTPRequestHandler class, 508

errorcode variable, errno module, 344

errorlevel attribute, of TarFile objects, 320

errors attribute, of TextIOWrapper objects, 353

errors parameter

of encoding functions, 166

to open() function, 159

escape codes

disabling in a string literal, 29

in string literals, 27

non-printing characters, 28

escape() function

cgi module, 536

re module, 283

xml.sax.saxutils module, 583

escaping characters for use in HTML, 536

eval() function, 55, 77, 115, 204, 206

and repr(), 55

evaluation

of function arguments, 76

operator precedence and associativity, 78

order of, 78

Event object

multiprocessing module, 427

threading module, 440

event loop

and asyncore module, 455

coroutines, 108

Event() method, of Manager objects, 429

event-driven I/O, 415

polling for signals, 399

when to consider, 467

EX_* exit code constants, 391

exc_clear() function, sys module, 233

exc_info attribute, of Record objects, 359

exc_info() function, sys module, 53, 89, 233

except statement, 22, 84-85

change of syntax, 85

__excepthook__ variable, sys module, 230

excepthook() function, sys module, 85, 233

Exception class, 212

Exception exception, 87

exception handling, in extension modules, 605

exception() method, of Logger objects, 358

exceptions, 22, 84-85

and locks, 23

attributes of, 212

catching all, 85

catching multiple types, 85

caution with catching all exceptions, 86

chained in Python 3, 626

clearing last exception, 233

defining new, 88

difference from warnings, 216

error codes for system errors, 344

finally statement, 86

handling of, 22-23

hierarchy of, 88

ignoring, 85

list of built-in, 87

matching rules, 85

optimization strategies, 196

performance of, 197

propagation of, 85

reraising the last exception, 84

value of, 23, 85

.exe file, creating with distutils, 153

exec statement, caution with legacy code, 115

exec() function, 115, 204

Python 3, 631

exec_prefix variable, sys module, 177, 230

execl() function, os module, 390

execle() function, os module, 390

execlp() function, os module, 390

executable variable, sys module, 230

execute() method

of Connection objects, 306

of Cursor objects, 298

executemany() method

of Connection objects, 306

of Cursor objects, 298

executescript() method, of Connection objects, 306

executing programs, 6

executing strings as code, 115

executing system commands, 331

popen() function, 392

subprocess module, 402

system() function, 393

execution model, 81

execution of __init__.py files, 150

execution of class bodies, 117, 138

execv() function, os module, 390

execve() function, os module, 391

execvp() function, os module, 391

execvpe() function, os module, 391

exists() function, os.path module, 396

_exit() function, os module, 179, 391

exit() function, sys module, 179, 233

__exit__() method, 63

of context managers, 62, 89

exitcode attribute, of Process objects, 417

exp() function, math module, 251

exp() method, of Decimal objects, 243

expand() method, of MatchObject objects, 285

ExpandEnvironmentStrings() function, winreg module, 409

expandtabs() method, of strings, 41-42

expanduser() function, os.path module, 397

expandvars() function, os.path module, 397

exponents, range on floating point, 38

expovariate() function, random module, 255

expressions, 7

extend() method

of array objects, 260

of deque objects, 262

of lists, 40

extended slices, 39, 59

assignment to, 40, 69

deletion of, 40, 69

on sequences, 68

extended slicing operator [::], 67

extended unpacking of iterables, Python 3, 623

ExtendedContext, decimal module, 248

extending with C, 591

extendleft() method, of deque objects, 262

extensible code, with modules, 144

extension modules, 591

compilation with distutils, 596

converting types from C to Python, 602

converting types from Python to C, 597

ctypes module, 612

difference in Python 3, 595

documentation strings, 595

exception handling, 605

global interpreter lock, 607

hand-written, 593

manual compilation, 597

naming of, 595

reference counting, 607

threads, 607

wrapper functions, 594

Extension() function, distutils module, 596

extensions_map attribute, of HTTPRequestHandler class, 508

external_attr attribute, of ZipInfo objects, 327

extra attribute, of ZipInfo objects, 327

extract() method

of TarFile objects, 320

of ZipFile objects, 325

extract_stack() function, traceback module, 236

extract_tb() function, traceback module, 236

extract_version attribute, of ZipInfo objects, 327

extractall() method, of ZipFile objects, 325

ExtractError exception, tarfile module, 322

extractfile() method, of TarFile objects, 320

extsep variable, os module, 386

F

F_* constants, fcntl() function, 347

f_* attributes

of frame objects, 52

of statvfs objects, 389

fabs() function, math module, 251

factorial() function, math module, 251

fail() method, of TestCase objects, 185

failIf() method, of TestCase objects, 185

failIfAlmostEqual() method, of TestCase objects, 185

failIfEqual() method, of TestCase objects, 185

failUnless() method, of TestCase objects, 185

failUnlessAlmostEqual() method, of TestCase objects, 185

failUnlessEqual() method, of TestCase objects, 185

failUnlessRaises() method, of TestCase objects, 185

failureException attribute, of TestCase objects, 185

False value, 9, 27, 38

family attribute, of socket objects, 484

Fault exception, xmlrpc.client module, 527

fchdir() function, os module, 379

fchmod() function, os module, 382

fchown() function, os module, 382

fcntl module, 347

fcntl() function, fcntl module, 347

fdatasync() function, os module, 382

fdopen() function, os module, 382

feed() method, of HTMLParser objects, 561

fetchall() method, of Cursor objects, 299

fetching URLs

example of, 514

example with authentication, 519

example with cookies, 519

fetchmany() method, of Cursor objects, 299

fetchone() method, of Cursor objects, 298

FieldStorage() function, cgi module, 534

file I/O, 10

file attribute, of FieldStorage objects, 535

file descriptors, 347

functions for manipulation, 382

file keyword argument, to print() function, 10, 163

file locking, 348

Windows, 373

by sqlite3 module, 303

file modes, use with open() function, 159

file upload, in CGI scripts, 536

__file__ attribute, of modules, 51

file-like objects, 122

file_offset attribute, of ZipInfo objects, 327

file_size attribute, of ZipInfo objects, 327

filecmp module, 314

fileConfig() function, logging module, 367

FileCookieJar class, http.cookiejar module, 513

FileHandler class

logging module, 362

urllib.request module, 518

FileIO class, io module, 350

filename attribute

of FieldStorage objects, 535

of Record objects, 359

of ZipInfo objects, 327

filenames

Windows drive letters, 399

absolute path of, 396

in Python 3, 633

matching with shell wildcards, 316

portable manipulation of, 396

splitting into directory and base name, 398

testing for existence, 396

testing if directory, 397

testing if link, 397

fileno() method

of Connection objects, 421

of IOBase objects, 349

of SocketServer objects, 491

of files, 160-161

of files and sockets, 459

of socket objects, 478

of urlopen objects, 515

files, 10

absolute path of, 396

and Python 3, 160

attributes of, 161

buffer size, 159

buffered binary I/O, 351

bz2 compression, 313

comparing, 314

copying, 318

creation time, 397

decoding as Unicode, 167

description of file modes, 159

detecting end of file (EOF), 160

file pointer, 161, 352

finding on the filesystem, 390

functions for manipulating metadata, 386

gzip compression, 317

iterating over lines, 17-18

last modification time, 397

locking on Windows, 373

low-level control, 347

low-level system calls, 382

memory mapped, 370

methods on, 159

opening, 10, 158-159

opening with Unicode decoding, 167

parsing CSV, 548

problems with io library module, 354

raw binary I/O, 350

reading line by line, 10

seeking, 161

size of, 397

softspace attribute and print statement, 162

temporary, 323

testing for existence, 396

types of, 159

writing to, 159

fill characters in string format specifiers, 73

Filter class, logging module, 359

filter() function, 205

and Python 3, 205

and optimization, 197

fnmatch module, 316

future_builtins module, 217

filterwarnings() function, warnings module, 239

finally statement, 86

and locks, 442

find() method

of Element objects, 576

of ElementTree objects, 574

of mmap objects, 371

of strings, 41-42

find_library() function, ctypes module, 612

findall() function, re module, 283

findall() method

of Element objects, 576

of ElementTree objects, 574

of Regex objects, 285

findCaller() method, of Logger objects, 358

finding all loaded modules, 144

finding files, 390

finditer() function, re module, 284

finditer() method, of Regex objects, 285

findtext() method

of Element objects, 576

of ElementTree objects, 574

finish() method, of BaseRequestHandler objects, 490

first-class objects, 36

use of, 37

firstChild attribute, of DOM Node objects, 570

flag_bits attribute, of ZipInfo objects, 327

flags attribute

of Context objects, 247

of Regex objects, 284

flags variable, sys module, 230

flaming death, in extension modules, 595

float type, 38

float() function, 13, 62, 76, 205

__float__() method, 61-62

and type coercion, 134

float_info variable, sys module, 231

floating point, 27

as dictionary key, 16

binary representation, 39

compared to decimal numbers, 243

converting to a fraction, 39, 250

defining NaN and Inf, 213, 252

inexact representation, 12, 243

low-level properties of, 231

mixing with complex numbers, 39

precision of, 38

random number distributions, 255

representation of, 38

FloatingPointError exception, 87, 213

flock() function, fcntl module, 348

floor division, 65

floor() function, math module, 251

floordiv() function, operator module, 273

__floordiv__() method, 60

flush() method

of BZ2Compressor objects, 314

of BufferWriter objects, 352

of Handler objects, 364

of IOBase objects, 349

of compressobj objects, 328

of decompressobj objects, 329

of files, 160

of mmap objects, 371

FlushKey() function, winreg module, 409

fma() method, of Decimal objects, 243

fmod() function, math module, 251

fnmatch module, 316

fnmatch() function, fnmatch module, 316

fnmatchcase() function, fnmatch module, 316

foot, how to shoot, 36, 86, 442, 617

for statement, 10, 17, 59, 69, 82

and files, 10, 160

and generators, 19

and tuple unpacking, 15

forcing garbage collection, 220

foreign function interface, ctypes module, 612

fork() function, os module, 391

ForkingMixIn class, SocketServer module, 493

ForkingTCPServer class, SocketServer module, 494

ForkingUDPServer class, SocketServer module, 494

forkpty() function, os module, 392

format attribute, of Struct objects, 291

format codes

for dates and times, 406

for string formatting operator %, 70-71

format specifiers

alignment characters, 73

customized, 74

fill character, 73

format() method of strings, 72-74

nesting of fields, 74

format() function, 8, 11-12, 56, 77, 205

format() method

format specifier codes, 72

of Formatter objects, 288

of strings, 8, 42-43, 56, 72-73, 162

of strings and variable interpolation, 164

__format__() method, 55-56, 74

format_exc() function, traceback module, 236

format_exception() function, traceback module, 236

format_exception_only() function, traceback module, 236

format_list() function, traceback module, 236

format_stack() function, traceback module, 236

format_tb() function, traceback module, 236

format_value() method, of Formatter objects, 289

formatargspec() function, inspect module, 222

formatargvalues() function, inspect module, 222

formatted printing, 8, 70-71, 162

formatted strings, 42, 71-72

Formatter class

logging module, 365

string module, 288

formatter module, 587

formatting, of log messages, 358, 365

formatwarning() function, warnings module, 239

Fortran common blocks, lack of, 146

found_terminator() method, of asynchat objects, 453

fpathconf() function, os module, 382

fpectl module, 585

fpformat module, 586

Fraction class, fractions module, 250

fractions module, 39, 250

fragment attribute

of urlparse objects, 520

of urlsplit objects, 521

frame objects, 51-52

attributes of, 52

FrameType type, 51, 237

free variables, in functions, 98

freeze_support() function, multiprocessing module, 434

frexp() function, math module, 251

from __future__ import, 178

from module import *, 24, 145

global variables, 146

identifiers with underscores, 26

__all__ variable, 145

from statement

and import statement, 24

module imports, 145

from_address() method, of ctypes type objects, 616

from_buffer() method, of ctypes type objects, 616

from_buffer_copy() method, of ctypes type objects, 616

from_decimal() method, of Fraction class, 250

from_float() method, of Fraction class, 250

from_iterable() method, of objects, 270

from_param() method, of ctypes type objects, 616

fromfd() function, socket module, 473

fromfile() method, of array objects, 260

fromhex() method, of floating point, 39

fromkeys() method, of dicts, 45

fromlist() method, of array objects, 260

fromordinal() method

of date class, 336

of datetime class, 339

fromstring() function, xml.etree.ElementTree module, 575

fromstring() method, of array objects, 260

fromtimestamp() method

of date class, 336

of datetime class, 339

fromutc() method, of tzinfo objects, 342

frozenset type, 38, 46, 75

frozenset() function, 77, 205

fstat() function, os module, 383

fstatvfs() function, os module, 383

fsum() function, math module, 251

fsync() function, os module, 383

FTP server, uploading files to, 500

FTP() function, ftplib module, 497

FTPHandler class, urllib.request module, 518

ftplib module, 497

ftruncate() function, os module, 383

Full exception, Queue module, 418, 445

full() method, of Queue objects, 418, 445

func attribute, of partial objects, 268

__func__ attribute, of methods, 49

funcName attribute, of Record objects, 359

function call operator (), 47, 76

functions, 18

__doc__ attribute, 24

and coroutines, 20

and generators, 19

annotations in Python 3, 624

anonymous, 112

as closures, 98

as dictionary values, 37

as objects, 98

attributes and decorators, 102

attributes of, 48

binding of default values, 93

built-in, 201

callback, 98

calling, 18, 93

change in func_* attribute names, 48

changing recursion limit, 112, 235

copying attributes to decorator, 269

creating wrappers for, 100

decorators, 101

decorators and attributes, 114

default arguments, 18, 93

defining, 93

delayed execution with threads, 437

documentation strings, 48, 113

evaluation of arguments, 76

example of taking any number of arguments, 95

free variables, 98

keyword arguments, 18, 94

lambda operator, 112

modifying global variables, 18

mutable parameters, 95

nested, 97, 99

optional arguments and None, 38

parameter passing, 95

partial evaluation, 76, 268

pickling of, 228

recursion, 112

returning multiple values from, 18, 96

running in the debugger, 186

scoping rules, 18, 96

side effects, 95

termination functions, 219

type of built-in, 49

type of user-defined, 47

user-defined, 48

user-defined attributes, 114

variable arguments, 94

variable number of keyword arguments, 95

FunctionType type, 47, 237

functools module, 76, 114, 268

functor, 62

funny_files attribute, of dircmp objects, 315

future features, enabling, 178

__future__ module, 178

and division, 62

list of features, 178

future_builtins module, 217

FutureWarning warning, 216, 238

fuzzy date and time parsing, 343

G

gaierror exception, socket module, 485

gammavariate() function, random module, 255

garbage collection, 34-35, 220

and __del__() method, 129

and cycles, 35

and program termination, 179

description of process, 221

observer pattern example, 130

problem with __del__() method, 221

garbage variable, gc module, 220

gauss() function, random module, 255

gc module, 35, 179, 220

gcd() function, fractions module, 251

gdbm module, 310

ge() function, operator module, 274

__ge__() method, 56

generator expressions, 109-110

conditional expressions, 79

converting into a list, 110

difference from list comprehension, 110

generator function, and context managers, 90

generator objects, 51, 53

attributes of, 53

GeneratorExit exception, 87, 104, 213

generators, 19, 102-103

and break statement in iteration, 103

and memory efficiency, 107

and processing pipelines, 19

closing, 53

concurrent programming, 446

execution model, 19

handling of GeneratorExit exception, 213

multitasking example, 447

practical use of, 106

recursion, 112

throwing exception in, 53

use with I/O, 164-165

use with WSGI, 165

GeneratorType type, 51, 237

get() function, webbrowser module, 544

get() method

of AsyncResult objects, 425

of ConfigParser objects, 333

of Element objects, 576

of Message objects, 552

of Queue objects, 418, 445

of dicts, 16, 45

__get__() method, of descriptors, 58, 126

get_all() method, of Message objects, 552

get_boundary() method, of Message objects, 552

get_charset() method, of Message objects, 553

get_charsets() method, of Message objects, 553

get_content_charset() method, of Message objects, 553

get_content_maintype() method, of Message objects, 553

get_content_subtype() method, of Message objects, 553

get_content_type() method, of Message objects, 553

get_count() function, gc module, 221

get_data() method, of Request objects, 517

get_debug() function, gc module, 221

get_default_type() method, of Message objects, 553

get_dialect() function, csv module, 551

get_errno() function, ctypes module, 617

get_field() method, of Formatter objects, 288

get_filename() method, of Message objects, 553

get_full_url() method, of Request objects, 517

get_host() method, of Request objects, 517

get_last_error() function, ctypes module, 617

get_logger() function, multiprocessing module, 435

get_method() method, of Request objects, 517

get_nowait() method, of Queue objects, 418, 445

get_objects() function, gc module, 221

get_origin_req_host() method, of Request objects, 517

get_osfhandle() function, msvcrt module, 372

get_param() method, of Message objects, 553

get_params() method, of Message objects, 553

get_payload() method, of Message objects, 554

get_referents() function, gc module, 221

get_referrers() function, gc module, 221

get_selector() method, of Request objects, 517

get_server_certificate() function, ssl module, 488

get_starttag_text() method, of HTMLParser objects, 561

get_terminator() method, of asynchat objects, 453

get_threshold() function, gc module, 221

get_type() method, of Request objects, 517

get_unixfrom() method, of Message objects, 554

get_value() method, of Formatter objects, 289

getaddrinfo() function, socket module, 473

getargspec() function, inspect module, 222

getargvalues() function, inspect module, 222

getatime() function, os.path module, 397

getattr() function, 205

and private attributes, 128

__getattr__() method, 57

and __slots__, 133

getAttribute() method, of DOM Element objects, 572

__getattribute__() method, 57-58, 132

and __slots__, 133

getAttributeNS() method, of DOM Element objects, 572

getboolean() method, of ConfigParser objects, 333

getch() function, msvcrt module, 372

getche() function, msvcrt module, 372

getcheckinterval() function, sys module, 234

getchildren() method, of Element objects, 577

getclasstree() function, inspect module, 222

getcode() method, of urlopen objects, 515

getcomments() function, inspect module, 223

getcontext() function, decimal module, 247

getctime() function, os.path module, 397

getcwd() function, os module, 379

getcwdu() function, os module, 379

getdefaultencoding() function, sys module, 166, 234

getdefaulttimeout() function, socket module, 474

getdlopenflags() function, sys module, 234

getdoc() function, inspect module, 223

getEffectiveLevel() method, of Logger objects, 360

getegid() function, os module, 379

getElementsByTagName() method

of DOM Document objects, 571

of DOM Element objects, 572

getElementsByTagNameNS() method

of DOM Document objects, 571

of DOM Element objects, 572

geteuid() function, os module, 380

getfile() function, inspect module, 223

getfilesystemencoding() function, sys module, 234

getfirst() method, of FieldStorage objects, 535

getfloat() method, of ConfigParser objects, 333

getfqdn() function, socket module, 474

_getframe() function, sys module, 234

getframeinfo() function, inspect module, 223

getgid() function, os module, 380

getgroups() function, os module, 380

getheader() method, of HTTPResponse objects, 504

getheaders() method, of HTTPResponse objects, 504

gethostbyaddr() function, socket module, 474

gethostbyname() function, socket module, 474

gethostbyname_ex() function, socket module, 474

gethostname() function, socket module, 474

getinfo() method, of ZipFile objects, 326

getinnerframes() function, inspect module, 223

getint() method, of ConfigParser objects, 333

getitem() function, operator module, 274

__getitem__() method, 58-59

and slices, 59

getiterator() method

of Element objects, 577

of ElementTree objects, 574

getitimer() function, signal module, 399

getLength() method, of SAX attributes objects, 582

getLevelName() function, logging module, 366

getlist() method, of FieldStorage objects, 535

getloadavg() function, os module, 395

getLogger() function, logging module, 356

getlogin() function, os module, 380

getmember() method, of TarFile objects, 320

getmembers() function, inspect module, 223

getmembers() method, of TarFile objects, 321

getmodule() function, inspect module, 223

getmoduleinfo() function, inspect module, 223

getmodulename() function, inspect module, 224

getmro() function, inspect module, 224

getmtime() function, os.path module, 397

getName() method, of Thread objects, 436

getNameByQName() method, of SAX attributes objects, 582

getnameinfo() function, socket module, 474

getNames() method, of SAX attributes objects, 582

getnames() method, of TarFile objects, 321

getopt module, 378

getouterframes() function, inspect module, 224

getoutput() function, commands module, 331

getpeercert() method, of ssl objects, 488

getpeername() method, of socket objects, 478

getpgid() function, os module, 380

getpgrp() function, os module, 380

getpid() function, os module, 380

getpos() method, of HTMLParser objects, 561

getppid() function, os module, 380

getprofile() function, sys module, 234

getprotobyname() function, socket module, 475

getQNameByName() method, of SAX attributes objects, 582

getQNames() method, of SAX attributes objects, 582

getrandbits() function, random module, 254

getrecursionlimit() function, sys module, 112, 234

getrefcount() function, sys module, 35, 234

getresponse() method, of HTTPConnection objects, 503

getroot() method, of ElementTree objects, 574

getservbyname() function, socket module, 475

getservbyport() function, socket module, 475

GetSetDescriptorType type, 237

getsid() function, os module, 380

getsignal() function, signal module, 399

getsize() function, os.path module, 397

getsizeof() function, sys module, 192, 234

getslice() function, operator module, 274

getsockname() method, of socket objects, 478

getsockopt() method, of socket objects, 478

getsource() function, inspect module, 224

getsourcefile() function, inspect module, 224

getsourcelines() function, inspect module, 224

getstate() function, random module, 254

__getstate__() method, 228

and copying, 220

and pickle module, 172

getstatusoutput() function, commands module, 332

gettarinfo() method, of TarFile objects, 321

gettempdir() function, tempfile module, 323

gettempprefix() function, tempfile module, 323

gettext module, 587

gettimeout() method, of socket objects, 482

getting help, help() function, 24

getting the current working directory, 379

gettrace() function, sys module, 234

getType() method, of SAX attributes objects, 582

getuid() function, os module, 380

geturl() method, of urlopen objects, 515

_getvalue() method, of BaseProxy objects, 433

getValue() method, of SAX attributes objects, 582

getvalue() method

of BytesIO objects, 352

of FieldStorage objects, 535

of StringIO objects, 354

getValueByQName() method, of SAX attributes objects, 582

getwch() function, msvcrt module, 372

getwche() function, msvcrt module, 372

getweakrefcount() function, weakref module, 241

getweakrefs() function, weakref module, 241

getwindowsversion() function, sys module, 234

gi_* attributes, of generator objects, 53

gid attribute, of TarInfo objects, 321

glob module, 317

glob() function, glob module, 317

global interpreter lock, 414, 444

and multiprocessing module, 444

releasing in extensions, 607

global statement, 18, 96

and modules, 143

global variables, 96

and eval(), 115

and modules, 146

difference from C and Fortran, 146

modifying in a function, 18

storage of in stack frames, 52

__globals__ attribute, of functions, 48, 99

globals() function, 205

gmtime() function, time module, 406

gname attribute, of TarInfo objects, 321

goto statement, lack of, 84

gray-bearded hacker, 622

greater than operator >, 66

greater than or equal to operator >=, 66

green threads, 446

greenlets, 446

group() method, of MatchObject objects, 285

groupby() function, itertools module, 271

groupdict() method, of MatchObject objects, 286

groupindex attribute, of Regex objects, 284

groups() method, of MatchObject objects, 285

grp module, 586

gt() function, operator module, 274

__gt__() method, 56

guess_all_extensions() function, mimetypes module, 567

guess_extension() function, mimetypes module, 567

guess_type() function, mimetypes module, 566

GUI programming, use of partial function evaluation, 268

GUIs, and network programming, 467

gzip module, 317

GzipFile() function, gzip module, 317

H

-h command line option, 173

h(elp) debugger command, pdb module, 188

handle() function, cgitb module, 539

handle() method, of BaseRequestHandler objects, 490

handle_accept() method, of dispatcher objects, 455

handle_charref() method, of HTMLParser objects, 561

handle_close() method, of dispatcher objects, 455

handle_comment() method, of HTMLParser objects, 561

handle_connect() method, of dispatcher objects, 455

handle_data() method, of HTMLParser objects, 561

handle_decl() method, of HTMLParser objects, 561

handle_endtag() method, of HTMLParser objects, 562

handle_entityref() method, of HTMLParser objects, 562

handle_error() method

of SocketServer class, 493

of dispatcher objects, 455

handle_expt() method, of dispatcher objects, 456

handle_pi() method, of HTMLParser objects, 562

handle_read() method, of dispatcher objects, 456

handle_startendtag() method, of HTMLParser objects, 562

handle_starttag() method, of HTMLParser objects, 562

handle_timeout() method, of SocketServer class, 493

handle_write() method, of dispatcher objects, 456

has_data() method, of Request objects, 517

has_header() method

of Request objects, 517

of Sniffer objects, 550

has_ipv6 variable, socket module, 475

has_key() method, of dicts, 45

has_option() method, of ConfigParser objects, 333

has_section() method, of ConfigParser objects, 333

hasattr() function, 205

and private attributes, 128

hasAttribute() method, of DOM Element objects, 572

hasAttributeNS() method, of DOM Element objects, 572

hasAttributes() method, of DOM Node objects, 571

hasChildNodes() method, of DOM Node objects, 571

hash table, 16, 44

hash table based databases, 310

hash() function, 205

__hash__() method, 56

Hashable abstract base class, 265

hashlib module, 559

example of, 425

header_offset attribute, of ZipInfo objects, 327

headers attribute

of BaseHTTPRequestHandler objects, 509

of FieldStorage objects, 535

heap, 269

heapify() function, heapq module, 269

heapmin() function, msvcrt module, 372

heappop() function, heapq module, 269

heappush() function, heapq module, 269

heappushpop() function, heapq module, 270

heapq module, 269

heapreplace() function, heapq module, 270

hello world program, 5

help() function, 24, 206

bizarre output with decorators, 113

herror exception, socket module, 485

hex() function, 77, 206

future_builtins module, 217

hex() method, of floating point, 39

hexadecimal

creating strings from integers, 77

integer literals, 27

hexdigest() method

of digest objects, 559

of hmac objects, 560

hexdigits variable, string module, 287

hexversion variable, sys module, 231

hiding attribute names from dir() function, 128

hierarchical locking, 442

hierarchical logging, logging module, 360

hierarchy of exceptions, 87-88

hierarchy of objects, 137

HIGHEST_PROTOCOL constant, pickle module, 172

HKEY_* constants, winreg module, 408

HMAC authentication, 559

hmac module, 559

hostname attribute

of urlparse objects, 520

of urlsplit objects, 521

hostname, obtaining for host machine, 474

hour attribute, of time objects, 338

HTML forms

example of, 531

uploading with urllib package, 515

HTML parsing, 561

html.parser module, 561

HTMLParser class, html.parser module, 561

HTMLParser module, see html.parser, 561

HTMLParserError exception, html.parser module, 562

htonl() function, socket module, 475

htons() function, socket module, 475

HTTP cookies, 511

HTTP protocol

description of, 500

request methods, 501

response codes, 501

HTTP server

custom handling of requests, 510

example with asynchat module, 453

example with asyncore module, 457

example with coroutines, 466

example with firewall, 507

standalone example, 508

uploading files in POST request, 505

http package, 500

http.client module, 502

http.cookiejar module, 513

http.cookies module, 511

http.server module, 506

HTTPBasicAuthHandler class, urllib.request module, 518-519

HTTPConnection() function, http.client module, 502

HTTPCookieProcessor class, urllib.request module, 518-519

HTTPDefaultErrorHandler class, urllib.request module, 518

HTTPDigestAuthHandler class, urllib.request module, 518-519

HTTPError exception, urllib.error module, 523

HTTPException exception, http.client module, 504

HTTPHandler class

logging module, 362

urllib.request module, 518

httplib module, see http.client, 502

HTTPRedirectHandler class, urllib.request module, 518

HTTPResponse objects, http.client module, 504

HTTPSConnection() function, http.client module, 502

HTTPServer class, http.server module, 506

HTTPSHandler class, urllib.request module, 518

hypot() function, math module, 251

I

-i command line option, 173-174

I/O buffering, and generators, 165

I/O multiplexing, 459

__iadd__() method, 61

__iand__() method, 61

IBM General Decimal Arithmetic Standard, 243

id() function, 33, 206

ident attribute, of Thread objects, 436

identifiers, 26

and first-class data, 36

case sensitivity, 26

reserved words, 26

usage of underscores, 26

use of Unicode in Python 3, 622

identity comparison of objects, 34

identity of objects, 33

identity operator is, 78

__idiv__() method, 61

__idivmod__() method, 61

IDLE, 5-6

and standard I/O streams, 162

IEEE 754, 243

if statement, 9, 81

and __debug__ variable, 91

ifilter() function, itertools module, 271

ifilterfalse() function, itertools module, 271

__ifloordiv__() method, 61

iglob() function, glob module, 317

ignorableWhitespace() method, of ContentHandler objects, 581

ignore debugger command, pdb module, 188

‘ignore’ error handling, Unicode encoding, 166

ignore_environment attribute, of sys.flags, 230

ignore_pattern() function, shutil module, 318

ignore_zeros attribute, of TarFile objects, 321

ignored NameError exception in __del__, 179

ignoring exceptions, 85

__ilshift__() method, 61

imag attribute

of complex numbers, 39

of floating point, 39

imap() function, itertools module, 272

imap() method, of Pool objects, 424

imap_unordered() method, of Pool objects, 424

imaplib module, 587

imghdr module, 588

immutability, of tuples, 14

immutable types, inheriting from, 55

immutable, definition of, 33

__imod__() method, 61

imp module, 224, 585

implicit type conversion, lack of, 62

import statement, 13, 23-24, 50, 143-144

Python 3, 151

absolute imports in packages, 151

and main program, 146

and sys.modules, 144

and sys.path variable, 147

as qualifier, 144

case sensitivity, 148

compilation of .pyc files, 148

execution of modules, 143

module search path, 147

multiple modules, 144

one-time execution of modules, 144

packages, 150

placement within a program, 144

relative package imports, 150-151

scoping rules of loaded code, 145

types of modules, 148

ImportError exception, 87, 148, 214

importing selected symbols from a module, 145

ImproperConnectionState exception, http.client module, 504

__imul__() method, 61

in operator, 9

and __contains__ method, 58

and checking for substrings, 69

on dicts, 16, 45, 74

on sequences, 67, 69

in-place assignment operators, 75

in-place file updates, 159

in-place mathematical operators, 61

in-place modification

of lists, 40

of sets, 47

in_dll() method, of ctypes type objects, 616

INADDR_* constants, socket module, 478

IncompleteRead exception, http.client module, 504

IncrementalDecoder class, codecs module, 279

incrementaldecoder() method, of CodecInfo objects, 279

IncrementalEncoder class, codecs module, 278

incrementalencoder() method, of CodecInfo objects, 278

indentation, 8, 25

and documentation strings, 30

and line continuation character \, 9

and tabs, 26

preferred style, 8

putting statements on the same line, 25

IndentationError exception, 87, 214

index() method

of array objects, 260

of lists, 40-41

of strings, 41, 43

IndexError exception, 69, 87, 214

indexing operator [], 39, 67

on lists, 12

on sequences, 68

on strings, 11

on tuples, 14

indexing, 0-based, 11

indexOf() function, operator module, 274

indices() method, of slices, 54

inet_aton() function, socket module, 475

inet_ntoa() function, socket module, 476

inet_ntop() function, socket module, 476

inet_pton() function, socket module, 476

inexact representation of floating point, 12

Inf variable, decimal module, 248

Inf

decimal module, 244

infinity, 213

info() method

of Logger objects, 357

of urlopen objects, 515

infolist() method, of ZipFile objects, 326

inheritance, 21, 119

__mro__ attribute of classes, 121

abstract base classes, 137

attribute binding, 119

calling methods in superclasses, 120

from built-in types, 22

from immutable types, 55

initialization of superclasses, 120

interaction with__slots__, 133

internal optimization of, 233

isinstance() function, 34

issubclass() function, 135

metaclasses, 139

method resolution order, 121

multiple inheritance, 121

preventing redefinition of methods, 128

private methods, 128

use with exceptions, 88

.ini files

configuring logging with, 368

reading from Python, 332

init() function, mimetypes module, 567

__init__() method, 50, 54-55

and exceptions, 88

and inheritance, 120

and instance creation, 129

and metaclasses, 139

and pickle, 228

defining multiple instance creation methods, 123

of classes, 22, 118

__init__.py files in packages, 149

input() function, 162, 206

Python 3, 11

insert() method

of Element objects, 577

of array objects, 260

of lists, 12, 41

insertBefore() method, of DOM Node objects, 571

inserting items into a dictionary, 16

inserting items into a list, 41

insort() function, bisect module, 261

insort_left() function, bisect module, 261

insort_right() function, bisect module, 261

inspect attribute, of sys.flags, 230

inspect module, 222

inspecting objects, with dir(), 63

install command, of setup.py files, 154

install_opener() function, urllib.request module, 518

installation of third-party packages, 154

in user directory, 154

installing a package, 153

instance methods, 48, 118

__instancecheck__() method, 57, 136

instances, 117

as callable, 50

attribute assignment, 131

attribute deletion, 131

creation of, 55, 118, 129

definition of, 33

pickling of, 228

type of, 50

instantiation of abstract base class, 137

int type, 38

int() function, 11, 62, 76, 206

__int__() method, 61-62

and type coercion, 134

integer division, Python 3, 633

integers, 27

2’s complement representation, 66

as dictionary key, 16

automatic promotion to long, 27

conversion to longs, 38

creating hexadecimal strings, 77

creating random, 254

overflow behavior, 66

range of, 38

specifying as hex, octal, or binary, 27

Integral abstract base class, 253

IntegrityError exception, database API, 302

interactive attribute, of sys.flags, 230

interactive mode, 6, 175

and blank lines, 26

display of results, 55, 176

interactive terminal, 174

InterfaceError exception, database API, 302

internal_attr attribute, of ZipInfo objects, 327

InternalError exception, database API, 302

international characters

and string comparison, 70

in source code, 31

interpolation, of values in strings, 72

interpreter, 5

interpreter command line options, 173

interpreter environment variables, 174

interpreter prompts, 175

interpreter, -t and -tt options, 26

interprocess communication (IPC), 413

interrupt() method, of Connection objects, 306

intersection operator &, of sets, 15

intersection() method, of sets, 46

intersection_update() method, of sets, 47

interval timer, 399

introspection of objects, 222

inv() function, operator module, 273

InvalidURL exception, http.client module, 504

invert() function, operator module, 274

__invert__() method, 61

io module, 349

Python 3, 631

problems associated with, 354

IOBase abstract base class, 354

IOBase class, io module, 349

ioctl() function, fcntl module, 348

ioctl() method, of socket objects, 482

IOError exception, 87, 214

__ior__() method, 61

IP_* socket options, socket module, 480

__ipow__() method, 61

IPPROTO_* constants, socket module, 476

IPv4 protocol, 470

address format, 471

IPv6 protocol, 470

address format, 471

IPV6_* socket options, socket module, 480-481

IronPython, 5

example of, 620

__irshift__() method, 61

is operator, object identity, 34, 78

is_() function, operator module, 274

is_alive() method

of Process objects, 416

of Thread objects, 436

is_multipart() method, of Message objects, 554

is_not() function, operator module, 274

is_set() method, of Event objects, 440

is_tarfile() function, tarfile module, 319

is_unverifiable() method, of Request objects, 517

is_zipfile() function, zipfile module, 325

isabs() function, os.path module, 397

isabstract() function, inspect module, 224

isAlive() method, of Thread objects, 436

isalnum() method, of strings, 41, 43

isalpha() method, of strings, 43

isatty() function, os module, 383

isatty() method

of IOBase objects, 349

of files, 160

isblk() method, of TarInfo objects, 321

isbuiltin() function, inspect module, 224

ischr() method, of TarInfo objects, 321

isclass() function, inspect module, 224

iscode() function, inspect module, 225

isDaemon() method, of Thread objects, 437

isdatadescriptor() function, inspect module, 225

isdev() method, of TarInfo objects, 321

isdigit() method, of strings, 43

isdir() function, os.path module, 397

isdir() method, of TarInfo objects, 321

isdisjoint() method, of sets, 46

iselement() function, xml.etree.ElementTree module, 578

isenabled() function, gc module, 221

isEnabledFor() method, of Logger objects, 359

isfifo() method, of TarInfo objects, 321

isfile() function, os.path module, 397

isfile() method, of TarInfo objects, 321

isframe() function, inspect module, 225

isfunction() function, inspect module, 225

isgenerator() function, inspect module, 225

isgeneratorfunction() function, inspect module, 225

isinf() function, math module, 252

isinstance() function, 34, 37, 135, 206-207

and inheritance, 134

and proxy objects, 135

redefining behavior of, 136

islice() function, itertools module, 272

islink() function, os.path module, 397

islnk() method, of TarInfo objects, 321

islower() method, of strings, 43

ismethod() function, inspect module, 225

ismethoddescriptor() function, inspect module, 225

ismodule() function, inspect module, 225

ismount() function, os.path module, 397

isnan() function, math module, 252

iso-8859-1 encoding, description of, 169

isocalendar() method, of date objects, 337

isoformat() method

of date objects, 337

of time objects, 338

isoweekday() method, of date objects, 337

isreg() method, of TarInfo objects, 321

isReservedKey() method, of Morsel objects, 512

isroutine() function, inspect module, 225

isSameNode() method, of DOM Node objects, 571

isspace() method, of strings, 43

issubclass() function, 135, 206

redefining behavior of, 136

issubset() method, of sets, 46

issuperset() method, of sets, 46

issym() method, of TarInfo objects, 322

istitle() method, of strings, 43

istraceback() function, inspect module, 225

__isub__() method, 61

isupper() method, of strings, 41, 43

itemgetter() function, operator module, 275

items() method

of ConfigParser objects, 333

of Element objects, 577

of Message objects, 552

of dicts, 45

of dicts in Python 3, 632

itemsize attribute, of array objects, 259

ItemsView abstract base class, 266

iter() function, 206

__iter__() method, 59, 82

Iterable abstract base class, 265

iteration, 10, 17, 59, 82

breaking out of a loop, 83

iteration variable, 82

over a sequence, 39, 69

over dictionary keys, 17

over dictionary values, 45

over multiple sequences, 83

portable function for next() operation, 207

protocol change in Python 3, 633

protocol of, 60, 82

scope of iteration variable, 82

supported objects, 17

unpacking of tuples, 82

Iterator abstract base class, 265

iterators, use in Python 3, 632

iterdecode() function, codecs module, 279

iterdump() method, of Connection objects, 306

iterencode() function, codecs module, 279

iterencode() method, of JSONEncoder objects, 566

iterkeyrefs() method, of WeakKeyDictionary objects, 241

iterparse() function, xml.etree.ElementTree module, 578

itertools module, 83, 270

itervaluerefs() method, of WeakValueDictionary objects, 241

__itruediv__() method, 61

__ixor__() method, 61

izip() function, itertools module, 83, 212, 272

izip_longest() function, itertools module, 272

J

J character, on complex number literals, 27

j(ump) debugger command, pdb module, 188

Java, 620

difference in class system, 119

Javascript, pop-up window example, 531

join() function, os.path module, 397

join() method

of JoinableQueue objects, 419

of Pool objects, 424

of Process objects, 416

of Queue objects, 445

of Thread objects, 436

of strings, 43

join_thread() method, of Queue objects, 418

JoinableQueue() function, multiprocessing module, 419

js_output() method

of Morsel objects, 512

of SimpleCookie objects, 512

JSON (JavaScript Object Notation), 563

json module, 563

difference from pickle and marshal, 565

JSONDecoder class, json module, 565

JSONEncoder class, json module, 566

jumpahead() function, random module, 254

Jython, 5

example of, 620

K

kbhit() function, msvcrt module, 373

key attribute, of Morsel objects, 512

key index operator [], 44

of dicts, 16

key keyword argument, to sort(), 40

KEY_* constants, winreg module, 410

keyboard interrupts, 162

KeyboardInterrupt class, 214

KeyboardInterrupt exception, 87-88, 162

KeyError exception, 44, 87, 214

keyrefs() method, of WeakKeyDictionary objects, 241

keys() method

of Element objects, 577

of Message objects, 552

of dicts, 45

of dicts in Python 3, 632

keys

acceptable types for dictionaries, 16

of dicts, 44

KeysView abstract base class, 266

keyword arguments, 18, 94

mixing with positional arguments, 94

keyword module, 585

keyword-only arguments, Python 3, 625

keywords attribute, of partial objects, 268

kill() function, os module, 392

kill() method, of Popen objects, 403

killpg() function, os module, 392

kqueue, BSD, 460

L

L character, on long integers, 27

l(ist) debugger command, pdb module, 188

lambda operator, 48, 112

alternatives to, 274-275

LambdaType type, 237

last_accepted attribute, of Listener objects, 434

last_traceback variable, sys module, 231

last_type variable, sys module, 231

last_value variable, sys module, 231

lastChild attribute, of DOM Node objects, 570

lastgroup attribute, of MatchObject objects, 286

lastindex attribute, of MatchObject objects, 286

latin-1 encoding, description of, 169

launching a web browser, 544

launching python applications, 176

launching subprocesses, 402

examples, 404

lazy evaluation, 99

lchflags() function, os module, 387

lchmod() function, os module, 387

lchown() function, os module, 387

ldexp() function, math module, 252

le() function, operator module, 274

__le__() method, 56

leading 0b on integers, binary, 27

leading 0o on integers, octal, 27

leading 0x on integers, hexadecimal, 27

leading b character on string literals, byte strings, 29

leading r character on strings, raw strings, 29

leading u character on string literals, Unicode strings, 28

left shift operator <

left_list attribute, of dircmp objects, 315

left_only attribute, of dircmp objects, 315

legacy code, and exec statement, 115

len() function, 58, 206

on dicts, 74

on mappings, 44-45

on sequences, 39-40, 67, 69

on sets, 46, 75

__len__() method, 56, 58

and truth testing, 56

length attribute, of HTTPResponse objects, 504

less than operator

less than or equal to operator <=, 66

letters variable, string module, 287

levelname attribute, of Record objects, 359

levelno attribute, of Record objects, 359

lexical scoping, 97

lexicographical ordering

of UTF-8, 170

of strings, 70

lexists() function, os.path module, 397

LifoQueue() function, queue module, 444

limit_denominator() method, of Fraction objects, 250

limiting the output of error tracebacks, 232

line continuation character \, 9, 25, 29

line continuation, and parentheses, braces, or brackets, 25

line separator character for files, 379

line structure of programs, 25

line_buffering attribute, of TextIOWrapper objects, 353

linecache module, 585

lineno attribute, of Record objects, 359

linesep variable, os module, 379

link() function, os module, 387

linkname attribute, of TarInfo objects, 322

Linux, 331

Linux link-level packet protocol, 470

address format, 472

Linux, epoll interface, 460

list comprehensions, 13

and declarative programming, 110

conditional expressions, 79

creation of tuples within, 109

difference from generator expression, 110

general syntax of, 108

scope of iteration variable, 109

similiarity to SQL queries, 111

similiarity to awk command, 111

list of Unix signal names, 400

list type, 38

list() function, 12, 40, 77, 207

applied to dictionaries, 16

list() method

of Manager objects, 429

of TarFile objects, 321

list_dialects() function, csv module, 551

listdir() function

Python 3, 630, 633

os module, 387

listen() method

of dispatcher objects, 456

of socket objects, 483

Listener class, multiprocessing module, 433

lists, 12, 40

appending to, 12, 40

as sequence, 39

compared to array objects, 260

comparison of, 70

concatenation, 12

counting items, 40

deletion of items, 69

empty, 12

equality of, 78

indexing operator, 12

inefficiency of insert(), 194

inserting items, 12, 40, 69

item assignment, 12, 69

keeping in sorted order, 261

list comprehension, 108

making shallow copy of, 40

nested, 13

random shuffling, 254

reassigning a slice, 12

removing items, 40

reversing, 40

searching, 40

shared by multiple processes, 429

slice assignment, 69

slice deletion, 69

slices, 12

sorting, 40

versus deque, 194, 262

versus tuples, 14

little endian format, 167

little endian, packing and unpacking, 292

ljust() method, of strings, 43

ln() method, of Decimal objects, 243

load() function

json module, 565

marshal module, 226

pickle module, 171, 227

load() method

of SimpleCookie objects, 512

of Unpickler objects, 228

loads() function

json module, 565

marshal module, 226

pickle module, 227

xmlrpc.client module, 526

local storage for threads, 443

local variables, 96

and eval(), 115

storage of in stack frames, 52

use before defined, 98

local() function, threading module, 443

localcontext() function, decimal module, 248

locale module, 587

locale setting, and string comparison, 70

localName attribute, of DOM Node objects, 570

locals() function, 207

localtime() function, time module, 406

Lock object

multiprocessing module, 427

threading module, 438

Lock() method, of Manager objects, 429

LOCK_* constants, flock() function, 348

lockf() function, fcntl module, 348

locking() function, msvcrt module, 373

locking

avoiding deadlock, 442

files on Windows, 373

multiprocessing module, 427

of critical sections, 414

of files, 348

threading module, 439

locks

and context managers, 89

and exceptions, 23

proper management of, 442

log files, real-time monitoring example, 19

log() function, math module, 252

log() method, of Logger objects, 358

log10() function, math module, 252

log10() method, of Decimal objects, 243

log1p() function, math module, 252

log_error() method, of BaseHTTPRequestHandler objects, 510

log_message() method, of BaseHTTPRequestHandler objects, 510

log_request() method, of BaseHTTPRequestHandler objects, 510

LogAdapter() function, logging module, 366

logging module, 355

adding extra fields to log messages, 365

and multiprocessing module, 435

basic configuration, 355

configuring with .ini files, 368

filtering messages, 359

formatting of messages, 365

handler objects, 362

how to configure, 367

including exceptions in log messages, 358

issuing log messages, 356

logger hierarchy, 360

message handling, 361

message propagation, 360

picking logger names, 356

using a null logger, 369

login() method

of FTP objects, 498

of SMTP objects, 514

lognormvariate() function, random module, 255

long integers, 27

and integers, 38

automatic promotion from integers, 27

long type, 38

long() function, 207

__long__() method, 61-62

lookup table, and dictionaries, 16

lookup() function

codecs module, 277

unicodedata module, 296

LookupError exception, 87, 212

loop() function, asyncore module, 457

looping, 17, 82

breaking out prematurely, 83

keeping a loop counter, 83

while statement, 8

loose-coupling of objects, 122

low-level file manipulation, 382

lower() method, of strings, 43

lowercase variable, string module, 287

lseek() function, os module, 383

lshift() function, operator module, 274

__lshift__() method, 60

lstat() function, os module, 387

lstrip() method, of strings, 43

lt() function, operator module, 274

__lt__() method, 56

LWPCookieJar class, http.cookiejar module, 513

M

-m command line option, 173-174

-m pdb option to interpreter, 189

mailbox module, 587

mailcap module, 587

main program execution, 146

main program, and pickle module, 228

main thread, 413

__main__ module, 146, 174

main() function, unittest module, 184

__main__, check needed for multiprocessing module, 417

major() function, os module, 387

make_server() function, wsgiref.simple_server module, 542

makedev() function, os module, 387

makedirs() function, os module, 387

makefile() method, of socket objects, 483

maketrans() function, string module, 290

making timing measurements, 191

managed objects, multiprocessing module, 428

Manager() function, multiprocessing module, 428

mant_dig attribute, of sys.float_info, 231

map() function, 207

and Python 3, 207

and optimization, 197

future_builtins module, 217

map() method, of Pool objects, 424

map-reduce, multiprocessing module, 424

map_async() method, of Pool objects, 425

Mapping abstract base class, 266

mappings, 44

deletion of items, 45

key index operator, 44

special methods of, 58

MappingView abstract base class, 266

marshal module, 226

match() function, re module, 284

match() method, of Regex objects, 285

MatchObject objects, re module, 285

math module, 251

mathematical operators

in-place, 61

mixed types, 66-67

mathematical special methods, 60

max attribute

of date class, 337

of datetime class, 340

of sys.float_info, 231

of time class, 338

of timedelta class, 341

max() function, 13, 39-40, 67, 69, 207

on sets, 75

required methods for user-defined objects, 57

max_10_exp attribute, of sys.float_info, 231

max_exp attribute, of sys.float_info, 231

maxint variable, sys module, 231

maxsize variable, sys module, 231

maxunicode variable, sys module, 231

md5() function, hashlib module, 559

MemberDescriptorType type, 237

membership test

of dicts, 16, 74

of sequences, 67

memmove() function, ctypes module, 617

memoization of results, 242

memory efficiency

and __slots__, 133

of generator expressions, 110

of generators, 107

memory management, 128

checking for leaks, 221

creation of instances, 129

garbage collection, 35, 220

reference counting, 129

memory mapped files, 370

and IPC, 413

memory use

array objects, 260

measuring, 192

obtaining size of objects, 234

tuples versus lists, 14

memory, location of objects, 33

MemoryError exception, 87, 214

MemoryHandler class, logging module, 362

memset() function, ctypes module, 617

merge() function, heapq module, 270

Mersenne Twister, 254

Message class, email package, 552, 555

message attribute, of Exception objects, 213

message digests, 559

message passing, 414-415

and coroutines, 415

and synchronization, 415

coroutines, 108

definition of, 413

sending byte buffers, 421

sending objects between processes, 421

message propagation, of log messages, 360

message queues, 415

coroutines, 108

multiprocessing module, 418

message_from_file() function, email package, 552

message_from_string() function, email package, 552

metaclass keyword argument, of class definitions, 139

__metaclass__ attribute, of classes, 139

__metaclass__ global variable, 139

metaclasses, 138

__prepare__() method, 627-628

and descriptors, 140

and inheritance, 139

caution on use, 141

example of, 140

how to define, 139

performance benefits, 197

use of __new__() method, 55, 129

use of a custom dictionary object, 628

method resolution order, and TypeError exception, 122

method resolution

__mro__ attribute, 121

multiple inheritance, 121

single inheritance, 120

methodcaller() function, operator module, 275

methodHelp() method, of ServerProxy objects, 525

methods, 48, 117

bound, 49, 125

calling process, 48

class, 125

@classmethod decorator, 48

defining in classes, 21

definition of, 118

handling as properties, 125

preventing redefinition in subclasses, 128

static, 125

@staticmethod decorator, 48

type of, 47

type of built-in, 49

unbound, 49

use of super() function, 120

methodSignatures() method, of ServerProxy objects, 525

MethodType type, 47-48, 237

microsecond attribute, of time objects, 338

microthreading, 446

migrating code

Python 2 to 3, 634

practical strategy, 637

MIMEApplication class, email package, 557

MIMEAudio class, email package, 557

MIMEImage class, email package, 557

MIMEMessage class, email package, 557

MIMEMultipart class, email package, 557

MIMEText class, email package, 558

mimetypes module, 566

min attribute

of date class, 337

of datetime class, 340

of sys.float_info, 231

of time class, 338

of timedelta class, 341

min() function, 13, 39-40, 67, 69, 207

on sets, 75

required methods for user-defined objects, 57

min_10_exp attribute, of sys.float_info, 231

min_exp attribute, of sys.float_info, 231

minimum requirements for supporting equality, 57

minor() function, os module, 387

minute attribute, of time objects, 338

mirrored() function, unicodedata module, 296

missing parenthesese, and tuples, 14

mixed-type mathematical operations, 66-67

mixin classes, 122

mixing byte strings and Unicode, 167

mkd() method, of FTP objects, 498

mkdir() function, os module, 388

mkdtemp() function, tempfile module, 323

mkfifo() function, os module, 388

mknod() function, os module, 388

mkstemp() function, tempfile module, 323

mktemp() function, tempfile module, 323

mktime() function, time module, 406

mmap module, 369

mmap() function, mmap module, 370

mod() function, operator module, 273

__mod__() method, 60

mode attribute

of FileIO objects, 350

of TarInfo objects, 322

of files, 161

modf() function, math module, 252

modifying global variables from a function, 18

modifying the module search path, 147

module attribute, of Record objects, 359

module loading, 147

module reloading, 149

module search path

and site module, 177

and zip files, 147

modifying, 147

setting with environment variable, 174

module unloading, 149

__module__ attribute, of types, 50

modulefinder module, 585

modules variable, sys module, 149, 231

modules, 23, 143

accessing classes, 144

and .pyc files, 148

as objects, 144

attribute access, 51

attributes of, 51

dynamic loading, 144

global namespace for functions, 96

importing multiple, 144

one-time execution, 144

search path of, 147

self-testing with doctest, 182

type of, 50

type of module object, 47

types of recognized files, 148

using to write extensible programs, 144

ModuleType type, 47, 237

modulo operator %, 65

month attribute, of date objects, 337

Morsel class, http.cookies module, 512

move() function, shutil module, 319

move() method, of mmap objects, 371

moving the file pointer, 161

MozillaCookieJar class, http.cookiejar module, 513

__mro__ attribute, of classes, 121

MSG_* constants, socket module, 483

msvcrt module, 372

mtime attribute, of TarInfo objects, 322

mul() function, operator module, 273

__mul__() method, 60

multi-dimensional lists, 13

MultiCall() function, xmlrpc.client module, 526

multicore, and program execution, 414

multiple inheritance, 120-121

multiple statements on the same line, 26

multiplexing, of I/O, 459

multiplication operator *, 65

multiprocessing module, 415

and global interpreter lock, 444

and pickle, 435

connecting separate processes, 433

distributed computing, 435

logging, 435

managed objects, 428

passing a list through shared memory, 427

pipes, 421

process pools, 424

queues, 418

shared memory, 426

synchronization primitives, 427

use of __main__ check, 417

multithreaded chicken, 414

mutability

default function arguments, 94

dictionary keys, 44

function parameters, 95

in-place assignment operators, 75

reference counting, 35

mutable, definition of, 33

MutableMapping abstract base class, 266

MutableSequence abstract base class, 266

MutableSet abstract base class, 266

mutual exclusion lock, 438

MySQL, accesing from Python, 297

N

\N escape code, in strings, 28

n(ext) debugger command, pdb module, 189

name attribute

of FieldStorage objects, 535

of FileIO objects, 350

of Process objects, 417

of Record objects, 359

of TarInfo objects, 322

of Thread objects, 436

of files, 161

name mangling, of private attributes, 127

name variable, os module, 379

__name__ attribute

of built-in functions, 49

of functions, 48

of methods, 49

of modules, 51

of types, 50

__name__ variable, of modules, 146

name() function, unicodedata module, 296

named tuples

use as tuples, 264

use by standard library, 265

NamedTemporaryFile() function, tempfile module, 324

namedtuple() function, collections module, 264

NameError exception, 87, 214

NameError exception in __del__ ignored, 179

NameError exception, and variable lookup, 96

namelist() method, of ZipFile objects, 326

Namespace() method, of Manager objects, 429

namespace

and classes, 117

and import statement, 24, 143

local variables of function, 96

namespaceURI attribute, of DOM Node objects, 570

NaN variable, decimal module, 248

NaN

not a number, 213

not a number, decimal module, 244

ne() function, operator module, 274

__ne__() method, 57

neg() function, operator module, 273

__neg__() method, 61

negative indices, 68-69

negInf variable, decimal module, 248

nested classes, problem with pickle, 228

nested functions, 97

and closures, 99

nested lists, 13

nested() function, contextlib module, 267

Netlink protocol, 470

address format, 472

netloc attribute

of urlparse objects, 520

of urlsplit objects, 521

netrc module, 587

network programming modules, Python 3 reorganization, 497

network programming

Unicode encoding, 452

asynchronous, 467

event-driven programming, 455

getting hostname, 474

introduction, 449

performance of polling, 468

new() function

hashlib module, 559

hmac module, 559

__new__() method, 54-55

and instance creation, 129

and metaclasses, 139

caution when reading code, 129

use by immutable types, 129

uses of, 55

newline character, difference on Unix/Windows, 159

newline escape code in strings, 28

newline parameter, to open() function, 159

newline suppression, print statement, 162

newline termination of statements, 7

newlines attribute

of TextIOWrapper objects, 353

of files, 161

next() function, 207

next() method, 59

of TarFile objects, 321

of files, 160

of generators, 19, 53, 103

of iterators, 82

use with coroutines, 104

__next__() method, 59

Python 3, 633

of generators, 19, 103

of iterators, 82

nextset() method, of Cursor objects, 299

nextSibling attribute, of DOM Node objects, 570

NI_* constants, socket module, 475

nice() function, os module, 392

nis module, 586

nlargest() function, heapq module, 270

nntplib module, 587

no_site attribute, of sys.flags, 230

nodeName attribute, of DOM Node objects, 570

nodeType attribute, of DOM Node objects, 570

nodeValue attribute, of DOM Node objects, 570

non-printing characters, specifying in string literals, 28

None, 38

and default arguments, 94

return statement in functions, 96

nonlocal statement, Python 3, 97, 624

normalization of Unicode strings, 171

normalize() function, unicodedata module, 171, 296

normalize() method, of DOM Node objects, 571

normalvariate() function, random module, 255

normcase() function, os.path module, 398

normpath() function, os.path module, 398

not equal to operator !=, 66

not operator, boolean expressions, 9, 77

not_() function, operator module, 274

NotConnected exception, http.client module, 504

notify() method, of Condition objects, 441

notify_all() method, of Condition objects, 441

NotImplementedError exception, 87, 214

NotSupportedError exception, database API, 302

now() method, of datetime class, 339

nsmallest() function, heapq module, 270

NTEventLogHandler class, logging module, 362

ntohl() function, socket module, 476

ntohs() function, socket module, 476

ntransfercmd() method, of FTP objects, 498

null object, 369

null values, 38

NULL-terminated strings, and UTF-8, 170

Number abstract base class, 253

number of CPUs on system, 434

numbers module, 138, 252

numbers, example of defining new type, 133

numerator attribute

of Fraction objects, 250

of integers, 39

numeric data, and strings, 11

numeric literals, 26-27

numeric type coercision, 66-67

numeric type hierarchy, 137, 253

numeric types, 38

numeric() function, unicodedata module, 296

numpy extension, 39, 261

O

-O command line option, 91, 148, 173-174, 369

object, 47

object base class, 21, 119

object() function, 208

objects, 21

attributes of, 33

class of, 34

comparison, 34

comparison in Python 3, 633

container or collection, 33

defining a null object, 369

definition of, 33

first-class status, 36

getting a list of referrers, 221

getting the size of, 192

hierarchy of, 137

how to copy, 36

identity of, 33

inspecting with dir(), 63

instance of, 33

introspection of, 222

methods for comparison, 56

name of, 35

obtaining size of, 234

persistence, 171

proxies in multiprocessing module, 431

reference counting of, 34

representation of, 131

requirements for ordering, 57

sending between processes with pipes, 421

sending between processes with queues, 418

serializing with marshal, 226

serializing with pickle, 227

sharing in the interpreter, 35

supporting iteration, 82

type of, 33

weak references to, 240

observer pattern, 130, 240

oct() function, 77, 208

future_builtins module, 217

octal integer literals, 27

octdigits variable, string module, 287

old-style classes, 139

-OO command line option, 148, 173-174

open() function, 10, 158, 208

Python 3, 159

codecs module, 167, 279

codecs module and Python 3, 279

dbm module, 310

description of file modes, 159

difference between Python 2 and 3, 208

gzip module, 317

io module, 354

os module, 384

shelve module, 171, 311

tarfile module, 319

webbrowser module, 544

open() method

of ZipFile objects, 326

of controller objects, 544

open_new() function, webbrowser module, 544

open_new() method, of controller objects, 544

open_new_tab() function, webbrowser module, 544

open_osfhandle() function, msvcrt module, 373

OpenKey() function, winreg module, 410

OpenKeyEx() function, winreg module, 410

openpty() function, os module, 385

OpenSSL, 486

example of creating certificates, 489

operating system, scheduling by, 414

OperationalError exception, database API, 302

operator module, 273

alternative to lambda, 274

use in optimization, 274

operator overloading, 54

example of, 133

order of operands, 134

reversed operands, 60

type coercion, 134

operators, 30, 65

mathematical, 60

precedence of, 78

optimization

__slots__ attribute of classes, 132, 196

array objects, 260

attribute binding, 195-196

built-in types, 194

creation of instances, 195

decorators and metaclasses, 197

definition of speedup, 192

deque objects, 263

dict() function, 195

dict lookups, 197

dicts versus classes, 195

disassembly, 193

effect of adding layers, 195

exceptions, 196-197

formatting of log messages, 358

functional programming, 197

impact of I/O polling, 469

internal type cache, 233

lists versus array objects, 260

logging module, 369

making timing measurements, 191

map() and filter() functions, 197

marshal versus pickle, 226

measuring memory use, 192

repeated timing measurements, 192

select() function, 467

sorting callback functions, 275

speedup, 194

tuning strategies, 194

use of io module, 354

use of multiprocessing pools, 426

use of operator module, 274

user defined classes, 195

optimize attribute, of sys.flags, 230

optimized mode, enabling with an environment variable, 174

optional function arguments, 18, 93

and None, 38

OptionParser() function, optparse module, 374

options() method, of ConfigParser objects, 333

optionxform() method, of ConfigParser objects, 333

optparse module, 374

example, 157

or operator, boolean expressions, 9, 77

or_() function, operator module, 274

__or__() method, 60

ord() function, 77, 208

order of evaluation, 78

attempts to modify, 79

order of operands, operator overloading, 134

organizing code for distribution, 152

OS X, 331

os module, 158, 378

os.environ variable, 158

os.path module, 396

OSError exception, 87, 214

ossaudiodev module, 588

output() method

of Morsel objects, 512

of SimpleCookie objects, 512

OutputString() method, of Morsel objects, 513

overflow, lack of with integers, 66

OverflowError exception, 214

P

p debugger command, pdb module, 189

P_* constants, spawnv() function, 392

pack() function, struct module, 290

pack() method, of Struct objects, 291

pack_into() function, struct module, 290

pack_into() method, of Struct objects, 291

packages, 149

relative import, 150-151

PACKET_* constants, socket module, 472

packing

binary data structures, 290

of tuples, 14

pairs, creating a list of from dictionary, 45

parallel iteration over sequences, 83

parameter passing to functions, 95

params attribute, of urlparse objects, 520

paramstyle variable, database API, 300

pardir variable, os module, 386

parent class, 119

parentNode attribute, of DOM Node objects, 570

paretovariate() function, random module, 256

parse() function

xml.dom.minidom module, 570

xml.etree.ElementTree module, 578

xml.sax module, 580

parse() method

of ElementTree objects, 574

of Formatter objects, 288

parse_args() method, of OptionParser objects, 158, 376

parse_header() function, cgi module, 536

parse_multipart() function, cgi module, 536

parse_qs() function, urllib.parse module, 521

parse_qsl() function, urllib.parse module, 522

parser module, 586

parseString() function

xml.dom.minidom module, 570

xml.sax module, 580

parsing

CSV files, 548

HTML, 561

URLs, 520

XML, 568

command line options, 157, 374

email messages, 552

form fields in CGI scripts, 534

large XML documents with ElementTree, 579

robots.txt file, 523

partial() function

functools module, 76, 268

use with network handlers, 510

partition() method, of strings, 41, 43

pass statement, 9, 25, 82

password attribute

of urlparse objects, 520

of urlsplit objects, 521

path attribute

of BaseHTTPRequestHandler objects, 509

of urlparse objects, 520

of urlsplit objects, 521

path variable

os module, 379

sys module, 147, 177, 232

__path__ attribute, of modules, 51

__path__ variable, in packages, 151

pathconf() function, os module, 388

pathname attribute, of Record objects, 359

pathsep variable, os module, 386

pattern attribute, of Regex objects, 284

pattern syntax, regular expressions, 281

pause() function, signal module, 399

pdb module, 186

debugging programs from command shell, 189

.pdbrc configuration file, 190

.pdbrc configuration file, 190

peek() method, of BufferReader objects, 351

PEM_cert_to_DER_cert() function, ssl module, 488

PEP 249, Python Database API Specification, 297

PEP 333 (WSGI), 540

per-user site directory, 154, 177

installing packages in, 178

performance

of binary file I/O, 351-352

of generator expressions, 110

of logging module, 369

of type checking, 34

Perl

and dynamic scope, 97

interpretation of numeric strings vs. Python, 11

permutations() function, itertools module, 272

persistent dictionary, shelve module, 171

PHP, interpretation of numeric strings vs. Python, 11

pi variable, math module, 252

pickle module, 171, 226

__main__ module, 228

and multiprocessing module, 435

cPickle, 229

incompatible objects, 171

interaction with copy module, 220

protocol selection, 171-172

security concerns, 172

used by shelve, 311

pickle protocol, selecting in shelve module, 172

Pickler class, pickle module, 228

pickletools module, 586

pid attribute

of Popen objects, 404

of Process objects, 417

Pipe() function, multiprocessing module, 421

pipe() function, os module, 385

pipelines and generators, 19

pipelines, and generators, 106-107

pipes module, 586

pipes, creating with subprocess module, 403

pkgutil module, 586

placement of decorators, 101

platform module, 586

platform variable, sys module, 232

plistlib module, 587

plock() function, os module, 392

pm() function, pdb module, 186

POINTER() function, ctypes module, 614

pointer() function, ctypes module, 615

poll() function, select module, 459

poll() method

of Connection objects, 421

of Poll objects, 460

of Popen objects, 403

POLL* constants, select module, 459

polling, 459

performance of, 468-469

polymorphism, 122

Pool() function, multiprocessing module, 424

pop() method

of array objects, 260

of deque objects, 262

of dicts, 45, 95

of lists, 41

of sets, 47

Popen() function, subprocess module, 402

popen() function, os module, 392

popitem() method, of dicts, 45

popleft() method, of deque objects, 262

poplib module, 587

port attribute

of urlparse objects, 520

of urlsplit objects, 521

port number

in network programs, 449

list of well known, 450

portability, of marshal module, 226

portable manipulation of filenames, 396

pos attribute, of MatchObject objects, 286

pos() function, operator module, 273

__pos__() method, 61

POSIX interface, 331

posix attribute, of TarFile objects, 321

post_mortem() function, pdb module, 186

pow() function, 66, 208

math module, 252

__pow__() method, 60

power operator **, 65

pp debugger command, pdb module, 189

pprint module, 586

preamble attribute, of Message objects, 554

prec attribute, of Context objects, 247

precision, of floating point, 38

predicate() function, itertools module, 271

prefix attribute, of DOM Node objects, 570

—prefix option to setup.py, 154

prefix variable, sys module, 177, 232

__prepare__() method, Python 3 metaclasses, 627-628

preventing the creation of .pyc files, 230

previousSibling attribute, of DOM Node objects, 570

print statement, 6, 162

and __str__(), 56

and sys.stdout, 161

file redirection, 10, 163

formatted output, 8, 162

newline suppression, 162

softspace attribute of files, 162

syntax error with Python 3, 6

trailing comma, 10

print() function, 163, 209

Python 3, 631

enabling in Python 2.6, 163

file redirection, 163

newline suppression, 163

separator character, 163

print_directory() function, cgi module, 537

print_environ() function, cgi module, 537

print_environ_usage() function, cgi module, 537

print_exc() function, traceback module, 236

print_exception() function, traceback module, 236

print_form() function, cgi module, 537

print_last() function, traceback module, 236

print_stack() function, traceback module, 236

print_tb() function, traceback module, 235-236

printable variable, string module, 287

printdir() method, of ZipFile objects, 326

printf() function equivalent, 8

printing to the screen, 10

printing

creating custom formatters, 288

dates and times, 406

formatted, 8

priority queue, 269

PriorityQueue() function, queue module, 445

private attributes, 127

and properties, 128

name mangling of, 127

private class members, 26

private methods, and inheritance, 128

private specifier, lack of, 127

probability, random number distributions, 255

process attribute, of Record objects, 359

process id, getting, 380

Process() function, multiprocessing module, 416

processes

connecting with pipes, 421

daemonic, 415

definition of, 413

joining, 415

scheduling of, 414

sending signals to, 392

terminating, 392, 403-404, 415

worker pools, 424

ProcessingInstruction() function, xml.etree.ElementTree module, 575

processingInstruction() method, of ContentHandler objects, 581

producer-consumer

with coroutines, 20

with pipes, 422

with queues, 419

with threads and condition variables, 441

with threads and semaphores, 439

product() function, itertools module, 272

profile module, 190

profiling, 190

interpreting output, 191

program execution model, 81

program execution, main program, 146

program structure, 81

program termination, 7, 179, 233

and garbage collection, 179

brutal, 179

brute force, 391

ignored NameError exception, 179

registering cleanup functions, 219

programming errors, lack of compiler checking, 181

ProgrammingError exception, database API, 302

prompts

changing, 176

interactive mode, 175

propagate attribute, of Logger objects, 360

properties, 117

and __setattr_() method, 131

and private attributes, 128

definition of, 124

set and delete functions, 126

uniform access principle, 125

use by methods, 125

@property decorator, 124

property() function, 126, 209

protected specifier, lack of, 127

proto attribute, of socket objects, 484

protocol parameter, to pickle functions, 171

protocol_version attribute, of BaseHTTPRequestHandler class, 509

ProtocolError exception, xmlrpc.client module, 527

proxies, and attribute binding methods, 132

proxy, 62

proxy functions, 95

proxy objects

and multiprocessing module, 428, 431

problem with type checking, 135

proxy() function, weakref module, 241

ProxyBasicAuthHandler class, urllib.request module, 518-519

ProxyDigestAuthHandler class, urllib.request module, 518-519

ProxyHandler class, urllib.request module, 518-519

ProxyTypes class, weakref module, 241

ps1 variable, sys module, 232

ps2 variable, sys module, 232

.pth files, site configuration, 177

pty module, 586

punctuation variable, string module, 287

push() method, of asynchat objects, 453

push_with_producer() method, of asynchat objects, 453

put() method, of Queue objects, 418, 445

put_nowait() method, of Queue objects, 419, 445

putch() function, msvcrt module, 373

putenv() function, os module, 380

putheader() method, of HTTPConnection objects, 503

putrequest() method, of HTTPConnection objects, 503

putwch() function, msvcrt module, 373

pwd module, 586

pwd() method, of FTP objects, 498

.py files, 6, 147

and library modules, 23

py2app package, 154

py2exe package, 154

py3k_warning attribute, of sys.flags, 230

py3kwarning variable, sys module, 232

Py_BEGIN_ALLOW_THREADS macro, 607

Py_BuildValue() function, 602

py_compile module, 586

Py_DECREF() macro, 607

Py_END_ALLOW_THREADS macro, 607

Py_Finalize() function, 609

Py_GetExecPrefix() function, 609

Py_GetPath() function, 609

Py_GetPrefix() function, 609

Py_GetProgramFullPath() function, 609

Py_INCREF() macro, 607

Py_Initialize() function, 609

Py_IsInitialized() function, 609

Py_SetProgramName() function, 609

Py_XDECREF() macro, 607

Py_XINCREF() macro, 607

PyArg_ParseTuple() function, 597

PyArg_ParseTupleAndKeywords() function, 597

PyBytes_AsString() function, 611

.pyc files, 147

compilation on import, 148

preventing the creation of, 230

when created, 148

pyclbr module, 586

.pyd files, compiled extensions, 148

pydev, 5

pydoc command, 24

PyErr_Clear() function, 606

PyErr_ExceptionMatches() function, 606

PyErr_NoMemory() function, 605

PyErr_Occurred() function, 606

PyErr_SetFromErrno() function, 605

PyErr_SetFromErrnoWithFilename() function, 605

PyErr_SetObject() function, 605

PyErr_SetString() function, 605

PyEval_CallObject() function, 610

PyEval_CallObjectWithKeywords() function, 610

PyExc_* exceptions, in extension modules, 605

PyFloat_AsDouble() function, 611

PyImport_ImportModule() function, 610

PyInt_AsLong() function, 611

PyLong_AsLong() function, 611

PyModule_AddIntConstant() function, 604

PyModule_AddIntMacro() function, 605

PyModule_AddObject() function, 604

PyModule_AddStringConstant() function, 604

PyModule_AddStringMacro() function, 605

.pyo files, 147

when created, 148

PyObject_GetAttrString() function, 610

PyObject_SetAttrString() function, 610

pypi (Python Package Index), 154

pyprocessing library, 435

PyRun_AnyFile() function, 608

PyRun_InteractiveLoop() function, 609

PyRun_InteractiveOne() function, 609

PyRun_SimpleFile() function, 609

PyRun_SimpleString() function, 609

PyString_AsString() function, 611

PySys_SetArgv() function, 610

Python 3

2to3 tool, 635-637

Ellipsis as an expression, 626

I/O system, 349, 631

Unicode characters in identifiers, 622

__next__() method, 633

absolute imports, 634

abstract base class, 137

adoption of, 621

and WSGI, 541

byte strings and system interfaces, 630

chained exceptions, 626

command line options, 633

commands module, 332

comparison, 633

dictionary comprehension, 623

dictionary operations, 45

difference in extension modules, 595

different behavior of byte strings, 629

division operator, 65

encode() and encode() methods, 629

environment variables, 633

exception attributes, 213

exec() function, 631

extended iterable unpacking, 623

filenames, 633

files, 160

filter() function, 205

function annotations, 624

generator changes, 103

import statement, 151

incompatibility with Python 2, 621

integer division, 633

interactive mode encoding issues, 175

iterator protocol, 633

keyword-only arguments, 625

map() function, 207

metaclasses, 139, 627-628

migration pitfalls, 629

network programming, 452

next() method of generators, 53

nonlocal statement, 624

open() function, 159, 208, 279

practical porting strategy, 637

print() function, 209, 631

raw_input() function, 209

reorganization of network modules, 497

round() function, 209

set comprehension, 623

set literals, 622

socketserver module, 489

standard library reorganization, 634

super() function, 120, 210, 627

supporting both Python 2 and 3, 638

syntax error with print, 6

third party libraries, 621

types module, 237

unbound methods, 49

unicode() function removal, 211

using new built-in functions in Python 2, 217

view objects on dicts, 632

viewing objects in ASCII, 201

who should use, 621

xrange() and range() functions, 17

xrange() function removal, 44, 211

zip() function, 83, 211

python interpreter, 6

PYTHON* environment variables, 174

Python.h header file, in extensions, 594

.pyw files, 147, 176

PyZipFile() function, zipfile module, 325

Q

-Q command line option, 173

q(uit) debugger command, pdb module, 189

qsize() method, of Queue objects, 419, 445

queries, how to safely form for databases, 300

query attribute

of urlparse objects, 520

of urlsplit objects, 521

QueryInfoKey() function, winreg module, 410

QueryValue() function, winreg module, 410

QueryValueEx() function, winreg module, 410

queue module, 444

Queue() function

multiprocessing module, 418

queue module, 444

Queue() method, of Manager objects, 429

queue, circular, 262

queues

coroutines, 108

example with threads, 446

message passing, 415

multiple consumers and producers, 420

priority, 269

shared by multiple processes, 429

thread programming, 444

quit() method

of FTP objects, 498

of SMTP objects, 514

quitting the interactive interpreter, 7

quopri module, 567

quote() function, urllib.parse module, 522

quote_from_bytes() function, urllib.parse module, 522

quote_plus() function, urllib.parse module, 522

quoteattr() function, xml.sax.saxutils module, 583

quotes, difference between styles, 27

quoting, characters in URLs, 522

R

!r specifier in string formatting, 74

r character, before a string literal, 29

‘r’ mode, to open() function, 159

r(eturn) debugger command, pdb module, 189

race condition, 193, 414

__radd__() method, 60

when invoked over __add__(), 134

radians() function, math module, 251

radix attribute, of sys.float_info, 231

raise statement, 23, 84-85, 88

__rand__() method, 61

RAND_add() function, ssl module, 488

RAND_egd() function, ssl module, 488

RAND_status() function, ssl module, 488

randint() function, random module, 254

random module, 254

random numbers, and threads, 256

random() function, random module, 255

randrange() function, random module, 254

range of integer values, 38

range() function, 17, 209

removal in Python 3, 17

Rational abstract base class, 253

rational numbers, 250

raw I/O on files, 350

raw socket, 470

raw strings, 29

Unicode, 29

backslash rules, 29

use in regular expressions, 281

raw-unicode-escape encoding, description of, 170

raw_decode() method, of JSONDecoder objects, 566

raw_input() function, 10, 162, 209

Python 3, 11, 209

RawArray() function, multiprocessing module, 427

RawConfigParser class, configparser module, 336

RawIOBase abstract base class, 354

RawValue() function, multiprocessing module, 426

RCVALL_* constants, socket module, 482

__rdiv__() method, 60

__rdivmod__() method, 60

re attribute, of MatchObject objects, 286

re module, 41, 69, 281

read() function, os module, 385

read() method

of BufferReader objects, 351

of ConfigParser objects, 333

of FileIO objects, 350

of HTTPResponse objects, 504

of StreamReder objects, 278

of TextIOWrapper objects, 353

of ZipFile objects, 326

of files, 159-160

of mmap objects, 371

of ssl objects, 488

of urlopen objects, 515

read-eval loop, 5

read1() method, of BufferReader objects, 351

read_byte() method, of mmap objects, 371

read_mime_types() function, mimetypes module, 567

readable() method

of IOBase objects, 349

of dispatcher objects, 456

readall() method, of FileIO objects, 350

reader() function, csv module, 549

ReadError exception, tarfile module, 322

readfp() method, of ConfigParser objects, 334

reading CSV data, example of, 14

reading configuration files, 332

reading lines, files, 10

reading user input, 10, 162

readinto() method, of BufferReader objects, 351

readline library, 176

readline module, 586

readline() method

of IOBase objects, 349

of StreamReder objects, 278

of TextIOWrapper objects, 353

of files, 10, 159-160

of mmap objects, 371

of urlopen objects, 515

readlines() method

of IOBase objects, 349

of StreamReder objects, 278

of files, 13, 159-160

of urlopen objects, 515

readlink() function, os module, 388

ready() method, of AsyncResult objects, 425

Real abstract base class, 253

real attribute

of complex numbers, 39

of floating point, 39

realpath() function, os.path module, 398

reason attribute, of HTTPResponse objects, 504

reassigning part of a list, 12

Record objects, logging module, 359

recursion limit, changing, 112, 235

recursion, 112

and decorators, 102, 113

and generator functions, 112

recursive traversal of directory trees, 390

recv() method

of Connection objects, 421

of dispatcher objects, 456

of socket objects, 483

recv_bytes() method, of Connection objects, 421

recv_bytes_into() method, of Connection objects, 422

recv_into() method, of socket objects, 483

recvfrom() method, of socket objects, 483

recvfrom_info() method, of socket objects, 483

recvmsg() system call, lack of support, 486

reduce() function, functools module, 268

__reduce__() method, 229

__reduce_ex__() method, 229

reentrant mutex lock, 438

ref() function, weakref module, 240

reference counting, 34, 129

and copying, 35

and del statement, 35

and memory use, 192

and mutable objects, 36

in extension modules, 607

obtaining, 35

reference cycles

and garbage collection, 221

avoiding with weak references, 130, 240

ReferenceError exception, 87, 214

REG_* constants, winreg module, 409

Regex objects, re module, 284

register command of setup.py file, 155

register() function

atexit module, 179, 219

webbrowser module, 544

register() method

of BaseManager class, 430

of Poll objects, 459

of abstract base classes, 137

register_adapter() function, sqlite3 module, 305

register_converter() function, sqlite3 module, 304

register_dialect() function, csv module, 551

register_function() method, of XMLRPCServer objects, 527

register_instance() method, of XMLRPCServer objects, 527

register_introspection_functions() method, of XMLRPCServer objects, 528

register_multicall_functions() method, of XMLRPCServer objects, 528

RegLoadKey() function, winreg module, 409

regular expressions

pattern syntax, 281

re module, 281

use of raw strings, 281

relational databases, accessing from Python, 297

relational operators, 9, 56

relative package imports, 150-151

release() method

of Condition objects, 441

of Lock objects, 438

of RLock objects, 439

of Semaphore objects, 439

reliable datagrams, 470

reload() function, 149

reloading modules, 149

relpath() function, os.path module, 398

remote procedure call

XML-RPC, 524

multiprocessing module, 423-424

remove() function, os module, 388

remove() method

of Element objects, 577

of array objects, 260

of deque objects, 262

of lists, 40-41

of sets, 15, 47

remove_option() method, of ConfigParser objects, 334

remove_section() method, of ConfigParser objects, 334

removeChild() method, of DOM Node objects, 571

removedirs() function, os module, 388

removeFilter() method

of Handler objects, 364

of Logger objects, 359

removeHandler() method, of Logger objects, 361

removing directories, 318

removing files, 388

removing sequence items, 40

removing slices, 40

rename() function, os module, 388

rename() method, of FTP objects, 498

renames() function, os module, 388

repeat() function

cProfile module, 190

itertools module, 272

operator module, 274

timeit module, 192

‘replace’ error handling, Unicode encoding, 166

replace() method

of date objects, 337

of datetime objects, 340

of strings, 41, 43

of time objects, 338

replace_header() method, of Message objects, 556

replaceChild() method, of DOM Node objects, 571

replacing substrings, 41

replication, of sequences and shallow copies, 67

report() method, of dircmp objects, 315

report_full_closure() method, of dircmp objects, 315

report_partial_closure() method, of dircmp objects, 315

repr (reprlib) module, 586

repr() function, 11, 55, 77, 176, 209

and eval(), 55

difference from str(), 12

__repr__() method, 55-56

representing dates and times, 336

request attribute, of BaseRequestHandler objects, 490

Request() function, urllib.request module, 516

request() method, of HTTPConnection objects, 503

request_queue_size attribute, of SocketServer class, 492

request_version attribute, of BaseHTTPRequestHandler objects, 509

RequestHandlerClass attribute, of SocketServer objects, 492

reraising the last exception, 84

reserved attribute, of ZipInfo objects, 327

reserved words, 26

reset() method

of HTMLParser objects, 562

of IncrementalDecoder objects, 279

of IncrementalEncoder objects, 278

of StreamReder objects, 278

of StreamWriter objects, 278

resetwarnings() function, warnings module, 239

resize() function, ctypes module, 617

resize() method, of mmap objects, 371

resolution attribute

of date class, 337

of datetime class, 340

of time class, 338

of timedelta class, 341

resource module, 587

response time, asynchronous networking, 467

ResponseNotReady exception, http.client module, 504

responses attribute, of BaseHTTPRequestHandler class, 509

restricting attribute names, 132

restype attribute, of ctypes function objects, 613

result of last operation in interactive mode, 6, 176

retrbinary() method, of FTP objects, 499

retrlines() method, of FTP objects, 499

return statement, 96

returncode attribute, of Popen objects, 404

returning multiple values from a function, 18, 96

reverse keyword argument, to sort(), 40

reverse() method

of array objects, 260

of lists, 40-41

reversed operand methods, when invoked, 134

reversed operands, operator overloading, 60

reversed() function, 209

reversing a list, 40

rfile attribute

of BaseHTTPRequestHandler objects, 509

of StreamRequestHandler objects, 491

rfind() method, of strings, 41, 43

__rfloordiv__() method, 60

right shift operator >>, 65

right_list attribute, of dircmp objects, 315

right_only attribute, of dircmp objects, 315

rindex() method, of strings, 41, 43

rjust() method, of strings, 43

rlcompleter module, 586

rlecode_hqx() function, binascii module, 548

rledecode_hqx() function, binascii module, 548

RLock object

multiprocessing module, 427

threading module, 438

RLock() method, of Manager objects, 429

__rlshift__() method, 61

rmd() method, of FTP objects, 499

rmdir() function, os module, 388

__rmod__() method, 60

rmtree() function, shutil module, 319

__rmul__() method, 60

robotparser module, 523

robots.txt file, 523

rollback() method, of Connection objects, 298

rollover() method, of SpoolTemporaryFile objects, 324

root logger, logging module, 355

__ror__() method, 61

rotate() method, of deque objects, 263

rotating log files, 363

RotatingFileHandler class, logging module, 363

round() function, 66, 209

and Python 3, 209

rounding attribute, of Context objects, 247

rounding behavior, 66

change in Python 3, 66

rounding, decimal module, 245

rounds attribute, of sys.float_info, 231

row_factory attribute, of Connection objects, 308

rowcount attribute, of Cursor objects, 299

rpartition() method, of strings, 41

__rpow__() method, 61

__rrshift__() method, 61

rshift() function, operator module, 274

__rshift__() method, 60

rsplit() method, of strings, 41, 43

rstrip() method, of strings, 43

__rsub__() method, 60

__rtruediv__() method, 60

Ruby, differences in object system, 124

run debugger command, pdb module, 189

run() function

cProfile module, 190

pdb module, 186

profile module, 190

run() method

of Process objects, 416

of Thread objects, 436

runcall() function, pdb module, 186

runeval() function, pdb module, 186

running programs, 6

RuntimeError exception, 87, 214

RuntimeWarning warning, 216, 238

__rxor__() method, 61

S

!s specifier in string formatting, 74

-S command line option, 173-174

-s command line option, 173

s(tep) debugger command, pdb module, 189

safe_substitute() method, of Template objects, 289

SafeConfigParser class, configparser module, 336

same_files attribute, of dircmp objects, 315

samefile() function, os.path module, 398

sameopenfile() function, os.path module, 398

samestat() function, os.path module, 398

sample() function, random module, 255

SaveKey() function, winreg module, 410

SAX interface

XML parsing, 568

example of, 583

scaling, with concurrency, 415

sched module, 587-588

scheduler, for generators and coroutines, 447

scheme attribute

of urlparse objects, 520

of urlsplit objects, 521

scientific notation, floating point, 27

scoping rules

and module imports, 145

and self parameter in methods, 118

lexical scoping of functions, 97

of classes, 118

of function variables, 18, 96

of iteration variable in list comprehension, 109

of iteration variables, 82

script name, 157

search path, for modules, 147

search() function, re module, 284

search() method, of Regex objects, 285

searching, strings with an offset, 41

second attribute, of time objects, 338

sections() method, of ConfigParser objects, 334

secure sockets layer (SSL), 486

security

XML-RPC servers, 530

database queries, 300

marshal module, 226

pickle module, 172, 229

seed() function, random module, 254

seek() method

of IOBase objects, 350

of files, 160-161, 352

of mmap objects, 371

seekable() method, of IOBase objects, 350

select module, 415, 459

signal handling, 399

select() function

and asyncore module, 455

performance problems, 467

select module, 459

self parameter of methods, 22, 118

why required, 119

__self__ attribute

of built-in functions, 49

of methods, 49

Semaphore object

multiprocessing module, 427

threading module, 439

Semaphore objects, use for signaling, 439

Semaphore() method, of Manager objects, 429

semicolon ;, 26

send() method

of Connection objects, 422

of HTTPConnection objects, 503

of dispatcher objects, 456

of generators, 20, 53, 104

of socket objects, 484

send_bytes() method, of Connection objects, 422

send_error() method, of BaseHTTPRequestHandler objects, 509

send_header() method, of BaseHTTPRequestHandler objects, 509

send_response() method, of BaseHTTPRequestHandler objects, 509

send_signal() method, of Popen objects, 403

sendall() method, of socket objects, 484

sendcmd() method, of FTP objects, 499

sending email, example of, 514, 558

sendmail() method, of SMTP objects, 514

sendmsg() system call, lack of support, 486

sendto() method, of socket objects, 484

sentinel, use with queuing, 420, 446

sep keyword argument, to print() function, 163

sep variable, os module, 386

separator character, print() function, 163

Sequence abstract base class, 266

sequences, 39

comparison of, 70

concatenation, 67

extended slicing of, 68

in operator, 67

indexing in string formatting, 72

item assignment, 40

iteration over, 39, 69

lookup in composite string formatting, 42

negative indices, 68

operators, 67

picking random elements, 254

random sampling, 254

replication, 67

shallow copies in replication, 67

slice assignment, 40

slicing operator, 68

special methods of, 58

unpacking, 67-68

serve_forever() method

of BaseManager objects, 431

of SocketServer objects, 491

server attribute, of BaseRequestHandler objects, 490

server program, 449

TCP example, 451

UDP example, 485

example of restricting access with HTTP, 507

example with SocketServer module, 490

example with coroutines, 464

server_address attribute, of SocketServer objects, 492

server_version attribute

of BaseHTTPRequestHandler class, 508

of HTTPRequestHandler class, 507

ServerProxy() function, xmlrpc.client module, 524

Set abstract base class, 266

set comprehension, Python 3, 623

set difference operator -, 75

set intersection operator &, 75

set literals, Python 3, 622

set symmetric difference operator ^, 75

set theory, similarity to list comprehensions, 110

set type, 38, 46, 75

set union operator |, 75

set() function, 15, 77, 210

set() method

of ConfigParser objects, 334

of Element objects, 577

of Event objects, 440

of Morsel objects, 512

__set__() method, of descriptors, 58, 126

set_authorizer() method, of Connection objects, 306

set_boundary() method, of Message objects, 556

set_charset() method, of Message objects, 556

set_conversion_mode() function, ctypes module, 617

set_debug() function, gc module, 221

set_default_type() method, of Message objects, 556

set_defaults() method, of OptionParser objects, 158, 377

set_errno() function, ctypes module, 618

set_executable() function, multiprocessing module, 435

set_last_error() function, ctypes module, 618

set_param() method, of Message objects, 556

set_pasv() method, of FTP objects, 499

set_payload() method, of Message objects, 556

set_progress_handler() method, of Connection objects, 307

set_proxy() method, of Request objects, 517

set_server_documentation() method, of XMLRPCServer objects, 528

set_server_name() method, of XMLRPCServer objects, 528

set_server_title() method, of XMLRPCServer objects, 528

set_terminator() method, of asynchat objects, 453

set_threshold() function, gc module, 221

set_trace() function, pdb module, 186

set_type() method, of Message objects, 557

set_unixfrom() method, of Message objects, 557

set_usage() method, of OptionParser objects, 377

set_wakeup_fd() function, signal module, 399

setattr() function, 210

and private attributes, 128

__setattr__() method, 57-58, 131

and __slots__, 133

setblocking() method, of socket objects, 484

setcheckinterval() function, sys module, 235

setcontext() function, decimal module, 248

setDaemon() method, of Thread objects, 437

setdefault() method

of dicts, 45

of dicts and defaultdict objects, 263

setdefaultencoding() function, sys module, 235

setdefaultencoding() method, sys module, 177

setdefaulttimeout() function, socket module, 476

setdlopenflags() function, sys module, 235

setDocumentLocator() method, of ContentHandler objects, 581

setegid() function, os module, 380

seteuid() function, os module, 380

setFormatter() method, of Handler objects, 365

setgid() function, os module, 380

setgroups() function, os module, 380

setinputsize() method, of Cursor objects, 299

setitem() function, operator module, 274

__setitem__() method, 58-59

and slices, 59

setitimer() function, signal module, 399

setLevel() method

of Handler objects, 364

of Logger objects, 359

setmode() function, msvcrt module, 373

setName() method, of Thread objects, 436

setoutputsize() method, of Cursor objects, 299

setpassword() method, of ZipFile objects, 326

setpgid() function, os module, 381

setpgrp() function, os module, 381

setprofile() function

sys module, 235

threading module, 444

setrecursionlimit() function, sys module, 235

setregid() function, os module, 381

setreuid() function, os module, 381

_setroot() method, of ElementTree objects, 574

sets, 15

adding items, 15

creating from iterable objects, 46

difference operator, 15

equality of, 78

in-place modification of, 47

intersection operator, 15

length of, 75

removing items, 15

symmetric difference operator, 15

union operator, 15

updating, 15

setsid() function, os module, 381

setslice() function, operator module, 274

setsockopt() method, of socket objects, 484

setstate() function, random module, 254

__setstate__() method, 228

and copying, 220

and pickle module, 172

@setter decorator of properties, 126

settimeout() method, of socket objects, 484

setting default encoding of standard I/O, 175

settrace() function

sys module, 235

threading module, 444

setuid() function, os module, 381

setUp() method

TestCase objects, 184

of TestCase objects, 184

setup() function, distutils module, 152, 596

setup() method, of BaseRequestHandler objects, 490

setup.py file

C extensions, 596

SWIG extensions, 620

and setuptools, 154

creating, 152-153

install command, 153-154

installing in per-user site directory, 178

setuptools library, 147, 154

SetValue() function, winreg module, 411

SetValueEx() function, winreg module, 411

sha1() function, hashlib module, 559

sha224() function, hashlib module, 559

sha256() function, hashlib module, 559

sha384() function, hashlib module, 559

sha512() function, hashlib module, 559

shallow copy, 36

of dicts, 45

of lists, 40

sequence replication, 67

shared arrays, multiprocessing module, 426

shared libraries

extension modules, 148

loading with ctypes, 612

shared memory

example of passing a list, 427

multiprocessing module, 426

sharing of objects, 35

Shelf class, shelve module, 311

shell commands

collecting output from, 331

emulating in Python, 318

shell pipes, similarity to generators, 106

shelve module, 171, 311

dbhash module, 311

selecting the pickle protocol, 172

shlex module, 588

short-circuit evaluations, of boolean expressions, 78

showwarning() function, warnings module, 239

shuffle() function, random module, 255

shutdown() function, logging module, 366

shutdown() method

of BaseManager objects, 431

of SocketServer objects, 492

of socket objects, 484

shutil module, 318

side effects

in functions, 95

reasons to avoid, 96

SIG* signal names, 400

SIGHUP signal, 179

siginterrupt() function, signal module, 400

signal handling, 399

signal module, 399

signal() function, signal module, 400

signaling, with semaphores, 439

signals

close() method of generators, 104

list of, 400

mixing with threads, 402

throw() method of generators, 105

SIGTERM signal, 179

simple_producer() function, asynchat module, 453

SimpleCookie() function, http.cookies module, 512

SimpleHandler() function, wsgiref.handlers module, 543

SimpleHTTPRequestHandler class, http.server module, 507

SimpleHTTPServer module, see http.server, 506

SimpleXMLRPCServer class, xmlrpc.server module, 527

SimpleXMLRPCServer module, 527

sin() function, math module, 252

single precision floating point, 39

singleton tuple, 14

sinh() function, math module, 252

site configuration files, 177

site module, 166, 174, 177

site-packages directory, 175

sitecustomize module, 177

size attribute

of Struct objects, 291

of TarInfo objects, 322

size() method

of FTP objects, 499

of mmap objects, 371

Sized abstract base class, 265

sizeof() function, ctypes module, 618

skippedEntity() method, of ContentHandler objects, 581

sleep() function, time module, 406

sleeping, 406

until signal received, 399

slice assignment, lists, 12

slice objects, 51, 53

and indexing methods, 59

attributes of, 54

slice type, 51

slice() function, 53, 210

slices, 39

and special methods, 59

and xrange objects, 44

assignment to, 40, 69

deletion of, 40, 69

multidimensional, 59

slicing operator [:], 67-68

on lists, 12

on strings, 11

__slots__ attribute

and __dict__ attribute of instances, 50

compatibility with other code, 133

inheritance, 133

of class definitions, 132

optimization, 196

Smalltalk, differences in object system, 124

SMTP protocol, example of sending a message, 514

SMTP() function, smtplib module, 514

smtpd module, 587

SMTPHandler class, logging module, 363

smtplib module, 513

sndhdr module, 588

sniff() method, of Sniffer objects, 550

Sniffer() function, csv module, 550

SO_* socket options, socket module, 479

SOCK_* constants, socket module, 470

socket attribute, of SocketServer objects, 492

socket module, 469

socket() function, socket module, 476

socket, definition of, 449

socket_type attribute, of SocketServer class, 493

SocketHandler class, logging module, 363

socketpair() function, socket module, 477

sockets

address families, 470

methods on, 478

polling with select(), 459

specifying network addresses, 471

types of, 470

SocketServer module, 489

and Python 3, 489

changing server parameters, 492

softspace attribute, of files, 161

sort() method, of lists, 40-41

sorted() function, 210

sorting

changing behavior of, 40

in-place on lists, 40

requirements for objects, 57

reverse order, 40

use of operator module, 275

source code encoding, 31

Python 3, 622

span() method, of MatchObject objects, 286

spawnl() function, os module, 393

spawnle() function, os module, 393

spawnlp() function, os module, 393

spawnlpe() function, os module, 393

spawnv() function, os module, 392

spawnve() function, os module, 393

spawnvp() function, os module, 393

spawnvpe() function, os module, 393

special methods, 21, 54

special symbols, 30

speedup, definition of, 192

split() function

os.path module, 398

re module, 284

split() method

of Regex objects, 285

of strings, 14, 41, 43

splitdrive() function, os.path module, 398

splitext() function, os.path module, 398

splitlines() method, of strings, 44

splitting, strings, 14, 43

splitunc() function, os.path module, 398

SpooledTemporaryFile() function, tempfile module, 324

sprintf() function equivalent, 70

spwd module, 587

SQL queries

SQL injection attack, 300

examples of, 309

executing on database, 297

how to form, 300

similarity to list comprehensions, 111

SQLite database, 303

sqlite3 module, 303

sqrt() function, math module, 252

sqrt() method, of Decimal objects, 243

ssl module, 486

SSL, example of creating certificates, 489

st_* attributes, of stat objects, 389

stack frames, 52

in tracebacks, 53

stack size, for threads, 444

stack() function, inspect module, 225

stack_size() function, threading module, 444

Stackless Python, 467

standard I/O streams, 161

and integrated development environments, 162

setting the default encoding, 175

standard error, 157

standard input and output, 10

standard library reorganization, Python 3, 634

standard_b64decode() function, base64 module, 546

standard_b64encode() function, base64 module, 546

StandardError exception, 87

starmap() function, itertools module, 272

start attribute, of slices, 54

start() method

of BaseManager objects, 431

of MatchObject objects, 286

of Process objects, 416

of Thread objects, 436

of Timer objects, 438

of TreeBuilder objects, 577

startDocument() method, of ContentHandler objects, 582

startElement() method, of ContentHandler objects, 582

startElementNS() method, of ContentHandler objects, 582

startfile() function, os module, 393

startPrefixMapping() method, of ContentHandler objects, 582

startswith() method, of strings, 44

startup script, in interactive mode, 174

stat module, 387, 587

stat() function

os module, 388

os.path module, 398

stat_float_times() function, os module, 389

statement termination, 7

and semicolons, 7

statements

breaking across multiple lines, 9

putting on the same line, 25-26

running in the debugger, 186

static method, 22, 48, 123, 125

practical use of, 123

@staticmethod decorator, 22, 48, 123, 125, 210

statistics, random number distributions, 255

status attribute, of HTTPResponse objects, 504

statvfs() function, os module, 389

stderr attribute, of Popen objects, 404

stderr variable, sys module, 161, 232

__stderr__ variable, sys module, 162, 232

stdin attribute, of Popen objects, 404

stdin variable, sys module, 10, 161, 232

__stdin__ variable, sys module, 162, 232

stdout attribute, of Popen objects, 404

stdout variable, sys module, 10, 161, 232

__stdout__ variable, sys module, 162, 232

step attribute, of slices, 54

StopIteration exception, 59, 87, 215

and generators, 103

storbinary() method, of FTP objects, 499

storlines() method, of FTP objects, 499

str type, 38

str() function, 11, 56, 76, 210

and print, 162

difference from repr(), 12

__str__() method, 55-56

StreamError exception, tarfile module, 322

StreamHandler class, logging module, 363

StreamReader class, codecs module, 278

streamreader() method, of CodecInfo objects, 278

StreamRequestHandler class, SocketServer module, 491

streams, 470

StreamWriter class, codecs module, 278

streamwriter() method, of CodecInfo objects, 278

strerror() function, os module, 381

strftime() function, time module, 406

strftime() method

of date objects, 337

of time objects, 338

‘strict’ error handling, Unicode encoding, 166

string attribute, of MatchObject objects, 286

string formatting, 70

!r specifier, 74

!s specifier, 74

alignment, 73

attribute lookup, 72

codes for % operator, 70-71

customizing format() method, 74

dictionaries, 72

dictionary lookup, 72

fill characters, 73

format specifiers, 72

formatting operator %, 70

string interpolation, 72, 163

string literals, 27

Unicode characters, 28

and Unicode encodings, 29

and documentation strings, 30

byte strings, 29

unicode characters in source code, 31

string module, 287

Template strings, 164

string_at() function, ctypes module, 618

StringIO class, io module, 353

stringprep module, 586

strings, 11

Unicode, 41, 165

and numeric calculations, 11

as a dictionary key, 16

as in-memory text files, 353

as sequences, 39

basestring object for type checking, 202

byte literals, 29

byte strings, 41, 202

case conversion, 43-44

character substitution, 42

comparison of, 70

concatenation, 11

concatenation of adjacent literals, 27

creating custom formatters, 288

disabling escape codes in literals, 29

encoding for URLs, 522

escape codes in literals, 27

escaping characters for use in HTML, 536

escaping characters for use in XML, 583

executing Python code contained within, 115

format() method, 8, 72

formatting, 8, 42

formatting in log messages, 358

immutability of, 41, 69

indexing, 11

internal representation, 28

iterating over characters, 17

joining, 43

line structure, 11

mixing byte strings and Unicode, 70

mutable byte arrays, 202

partitioning, 41

regular expressions, 281

replacing substrings, 41

searching for substrings, 41

slices, 11

sorting and internationalization, 70

specifiers for format() method, 72-73

splitting, 43

splitting into fields, 14, 41

stripping, 43

unescaping XML character references, 583

strip() method, of strings, 44

stripping

control characters from a string, 42

strings, 44

strptime() function, time module, 343, 407

strptime() method, of datetime class, 339

Struct class, struct module, 291

struct module, 290

Structure class, ctypes module, 614

structures, and tuples, 14

sub() function

operator module, 273

re module, 284

sub() method, of Regex objects, 285

__sub__() method, 60

subclass, 119

__subclasscheck__() method, 57, 136

subdirs attribute, of dircmp objects, 315

SubElement() function, xml.etree.ElementTree module, 575

subn() function, re module, 284

subn() method, of Regex objects, 285

subprocess module, 402

subprocess, definition of, 413

substitute() method

of Template objects, 289

of Template strings, 164

substrings

checking for existence using in, 69

searching for, 41

subtraction operator -, 65

sucessful() method, of AsyncResult objects, 425

sum() function, 39-40, 67, 210

accuracy of, 252

and decimal module, 69

restriction to numeric data, 39

versus math.fsum() function, 252

sunau module, 588

super() function, 120, 210

Python 3, 210, 627

superclass, 119

calling methods in, 120

super() function, 120

supporting both Python 2 and 3, 638

supports_unicode_filenames variable, os.path module, 398

surrogate pair, 28, 41

suspension, of threads, 443

swapcase() method, of strings, 44

SWIG, 591

example of, 619

interface file, 619

switch statement, lack of, 9

symbol module, 586

symbolic links, testing a filename for, 397

symlink() function, os module, 389

symmetric difference operator ^, of sets, 15

symmetric_difference() method, of sets, 46

symmetric_difference_update() method, of sets, 47

sync() method

of dbm-style database objects, 310

of shelve objects, 311

synchronization primitives

multiprocessing module, 427

threading module, 438

synchronization

of close() method of generators, 104

of concurrent programs, 414

of throw() method of generators, 105

SyntaxError exception, 87, 215

Python 3 print statement, 6

and default arguments, 93

and except statements, 85

SyntaxWarning warning, 216, 238

sys module, 13, 229

sys.argv variable, 13, 157, 174

sys.displayhook variable, 176

sys.exec_prefix variable, 177

sys.exit() function, 179

sys.modules variable, 144, 149

sys.path variable, 147

and site module, 177

third-party modules, 154

sys.prefix variable, 177

sys.ps1 variable, 176

sys.ps2 variable, 176

sys.stderr variable, 157, 161

sys.stdin variable, 161

sys.stdout variable, 161

sys_version attribute, of BaseHTTPRequestHandler class, 508

sysconf() function, os module, 395

syslog module, 587

SysLogHandler class, logging module, 363

system calls, os module, 378

system error codes, 344

system() function, os module, 393

system.listMethods() method, of ServerProxy objects, 525

SystemError exception, 87, 215

SystemExit exception, 7, 87-88, 157, 179, 215

T

-t command line option, 26, 173-174

tab escape code in strings, 28

tabcheck attribute, of sys.flags, 230

TabError exception, 26, 87, 215

tabnanny module, 586

tabs, and indentation, 26

tag attribute, of Element objects, 576

tagName attribute, of DOM Element objects, 572

tail attribute, of Element objects, 576

tail command, example with generators, 19

tail-recursion optimization, lack of, 112

takewhile() function, itertools module, 272

tan() function, math module, 252

tanh() function, math module, 252

TarError exception, tarfile module, 322

TarFile objects, tarfile module, 320

tarfile module, 319

TarInfo objects, tarfile module, 321

task scheduler, example with coroutines and select(), 460

task_done() method

of JoinableQueue objects, 419

of Queue objects, 445

tasklets, 446

asynchronous I/O, 460

tasks, and coroutines, 20

tb_* attributes, of traceback objects, 53

tb_lineno() function, traceback module, 236

tbreak debugger command, pdb module, 189

tcgetpgrp() function, os module, 385

TCP connection, diagram of, 450

TCP protocol, 449

example code, 451

TCP_* socket options, socket module, 482

TCPServer class, SocketServer module, 491

tcsetpgrp() function, os module, 385

tearDown() method

TestCase objects, 184

of TestCase objects, 184

tee() function, itertools module, 273

tell() method

of IOBase objects, 350

of files, 160-161

of mmap objects, 371

telnetlib module, 587

tempdir variable, tempfile module, 324

tempfile module, 323

Template class, string module, 289

Template strings

string module, 164

use in CGI script, 537

template attribute, of Template objects, 290

template variable, tempfile module, 324

temporary files, 323

TemporaryFile() function, tempfile module, 323

terminate() method

of Pool objects, 425

of Popen objects, 403-404

of Process objects, 416

terminating statements with semicolons, 7

termination

immediate without garbage collection, 391

of programs, 179

of threads, 443

registering cleanup functions, 219

sys.exit() function, 233

without garbage collection, 179

termios module, 587

test module, 586

test() function, cgi module, 537

TestCase class, unittest module, 184

testing

doctest module, 181

documentation strings, 181

limitations of doctest, 183

unit testing, 183

testmod() function

doctest() module, 182

doctest module, 182

testzip() method, of ZipFile objects, 326

Text class, xml.dom.minidom module, 572

text I/O, 353

text attribute, of Element objects, 576

text file mode, 159

text replacement, replace() method of strings, 41

text versus bytes in Python 3, 629

text_factory attribute, of Connection objects, 308

TextIOBase abstract base class, 354

TextIOWrapper class, io module, 353

textwrap module, 586

third-party libraries, and Python 3, 621

third-party packages

and C/C++ code, 154

and sys.path variable, 154

installation of, 154

installing in per-user site directory, 154, 178

this pointer, self parameter of methods, 119

Thread class, threading module, 436

thread attribute, of Record objects, 359

threading module, 436

synchronization primitives, 438

ThreadingMixIn class, SocketServer module, 494

ThreadingTCPServer class, SocketServer module, 494

ThreadingUDPServer class, SocketServer module, 494

threadName attribute, of Record objects, 359

threads

CPU-bound tasks, 444

adding to network servers, 494

atomic operations and disassembly, 193

check interval, 234

close() method of generators, 104

compared to coroutines, 467

condition variables, 441

daemonic, 436

database modules, 302

decimal module, 249

definition of, 413

events, 440

extension modules, 607

global interpreter lock, 414, 444

local storage, 443

main thread, 413

mutex lock, 438

obtaining number of active, 443

random number generation, 256

reentrant mutex lock, 438

scaling properties, 415

scheduling of, 414

semaphores, 439

setting stack size, 444

setting the name, 436

signal handling, 402

signaling with semaphores, 439

suspending, 443

synchronization of, 414

termination of, 443

throw() method of generators, 105

use of queues, 444

worker thread example, 446

threadsafety variable, database API, 302

throw() method, of generators, 53, 105-106

time and date parsing, 407

time class, datetime module, 338

time manipulation, 336

time module, 191, 405

accuracy of time functions, 408

current time, 405

time parsing, 343

Time() function, database API, 301

time() function, time module, 191, 407

time() method, of datetime objects, 340

timedelta class, datetime module, 340

TimedRotatingFileHandler class, logging module, 363

TimeFromTicks() function, database API, 301

timeit module, 191

timeit() function

cProfile module, 190

timeit module, 191

timeout attribute, of SocketServer class, 493

timeout exception, socket module, 485

timeout, example with alarm signals, 401

Timer() function, threading module, 437

times() function, os module, 394

Timestamp() function, database API, 301

TimestampFromTicks() function, database API, 301

timetuple() method, of date objects, 337

timetz() method, of datetime objects, 340

timezone variable, time module, 405

timing measurements, 191

TIPC protocol, 470

address format, 472

TIPC_* constants, socket module, 473

title() method, of strings, 44

Tkinter module, 588

today() method, of date class, 336

tofile() method, of array objects, 260

token module, 586

tokenize module, 586

tolist() method, of array objects, 260

toordinal() method, of date objects, 337

toprettyxml() method, of DOM Node objects, 572

tostring() function, xml.etree.ElementTree module, 578

tostring() method, of array objects, 260

total_changes attribute, of Connection objects, 308

tounicode() method, of array objects, 260

toxml() method, of DOM Node objects, 573

trace() function, inspect module, 225

traceback messages, 22

traceback module, 235

traceback objects, 51-52

attributes of, 53

stack frames, 53

__traceback__ attribute, of Exception objects, 213

tracebacklimit variable, sys module, 232

tracebacks

creating with traceback module, 236

limiting the amount of output, 232

TracebackType type, 51, 237

trailing J on complex number literals, 27

trailing L on long integers, 27

trailing comma

and tuples, 14

print statement, 162

transfercmd() method, of FTP objects, 500

translate() method, of strings, 42, 44

traps attribute, of Context objects, 247

TreeBuilder() function, xml.etree.ElementTree module, 577

triangular() function, random module, 256

triple-quoted strings, 11

and variable interpolation, 163

True value, 9, 27, 38

truediv() function, operator module, 273

__truediv__() method, 60

trunc() function, math module, 252

truncate() method

of IOBase objects, 350

of files, 160

truncating division operator //, 65

truncation, of integer division, 61, 65

truth value testing, 78

truth values, 9

truth() function, operator module, 274

try statement, 22, 84-85

-tt command line option, 26, 173-174

tty module, 587

ttyname() function, os module, 385

tuning strategies, 194

tuple type, 38

tuple unpacking, and for-loops, 15

tuple() function, 77, 211

tuples, 14

and string formatting, 70

as dictionary key, 16

as dictionary keys, 74

as sequence, 39

comparison on, 70

concatenation, 14

creating a list of from dictionary, 45

creating with named attributes, 264

immutability, 14

immutability of, 69

indexing, 14

memory savings of, 14

omission of parantheses, 14

problems with using as data structure, 264

representing records, 14

singleton, 14

slicing, 14

unpacking in Python 3, 623

unpacking in iteration, 82

use by standard library, 265

use in list comprehensions, 109

versus lists, 14

Twisted library, 415, 467

two-dimensional lists, 13, 15

type, 47

type attribute

of FieldStorage objects, 535

of TarInfo objects, 322

of socket objects, 484

type checking

example with metaclass, 140

of objects, 34

performance impact of, 34

problem with proxy objects, 135

type coercion, and operator overloading, 134

type comparison of objects, 34

type conversion, 76

lack of implicit conversion, 62

of columns in a datafile, 37

special methods for, 62

type hierarchies, 138

type objects, 50

type of objects, 33

type() function, 34, 211

and exceptions, 89

type() metaclass, 138

type_options attribute, of FieldStorage objects, 535

typecode attribute, of array objects, 259

TypeError exception, 87, 215

and function calls, 94

and type coercion, 62

method resolution order, 122

types module, 47, 237

and Python 3, 237

types

boolean, 38

built-in, 37, 201

callable, 47

dictionary, 44

floating point, 38

frozenset, 46

integers, 38

of sockets, 470

set, 46

type of, 47

tzinfo attribute, of time objects, 338

tzname variable, time module, 405

tzname() method

of time objects, 339

of tzinfo objects, 342

tzset() function, time module, 407

U

\U escape code, in strings, 28

\u escape code, in strings, 28

-U command line option, 28, 173

‘U’ mode, to open() function, 159

u character, before a string literal, 28

-u command line option, 173

u(p) debugger command, pdb module, 189

UDP client example, 486

UDP communication, diagram of, 451

UDP protocol, 449

UDP server example, 485

UDPServer class, SocketServer module, 491

uid attribute, of TarInfo objects, 322

umask() function, os module, 381

unalias debugger command, pdb module, 189

uname attribute, of TarInfo objects, 322

uname() function, os module, 381

unary minus operator -, 65

unary plus operator +, 65

unbound method, 49

and Python 3, 49

UnboundLocalError exception, 87, 98, 215

unbuffered file I/O, 159

unconsumed_tail attribute, of decompressobj objects, 329

underscores, usage in identifiers, 26

unescape() function, xml.sax.saxutils module, 583

ungetch() function, msvcrt module, 373

ungetwch() function, msvcrt module, 373

unhexlify() function, binascii module, 548

unichr() function, 77, 211

Unicode character database, 293

Unicode characters, representation of, 41

Unicode string literals, 28

Unicode strings, 41

and WSGI, 541

common encodings, 166

decomposing, 295

encoding and decoing, 165

encoding in network programs, 452

error handling options, 166

handling of, 165

mixing with byte strings, 167

normalizing, 296

regular expressions, 281

unicode attribute, of sys.flags, 230

unicode type, 38

unicode() function, 211

and Python 3, 211

Unicode

Python 2 vs. Python 3, 28

and BOM characters, 168

and XML, 168

byte order marker, 280

character encoding and decoding, 42

character properties database, 170

code points, 28

common encodings, 168-169

encoding in string literals, 29

encoding of source code, 31

file I/O, 167

mixing with byte strings, 70

normalization of strings, 171

specifying characters in string literals, 28

surrogate pairs, 28, 41

using 32-bit character code points, 41

unicode-escape encoding, description of, 170

unicodedata module, 170, 293

UnicodeDecodeError exception, 87, 215

UnicodeEncodeError exception, 87, 215

Python 3 interactive mode, 175

UnicodeError exception, 87, 166, 215

UnicodeTranslateError exception, 87, 215

unidata_version variable, unicodedata module, 296

unification of integer and long types, 38

uniform access principle, 125

uniform type arrays, 259

uniform() function, random module, 255

UnimplementedFileMode exception, http.client module, 504

Union class, ctypes module, 614

union operator |, of sets, 15

union() method, of sets, 46

unit testing

Python 3 migration, 635

example, 184

unittest module, 183

unittest module, 183

example, 184

universal newline mode, 159

UNIX domain protocol, 470

address format, 472

Unix systems log, issuing message to, 363

Unix

#! execution of programs, 6

per-user site directory, 177

time epoch definition, 405

UnixDatagramServer class, SocketServer module, 491

UnixStreamServer class, SocketServer module, 491

UnknownHandler class, urllib.request module, 518

UnknownProtocol exception, http.client module, 504

UnknownTransferEncoding exception, http.client module, 504

unlink() function, os module, 390

unloading modules, 149

unpack() function, struct module, 290

unpack() method, of Struct objects, 291

unpack_from() function, struct module, 291

unpack_from() method, of Struct objects, 291

unpacking

binary data structures, 290

of sequences, 67-68

of tuples, 14

Unpickler class, pickle module, 228

unquote() function, urllib.parse module, 522

unquote_plus() function, urllib.parse module, 522

unquote_to_bytes() function, urllib.parse module, 522

unregister() method, of Poll objects, 460

unregister_dislect() function, csv module, 551

unsetenv() function, os module, 381

until debugger command, pdb module, 189

unused_data attribute, of decompressobj objects, 329

unwrap() method, of ssl objects, 488

update() method

of dicts, 45

of digest objects, 559

of hmac objects, 560

of sets, 15, 47

update_wrapper() function, functools module, 269

updating a dictionary, 45

uploading

files in CGI scripts, 536

files to a HTTP server with POST, 505

files to an FTP server, 500

packages to pypi, 155

upper() method, of strings, 44

uppercase variable, string module, 287

urandom() function, os module, 396

urldefrag() function, urllib.parse module, 521

urlencode() function, urllib.parse module, 522

URLError exception, 516

urllib.error module, 523

urljoin() function, urllib.parse module, 521

urllib module, 522

see urllib.request, 515

urllib package, 514

urllib.error module, 523

urllib.parse module, 520

urllib.request module, 515

urllib.response module, 520

urllib.robotparser module, 523

urllib2 module, see urllib.request, 515

urlopen() function, urllib.request module, 515

urlparse module, 520

urlparse() function, urllib.parse module, 520

urlsafe_b64decode() function, base64 module, 546

urlsafe_b64encode() function, base64 module, 546

urlsplit() function, urllib.parse module, 521

urlunparse() function, urllib.parse module, 521

urlunsplit() function, urllib.parse module, 521

user directory, installation of packages, 154

user module, 586

—user option to setup.py, 154

user-agent header in HTTP requests, changing, 517

username attribute

of urlparse objects, 520

of urlsplit objects, 521

UserWarning warning, 216, 238

using Python as a calculator, 6

utcfromtimestamp() method, of datetime class, 339

utcnow() method, of datetime class, 339

utcoffset() method

of time objects, 339

of tzinfo objects, 342

utctimetuple() method, of datetime objects, 340

UTF-16 encoding, description of, 170

UTF-8

compatibility with ASCII, 170

description of, 169-170

encoding and decoding, 42

including in string literals, 29

lexicographic ordering, 170

utime() function, os module, 390

uu module, 587

V

-V command line option, 173

-v command line option, 173-174

validator() function, wsgiref.handlers module, 543

value attribute

of FieldStorage objects, 535

of Morsel objects, 512

Value() function, multiprocessing module, 426

Value() method, of Manager objects, 429

ValueError exception, 87, 215

and lists, 40

and strings, 41

valuerefs() method, of WeakValueDictionary objects, 241

values() method

of Message objects, 552

of dicts, 45

of dicts in Python 3, 632

ValuesView abstract base class, 266

variable interpolation in strings, 163

variable keyword arguments in function definition, 95

variable number of arguments in function definition, 94

variables, 7

as names of objects, 35

binding and module imports, 145

binding of globals in functions, 98

class, 117-118

in nested functions, 97

iteration, 82

naming rules, 26

scope of, 96, 98

vars() function, 72, 211

verbose attribute, of sys.flags, 230

verify_request() method, of SocketServer class, 493

version attribute, of HTTPResponse objects, 504

version information, of interpreter, 231

version variable, sys module, 232

version_info variable, sys module, 232

vformat() method, of Formatter objects, 288

view objects, Python 3, 632

volume attribute, of ZipInfo objects, 327

vonmisesvariate() function, random module, 256

W

-W command line option, 216, 239-240

‘w’ mode, to open() function, 159

w(here) debugger command, pdb module, 189

wait() function, os module, 394

wait() method

of AsyncResult objects, 425

of Condition objects, 441

of Event objects, 440

of Popen objects, 404

wait3() function, os module, 394

wait4() function, os module, 394

waitpid() function, os module, 394

walk() function, os module, 390

walk() method, of Message objects, 554

wall-clock time, obtaining, 191

warn() function, warnings module, 216, 239

warn_explicit() function, warnings module, 239

Warning warning, 216, 238

warning() method, of Logger objects, 357

warnings module, 238

warnings

converting into exceptions, 239

difference from exceptions, 216

suppression of, 238

warnoptions variable, sys module, 232

WatchedFileHandler class, logging module, 363

wave module, 588

WCOREDUMP() function, os module, 394

weak reference, 130

weak references, 240

WeakKeyDictionary class, weakref module, 241

weakref module, 130, 240

WeakValueDictionary class, weakref module, 241

web frameworks, 538

and template strings, 164

web programming, 531

web server

custom handling of requests, 510

running standalone in Python, 508

webbrowser module, 544

weekday() method, of date objects, 338

weibullvariate() function, random module, 256

well known port numbers, 450

WEXITSTATUS() function, os module, 394

wfile attribute

of BaseHTTPRequestHandler objects, 509

of StreamRequestHandler objects, 491

whichdb module, 310

whichdb() function, dbm module, 310

while statement, 8, 82

whitespace variable, string module, 287

WIFCONTINUED() function, os module, 395

WIFEXITED() function, os module, 394

WIFSIGNALED() function, os module, 395

WIFSTOPPED() function, os module, 395

WinDLL() function, ctypes module, 612

Windows, 331

accesing registry, 408

accessing registry, 175

creating a binary distribution with distutils, 153

double-clicking on Python programs, 176

drive letters in filenames, 399

file locking, 373

issuing message to event log, 362

list of error codes, 346

main program with multiprocessing module, 417

per-user site directory, 177

process fork with multiprocessing, 435

running programs, 6

WindowsError exception, 215

Wing IDE, 5

winreg module, 408

winsound module, 588

winver variable, sys module, 232

with statement, 62, 89

and exceptions, 23

and locking, 89

decimal module, 248

locking primitives, 442

work pools, of processes, 424

wrap_socket() function, ssl module, 486

wrapper functions, 95

and closures, 100

example of, 101

in extension modules, 594

wrappers, and attribute binding methods, 132

@wraps decorator, functools module, 114, 269

writable() method

of IOBase objects, 350

of dispatcher objects, 456

write() function, os module, 385

write() method

of BufferWriter objects, 352

of ConfigParser objects, 334

of ElementTree objects, 575

of FileIO objects, 350

of StreamWriter objects, 278

of TextIOWrapper objects, 353

of ZipFile objects, 326

of files, 10, 159-160

of mmap objects, 372

of ssl objects, 488

write_byte() method, of mmap objects, 372

writelines() method

of IOBase objects, 350

of StreamWriter objects, 278

of files, 159-160

writepy() method, of ZipFile objects, 326

writer() function, csv module, 549

writerow() method

of csv DictWriter objects, 550

of csv writer objects, 549

writerows() method

of csv DictWriter objects, 550

of csv writer objects, 550

writestr() method, of ZipFile objects, 327

writexml() method, of DOM Node objects, 573

writing to a file, 159

WSGI (Web Server Gateway Interface), 540

WSGI

application specification, 540

example of, 541

integration with web frameworks, 543

processing form fields, 541

running a stand-alone server, 542

running in CGI scripts, 542

use of generators for I/O, 165

validation of applications, 543

wsgi.* environment variables, 540

wsgiref package, 542

wsgiref.handlers module, 542

wsgiref.simple_server module, 542

WSTOPSIG() function, os module, 395

wstring_at() function, ctypes module, 618

WTERMSIG() function, os module, 395

X

\x escape code, in strings, 28

-x command line option, 173-174

xdrlib module, 587

xml package, 568

XML() function, xml.etree.ElementTree module, 575

XML

escaping and unescaping characters, 583

example document, 569

incremental parsing of large files, 579

namespaces in ElementTree module, 578

parsing, 568

XML-RPC, 524

XML-RPC server, multithreaded example, 494

XML-RPC

example of, 529

server customization, 530

xml.dom.minidom module, 570

xml.etree.ElementTree module, 573

xml.sax module, 580

xml.sax.saxutils module, 583

‘xmlcharrefreplace’ error handling, 166-167

XMLGenerator() function, xml.sax.saxutils module, 584

XMLID() function, xml.etree.ElementTree module, 575

xmlrpc package, 524

xmlrpc.client module, 524

xmlrpc.server module, 527

xmlrpclib module, 524

XMLRPCServer class, xmlrpc.server module, 527

xor() function, operator module, 274

__xor__() method, 60

XPATH, 569

xrange type, 38

xrange() compared to a list, 44

xrange() function, 17, 44, 211

and Python 3, 17, 44, 211

XSLT, 569

Y

Y2K handling, 407

year attribute, of date objects, 337

yield expressions, 20, 104

yield statement, 19, 53, 102

and context managers, 90

use with I/O, 164-165

Z

ZeroDivisionError exception, 87, 215

zfill() method, of strings, 44

.zip files

and modules, 147

decoding and encoding, 324

use as a code archive, 147

zip() function, 83, 211

and Python 3, 211

future_builtins module, 217

type-conversion example, 37

zipfile module, 324

ZipFile() function, zipfile module, 325

zipimport module, 586

ZipInfo() function, zipfile module, 325

images/00979.jpg
Bllipsis

s> a= (1,2,
(1, 2, Ellipsis)
True

True

& AsSiameent ot EL2ipeie

images/00978.jpg
foo(1,True) # Fails. TypeBrror: foo{) takes 1 positiomal argument
foo(1,strict=True) # Ok,

images/00501.jpg
. From Camsit iepoxt Tmeit
+>> timeit('math.sqrt(2.0)','import math!)
0.20388007164001465

+5> timeit('sqrt(2.0)","from math import sqrt')
s Rty

images/00743.jpg
error (selt, code,message) ¢
Tpush_tex ("WTTe/1.0 $5 ¥s\r\n® § (code, responses(codel)]
push_text ("Content-type: text/plain\r\nt]

“pushtext ("\r\n")

_push_text (nessage)

der

class file producer (object) :
e __init__(self, filenane,b
open|filename, 1z}
self buffer_size = butfer_size
det more(self) :
Gata = self.f.read(self buffer_size)
if not data
self.f.closel)
return data

a = async_hctp(8080)
sevncare, Loooll

images/00985.jpg
CLE09 MYNRLA (EYRN)
classmethod
et __prepare__(cls,nane, bases, **kvargs)
print ("preparing”, name, bases, kvargs)
return {}

et __new__(cls,name, bases, classdict)
print (7areating", name, bases, classdict)
return type. new__(cls,name,bases,classdict)

images/00500.jpg
i e
start_real= time.time()
statements
statemencs

end_cpu = time.clock()
end_real = time. time()

print ("+f Real Seconds” % (end_real - start_real))
*%f CPU seconds” % (end cpu - start _cpu))

images/00742.jpg
W BUBE. BESL. QDLW GUER0AIG AR UL TRR008 Ak TIERG
def push_text (self, text)
self push(text.encode('latin-1'))

¢ Process the request
def process_vequest (self, op, url)
if op «n *GET"
it ot os.path. exists(url]
self send_error (404, "File ¥s not fownd\rin")
else
type, encoding = minetypes guess_typeurl)
size'= 0s.path.getsize (url)
self . push text ("WTTe/1.0 200 OK\T\n*)
self push text (Content-Lengeh: $s\r\n® § size)
se1f push_text (Content-type: ¥s\r\n" ¥ type)
selt
se1£.push_with_producer (£ile_produc

turl))

else:
self.send_error (501, *$s method not inplemented § op)
self.close when_done()

images/00984.jpg
class C(a,B)
def bar (self) :
return super () .bar(} # Call bar(} in bases

images/00503.jpg
Auport. .wys
sys.getsizeof (1)

sys.getsizeof (*Hello World®)
sys.getsizeof ([1,2,3,4])

sun(sys.getsizeot (x) for x in [1,2,3,41)

images/00745.jpg
#:Roks Jacoilan aeiRent. dhes.
det handle_read(self) :
chunk = self.recy(8192)
self.request data += chunk
3£ BAR\R\A\R! 1n sele.request_data:
self handle_request ()

4 Bandle an incoming request
det handle_request (self) :

self.gor_request - True

header_data = self request_datal:self request_data.find(b'\r\n\r\n')]

text = header_data.decode('latin-1')
lines = header_text.splitlines()

request - header lines[0] .split()

o - request(0]

wrl request (1] [1:]

self process_request (op, url)

Process the request
def process_request (self,op,url) :
self.responding = True
if op -- "GET*
if not os.path.exists (url]
self send_error (404, "File ¥s not found\r\n" % url)
else:
type, encoding = minetypes.guess_type(url)
size's os.path.getsize(url]
SeLf.push_text ['HTT®/1.0 200 OK\r\n')
sel.push_text (Contenc-Length; bd\r\n' & size)
sel£.push_text ('Content-type: ¥s\r\n' ¥ type)
seLt .push_cext ("\r\n']
self.pushopen (url, *rb) .read{}}

images/00987.jpg
preparing Foo () {}
About to define methods
Done defining methods

oreating Foo () {'__module__': '__main__!,
"Bar': <function Bar at 0x3845405,
" init_ ': <function __init

'at 0x384588>)

images/00502.jpg
b Brcim EMRLE . INpars Kepeat.
+>> Tepeat ('math.sqrt(2.0) ", 'import math!)
10.20306601524353027, 0.19715800285339355, 0.20907392501831055]

images/00744.jpg
B AHCREFOGETTEIOUN: FRLE Bacter:
import asyncore, socket
import os

import mimetypes

import collections

exy;

£zon neep.client inpore responses # ython 3
except ImportError.

£xom hteplib inport responses # ython 2

This class merely handles accept events
Class async_httplasyncore . dispatcher)
Gef __init__(self,port)
asyncore. dispatcher.__init__(self)
Gelf create_socket (atket .AF_INET, socket .SOCK_STREAN)
selt setsockopt (socket . SOL_SOCKET, socket. SO_REUSEADDR, 1)
seLf bina(('",port))
selt listen(s]

det handle_accept (self)
clientaddr = self.accept()
return async_hetp_handler (client)

Handle clients
class async_hrtp_handler (asyncore. dispatcher]
def __init__(self, sock = None)
35yncore. dispatcher.__init__(self,sock)

selt S Falss # Read HITP request?
selr. ¥ -

self write gqieus = collections.deque()

self responding False

Only readable if request header not read
det readable (self)
Stk o Sl

images/00986.jpg
€10 fioo (TataCtaaainata).
print ("About to define methods’]
def __init__(self)
pass
def bar (self)
pass
print ("Done defining methods®)

images/00739.jpg
e e e A
from socket import *
s = socket (AP_INET, SOCK_STREAM) # Create a TCP socket

s.connect ((*localhost', 8888)) # Connect to the server
tm = 5.recv(1024) # Receive no more than 1024 bytes
s.close ()

print ("The time is %s" % tm.decode('ascii'))

images/00981.jpg
Traceback (most recent call last):
File "<stdin>', line 2, in <modules
ValueError: invalid literal for int() with base 10: 'nine’

The above exception was the direct cause of the following exception:
Traceback (most recent call last)

File "<stdina', line 4, in <modules
Hyrtaxerori Gouldnit peres ool igatat s

images/00738.jpg
Time server program
from socket import *
import time

s = socket (AF_INET, SOCK_STREAM) # Create a TCP socket

s.bind(('',8888)) # Bind to port 8888
s.listen(s) # Listen, but allow no more than
5 pending connections.
while True:
client,addr = s.accept() # Get a connection

print ("Got a connection from ¥s" % str(addr))
timestr = time.ctime(time.time()) + "\r\n"
client.send(timestr.encode ('ascii'))
client.close ()

images/00980.jpg
try:
statements

except ValueError as e
raise SyntaxBrror("Couldn't parse configuration') from e

images/00499.jpg
Section

primitive calls Number of nonrecursive function calls

ncalls Total number of calls (including selfrecursion)
tottime Time spent in this function (not counting subfunctions)
percall tottime/ncalls

cunt ime Total time spent in the function

percall cumtime/ (primitive calls)

filename: 1ineno(function) Location and name of each function

images/00741.jpg
Get incoming data and append to data buffer
def collect_inconing_data(selt,data)
if ot self .got_header:
self daca.append (data)

4 Got a terminator (the blank line]
def found_terminator (self)
self got_header = True
header_data b7 Join(self .data)
Decode header data (binary) into text for further processing
aata.decode|'latin-1')
ext.splitlines()
header_lines (0] .split (]
request (0]
= vequest[1] [1:]
self.process_request (op,url)

images/00983.jpg
TORCELCE {MOAE TEORNE Fall ASatl
File "<stdins', line 2, in <modules
ValueBrror: invalid literal for int() with base 10 'nine’

During handling of the above exception, another exception occurred

Traceback (most recent call last):
File "<stdina', line 4, in <modules
File "<stdin>', line 2, in error
RaeEiror: global s 'n' 18 Dot defined

images/00498.jpg
136. fonotion oulls. (€ pravitive owlls) in: 3,130 CT ssoondy

Ordered by: standard name

ncalls tot:

2171

e
030
020
020
000
060
000

2

percall

)

o
0.
o

0.060

030

-0l

020
000

cunt ine

s

070

‘020
‘0s0

000

130
000

percall

070
020
040
000
130

£41ename:1ineno(function)
<string>:1(?)

bock py1 11 {process)
book.py:5
exceptis
profile:0 (exectile] ook py'))
TroPile:0 (grafdler)

images/00740.jpg
& Aol gaymArouiy RITE BRrvsr Uaiog; Seynchat.
import asynchat, asyncore, socket
import os
import mimetypes
exy
fron Btcp.client import responses 4 python 3
except InportError.
from Beeplib inort responses 4 python 2

This class plugs into the asyncore module and merely handles accept events
class async_hetp (asyncore. dispatcher) :
et __inic__(self porc]
a5yncore dispatcher.__init__(self)
selt create_socket (sacket .AF_INET, socket .SOCK_STREAN)
selt setsockopt (socket . SOL_SOCKET, socket. SO_REUSEADDR, 1)
self bind(('*, port)]
self.listen(s)

Gef handle_accept (self]
clientaddr = self.accept()
return async_nctp_handler (client)

Class that handles asynchronous HITP requests.
Class async_htp_handler (asynchat .async_chat) :
et __init__(self, conn-Nane)
35yncnat. async_chat
self data = [1
self .goc_header = False
S61E mat tariingtar BIVAENGT)

_(se1£, conn)

images/00982.jpg
def error(msg)
print (m) # Note: typo is intentional (m undefined)

ery:
statements
except ValueBrror as e
‘error{"Couldn't parse configuration®)

images/00736.jpg
Server

socket ()

Client

socket ()

bind()

Listen()

L2

accept ()

wait for connec

Y

tion

establish connection

connect ()

read()

request

1

write()

process request

write()

response

read()

images/00735.jpg
Service
FIP-Data

FTP-Control

ssH

Telnet

SMTP (Mai)

HITP (WWW)

POP3

IMAP

HTTPS (Secure WWW)

Port Number
20

21

2

23

2

80

110

143

443

images/00977.jpg
AAE fooix, & SCXiCiaRSieg).
statements

images/00737.jpg
Server

socket ()

bind()

recvfron()

vait for data

\
process request

|

sendto()

request

response.

Client

socket ()

1

bind()

sendto()

recvfron()

images/00968.jpg
Gat toanifoen ()
def decrement ()
nonlocal n
n-1
while n > 0:
print ("T-minus”,)
Ty

images/00732.jpg
£1a8a RtopeenloIimead | Ecad Ly Sraad]
et __init__(self)
threading. Thread.__init__()
selt. _terminate False
selt._suspend lock = threading.Lock ()
def terminate (self.
self. terminate
def suspend (self)
selt._suspend_lock.acquire ()
def resume (self)
selt._suspend_lock. release()
def run(self)
while True
if self._terminate.
break
self. _suspend_lock.acquire ()
selr. _suspend_lock. release ()
statements

True

images/00974.jpg
det positive(x)
"must be positiver
zeturn x > 0

def negative(x)
"must be negativer
return x < 0

sensure
def £

(a:positive, binegati
Sen s,

-> positive:

images/00731.jpg
with lock A:
critical section
statements

with lock B
critical section on B
statements

images/00973.jpg
U MR R S
Extract annotation data
return_check = func.__annotations
arg_checks = [(nane, func.__annof

for name in func

get {'return’, None)
ions__.get name))
code__co_varnanes

4 Create a wrapper that checks arqunent values and the returm
Tesult using the functions specified in annotations

def assert_call (vargs, *+hwargs)
for (name, check], value in zip (arg_checks, args) :

if check: assert check(value], "%s %e" § (name, check.__doc,
for name, check in arg_checks(len(args) :]

if check: assert check(kwargs (namel), "$s $s" & (nams, check
result = func(args, *<kwargs)
assert return_checkresult), "return $s' § return che

return result

Faberh abbek -oali:

images/00734.jpg
dag Topl)
for n in xrange(s)
print ("I'm foo %" ¥ n)
vield

Gef bar():
for n in xrange(10]:
print ("I'm bar 4" % n)
yield

det spam():
for n in xrange(7):
print ("I'm spam 34" § n)
vield

§ Create and populate a task queue
Erom collections inport deque

taskqueue = deque ()

taskqueue .append (£oo()) 4 244 some tasks (generators)
taskqueue . append (bax ())

taskqueue .append (span())

Run all of the tasks
while taskqueue
Get the next task
task = taskqueue.pop()
try.
Run it to the next yield and enqueue
next (task)
taskqueue . appendleft (task)
except StopIteration
¥ Task is done
pass

images/00976.jpg
SRt TOOIE,. “axge, akricl
S ae e

images/00733.jpg
Anport thad oy
Erom queue import Queue # Use from Queue on Python 2

class WorkerThread (threading.Thread) :

def __init_
Threading. Thread
selt.input_gueue
def send(self, item)
selt.input_queue put (item)
def close (self] -
selt.input_queue put (None)
sel£. input_queue. join()
det run(selr)
while True:
item = self.input_queve.get ()
if item is Nome
break
Process the item (replace with useful vork)
print (item]
self.input_queue.task_done ()
Done. Indicate that sentinel was received and return
selt.input_gueue.task_done()
return

(self, vargs, *+kvargs)
init__(self, vargs, * rkvargs)
Queus]

Exanple use
vorkerThread ()

start ()

send(hello") # Send items to the worker (via queue)

send ("world")

il ety

images/00975.jpg
a3, foa (8 =2]

>>> £00(-5,2)

Tracepack (most recent call last):
ile "<stdins, line 1, in <modules

File "meta.py, line 19, in call
def asserc_call (vargs, *+kwargs)

AssertionError: a must be positive

images/00728.jpg
threading.Condition()
det producer()
while True
cv.acquire()
produce_iten()
v notify ()
cv.release ()
det consumer()
while True
cv.acquire ()
while not item_is_available()
cv.ait() Wait for an item to show up
cv.release ()
Oemimi Lo}

images/00970.jpg
>>> £oo.__uonotations,
Cyed s 3, returas s

images/00969.jpg
BAE Soolxil yad) -» A
pass

images/00730.jpg
with lock:
critical section
statements

images/00972.jpg
gaif Baxix, *arou: SRESLLAGLALE, Stk tope oaet)
Fearauaritie:

images/00729.jpg
try:
Lock.acquire)
critical section
statements

finally:
lock.releage ()

images/00971.jpg
def foolx:int, y:int} -> str:
e

images/00725.jpg
SEDOTE FHERMATD
import tine

class ClockThread (chreading.Thread)
Gef __in: c1f, interval)
Hreading. Tread. __init__(sel)
self.daemen - True
selt interval = interval
det run(se1c)
vhile True,

Print ("The tine is ts" ¥ tire.ctine ()

“ine.sleeplaelt. interval)

t = Clockbrocess(1s)
e

images/00967.jpg
points = [(1,2}, (3,4,"red"), (4,5,"blue"}, {6,7))
for x,y, *opt in point;
if opt:
Additional fields were found
PR Cainay

images/00724.jpg
ASgart Chxneding
irport tine

def clock(interval)
while True
prine ("The time is ¥s" § time.ctine())
time sleep (interval)

t = threading Thread(targetsclock, arg
€.daemon = True
t.start ()

15,)

images/00966.jpg
S, Feat. o EwaL = L2801
a,srest,d 1, rest = (2,31, @
rest, d [1,2,3], d = 4

images/00727.jpg
evt = Bvent()

def producer ()
while True
produce iten

evt signal()

def consuner ()
while True
Wait for an item
evt.vait ()
Consure the iten

Clear the event and wait again
evt.clear()

images/00726.jpg
o
consumed

threading.Semaphore (0)
threading. Semaphore (1)

det producer()
while True
consumed. acquire ()
produce_iten()
produced. release ()

det consumer()
while True

produced.acquire ()

iten = get_iten()

consumed. release ()

images/00721.jpg
connections.Listener((address [, family [, backlog [, autheaticate [,
authkey]1111)

images/00963.jpg
FLAIAR. S Llans-mElit{) Tar 1108 10 opad (“peices.Satts)
prices = {sym:float(val) for sym val in fields)

images/00720.jpg
connections.Client (address [, family [, authenticate [, authkeyll])

images/00962.jpg
GOOG 509.71
YH0O 28.34
IBM 106.11
MSFT 30.47
ARPL 122.13

images/00009.jpg
principal = 1000 ¥ Initial amount

rate = 0.05 # Interest rate
nunyears = 5 # Number of years
year = 1

vhile year <= numyears:
principal = principal + (1 + rate)
print year, principal # Reminder: print(vear, principal) in Python 3
vear += 1

images/00723.jpg
from multiprocessing.connection import Client
conn = Client (('localhost',15000), authkey="12345")

conn.send((3,4))
r = conn.recv()
print (x) # Prints 7'

conn. send ({*Hello", "World"))
r = conn.recv()
print (x) # Prints 'Hellovorld'

. Py

images/00965.jpg
shemg = [1,3,5. 41
a,b,c,d = items # Unpack items into variables

images/00008.jpg
#!/usr/bin/env python
print "Hello World®

images/00722.jpg
from multiprocessing.connection import Listener

serv = Listener(('',15000) ,authkey='12345')
while True
conn = serv.accept ()
while True
try.

%,y = conn.recv()
except. EOFError
break
result = x + y
conn. send (result)
conn.close ()

images/00964.jpg
d = {sym:price for sym,price in prices.items(} if price »>= 100.0}

images/00011.jpg
print "33d 30.2f* % (year, principal)
print ("§3d $0.2f" % (year, principal)) # Python 3

images/00959.jpg
¥ ipy
IronPython 1.1.2 (1.1.2) on .NET 2.0.50727.42

Copyright (c) Microsoft Corporation. All rights reserved.

»5> import System.Math

>5> dir (Systen.Math)

['Abs', 'Acos’, 'Asin', 'Atan’, 'Atan2’, 'Bigul', 'Ceiling', 'Cos', 'Cosh
>>> System.Math.Cos (3)

~0.9899924366.

images/00010.jpg
1050.0
11025
1157625
1215.50625
1376 . 2615635

images/00958.jpg
bash-3.2§ jython

Jython 2.2.1 on javal.s.0_16

Type "copyright®, "credits' or "license’ for more information.
>>> from java.lang import System

>>> System.out.println(*Hello World®)

Hello World

images/00013.jpg
print. format(year,"3a*),format {principal,*0.2£%)
print (format (year, "3d") , format (principal, *0.2£%)) # Python 3

images/00719.jpg
from multiprocessing.managers lmport BaseProxy

class Aproxy (Baseproxy
A List of all methods exposed on the referent
exposed_ = ['__iadd__', 'getx, 'setx']
¥ Inplenent the public interface of the proxy
def __iadd__(self,value)

Sélf._caiimetnod('__iadd__', (value,))
return self
property
def x(self)
return self._callmethod('getx', ()}
6x.setter

det x(self, value) :
selt._callmethod ("setx, (value, |}

class Wyhanager (Baselianager) : pass
MyManager.register ("A", A, Proxytyps

\Proxy)

images/00961.jpg
1,2,3, 4}
= {x*x for x in values)

i

images/00012.jpg
1050.
1102
1157

1215

1276

images/00718.jpg
>>> & += 37
Traceback (most recent call last)
File "<stdina', line 1, in <modules
TypeBrror: unsupported operand type(s) for +=: 'Autoproxy[s]’ and 'int
s> a.__tadd _(37)
Traceback (most recent call last)
File "<stdina', line 1, in <nodules

AttributeError: 'Autoproxy(Al' object has mo attribute '__iadd__'

images/00960.jpg
3.141592654
re4.0
print (2¢70x)

images/00717.jpg
<AutoProxy[A] cbject, typeid 'A' at Oxcef230>
>>> print(a)
A(37)

images/00714.jpg
mgrclass.register (typeid [, callable [, proxytype [, exposed [, method to_typeid
[, create method]1111)

images/00956.jpg
§ Wl Sprtbon s=mmnle.d
N

images/00713.jpg
import multiprocessing
inport time

print out d whenever the passed event gets set
def watch(d, evt)
while True
eve.vait ()
print (a)
eve.clear ()

if __name__ == '__main_
malt iprocessing Manager ()

m.aict () # Create a shared dict
m_Bvent () 4 Create a shared Bvent

evt

Launch a process that watches the dictionary

© = miltiprocessing. Process (target=vatch, args=(d, evt) |
p.daemon=True
p.starc ()

Update the dictionary and notify the watcher
al'foo'] = 42

evt.set ()

time sleep(s)

4 Update the dictionary and notify the watcher
dl'bar'] = 37

evt.set ()

time.sleep(s)

4 Terminate the process and manager
p.terminate ()
& ahot Ao ()

images/00955.jpg
£% mmmmple. L s Beegls Bl sgecitiontton &5
tmoduie sample

i

/* Preamble. Include all required header files here */
binclude "example. "

5

/* Wodule contents. List all C declarations here +/
cypedef struct Point {

double x;
double y;

} Point;

extern int ged(int, int);

extern int replace(char *s, char oldch, char newch];

extern double distance(Doint *a, Point *b);

images/00716.jpg
e
Traceback (most recent call last)

File "<stdina', line 1, in <modules
AttributeError: 'AutoProxy (Al object has no attribute 'x'
55> a.getx()
»
>>> a.setX(42)

images/00715.jpg
import multiprocessing
Erom multiprocessing.nanagers import BaseManager

class &(object)

Gef __init__(self,value)
61t.x = value

e __repr__(self):
Toturn A(Ss)" § self.x

def getx(self) :
return self.x

def setx(self, value) :
self.x = value

def __iadd__(self,value)
élt.x % value
return self

class Wyhanager (Baselianager) : pass
Mydanager register (A", A)

m = yWanager (}
m.start ()

Create a managed object
a=ma@

images/00957.jpg
setup.py
£rom distutils core import setup, Extension
setup (nane=" example®,
version="1.0",
py_modules = ['example.py'l,
ext_nodules = |
Eitension(*_example,
(Fexample. i, “example.c*])
)
)

images/00710.jpg
import os
inport multiprocessing
import hashlib

§ Some paraneters you can tweak
BUFSIZE = 8192 # Read buffer size
POOLSIZE = 2 # Nunber of workers

def compute_digest (£ilename)
ery:
£ = open(filenane, "xb*)
except T0ErTOr
return None
digest = hashlib.shasi2()
while True
chunk = £.read (sUFS1ZE)
not chunk: break
digest .update (chunk)
£.closel)
return

enane, digest.digest ()

def build_digest_map(topdir) :
digest_pool = multiprocessing. ool (POOLSIZE)
allfiles = (os.path. join(path,nane)
for path, dirs, files in os.ue
For name in files)

digest_map = dict (digest_pool.inap_unordered(conpute_digest,allfiles, 20))
gest_pool .close()
return digest_rap

Try it out. Change the directory name as desired.
- __pain__t
ap = Eulld_digest_nap("/Taers/beazley/Software/ Bython-3.0%)
Tari(AlgakE. wap))

images/00952.jpg
dval = c_double(0.0) # Create a double instance

= foo (Byref (dval)) # Calls foo(sdval)
p_aval = pointer (dval) # Creates a pointer variable
¥ = foo(p_dval) # Calls foo(p_dval)

Tnspect the value of dval aftervards
St (vel valosk

images/00709.jpg
SAPALE: T LR EOOURG 1IN
A server process
def aader (pipe

server_p, client_p = pipe

client p.close()

while True

try:
%y

server_p.recv(]

except BOFErrOT:
break
result = x + v
server_p.send(result)
4 Shutdown’
print ("Server done")

adder_p = multiprocessing. Process (target=adder, argse ((server_p,
adder p.start()

ent p))]

4 Close the server pipe in the client
server_p_close()

4 Wake sone requests on the server
client_p.send((3,4])
print (client p.recv())

client_p.send(('Hello’, "World'))
print (client p.recv())

4 Done. Close the p:
client_p.close()

4 Wait for the consuner process to shutdown
adder p.ioin()

images/00951.jpg
class Point (Structure}
fields = [("x", c_double),
("y*, c_double}]

images/00712.jpg
import multiprocessing

class FloatChannel (object)
Gef __init__(self, maxsize)
Sele.buEfer multiprocessing. Rawhrray('d" maxsize)
selt.buffer_len = multiprocessing.value('i')

selt . empty multiprocessing. Senaphore (1)
self.full multiprocessing. Semaphore (0}

def send(self, values)
selt.empty.acquire() # only proceed if butfer empty
nitems = len(values)
selt.butfer_len = nitems 4 Set the butfer size
self.buffer(:nitems] = values # Copy values into the buffer
selt.full.release() # Signal that buffer is full

det recv(self)
selt. full.acquire() 4 only proceed if buffer full
values = self buffer(:self buffer len value] # Copy values
selt. empty. release) ¥ signal that buffer is empty

return values

Perfornance test. Receive a bunch of messages
def consune_test (count, ch)
for i in xrange (count)
values = ch.recv()

Perfornance test. Send a bunch of messages
def produce_test (count, values, ch)
for i in xrange (count)
ch.send (values)

FloatChannel (100000}
multiprocessing. Process (target=consune_test,
args=(1000, ch) |

p.start()
values = [float (x) for x in xrange(100000)]
produce_test (1000, values, ch)

print (*Done")

g

images/00954.jpg
- SImaple Ry

trport ctypes
_exanple = ctypes.CDLL("./libexample.so")

int ged(int, int)
ged = _example ged
ged.argtypes = (ctypes.c_int,
ctypes.c_int}
ged.Testype = ctypes.c_int

int replace(char *s, char oledh, char newch)

_example_replace.argtypes = (ctypes.c_char_p,
ctypes.c_char,
ctypes.c_char}

_exanple replace xestype = ctypes.c_int

det replace(s, oldch, newch)
sbuffer = ctypes.create_string buffer(s)
nrep = _exanple. replace (sbuffer, oldch, newch)
retumn Tnrep, sbuffer value)

double distance (Point *pl, Point p2)

class Point (ctypes.Structure) :
fields_ = [(*x", ctypes.c_double),
("y", ctypes.c_double)]

_exanple.distance.argtypes = (ctypes.POINTER (Point),
ctypes . POTNTER (Point))
_example distance restype = ctypes.c_double

def distance(a,b) :
»1 = Point (ra)
b2 = Point (b}
Teturn _example.distance (byref (p1) , byref (p2))

images/00711.jpg
Primitive
Lock
RLock

semaphore
Boundedsenaphore
Bvent.

Condition

Description
Mutual exclusion lock

Reentrant mutual exclusion lock (can be acquired multiple
times by the same process without blocking)

‘Semaphore

Bounded semaphore

Event

Condition variable

images/00953.jpg
libExample & ctypes, FOLLLNL - Sexamela-S20")
status = ctypes.c_int.in dll(libexample, “status

images/00948.jpg
>>> libc.atof.restypesctype:
s> libe.atof (34.5%)
3.5

images/00708.jpg
LOEOEL MULL IPrOEEAs LY.
Consume items on a pipe
et consuner (pipe) :

output_p, input_p = pipe
input_p.close() # Close the input end of the pipe
while Trve:
crys
iten = output_p.recv()
except EOPError.
break
4 Process item
(item) # Replace with useful work

4 Shutdown
princ ("Consuner done”]

4 Produce items and put on a queue. seguence is an
4 iterable representing items to be processed.
def producer (sequence, input_p):
for iten in sequence
4 Puc the item on the queve
c_p.send(item)

'__main,
output b, input_p) = multiprocessing.Pipe()

4 Launch the consumer process

cons_p = miltiprocessing.Process target=consumer, args« ((output_p, input_p),)}
cons_p.scart()

4 Close the cutput pipe in the producer
output_p.close ()

4 Produce itens
sequence = (1,2,3,4]
producer (sequence, input_p)

4 Signal completion by closing the input pipe
inpuc_p.close ()

4 Wait for the consumer process to shutdown
0 ety

images/00950.jpg
struct Point {
double %, y;

images/00949.jpg
ctypes Type Name C Datatype. Python Value

ool bool True or False
o bytes signed char Small integer

c_char char Single character
o_char_p char + Nullterminated string or bytes
_double double Floating point
©_longdouble long double Floating point

o_float float Floating point

o_int int Integer

o_ints signed char 8Dt integer

o_int16 short. 16bit integer

c_intaz int 32:it integer

o_intsa long long B4.0it integer

o_long long Integer

©_longlong long long Integer

o_short short. Integer

o_size_t sizet Integer

o_ubyte unsigned char Unsigned integer
c_uint unsigned int Unsigned integer
c_uints unsigned char Bbit unsigned integer
c_uint16 unsigned short 16bit unsigned integer
_uint3z unsigned int 32:it unsigned integer
c_uintéa unsigned long long 64-bit unsigned integer
_ulong unsigned long Unsigned integer
_ulonglong unsigned long long Unsigned integer
o_ushort unsigned short Unsigned integer
c_void_p vold + Integer

o_wechar wehar_t Single Unicode character

_vchar _p wehar_t + Nullterminated Unicode

images/00707.jpg
AMpOFL sl Lanrocess g’

def consumer (input_q) :

while True

iten - input_g.get()

if iten is None)

break

Process iten

print (iten) # Replace with useful work
Shutdown
print (*Consuner done"}

def producer (sequence, output_g)
for item in sequence:

Put the item on the queue
output_g.put (item)

i€ __name_ __main_
§ = miltiprocéssing. Qusue)
Launch the consumer process
cons_p = multiprocessing. Process (target=consuner, args= (g,
cons_p.start ()

4 Produce items
sequence = [1,2,3,4]
producer (sequence, q)

signal completion by putting the sentinel on the queve
q.put (None)

Wait for the consuner process to shutdown
cons_p.join()

images/00706.jpg
if

q = multiprocéssing. Jolnablegueue ()
4 Launch some consumer processes
cons_pt = miltiprocessing. Process (targe
cons_pl.daemon=True

cons_p1.start ()

onsuner, args=(q,))

cons_p2 = miltiprocessing. Process (targe
cons_p2.daemon=True
cons_p2. start ()

onsurer, arg

4.1}

Produce itens. sequence represents a sequence of items to
be sent to the consumer. In practice, this could be the output
of a generator or produced in some other mamner.

sequence = [1,2,3,4]

producer (sequence, q)

Wait for all items to be processed
q.join{)

images/00703.jpg
AMpGrE ol EAproceasing.
inport time

det clock(interval) :
while True

print ("The time is " % time.ctime())
time.sleep (interval)
i

b = miltiprocessing. Process (target=clock, args=(15,))
p.start ()

images/00945.jpg
Python-to-C Conversion Functions
long PylInt_hslong(PyObject *)

long PyLong_hsong (PyObject)

double PyFloat_AsDouble (PyObject 1

char +PyString Asstring(Pyobject *) (Python 2 only)
char *PyBytes AsString(PyObject *) (Python 3 only)

images/00702.jpg
MEita took = Toak ()

Critical section where writing occurs
write_lock acquire ()

£ wrife ("Here's sone data.\n")

£.write ("Here's more data.\n')

write_lock.release()

images/00944.jpg
/* import re */
Te = PyInport_InportModule('re");

/* pat = re.corpile (pat,flags) */
re_compile = PyObject_GetAttrString(re, "conpile")
azgs = Py Buildvalue("(s)", argv[l]);

pat = ByBval CallObject (re_compile, args);
Py_DBCREF (args) ;

/* pat_search = pat.search - bound method+/
pat_search = PyObject_GetActrs "search")

while (fgets (buffer,255,stdinl]
ByObject *match;
args = Py_BuildValue("(s)®, buffer]

pat. search (butfer) +/

match = PyBval_CallObject (pat_search,args);

By _DECREF (args] ;

3 (match (= By None) {
princ ("ss buter) ;

)

Py_XDECREF (natch) ;
)

Py_DECREE (pat) ;
Py_DECREF (re_coupile) ;
Py_DECREE (re) ;
Py_Finalize();

return 0;

images/00705.jpg
import multiprocessing

det consumer (input_g) :
while True
item = input_g.get()
Process iten
print (item) # Replace with useful work
Signal task completion
input_q.task_done()

det producer (sequence, output g :
for item in sequence!
Put the item on the queue
output_g.put (item)

set up
if __name_ '__main__'
G = multiprocéssing . Joinablegueue ()
Lauch the consuner process
cons_p = multiprocessing. Process (target=consuner, args= (g,)
cons_p. daemon=True
cons p.start ()

Produce items. sequence represents a sequence of items to
be sent to the consuner. In practice, this could be the output
4 of a generator or produced in some other mamer.

sequence = [1,2,3,4]

producer (sequence, q)

Wait for all items to be processed
& 4ol

images/00947.jpg
233 Libacmtns (SRE-ET)
1073746168

images/00704.jpg
import multiprocessing
inport time

class Clockprocess (multiprocessing. Process)
def __init__(self, interval)
mWiltiprocessing. Process. __init__(self)
self.interval = interval
det run(selr)
while True
print ("The time is §s° § time.ctime())
time.sleep(self interval)

if __name_ __main_
B = Clockprocéss (15)
p.start ()

images/00946.jpg
>>> import ctype:
s> libe = ctypes.CDLL("/usz/1ib/1ibe.dylib)
+>> libe.rand()

16807

>>> libe.atod (*12345%)

12345

images/00029.jpg
“The value of x is " + str(x)
“The value of x is " + repr(x]
*The value of x is " + format(x,"4d=}

images/00699.jpg
Directive

Meaning
Locale's abbreviated weekday name

Locale’s full weekday name

Locale’s abbreviated month name

Locale’s full month name

Locale's appropriate date and time representation

Day of the month as a decimal number [01-31]

Hour (24-hour clock) as a decimal number [00-23]
Hour (12hour clock) as a decimal number (01-12]
Day of the year as a decimal number (001-356]
Month as a decimal number [01-12]

Minute as a decimal number [00-55]

Locale’s equivalent of either A o Pi1

Seconds as a decimal number [00-51]

Week number of the year [00-53] (Sunday as first day)
Weekday as a decimal number (0-6] (0 = Sunday)
Week number of the year (Monday as first day)
Locale’s appropriate date representation

Locale’s appropriate time representation

Year without century as a decimal number [00-35]
Year with century as a decimal number

Time zone name (or by o characters f no time zone exists)
The & character.

images/00941.jpg
$inalida <fytoon. s

int main(int arge, char *rargy) (
By_Initialize();
PyRun_Simplestring ("print 'Hello Horld') "
By Finalize();
refum 0;

images/00028.jpg
& 7 il
y - raze
Z=x+y #&z= "3742" (String Concatenation)

images/00698.jpg
Attribute Value

tnyear Afourdigt value such as 199¢
en_ron 112

tnnday 1-31

tnnour 0-23

en_nin 0-55

tn_sec 0-61

tn_wday 0-6 (0=Monday)

tm_yday 1-366

tm_isdst 0,1

images/00940.jpg
Fythjnct Spy eapyer (Pycbiect Seelt, Sybiece el
Pyhrg_ParseTuplelargs, ...)

Py_BEGIN_ALLO_THREADS

result = run lang_caleulation (args) ;

Py_END_ALLOW_TEREADS

return By_Buildvalue(fut,result) ;

images/00031.jpg
>>> format (x,
3.40000"

0.5£%)

images/00701.jpg
Code
REG_BINARY

REG_DWORD
REG_DWORD_LITTLE_ENDIAN
REG_DWORD_B1G_ENDIAN
REG_EXPAND_SZ

REG_LINK
REG_MULTI_SZ
REG_NONE
REG_RESOURCE_LIST
REG_SZ

Description
Binary data

32:bit number

32:it little-endian number

32:bit number in big-endian format

Nullterminated string with unexpanded references
1o environment variables

Unicode symbolic link
Sequence of nulterminated strings
No defined value type

Device driver resource list
NulHerminated string.

images/00943.jpg
fincime “Pytban. s

int main(int arge, char *+argv) (
Pyobject *re;
Pyobject *re_conpile;
PyObject *pat;
PyObject *pat_search;
Pyobject *args;
char buffer [256];

it (arge 1= 2) (
forintt (stdexr, "Usage: s patternint,arqv(]);
exit();

}

Py Initialize();

images/00030.jpg
o4
>>> str(x)

ar

>>> repr (x)
'3.3999999999999999"

images/00700.jpg
os.enviren(['Tz'] = 'US/Mountain’®
time. tzset ()

os.environ['TZ'] = *CST406CDT,N4.1.0,410.5.0"
time.tzset ()

images/00942.jpg
Pydbject *
PyEval CallObjectWithReywords(PyObject *func, PyObject *args, PyObject *kwargs)

images/00033.jpg
b = names [0: S Betura [JeLES, "Markf)
c = nanes (2. # Returns [“Thomas®, *Amn®, "Phil*, *Paula”]
names(1] = 'Jeff' # Replace the 2nd item in names with 'Jeff'
#
N

nanes[0:2] = ['Dave’, 'Mark’,'Jeff'] & Replace the first two items of
th List with the 1ist oo the Tight.

images/00032.jpg
a = names[2] # Returns the third item of the list, "Amn"
names[0) = "Jeff" # Changes the First item to WJefEd

images/00035.jpg
al1] § Bsturny 'Dgve?
a(3] [2] # Returns 9
a[3] (31 [1] # Returns 101

images/00939.jpg
Macro Description

Py_INCREF (obj) Increments the reference count of ob3, which must be nor-null.
Py_DECREF (obj) Decrements the reference count of ob, which must be nonul
Py_XINCREF (obj) Increments the reference count of ob3, which may be nul

Py XDECREF (obj) Decrements the reference count of ob3, which may be null,

images/00034.jpg
oamea. =11 LA GNpcy List
Dawes = 1igt(l: 8 n eepty liet

images/00938.jpg
(% Chrvy cuik Roas SpAmmiicn. Jmwiving Eytheo chisote e
if (PyErr_Occurred()) {
S (PyErr_Except ioniatches (PyExc_ValueError)) |
/+ Take sone kind of recovery action +/

PyErr_Clear();
returi result; /+ A valid Pyobject * 4/

) else {
return NULL; /+ Propagate the exception to the interpreter */

3

images/00026.jpg
a = "Hello World"
a[a] ¥b

images/00025.jpg
text/html

print *'’Content-type

<hl> Hello World </hl>
Click herec/a>

images/00937.jpg
C Name
PyExc_ArithneticError
PyBxc_ResertionError
PyExc_AttributeError
PyExc_EnvironmentError
PyExc_EOFError
PyExc_Exception
PyExc_FloatingPointError
PyExc_InportError
PyExc_IndexError
PyBxc_ToError
PyExc_KeyError
PyExc_KeyboardInterrupt
PyExc_LookupError
PyExc_MemoryError
PyExc_NameError
PyExc_Not InplementedError
PyExc_OsError
PyExc_Overflowsrror
eyExc_ReferenceError
eyExc_RuntimeBrror
PyExc_Standardsrror
PyExc_StopIteration
PyExc_SyntaxError
eyExc_SystenBrror
ByExc_SystemBxit
PyExc_TypeError
PyExc_tnicodeBrror
PyExc_UnicodeBncodsBrror
ByExc_nicodebecodsBrror
ByExc_tnicodeTranslateBrror
PyBxc_valueBrror
eyExc_indowsError
PyRiic_EeroDivislonkcoas

Python Exception
ArithneticError
RssertionError
ActributeError
EnvironmentError
EOFErrOr

Exception
FloatingPointError
InportError
IndexError

ToBrTOr

KeyBrror
KeyboardInterrupt
LookupError
MemoryError
NameError
NotInplementedError
osgrror
overflovError
Referencekrror
Runtimegrror
Standarderror
stopiteration
Syntaxerror
systenBrror
systenmxit
TypeBrror
nicodeError
UnicodeEncodeError
UmicodeDecodeError
UnicodeTranslateError
ValueError
windowsError
Seranielulonbivar

images/00027.jpg

images/00934.jpg
“licems)

" Litems) *

+{icams)

Any

Any

string
Any

Tuple

List

Dictionary.

PyObject *

converter, any

Pyobject +
Pyobject *

Ay Pythanobject.. The dhjet .
s unchanged except for its ref-
erence count, which is incre-
mented by 1. If a NULL pointer
is given, a NULL poiner is
returned. This s useful f an
error has been signaled else-
where and you want it to propa-
gate.

C data processed through a
comverter function.

Same as.
Same as "0~ except that the
reference count is not incre-
mented.

Creates a tuple of items.
itens is a string of format
specifiers from this table.
vars s a list of C variables
corresponding to the items in
icems.

Creates a list of items. {zems
is a string of format specifiers.
vars s a list of C variables
correspondin to the items in
items,

Creates a dictionary of items.

images/00933.jpg
Unicode
Unicode

Unicode

Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
string

Float
Float
Complex

Ry IMICOOR -+
char +

char +, int

char
unsigned char
short.

unsigned short
int

unsigned int

1ong

unsigned long
long long
unsigned long long
Py ssize t

char

float
double
Py coRpl

Diicode Siying. And leogin,
Converts a nulkterminated C
string into a Unicode string.

Converts a C string into
Unicode.

it integer.
&bt unsigned integer.

Short 16.it integer.
Unsigned short 16-bit integer.
Integer.

Unsigned integer

Long integer.

Unsigned long integer.

Long long.

Unsigned long long.

Python size type.

Single character. Creates a
Python string of length 1.

Single-precision floating point,
Double-precision floating point.
Complex number.

images/00936.jpg
¥old Frndale RaSis mgronebant (Ryldbieat Sacials, DOML Ghas s, oot dhex
evalue)

images/00935.jpg
it
Py_BuildValue (*i",37)
Py_Buildvalue (*ids",37,3.4, "hello")
Py_PuildValue ("s#", hello®, 4]

Py _BuildValue (" () "}
Py_Buildvalue (" (1) ",37)
Py_BuildValue (" [141%,1,2)
Py_Buildvalue (" [1,i1%,1,2)
Py BuildValue (*[s:i,s:i}",

Hone
3

(37, 3.5, "hello")
"hell®

0

@371,)

1,21

.21

et a2}

images/00018.jpg
if suffix == ".htm"
content = "text/html"

elif suffix == ".jpg"
content = "image/jpeg"

elif suffix == ".png"
content = "image/png"

else:
raise RuntimeError("Unknown content

type")

images/00930.jpg
PyObject *py_distance(PyObject ¢self, PyObject targs) {
Point pl, pz;
double result;
if (1pyArg_ParseTuple (axgs, " (4d) (d)*,
p1x, wpl.y, w2, 2.9 |
raturn NULL;
)
result - distance (epl, ap2) ;
veturn Py_Buildvalue ("d", result) ;

images/00929.jpg
Format String
(itens) "

Description
Unpack a tuple of objects. Items consist of format conversions.
Start of optional arguments.

End of arguments. The remaining text is the function name.
End of arguments. The remaining text is the error message.

images/00020.jpg
f = open("foo.txt")
line = f.readline()
while lin
print line,
print (line, end="")
Line = £.readline()
¥ . cloanl}

Returns a file object
Invokes readline() method on file

trailing ',' omits newline character
Use in Python 3

images/00932.jpg
Python Type:
None
string

string

Bytes.
Bytes.
Sting or None.

Sting or None.
Unicode

CType
void
char

char +, int

char +
char +, int

char +
char +, int
Py_UNICODE *

Description

Nothing.
Nullterminated string. If the C
String pointer is NULL, Nene is
returned.

String and length. May contain
AUl bytes. If the C string point-
er is NULL, None is retured.
Same as "s" except a byte
string is retumed.

Same as "s# except a byte
string is retured,

Same as *
Same as "5t
Nullterminated Unicode string.
If the string pointer is NULL,
e oy s RS

images/00019.jpg
AL 'Span’ in &
has_spam = True
else:
has_spam = False

images/00931.jpg
PyArg_ParseTuple (args,"ii:gcd", &x, &y):
PyArg_PareeTuple (args, "i1; gcd equires 2 integers”, &x, &)

/* Parse with optional arguments */
PyArg_ParseTuple (args, 's|s*, &buffer, &delimiter);

images/00022.jpg
£ s openioatlyNt: ¥R TS Jor acibig
while year <= numyears:
principal = principal * (1 + rate)
print >>f,"$3d 30.26% § (year,principal)
year 4= 1
I Py

images/00021.jpg
tor line in open(*f00.txt?):
orint 1ine,

images/00024.jpg
“Hello ¥Worla"
Python is groovy'
NG s e

images/00928.jpg
/* Comvert a tuple into a Point structure. */
int convert_point (PyObject *obj, void *addr) {

Point +p = (Point *) addr;

return PyArg_ParseTuple (obj, "ii", &p->x, &p->y) i
}
PyObject *py_distance (Bybject +self, PyObject *args)

Foint pl, p2;

double result;

if (1PyArg_ParseTuple args, "080&",

- convert_point, pl, comvert_point, p2)) (
return NOLL;

i
result - distance (pl, ip2) ;
return Py_Buildvalue ("d", result);

images/00023.jpg
import sys
sys.stdout urite ("Enter your name :")
pame = gys.stdin. readline()

images/00015.jpg
if a < b:
print *Computer says Yes®
else:

print "Computer says No®

images/00927.jpg
C Name
PyList_Type
Pypict_Type
Byset_Type
PyFrozenset_Type
PyTuple_Type
PySlice_Type
PyByteArray Type

Frben Type
1iet

dict

set
£rozen_set
cuple
slice
bytearray

images/00014.jpg
print "{0:3d} {1:0.2£}". format (year,principal)
print ("{0:3d} {1:0.2£}".format (year principal)) # Python 3

images/00926.jpg
/* Parse a List Argument */
Pyobject *listobj;
PyArg ParseTuple (args,

Iv, &pyList_Type, &listobj);

images/00017.jpg
if product

“ipiNe " ana, YDE. =w TRIZACS BeMOTY
and not (age < 4 or age > 8):
print *I'11 take it!"

images/00016.jpg
if a < b:
pass # Do nothing
else:
print "Computer says No®

images/00923.jpg
vz

rur
vesk

_—

—_—

_—
Sl

Python Type.

String or byte string of length 1
String

String, bytes, or buffer
String, bytes, or buffer
String or vone

String, bytes, o None
String, bytes, buffer, or None
Bytes (nullterminated)
Bytes

Bytes or buffer

String (Unicode)

String (Unicode)

Sting

String or bytes.

String or nullterminated bytes.
String or bytes.

Readonly buffer
Readwrite buffer
Readwrite buffer
Read-write buffer

C Argument Type
char *r

char eer

char ++r, int tlen

by butfer +x

char *er

char sex, int *len

By butfer «r

char ser

char *+r, int *len

Py butfer +r

Py_UNICODE

Py UNICODE 4z, int *len

const char *enc, char *tr
const char venc, char *ex,
“len

const char venc, char *ex,
const char +enc, char *tr,
char eer, int +lem

char ser

char ser, int +lem

Py butfer *x

int

images/00922.jpg
Format

.
g
e
.
"

an
"k

.
e
war
o

Python Type
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Float
Float
Complex

C Argument Type.

signed char *r
unsigned char +r
shore

unsigned short +r
ine e

unsigned int +r
long int *r
unsigned long +r
long long *r
unsigned long long
by_ssize t ox
float wx

double *r
Py_complex x

images/00925.jpg
Pyobject *py_wrapper(PyObject *self, PyObject *args) {
char *buffer;
if (1pyarg_parseTuple (args, "es", "utf-8", abutfer)) |
Teturm WOLL;
i

/% Do sonething. +/
/* Cleanup and return the result +/

Pyen_Free (buffer) ;
return result;

images/00924.jpg
Format Python Type ~ C Type

o Ay Eyobject #rr

o Ay PyTypeobject *type, Pyobject *+r

s Any int (vconverter] (Pyobject +, void ¥), void *r
s String Pyobject ++x

YU Unicode Bybject #rr

images/01005.jpg
v ted -1
Available transformations for the -£/--fix option:
apply

basestring

buffer

callable

xrange
xreadlines
zip

images/01004.jpg
FSLGS WENNRANLEN

RefactoringTool: Skipping implicit fixer: buffer

RefactoringTool: Skipping fixer: idions

RefactoringTool: Skipping imp fixer: set_literal

RefactoringTool: Skipping implicit fixer: ws_coma
example.py (original]

+++ exanple.py (refactorsd)

@ -1,10 +1,10 68

exanple.py

mport ConfigParser

vimport contigparser

for 1 in xrangs (1
- print 4, 201
i in range(10);

¢ print(i, 244
det span(a):

- if not d.has_key("span")
¢ if "span nof in 4:

divepan] =

recurn a[span’]
RefactoringTool: Files that need to be modified:
RefactoringTool: example.py

2d_span ()

images/00049.jpg
stock = {

“name' : "GOOG,
"shares' : 100,
"price’ : 490.10

}

images/00048.jpg
t.add('x'} # Add a single item
s update([10,37;42]) & Mdde miltiple-itess to:s

images/01006.jpg
¥ 2to3 -f xrange -w example.py
example.py (original]

+++ exanple.py (refactored)

o0 -1,7 +1,7 98

4 exanple.py

snport Conf igparser

x & in xrange(10):
vfor 1 in range(10):
print i, 211

def span(d):
refactoringTool: Files that were modified:
RefactoringTool: example.py

images/00051.jpg
shock " anaraa 1
stock ["date"]

75
June 7, 2007

images/00919.jpg
setup.py
from distutils.core import setup, Extension

setup (name="example",
version="1.0%,
py_modules - ['example.py'],
ext_rodules = [
Extension("_exanple”,
Toyexample v, "example c*l,
include_dirs = [*/usr/include/X11", */opt/include"],
define_facros = [('DEB

undef_macros = ['RAVE_FOO', 'RA
Library_girs= ["/ust/Tib/Xil", "Jop
Libraries = ["X11%, "Xe*, "blan’ 1)

images/00050.jpg
v T

= gtook|*namet]
stock["shares®] * shares["price"

images/00918.jpg
X PyEDoRs 0
Python 3.0 (r30:67503, Dec 4 2008, 09:40:15)
[6CC 4.0.1 (Apple Inc. build 5465)] on darwin
ye "help", “copyright®, "credits’ or

>>> import example

>>> example.ged(78,120)

5

»5> example.replace ("Hello World",'
(1, "Hello-World')

>>> example.distance()

raceback (most recent call last) :
File "cstains', line 1, in <module>
NotTmplementedsrror: distance() not implemented.

images/00053.jpg
prices = {} # An empty dict
prices = dict() # An empty dict

images/00921.jpg
int PyhArg_ParseTupleAndKeywords (PyObject *args, PyObject *kwargs,
‘char *format, char **kwlist, ...}s

images/00052.jpg
prices = {
“GooGh
by
b
NSFT"

+ 430,10,

123,50,

: 5L.50,

52.13

images/00920.jpg
inux % goe -¢ -fpic -I/usr/local/include/python2.§ example.c pyexample.c
inux & goe -shared example.o pyexample.o -0 _examplemodule.so

images/00055.jpg
for o-in i1.2,4,4,5,6,7,8 3] ¢
print "2 to the %d power is %d" % (n, 2**n)

images/00054.jpg
if "SCOX" in prices:
P = prices ("SCOX"]
else
p=0.0

images/00057.jpg
range(5)
range (1,8)

3
21

images/00056.jpg
for n in range(1,10):
print 92 b0 the $d pows: is W% ¥ {n; 2%%0)

images/00916.jpg
example.py
fron _example import *
Aad aaaitional support code below

images/00047.jpg
Union of t and s
Intersection of t and s

4 Set difference (items in t, but not in s)

Symmetric difference (items in t or s, but not both)

images/00915.jpg
SLUCLE Cex v datapce o0t

ctatic syobject +

py._distance (eybject +selt, Eyobject sargs) |
Byerr_SetString (Pyxe_Not Inplenentedarror, “distance (] n
returh NLL;

}

static yvethodbef _examplensthods(] = |
{*aca", py_ged, WETH VARARGE, py_sed_doc},
{"zeplace"; py replace, NETH VARRRGS | METH KEVWORDS, py_replace doc},
{"a15tances , py_distance NETH VARARGS, py_diatance_dot),
{NULL, NULL, 0, NULL}

"Computes the distance between two points";

mented. ") ;

45 BY MAJOR_VERSION < 3
/+ sython 2 Godule initialization */
vold init_example(void) {
Pyobiect tmod;
mod = py_Inithodule(" example", _examplemethods);
Pytlodul &_AddIntMacro (Rod, MAGIC) ;
}
selse
/+ Python 3 module initialization */
static struct PyNoduleDef _exanplenodule
Eytiodul eDet_HEAD_INTT,
"_exanpler,” /+ name of module */
NOLL, J+ mofule documentation, way be NULL */
-,
_exanplenethods
I
PYMODINIT_FUNC
PyInit__axanple (void) {
Pyobiece mod;
mod - pydodule_Create (s_exanplenodule) ;
Pytiodule_AddInEMaczo (mod, MAGIC);
return n64;
}

dendi

images/00917.jpg
setup.py
from distutils.core import setup, Extension

setup (nane="exanple”,

versions'1.0%,

py_modules = ['example py'l,

ex_modules = [
Extension(*_exanple,

("pyexample.c", "exanple.c"])
1
)

images/00912.jpg
e-unspeakable-peril.

Skipping-along-unavare-
B

images/00911.jpg
{* Mainic &
‘inciuae *exanple b
int nain() |
J+ Test the gea() function +/
{
print (vid\nt, gcd(128,72)) 7
nct ("4d\a", 5ed(37,42));
}

/* Test the replace()
{
char s
int nrep;

o = replace(s, ' ',
princt ("sd\n®, nrep!
printt ("ts\n®,s);

}
/% Test the distance() function */
{
Point a = { 10.0, 15.0 };
Point b = { 13.0, 11.0 };
Printe('40.2f\n", distance(sa,&b)1;
) }

ction +/

"Skipping along unaware of the unspeakable peril.;

images/00914.jpg
*+args, PyObj

Static char +azgnanesl] = (*s*,"och", ach”,NULL};
char s, tsdup;

char ocn, nch;

ine neep,

Pyobject *result;
it (1pyArg_ParseTupleandieywords (azgs kwargs, “scc:zeplace®,
azgnanes, g6, soch, sach)l |

return NULL;

}

s4up = (char ¥) malloc(strlen(s)+1);

strcpy (sdup, s) ;

nrep = replace (sdup, och,nch) ;

result = By Builavalue((is] " nrep,sdup) ;
free(saup)

return result;

images/00913.jpg
/* pyexample.c */

#include python.h"

#include *example.h®
static char py_ged doc(] = "Computes the GED of two integers’;
static yobject *
by_gcd(yobect rself, Pyobject targs) {

Toe v,

if (1yhrg_ParseTuple (args, "iisged,x,&v)) {

raturn ML

i

E - gedley);

retum py Bullavalue (riv,z);

}

static char py_replace doc(]
static ByObject *

"Replaces all characters in a string';

images/00038.jpg
Hunck = gy AN, 430.10
address = 'www.python.org’,80
person = Eirst name, last_name, phone

images/00040.jpg
name, shares, price = stock
host, port = address

Fiv5t. harie: 154t Bagas:phane s parson

images/00908.jpg
vodule
cna
calendar
shilex
sched

Ticinter (tkinter)
winsound

Line-oriented command interpreters
Calendargeneration functions
‘Simple lexical analysis module
Event scheduler

Python interface to Tel/Tk
Playing sounds on Windows

images/00039.jpg
O
(item,)
item,

¥ -tupke Seepcy apial
1-tuple (note the trailing comna)
1-tuple {note the trailing comma)

images/00042.jpg
>33 pextiolic 0]
(G006’ 100, 490.10)
»5> portfolio[i]
('MSFT', 50, 54.23)

images/00910.jpg
/* example.c */
binclude “exanple.h”

/+ Compute GCD of two positive integers x and y */
int ged(int x, int y) {

retum g;

}

/+ Replace a character in a string .
int replace (char *s, char oldch, char
int nrep = 0;

newch) {

while (s = strchr(s,oldch)) {
*(s+4] = newen;
nrepes

1

return nrep;

}

/+ Distance between two points */
double aistance(Point *a, Point *b) |
double dx,dy;
x = ax - box;
ay = asy - by
return sgre(dxedx + dyrayl;

}

images/00041.jpg
§ Fllg compainiog” Liihe Of the form Tnas, ahroos prdoe®
£ilenane = "portfolio.csv®

portfolio = (1

for Line in open(ilenane :

fields = line.split(",") # Split each line into a list
name = fields[0] # Extract and convert individual fields
shares = int(fields(1])

price = float(fields[2])
stock = (name,shares,price] 4 Create a tuple (name, shares, price]
portfolio.append(stock) 4 Append to 1ist of records

images/00909.jpg
¢+ ELI8 i Rxampla-h b/
#include <stdio.h>

cypedet struct Zoint {
dowble x;
dowble y;

} voint;

xandy */

/+ compute
extern int ged(int x, int y);

/+ Replace och with nch in s and return the number of replacements */
extern int replace(char 75, char och, char nch);

/+ Compute the distance between two points */
extern double distance (Boint *a, Point *);

/* A preprocessor constant +/
#define MAGIC 0x31337

images/00044.jpg
total = 0.0
for name, shares, price in portfolio:
EotaL e ahiaree b jatos

images/00043.jpg
el et T
50

»>> portfolio(1] (2]
54.23

images/00046.jpg

images/00045.jpg
8 = set([3,5,9,10]) # Create a set of numbers
t = set("Hello") # Create a set of unique characters

images/00037.jpg
AEOEk = [E0is’, 100, 30,10}
address = {'www.python.org’, 80)
person = (first name, last _name, phone)

images/00905.jpg
Module
binhex
formatter
mailcap
mailbox
netrc
plistlib
xdrlib

Description
BinHex4 file format support
Generic output formatting
Mailcap file handling

Reading various mailbox formats
Netre file processing

Macintosh plist file processing
Ulencode file support

Encode and decode Sun XDR data

images/00036.jpg
import sys # Load the sys module
if len(sys.argv) 1 2 ¥ Check nunber of command line argunents
print please supply a £ilenane*
raise SystenBxit (1)

£ = open (sys.argv(1]) # Filenane on the command line
lines = f.readlines () # Read all lines into a list
£.close()

Convert all of the input values from strings to floats
fvalues = [float (line) for line in lines]

Print min and max values
print *The mininum value is *, min(fvalues)
print *The maximum value is *, max{fvalues)

images/00904.jpg
Module Description

imaplib IMAP protocol
Antplib NNTP protocol
poplib POP3 protocol
smtpd. SMIP server

telnetlib Telnet protocol

images/00907.jpg
vodule
audioop
sifc

chunk
colorays
inghax
sndndr
sssaudiodey

Description
Manipulates raw audio data

Reads and writes AIFF and AIFC files
Reads and wites Sun AU files

Reads and writes WAV files

Reads IFF chunked data

Conversions between color systems
Determines the type of an image
Determines the type of a sound file
Access to 0SS-compatible audio devices

images/00906.jpg
module
sertext Multilingual text handing services
locale Internationalization functions provided by the system

images/00901.jpg
Module
parser
pickletools
pkautil
pprint
pyelbr
py_compile
repr (zeprlib)
symbol
tabnanny

test

token
tokenize
zipimport

Description
Accesses parse trees of Python saurce code

Tools for pickle developers.

Package extension utlity

Prettyprinter for objects

Extracts information for class browsers

Compiles Python source to bytecode fles

Alternate implementation of the rep () function
Constants used to represent internal nodes of parse trees
Detection of ambiguous indentation

Regression testing package

Terminal nodes of the parse tree

Scanner for Python source code

User configuration file parsing

Import modules from zip archives.

images/00900.jpg
Module
bab

code

codeop
compileall
copy_reg (copyrea)
ais

sistutile

fpectl

imp

keyword
linecache
nodul ef inder

Description
Access 1o the debugger framework

Interpreter base classes

Compiles Python code

Byte-compiles Python files in a directory

Register builtin types for use with the pickle module
Disassembler

Distribution of Python modles

Floating point exception control

Provides access to the implementation of the import
statement

Tests whether a string is a Python keyword
Retrieves lines from source files
Finds modules used by a script

images/00903.jpg
biisaiched
erypt

arp

pty

pipes
platform
pwd
readline
rlcompleter
sched

spud

stat

syslog
termios
P

VDN
Access to the UNIX crypt function

Curses libary interface

Access to the group database

Pseudo terminal handiing.

Interface to shell pipelines

Interface to Sun's NIS

Access to platformspecifc information
Access to the password database

Access to GNU readiine library

Completion function for GNU readline
Resource usage information

Event scheduler

Access 1o the shadow password database
Support for interpreting results of os . stat ()
Interface to UNIX syslog daemon
UNIX TTY control

Fenmminal contral actions

images/00902.jpg
TOUEER
aife1in
fpfornat
stringprep
Cextwrap

Description
Compute deltas between strings
Floating-point number formatting
Internet string preparation

Text wrapping

images/00069.jpg
A python implamsutation. of Dolx “tatl of | gewg python?
wnwlog = tail(open("access-log*) |
pylines = grep (wwwlog, "python”)
for Line in pylines:
orlgk iime,

images/00068.jpg
def grep{lines, searchtext):
for line in lines:
1# Bearchbext dn: Tipasyield Tine

images/00071.jpg
>>> matcher = print matches(®"python®)
>>> matcher.next() # Advance to the first (yield)
Looking for python

>>> matcher.send ("Hello World®)

>>> matcher. send("python is cool®)

python is cool

>>> matcher.send ("yow!®)

>>> matcher.close() # Done with the matcher function call

images/00070.jpg
Hat, print, sat.cies (ealetbass] v
print "Looking for", matchtext
while True
Line = (yield) # Get a line of text
if matchtext in line:
print line

images/00073.jpg
items = [37, 42] # Create a list abject
items.append(73) # Call the append() method

images/00072.jpg
¥ B0 5 SLOEY SOTIRLIOaN:
natchers = [
print_natches ("python*) ,
print_matches ("guido’) ,
print_matches (*jython®)

!

Prep all of the matchers by calling next ()
for m in matchers: m.next()

Feed an active log file into all matchers. Note for this to work,
a web server must be actively writing data to the log.
wewlog = tail(open("access-log"))
for line in wwwlog
for m in matchers
gy B e Aty Anve suth mataher: sopouk g

images/00075.jpg
>>> items.__add__([73,101])
(37, 42, 73, 101

images/00899.jpg
Trom i . o Teporl ContentHandler, paree:

class RecipeHandler (ContentHandler]
et startpocunent (self)
self.initem = False
def startElement (self, name,attrs)
if name == 'item'
self.um = attrs.get('num','1')
self.units = attrs.get('units', 'none’)
self.text = [
Self.initem - True
def endslement (self, name)

if name == 'iten’
text Join(self . text)
if celf.units == 'mome': self.units =
unitstr = "3 ¥s" § (self.nun, self.units)

print
self.initen = False
Gef characters (self, data)
if self.initem:
self. text .append (data)

BiaraE (reciie il " Recipemasdler 1))

$-108 35" % (unitstr, text.strip()))

images/00074.jpg
233 Loami w [37: 431
s> dir (items)

U__add__', '__class__',
‘append’, 'count', 'extend’,
‘remove', 'reverse', 'sort']

contains,

‘index',

‘insert!,

', 1 _delattr,

"pop’,

_deliten

images/00898.jpg
Method
attrs.getvalueByQNane (gname)
attrs.getNaneByQNane (gname)

attrs.getQNaneByNane (nane)

attrs.getQNames ()

Description
Retums value for qualified name.

Retums (namespace, localname) tuple for a
name.

Retums qualified name for name specified as a
tple (namespace, localname).

Retumns qualified names of all attributes.

images/00077.jpg
B S8iackii B CXRRLR = SEACK.
5. push ("Dave") # Push some things onto it
s push(42)

s.push([3,4,51)

% = 5.pop() # x gets [3,4,5]

y = s.pop() #y gets 42

dul n ¥ Degtroy s

images/00076.jpg
class Stack (object)
Gef __init__(self): # Initialize the stack
self.stack = []
def push(self,object) :
self stack. append (object)
def pop (self)
return self.stack.pop()
def length(self) :
Paten lentel® arack)

nav.xhtml

 		Introduction

 		Part I: The Python Language

 		1 A Tutorial Introduction

 		2 Lexical Conventions and Syntax

 		3 Types and Objects

 		4 Operators and Expressions

 		5 Program Structure and Control Flow

 		6 Functions and Functional Programming

 		7 Classes and Object-Oriented Programming

 		8 Modules, Packages, and Distribution

 		9 Input and Output

 		10 Execution Environment

 		11 Testing, Debugging, Profiling, and Tuning

 		Part II: The Python Library

 		12 Built-In Functions

 		13 Python Runtime Services

 		14 Mathematics

 		15 Data Structures, Algorithms, and Code Simplification

 		16 String and Text Handling

 		17 Python Database Access

 		18 File and Directory Handling

 		19 Operating System Services

 		20 Threads and Concurrency

 		21 Network Programming and Sockets

 		22 Internet Application Programming

 		23 Web Programming

 		24 Internet Data Handling and Encoding

 		25 Miscellaneous Library Modules

 		Part III: Extending and Embedding

 		26 Extending and Embedding Python

 		Appendix: Python 3

 		Index

 		Running Python

 		Variables and Arithmetic Expressions

 		Conditionals

 		File Input and Output

 		Strings

 		Lists

 		Tuples

 		Sets

 		Dictionaries

 		Iteration and Looping

 		Functions

 		Generators

 		Coroutines

 		Objects and Classes

 		Exceptions

 		Modules

 		Getting Help

 		Line Structure and Indentation

images/00058.jpg
for 1 in xrange(100000000): #1.s0.1,2,...,99999299
S

images/00060.jpg
def remainder(a,b):
q=allb #// is truncating division.
r-a-qb
return r

images/00059.jpg
= *Hello Norigh
Print out the individual characters in a
for c in a:

print ¢

b - [*Dave","Nark", "Ann", "Phil"]
Print out the members of a list
for name in b

print nane

c = { 'G00G' : 490.10, 'TBM' : 91.50, 'AMPL' : 123.15 |
¢ Print out all of the members of a dictionary
for key in c:

print key, clkey)

Print all of the lines in a file
£ - open("foo.txt")

for line in £
orlar Tina

images/00062.jpg
Hat. Rennact thostoxig pork:, timecal-s100) x
'# Function body

images/00061.jpg
def divide(a,b)
a=a/lb # 1f a and b are integers, g is integer
r-a-aqb
return (q,r)

images/00064.jpg
def countdown(n) :
print *Counting down!"
whilen > 0
yield n 4 Generate a value (n)
2 =1

images/00063.jpg
count = 0

def foo():
global count.
BoaE i1, § Chaiciee the Global. veriabls sout

images/00066.jpg
>>> for i ia countdown(S):
print 1,

Counting down!

54321

images/00065.jpg
>>> ¢ = countdown(5)
>>> c.next ()
Counting down!

5

>>> c.mext()

s

>>> c.mext ()

3

images/00067.jpg
§ tall e f1le CLike Sadd R

import time
def tail(f)
£.seek(0,2) 4 Move to EOF
while True
line - f.readline() # Try reading a new line of text
if not line # If nothing, sleep briefly and try again
tine.slesp(0.1)
cont inue

yield line

images/00089.jpg
i il Sl R
math.sin(3 * (y - n))

images/00088.jpg
>>> print issubclass. _doc__
issubclass(C, B) -> bool

Return whether class C is a subclass (i.e., a derived class) of class B
When using a tuple as the second argument issubclass(X, (&, B, ...)),
is a shortcut for issubclass(X, A) or issubclass(X, B] or ... (etc.).

images/00091.jpg
1f a: statementl
alge. abatement?

images/00090.jpg
ifoss
statement1
statement2
21se:
statement3
StAtamanss

4 Consistent indentation

Inconsistent indentation (error)

images/00093.jpg
and
assert
break
class
continue
def

del
elif
else
except.
exec
finally
for

Lfrom
global
if
import
in
is
Yambda

nonlocal
not
pass
print
raise

return

ey
while
with

yield

images/00092.jpg
Rfoss

pass

olse:
IR

images/00095.jpg
t1, 3.4, "hello’ | % A List
(10, 20, 30) # A tuple
{7a': 3, 'b': 42) # A dictionary

images/00094.jpg
Character Description

\ Newline continuation
N Backslash

N Single quote

- Double quote

\a Bell

\b Backspace

\e Escape

0 Nl

\n Line feed

v Vertical tab

e Horizontal tab

\r Carriage retum

e Form feed

\000 Octal value (1000 t0 \377)

e Unicode character (120000 to \u£££)
[RE— Unicode character (1000000000 t0 \UEEEEEEEE)
\n{charname} Unicode character name

\shh, Hexadecimal value (\x00 10 \x££)

images/00097.jpg
+ oo > & |
e [l= A5 o

images/00096.jpg
i
3.4,
"hello!

images/00078.jpg
(1A ALAck(]Iet) |
Add push() method for stack interface
Note: lists already provide a pop() method.
def push(self, object) :
self. append(object)

images/00080.jpg
Traceback (most recent call last)
Pile "foo.py", line 12, in <modules
IOError: [Errno 2] No such file or directory: 'file.txt’

images/00079.jpg
class EventHandler (object):
@staticnethod

def dispatcherThread
while (1):

¥ Wait for requests

SunntMendler . disgatohncThcead (} ¥ 0p1] wethiod Yike o Priction

images/00082.jpg
TRpot, tcoa g
nessage_lock = threading.Lock ()

with message_lock:
ReSBRgRE, W [

images/00081.jpg
s £
£ = open("File.txt", "r")
except I0Error as e:
print e

images/00084.jpg
ifpoxt dlw
a, b = div.divide(2305, 29)

images/00083.jpg
file : div.py
def divide(a,b):
q=a/ 4 If a and b are integers, g is an integer
rea-ab
Fetuti a0

images/00086.jpg
from div import divide
a,b = divide(2305,29) # No longer need the div prefix

images/00085.jpg
fWpart. Aly as. foo
a,b = foo.divide(2305,29)

images/00087.jpg
>>> import string
>>> dir (string)

I'__builtins__', '__doc__', '__file _', '__mame__', '_idmap',
+TidmapL', '_lower’, '_swapcase’, '_upper', 'atof’, 'atof_error',
‘toi, 'atol_error’, Tatol', 'atol_error', 'capitalize
‘capuords', 'Center’, 'count’, 'digits', 'expandtabs’, 'find’,

images/00185.jpg
Hde dy
at:2]

2ol
alo:s:2)

LT}

598

024560
5,7, 5 3,1

images/00184.jpg
o oo Rt
X.% = Ltens fxedyes ozes

letters = "abor
X7.% = letters fxan

LyehLze e

gatetine = (5, 19, 2008), (10, 30, *am"})
kel Gy pwite); (hous caluitn; i Su) w Gubatiing

images/00187.jpg
W ek dalil

aii) =’ Han
al2:4] = [10,11] #a = [1,6,10,11,5]
al3:4] = [-1,-2,-3] # a = [1,6,10,-1,-2,-3,5]
al2:1] = [0] Saniaol

images/00186.jpg
Oper

stil

sli
sti
del
de1
del

ration

FIS
jistridel = x
sli]
slisf)
P

Description
Index assignment

Sice assignment
Extended slice assignment
Deletes an element
Deletes a siice
T

images/00181.jpg
Operation
vi,ve., m=s
stil

sli:5]
slisj:seride]

x in s mot in &
for x in st
all(s)

any (s)

len(s)

min (s)

max (s)

sumls [, initiall)

Dieaigton
Concatenation

Makes r copies of s, where r is an integer
Variable unpacking

Indexing

Siiing

Extended sicing

Membership

Iteration

Returms Txue if allitems i = are true
Returs Txue if any item in s s true.
Lengtn

Minimum item in

Maximum item in &

Sum of items with an optional initiel velue

images/00180.jpg
Operation Description

Greater than or equal to
Lings: th:or saual 1o

x <y Less than
x>y Greater than
x Equal to

x Not equal to

<

images/00183.jpg
ouhia, Ay A1
¢ = [1i5t{a) for § in range(d)] 4 list() makes a copy of a list

images/00182.jpg
¥ Ihelo D)
22> b
siac =4

(3, 4. 51, 3,
>>> al0] = -7

51, (3, 4, 51, [3, 4, 51

(-7, 4, 51, [-7, 4, 51, [-7, 4, 51, (-7, 4, 5]]

images/00179.jpg
Function Description

abs (x) Absolute value
divmed (x, y) Retums (x // y, x % y)

pow(x,y [,modulo]) Retums (x ** y) % modulo

round (x, (n]) Rounds to the nearest multiple of 10 (floating-point numbers

only)

images/00178.jpg
e o e

X<y Left shift
sy Right shift
&y Bitwse and
x|y Bitwse or
Xty Bitwise xor (exclusive o)

Bitwise negation

images/00174.jpg
class DistanceFrom{object)
def __init__(self origin :
56le.origin = origin
Gef __call__(self, x):

Teturn abs (x - self .origin)

nums = [1, 37, 42, 101, 13, 9, -20]
nums . sort {key=DistanceFrom (10} }

4 Sort by distance from 10

images/00173.jpg
b3 ot s bisco N o
rlshift__(self,other] other << self
rshift__(self,other) other »> self
rand__(self, other) other & self
ror__(self,other) other | self
Txor__(self, other) other * self
iadd__(self, other) self += other
isub__(self,other] self -= other
imul__(self, other)

idiv__(self, other)

itruediv__(self,other)
iflooraiv__(self, other)
imod__(self, other)

other

other (Python 2 only)

other (Python 3)
other

other

ipow__(self, other) otner
iand__(self, other) other
ior__(self,other) other
ixor__(self, other) other.

ilshift__(self,other)
irshift__(self,other)
neg__(self)
pos__(self) +self

abs__(self) abs (self)
invert__(self) selr

inc__(self) int (self)

long__(self) long(self) (Python 2 only)
floar__(se1f) float (self)

complex

other

other

(se1£) complex (self)

images/00176.jpg
Method

__enter__(self)

exit.

_(self,

type.

value,

b)

Description

Called when entering a new context. The
return value is placed in the variable listed
with the as specifier to the with state-
ment.

Called when leaving a context. ff an excep-
tion oceurred, type, value, and tb have
the exception type, value, and traceback
information. The primary use of the context
management interface s to allow for simpl
fied resource control on objects involving
system state such as open fles, network
connections, and locks. By implementing
this interface, an object can safely clean up
resources when execution leaves a context
in which an object is being used. Further
details are found in Chapter 5, "Program
Structure and Control Flow”

images/00175.jpg
with context [as var]:
statements

images/00170.jpg
extended slice access with Ellipsis

images/00169.jpg
M{01200:L01 & Btr idel SLICS (ALrioeslox
m(1:10, 3:20] # multidinensional slice
m(0:100:10, 50:75:5) # Multiple dimensions with strides

n(o:5, 5:10] = n # extended slice assignment

del m[:10, 15:] # extended slice deletion

images/00172.jpg
Method Result

add__ (self,other) self + other

_(self, other) self - other
_lself,other) self * other

aiv__(self, other) self [other (Python 2 only)

truediv__(self, other) self / other (Python 3)

floordiv__(sel, other) self // other

nod__ (self, other) self 3 other
Qivmod__(self, other) divmod (self, other)

__pow__(self,other [,modulo]) self *+ other, pow(self, other,
module)
1shift__(self, other) self << other

rshift__(self,other) self > other
and__(self, other) self & other

__(self, other) self | other
xox__(self, other) self * other
radd__(self, other) other + self
roub__(self, other) other - self

Tmul__(self, other) other + self
rdiv__(self, other) other / self (Python 2 only)
rtruediv__(self,other) other / self (Python3)
rfloordiv__(self, other) other // self
rmod__(self, other) other % self

SALVRSE (681E: BENeSY T ——

images/00171.jpg
AEEE =8,
hile 1
ey

iter_ ()

% = _iter.next (] (#_iter
except StopTteration:

break
Do statements in body of for loop

next

() in Python 3)

images/00177.jpg
oot
vy
-y
.y
Iy
"y
.y
vy

L B ol i 3

PR
Addition
Subtraction
Mutipication
Division
Truncating division
Power (V)

Modulo (x moa)
Unary minus
Unary plus

images/00168.jpg
01,2,3,4,5,61
x = af1:s]
al1:3] = (10,11,12)
del a[1:4]

getiten__(slice(1,5,None))
setiten (sice(1,3,None), [10,11,12])
"~ (slice (1,4, None))

images/00163.jpg
Method Result

instancecheck__(cls,object) isinstance(object, cls)
subclasscheck__(cls, sub) issubclass (sub, cls)

images/00162.jpg
Method

1e_
le_.

ge_

gt__

e

(self,other)
(self,other)
(se1£,0ther)
(self, other)
(self, other)
(se1f, other)

Result

self < other

self < other

self > other

self »= other
self == other
self I- other

images/00165.jpg
Method

__get__(self, instance, c1s)

__set__(self, instance, value)
__delete__(self, instance)

Description
Retums an attribute value or raises
ActributeError

Sets the attribute to value
Deletes the attribute

images/00164.jpg
Method

getater.

setater.

aelater.

(sel,

(s,

_tsels,

name)

nae)

etattribute__(self,name)

value)

Description

Retums the attribute self. name.
Retums the attribute sel¢. name if not found

through normal attribute lookup or raise
AttributeError.

Sets the attribute self. name = value.
Overrides the default mechanism.
Deletes the attribute self. nane.

images/00159.jpg
£ = open{"foo")
& & zepe{b) # a = "<open file 'foo', mode 'r' at dc030»"

images/00158.jpg
2,3,4,5] # Create a list
repr (a] #s= 02,3, 4, 50"
eval(s) # Turns & back into a list

images/00161.jpg
Method Description

__bool__(self) Retums False or True for truthvalue testing
__nash__(selr) Computes an integer hash index

images/00160.jpg
ECEMRC X "Bpac’) 2 CLLLE X, _FOEWAC L &pac 1
"x is {0:spec}®.format (x) # Calls x. format _("spec')

images/00167.jpg
a = [1,2,3,4,5,6]

len(a) #a
x = al2] #x
afl = 7 #a
del af2] #a
5 in a ¥a

images/00166.jpg
Method

getiten
setiten,

aeliten,
contains_

len__(se1f)

(self, key)
(self, key,
(self, key)
(self,0b5)

value)

Description

Retums the length of se1£
Retums self[key]

Sets self [key)
Deletes sel£(key]

Retums True if obj is in self; othenwise,
retums False

value

images/00152.jpg
Attribute Description

a.start Lower bound of the slice; None if omitted
s.5top Upper bound of the siice; None if omitted
N otes Stride of the slice; None if omitted

images/00394.jpg
class TypecProperty(object):

def

def

et

et

_init__(self, type, defaultsNone) :
S1E.name = None
self.type = type
if default: self.default = default
elses self.default = type()
__get__(self, instance,cls] :
Teturn getattr (instance, self.name, self default)
__set__(self, instance, value) :
if not isinstance (value,self .type) :

raise TypeBrror ("Must be a $a" % self.typel
setattr (instance, self.name, value)
__delete__(self, instance] :
Thise AttributeError("Can't delete attribute®)

images/00151.jpg
Attribute
g.9i_code
g.gi_trane
g.9i_running

g.mext ()

g.send (value)

g.close ()

g.throu(exc [, exc_value
[exc_tb 11)

Ruscription
Code object for the generator function.

Execution frame of the generator function

Integer indicating whether of not the generator function
is curtently running.

Execute the function until the next yield statement and
retum the value (chis method is called __next__ in
Pychon 3).

Sends a value to a generator. The passed value is
retumed by the yi1d expression in the generator that
executes unti the next vie1d expression is encoun-
tered. send () retums the value passed to yield in
this expression.

Closes a generator by raising a Generatorexit excep-
tion in the generator function. This method executes auto
matically when a generator object s garbage-collected.
Raises an exception in a generator at the point of the
current yield statement. exc Is the exception type,
exc_value is the exception value, and exc_th s an
optional traceback. I the resulting exception is caught
and handied, retums the value passed to the next
inid kistanant:

images/00393.jpg
class Foo(Documented) :
span (self, a,b) :
"apan does sonething”
Dans

images/00154.jpg
GHANE, Ssaip. s omact |
e __getiten__(self, index)
print (index)
e = Bxample()
el3, ..., 4] # Calls e. _getitem ({3, Ellipsis, 4))

images/00396.jpg
class FoolTyped) :
name = Typederoperty(stx)
num = TypedProperty(int,42)

images/00153.jpg
8 = 8lice(10,20) # Slice object represents [10:.
s.indices(100) # Returns (10,20,1) —> [10:20]
e indices(15) # Returns (10.15.1) —» [10:15]

images/00395.jpg
b e b
def __new__(cls,name, bases, dict) :
sTots = (1
for key,value in dict.itens(
if isinstance (value, TypedProperty)
value.name = *_* + key
slots.append (value.nane)
dict['__slots__'] = slots
return Eype.__new__(cls,nane, bases, dict)

Base class for user-defined objects to use
class Typed # Tn Python 3, use the syntax
" metaclass = TypedMeta # class Typed(metaclass=TypedMeta)

images/00148.jpg
Attribute

£
£
£
£
£
£
£

£_back
£ code
£_locals
£_globals
£ builting
£_lineno

£_lasti

Description

Previous stack frame (toward the caller).
Code object being executed.

Dictionary used for local variables.
Dictionary used for global variables.
Dictionary used for builtin names.

Line number.

Current instruction. This s an index into the bytecode string of
£ code.

images/00390.jpg

images/00389.jpg
et e el e e e)
_metaclass__ = type f class Foo(metaclass=type)

images/00150.jpg
Description

t.tbnext Nextlevel in the stack trace (toward the execuition frame where the
exception occurred)

t.th_frame Execution frame object of the current level
t.tb_lineno Line number where the exception occurred
t.tb_lasti Instruction being executed in the current level

images/00392.jpg
el L # In Python 3, use the syntax
" metaclass = DocMeta # class Documented (metaclass=DocMeta)

images/00149.jpg
Attribute
£.£_trace
£.£_exc_type
£.£_exc_value
£.£_exc_traceback

Description
Function called at the start of each source code line
Most recent exception type (Python 2 only)

Most recent exception value (Python 2 only)

Most recent exception traceback (Python 2 only)

images/00391.jpg
el PR el ol
def __init__(self nane, bases, dict] :
Tor key, value in dict.items ()
Skip special and private methods
if key.startswith(*__"): continue
Skip anything not callable
if not hasattr(value,”__call__*
Check for a doc-string
if not getattr(value,”__doc__*):
raise TypeBrror("ts must have a docstring” % key)
type. init (self,name,bases,dict}

cont inue

images/00156.jpg
X = A.__nevw__(A,args)
in iminetanoni, A a. doit (ko)

images/00155.jpg
Method Description
__new__(cls [,*args [,*+kwargs]]) A class method called to create a new

instance
(self [,vargs [++kwargs]]) Called to initialize a new instance
_(self) Called when an instance is being

destroyed

images/00397.jpg
registry = { |

def register (cls)
registry(cls
akrrn tia.

claid cls

images/00157.jpg
Method Description
format__(self, format_spec) Creates a formatied representation

(se1f) Creates a string representation of an object
__tse1f) Creates a simple string representation

images/00388.jpg
CLANE taee = ea % Name of class

class_parents = (object,) # Base classes
class_body = """ # Class body
def __init__(self,x):

self.x = x

def blah(self) :
print ("Hello World")

class_dict = { }
Execute the body in the local dictionary class dict
exec (class_body,globals], class_dict)

¢ Create the class object Foo
Foo = type({class name,class parents,class dict)

images/00141.jpg
233 misie. oo lctrjmnk} s
pass

+>> type(Foo)
chype 1Eyrafs.

images/00383.jpg
LEENR Bt AIDOTE ABERCRd: RUOSCEERLIEUAGE, SaStraCtREEEAEY
class Foo: # In python 3, you use the syntax
__metaclass__ = ABCMeta 4 class Foo(metaclass-ABCtieta)

Gabstractmethod

def spam(self,a,b) :
pass

@abstractproperty

det name (self)
pass

images/00140.jpg
Description
Documentation string.

Function/method name

Instance associated with the method (if bound)

images/00382.jpg
f = Fool) # Create a Foo

G = FooProxy(f) § Create a FooProxy
isinstance(f, IFoo) # Returns True
isinstance(g, IFoo) # Returns True
issubclass (FooProxy, IFoo) # Returns True

images/00143.jpg
ks £ m Toul)
>>> typel(f)
cclass ' main__.Foo's

images/00385.jpg
class Grok({object):
det spam(self,a,b)
print ("Grok. span’)

Foo. register (Grok) # Register with Foo abstract base class

images/00142.jpg
_abstractmethods,

Description
Documentation string.

Class name

Tuple of base classes.

Dictionary holding class methods and variables
Module name in which the class is defined

Set of abstract method names (may be undefined if
there aren't any)

images/00384.jpg
>>> £ = Fool)
Traceback (most recent call last]:

File "<stdin>", line 1, in <nodules
TypeError: Can't instantiate abstract class Foo with abstract methods spam

images/00379.jpg
e L L R
def spam(self,a,b)
pass

class Pooproxy(object)
def __init__(self,f):
ESTR s
def spam(self,a,b) ;
return self . f.spam(a,b]

images/00378.jpg
issubclass(B,A) & Returns True
issubclass(C A} # Returns False

images/00139.jpg
Attribute. Description
Documentation string.

Method name.

Class in which this method was defined

Function object implementing the method

Instance associated with the method (None if unbound)

images/00381.jpg
e L A Lo
Gef __init__(self) :
Self implementors = set()
def register (self,C) :
self.implementors. add (C)
Gef __instancecheck__(self,x) :
Teturn self.__subclasscheck__(type (x))
def __subclasscheck__(self, sub) :
Teturn any(c in self.implenentors for c in sub.mro())

Now, use the above object
P00 = IClass()

Foo. vegister (Foo)

IFoo. reqister (FooProxy)

images/00138.jpg
>>> umeth(*hello,5)
Traceback (most recent call last):

File "<stdins, line 1, in <nodules
TypeBrror: descriptor 'instance method' Tequires a 'Foo! object but received a
‘ax!

images/00380.jpg
f = Fool} # Create a Foo
G = FooProxy(f) 4 Create a FooProxy
isinstance(g, Foo) # Returns False

images/00145.jpg
Attribute Description
__gict__ Dictionary associated with the module
Module documentation string

Name of the module

File from which the module was loaded

Fully qualified package name, only defined when the module object
refers to a package

images/00387.jpg
»>> type(Foo)
<type 'type's

images/00144.jpg
Attribute Description
Class to which the instance belongs
Dictionary holding instance data

images/00386.jpg
class Foolobject): pass
isinstance (Foo, obiect) # Returns True

images/00147.jpg
Attribute

aaan o aanoa

aoa

- co_argeount

co_nlocals

co_cellvars
co_reevars

co_code
co_consts

.co_£ilename

co_tirstlineno
co_lnotab
co_stacksize
co_flags

Description

Function name.
Number of positional arguments (including default values).
Number of local variables used by the function.

‘Tuple containing names of local variables.

Tuple containing names of variables referenced by nested func-
tions.

Tuple containing names of free variables used by nested func
tions,

String representing raw bytecode.
Tuple containing the literals used by the bytecode.
Tuple containing names used by the bytecode.
Name of the file in which the code was compiled.
First line number of the function.

String encoding bytecode offsets to line numbers.
Required stack size (including local variables).

Integer containing interpreter fiags. Bit 2 is set i the function
uses a variable number of positional arguments USIng " *args".
Bit 3 Is set if the function allows arbilrary keyword arguments
using "+ +lawargs. All other bits are reserved.

images/00146.jpg
Type Name

types
types
types
types
slice

CodeType
FraneType

GeneratorType
TracebackType

Ellipsis

Description
Byte-compiled code

Execution frame

Generator object

Stack traceback of an exception
Generated by extended slices
Used in extended slices

images/00130.jpg
Item

Len(s)

copy ()

.difference (c)

intersection(t)

isdisjoint (c)
issubset (¢)

issuperset (£)
symmetric_difference (c)

union(t)

Description

Returs the number of items in s.
Makes a copy of &.
Set difference. Retums all the items in s, but not in .

Intersection. Returns all the items that are both in =
andin e.

Returs True if s and ¢ have no items in common.
Retums True if < is a subset of &.
Retums True if o is a superset of &.

Symmetric difference. Retus all the items that are.
in s or ¢, but not in both sets.
Union. Returs all items in or &.

images/00372.jpg
class Circlelobject) :

def

et

def

__init__(self radius):
5elf.radius = radius
__getattr__(self,name) :
1F name - area’:

return math.pitself radiust+2
elif name == 'perineter’:

return 2math.pitself radivs
else

return object.__getattr__(self, name)
__setattr__(self, nane, value] :
TF name in ['area’, ‘perimeter']:

raise TypeError("s is readonly’ % mame)
object. setattr (self,name,value)

images/00129.jpg
set([1,5,10,15]}
frozenset (['a',37, 'hello'])

images/00371.jpg
>>> a.__clase_
cclass "__main__.Account'>
>> Account.__dict__.keys ()
{'__aict__',"__module__', ‘'inquiry', 'deposit’, 'withdraw',

Gel 7, 'num_accounts', '__weakref__', '__doc__', '__init__']

images/00132.jpg
Type Category
Callable

Modules.
Classes
Types

Type Name

types.BuiltinFunctionType
type

object.
types.Functiontype
types.MethodType
types.ModuleType

object

type

Description

Builtin function or method
Type of builtin types and classes.
Ancestor of all types and classes
Userdefined function

Class method

Module

Ancestor of all types and classes
Type of builtin types and classes.

images/00374.jpg
clags Complex(object)
def __init__(self, veal, imag=0]
self.real = float(real)
self.imag = £loat (inag)
def __repr__(self)
Taturn "Complex (ts,%s)" % (self.real, self.imag)
et __str__(self)
Toturn " (tgetgi)® ¢ (self.real, self.imag)
self + other
Gef __add__(self other) :
Teturn Complex(self .real + other.real, self.imag + other.imag)
self - other
def __sub__(self other)
Teturn Complex(self.real - other.real, self.imag - other.imag)

images/00131.jpg
Item

s.add (item)

s.clear()
s.difference_update (t)

s.discard(item)
s.intersection_update ()

s.pop)

5. renove (item)
s.eynmetric_difference update(t)

s.update (¢)

Description

Adds em 10 5. Has no effect if itemis
already in s.

Removes allitems from s.

Removes all the items from s that are also
inc.

Removes icem from s. If itemis nota
member of s, nothing happens.

Computes the intersection of s and ¢ and
leaves the result in s.

Returns an arbitrary set element and
removes it from s.

Removes item from s. If itemis nota
member, KeyExror is raised.

Computes the symmetic difference of ¢ and ¢
and leaves the result in .

Aqds all the items in < to . £ may be anoth-
er set, a sequence, or any object that sup-
ports iteration.

images/00373.jpg
e e e bt]
slots = f'tiawe

'balance')

images/00368.jpg
class Account(object) :
def __init__(self name,balance] :
Gelf.name = name
self.balance = balance
self.observers = set ()
def __del__(self)
For ob in self.observers:
ob.close ()
del self .observers
def register(self, observer) :
self.observers .add (observer)
def unregister(self, observer)
selt . observers. remove (observer)
def notify(self) :
for ob in self.observers:

ob.update ()
def withdraw(sel, ant.
self.balance -= amt

self.notify()

class AccountObserver (object)
def __init__(self, theaccount):
5e1£. theaccount = theaccount
theaccount . register (self)
def __del__(self):
Selt . theaccount . unregister (self)
del self.theaccount
def update (self) :
print ("Balance is %0.2f" % self theaccount .balance)
def close(self) :
print ("hecount no longer in use")

Bxanple setup
a = Account ('Dave',1000.00)
2 ob = AceountObserver{a)

images/00128.jpg
Item

Len(m
Lk

mlkl

del mik)

K

clear()

- copy ()
fronkeys (s [, valuel)

Lget e Lvl)
-has_key (k)

itens ()

keys)

pop (k [,defaulel)

-popiten()

. setdetault (k [,

update (b)
values ()

i)

Description

Returns the number of items in m.
Retums the item of m with key k.

Sets m{k] tox.

Removes m(x] from m.

Retums True if k is a key in m.

Removes allitems from .

Makes a copy of m.

Create a new dictionary with keys from sequence = and
values all set to value.

Retums m(k] if found; otherwise, returns v.

Retums True if m has key k; otherwise, retums False.
(Deprecated, use the in operator instead. Python 2 only)
Retums a sequence of (key, value) pairs.

Retums a sequence of key values.

Returns m[x] if found and removes it from r; otherwise,
retumns default if supplied or raises KeyError if not.
Removes a random (key, value) pair from mand retums
it as a tuple.

Retums m(] if found; otherwise, returns v and sets
alkl = v

Adds all objects from b to m.

Retums a sequence of all values in .

images/00370.jpg
>>> @ = Account ('Guido', 1100.0)
- a.__dict
(‘balande': 1100.0, 'name': 'Guido’)

images/00369.jpg
MpOTE. WaRkral
class AccountObserver (object) :
def __init__(self, theaccount
5elf.accountret = weakref.ref (theaccount) # Create a weakref
theaccount . register (self)
def __del__(self)
ace = self.accountref () # Get account.
if ace # Unregister if still exists
acc.unregister (self)
def update (self)
print (*Balance is $0.2* § self accountref () .balance)
def close (self)
print ("Account no longer in use")

¢ Bxample setup
2+ = Account ('Dave',1000.00)
2 ob = AccountObserver (a)

images/00137.jpg
umeth = Foo.instance method # Lookup instance method on Foo
umeth (£,37) # Call it, but explicitly supply self

images/00134.jpg
Attribute(s)

£
£
£
£
£
£
£

__globals_.

closure,

Documentation string

Function name

Dictionary containing function attributes
Byte-compiled code

Tuple containing the default arguments
Dictionary defining the global namespace
Tuple containing data related to nested scopes

images/00376.jpg
class Complex{object)

def __radd__(self other] :
Teturn Complex (other.real + self real, other.imag + self.imag)

def __rsub__(self,other) :
Taturn Complex(other.real - self.real, other.imag - self.ing)

images/00133.jpg
def fool(x,y)
return x + y

b= Linbin 37 & +%

images/00375.jpg
>>> ¢ = Complex{2,3)
sos e+ 4.0
Complex (6.0, 3.0)
2> 4.0 4 ¢
Traceback (most recent call last):
File "stdins", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'int' and 'Complex

images/00136.jpg
£ = ¥aoi) # {TEaEd S0 IORLANC
meth = £.instance method # Lookup the method and notice the lack of ()
meth (37) # Now call the method

images/00135.jpg
class Foo(object)

def instance_method (self,arg)
statenents

Gelassmethod

def class_method (cls, arg)
statements

Gstaticnethod

def static_nethod (arg)
etatemente

images/00377.jpg
class A{object): pass
class B(A) : pass
class C(object) : pass

A0 # Instance of 'A'
() # Instance of 'B'
el # Instance of 'C

type (a)
isinstance(a,d) # Returns True

isinstance(b.C) # Returns False,

Returns the class object A

¥
#

isinstance(b,A) # Returns True, B derives from A
"

© not derived from A

images/00119.jpg
>>> line = ®G008,100,490.10%
> £1e1d_types = [stz, int, float]

> zaw_tields = line.split(’,’)

> tields = [ty(val) for ty,val in zip(field types,aw_fields)]
> eialds

16006, 100,

images/00361.jpg
clasas Foolobject) :
def getnane (self) :
return self.__nane
def setname (self,value) :
if not isinstance (value,str)
raise TypeBrror (*Must be a string!”)
self.__name = value
def delname(self) :
raise TypeError("Can't delete name’)
name = property(getname,setname,delname)

images/00118.jpg
Saea” Atw [CEorict] (A0 A Exicnibas
s5
>3> items [*mod") .sqrt (4) # Executes math.sq:
2.0
s eryt
x = int(*a lot*)
except items[*error*] as
print(*Coulda't convert®)

483

4 Same as except ValueBrr

Couldn't convert
>>> itens [*append*] (100) # Executes nums.append (100)
2, 3, 4, 1001

images/00360.jpg
class Foolobject):
def __init__(self,name
5e1E.__name = name
aproperty
def name (self) :
return self.__name
@nane. setter
def name (self, value) :
if not isinstance (value,str)
raise TypeError ("Must be a string!”)
self.__name = value
Gnane . deleter
def name (self) :
raise TypeBrror("Can't delete name’)

£ = Foo("Guido")
n - £.name # calls £.name() - get function
£.name = "onty" # calls setter name(f,"Monty")

£.name = 45 # calls setter name(f,ds) -> TypeBrror

del f.name # Calls deleter name(f) -» TypeError

images/00121.jpg
Item
st

)
sli:g:stridel
len(s)

nin(s)

max (s)

sun(s [initiall)
ali(s)

any (s)

Retums element : of a sequence
Retums a slice

Retums an extended slice

Number of elements in s

Minimum value in &

Maximum value in s

Sum of items in &

Checks whether all items in s are True.
Checks whether any item in s is True.

images/00363.jpg
f = Fool)
a = £.name 4 Trplicitly calls Foo.nane.__get__(£, Foo
£.name = "Guido" # Calls Foo.name.__set__(f, "Guido")

del £ nane # Calls Foo.name. delete (£)

images/00120.jpg
Type Category

None
Numbers

Sequences

Mapping
sets

Type Name
type (None)
int

long

float
complex
bool

str
unicode
list

tuple
xrange

aict
set.

£rozenset.

Description

The null object None

Integer

Anitrary.precision integer (Python 2 only)
Floating point

Complex number

Boolean (True or False)

Character string

Unicode character string (Pyton 2 only)
List

Tuple

Atange of integers created by xrange () (In Python 3,
itis called range)

Dictionary
Mutable set
Immutable set

images/00362.jpg
class TypedPropertyiobject) :
ef __init__(self, name, type,default-None) :
Blf.name = "_" + name
self type = type
self default = default if default else type()
def __get__(self, instance,cls) :
Teturn getattr(instance,self nane, self .default)
Gef __set__(self, instance, value) :
iF not isinstance (value,self.type)
raise TypeBrror ("Must be a $s” & self.type)
setattr (instance, self .nane, value)
Gef __delete__(self, instance) :
Taise AttributeError("Can't delete attribute’)

class Foolobject)
name = TypedProperty ("name" , stx)
TR » PYNAPTODREE YL Krae. Atk 43)

images/00359.jpg
SRt AL D IECRE
Gef __init__(self,name) :
S&1f.name = name
def spam(self x) :
print ("§s. %8 % (self.name, x)

images/00358.jpg
>>> ¢ = Circle(4.0)

>>> c.radius

1.0

s> c.area

50.26548245743669

>>> c.perimeter

25.132741228718345

s> c.area = 2

Traceback (most recent call last)
File "cstdin>", line 1, in <nodule>

AttributeError: can't set attribute

images/00127.jpg
>>> & = "Your name is {0} and your age is {age}"
>>> a.fornat ("Mike*, agesd0)

"Your name is Mike and your age is 40'

images/00126.jpg
M TOpLROSIDIT, DAV LinsRrepincel)
s.xfind(sub [,starc [end)])
s.rindex(sub [,stare [end])

riust (wideh [, £111])

rpartition (sep)

Lxeplit ([sep [,maxsplit]])

.rstrip([chrs])

_split((sep [,maxsplitl])

splitlines ([keepends] |

startswith(prefix [scarc [endl])

strip((chrsl)

swapcase ()

citle()

translate(table [deletechars])

s.upper ()
5.2£411 (wideh)

HEEAcES 8 ST
Finds the last occurrence of a substring.
Finds the last occurrence of raises an
ermor.

Rightaligns = In a string of length
wideh,

Partitions based on a separator sep,
but searches from the end of the strng.
Splits a string from the end of the string
using sep as a delimiter, maxsplic is
the maxmum number of Spits 1o per-
form. if maxsp1it is omitted, the resut
is identica to the sp1it () method.
Removes ailing whitespace o charac-
ters supplled in chzs.

Splits a string using sep as delimiter.
masxapl L& I the maximum numoer of
Spiis to perform.

Splits a string into a it of lines. f
Keepends is 1, trailing newlines are
preserved.

Checks whether a sting starts with
prefix

Removes leading and trailing white-
space or characters supplied in chrs.
Converts uppercase to lowercase, and
vice versa.

Retums a ttleased version of the
string

Transiates a string using a character
transiation table cable, removing char-
acters in deletechars.

Converts a string to uppercase.

Pads a string with zer0s on the left up
to the specified widch.

images/00123.jpg
Method

List (s)

append (x)
extend(t)
count (x)

Linsert (1,x)

s.pop (111}

s.remove (x)
s.reverse()

s.sort ([key [,

Lindex (x [stare [,stopl])

reversell)

Description
Comverts & 10 a list.

Appends a new element, x, to the end of .
Appends a new list, ¢, to the end of s.
Counts aceurrences of x in s.

Retums the smallest : where s[4] ==x. starc
and stop optionally specify the starting and ending
index for the search.

Inserts x at index 1.
Retums the element £ and removes it from the
list. If 1 is omitted, the last element is returned.
Searches for x and removes it from .

Reverses items of s in place.

Sorts items of s in place. key is a key function.
reverse is a flag that sorts the list in reverse
order. key and reverse should always be speci-
fied as keyword arguments.

images/00365.jpg
Class Circle(object)
def __init__(self, radius)
Gelf.radius = radius

Create some Circle instances
c = Circle(4.0)
circle(5.0)

images/00122.jpg
sl
el
el
el

Jistridel = ¢
sti]

sti:g]
sLi::stridel

Description

tem assignment

Slice assignment
Extended slice assignment
tem deletion

Slice deletion

Extended slice deletion

images/00364.jpg
class Alobject):
def __init__(self)
sele._¥ -3

def __spam(self) :

pass
def bar (self)
self.__spam()
class B(A)
def __init__(self) :
Ko__init__(self)
self.__x = 37

aet spim(sels)
ot

Mangled to self. A_ X
Mangled to _A__spam()

only calls A.__span()

Mangled to self. B__X
Mangled to _B__spam()

images/00125.jpg
istitle(}

isupper ()

Join(e)

s.1just (wideh [, £311])
ERE
s.lstrip(lchrs])

partition(sep)

Checks whether the string Is a Uitle-
cased string (fist letter of each word
capitalized).

Checks whether all characters are
uppercase.

Joins the strings in sequence € with s
as a separator.

Leftaligns s in a string of size widzh.
Converts to lovercase.

Removes leading whitespace or charac-
ters supplied in chrs.

Partitions a string based on a separa-
tor string sep. Returns a tuple

(head, sep, tail) or (s, ", *") i
sep isn't found.

images/00367.jpg
class Upperstristr}
def __new__(cls, value="") :
Sturn str.__new__(cls, value.upper())

4 = Upperstr("hello") # value is "HELLO"

images/00124.jpg
Method

s.capitalize()
s.center (width [, pad])

s.count (sub [,stare [endl])
s.decode ([encoding [, errors]])
s.encode ([encoding [, errors]])
s.endswith (suffix [start [end]])
s.expandtabs ([tabsize])

s.find(sub [, starc [,end]])

s.fornat (rargs, **kwargs)
s.index(sub [, starc [,endl])

s.isalnun()

s.isalpha()

s.isaigit()
s.islover()

s.isspace ()

Description

Capitalizes the first character.
Centers the string in a field of length
widzh. pad s a padding character.
Counts occurrences of the specified
substing sub.

Decodes a string and retums a
Unicode string (byte strings only).
Retums an encoded version of the
string (unicode strings only).

Cheoks the end of the string for a suffx.
Replaces tabs with spaces.

Finds the first occurrence of the speci-
fied substring sub or returs 1.
Formats s.

Finds the first occurrence of the speci-
fied substring sub or raises an error
Checks whether all characters are
alphanumeric.

Checks whether all characters are
alphabetic.

Checks whether all characters are digts.
Checks whether all characters are low.
ercase.

Checks whether all characters are
iteacce,

images/00366.jpg
c = Circle.__new__(Circle, 4.0)
if isinstancelc,Circle)
Circle. imit (c,4.0)

images/00108.jpg
isinstance(s,list):

s.append (item)

isinstance (d,dict) :
d.update (t]

images/00350.jpg
c_ass X(object): pass
class Y(X): pass
class Z(X,¥): pass # TypeBrror.

¥ Cin't crwits coaslotest wethod resciution oeis -

images/00592.jpg
value Description

L LefttoRight
LRE LefttoRight embedding

LRO LefttoRight override:

R RighttoLeft

AL Rightto-Left Arabic

RLE RighttoLeft embedding
RLO Rightto-Left ovenrde

eoF Pop directional format

B European number

B European number separator
BT European number terminator
a Arabic number

cs Common number separator
nen Nonspacing mark

B Boundary neutral

B Paragraph separator

s ‘Segment separator

] Whitespace

S ki noulralE

images/00349.jpg
e ot
(class '__main__.MostEvilAccount s,

<class *__main__.Eviliccount s,
<class *__main__.Account'>,
<class '__main__ DepositCharge's,
<class '__main__.withdravCharge's,

<type ‘object'>]

images/00591.jpg
Byte Order

Native

Native

Litle-endian
Bigendian

Network (big-endian)

Size and Alignment
Native

Standard

Standard

Standard

Standard

images/00110.jpg
fal # Ducranas TRfstsson count. 6F 81
b-42 4 Decrease reference count of 37
[0] = 2.0 # Decrease reference count of 37

images/00352.jpg
class Date{object):
def __init__(self, year,month, day)
se1.yaar
self month
self.day =
sstaticnethod
Gef nowl():
t = time localtime(,
return Date(t.tn_year, t.tm_mon, t.tm_day)
sstaticnethod
Gef tomorrow () :
t = time. localtime (time. time () +86400
return Date(t.tn_year, t.tm_non, t.tn_day)

Exawple of creating some dates
a - Date(1967, 4, 9)

b = Date.now(} 4 Calls static method now(

Date . tomorrow() # Calls static method tomorrow !

images/00594.jpg
value

10-199
200
202
208
208
210
212
214
215
218
220
222
224
226
220
230
232
233
23
240

L s s
‘Spacing, split, enclosing, reordrant, and Tibetan subjoined
Overlays and interior

Nuktas.

Hiragana/Katakana volcing marks
Viramas

Fixedposition classes

Below lef attached

Below attached

Below right attached
Leftattached

Right attached

Above eft attached

Above attached

Above right attached

Below left

Below

Below right

Lett

Right

Above left

Avove

Above right

Double below

Double above

Below (iota subscript)

images/00109.jpg
c=1
¢.append (b)

Creates an object with value
Tncreases reference count on

Teresan Tafaranee ‘Camt

37

17

images/00351.jpg
class Foolobject):
sstaticnethod
def add(x,y):
presriimic i

images/00593.jpg
e

b ol
Letter, uppercase
Letter lowercase
Letter, title case

Mark, nonspacing
Mark, spacing combining
Mark, enclosing.
Number, decimal digit
Number etter

Number, ther
Separator, space
Separator, ine
Separator paragraph
Other, control

Other, format

Other, surogate

Other, private use
Other, not assigned
Letter, modifier

Letter other
Punctuation, connector
Punctuation, dash
Punctuation, open
Punctuation, close
Punctuation, nital quote
Punctuation, final quote
Punctuation, other
‘Symbol, math

‘Symbol, currency
‘Symbol, modifier
St bitiar

images/00588.jpg
class MyTemplate (string.Template) :
delimiter = ‘o' # Literal character for escape sequence
idpattern = '[A-Z]*' # Identifier regular expression pattern

images/00348.jpg
¢ = MostEvilAccount {"Dave®,500.00,1.10}
d.deposit_fee() # Calls DepositCharge.deposit_fee(). Fee is 5.00
d.withdraw fee() # Calls WithdrawCharge.withdraw fee(). Fee is 5.00

images/00590.jpg
Format
b
.
e
s
T
.
"
@
.
£
ar
.
.

CType

pad byte

char

signed char
unsigned char
_Boo1 (€99)
short
unsigned short
ine

unsigned int
long

unsigned long
long long
unsianed long long
float

double

char(]

char(]

void *

Python Type
No value

String of length 1

Integer

Integer

Boolean

Integer

Integer

Integer

Integer

Integer

Integer

Long

Long

Float

Float

Sting,

String with length encoded in the first byte
Integer

images/00589.jpg
Method
s.pack(v1, v2, ...)

s.pack_into (buffer, offset, v1, v2,
. unpack (bytes)

s.unpack_grom (buffer, offset)

s. format.

Description
Packs values into a byte string
Packs values into a buffer object
Unpacks values from a byte string
Unpacks values from a buffer
object

The format code being used

The size in bytes of the format

images/00116.jpg
items = {
"mumber' : 42
"text' : "Hello World"

images/00115.jpg
>>> import copy
o> a = (1,2, 3, 411
»>> b = copy.deepcopy (a)
>>> 2110 = -100

2> b
11, 2, [-100, 411

—_ 4 Notice that a is unchanged
1,2, 1, 4

images/00357.jpg
e e L o

def __init__(self, radius) :

Self.radius = radius
Some additional properties of Circles
Gproperty
def arealself) :

return math.piself.radiusts2
property
def perineter (self) :

return 2*math.pi*self.radius

images/00117.jpg
o [Eamin . el RDE £ A2,
import math

itens ["mod"]
itens [rerrort]
nums = [1,2,3,4
FYR et g ———

Lha abey) funotion

Add a module
eBrror # Add an exception type

¢ another object

images/00112.jpg
a contains reference to b
b contains reference to a

images/00354.jpg
Class EuroDate(Date):
Modify string conversion to use Buropean dates
def __str__(self:

Teturn "$02d/$02d/$4d" § (self.day, self.month, self.year)

images/00596.jpg
ANput. aglites
comn = sqlite3.connect *dbfile’)
cur = conn.cursor ()

Exanple of a simple query
cur .execute ("select nane, shares, price fron portf

where account=12345")

Looping over the results
while True:
zow = cur.fetchone()
if not Tow: break
4 Process the row
nave, shares, price = row

An alternative approach (using iteration)
cur .execute ("select name, shares, price from poTtE:
for name, shares, price in cur

Process the row

where account=12345")

images/00111.jpg
a=37
import sys
sys.getretcount (a)

images/00353.jpg
SHREE, LIES AL
factor = 1
&classmethod
def mul(cls,x):
return cls. factortx

class TvoTimes (Times)
factor = 2

% = TwoTimes.mul (4) ¥ Calls Times.mul (TwoTimes, 4) -» 8

images/00595.jpg
value
<tont>
cnoBreaks
<initials
cnedial>
<tinal>
cisolateds
ccizcles
csupers
<sub>
cverticals
cwides
<emall>
coquares
<tractions
SEEERES

Description
Afont variant (for example, a blackletter form)
A nonbreaking version of a space or hyphen
An inital presentation form (Arabic)

A medial presentation form (Arabic)

Afinal presentation form (Arabic)

An isolated presentation form (Arabic)

An encircied form

A superscript form

A subscript form

A vertical layout presentation form

A wide (o zenkaku) compatibily character

A narrow (or hankaku) compativilty character
A small variant form (CNS compatibilty)

A CIK squaredfont variant

A wulgar fraction form

Otherwiss UEpEoEd: SoRININ DHractsr:

images/00114.jpg
>>>a=1[1, 2, [3,4])
s> b = list(a) 4 Create a shallow copy of a
»5 b s @

False

>>> b.append (100) 4 Append element to b.

s> b

o, 2, 3, 41, 100]

ss 2 [
2, [3, 4]

>>> b12] (0] = -100 4 Modify an elenent inside b
>> b

ice that a is unchanged

ss 2
o 2.

4 Notice the change inside a

images/00356.jpg
Date(1967,4,3)
d.now() # Calls Date.now (Date)

images/00113.jpg
Bas w1l 381
s>> b =2 41 is a reference to a
s> b s a

4 Change an elenent in b
Notice how a also changed

images/00355.jpg
ottt L Pl o

classmethod

def nowlcls) :
t = time.localtime ()
Create an object of the appropriate type
return cls(c.tm_year, t.tm_month, t.tm_day)

class Burobate (Date :

Date.now() # Calls Date.now(Date) and returns a Date
BuroDate.now() # Calls Date.now(EuroDate) and returns a EuroDate

images/00597.jpg
Fmhel = NRIER
account = 12345

cur .execute ("select shares from portfolio where name='%s' and account=id" ¥

{syiibol, aceount))

images/00339.jpg
ACCOUNL . IUR_ACCoUnLS
Account.__init__
Account.__del_
Account . 3eposit
Account .withdraw
Reoom i1

images/00581.jpg
Codec Name
ascil

cp437

cp1252

latin-1, is0-8859-1
utr16

utf16be

utt161e

utr32

utf32be

utt321e

uti8

Description
7:bit ASCIl characters

Extended ASCI character set from MS-DOS
Extended ASCII character set from Windows
ASCIl extended with Latin characters
UTF16

UTF16 bigendian

UTF16 litde-endian

uTF32

UTF:32 bigendian

UTF32 litde-endian

UTFS

images/00338.jpg
class Account (object)

num_accounts = 0
def __init__(self name, balance] :

581f.name = name

self balance = balance

Account .num_accounts
def __del__(self):

Account .num_accounts
Gef eposit (self,ant) :

self balance = self.balance + ant
def withdrawl(self, ant) :

self balance « self balance - ant
Gef inquiry(self) :

Teturn self balance

images/00580.jpg
Constant
BoM

soM_BE
BOW_LE
BOM_UTFS
BOM_UTF16_BE
BOM_UTF16_LE,
BOM_UTF32_BE
BOM_UTF32_LE

Hsecription
Native byte-order marker for the machine (0t__E or EoM_LE)
Bigendian byte order marker (\x£e\x£€ 1)

Little-endian byteorder marker (*\x£\sxfe ")

UTFS marker (' \xe£\xbb\xbE ")

160t UTF16 bigendian marker (*\x£e\x££")

16bit UTF-16 littleendion marker (*\x££\xe ")

3Dbit UTF32 bigrendian marker (*\x00\x00 \x£e\XEE ")
32bit UTF-32 little-endian marker (* \x££\x£e\x00\x00")

images/00099.jpg

images/00341.jpg
4.aeposit 1100.00) # Calls Account.cdepositia,100.00}
b.withdraw(50.00) # Calls Account .withdraw (b, 50.00)
naAme - 3 name # Get account name.

images/00583.jpg
(?aiLmsux)

(2:..)

(2p<names...)

(2p=name)

(2<1..)

(7 (id| name) ypat| npat)

Interprets the letters “a®, v, "L¥, *n®, *a*, "u*, and
"7 as flag settings corresponding to the re. A, re. T
re.L.re.N,re.S, re.U, re.X flag settings given to
re.compile (). "a* only available in Python 3.

Matches the regular expression inside the parentheses but
discards the matched substring.

Matches the regular expression in the parentheses and
creates a named group. The group name must be a valid
Python identifier.

Matches the same text that was matched by an earlier
named group.

A comment. The contents of the parentheses are ignored.
Matches the preceding expression only if followed by the
pattem in the parentheses. For example, x'Hello
(?=sor1d) 1 matches 'Hello ' only if ollowed by
torld!.

Matches the preceding expression only if it's not followed
by the pattem in parentheses. For example, = 'Hello
(?1¥or1d) 1 matches 'Hello ' only if its not followed
by 'worlar
Matches the following expression If t's preceded by &
match of the pattem in parentheses. For example,

x* (7<=abe) def matches *det " only if it's preceded by
raber

Matches the following expression only if it's not preceded
by a matoh of the pattem in parentheses. For example,

' (2<1abe) def matches 'def " only if its not preceded
by raber.

Checks to see whether the regular expression group ident’-
fled by id or name exists. If so, the regular expression
ypat is matched. If not, the optional expression npat is
‘matched. For example, the pattem = (Hello)? (2 (1)
World|Howdy) | matches the string *Hello World' or
the string * Howdy

images/00098.jpg

images/00340.jpg
* Create a Iew accounts
a = Account ("Guido", 1000.00) # Invokes Account
‘Account ("Bill® 10.00)

init__(a,"Guido",1000.00}

images/00582.jpg
Character(s)
toxt

{m)

{m, n}

{m, n}?

[t |
Als

Description
Matches the literal string cext.

Matches any character except newline.

Matehes the start of a string.

Matches the end of a string.

Matehes 7ero or more repetitions of the preceding expres-
sion, matching as many repetitions as possible.

Matches one or more repetitions of the preceding expres-
sion, matching as many repetitions as possible.

Matches zero repetitions of one repetition of the preceding.
expression.

Matches zero or more repetitions of the preceding expres-
sion, matching as few repetitions as possible.

Matches one or more repetitions of the preceding expres-
sion, matching as few repetitions as possible.

Matches zero or one repelitions of the preceding expres-
sion, matching as few repetitions as possible.

Matches exactly m repetitions of the preceding expression.
Matohes from m to 1 repetitions of the preceding expres-
sion, matching as many repetitions as possible. If m s omit-
ted, it defaults to 0. If r is omitted, it defaults to infiniy.
Matches from m to n repetitions of the preceding expres-
sion, matching as few repetitions as possible.

Matches a set of characters such as = (abedef] ! or

x* [a-2A-z] *. Special characters such as * are not active
inside a set.

Matehes the characters ot in the set, such as x* [*0-3] *
Matches either A or 5, where 2 and 5 are both regular
expressions.

Matches the regular expression inside the parentheses as
a group and saves the matched substring. The contents of
2 group can be obtained using the group () method of
MatchObject objects obtained while matching.

images/00579.jpg
Method Description

a.decode (bytes [, final]) Retums a decoded string from the encoded bytes
in bytes. £inal is a flag that should be set to
‘True on the final call to decode ().

d.reset () Fennta (he Intemal Butfers snd stais:

images/00578.jpg
Method Description

e.encode (s [, finall) Retums an encoded representation of string as a
byte string. £inal is a fiag that should be set to
True on the final call to encode ().

e.reset () Resets the internal buffers and state.

images/00105.jpg
3+ 4] # Creat
a.real # Get

a complex number
e real part (an atcribute)

b= 11, 2,3 # Create a list
b.append (7) # Add a new element using the append method

images/00347.jpg
class DepositCharge (object) :
fee = 5.00
def deposit_fee (self)
self witharaw(self. fee)

class WithdrawCharge (object] :
fee = 2.50
Gef withdraw_fee(self) :
self withdraw(self. fee)

¢ Class using multiple inheritance
class MostEvilaccount (EvilAccount, DepositCharge, WithdrauCharge)
def deposit (self,ant)
self deposit_fee()
super (MostEvilaccount , self) .deposit (ant)
Gef withdraw(self,ant) :
self witharaw fee()
‘super (MostEvilAcount, self) .withdraw (amt)

images/00104.jpg
P17/ uar/Binfady Pyt
-+~ coding: UTF-g -+~

s = "Jalapefio" # String in quotes is directly encoded in UTF-8

images/00346.jpg
Class MoreEvilAccount (EvilAccount)
def deposit (self, amount) :
self.withdraw(5.00) # Subtract convenience fes
super (MoreEvilAccount, self) .deposit (amount) # Now, make deposit

images/00107.jpg
e(d) is dict
‘d.update (t)

images/00106.jpg
Compare two objects
def conpare (a,b):
ifaish

#aand b are
seatements

b

a and b have the same value

statenents

cypela) is type(b:

& and b have the same type

ol iyl

e same object

images/00101.jpg
>>> print fact. _doc__
This function computés a factorial

images/00343.jpg
import random
class Bvilaccount (Account)
def inquiry (self) :
if random.randint (0,4) == 1
return self.balance * 1.10 # Note: Patent pending ides
else
return self balance

c = Bvilaccount ("George®, 1000.00)
c.deposit (10.0) # Calls Account.deposit (¢, 10.0)

available = c.inquiry() # Calls EvilAccount.inquiry(c)

images/00585.jpg
Flag
A or AscTT

I o IGNORECASE
L or LOCALE

M or MULTILINE

S or DOTALL,

U or NICODE

X O VEREOSE

Description
Perform 8bit ASCIkonly matching (Python 3 only).

Performs non-case-sensitive matching.

Uses locale settings for \w, \, \b, and \5.

Makes * and $ apply to each line in addition to the beginning and
end of the entire string. (Normally * and apply only to the begin-
ning and end of an entire string.)

Makes the dot (.) character match all characters, including the.
newiine.

Uses information from the Unicode character properties database
for \w, \u, \b, and \E. (Python 2 only. Python 3 uses Unicode by
default.)

Ignores unescaped whitespace and comments in the pattemn
string.

images/00100.jpg
def rfact(n)
"This function computes a factorial'

if (n <= 1): return 1
Bl Pebtie 1% Faokin - 15

images/00342.jpg
class Foo{cbject)
def bar (self) :
print ("bar! ")
Gef spam(self) :
bar(self) # Incorrect! 'bar' generates a NameError
self.bar() 4 This works
Foo.bar (self) # This also works

images/00584.jpg
Character(s)
\nunber

\A
\b

=
\a
\»
\
\s
\w
"
\z
W\

Dusonption
Matches the text that was matched by a previous group number. Groups
‘are numbered from 1 o 99, starting from the left.

Matehes only at the start of the string.

Matches the empty string at the beginning or end of a word. A word is 3
sequence of alphanumeric characters terminated by whitespace or any
other nonalphanumeric character.

Matches the empty string not at the beginning or end of a word.

Matches any decimal digit. Same as x' [0-3] '
Matches any nondigit character. Same as x* [*0-] *.

Matches any whitespace character. Same as x' [\t\a\z\£\v] *
Matches any nonwhitespace character. Same as x' [* \€\m\r\£\v] '
Matches any alphanumeric character.

Matches any character not contained in the set defined by \u.
Matches only at the end of the string

TN —

images/00103.jpg
@Loo

sbar

def span ()
ane

images/00345.jpg
class MoreEvi Account (EvilAccount.
def deposit (self, anount) :
self . withdraw(5.00) # Subtract the "convenience" fee
BvilAccount .deposit (self, amount) # Now, make deposit

images/00587.jpg
Constant
ascii_letters
ascii_lowercase
ascii_uppercase
digits
hexdigits
letters
lowercase

octaigits
punctuation
printable

uppercase

whitespace

Description
A string containing all lowercase and uppercase ASCII letters.
The string " abodefghi jklmnoparstuvincyz' .

The String ' ABCDEFGHIJKLUNOPORSTUVIXYZ .

The string 0123456785 .

The string ' 0123456789abodefABCDER '

Concatenation of overcase and uppercase.

String containing all lowercase letters specific to the current
locale setting,

The string 01234567

Stiing of ASCIl punctuation characters.

String of printable characters—a combination of 1etters,
digits, punctuation, and whitespace.

String containing all uppercase letters specific to the current
locale setting,

String containing all whitespace characters. This usually includes
space, tab, linefeed, retum, formfeed, and vertical tab.

images/00102.jpg
class Foolobject):
@stat icnethod
def bar():
eeaiort

images/00344.jpg
Class EvilAccount (Account):

def __init__(self,name,balance, evilfactor)
Account __init__(self, name, balance]
self.evilfactor = evilfactor

def inquiry(self) :
if random. randint (0,4)

Tnitialize Account

1
retumn self.balance * self.evilfactor
else

return self balance

images/00586.jpg
saast I
text - "Guido will be out of the office from 12/15/2012 - 1/3/2013.%

§ A regex pattern for a date
datepat = re.compile(’ (\de}/(\dv)/(\d+)")

¥ Find and pr dates
for m in datepat.finditer(text):
print (n.group

% Find all dates, buc print in a different formac

ronthnames = [None,'Jan','Feb!, 'Mar!,'Apr’,'May','Jun’,
'3ul', 'hug!, 'Sep', '0ct !, 'Nov', 'Dec']

for m in datepat.finditer (text)

princ (%s s, %s* % (monthnames[int(m.group(1)], m.group(2}, m.group(3)))

Replace all dates with fields in the Buropean format (day/month/year)
det fix_aate (m)

vetirn "¥s/ks/ts" ¥ (n.group(2) ,m.group(1),m.group(3))
newtext = datepat.sub(fix_date, text)

4 An alternative replacement
HONLIE = AREEGRE . SuB EF VIS, 7By

images/00328.jpg
def factorial(n):
"*rComputes n factorial. For example:

>»> factorial(s)
120

ifnes 1: return 1

else: return n*fact

rial(n-1)

images/00570.jpg
item
p.func
p.args

p.keywords

SRCHpOn
Function that is called when p is called.

Tuple containing the leftmost positional arguments supplied to

. func when called. Additional positional arguments are con-
catenated to the end of this value.

Dictionary containing the keyword arguments supplied 10 p. func
when called. Additional keyword arguments are merged into this
dictionary.

images/00569.jpg
from functools import partial
nybutton = partial (Button, root, fg="black",bg="vhite",font="tines",size="12")
b1 = mybutton (cext="0k") # Calls Butfon() with text="OK" and all of the
b2 = mybutton(text="Cancel) # additional arguments supplied to partial() above

b3 = mybutton(text="Restart")

images/00330.jpg
ase SeipiERataciall

Kelp on function call in module _

call(rargs, *+kwargs)
(=)

images/00572.jpg
For 1t In “terables:
For x in it
yield x

images/00329.jpg
GE wrsplEunc) s
call(+args, **kvargs) :
return func (sargs, *+kwargs)
retura call
swrap
def factorialin):
**"Computes n factorial."""

images/00571.jpg
SERM SRECERSE NS S TS
def debug(func)
ewraps (£unc)
def wrapped (+azgs, *+kvazge)
print (*Calling §s* § func.__pame_
£ = func (vargs, * tkwargs)
print ("Done calling ¥s* ¢ func.__name__|
return wrapped

sdebug
def addln,y):
povimi el

images/00568.jpg
fconteximanager
def foo(args):
statements
try:
yield value
except Exception as e:
error handling (if any)
Shatements

images/00336.jpg
rrot!, 'Swallow', 'Albatross']

Execute using the above dictionaries as the global and local namespace
eval ("3 * x + 4 * y", globals, locals)
exec("for b in birds: print(b)", globals, locals)

images/00335.jpg
a = [3, 5 10, 13]
N e e

images/00577.jpg
Method Description

w.write (s) Wites an encoded representation of string =
w.writelines (Lines) Wites a list of strings in lines to the file
w.reset () Resets the intemal buffers and state

images/00337.jpg
§ = "for i in range(0,10): print{i
¢ = conpile(s, ', "exec') 4 Conpile into a code object
exec(c) 4 Brecute it

2 -t3txaacyn
c2 = compile(s2, ", 'eval') # Compile
result = eval(c2) 4 Execute

an expression

images/00332.jpg
def wrap
wraps func)
call(+args, *rkvargs)
veturn func*args, ++kwargs)
return call

images/00574.jpg
runcoon:

add(a,)
sub(a, b)
wi(a, B)
aivia, b)
floordiv(a,
eruediv (a,
mod(a,)
neg(a)

pos (a)

abs (a)

b
b

invia), invert (a)
lshift(a, b)
rshift(a,)

and_(a, b)
or_ta, b)
xor (a, b)
not_(a)
1t b
le(a, b)
eqta, b)
ne(a, b)
gt a, b)
gela, b)
eruth(a)

concat(a,)
repeat (a, b)

contains (a,
countot (a,
indexof (a,
getiten(a,
setiten(a,
deliten(a,
getelice(a,
setslice(a,
delslice (a,

is_a, b)

»
B
»
B
b
b
b
b,
s,

is_not(a, b}

o

o
e

"

o
Retums a + b for numbers.
Returns a - b
Retums a + b for numbers.
Retuns a /b (old awision)
Rewrs a // b
Returns a / b (new dwision)
Rewrs a % b
Returns -a
Retwms va
Returns the absolute value of a
Returms the inverse of a
Reurms a << b
Rewms a = b
Returs a & b (bitwise AND)
Rewns a | b (bitwise OR)
Retuns a * b (bitwise XOR)
Returns not &
Rewms a < b
Rewms a <= b
Rewms a == b
Rewms a 1= b
Rewms a > b
Rewms a >« b
Returns True i a s true, Palae othervise
Retwms a + b for sequences
Retums a + b for sequence a and integer b
Returns the result of bin a
Returns the number of occurrences of b in a
Returns the index of the first oceurrence of b in a
Returns a (5]
awl-c
el a (b
Retums a(b:c)
Sets atbie) = v
aex afp:c)
aish
alnobl

images/00331.jpg
def wrap (func) :
call (+args, *kwargs)
veturn func (*args, +*kuargs)
call.__doc__ = func.__doc_
call._Tname__ = func.__name__
b il

images/00573.jpg
RUET LRGeS N

rate over the mumbers 0,1,...,10,9,8,...,1 in an endless cycle
for 1 in cycle(chain(range(10),7ange(10,0,-1))) :
print i
¢ Create a list of unique itens in a
2« [1,4,5,4,9,1,2,3,4,5,1)
a.sort (]
b = [k for k,g in groupbylal] § b = (1,2,3,4,5,8
4 Tterate over all possible combinations of pairs of values £rom x and y
= [1,2,3,4,5]
y = [10,11,12]
for T in product (x,y) :

print(x)
4 produces output (1,10}, (1,11}, (1,12),

100, (5,11), (5,12)

images/00334.jpg
fat. serap | Funal §.
call (+args, **kvargs) :
return func (args, *+kwargs)
call.__doc__ = func.__doc_
call.”Tnane__ = func.__name,
call.__dict__.update (Eunc. __di
i o)

images/00576.jpg
Method

r.read((size [, chars [, firstlinel]l)

r.readline ([size [,

r.readlines [size
r.reset ()

L

keepends]])

keepends]])

Description
Retums at most chars characters
of decoded text. s1ze is the maxi
‘mum number of bytes to read from
lowlevel byte-stream and s used to
control interal buffering.
Firotlineis a flag that, if set,
returns the first line even if a decod-
ing error occurs later in the file.
Returns a single line of decoded
text. keepends is a flag that con
trols whether or ot the line endings
are preserved (true by default)
Reads all of the lines into a list.
Resets the intemal buffers and
Sitate,

images/00333.jpg
def fool}
statements

foo.secure = 1
Foo:privats = 1

images/00575.jpg
PEDREO. SIS SDOET . ERA
»>> timeit (*reduce (operator.add,a)®, "import operator; a = range(100)*)
12.055853843688965

»>> timeit(*reduce (lambda x,y: x+y,a)*, *import operator; a = range(100)*!
25.012306928634644

images/00559.jpg
Type Code
B
oy
ni
iy
-
2
i
"
@

Description

8t character
Bbit integer

Bbit unsigned integer
Unicode character
16t integer

16-bit unsigned integer
Integer

Unsigned integer

Long integer

Unsigned long integer
Single-precision float
Double-precision float

€ Type
char

signed char
unsigned char
PY_UNTCODE
shore
unsigned short
int

unsigned int
1ong

unsigned long
float

double

Minimum Size (in Bytes)

images/00558.jpg
8 = CompleteStacki)
5.push(*£00")
s.size

images/00319.jpg
ine in open(*portfolio.t
fields = line.splic()

total += float(fields(il) * float(fields[2]]
int {total)

"

images/00561.jpg
atabr fiberiie, & S] 4kl o
B arTat avrErla bynecote; (26 Fhr xin-al) 4 Dratte. s naw RTTAY.

images/00318.jpg
ines = open("portfolio.txt®)
fields = (ine.split() for line in lines)
print (sum{float (£[1]) * float(£[2]} for £ in fields))

images/00560.jpg
item
a.typecode
a.itemsize
a.append (x)
a.butfer_info()
a.byteswap ()
a.count (x)

2. extend (b)

a.fromfile(f, n)

a.fromlist (list)

a.fromstring (s)

a.index(x)

a.insert(i, x)
a.pop ([4])

a.remove (x)
a.reverse()
a.tofile(f)
a.tolist ()

tostring()

a.tounicode ()

Description
Type code character used to create the array.

Size of items stored in the array (in bytes).

Appends x to the end of the array.

Returns (address, lengch), ghing the memory location and
length of the buffer used to store the array.

Swaps the byte ordering of all items in the array from bigendian
to ittle-endian, or vice versa. This is only supported for integer
values.

Returns the number of occurrences of x in a.
Appends b to the end of array a. b can be an array or an iterable
object whose elements are the same type as in a.

Reads 1 items (in binary format) from the file object £ and
appends to the end of the array. £ must be a file object. Raises
EOFExor f fewer than n items can be read.

Appends items from 11st to the end of the array. 11st can be
any iterable object.

Appends items from string s, where s is interpreted as a string
of binary values—same as would have been read using
frontile().

Returns the index of the first occurrence of x in a. Raises
Valuegrror if not found.

Inserts x before position .
Rermoves item i from the array and returns it If 1 is omitted, the.
last element is removed.

Removes the first occurrence of x from the array. Raises
ValueError if not found.

Reverses the order of the array.
Wites all items ta file £. Data is saved in native binary format.
Converts the array to an ordinary list of values.

Converts to a string of binary data—the same data as would be
wiitten using tofile ().

Converts the array o a Unicode string, Raises valuesrror If the
array Is not of type 'ut

images/00325.jpg
def flatten(lists)
for s in lists:
£ isinstance(s,list) :

flatten(s)
else:
print(s)
itens = [[1,2,3], 14,5, (5,611, 17,8,9]]
4 Prints 123 4 5

images/00567.jpg
Pull off the last item of a sequence
if isinstance (x, collections.Sequence] :
last - x[-1]

only iterate over an object if its size is known

if isinstance(x, collections.Iterable) and isinstance(x, collections.Sized)
for item in x:
statements

Add a new item to a set
if isinstance (x, collections Mutableset]:
x.add(item)

images/00324.jpg
faf. TRotaxial (o
ifn < 1: retum 1
else: return n * factorialin - 1)

images/00566.jpg
import collections
Stock = collections.namedtuple ('Stock', 'name shares price’)

images/00327.jpg
LRI,
def factorialin):

ifn e 1o retum 1

Glos1 petira o ¥ fadtaridlin = 1) § Calls the wrsboed erelos of Eactorial

images/00326.jpg
GE Semciatten vl Sta] ¢
for s in lists:
isinstance(s, List) :
for item in genflatten(s)
yield item

else:
vield item

images/00321.jpg
fIM10n & LLIBA-ER "1 for TIDM SN OenLUpEEGColiniERtil
porciolio = [{'mane’ : (0],
‘shares! - int(£[1)),
‘pricer - float(el2]) |
for £ in tields]
¢ sone queries
nsfc = (s for 5 in porcfolio if s['name'] == 'MSFT]

large_holdings = [s for 5 in portfolio
if s['shares']*s['price’'] >= 10000]

images/00563.jpg
R LRER SN M, M AR BERMSLaSAn

> s = tyaah but 1o but yeah but no but yeaht

5> words = s.split()

>> wordlocations = defaultdict (List)

>> for n, ¥ in enumerate (vords)
wordlocations] .append (n)

- wordlocations
Jefaultdict (<type *ist's, ('yeah': [0, 4, &1

5, 7, ot

i,

@, s

images/00320.jpg
¢ avk '{ total += §2 ¢ 3} EMD { print total }' portfolio.txt

images/00562.jpg
8= RELHYRITAYITAY) 110313, 8,5])
for 1, x in enunerate (a]
ST w e

images/00323.jpg

images/00565.jpg
SLa8f. StoCk DR eck) &
def __init__(self,name, shares, price)
SIRS
self.shares = shares
BOTE RPLEE = AR

images/00322.jpg
Sum{shares*cost Zor suares,cost in
cursor execute "select shares, cost from portfolio”)
if sharestcost >= 10000)

images/00564.jpg
RSSO - SOSSRC LIRS, SNIORL SNRat IR,
»>> NetworkAddress = namedtuple ('NetworkAddress', ['hostaame' , 'port'])
+>> a = NetworkAddress ('www.python.org!,80)

+>> a.hostname

"www. python. org’

»>> a.port

0

>>> host, port = a

+>> len(a)

2

»>> type(a)

cclass '__main__.Networkhddress'>

»>> isinstance(a, tuple)

True

images/00317.jpg
vl
1B 50 91.10

CAT 150 83.44
MSFT 200 51.23
GE 55 40.37

MSFT 50 65.10
pirnigy Rt ing

images/00548.jpg
i+ g
Fraction(s, 2)

e £ 4 g

Fraction(21, 16)

>>> h.limit_denominator (10)
Fraction(22, 7)

images/00790.jpg
= Fockntiarver iogexl CORSecwic

serv = UDBServer(('®

110000, TimeKandler)
St pleive Eoru 1)

images/00789.jpg
= Eockntiarver iagerl TCVSecwie

serv = TcpServer((''

110000, TimeKandler)
St pleve Eorue 1)

images/00308.jpg
EAodee w.Find L2 Toe lopanars oat (g {Sppthony, pringes (Ja F)

§ Now, send a value
£inder.send (wuw", "access-10g*"))
finder.send (("otherwww", "access-log*®))

images/00550.jpg
Constant Description
pi Mathematical constant pi
5 Mathanatical Conatanta

images/00792.jpg
‘rom SocketServer import TCPServer, Forkingt

clase TineServer (ForkingWixIn, TCBServer):
allow_reuse_address = True
max_children = 10

serv = TimeServer(('',10000, TineHandler)
serv.serve forever()

images/00549.jpg
Funcion
acos (x)
acosh (x)
asin(x)
asinh (x)
atan(x)
acan2(y, x
acanh (x)
ceil (x)
copysign(x,y)
cos x)
cosh(x)
degrees (x)
radians (x)
exp x)

fabs (x)
factorial (x)
£100x (x)
faod(x, y)
frexp)
—

bypot (x, ¥
ising ()

Seman (x)

ldexp (x, i1
log(x 1, basel)

10910 (x)
1091p (x)
modt (x)

powtx, y)
sin(x)
sinh (x)
sqrt (x)
can (x)
canh ()
trunc (x)

e
Retuns the are cosine of .

Retuns the hyperbolic arc cosine of x.

Retuns the arc sine of x.

Retwrns the hyperbolic arc sine of x.

Returns the arc tangent of x.

Retwns atan(y / x.

Returns the hyperboli arc tangent of .

Returns the ceiling of x.

Retwrns x with the same sign as y.

Retwrns the cosine of x.

Returns the hyperbolc cosine of .

Converts x from radians to degrees.

Converts x from degrees to radians.

Rewms & ++ x.

Returns the absolute value of x.

Retwrns x factorial.

Returns the fioorof x.

Retwms x % yas computed by the C £aod () function.
Returns the positive mantissa and exponient of x as a tuple.
Returns the ful precision sum of floating point values in the iter
able seauence 5. See the following note for a descrition.
Retuns the Euciidean distance, sqrt (x * x + y * ¥).
Return Txue if x s infinty.

Returns True if xis NaN.

Retwrs x + (2 ++ 5)

Returs the logarithm of x 10 the given base. If base is omitied,
this function computes the natural logarithm.

Returns the base 10 logarthm of x.

Retuns the natural logarithm of L4x.

Retuns the fractional and integer parts of x s a cuple. Both
have the same sigh as x.

Retwrs x +* v.

Returns the sine of x.

Returns the hyperbolic sine of x.

Returs the square root of x.

Returns the tangent of x.

Returns the hyperboli tangent of x.

Truncates to the nearest integer towerds 0.

images/00791.jpg
ICRELBeTver loagar: TCEServr

class TineServer (TCBServer :
allou_reuse_address - True

serv = TimeServer (('",10000, Tineiandler)

images/00788.jpg
B

fron socketserver import DatagranRequestandler

except ImportError.
£rom SocketServer inport DatagranRequestiandler

tmport. time

class TineServer (DatagranRequestiiandler) :

et nandle(self
resp = time.ctime() + "\r\n*

self.wfile.write {resp.encode('latin-1

4 python 3

python 2

images/00314.jpg
(expression for iteml in iterablel if conditionl
for item2 in iterablez if condition?

for itemN in iterableN if conditionN)

images/00556.jpg
>>> 8 = Stagk()
Traceback (most recent call last):

File "<stdins", line 1, in <module>
TypeError: Can't instantiate abstract class Stack with abstract methods size

images/00313.jpg
il bl
"aber

[2¢s for s in al
(s for s in a if 5 >= 0]
[(x,y) for x in a
foryinb
it x>0

((1,2), (3,4), (5,6)]
[math.sqre (x*xsy+y)
for x,y in f]

vao

[-6,10,4,-20,14,16]
(5,2,7,8)

[(5,7a'),(5,7b7), (5, e,
(2,1a"),(2,'b"), (2, "),
(7,1a'),(7,'b"), (7, "),
(8,7a'), (8,'b"), (8, 'c")]

[2.23606, 5.0, 7.81024]

images/00555.jpg
class Stack(sStackable)
def __init__(self):
self.items = 11
def push(self, iten) :
self.items.append (item)
def poplself) :
Teturn self.items.pop ()

images/00797.jpg
GET /document.html HTTP/1.0
Connection: Keep-Alive

User-Agent: Mozilla/¢.61 [en] (XL1; U; Sun0$ 5.6 sunéu)

fost: rustler.cs.uchicago. edu:8000

Accept: image/gif, image/x-xbitmap, image/jpey, image/pipeg, image/png, */*
Accept-Encoding: geip

Accept-Language: en

Accept-Charset: is0-8859-1,%,utf-8

Optional data

images/00316.jpg
Read a file
£ = open(data.txc") 4 Open a file
ines = (c.strip() for ¢ in f) # Read Lines, strip

trailing/leading whitespace

"H1) § KLl coments

coments = (v for t in lines if t(o]
for ¢ in coments.
print ()

images/00315.jpg
>>> a = [1, 2, 3, 4)
s> b= (1008 for 1 in a)

>5 b

<generator object at 0x53028>
>>> bnext ()

10

>55 bonext ()

images/00557.jpg
class CompleteStack(Stack):
property
def sizel(self) :
Sataisn e (ALE | Eam)

images/00310.jpg
nums = [1, 2, 3, 4, 5]
Slidred = I %o for = o o]

images/00552.jpg
%55 G1ARS: Fod (Rmbend.Real) ¢ pasa

255 £ = Fool)

t call last)

le "cstdins', line 1, in <vodules

TypeError: Can't instantiate abstract class Foo with abstract methods
_add__, __div__, __eq _, __float

images/00794.jpg
import xmlrpelib
s = xmlrpelib. ServerBroxy ("http: //localhost :45000°)
5.2dd(3,4)

images/00309.jpg
oo 11, 22 B, %, 81

squares = [}

for n in nuns.
Shares stodin * o)

images/00551.jpg
AYinstancsx, maRers.aber) $.X 98 Wy Xing of nombet
statenents

isinstance (x, mumbers.Integral) # x is an integral value
SR

images/00793.jpg
S

from xmirpe.server import SimpleXMLRECServer
£rom socketserver import ForkingMixin
except InportError:

eython

4 eython

=rom SimpleXMLRECServer import SimpleXMLRECServer
£rom SocketServer import ForkingMixin

class MyXMLRECServer (ForkinghixIn, SimpleXMLRECServer) :

et verify request(self, request, client_address):

Bost, port = client address
host 1= '127.0.0.1'

return False
return SimpleXMLRCServer.verify_request (self, request,client_addrese)
sample use
et addlx,y):

return 1y
server = MyKMLRRCServer ((*"45000))

server . register_tunction (add)
server . serve_forever()

images/00312.jpg
s =10
for iteml in iterablel:
if conditionl:
for item2 in iterablez
it conditionz:

for item¥ in iterableN:
9T il & apomid (aaeion)

images/00554.jpg
trom abc 1mport ABCMeta, abstractmethod, abstractproperty
class Stackable # In Python 3, use the syntax
__metaclass__ = ABCHeta # class stackable (netaclas:
Gabstractmethod
def push(self, iten) :
pass
@abstractmethod
def poplself) :
pass
eabstractproperty
def size(self) :
i

images/00796.jpg
try:
from urllib.request import urlopen 4 Bython 3
except InportError:
£rom urllibz import urlopen # Python 2

u = urlopen("£tp: //usernane: passwordssomehostnane/ somefile")
R R

images/00311.jpg
(preseian Tor thel on Jiarehial At ocediilonl
for item in iterablez if condition?

for itemN in iterabl

N if conditionN]

images/00553.jpg
import abc
class Stackable: # In python 3, use the syntax
__metaclass__ = abc.RB(Meta # class Stackable (metaclass-abc. ABCMETA)

images/00795.jpg
HOBE: TRER<#00.CON"

usernane = "dave"
password = "1235"
f£ilename = "somefile.dat"

import ftplib
ftp_serv = frplib. PTP(host,usernane, password)
Open the file you want to send

£ = open(filename, "rb")

Send it to the FTP server

resp = ftp_serv.storbinary(*STOR "+filename, f
Close the comnection

ftp serv.close

images/00307.jpg
eécoroutine
def grep(pattern, carget]:
while True:
ine = (yield)
pattern in line
target . send (Line)

acoroutine
def printer() :
while True:
line = (yield)

S8 .stdout . wr!

(line!

images/00306.jpg
Wpeck 0f.
import frmat

scoroutine
def £ing_tilestarget)
Whi1S True:
topdiz, pattern = (yield)

for path, dimmane, filelist in os.walk(copdir]
for name in filelist:
if fnnatch. fanatch (nane, pattern)

target . send (0s. path. join (path, name))

import gzip, bz2

acoroutine
def opener (zarget)
while True:

name = (yield)
if name. endew
eLif nane.endsvith(*.bz2%)
else: £ = open(name)
target.send(f)

(".g2"): £ = gzip.open(nare)
b22.B22Fi1e (name)

scoroutine
def cat (target)
while True:
£ = (yiel)
for line in f:
Earout, ped [Line)

images/00779.jpg
Property Description
5. fanily The socket address family (e.g., AF_INET)
s.proto “The socket protocol

8. type The socket type (e.g., SOCK_STREAM)

images/00778.jpg
Constant
MSG_DONTROUTE

MSG_DONTWAIT

MSG_EOR,

MSG_PEEK

MSG_00B
MSG_WAITALL

Description
Bypasses routing table lookup (sends only).
Nonblocking operation.

Indicates that the message is last in a record. Usually only used
when sending data on S0CK_SEQPACKET sockets.

Looks at data but doesn't discard (receives only).
Receives/sends outofband data.

Doesn't retur until the requested number of bytes have been read
irecaives: bk

images/00539.jpg
Constant
ROUND_CEILING

ROUND_DONN

ROUND_FLOOR

ROUND_HALF_DONN

ROUND_HALF_EVEN

ROUND_HALF_UP

ROUND_UP

ROUND_05UP

Description
Rounds toward positive infinity. For example, 2.52 rounds up to
2.6 and 2.58 rounds up 10 2.5.

Rounds toward zero. For example, 2.58 rounds down to 2.5 and
258 rounds up to 2.5.

Rounds toward negative Infinity. For example, 2.58 rounds down
10 2.5 and -2.52 rounds down to -2.6.

Rounds away from zero if the fractional part is greater than half;
otherwise, rounds toward zero. For example, 2.58 rounds up to
2.6, 2.55 rounds down to 2.5 -2.55 rounds up to -2.5, and -2.58
founds down to -2.6.

The same as ROUND_HALF_DOWN except that if the fractional part
is exactly half, the result is rounded down if the preceding digit is
even and rounded up if the preceding digit is odd. For example,
2.65 is rounded down to 2.6 and 2.55 is rounded up to 2.6.

The same as ROUND_HALF_DOWN except that if the fractional part
is exactly half, it s rounded away from zero. For example 2.55
rounds up to 2.6, and -2.55 rounds down to -2.6.

Rounds away from zero. For example, 2.52 rounds up to 2.6 and -
2.52 rounds down 10 -2.6.

Rounds away from zero if the last digit after toward zero would
have been O or 5. Otherwise, rounds toward zero. For example,

2 54 rounds to 2.6 and 2.64 rounds to 2.6.

images/00781.jpg
% UDP message server
Receive small packets from anywhere and print them out
import socket
s = socket.socket (socket .AF_INET, socket.SOCK_DGRAM)
s.bind(("",10000))
vhile True:
data, address = s.recvErom(256)
print ("Received a connection from $s" % str(address)!
s.sendto (b*echo:" + data. address)

images/00538.jpg
PESEESE [AENOIN, Sty SRS T
EnineNone, Emax=None, capitalssl)

images/00780.jpg
Constant
EAI_ADDRFAMILY
BAI_AGATN
ERI_BADFLAGS
EAI_BADHINTS
BAI_FAIL
EAI_FAMILY
EAI_MEMORY
EAI_NODATA
EAT_NONAME
BAI_PROTOCOL
EAI_SERVICE
EAI_SOCKTYPE
EAI SYSTEM

Description
Address family not supported.

Temporary failure in name resolution.

Invalid flags.

Bad hints.

Nomrecoverable failure in name resolution.
Address family not supported by host.
Memory allocation failure.

No address associated with node name.

No node name or service name provided.
Protocol not supported.

Service name not supported for socket type.
Socket type not supported.

‘System error.

images/00303.jpg
e M Line mpaitbarytst
>> 5.next ()

Ready to split

55> 5.send ("A,B,C")
it

>> 5.5end(*100,200,300%)
['100", '200", '300')

images/00545.jpg
233 8 = Daclmnl(®43.8°)
555 b = Decimal (*37.1%)

s> a4 b
Decinal (179.67)

>>a/b

Decimal (*1.145552560646900269541778976")
>>> divmod (a,b)

(Decimal (*1%), Decimal(*5.4"))

>>> max(a,b)
Decinal ("42.57)

55> ¢ = [Decimal(4.5), Decimal(*3%), Decinal(*1.23e3%)]
5> sum(c)

Decimal (11237.5"

»» [10%x for x in ¢}
[Decimal (*45.0") , Decinal ("30%), Decima
>>> float (a)

s2.5

s> str(a)

iy

1.2308471)

images/00787.jpg
b
fron socketserver import DatagranRequestdandler # Bython 3
except InportError:
from SocketServer import DatagranRequestifandler § Python 2

import. time

class TineServer (DatagranRequestiiandler) :
def nandle(self) :
Tesp = time.ctine() + "r\a®
ALE WElll wriie (Tei) $ncude () Latire11%

images/00302.jpg
result = None
while True:

Line = (yield result]

it Tt el L L]] b}

images/00544.jpg
vith localcontext() as c:
c.prec = 5
atabeiects

images/00786.jpg
EEy
£rom socketserver import BaseRequesthiandler

except InportError:
from SocketServer import BaseRequestiandler

import socket

import cime

class TineServer (saseRequestiandler)
Gef handle(self)
resp = time.ctine() + "\r\av
if isinstance(self .request,socket.socket) :
A strean-oriented connection

self request.sendall(resp.encode 'latin-1'))

else:
A datagran-oriented connection
self.server.socket .sendto(resp.encode(latin-1'),self.client_address)

images/00305.jpg
wwwlogs = £ind("www","access-log*")

files = opener (wawlogs
ines = catlfiles)
pylines = grep('pychon", lines)

for line in pylines:
sys.stdout .urite(line)

images/00547.jpg
223 5 '« LEROCLCRS.FEacEionid,4)
s> g = tractions.Fraction(*1.75%)
e g

ction(7, 4)
>>> b » fractions.Fraction.from float (3.1415926)
raction(3537118815677477, 1125899906842624)

images/00304.jpg
S 08
import fomatch

Gef fing_files(topdir, pattern):
for path, dirname, filelist in os.walk(topdiz)
for name in filelist.
if famatch. fnmatchname, pattern) :
yield os.path. join (path, nane]

inport gaip, bz2
4ef opener (£ilenanes) :
for name in filenames:
if name.endswith(".gz") : g2ip.open (nane)
e1if name.endswith(".bz2): £ = bz2.BZ2File (name)
else: £ = open(name]
yiela £

gef cat(filelist):
for £ in filelist:
for line in £
yield line

get grep(pattern, Lines)
for line in lines:
if pattern in line:
vield line

images/00546.jpg
#»>" gatpantaxt () .pewc = 4
>>> a = Decimal (*3.4562384105%)
> a
Decinal (*3.45623841057)
>>> b = Decimal(*5.6273833)
>>> getcontext) . flags [Rounded]
0
»>> a4 b
5.084
>3> getcontext() . tlags [Rounded]
1
>>> a / Decimal (*0%)
Traceback (most recent call last)
File "cstdinst, line 1, in ?
decinal DivisionByzero: x / 0
+5> getcontext () . traps [DivisionByZero] = False
>>> a / Decimal (*0%)
Decimal ("Infinity®)

images/00299.jpg
RS ViR L

s>> .send(4)

Traceback (most recent call last):
File "<stdins®, line 1, in cmodules

StopIteration

images/00541.jpg
x =a/b
except decimal.DivisionByZero:
print *Division by zero"

images/00783.jpg
Keyword Argument
server_side

keytile

certtile

cert_reqs

ca_certs

ss1_version

do_handshake_on_connect

suppress_ragged_eofs

Description
A Boolean flag that indicates whether or not the socket
is operating as a server (True) or a client (False). By
default, this is False.

The key file used to identiy the loca side of the con-
nection. This should be a PENformat file and usually
only included if the file specified with the certfile
doesn't include the key.

The certificate file used to identify the local side of the
connection. This should be @ PEM-format file

Specifies whether a certificate is required from the
other side of the connection and whether or ot it will
be validated. A value of CERT_NOKE means that certifi-
cates are ignored, CERT_OPTIONAL means that certii-
cates are not required but will be valldated f given, and
CERT_REQUIRED means that certiicates are required
‘and will be validated. If certiicates are £oing to be vall-
dated, the ca_certs parameter must also be given.
Filename of the file holding certificate authority certif-
cates used for validation.

SSL protocol version to use. Possible values are
PROTOCOL_TLSV1, PROTOCOL_SSLv2,
PROTOCOL_SSLv23, 0f PROTOCOL_SSLv3. The default
Protocol is PROTOCOL_SSLv3.

Boolean flag that specifies whether or ot the SSL
handshake Is performed automatically on connect. By
Gefault, this is True.

Specifies how read () handles an unexpected EOF on
the connection. If True (the default), a normal EOF is
signaled. If False, an exception is raised.

images/00298.jpg
it o
et receiver(]:
print ("Ready to receive’)
while True!
a = (yield)
print{"Got 5" & n)
Example use
r = receiver()
r.send("Hello World")

. No initial

| needed

images/00540.jpg
Signal

Clamped
DivisionByZero
Tnexact
Invalidoperation
Overflow

Rounded

Subnormal
Underflow

Description

Exponent adjusted to fit the allowed range.
Division of nonvinfinite number by .
Rounding error occurred.

Invalid operation performed.

Exponent exceeds Emax after rounding. Also generates
Inexact and Rounded.

Rounding occurred. May occur even if no information was lost
(for example, 1.00 * rounded to *1.0").

Exponent is less than Emin prior to rounding.

Numerical underflow. Result rounded to 0. Also generates
A A s ik

images/00782.jpg
I SAnEage Olrentc
import socket

s = socket.socket (socket .AF_INET, socket.SOCK_DGRAM)
s.sendto (b"Hello World", ("7, 10000))

resp, addr = s.recvirom(256)

print (resp)

s.sendto (b"Span”, ("*, 10000))

resp, addr = s.recvirom(256)

print (resp)

b.eloasl

images/00301.jpg
>>> I.throw(RuntimeError, "You're hose
Traceback (most recent call last):
File "cstdins®, line 1, in <odules
File "cstdins®, line 4, in Teceiver
Ry e oy

images/00543.jpg
ctxt = decimal.getcantext() # Get current context
x=a+b
it cext.flags [Rounded]

print "Result was roundsdl®

images/00785.jpg
SHPOLE. SOCKAE. WAL, Tl

s = socket.socket (socket .AF_INET, socket.SOCK_STREAM)
s.setsockopt (socket .SOL_SOCKET, socket.SO_REUSEADDR, 1)
s.bind(('",12345))

s.listen(s)

while True:
client, addr = s.accept () # Get a connection
print "Connection from, addr
client_ssl = ssl.wrap_socket (client,
server_sidesTrue,
certfile="timecert.pem’)

client_ssl.sendall (b"HTTP/1.0 200 OK\r\n")
client_ssl.sendall (b"Connection: Close\r\n")
client_ssl.sendall (b"Content-type: text/plain\r\n\r\n")
resp = time.ctime() + "\r\n"

client_ssl.sendall (resp.encode ('latin-1'))
client_ssl.close ()

it cloaai)

images/00300.jpg
g i

print ("Ready to receiver)
v
while True:
n = (yield)
print("Got " ¥ n)

except Generatorsxit
print ("Receiver done")

images/00542.jpg
s TN S GIE. AN N1 O
DecimalException
Clamped
DivisionByzero
Inexact
overflow
Underflow
Invalidoperation
Rounded
overflow
Underflow

Subnormal
Underflow

images/00784.jpg
import socket, ssl

s = socket .socket (socket .AF_INET, socket.SOCK_STREAM
s51_s = ssl.wrap_socket (s)
551 s.connect (('gmail.google.con', 443))
print (ssl_s.cipher ()
Send a request
s51_s.write (b"GET / HTTP/1.0\r\m\r\n")
Get the response
while True:

data = ssl_s.read()

if not data: break

print (data)
ssl s.close()

images/00537.jpg
Method
x.exp([context])

maly, z [, context])
1n(lcontext])

1og10([context])
warb L eortaxtl]

Description

Natural exponent e**d

Xty + = with no rounding of x+ component
Natural logarithm (base €) of x

Base-10 logarithm of x

Square root of x

images/00768.jpg
233 petumminfo)(100108181 22810 80] 2 0).
("£ang.python.org, 'http')

>>> getnameinfo(('194.109.137.226",80) , NI_NUMERICSERY)
(' £ang. python.org', '80')

images/00528.jpg
Wwarning Object
warning
UserWarning
Deprecat ionifarning
Syntaxtiarning

Runt imeWarning
Futuretiarning

Description

Base class of all warning types
Userdefined varning

Warning for use of a deprecated feature
Potential syntax problem

Potential runtime problem

Warning that the semantics of a particular feature wil
change in a future release

images/00770.jpg
Constant
BTPROTO_L2CAP
BTPROTO_HCI
BTPROTO_RFCOMM
BTPROTO_SCO

Descr
Logical Link Control and Adaption Protoco
Host/Controller Interface.

Cable replacement protocol

Synchronous Connection Oriented Link

images/00769.jpg
Constant
TPPROTO_AK
IPPROTO_BIP
IPPROTO_DSTOPTS
TPPROTO_EGP
IPPROTO_EON
TPPROTO_ESP
IPEROTO_FRAGMENT
IPPROTO_GGR
TPPROTO_GRE
IPPROTO_HELLO
IPPROTO_HOPOPTS
TPPROTO_TCHP
IPEROTO_ICHEVS
1PPROTO_IDP
TPPROTO_TGHP.
IPPROTO_IP
IPPROTO_IPCOME
TPPROTO_TPTP
IPEROTO_IPVA
IPPROTO_IPVE
TPPROTO_MOBTLE
IBEROTO_ND
IPPROTO_NONE
TPEROTO_PTH
IBEROTO_EUP
IPPROTO_RAH
TPPROTO_ROUTING
IPEROTO_RSVE.
1PPROTO_TCE
TPPROTO_TP
IPEROTO_UDE
IPPROTO_VRRP.
IPPROTO_XTP

Description
1PY6 authentication header

Banyan VINES

1PV6 destination options

Exterior gateway protocol

1SO CNLP (Connectionless Network Protocol)
1PY6 encapsulating security payload
1PV fragmentation header

Gateway o Gateway Protocol (RFC823)
Generic Routing Encapsulation (RFC1701)
Fuzzball HELLO protocol

1PY6 hopbyhop options

1Pv4 1P

1PVG 1CMP.

XNS 1DP

Group management protocol

IPva

P Payload compression protocol

P inside P

1Pv4 header

1PV6 header

1P Mobilty

Netdisk protocol

1PY6 no next header

Protocol Independent Multicast

Xerox PARC Universal Packet (PUP)
Raw IP packet

1PY6 routing header

Resource reservation

Tcp

081 Transport Protocol (TP-4)

uop

Virtual Router Redundancy Protocol
eXpress Transfer Protocol

images/00534.jpg
_resultcache = { }
def foocache (x)
if Tesultcache.has key(x) :

* = _resultcache [x] () 4 Get weak ref and dereference it
if r'is not None: return r
T = foolx)

_resultcache [x] = weakref.xef (x)
poatintay

images/00776.jpg
. Tne:
rCP_CORK.
rCP_DEFER_ACCERT

rce_veo

roe_keeecnt

rce_xeepIoLe

rCP_KEEPINTVL
rCP_LINGERZ

rCP_MAXSEG

rCP_NODELAY
TCP_QUICKACK

rce_smenT

rCP_WINDOW_CLAMD

Valne
0.1
01

tep_info

inc.

int.

ine
int

ine

it

b il
Don't send out partial frames if set.

Awake istener only when data arrives on
socket.

Retums a stucture containing information
about the socket. tcp_infois implemen-
tation specifi.

Maximum number of keepalive probes TCP
should send before dropping a connection.
Time in seconds the connection should be.
idle before TCP starts sending keepalive
probes if the TCP_KEEPALIVE option has
been set.

Time in seconds between keepalive probes.
Lifetime of orphaned Fr_waIT2 state
sockets.

Masimum segment size for outgoing TCP
packets.

If set, isables the Nagle algorithm.

If set, ACKs are sent immediately. Disables
the TCP delayed ACK algorthm.

Number of SYN retransmits before aborting
a connection request.

Sets an upper bound on the advertised TCP
o et

images/00533.jpg
>>> print ar{) # Print origimal abject
<__main__.A instance at 12cedc>

53 del @ # Delete the original object

>> print ar() # a is gone, so this now returns None
None

images/00775.jpg
IPV6_RECVDSTOPTS
IPV6_RECVHOPLIMIT
IPV6_RECVHOPOPTS
IV6_RECVEKTINFO
TV6_RECVRTHDR
IPV6_RECVTCLASS
IPV6_RTHDR

IPV6_RTHDRDSTOPTS
IPV6_RECVPATHMTY
1BV6_TCLASS

IPV6_UNICAST_HOES
1PV6_USE_MIN_MTU

1PVE_VEONLY

0.1
0.1
0.1
0.1
0.1
0.1
ips_rthar

ips_dest

int
int
1,01

01

Receive destination options.
Receive the hop limit.

Receive hopbyhop options.

Receive packet information.

Receive routing header.

Receive the traffic class.

Routing header. ips_rchar is a packed
binary String containing (next, e,
type, segleft, data) where next,
Zen, type, and seglert are all Sbit

unsigned integers and data is routing
data. See RFC 2460,

Destination options header before the rout-
ing options header.

Enable the receipt of IPV6_PATHMTU ancil-
lary data ftems.

Traffic class.

Hop limit for unicast packets.

Path MTU discovery. 1 disables it for all
desinations. -1 disables it only for multicast
destinations.

Only connect to other IPV6 nodes.

images/00536.jpg
decimal
decinal
decinal
decinal
deing]

ARG AN,
Decimal (*37.45")
Decimall(l, (2,3,4,5),
Decinal (*Infinity
Decimal (*NaN*®)

F CoPALER Tacmad [
4 Creates Decinal (*37.45'
1) 4 Creates Decimal (*-23.45")

images/00535.jpg
import decimal
X - decinal Decimal ('3.4') # Create some decimal numbers
y = decimal Decinal ('4.5')

Perforn some math calculations using the default context
a-xty #a = decimal.Decimal ('15.30']
b-x/y # b = decinal Decinal ('0.7555555555555555555555555556")

Change the precision and perforn calculations
decinal getcontext () .prec = 3

caxty #c = decinal Decimal ('15.3']
a-x/y #4d = decimal .Decimal (0.756'}

a single block of statenent

with decimal.localcontext (decival . Context (prec=10)) :

Change the precision for

decinal Decinal ('15.30')
decimal.Decimal (*0.7555555556")

xry ge
5y BE

images/00777.jpg
Option
RCVALL_OFF
RCVALL_ON

RCVALL_IPLEVEL

Description
Prevent the socket from receiving all IPv4 or IPV6 packets.

Enable promiscuous mode, allowing the socket to receive all IPvd
or IPY6 packets on the network. The type of packet received
depends on the socket address family. This does not capture
packets associated with other network protocols such as ARP
Receive all IP packets received on the network, but do not enable
promiscuous mode. This will capture all IP packets directed at the
host for any configured IP address.

images/00530.jpg
warnings.lilterwarnings (acs
nessage
categor,
import regex # Warming message disappears

images/00772.jpg
Option Name
IP_ADD_MEMBERSHIP

IP_DROP_MEMBERSHIP

IP_HDRINCL
IP_MAX_MEMBERSHIPS
IP_MULTICAST_IF

IP_MULTICAST_LOOP
IP_MULTICAST_TTL

IP_OPTIONS

IP_RECVDSTADDR

IP_RECVOPTS
IP_RECVRETOPTS
IP_RETOPTS

Ip_T0S
1P TTL

Value
ip_mreg

ip_mreg

int
int
in_addr

0,1
uints

ipopts

int
dHE

Description

Join a multicast group (set only). ip_mreg
is a packed binary string containing two 32-
bit IP addresses (multiaddr,
localaddr), where multiaddr i the
multicast address and Iocaladdr is the IP
of the local interface being used.

Leave a multicast group (set only).
ip_mreg is described above.

IP header included with data.

Maximum number of multicast groups.
Outgoing interface. in_addr is a packed
binary string containing 32-bit IP address.
Loopback.

Time to live. uint8 is a packed binary
string containing a 1-byte unsigned char.

IP header options. ipopts is a packed
binary string of no more than 44 bytes. The
contents of this string are described in RFC
791.

Receive IP destination address with data-
gram.

Receive all IP options with datagram.
Receive IP options with response.

Same as Tp_RECVOPTS, leaves the options
unprocessed with no timestamp or route
record options filled in.

Type of service.

Time to live.

images/00529.jpg
i i e e e B o RS

warnings warn ("feature ¥ might be broken.". RuntimeWarning!

images/00771.jpg
Option Name
S0_ACCEPTCONN

S0_BROADCAST
s0_pEBUG

S0_DONTROUTE
S0_ERROR
S0_EXCLUSIVEADDRUSE
S0_KEEPALIVE
So_LINGER
S0_0OBINLINE

s0_ROVEUF
S0_RCVLOWAT

s0_RCvTIMEO

50_REUSEADDR
S0_REUSEPORT

so_swpaur
S0_SNDLOWAT
s0_SNDTIMEO

so_rveE
50_USELOOPBACK

Value
o1

o 1
01

int
01

Linger

o 1
int
int

timeval

0 1
01

int

int

timeval

int
o,

Description
Determines whether or not the socket is accept:
ing connections.

Allows sending of broadcast datagrams.
Determines whether or not debugging informa-
tion Is being recorded.

Bypasses routing table lookups.

Gets ermor status,

Prevents other sockets from being forcibly bound
10 the same address and port. This disables the
'S0_REUSEADD optian,

Periodically probes the other end of the connec-
tion and terminates if it's halfopen.

Lingers on close () If the send buffer contains,
data. Linger s a packed binary sting contain-
ing two 32:Dit Integers (onof, seconds).
Places outofband data into the input queue.
Size of recelve buffer (n bytes)

Number of bytes read before select () retums
the socket as readable.

Timeout on recelve calls I seconds. t ineval is
 packed binary String containing two 32-it
unsigned integers (seconds,

microseconds) .

Allows local address reuse.

Allows multple processes to bind to the same
address as long as this socket option Is set in
all processes.

Size of send bufer (in bytes)

Number of bytes available in send buffer before
select () returns the socket as writable.
Timeout on send calls in seconds. See
S0_RcvTIIEO for a description of tineval.
Gets socket type.

Routing socket gets copy of what it sends.

images/00532.jpg
>>> class A: pase
s> a = A0

ss> ar = weakref.ref(a) # Create a weak reference to a
->> print ar

<weakref at 0x135a24: to 'instance' at 0x12ce0cs

images/00774.jpg
IPV6_JOIN_GROUP

IPV6_LEAVE_GROUP
IPV6_MULTICAST_HOPS
IPV6_MULTICAST_IF

IPV6_MULTICAST_LOOP

IPV6_NEXTHOP

IPV6_PKTINFO

08 wreg.

ips_mreq
int
int

0.1

sockaddr_ing

ips_pktinfo

AURTTINSTCRES JOn. Jpe merg 19
packed binary string containing
(multiaddr, index) where multiaddr
s 2 1281t IPY6 multicast address and
index 15 a 32:it unsigned integer inter-
face index for the local interface.

Leave multcast group.

Hopimit o multicast packets.

Interface index for outgoing multicast pack-
ets.

Deliver outgoing mulicast packets back o
Iocal appiication.

et the next op address for outgoing pack
ets. sockaddz_iné is a packed binary
String containing the C sockaddr._in.
structure as tpically defined in
<netinet/in.h>.

Packet information structure.
ips_pkcinfois a packed binary string
ConfaIning (addz, index) Where addx is
a 1281t IPV6 address and index Is a 32-
bit unsigned integer with the interface
T

images/00531.jpg
Action
tignore!
‘aluays’
‘default!
"module’

FNCHIpon.
Convert the warning into an exception

Ignore the waing,

Always print a warning message

Print the warning once for each location where the warning ocours.
Print the warning once for each module in which the warning occurs
Print the waming once regardless of where it occurs

images/00773.jpg
Option Name
TV6_CHECKSUM
IPV6_DONTFRAG

IPV6_DSTOPTS

IPV6_HOPLINIT
IBV6_HOPOPTS

Value
0.1
0.1

ips_dest

int
ips_nbn

Detrigiion
Have system compute checksum.

Don't fragment packets If they exceed the
MTU size.

Destination options. ips_det Is a packed
Dinary string o the form (nex, 1en,
options) where next is an Bt intoger
ging the option type of the next header:
1enis an 8-bit integer specifying the length
of the header n units of & bytes, not incug-
ing the first & bytes; and opt fons is the
encoded options.

Hop Imit.

Hopoyhop optons. 1ps_nof has the
il o us 106 BNt

images/00527.jpg
o) i Rt e
_main__:1: Deprecationbarning: the regex module is deprecated; use the re
adale

images/00526.jpg
COPNTYRN (REGOSNECE ANV THURR KTy Sl0EN DORLEAR0) DUty OuE
e e e e b et

images/00759.jpg
Constant
AP_BLUETOOTH
AF_INET
AF_INETS
AF_NETLINK
RE_PACKET
AF_T18C
AF_UNIX

Description
Bluetooth protocol

1Pv4 protocols (TCR UDP)

IPV6 protocols (TCR UDP)

Netlink Interprocess Communication

Linklevel packets

Transparent Inter Process Communication protocol
UNIX domain protocols

images/00758.jpg
et drink bottles (]
global bottles
while bottles > 0
arink_beer ()
bottles -= 1
scheduler .nainloop (count

) % Poll for connections

Jtimeout

An asynchronous server based on coroutines.
det server(port)
5 = Cosocket [socket .socket (socket ,AF_INBT, socket . SOCK_STREAM))
yield s.bind(("",port))
yield s.listen(s)
while True
client,addr = yield s.accept ()
yield client send(("$d bottles\rin" § bottles) .encode('latin-1')
yield client.close()

scheduler = Scheduler ()
scheduler new (server (10000})
drink bottles()

images/00523.jpg
Attribute
flags debug
flags.py2k_warning
Flags.division_warning
flags division new
flags. inspect
flags.interactive

flags opt inize
flags.dont_urite_bytecods
flags.no_site
flags. ignore_environment
flags . taboheck
flags.verbose
s ailaake

‘Command-Line Option

-

images/00765.jpg
335 QEEAACCIATG [" S, py Chon. Do s #6 ARE_TEEE: S0CE_STNERN)
[(2,1,6,'", ('194.109.137.226',80))]

images/00522.jpg
open('myfile’, ‘rb’)
x = pickle.load(f]
v = pickle.load(f)
load more objects
£ close()

images/00764.jpg
A3 QEERAGCINEG | www. pychan.org s 885
[(2,2.17, ", ('194.109.137.226',80)), (2,1,6,

194.109.137.226'),80))]

images/00525.jpg
variable
suiltinfunctionType
coderype

FraneType

Funct ionType
GeneratorType
GetsetDescriptorType
LanbdaType
MenberDescriptorType
wethodType
ModuleType

e bRl

Description
Type of builtin functions.

Type of code objects

Type of execution frame object

Type of userdefined functions and lambdas
Type of generatoriterator objects

Type of getset descriptor objects
Alternative name for Funct ionType

Type of member descriptor objects.

Type of userdefined class methods.

Type of modules.

Type of traceback objects

images/00767.jpg
Constant
NI_NOFQDN
NI_NUMERICHOST
NI_NAMEREQD

NI_NUMERICSERY

NI_DGRAM

Description
Don't use fully qualified name for local hosts.

Returns the address in numeric form.

Requires a host name. Returs an error if address has no DNS
entry.

The retumed por s retumed as a string containing a port num:
ber.

Specifies that the service being looked up is a datagram service
{UDP) instead of TCP (the default)

images/00524.jpg
Altribute

£loat_info..
float_info..

float_info

float_info.,

float_info

float_info
£loat_info

£loat_info.|

£loat_info.,

float_info
float_info

epsilon
dig

mant_dig

max_exp

max_10_exp

min_exp

min_10_exp
radix
rounds

Description
Difference between 1.0 and the next largest float
Number of decimal digits that can be represented without
any changes after rounding.

Number of digits that can be represented using the numer
ic base specified in £loat_info.radix.

Maximum floating:point number.

Maximum exponent in the numeric base specified in
f£loat_info.radix.

Maximum exponent in base 10.
Minimum positive floating-point value.

Minimum exponent in the numeric base specified in
£loat_info.radix.

Minimum exponent in base 10.

Numeric base used for exponents.

Rounding behavior (-4 undetermined, O towards zero, 1
nearest, 2 towards positive infinity, 3 towards negative
infinity).

images/00766.jpg
>>> getaddrinfo(*www,python.org®, *http®, AF _UNSPEC, SOCK_STREAM)
[12.1.6,"", ('194.109.137.226',80))]

images/00519.jpg
EEy
snport nds

except Deprecationkaring:
pass

images/00761.jpg
('www.python.org', 80)
(166.113.130.182" . 25)

images/00518.jpg
1MpOTLt Warnings
o oagina

‘The MONDO flag is no longer supported®, DeprecationWarning)

images/00760.jpg
Constant
SOCK_STREAN
S0CK_DGRAN
S0CK_RAW
S0CK_RDM
SOCK_SEQPACKET

Dearon
A reliable connection oriented byte stream (TCP)
Datagrams (UDP)

Raw socket

Reliable datagrams

‘Sequenced connection-mode transfer of records

images/00521.jpg
f = open{'myIile', 'wb')
pickle.dum (x, £)
pickle.dump (y, £)

dump more’ objects
¥ aions)

images/00763.jpg
Address Type Description

TIPC_ADDR_NAMESEQ v is the server type, v2 is the port identifier, and v3 is O.

TIPC_ADDR_NANME 115 the server type, v2 is the lower port number, and v3 is
the upper port number.

TIPC_ADDR_ID v1 is the node, v2 is the reference, and v3 is 0.

images/00520.jpg
it e
inp. pY_SOURCE

imp. PY_COMPILED
inp.c_BXTENSTON

inp. PKG_DIRECTORY

PY PROE

[Description
Python source file

Python compiled object fle (. <)
Dynamicaly loadable C extension
Package directory

Buitin module

Frozen module

images/00762.jpg
Constant
PACKET_HOST
PACKET_BROADCAST
PACKET_MULTICAST
PACKET_OTHERHOST

PACKET_OUTGOING

Description
Packet address to the local host,

Physical layer broadcast packet.

Physical layer multicast.

Packet destined for a different host, but caught by a device.
driver in promiscuous mode.

Packet originating on the machine, but which has looped back
o a packet socket.

images/00516.jpg
EEy
Some operation

except ArithmeticError as e:
4 Math error

images/00515.jpg
LERE I ¢
def foolself) :
super (B, self) .foo()

images/00757.jpg
def server (port)
s = socket.socket (socket . AF_INET, socket . SOCK_STREAN)
5.bind(('",port))
s.listen(s)
while True
client,addr = s.accept ()
client.send(("td bottles\r\n" ¥ bottles) .encode('latin-1')
client.close ()
Launch the monitor server
thr = threading Thread(target=server,args=(10000,))
thr . daemon=True
thr.start ()
drink bottles()

images/00517.jpg
except IOErTOr as e:
Handle error
4 'e' has an instance of IOError

images/00988.jpg
€1388 Mallip Aled ALcEr
et __init__(self)
Sele.miltiples set()
et __setiten__(self,name, value)
TE name in self
selt.multiple.add (nane)
dict.__setiten__(self,nane,value)

class MultiMeta(type) :
classmethod
£ __prepare__(cls,name, bases, **kvargs)
Téturn MultipleDef ()
et __new__(cls,name, bases, classdict) :
or nare in classdict.miltiple
print (nae, "miltiply defined’)

if classdict.miltiple:
raise TypeError ("Multiple definitions exist')
return type. new__(cls,name,bases, classdict)

images/00748.jpg
import select
import. cypes

import. collections

 Object that represents a rumning task
Slass Task(object)

et __init__(self, target)
Belf tifger « targer § A coroutine
self sendval = None § Value to send when resuning
selt stack = I

daf runisel)

ery
result « self.target.send(sel.sendval)
if isinstance result, systencall)
return result
if isinstance result, types. GeneratorType]
self.stack. append (self . target
self.sendval = fione.
self.target = result
4 not self.stack: retum
self sendval « result
self.target = self.stack.pop()
except stoprteration
S not self.stack: raise
self sendval « None
self.target = self.stack.pop(}

images/00990.jpg
b'Hello World'
print (x) # Produces b'iello World!
print (b"You said '$s'" % x) # TypeError: % operator not supported

images/00989.jpg
€18 ¥oo (Tntat e asial EINeta)
et __init__(self)
pass
Gef __init__(self,x) # Brror. __init_
pass

multiply defined.

images/00512.jpg
def parse_header (line)
£ields = line.spl.
if len(fields) 1= 2
raise RuntineError ("Malforned header’|

header, value = fields
TR e Toue L1 el

images/00754.jpg
import os
import mimetypes
try.

£rom http.client irport responses # Bython 3
except InportError:

£rom httplib import responses # Bython 2
Erom socket import *

det http_server (address)
s = Cosocket (socket (AF_INET, SOCK_STREAM))
yield s.bind (address)
yield s.listen(s0)

while True
conn, addr = yield s.accept ()
yield NewTask (nttp_request (conn, addr))
Gel conn, addr

def http_request (conn,addr)

request = brv
while True
data = yield comn.recv(8192)
request += data

if br\r\n\r\n’ in request: break

header data = request[:request.find(b'\r\n\r\n'}]
header_text header_data.decode (' latin-1')
header_lines = header_text splitlines()
method, url, proto = header_lines (0].split()
if method == 'GET'
if o5 path.exists (url (1:])
yield serve_file(conn,url(i:])
elee;
yield error_response (conn, 404, "File %5 not found" % url)

else.
yield error_response (conn,501, "ts method not implemented” % method]
SV e Aol

images/00996.jpg
>>> 8 = { 'G00G"
+>> K = 8.keys()
s k
cdict_keys object at 0x33d
s>> v = s.values()

AR08 SRR

548

CIBM'

=28

images/00511.jpg
Clase. Bk (cb]act) 1
__slots__ = ['mame’, 'shares", 'price']
et _init_(self,nane, shares, price]

Self.name - nane
self shares = shares
ety gyl

images/00753.jpg
from socket import socket, AF_INET, SOCK_STREAM
def tine_server (adiress)
Tmport time
s = CoSocket (socket (AF_INET, SOCK_STREAH) |
yield s bind (address)
vield s listen(s)
vhile True:
conn, addr = yield s.accept ()
print (conn)
print ("Connection from ¥s" ¥ str(addr))
Tesp = time.ctine()+"\rin’
vield conn.send (resp. encode 'latin-1'))
Yield com. close ()

sched = Scheduler ()
sched.new(tine_server (('',10000)]) # Server om port 10000
sched.new(time_server(('',11000))) 4 Server on port 11000
Schad. roriil):

images/00995.jpg
def foof.

_Locals = locals()
Sxec("a = 42",globals (), _locals)
a= _locals('a'l the set variable

wpint {8}

images/00514.jpg
Approach 1 : Perform a lookup and catch an exception
try

value = items[xey]
except KeyError:

value - None

Approach 2: Check if the key exists and perforn a Lookup

key in items
value = items [key]
else:

e S

images/00756.jpg
bottles = 10000000

def drink_beer()
remaining = 12.0

while remaining > 0.0

remaining -= 0.1

def drink_bottles()
global bottles

while bottles > 0:

drink beer ()

bOttles -= 1

images/00513.jpg
Aat purwe_ Gaades(]l]ine;
fields = line.split(":
tey

header, value = fields
return header.lower (], value.scrip()
except ValueBrror:
Yatma i

ror ("Malformed header®)

images/00755.jpg
def serve_file(conn, filename}
content, encoding = mimetypes.guess_type (£ilenane)
yield conn.send (b"HITR/L.0 200 OK\F\n")
Yield conn.send ((*Content-type: $s\rin" % content} .encode 'latin-1'))
Yield conn.send ((*Content-length: $d\r\n® %
08 path.getsize (Eilenane)) encode 'latin-1')}

yield conn.send (b\r\n"}
£ = open(filenae, "b")
while True

data = £.7ead (8192)

if not data: break

vield conn.send (data)

def error_response (conn, code, message
yield conn.send ((*HTT?/1.0 %a ss\r\n®
(code, responses [code] }) .encode 'latin-1'])
yield conn.send (b*Content-type: text/plain\rin')
yield conn.send (b"\r\n"}
Yield conn.send (nessage . encode (' latin-1'))
sched = Scheduler ()
sched new (ttp_server ((",8080)))
achath:maRoas D

images/00997.jpg
o
print (x

c00s
AREL
TEM

images/00508.jpg
SLae8 BEackichiecty
Gef __init__(self nae, shares, price)
56if.name = nane
self.shares = shares
PP i

images/00750.jpg
B al
while self.task_queve:
taskc = self task_queue.popleft()

exy
Tesult - task.runl)
i isinstance result, Systencall)
Tesult handle(selt, task)
ele:
selt . sched:
except Stoplteration
celf nuntasks

If no tasks can Tun, we decide if we wait or return
else
if count > 0: count -= 1
if count == 0:
retumn

Inplenentation of different system calls
Class ReadWait (SyscenCall)
et __init__(self,f):
]
def nandle(self,sched, task)
£ileno = self £ fileno()
sched. readwait (task, £ileno)

class WriteWait (Systencall):
et __init__(self,£]
s s
det nandle(self, sched, task) :
= self.£.fileno(]
(task, £ileno)

Class NewTask (Systencall] :
Gef __init__(self, targer)
self target = target
det handle(self, sched, task) :
sched new(selt . target)
sched. schatilettask)

of Fha CRSKS 00 Tha. QUING. That SIs Teady to T

images/00992.jpg
gl i Lo Bk b A A

+>> £.urite("Hello World\at)

ceback (rost recent call last):

File "cstains', line 1, in <vodule>

File */trp/1ib/python3 0/i0.py", line 1035, in write
raise TypeSrror(“can't write str to binary streau’)

ypeError: can't write str to binary stream

images/00749.jpg
2 Otuet: Chud “coprassuka o * Rygtam call®
class Syscencall(object]
def handie (selt, sched, task)
pass

Scheduler object
Class Scheduler (abject)

et __inic__(self)
Selt.task queve = collections.dequel)
selt readmmiting = {}
selt writs vaiting = {}
selt nuncasks -0

Create a new task out of a coroutine
dof new(self, target)
newtask = Tack(target)
selt.schedule (newsask)
selt nuncasks += 1

But a task on the task quese
dat schaduls (self, task
selt.task_quese. append (task)

Have a task wait for data on a
dof readuait {self, task, td]
selt read waiting(fd] = task

7 ave a task wait for writing on a file descriptor
dof writewait (sl task, £)

selt.urite waitinglfd) = task

§ Main scheduler loop
def mainloop (self, count--L, tinsout-Nons]

while self nuntasks
Check for 1/0 events to handle
i€ sel€.read waiting or self.write waiting
Wait = 0 Af self.task queue else timeout
T.u,a = select.select (aelf.read_vaiting, self.write waiting,
wait)

for fileno in r
self. schedule (seLf. read_waiting.pop £ilenc))
for fileno in w.
S61E. BuhedcleTRalEweitE Maltiig poy (ESNa0))

u,

images/00991.jpg
*3 8 COMIER-R. TRAECOGN NEERagE Ueing NExiogs Oeisooe)
>>> status = 200

23 mag = *OK*

>>> proto = HTTP/1.0%
»> response = *is id s
>>> print (response)
HTTE/1.0 200 OK

% (proto, status, msg)

>>> ¥ Create a response message using only bytes (ASCIT)
s> status = 200
>>> mag = YOK®
»:5 proto = bHITE/1.0%
>>> response = b*%s &d ks* % (proto, status, meg)
Traceback (most recent call last) :
File "<stdin>', line 1, in <modules
TypeBrror: unsupported operand type(s) for ¥: 'bytes' and ‘tuple’

>>> response = proto + b* * + str(status) + b® * + meg
Traceback (most recent call last)

File "<stdin>', line 1, in <modules
TypeError: can't concat bytes to str

>>> bytes(status)
' \x0D\ 001001000000\ %00\ X00\x00\x00. ... *

>>> bytes (st (status))
Traceback (most recent call last]

File "<stdin>', line 1, in <modules
TypeError: string argument without an encoding

>> bytes(str (status) , ‘ascii’)
b'200"

»5> response = proto + b* * s+ bytes(str(status), 'ascii') + b* * + meg
>>> print (response)
bIHTTR/1.0 200 OK'

>>> print (response.decode(*ascii’))
HTTE/1.0 200 OK

images/00510.jpg
A CIRIAL'S. SDATEN"N,DEIO0",
*rom stock import Stock; s = Stock('G00G!,100,490.10) ")
0.29100513456251953
+>> timeit(*s['shares']*s('price’]",
s = ('name' : 'G00G!, 'shares’ : 100, ‘price’ : 430.10 })
0.23622798919677734

images/00752.jpg
dlasa:Cobaokat (aljeoct.}

et

det

def

def

def

aet

aet

aet

__init__{self,sock)
sele.eo0k = sock
close (self)
yield self.sock.close()
bind(self, addr)
yield self.sock bind(addr)
listen(self, backlog)
yield self.sock.listen(backlog)
connect (self, addr)
yield WriteWait (self.sock)
yield self.sock. connect (addr)
accept (self) :
yield Readuait (self .sock)
conn, addr - self.sock.accept ()
yield Cosocket (conn), addr
send(sel, bytes)
while bytes:
evt = yield Writemait (self.sock)
ngent = self.sock. send (bytes)
bytes = bytes[nsent:]
recy(self, maxsize)
yield Readuait (self sock)
inld wele mook| reaw{aaxvixe)

images/00994.jpg
det fool}
exec("a = 42"
print (a)

images/00509.jpg
bocs Frem Eamalt impart tlmadr
->> timeit(*s = Stock(GOOG',100,490.10)*,*from stock import Stock)
1.3166780471801758

»5> timeit("s = ('name’ : 'G00G!, 'shares' : 100, 'price’ : 430,10 }%)
0.37812089920043545

images/00751.jpg
Trom Senket - imnart. societ. RETHES, SOCK STREN
def time_server (address)
import time
& = socket (AF_INET, SOCK_STRERM)
5.bind (address)
s.listen(s)
while True:
yield Readwait(s)
conn, addr = 5.accept ()
print ("Connection £rom ¥s" ¥ str(addr))

yield WriteWaic (conn)
Tesp = time.ctime() + "\r\n*
conn. send (resp..encode {'latin-1'))
conn.closel)

sched = Scheduler ()
sched.niew (tine_server(('*,10000))) # Server on port 10000
sched new(tine_server{('',11000))) % Server on port 11000
sched. run{)

images/00993.jpg
printix,y,z) RS M RS X &
print (x,y,z,ende" ') # Same as : print X, y, Z
print {a, £ile § Pomn nf 1 DItk sr, &

images/00505.jpg
Ay FHON CRINNE APOES Cimmiy

+>> timeit('s.appendleft(37) ",

+import collections
‘number=1000000)

0.24434304237365723

->> timeit('s.insert(0,37)', 's = ('

§12.95199513436364

s = collections.deque(),

nusber=1000000)

images/00747.jpg
Constant Description

POLLIN Data is available for reading.
POLLERT Urgent data s available for reading
POLLOUT Ready for wrting.

POLLERR. Error condition.

POLLHUP. Hang up.

Serinvar invalid moucsl

images/00504.jpg
PR FEON UAN LIROrE 1R
5> dis(split)

o
3
s
s
2

LOAD_ERST o
o
1
1
2
1
56
o
3
X 2
LORD_GLOBAL 1
LOAD_FAST 2
2
GET_TTER
FOR_T 25
ONPACK._SEQUENCE 2
3
LOAD_FAST 3
LOAD_ERST s
LOAD_ERST H
CALL_FUNCTION 1
LisT
JOME_ABSOLUTE a2
DELETE_FAST 3
1
2

(Line)
(spit)
(deliniter)

fields)

(cypes)
(to 79)

un
(zip)
(types)
(ields)

(to 70

(ty)
(val)
[
(&
(va1)

un
(Fields)
(zo 80)

(¢ie1ds)

images/00746.jpg
eiser
self.send_error (501, "%s method not implemented" % self.op]

4 Error handling
et send_error (self, code, message]
self push_text ('HTTP/1.0 #s $s\r\n' § (code, responses(code]))
seLt.push_text ('Content-type: cext/plain\r\n')
self push_text ('\r\n')
self push_text (nessage)

Add binary data
def push (self, data) :
self.write_gueue.append (data)

the output queue

Add text data to the output queue
def push_text (self, text)
sel pushtext.encode 'latin-1'))

4 only writable if a response is ready
def writable(self)
veturn self responding and self write queve

¢ Write response dat
def handle_write(self)
chunk = self.write_queue.popleft()
bytes_sent = self.send (chunk]
if byfes_sent 1= len(chunk)
self write_queve.appendlett (chunk (bytes_sent:]}
if ot self write_queve:
selt .closs (]
Create the server

a = async_ncep(8080)
Poll forever
asyncore. loop(]

images/00507.jpg
>>> tineit("s = {'name’
.38917303085327148
>>> timeit("s = dict(names'G00G!, shares=100,prices430.10) *)
PR)

'G00G*, ' shares' :100, 'price’ :490.10}")

images/00506.jpg
THEE femme OV S
U0 i [ragnaty 0000 . Yahirent 180, Vil

images/00858.jpg
import cgi
def subscribe_app(environ, start_response)
fields = cgi.FieldStorage (environ['wsgi.input'],

name = fields.getvalue(*nane’)
email = fields. getvalue"enail’)

Various processing

status = "200 OK"
headers = [('Content-type', 'text/plain')]
start_response (status, headers)

response = [
"Hi %s. Thank you for subscribing.' § name,
"You should expect a response soon
1

return (line.encode('utf-8') for line in response)

images/00622.jpg
Open a tar file and put some files into it

t = tarfile.open(*foo.tar’, "w")

t.add ("README")

import glob

for pyfile in glob.glob("*.py")
t.add(pyfile)

£.close()

Open a tar file and iterate over all of its members
t = tarfile.open("foo.tar
for £ in t

print("s 84 § (£.name, f.size))

Scan a tar file and print the contents of "README' files
€ = tarfile.open(*foo.tar")
for £ in
if o5.path basenane (£.nane) == "READNE"
data = t.extractfile(f) .read()
print ("sees §g *xssv § £ name)

images/00864.jpg
Blues,Elwoed, "1060 W Addison®, "Chicage, IL 60613%,"B263-1655-2187",116,56

images/00621.jpg
Attribute. Description

ti.gid Group 1D
ti.gname Group name

ti.isblk() Retums True if the object is a block device

ti.ischr() Retums True if the object is a character device

ti.isdev() Retums True if the object is a device (character, block, or FIFO)
ti.isdir() Retums True if the object s a directory

ti.isfifo() Retums True if the object is a FIFO
ti.isfile() Retums True if the object is a regular file
ti.islnk() Retums True if the object is a hard link
ti.isrea() Sameasisfils()

ti.issym() Retums True if the object is a symbolic link
t4.linknane Target filename of a hard or symbolic link

ti.mode Permission bits
tintime Lastmodification time

t4.name Archive member name

tisize Size in bytes

ti.type File type that is one of the constants REGTYPE, AREGTYPE, LNKTYPE,

SYMTYPE, DIRTYPE, FIFOTYPE, CONTTYPE, CHRTYPE, BLKTYEE, OF
GNUTYPE_SPARSE

tiuid User ID

1 andas Hsmaig

images/00863.jpg
value Encoding
0-25 ABCDEFGHUKLMNOPQRSTUVWXYZ
o6-31 ey

images/00624.jpg
Attribute
i.filename
i.date_time

i.conpress_type

i..comment.
iiextra

i.create_systen

i.create_version
i.extract_version
i.reserved

i.flag bits

i volume

i.internal_attr

i.external_attr
i.header offset
ifile offset
i.cRe
i.conpress_size

1,File sizse

Description
Archive member name.

Tuple (year, month, day, hours, minutes, seconds) con-
taining the last modification time. month and day are numbers

in the range 1-12 and 1-31, respectively. All other values start
ato.

Compression type for the archive member. Only 217_STORED
and Z1P_DEFLATED are currently supported by this modle.
Archive member comment.

Expansion field data, used to contain additional file atiributes.

The data stored here depends o the system that created the.
file.

Integer code describing the system that created the archive.
Common values are O (MS-DOS FAT), 3 (UNIX), 7 (Macintosh),
and 10 (Windows NTFS).

PKZIP version code that created the zip archive.

Minimum version needed to extract the archive.

Reserved field. Currently set to 0.

Zip flag bits that describe the data encoding including encryp-
tion and compression.

Volume number of the file header.

Describes the interal structure of the archive contents. If the.
loworder bit is 1, the data is ASCII text. Otherwise, binary data
is assumed.

External file attributes which are operating system dependent.
Byte offset to the file header.

Byte offset to the start of the file data,

GRC checksum of the uncompressed file.

Size of the compressed file data.

Size of the uncompressed file.

images/00866.jpg
Keyword Argument
quoting

Iarphon
Controls the quoting behavior of output data. It set to one of
QUOTE_ALL (quotes allfields), QUOTE_MINTHAL (only quote
fields that contain the delimiter or start with the quote charac-
ter), QUOTE_NONNUMERTC (quote all nonnumeric fields), or
QUOTE_NONE (never quote fields). The default value is
QUOTE_MINIMAL.

images/00623.jpg
Variable Descr
tempdir “The directory in which filenames returned by ikt emp () reside.

template The prefix of filenames generated by mktenp (). A string of decimal dig-
its is added to template to generate unique filenames.

images/00865.jpg
Keyword Argument
delimiter
aoublequote

escapechar

lineterminator
quotechar

skipinitialspace

Character used to separate fields (the defaultis ., °).
Boolean flag that determines how the quote character
(quotechar) is handled when it appears in a field. If True, the
character is simply doubled. If False, an escape character
(escapechar) is used as a prefix. The default is True.
Character used as an escape character when the delimiter
appears in a field and quoting is QUOTE_NONE. The default
value is None.

Line termination sequence *\r\n" is the default)

Character used to quote fields that contain the delimiter ("""
is the default).

If True, whitespace immediately following the delimiter is
ignored (False is the default).

images/00618.jpg
htmlfile
imgEiles

glob('*.html ')
glob('image [0-5]*.gif")

images/00860.jpg
#!/usr/bin/env python
def my_app (environ, start_response) :
Some application
start_response (1200 OK", [{"Content-type', 'text/plain'}1)
return ['kello World']

£ron wgiref handlers import CGTHandler
hand = CGIHandler ()
hand. run (my_app)

images/00859.jpg
def my_app(environ, start_response):
Some application

start_response (*200 OK*, [(*Content-type', 'text/plain’)])
return ['Hello World']

if __pame__ main__'
from wsgiref simple server import make_server
serv = make_server('',8080, my_app)

serv.serve_forever()

images/00620.jpg
Mode
el
rlgz
'r|pz2’
lr
gz
‘w|bz2"

Description
Open a stream of uncompressed blocks for reading

Open a gzip compressed stream for reading
Open a bzip2 compressed stream for reading,
Open an uncompressed stream for witing
Open a gzip compressed stream for writing
Open a bzip2 compressed stream for writing

images/00862.jpg
s
0-25
26-51
52-61
62

pad

bt ¥
ABCDEFGHUKLMNOPQRSTUVWYZ
abcdefghikimnoparstuwyz
0123456789

/

images/00619.jpg
Mode

-
‘ribe2t
"wigzt
‘wibz2"

Description

Open for reading. If the file is compressed,
parently. This is the efault mode.

Open for reading without compression.
Open for reading with gzip compression.
Open for reading with bzip2 compression.
Open for appending with no compression.
Open for writing with no compression.
Open for writing with gzip compression.
Open for writing with bzip2 compression.

s decompressed trans-

images/00861.jpg
Hal my spp (Foeloon, SCart_ Teeponga) i
Some application

start_response (7200 OK", [{'Content-type', 'text/plain')])
return ['kello World')

if __name__ == '__main
Trom wegiref simple_gerver import make_server
from wsgiref validate import validator
serv = make_server('',8080, validator (my_app)}
serv.serve_forever()

images/00615.jpg
BZ2File(filename [, mode [, buffering [, compresslevel]]])

images/00857.jpg
Bnviron vanames

wsgi
wagi

vagi

wagi

vegi

vegi

vogi

rl_schene

input.

miltithread

multiprocess

Description
Tuple representing the WSGI version (e.g., (1,0) for WSGI 1.0}
String representing the scheme component of the URL. For
example, ‘http! or 'https' .

Afilelike object representing the input stream. Additional data
such as form data or uploads are read from this.

A filelike object opened n text mode for wiiting error output.

A Boolean flag that's Txue if the application can be executed
concurrently by another thread in the same process.

A Boolean fiag that's Txue if the application can be executed
concurrently by another process.

A Boolean flag that's Txue f the application will only be exe-
AR Dos g e Wisthis of the Exsculing IrOoRse.

images/00614.jpg
Operation
dlikey] = data
data = dlkeyl
del dlkey]
d.has_key (key)
d.keys ()
d.close ()
d.sync()

Description

Stores data at key. Overwrites existing data.
Retrieves data at key.

Deletes data at key.

Tests for the existence of key.

Returns all keys.

Closes the shelf.

Writes unsaved data to disk.

images/00856.jpg
VR XAHENES
CONTENT_LENGTH
CONTENT_TYPE
HTTP_ACCERT
HTTE_COOKIE
ATTE_REFERER
HTTE_USER_AGENT
PATH_INFO
QUERY_STRING
REQUEST_METHOD
SCRIPT_NAME
SERVER_NAME
SERVER_PORT
SERVER_PROTOCOL

Description
Length of data passed

Type of query data.

MINEE types accepted by the iient
Netscape persistent cookle value
Referring URL

Client browser

Extra path information passed
Query string.

Method (*GET" or 1205T')
Name of the program

Server host name

Server port number

Server protocol

images/00617.jpg
fnmatch('foo.gif', '*.gif') # Returns True
famatch ('part37.htnl', 'part3(0-5].html') # Returns False

Example of finding files in an entire directory tree
using os.valk(), famatch, and generators
def findall(topdir, pattern)
for path, files, dirs in os.walk(topdir) :
for name in files
if fnmatch. Enmatch (name, pattern) :
yield os.path.join(path, name)
Find all py files
for pyfile in findall(
print pyfile

eyl

images/00616.jpg
Character(s)

(seq)
[1seq]

Description
Matches everything.

Matehes any single charaster
Matches any character in seq
Matches any character not in seq

images/00611.jpg
atocks = L 1'G00C, 75, 384. 23],
('BA",60,14.20),
('A16",125, 0.98)]
Gk exatat ey (Vinsect Afto stocks valies: (3,781, stocke)

images/00853.jpg
impert ogi
£rom string import Template

def error (nessage) :
temp = Template (open|(*errormsg.htnl®) .read())
print 'Content-type: text/html\r'
print \r'
print temp.substitute({'message' : message})

form = cgi FieldStorage()
name = form.getfirst ('name’)
email = form.getfirst('email’)
if not name
error ("nane not specified”)
raise SystemExit
elif not email:
error ("email not specified)
raise SystemBxit

Do various processing
confirmation = subscribe(name, email)

Print the output page
values = {

‘nane" : nane,

‘email' : email,

‘confirmation: ': confirmation,

Add other values here
)
temp = Template (open|*success htul") .read()
S v a it Bk Tt et

images/00610.jpg
HWPOXt SEitedy
conn = sqlite3. connect ("mydb®)
cur = cor)
cur .exscute (*insert
cur .execute ("insert into stocks vales (2,2,2]",
Gk ol b1y

nt stocks values (2,2,2)", ('IBM',50,91.10))

(RAPL',100,123.45))

images/00852.jpg
(*text/html', {'a':'hello’, 'b':'world'}}
parse_multipart (fp, pdict)

images/00613.jpg
Operation
dlikey] = value
value = dlkey)
del dlkey]
d.close()

key in @
d.sync()

Description

Inserts value into the database

Gets data from the database
Removes a database entry

Closes the database

Tests for a key

Writes all changes out to the database

images/00855.jpg
RiARISL D e prEhon
mport. cgi

images/00612.jpg
§SGLE0L Rl COLWAHS LiUM & SAnle
for Tow in cur.execute("select * from stocks®)
statements

4 select a few colums
for shares, price in cur.execute("select shares,price from stocks"):
statenents

4 Select macching rows
for Tow in cur.execute ("select * from stocks whers symbol=?", ('IEM!,]]
statements

4 Select matching rows with ordering
for Tow in cur.execute("select * from stocks order by shares®]
statements

4 Select matching rows with ordering in reverse
for Tow in cur.execute(select * from stocks order by shares desc'):
statenents

4 Joining tables on a common colum name (symbol)
for Tow in cur.execute("*’select s.symbol, s.shares, p.price
£rom stocks as s, prices as p using(symbol) """}
aiatamenia

images/00854.jpg
fI:

<HEAD>
<TITLE>Success</TITLE>

</HEAD>
<BODY>
Welcome $name. You have successfully subscribed to our
newsletter. Your confirmation code is §confirmation
</BODY>

</HTML>

images/00849.jpg
Attribute.

£
£
£
£
£
3

_filenane

value
file

~type

type_options

disposition

disposition_options
headers

Description
The field name, If specified

Clientsside filename used in ploads

Value as a string

File-like object from which data can be read
Content type

Dictionary of options specified on the contentype line of
the HTTP request

The *content -disposition' field; None if not speck
fied

Dictionary of disposition options

A dictionary ke object containing all the HTTP header
irairicy

images/00848.jpg
print 'Status: 302 Movedir'
print ‘Location: http://waw. 00, con/ordercontizm. htal\z
print '\r'

images/00609.jpg
HWpOXt SpLited
conn = sqlite3 .connect ("aydb®)

cur = conn.cursor (|

cur .exscute (create table stocks (symbol text, shares integer, price real]’)

irin SRR}

images/00851.jpg
£LIGLbEm € CODN| ‘REIEEIAa
if fileiten.file:
It's an uploaded file; count lines
linecount = 0
while True
Line = fileitem.file.readline()
if not line: break
Jinecount = linecount + 1

images/00608.jpg
8qlite.connect ("somedb")
with com
conn. execute (*insert into sometable vz

wes (2,2)", ("foo","bar"]))

images/00850.jpg
£oIm S el -V aleararaaatl]

if "name’ not in form:
error ("Name is missing®)
return

name = form['name’].value # Get 'name’ field from a form

email = form['email'].value # Get 'email' field from a form

images/00607.jpg
Code

SQLITE_CREATE_INDEX
SQLITE_CREATE_TABLE
SQLITE_CREATE_TEMP_INDEX
SQLITE_CREATE_TEMP_TABLE
SQLITE_CREATE_TEMP_TRIGGER
SQLITE_CREATE_TEMP_VIEW
SQLITE_CREATE_TRIGGER
SQLITE_CREATE_VIEW
SQLITE_DELETE
SQLITE_DROP_INDEX
SQLITE_DROP_TABLE
SQLITE_DROP_TEMP_INDEX
SQLITE_DROP_TEMP_TABLE
SQLITE_DROP_TEMP_TRIGGER
SQLITE_DROP_TEMP_VIEW
SQLITE_DROP_TRIGGER
SQLITE_DROP_VIEW
SQLITE_INSERT
SQLITE_PRAGHA
SQLITE_READ
SQLITE_SELECT
SQLITE_TRANSACTION
SQLITE_UPDATE
SQLITE_ATTACH
SQLITE_DETACK
SQLITE_ALTER_TABLE
SQLITE_REINDEX
SQLITE_ANALYZE
SQLITE_CREATE_VTABLE
SQLITE_DROP_VTABLE
SQLITE_FUNCTION

Index name.
Table name
Index name.
Table name
Trigger name
View name.
Trigger name
View name.
Table name.
Index name
Table name
Index name
Table name
Trigger name
View name.
Trigger name
View name.
Table name
Pragma name.
Table name
None

None

Table name
Filename
Database name
Database name
Index name.
Table name
Table name
Table name
Function name

Arg2
Table name.
None

Table name
None

Table name
None

Table name
None

None

Table name
None

Table name
None

Table name
None

Table name
None

None

None
Column name
None

None
Column name
None

None

Table name
Yone

None

Module name
Module name
None.

images/00604.jpg
Isolation Level
" (empty string)
"DEFERRED"

"EXCLUSIVE"

" IMMEDIATE"

Description
Use the default setting (DEFERRED),

Starts a new transaction, but does not acquire the lock until the
first database operation is actually performed.

Starts a new transaction and guarantees that no other connections
can read or wiite the database until changes are committed.

Starts a new transaction and guarantees that no other connection
can make database modifications until changes are committed.
Other connections gan still read from the database. howsves:

images/00846.jpg
print '<TITLE>My CGI Script</TITLE>'
print <Hl>Hello Worldle/Hl>!
ik e e v (44) L [nems, eamil]

images/00603.jpg
dat ‘Sennrate dicte(cur):
import itercaols
Fieldnanes
while True.
rous = cur. fetchnany ()
not Tow: return

[a10] .lower() for 4 in cur.description]

yield dict (itertools.izip(fieldnanes, row))
sample use

cur .execute ("select nane, shares, price from portfolio")
for r in generate_dicts(cur] :

print r['name’],r['shares'],r(['price’]

images/00845.jpg
rint 'Content-type: text/htmiir?
e N

R PR
Blank line (required!]

images/00606.jpg
BERSE AVRT QT sl aot):
et __init__(self):
Béle.total = 0.0
self.count = 0
Get stepl(self,value :
self.total +x value
self.comnt +x 1
det finalize(self)
veturn self total / self.count

c.create_agaregate ("myava", 1, Averager)
+ sample use in a query

c.execute{"select myavg(num) from sometable®)

images/00605.jpg
R e
return s.upper
ction(*toupper" , 1, soupper)

use in a query
raTwt Yaniome ey

s RAREARTEN)

images/00847.jpg
SHERCOS: 0. Frhicdsnir
*Content-type: texc/plain\r’

e # Blank line (required)
Vst e ot MOTERY o Accesslng. FRis TagEl

¥ BT

RSO ROt

images/00600.jpg
Type Object
STRING
BINARY
NUMBER
DATETIHE
ROWID

Description
Character or text data
Binary data such as BLOBs
Numeric data

Date and time data

Row ID data

images/00842.jpg
ACME Officials Quiet After Corruption Probe

‘Today, shares of ACME corporation (AGME) plummetted by more than 75% after

federal investigators evealed that the -
probe involving the Governor, sate loaq » C ML~ ACME Corporation

798
43725
(823%)

images/00599.jpg
Parameter Style
' quazk'

'named’

‘format!

'pyformat’

Description

Question mark style where each 2 in the query is replaced by suc-
cessive items in a sequence. For example, cur. execute ("

where name=? and account=?", (symbol, account)).The
parameters are specified as a tuple.

Nurmeric style where : is filled in with the parameter value at index
n. For example, cur.execute (... where name=:0 and
account=:1", (symbol, account)).

Named style where : name is filled in with a named value. For this
style, the parameters must be given as a mapping. For example,
cur.execute(". .. where name=:symbol and
account=:account”, {'symbol ' :symbol, 'account'
account).

Printf style format codes such as s, ¥4, etc. For example,
cur.execute (... where name=ts and account=$d",
(symbol, account)).

Python extended format codes such as % (name) s. Similar to the
*named" style. Parameters must be specified as a mapping instead
of a tuple.

images/00841.jpg
o M U0 TR WL
Eunction HidePopupl) |
‘popup.style.visibility - "Hidden'

<seripts

<H35AME Officials Quiet After Corruption Probec/his

>

Today, shares of ADNE corporation

(<span class="popup" onllousedver="Showbopup (this, "ACKE') ;"
onouseOut-"HidePopup) ; ">ACHES/span>)

plumected by more than 75 after federal investigators revealed chat

the board of directors is the target of a corruption probe imvolving

the Governor, state lottery officials, and the archbishop.

</p>

</body>
o e,

images/00602.jpg
No thread safety. Threads may not share any part of the module.
‘The module is thread-safe, but connections may not be shared.

‘The module and connestions are thread-safe, but cursors may not be shared.
The module, connections, and cursors are all thread-safe.

images/00844.jpg
dRpOzt. gL
forn = cgi.Fieldstorage()

name = form.getvalue('mame’) # Get 'name' field from a form
email = form.getvalue('email') # Get 'email' field from a form

images/00601.jpg
Exception
InterfaceError

DatabaseError
DataError

operationalError

IntegrityError
InternalError
ProgrammingError
NotSupportedError

Descr

Errors related to the database interface, but not the database
itself.

Errors related to the database itself.

Errors related to the processed data. For example, bad type
conversions, division by zero, etc.

Errors related 10 the operation of the database itself. For
example, a lost connection.

Error when relational integrity of the database is broken.
Internal error in the database. For example, if a stale cursor.
Errors in SQL queries.

Error for methods in the database AP that aren’t supported by
the underlying database.

images/00843.jpg
otk
AUTH_TYPE
CONTENT_LENGTH
conTENT_TveE
DOCUMENT_ROOT
GATEWAY_INTERFACE
HTTP_ACCEPT

HTTP_FRON
KTT_REFERER
HTTP_USER_AGENT
PATH_INFO
PATH_TRANSLATED
QUERY_STRTNG
REMOTE_ADDR
RENOTE_KOST
REMOTE_IDENT
RENOTE_USER
REQUEST_METHOD
SCRIPT_NAME
SERVER_NAME
SERVER_PORT
SERVER_PROTOCOL
SERVER_SOFTHARE

S
Authentication method

Length of data passed in sys . stdin
Type of query data

Document root directory

Gl revision string.

MIME types accepted by the cient
Netscape persistent cookie value

Email adress of client (often disabled)
Referring URL

Client browser

Extra path information passed
Translated version of PATH_INFO
Query string.

Remote IP address of the clent
Remote host name of the clent.

User making the request

Authenticated usemanme

Method (*GeT" or *posT')

Name of the program

Server host name

Server port number

Server protocol

Name and version of the server software

images/00838.jpg
from xmilrpe.server import (SimpleXVLRPCServer,
SimpleXMLRPCRequesthandler)
except InportError

£rom SimpleXMLRECServer imp

(SinpleXvLRECServer,
SiupleXLRECReques tHandler
lass MaxSizeXVLRPCHandler ($irpleXNLAPCRequestHandler)
MAXSIZE = 1024+102¢ # 143
def do_posT (self) :
size = int(self headers.get
if size >= self MAXSIZE:
self.send_error (400, "3ad request®)
else:
SimplexvLReCRequestHandler do_POST (self)

content-length’, 0))

e = SimpleXMLRECServer(('' B080),MaxSizeXMLRECHandl

images/00598.jpg
symbol = "AIG"
account = 12345

cur .exscute (*select shares from portfolio where names? and accounts:
fovibol, - sooount))

images/00840.jpg
.
<heads

<tit1esAME Officials Quist After Corruption Probec/titles
<style type=ttext/cssts

popup { border-bottom: 1px dashed green; }
Sopapstover { beckaroume-cotor, teocott |
<fiyies

<neass

<body>
<span 1d="popupbox”
Style=visibility:hidden; position:absolute; background-color:
pesesee; s
<span 1d-"popupcontent*»
</epan-
<seripes

/7 Get. a reference to the popup box elenent +/
var popup = document .getElement ById | “popugbox” ;
var popupcontent. = docunent .getElenentById | "popupcontent)
/+ Get pop-up daca from the server and display when received +/
function ShowPopup (hoveriten, nane) {
wvar request = new IMIHttpRequest ()
request . open ("GET", "cgi -bin/gopupdata. py7nane="snane, true);

Tequest onreadystatechange = function() |
var done = 4, ok = 200,

S (request. readyState -- done & request.status -- ok) |
it (request responseText) (

‘Popupeotent innerhTHL - Tequest . zesponseText
popup.style. left - hoveriten.
popup style.top = hon

offietLert 10,
popup.style visibility
)

oftsatTop:20;
bler;

}
)

request . send ();

images/00839.jpg
<FORM ACTION='/cgi-bin/subscribe.py' METHOD='GET'>
Your name : <INPUT type='Text' name='name’ size='30'>

Your email address: <INBUT type-'Text' name-'email' sizes'30'>
<INPUT type='Submit' name='submit-button' values'Subscribe'>
</FORM>

images/00835.jpg
“IY:
£rom xmlrpe.server import SimpleXMLRPCServer # Bython 3
except ImportErro:
£rom SimpleXMLRPCServer import SimpleXMLRECServer # Python 2
inport math

def add (x,y) 1
"Adds two numbers”
return xsy

s = SimpleXMLRECServer (('',8080))
s.register_function(add)
s.register_instance (math)
s.register_introspection_functions()
S neive Tozevar()

images/00834.jpg
bt T o ol ot Ak

mlci.f00(4,6,7) 4 Remote method foo
milci bar("hello world") # Remote method bar
milci span() # Remote method span

¢ Now, actually send the XML-REC request and get return results
foo result, bar result, spam result = multi()

images/00837.jpg
v i) Lt e ki

+>> 5 = Serverproxy(*http://localhost:8080%)
»>> 5.44(3,5)

.

+>> 5.5ysten. listHethods ()

[acos’, 'add’, ‘asin’, 'atan’, ‘atan2’, ‘ceil', ‘cos’, ‘cosh', 'degrees’, ‘exp’,
‘fabs', 'floor', ‘fmod', 'frexp!, 'hypot’, 'ldexp’, 'log', 'logl0’, ‘modf',

'pow’, 'radians', 'sin’, 'sinh', ‘sqrt!, ‘system.listMethods!
ysten.methodHelp', 'systen.methodSignature’, 'tan', 'tanh']
»>> 5.tan(4.5)

{.6373320545511847

images/00836.jpg
xy:

£rom xmlrpe.server import CGINMLRECRequestHandler # pytho
except InportError:

£rom SimpleXMLRPCServer import CGIXMLRPCRequestHandler # Pytho
import math

def add (x,y) :
"Adds two numbers®
return xey

COIXMLRECRequestHandler ()
-register_function (add)
-register_instance (math)
register_introspection_functions ()
.handle request ()

images/00831.jpg
233 8.8 SOEWGERTaRF(®RLAN) SRR R0 00N/ RNCS ")
»>> §.currentTime.getCurrentTime ()
<DateTime u'20051102T20:08:24" at 2c77d8>

images/00830.jpg
ServerProxy(uri [, transport [, emcoding [, verbose [, allow_none [,
use datetime]]l])

images/00833.jpg
dumps (params ([, methodname [, methodresponse (, encoding [, allow nonelll]l)

images/00832.jpg
XML-RPC Type
boolean
integer

float

string.

array

structure.
dates

By

Python Equivalent

True and False

int

float

string or unicode (must only contain characters valid in XML
Any sequence containing valid XMLRPC types

Dictionary containing string keys and values of valid types
Date and time (xmlrpc. client .DateTime)

Binary data (xmlrpc.client .Binary)

images/00829.jpg
try:
from urllib.parse import urlparse, urlencode, parse_gsl # Python 3
except InportError:
from urlparse import urlparse, parse_gsl # Python 2
£rom urllib import urlencode

4 Bxanple of creating a URL with properly encoded query varibles
forn.fields = {

“name' : 'Dave',
‘email' : 'davesdabeaz.con’,
‘uid! 1123457

}

form_data = urlencode (forn fields)

url = "http:/ /. sonehost _con/cgi-bin/view.py?"+forn_data

Exanple of parsing a URL into components
r - urlparse (url)

print (r.schene) # 'hetp!

print (r.netloc) # "www_somehost .con'

print (r.path) # '/cgi-bin/view.py!

print (r.parans) 3.0

print (r.query) # 'uid=12345anane-Davesenail-davesdOdabeaz .con'
orint (r.fragment) # '’

Extract query data
parsed_fields = dict (parse_gsl(r.query))
assert form fields ws parsed fields

images/00828.jpg
Attribute
r.scheme
z.netloc
r.path
~query

- fraguent

r.passuord
r hostname
r.port.

Description
URL scheme specifier (for example, 'http')
Netloc specifier (for example, *wwu . python. org®)
Hierarchical path (for example, ' /index. heml ')
Query string (for example, * name=Davesid=42")
Fragment identifier without the leading '# '

Username component i the netloc specifier is of the form
' usernae: passwordahostnane’

Password component from the netloc specifier
Host name component from the netloc specifier

Port number from the netloc specifier if it is of the form
" hogtname: port'

images/00827.jpg
Attribute
r.scheme
r.netloc
r.path
r.params
r.query
r.fragment
r.username

r.password
r.hostname
r.port

Description

URL scheme specifier (for example, ‘http')
Netioc specifier (for example, *www. python. org')
Hierarchical path (for example, ' /index. html ')
Parameters for the last path element

Query string (for example, 'name=Dave&id=42")
Fragment identifier without the leading ' 4"

Username component if the netloc specifier is of the form
' username: passwordahostname'

Password component from the netioc specifier
Host name component from the netloc specifier

Port number from the netloc specifier if it is of the form
[

images/00824.jpg
cookierand = HITPCookleProcessor\)
cpener = build_opener (cookienand)
4 = opener.open(*http: //www.example. com/"]

images/00823.jpg
HITPBasicAuthHandler ()
th.2dd_paseword (“Adninistratort, "hetp:/ /. secre!

st atr.con, ndrevil®, "12345")

Create opener with authentication added
cpener = build_opener (auth)

open URL
U = opener.open{*http: //www.secretlair.con/evilplan. html!

images/00826.jpg
proxy = ProxyHandler({'http
auth = HITEBasichuthHandler ()

auth.add_password (realn’, "host”, "usernamer, "password”)
opener = build_opener (proxy, auth)

"http://someproxy.com:8080/")

u = opener.open("http://www.example .com/doc.html®)

images/00825.jpg
cookiehand = HITPCOokieProcessor\

Betp. cookietar . Mozi1lacookiedar ("cookies. txt”)

)
cpener = build_opener (cookiehand)
U = Opener.open ! http: / e, exanple . COR.

images/00820.jpg
e
u = urlopen ("http: //www.python.org/per] tnl
= u.read()
eError 2s e:
e.read()

images/00819.jpg
Method

_read ([nbytes])

readline ()

-readlines ()
-fileno()

close()
info()

getcode ()

geturl ()

Description
Reads nbytes of data as a byte string,

Reads a single line of text as a byte string.

Reads all input lines and returns a list.

Returns the integer file descriptor.

Closes the connection.

Returns a mapping object with meta-information associated
with the URL. For HTTR the HTTP headers included with the
server response are returned. For FTR the headers include.

' content - length!. For local files, the headers include a
date, 'content-length',and 'content-type' field.
Returns the HTTP response code as an integer—for example,
200 for success or 404 for file not found.

Returns the real URL of the returned data, taking into account
any redirection that may have occurred.

images/00822.jpg
randier
CacheFTPHandler
FileHandler

FTPHandler
¥TTPEasichuthiandler
HTTPCookieProcessor
HTTPDefaultErrorHandler

HTTPDigestAuthHandler
HTTPHandler
HTTPRedirectHandler
HTTPSHandler
ProxyHandler
ProxyBasicAuthHandler
ProxyDigestauthHandler
AN

Description
FTP handler with persistent FTP connections

Opens local files

Opens URLs via FTP

Basic HTTP authentication handling

Processing of HTTP cookies

Handles HTTP errors by raising an HTTPError excep
tion

HTTP digest authentication handiing,

Opens URLS via HTTP

Handles HTTP redirects

Opens URLs via secure HTTP

Redirects requests through a proxy.

Basic proxy authentication

Digest proxy authentication

HaAar fhai il satiy Al e iR

images/00821.jpg
7.0; Windows

5.1; LNET CLR 2.0.50727):

Request (*hecp://somedonain. con/*, headers=headers)
urlopen(r)

images/00818.jpg
cry:
£rom urllib request &
except Inporterror
from urllib? import urlopen 4 Python 2

ot urlopen 4 Bython 3

2 = urlopen ("htep://docs .python.org/3.0/Library/url1ib. request heml ")
data = u read()

images/00817.jpg
e St e
Fromaddr =
coaddrs

someaneasone . con®
ecipientaother. con
on: ts\r\nTo: $s\ria\r\a" & (fromaddr, *,".join(toaddrs).

refinance your mor

jage to buy stocks and Viagra:

server = smtplib.SMTe('localhost']
addrs, nsg)

images/00816.jpg
5= S AT R OGRS L0 STV L S SRS
session = c["session’] .value
R il oy

images/00813.jpg
P ok
o [*aheri] o Shengleys’

images/00812.jpg
HRTRECELPE.
273612; expiressSun, 18-Feb-2001 15:00:00 GMT; \
athe/; Domain=£oo.bar.com; "

</SCRIPT>

images/00815.jpg
print{c.cutput()}
¢ Produces two lines of output

 Set-Cookie: session=5273612; expires=...; pathe/; domains.
§Ra Puaptan Gl

images/00814.jpg
GlUFesRiontl Lipakll] = Wyt
[*domain®] = "£oo.bar..con®

eb-2001 15:00:00 GMI"

images/00809.jpg
Attribute

b

.client_address

conmand
path
request_version
headers

rfile

e

Description

Client address as a tuple (host, port).

Request type, such as 'GET", ' OST", 'HEAD', and 50 on.
The request path such as */index.heml'.

HTTP version string from the request, such as 'HTT®/1.0"
HTTP headers stored in a mapping object. To test for o
extract the contents of a header, use dictionary operations.
such as headername in b.headers o headerval =
b.headers [headernane] .

Input stream for reading optional input data. This is used
when a client is uploading data (for example, during a POST
request)

Output stream for writing a response back to the client.

images/00808.jpg
.
esError responsec/titles

</nead>

<body>

<hi>Error responsec/i>

<psError code ¥lcode)d.

<pMessage: §(nessage) s

<pError code explanation: ¥lcode)s = ¥(explail

By vl

images/00811.jpg
RER-CUOLRY AEBRIEDSRE a5 LA TRELOCH
b e ke o p - mr i

gy 1E-FER-400%:35:00:00 GE, A

images/00810.jpg
2 3
£rom http.server inport BaseHTTPRequestiandler, HITEServer
except TnportError
£rom BaseHTTPServe

= inport BaseHTTBRequestifandler, HITPServer

iandler (BaseHTTeRequesthandler)
_init__(self, thedict, vargs, **kuargs)

Lt tredict = thedict

BaseHTTPRequestHandler. __init__(self,vargs, **kwargs)

self.parh(l:] # Strip the leading '/
if not key in self.thedict.
self.send_error(404, "No such key")
else
sele
self .send_header (*contenc-type’, 'tes
self .end_headers ()
resp - "Key : s\’ ¥ key
resp += "Value: ¥s\n" % self.thedict [key]
self weile.write(resp.encode('latin-1'))

Example use

a]
Natussr ¢ [ho23,4,51,
lenatir + 1 davasaibeaz.con'

)

from functools import parcial
serv = HITEServer(("",3000), pas

import threading
4_mon = threading. Thread (target=serv. serve_forever)
4 mon.start()

By 3
Py 2

images/00806.jpg
-,
£rom hetp.server import HTTPServer % Bychon 3
£ron socketserver inport TareadingMixin

oxcept. ImportError.

£ron SaseHTTeServer luport WITEServer § Python 2
£ron SocketServer inport TareadingMixin

class MyHTTEServer (Threadingiixin, HTTeServer :
def __init__(selt,addr, handler, subne

Fffecervar. _inie_ (self, addr, nandler)
e

se1t . submet
def verify request (self, request, client_address)
client_address

host, porc
1f ot host .startswith (subnet)
retumn False

return HTTPServer.verify_request (self, request, client_address|

4 Bxarple of how the server runs
serv = MyHTTPServer((' 8050), SomeHandler, '192.158.65.)
bl bibubadddary

images/00805.jpg
BB Al SN R
for s in formsections:

conn. send (s .encode(*1atin-11))

4 Send all files

for head, filename in zip(fileheaders, £ilefields valuesi)) :

Latin-1)]

chunk = £.7ead(16384)
Lf not chunk: break
conn. send (chunk)

£.close()

conn. send (c1osing. encode ' latin:

© = conn.getresponse!)

responsedata = r.read(]

seturn response:

le: Upload some files. The form fi
file 27, and so forth are wha
: is expecting (Sbviously this will vary)

1ds rnane’,

server ('localnost', 8080)
" egi-bin/upload.py'
forntields
“name! ; ‘Daver,
‘enafl : daveidabeaz.con'

{

+ 1THG_1008.38",
MG_1757. 97"

resp = upload (server, url, fornfields, filefields)
SEATS Tt

the remote server

images/00807.jpg
CEY:
fron htp.server inport HTTEServer, CGIHTTPRequestdandler § Python 3
except TnportError.

fron BaserTTeServer lport HTTeServer 4 Bython 2
fron CGIHTTEServer import CGIHTTERequesthandler
import os

Change to the document oot

: Start the CGIHTTP server on port 8080
serv = HTTeServer (("",8080) , COTHTTPRequest
BORz: e EB s

images/00802.jpg
Exception Description
InproperConnect ionstate Base olass of all HTTP.connection state emors.
cannotSendRequest Can't send a request.

cannotSendreadzr Gan't send headers.

ResponseNotReady it rend i Soatoneh.

images/00801.jpg
=xception
rT2Except ion
wotconnected
Inval iaURL
R———
ks
UninplenentedrileNode

ansfergncoding

ncompleteread
.

s ko
Base class of all HTTP related emors.
Request was made but not connected
Bad URL or port number given
Unknown HTTP protocol number.
Unknown transfer encoding.
Unimplemented file mode.

Incomplete data received.

Unknown statius code received.

images/00804.jpg
® LRERES Che: BITE Aeadera fop. eqch Lile
filebytes = 0
cileheaders = [}
for filesize, formae,filenane in fileinfo:
headers + [
1--1 <BOUNDARY,
‘content.

formmane, filenare),

\Content-length: 8d' § filesize,

1

£ileheaders .append (CRLF. join (headers) +CRLF)

filebytes += filesize
4 Closing marker
closing - "--"<BOUNDARY+"--\r\a®

4 Deternine the entire length of the request

content_size = (sun(len(f) for £ in formsections) +
sun(len(£) for £ in fileheaders) +
filebytes+len(closing))

¢ Upload it
conn = HTTEConnect
conn.put request (ROST"
conn_putheader (*Content - type!
conn.putheader (*Content-Lengt]
i DRk

., str(content ¢

izl

Disposition: forn-data; name=vist; filenamests" § \

"multipart/forn-data; boundarys$s' % BOUNDARY)

images/00803.jpg
ARRE SO
Ty:

£rom netplib import WTTPComnection # Bython 2
except TnportError:

£rom htp.client import HITEComnection # Bython 3

BOUNDRY.
crLE

$eython-Bssential-References”
ey

det upload(addr, url, fornfields, filefields):
4 Create the sections for forn fields
formsections = (1
for nane in fornfields:
section = |
1-- 1 sBOUNDARY,
‘Content-dtsposition: forn-data; nam

forntields (nane]
1
fornsect ions. append (CRLE . fot

57 % name,

(section) +CRLE)

4 Collect infornstion about all of the files to be uploaded
Fileinfo = [(0s.path.getsize (filenane), formnans, filename)
e bk W b o Y S R e S

images/00798.jpg
LIRS0 300 DE
Content-type: text/html
Content-length: 72883 bytes

reader: data

rata

images/00800.jpg
Code Description

Success Codes (2xx)

200 oK
200 Created

202 Accepted

208 No content
Redirection (3xx)

300 Mutiple choices
301 Moved permanently
302 Moved temporarily
303 Not modified

Client Error (4xx)

100 Bad request

101 Unauthorized

02 Forbidden

102 Not found

Server Error (5x)

s00 Internal server error
s01 Not implemented
s02 8ad gateway

503 Service unavailable

Symbolic Constant

oK
CREATED
AccEeTED
No_conTEnT

MULTIPLE_CHOICES
MOVED_PERMANENTLY
MOVED_TEMPORARTLY
NOT_MODIFIED

BAD_REQUEST
UNAUTHORIZED
FORBIDDEN
NOT_FOUND

INTERNAL_SERVER_ERROR
NOT_IMPLEMENTED
BAD_GATEWAY
SERVICE_UNAVATLABLE

images/00799.jpg
vethod
GET
POST
HEAD
PUT

Description
Get a document

Post data to a form

Return header information only
Upload data to the server.

images/00196.jpg
- Eiwoont
*(0:<10}"_format (nane]

- Elwod
"{0:530} " fornat (nane] #r= ' _Bleood
"(0:410] " fornat (name] # r - ' Eluood
{0:2*10}". format (name) % T 1woods

images/00195.jpg
r = "{nane:8} {shares:8d} {price:8.2f;".format
s RON00" . Sharonsd 00, Drice 400 10}

images/00197.jpg
Character ~ Output Format

Decimal integer or long integer.

b Binary integer or long integer.

o Octal integer or long integer.

® Hexadecimal integer or long integer

% Hexadecimal integer (uppercase letters).

£F Floating point as (-] m. dddddd.

e Floating point as (-] m. ddddddesscx.

E Floating point as (-] m. ddddddBsxcx.

ac Use & or & for exponents less than —4 or greater than the precision; other-
vise, use £.

n Same as g except that the current locale seting determines the decimal
point character.

s Muttiplies a number by 100 and displays t using £ format followed by a %
sign.

. String or any object. The formatting code uses st () 1o generate strings.

o Single character.

images/00192.jpg
nang: = 1Rlwocd
age = 41
r = "%({name)s is ¥(age)s years old" % vars

images/00191.jpg
stock = {
"name’ : 'G00G',
"shares’ : 100,
‘price’ : 49010 }

"% (shares)d of %(nane]s at %(price)0.2" § stock
v e ¥in0 shdres of G000 b 490.10%

images/00194.jpg
stock = { 'mame’ : 'GOOG',
‘shares' : 100,
'price’ : 490.10 }
"{0name] } {0[shares]} {0lpz

]} format (stock)

x=3 4 4j
r = *{0.real} {0

b Formmbita)

images/00193.jpg
*{0} {1} {2}".format('GOOG",100,490.10)
{name} (shares) {price).format (name='GO0G" , shares=100, price=490.10)
rhello (0], your age is (sge)".format (VElwood, ageetr)
Y08a L pok 5} o cuboih HiBoLe; Ly SRR Bkt L]

images/00188.jpg
4 = [1.2,3,.4,8
aia::2] 1 g 110,308
afic:a] = [$0,40,50) § ValoeRrror, Obly o dleasal

3 R, %

images/00190.jpg
13142783
tor

(713, yr1 521, e iweriar)

seanase1zaTa1zse

va is 4dr ¥ a hxera sz

4108 467 3 (a,b) I 42 13 142783

+40100 48" ¥ (a,0) 4% - 000000042 1.316278Ew

-0 H(y10.38" ¥4 41 s Lsar

"40.35 40" ¥ (o, al'z']) 4 x + Thell worldr

bE s (5,3,6) 4x e mse

Sae A b e ‘e PRSI EE

images/00189.jpg
Character Output Format

a1 Decimal integer or long integer.
u Unsigned integer or long integer.
Octal integer or long integer.
Hexadecimal integer or long integer.
Hexadecimal integer (uppercase letters).
Floating point as (-1n. dddddd.
Floating point as [-]m. ddddddesxx.
Floating point as (-] m. ddddddEsxx.
.G Use %e or +E for exponents less than —4 or greater than the precision; oth-
envise, use 4.
String or any object. The formatting code uses stx () to generate strings.
Produces the same string as produced by repr ().
Single character
Literal %

@ meomkK o

cover.jpeg
Rad
David M. Beazley

Python

Essential Reference

Fourth Edition

Developer’s Library
o "

images/00295.jpg
def receiver():
print ("Ready to receive")
while True:
n = (yiela)

images/00294.jpg
def countdown(n) :
print ("Counting down £rom %d* ¥ n)
ery
while n > 0:
yield n
non-1
except GeneratorExit.
print ("Only made it to %" % n)

images/00297.jpg
faf. boromt.ton (fuda)
def start(vargs, *kvargs)
g = func(vargs, **kwargs)
g.next ()
return g
rataten bRtk

images/00296.jpg
>>> I = receiver{)
>>> r.next() Advance to firet yield
Ready to receive

>5> x.send (1)

Got 1

Got 2

>5> x.send (*Hello")
ot Fello

in Bython 3)

next_

nd(2)

images/00291.jpg
for n in countdown(10)
statenents
a = sum(countdown{(10))

images/00290.jpg
b e # Use
Counting down £rom 10

10

>> c.next()

N

ol S o

images/00293.jpg
i ot b ok o
> c.next()

Counting down £rom 10

10

5> c.next()

3

25> c.close()

s> c.next()

back (most recent call last]
File "cstdinst, line 1, in <module>
Stoplteration

images/00292.jpg
SR R O O],
€ == 20 break
frmrpysai

images/00289.jpg
i o ik e

images/00288.jpg
det countdownin) :

print(*Counting down from 3d" § n)
while n > 0:
vield n

images/00284.jpg
SSVERCUMIET { SOLIOR)
def handle_button (nsg)

seventhandler ('RESET')
def nandle_reset (sg) :

images/00283.jpg
def grok (x]
pass
rok = foo(bar (spam(grok)]

images/00286.jpg
§ Emane Sdler ecor:
event_handlers = (]
Gef eventhandler (event):
def register_function(f]:
event_handlers [event:

return ¢
urn Tegister function

images/00285.jpg
def handle button{msg):

temp « eventhandler ('SUTTON') # call decorator with supplied argunents
Seaile BRtton = ewp(handle bokton) & Call the. Suckion Tebined by thy OHOoEMEcE

images/00280.jpg
aet squareix]
return x7x
square = trace(square)

images/00279.jpg
e
def square (x) :

images/00282.jpg
efoo
abar

espan

det grok(x)

images/00281.jpg
enable_tracing = True
if enable_tracing.
ebu open(*debug.og®, "w")

def trace (func)
if enable_tracing:
Gef callf (rargs, *+kwargs) :
debug_log write(*Calling ¥s: ¥s, ts\a" ¥
(func.__name__, args, kwargs))
func(+args, * kwargs)
debug_log.write(*ss re
retura «
return callf
else:
Az Ao

rned $s\n § (func.__name, x)|

images/00287.jpg
class sar (cbject)
et __init__(self,x)
Blex < x

Get span(self]:
el

images/00278.jpg
class Countdown(object):
Gef __init__(self,n):
Sansa
def next (self) :
* = selfa
selfn -= 1
return £

Exanple use
= Countdown(10)

while True:

. next() # Get the next value
aar s Reaait:

images/00273.jpg
import foo
def bar()
x=13
def helloworld():
retum "Hello World. x is " % x
fo0.callf (nelloworld) 4 returns 'Hello World, x is 13'

images/00272.jpg
>>> helloworld. _globals_
('__builtins__7: <module '_ builtin__' (built-in)>,
'hlloworld ' <function helloworld af 0x7bbi0s,
"x': 37, '__name__': '__main__', '__doc__': Nne
"foo': cmoile '£00' £rom '£00

images/00275.jpg
>>> python = page(“http://www.python.org®)
>>> jython = page (*http://ww. jython.org*)

>>> python
ction get at 0x95dSE0>

>5> fython

<tunction get at 0x9735£0>

»>> pydata = python() 4 Fetches htcp: //wew .python.org

»>> jydata = jython() 4 Fetches htcp: //ww.jython.org

images/00274.jpg
Trom ipif th. txnart ard ope
¥ from urllib.request import urlopen (ython 3)
def page (url)
det get()
return urlopen(url} .read()
i Gt

images/00269.jpg
>>> IDROTE 100
>> def helloworld():
return 'Hello World'

>> £00.callf (helloworld)
‘Hello World'

Pass a function as an argument

images/00268.jpg
¥ LoG.py
det callf (func)
raturn func (}

images/00271.jpg
*ou Lepeet oo
os % = 31
55> det helloworld():

zeturn "Hello World. x is %d* % x

23> foo.callf(helloworld) # Pass a function as an argument
Hello Worla. x is 37'

images/00270.jpg
el

x - 42

def callf (func)
return func()

images/00277.jpg
def countdown(n):

retura next

Example use
next = countdown (1
while True:
v = next() # Get the next value
if not v: break

images/00276.jpg
.closure__
(<cell at OXETESD: SCE object at 0xE92305,)
closure__ (0] .cell_contents
/ /e python.ofg!

closure,

(0] .ce11_contents

images/00002.jpg
vy Addison-Wesley

images/00001.jpg
Rad
David M. Beazley

Python

Essential Reference

Fourth Edition

Developer’s Library
o "

images/00004.jpg
axs printi lello Morkd®)
Hello World

images/00003.jpg
Python 2.6rc2 (r26rc2:66504, Sep 19 2008, 08:50:24)
(GCC 4.0.1 (Apple Inc. build 5465)] on darwin

Type *help, "copyright”, "credits” or "license" for more information
>>> priat *Rello World®
Hello World

images/00006.jpg
helloworld.py
print "Hello World®

images/00005.jpg
>>> 6000 + 4523.50 + 134.12
10657. 620000000001
>>> _+ 192.32

18843. 940000000002

images/00007.jpg
¥ prthon helloworld.py
Hello fiorld
+

images/00262.jpg
A AR

set £o0()
a=13

foo()

4 a is still 42

images/00261.jpg
def fac
a-2
while (d <= (a / 2))
i€ ((a/d) +d==a)s
return ((a / 4,)
a=as1
return (a, 1}

images/00264.jpg
def display(): 4 Nested function definition
"T-minus 34’ % m)

aisplay()
it

images/00263.jpg
o= A
b - 37
def fool]:
gloval a # 'a’ is in gloval namespace
a-1

b
foo()
a is now 13. b is still 37

0

images/00258.jpg

images/00260.jpg
a=1[1, 2, 3,4, 35
def square (itens)
for i,x in enunerate icems) :
items[i] = x + x 4 Modify items in-place

square(a} 4 Changes a to (1,

images/00259.jpg
. ol lione [(Rrge, S*Rrgal |
Fomo [bgrge 44 bargs)

images/00266.jpg
def countdown(start

n = start
def display() :
princ("T-minus $a' ¢ n)
def decrement) :
nonlocal = a to outer n (python 3 only)
ne-1
while n > 0:
display()

Aacramart Y

images/00265.jpg
det display()

princ(‘T-ninus %d' ¥ a)
def decrement () :

n-e1 4 Fails in eython 2
while n > 0:

aisplay()

decrement ()

images/00267.jpg
i=0
def fool):
[# Results in UnboundLocalError exception
print (1)

images/00251.jpg
GE. 250 X, ACERRaG;
if items is None:
itens = (1
itens_append (x)
St A nat

images/00493.jpg
alrgs)

images/00250.jpg
PE. TCH X, SR
itens.append (x)
return items

foo(1) 4 returns [1]
fo0(2) # retumms [1, 2]
foo(3) # returns (1, 2, 3]

images/00492.jpg
L) Glebal 12,8t _Opt-oey: 1AL oprione. =
(Pdb)

images/00253.jpg
def printf(fmt, +args)
Call another function and pass along args
fprintf (sys.stdout, fmt, *args)

images/00495.jpg
bireak) |loc |, condition))

images/00252.jpg
def fprintf(file, fat, *args):
file write(fnt § args)

Use fprintf. args gets (42,"hello world", 3.45)
fprintf (out, "td s $£", 42, *hello world®, 3.45)

images/00494.jpg
Print ingtance varisbles (usage
alias pi for k in $1.__dict__.reys()
Print instance variables in self
alias ps pi self

print

images/00489.jpg
t.assertNotAlmostEqual(x, y, [, places [, msgl])
t.failIfAlmostEqual(x, y [, places [, msgll)

images/00488.jpg
FaRamarERIncALiquAl (X, F Ir piaoas Iy Sl
t.failUnlessAlmostEqual (x, y, [, places [, msgll)

images/00249.jpg
el
def foo(xeal:
retura x

a-s 4 Reassign 'a’
fool) # returns 10 (default value n

images/00491.jpg
D INGORE BN
»>> tmport buggymodule

+>> pdb. run (*buggymodule. start () ')
> <string>(0)7()

(Pdb

images/00248.jpg
GE. Bl ikt el ikare,
P,

images/00490.jpg
t.assertRalses(exc, callable, ...)
t.failUnlessRaises (exc, callable,

images/00255.jpg
0010 3¢ E=li A1, ¥edd)
foo(3, 22, w='hello', z<[1,2]) # T4

eError. Multiple values for w

images/00497.jpg
1 aython: - Pl SosOpEEn.Yy

> [Users /veazley/Code/soneprogran. py (1] <nodule> ()
- ingort splitzer

(ab) b splitter.

Breakpoint 1 at /Users/bea
(eab) ¢

> [Users/veazley/Code/splitter .py (18) split ()
-> fielas = line.split(delimiter)

(pdb)

ley/Code/splitter.py:1

images/00254.jpg
def foo(w,x,y,2z}:
statements

Keyword argument invocation
foo(x=3, y=22, ws'hello’,

1,21}

images/00496.jpg
Setting
filename:n
function

B e e

Description
Aline number in the current file

A line number in another file

A function name in the current module
A ERGHAR AR T & adils

images/00257.jpg
§ Sopapt verishis rustwr of pealblsml of Remecd Scgtsty
def spam(args, **kwargs):

args is a tuple of positional args

kwargs is dicticnary of keyword args

images/00256.jpg
it etkcs CREE (OALA,. *Speral
Get contiguration parameters from parns (a dict]
£gcolor = parms.pop *£gcolor, "black”)
bgcolor = parms.pop(*bgcolor®, "whiter)
widch = parms.pop("wideh* , None)

No more options
if parms:
raise TypeError ("Unsupported configuration options %s" % 1ist (parms))

nake_table (items, fgcolors"black®, bgcolors!
borderstyl
widthe400]

whiter, borders:
"grooved’, cellpaddings10,

images/00240.jpg
Fla88 HEviCeNrTor (Benepraon, =
def __init__(self, ermo,msg) :
5elf.args = (ermo, msg)
self.ermo = ermo
self ermsg = nsg

Raises an exception

(multiple argunents)
raise DeviceError(l,

'Not Responding')

images/00482.jpg
¥ splitbac.py
Gef split(line, typessNome, delini:
plic ne of text and optionally performs type conversion

fields = line.spl:

if types:
fields = [
e

(val) for ty,val in zip(types,fields) |

images/00239.jpg
Y
statements

xcept Bxception: # Catch any progran-related exception
statements

images/00481.jpg
File *hal
Failed example:
half(6.8)
Expected

3.4

ot
3.1993999999933999

images/00242.jpg
with open('debuglog”,®a') as f:
£.urite ("Debugging\n")
statements
£.write ("Done\n")

import threading
lock = threading. Lock ()
with lock:
Critical section
statements
% End critical section

images/00484.jpg
% PYthon taataplitier.py-

Ran 3 tests in 0.014

-

images/00241.jpg
class HostnameError (NetworkErrorj: pass
class TimeoutError (NetworkError): pass

def error1():
raise HostnameError ("Unknown host")

def error2():
raise TimeoutError(*Timed out")

cry:
error1()
cxcept NetworkError as e:
if type(e) is HostnameErro
¥ perforn special actions for this kind of errox

images/00483.jpg
testspl o
import splitter
import unittest

Tnit cests
Class TestSplitfunction(unittest.TestCase)
def setUp(self):
perforn s
pass
det tearbown (self)
4 Perforn clean-up actions (if any)
pass
def testsimplestring(selt] :
plitter.split('G00G 100 450.50')
-assertaqual (x, [1G00G", '100",'490.50°])
def testtypeconvert (self)
split (16006 100 490.50", [str, int, floacl]
.assertaqual (r, ['G00G', 100, 430.5])
def testdelimiter (self) :
splitter.split(1G00G,100,480.50" , delimiter=", "]
-assertaqual (x, ['G00G", 11007, '490.50°])

up actions (if any]

unittests
el ity o

images/00478.jpg
o Wiin ool
import splitter
import doctest

R i

o

st (Rp LIt

images/00238.jpg
Lry:
statements

cxcept LookupBrror # Catch IndexError or KeyBrrox
otatements

images/00480.jpg
aE-Dail el
ialves x. For exarple:

55> half (5.8)
3.4

A

images/00479.jpg
test myself |
import doctest
At ragrnbalE

images/00247.jpg
dd {x,y) :
.y

images/00244.jpg
e
with ListTransaction(items) as working:
working. append (4)
working. append (5)
print (items) # produces [1,2,3,4,5]

try:
with ListTransaction(itens) as working:
working. append (6)
working. append (7)
raise RuntimeError ("We're hosed:")
except RuntimeBrro;
pass
orint (items) # Produces [1,2,3,4,5]

images/00486.jpg
t.assertBqual (x, y [,msgl)
t.failUnlessEqual (x, y [, msg])

images/00243.jpg
class ListTransaction(object):
def __init__(self,thelist):
Belf.thelist = thelist
def __enter__(self):
Self .workingeopy = list (self.thelist)
return self.workingcopy
def __exit__(self,type,value, tb]:
if type is None:
self.thelist[:] = self.workingcopy
vaturn Falge

images/00485.jpg
C.wsmart (s [megl)
¢ failniasetaipy [, agl)

images/00246.jpg
def write data(file,data):

assert file, "write_data: file not defined!"

images/00245.jpg
£TON CCOLEst.LI INpCIE ConbexDansger
acontextmanager
def ListTransaction(thelist):
workingeopy = list (thelist)
yield workingcopy
Modify the original list only if no errors
thelist [:] = workingcopy

images/00487.jpg
FamumarCMoCEqRalix, ¥y [+ .magl)
t.faillfEqual (x, y, [, msg])

images/00229.jpg
Lry:
£ = open('foo’)

sxcept IOError as e:
it oaaars

images/00471.jpg
Enable new division semantics
from __future__ import division

images/00228.jpg
tound_separator = ralse
for 1ine in open("foo.txt’):
stripped = line.strip()
if not stripped:
found_separator = True
break
process the stripped line

if not found_separator:
raise RuntimeError (*Missing section separator®)

images/00470.jpg
¥ foo peckege ccafiguretion file fReo.pHh!
foo
e

images/00231.jpg
Cry:
do something

except (IOBrror, TypeBrror, NameBrror) as e:
Handle 1/0, Type, or Name errors

images/00473.jpg
import atexit
connection = open_comnection ("deaddot . con')

def cleamup() :
print *Going avay.

nection)

sk reciobes el oaiin)

images/00230.jpg
cry:
do something

except 10Brror as
Handle 1/0 error

except TypeError as e
Handle Type error

except NameError as e:
Handle Name error

images/00472.jpg
Feature Name.

nested_scopes
generators

division

absolute_import

with_statement

print_function

Description

Suppart for nested scopes in functions. First introduced in
Python 2.1 and made the default behavior in Python 2.2.

Support for generators. First introduced in Python 2.2 and made
the default behavior in Python 2.3,

Modified division semantics where integer division returns a frac
tional resutt. For example, 1/4 yields 0.25 instead of 0. First
introduced in Python 2.2 and is still an optional feature as of
Python 2.6. This is the default behavior in Python 3.0.

Modified behavior of package-felative imports. Currently, when &
submodule of a package makes an import statement such as
import string, it first looks in the current directory of the package
‘and then directories in sys. path. However, this makes it impos-
sible to load modules in the standard library if a package hap-
pens to use conflicting names. When this feature is enabled, the
Statement import module is an absolute import. Thus, a state-
ment such as import stxing will always load the string mod:
ule from the standard library. First introduced in Python 2.5 and
stll disabled in Python 2.6. I is enabled in Python 3.0.

Support for context managers and the with statement. First
introduced in Python 2.5 and enabled by default in Python 2.6.
Use Python 3.0 print () function instead of the print state-
ment. Fist introduced in Python 2.6 and enabled by default in
Python 3.0.

images/00469.jpg
AV JRELAL, #-NANEOER OeElky-
sys.exec_prefix, # Windows only
sys.prefix + 'lib/pythonvers/site-packages',
sys.prefix + 'lib/site-python’,

sys_exec_prefix + '1ib/pythonvers/site-packages’
8ys.exec prefix + 'lib/eite-python']

images/00468.jpg
foo.bat
Runs foo.py script and passes supplied command line options along (if any)
\python26\python.exe c:\pythonscripts\foo.py %*

images/00237.jpg
Exception
Basenxception
Generatorxit
Keyboardrntersupt.
Systemexit
Exception
stopiteration
Standarassror

Aesthmet scarror
Floaingpointerror
zerobivisiontrror

Ateributesrror
Savironsenterror
108x70r
osError
BorError
Imporcexror
Lookuprror
Indexsrror
KeyError
MemoryBrror
Namerror
nboundiocalgrror
ReterenceBrror
[—
ot Taplenent edsrror
Syataxgrror
Indentationgrror
Taberror

Systemsrror
Typemeror
Valuesrror
nicodeReror
nicodeDecodeBrror
UnicodeBncodeBror
UnicodeTranslatesrror

Deseription

The root of il excepions.
Raised by .close () method on a generator
Generated by the interrupt key (usually Cti+C)
Program exi/temination

Base class for all nonexiing exceptions.
Raise to stop teration

Base for al bt exceptions (Python 2 onh).
In Python 3, all exceptions below are grouped
under Exception.

Base for arithmetic exceptions.
Falure of a floating poin operaion.

Divsion or modulus operation with 0.

Raised by the assere statement.

Raised when an attibute name is invaid.
Ertors that occur externally to Python.

1/0 ot fleelated error

Operating system rror

Raised when the end of the il is reached.
Failure o the impoxt statement

Indexing and key erors

Outotange sequence indes.

Nonexistent dictonary key.

Out of memory.

Falur to find 3 local or giobal name.
Unbound ocal variable.

Weak reference used after reerent destroyed.
A generic catchal s

Unmplemented feature.

Parsing error

Indentation eror

Inconsistent tab usage (generated with -ct
option).

Nonfatal system errr in the nterpreter.
Passing an inappropriate type to an operation
Inald type.

Uricode error,

Uricode decading errr.

Unicode encoding error.

Unicode transiatio error.

images/00236.jpg
opentitoot, frt)
cry:
Do some stuff

finally:
£.close()
File closed regardless of what happened

images/00233.jpg
a2 6
4o something

axcept Exception as e:
error log.write('An error occurred : s\n' % el

images/00475.jpg
Excepi-Aon mrepllona . Betelccors *ot
Bur Tk Gb SO gttt

images/00232.jpg
try:
o something

except T0Brror:
iy # Do nothing (oh well)

images/00474.jpg
Anart, HERElR, g0
stai T Gt e {90 GLINOT)

images/00235.jpg
Lry:
£ = open('foo’, 'r')
oxcept I0Error as e:

error_log.write ('Unable to open foo :

clse:
data = f£.read()
£.close()

ss\n’ § el

images/00477.jpg
DL LeT. DY
def split(line, type:
"evsplite a line of text and optionally performs type comversion

For exarple:

>>> splic('G00G 100 490.50')
['600G", '100", '40.50']

>»> spLic('G00G 100 490.50', [str, int, flo
['600G", 100, 490.5)

By default, splitting is performed on whitespace, but a diff
deliniter can be selected with the delimiter keyword argument:

>>> SpLLt(1G00G,100,490.50" delimiter=", ")
['600G", 12007, '490.50']

fields = line.split(delimicer
if types:

elds = [ty(val) for ty,val in zip(types,fields) |
PR SE if ON

images/00234.jpg
do something
oxcept :
error log.write('An error occurred\n')

images/00476.jpg
import foo
class sar (object] :
det __del__(self, foo=foo)
£00.baz () # Use something in module £00

images/00218.jpg
Niile expreshion:
statements

for i in 8:
[

images/00460.jpg
Option
3

-8
-

-h

-1

-m module
-0

-00

Qe

Description

Enables warnings about features that are being removed or changed in
Python 3.

Prevents the creation of . pyc or .pyo files on import.

Ignores environment variables.

Prints a list of all available commarnHine options.

Enters interactive mode after program execution.

Runs library module module as a script.

Optimized mode.

Optimized mode plus removal of documentation strings when creating,
-pyo files.

Specifies the behavior of the division operator in Python 2. One of -Qold
(the default), -Qnew, -Quarn, or ~Qwarnall

Prevents the addition of the user site directory to sys.path.

Prevents inclusion of the site initialization module.

Reports warnings about inconsistent tab usage.

Inconsistent tab usage results in a TabExrror exception.

Unbuffered binary stdout and stdin.

Unicode literals. Al string literals are handled as Unicode (Python 2 only).
Verbose mode. Traces import statements.

Prints the version number and exits.

Skips the first line of the source program.

Executes cnd as a string,

images/00459.jpg
import socket
class Client (cbject)
Gef __init__(self,addr)
551t sérver_addr = addr
self sock = socket .socket (socket .AF.
self sock. comect (addr)
def __getstate__(self):
Teturn self server_addr
et __setstate__(self,value) :
S21¢ . server_addr = value
self sock = socket .socket (socket AF
self.sock.connect (self.server addr)

socK_sTRERN)

socket .SOCK_STREAV)

images/00220.jpg
for x,y.z in s:
I Ry

images/00462.jpg
FRER . EREapmvErle=
Traceback (nost recent call last]:
File "cstdin>", line 1, in <nodule>
File v/tap/1ib/python3 0/io.py", line 1286, in write
b = encoder .encode (s)
File »/tap/1ib/python3 .0/encodings /ascil.py”, line 22, in encode
return codecs.ascii_encode (input, self errors) [o]
UnicodeEncodeError: 'ascii’ codec can'c encode character '\xfl' in position 7:
ordinal not in range (128)

images/00219.jpg
it = 8. __iter__\} # Get an iterator for &

while
try:
i - it.next() # Get next iten (Use __next__in Pychon 3
except StopIteration: # No nore itens
break

perform operations on i

images/00461.jpg
Environment Variable

PYTHONEATH
PYTHONSTARTUP
PYTHONHONE
PYTHONINSPECT
PYTHONUNBUFFERED
PYTHONIOENCODING

PYTHONDONTWRITEBYTECODE
PYTHONOPTINIZE
PYTHOMNOUSERSITE
PYTHONVERBOSE
PYTHONUSERBASE
PYTHONCASEOK

Description

Colonseparated module search path

File executed on interactive Startup

Location of the Python installation.

Implies the - option.

Implies the -u option.

Encoding and error handiing for stdin, stdout, and

stderz. This is a string of the form

"encoding(: errors] " Such s "ut€-8" or "utf-
+iguore*

Implies the - option

Implies the -0 option.

Implies the - option.

Implies the -v option.

Root directory for peruser site packages.

Indicates to use case-nsensitive matching for module

names used by import.

images/00458.jpg
import shelve
b = shelve.open|(filename, protoco

images/00226.jpg
EOE A 4ne. L CDan L TE00 Pk -
stripped = line.strip()
if ot stripped:
continue # Skip the blank line
process the stripped line

images/00225.jpg
for line in open("foo.txt®):
stripped = line.strip(]
if not stripped:
break # A blank line, stop reading
process the stripped line

images/00467.jpg
#1/usr/bin/env python
Bython code from this point on...
print "Hello world"

images/00227.jpg
for-else
for line in open("foo.txt"):
stripped = line.strip()
if not stripped:
break
process the stripped line

clse:
raise RuntimeError (*Missing section separator®)

images/00222.jpg
FOE 5,30 20 GIOMATACR (0) :
Cabarementa

images/00464.jpg
sz fOr 1. 1u renge(l, 4]
print 4,

0123

images/00221.jpg
L
for x in s
statements
{ ee 1

images/00463.jpg
>>> & = ‘Jalapeixfio’

images/00224.jpg
& and t are Lwo sequences
for x,y in zip(s,t
bt ament e

images/00466.jpg

images/00223.jpg
* & and t are two sequences

i-0

while i < len(s) and i < len(t):
x = sli] # Take an item from s
vy = tli) # Take an item from t
statements

ey

images/00465.jpg
>>> def my display(x):
= repr(x)
if len(r) > 40: print(r(:401+"..."sr(-1])
.. else: print(r)
>>> sys.displayhook = my_display
>>> 344

>>> range (100000)
10, T3o2,i30id, 35,065 O 8 8 40, 4, 1.0

images/00449.jpg
£ u epwn| e, Laads “xut)

fenc = codecs.

\codedFile(f, '

images/00691.jpg
Parameter Description

"SC_ARG_MAX Maximum length of the arguments that can be used with exec ()
'SC_CHILD_MAX" Maximum number of processes per user ID.
"SC_CLK_TCK! Number of clock ticks per second,

SC_NGROUPS_MAX Maximum number of simultaneous supplementary group Ds.
"SC_STREAM_MAX" Maximum number of Streams a process can open at one time.
'SC_T2NAME_WAX" Maximum number of bytes in a time zone name.

“SC_OPEN_MAX® Maximum number of files a process can open at ane time.
'SC_J0B_CONTROL* System supports job control
“Sc_saven_1pst Indicates whether each process has a saved setuserD and a

saved setgroupD.

images/00448.jpg
G e A e e A Ul
Cxigte Cpm{tEac bt et SR # Writing

images/00690.jpg
Constant
e_uAIT

P_NOWATT
?_NOWAITO

?_OVERLAY

?_DETACH

i
Executes the program and walts f0r it o terminate. Returms the pro.
gram’s exit code.

Executes the program and retums the process hande.

Same as _NOWAIT.

Executes the program and destroys the calling process (same as the
exec functions)

Executes the program and detaches from t. The calling program contin
e 0 riny but Dawiot vealt for Ehe EpsAG DROGEES.

images/00209.jpg
Function

int(x [basel)

£loat (x)
complex(real [,imag])
strix)

repr (x)

format (x [, format_specl)
eval (str)

tuple(s)

List(s)

set(s)

dict(a)

£rozenset (s)
chr (x)
unichr (x)

ord(x)
hex (x)
bin(x)
oct(x)

ol
Converts x to an integer. base specifies the base if x
is a string.

Converts x to a floating point number.
Creates a complex number.

Converts object x to a string representation.
Converts object x to an expression string.
Converts object x to a formatted string.
Evaluates a string and returns an object.
Converts s to a tuple.

Converts s toa list.

Converts s to a set.

Creates a dictionary. d must be a sequence of
(key, value) tuples.

Comverts s 10 a frozen st

Converts an integer to a character.

Converts an integer to a Unicode character (Python 2
only)

Converts a single character to its integer value.
Converts an integer to hexadecimal string,
Converts an integer to a binary string.

Converts an integer to an octal string.

images/00451.jpg
Encoder

rascii
'latin-1', 'iso-8859-1'
epaaTt

rep1252'

rute-g

rute-16t

rutf-16-le’

‘utf-16-be’
"unicode-escape’

' raw-unicode-escape’

Description
ASCIl encoding

Latind or 1S0-8859-1 encoding

CP437 encoding

CP1252 encoding

8bit variablelength encoding

16:it variable-length encoding

UTF16, but with explicit lttle endian encoding
UTF16, but with explicit big endian encoding
Same format as " string"

Same format as ur" sering”

images/00693.jpg
Variable Description
s16_DFL, Signal handler that invokes the efault signal handler
s16_ten Signal handler that ignores a signal

NSIG One more than the highest signal number

images/00208.jpg
def TOOIX. Y, &l 5
return x +

rom functools import b
f = parcial(foo,1,2) # Supply values £o x and y arguments of foo
£(3) # Calls Fooll;2;3), resalt is €

images/00450.jpg
£ opwnt it Ula L, SE0T
Deternine encoding of the file

Put an appropriate encoding wrapper on the file.
Rssunes that the BOM (if any) has already been discarded
by earlier statenents

fenc = codecs.EncodedFile(f, encoding]

Rk Bl

images/00692.jpg
Signal Name Description

STGABRT Abnormal termination
STGALRM Alam

s168US Bus ermor

s1GCHLD. Change in child status
s16cLD Change in child status
s1GcoNT Continue

s1GFEE Floatingpoint erfor
staHve Hang up

steILL Illegal nstruction
steINT Terminal interrupt character
s1610 Asynchronous 1/0.
steTOT Hardware fault
sTGRILL Terminate

s1GPTEE Wite to pipe, no readers
s1GPOLL Pollable event
STGPROF. Profiing alarm

STGRUR Power failure

steQuIT Terminal quit character
s1G3EGY. Segmentation fauit
s168TOP. stop

STGTERM Termination

STGTRAP. Hardware fault
s1eTsTR Terminal stop character
steTTIN Control TTY

s1eTTOU Control TTY

SIGURG. Urgent condition
STGUSRL User defined

s1GUSR2 User defined
SIGVTALRM Virtual time alarm
SIGNINGH Window size change
s1GxCRy CPU limit exceeded

- L

images/00689.jpg
vaive
2X_ox

EX_USAGE
EX_DATAERR
EX_NOINEUT
EX_NOUSER.
EX_NOHOST
EX_NOTEOUND
EX_UNAVAILABLE
EX_SOFTWARE
EX_OSERR
=X_OSFILE
EX_CANTCREAT
EX_IOERR
EX_TEMPFALL
EX_PROTOCOL,
EX_NOPERM

EX CONPIG

Description
No errors.

Incorrect command usage.
Incorrect input data.
Missing input.

User doesn't exist.

Host doesn't exist

Not found.

Service unavailable.
Intemal software error
Operating system efror.
File system error.

Can't create output.

1/0 error,

Temporary failure.

Protocol error.

Insufficient permissions.
Configuration error.

images/00688.jpg
Attribute
£ bsize

£ _frsize
£_blocks
£_bfree
£_bavail
£_files
£_ffree
£_favail
£_flag

£ namemax

Description
Preferred system block size
Fundamental file system block size

Total number of blocks i the file system
Total number of free blocks

Free blocks available to a non-superuser
Total number of file inodes

Total number of free file inodes

Free nodes available to a nonsuperuser
Flags (systemdependent)

Maximum filename length

images/00215.jpg
1f debug:
def square (x) :
if not isinstance (x, float]
raise TypeBrror("Expected a float’
return x * x

SE
def square (x):
return x * x

images/00457.jpg
RO BLELS
ob] = SomeGbject (]

£ = open(£ilename, 'wb')

pickle. dup (ob3, €,2) 4 Save using protocol 2
pickle.dunp (obj,f,pickle HIGHEST_PROTOCOL) # Use the most modern
P

col

images/00214.jpg
yulaee A L. dER, A5, 8% 191001
Clamped = [x if % < 50 else 50 for x in values)
oriat (o Lasped) ¥ [1, 50, 45, 23, 50, 37, 50]

images/00456.jpg
RSO ML
obj = SomeObject (]

@ = shelve.open(*filename
dbl'key'] = obj

b3 = abl'key')
oyt

4 Open a shelve

save object in

e shelve

4 Retrieve it

4 Close

e shelve

images/00217.jpg
&= GERIESEIO0:
pass # Do nothing
clse:
atatements

images/00216.jpg
1T SXprESin:
statements
elif expression
statements
elif expression
statements

else:
et ement e

images/00211.jpg
Operator Description
x or y If x is false, return y; otherwise, return x.
x and y If x is false, return x; otherwise, return .
—— If x is false, return 1: otherwise, return 0.

images/00453.jpg
s = u'\ulda8\u0345\uza3d’
& aoocde [fmioode-asonge?) $bw S \GTEANGDILE AL

images/00695.jpg
Keyword
bufsize

close_£ds

creation_flags

executable

preexec_fn

shell

Description
Specifies the buffering behavior, where O is unbuffered, 1 is.
line buffered, a negative value uses the system default, and
other positive values specify the approximate bufer size. The
default value is 0.

If True, allfile descriptors except 0, 1, and 2 are closed prior
to execution of the child process. The default value is False.
Specifies process-creation flags on Windows. The only flag
curtently available is CREATE_NEW_CONSOLE. The default
value is 0.

The directory in which the command will execute. The current
directory of the child process is changed to cwd prior 10 exe-
cution. The default value is None, which uses the current
directory of the parent process.

Dictionary of environment variables for the new process. The
default value Is None, which uses the environment variables
of the parent process.

Specifies the name of the executable program 1o use. This is
rarely needed because the program name is already included
in args. If shell has been given, this parameter specifies.
the name of the shell to use. The default value is None.
Specifies a function that will be called in the child process
just before the command is executed. The function should
take no arguments.

If True, the command is executed using the UNIX shell like:
the os _systen () function. The default shell is /bin/sh, but
this can be changed by also setting execucable. The default
it e s bty

images/00210.jpg
ead P
long (*0xfe76214", 16)
float (*3.14159267)
eval(®l, 5, 6°)

4
668221641, (0x£e762141)
3.1415926

(3,5.6)

images/00452.jpg
Unicode Characters
U+0000 - U+007F
UL007F - U+07FF
U+0800 - U+FFFF

Byte 0

oannnnan
110nnnan
1110nnnn

Byte 1

10nnnnan
10nnannn

Byte 2

10nnnnnn

images/00694.jpg
import signal, socket
def handler (signun, frane)

print 'Timeout!’

raise I0Brror, 'Host mot responding.'
sock = socket socket (socket AF_INET, socket .SOCK_STREAN)
signal.signal (signal .SIGALRM, handler)
signal.alarn(s) # 5-second alarm
sock..connect ("www.python.org', 80) # Connect
signal.alarm(0) # Clear alarm

images/00213.jpg

images/00455.jpg
DO RURE
£ = open(filename, 'b')

obj = pickle.load(f) # Restore the cbject
clceel)

images/00697.jpg
Execute a basic system command. Like os.system{)
ret = subprocess.call("ls -1", shell=True}

Silently execute a basic system command
ret = subprocess.call (rm -£ *.java’,shell-True,
stdout=cpen(* fdev/mull*))

Bxecute a system comnand, but capture the output
p = subprocess Popen(*ls -1', shell-True, stdout=subprocess.PIPE)
out = p.stdout read()

Bxecute a command, but send input and receive output
p = subprocess.Popen (*wc", shell=True, stdin-subprocess.PIFE,
stdout-subproces . PIPE, stderrssubprocess.PIPE)

out, err = p.commumicate(s) # Send string s to the process

Create two subprocesses and link them together via a pipe

Pl = subprocess. Popen(*ls -1', shell=True, stdout=subprocess.PIPE}

b2 = subprocess. Popen "we" ,shell=True, stdin=pl.stdout,
stdout=subprocess. PIPE)

out = p2.stdout.redd ()

images/00212.jpg
Operator Name
(- [E} Tuple, list, and dict

nary creation

Indexing and slicing
Attributes
Function calls

x Unary operators

x Power (right associative)

x*y x/y x/ly x%y Mulplcaton,diision, floor dvision, modulo

Xty x-y Addition, subtraction

x <<y x>y Bitshifting

x&y Bitwise and

shiy Bitwise exclusive or

x|y Bitwise or

x<y xe<y Comparison, identity, and sequence member-
ship tests

xis y, x is not y
xin s, x not in s

not x I negation
x and y Logical and
xory Logical or

lambda args: expr Anonymous function

images/00454.jpg
SMECEE. RO
obj = SomeObject ()
open(£ilenane, 'wb')
sckle.dupob), £)

£ close()

save object on £

images/00696.jpg
startupinfo

stdesr

stdin

stdout

universal_newlines

Provides startup flags used when creating processes on
Windows. The default value is None. Possible values include
'STARTF_USESHOWWINDOK and STARTF_USESTDHANDLERS.
File object representing the file 1o use for stderr in the child
process. May be file object created via open (), an integer
file descriptor, or the special value PIPE, which indicates that
a new pipe should be created. The default value is None.

File object representing the file 10 use for stdin in the child
process. May be set to the same values as stderr. The
default value is None.

File object representing the file to use for stdout in the child
process. May be set to the same values as stderr. The
default value is None.

If True, the files representing stdin, stdout, and stderr
are opened in text mode with universal newiine mode
enabled. See the open () function for a full description.

images/00207.jpg
foo.x = 3
rint £00.y
a = foo.bar(3,d,5)

images/01001.jpg
foo/

init__py

oot

images/01000.jpg
s ot A
ceback (rost recent call last):

File "cstains', line 1, in <wodule>
ypeError: unorderable types: int() < strl

images/01003.jpg
. NEmpou P
import. Contigrarser

for 1 in xrange (10):
print i, 2+

det span(d)
if not d.has_key("span)
dl"span] = load_span()
return 4["spam"]

images/01002.jpg
SRS 9. 49 Bt =8
Python 2.6 (crunk:6671¢:66715H, Oct 1
[6CC 4.0.1 (Apple Compurer, Inc. build
Type *helpr, “copyright", "credits" or
a1}

»5> a.has_key('£o0')

_main, Deprecationfarning: dict.
sperator

False

2008, 18:36:04)
701 on darwin
Ticense" for more infornation.

as_key (] not supported in 3.x; use the

images/00999.jpg
it

images/00998.jpg
>>> S['ACME'] = 5612.25
s> for x in
print(x)

coos
AREL

AcE

images/00438.jpg
RENIL SRR SR R A T
¢ a blank line from appearing as the first line
forn - "ne\

vear & (name)s,

Please send back my ¢ (item)s or pay me $%(amount)0.2¢
sincerely yours,

Joe Bython User

int forn % { 'mave': 'Mr. Bush',
titen': ‘plender’,
‘amount ' 50.00,

images/00680.jpg
foo.py
import optparse
p = optparse.Optionparser ()

A simple option, with no argunents
P.add_option("-c", actions'store true”, dest='cracing’)

An option that accepts a string argument
p.add_option(

An oprion requires an inceger arguent
p.add_option("-d", "--debuglevel®, actioms"store", types"int®, dest="debug")

An option with a few choices
p.add_option("--speedr, action="store”, type="choice, dest="speed”,
choices=("slow, "fast", "ludicrous’])

hn option taking multiple argunents
P.add_option(*--coord", actions"store”, types"int®, dests"coord", nargss2]

A set of options that control a comnon destination
p.add_option("--novice", action="store_const”, const="novice®, dest="mode”)
p.add_option (*--guru®, action="store_const', const="guru", dest="mode’)

Set default values for the various option destinations
p.ser_defaults|tracin

coord={0,0),
mode="novice")

Parse the arguients
opt, arge = p.parse_args()

Print option values

print "tracing 1", opt.tracing
brint "outfile ", opt.oucfile
print *debug v, opt.debug
print "speed *, opt.speed
princ "coord *, opt.coord
print "mode . opt.mode

Print remaining argunents
orint *arge gy

on, "--outfiler, action="store", type="string”, dest=routfiler|

images/00679.jpg
callback args

callback_kuargs

choices

const.
default

dest

help

netavar

nargs

type

‘Uptional positional anguments suppiied to a caliback function
specified with the ca11back argument.

Optional keyword arguments supplied to a callback function
specified with the cal1back argument.

Alist of strings that specifies all possible option values. Used
when an option only has a limited set of values (for example,
['small’, 'mediun', 'large’]).

The constant value that's stored with the 'store_const !
action.

Sets the default value of the option If not supplied. By default,
the default value is None.

Sets the name of the attribute used to store option values dur-
ing parsing. Nomally the name s derived from the option name
itsel.

Help text for this particular option. If this is not supplied, the
option il be listed in help without a description. The value
optparse. SUPPRESS_HEL? can be used to hide an option. The
special keyword 'sdefault is replaced by the option default
value in the help string.

Specifies the name of an option argument that's used when
printing help text.

Specifies the number of option arguments for actions that
expect arguments. The default value is 1. If a number greater
than 1 is used, option arguments will be collected into a tuple
that is then used whenever arguments are handled.

Specifies the type of an option. Valid types are 'string’ (the
S R S ST and Veong L

images/00198.jpg
i a2
" 101000
0000101010"

L.
- {0:10a) " ormat (x)
= {0:10x}" formac (x]
+{0:100} _format (x)
{0:0108} . format (x)

3.1415926
10.2¢) . fornat (y)
10.2¢) . format (y)

}' . format (y)
0.2%) " . format [v)

' 3.4
' 3.14e000
- 43,14
= 1400000314
314 168"

ERGY e

o

o
o
o
o

images/00440.jpg
form = "=\

pear (nane},

Please send back my [iten} or pay me {amount:0
Sincerely yours,

Joe Bython User

I Ry Py Sy

e B, e TG o

images/00682.jpg
Constant
"BC_ASYNC_TO"

"PC_CHOWN_RESTRICTED"
"PC_FILESTZEBITS"
"PC_LINK_MAX"
"BC_MAX_CANON"
"BC_MAX_INPUT"
"BC_NAME_MAX"
"BC_NO_TRUNC"
"BC_PATH_MAX"
"BC_PIPE_BUF"
"BC_PRIO_IO"

"BC_SYNC_IO"

"PC_VDISABLE"

Description

Indicates whether asynchronous 1/0 can be performed
on £d.

Indicates whether the chown () function can be used. If
£d refers to a directory, this applies to all files in the
directory.

Maximum size of a file.
Maximum value of the file’s link count.

Maximum length of a formatted input line. £d refers to a
terminal,

Maximum length of an input line. £d refers to a terminal
Maximum length of a filename in a directory.

Indicates whether an attempt to create a file with a name
longer than PC_NAME_MAX for a directory will fail with an
ENAMETOOLONG error.

Maximum length of a relative path name when the direc-
tory £a is the current working directory.

Size of the pipe buffer when £d refers to a pipe or FIFO.
Indicates whether priority /0 can be performed on £d.

Indicates whether synchronous 1/0 can be performed
on £d.

Indicates whether £d allows speciakcharacter processing
o be disabled. £d must refer to a terminal.

images/00439.jpg
Dear Mr. Bush,
Please send back my blender or pay me $50.00
sincerely yours,

Joe Python User

images/00681.jpg
% python foo.py -b
usage: foo.py [options)

options
help show this help message and exit

--outfilesOUTFILE
~debugleve:
PEED

ludicrous blah

* python fo0.py -t -0 outfile.dat -4 3 --coord 3 4 -

tracing : True
outfile : outfile.d
debug 3

spesd ludicrous
coord G, 4
node novice
args ['p1an']

¥ python foo.py --speed=insane
usage: foo.py [options]

foo.py:error:option --speed:invalid choice: 'insane'
fobboss Tone T iow . (PRRES T aRongr)

images/00678.jpg
ReEyword Argumant
action

callback

DESIION
Action to perform when the option is parsed. Acceptable values
are as follows:

store’—Option has an argument that s read and stored. This
is the default f no action is specified explicity.
*store_consc'—The option takes no arguments, but when the
option is encountered, a constant value specified with the
const. keyword argument s stored.

*store_true!—Like 'store_const' but stores a Boolean
True when the option is parsed.

‘store_false'—Like 'store_trua! but Stores False
instead.

*append'—Option has an argument that is appended to a list
when parsed. This is used if the same commandHine option is
used to specify multiple values.

count ' —Option takes no arguments, but a counter value is
stored. The counter value is increased by one each time the
argument is encountered.

' callback ' —Imokes a callback function specified with the.
callback keyword argument when the option is encountered.
*help—Prints a help message when the option is parsed. This
is only needed f you want help to be displayed via a different
option than the standard -h or --help option.
+version'—Prints the version number supplied to
Optionparsex (), if any. Only used if you want to display ver-
sion information using an option other than the standard v or
~-version option.

Specifies a callback function to be invoked when the option is.
encountered. This callback function is a Python callable object
that is invoked as callback (ption, opt_str, value,
parser, *args, ++kuargs).The option argument is an
instance of optparse.Option, opt_stx is the option string
supplied on the command line that tiggered the callback,
value is the value of the option (if any), pazser is the instance
of OptionParser thal’s running, azgs are positional argu-
ments supplied using the callback_args keyword argument,
and kwazgs are keyword arguments supplied using the.
callback kwargs keyword argument.

images/00204.jpg
Operation Description

st Union of s and ¢
set Intersection of s and &

s -t Set difference

st Symmetric difference
Len(s) Nurnber of items in the set
nax (s) Maximum value

sinim) Minimum value

images/00446.jpg
Value

rascii

'latin-1' or 'iso-8859-1'
1ep1252!

tute-g

‘utf-16"

tute-16-le’
tutf-16-be'
‘unicode-escape’
rraw-unicode-eacape’

Description

Tbit ASCH

1S0 8859-1 Latin-1

Windows 1252 encoding
&bit variable-length encoding

16-bit variable-length encoding (may be little or big
endian)

UTF-16, little endian encoding

UTF-16, big endian encoding

Same format as Unicode literals u"string"
Same format as raw Unicode literals ur"string”

images/00203.jpg

images/00445.jpg
PR w1
buffersd size = 0
for chunk in count
‘chunks .append (chunk)
butfered size += len(chunk)
if buffered_size >- WAXEUFFERSIZE:
out .write (" join (chunks))
chunks .clear()
butfered size = 0
outf.write{"".join(chunks)

images/00687.jpg
Attribute
st_mode
st_ino
st_dev
st_nlink
st_uid
st_gid
st_size
st_atime
st_mtine
st_ctime

Description
Inode protection mode
Inode number

Device the inode resides on
Number of links to the inode
User ID of the owner

Group ID of the owner

File size in bytes

Time of last access

Time of last modification
Time of last status change

images/00206.jpg
3
1,2
"Eello ¥ ¥s"

10
("Monty", "Python'

4
[, 121
Hello Monty Pythor

images/00205.jpg
Operation
v

NS N

<

4 HH H A HHHEHA N
SR

Description

MM %o % X % X % % X %

X ook ox % ox % ox % ox %

images/00447.jpg
Value
'strict!

'ignore!
"replace’

‘backslashreplace’

'xmlcharrefreplace’

Description

Raises a UnicodeError exception for encoding and decod-
ing errors.

Ignores invalid characters.

Replaces invalid characters with a replacement character
(0+FFFD in Unicode, ' 2" in standard strings).

Replaces invalid characters with a Python character escape
sequence. For example, the character U+1234 is replaced
by \u1234".

Replaces invalid characters with an XML character reference.
For example, the character U+1234 is replaced by

1 SH4660; '

images/00200.jpg
name = "Guido®
r = '(01r:20)'.format(name) Hr = " Guido"

images/00442.jpg
e
whilen » 0
yield "T-minus td\n” & n
Bt
yield "Kaboom!\a®

images/00684.jpg
Mode
0100
0200
0400
0700
0010
0020
0040
0070
0001
0002
0004
0007
1000
2000
1000

Meaning

User has execute permission (stat .S_TXUSR) .

User has write permission (stat . S_INUSR) .

User has read permission (stat . S_IRUSR) .

User has read/write/exec permission (stat . 8_TRWXU).
Group has exeoute permission (stat . S_TXGRE).

Group has write permission (stat.S_TWGRE).

Group has read permission (stat . S_TRGRE) .

Group has read,write//exec permission (stat .S_IRWXG).
Others have execute permission (stat . S_TXOTH) .
Others have write permission (stat.S_TWOTH) .

Others have read permission (stat .5_TROTH) .

Others have read/wiite/exec permission (stat .S_IRWX0)
Set UID mode (stat .5_TSUTD) .

Set GID mode (stat .s_TSGID).

Set the sticky bit (stat .S ISVTX).

images/00199.jpg
3.1415926
*{0:{width} {precision}£] ' . format (y, width=10, precision=3)
+{0:{1}.{2}£)" . format {y,10,3)

images/00441.jpg
WO BEELG

form = string Template(®

pear $name,

Please send back my $item or pay me Samour
sincerely yours,

Joe Bython

rint forn.substitute({'nane’: "Mr. Bush',
‘itew': 'blender’,
‘amount': "$0.2£% % 50.0})

images/00683.jpg
Value
O_RDONLY
O_WRONLY
O_RDWR
0_APPEND
0_CREAT
0_NONBLOCK
O_NDELAY
o_ps¥Ne
o_NocTTY
o_TRUNC
0_RSYNC
o_sNe
o_ExCL
O_EXLOCK
0_SHLOCK
o_ASYNC

o_DIRECT

O_DIRECTORY
O_NOFOLLOW
O_NOATTME
o_TEXT
O_BINARY
O_NOINHERIT
O_SHORT_LIVED

O_TEMPORARY
O_RANDOM
0_SEQUENTIAL

Description
Open the file for reading.

Open the file for witing.

Open for reading and writing (updates).

Append bytes to the end of the file.

Create the file if it doesn't exist.

Don't block on open, read, or wiite (UNIX).

Same as 0_NONBLOCK (UNIX),

Synchronous writes (UNIX).

When opening a device, don't set controlling terminal (UNIX).
If the fle exists, truncates to zero length

Synchronous reads (UNIX).

Synchronous writes (UNIX).

Error if 0_CREAT and the file already exists.

Set an exclusive lock on the file.

Set a shared lock on the file.

Enables asynchronous input mode in which a S1GIO signal is gen-
erated with input is available.

Use direct 1/0 mode where reads and writes go directly to the disk
instead of the operating system read/write caches.

Raises an error if the file is not a directory.
Don't follow symbolic links.

Don't update the last access time of the file.
Text mode (Windows).

Binary mode (Windows).

File not inherited by child processes (Windows).

Hint to system that the file is used for shortterm storage
(Windows)

Delete file when closed (Windows).
Hint to system that file will be used for random access (Windows).
Hint to system that file will be accessed sequentially (Windows).

images/00202.jpg
"foo!
shas

images/00444.jpg
for chunk in count.
s.sendall {chunk)

images/00686.jpg
Flag

stat
stat
stat
stat
stat
stat
stat
stat
stat
stat

.UF_NODUMP
_UF_IMMUTABLE
_UF_APPEND
-UF_OPAQUE
.UF_NOUNLINK
.SF_ARCHIVED
_SF_IMMUTABLE
.SF_APPEND

. SF_NOUNLINK
.SF_SNAPSHOT

Meaning

Do not dump the file.

The file is read-only.

The file only supports append operations.
The directory is opaque.

The file may not be deleted or renamed.
The file can be archived.

The file is read-only.

The file only supports append operations.
The file may not be deleted or renamed.
The file is a snapshot file.

images/00201.jpg
Operation Description

x = dix] Indexing by key
dik] = x Assignment by key

del alkl Deletes an item by key

kin d Tests for the existence of a key

len(d) Number of items in the dictionary

images/00443.jpg
Gauiok:, W oeankdown ()
¥ it o AT

images/00685.jpg
Variable

altsep

curair

devnull

extsep

pardir

pathsep

sep

Description
An alternative character used by the 0S to separate pathname compo-
nents, or None if only one separator character exists. This is setto /! on
DOS and Windows systems, where sep is a backslash.

The string used to refer to the current working directory: * . ! for UNIX and
Windows and ' 1 for the Macintosh.

The path of the null device (for example, /dev/null).
Character that separates the base filename from its type (for example, the.

t.rin tfoo.txt).
The string used to refer to the parent directory: * .. * for UNIX and
Windows and ' : : 1 for the Macintosh.

‘The character used to separate search path components (as contained in
the $PATH environment variable): '+ for UNIX and *; * for DOS and
Windows.

The character used to separate pathname components: */* for UNIX and
Widows.and 1 for tha Mecintosh:

images/00669.jpg
¢ Spplogeontig.ind

 Configuration file for setting up logging

i The following sections provide names for Loager, Handler, and Formatter
i objects that will be configured later in che file,

{Loggers]
keys=xoot, app, app_net.

{randlers]
Keysscrit, applog

{formatters)
keys=fornat

[logger_root]
levelNOTSET
handlers=

[1ogger_age]
level-1iFO
propagate0
qualnane-app
bandlers-crit,applog

[Logger_app_net]
Level=RROR
propagatesl
qualnane-app.net
bandlers-

[nandler_crit]
Class=streastandler
levelCRITICAL
formatter-rormac

95 (sys. stderr,)

Thandler_applos]
class=rileandler
Level NOTSET
formatter-tormat
azgse{'app. 13")

[formatter_format]
fornat=¥ (15velnans) -105 #(asctine)s §(nessage)s
e

images/00668.jpg
import logging .
og = logging.getLogger (app*]

cal("An error occurred®)

images/00429.jpg
‘open|*Loo%) # Opens "foo® for reading
open("foo*,'r') # Opens "foo" for reading (same as above)
open(*"foo”. 'w') # Open for writing

images/00671.jpg
import logging
app_log = logging.gerLogger (*app)

log.critical ("An error occurred”)

images/00428.jpg
import os

path = os.environ[“BATH"]
user = os.environ["USER"
editor = os.environ["EDITOR")

i

images/00670.jpg
import logging.config

oaging.config. £ileCantig! ' applogcont

images/00435.jpg
print "The values are ", x, y, 2, ¥
Print the same text, using two print statements
print "The values are ', X, y, # Omits trailing newline
T firge winpn, G g

images/00677.jpg
Keyword Argument
add_help_option

conflict_handler

description

formatter

option_class

option_list

prog
usage

veraion

Description

Specifies whether or not a special help option (~-help and -h)
is supported. By defautt, this is set to True.

Specifies the handiing of confiicting command-ine options. May
be set 10 either 'exxor” (the default value) or *xesolve'. In
"error! mode, an optparse,OptionConflictError excep:
tion will be raised if conflicting option strings are added to the
parser, In ' resolve ' mode, conflcts are resolved so that
options added later take priority. However, earlier options may still
be available if they were added under multiple names and no con-
flicts exist for at least one of the names.

A string that provides a description of the program for display dur-
ing help. This string will automatically be reformatied to fit the
screen when displayed.

Instance of an cptparse . HelpFornatter class used to format
text when printing help. May be either optparse
IndentedhelpFormatter (the default) o optparse.
TitledHelpFormatter.

The Python class that’s used to hold information about each
commandiine option. The default class is optparse .Option.
Alist of options used to populate the parser. By default, this list
is empty, and options are added using the add_option ()
method instead. If supplied, this list contains objects of type
Option.

The program name used to replace ' $prog in help text

The usage string that's printed when the ~-help option is used
or incarrect options are passed. The default value is the siring
"sprog [options] ', where the 'sprog keyword gets
replaced with either the value of os path. basename
(sys.argv(0]) or the value of the prog keyword argument (if
supplied). The value optpaxse . SUPPRESS_USAGE can be given
to suppress the usage message entirely.

Version string that's printed when the -version option is supplied.
By default, version is None and no --version option is added.
When this string is supplied, ~version is automatically added. The
special keyword *¥prog* is replaced by the program name.

images/00434.jpg
import sys
sys . stdout .write ("Bnter your nane : °)
asme = sys.stdin.readline()

images/00676.jpg
Setting Description

0 Unlocks the file region (LK_UNLCK)

1 Locks the file region (LK_LOCK)

2 Locks the file region; nonblocking (LK_NBLCK)
3 Locks for writing (LK_RLCK)

4 Locks for writing; nonblocking (LK_NBRLCK)

images/00437.jpg
£ Open | SHRCEUL R) WL
print >>f, "hello world"

£ olbaall

images/00436.jpg
e i e e T L T L s T s L R
orint "The values are {0:d} {1:7.Sf} {2}%.Format ix,y,z)

images/00431.jpg
4 B0

images/00673.jpg
Flag Meaning

MAP_PRIVATE Creates a private copyon-write mapping. Changes to the object wil
be private 1o this process.

MAP_SHARED Shares the mapping with all other processes mapping the same
areas of the file. Changes to the object will affect all mappings.

images/00430.jpg
Method

£.read((n)
£.readline([n])

£.readlines([size])

f£owrite(s)
£.writelines(lines)
£.close()

forell()

f.seek(offset [, whence])
£.isatty()

£.£1ush()

£.truncate ([size])
£.£ileno()

£.next ()

Description

Reads at most n bytes.

Reads a single line of input up to 1 characters. If n is
omitted, this method reads the entire line.

Reads all the lines and returns a list. size optionally
specifies the approximate number of characters to
read on the file before stopping.

Writes string 5.

Wites all strings in sequence 1ines.

Closes the file.
Returns the current file
Seeks to a new file position.

Returns 1 if £ is an interactive terminal.

Flushes the output buffers.

Truncates the file to at most size bytes.

Returns an integer file descriptor.

Returs the next line or raises StopIteration. In
Python 3, it s called £._next__().

inter.

images/00672.jpg
class Null (object)
Gef __init__(self, targs, +vkwargs): pass
def _call__(self, vargs, vvkwargs): return self
det _getattribute__(self, name]: return self
et _setactr__(self, name, value]: pass
et _delactr_ _(self,name) : pass

og = Mall()
og eritical (Vi eiror coarred.s) & Doss oathing

images/00433.jpg
Attribute

£.closed

£.mode
£.name

£.softepace

£.newlines

£.encoding

Description

Boolean value indicates the file state: False if the file is open, True
if closed.

The 1/0 mode for the file.

Name of the file if created using open (). Otherwise, it will be a string
indicating the source of the fle.

Boolean value indicating whether a space character needs to be print-
ed before another value when using the print statement. Classes
that emulate files must provide a writable attribute of this name that's
iniially initalized 1o zero (Python 2 only)

When a file is opened in universal newline mode, this attribute con-
tains the newline representation actually found in the file. The value is
None if no newlines have been encountered, a string containing *\n"',
"\x',or "\r\n', or a tuple containing all the different newline encod-
ings seen.

A string that indicates file encoding, if any (for example, *latin-1° or
"ut£-8'). The value is None if no encoding is being used.

images/00675.jpg
Access Meaning

AccESs_READ Read-only access.

ACCESS_WRITE Read/write access with write through. Modifications affect the under-
Iying file.

AccEss_copy Read/write access with copy-onwrite. Modifications affect memory
but do not change the underlying file.

images/00432.jpg
for line in £ # Iterate over all lines in the file
Do something with line

images/00674.jpg
Setting Meaning
PROT_READ Data can be read from the object.
PROT_WRITE Modifications can be made 1o the object

PROT EXEC The object can contain executable instructions.

images/00427.jpg
¥ ByEloa peod . OF D Ut 8 ARSLIAL oe- D
 python prog.py --output=outfile --debug infil
 python prog.py -h

% python prog.py --help

images/00658.jpg
class FilterFunc(logging.Filter):
et __init__(self,name)

def filter(self, record)
if record. funcNane
else: return True

og.addFilter (Filterfunc('foo'}) 4 Ig
log.addFilter (FilterFunc{'bar'}) # Igr

self. funchane: return False

nore all messages originating from foo()
e H1L oaikenges. aribinating Evon Bak ()

images/00418.jpg
Graphics/__init,
from . import Primitive, Graph2d, Graphid

Graphics/Prinitive/__init__.py
From . doeick Lioe, i1l T

images/00660.jpg
import logging
Togging . getlogger(tapy et alient)

etLevel (logging. CRITICAL]

images/00659.jpg
import logging
Togging . getlogger(tapy et alient)

ropsgts Palss

images/00424.jpg
¥ malup.py.
ey

from setuptools import setup
except InportError:

rom distutils.core import setup

setup(nane = "span’,

images/00666.jpg
TRPGEE Lodnand. MOCKEL
logging.basicContig
ormat = "3 (hostnane]s §(levelname) -10s §(asctime)s 3 (nessage)s®

)
Some extra context
netinfo = |
‘hostnane! : socket.gethostname (),
ostbynane (socket .gethostnane (] |

}

§ Create a logger
o9 = logging.LogAdapter (1ogging. getLogger ("app"), metinfo)

Issue a log message. Extra context data is supplied by the Loghdapter
Tog. critionl ("Oould Hot commeat: £o- eRrvr?)

images/00423.jpg
% unzip spam-1.0.zip

% cd span-1.0
% python setup.py install

images/00665.jpg
IMpITe LR opcket,
logging basicContig(

format = % (hostnane]s %(levelname) -10s §(asctine)s 3 (nessage)s”

Some extra context

netinfo = {
“hostnane! : socket.gethostname (),
tip! socket .gethostbynans (socket . gethostnare ())
)

og = logging.getlogger ('app']

Tssue a log message with the extra context data

to server*, extrasnetinfo)

og.critical (*Could not connsc

images/00426.jpg
lmport optparse
P - optparse.Optionparser()

An option taking an argunent
p.2dd_option (*-o" actions"store" , dest="outfile’)
p-2ad_opt ion (*--Output " act ions"store" de:

4 An option that sets a boolean flag
p.add_option (*-a", act ion="store_true* desf
p-add_option (*--debug" actio

debug”)

Store_truer, dest="debug")
4 Set default values for selected options
p.set_defaults (debug-False)

4 Parse the comand line

opts, args = p.parse_args()

4 Retrieve the option settings
outfile - opts.ourfile
diianite = oty ek

images/00425.jpg
import sys

if len(sys.argy) 1= 3:
sys.stderr.write("Usage : python ¥s inputfile outputfile\n' sys.argv(0])
raise SystemBxit (1)

inputtile = sys.argv(l]

outputfile = sys.argv(2]

images/00667.jpg
¢ applogcontig.py
import logging
import sys

Set the message format

format = logging.Formatter ("4 (levelname) -10s & (asctine)s % (message}s”)

Create a handler that prints CRITICAL level messages to stderr
crit_hand = loggingStreanbandler (sys.stderr)

crit_nand.setLevel (logging. CRITICAL]

crit_nand_setFormatter (format)

Create a handler that prints messages to a file
applog_hand = logging.7ileHandler ('app.10g')
applog_hand .setFormatter (format)

Create a top-level logger called 'app’
app_log - logging.getLogger (*app)
app_log. setLevel (Logging. INFO)
app_log.addrandlex (applog_hand)
og.addAandler (crit_hand)

Change the level on the 'app.net' logger
1ogging: getlogaer{ app et").. sethevel ! logging: BRS0R)

images/00420.jpg
setup.py
from distutils.core import setup

setup (nane = "span’,
version = "1.0%,
py_modules bspan'],
packages = ['spanpkg'],
scripts = ['runspan.py'l,

images/00662.jpg
import logging
import sys

Create a top-level logger called 'app'

p_log = logging.getlogger (*app”)

app_1og. setLevel (Logging. INFO)
og.propagate = False

Add sone message handlers to the 'app’ log
app_log.addsandler (Logging . File#tandler ('app.1og'))
op_log..addrandler (logging. Streandiandler (sys.stderr))

¢ Tssue some messages. These 9o to app.log and sys.stds

app_log.critical (*Creeping death detected!’)
app_log.info (*FYI*)

images/00419.jpg
spam/.

RERDIE. txt
Docunentation.

Tibspan.py # & single library module
spanpig/ # A package of support modules

init__.py

TR RS o R ks

images/00661.jpg
Amport logging

The top-level logger '

log = logging.getLogger ('agp’)
log. setLevel (Logging. CRITICAL] # Only accept CRITICAL level messages.

A child logger 'app.met'
net_log = logging.getlogger ('app.net')
net_log.setzevel (logging . SRROR) # Accept ERROR messages on 'app.net!.
These messages will now be handled by the
'app! logger even though its level is
& CRITICAL.

images/00422.jpg
B e ooy b e

X

images/00664.jpg
import logging
import sys

Set the message format
format = logging. Fornatter ("%(levelnane)

105 #(ascrine)s * (nessage)e”)

¢ Create a handler that prints CRITICAL level messages to stderr
crit_nand = logging.StreamHandler (sys.stderr)

crit_nand.setLevel (logging.CRITICAL]

hand . set Formatter (format)

images/00421.jpg
Parameter

name
version

author
author_email
maintainer
maintainer_email
url

description
long_description
download_url
classifiers

Description

Name of the package (required)
Version number (required)
Author's name

Author's email address.
Maintainer's name

Maintainer's email

Home page for the package
Short description of the package
Long description of the package
Location where package can be downloaded
List of string classifiers

images/00663.jpg
import logging
import sys

Create a handler that prints CRITICAL level messages to stderr
crit_nand = logging.Strearbandler (sys.stderr]
hand. setLevel {1ogging . CRITICAL)

Create a top-level logger called 'app’
g = logging.getLogger (“app"]

5. setLevel (Logging. INFO)

og.addHandler (1ogging. FileRandler ['app.1og') |
og.addHandler (crit handler})

images/00417.jpg
import Graphics
Geepiny, bel

ive.£ill.floodfill(ing,x,y,color) # Pails!

images/00416.jpg
§ plocad.py
B ietiitives: topare: Yines

images/00889.jpg
Operator Description

elen(n] Retums the th child element of elem.

elen(n] = newelem Changes the nth child element of elem to a different element
newelen.

del elen(n] Deletes the nth child element of elem.

Tis Gl Number of child elements of slem.

images/00888.jpg
Path
"tag!

"parent/tag’

g

Description

Matches only toplevel elements with the given tag—for example,
<tags...</tag>. Does not match elements defined at lower levels.
A element of type tag embedded inside another element such as.
<£o0s<tags. . .</tags</ 00> is Not matched.

Matches an element with tag * tag" if it's a child of an element with
tag " parent . As many path name components can be specified as
desired.

Selects all child elements. For example, '+ /tag" would match all
grandehild elements with a tag name of ' tag -

Starts the search with the current node.

Selects all subelements on all levels beneath an element. For exam-
ple, *. //tag" matches all elements with tag * tag" at all sublevels.

images/00649.jpg
Level
CRITICAL
ERROR
WARNING
vFo
DEBUG
NOTSET

Value
50
40
10
20
10

Desc
Critical errors/messages
Errors

Warning messages
Informative messages
Debugging

N e st

images/00891.jpg
from xml.etree.ElementTree import ElementTree

doc = BlementTree (file="recipe.xml’]
ingredients = doc.find('ingredients']

for item in ingredients.findall('item')

mum = item.get (‘nun')
units = item.get ('units',
text = itemtext.strip()
quantity = "8s §s' § (num, units)

print ("$-10s $s* % (quantity, text))

images/00648.jpg
Abstract Class
ToBase
RawIOBase

BufferedIOBase

TextIOBase

Description
Base class for all I/0 classes.

Base class for objects that support raw binary /0. Inherits
from T0Base.

Base class for objects that support buffered binary 1/0.
Inherits from IoBase.

Base class for objects that support text streams. Inherits
Hom ToBase.

images/00890.jpg
Attribute
elem.tag

elem.text

elem.tail

elom. attzib

Description
String identifying the element type. For example,
<£005...</£00> has a tag of ' 00"

Data associated with the element. Usually a string containing
text between the start and ending tags of an XML element.
Additional data stored with the attribute. For XML, this is usu-
ally a string containing whitespace found after the element's
end tag but before the next tag starts,

Dictionary containing the element attributes.

images/00413.jpg
__init__py
Tines By
£l py
text py

Graphaa/
Tinit_oy
Bloraa Ty

Graphia/
__init__.py
Slotad by

Formats/
init__.py
5it
eng.py
ciff.py
Speg.py

images/00655.jpg
Logging Level
CRITICAL
BRROR
WARNTNG
nFo

DEBUG

Method
log.critical(fmt [, *args [, exc_info [, extralll)
log.error(fmt [, *args [, exc_info [, extralll)
log.warning(fmt [, *args [, exc_info [, extralll)
log.infolfmt [, *args [, exc_info [, extralll)
log.debug(fmt [, *args [, exc info [, extralll)

images/00897.jpg
Method
attrs.getlength()
attrs.getNanes ()
attrs.getType (name)
attrs.getValue (name)

Returs the number of attributes
Retums a list of attribute names
Gets the type of attribute name

Btk thie vl of atifbite: dise

images/00412.jpg
L Ry
sys .path. append ("mymodules . zip")
Ipetcts: Bac, Bar

images/00654.jpg
import logging
P N

images/00896.jpg
from xml.etree.ElementTree import iterparse

iparse = iterparse(*music.xml", ['start’, 'end'])
Find the top-level misic element
for event, elem in iparse:
if event == 'start’ and elem.tag
musicrode = elen
break

Get all albums
albuns = (elem for event, elem in iparse

if event == 'end’ and elem.tag == 'albun')

for album in albuns:
Do some kind of processing

musiclode . remove (album) 4 Throw away the album when done

images/00415.jpg
At
Sica doperr Tin

images/00657.jpg
Attribute
record.name
record.levelnane
record.levelno
record.pathname
record. £ilename
record.module
record.exc_info
record.lineno
record. funciane
record.created
record. thread
record. threadName
record.process

Description

Logger name

Level name

Level number

Pathname of the module

Base filename.

Module name.

Exception information

Line number where log message was issued
Function name where log message was issued
Time at which issued

Thread identifier

Thread name

PID of currently executing process

images/00414.jpg
Graphics/Primitive/ _init _.py
all = ["lines","fext'

images/00656.jpg
109 & logying .guiloggus (fapp™)
A log message using positional formatting

log.critical ("Can't connect to ks at port %", host, port)

A log message using dictionary formacting

parns = |
"RosC! : 'www.python.org’,
‘port’ : 80

og.critical ("Can't connect to

ost)s at port ¥(port)d®, parme)

images/00409.jpg
from spam import bar
def foo()
print("I'n a different foo)
bar () 4 When bar calls foo(), it calls spam.£0o(), A
¥ tha dstiaivion 6E ¥as 1) RBEVE

images/00651.jpg
Format
% (name) &

% (levelno)s

% (Levelname)s
% (pathname) s
%(filenane)s
% (funchame) s
% (module) s

% (Lineno)d

% (created) £

* (asctime) s
* (msecs) s

% (thread)d

% (threadName) s
% (process)d

% (message) s

Description
Name of the logger.

Numeric logging level.

Text name of the logging level.

Pathname of the source file where the logging call was executed.
filename of the source file where the logging call was executed.
Function name in which the logging call was made.

Module name where the logging call executed.

Line number where the logging call executed.

Time when the logging call executed. The value is a number as
returned by time. time ().

ASCIHormatted date and time when the logging call wass executed.
Millisecond portion of the time when the logging call executed.
Thread ID.

Thread name.

Process ID.

The logged message (supplied by user).

images/00893.jpg
<?xml version="1.0" encoding="i80-8859-1"?>
crecipe xmlns:r="http://ww .dabeaz. com/nanespaces /recipe”>

rititles

Fancus Guacanole

</r:titles

<r:descriptions

A southwest favorite!

</x:description>

<x:ingredients>

<riitem num

47> Large avocados, chopped </r:items

</x:ingredients>
<r:directions>
Combine all ingredients and hand whisk to desired consistency.
Serve and enjoy with ice-cold beers
</r:directions>
</ raaipds

images/00408.jpg
from spam import foo
a- a2
fool) # Prints "I'm foo and a is 37°

images/00650.jpg
Keyword Argument
filename
filemode

format
datefmt
level

stream

Description
Appends log messages to a file with the given filename.

Specifies the mode used to open the file. By default, mode 'a'
(append) is used.

Format string used to produce log messages.
Format string used to output dates and times.

Sets the level of the root logger. All log messages with a level
equal to or above this level will be processed. Lower level mes
sages will be silently ignored.

Provides an open file to which log messages are sent. The
default stream is sys.stderr. This parameter may not be used
simultaneously with the £i1ename parameter.

images/00892.jpg
from xml.etree.BlementTree import ElementTree

doc = ElementTree (file="recipe. xml"]
for item in doc.findall(".//iten")

num = item.get ('nun')
units = item.get (‘units', '
text = item text.strip()

quantity = "¥s %s' % (num, units)
print ("3-10s $s" % (quantity, text))

images/00411.jpg
Check if rumning as a program
_rame__ == '__main__':
Yes
statements
else:
Mo, T must have been imported as a module
et easnts

images/00653.jpg
SMpoTE. loggrag
S, earenfispal)

images/00895.jpg
<?xml version="1.0" emcoding="utf-g8"?>
<albuns
<titlesh Texas Funeral</titles
<artistsdon Waynec/artists

</albun>

<albun>
<titlesMetaphysical Grafitic/titles
<artist>The Dead Milkmenc/artists

</albuns
" contimuss for 100000 more albuns
Jmsies

images/00410.jpg
from spam import a, foo # Import a global variable
2=z # Nodify che variable

foo() # Prints *I'm foo and a is 37"
Sk (5l # Prints "42v

images/00652.jpg
import logging
ogging. basicContig (
£ilenane = "app.log’,
format = "t(levelname] -10s ¥(asctime)s % (nessage)s”
evel = logging.INFO

images/00894.jpg
from xml.etree.ElementTree import ElementTree
doc = ElementTree (file="recipens xml’)

"http:/ /e dabeaz. con/nanespaces /recipe’

ingredients = doc.find('[$(r)s)ingredients' ¥ ns)
for item in ingredients.findall(’((x)s}iten’ % ng)
mm = icem.get ('mum')
units = item.get ('units', "
text = item text.strip()
quantity = "¥s §5* % (mum, units)
print ("3-10s $s* % (quantity, text))

images/00406.jpg
SO Bpan ek, POL 20 S
En gty

images/00405.jpg
ST BEia Ak, - (ead,
bar,
Spam)

images/00647.jpg
viethod

£

3
£
3

encoding

line_buffering
newlines

read((n])

readline([1imit])

write(s)

Azl el
The name of the text encoding being used.

Encoding and decoding error handiing policy.

Flag that determines line buffering behavior.

Hone, a string, o a tuple giving il of the different forms of
newiines translated.

Reads at most n characters from the underlying stream and
retums as a string. If n is omitted, then this reads il avail-
able data to the end of file. Retums the empty string at EOF
The retured strings are decoded according to the encoding
setting in £. encoding.

Reads a single line of text and retums as a string. Returns
an empty string at EOF. 1imi is the maximum number of
bytes to read.

Writes string s to the underlying stream using the text
encoding In £.encoding.

images/00407.jpg
module: spam.py
all = ['bar', 'Spam' | # Names I will expor

with from spam import *

images/00878.jpg
Ampoxt. g
secret_key = b*peckaboo" # Byte string only known o me. Typically
you would want to use a string of random bytes
computed using os.urandon() or similar

gata = briello World® # The message to send

Send the message somewhere. out represents a socket or some
other /0 channel on which we are sending data

h - hmac new(secret_key)

h.update {data)

out..send (data) # Send the data

out..send (h.digest ()) # Send the digest

§ Recelve the message
§ in represents a socket or sone other 1/0 channel
out which we are receiving data

h = hnac.new(secret_key)

data = in.receive() # Get the message data
h.update (data)
digest = in.receive() # Get the digest sent by the sender

if digest != h.digest()
Tl Muthant et iorrorl e sage: ok mibhentd tated))

images/00638.jpg
Error Code

WSREACCES Permission denied.
WSAEADDRINUSE Address already in use.
WSREADDRNOTAVAIL Cannot assign requested address.
WSAEAFNOSUPPORT Address family not supported by protocol family
WSAEALREADY Operation already in progress.
WSREBADF Invalid file handle.
WSAECONNABORTED Software caused connection abort.
WSAECONNREFUSED Connection refused.
WSAECONNRESET Connection reset by peer.
WSAEDESTADDRREQ Destination address required.
WSAEDISCON Remote shutdown.

WSREDQUOT Disk quota exceeded.

WSREFAULT Bad address.

WSAEHOSTDONN Host is down.

WSAEHOSTUNREACH No route to host.
WSAETNPROGRESS Operation now in progress.
WSAEINTR Interrupted system call.
WSAETNVAL Invalid argument.

WSAEISCONN Socket already connested.
WSAELOOP Cannot translate name.
WSREMFTLE Too many open files.
WSREMSGSTZE Message 100 long.

WSAENAMETOOLONG Name 100 long.

images/00880.jpg
el d
object
array
string
nunber
true
false
1l

Python Type
aict

List (tuple)
unicode (str, bytes)
int, £loat

True

False

e

images/00879.jpg
Links.py

£ron KTULParser import HTMLParaer
£rom urllib2 import urlopen
except InportError
£ron btnl.parser import WTMLZarser
£ron urllib. request inport urlopen
import sys

clags PrincLinks (KTHLParser)
et handle_starttagisel,tag,attrs):
S

for name,value in attrs

if name n ‘href tvalue)
o = Printlisks()

s = urlopen(sys.argv(il)

data = u.read()

charset « u.info() .getparan ' charset # python 2

sehazaet
p. tecdidata.
> aichet)

nfo(] .get_content_charset

& oy

images/00402.jpg
import spam as ep
import socket as net
sp.£00()

sp.par()

el ey

images/00644.jpg
Attribute
£.closetd

£.mode
£.name
f.read([size])

£.readall()

£.write (bytes)

Dascripion

Flag that determines if the underlying file descriptor will be
closed on £.close () (read-only)

File mode used when opening (reac-only).

filename (reac-only).

Reads at most size bytes using a single system call. If size
is omitted, as much data as possible is returned using
£.readall (). This operation may returs fewer bytes than
requested 50 you must use Len () 10 check. None is returned if
no data is available in norblocking mode.

Reads as much data as is available and returns as a single
byte string. An empty string is returned on EOF. In non-blocking
mode, only as much data as is immediately available is
returned.

Writes a byte string or byte-array to £ using a single system call,
The number of bytes actually written is returned—which may be
Toue than:the nerber suoplied rpyEss:

images/00886.jpg
Node Attribute
n.attributes
n.childNodes
n.firstchild
n.lastchild
n.localNane

n.nanespaceURT
n.nextsibling

n.nodeNane

n.nodetype

n.nodevalue

n.parentiode
n.prefix

n previousSibling

Description
Mapping object that holds attribute values (I any).

Alist of all child nodes of r.

“The first child of node .

The last child of node ».

Local tag name of an element. If a colon appears in the tag

(for example, * <£oo:bar ...>*), then this only contains the
part after the colon.

Namespace associated with , if any.

“The node that appears after 1 in the tree and has the same
parent. Is None if z is the last sibling.

The name of the node. The meaning depends on the node
type.

Integer describing the node type. It is Set to one of the follow-
ing values which are class variables of the Node class:
ATTRIBUTE_NODE, CDATA_SECTION_NODE, COMMENT_NODE,
DOCUMENT_FRAGHENT_NODE, DOCUMENT_NODE,
DOCUMENT_TYPE_NODE, ELEMENT_NODE, ENTITY_NODE,
ENTITY_REFERENCE_NODE, NOTATION_NODE,
PROCESSING_INSTRUCTION_NODE, O TEXT_NODE.

‘The value of the node. The meaning depends on the node
type.

A reference to the parent node.

Part of a tag name that appears before a colon. For example,
the element '<foo:bax . ..>' would have a prefix of *£oo'
The node that appears before in the tree and has the same
parent.

images/00401.jpg
import spam # Loads and executes the module 'spam'

x = span.a # Accesses a member of module 'span'
spam. £00 () 4 Call a function in module 'spam’
s = span.Span() # Create an instance of spam.Spam()

s.grok()

images/00643.jpg
Attribute

Dhhhahl

"

closed
close()

fileno()

flush()

isatey()
readable ()
readline([1imit])

readlines ([Limie])

seek(offset, [whencel)

_seekable ()

tell()

-truncate([sizel)

f.writable ()

writelines (Iines)

Descr
Flag indicating whether or not the file is closed.
Closes the file.

Returns the integer file descriptor

Flushes the 1/0 buffers (f any).

Returns True if £ is a terminal.

Returns True f £ was opened for reading.

Reads one line from the stream. 1:imi t is the maxi
mum number of bytes to read.

Reads all lines from £ and return as a list. 1imit, if
provided, is the maximum number of bytes that can be
read before stopping. The actual number of bytes read
will be slightly greater to accommodate the last line,
which s kept intact.

Moves the file poiter to a new position relative to the
location specified in whence. of£set is the number of
bytes. whence is 0 for the start of the file, 1 for the
current position, and 2 for the end of the file.

Returns True if £ is seekable.

Returns the current value of the file pointer.

Truncates the file size S0 that it is at most size bytes.
If 51z isn't given, it truncates the file to 0 bytes.

Returns True if £ was opened for witing,

Wites a sequence of lines to £. Line endings are not
added so they must already be part of each line.

images/00885.jpg
<?xml version="1.0" encoding="180-8859-1"?>

crecipe>
<titles
Fanous Guacamole
</titles
<descriptions
A southwest favorite!
</description>
<ingredients>
<item nun=4"> Large avocados, chopped </items
<item nun="1"> Tomato, chopped </item>
<item nune"1/2" units-"C*> White onion, chopped </items
<item nun="2" units="tbl*> Fresh squeezed lemon juice </item:
<item nune"1"> Jalapeno pepper, diced </item>
<item nun="1" unitg="tbl®> Fresh cilantro, minced </items
<item nun="1" unitg="tbl*> Garlic, minced </item>
<item nun="3" units="tep> Salt </item>
<item nun="12" unitg="bottles's Ice-cold beer </item>
</ingredients>
<directions>

Combine all ingredients and hand whisk to desired consistency.
Serve and enjoy with ice-cold beers
</directions>

<Fratibes

images/00404.jpg
-rom spam import foo # Imports spam and puts
foo() # Calls spam.Zoo()
spam. £00 () # NameError: spam

in current namespace

images/00646.jpg
Method
£.£lush()

£.write (bytes)

Description
Writes all bytes stored in the buffer to the underlying 1/ stream.
Raises a BlockingTOExrror exception if the file is in non-
blocking mode and the operation would block (e.., if the stream
can't accept any new data at the moment).

Writes the bytes in bytes to the 1/0 stream and returns the
number of bytes actually witten. If the underlying stream is non-
blocking, a Block ingTOEzrror exception is raised f write opera-
tion would block.

images/00403.jpg
Formats am il !
import xnlreader as reader
elif format - ‘csv'

smport cevreader as reader
Bt - Tanfer. Pand AAte €L Tanne)

images/00645.jpg
Method
£.peek((n])

f.read([n])

£.read1((nl)

£.readinto (b)

Description
Returns at most = bytes of data from the 1/0 buffer without mov-
ing the file pointer. If n is omitted, a single byte is returned. If
necessary, a read operation will be issued to fill the bufer if it is
currently empty. This operation never returns more bytes than the
current buffer size, so the result may be smaller than the request-
ed number of bytes in .

Reads 1 bytes and returns as a byte string. If n is omitted, all
avalable data (up to EOF) is read and returned. If the underlying
file is nonblocking, any available data is read and returned. If a
non-blocking fle is read and no data is available, a
BlockingTOError exception is raised.

Reads up to n bytes and retumns as a byte string using a single
system call. If any data is already loaded in the buffer, it is simply
returned. Otherwise, a single read () is made on the raw file 1o
return data. Unlike £.zead (), this operation may return less data
than requested even if the underlying file is not at EOF.

Reads len (b) bytes of data from the file into an existing
bytearray object b. The actual number of bytes read is
returned. If the underlying file is in non-blocking mode, a
BlockingIOError exception is raised if no data is available.

images/00887.jpg
SFOS ENL.O0R. LMpOLE iGiOOm
doc = minidom parse *recipe.xul®)

doc getELement sByTaghame (" ingredients") (0]

ingredients
ingredients.getElementsByTaglane (*iten')

items

for item in items:

num iten.getattribute ("nun)
units item getAttribute ("units")
text item £irstChild data.strip()

quantity = "ss $s° % (numunits)
print ("$-108 $s" ¥ (quantity,text))

images/00398.jpg
SEegiscer.
class Foo (object)
__clsid__ = "123-456"
Get bar (self)
sy

images/00640.jpg
Command
F_DUPFD

F_SETFD

F_GETFD
P_SETFL

F_GETFL
F_GETOWN

F_SETOWN

F_GETLK
F_SETLK
F_SETLKW

Description

Duplicates a file descriptor. arg is the lowest number that the new
file descriptor can assume. Similar to the os . dup () system call.

Sets the close-on-exec flag to arg (0 or 1). If set, the file is
closed on an exec () system call

Returns the close-on-exec flag.

Sets status flags to arg, which is the bitwise OR of the following:
0_NDELAY—Nonblocking 1/0 (System V)

O_APPEND—Append mode (System V)

o_s¥NC—Synchronous write (System V)

FNDELAY—Nonblocking 1/0 (BSD)

FPAPPEND—Append mode (BSD)

FASYNC—Sends S1GI0 signal 1o process group when 1/0 is possi-
ble (BSD)

Gets status flags as set by F_SETFL.

Gets process ID o process group ID set to receive STGTO and
SIGURG signals (BSD).

Sets process ID or process group ID to receive STGTO and SIGURG
signals (BSD).

Returns flock structure used in file-locking operations.
Locks a file, returning -1 if the file is already locked.
Locks a file but waits if the lock cannot be acquired.

images/00882.jpg
Keyword Argument
encoding

strict

object_hook
parse_float
parse_int

parse_constant

Description
Encoding used to interpret any of the string values that are
decoded. By default, this is "urf-5'.

Boolean flag that determines whether or not literal (unescaped)
newlines are allowed to appear in JSON strings. By default, this
is True, which means that an exception is generated for such
strings.

A subclass of JSONDecoder to use for decoding. Only speck
fied if you've created a custom decoder by inheriting from
380NDecoder. Any extra keyword arguments to 1oad () are
supplied 10 the class constructor.

A function that's called with the result of every JSON object that
is decoded. By default, this is the builtin aict () function.
Afunction that's called to decode JSON floating point values. By
default, this s the builtin £loac () function.

A function that's called to decode JSON integer values. By
default, this is the builtin int () function,

Afunction that's called to decode JSON constants such as
A, ‘Erant Taladt - Hin:

images/00639.jpg
WSAENETDOWN
WSAENETRESET
WSAENETUNREACH
WSAENOBUFS
WSAENOPROTOOPT
WSAENOTCONN
WSAENOTEMPTY
WSAENOTSOCK
WSAEOPNOTSUPP
WSAEPFNOSUPPORT
WSAEPROCLIM
'WSAEPROTONOSUPPORT
WSAEPROTOTYPE
WSAZREMOTE
WSAESHUTDONN
WSAESOCKTNOSUPPORT
WSAESTALE
WSAETIMEDOUT
WSAETOOMANYREFS
WSAEUSERS
WSAEWOULDBLOCK
WSANOTINITIALISED
WSASYSNOTREADY
WSAVERNOTSUPPORTED

Network is down.

Network dropped connection on reset.
Network is unreachable.

No buffer space is available.

Bad protocol option.

Socket is not connected.

Cannot remove non-empty directory.
Socket operation on nor-socket.
Operation not supported

Protocol family not supported.

Too many processes,

Protocol not supported.

Protocol wrong type for socket.

Item not available locally.

Cannot send after socket shutdown.
Socket type not supported.

File handle no longer available.
Connection timed out

Too many references to a kernel object.
Quota exceeded.

Resource temporarily unavailable.
Successful WSA startup not performed.
Network subsystem not available.
Winsock.dll version out of range.

images/00881.jpg
neyword Argament
sicipkeys

check_cireular

allow_nan

cls

indent

separatore

encoding
defaule

Bestrxion
Boolean flag that controls what to do when dictionary keys (not
the values) are ot a basic type such as a string or number. If
True, the keys are skipped. If False (the default), a Typerrox
is raised.

Boolean g that determines whether or not Unicode strings can
be witten to the file £. By default, this is False. Only set this to
‘True if £ s a file that correctly handies Unicode, such as a file
created by the codace module or opened vith a specific encad:
ing set.

Boolean flag that determines whether circular referances are
checked for containers. By default, this Is True. If set 1o False
and a circular reference is encountered, an Over£ LowError
exception is raised.

Boolean flag that determines whether outaf-ange floating point
values are serialized (... NaN, inf, inf). By default 1his is True.
A subclass of JSONEncodex 10 use. You would specify this if you
crealed your own custom encoder by inheriting from
asouEacoder. If there are any additional keyword arguments
Even 10 durp ()., they are passed as arguments to the construc:
tor of this class.

A nonnegative integer that sets the amount indentation to use
when printing array and object members. Setting this results in a
Kind of pretty-printing. By default, it is None, which causes the
result to be in the most compact representation.

Atuple of the for (iten_separator, dict_separato:)
where ten_separator s a string containing fhe separator
used between array items and dict_separaor is a string con-
taining the separator used between dictionary keys and values.
By default, the value is (1, 1, ': ‘).

Encoding to use for Unicode strings—!uc£-5 ! by default,
Afunction used to serialize objects that are not any of the basic,
supported types. It should either retur a value that can be seri-
alized (L., a string) or raise TypeError. By default, a

sk e i RUpR AT

images/00400.jpg
spam.py
2= 37
et foo(
print(*I'n foo and a is ts" % a)
def bar()
print(*I'n bar and I'm calling fo

£o0()
class spam(object)
det grok(self)

Grink (VT 'm Some grak)

images/00642.jpg
ANpUEL. Tantl.

Open a file
£ = open(*£o0", ")

Set the close-on-exec bit
fentl.fontl (f.fileno(), fencl

or a file object £
_sETED, 1)

Lock a file (Blocking)
fentl. £lock (£.£ileno(), fentl.LOCK_EX)

Lock the first 8152 bytes of a file (non-blocking]
ery

fentl locke (£.Fileno(), fentl.LOCK EX | famcl.LOCK NB, 8182, 0, 0
except. 10Brror,e:

Srte: viabie ve-woguive: lockry &

images/00884.jpg
image/jpeg: jpe jpeg jpg
text/btul: htm htnl

images/00399.jpg
class Fooicbject)
__clsid__ = "123-a56"
Get bar (self)
pass
register (Foo) # Register the class

images/00641.jpg
Item
LOCK_EX

LOCK_NB

LOCK_SH

LOCK_UN

Description
Exclusive lock. Al further attempts to acquire the lock will block until
the lock is released.

Non-blocking mode. Returns immediately with an ToError if the lock is
already in use.

Shared lock. Blocks any attempts to acquire an exclusive lock
(LOCK_EX) , but shared locks can stil be acauired.

Unlock. Releases any previous held lock.

images/00883.jpg
SLaee MydREDsncde | TECEOsadar)
Gef __init__(self, vkuargs)
W Get my own arguments
£00 = kuargs .pop('£o0" , None)
bar = kuargs.pop('bar' , None)
Tnitialize the parent with everything left over
JSONDecoder. _init__ (self,**kvargs)

images/00637.jpg
BOPNOTSURE
ZpERM
SPFNOSUPPORT
ZIPE
EPROTONOSUPPORT
SPROTOTYPE
ERANGE

EREMOTE

=ROFS.

ZSHUTDOWN
ESOCKTNOSUPBORT
ssPIPE

ESRCH

sSTALE
STTMEDOUT
ETOOMANYREES
EUSERS
SWOULDBLOCK
e

SIPISEION, DOk SUPPOENS. OfL TIAPOL: SR ot
Operation not permitted.

Protocol family not supported.

Broken pipe.

Protocol not supported.

Protocol wrong type for socket.

Math result not representable.

Object is remote.

Readonly file system.

Cannot send after transport endpoint shutdown.
Socket type not supported.

Illegal seek

No such process.

Stall NFS file handle.

Connection timed out.

Too many references: Cannot splice.

Too many users.

Operation would block.

P o Yot

images/00636.jpg
e
ENETDOWY
ENETRESET
ENETUNREACH
ENFILE
ENOBUES
ENODEV
woENT
ENOEXEC
ENOLCK
EwovEM
ENOPROTOOPT
ENoSPC
oSS
ENoTCOMN
ENOTDIR
ENOTEMPTY
ENOTSOCK.
ENoTTY

B seks

Message 0o long.

Network s down.

Network dropped connection due to reset
Network s unreachable.

il table overflow.

No buffer space available.

No such device.

No such file or directory.

Exec format error.

No record locks available.

Out of memory.

Protocol not available.

No space left on device.

Function not implemented.
Transport endpoint is not connected.
Not a directory.

Directory not empty.

Socket operation on non-socket.
Not a terminal.

e g el ey

images/00869.jpg
import csv.
Read a basic CSV fil
£ = open(*scmods csv®,
for r in cev.reader|(f]
lastnane, firstname, street, city, zip = T
print(*{0} {1) (2} {3} {4)".format ()}

)

Using a DictReader instead
£ = open("address.csv*)
r = csv.DictReader (£, ['lastnane’, 'firstname!, 'strest!, 'city’, 'zip'l}
for a in r:

print {*{firstnane} {lastname) {stret} [city} {zip)*.format (++a))

Write a basic CSV file
data = [
['Blues’, 'Elvood', '1060 W Addison', 'Chicago’, 'IL', '60613' 1,
['NeGurn', 'Jack, 4802 N Broadway','Chicago’, 'TL', '60640" 1,

open ("address . csv", "w")
cov_writer (£)
w.writerows (data)

£ olosat

. B,

images/00868.jpg
DictWriter (cavfile, fieldnames [, restval [, extrasaction [, dialect [,
w s+ fmtparams]]]])

images/00633.jpg
>>> todsy = datetime.datetime.now()
>>> today.ctime ()

"Thu Oct 20 11:10:10 2005'

+>> oneday = datetime.timedelta (dayss1)
+>> tomorrow = today + oneday

»>> tomorrow.ctime()

"Fri Oct 21 11:10:10 2005'

images/00875.jpg
import smtplib
from email mime.text import MIMBText

£rom email mime.multipart import MIMEMultipart
from email.mime.audio import MIMEAudio

sender = "jonemogodiggydie.net”
receiver= "davesdabeaz. con"

subject = "Faders up!®

body = "I never should have moved out of Texas. -J.\n*
audio = "TexasFuneral.mp3"

m = NIMEMultipart ()
nto"] receiver
n("fron”] sender

mi"subject’] = subject

. attach (MIMEText (body))

apart = WIMEAUdio(open(audio, "rb") .read() , "mpeg")

apart .add_header (*Content-Disposition®, "attachnent" , £1lenam
n.attach (apart)

Send the enail message
5 = sutplib.SHTP ()

5. connect ()

o sendnail (sender, [receiver] ,m.as_string (})
a.closel)

images/00632.jpg
Operation

td3 = td2 + tdl
td3 = td2 - tdl
td2 = tdl * i
td2 = i * ta2
td2 = tdi // i
t2 = -tal

td2 = +tal

abs (td)

tdl < td2

tdl <= td2

cdl == td2

tdl 1= td2

tdl > td2

CAT NG SAn

Description
Adds two time deltas.
Subtracts two time deltas
Multiplication by an integer

Floor division by an integer, i
Unary subtraction, addition

Absolute value
Comparison

images/00874.jpg
MIMEMultipart ([subtype [, boundary [, subparts [, **params]]]])

images/00635.jpg
Error Code
2281G

EACCES
EADDRINUSE
EADDRNOTAVAIL
EAFNOSUPPORT
EAGAIN
EALREADY
ZBADF

zBUSY

ECHILD
ECONNABORTED
ECONNREFUSED
ECONNRESET
EDEADLK
EDEADLOCK
EDESTADDRREQ
Epon

=pQuoT
EEXIST
EFAULT

EFBIG
EHOSTDOWN
EHOSTUNREACH
erLsEQ
EINPROGRESS
EINTR

EINVAL

210

ETsCoM
EISDIR

EL00P

ENFILE
EMLINK.

L pucach ol
Arg lst too long.

Permission denied.

Address already in use.

Cannot assign requested address.
Address family not supported by protocol.
Try again.

Operation already in progress.

Bad file number.

Device or resource busy.

No child processes.

Software caused connection abort.
Connection refused.

Connection reset by peer.

Resource deadiock would ocour.
File-locking deadiock error.

Destination address required.

Math argument out of domain of function.
Quota exceeded.

File exsts.

Bad address.

File 00 large.

Host is down.

No route to host.

Illegal byte sequence.

Operation now in progress.

Interrupted system call

Invalid argument.

1/0 error.

Transport endpoint is already connected.
Is a directory.

Too many symbolic links encountered.
oo many open files.

Joo many links.

images/00877.jpg
Method or Attribute
update (data)

- digest ()
a.hexdigest ()

copy ()

a.digest_size
d.block_size

Descr
Updates the hash with new data. data must be a byte string.
Repeated calls are the same as a single call with concatenated
data.

Retums the value of the digest as a raw byte string,

Retums a text string vith the value of the digest encoded as a
Series of hex digits.

Returs a copy of the digest. The copy preserves the intemal
state of the original digest.

Size of the resulting hash in bytes.

Internal block size of the hash algorithm in bytes.

images/00634.jpg
Varighles: that mst be: delined

TIOFFSET - Timezone offset in hours from UIC. For
1 exanple, US/CST is -6 hours
§ DSTWAME - Name Of timezone when DST is in effect

STONAVE - Name Of timezone when DST ot in effect

class SoneZone datetime.tzinfo) :
et utcoffset (self,dt)

return datetime. tinedelta (hours=TZOFFSET)

det dst(self, dt

+ self dst(dr)

4 is dst() is a function you must implement to ses
whether DST is in effect according to local timezone rules
is_dst (ar)
return datetime. tinedelta(hour

else

return datetine. tinedelta(o)
det tznane(self,dt):
is_dse(ac)

retum DSTNAME

else:
Py

images/00876.jpg
Function
nds ()
shal ()
sha224 ()
sha2s6 ()
sha384 ()
shas12()

Description
MDS hash (128 bits)

SHAL hash (160 bits)

SHA224 hash (224 bits)
SHA256 hash (256 bits)
SHA384 hash (384 bits)
SHAS12 hash (512 bits)

images/00629.jpg
+ ueerconfig,ind

+ Per-user settings

foutput]
logging=ots

tinput]

BASEDIR=/tmp.

images/00871.jpg
inport email

import sy
£ = open(oys.argviil, "r") # Open message file
m = email.nessage_from file(f) # Parse message

4 Brint short sumary of sender/recipient

print("Fron : ¥s* ¥ m(*Eron’])

print (*To $5° % mlco))

print ("Subject : ¥s* ¥ ml"subject])

print (*%)

if not m.is_muleipart(
4 Sinple message. Just print the payload
payload = m.get_payload (decode=True)
charset = m.get_content_charset ('is0-8859-1')
print (payload. decode (charset))

else
Multipart message. Walk over all subparts and
L. Print text/plain fragnents
4 2. Save any attachments

for s in mwalk():
Filename = 5.get_filenane()
if filenane:
print ("Saving attachnent: §s % filename)
data = 5.get_payload (decodexTrue)
open (filename, "wb") write (data)
else,
if 5.get_content_type() == 'text/plain’
payload = 5.get_payload (decodesTrue]
chatset = .get_content_charset ('150-8859-1'
Dbt (pay Toal, Asea [okareet)

images/00628.jpg
3% afg.get{’output’, " logtile’)
' /usexs [beazley/app/logs/app. 10g"
>> cfg.get('input!, 'infile')

' /usexs/beazley/app/inpu

>3> cfg.getboolean ('output’, 'logging')
True

images/00870.jpg
Operation
ninane]
m.keys ()
m.values ()
m.items ()

m.get (name [, def])

Len (m)
stx (m)

Description
Returns the value of header name.

Returs a fist of all message header names.
Returns a list of message header values.

Returns a list of tuples containing message header names and
values.

Returns header value for header name. def specifies a
default value to retum if not found.

Returns the number of message headers.
Tums the message into a string. The same as the
as_string () method.

Retums True if name is the name of a header in the mes-
sage.

images/00631.jpg
Operation

td = datel - date2
date2 = datel + td
date2 = datel - td
datel < date2
datel <= date2
datel == date2
datel 1= date2
datel > date2
datel s= dateZ

Description

Returns a tinedelta object

Adds a timedelta to a date
Subtracts a timedelta from a date
Date comparison

images/00873.jpg
MIMEApplication(data [, subtype [, encoder [, **params]]])

images/00630.jpg
>>> cfg.read (‘userconfig.ini’)
["usercontig. int']

>>> cfg.get ‘output, ‘logfile')
" /Users /beaz1ey/app/10gs /app
»>> cfg.get (‘output", *logging')
S

+>> cfg.get('input', 'intile’)
"/trp/input/initial dat

images/00872.jpg
m.set_param(param, value [, header [, requote [, charset [, language]]]])

images/00626.jpg
appconfig.ini
Coniguration file for my mondo application

foutput]

LOGFILE=4 (LOGDIR) s/app. 10g
LOGGTNG=0n

LOGDIR=% (BASEDIR) /10gs

Linput]
INFILE=$ (1NDIR) s/initial dat
Yt ingut

images/00625.jpg
.2 commmnt
i A coment
[sectioni]
namel = valuel
name2 = valuez

[secrion2]
i Alternative syntax for assigning values
name1: valuei
name2: valuez

images/00867.jpg
SIGLRSAdRE (OWvELLS |y TIBTUOERGE [IWetikey 1. FOSCVAL [y (HALSOC [,
w++ fmtparams]]11])

images/00627.jpg
fron Gontigpatesy ixpoxt contigvexeaty; ¥ Dee Trom Contigiareer-in Tython 2

4 Dictionary of default variable settings
defaults = |

"hasediz' : '/Users/veazley/app’
b

Create a Configparser object and read t!
ctg = ConfigParser (defaults)
PG Tead | Ao e i Ak 1§

e .ini file

