

[image: cover]

[image: title]

The Definitive Guide to HTML5

Copyright © 2011 by Adam Freeman

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-3960-4

ISBN-13 (electronic): 978-1-4302-3961-1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

 President and Publisher: Paul Manning
 Lead Editor: Ben Renow-Clarke
 Development Editor: Ewan Buckingham
 Technical Reviewers: Kevin Grant and Andy Olsen
 Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Morgan Ertel,
 Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,
 Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic
 Shakeshaft, Gwenan Spearing, Matt Wade, Tom Welsh
 Coordinating Editor: Jennifer L. Blackwell
 Copy Editors: Lori Cavanaugh, Roger LeBlanc, Ralph Moore, Vanessa Moore, Marilyn Smith, Kim
 Wimpsett
 Compositor: Bytheway Publishing Services
 Indexer: BIM Indexing & Proofreading Services
 Artist: SPI Global
 Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com. You will need to answer questions pertaining to this book in order to successfully download the code.

Dedicated to my lovely wife, Jacqui Griffyth
–Adam Freeman

Contents at a Glance

[image: Image] About the Author

[image: Image] About the Technical Reviewers

[image: Image] Acknowledgments

[image: Image] Part I: Getting Started

[image: Image] Chapter 1: Putting HTML5 in Context

[image: Image] Chapter 2: Getting Ready

[image: Image] Chapter 3: Getting Started with HTML

[image: Image] Chapter 4: Getting Started with CSS

[image: Image] Chapter 5: Getting Started with JavaScript

[image: Image] Part II: The HTML Elements

[image: Image] Chapter 6: HTML Elements in Context

[image: Image] Chapter 7: Creating HTML Documents

[image: Image] Chapter 8: Marking Up Text

[image: Image] Chapter 9: Grouping Content

[image: Image] Chapter 10: Creating Sections

[image: Image] Chapter 11: Table Elements

[image: Image] Chapter 12: Working with Forms

[image: Image] Chapter 13: Customizing the Input Element

[image: Image] Chapter 14: Other Form Elements and Input Validation

[image: Image] Chapter 15: Embedding Content

[image: Image] Part III: Cascading Style Sheets

[image: Image] Chapter 16: CSS in Context

[image: Image] Chapter 17: Using the CSS Selectors—Part I

[image: Image] Chapter 18: Using the CSS Selectors—Part II

[image: Image] Chapter 19: Using Borders and Backgrounds

[image: Image] Chapter 20: Working with the Box Model

[image: Image] Chapter 21: Creating Layouts

[image: Image] Chapter 22: Styling Text

[image: Image] Chapter 23: Transitions, Animations, and Transforms

[image: Image] Chapter 24: Other CSS Properties and Features

[image: Image] Part IV: Working with the DOM

[image: Image] Chapter 25: The DOM in Context

[image: Image] Chapter 26: Working with the Document Object

[image: Image] Chapter 27: Working with the Window Object

[image: Image] Chapter 28: Working with DOM Elements

[image: Image] Chapter 29: Styling DOM Elements

[image: Image] Chapter 30: Working with Events

[image: Image] Chapter 31: Using the Element-Specific Objects

[image: Image] Part V: Advanced Features

[image: Image] Chapter 32: Using Ajax – Part I

[image: Image] Chapter 33: Using Ajax—Part II

[image: Image] Chapter 34: Working with Multimedia

[image: Image] Chapter 35: Using the Canvas Element – Part I

[image: Image] Chapter 36: Using the Canvas Element – Part II

[image: Image] Chapter 37: Using Drag & Drop

[image: Image] Chapter 38: Using Geolocation

[image: Image] Chapter 39: Using Web Storage

[image: Image] Chapter 40: Creating Offline Web Applications

[image: Image] Index

Contents

[image: Image] About the Author

[image: Image] About the Technical Reviewers

[image: Image] Acknowledgments

[image: Image] Part I: Getting Started

[image: Image] Chapter 1: Putting HTML5 in Context

The History of HTML

The Introduction of JavaScript

The End of the Browser Wars

The Dominance of Plugins

The Emergence of Semantic HTML

The Trend: The HTML Standard Lags Behind HTML Use

Introducing HTML5

The New Standard(s)

Embracing Native Multimedia

Embracing Programmatic Content

Embracing the Semantic Web

The Current State of HTML5

Browser Support for HTML5

Site Support for HTML5

The Structure of This Book

Finding More Information About HTML5

Summary

[image: Image] Chapter 2: Getting Ready

Selecting a Browser

Selecting an HTML Editor

Selecting a Web Server

Obtaining Node.js

Obtaining the Multipart Module

Getting the Sample Code

Summary

[image: Image] Chapter 3: Getting Started with HTML

Using Elements

Understanding the Elements Used in This Chapter

Using Empty Elements

Using Self-Closing Tags

Using Void Elements

Using Element Attributes

Applying Multiple Attributes to an Element

Using Boolean Attributes

Using Custom Attributes

Creating an HTML Document

The Outer Structure

The Metadata

The Content

Understanding Parents, Children, Descendants, and Siblings

Understanding Element Types

Using HTML Entities

The HTML5 Global Attributes

The accesskey Attribute

The class Attribute

The contenteditable Attribute

The contextmenu Attribute

The dir Attribute

The draggable Attribute

The dropzone Attribute

The hidden Attribute

The Id Attribute

The lang Attribute

The spellcheck Attribute

The style Attribute

The tabindex Attribute

The title Attribute

Useful HTML Tools

Summary

[image: Image] Chapter 4: Getting Started with CSS

Defining and Applying a Style

Understanding the CSS Properties Used in This Chapter

Applying a Style Inline

Creating an Embedded Style

Using an External Stylesheet

Understanding How Styles Cascade and Inherit

Understanding Browser Styles

Understanding User Styles

Understanding How Styles Cascade

Tweaking the Order with Important Styles

Tie-Breaking with Specificity and Order Assessments

Understanding Inheritance

Working with CSS Colors

Specifying More Complex Colors

Understanding CSS Lengths

Working with Absolute Lengths

Working with Relative Lengths

Other CSS Units

Using CSS Angles

Using CSS Times

Testing for CSS Feature Support

Useful CSS Tools

Browser Style Reporting

Creating Selectors with SelectorGadget

Enhancing CSS with LESS

Using a CSS Framework

Summary

[image: Image] Chapter 5: Getting Started with JavaScript

Getting Ready to Use JavaScript

Using Statements

Defining and Using Functions

Defining Functions with Parameters

Defining Functions That Return Results

Using Variables and Types

Using the Primitive Types

Creating Objects

Working with Objects

Using JavaScript Operators

Using the Equality and Identity Operators

Explicitly Converting Types

Working with Arrays

Using an Array Literal

Reading and Modifying the Contents of an Array

Enumerating the Contents of an Array

Using the Built-in Array Methods

Handling Errors

Comparing the undefined and null Values

Checking Whether a Variable or Property Is null or undefined

Differentiating Between null and undefined

Useful JavaScript Tools

Using a JavaScript Debugger

Using a JavaScript Library

Summary

[image: Image] Part II: The HTML Elements

[image: Image] Chapter 6: HTML Elements in Context

Understanding the Sematic/Presentation Divide

Understanding How to Select Elements

Less Can Be More

Don't Abuse Elements

Be Specific and Consistent

Don't Make Assumptions About the Audience

Understanding Element Descriptions

Element Quick Reference

The Document and Metadata Elements

The Text Elements

Grouping Content

Sectioning Content

Creating Tables

Creating Forms

Embedding Content

Unimplemented Elements

Summary

[image: Image] Chapter 7: Creating HTML Documents

Setting Up the Basic Document Structure

The doctype Element

The html Element

The head Element

The body Element

Describing Documents with the Metadata Elements

Setting the Document Title

Setting the Base for Relative URLs

Using Metadata to Describe the Document

Defining CSS Styles

Denoting External Resources

Using the Scripting Elements

The script Element

The noscript Element

Summary

[image: Image] Chapter 8: Marking Up Text

Creating Hyperlinks

Creating External Hyperlinks

Creating Relative URLs

Creating Internal Hyperlinks

Targeting a Browsing Context

Annotating Content with the Basic Text Elements

Denoting Keywords and Product Names

Adding Emphasis

Denoting Foreign or Technical Terms

Showing Inaccuracies or Corrections

Denoting Important Text

Underlining Text

Adding Fine Print

Adding Superscript and Subscript

Creating Breaks

Forcing a Line Break

Indicating an Opportunity for a Safe Line Break

Representing Inputs and Outputs

Creating Citations, Quotations, Definitions, and Abbreviations

Denoting Abbreviations

Defining Terms

Quoting Content from Another Source

Citing the Title of Another Work

Working with the Language Elements

The ruby, rt, and rp Elements

The bdo Element

The bdi Element

Wrapping Up: The Other Text Elements

Denoting a Generic Span of Content

Highlighting Text

Denoting Added or Removed Content

Denoting Times and Dates

Summary

[image: Image] Chapter 9: Grouping Content

Understanding the Need to Group Content

Creating Paragraphs

Using the div Element

Working with Preformatted Content

Quoting from Other Sources

Adding Thematic Breaks

Grouping Content into Lists

The ol Element

The ul Element

The li Element

Creating Description Lists

Creating Custom Lists

Dealing with Figures

Summary

[image: Image] Chapter 10: Creating Sections

Adding Basic Headings

Hiding Subheadings

Creating Sections

Adding Headers and Footers

Adding Navigation Blocks

Working with Articles

Creating Sidebars

Providing Contact Information

Creating a Details Section

Summary

[image: Image] Chapter 11: Table Elements

Creating a Basic Table

Adding Headers Cells

Adding Structure to a Table

Denoting the Headings and the Table Body

Adding a Footer

Creating Irregular Tables

Associating Headers with Cells

Adding a Caption to a Table

Working with Columns

Calling Out Individual Columns

Applying Borders to the table Element

Summary

[image: Image] Chapter 12: Working with Forms

Creating a Basic Form

Defining the Form

Seeing the Form Data

Configuring the Form

Configuring the Form action Attribute

Configuring the HTTP method Attribute

Configuring the Data Encoding

Controlling Form Completion

Specifying a Target for the Form Response

Setting the Name of the Form

Adding Labels to a Form

Automatically Focusing on an input Element

Disabling Individual input Elements

Grouping Form Elements Together

Adding a Descriptive Label to a fieldset Element

Disabling Groups of Inputs Using the fieldset Element

Using the button Element

Using the button Element to Submit Forms

Using the button Element to Reset Forms

Using button as a Generic Element

Working with Elements Outside the Form

Summary

[image: Image] Chapter 13: Customizing the Input Element

Using the input Element for Text Input

Specifying the Element Size

Setting Values and Using Placeholders

Using a Data List

Creating Read-Only and Disabled Text Boxes

Specifying Text Directionality

Using the input Element for Password Input

Using the input Element to Create Buttons

Using the input Element to Restrict Data Entry

Using the input Element to Obtain a Number

Using the input Element to Obtain a Number in a Given Range

Using the input Element to Obtain a Boolean Response

Using the input Element to Create Fixed Choices

Using the input Element to Obtain Formatted Strings

Using the input Element to Obtain Times and Dates

Using the input Element to Obtain a Color

Using the input Element to Obtain Search Terms

Using the input Element to Create Hidden Data Items

Using the input Element to Create Image Buttons and Maps

Using the input Element to Upload Files

Summary

[image: Image] Chapter 14: Other Form Elements and Input Validation

Using the Other Form Elements

Creating Lists of Options

Capturing Multiple Lines of Text

Denoting the Result of a Calculation

Creating Public/Private Key Pairs

Using Input Validation

Ensuring the User Provides a Value

Ensuring a Value Is Within Bounds

Ensuring a Value Matches a Pattern

Ensuring a Value Is an E-mail Address or URL

Disabling Input Validation

Summary

[image: Image] Chapter 15: Embedding Content

Embedding an Image

Embedding an Image in a Hyperlink

Creating a Client-Side Image Map

Embedding Another HTML Document

Embedding Content Using Plugins

Using the embed Element

Using the object and param Elements

Other Uses for the object Element

Using the object Element to Embed Images

Using the object Element to Create Client-Side Image Maps

Using the object Element as a Browsing Context

Embedding Numeric Representations

Showing Progress

Showing a Ranged Value

Other Embedding Elements

Embedding Audio and Video

Embedding Graphics

Summary

[image: Image] Part III: Cascading Style Sheets

[image: Image] Chapter 16: CSS in Context

Understanding CSS Standardization

Understanding the Box Model

Selectors Quick Reference

Properties Quick Reference

Border and Background Properties

Box Model Properties

Layout Properties

Text Properties

Transition, Animation, and Transform Properties

Other Properties

Summary

[image: Image] Chapter 17: Using the CSS Selectors—Part I

Using the Basic CSS Selectors

Selecting All Elements

Selecting Elements by Type

Selecting Elements by Class

Selecting Elements by ID

Selecting Elements by Attribute

Combining Selectors

Creating Selector Unions

Selecting Descendant Elements

Selecting Child Elements

Selecting Sibling Elements

Using Pseudo-Element Selectors

Using the ::first-line Selector

Using the ::first-letter Selector

Using the :before and :after Selectors

Using the CSS Counter Feature

Summary

[image: Image] Chapter 18: Using the CSS Selectors—Part II

Using the Structural Pseudo-Class Selectors

Using the :root Selector

Using the Child Selectors

Using the nth-Child Selectors

Using the UI Pseudo-Class Selectors

Selecting Enabled/Disabled Elements

Selecting Checked Elements

Selecting Default Elements

Selecting Valid and Invalid input Elements

Selecting input Elements with Range Limitations

Selecting Required and Optional input Elements

Using the Dynamic Pseudo-Class Selectors

Using the :link and :visited Selectors

Using the :hover Selector

Using the :active Selector

Using the :focus Selector

Other Pseudo-Selectors

Using the Negation Selector

Using the :empty Selector

Using the :lang Selector

Using the :target Selector

Summary

[image: Image] Chapter 19: Using Borders and Backgrounds

Applying a Border

Defining the Border Width

Defining the Border Style

Applying a Border to a Single Side

Using the border Shorthand Properties

Creating a Border with Rounded Corners

Using Images As Borders

Setting Element Backgrounds

Setting the Background Color and Image

Setting the Background Image Size

Setting the Background Image Position

Setting the Attachment for the Background

Setting the Background Image Origin and Clipping Style

Using the background Shorthand Property

Creating a Box Shadow

Using Outlines

Summary

[image: Image] Chapter 20: Working with the Box Model

Applying Padding to an Element

Appling Margin to an Element

Controlling the Size of an Element

Setting the Sized Box

Setting Minimum and Maximum Sizes

Dealing with Overflowing Content

Controlling Element Visibility

Setting an Element Box Type

Understanding Block-Level Elements

Understanding Inline-Level Elements

Understanding Inline-Block Elements

Understanding Run-In Elements

Hiding Elements

Creating Floating Boxes

Preventing Floating Elements from Stacking Up

Summary

[image: Image] Chapter 21: Creating Layouts

Positioning Content

Setting the Position Type

Setting the Z-Order

Creating Multicolumn Layouts

Creating Flexible Box Layouts

Creating a Simple Flexbox

Flexing Multiple Elements

Dealing with Vertical Space

Dealing with Maximum Sizes

Creating Table Layouts

Summary

[image: Image] Chapter 22: Styling Text

Applying Basic Text Styles

Aligning and Justifying Text

Dealing with Whitespace

Specifying Text Direction

Specifying the Space Between Words, Letters, and Lines

Controlling Word Breaks

Indenting the First Line

Decorating and Transforming Text

Creating Text Shadows

Working with Fonts

Selecting a Font

Setting the Font Size

Setting the Font Style and Weight

Using Web Fonts

Summary

[image: Image] Chapter 23: Transitions, Animations, and Transforms

Using Transitions

Creating Inverse Transitions

Selecting How Intermediate Values Are Calculated

Using Animations

Working with Key Frames

Setting the Repeat Direction

Understanding the End State

Applying Animations to the Initial Layout

Reusing Key Frames

Applying Multiple Animations to Multiple Elements

Stopping and Starting Animations

Using Transforms

Applying a Transform

Specifying an Origin

Animating and Transitioning a Transform

Summary

[image: Image] Chapter 24: Other CSS Properties and Features

Setting Element Color and Transparency

Setting the Foreground Color

Setting Element Opacity

Styling Tables

Collapsing Table Borders

Configuring Separated Borders

Dealing with Empty Cells

Positioning the Caption

Specifying the Table Layout

Styling Lists

Setting the List Marker Type

Using an Image As a List Marker

Positioning the Marker

Styling the Cursor

Summary

[image: Image] Part IV: Working with the DOM

[image: Image] Chapter 25: The DOM in Context

Understanding the Document Object Model

Understanding DOM Levels and Compliance

Testing for DOM Features

The DOM Quick Reference

The Document Members

The Window Members

The HTMLElement Members

DOM CSS Properties

The DOM Events

Summary

[image: Image] Chapter 26: Working with the Document Object

Working with Document Metadata

Getting Information from the Document

Using the Location Object

Reading and Writing Cookies

Understanding the Ready State

Getting DOM Implementation Details

Obtaining HTML Element Objects

Using Properties to Obtain Element Objects

Using Array Notation to Obtain a Named Element

Searching for Elements

Chaining Searches Together

Navigating the DOM Tree

Summary

[image: Image] Chapter 27: Working with the Window Object

Obtaining a Window Object

Getting Information about the Window

Interacting with the Window

Prompting the User

Getting General Information

Working with the Browser History

Navigating Within the Browsing History

Inserting an Entry into the History

Adding an Entry for a Different Document

Storing Complex State in the History

Replacing an Item in the History

Using Cross-Document Messaging

Using Timers

Summary

[image: Image] Chapter 28: Working with DOM Elements

Working with Element Objects

Working with Classes

Working with Element Attributes

Working with Text

Modifying the Model

Creating and Deleting Elements

Duplicating Elements

Moving Elements

Comparing Element Objects

Working with HTML Fragments

Inserting an Element into a Text Block

Summary

[image: Image] Chapter 29: Styling DOM Elements

Working with Stylesheets

Getting Basic Information About Stylesheets

Working with Media Constraints

Disabling Stylesheets

Working with Individual Styles

Working with Element Styles

Working with CSSStyleDeclaration Objects

Working with the Convenience Properties

Working with the Regular Properties

Using the Fine-Grained CSS DOM Objects

Working with Computed Styles

Summary

[image: Image] Chapter 30: Working with Events

Using Simple Event Handlers

Implementing a Simple Inline Event Handler

Implementing a Simple Event-Handling Function

Using the DOM and the Event Object

Distinguishing Events by Type

Understanding Event Flow

Working with Cancellable Events

Working with the HTML Events

The Document and Window Events

Working with Mouse Events

Working with Focus Events

Working with Keyboard Events

Working with Form Events

Summary

[image: Image] Chapter 31: Using the Element-Specific Objects

The Document and Metadata Objects

The base Element

The body Element

The link Element

The meta Element

The script Element

The style Element

The title Element

Other Document and Metadata Elements

The Text Elements

The a Element

The del and ins Elements

The q Element

The time Element

Other Text Elements

The Grouping Elements

The blockquote Element

The li Element

The ol Element

Other Grouping Elements

The Section Elements

The details Element

Other Section Elements

The Table Elements

The col and colgroup Elements

The table Element

The thead, tbody, and tfoot Elements

The th Element

The tr Element

Other Table Elements

The Form Elements

The button Element

The datalist Element

The fieldset Element

The form Element

The input Element

The label Element

The legend Element

The optgroup Element

The option Element

The output Element

The select Element

The textarea Element

The Content Elements

The area Element

The embed Element

The iframe Element

The img Elements

The map Element

The meter Element

The object Element

The param Element

The progress Element

Summary

[image: Image] Part V: Advanced Features

[image: Image] Chapter 32: Using Ajax – Part I

Getting Started with Ajax

Dealing with the Response

The Lowest Common Dominator: Dealing with Opera

Using the Ajax Events

Dealing with Errors

Dealing with Setup Errors

Dealing with Request Errors

Dealing with Application Errors

Getting and Setting Headers

Overriding the Request HTTP Method

Disabling Content Caching

Reading Response Headers

Making Cross-Origin Ajax Requests

Using the Origin Request Header

Advanced CORS Features

Aborting Requests

Summary

[image: Image] Chapter 33: Using Ajax—Part II

Getting Ready to Send Data to the Server

Defining the Server

Understanding the Problem

Sending Form Data

Sending Form Data Using a FormData Object

Creating a FormData Object

Modifying a FormData Object

Sending JSON Data

Sending Files

Tracking Upload Progress

Requesting and Processing Different Content Types

Receiving HTML Fragments

Receiving XML Data

Receiving JSON Data

Summary

[image: Image] Chapter 34: Working with Multimedia

Using the video Element

Preloading the Video

Displaying a Placeholder Image

Setting the Video Size

Specifying the Video Source (and Format)

The track Element

Using the audio Element

Working with Embedded Media via the DOM

Getting Information About the Media

Assessing Playback Capabilities

Controlling Media Playback

Summary

[image: Image] Chapter 35: Using the Canvas Element – Part I

Getting Started with the Canvas Element

Getting a Canvas Context

Drawing Rectangles

Setting the Canvas Drawing State

Setting the Line Join Style

Setting the Fill & Stroke Styles

Using Gradients

Using a Radial Gradient

Using Patterns

Saving and Restoring Drawing State

Drawing Images

Using Video Images

Using Canvas Images

Summary

[image: Image] Chapter 36: Using the Canvas Element – Part II

Drawing Using Paths

Drawing Paths with Lines

Drawing Rectangles

Drawing Arcs

Using the arcTo Method

Using the arc Method

Drawing Bezier Curves

Drawing Cubic Bezier Curves

Drawing Quadratic Bezier Curves

Creating a Clipping Region

Drawing Text

Using Effects and Transformations

Using Shadows

Using Transparency

Using Composition

Using a Transformation

Summary

[image: Image] Chapter 37: Using Drag & Drop

Creating the Source Items

Handling the Drag Events

Creating the Drop Zone

Receiving the Drop

Working with the DataTransfer Object

Filtering Dragged Items by Data

Dragging and Dropping Files

Summary

[image: Image] Chapter 38: Using Geolocation

Using Geolocation

Getting the Current Position

Handling Geolocation Errors

Specifying Geolocation Options

Monitoring the Position

Summary

[image: Image] Chapter 39: Using Web Storage

Using Local Storage

Listening for Storage Events

Using Session Storage

Summary

[image: Image] Chapter 40: Creating Offline Web Applications

Defining the Problem

Defining the Manifest

Specifying Manifest Sections

Defining the Fallback Section

Defining the Network Section

Detecting the Browser State

Working with the Offline Cache

Making the Update

Getting the Update

Applying the Update

Summary

[image: Image] Index

About the Author

[image: Image] [image: Image] Adam Freeman is an experienced IT professional who has held senior positions in a range of companies, most recently serving as Chief Technology Officer and Chief Operating Officer of a global bank. Now retired, he spends his time writing and running. This is his thirteenth technology book.

About the Technical Reviewers

[image: Image] [image: Image] Kevin Grant is a full time PHP Developer, living and working in the Sheffield area, UK. His current role involves maintaining Zend Framework based websites for clients (thanks to a book on ZF from Apress!) and during the day he enjoys a mixture of coding, server admin, performance profiling, and/or advising others on implementing scalability technologies like memcached or load balancing. On weekends he spends time with his family, occasionally does odd jobs around the house and frequently complains about not going climbing enough, despite the proximity of several local climbing walls and crags. His first computer was a ZX Spectrum 48K+ but his all time favorite game remains Parsec.

[image: Image] [image: Image] Andy Olsen is a freelance consultant based in the UK, and spends most of his working time immersed in web/mobile technologies, .NET, and Java. Andy had been working in IT for 25 years (where do the years go?) and would like to play professional football when he grows up. Andy lives by the seaside in Swansea in South Wales with his family, and enjoys running, skiing, and watching the Swans. You can reach Andy at andyo@olsensoft.com.

Acknowledgments

I would like to thank everyone at Apress for working so hard to bring this book to print. In particular, I would like to thank Jennifer Blackwell for keeping me on track (and for putting up with my refusal to use SharePoint), and Ewan Buckingham and Ben Renow-Clarke for commissioning and editing this book. I would also like to thank Kevin, Andy, Roger, Vanessa, Lori, Ralph, Kim, and Marilyn for their reviews and copyediting.

P A R T I

Getting Started

Before you can begin to explore HTML5, you have some preparation to do. In the next five chapters, I'll describe the structure of the book, show you how to get set up for HTML5 development, and give you a refresher in basic HTML, CSS, and JavaScript.

C H A P T E R 1

Putting HTML5 in Context

The Hypertext Markup Language (HTML) has been around since the early 1990s. My earliest encounter was somewhere around 1993 or 1994, when I was working at a university research lab not far from London. There was only one browser—NCSA Mosaic—and the number of web servers could be counted on one hand.

When I think back to those days, I wonder why we were so excited about HTML and the World Wide Web. (We had to laboriously type all three words in those days. There wasn't the critical mass or current sense of importance to refer to just “the Web.”

Everything was very basic. I remember some images of gemstones that we could watch load…slowly. This was before the broadband revolution and the entire university had the kind of bandwidth that is common on a mobile phone these days. But we were excited. Grant proposals were hurriedly rewritten to embrace the new world, and there was a real sense that the world of technology had fractured into before-Web and after-Web periods, even if all we could do was see pictures of a coffee pot in another university not far from London (but too far to go for coffee).

Since then, the Web has become indistinguishable from the Internet for many users and we are long past the point of being excited about pictures of gems. Along the way, HTML has been extended, enhanced, twisted, tortured, fought over, litigated over, ignored, embraced, denigrated for being too simple, hailed as being the future and, ultimately, settling into its current position as part of the indispensable plumbing in the daily lives of billions of people.

This book is about HTML5—the latest version of the HTML standard and an attempt to bring order, structure, and enhancement to a critical technology that has finally matured after years of difficult adolescence.

The History of HTML

All HTML books have a section titled The History of HTML, and most use this section to give a careful timeline of the HTML standard from the moment it was created until the present day.

If you need that information, I encourage you to find it on Wikipedia—although it isn't very interesting or useful. To understand how HTML has been shaped and how we ended up at HTML5, we care about a small number of key turning points and one long-lived trend.

The Introduction of JavaScript

JavaScript (which, despite the name, has very little to do with the Java programming language) was developed by a company called Netscape. It marked the start of client-side scripting embedded in the web browser, moving HTML from a carrier of static content into something a little richer. I say a little richer because it took a while for the kind of complex interactions we see in the browser today to emerge.

JavaScript isn't part of the core HTML specification, but the association between web browsers, HTML, and JavaScript is so close that it makes no sense to tease them apart. The HTML5 specification assumes that JavaScript is available, and we need to use JavaScript to use some of the most interesting new features that have been added to HTML5.

The End of the Browser Wars

There was a period where the browser market was hotly contested. The main competitors were Microsoft and Netscape, and these companies competed by adding unique features to their web browsers. The idea was that these features would be so compelling that web developers would build their content so that it would work only on a particular browser—and this content would be so compelling that users would prefer one browser over another and market domination would follow.

It didn't quite work out that way. Web developers ended up using only features that were available in all browsers or coming up with elaborate workarounds that used roughly comparable features in each. It was pretty painful, and web development still bears the scars of this period.

In the end, Microsoft was found guilty of antitrust violations after giving away Internet Explorer for free, undercutting Netscape's paid-for Navigator product. Microsoft has been blamed for Netscape going out of business. There may be some truth in this, but I consulted for Netscape for 18 months or so during this period, and I have never encountered a company so bent on self-destruction. Some companies are destined to be lessons to others, and Netscape is one such company.

The destruction of Netscape and the penalties given to Microsoft ended the browser wars and set the scene for standards-based web browsing. The HTML specification was improved, and adherence to it became the norm. These days, browsers compete on their level of compliance to the standards—a complete turnabout that has made life easier for developers and users alike.

The Dominance of Plugins

Plugins have been a good thing for the web. They have allowed companies to provide support for advanced features and rich content that cannot be easily achieved using HTML alone. Some of these plugins have become so feature rich and so widely installed that many sites are just vehicles for that plugin's content. This is especially true for Adobe Flash, and I often encounter sites that are completely implemented in Flash. There is nothing intrinsically wrong with this, but it does mean that the browser and HTML are not being used beyond their ability to act as a Flash container.

Plugins make the creators of browsers uncomfortable because it puts control in the hands of the plugin maker, and one key area of enhancement in HTML5 is an attempt to put the kind of rich content that Flash is used for directly into the browser. Two companies in particular are driving the move away from Flash: Apple and Microsoft. Apple does not support Flash in its iOS, and Microsoft has disabled Flash from the Metro-style version of Internet Explorer in Windows 8.

The Emergence of Semantic HTML

Early versions of the HTML standard didn't do much to separate the significance of content from the way it was presented. If you wanted to indicate that a span of text was important, you applied an HTML element that made the text bold. It was up to the user to make the association that bold content is important content. This is something that humans do very easily and that automated agents find very hard to do. The automated processing of content has become important in the years since HTML was first introduced, and there has been a gradual effort to separate the significance of HTML elements from the way that content is presented in the browser.

The Trend: The HTML Standard Lags Behind HTML Use

The process for creating a standard is always a long one, especially for something as widely used as HTML. There are a lot of stakeholders, and each wants to influence new versions of the standard to their commercial benefit or particular point of view. Standards are not laws, and standards bodies fear fragmentation above all else—which leads to a lot of time-consuming reconciliation around how potential features and enhancements may work.

The standards body for HTML is the World Wide Web Consortium (known as W3C). They have a difficult job, and it takes a long time for a proposal to become a standard. It takes a very long time for a revision to the core HTML specification to be approved.

The consequence of the lengthy standards process is that the W3C has always been following the curve, trying to standardize what has already become accepted practice. The HTML specification has been a reflection of leading-edge thinking about web content from several years ago. This has reduced the importance of the HTML standard because the real innovation was happening away from the W3C, partly in the browsers and partly in plugins.

Introducing HTML5

HTML5 isn't just the latest version of the HTML specification. It is also an umbrella term that describes a set of related technologies that are used to make modern, rich web content. I'll introduce you to these technologies in later chapters, but the three most important ones are the core HTML5 specification, Cascading Style Sheets (CSS), and JavaScript.

The core HTML5 specification defines the elements we use to mark up content, indicating its significance. CSS allows us to control the appearance of marked-up content as it is presented to the user. JavaScript allows us to manipulate the contents of an HTML document, respond to user interaction, and take advantage of some programming-centric features of the new HTML5 elements.

[image: Image] Tip Don't worry if none of this makes sense—I'll introduce you to HTML elements in Chapter 3, familiarize you with CSS in Chapter 4, and refresh your JavaScript in Chapter 5.

Some people (picky, obsessive, detail-oriented people) will point out that HTML5 refers to just the HTML elements. Ignore these people—they are missing a fundamental shift in the nature of web content. The technologies used in web pages have become so interconnected that you need to understand them all to create content. If you use HTML elements without CSS, you create content that users find hard to parse. If you use HTML and CSS without JavaScript, you miss the opportunity to give users immediate feedback on their actions and the ability to take advantage of some of the new advanced features that HTML5 specifies.

The New Standard(s)

To deal with the long standardization process and the way that the standard lags behind common usage, HTML5 and related technologies are defined by a larger number of small standards. Some are just a handful of pages focused on a very particular aspect of a single feature. Others, of course, are still hundreds of pages of dense text that cover whole swathes of functionality.

The idea is that smaller groups can cooperate in developing and standardizing features that are important to them and that less contentious topics can be standardized without being held up by arguments about other features.

There are some positive and negative consequences to this approach. The positives are that standards are being developed more quickly. The main negative is that it is hard to keep track of all of the different standards in development and how they relate to one another. The quality of the specifications has also fallen—there is ambiguity in some of standards, which leads to inconsistent implementations in the browsers.

Perhaps the biggest drawback is that there is no baseline against which HTML5 compliance can be assessed. We are still in the early days, but we can't rely on features being implemented in all of the browsers that our users might employ. This makes adopting features problematic and requires a careful assessment of how widely adopted a standard has become. The W3C has released an official HTML5 logo, shown in Figure1-1, but it doesn't indicate support for any particular aspect of the HTML5 standard or its related technologies.

[image: Image]

Figure 1-1. The official W3C HTML5 logo

Embracing Native Multimedia

A key enhancement in HTML5 is the support for playing video and audio files natively in the browser that is, without needing a plugin). This is one part of the response from the W3C to the dominance of plugins, and the integration between the native multimedia support and the rest of the HTML features offers a lot of promise. I explain these features in Chapter 34.

Embracing Programmatic Content

One of the biggest changes in HTML5 is the addition of the canvas element, a feature that I describe in Chapters 35 and 36. The canvas is another response to the domination of plugins, and it provides a general-purpose drawing surface we can use to achieve some of the tasks that Adobe Flash is commonly used for.

Part of the significance of this feature arises because we have to use JavaScript to work with the canvas element. This makes programming a first-class activity in an HTML document, which is an important change.

Embracing the Semantic Web

HTML5 introduces a number of features and rules to separate the meaning of elements from the way that content is presented. This is an important concept in HTML5, and I cover it in more detail in Chapter 6. This is a theme I will return to several times in this book, and it marks a new maturity in HTML and reflects the diversity of ways in which HTML content is produced and consumed. This change (which has been gradually introduced in earlier versions of HTML) creates slightly more work for the web developer because we have to mark up content and then define its presentation, but there are some useful new enhancements to make this process less burdensome.

The Current State of HTML5

The core HTML5 standard is still under development, and it is not expected to be finalized for some time. This means there are likely to be some changes between the features I describe in this book and the final standard. However, the standard is unlikely to be finished for several years and the changes are likely to be minor.

Browser Support for HTML5

The most popular web browsers already implement many HTML5 features, and throughout this book I show you how examples are displayed by viewing HTML5 documents in browsers such as Google Chrome or Mozilla Firefox. Not all browsers support all features, however, and it is worth checking whether support exists before using a feature in a real project. Some browsers, such as Chrome ad Firefox, are updated on an almost continuous basis. I have lost count of the number of browser updates I applied as I wrote this book, and each update brings some new feature or bug fix. This means I have been unable to give definitive information about which features are supported by which browsers. But given the fragmented nature of the HTML5 standards, it makes sense to check for features using a JavaScript library such as Modernizr (http://www.modernizr.com). Modernizr allows you to programmatically check to see if the browser the user has employed supports key HTML5 features, giving you the ability to make decisions in the document about which features you rely on.

If you want to plan in advance, I recommend the site When Can I Use? (http://caniuse.com), which provides detailed information about browser support and adoption rates and seems to be very well maintained.

Site Support for HTML5

The number of sites that use HTML5 features is growing rapidly. Some are simply demonstration sites, showing how a given HTML5 features appears, but there is an increasing number of more substantial sites that can take advantage of an HTML5 browser. A good example is YouTube, which now offers native HTML5 video support—although, of course, Flash video is used for older browsers.

The Structure of This Book

I have split this book into five parts. This part, Part I, contains the information you need to get ready to use this book and a refresher in basic HTML, CSS, and JavaScript. If you haven't done any web development recently, you will find these chapters bring you up to speed.

Part II covers the HTML elements, including those that are new or modified in HTML5. Each element is described and demonstrated, and you'll find information about the default presentation for elements.

Part III covers Cascading Style Sheets (CSS). These chapters describe all of the CSS selectors and properties available for styling content, and you'll find plenty of examples and demonstrations to help put everything in context. In these chapters, I cover the latest version of CSS (CSS3), but I also show you which features were introduced in CSS1 and CSS2.

Part IV describes the Document Object Model (DOM), which allows you to explore and manipulate HTML content using JavaScript. The DOM contains a set of features that are essential to creating rich web content.

Part V contains information about advanced HTML5 features, such as Ajax, multimedia, and the canvas element. These are features that require more programming skill but offer significant enhancements to your web content. You don't have to use these features to take advantage of HTML5, but they are worth considering for complex projects.

[image: Image] Note One HTML5-related technology I have not covered in this book is Scalable Vector Graphics (SVG). SVG allows you to create two-dimensional vector graphics using either markup or JavaScript. SVG is not a topic to be taken on lightly. If you are interested in SVG, I recommend SVG Programming by Kurt Cagle, which is also published by Apress.

Finding More Information About HTML5

I tried to be comprehensive in this book, but it is inevitable that you will encounter a problem I don't address or have a question that I don't answer. When this happens, the first place to look is the W3C site (w3c.org). Here you can peruse the standards and work out what should be happening in the browser. The standards can be hard to read (and tend toward being self-referential), but they offer some useful insights.

A friendlier, but less authoritative, resource is the Mozilla Developer Network (developer.mozilla.org). There is a lot of useful information available about the different HTML features, including some good HTML5 content.

Summary

In this chapter, I provided some context in which to explain HTML5, setting out the key turning points in the history of HTML and explaining how HTML5 attempts to address them. In the next chapter, I'll tell you how to prepare for working through the many examples in this book. After that, we will start our exploration of HTML5, beginning with the HTML elements themselves.

C H A P T E R 2

Getting Ready

Before you start, you need to do a small amount of preparation. You need some basic tools for all web development, and there is one piece of software you will need if you want to re-create some of the advanced examples later in the book.

The good news about web development tools is that there are plenty of free and open-source choices available. All of the tools I used when developing the examples for this book are available freely. Once you have made you selections, you can begin your HTML5 journey.

Selecting a Browser

The most important tool you'll need for this book is a browser. Throughout this book, I refer to the mainstream browsers, by which I mean the desktop versions of the following:

	Google Chrome

	Mozilla Firefox

	Opera

	Apple Safari

	Internet Explorer

These browsers are the most widely used, and the desktop versions are more frequently updated and more feature rich than their mobile counterparts. Your preferred browser may not be on this list, which doesn't mean it won't support the HTML5 features I demonstrate, but my advice is to stick to one of the browsers on the list.

My favorite browser is Google Chrome. I like its simplicity, and it has pretty good developer tools. For this reason, most of the figures in this book show Google Chrome displaying an HTML5 document. If you are not a fan of Chrome, I suggest Firefox or Opera because their HTML5 support is on a par with Chrome. Safari and Internet Explorer seem to lag behind.

Internet Explorer is in an interesting state at the moment. As I write this, Internet Explorer 9 is in production and has some reasonable support for basic HTML5 features. There is a preview version of Internet Explorer 10, which is much improved, but it is still missing support for key features. However, it is becoming clear that Microsoft's proposition for Windows 8 includes application development based on HTML5 and JavaScript, which suggests that we can expect good levels of HTML5 support in the Internet Explorer engine as we approach the Windows 8 release.

[image: Image] Note Please don't write to me explaining why your preferred browser is better than my preferred browser. I am sure your browser is lovely and your choice is well made, and I wish you many years of browsing happiness. If you really can't let this go, I am prepared to sell you a remediation kit for only $50—it contains a pack of paper, a pair of scissors, and some glue. These will allow you to print and cut out a template you can stick over all of the figures in this book, showing your browser instead of Chrome. I think you will agree that this is a small price to pay for peace of mind.

Selecting an HTML Editor

You will need an editor to write HTML documents. Any text editor will do, but I recommend an editor that has specific support for HTML (and ideally HTML5). These usually offer syntax checking for your markup, autocomplete to reduce the amount of typing you have to do, and a preview panel that shows you the effect of changes as you type.

For this book, I used Komodo Edit from ActiveState (available from activestate.com)—a free, open-source editor that has some pretty good HTML support and which suits my personal preferences about how an editor should work. I have no relationship with ActiveState and no reason to promote Komodo Edit, other than I have found it useful for this book and some other projects.

Selecting a Web Server

A web server isn't essential to follow this book, but some features work differently if you load the HTML documents from disk. Any web server is suitable for the examples in this book, and plenty of free and open-source options are available. I used IIS 7.5, which is Microsoft's web and application server. This isn't a free option, but I have a development server that runs Windows Server 2008 R2, so I already had all the features I needed.

Obtaining Node.js

For a few of the chapters in this book, I needed to write code for a back-end server that the web browser could communicate with. I chose Node.js for this task. Node.js has become something of a phenomenon recently. It offers simple, event-driven I/O, which is ideally suited for high-volume, low-data-rate web requests.

You don't need to know about or worry about any of this. The reason I chose Node.js is that I write server scripts using JavaScript, which means that I don't have to introduce a second programming language in this book. I am not going to explain how Node.js works—or even explain the detail of my server scripts—but you should be able to use your JavaScript skills to figure out how they work if you can't treat them as a black box.

You can download Node.js from nodejs.org. I used version 0.4.11 in this book. Node.js seems to be evolving very quickly, so you may find that there are later versions available by the time you read this. I use Windows, and I obtained the precompiled binaries from http://node-js.prcn.co.cc.

Obtaining the Multipart Module

Not all of the functionality you need is included in the core Node.js package. You also need the multipart module, which is available from https://github.com/isaacs/multipart-js. Follow the instructions to install this module—you will need it for Chapters 32 and 33 when we take a look at Ajax.

Getting the Sample Code

All of the example HTML documents I create in this book are available free of charge from apress.com. You will find the examples organized by chapter, and they are provided with their supported resources (except for the video and audio content I used in Chapter 34, because clearing media content is very difficult).

Summary

In this chapter, I outlined the simple steps required to get ready for the chapters that follow. Web development requires only a few simple tools, the most important of which is the browser and all of which can be obtained free of charge. The next three chapters refresh your basic skills in HTML, Cascading Style Sheets (CSS), and JavaScript.

C H A P T E R 3

Getting Started with HTML

Every developer knows at least something about HTML. It has become all-pervasive in recent years, and the chances are good that you have at least seen some HTML, even if you have never needed to write any. In this chapter, I am going back to the basics of HTML to make sure you get the fundamentals right—beginning with what HTML is for and how it works. I'll define the basic terminology HTML uses and show you some of the core HTML elements that pretty much every web page uses.

As its name suggests, HTML is a markup language. This markup takes the form of elements applied to content, typically text. In the following sections, I'll explain the different aspects of HTML elements, explain how you can configure the elements with attributes, and describe the set of global attributes that can be used on all HTML elements. Table 3-1 provides the summary for this chapter.

[image: Image]

[image: Image]

Using Elements

Listing 3-1 shows a simple example of an HTML element applied to some text.

Listing 3-1. Example of an HTML Element

I like <code> apples</code> and oranges.

I have shown the element in bold—it has three parts. The first two are called tags. The start tag is <code>, and the end tag is </code>. Between the tags is the element's content (in this case, the word apples). Together, the tags and the content form the code element, as shown in Figure 3-1.

[image: Image]

Figure 3-1. The anatomy of an HTML element

Elements are the way you tell the browser about your content. The effect of the element is applied to the element contents. Each of the HTML elements has a different and quite specific meaning—the code element, for example, represents a fragment of computer code.

[image: Image] Tip Element names are not case sensitive—browsers will recognize <CODE> and <code>, and even <CoDe>, as start tags for the code element. In general, the convention is to adopt a single case format and stick to it. In recent years, the more common style has been to use lowercase characters throughout. This is the format I will use in this book.

HTML defines different types of element that fulfill various roles in an HTML document—the code element is an example of a sematic element. Semantic elements allow us to define the meaning of our content and the relationships between different parts of the content. I'll explain more about this in Chapter 8. You can see the effect of the code element in Figure 3-2.

[image: Image]

Figure 3-2. The effect of the code element displayed in a broswer

Notice that the browser doesn't display the element tags—its job is to interpret your HTML and render a view to the user that takes your elements into account.

THE SEPARATION OF PRESENTATION AND CONTENT

Some HTML elements have an impact on presentation—meaning that when the browser encounters one of these elements, it will change the way the content is displayed to the user. The code element is a good example. As Figure 3-1 shows, when the browser encounters the code element, it displays the enclosed content using a fixed-width font.

The use of HTML elements to manage the way content is presented is now strongly discouraged. The idea is that you use HTML elements to define the structure and meaning of your content and Cascading Style Sheets (CSS) to control the way the content is presented to the user. We'll come to CSS in Chapter 4.

The elements that do affect presentation tend to be those that originated in the early versions of HTML, when the idea of separating presentation and content were not so rigorously enforced. Browsers will apply a default presentation style to these elements, such as the fixed-width font that is typically used for the code element. As I'll explain in Chapter 4, you can use CSS to override those default styles.

Understanding the Elements Used in This Chapter

To provide a refresher on HTML, I need to use some elements that I don't describe until later chapters. Table 3-2 lists these elements, along with a brief description and the chapter in which you can find full details.

[image: Image]

[image: Image]

Using Empty Elements

You are not required to place any content between the start and end tags. If you don't, you create an empty element, like the one shown in Listing 3-2.

Listing 3-2. An Empty HTML Element

I like <code></code> apples and oranges.

Not all elements make sense when they are empty (and code is one of these), but even so, this is still valid HTML.

Using Self-Closing Tags

You can express empty elements more concisely by using a single tag, as shown in Listing 3-3.

Listing 3-3. Expressing an Empty Element Using a Single Tag

I like <code/> apples and oranges.

You combine the start and end tag into one—the stroke character (/), which is usually used to signify the start of the end tag, is placed at the end of the single tag. The element in Listing 3-2 and the element in Listing 3-3 are equivalent—the single tag is a more concise way of expressing the empty element.

Using Void Elements

There are some elements that must be expressed using a single tag—the HTML specification makes it illegal to place any content in them. These are known as void elements. One such element is hr, which is a grouping element and is used to denote a paragraph-level break in the content. (You'll see the other grouping elements in Chapter 9.) You can use void elements in one of two ways—the first is to specify only a start tag, as shown in Listing 3-4.

Listing 3-4. Specifying a Void Element Using Just a Start Tag

I like apples and oranges.

<hr>

Today was warm and sunny.

The browser knows that hr is a void element and doesn't expect to see a closing tag. You can also include a stroke to make the element consistent with empty elements, as shown in Listing 3-5.

Listing 3-5. Expressing Void Elements Using the Empty Element Structure

I like apples and oranges.

<hr />

Today was warm and sunny.

This is the format I prefer and will use in this book. As an aside, the hr element is another example of an element that had presentational meaning—in this case, to display a horizontal rule (hence the name). You can see the default interpretation of the hr element in Figure 3-3.

[image: Image]

Figure 3-3. The default presentation of the hr element

(NOT) USING OPTIONAL START AND END TAGS

Many HTML5 elements have special rules under which you can choose to omit one of the tags. As an example, the html element (which I describe in Chapter 7) permits its end tag to be omitted if “the element is not immediately followed by a comment and the element contains a body element that is either not empty or whose start tag has not been omitted”. The text in italics comes from one of the official HTML5 specification documents. I encourage you to read these specifications (which you can get at w3c.org), but be warned: they are all written in this lively style.

I think it is great that there is such flexibility in the markup, but I also think it is confusing and leads to maintenance problems. The elements you apply to HTML are not just processed by browsers—they have to be read by your colleagues and by future versions of yourself when you come back to maintain and update your application. The browser may be able to determine why a given tag has been omitted, but it won't be as obvious to your colleagues or when you return to the HTML to make changes. To that end, I don't detail these special rules in this book and I use the start and end tags of an element unless there is a compelling reason not to (in which case, I'll explain why).

Using Element Attributes

You can configure your elements by using attributes. Listing 3-6 shows an attribute that applies to the a element. This element lets you create a hyperlink that, when it's clicked on, loads a different HTML document.

Listing 3-6. Using an Element Attribute

I like apples and oranges.

Attributes can be added only to start tags or single tags—they can never be added to end tags. Attributes have a name and a value, as shown in Figure 3-4.

[image: Image]

Figure 3-4. Applying attributes to HTML elements

There are a set of global attributes that can be applied to any HTML element—I describe these in later in this chapter. In addition to these global attributes, elements can define their own attributes that provide configuration information that is specific to the role of the element. The href attribute is local to the a element, and it configures the URL that is the destination of the hyperlink. The a element defines a number of specific attributes, which I describe in Chapter 8.

[image: Image] Tip I have used double quotes ("myvalue") to delimit the attribute value in the listing, but you can also use single quotes ('myvalue'). If you want to specify a value for an attribute that itself must contain quotes, you use both styles ("my'quoted'value" or 'my"quoted"value').

Applying Multiple Attributes to an Element

You can apply multiple attributes to an element by separating them with one or more space characters. Listing 3-7 provides an example.

Listing 3-7. Defining Multiple Attributes in an Element

I like apples and oranges.

The order of the attributes is not important, and you can freely mix global attributes with the ones that are element specific, which is what I have done in the listing. The class and id attributes are global. (I explain these attributes later in this chapter.)

Using Boolean Attributes

Some attributes are Boolean attributes. You don't have to specify a value for these attributes—just add the attribute name to the element, as shown in Listing 3-8.

Listing 3-8. A Boolean Attribute

Enter your name: <input disabled>

The Boolean attribute in this example is disabled, and I have just added the attribute name to the element. The input element provides a means for the user to enter data into an HTML form (which I describe in Chapter 12). Adding the disabled attribute stops the user from entering data. Boolean attributes are a little odd because it is the presence of the attribute that configures the element, not the value you assign to the attribute. I didn't specify disabled="true"—I just added the word disabled. You can achieve the same effect by assigning the empty string ("") or by setting the value to be the name of the attribute, as shown in Listing 3-9.

Listing 3-9. A Boolean Attribute Assigned the Empty String Value

Enter your name: <input disabled="">

Enter your name: <input disabled="disabled">

Using Custom Attributes

You can define your own attributes as long as the name you use is prefixed with data-. Listing 3-10 shows the use of such attributes.

Listing 3-10. Applying Custom Attributes to an Element

Enter your name: <input disabled="true" data-creator="adam" data-purpose="collection">

The proper name for these attributes is author defined attributes, which are sometimes referred to as expando attributes, but I prefer the more commonly used term custom attribute.

Custom attributes are a formal definition of a widely used HTML4 technique where browsers would ignore any attribute they didn't recognize. You prefix these attributes with data- to avoid clashing with attribute names that might be created by future versions of HTML. Custom attributes are useful when working with CSS (introduced in Chapter 4) and with JavaScript (introduced in Chapter 5).

Creating an HTML Document

Elements and attributes don't exist in isolation—you use them to mark up your content in an HTML document. The simplest way to create an HTML document is to create a text file—the convention is that these files have the .html file extension. You can then load the file into a browser, either directly from the disk or via a web server. (In this book, I generally use a web server. My server is called titan, and you'll often see this name in browser windows shown in screenshots.)

BROWSERS AND USER AGENTS

Throughout this chapter (and for most of this book), I refer to the browser as the target for the HTML we create. This is a convenient way of thinking about HTML and is the most common way that HTML is consumed, but it doesn't tell the full story. The collective name for software components and components that might consume HTML is user agents. Although browsers are the most prevalent kind of user agent, they are not the only kind.

Nonbrowser user agents are still quite rare, but they are expected to become more popular. The increased emphasis on separating content and presentation in HTML5 is important because it recognizes that not all HTML content is displayed to users. I'll still refer to the browser in this book (because browsers are the most important and dominant category of user agent), but it is useful to keep in mind that some other kind of software might be what your HTML5 is delivering service to.

An HTML document has a particular structure—you need to have some key elements in place as a minimum. Most of the examples in this book are shown as complete HTML documents—this means you can quickly and easily see how an element is applied and the effect it has. I explain all of the elements in the listings in later chapters, but as a quick jump start I am going to give you a tour of a basic HTML document. I will also provide references to the later chapters where you can get more detail.

HTML VS. XHTML

Although this is a book about HTML, I would be remiss if I didn't also mention XHTML (that's HTML preceded with an X). The HTML syntax allows you to do things that make for illegal XML documents. This means it can be difficult to process an HTML document using a standard XML parser.

To solve this problem, you can use XHTML, which is an XML serialization of HTML (that is, you express your content and HTML elements and attributes in a way that makes for valid XML and can be readily handled by an XML parser). You can also create polyglot documents, which are valid HTML and valid XML, although this requires using a subset of the HTML syntax. I don't cover XHTML in this book, but you can get more information about XHTML at the following URL: http://wiki.whatwg.org/wiki/HTML_vs._XHTML.

The Outer Structure

There are two elements that provide the outer structure of an HTML document—the DOCTYPE and html elements, as shown in Listing 3-11.

Listing 3-11. The Outer Structure of an HTML Document

<!DOCTYPE HTML>

<html>

 <!-- elements go here -->

</html>

The DOCTYPE element tells the browser it is dealing with an HTML document. This is expressed through the HTML boolean attribute:

<!DOCTYPE HTML>

You follow the DOCTYPE element with the start tag of the html element. This tells the browser that the contents of the element should be treated as HTML all the way through until the html close tag. It may seem odd that you use the DOCTYPE element and then immediately use the html element, but back when HTML emerged as a standard there were other markup languages that were given equal weight and it was expected that documents would contain a mix of markup types.

These days, HTML is the dominant markup language and most browsers will assume they are dealing with HTML even if you omit the DOCTYPE element and html elements. That doesn't mean you should leave them out. These elements serve an important purpose, and relying on the default behavior of a browser is like trusting strangers—things will be fine most of the time, but every now and again something will go very badly wrong. See Chapter 7 for more details of the DOCTYPE and html elements.

The Metadata

The metadata region of an HTML document allows you to provide information about your document to the browser. The metadata is contained inside a head element, as shown in Listing 3-12.

Listing 3-12. Adding the head Element to an HTML Document

<!DOCTYPE HTML>

<html>

 <head>

 <!-- metadata goes here -->

 <title>Example</title>

 </head>

</html>

In the listing, I have provided the minimum amount of metadata, which is the title element. All HTML documents are expected to contain a title element, although browsers will generally ignore any omissions. Most browsers display the contents of the title element in the menu bar of the browser window or at the top of the tab that displays the page. The head and title elements are described fully in Chapter 7, along with all of the other metadata elements that can be placed in the head element.

[image: Image] Tip The listing demonstrates how you create comments in HTML document. You begin with the tag <!-- and end with -->. The browser will ignore anything you put inside these tags.

In addition to containing elements that describe the HTML document, the head element is also used to define relationships to external resources (such as CSS stylesheets), define inline CSS styles, and define and load scripts. All of these activities are demonstrated in Chapter 7.

The Content

The third and final part of the document is the content, which you put inside a body element, as shown in Listing 3-13.

Listing 3-13. Adding the body Element to an HTML Document

<!DOCTYPE HTML>

<html>

 <head>

 <!-- metadata goes here -->

 <title>Example</title>

 </head>

 <body>

 <!-- content and elements go here -->

 I like <code>apples</code> and oranges.

 </body>

</html>

The body element tells the browser which part of the document is to be displayed to the user—and, of course, a lot of this book is given over to what you can put inside the body element. With the addition of the body element, you have the skeletal HTML document I will use for most of the examples in this book.

Understanding Parents, Children, Descendants, and Siblings

HTML elements have defined relationships with the other elements in an HTML document. An element that contains another element is the parent of the second element. In Listing 3-13, the body element is the parent to the code element, because the code element is contained between the start and end tags of the body element. Conversely, the code element is a child of the body element. An element can have multiple children, but only one parent.

Elements can contain elements that, in turn, contain other elements. You can also see this in Listing 3-13: the html element contains the body element, which contains the code element. The body and code elements are descendents of the html element, but only the body element is a child of the html element. Children are direct descendants. Elements that share the same parent are known as siblings. In Listing 3-13, the head and body elements are siblings because they are both children of the html element.

The importance of the relationship between elements runs through HTML. As you'll see in the following section, elements have restrictions as to which other elements can be their parents or children. These restrictions are expressed through element types. Element relationships are also essential in CSS—which I introduce in Chapter 4—and one of the ways you select elements to apply styles to is through their parent/child relationships. Finally, when you read about the Document Object Model (DOM) in Part IV, you will find specific elements in a document by navigating through the document tree, which is a representation of the relationships between elements. Knowing your siblings from your descendants is an important skill in the world of HTML.

Understanding Element Types

The HTML5 specification groups elements into three categories: metadata elements, flow elements, and phrasing elements.

Metadata elements are used to create the basic structure of an HTML document and to provide information and direction to the browser about how the document should be processed. I describe the metadata elements in Chapter 7.

The other two categories are slightly different—you use them to specify the valid set of parents and children for an element. The phrasing elements are the basic building blocks of HTML. Chapter 8 contains descriptions of the most commonly used phrasing elements. The flow elements category is a super-set of the phrasing elements—which is to say that all phrasing elements are also flow elements, but not all flow elements are phrasing elements.

Not all elements belong to one of the element categories—those that don't either have special significance or can be used only in very restrictive circumstances. An example of a restricted element is the li element, which denotes a list item and is limited to one of three parent elements: ol (which denotes an ordered list), ul (which denotes an unordered list), and menu (which denotes a menu). You can learn more about the li element in Chapter 9. I tell you which category each element belongs to as part of the element descriptions that start in Chapter 6.

Using HTML Entities

As you can see from the examples in this chapter, there are some characters that have special meaning in HTML document—the obvious ones being the < and > characters. You will sometimes need to use these characters in your content without wanting them to be interpreted as HTML. To do this, you use HTML entities. An entity is a code the browser substitutes for the special character. You can see some common entities in Table 3-3.

[image: Image]

[image: Image]

Each special character has an entity number that you can include in your content to represent the character—for example, the ampersand character is . The more popular special characters also have a name—for example, and & have the same meaning to the browser.

The HTML5 Global Attributes

Earlier in this chapter, I showed you how to configure elements using attributes. Each element can define its own attributes—these are known as local attributes. When I begin describing elements in detail in Chapter 6, I will give you a list of each of the local attributes that an element defines and show you how to use them. Each local attribute gives you the ability to control some aspect of the unique behavior of an element.

There is a second category of attributes—the global attributes. These configure the behavior that is common to all elements. You can apply every global attribute to every element, although this doesn't always lead to a meaningful or useful behavior change. In the following sections, I describe each of the global attributes and give a demonstration. Some of these attributes are linked to broader HTML features that I cover in more depth later in this book. In these cases, I give a reference to the relevant chapters.

The accesskey Attribute

The accesskey attribute lets you specify one or more keyboard shortcuts that will select the element on the page. Listing 3-14 shows the use of this attribute in a simple form. Forms are the topic of Chapters 12 through 14, so you might want to come back to this example after reading those chapters.

Listing 3-14. Using the accesskey Attribute

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <form>

 Name: <input type="text" name="name" accesskey="n"/>

 <p/>

 Password: <input type="password" name="password" accesskey="p"/>

 <p/>

 <input type="submit" value="Log In" accesskey="s"/>

 </form>

 </body>

</html>

In this example, I have added the accesskey attribute to three input elements. (I describe the input element in Chapters 12 and 13.) The idea is to enable users who are regular users of a page or site to use keyboard shortcuts to move between commonly used elements. The key combination required to trigger the accesskey setting differs between platforms—for Windows, it is the Alt key and the accesskey value pressed together. You can see the effect of the accesskey attribute in Figure 3-5. I press Alt+n to focus on the first input element and enter my name. I then press Alt+p to focus on the second input element and enter my password. Alt+s presses the Log In button, which submits the form.

[image: Image]

Figure 3-5. The effect of the accesskey attribute

The class Attribute

The class attribute is used to classify or categorize elements. You usually do this so that you can locate elements in the document that belong to a given class or to apply a CSS style. Listing 3-15 shows how you can apply the class attributes.

Listing 3-15. Applying the class Attribute

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 Apress web site

 <p/>

 W3C web site

 </body>

</html>

You can apply multiple classes to each element by separating the class names with a space. The names of the classes that you create are arbitrary, but it is a good idea to make the names meaningful, especially if you have a document that contains many classes. On its own, the class attribute doesn't do anything. Figure 3-6 shows the HTML displayed in a browser. As you can see, you just get a couple of hyperlinks.

[image: Image]

Figure 3-6. A pair of a elements to which the class attribute has been applied

The first way you can take advantage of the class attribute is to create a style that targets one of more of the classes you have defined. Listing 3-16 provides an example.

Listing 3-16. Defining a Style That Relies on Classes

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 .class2 {

 background-color:grey;

 color:white;

 padding:5px;

 margin:2px;

 }

 .class1 {

 font-size:x-large;

 }

 </style>

 </head>

 <body>

 Apress web site

 <p/>

 W3C web site

 </body>

</html>

In this example, I used a style element to define two styles—the first is applied to elements that are assigned to class2 and the second is applied to class1.

I explain the style element in Chapter 7, and I provide an introduction to styles and how they can be used to target elements in different ways in Chapter 4.

When you load the HTML in a browser, the styles are applied to the elements. The effect is shown in Figure 3-7. The advantage of using classes to assign styles is that you don't have to duplicate the same style settings on each element.

[image: Image]

Figure 3-7. Using the class attribute to apply styles

Another way to use the class attribute is in a script. Listing 3-17 provides a demonstration.

Listing 3-17. Using the class Attribute in a Script

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 Apress web site

 <p/>

 W3C web site

 <script type="text/javascript">

 var elems = document.getElementsByClassName("otherclass");

 for (i = 0; i < elems.length; i++) {

 var x = elems[i];

 x.style.border = "thin solid black";

 x.style.backgroundColor = "white";

 x.style.color = "black";

 }

 </script>

 </body>

</html>

The script in this example finds all of the elements that have been assigned to the otherclass class and applies some styling. I explain the script element in Chapter 7, each of the style properties in Chapters 19 through 24, and how to find elements in the document in Chapter 26. The effect of this script is shown in Figure 3-8.

[image: Image]

Figure 3-8. Using the class attribute in a script

The contenteditable Attribute

The contenteditable attribute is new in HTML5 and allows the user to change the content in the page. Listing 3-18 provides a simple demonstration.

Listing 3-18. Using the contenteditable Attribute

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <p contenteditable="true">It is raining right now</p>

 </body>

</html>

I have applied the contenteditable attribute to a p element (which I describe in Chapter 9). Setting the attribute value to true allows the user to edit the element contents, and setting it to false disables this feature. (If you don't specify a value, the element inherits the setting for this property from its parent.) You can see the effect that the attribute has in Figure 3-9. The user clicks on the text and starts to type.

[image: Image]

Figure 3-9. Enabling editing with the contenteditable attribute

The contextmenu Attribute

The contextmenu attribute allows you to define context menus for elements. These menus pop up when the user triggers them (for example, when a Windows PC user right-clicks). At the time of this writing, no browser supports the contextmenu attribute.

The dir Attribute

The dir attribute specifies the direction of an element's text. The two supported values are ltr (for left-to-right text) and rtl (for right-to-left text). Listing 3-19 shows both values being used.

Listing 3-19. Using the dir Attribute

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <p dir="rtl">This is right-to-left</p>

 <p dir="ltr">This is left-to-right</p>

 </body>

</html>

You can see the effect of the dir attribute in Figure 3-10.

[image: Image]

Figure 3-10. Displaying left-to-right and right-to-left text

The draggable Attribute

The draggable attribute is part of the HTML5 support for drag and drop, and it is used to indicate whether an element can be dragged. I explain drag and drop in detail in Chapter 37.

The dropzone Attribute

The dropzone attribute is part of the HTML5 support for drag and drop. It is the counterpart to the draggable attribute I just described. I explain both elements in Chapter 37.

The hidden Attribute

The hidden attribute is a Boolean attribute that indicates an element is not presently relevant. Browsers interpret this attribute by hiding the element from view. Listing 3-20 shows the effect of the hidden attribute.

Listing 3-20. Using the hidden Attribute

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <script>

 var toggleHidden = function() {

 var elem = document.getElementById("toggle");

 if (elem.hasAttribute("hidden")) {

 elem.removeAttribute("hidden");

 } else {

 elem.setAttribute("hidden", "hidden");

 }

 }

 </script>

 </head>

 <body>

 <button onclick="toggleHidden()">Toggle</button>

 <table>

 <tr><th>Name</th><th>City</th></tr>

 <tr><td>Adam Freeman</td><td>London</td></tr>

 <tr id="toggle" hidden><td>Joe Smith</td><td>New York</td></tr>

 <tr><td>Anne Jones</td><td>Paris</td></tr>

 </table>

 </body>

</html>

I made this example somewhat more elaborate than it needs to be. I defined a table element that contains a tr element (which represents a row in the table) for which the hidden attribute is present. I also defined a button element that, when pressed, invokes the toggleHidden JavaScript function defined in the script element. This script removes the hidden attribute when it is present and adds it otherwise. Don't worry about how this all works for the moment. I explain the table, tr, th, and td elements in Chapter 11, the script element in Chapter 7, and events in Chapter 30.

I put this all in place to demonstrate what happens when the hidden attribute is applied, You can see the effect of pressing the button in Figure 3-11.

[image: Image]

Figure 3-11. The effect of removing and adding the hidden element

When the hidden attribute is applied to an element, the browser doesn't render it at all. It is as though it were not contained in the HTML, so the table is rendered with the reduced number of rows.

The Id Attribute

The id attribute is used to assign a unique identifier to an element. These identifiers are commonly used to apply styles to an element or to select an element with JavaScript. Listing 3-21 demonstrates how to apply a style based on the value of the id attribute.

Listing 3-21. Using the id Attribute

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <style>

 #w3clink {

 background:grey;

 color:white;

 padding:5px;

 border: thin solid black;

 }

 </style>

 <body>

 Apress web site

 <p/>

 W3C web site

 </body>

</html>

To apply a style based on an id attribute value, you prefix id with the # character when defining the style. I give more details about CSS selectors in Chapters 17 and 18, and I describe the various styles that can be applied in Chapters 19 through 24. You can see the effect of applying the style in Figure 3-12.

[image: Image]

Figure 3-12. Applying a style based on an element's id attribute value

[image: Image] Tip The id attribute can also be used to navigate to a particular section in a document. If you imagine a document called example.html that contains an element with an id attribute value of myelement, you can navigate directly to the element by requesting example.html#myelement. This last part of the URL (the # plus the element id) is known as the URL fragment identifier.

The lang Attribute

The lang attribute is used to specify the language of an element's contents. Listing 3-22 demonstrates how to use this attribute.

Listing 3-22. Using the lang Attribute

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <p lang="en">Hello - how are you?</p>

 <p lang="fr">Bonjour - comment êtes-vous?</>

 <p lang="es">Hola - ¿cómo estás?</p>

 </body>

</html>

The value for the lang attribute must be a valid ISO language code. You can get full details of how to specify languages at http://tools.ietf.org/html/bcp47. Be warned, though: dealing with languages can be a complex and technical business.

The lang attribute is intended to allow the browser to adjust its approach to displaying an element. This can mean changing quotation marks, for example, and also having to properly pronounce text when a text-to-speech reader (or other accessibility) tool is used.

You can also use the lang attribute to select content of a given language—perhaps to apply a style or display only content in a language the user selects.

The spellcheck Attribute

The spellcheck attribute is used to specify if the browser should check the spelling of an element's content. Using this attribute makes sense only when it is applied to an element the user can edit, as shown in Listing 3-23. I describe the textarea element in Chapter 14.

Listing 3-23. Using the spellcheck Attribute

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <textarea spellcheck="true">This is some mispelled text</textarea>

 </body>

</html>

The permitted values for the spellcheck attribute are true (spellchecking is enabled) and false (spellchecking is disabled). The way that spellchecking is implemented differs between browsers. In Figure 3-13, you can see how Google Chrome handles this feature, which is a check-as-you-type approach. Other browsers require the user to explicitly perform a spellcheck.

[image: Image]

Figure 3-13. Spellchecking as implemented by Chrome

[image: Image] Caution The current implementation of spellchecking in the most commonly used browsers ignores the lang element I just described. Spellchecking will be performed using the language defined by the user's operating system or by a separate browser setting.

The style Attribute

The style attribute allows you to define a CSS style directly on an element (as opposed to in a style element or external stylesheet). Listing 3-24 provides a demonstration.

Listing 3-24. Using the style Attribute

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 Visit the Apress site

 </body>

</html>

I describe CSS styles in more detail in Chapter 5, and you can learn about the different style options available in Chapters 19 through 24.

The tabindex Attribute

The tabindex attribute allows you to control the order in which the Tab key moves the focus through the HTML page, overriding the default order. Listing 3-25 demonstrates how to use this attribute.

Listing 3-25. Using the tabindex Attribute

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <form>

 <label>Name: <input type="text" name="name" tabindex="1"/></label>

 <p/>

 <label>City: <input type="text" name="city" tabindex="-1"/></label>

 </p>

 <label>Country: <input type="text" name="country" tabindex="2"/></label>

 </p>

 <input type="submit" tabindex="3"/>

 </form>

 </body>

</html>

The first element that will be selected is the one that has the tabindex value of 1. When the user presses the Tab key, the element with a tabindex of 2 will be selected, and so on. A tabindex value of -1 ensures that an element will not be selected when the user presses the Tab key. The effect of the tabindex values in the listing is that, as the Tab key is pressed, the focus shifts from the first input element to the third and then to the Submit button, as shown in Figure 3-14.

[image: Image]

Figure 3-14. Controlling the focus sequence with the tabindex attribute

The title Attribute

The title attribute provides additional information about an element, which is commonly used by the browser to display tool tip information. Listing 3-26 shows how the title attribute is used.

Listing 3-26. Using the title Attribute

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 Visit the Apress site

 </body>

</html>

Figure 3-15 shows how this value is handled by Google Chrome.

[image: Image]

Figure 3-15. A title attribute value displayed as a tool tip

Useful HTML Tools

There are only two tools that I think help when working with HTML. The first is a good HTML editor, which will highlight invalid elements and attributes and generally keep you on the right path. As I mentioned in Chapter 2, I get on well with Komodo Edit, but there are innumerable editors available and you are bound to find one that suits your working style (just be sure that it supports HTML5).

The other tool is the View Source menu (or its equivalent), which is built into most browsers. Being able to see the HTML markup behind a document is a great way to validate your own work and to learn new techniques from others.

Summary

In this chapter, I gave you a quick tour through the structure and nature of an HTML document and showed you how to apply HTML elements to mark up content and create an HTML document. I explained how you can configure the way that elements are interpreted by the browser with attributes and described the difference between local and global attributes. I described each of the global attributes and briefly explained the basic elements and structure that make up an HTML document.

C H A P T E R 4

Getting Started with CSS

Cascading Style Sheets (CSS) are the means by which you specify the presentation (the appearance and the formatting) of an HTML document. In this chapter, I'll show you how to create and apply CSS styles, explain why they are called cascading style sheets, and provide an overall foundation for future chapters. Table 4-1 provides the summary for this chapter.

[image: Image]

[image: Image]

Defining and Applying a Style

A CSS style is made up of one or more declarations separated by a semi-colon. Each declaration consists of a CSS property and a value for that property separated by a colon. Listing 4-1 shows a simple style.

Listing 4-1. A Simple CSS Style

background-color:grey; color:white

Figure 4-1 shows the declarations, properties, and values in this style.

[image: Image]

Figure 4-1. The anatomy of a CSS style

In this example, the style has two declarations. The first sets the value grey for the background-color property, and the second sets the value white for the color property.

There is a wide range of CSS properties available, and each controls some aspect of the appearance of the elements to which it is applied. In Chapters 19 through 24, I describe the available CSS properties and demonstrate their effect.

Understanding the CSS Properties Used in This Chapter

To demonstrate how CSS operates, I need to use some CSS properties that I don't describe fully until later chapters. Table 4-2 lists these properties, gives a very brief description of them, and shows you which chapter contains full details.

[image: Image]

[image: Image]

Applying a Style Inline

It isn't enough to just define a style— you also need to apply it, effectively telling the browser which elements the style should affect. The most direct way to apply a style to an element is by using the style global attribute (described in Chapter 3), as shown in Listing 4-2.

Listing 4-2. Applying a Style Using the Style Global Attribute

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 Visit the Apress website

 <p>I like apples and oranges.</p>

 Visit the W3C website

 </body>

</html>

There are four content elements in this HTML document—two hyperlinks (created with the a element) and a p element that contains a span element. I used the style global attribute to apply the style to the first a element—the one that links to the Apress web site. (You can learn more about the a, p, and span elements in Chapters 8 and 9. For the moment, you are interested only in applying styles.) The style attribute acts upon only the element to which it has been applied, as you can see in Figure 4-2.

[image: Image]

Figure 4-2. Applying a style directly to an element

The impact of the two CSS properties used in the example can be seen in the figure. The background-color property sets the color of the background of the element, and the color property sets the color of the foreground. The other two content elements in the HTML document are unaffected by the style.

THE ISSUE OF CSS RELIGION

CSS is a topic that seems to attract zealots. If you start reading any online discussion about how to achieve a certain effect with CSS, you soon see an argument about which is the right way. I have no time for people who make such arguments—the only right way to solve any problem is to use the knowledge and tools you have available to support as many of your users as possible. Tying yourself in knots to achieve CSS perfection is foolish. My advice is to ignore these arguments and adapt and develop the tricks and techniques that suit you and that you find pleasing and effective.

Creating an Embedded Style

Applying styles to individual elements can be a useful technique, but it is an inefficient approach when applied to a complex document that might require dozens of different styles. Not only do you have to apply the correct style to each element, but you have to be careful to correctly apply updates, which is an error-prone process. Instead, you can use the style element (as opposed to the style attribute) to define an embedded style and direct the browser to apply the style using a CSS selector. Listing 4-3 shows how you can use the style element with a simple CSS selector.

Listing 4-3. Using the Style Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 a {

 background-color:grey;

 color:white

 }

 </style>

 </head>

 <body>

 Visit the Apress website

 <p>I like apples and oranges.</p>

 Visit the W3C website

 </body>

</html>

I describe the style element and its attributes in Chapter 7. In this chapter, we are interested in how to specify a style inside of the style element. You still use declarations, but they are wrapped in braces (the { and } characters) and follow a selector, as shown in Figure 4-3.

[image: Image]

Figure 4-3. The anatomy of a style defined inside a style element

The selector in this example is a, which instructs the browser to apply the style to every a element in the document. You can see how the browser does this in Figure 4-4.

[image: Image]

Figure 4-4. The effect of the a selector

You can define multiple styles in a single style element—you just repeat the process of defining a selector and a set of declarations. Listing 4-4 shows a style element that has two styles.

Listing 4-4. Defining Multiple Styles in a Single Style Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 a {

 background-color:grey;

 color:white

 }

 span {

 border: thin black solid;

 padding: 10px;

 }

 </style>

 </head>

 <body>

 Visit the Apress website

 <p>I like apples and oranges.</p>

 Visit the W3C website

 </body>

</html>

This new style has a selector of span (which means the browser will apply the style to all span elements in the document and use the border and padding properties). The border property defines a border around the targeted element, and the padding property creates some space around it. You can see the effect in Figure 4-5. The selectors and the properties in these examples are very basic. I describe the full range of selectors in Chapters 17 and 18 and the properties in Chapters 19 and 20.

[image: Image]

Figure 4-5. Applying multiple styles

Using an External Stylesheet

Rather than define the same set of styles in each of your HTML pages, you can create a separate stylesheet. This is an independent file, conventionally one that has the .css file extension, into which you put your styles. Listing 4-5 shows the contents of the file styles.css, which you can find in the source code download that accompanies this chapter and which is available from apress.com.

Listing 4-5. The styles.css File

a {

 background-color:grey;

 color:white

}

span {

 border: thin black solid;

 padding: 10px;

}

You don't need to use a style element in a stylesheet— you just use the selector, followed by the declarations for each style that you require. You can then use the link element to bring the styles into your document, as shown in Listing 4-6.

Listing 4-6. Importing an External Stylesheet

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <link rel="stylesheet" type="text/css" href="styles.css"></link>

 </head>

 <body>

 Visit the Apress website

 <p>I like apples and oranges.</p>

 Visit the W3C website

 </body>

</html>

You can link to as many stylesheets as you need—one per link element. I describe the link element fully in Chapter 7. As with the style element, the order in which you import stylesheets is important if you define two styles with the same selector. The one that is loaded last will be the one that is applied.

Importing from Another Stylesheet

You can import styles from one stylesheet into another using the @import statement. To demonstrate this feature, I created a second stylesheet called combined.css, the contents of which are shown in Listing 4-7.

Listing 4-7. The combined.css File

@import "styles.css";

span {

 border: medium black dashed;

 padding: 10px;

}

You can import as many stylesheets as you want, using one @import statement per stylesheet. The @import statements must appear at the top of the stylesheet, before any new styles are defined. In the combined.css stylesheet, I imported styles.css and then defined a new style for span elements. Listing 4-8 shows the combined.css stylesheet being linked from an HTML document.

Listing 4-8. Linking to a Stylesheet That Contains Imports

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <link rel="stylesheet" type="text/css" href="combined.css"/>

 </head>

 <body>

 Visit the Apress website

 <p>I like apples and oranges.</p>

 Visit the W3C website

 </body>

</html>

The @import statement in combined.css has the effect of importing both of the styles defined in the styles.css stylesheet and then overriding the style that will be applied to span elements. You can see the effect shown in Figure 4-6.

[image: Image]

Figure 4-6. Importing styles from another stylesheet

The @import statement isn't widely used. This is partly because its existence isn't well known, but it is also because browser implementations have tended to deal with @import statements in such a way as to offer slower performance than using multiple link elements and relying on the way that styles cascade (which I explain in the next section).

Specifying the Character Encoding of a Stylesheet

The only thing that can come before an @import statement in a CSS stylesheet is an @charset statement, which specifies the character encoding used by the stylesheet. Listing 4-9 demonstrates how to specify the UTF-8 encoding (which is the most prevalent).

Listing 4-9. Specifying a Type of Character Encoding in a Stylesheet

@charset "UTF-8";

@import "styles.css";

span {

 border: medium black dashed;

 padding: 10px;

}

If you don't specify a type of character encoding, the browser will use the encoding specified in the HTML document that loaded the stylesheet. If there is no encoding specified for the HTML document, UTF-8 will be used by default.

Understanding How Styles Cascade and Inherit

The key to understanding stylesheets is to understand how they cascade and inherit. Cascading and inheritance are the means by which the browser determines which values should be used for properties when they display an element. Each element has a number of CSS properties that will be used when the browser needs to render the page. For each of those properties, the browser needs to navigate through all of the sources of styles it has. You have seen three different ways you can define styles (inline, embedded, and from an external stylesheet), but there are two other sources of styles that you need to know about.

Understanding Browser Styles

The browser styles (more properly known as the user agent styles) are the default styles a browser applies to an element if no other style has been specified. These styles vary slightly between browsers, but they tend to be broadly similar. As an example, consider how a browser displays an a element—a hyperlink—when there are no other styles defined in the HTML document. Listing 4-10 shows a simple HTML document that contains no styles.

Listing 4-10. An HTML Document That Contains No Styles

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 Visit the Apress website

 <p>I like apples and oranges.</p>

 Visit the W3C website

 </body>

</html>

This listing is just a variation of the previous example, without any styles. You can see how the browser renders the a elements in Figure 4-7.

[image: Image]

Figure 4-7. The default style for hyperlink elements

We are so accustomed to seeing the style that browsers apply to links that it becomes invisible. However, if you stop and consider what you are looking at, you can see details of the style. The text content of the link is displayed in blue and is underlined. You can extrapolate from what you see and assume the browser is applying a style similar to the one shown in Listing 4-11.

Listing 4-11. Extrapolating to Create the Default Browser Style for a Elements

a {

 color: blue;

 text-decoration: underline;

}

Browsers don't have default styles for every HTML element, but many elements are displayed using such styles. In each chapter of this book that describes HTML elements, I include the typical default style you can expect common browsers to apply. You can see the description for the a element in Chapter 8.

Understanding User Styles

Most browsers allow users to define their own stylesheets. The styles that these stylesheets contain are called user styles. This isn't a widely used feature, but users who define their own stylesheets often attach great importance in being able to do so—not least, because it provides a way of making pages more accessible.

Each browser has its own mechanism for user styles. Google Chrome, for example, creates a file in the user's profile directory called Default\User StyleSheets\Custom.css. Any styles added to this file are applied to any site the user visits, subject to the cascading rules I describe in the following section. As a simple demonstration, Listing 4-12 shows a style I added to my Custom.css file.

Listing 4-12. Adding a Style to the User Stylesheet

a {

 color: white;

 background:grey;

 text-decoration: none;

 padding: 2px;

}

This style applies to a elements and overrides the default browser style. Figure 4-8 shows the effect of my user style if I reload the HTML document in Listing 4-9.

[image: Image]

Figure 4-8. Defining user styles

Understanding How Styles Cascade

Now that you have seen all of the sources of styles that a browser has to consider, you can look at the order in which the browser will look for a property value when it comes to display an element. The order is very specific:

	Inline styles (styles that are defined using the style global attribute on an element)

	Embedded styles (styles that are defined in a style element)

	External styles (styles that are imported using the link element)

	User styles (styles that have been defined by the user)

	Browser styles (the default styles applied by the browser)

Imagine that the user needs to display an a element. One of the things the browser needs to know is what color the text should be displayed in. To answer this question, it will need to find a value for the CSS color property. First, it will check to see if the element it is trying to render has an inline style that defines a value for color, like this:

Visit the Apress website

If there is no inline style, the browser will look for a style element that contains a style that applies to the element, like this:

<style type="text/css">

 a {

 color: red;

 }

</style>

If there is no such style element, the browser looks at the stylesheets that have been loaded via the link element, and so on, until the browser either finds a value for the color property—and that means using the value defined in the default browser styles if no other value is available.

The first three sources of properties (inline styles, embedded styles, and stylesheets) are collectively referred to as the author styles. The styles defined in the user stylesheet are known as the user styles, and the styles defined by the browser are known as the browser styles.

Tweaking the Order with Important Styles

You can override the normal cascade order by marking your property values as important, as shown in Listing 4-13.

Listing 4-13. Marking Style Properties as Important

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 a {

 color: black !important;

 }

 </style>

 </head>

 <body>

 Visit the Apress website

 <p>I like apples and oranges.</p>

 Visit the W3C website

 </body>

</html>

You mark individual values as important by appending !important to the declaration. The browser gives preference to important styles, regardless of where they are defined. You can see the effect of property importance in Figure4-9, where the embedded value for the color property overrides the inline value. (This may be a little hard to see on the printed page.)

[image: Image]

Figure 4-9. Important property values overriding inline property values

[image: Image]Tip The only thing that will take precedence over an important value that you define is an important value defined in the user stylesheet. For regular values, the author styles are used before the user styles, but this is reversed when dealing with important values.

Tie-Breaking with Specificity and Order Assessments

You enter a tie-break situation if there are two styles that can applied to an element defined at the same level and they both contain values for the CSS property the browser is looking for. To decide which value to use, the browser assesses the specificity of each style and selects the one that is most specific. The browser determines the specificity of a style by counting three different characteristics:

	The number of id values in the style's selector

	The number of other attributes and pseudo-classes in the selector

	The number of element names and pseudo-elements in the selector

I explain how to create selectors that contain all of these different characteristics in Chapters 17 and 18. The browser combines the values from each assessment and applies the property value from the style that is most specific. You can see a very simple example of specificity in Listing 4-14.

Listing 4-14. Specificity in Styles

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 a {

 color: black;

 }

 a.myclass {

 color:white;

 background:grey;

 }

 </style>

 </head>

 <body>

 Visit the Apress website

 <p>I like apples and oranges.</p>

 Visit the W3C website

 </body>

</html>

When assessing specificity, you create a number in the form a-b-c, where each letter is the total from one of the three characteristics that are counted. This is not a three-digit number—a style is more specific if its a value is the greatest. Only if the a values are equal does the browser compare b values—the style with the greater b value is more specific in this case. Only if both the a and b values are the same does the browser consider the c value. This means that a specificity score of 1-0-0 is more specific than 0-5-5.

In this case, the selector a.myclass includes a class attribute, which means that the specificity of the style is 0-1-0 (0 id values + 1 other attributes + 0 element names). The other style has a specificity of 0-0-0 (that is, it contains no id values, other attributes or element names). The browser finds a value for the color property when rendering an a element that has been assigned to the myclass class. For all other a elements, the value from the other style will be used. You can see how the browser selects and applies values for this example in Figure 4-10.

[image: Image]

Figure 4-10. Applying values from styles based on specificity

When there are values defined in styles with the same specificity, the browser selects the value it uses based on the order in which the values are defined—the one that is defined last is the one that will be used. Listing 4-15 shows a document that contains two equally specific styles.

Listing 4-15. Styles That Are Equally Specific

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 a.myclass1 {

 color: black;

 }

 a.myclass2 {

 color:white;

 background:grey;

 }

 </style>

 </head>

 <body>

 Visit the Apress website

 <p>I like apples and oranges.</p>

 Visit the W3C website

 </body>

</html>

Both styles defined in the style element have the same specificity score. When the browser is rendering the second a element in the page, it will select the white property for the color property because that is the value defined in the latter style. You can see this in Figure 4-11.

[image: Image]

Figure 4-11. Selecting property values based on the order in which styles are defined

You can reverse the order of the styles to prove that this is the way the browser has selected the value for the color property, as shown in Listing 4-16.

Listing 4-16. Reversing the Order in Which Styles Are Defined

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 a.myclass2 {

 color:white;

 background:grey;

 }

 a.myclass1 {

 color: black;

 }

 </style>

 </head>

 <body>

 Visit the Apress website

 <p>I like apples and oranges.</p>

 Visit the W3C website

 </body>

</html>

As expected, the value the browser selects for the color property is now black, as shown in Figure 4-12.

[image: Image]

Figure 4-12. The effect of changing the order in which styles are defined

The notion of selecting a value is based on the specificity and order performed on a property-by-property basis. In the examples in this section, I defined a value for the background property as well. Because this value was not defined in both styles, there was no conflict and thus no need to look for alternative values.

Understanding Inheritance

If the browser can't find a value for a property in one of the available styles, it will use inheritance, which means taking the value for the property defined by the parent element. Listing 4-17 provides a demonstration.

Listing 4-17. CSS Property Inheritance

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 p {

 color:white;

 background:grey;

 border: medium solid black;

 }

 </style>

 </head>

 <body>

 Visit the Apress website

 <p>I like apples and oranges.</p>

 Visit the W3C website

 </body>

</html>

In this example, we are interested in the properties the browser applies to the span element, whose parent is a p element. You can see how the browser renders this document in Figure 4-13.

[image: Image]

Figure 4-13. The application of inherited CSS property values

Nowhere in this document have I defined a value for the color property in a style that is applied to the span element, yet the browser has used the value white to display the text content. This value has been inherited from the parent p element.

Confusingly, not all CSS properties are inherited. As a rule of thumb, those that relate to the appearance of an element are inherited (text color, font details, and so forth) and those that relate to the layout of the element on the page are not inherited. You can force inheritance by using the special value inherit in a style, which explicitly instructs the browser to use the parent element's value for the property. Listing 4-18 shows the inherit value being used.

Listing 4-18. Using the Special Inherit Value

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 p {

 color:white;

 background:grey;

 border: medium solid black;

 }

 span {

 border: inherit;

 }

 </style>

 </head>

 <body>

 Visit the Apress website

 <p>I like apples and oranges.</p>

 Visit the W3C website

 </body>

</html>

In this example, I created a style that will be applied to span elements and inherit whatever the parent's value for the border property is. You can see the effect of this in Figure 4-14. There is now a border around the span element and the containing p element.

[image: Image]

Figure 4-14. Using the inherit property

Working with CSS Colors

Colors are very important in web pages, and when using CSS you can specify colors in a range of different ways. The simplest ways are to use one of the predefined color names or to use a decimal or hexadecimal value for each of the red, green, and blue components. Decimal values are separated by a comma, and hex values are usually prefixed with #—such as #ffffff, which represents white. You can see some of the predefined names for colors and their decimal and hex equivalents in Table 4-3.

[image: Image]

These are known as the basic color names—CSS defines the extended colors as well. There are too many color names to list here, but a complete list can be found at www.w3.org/TR/css3-color. There are a lot of new shades defined by the extended colors, including slight variations on the colors in the basic list. As an example, Table 4-4 shows the extended set of gray shades that can be used.

[image: Image]

Specifying More Complex Colors

Color names and simple hex values aren't the only way you can specify colors. There are a number of functions that allow you to select a color. Table 4-5 describes each of the functions available.

[image: Image]

Understanding CSS Lengths

Many CSS properties require you to specify a length. A couple of examples are the width property, which is used to specify the width of an element, and the font-size property, which is used to specify the size of font used to render an element's content. Listing 4-19 shows a style that uses both of these properties.

Listing 4-19. Specifying Units of Measurement in Properties

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 p {

 background: grey;

 color:white;

 width: 5cm;

 font-size: 20pt;

 }

 </style>

 </head>

 <body>

 Visit the Apress website

 <p>I like apples and oranges.</p>

 Visit the W3C website

 </body>

</html>

When you specify a length, you concatenate the number of units and the unit identifier together, without any spaces or other characters between them. In the listing, I specified the value of the width property as 5cm, which means 5 of the units represented by the cm identifier (centimeters). Equally, I specified the value of the font-size property as 20pt, which means 20 of the units represented by the pt identifier (points, which are explained in the following sections). CSS defines two kinds of length unit—those that are absolute, and those that are relative to another property. I'll explain both in the sections that follow.

Working with Absolute Lengths

In the preceding listing, I used the cm and pt units, both of which are examples of absolute units. These units are real-world measurements. CSS supports five types of absolute units, which are described in Table 4-6.

[image: Image]

[image: Image]

You can mix and match units in a style and also mix absolute and relative units. Absolute units can be useful if you have some prior knowledge of how the content will be rendered, such as when designing for print. I don't use the absolute units that much in my CSS styles. I find the relative units more flexible and easier to maintain, and I rarely create content that has to correspond to real-world measurements.

[image: Image] Tip You might be wondering where pixels are in the table of absolute units. In fact, CSS tries to make pixels a relative unit of measurement—although, as I explain later in this chapter, this hasn't been how things worked out. You can learn more in the “Working with Pixels” section.

Working with Relative Lengths

Relative lengths are more complex to specify and implement than absolute units, and they require tight and concise language to define their meaning unambiguously. A relative unit is measured in terms of some other unit. Unfortunately, the language in the CSS specifications isn't precise enough (a problem that has plagued CSS for years). This means that CSS defines a wide range of interesting and useful relative measurements, but you can't use some of them because they don't have widespread or consistent browser support. Table 4-7 shows the relative units that CSS defines and that can be relied on in mainstream browsers.

[image: Image]

In the following sections, I show you how to use these units to express lengths.

Working Relative to Font Size

When you use a relative unit, you are effectively specifying a multiple of another measurement. The first units we will look at are relative to font size. Listing 4-20 gives an example.

Listing 4-20. Using a Relative Unit

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 p {

 background: grey;

 color:white;

 font-size: 15pt;

 height: 2em;

 }

 </style>

 </head>

 <body>

 Visit the Apress website

 <p>I like apples and oranges.</p>

 <p style=" font-size:12pt">I also like mangos and cherries.</p>

 Visit the W3C website

 </body>

</html>

In this example, I specified the value of the height property to be 2em, which means that p elements should be rendered so that the height of the element on the screen is twice the font size. This multiple is calculated for each element as it is displayed. I defined a default font-size of 15pt in the style element and specified an inline value of 12pt on the second p element in the document. You can see how the browser displays these elements in Figure 4-15.

[image: Image]

Figure 4-15. The effect of using relative measurements

You can use relative units to express a multiple of another relative measure. Listing 4-21 gives an example where the height property is expressed in em units. The em units are derived from the value of the font-size property, which I have expressed using rem units.

Listing 4-21. Using Units That Are Derived from Other Relative Values

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 html {

 font-size: 0.2in;

 }

 p {

 background: grey;

 color:white;

 font-size: 2rem;

 height: 2em;

 }

 </style>

 </head>

 <body style="font-size: 14pt">

 Visit the Apress website

 <p>I like apples and oranges.</p>

 Visit the W3C website

 </body>

</html>

The rem unit is relative to the font size of the html element—also known as the root element. In this example, I assigned an absolute font size of 0.2 inches using a style (although I also could have created an inline style by defining the style attribute on the html element directly). The font-size value in the other style is expressed as 2rem, which means that the font size in every element that this value is applied to will be twice the size of the root element font—0.4 inches. The height property in the same style is specified as 2em, which is twice as much again. This means the browser will display p elements using a font that is 0.4 inches high and the overall element will be 0.8 inches high. You can see how the browser handles these styles in Figure 4-16.

[image: Image]

Figure 4-16. Defining relative units in terms of other relative units

The third font-related relative unit is ex, which is the current font's x-height. This is the distance from the typeface baseline and the midline, but it is generally about the height of the letter x (hence the name). As a rule of thumb, 1ex is approximately 0.5em.

Working with Pixels

Pixels in CSS are not what you might expect. The usual meaning of the term pixel refers to the smallest addressable unit on a display—one picture element. CSS tries to do something different and defines a pixel as follows:

The reference pixel is the visual angle of one pixel on a device with a pixel density of 96dpi and a distance from the reader of an arm's length.

This is the kind of vague definition that plagues CSS. I don't want to rant, but specifications that are dependent on the length of a user's arm are problematic. Fortunately, the mainstream browsers ignore the difference between pixels as defined by CSS and pixels in the display, and they treat 1 pixel to be 1/96th of an inch. (This is the standard Windows pixel density. Browsers on platforms with displays that have a different pixel density usually implement a translation so that 1 pixel is still roughly 1/96th of an inch).

[image: Image] Tip Although it isn't much use, you can read the full definition of a CSS pixel at www.w3.org/TR/CSS21/syndata.html#length-units.

The net effect of this is that although CSS pixels are intended to be a relative unit of measure, they are treated as an absolute unit by browsers. Listing 4-22 demonstrates specifying pixels in a CSS style.

Listing 4-22. Using Pixel Units in a Style

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 p {

 background: grey;

 color:white;

 font-size: 20px;

 width: 200px;

 }

 </style>

 </head>

 <body>

 Visit the Apress website

 <p>I like apples and oranges.</p>

 Visit the W3C website

 </body>

</html>

In this example, I expressed both the font-size and the width properties in pixels. You can see how the browser applies this style in Figure 4-17.

[image: Image]

Figure 4-17. Specifying units in pixels

Tip Although I often use pixels as units in CSS, it tends to be a matter of habit. I find em units more flexible. This is because I only have to alter the size of the font when I need to make a change and the rest of the style works seamlessly. Remember that although CSS pixels were intended to be relative units, they are absolute units in practice and can become a little inflexible as a consequence.

Working with Percentages

You can express a unit of measurement as a percentage of another property value. You do this using the % (percent) unit, as demonstrated in Listing 4-23.

Listing 4-23. Expressing Units as a Percentage of Another Property Value

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 p {

 background: grey;

 color:white;

 font-size: 200%;

 width: 50%;

 }

 </style>

 </head>

 <body>

 Visit the Apress website

 <p>I like apples and oranges.</p>

 Visit the W3C website

 </body>

</html>

There are two complications in using percentages as units. The first complication is that not all properties can be expressed in this way. The second is that each property that can be expressed as a percentage individually defines which other property the percentage refers to. For example, the font-size property uses the inherited font-size value and the width property uses the width of the containing block.

This isn't as confusing as it might seem. I'll explain what containing block means in Chapter 16. (It is an important and recurring concept.) I'll also tell you which CSS properties support percentage units and what the percentage is calculated from as I describe each CSS property starting in Chapter 19.

CSS Units Without Wide Support

In addition to the relative units I listed, CSS defines some units that have yet to get wide support. Table 4-8 lists these new units. These will be useful when they are implemented widely and consistently, but they should be avoided until this happens.

[image: Image]

The vw, vh, and wm units have the potential to be useful in a wide range of situations, but at present they are implemented only in Internet Explorer. Even then, my brief testing suggested that the implementation doesn't quite match the CSS specification.

CSS Unit Calculations

CSS3 defines an interesting feature that lets you calculate units. This is a flexible approach that gives you both control and precision when you create styles. Listing 4-24 provides an example.

Listing 4-24. Calculating Units

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 p {

 background: grey;

 color:white;

 font-size: 20pt;

 width: calc(80% - 20px);

 }

 </style>

 </head>

 <body>

 Visit the Apress website

 <p>I like apples and oranges.</p>

 Visit the W3C website

 </body>

</html>

You use the calc keyword and parentheses to encompass a calculation. You can mix other units and perform basic arithmetic. Before you get too excited, I should point out that, as I write this, only Internet Explorer implements support for the calc() feature. I generally avoid describing features in this book that are not widely supported, but I am hopeful this particular feature will get traction and I believe it is worth tracking its adoption.

Other CSS Units

Lengths aren't the only CSS units. In fact, there are lots of different units, but only a small number of them are used widely. In the following sections, I describe the units we'll use in this book.

Using CSS Angles

You will need to use angles when you come to transforms in Chapter 23. You express angles as a number followed by a unit—for example, 360deg. Table 4-9 shows the set of supported angle units.

[image: Image]

Using CSS Times

You can measure intervals using the CSS time used. You express times as a number of units followed by a time unit—for example, 100ms. Table 4-10 shows the supported time units.

[image: Image]

Testing for CSS Feature Support

The fragmented nature of the CSS specification and its patchy implementation in browsers means you might find it hard to figure out which CSS features are available. I find a couple of tools are useful in determining support.

The first is the web site http://caniuse.com, which provides a comprehensive analysis of which versions of which browsers support HTML5 and CSS3 features. Detailed information is available on a wide range of desktop and mobile browsers on a range of operating systems. Also, there are some simple decision-support tools that are tied to browser popularity and market penetration. I find this web site very useful when starting a new project to get a feel for which features I can reasonably rely on. It makes tracking the fragmented standard process and browser implementation reasonably simple.

The second tool is Modernizr (www.modernizr.com), which tests for individual features dynamically. It takes the form of a small JavaScript library that tests for the presence of key HTML5 and CSS features, allowing you to adapt to the features that the user's browser supports. It also has some other nice features, such as enabling the styling of the new HTML5 semantic elements (described in Chapter 10) in older versions of Internet Explorer.

Useful CSS Tools

There are some tools I don't discuss in this book but that you might find useful when working with CSS. Each of the following sections describes one of these tools. All of these tools are freely available or included in mainstream browsers.

Browser Style Reporting

All mainstream browsers include style inspection as part of their developer tools. The implementations differ slightly, but the basic premise is that you can select an element from the rendered document or the document markup and see the styles the browser has applied.

These style inspectors show the order in which styles have been cascaded and the computed style (which is the overall style applied to the element by processing all of the cascaded and inherited styles). They even let you edit and create new styles to see their effect. You can see the Google Chrome style inspector in Figure 4-18.

[image: Image]

Figure 4-18. Inspecting CSS styles with Google Chrome

Creating Selectors with SelectorGadget

In Chapters 17 and 18, I explain all of the different selectors that CSS supports. There are a lot of them, and they can be combined to create powerful and flexible effects. Mastering CSS selectors takes time, and one of the most helpful tools I have found to help in this area is SelectorGadget, which is a JavaScript bookmarklet available at www.selectorgadget.com.

This tool hasn't been updated for a while, but it still works on modern browsers. Follow the installation instructions. When you load the script, you are able to click on elements in the browser to create CSS selectors. Figure 4-19 shows SelectorGadget at work.

[image: Image]

Figure 4-19. Using SelectorGadget to create CSS selectors

Enhancing CSS with LESS

When you start working with CSS, you will quickly realize that it is a verbose and repetitive way of expressing styles. There is a lot of duplication, which can make long-term maintenance of your styles time consuming and error prone.

You can extend CSS using LESS, which uses JavaScript to enhance CSS. It supports some nice features, such as variables, inheritance from one style to another, and functions. I have been using LESS a lot lately, and I have been pleased with the results. You can get details and download the JavaScript library at http://lesscss.org.

Using a CSS Framework

A number of high-quality CSS frameworks are available that you can use as the foundation for web sites and web applications. These frameworks contain sets of styles, which mean you don't have to reinvent the wheel. The better frameworks also smooth out the differences in implementation between browsers.

The CSS framework that I recommend is Blueprint, which is available for download at www.blueprintcss.org. It is simple to use and very flexible, and it has an excellent system for creating grid layouts.

Summary

In this chapter, I described how you create and apply styles, how these styles cascade, and how CSS handles units of measurements. I also mentioned some useful tools for determining and detecting support for particular CSS features in browsers and some additional resources that can be useful when working with CSS.

C H A P T E R 5

Getting Started with JavaScript

JavaScript has had a hard life—a difficult birth, followed by a painful adolescence—and it is only in the last few years that JavaScript has earned a reputation for being a useful and flexible programming language. You can do a lot with JavaScript, and although it is far from perfect, it deserves to be taken seriously. In this chapter, I am going to top up your knowledge of JavaScript and, in doing so, describe the functions and features you will need later in this book.

[image: Image] Tip To get the best from this book, you will need some programming experience and an understanding of concepts such as variables, functions, and objects. If you are new to programming, a good starting point is a series of articles posted on the popular website lifehacker.com, where no programming knowledge is assumed and all of the examples are conveniently in JavaScript. The guide is available here: http://lifehacker.com/5744113/learn-to-code-the-full-beginners-guide.

My focus in this chapter is on the core JavaScript features you need for web programming. If you want to go further with JavaScript, there are a couple of books I recommend. For general language information, I like JavaScript: The Definitive Guide by David Flanagan, published by O'Reilly. For more advanced concepts and features, I recommend Pro JavaScript Design Patterns by Ross Harmes and Dustin Diaz, published by Apress. Table 5-1 provides the summary for this chapter.

[image: Image]

[image: Image]

Getting Ready to Use JavaScript

There are a couple of ways you can define scripts in an HTML document. You can define an inline script, where the content of the script is part of the HTML document. You can also define an external script, where the JavaScript is contained in a separate file and referenced via a URL. Both of these approaches rely on the script element, which I describe fully in Chapter 7. In this chapter, I use inline scripts for simplicity. You can see an example of this style of script in Listing 5-1.

Listing 5-1. A Simple Inline Script

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <script type="text/javascript">

 document.writeln("Hello");

 </script>

 </body>

</html>

This is a trivially simple script that appends the word Hello to the document. The script element appears after the other content in the document so that the browser has parsed the other elements before the script is executed. I explain why this is important (and how to exert some control over script execution) in Chapter 7.

[image: Image] Tip As I introduce JavaScript, many of the examples I show will use the document.writeln method as a simple way of showing a result from a script. This method simply appends a line of text to the HTML document. You can learn more about the document object and its writeln method in Chapter 26.

You can see how the browser renders the content and the effect of the script in Figure 5-1.

[image: Image]

Figure 5-1. Using JavaScript to append content to an HTML document

In this chapter, I won't show screenshots, just the result from some of the examples. So, for example, for Listing 5-1, the output is as follows:

Hello

I formatted some of the results to make them easier to read. In the sections that follow, I'll show you the core features of the JavaScript language. If you have had any experience programming in any other modern language, you will find the JavaScript syntax and style familiar.

Using Statements

The basic JavaScript building block is the statement. Each statement represents a single command, and statements are usually terminated by a semicolon (;). In fact, semicolons are optional, but using them makes your code easier to read and allows for multiple statements on a single line. Listing 5-2 shows a couple of statements in a script.

Listing 5-2. Using JavaScript Statements

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <script type="text/javascript">

 document.writeln("This is a statement");

 document.writeln("This is also a statement");

 </script>

 </body>

</html>

The browser executed each statement in turn. In this example, I just write out a pair of simple messages. The results are as follows (you may see the result on a single line):

This is a statement

This is also a statement

Defining and Using Functions

If you define statements directly in the script element, as I did in Listing 5-2 earlier, the browser will execute those statements as soon as it reaches them. As an alternative, you can package up multiple statements into a function, which won't be executed until the browser encounters a statement that invokes the function, as shown in Listing 5-3.

Listing 5-3. Defining a JavaScript Function

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <script type="text/javascript">

 function myFunc() {

 document.writeln("This is a statement");

 };

 myFunc();

 </script>

 </body>

</html>

The statements contained by a function are encompassed by braces ({ and }) and are referred to as the code block. This listing defines a function called myFunc, which contains a single statement in the code block. JavaScript is a case-sensitive language, which means that the keyword function must be lowercase. The statement in the function won't be executed until the browser reaches another statement that calls the myFunc function, like this:

myFunc();

This example isn't especially useful because the function is invoked immediately after it has been defined. You can see some examples where functions are much more useful when you look at events later in the chapter.

Defining Functions with Parameters

In common with most programming languages, JavaScript allows you to define parameters for functions, as shown in Listing 5-4.

Listing 5-4. Defining Functions with Parameters

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <script type="text/javascript">

 function myFunc(name, weather) {

 document.writeln("Hello " + name + ".");

 document.writeln("It is " + weather + " today");

 };

 myFunc("Adam", "sunny");

 </script>

 </body>

</html>

In this listing, I added two parameters to the myFunc function: name and weather. JavaScript is a loosely typed language, which means you don't have to declare the data type of the parameters when you define the function. I'll come back to loose-typing later in the chapter when you look at JavaScript variables. To invoke a function with parameters, you provide values as arguments when you invoke the function, like this:

myFunc("Adam", "sunny");

The results from this listing are as follows:

Hello Adam. It is sunny today

The number of arguments used when you invoke a function doesn't need to match the number of parameters in the function. If you call the function with fewer arguments than it has parameters, the value of any parameters you have not supplied values for is undefined. If you call the function with more arguments than there are parameters, the additional arguments are simply ignored. The consequence of this is that you can't create two functions with the same name and different parameters and expect JavaScript to differentiate between them based on the arguments you provide when invoking the function. If you define two functions with the same name, the second definition replaces the first.

Defining Functions That Return Results

You can return results from functions using the return keyword. Listing 5-5 shows a function that returns a result.

Listing 5-5. Returning a Result from a Function

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <script type="text/javascript">

 function myFunc(name) {

 return ("Hello " + name + ".");

 };

 document.writeln(myFunc("Adam"));

 </script>

 </body>

</html>

This function defines one parameter and uses it to generate a simple result. I invoke the function and pass the result as the argument to the document.writeln function, like this:

 document.writeln(myFunc("Adam"));

Notice that you don't have to declare that the function will return a result or denote the data type of the result. The result from this listing is as follows:

Hello Adam.

Using Variables and Types

You define variables using the var keyword, and you can optionally assign a value to the variable as you assign it in a single statement. Variables that are defined in a function are local variables and are available for use only within that function. Variables that are defined directly in the script element are global variables and can be accessed anywhere, including in other scripts. Listing 5-6 demonstrates the use of local and global variables.

Listing 5-6. Using Local and Global Variables

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <script type="text/javascript">

 var myGlobalVar = "apples";

 function myFunc(name) {

 var myLocalVar = "sunny";

 return ("Hello " + name + ". Today is " + myLocalVar + ".");

 };

 document.writeln(myFunc("Adam"));

 </script>

 <script type="text/javascript">

 document.writeln("I like " + myGlobalVar);

 </script>

 </body>

</html>

JavaScript is a loosely typed language. This doesn't mean JavaScript doesn't have types—it just means that you don't have to explicitly declare the type of a variable and that you can assign different types to the same variable without any difficulty. JavaScript determines the type based on the value you assign to a variable and freely converts between types based on the context in which they are used. The result from Listing 5-6 is as follows:

Hello Adam. Today is sunny. I like apples

Using the Primitive Types

JavaScript defines a small set of primitive types. These are string, number, and boolean. This may seem like a short list, but JavaScript manages to fit a lot of flexibility into these three types.

Working with Strings

You define string values using either the double quote or single quote characters, as shown in Listing 5-7.

Listing 5-7. Defining String Variables

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <script type="text/javascript">

 var firstString = "This is a string";

 var secondString = 'And so is this';

 </script>

 </body>

</html>

The quote characters you use must match. You can't start a string with a single quote and finish with a double quote, for example.

Working with Booleans

The boolean type has two values: true and false. Listing 5-8 shows both values being used, but this type is most useful when used in conditional statements, which I describe later in this chapter.

Listing 5-8. Defining boolean Values

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <script type="text/javascript">

 var firstBool = true;

 var secondBool = false;

 </script>

 </body>

</html>

Working with Numbers

The number type is used to represent both integer and floating-point numbers (also known as real numbers). Listing 5-9 provides a demonstration.

Listing 5-9. Defining Number Values

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <script type="text/javascript">

 var daysInWeek = 7;

 var pi = 3.14;

 var hexValue = 0xFFFF;

 </script>

 </body>

</html>

You don't have to specify which kind of number you are using—you just express the value you require, and JavaScript will act accordingly. In the listing, I defined an integer value and a floating-point value, and I prefixed a value with 0x to denote a hexadecimal value.

Creating Objects

JavaScript supports the notion of objects, and there are different ways you can create them. Listing 5-10 gives a simple example.

Listing 5-10. Creating an Object

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <script type="text/javascript">

 var myData = new Object();

 myData.name = "Adam";

 myData.weather = "sunny";

 document.writeln("Hello " + myData.name + ". ");

 document.writeln("Today is " + myData.weather + ".");

 </script>

 </body>

</html>

I create an object by calling new Object(), and I assign the result (the newly created object) to a variable called myData. After the object is created, I can define properties on the object just by assigning values, like this:

myData.name = "Adam";

Prior to this statement, my object doesn't have a property called name. After the statement has executed, the property does exist and it has been assigned the value Adam. You can read the value of a property by combining the variable name and the property name with a period, like this:

document.writeln("Hello " + myData.name + ". ");

Using Object Literals

You can define an object and its properties in one step using the object literal format. Listing 5-11 shows how this is done.

Listing 5-11. Using the Object Literal Format

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <script type="text/javascript">

 var myData = {

 name: "Adam",

 weather: "sunny"

 };

 document.writeln("Hello " + myData.name + ". ");

 document.writeln("Today is " + myData.weather + ".");

 </script>

 </body>

</html>

Each property you want to define is separated from its value using a colon (:), and properties are separated using a comma (,).

Using Functions as Methods

Just as you can add properties to an object, you can add functions to an object too. A function that belongs to an object is known as a method. This is one of the JavaScript features I like most. I don't know why, but I find this elegant and endlessly pleasing. Listing 5-12 shows how you can add methods in this manner.

Listing 5-12. Adding Methods to an Object

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <script type="text/javascript">

 var myData = {

 name: "Adam",

 weather: "sunny",

 printMessages: function() {

 document.writeln("Hello " + this.name + ". ");

 document.writeln("Today is " + this.weather + ".");

 }

 };

 myData.printMessages();

 </script>

 </body>

</html>

In this example, I used a function to create a method called printMessages. Notice that to refer to the properties defined by the object, I have to use the this keyword. When a function is used as a method, the function is implicitly passed the object on which the method has been called as an argument through the special variable this. The output from the listing is as follows:

Hello Adam. Today is sunny.

Tip JavaScript has a lot more to offer when it comes to creating and managing objects, but you don't need those features to work with HTML5. Take a look at the books I recommended at the start of the chapter if you want to delve deeper into the language.

Working with Objects

After you have created objects, you can do a number of things with them. In the following sections, I'll describe the activities that will be useful later in this book.

Read and Modify the Property Values

The most obvious thing to do with an object is read or modify the values assigned to the properties that the object defines. You can use two different syntax styles, both of which are shown in Listing 5-13.

Listing 5-13. Reading and Modifying Object Properties

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <script type="text/javascript">

 var myData = {

 name: "Adam",

 weather: "sunny",

 };

 myData.name = "Joe";

 myData["weather"] = "raining";

 document.writeln("Hello " + myData.name + ".");

 document.writeln("It is " + myData["weather"]);

 </script>

 </body>

</html>

The first style is the one most programmers will be familiar with, and it's the one I used in earlier examples. You concatenate the object name and the property name together with a period, like this:

myData.name = "Joe";

The second style is an array-style index, which looks like this:

myData["weather"] = "raining";

In this style, you specify the name of the property you want between square braces ([and]). This can be a very convenient way to access a property because you can pass the property you are interested in using a variable, like this:

var myData = {

 name: "Adam",

 weather: "sunny",

};

var propName = "weather";

myData[propName] = "raining";

This is the basis for how you enumerate the properties of an object, which I describe next.

Enumerating an Object's Properties

You enumerate the properties an object has using the for...in statement. Listing 5-14 shows how you can use this statement.

Listing 5-14. Enumerating an Object's Properties

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <script type="text/javascript">

 var myData = {

 name: "Adam",

 weather: "sunny",

 printMessages: function() {

 document.writeln("Hello " + this.name + ". ");

 document.writeln("Today is " + this.weather + ".");

 }

 };

 for (var prop in myData) {

 document.writeln("Name: " + prop + " Value: " + myData[prop]);

 }

 </script>

 </body>

</html>

The for...in loop performs the statement in the code block for each property in the myData object. In each iteration, the prop variable is assigned the name of the property being processed. I use an array-style index (that is, using the [and] brackets) to retrieve the value of the property from the object. The output from this listing is as follows (I formatted the results to make them easier to read):

Name: name Value: Adam

Name: weather Value: sunny

Name: printMessages Value: function () { document.writeln("Hello " + this.name + ". ");

document.writeln("Today is " + this.weather + "."); }

From the result, you can see that the function I defined as a method is also enumerated. This is as a result of the flexible way JavaScript handles functions and because methods are themselves considered to be properties of an object.

Adding and Deleting Properties and Methods

You are still able to define new properties for an object, even when you have used the object literal style. Listing 5-15 gives a demonstration.

Listing 5-15. Adding a New Property to an Object

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <script type="text/javascript">

 var myData = {

 name: "Adam",

 weather: "sunny",

 };

 myData.dayOfWeek = "Monday";

 </script>

 </body>

</html>

In this listing, I added a new property to the object called dayOfWeek. – I used the dot-notation (concatenating the object and property names with a period), but I could as readily used the array-style index notation.

As you might expect by now, you can also add new methods to an object by setting the value of a property to be a function, as shown in Listing 5-16.

Listing 5-16. Adding a New Method to an Object

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <script type="text/javascript">

 var myData = {

 name: "Adam",

 weather: "sunny",

 };

 myData.sayHello = function() {

 document.writeln("Hello");

 };

 </script>

 </body>

</html>

You can delete a property or method from an object using the delete keyword, as shown in Listing 5-17.

Listing 5-17. Deleting a Property from an Object

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <script type="text/javascript">

 var myData = {

 name: "Adam",

 weather: "sunny",

 };

 myData.sayHello = function() {

 document.writeln("Hello");

 };

 delete myData.name;

 delete myData["weather"];

 delete myData.sayHello;

 </script>

 </body>

</html>

Determine If an Object Has a Property

You can check to see if an object has a property using the in expression, as shown in Listing 5-18.

Listing 5-18. Checking Whether an Object Has a Property

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <script type="text/javascript">

 var myData = {

 name: "Adam",

 weather: "sunny",

 };

 var hasName = "name" in myData;

 var hasDate = "date" in myData;

 document.writeln("HasName: " + hasName);

 document.writeln("HasDate: " + hasDate);

 </script>

 </body>

</html>

In this example, I test for a property that exists and one that doesn't. The value of the hasName variable will be true, and the value of the hasDate property will be false.

Using JavaScript Operators

JavaScript defines a largely standard set of operators. I've summarized the most useful ones in Table 5-2.

[image: Image]

Using the Equality and Identity Operators

The equality and identity operators are of particular note. The equality operators attempt to coerce operands to the same type in order to assess equality. This is a handy feature as long as you are aware of its actions. Listing 5-19 shows the equality operator in action.

Listing 5-19. Using the Equality Operator

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <script type="text/javascript">

 var firstVal = 5;

 var secondVal = "5";

 if (firstVal === secondVal) {

 document.writeln("They are the same");

 } else {

 document.writeln("They are NOT the same");

 }

 </script>

 </body>

</html>

The output from this script is as follows:

They are the same

JavaScript is converting the two operands into the same type and comparing them—in essence, the equality operator tests that values are the same regardless of their type. If you want to test to ensure that the values and the types are the same, you need to use the identity operator (===, which is three equals signs rather than the two of the equality operator), as shown in Listing 5-20.

Listing 5-20. Using the Identity Operator

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <script type="text/javascript">

 var firstVal = 5;

 var secondVal = "5";

 if (firstVal === secondVal) {

 document.writeln("They are the same");

 } else {

 document.writeln("They are NOT the same");

 }

 </script>

 </body>

</html>

In this example, the identity operator considers the two variables to be different—this operator doesn't coerce types. The result from this script is as follows:

They are NOT the same

Tip Notice that I have used the if conditional statement in Listings 5-19 and 5-20. This statement evaluates a condition and, if the condition evaluates to true, executes the statements in the code block. The if statement can be used with an optional else clause, which contains a code block whose statements will be executed if the condition is false.

JavaScript primitives (the built-in types, such as strings and numbers) are compared by value, but JavaScript objects are compared by reference. Listing 5-21 shows how JavaScript handles equality and identity tests for objects.

Listing 5-21. Performing Equality and Identity Tests on Objects

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <script type="text/javascript">

 var myData1 = {

 name: "Adam",

 weather: "sunny",

 };

 var myData2 = {

 name: "Adam",

 weather: "sunny",

 };

 var myData3 = myData2;

 var test1 = myData1 == myData2;

 var test2 = myData2 == myData3;

 var test3 = myData1 === myData2;

 var test4 = myData2 === myData3;

 document.writeln("Test 1: " + test1 + " Test 2: " + test2);

 document.writeln("Test 3: " + test3 + " Test 4: " + test4);

 </script>

 </body>

</html>

The results from this script are as follows:

Test 1: false Test 2: true

Test 3: false Test 4: true

Listing 5-22 shows the same tests performed on primitives.

Listing 5-22. Performing Equality and Identity Tests on Primitives

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <script type="text/javascript">

 var myData1 = 5;

 var myData2 = "5";

 var myData3 = myData2;

 var test1 = myData1 == myData2;

 var test2 = myData2 == myData3;

 var test3 = myData1 === myData2;

 var test4 = myData2 === myData3;

 document.writeln("Test 1: " + test1 + " Test 2: " + test2);

 document.writeln("Test 3: " + test3 + " Test 4: " + test4);

 </script>

 </body>

</html>

The results from this script are as follows:

Test 1: true Test 2: true

Test 3: false Test 4: true

Explicitly Converting Types

The string concatenation operator (+) has a higher precedence than the addition operator (also +). This can cause confusion because JavaScript converts types freely to produce a result, and it isn't always the result that is expected. Listing 5-23 shows an example.

Listing 5-23. String Concatentation Operator Precedence

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <script type="text/javascript">

 var myData1 = 5 + 5;

 var myData2 = 5 + "5";

 document.writeln("Result 1: " + myData1);

 document.writeln("Result 2: " + myData2);

 </script>

 </body>

</html>

The result from this script is as follows:

Result 1: 10

Result 2: 55

The second result is the kind that causes confusion. What might be intended to be an addition operation is interpreted as string concatenation through a combination of operator precedence and overeager type conversion. To avoid this, you can explicitly convert the types of values to ensure you perform the right kind of operation. Table 5-3 describes the most useful conversion methods.

Converting Numbers to Strings

If you are working with multiple number variables and you want to concatenate them as strings, you can convert the numbers to strings with the toString method, as shown in Listing 5-24.

Listing 5-24. Using the Number.toString Method

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <script type="text/javascript">

 var myData1 = (5).toString() + String(5);

 document.writeln("Result: " + myData1);

 </script>

 </body>

</html>

Notice that I placed the numeric value in parentheses and then called the toString method. This is because you have to allow JavaScript to convert the literal value into a number before you can call the methods that the number type defines. I also showed an alternative approach to achieve the same effect as calling toString, which is to call the String function and pass in the numeric value as an argument. Both of these techniques have the same effect, which is to convert a number to a string, meaning that the + operator is used for string concatenation and not addition. The output from this script is as follows:

Result: 55

There are some other methods that allow us to exert more control over how a number is represented as a string. I briefly describe these in Table 5-3. All of the methods shown in the table are defined by the number type.

[image: Image]

Converting Strings to Numbers

The opposite problem is to convert strings to numbers so that you can perform addition rather than concatenation. You can do this with the Number function, as shown in Listing 5-25.

Listing 5-25. Converting Strings to Numbers

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <script type="text/javascript">

 var firstVal = "5";

 var secondVal = "5";

 var result = Number(firstVal) + Number(secondVal);

 document.writeln("Result: " + result);

 </script>

 </body>

</html>

The output from this script is as follows:

Result: 10

The Number function is quite strict in the way that it parses string values, but you can use two other functions that are more flexible and will ignore trailing non-number characters: parseInt and parseFloat. I described all three functions in Table 5-4.

[image: Image]

Working with Arrays

JavaScript arrays work pretty much like arrays in most other programming languages. Listing 5-26 shows how you can create and populate an array.

Listing 5-26. Creating and Populating an Array

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <script type="text/javascript">

 var myArray = new Array();

 myArray[0] = 100;

 myArray[1] = "Adam";

 myArray[2] = true;

 </script>

 </body>

</html>

I created a new array by calling new Array(). This creates an empty array, which I assign to the variable myArray. In the subsequent statements, I assign values to various index positions in the array.

There are a couple of things to note in this example. First, I didn't need to declare the number of items in the array when I created it. JavaScript arrays resize themselves to hold any number of items. The second point to note is that I didn't have to declare the data types that the array will hold. Any JavaScript array can hold any mix of data types. In the example, I assigned three items to the array: a number, a string, and a boolean.

Using an Array Literal

The array literal style lets you create and populate an array in a single statement, as shown in Listing 5-27.

Listing 5-27. Using the Array Literal Style

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <script type="text/javascript">

 var myArray = [100, "Adam", true];

 </script>

 </body>

</html>

In this example, I specified that the myArray variable should be assigned a new array by specifying the items I wanted in the array between square brackets ([and]).

Reading and Modifying the Contents of an Array

You read the value at a given index using square braces ([and]), placing the index you require between the braces, as shown in Listing 5-28. JavaScript uses zero-based array indexes.

Listing 5-28. Reading Data from an Array Index

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <script type="text/javascript">

 var myArray = [100, "Adam", true];

 document.writeln("Index 0: " + myArray[0]);

 </script>

 </body>

</html>

You can modify the data held in any position in a JavaScript array simply by assigning a new value to the index. Just as with regular variables, you can switch the data type at an index without any problems. Listing 5-29 demonstrates modifying the contents of an array.

Listing 5-29. Modifying the Contents of an Array

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <script type="text/javascript">

 var myArray = [100, "Adam", true];

 myArray[0] = "Tuesday";

 document.writeln("Index 0: " + myArray[0]);

 </script>

 </body>

</html>

In this example, I assigned a string to position 0 in the array—a position that was previously held by a number.

Enumerating the Contents of an Array

You enumerate the content of an array using a for loop. Listing 5-30 shows how to apply the loop to display the contents of a simple array.

Listing 5-30. Enumerating the Contents of an Array

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <script type="text/javascript">

 var myArray = [100, "Adam", true];

 for (var i = 0; i < myArray.length; i++) {

 document.writeln("Index " + i + ": " + myArray[i]);

 }

 </script>

 </body>

</html>

The JavaScript loop works just the same way as loops in many other languages. You determine how many elements are in the array by using the length property. The output from the listing is as follows:

Index 0: 100 Index 1: Adam Index 2: true

Using the Built-in Array Methods

The JavaScript Array object defines a number of methods you can use to work with arrays. Table 5-5 describes the most useful of these methods.

[image: Image]

[image: Image]

Handling Errors

JavaScript uses the try...catch statement to deal with errors. For the most part, you won't be worrying about errors in this book because my focus is on explaining the features of HTML5 and not core programming skills. Listing 5-31 shows how to use this kind of statement.

Listing 5-31. Handling an Exception

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <script type="text/javascript">

 try {

 var myArray;

 for (var i = 0; i < myArray.length; i++) {

 document.writeln("Index " + i + ": " + myArray[i]);

 }

 } catch (e) {

 document.writeln("Error: " + e);

 }

 </script>

 </body>

</html>

The problem in this script is a common one—I am trying to use a variable that has not been initialized properly. I wrapped the code that I suspect will cause an error in the try clause of the statement. If no problems arise, the statements execute normally and the catch clause is ignored.

However, if there is an error, execution of the statements in the try clause stops immediately and control passes to the catch clause. The error you encountered is described by an Error object, which is passed to the catch clause. Table 5-6 shows the properties defined by the Error object.

[image: Image]

The catch clause is your opportunity to recover from the error or clean up after it. If there are statements that need to be executed whether or not there has been an error, you can place them in the optional finally clause, as shown in Listing 5-32.

Listing 5-32. Using a finally Clause

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <script type="text/javascript">

 try {

 var myArray;

 for (var i = 0; i < myArray.length; i++) {

 document.writeln("Index " + i + ": " + myArray[i]);

 }

 } catch (e) {

 document.writeln("Error: " + e);

 } finally {

 document.writeln("Statements here are always executed");

 }

 </script>

 </body>

</html>

Comparing the undefined and null Values

There are a couple of special values JavaScript defines that you need to be careful with when you compare them: undefined and null. The undefined value is returned when you read a variable that hasn't had a value assigned to it or try to read an object property that doesn't exist. Listing 5-33 shows how undefined is used in JavaScript.

Listing 5-33. The Undefined Special Value

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <script type="text/javascript">

 var myData = {

 name: "Adam",

 weather: "sunny",

 };

 document.writeln("Prop: " + myData.doesntexist);

 </script>

 </body>

</html>

The output from this listing is as follows:

Prop: undefined

JavaScript is odd in that it also defines null—another special value. The null value is slightly different from undefined. The undefined value is returned when no value is defined, and null is used when you want to indicate you have assigned a value but that value is not a valid object, string, number, or boolean (that is, you have defined a value of no value). To help clarify this, Listing 5-34 shows the transition from undefined to null.

Listing 5-34. Using undefined and null

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <script type="text/javascript">

 var myData = {

 name: "Adam",

 };

 document.writeln("Var: " + myData.weather);

 document.writeln("Prop: " + ("weather" in myData));

 myData.weather = "sunny";

 document.writeln("Var: " + myData.weather);

 document.writeln("Prop: " + ("weather" in myData));

 myData.weather = null;

 document.writeln("Var: " + myData.weather);

 document.writeln("Prop: " + ("weather" in myData));

 </script>

 </body>

</html>

I create an object and then try to read the value of the weather property, which is not defined in the early part of the code fragment:

document.writeln("Var: " + myData.weather);

document.writeln("Prop: " + ("weather" in myData));

There is no weather property yet, so the value returned by calling myData.weather is undefined and using the in keyword to determine if the object contains the property returns false. The output from these two statements is as follows:

Var: undefined

Prop: false

I then assign a value to the weather property, which has the effect of adding the property to the object:

myData.weather = "sunny";

document.writeln("Var: " + myData.weather);

document.writeln("Prop: " + ("weather" in myData));

I read the value of the property and check to see if the property exists in the object again. As you might expect, you learn that the object does define the property and that its value is sunny:

Var: sunny

Prop: true

Now I set the value of the property to null, like this:

myData.weather = null;

This has a very specific effect—the property is still defined by the object, but I indicated it doesn't contain a value. When I perform my checks again, I get the following results:

Var: null

Prop: true

Checking Whether a Variable or Property Is null or undefined

If you want to check whether a property is null or undefined (and you don't care which), you can simply use an if statement and the negation operator (!), as shown in Listing 5-35.

Listing 5-35. Checking Whether a Property Is null or undefined

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <script type="text/javascript">

 var myData = {

 name: "Adam",

 city: null

 };

 if (!myData.name) {

 document.writeln("name IS null or undefined");

 } else {

 document.writeln("name is NOT null or undefined");

 }

 if (!myData.city) {

 document.writeln("city IS null or undefined");

 } else {

 document.writeln("city is NOT null or undefined");

 }

 </script>

 </body>

</html>

This technique relies on the type coercion that JavaScript performs such that the values you are checking are treated as boolean values. If a variable or property is null or undefined, the coerced boolean value is false.

Differentiating Between null and undefined

If you want to compare two values, you have a choice. If you want to treat an undefined value as being the same as a null value, you can use the equality operator (==) and rely on JavaScript converting the types—an undefined variable will be regarded as being equal to a null variable, for example. If you want to differentiate between null and undefined, you need to use the identity operator (===). Both comparisons are shown in Listing 5-36.

Listing 5-36. Equality and Identity Comparisons for null and undefined Values

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <script type="text/javascript">

 var firstVal = null;

 var secondVal;

 var equality = firstVal == secondVal;

 var identity = firstVal === secondVal;

 document.writeln("Equality: " + equality);

 document.writeln("Identity: " + identity);

 </script>

 </body>

</html>

The output from this script is as follows:

Equality: true

Identity: false

Useful JavaScript Tools

There are a lot of tools available to help make working with JavaScript simpler. There are two that I think are particularly worthy of note.

Using a JavaScript Debugger

The current generation of browsers includes sophisticated JavaScript debuggers (or supports them through plug-ins like Firebug for Mozilla Firefox). These can be used to set breakpoints, detect errors, and step through a script as it is executing. When you get into difficulty with a script, the debugger is the first place to turn to. My preferred browser is Google Chrome, and I get on well with the built-in debugger. However, when I have a particularly intractable problem, I find myself using Firebug on Firefox. The Firebug debugger seems more robust when dealing with complex issues.

Using a JavaScript Library

One of the easiest ways of using JavaScript is through a JavaScript toolkit or library. There is no shortage of such toolkits, but there are two that I recommend in particular. The first one, and the one I have the most experience with, is jQuery. jQuery and its companion jQuery UI are immensely popular, actively developed, and packed with useful features. jQuery makes working with JavaScript simpler and more pleasurable than it would otherwise be.

The other toolkit—and the main competitor to jQuery—is Dojo. Dojo has very similar functionality to jQuery and is equally well supported and widely used. I have had less experience with Dojo than jQuery, but my time spent with Dojo has been positive. You can download jQuery at jquery.com and Dojo is available at http://dojotoolkit.org. At the risk of being seen as shilling for my own books, if you want more detail about jQuery, consider reading Pro jQuery, which is also published by Apress.

Summary

In this chapter, I showed you the core JavaScript features you will use throughout this book. JavaScript is an integral part of HTML5, and a basic understanding of the language and its use is essential.

P A R T II

The HTML Elements

Now that you are set up and your knowledge of the basics is refreshed, you can begin to look at HTML5. In this part of the book, I'll introduce you to the HTML elements, including those that are new or changed in HTML5.

C H A P T E R 6

HTML Elements in Context

In the chapters that follow, I describe the elements defined by HTML5. Many of these are elements that also existed in HTML4, but in many cases the meaning of the element has changed or the way in which the element can be used is different. Before we look at the elements, I want to put them in context and set the foundation for what follows. Knowing how to use the elements is as important as understanding their significance.

Understanding the Sematic/Presentation Divide

One of the major changes in HTML5 is a philosophical one—the separation between the sematic significance of an element and the effect an element has on the presentation of content. In principle, this is a sensible idea—you use HTML elements to give structure and meaning to your content and then control the presentation of that content by applying CSS styles to the elements. Not every consumer of HTML documents needs to display them, and by keeping presentation as a separate endeavor you make HTML easier to process and draw meaning from automatically.

Most of the new elements that have been added to HTML5 add a specific meaning to your content. You can use the article element (described in Chapter 10) to denote a self-contained piece of content suitable for syndication or the figure element to denote, well, a figure.

A large number of elements that existed in HTML4 originated when there was no notion of separating presentation from meaning—and that puts us in an odd situation. A great example is the b element. Until HTML5, the b element instructed the browser to show the content contained by the start and end tags as bold text. In HTML5, you don't want elements to be just presentational, so you have a new definition. Here it is:

The b element represents a span of text offset from its surrounding content without conveying any extra emphasis or importance, and for which the conventional typographic presentation is bold text; for example, keywords in a document abstract, or product names in a review.

– HTML: The Markup Language, w3c.org

This is a long-winded way of telling us that the b element tells the browser to make text bold. There is no semantic significance to the b element; it is all about presentation. And this weasel-worded definition tells us something important about HTML5: we are in a period of transition. We need to preserve the old elements because they are so widely used, and dumping the HTML4 elements in HTML5 is unthinkable because it would certainly slow adoption. So we have a two-speed standard. Some of the elements, especially the new ones, have only sematic significance. Other elements, largely those with one letter tags, are so well established that we are willing to bend the presentation/semantic divide, even if we are not willing to admit this as openly as we might.

As you read through the descriptions of elements, starting in the next chapter, you will find it helpful to keep this tension between the new way of thinking and the old way in mind. It will certainly help explain some of the minor oddities you will encounter.

My advice is to err on the side of semantics and, where sensible, try to avoid elements that are largely (or solely) presentational. It is a simple matter to define a custom class and apply the required style. As long as you use the style based on the type of content (and not just the way you want the content to appear), you will preserve at least the semantic spirit.

Understanding How to Select Elements

Even if you leave the presentation issues aside, the HTML5 specification has some ambiguities. Some of the elements are very generic, and you might find this off-putting at first.

The elements are generic, but that's because HTML elements are used to mark up so many different kinds of content. Most of my writing is for books like this, so when I hear terms like section, article, heading, and figure, I think of the structure and styles that Apress requires from authors. The same terms have different meanings when applied to other kinds of content. A specification, legal contract, and blog post might all have sections, for example, but the meaning of that term for each is radically different. Rather than having a definition for a book section, a specification section, a contract section, and a blog section, we just have the general term and some degree of interpretation is required. There are some basic rules that I recommend you follow when selecting elements to apply to your content. They are described in the following sections.

Less Can Be More

It is very easy to get carried away and end up with a lot of markup in a document. You just need to add the markup to give the semantic significance your content demands. If you don't need to define complex titles, you don't need the hgroup element (described in Chapter 10), and detailed citations with the cite element (Chapter 8) are required only in documents where citations are important (such as journal articles).

Judging how much markup to apply is a matter of experience, but here is a rule of thumb: ask yourself how the semantics of an element are going to be used. I don't apply the element if I don't have an immediate answer.

Don't Abuse Elements

Each element denotes a particular kind of content, even those tricky presentation-only elements like b. When marking up content, use the elements only for their defined purpose and avoid creating private semantics. If you can't find an element that has the significance you require, consider using one of the generic elements (such as span or div) and using the class global attribute to denote the meaning in your document. Classes don't have to be used just for CSS styles.

Be Specific and Consistent

You need to pick the most specific element to represent your content. This means resisting the temptation to construct your page using generic elements when there are elements that denote the appropriate type of content. There has been a tendency in HTML4 to rely on div elements (described in Chapter 9) to build structure in a page, but the problem is that the semantics are not immediately apparent to anyone trying to process your content. You might decide to create a class called article and apply your styles using that class, but this doesn't impart the same meaning to others as using the article element.

Equally, when you use an element, make sure you apply it consistently throughout your page, site, or web application. This will make it easier for you to maintain your HTML markups and for others to process your HTML.

Don't Make Assumptions About the Audience

It is easy to assume that the consumers of your HTML care only about how the page is rendered in the browser and, as a consequence, you don't have to worry about the semantic accuracy of your markup. The whole point of the semantic/presentation divide is to make HTML easier to process programmatically and, as a consequence, you can expect this style of HTML consumption to gradually increase as HTML5 is more widely adopted and implemented. By assuming you don't have to worry about the accuracy or consistency of your markups, you make it harder to process your HTML, which will limit the range of purposes the user can find for your content.

Understanding Element Descriptions

As I describe each element, I provide a summary table with the key facts you need to know and which you can refer back to as you apply markup to content. Table 6-1 is an example of such a summary—it describes the ol element, which is used to denote an ordered list. (You can see full details of HTML lists in Chapter 9.)

[image: Image]

[image: Image]

The tables in this chapter tell you which parents are suitable for the element, the kind of content an element can contain, the style of tag that is required, the default presentation style, and whether the element is new or changed in HTML5. The information about suitable parents and content is based on the element categories I described in Chapter 3—principally flow and phrasing elements.

Element Quick Reference

The following tables are a quick reference for all of the HTML5 elements that I describe in the following chapters.

The Document and Metadata Elements

Table 6-2 summarizes the document and metadata elements, which are described in detail in Chapter 7. These elements are used to create the superstructure of an HTML document, to provide information to the browser about the document, and to define scripts and CSS styles and content that will be displayed if scripts are disabled in the browser.

[image: Image]

[image: Image]

The Text Elements

The text elements are applied to content to give basic structure and meaning. Table 6-3 summarizes these elements, which are described fully in Chapter 8.

[image: Image]

[image: Image]

Grouping Content

The elements in Table 6-4 are used to associate related content in groups. The full details of these elements can be found in Chapter 9.

[image: Image]

Sectioning Content

The elements in Table 6-5 are used to break down the content so that each concept, idea, or topic is isolated. Many of these elements are new, and they provide a lot of the foundation for separating the meaning of elements from their appearance. You can learn more about these elements in Chapter 10.

[image: Image]

Creating Tables

The elements in Table 6-6 are used to create tables to show data in a grid. The main change in HTML5 is that you can no longer use tables to manage the layout of pages. Instead, you must use the CSS table features, which I described in Chapter 21.

[image: Image]

[image: Image]

Creating Forms

The elements in Table 6-7 are used to create HTML forms you can use to solicit input from the user. This area of HTML has received a lot of attention in HTML5, and it has many new elements and features, including the ability to validate input on the client before the user is able to submit the form. I describe the HTML form elements in Chapters 12, 13, and 14. Of particular interest are the new types of input element, which I introduce in Chapter 12 and cover in depth in Chapter 13.

[image: Image]

[image: Image]

Embedding Content

The elements in Table 6-8 are used to embed content into an HTML document. Some of these elements are described in Chapter 15, and others are covered in later parts of this book.

[image: Image]

[image: Image]

Unimplemented Elements

There are two elements that no browser currently implements and that are only vaguely described in the HTML5 specifications. These elements are command and menu. At a high level, they are intended to make working with menus and user-interface elements simpler, but I am unable to present any detailed information in this book. I hope that subsequent versions of browsers will start to form a de facto consensus as to the meaning of these elements.

Summary

In this chapter, I provided some context for the detailed descriptions of the HTML5 elements that appear in the chapters that follow. I also provided a quick reference so that you can find the description of an element when you need to refresh your memory in the future. As you start to learn about the elements and attributes in HTML, you should remember the core advice I offered at the start of the chapter: use the most specific element possible, don't misuse elements, and use elements consistently within your documents and across your web site or web application.

C H A P T E R 7

Creating HTML Documents

In this chapter, you are going to look at the most fundamental elements defined by HTML5: the document and metadata elements. These are the elements that you use to create an HTML document and to describe its contents.

These are the least interesting elements that HTML defines, and yet they are critically important. By all means, feel free to skip over this chapter and come back later—but please do come back. Every HTML document uses at least some of these elements (and often all of them) and knowing how to use them properly is essential to creating standards-compliant HTML5 documents. Table 7-1 provides the summary for this chapter.

[image: Image]

[image: Image]

Setting Up the Basic Document Structure

Let's begin with the document elements. These are the building blocks that define the shape of your HTML document and set the initial context for the browser. There are only four document elements, but they are always required in any HTML document.

The doctype Element

The doctype element is unique and in a category of its own. You are required to begin every HTML document that you create with a doctype element; this is the element that tells the browser that it will be dealing with HTML. Most browsers will still display your content correctly if you omit the doctype element, but it is bad practice to rely on browsers to behave in this way. Table 7-2 summarizes the doctype element.

[image: Image]

[image: Image]

There is only one way to use the doctype element in HTML5, and that is shown in Listing 7-1. As you work through this chapter, you'll apply each element to create a simple, but complete, HTML5 document. Listing 7-1 shows the first line.

Listing 7-1. Using the doctype Element

<!DOCTYPE HTML>

This element tells the browser two things: it is dealing with HTML, and which version of the HTML specification the content has been annotated with. You don't have to supply a version number. The browser will automatically detect that you are using HTML5 (this is because this element has a slightly different form in HTML5 than in earlier HTML versions). There is no end tag for this element. You simply put a single tag at the start of the document.

The html Element

The html element, which is more properly called the root element, indicates the start of the HTML inside of your document. Table 7-3 summarizes the html element.

[image: Image]

[image: Image]

The html element indicates the start of the HTML markup in the document. Listing 7-2 shows the html element in use.

Listing 7-2. Using the html Element

<!DOCTYPE HTML>

<html>

 …content and elements omitted…

</html>

The head Element

The head element contains the metadata for the document. In HTML, metadata provides the browser with information about the content and markup in the document, but can also include scripts and references to external resources (such as CSS stylesheets). You will see the metadata elements later in this chapter. Table 7-4 summarizes the head element.

[image: Image]

[image: Image]

Listing 7-3 shows the head element in use. Every HTML document should contain a head element and it, in turn, must contain a title element, as shown in the listing. The full details of the title element are shown later in this chapter.

Listing 7-3. Using the head Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Hello</title>

 </head>

</html>

The body Element

The body element encapsulates the content of an HTML document, as opposed to the head element, which encapsulates metadata and document information. The body element always follows the head element so that it is the second child of the html element. Table 7-5 describes the body element.

[image: Image]

Listing 7-4 shows the body element in use.

Listing 7-4. Using the body Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <p>

 I like <code id="applecode">apples</code> and oranges.

 </p>

 Visit Apress.com

 </body>

</html>

I have added some simple content to the body element. The individual elements that I used (p, code, and a) are described in Chapters 8 and 9. You have reached the point where you have a simple, but complete, HTML document. You can see how the browser displays this document in Figure 7-1.

[image: Image]

Figure 7-1. Displaying a simple HTML document in the browser

Describing Documents with the Metadata Elements

The metadata elements let you provide information about the HTML document. They are not content themselves, but they provide information about the content that follows. Metadata elements are added to the head element.

Setting the Document Title

The title element sets the document's title or name. Browsers usually display the contents of this element at the top of the browser window or tab. Table 7-6 describes the title element.

[image: Image]

Every HTML document should have exactly one title element, and the text enclosed by the start and end tags should be meaningful to the user. At the very least, it should allow the user to differentiate between browser tabs or windows and recognize which of them belong to your web application. Listing 7-5 shows the head element in use.

Listing 7-5. Using the head Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <p>

 I like <code id="applecode">apples</code> and oranges.

 </p>

 Visit Apress.com

 </body>

</html>

You can see the way that a browser handles the head element in Figure 7-2. The figure shows Google Chrome, but other browsers do something broadly similar.

[image: Image]

Figure 7-2. The effect of using the title element

Setting the Base for Relative URLs

The base element sets a base URL against which relative links, contained in the HTML document, will be resolved. A relative link is one that omits the protocol, host, and port parts of the URL and is evaluated against some other URL—either one specified by the base element or the URL used to load the current document. The base element also specifies how links are opened when a user clicks them, and how the browser acts after a form has been submitted (I explain HTML5 forms in Chapter 12). Table 7-7 summarizes the base element.

[image: Image]

An HTML document should contain, at most, one base element. It is typically one of the first elements you place inside of the head element. This ensures that the base URL is applied to the relative URLs used in subsequent metadata elements.

Using the href Attribute

The href attribute specifies the base URL against which relative URLs in the rest of the document will be resolved. Listing 7-6 shows the base element in use.

Listing 7-6. Using the href Attribute in the base Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <base href="http://titan/listings/"/>

 </head>

 <body>

 <p>

 I like <code id="applecode">apples</code> and oranges.

 </p>

 Visit Apress.com

 Page 2

 </body>

</html>

In this example, I have set the base URL to http://titan/listings/. Titan is the name of my development server, and listings is the directory on the server that contains the examples for this book.

Later in the document, I have added an a element to create a hyperlink using the relative URL page2.html (I explain how to use the a element in Chapter 8). When the user clicks the hyperlink, the browser combines the base URL and the relative URL to create the combined URL http://titan/listings/page2.html.

[image: Image] Tip If you do not use the base element, or specify a base URL using the href attribute, then the browser will assume that it should resolve any relative links against the URL of the current document. So, for example, if you load a document from the URL http://myserver.com/app/mypage.html and it contains a hyperlink with a relative URL of myotherpage.html, then the browser will attempt to load the second page from the fully qualified URL http://myserver.com/app/myotherpage.html.

Using the target Attribute

The target attribute tells the browser how to open URLs. The values you specify for this attribute represent a browsing context. You'll see some examples of these contexts and how to use them in Chapters 8 and 15, when you look at the a and iframe elements.

Using Metadata to Describe the Document

The meta element allows you to define different kinds of metadata in your document. You can use this element in a number of different ways, and an HTML document can contain multiple meta elements. Table 7-8 provides the summary for the meta element.

[image: Image]

In the sections that follow, I'll show you the different ways that you can use the meta element. Note that each instance of the meta element can be used for only one of these purposes. If you want to take advantage of more than one of these features, you must add multiple meta elements to the head element.

Specifying Name/Value Metadata Pairs

The first use for the meta element is to define metadata in name/value pairs, for which you use the name and content attributes. Listing 7-7 provides a demonstration.

Listing 7-7. Using the meta Element to Define Metadata in Name/Value Pairs

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <base href="http://titan/listings/"/>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 </head>

 <body>

 <p>

 I like <code id="applecode">apples</code> and oranges.

 </p>

 Visit Apress.com

 Page 2

 </body>

</html>

You use the name attribute to specify which type of metadata the element refers to, and the content attribute to provide a value. Table 7-9 lists the predefined metadata types that you can use with the meta element.

[image: Image]

In addition to the five predefined metadata names, you can also use metadata extensions. Go to http://wiki.whatwg.org/wiki/MetaExtensions to see a list of these extensions, which change over time. Some of the extensions are widely used, while others are fairly specialized and hardly used at all. The robots metadata type is an example of an extension that is very widely used. It allows the author of an HTML document to specify how the document should be treated by search engines. For example:

<meta name="robots" content="noindex">

The three values that most search engines will recognize are noindex (don't index this page), noarchive (don't create archives or cached versions of this page), and nofollow (don't follow links from this page). There are many more metadata extensions available, and I recommend you read through the online list to see what is suitable for your project.

[image: Image] Tip In the past, the keywords metadata was the main way to tell a search engine how it should categorize and rank your content. These days, search engines pay far less attention to the keywords metadata because it can be abused to give a false impression of the relevance and contents of a page. The best way to improve the way that search engines consider your content is to take the advice of the search engines themselves—most of them provide guidance for optimizing your pages or entire site. You can find Google's guide at http://google.com/support/webmasters/bin/topic.py?topic=15260.

Declaring a Character Encoding

Another use for the meta element is to declare the character encoding that the HTML document content uses. An example of this is shown in Listing 7-8.

Listing 7-8. Using the meta Element to Declare a Character Encoding

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <base href="http://titan/listings/"/>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <meta charset="utf-8"/>

 </head>

 <body>

 <p>

 I like <code id="applecode">apples</code> and oranges.

 </p>

 Visit Apress.com

 Page 2

 </body>

</html>

In this case, I have specified that my page uses the UTF-8 encoding. UTF-8 is a common character encoding because it can represent all of the Unicode characters in the smallest number of bytes. (As I write this, around 50 percent of all web pages use UTF-8 encoding.)

Simulate an HTTP Header

The final use for the meta element is to override the value of one of the HTTP (Hypertext Transfer Protocol) headers. HTTP is what you usually use to transport HTML data between the server and the browser. I am not going to describe HTTP any further, other than to say that each response from the server contains a series of headers that describe the content to the browser, and that you can use the meta element to simulate or replace three of those headers. Listing 7-9 shows the general form of this use of the meta element.

Listing 7-9. Using the meta Element to Simulate an HTTP Header

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <base href="http://titan/listings/"/>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <meta charset="utf-8"/>

 <meta http-equiv="refresh" content="5"/>

 </head>

 <body>

 <p>

 I like <code id="applecode">apples</code> and oranges.

 </p>

 Visit Apress.com

 Page 2

 </body>

</html>

You use the http-equiv attribute to specify which header you want to simulate, and the content attribute to provide the value you want to use. In this case, I have specified the refresh header and a value of 5, which has the effect of asking the browser to reload the page every five seconds.

[image: Image] Tip If you follow the refresh interval with a semicolon and a URL, the browser will load the specified URL after the interval has passed. See the section “The noscript Element” for an example.

There are three permitted values for the http-equiv attribute, which I describe in Table 7-10.

[image: Image]

Defining CSS Styles

The style element lets you define CSS styles inline in your HTML document (as opposed to the link element, which lets you import styles from an external stylesheet). Table 7-11 summarizes the style element.

[image: Image]

Listing 7-10 gives an example of the style element in use.

Listing 7-10. Using the style Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <base href="http://titan/listings/"/>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <meta charset="utf-8"/>

 <style type="text/css">

 a {

 background-color: grey;

 color: white;

 padding: 0.5em;

 }

 </style>

 </head>

 <body>

 <p>

 I like <code id="applecode">apples</code> and oranges.

 </p>

 Visit Apress.com

 Page 2

 </body>

</html>

In this example, I have created a new style for the a element. It displays the link with a grey background, white text, and some padding. (If you are new to CSS, you can get a quick primer in Chapter 4, and full coverage begins in Chapter 16.) You can see the effect of this style in Figure 7-3.

[image: Image]

Figure 7-3. Using the style element to create an inline style

You can use the style element throughout an HTML document, and a single document can contain multiple style elements. This means that you don't have to define all of your styles in the head section. This can be useful if you are generating your pages through a template engine because it means you can supplement the styles defined by the template with styles that are specific to a particular page.

Specifying the Style Type

The type attribute lets you tell the browser what kind of style you are going to define; however, the only style mechanism that browsers support is CSS, so the value of this attribute will always be text/css.

Specifying the Scope of the Style

If the scoped attribute is present in a style element, then the styles are applied to only the element's parent and the parent's child elements. Without the scoped attribute, a style defined anywhere in an HTML document is applied to all elements in the document.

[image: Image] Caution As I write this, none of the major browsers support the scoped attributes for styles.

Specifying the Media for a Style

The media attributes lets you specify when a style should be applied to the document. Listing 7-11 gives an example of how you can use this attribute.

Listing 7-11. Using the media Attribute of the style Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <base href="http://titan/listings/"/>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <meta charset="utf-8"/>

 <style media="screen" type="text/css">

 a {

 background-color: grey;

 color: white;

 padding: 0.5em;

 }

 </style>

 <style media="print">

 a{

 color:Red;

 font-weight:bold;

 font-style:italic

 }

 </style>

 </head>

 <body>

 <p>

 I like <code id="applecode">apples</code> and oranges.

 </p>

 Visit Apress.com

 Page 2

 </body>

</html>

In the listing, I have defined two style elements that have different values for the media attribute. The browser will apply the first style when the HTML is displayed onscreen, and the second style when the page is printed.

You can create very specific conditions in which to use a style. First, you can specify the device that you are interested in. I have summarized the supported values in Table 7-12.

[image: Image]

[image: Image]

The browser interprets which category a device falls into. Browsers handle some device types (such as screen and print) consistently, but other devices (such as the handheld device type) may get a more liberal interpretation. It is worth checking that your target browsers have the same interpretation of specific devices that you do. Using the media features allows you to be even more specific. Listing 7-12 provides an example.

Listing 7-12. Adding Specificity to a style Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <base href="http://titan/listings/"/>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <meta charset="utf-8"/>

 <style media="screen AND (max-width:500px)" type="text/css">

 a {

 background-color: grey;

 color: white;

 padding: 0.5em;

 }

 </style>

 <style media="screen AND (min-width:500px)" type="text/css">

 a {color:Red; font-style:italic}

 </style>

 </head>

 <body>

 <p>

 I like <code id="applecode">apples</code> and oranges.

 </p>

 Visit Apress.com

 Page 2

 </body>

</html>

In this listing, I have used the width feature to differentiate between two styles. The first will be used when the browser window is narrower than 500 pixels, and the second when the window is wider than 500 pixels. If you display the HTML from Listing 7-12 in a browser, and then drag the window to change its size, you can see the effect of this feature, as shown in Figure 7-4.

[image: Image]

Figure 7-4. Different styles applied, based on browser window width

Notice how I have used AND to combine a device with a feature. In addition to AND, you can also use NOT, or a comma (,) to represent OR. This allows you to create complex and quite specific conditions in which to apply a style.

You usually use features such as width with the min and max modifiers to make them more flexible; although you can apply styles based on very specific window conditions by omitting them. I have listed and described the available features, along with their modifiers, in Table 7-13. Unless otherwise noted, you can modify these features with min- or max- to create thresholds rather than specific values.

[image: Image]

[image: Image]

As with the devices, the interpretation of each of the features is left to the browser, and there can be variations in which features are recognized and when they are considered to be present and available. If you rely on the features to apply styles, you should test thoroughly and define a fall-back style that will be applied if your expected features are not available.

Denoting External Resources

The link element creates a relationship between an HTML document and an external resource, most typically a CSS stylesheet. Table 7-14 summarizes the link element.

[image: Image]

[image: Image]

The link element defines six local attributes, which I summarize in Table 7-15. The most important of these attributes is rel, which defines the nature of the relationship between the HTML page and the resource that the link items relates to. I'll show you some of the most common types of relationships shortly.

[image: Image]

The value assigned to the rel attribute determines how the browser deals with the link element. Table 7-16 shows some of the more common values for the rel attribute and describes each of them. There are additional rel values defined, but this is still a volatile area of HTML5. You can find the most complete definition of rel values at http://iana.org/assignments/link-relations/link-relations.xml.

[image: Image]

Loading a Stylesheet

To demonstrate the link element in this way, I have created a stylesheet called styles.css, the contents of which are shown in Listing 7-13.

Listing 7-13. The styles.css File

a {

 background-color: grey;

 color: white;

 padding: 0.5em;

}

This is the CSS style previously applied using a style element, but placed into an external stylesheet. To take advantage of this stylesheet, use the link element, as shown in Listing 7-14.

Listing 7-14. Using the link Element for an External Stylesheet

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <base href="http://titan/listings/"/>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <meta charset="utf-8"/>

 <link rel="stylesheet" type="text/css" href="styles.css"/>

 </head>

 <body>

 <p>

 I like <code id="applecode">apples</code> and oranges.

 </p>

 Visit Apress.com

 Page 2

 </body>

</html>

You can use multiple link elements to load multiple external resources. The advantage of using an external stylesheet is that you can use one set of styles in multiple documents without having to duplicate the styles. The browser loads and applies the styles just as if you had set the CSS properties in a style element, as shown in Figure 7-5.

[image: Image]

Figure 7-5. Applying styles obtained through an external stylesheet

Defining a Favicon for Your Page

After CSS stylesheets, the most common use for the link element is to define an icon that will be associated with your page. Different browsers handle the icon in different ways, but typically the icon appears on a page tab, and when the user adds your page to the favorites list. To demonstrate this, I have taken the favicon that Apress uses at www.apress.com. This is a 32-pixel by 32-pixel image file in the .ico format. Browsers universally support this format. You can see how the image appears in Figure 7-6. The image file is favicon.ico.

[image: Image]

Figure 7-6. The Apress favicon

You can then use this favicon by adding a link element to your page, as shown in Listing 7-15.

Listing 7-15. Adding a Favicon Using a link Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <base href="http://titan/listings/"/>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="stylesheet" type="text/css" href="styles.css"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <p>

 I like <code id="applecode">apples</code> and oranges.

 </p>

 Visit Apress.com

 Page 2

 </body>

</html>

When the HTML page is loaded, the browser will load and display the favicon, as shown in Figure 7-7. The figure shows Google Chrome, which displays the favicon at the top of the page tab.

[image: Image]

Figure 7-7. The favicon displayed at the top of the browser tab

[image: Image] Tip You don't have to use the link element if the favicon is located at /favicon.ico (i.e., in the root directory of the web server). Most browsers will automatically request this file when a page is loaded, even without the link element being present.

Preemptively Fetching a Resource

You can ask the browser to preemptively fetch a resource that you expect to be needed soon. Listing 7-16 shows the use of the link element to specify prefetching.

Listing 7-16. Prefetching a Linked Resource

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <base href="http://titan/listings/"/>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="stylesheet" type="text/css" href="styles.css"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <link rel="prefetch" href="/page2.html"/>

 </head>

 <body>

 <p>

 I like <code id="applecode">apples</code> and oranges.

 </p>

 Visit Apress.com

 Page 2

 </body>

</html>

I have set the rel attribute to prefetch and specified that an HTML page, page2.html, be loaded in the expectation that the user will click a link to perform some other action that requires this page.

[image: Image] Note At the time of writing, only Firefox supports link prefetching.

Using the Scripting Elements

There are two scripting elements. The first, script, allows you to define scripts and control their execution. The second, noscript, allows you to define what happens when a browser doesn't support scripting or has it disabled.

[image: Image] Tip You usually use the script element inside the head element, but you may use it anywhere in an HTML document. I recommend putting all of your script elements together in the head section of a document because it makes them easier to track and because that's where most people expect to find script definitions.

The script Element

The script element lets you include scripting in your pages, either defined inline in the document or referenced to an external file. The most commonly used type of script is JavaScript—and that's the type I'll be focusing on—but browsers do support other scripting languages, including some remnants from the browser wars that I described in Chapter 1 Table 7-17 describes the script element. You use one script element for each script that you need to define or import.

[image: Image]

The type of this element varies based on where it is used. script elements defined within the head element are metadata, but script elements defined in other elements (such as body or section) are phrasing elements.

In the following sections, I'll show you how to use the script element to achieve different effects. Table 7-18 describes the attributes that the script element defines.

[image: Image]

[image: Image]

Defining an Inline Script

The simplest way to define a script is to do so inline. This means that you include the JavaScript statements in the HTML page. Listing 7-17 provides a demonstration.

Listing 7-17. Defining a Script Inline

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <base href="http://titan/listings/"/>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="stylesheet" type="text/css" href="styles.css"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <script>

 document.write("This is from the script");

 </script>

 </head>

 <body>

 <p>

 I like <code id="applecode">apples</code> and oranges.

 </p>

 Visit Apress.com

 Page 2

 </body>

</html>

If you don't use the type attribute, the browser will assume that you are using JavaScript. This simple script adds some text to the HTML document. By default, scripts are executed as soon as they are encountered in the page. You can see the effect of this in Figure 7-8 where the text from the script appears in the browser window before the p element contained in the body.

[image: Image]

Figure 7-8. The effect of a simple script

Loading an External Scripting Library

You can separate scripts into separate files and load them using the script element. These files can be as simple (such as the demonstration that follows) or as complex (such as sophisticated libraries such as jQuery) as you like. To demonstrate an external script, I have created a file called simple.js, the contents of which are shown in Listing 7-18.

Listing 7-18. Contents of the simple.js Script File

document.write("This is from the external script");

The file contains a single statement, similar to the one that I used in the inline script. Listing 7-19 shows how you can use the src attribute in the script element to reference this file.

[image: Image] Tip A script element must be empty if it uses the src attribute. You can't use the same script element to define an inline script and an external script.

Listing 7-19. Loading an External Script Using the src Attribute

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <base href="http://titan/listings/"/>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="stylesheet" type="text/css" href="styles.css"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <script src="simple.js"></script>

 </head>

 <body>

 <p>

 I like <code id="applecode">apples</code> and oranges.

 </p>

 Visit Apress.com

 Page 2

 </body>

</html>

The value for the src attribute is the URL of the script file that you want to load. I created the simple.js file in the same directory as the HTML file, so I am able to use a relative URL in this example. You can see the effect of the script in Figure 7-9.

[image: Image]

Figure 7-9. The effect of an external script

[image: Image] Tip Notice that I have included an end tag for the script element, even though the element has no content. If you use a self-closing tag when referencing an external script, the browsers will ignore the element and not load the file.

Deferring Execution of a Script

You can exert some control over the execution of a script by using the async and defer attributes. The defer attribute tells the browser not to execute the script until the page has been loaded and parsed. To understand the benefit that the defer attribute can offer, you need to look at the problem that it solves. Listing 7-20 shows the contents of the simple2.js script file, which contains a single statement.

Listing 7-20. The Statement Contained in the simple2.js Script File

document.getElementById("applecode").innerText = "cherries";

I'll break down the various parts of this statement in Part IV of this book, but for now it is enough to know that when this script runs, it will find an element with an id attribute value of applecode and change the inner text of that element to cherries. Listing 7-21 shows an HTML document that references the script file using a script element.

Listing 7-21. Referencing a Script File

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <base href="http://titan/listings/"/>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="stylesheet" type="text/css" href="styles.css"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <script src="simple2.js"></script>

 </head>

 <body>

 <p>

 I like <code id="applecode">apples</code> and oranges.

 </p>

 Visit Apress.com

 Page 2

 </body>

</html>

When you load the preceding HTML page, you don't get the desired result, as shown in Figure 7-10.

[image: Image]

Figure 7-10. A script timing issue

The default behavior for a browser when it encounters a script element is to stop processing the HTML document, load the script file, and execute its contents. It is only after the script execution completes that the browser resumes parsing the HTML. This means that the browser loads and executes the statement in simple2.js before it has parsed the rest of the HTML, and discovered the code element. The script doesn't find the element it is looking for, and so no changes are applied. After the script completes, the browser continues parsing the HTML, and finds the code element. However, by then it is too late for the script, which isn't executed again. One obvious way of solving this problem is to put the script element at the end of the document, as shown in Listing 7-22.

Listing 7-22. Solving the Script Timing Issue by Moving the script Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <base href="http://titan/listings/"/>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="stylesheet" type="text/css" href="styles.css"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <p>

 I like <code id="applecode">apples</code> and oranges.

 </p>

 Visit Apress.com

 Page 2

 <script src="simple2.js"></script>

 </body>

</html>

This approach takes the way in which the browser responds to script elements into account, ensuring that the script isn't loaded and executed until the elements that the script is interested in have been parsed. As you can see in Figure7-11, you get the result that you want from the script.

[image: Image]

Figure 7-11. The effect of the script, applied to an a element

This approach is perfectly valid, but in HTML5 you can achieve the same effect by using the defer attribute. When a browser encounters a script element in which the defer attribute is present, it holds off loading and executing the script until all of the elements in the HTML document have been parsed. Listing 7-23 shows a script element that uses the defer element.

Listing 7-23. Using a script Element with the defer Attribute

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <base href="http://titan/listings/"/>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="stylesheet" type="text/css" href="styles.css"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <script defer src="simple2.js"></script>

 </head>

 <body>

 <p>

 I like <code id="applecode">apples</code> and oranges.

 </p>

 Visit Apress.com

 Page 2

 </body>

</html>

Loading this page into the browser gives the same effect as moving the script element to the end of the page. The script is able to locate the code element and change the text contents, producing the same effect as you saw in Figure 7-11.

[image: Image] Tip You can use the defer attribute on external script files only. It doesn't work for inline scripts.

Executing a Script Asynchronously

You can solve a different problem using the async attribute. As I mentioned earlier, the default browser behavior when it encounters a script element is to stop processing the page while it loads and executes the script. Each script element is executed synchronously (i.e., nothing else happens when the script is loading and running) and in turn (i.e., in the order in which they are defined).

Synchronous and sequential execution makes sense as a default way of handling scripts, but there are some scripts for which this isn't required and you can improve performance by using the async attribute. A good example is a tracking script. This type of script could, for example, report which sites you visit so that advertisers could profile and target you based on your browsing habits, or it could gather visitor statistics for site analytics. Such scripts are self-contained and tend not to interact with the elements in the HTML document. Delaying the rendering of the page while you wait for this kind of script to load and then report back to its server doesn't make any sense at all.

When you use the async attribute, the browser loads and executes the script asynchronously while it continues to parse the other elements in the HTML, including other script elements. For the right kind of script, this can improve overall load performance significantly. Listing 7-24 shows the async attribute applied to a script element.

Listing 7-24. Using the async Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <base href="http://titan/listings/"/>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="stylesheet" type="text/css" href="styles.css"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <script async src="simple2.js"></script>

 </head>

 <body>

 <p>

 I like <code id="applecode">apples</code> and oranges.

 </p>

 Visit Apress.com

 Page 2

 </body>

</html>

One important effect of using the async attribute is that the scripts in a page might not be executed in the order in which they are defined. This makes the async feature unsuitable for scripts that depend on functions or values defined by other scripts.

The noscript Element

The noscript element allows you to display content to users who have disabled JavaScript or who are using a browser that doesn't support it. Table 7-19 summarizes the noscript element.

[image: Image]

As with the script element, the type of the noscript element depends on where it is placed in the document.

Although JavaScript support is widespread these days, there are still some specialized browsers that don't support it. Even when the browser does implement JavaScript, the user could have disabled it—many large corporations enforce a no-JavaScript rule on their computer users. The noscript element lets you deal with these users by displaying content that doesn't require JavaScript to operate or, at the very least, explains that they can't use your site or page unless they enable JavaScript. Listing 7-25 shows the noscript element set up to display a simple message.

Listing 7-25. Using the noscript Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <base href="http://titan/listings/"/>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="stylesheet" type="text/css" href="styles.css"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <script defer src="simple2.js"></script>

 <noscript>

 <h1>Javascript is required!</h1>

 <p>You cannot use this page without Javascript</p>

 </noscript>

 </head>

 <body>

 <p>

 I like <code id="applecode">apples</code> and oranges.

 </p>

 Visit Apress.com

 Page 2

 </body>

</html>

You can see the effect of the noscript element in Figure 7-12. To achieve this effect, I disabled JavaScript support in Google Chrome and loaded the HTML in the listing.

[image: Image]

Figure 7-12. The effect of the noscript element

Notice that the remainder of the page is processed as normal, and the content elements are still displayed.

[image: Image] Tip You can add multiple noscript elements to a page so that they correspond to individual areas of functionality that require scripting. This approach is most useful for providing fallback markup that doesn't rely on JavaScript.

An alternative approach is to redirect the user's browser to a different URL if it doesn't support JavaScript. You do this by placing a meta element inside the noscript element, as shown in Listing 7-26.

Listing 7-26. Using the noscript Element to Redirect the User's Browser

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <base href="http://titan/listings/"/>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="stylesheet" type="text/css" href="styles.css"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <script defer src="simple2.js"></script>

 <noscript>

 <meta http-equiv="refresh" content="0; http://www.apress.com"/>

 </noscript>

 </head>

 <body>

 <p>

 I like <code id="applecode">apples</code> and oranges.

 </p>

 Visit Apress.com

 Page 2

 </body>

</html>

This will redirect the user to the www.apress.com site when a browser that doesn't support JavaScript, or that has JavaScript disabled, tries to load this page.

Summary

In this chapter, I have introduced you to the document and metadata elements. These are not the most dynamic and exciting of elements defined by HTML5, but they are incredibly important. Understanding how to define the core building blocks of an HTML document is essential to getting the best result—especially when it comes to aspects such as controlling script execution with the script element and managing styles with the style and link elements.

C H A P T E R 8

Marking Up Text

We are going to switch track from the big structural document elements to something much finer grained: the text-level elements (text elements, for brevity). When you add these elements to your text, you add structure and meaning. This will become evident as you work through the examples in this chapter.

The HTML5 specification makes it clear that you should only use elements for their semantic value. However, to make life easier, the specification also makes it clear that the traditional styling associated with these elements is part of the semantic meaning for some elements. This is a bit of a fudge, but a helpful one that maintains compatibility with older HTML versions.

Some of these elements have very specific meanings. For example, the cite element is used only to cite the title of another work, such as a book or film. However, many other elements are more ambiguous and, despite the intention of the HTML5 standard, essentially related to presentation.

My advice is to take a pragmatic approach. First, use a task-specific element if there is one available. Second, consider avoiding those elements that were formerly presentational only and that have had semantic meaning applied in retrospect—such as the b element—and manage presentation using CSS. Finally, irrespective of which elements you choose to use, use them consistently throughout your HTML. Table 8-1 provides the summary for this chapter.

[image: Image]

[image: Image]

Creating Hyperlinks

Hyperlinks are a critical feature in HTML, and provide the basis by which users can navigate through content, both within the same document and across pages. You create hyperlinks using the a element, which is summarized in Table 8-2.

[image: Image]

The a element defines six local attributes, described in Table 8-3. The most important of these attributes is href, as you'll see later in this section.

[image: Image]

Creating External Hyperlinks

You can create hyperlinks to other HTML documents by setting the href attribute to a URL that starts with http://. When the user clicks the hyperlink, the browser will load the specified page. Listing 8-1 shows the a element being used to link to external content.

Listing 8-1. Using the a Element to Link to an External Resource

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <base href="http://titan/listings/"/>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 I like apples and

 oranges.

 </body>

</html>

In this example, I have created two a elements that link to Wikipedia articles. Clicking either link will cause the appropriate article to be loaded and displayed to the user. You can see the default style convention for hyperlinks in Figure 8-1.

[image: Image]

Figure 8-1. The default appearance of hyperlinks

Not all URLs have to refer to other web pages. Although the http protocol is the most widely used form of URL, browsers also support other protocols such as https and ftp. If you want to reference an e-mail address, you can use the mailto protocol; for example, mailto:adam@mydomain.com.

[image: Image] Tip You can use the a element to create image-based hyperlinks (where the user clicks an image, rather than text, to follow a hyperlink). This requires the use of the img element. You can find the details of the img element and a demonstration of an image-based hyperlink in Chapter 15.

Creating Relative URLs

If the value of the href attribute doesn't start with a recognized protocol, such as http://s, then the browser treats the hyperlink as a relative reference. By default, this means that the browser assumes that a target resource is available in the same location as the current document. Listing 8-2 gives an example of a relative URL.

Listing 8-2. Using a Relative URL in a Hyperlink

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <base href="http://titan/listings/"/>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 I like apples and

 oranges.

 You can see other fruits I like here.

 </body>

</html>

In this example, I have set the value of the href attribute to fruitlist.html. When the user clicks the link, the browser uses the URL of the current document to determine how to load the linked page. As an example, if the current document had been loaded from http://www.mydomain.com/docs/example.html, then the browser would load the target page from http://www.mydomain.com/doc.fruitlist.html.

[image: Image] Tip You can override this default behavior and provide an alternative base URL through the base element, which I described in Chapter 7.

Creating Internal Hyperlinks

You can create hyperlinks that bring another element into view in the browser window. You do this using the CSS-style ID selector, #<id>, as shown in Listing 8-3.

Listing 8-3. Creating an Internal Hyperlink

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 I like apples and

 oranges.

 You can see other fruits I like here.

 <p id="fruits">

 I also like bananas, mangoes, cherries, apricots, plums, peaches and grapes.

 </p>

 </body>

</html>

I have created a hyperlink with the href value of #fruits. When the user clicks the link, the browser will look for an element in the document whose id attribute has a value of fruits. If the element isn't already visible on the screen, the browser will scroll the document so that it is.

[image: Image] Tip If the browser can't find an element with the desired id attribute value, it will search again, looking for a name attribute that matches the target.

Targeting a Browsing Context

The target attribute lets you tell the browser where you want the linked resource to be displayed. By default, the browser uses the window, tab, or frame in which the current document is displayed, meaning that the new document replaces the existing one. However, you do have other choices. Table 8-4 describes the supported values for the target attribute.

[image: Image]

Each of these values represents a browsing context. The _blank and _self values are self-evident; the others relate to the use of frames, which I explain in Chapter 15.

Annotating Content with the Basic Text Elements

The first set of text elements that you will look at have been around in HTML for a while. Some of these elements represented text formatting in the past, but as HTML has evolved, the separation of presentation from broader semantics has meant that they now have more generalized significance.

Denoting Keywords and Product Names

The b element is used to offset a span of text without indicating any extra emphasis or importance. The examples given in the HTML5 specification are keywords in a document abstract and product names in a review. Table 8-5 describes the b element.

[image: Image]

[image: Image]

The b element is very simple: content contained between the start and end tags is offset from the surrounding content. You would usually do this by showing the content in bold, but you can use CSS to change the style applied to b elements. Listing 8-4 shows the b element in use.

Listing 8-4. Using the b Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <base href="http://titan/listings/"/>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="stylesheet" type="text/css" href="styles.css"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 I like apples and oranges.

 </body>

</html>

You can see the default style convention for the b element in Figure 8-2.

[image: Image]

Figure 8-2. Using the b element

Adding Emphasis

The em element represents a span of text with emphatic stress. You use this to give a kind of context to the reader about the meaning of a sentence or paragraph. I'll show you what this means following Table 8-6, which describes the em element.

[image: Image]

Listing 8-5. Using the em Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <base href="http://titan/listings/"/>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="stylesheet" type="text/css" href="styles.css"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 I like apples and oranges.

 </body>

</html>

The styling convention for this element is to use italics, as shown in Figure 8-3.

[image: Image]

Figure 8-3. Using the em element

In this example, I have placed the emphasis on I, at the start of the sentence. When thinking about the em element, it helps to read the sentence aloud and consider a question that the sentence might be an answer to. For example, imagine that I asked, “Who likes apples and oranges?” Your answer would be, “I like apples and oranges.” (When you read this aloud and put emphasis on I, you are making it clear that you are the person who likes these fruits.)

But if I asked, “You like apples and what else?” you might answer, “I like apples and oranges.” In this case, the weight of your emphasis would be on the last word, emphasizing that oranges are the other fruit you like. You would represent this variation as follows in HTML:

I like apples and oranges.

Denoting Foreign or Technical Terms

The i element denotes a span of text that has a different nature from the surrounding content. This is a fairly loose definition, but common examples include words from other languages, a technical or scientific term, and even a person's thoughts (as opposed to speech). Table 8-7 describes the i element.

[image: Image]

[image: Image]

Listing 8-6 shows the i element in use.

Listing 8-6. Using the i Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <base href="http://titan/listings/"/>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="stylesheet" type="text/css" href="styles.css"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 I like apples and oranges.

 My favorite kind of orange is the mandarin, properly known

 as <i>citrus reticulata</i>.

 </body>

</html>

You can see the effect of the i element in Figure 8-4. Notice that the style convention for the i element is the same as for the em element. This is a great example of how the meaning of an element differs from its appearance.

[image: Image]

Figure 8-4. Using the i element

Showing Inaccuracies or Corrections

You use the s element to denote a span of text that is no longer correct or accurate. The style convention is to display the text with a line drawn through it. Table 8-8 describes the s element.

[image: Image]

Listing 8-7 shows the s element in use.

Listing 8-7. Using the s Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <base href="http://titan/listings/"/>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="stylesheet" type="text/css" href="styles.css"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 I like apples and oranges.

 My favorite kind of orange is the mandarin, properly known

 as <i>citrus reticulata</i>.

 Oranges at my local store cost <s>$1 each</s> $2 for 3.

 </body>

</html>

You can see the default style convention of the s element in Figure 8-5.

[image: Image]

Figure 8-5. Using the s element

Denoting Important Text

The strong element denotes a span of text that is important. Table 8-9 describes this element.

[image: Image]

Listing 8-8 shows the strong element in use.

Listing 8-8. Using the strong Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <base href="http://titan/listings/"/>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="stylesheet" type="text/css" href="styles.css"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 I like apples and oranges.

 Warning: Eating too many oranges can give you heart burn.

 </body>

</html>

I have removed some of the text from the earlier examples to make the listing easier to read. You can see the default style convention of the strong element in Figure 8-6. The strong element has the same style convention as the b element. However, it is important to pick the right element when marking up your content; notice that the b element doesn't assign any importance to the text it encompasses.

[image: Image]

Figure 8-6. Using the strong element

Underlining Text

The u element offsets a span of text from the surrounding content without implying any increased importance or emphasis. This is a vague description because the u element previously had a presentational impact only (to underline text) and no real semantic significance. In effect, this is still a presentational element and the effect it has is to underline text (although you could potentially change this behavior using CSS, I don't recommend repurposing elements in this way; look at using the span element instead). Table 8-10 summarizes the u element.

[image: Image]

[image: Image]

The style convention for the u element is similar to that for the a element, which means that users will often mistake underlined text as being a hyperlink. To prevent this confusion, avoid the u element when possible. Listing 8-9 shows the u element in use.

Listing 8-9. Using the u Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <base href="http://titan/listings/"/>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="stylesheet" type="text/css" href="styles.css"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 I like apples and oranges.

 Warning: Eating <u>too many</u> oranges can give you heart burn.

 </body>

</html>

You can see how the browser displays this element using the default style convention in Figure 8-7.

[image: Image]

Figure 8-7. Using the u element

Adding Fine Print

The small element denotes fine print and is often used for disclaimers and clarifications. Table 8-11 summarizes the small element.

[image: Image]

Listing 8-10 shows the small element in use.

Listing 8-10. Using the small Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 Oranges at my local store are $1 each <small>(plus tax)</small>

 </body>

</html>

You can see how the browser applies the default style convention in Figure 8-8.

[image: Image]

Figure 8-8. Using the small element

Adding Superscript and Subscript

You use the sub and sup elements to denote subscripts and superscripts, respectively. Superscripts are required in some languages and both superscripts and subscripts are used in simple mathematical expressions. Table 8-12 summarizes these elements.

[image: Image]

Listing 8-11 shows the sub and sup elements in use.

Listing 8-11. Using the sub and sup Elements

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 The point x₁₀ is the 10th point.

 </body>

</html>

You can see how the browser applies the default style convention in Figure 8-9.

[image: Image]

Figure 8-9. Using the sub and sup elements

Creating Breaks

There are two elements that you can use to deal with line breaks in content: the br and wbr elements.

Forcing a Line Break

The br element introduces a line break. The style convention is to move subsequent content onto a new line. Table 8-13 summarizes the br element.

[image: Image]

[image: Image]

Listing 8-12 shows the br element in use.

[image: Image] Note The br element may be used only when line breaks are part of the content, as in Listing 8-12. You must not use the br element to create paragraphs or other groupings of content; there are other elements for that task, which I describe in Chapters 9 and 10.

Listing 8-12. Using the br Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 I WANDERED lonely as a cloud

 That floats on high o'er vales and hills,

 When all at once I saw a crowd,

 A host, of golden daffodils;

 </body>

</html>

You can see how the use of the br element causes the browser to display the content in Figure 8-10.

[image: Image]

Figure 8-10. Using the br element

Indicating an Opportunity for a Safe Line Break

The wbr element is new to HTML5 and indicates where the browser could reasonably insert a line break to wrap content that is larger than the current browser window. It is the browser that makes the decision as to whether or not a line break is actually used. The wbr element is simply a guide to suitable places to break content. Table 8-14 summarizes the wbr element.

[image: Image]

Listing 8-13 shows the use of the wbr element to help the browser display a long word.

Listing 8-13. Using the wbr Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 This is a very long word: Super<wbr>califragilistic<wbr>expialidocious.

 We can help the browser display long words with the <code>wbr</code> element.

 </body>

</html>

To understand the value of the wbr element, you have to see how the browser operates with and without the use of the element. Figure 8-11 shows how the browser deals with content when the wbr element isn't present.

[image: Image]

Figure 8-11. Wrapping content without the wbr element

Without the wbr element, the browser encounters the long word and treats it as a single unit. This means that you end up with a large amount of wasted space at the end of the first line of text. If you add the wbr element, as in Listing 8-13, then you give the browser more options, as Figure 8-12 shows.

[image: Image]

Figure 8-12. Wrapping content with the wbr element

With the wbr element, the browser is able to treat the very long word as a series of smaller segments, and can wrap the content more elegantly. When you use the wbr element, you are telling the browser where breaking a word would be most appropriate.

Representing Inputs and Outputs

There are four elements that betray the geeky origins of HTML. You use these elements to represent inputs and outputs of a computer. Table 8-15 summarizes these elements. None of these elements define local attributes and none of them are new or changed in HTML5.

[image: Image]

Listing 8-14 shows these four elements used in a document.

Listing 8-14. Using the code, var, samp, and kbd Elements

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <p>

 <code>var fruits = ["apples", "oranges", "mangoes", "cherries"];

 document.writeln("I like " + fruits.length + " fruits");</code>

 </p>

 <p>The variable in this example is <var>fruits</var></p>

 <p>The output from the code is: <samp>I like 4 fruits</samp></p>

 <p>When prompted for my favorite fruit, I typed: <kbd>cherries</kbd>

 </body>

</html>

You can see the default style conventions for these elements in Figure 8-13. Notice that three of these elements have the same style convention. I have used the p element to add some structure to the content (I describe the p element in Chapter 9).

[image: Image]

Figure 8-13. Using the code, var, samp, and kbd elements

Creating Citations, Quotations, Definitions, and Abbreviations

The next four elements that you will look at allow you to denote citations, quotations, definitions, and abbreviations. These are widely used in scientific and academic documents.

Denoting Abbreviations

The abbr element allows you to denote an abbreviation. When using this element, you use the title attribute to provide the expanded text that the abbreviation represents. Table 8-16 summarizes this element.

[image: Image]

[image: Image]

Listing 8-15 shows the abbr element in use.

Listing 8-15. Using the abbr Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 I like apples and oranges.

 The <abbr title="Florida Department of Citrus">FDOC</abbr> regulates the Florida

 citrus industry.

 </body>

</html>

There is no style convention for the abbr element, so content contained in this element is not offset in any way.

Defining Terms

The dfn element denotes the defining instance of a term. This is the instance that explains the meaning or significance of a word or phrase. Table 8-17 summarizes this element.

[image: Image]

[image: Image]

There are some rules about how to use the dfn element. If the dfn element has a title attribute, then the value of the title attribute must be the term that is being defined. You can see an example of a dfn element being used this way in Listing 8-16.

Listing 8-16. Using the dfn Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 I like apples and oranges.

 The <abbr title="Florida Department of Citrus">FDOC</abbr> regulates the Florida

 citrus industry.

 <p>

 The <dfn title="apple">apple</dfn> is the pomaceous fruit of the apple tree,

 species Malus domestica in the rose family.

 </p>

 </body>

</html>

If the dfn element contains an abbr element, then the abbreviation is the term that is being defined. If there is no title attribute and the contents of the element are text, then the text represents the term being defined. There is no style convention associated with this element, so the content of this element is not offset in any way.

Quoting Content from Another Source

The q element denotes content quoted from another source. Table 8-18 summarizes the q element.

[image: Image]

[image: Image]

The definition of the term apple in the previous section comes from Wikipedia, and should be properly attributed. The cite attribute is used to specify the URL of the source document, as shown in Listing 8-17.

Listing 8-17. Using the q Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 I like apples and oranges.

 The <abbr title="Florida Department of Citrus">FDOC</abbr> regulates the Florida

 citrus industry.

 <p>

 <q cite="http://en.wikipedia.org/wiki/Apple">The

 <dfn title="apple">apple</dfn> is the pomaceous fruit of the apple tree,

 species Malus domestica in the rose family.</q>

 </p>

 </body>

</html>

Here, the style convention for the q element uses the CSS :before and :after pseudo-element selectors to surround the quoted text with quotation marks, as shown in Figure 8-14. You can learn about pseudo-element selectors in Chapters 17 and 18.

[image: Image]

Figure 8-14. Using the q element

Citing the Title of Another Work

The cite element denotes the title of a cited work, such a book, article, film, or poem. Table 8-19 summarizes the cite element.

[image: Image]

Listing 8-18 shows the use of the cite element.

Listing 8-18. Using the cite Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 I like apples and oranges.

 The <abbr title="Florida Department of Citrus">FDOC</abbr> regulates the Florida

 citrus industry.

 <p>

 <q cite="http://en.wikipedia.org/wiki/Apple">The

 <dfn title="apple">apple</dfn> is the pomaceous fruit of the apple tree,

 species Malus domestica in the rose family.</q>

 </p>

 My favorite book on fruit is <cite>Fruit: Edible, Inedible, Incredible</cite>

 by Stuppy & Kesseler

 </body>

</html>

You can see the application of the default style convention in Figure 8-15.

[image: Image]

Figure 8-15. Using the cite element

Working with the Language Elements

There are five HTML elements, four of which are new in HTML5, that provide support for working with non-Western languages. The following sections describe these elements.

The ruby, rt, and rp Elements

Ruby characters are notations placed above or to the right of characters in logographic languages (such as Chinese or Japanese), and that aid the reader in correctly pronouncing characters. The ruby element denotes a span of text that contains a ruby. Table 8-20 summarizes this element.

[image: Image]

You use the ruby element in conjunction with the rt and rp elements, which are also new in HTML5. The rt element marks the ruby notation, and the rp element denotes parentheses around an annotation that can be displayed by browsers that don't support ruby annotations.

I don't speak any logographic languages, which means that I don't have a basis on which to create an example using logograms. The best that I can do in this section is to use English text to demonstrate how ruby annotations are displayed by the browser. Listing 8-19 contains such an annotation.

Listing 8-19. Using the ruby, rt, and rp Elements

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 I like apples and oranges.

 The <abbr title="Florida Department of Citrus">FDOC</abbr> regulates the Florida

 citrus industry.

 <p>

 <q cite="http://en.wikipedia.org/wiki/Apple">The

 <dfn title="apple">apple</dfn> is the pomaceous fruit of the apple tree,

 species Malus domestica in the rose family.</q>

 </p>

 <p>

 Oranges are often made

 into<ruby> OJ <rp>(</rp><rt>Orange Juice</rt><rp>)</rp></ruby>

 </p>

 </body>

</html>

When the document is displayed in a browser that supports ruby annotations, the rp elements and their contents are ignored, and the contents of the rt element is displayed as an annotation, as shown in Figure 8-16.

[image: Image]

Figure 8-16. Using the ruby, rt, and rp elements

If you display the document in a browser that doesn't support ruby annotations, then the contents of the rp and rt elements are displayed. As I write this chapter, Firefox doesn't support ruby annotations; you can see how it would display the content in Figure 8-17.

[image: Image]

Figure 8-17. Rubies in a browser that doesn't support annotations

The bdo Element

The bdo element specifies an explicit text direction for its content, overriding the automatic directionality that would usually be applied. Table 8-21 summarizes the bdo element.

[image: Image]

You must use the bdo element with the dir attribute, which has the allowed values of rtl (for right-to-left layout) and ltr (for left-to-right layout). Listing 8-20 shows the bdo element in use.

Listing 8-20. Using the bdo Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 I like apples and oranges.

 The <abbr title="Florida Department of Citrus">FDOC</abbr> regulates the Florida

 citrus industry.

 <p>

 This is left-to-right: <bdo dir="ltr">I like oranges</bdo>

 </p>

 <p>

 This is right-to-left: <bdo dir="rtl">I like oranges</bdo>

 </p>

 </body>

</html>

You can see how the browser displays the content of this element in Figure 8-18.

[image: Image]

Figure 8-18. Using the bdo element

The bdi Element

The bdi element denotes a span of text that is isolated from other content for the purposes of text directionality. Table 8-22 summarizes this element.

[image: Image]

You use this element when displaying content for which there is no directionality information available. When this happens, the browser determines the directionality automatically, and that can upset the formatting of the page. Listing 8-21 gives a simple example of the problem.

Listing 8-21. Dealing with Text Without the bdi Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <meta charset="utf-8"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 I like apples and oranges.

 Here are some users and the fruit they purchased this week:

 <p>Adam: 3 applies and 2 oranges</p>

 <p>[image: Image]: 2 apples</p>

 <p>Joe: 6 apples</p>

 </body>

</html>

When you display this document, the Arabic name causes the text directionality algorithm in the browser to display the number 2 before the name, and not after it, as shown in Figure 8-19.

[image: Image]

Figure 8-19. The effect of the bidirectional text algorithm when mixing formats

You can address this problem using the bdi element, as shown in Listing 8-22.

Listing 8-22. Using the bdi Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <meta charset="utf-8"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 I like apples and oranges.

 Here are some users and the fruit they purchased this week:

 <p><bdi>Adam</bdi>: 3 applies and 2 oranges</p>

 <p><bdi>[image: Image]</bdi> : 2 apples</p>

 <p><bdi>Joe</bdi>: 6 apples</p>

 </body>

</html>

You can see the corrective effect of this element in Figure 8-20.

[image: Image]

Figure 8-20. Using the bdi element

Wrapping Up: The Other Text Elements

There are four other elements that don't fit neatly into one of the other groups. I describe them in the following sections.

Denoting a Generic Span of Content

The span element has no meaning in its own right. You would use it to apply one of the global attributes to a region of content. Table 8-23 summarizes the span element.

[image: Image]

[image: Image]

Listing 8-23 shows the span element used with the class attribute, so that I can target content with a CSS style.

Listing 8-23. Using the span Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 .fruit {

 border: thin solid black;

 padding: 1px;

 }

 </style>

 </head>

 <body>

 I like apples and oranges.

 </body>

</html>

You can see the application of the style in Figure 8-21.

[image: Image]

Figure 8-21. Using the span element to target styles

Highlighting Text

The mark element is new to HTML5 and represents a span of text that is highlighted due to its relevance in another context. Table 8-24 summarizes the mark element.

[image: Image]

Listing 8-24 demonstrates the mark element.

Listing 8-24. Using the mark Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 Homophones are words which are pronounced the same, but have different spellings

 and meanings. For example:

 <p>

 I would like a <mark>pair</mark> of <mark>pears</mark>

 </p>

 </body>

</html>

You can see the style convention in Figure 8-22.

[image: Image]

Figure 8-22. Using the mark element

Denoting Added or Removed Content

You can denote text that has been added or removed from the document using the ins and del elements. The ins element denotes inserted content and is summarized in Table 8-25.

[image: Image]

You denote text that has been removed from the document using the del element, which is summarized in Table 8-26.

[image: Image]

The ins and del elements defined the same local attributes. The cite attribute specifies a URL to a document that explains why the text was added or removed, and the datetime attribute specifies when the modification was made. You can see the ins and del elements in use in Listing 8-25.

Listing 8-25. Using the del and ins Elements

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 Homophones are words which are pronounced the same, but have different spellings

 and meanings. For example:

 <p>

 I would like a <mark>pair</mark> of <mark>pears</mark>

 </p>

 <p>

 I can <mark>sea</mark> the <mark>see</mark>

 <ins>I can <mark>see</mark> the <mark>sea</mark></ins>

 </p>

 </body>

</html>

The default style convention is shown in Figure 8-23.

[image: Image]

Figure 8-23. Using the ins and del elements

Denoting Times and Dates

You use the time element to represent a time of day or a date. Table 8-27 summarizes the time element.

[image: Image]

[image: Image]

If the Boolean pubdate attribute is present, then the time element is assumed to be the publication date of the entire HTML document or the nearest article element (I describe the article element in Chapter 10). The datetime attribute specifies the date or time in a format specified by RFC3339, which you can find at http://tools.ietf.org/html/rfc3339. Using the datetime attribute means you can specify a date in a human-readable form within the element and still ensure that a computer can unambiguously parse the date or time. Listing 8-26 shows the time element in use.

Listing 8-26. Using the time Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 I still remember the best apple I ever tasted.

 I bought it at <time datetime="15:00">3 o'clock</time>

 on <time datetime="1984-12-7">December 7th</time>.

 </body>

</html>

Summary

In this chapter, I have taken you on a tour of the text elements—those elements that you use to give structure and meaning to your content. These elements range from the basic to the complex, and you can see the tension between the desire to divorce meaning from presentation in HTML5 and the desire to preserve compatibility with HTML4.

Make sure you select text elements based on their meaning, and not the default style convention with which they are associated. You can apply the CSS style to your content in ways that you did not expect, and users will get odd results if you don't mark up your content correctly and consistently.

C H A P T E R 9

Grouping Content

In this chapter, I describe the HTML elements that you can use to group related content together, which will add further structure and meaning to the content in your document. The elements in this chapter are largely flow elements. There is one exception: the a element, which has the distinction of its element category being determined by the content it contains. Table 9-1 provides the summary for this chapter.

[image: Image]

[image: Image]

Understanding the Need to Group Content

HTML requires browsers to collapse multiple whitespace characters into a single space. This is generally a useful feature, because it separates the layout of your HTML document from the layout of the content in the browser window. Listing 9-1 shows a longer block of content than I have used in examples so far.

Listing 9-1. A Longer Content Section in an HTML Document

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 I like apples and oranges.

 I also like bananas, mangoes, cherries, apricots, plums, peaches and grapes.

 You can see other fruits I like here.

 Warning: Eating too many oranges can give you heart burn.

 My favorite kind of orange is the mandarin, properly known

 as <i>citrus reticulata</i>.

 Oranges at my local store cost <s>$1 each</s> $2 for 3.

 The <abbr title="Florida Department of Citrus">FDOC</abbr> regulates the Florida

 citrus industry.

 I still remember the best apple I ever tasted.

 I bought it at <time datetime="15:00">3 o'clock</time>

 on <time datetime="1984-12-7">December 7th</time>.

 </body>

</html>

The text in the body element spreads over multiple lines. Some of those lines are indented, and there are line breaks between groups of lines. The browser will ignore all of this structure and display all of the content as a single line, as shown in Figure 9-1.

[image: Image]

Figure 9-1. The browser collapses whitespace in an HTML document

The elements in the sections that follow will help you add structure to a document by grouping together related regions of content. There are many different approaches to grouping content, from a simple paragraph to sophisticated lists.

Creating Paragraphs

The p element represents a paragraph. Paragraphs are blocks of text containing one or more related sentences that address a single point or idea. Paragraphs can also be comprised of sentences that address different points, but share some common theme. Table 9-2 summarizes the p element.

[image: Image]

Listing 9-2 shows the application of the p element to the example content.

Listing 9-2. Using the p Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <p>I like apples and oranges.

 I also like bananas, mangoes, cherries, apricots, plums, peaches and grapes.

 You can see other fruits I like here.</p>

 <p>Warning: Eating too many oranges can give you heart burn.</p>

 <p>My favorite kind of orange is the mandarin, properly known

 as <i>citrus reticulata</i>.

 Oranges at my local store cost <s>$1 each</s> $2 for 3.</p>

 <p>The <abbr title="Florida Department of Citrus">FDOC</abbr> regulates the

 Florida citrus industry.</p>

 <p>I still remember the best apple I ever tasted.

 I bought it at <time datetime="15:00">3 o'clock</time>

 on <time datetime="1984-12-7">December 7th</time>.</p>

 </body>

</html>

I've added a number of p elements to the body element to group related sentences together and give the content some structure. Multiple whitespace within a p element is still collapsed to a single character, as you can see in Figure 9-2.

[image: Image]

Figure 9-2. The effect of the p element

Using the div Element

The div element doesn't have a specific meaning. You use it to create structure and give meaning to content when the other HTML elements are insufficient. You add this meaning by applying the global attributes (described in Chapter 3), typically the class or id attributes. Table 9-3 summarizes the div element.

[image: Image] Caution You should use the div element only as a last resort, when those elements that do have semantic significance are not appropriate. Before using the div element, consider using the new HTML5 elements, such as article and section (described in Chapter 10). There is nothing intrinsically wrong with div, but you should strive to include semantic information wherever possible in your HTML5 documents.

[image: Image]

[image: Image]

The div element is the flow equivalent of the span element. It is an element that has no specific meaning, and can, therefore, be used to add customized structure to a document. The problem with creating custom structure is that the significance is specific to your web page or web application, and the meaning is not evident to others. This can be problematic when your HTML is being processed or styled by third parties. Listing 9-3 shows the div element in use.

Listing 9-3. Using the div Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 .favorites {

 background:grey;

 color:white;

 border: thin solid black;

 padding: 0.2em;

 }

 </style>

 </head>

 <body>

 <div class="favorites">

 <p>I like apples and oranges.

 I also like bananas, mangoes, cherries, apricots, plums, peaches and grapes.

 You can see other fruits I like here.</p>

 <p>My favorite kind of orange is the mandarin, properly known

 as <i>citrus reticulata</i>.

 Oranges at my local store cost <s>$1 each</s> $2 for 3.</p>

 </div>

 <p>Warning: Eating too many oranges can give you heart burn.</p>

 <p>The <abbr title="Florida Department of Citrus">FDOC</abbr> regulates the

 Florida citrus industry.</p>

 <p>I still remember the best apple I ever tasted.

 I bought it at <time datetime="15:00">3 o'clock</time>

 on <time datetime="1984-12-7">December 7th</time>. </p>

 </body>

</html>

In this example, I have shown a slightly different use for the div element, which is to group multiple elements of a different type together so that they can be styled consistently. I could have added a class attribute to both of the p elements contained within the div, but this approach can be simpler and relies on the way that styles are inherited (as described in Chapter 4).

Working with Preformatted Content

The pre element lets you change the way that the browser deals with content, so that whitespace is not collapsed and formatting is preserved. This can be useful when the original formatting of a section of content is significant. However, you should not use this element otherwise, since it undermines the flexibility that comes with using elements and styles to control presentation. Table 9-4 summarizes the pre element.

[image: Image]

[image: Image]

The pre element can be particularly useful when you use it with the code element. The formatting in programming languages, for example, is usually significant and you would not want to have to recreate that formatting using elements. Listing 9-4 shows the pre element in use.

Listing 9-4. Using the pre Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 .favorites {

 background:grey;

 color:white;

 border: thin solid black;

 padding: 0.2em;

 }

 </style>

 </head>

 <body>

 <pre><code>

 var fruits = ["apples", "oranges", "mangoes", "cherries"];

 for (var i = 0; i < fruits.length; i++) {

 document.writeln("I like " + fruits[i]);

 }

 </code></pre>

 <div class="favorites">

 <p>I like apples and oranges.

 I also like bananas, mangoes, cherries, apricots, plums, peaches and grapes.

 You can see other fruits I like here.</p>

 <p>My favorite kind of orange is the mandarin, properly known

 as <i>citrus reticulata</i>.

 Oranges at my local store cost <s>$1 each</s> $2 for 3.</p>

 </div>

 </body>

</html>

In Listing 9-4, I have used the pre element with some JavaScript code. This code won't be executed because it is not in a script element, but the formatting of the code will be preserved. The browser won't do anything to reformat the content within the pre element, which means that the leading spaces or tabs for each line will be displayed in the browser window. This is why the individual statements in the pre element are not indented to match the structure of the HTML document. You can see how the browser displays the formatted content in Figure 9-3.

[image: Image]

Figure 9-3. Displaying preformatted content with the pre element

Quoting from Other Sources

The blockquote element denotes a block of content that is quoted from another source. This element is similar in purpose to the q element described in Chapter 8, but is generally applied to larger amounts of quoted content. Table 9-5 summarizes the blockquote element.

[image: Image]

[image: Image]

The cite attribute can be used to supply a URL for the original source of the content, as shown in Listing 9-5.

Listing 9-5. Using the blockquote Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <p>I like apples and oranges.

 I also like bananas, mangoes, cherries, apricots, plums, peaches and grapes.

 You can see other fruits I like here.</p>

 <p>My favorite kind of orange is the mandarin, properly known

 as <i>citrus reticulata</i>.

 Oranges at my local store cost <s>$1 each</s> $2 for 3.</p>

 <blockquote cite="http://en.wikipedia.org/wiki/Apple">

 The apple forms a tree that is small and deciduous, reaching 3 to 12 metres

 (9.8 to 39 ft) tall, with a broad, often densely twiggy crown.

 The leaves are alternately arranged simple ovals 5 to 12 cm long and 3–6

 centimetres (1.2–2.4 in) broad on a 2 to 5 centimetres (0.79 to 2.0 in) petiole

 with anacute tip, serrated margin and a slightly downy underside. Blossoms are

 produced in spring simultaneously with the budding of the leaves.

 The flowers are white with a pink tinge that gradually fades, five petaled,

 and 2.5 to 3.5 centimetres (0.98 to 1.4 in) in diameter.

 The fruit matures in autumn, and is typically 5 to 9 centimetres (

 2.0 to 3.5 in) in diameter.

 The center of the fruit contains five carpels arranged in a five-point star,

 each carpel containing one to three seeds, called pips.</blockquote>

 <p>Warning: Eating too many oranges can give you heart burn.</p>

 <p>The <abbr title="Florida Department of Citrus">FDOC</abbr> regulates the

 Florida citrus industry.</p>

 <p>I still remember the best apple I ever tasted.

 I bought it at <time datetime="15:00">3 o'clock</time>

 on <time datetime="1984-12-7">December 7th</time>. </p>

 </body>

</html>

You can see how the browser applies the style convention in Figure 9-4.

[image: Image]

Figure 9-4. Using the blockquote element

[image: Image] Tip You can see in Figure 9-4 that the browser ignores any formatting inside of the blockquote element. You can add structure to quoted content by adding other grouping elements, such as p or hr (as shown in the following example).

Adding Thematic Breaks

The hr element represents a paragraph-level thematic break. This is another oddly specified term that arises from the need to separate semantics from presentation. In HTML4, the hr element represented a horizontal rule (literally a line across the page). In HTML5, the hr element represents a transition to a separate, but related, topic. The style convention in HTML5 is a line across the page. Table 9-6 summarizes the hr element.

[image: Image]

The HTML5 specification is somewhat vague about what constitutes a valid use for the hr element, but two examples are given: a scene change in a story, or a transition to another topic within a section in a reference book. Listing 9-6 shows the hr element applied to content.

Listing 9-6. Using the hr Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <p>I like apples and oranges.

 I also like bananas, mangoes, cherries, apricots, plums, peaches and grapes.

 You can see other fruits I like here.</p>

 <p>My favorite kind of orange is the mandarin, properly known

 as <i>citrus reticulata</i>.

 Oranges at my local store cost <s>$1 each</s> $2 for 3.</p>

 <blockquote cite="http://en.wikipedia.org/wiki/Apple">

 The apple forms a tree that is small and deciduous, reaching 3 to 12 metres

 (9.8 to 39 ft) tall, with a broad, often densely twiggy crown.

 <hr>

 The leaves are alternately arranged simple ovals 5 to 12 cm long and 3–6

 centimetres (1.2–2.4 in) broad on a 2 to 5 centimetres (0.79 to 2.0 in) petiole

 with anacute tip, serrated margin and a slightly downy underside. Blossoms are

 produced in spring simultaneously with the budding of the leaves.

 <hr>

 The flowers are white with a pink tinge that gradually fades, five petaled,

 and 2.5 to 3.5 centimetres (0.98 to 1.4 in) in diameter.

 The fruit matures in autumn, and is typically 5 to 9 centimetres (

 2.0 to 3.5 in) in diameter.

 <hr>

 The center of the fruit contains five carpels arranged in a five-point star,

 each carpel containing one to three seeds, called pips.</blockquote>

 <p>Warning: Eating too many oranges can give you heart burn.</p>

 <p>The <abbr title="Florida Department of Citrus">FDOC</abbr> regulates the

 Florida citrus industry.</p>

 <p>I still remember the best apple I ever tasted.

 I bought it at <time datetime="15:00">3 o'clock</time>

 on <time datetime="1984-12-7">December 7th</time>. </p>

 </body>

</html>

In this example, I have added some hr elements to a blockquote to add some structure. You can see how this affects the default appearance of the HTML in Figure 9-5.

[image: Image]

Figure 9-5. Adding hr elements to a blockquote element

Grouping Content into Lists

HTML defines a number of elements that you can use to create lists of content items. As I describe in the following sections, you can create ordered, unordered, and descriptive lists.

The ol Element

The ol element denotes an ordered list. The items in the list are denoted using the li element, which is described in the following section. Table 9-7 summarizes the ol element.

[image: Image]

[image: Image]

Listing 9-7 shows the ol element being used to create a simple ordered list.

Listing 9-7. Creating a Simple List with the ol Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 I like apples and oranges.

 I also like:

 bananas

 mangoes

 cherries

 plums

 peaches

 grapes

 You can see other fruits I like here.

 </body>

</html>

You can see how the browser displays this list in Figure 9-6.

[image: Image]

Figure 9-6. A simple ordered list

You can control the way that the items in the list are managed using the attributes defined by the ol element. You use the start attribute to define the ordinal value of the first item in the list. If this attribute is not defined, the first item is assigned the ordinal value of 1. You use the type attribute to indicate which marker should be displayed next to each item. Table 9-8 shows the supported values for this attribute.

[image: Image]

If the reversed attribute is defined, then the list is numbered in descending order. However, as I write this, none of the mainstream browsers implement the reversed attribute.

The ul Element

You use the ul element to denote unordered lists. As with the ol element, items in the ul element are denoted using the li element, which is described next. Table 9-9 summarizes the ul element.

[image: Image]

The ul element contains a number of li items. The element doesn't define any attributes and you control the presentation of the list using CSS. You can see the ul element in use in Listing 9-8.

Listing 9-8. Using the ul Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 I like apples and oranges.

 I also like:

 bananas

 mangoes

 cherries

 plums

 peaches

 grapes

 You can see other fruits I like here.

 </body>

</html>

Each list item is displayed with a bullet. You can control which style bullet is used through the list-style-type CSS property, which is described in Chapter 24. You can see the default style convention (which uses the disc bullet style) in Figure 9-7.

[image: Image]

Figure 9-7. The style convention applied to the ul element

The li Element

The li element denotes an item in a list. You can use it with the ul, ol, and menu elements (the menu element is not yet supported in the main stream browsers). Table 9-10 summarizes the li item.

[image: Image]

[image: Image]

The li item is very simple. It denotes a list item within its parent element. You can, however, use the value attribute to create nonconsecutive ordered lists, as shown in Listing 9-9.

Listing 9-9. Creating Nonconsecutive Ordered Lists

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 I like apples and oranges.

 I also like:

 bananas

 <li value="4">mangoes

 cherries

 <li value="7">plums

 peaches

 grapes

 You can see other fruits I like here.

 </body>

</html>

When the browser encounters a li element with a value attribute, the counter for the list items is advanced to the attribute value. You can see this effect in Figure 9-8.

[image: Image]

Figure 9-8. Creating nonconsecutive ordered lists

Creating Description Lists

A description list consists of a set of term/description groupings (i.e., a number of terms, each of which is accompanied by a definition of that term). You use three elements to define description lists: the dl, dt, and dd elements. These elements do not define attributes and have not changed in HTML5. Table 9-11 summarizes these elements.

[image: Image]

You can see these elements used in Listing 9-10. Notice that multiple dd elements can be used for a single dt element, which allows you to provide multiple definitions for a single term.

Listing 9-10. Creating Description Lists

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 I like apples and oranges.

 I also like:

 <dl>

 <dt>Apple</dt>

 <dd>The apple is the pomaceous fruit of the apple tree</dd>

 <dd><i>Malus domestica</i></dd>

 <dt>Banana</dt>

 <dd>The banana is the parthenocarpic fruit of the banana tree</dd>

 <dd><i>Musa acuminata</i></dd>

 <dt>Cherry</dt>

 <dd>The cherry is the stone fruit of the genus <i>Prunus</i></dd>

 </dl>

 You can see other fruits I like here.

 </body>

</html>

Creating Custom Lists

The HTML support for lists is more flexible than it might appear. You can create complex arrangements of lists using the ul element, combined with two features of CSS: the counter feature and the :before selector. I describe the counter feature and the :before selector (and its companion, :after) in Chapter 17. I don't want to get too far into CSS in this chapter, so I present this example as a self-contained demonstration for you to come back to when you have read the CSS chapters later in this book, or when you have a pressing need for some advanced lists. Listing 9-11 shows a list that contains two nested lists. All three lists are numbered using custom values.

Listing 9-11. Nesting Lists with Custom Counters

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 body {

 counter-reset: OuterItemCount 5 InnerItemCount;

 }

 #outerlist > li:before {

 content: counter(OuterItemCount) ". ";

 counter-increment: OuterItemCount 2;

 }

 ul.innerlist > li:before {

 content: counter(InnerItemCount, lower-alpha) ". ";

 counter-increment: InnerItemCount;

 }

 </style>

 </head>

 <body>

 I like apples and oranges.

 I also like:

 <ul id="outerlist" style="list-style-type: none">

 bananas

 mangoes, including:

 <ul class="innerlist">

 Haden mangoes

 Keitt mangoes

 Kent mangoes

 cherries

 plums, including:

 <ul class="innerlist">

 Elephant Heart plums

 Stanley plums

 Seneca plums

 peaches

 grapes

 You can see other fruits I like here.

 </body>

</html>

You can see how the browser displays the lists in Figure 9-9.

[image: Image]

Figure 9-9. Custom lists using CSS features

There are a few things to note in the preceding example. All of the lists in this HTML document are unordered, and created using the ul element. This is so I can disable the standard bullet (using the list-style-type property) and rely on the content generated by the :before selector.

Notice also that the numbering of the outer list (the list of fruits) starts at 7 and goes up in steps of 2. This is something that you can't arrange using the standard ol element. The CSS counter feature is a little awkward to use, but is very flexible.

The final point to note is that the numbering of the inner lists (the varieties of mangoes and plums) is continuous. You could achieve a similar effect by using either the value attribute of the li element, or the start attribute of the ol element. However, both of those approaches require you to know how many list items you are working with in advance, which isn't always possible when working with web applications.

Dealing with Figures

The last of the grouping elements relates to figures. HTML5 defines figures as “a unit of content, optionally with a caption, that is self-contained, that is typically referenced as a single unit from the main flow of the document, and that can be moved away from the main flow of the document without affecting the document's meaning.” This is a fairly general definition and can be applied more widely than the traditional idea of a figure, which is some form of illustration or diagram. You define figures using the figure element, which is summarized in Table 9-12.

[image: Image]

The figure element can optionally contain a figcaption element, which denotes a caption for the figure. Table 9-13 summarizes the figcaption element.

[image: Image]

[image: Image]

You can see the figure and figcaption elements used together in Listing 9-12.

Listing 9-12. Using the figure and figcaption Elements

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 I like apples and oranges.

 <figure>

 <figcaption>Listing 23. Using the code element</figcaption>

 <code>var fruits = ["apples", "oranges", "mangoes", "cherries"];

 document.writeln("I like " + fruits.length + " fruits");

 </code>

 </figure>

 You can see other fruits I like here.

 </body>

</html>

In this example, I have used the figure element to create a figure around a code element. I have used the figcaption element to add a caption. Note that the figcaption element must be the first or last child of the figure element. You can see how the browser applies the style conventions for these elements in Figure 9-10.

[image: Image]

Figure 9-10. Using the figure and figcaption elements

Summary

In this chapter, I have shown you the HTML elements that let you group related content together—be it in a paragraph, a lengthy quotation from another source, or a list of related items. The elements described in this chapter are endlessly useful and simple to use, although some of the more sophisticated list options can require some practice to perfect.

C H A P T E R 10

Creating Sections

In this chapter, I show you the elements you use to denote sections in your content—in effect, how to separate your content so that each topic or concept is isolated from the others. Many of the elements in this chapter are new, and they form a significant foundation in the effort to separate the meaning of elements from their presentation. Unfortunately, this means these elements are hard to demonstrate, because they have little or no visual impact on the content. To this end, I added some CSS styles to many of the examples in this chapter to emphasize the structure and changes these elements bring.

I don't explain the meaning of the CSS styles in this chapter. Chapter 4 contains a reminder of the key features of CSS, and the individual CSS properties are described from Chapter 16 onwards. Table 10-1 provides the summary for this chapter.

[image: Image]

Adding Basic Headings

The h1 element represents a heading. HTML defines a hierarchy of heading elements, with h1 being the highest ranked. The other heading elements are h2, h3, through to h6. Table 10-2 summarizes the h1–h6 elements.

[image: Image]

Headings of the same rank are typically used to break up content so that each topic is in its own section. Headings of descending rank are typically used to represent different aspects of the same topic. An additional benefit of these elements is that they create a document outline, where the user can get a sense of the overall nature and structure of the document simply by looking at the headings and more rapidly navigate to an area of interest by following the heading hierarchy. Listing 10-1 shows the h1–h3 elements in use.

Listing 10-1. Using the h1–h3 Elements

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <h1>Fruits I like</h1>

 I like apples and oranges.

 <h2>Additional fruits</h2>

 I also like bananas, mangoes, cherries, apricots, plums, peaches and grapes.

 <h3>More information</h3>

 You can see other fruits I like here.

 <h1>Activities I like</h1>

 <p>I like to swim, cycle and run. I am in training for my first triathlon,

 but it is hard work.</p>

 <h2>Kinds of Triathlon</h2>

 There are different kinds of triathlon - sprint, Olympic and so on.

 <h3>The kind of triathlon I am aiming for</h3>

 I am aiming for Olympic, which consists of the following:

 1.5km swim

 40km cycle

 10km run

 </body>

</html>

I showed only the h1, h2, and h3 headings in the listing because it is rare to have content that warrants any additional depth. The exceptions tend to be very technical and precise content, such as contracts and specifications. Most content requires two or three levels of heading at most. As an example, I use three levels of heading in my Apress books. Although the Apress template defines five levels of heading, the copy editors become uncomfortable if I use the fourth and fifth levels.

You can see how the browser displays the h1, h2, and h3 elements in the listing in Figure 10-1.

[image: Image]

Figure 10-1. Displaying the h1, h2, and h3 elements using the default style conventions

As you can see in the figure, each level of header has a different style convention. Table 10-3 shows the style convention for each header element.

[image: Image]

[image: Image]

You don't have to respect the h1–h6 element hierarchy, but you run the risk of confusing the user if you deviate from it. Hierarchical headings are so prevalent that users have a fixed expectation of how they work.

Hiding Subheadings

The hgroup element allows you to treat multiple header elements as a single item without affecting the outline of your HTML document. Table 10-4 summarizes the hgroup element.

[image: Image]

The most common problem that the hgroup solves is subtitles. Imagine that I want to create a section in my document with the title “Fruits I Like” with the subtitle “How I Learned to Love Citrus”. I could use the h1 and h2 elements, as shown in Listing 10-2.

Listing 10-2. Using the h1 and h2 Elements to Create a Title with a Subtitle

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <h1>Fruits I Like</h1>

 <h2>How I Learned to Love Citrus</h2>

 I like apples and oranges.

 <h2>Additional fruits</h2>

 I also like bananas, mangoes, cherries, apricots, plums, peaches and grapes.

 <h3>More information</h3>

 You can see other fruits I like here.

 <h1>Activities I Like</h1>

 <p>I like to swim, cycle and run. I am in training for my first triathlon,

 but it is hard work.</p>

 <h2>Kinds of Triathlon</h2>

 There are different kinds of triathlon - sprint, Olympic and so on.

 <h3>The kind of triathlon I am aiming for</h3>

 I am aiming for Olympic, which consists of the following:

 1.5km swim

 40km cycle

 10km run

 </body>

</html>

The problem here is that you haven't been able to differentiate between the h2 element that is the subtitle and the h2 element that is a lower-level heading. If you wrote a script that went through your document to build an outline based on the h1–h6 elements, you would get a distorted result, like this:

Fruits I Like

 How I Learned to Love Citrus

 Additional fruits

 More information

Activities I Like

 Kinds of Triathlon

 The kind of triathlon I am aiming for

This gives the appearance that How I Learned to Love Citrus is a section header, not a subtitle. You can address this problem using the hgroup element, as shown in Listing 10-3.

Listing 10-3. Using the hgroup Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 h1, h2, h3 { background: grey; color: white; }

 hgroup > h1 { margin-bottom: 0px;}

 hgroup > h2 { background: grey; color: white; font-size: 1em;

 margin-top: 0px; }

 </style>

 </head>

 <body>

 <hgroup>

 <h1>Fruits I Like</h1>

 <h2>How I Learned to Love Citrus</h2>

 </hgroup>

 I like apples and oranges.

 <h2>Additional fruits</h2>

 I also like bananas, mangoes, cherries, apricots, plums, peaches and grapes.

 <h3>More information</h3>

 You can see other fruits I like here.

 <h1>Activities I like</h1>

 <p>I like to swim, cycle and run. I am in training for my first triathlon,

 but it is hard work.</p>

 <h2>Kinds of Triathlon</h2>

 There are different kinds of triathlon - sprint, Olympic and so on.

 <h3>The kind of triathlon I am aiming for</h3>

 I am aiming for Olympic, which consists of the following:

 1.5km swim

 40km cycle

 10km run

 </body>

</html>

The position in the h1–h6 hierarchy of an hgroup element is determined by the first heading element child within the hgroup. For example, the hgroup in the listing is equivalent to an h1 element because that is the first child. Only the first h1–h6 element is included in the outline of a document, which gives you an outline like this:

Fruits I Like

 Additional fruits

 More information

Activities I Like

 Kinds of Triathlon

 The kind of triathlon I am aiming for

There is no longer confusion about the subtitle h2 element—the hgroup element tells you to ignore it. The second issue you have to deal with is making the subtitle visually distinctive from regular h2 elements. You can see that I applied some simple styles in the listing, the effect of which can be seen in Figure 10-2. You can learn how the CSS selectors in the listing work in Chapter 17.

[image: Image]

Figure 10-2. Making the relationship between elements in an hgroup visually explicit

I don't suggest that you adopt such a stark style, but you can see that you can make the relationship between elements in an hgroup element visually explicit by applying styles that eliminate some of the margins of the heading elements and bringing the elements together with a common background color.

Creating Sections

The section element is new to HTML5 and, as its name suggests, denotes a section of a document. When you use heading elements, you create implied sections, but this element lets you make them explicit and also allows you to divorce the sections of your document from the h1–h6 elements. There are no hard-and-fast rules about when to use the section element, but as a rule of thumb, the section element should be used to contain content that would be listed in a document's outline or table of contents. Section elements usually contain of one or more paragraphs of content and a heading, although the heading is optional. Table 10-5 summarizes the section element.

[image: Image]

Listing 10-4 shows the section element in use.

Listing 10-4. Using the section Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 h1, h2, h3 { background: grey; color: white; }

 hgroup > h1 { margin-bottom: 0px; }

 hgroup > h2 { background: grey; color: white; font-size: 1em;

 margin-top: 0px;}

 </style>

 </head>

 <body>

 <section>

 <hgroup>

 <h1>Fruits I Like</h1>

 <h2>How I Learned to Love Citrus</h2>

 </hgroup>

 I like apples and oranges.

 <section>

 <h1>Additional fruits</h1>

 I also like bananas, mangoes, cherries, apricots, plums,

 peaches and grapes.

 <section>

 <h1>More information</h1>

 You can see other fruits I like here.

 </section>

 </section>

 </section>

 <h1>Activities I like</h1>

 <p>I like to swim, cycle and run. I am in training for my first triathlon,

 but it is hard work.</p>

 <h2>Kinds of Triathlon</h2>

 There are different kinds of triathlon - sprint, Olympic and so on.

 <h3>The kind of triathlon I am aiming for</h3>

 I am aiming for Olympic, which consists of the following:

 1.5km swim

 40km cycle

 10km run

 </body>

</html>

I have defined three section elements in this listing, one of which is nested within the other. Notice that the heading element in each is an h1. When using the section element, the browser is responsible for figuring out the hierarchy of heading elements, freeing you from having to determine and maintain the appropriate sequence of h1–h6 elements—at least in principle. The actual browser implementations differ slightly. Google Chrome, Internet Explorer 9 (IE9), and Firefox are able to derive the implied hierarchy and work out the relative rankings for each h1 element, as shown in Figure 10-3.

[image: Image]

Figure 10-3. Using the section element with nested h1 elements in Chrome

This is good, but if you are observant, you noticed that the font used to display the h1 element whose content is Fruits I Like is smaller than the font used for the other h1 element at the same level—the Activities I like element. This is because some browsers (including Chrome and Firefox) apply a different style to h1 (and h2–h6) elements when they appear within section, article, aside, and nav elements. (The last three are described later in this chapter.) This new style is the same as the style convention for the h2 element. IE9 doesn't apply a special style, as shown in Figure 10-4. This is the correct behavior.

[image: Image]

Figure 10-4. Using the section element with h1 elements in Internet Explorer

Further, not all browsers properly support creating an implied hierarchy of nested heading elements of the same type. You can see how Opera deals with these elements in Figure 10-5. Safari deals these elements in the same way—by ignoring the hierarchy implementations created by the section elements.

[image: Image]

Figure 10-5. Using the section element with h1 elements in Opera

You can overcome the special style that Chrome and Firefox apply by creating your own styles, which take precedence over the styles defined by the browser (as I explained in Chapter 4). Internet Explorer does what you would expect. But you can't do much about Opera and Safari—and until the browser implementations become more consistent, this handy feature should be used with caution.

Adding Headers and Footers

The header element denotes the header of a section. It can contain any content that you wish to denote as being the header, including a masthead or logo. In terms of other elements, a header element typically contains one h1–h6 element or an hgroup element, and it can also contain navigation elements for the section. See the nav element (discussed in the upcoming “Adding Navigation Blocks” section) for details of navigation. Table 10-6 summarizes the header element.

[image: Image]

The footer element is the complement to header and represents the footer for a section. A footer usually contains summary information about a section and can include details of the author, rights information, links to associated content, and logos and disclaimers. Table 10-7 summarizes the footer element.

[image: Image]

[image: Image]

You can see the header and footer elements in Listing 10-5.

Listing 10-5. Using the header and footer Elements

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 h1, h2, h3 { background: grey; color: white; }

 hgroup > h1 { margin-bottom: 0; margin-top: 0}

 hgroup > h2 { background: grey; color: white; font-size: 1em;

 margin-top: 0px; margin-bottom: 2px}

 body > header *, footer > * { background:transparent; color:black;}

 body > section, body > section > section,

 body > section > section > section {margin-left: 10px;}

 body > header, body > footer {

 border: medium solid black; padding-left: 5px; margin: 10px 0 10px 0;

 }

 </style>

 </head>

 <body>

 <header>

 <hgroup>

 <h1>Things I like</h1>

 <h2>by Adam Freeman</h2>

 </hgroup>

 </header>

 <section>

 <header>

 <hgroup>

 <h1>Fruits I Like</h1>

 <h2>How I Learned to Love Citrus</h2>

 </hgroup>

 </header>

 I like apples and oranges.

 <section>

 <h1>Additional fruits</h1>

 I also like bananas, mangoes, cherries, apricots, plums,

 peaches and grapes.

 <section>

 <h1>More information</h1>

 You can see other fruits I like here.

 </section>

 </section>

 </section>

 <section>

 <header>

 <h1>Activities I like</h1>

 </header>

 <section>

 <p>I like to swim, cycle and run. I am in training for my first

 triathlon, but it is hard work.</p>

 <h1>Kinds of Triathlon</h1>

 There are different kinds of triathlon - sprint, Olympic and so on.

 <section>

 <h1>The kind of triathlon I am aiming for</h1>

 I am aiming for Olympic, which consists of the following:

 1.5km swim

 40km cycle

 10km run

 </section>

 </section>

 </section>

 <footer id="mainFooter">

 ©2011, Adam Freeman. Visit Apress

 </footer>

 </body>

</html>

I defined three header elements in this example. When a header is a child of the body element, it is assumed to be the header for the entire document (but be careful—this is not the same as the head element, which I described in Chapter 7). When the header element is part of a section (either implied or explicitly defined using the section element), it is the header for that section. I added some styles to the document to make it easier to see the hierarchical relationship between the various sections and headings. You can see this in Figure 10-6.

Notice the relative sizes of the fonts. This is presumably why Google Chrome and Firefox redefine the h1–h6 elements when they are in a section element. It is to differentiate between the top-level h1 header and those that are nested in sections. This doesn't excuse the gratuitous redefinition of styles, but it does put it in context.

[image: Image]

Figure 10-6. Using the header element

You can see the effect of the footer in Figure 10-7.

[image: Image]

Figure 10-7. Adding a footer element

Adding Navigation Blocks

The nav element denotes a section of the document that contains links to other pages or to other parts of the same page. Obviously, not all hyperlinks have to be in a nav element. The purpose of this element is to identify the major navigation sections of a document. Table 10-8 describes the nav element.

[image: Image]

[image: Image]

Listing 10-6 shows the use of the nav element.

Listing 10-6. Using the nav Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 h1, h2, h3 { background: grey; color: white; }

 hgroup > h1 { margin-bottom: 0; margin-top: 0}

 hgroup > h2 { background: grey; color: white; font-size: 1em;

 margin-top: 0px; margin-bottom: 2px}

 body > header *, body > footer * { background:transparent; color:black;}

 body > section, body > section > section,

 body > section > section > section {margin-left: 10px;}

 body > header, body > footer {

 border: medium solid black; padding-left: 5px; margin: 10px 0 10px 0;

 }

 body > nav { text-align: center; padding: 2px; border : dashed thin black;}

 body > nav > a {padding: 2px; color: black}

 </style>

 </head>

 <body>

 <header>

 <hgroup>

 <h1>Things I like</h1>

 <h2>by Adam Freeman</h2>

 </hgroup>

 <nav>

 <h1>Contents</h1>

 Fruits I Like

 Additional Fruits

 Activities I Like

 Kinds of Triathlon

 The kind of triathlon I am

 aiming for

 </nav>

 </header>

 <section>

 <header>

 <hgroup>

 <h1 id="fruitsilike">Fruits I Like</h1>

 <h2>How I Learned to Love Citrus</h2>

 </hgroup>

 </header>

 I like apples and oranges.

 <section>

 <h1 id="morefruit">Additional fruits</h1>

 I also like bananas, mangoes, cherries, apricots, plums,

 peaches and grapes.

 <section>

 <h1>More information</h1>

 You can see other fruits I like here.

 </section>

 </section>

 </section>

 <section>

 <header>

 <h1 id="activitiesilike">Activities I like</h1>

 </header>

 <section>

 <p>I like to swim, cycle and run. I am in training for my first

 triathlon, but it is hard work.</p>

 <h1 id="tritypes">Kinds of Triathlon</h1>

 There are different kinds of triathlon - sprint, Olympic and so on.

 <section>

 <h1 id="mytri">The kind of triathlon I am aiming for</h1>

 I am aiming for Olympic, which consists of the following:

 1.5km swim

 40km cycle

 10km run

 </section>

 </section>

 </section>

 <nav>

 More Information:

 Learn More About Fruit

 Learn More About Triathlons

 </nav>

 <footer id="mainFooter">

 ©2011, Adam Freeman. Visit Apress

 </footer>

 </body>

</html>

I added a couple of nav elements to the document to give a sense of the flexibility of this element. The first nav element provides the user with navigation within the document. I used ul, li, and a elements to create a hierarchical set of relative hyperlinks. You can see how this is displayed by the browser in Figure 10-8.

[image: Image]

Figure 10-8. Using a nav element to create a content navigation section

I placed this nav element inside the main header element for the document. This is not compulsory, but I like to do this to indicate that this is the main nav element. Notice that I mixed the h1 element in with the other content. The nav element can contain any flow content, not just hyperlinks. I added the second nav element to the end of the document, providing the user with some links to get more information. You can see how the browser renders this in Figure 10-9.

[image: Image]

Figure 10-9. Using a nav element to provide external navigation

In both instances of the nav element, I added styles to the style element in the document to make the additions visually distinctive. The style conventions for the nav element don't explicitly denote the nav element's content.

Working with Articles

The article element represents a self-contained piece of content in an HTML document that could, in principle, be distributed or used independently from the rest of the page (such as through an RSS feed). That's not to say you have to distribute it independently, just that independence is the guidance for when to use this element. Good examples include a new article and a blog entry. Table 10-9 summarizes the article element.

[image: Image]

Listing 10-7 shows the article element in use.

Listing 10-7. Using the article Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 h1, h2, h3, article > footer { background: grey; color: white; }

 hgroup > h1 { margin-bottom: 0; margin-top: 0}

 hgroup > h2 { background: grey; color: white; font-size: 1em;

 margin-top: 0px; margin-bottom: 2px}

 body > header *, body > footer * { background:transparent; color:black;}

 article {border: thin black solid; padding: 10px; margin-bottom: 5px}

 article > footer {padding:5px; margin: 5px; text-align: center}

 article > footer > nav > a {color: white}

 body > article > section,

 body > article > section > section {margin-left: 10px;}

 body > header, body > footer {

 border: medium solid black; padding-left: 5px; margin: 10px 0 10px 0;

 }

 body > nav { text-align: center; padding: 2px; border : dashed thin black;}

 body > nav > a {padding: 2px; color: black}

 </style>

 </head>

 <body>

 <header>

 <hgroup>

 <h1>Things I like</h1>

 <h2>by Adam Freeman</h2>

 </hgroup>

 <nav>

 <h1>Contents</h1>

 Fruits I Like

 Activities I Like

 </nav>

 </header>

 <article>

 <header>

 <hgroup>

 <h1 id="fruitsilike">Fruits I Like</h1>

 <h2>How I Learned to Love Citrus</h2>

 </hgroup>

 </header>

 I like apples and oranges.

 <section>

 <h1 id="morefruit">Additional fruits</h1>

 I also like bananas, mangoes, cherries, apricots, plums,

 peaches and grapes.

 <section>

 <h1>More information</h1>

 You can see other fruits I like here

 </section>

 </section>

 <footer>

 <nav>

 More Information:

 Learn More About Fruit

 </nav>

 </footer>

 </article>

 <article>

 <header>

 <hgroup>

 <h1 id="activitiesilike">Activities I like</h1>

 <h2>It hurts, but I keep doing it</h2>

 </hgroup>

 </header>

 <section>

 <p>I like to swim, cycle and run. I am in training for my first

 triathlon, but it is hard work.</p>

 <h1 id="tritypes">Kinds of Triathlon</h1>

 There are different kinds of triathlon - sprint, Olympic and so on.

 <section>

 <h1 id="mytri">The kind of triathlon I am aiming for</h1>

 I am aiming for Olympic, which consists of the following:

 1.5km swim

 40km cycle

 10km run

 </section>

 </section>

 <footer>

 <nav>

 More Information:

 Learn More About Triathlons

 </nav>

 </footer>

 </article>

 <footer id="mainFooter">

 ©2011, Adam Freeman. Visit Apress

 </footer>

 </body>

</html>

In this example, I restructured my document to be more consistent with the general style of a blog, although perhaps it's not the most interesting blog available. The main part of the document is broken down into three parts. The first is the header, which transcends individual entries and provides an anchor point for the rest of document. The second part is the footer, which balances the header and provides the user with some basic information that applies to the rest of the content. The new addition is the third part: the article elements. In this example, each article describes a kind of thing I like. This meets the independence test because each description of a thing I like is self-contained and can be distributed on its own while still making some kind of sense. Once again, I added some styles to highlight the section effect of the element, which you can see in Figure 10-10.

[image: Image]

Figure 10-10. Applying the article element

The article element can be applied as flexibly as the other new semantic elements. For example, you could nest article elements to indicate the original article and then each update or comment that you received. As with some of the other elements, the value of article is contextual—that which adds meaningful structure in one kind of content may not add value in another. Judgment (and consistency) is required.

Creating Sidebars

The aside element denotes content that is only tangentially related to the surrounding element. This is similar to a sidebar in a book or magazine. The content has something to do with the rest of the page, article, or section, but it isn't part of the main flow. It could be some additional background, a set of links to related articles, and so on. Table 10-10 summarizes the aside element.

[image: Image]

Listing 10-8 shows the aside element in use. I added an aside to one of the articles and added styles to give it the appearance of a simple magazine-style sidebar.

Listing 10-8. Adding and Styling the asideEeement

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 h1, h2, h3, article > footer { background: grey; color: white; }

 hgroup > h1 { margin-bottom: 0; margin-top: 0}

 hgroup > h2 { background: grey; color: white; font-size: 1em;

 margin-top: 0px; margin-bottom: 2px}

 body > header *, body > footer * { background:transparent; color:black;}

 article {border: thin black solid; padding: 10px; margin-bottom: 5px}

 article > footer {padding:5px; margin: 5px; text-align: center}

 article > footer > nav > a {color: white}

 body > article > section,

 body > article > section > section {margin-left: 10px;}

 body > header, body > footer {

 border: medium solid black; padding-left: 5px; margin: 10px 0 10px 0;

 }

 body > nav { text-align: center; padding: 2px; border : dashed thin black;}

 body > nav > a {padding: 2px; color: black}

 aside { width:40%; background:white; float:right; border: thick solid black;

 margin-left: 5px;}

 aside > section { padding: 5px;}

 aside > h1 {background: white; color: black; text-align:center}

 </style>

 </head>

 <body>

 <header>

 <hgroup>

 <h1>Things I like</h1>

 <h2>by Adam Freeman</h2>

 </hgroup>

 <nav>

 <h1>Contents</h1>

 Fruits I Like

 Activities I Like

 </nav>

 </header>

 <article>

 <header>

 <hgroup>

 <h1 id="fruitsilike">Fruits I Like</h1>

 <h2>How I Learned to Love Citrus</h2>

 </hgroup>

 </header>

 <aside>

 <h1>Why Fruit is Healthy</h1>

 <section>

 Here are three reasons why everyone should eat more fruit:

 Fruit contains lots of vitamins

 Fruit is a source of fibre

 Fruit contains few calories

 </section>

 </aside>

 I like apples and oranges.

 <section>

 <h1 id="morefruit">Additional fruits</h1>

 I also like bananas, mangoes, cherries, apricots, plums,

 peaches and grapes.

 <section>

 <h1>More information</h1>

 You can see other fruits I like here

 </section>

 </section>

 <footer>

 <nav>

 More Information:

 Learn More About Fruit

 </nav>

 </footer>

 </article>

 <article>

 <header>

 <hgroup>

 <h1 id="activitiesilike">Activities I like</h1>

 <h2>It hurts, but I keep doing it</h2>

 </hgroup>

 </header>

 <section>

 <p>I like to swim, cycle and run. I am in training for my first

 triathlon, but it is hard work.</p>

 <h1 id="tritypes">Kinds of Triathlon</h1>

 There are different kinds of triathlon - sprint, Olympic and so on.

 <section>

 <h1 id="mytri">The kind of triathlon I am aiming for</h1>

 I am aiming for Olympic, which consists of the following:

 1.5km swim

 40km cycle

 10km run

 </section>

 </section>

 <footer>

 <nav>

 More Information:

 Learn More About Triathlons

 </nav>

 </footer>

 </article>

 <footer id="mainFooter">

 ©2011, Adam Freeman. Visit Apress

 </footer>

 </body>

</html>

You can see the effect of the aside element and the additional styles in Figure 10-11. I added some filler text to the document shown in the figure to make the flow of content more apparent.

[image: Image]

Figure 10-11. Applying and styling the aside element

Providing Contact Information

The address element is used to denote contact information for a document or article element. Table 10-11 summarizes the address element.

[image: Image]

[image: Image]

When the address element is a descendant of an article element, it is assumed to provide contact information for that article. Otherwise, when an address element is a child of a body element (and there is no article element between the body and address elements), the address is assumed to provide contact information for the entire document.

The address element must not be used to denote addresses that are not contact information for a document or article. For example, you can't use this element to denote addresses of customers or users in the content of a document. Listing 10-9 shows the address element in use.

Listing 10-9. Using the address Element

...

<body>

 <header>

 <hgroup>

 <h1>Things I like</h1>

 <h2>by Adam Freeman</h2>

 </hgroup>

 <address>

 Questions and comments? Email me

 </address>

 <nav>

 <h1>Contents</h1>

 Fruits I Like

 Activities I Like

 </nav>

 </header>

 <article>

 <header>

 <hgroup>

...

I added the address element to the header for the document. In this case, I provided an email address for users/readers to contact me. You can see the addition in Figure 10-12.

[image: Image]

Figure 10-12. Adding an address element

Creating a Details Section

The details element creates a section of the document that the user can expand to get further details about a topic. Table 10-12 summarizes the details element.

[image: Image]

The details element usually contains a summary element, which creates a label or title for the details section. Table 10-13 describes the summary element.

[image: Image]

You can see both the details and summary elements used in Listing 10-10.

Listing 10-10. Using the summary and details Elements

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 h1, h2, h3, article > footer { background: grey; color: white; }

 hgroup > h1 { margin-bottom: 0; margin-top: 0}

 hgroup > h2 { background: grey; color: white; font-size: 1em;

 margin-top: 0px; margin-bottom: 2px}

 body > header *, body > footer * { background:transparent; color:black;}

 body > article > section,

 body > article > section > section {margin-left: 10px;}

 body > header {

 border: medium solid black; padding-left: 5px; margin: 10px 0 10px 0;

 }

 article {border: thin black solid; padding: 10px; margin-bottom: 5px}

 details {border: solid thin black; padding: 5px}

 details > summary { font-weight: bold}

 </style>

 </head>

 <body>

 <header>

 <hgroup>

 <h1>Things I like</h1>

 <h2>by Adam Freeman</h2>

 </hgroup>

 </header>

 <article>

 <header>

 <hgroup>

 <h1 id="activitiesilike">Activities I like</h1>

 <h2>It hurts, but I keep doing it</h2>

 </hgroup>

 </header>

 <section>

 <p>I like to swim, cycle and run. I am in training for my first

 triathlon, but it is hard work.</p>

 <details>

 <summary>Kinds of Triathlon</summary>

 There are different kinds of triathlon - sprint, Olympic and so on.

 I am aiming for Olympic, which consists of the following:

 1.5km swim

 40km cycle

 10km run

 </details>

 </section>

 </article>

 </body>

</html>

You can see how the browser displays these elements in Figure 10-13. Not all browsers support the details element properly. IE9 has difficulties, for example.

[image: Image]

Figure 10-13. Using the details and summary attributes

As you can see from the figure, the browser provides an interface control which, when activated, opens and displays the contents of the details element. When the details element is closed, only the contents of the summary element are visible. To have the details element open when the page is first displayed, apply the open attribute.

Summary

In this chapter, I introduced you to the elements that you use to create sections in your documents and to isolate unrelated content. Most of these elements are new to HTML5. Although you are not compelled to use them to create compliant HTML5 documents, these new elements are one of the major enhancements in the effort to bring semantics to HTML.

C H A P T E R 11

Table Elements

In this chapter, I will show you the HTML elements you can use to create tables. The main use for tables is to display two-dimensional data in a grid, but in earlier versions of HTML, it became common to use tables to control the layout of content in the page. In HTML5, this is no longer permitted, and the new CSS table feature (described in Chapter 21) must be used instead. Table 11-1 provides the summary for this chapter.

[image: Image]

Creating a Basic Table

There are three elements that every table must contain: table, tr, and td. There are other elements—and I'll explain them later in this chapter—but these are the three you must start with. The first, table, is at the heart of support for tabular content in HTML and denotes a table in an HTML document. Table 11-2 summarizes the table element.

[image: Image]

The next core table element is tr, which denotes a table row. HTML tables are row, rather than column, oriented and you must denote each row separately. Table 11-3 summarizes the tr element.

[image: Image]

[image: Image]

The last of our three core elements is td, which denotes a table cell. Table 11-4 summarizes the td element.

[image: Image]

Having defined these three elements, you can combine them to create tables, as shown in Listing 11-1.

Listing 11-1. Using the table, tr, and td Elements to Create a Table

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <table>

 <tr>

 <td>Apples</td>

 <td>Green</td>

 <td>Medium</td>

 </tr>

 <tr>

 <td>Oranges</td>

 <td>Orange</td>

 <td>Large</td>

 </tr>

 </table>

 </body>

</html>

In this example I defined a table element that has two rows (denoted by the two tr elements). Each row has three columns, each of which is represented by a td element. The td element can contain any flow content, but I stuck to simple text in this example. You can see how the default style conventions are applied to display the table in Figure 11-1.

[image: Image]

Figure 11-1. Displaying a simple table

This is a very simple table, but you can see the basic structure. The browser is responsible for sizing the rows and columns to maintain the table. As an example, see what happens when I add some longer content, as in Listing 11-2.

Listing 11-2. Adding Some Longer Cell Content

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <table>

 <tr>

 <td>Apples</td>

 <td>Green</td>

 <td>Medium</td>

 </tr>

 <tr>

 <td>Oranges</td>

 <td>Orange</td>

 <td>Large</td>

 </tr>

 <tr>

 <td>Pomegranate</td>

 <td>A kind of greeny-red</td>

 <td>Varies from medium to large</td>

 </tr>

 </table>

 </body>

</html>

The content of each of the newly added td elements is longer than in the previous two rows. You can see how the browser resizes the other cells to make them the same size in Figure 11-2.

[image: Image]

Figure 11-2. Cells resized to accommodate longer content

One of the nicest features of the table element is that you don't have to worry about the sizing issues. The browser makes sure that the columns are wide enough for the longest content and that the rows are tall enough for the tallest cell.

Adding Headers Cells

The th element denotes a header cell, allowing us to differentiate between data and the descriptions of that data. Table 11-5 summarizes the th element.

[image: Image]

You can see how I added th elements to the table in Listing 11-3 to provide some context for the data values contained in the td elements.

Listing 11-3. Adding Header Cells to a Table

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <table>

 <tr>

 <th>Rank</th><th>Name</th>

 <th>Color</th><th>Size</th>

 </tr>

 <tr>

 <th>Favorite:</th>

 <td>Apples</td><td>Green</td><td>Medium</td>

 </tr>

 <tr>

 <th>2nd Favorite:</th>

 <td>Oranges</td><td>Orange</td><td>Large</td>

 </tr>

 <tr>

 <th>3rd Favorite:</th>

 <td>Pomegranate</td><td>A kind of greeny-red</td>

 <td>Varies from medium to large</td>

 </tr>

 </table>

 </body>

</html>

You can see that I am able to mix the th and td elements together in a row and also create a row that just contains th elements. You can see how the browser renders these in Figure 11-3.

[image: Image]

Figure 11-3. Adding header cells to a table

Adding Structure to a Table

You have a basic table, but you have managed to create a problem for yourself. When you go to style the table, you will find it hard to differentiate between the th elements that are on their own row and those that are mixed in with the data. It is not impossible it just requires close attention.. Listing 11-4 shows how you might do this.

Listing 11-4. Differentiating Between th Elements in a Table

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 tr > th { text-align:left; background:grey; color:white}

 tr > th:only-of-type {text-align:right; background: lightgrey; color:grey}

 </style>

 </head>

 <body>

 <table>

 <tr>

 <th>Rank</th><th>Name</th><th>Color</th><th>Size</th>

 </tr>

 <tr>

 <th>Favorite:</th><td>Apples</td><td>Green</td><td>Medium</td>

 </tr>

 <tr>

 <th>2nd Favorite:</th><td>Oranges</td><td>Orange</td><td>Large</td>

 </tr>

 <tr>

 <th>3rd Favorite:</th><td>Pomegranate</td><td>A kind of greeny-red</td>

 <td>Varies from medium to large</td>

 </tr>

 </table>

 </body>

</html>

In this example, I created one selector that matches all of the th elements and a second style that matches only those th elements that are the only children of that type in a tr element. You can see the effect of the styles in Figure 11-4.

[image: Image]

Figure 11-4. Adding styles that match the th rows in the table

This is a perfectly workable approach, but it lacks flexibility. If I add additional th elements to the rows of the table, my second selector won't work anymore. I don't really want to have to tweak my selectors every time I change the table.

To solve this problem in a flexible way, you can use the thead, tbody, and tfoot elements. These elements allow you to add structure to a table, and the major benefit of this structure is that it makes working with the different parts of the table simpler, especially when it comes to CSS selectors.

Denoting the Headings and the Table Body

The tbody element denotes the set of rows that comprise the body of our table—as opposed to the header and footer rows, which you denote with the thead and tfoot elements and which we'll get to shortly. Table 11-6 summarizes the tbody element.

[image: Image]

As a related aside, most browsers automatically insert the tbody element when they process a table element, even if it has not been specified in the document. This means that CSS selectors that assume the table layout is as written can fail. For example, a selector such as table > tr won't work, because the browser has inserted a tbody element between the table and tr elements. To address this, you must use a selector such as table > tbody > tr, table tr (no > character), or even just tbody > tr.

The thead element defines one or more rows that are the column labels for a table element. Table 11-7 summarizes the thead element.

[image: Image]

Without the thead element, all of your tr elements are assumed to belong to the body of the table. Listing 11-5 shows the addition of the thead and tbody elements to the example table, and the more flexible CSS selectors you can use as a consequence.

Listing 11-5. Adding thead and tbody Elements to a Table

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 thead th { text-align:left; background:grey; color:white}

 tbody th { text-align:right; background: lightgrey; color:grey}

 </style>

 </head>

 <body>

 <table>

 <thead>

 <tr>

 <th>Rank</th><th>Name</th><th>Color</th><th>Size</th>

 </tr>

 </thead>

 <tbody>

 <tr>

 <th>Favorite:</th><td>Apples</td><td>Green</td><td>Medium</td>

 </tr>

 <tr>

 <th>2nd Favorite:</th><td>Oranges</td><td>Orange</td><td>Large</td>

 </tr>

 <tr>

 <th>3rd Favorite:</th><td>Pomegranate</td>

 <td>A kind of greeny-red</td><td>Varies from medium to large</td>

 </tr>

 </tbody>

 </table>

 </body>

</html>

This may not seem like a big deal, but the structure you added to the table makes dealing with the different kinds of cells much easier and less likely to fail if you modify the design of the table.

Adding a Footer

The tfoot element denotes the block of rows that form the footer for the table. Table 11-8 summarizes the tfoot element.

[image: Image]

Listing 11-6 shows how the tfoot element can be used to create a footer for a table element. Prior to HTML5, the tfoot element had to appear before the tbody element (or the first tr element if the tbody had been omitted). In HTML5, you can instead put the tfooter element after the tbody or the last tr element, which is more consistent with the way the table will be displayed by the browser. In Listing 11-6, I show the tfoot element in the first position—either is acceptable. My feeling is that the above-the-tbody approach is generally more helpful when generating HTML programmatically using templates and the below-the-tbody approach feels more natural when writing HTML manually.

Listing 11-6. Using the tfoot Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 thead th, tfoot th { text-align:left; background:grey; color:white}

 tbody th { text-align:right; background: lightgrey; color:grey}

 </style>

 </head>

 <body>

 <table>

 <thead>

 <tr>

 <th>Rank</th><th>Name</th><th>Color</th><th>Size</th>

 </tr>

 </thead>

 <tfoot>

 <tr>

 <th>Rank</th><th>Name</th><th>Color</th><th>Size</th>

 </tr>

 </tfoot>

 <tbody>

 <tr>

 <th>Favorite:</th><td>Apples</td><td>Green</td><td>Medium</td>

 </tr>

 <tr>

 <th>2nd Favorite:</th><td>Oranges</td><td>Orange</td><td>Large</td>

 </tr>

 <tr>

 <th>3rd Favorite:</th><td>Pomegranate</td>

 <td>A kind of greeny-red</td><td>Varies from medium to large</td>

 </tr>

 </tbody>

 </table>

 </body>

</html>

I duplicated the set of rows in the header to be in the footer. We'll come back and make the footer more interesting later in the chapter. I also added a second selector to one of the styles so that the th elements in the thead and tfoot elements are styled in the same way. You can see the addition of the footer shown in Figure 11-5.

[image: Image]

Figure 11-5. Adding a footer to a table

Creating Irregular Tables

Most tables are straightforward grids, where each cell occupies one position in the grid. However, to represent more complicated data, you sometimes need to create irregular tables, where cells are spread across multiple rows and columns. You create such tables using the colspan and rowspan attributes of the td and th elements. Listing 11-7 shows how to use these attributes to create an irregular table.

Listing 11-7. Creating an Irregular Table

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 thead th, tfoot th { text-align:left; background:grey; color:white}

 tbody th { text-align:right; background: lightgrey; color:grey}

 [colspan], [rowspan] {font-weight:bold; border: medium solid black}

 thead [colspan], tfoot [colspan] {text-align:center; }

 </style>

 </head>

 <body>

 <table>

 <thead>

 <tr>

 <th>Rank</th><th>Name</th><th>Color</th>

 <th colspan="2">Size & Votes</th>

 </tr>

 </thead>

 <tbody>

 <tr>

 <th>Favorite:</th><td>Apples</td><td>Green</td>

 <td>Medium</td><td>500</td>

 </tr>

 <tr>

 <th>2nd Favorite:</th><td>Oranges</td><td>Orange</td>

 <td>Large</td><td>450</td>

 </tr>

 <tr>

 <th>3rd Favorite:</th><td>Pomegranate</td>

 <td colspan="2" rowspan="2">

 Pomegranates and cherries can both come in a range of colors

 and sizes.

 </td>

 <td>203</td>

 </tr>

 <tr>

 <th rowspan="2">Joint 4th:</th>

 <td>Cherries</td>

 <td rowspan="2">75</td>

 </tr>

 <tr>

 <td>Pineapple</td>

 <td>Brown</td>

 <td>Very Large</td>

 </tr>

 </tbody>

 <tfoot>

 <tr>

 <th colspan="5">© 2011 Adam Freeman Fruit Data Enterprises</th>

 </tr>

 </tfoot>

 </table>

 </body>

</html>

If you want a cell to span multiple rows, you can use the rowspan attribute. The value you assign to this attribute is the number of rows to span. Similarly, if you want a cell to span multiple columns, you use the colspan attribute.

[image: Image] Tip The values assigned to the rowspan and colspan must be integers. Some browsers will understand the value 100% to mean all of the rows or columns in a table, but this is not part of the HTML5 standard and is not consistently implemented.

I added some additional styles to the example document to highlight the cells that span multiple rows or columns, as shown in Figure 11-6. The affected cells are shown with a thick border.

[image: Image]

Figure 11-6. Spanning multiple rows and columns

You apply the colspan and rowspan attributes to the cell that is the uppermost and leftmost of the part of the grid you want to cover. You omit the td or tr elements that you would have included normally. As an example, consider the simple table shown in Listing 11-8.

Listing 11-8. A Simple Table

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 td {border: thin solid black; padding: 5px; font-size:x-large};

 </style>

 </head>

 <body>

 <table>

 <tr>

 <td>1</td>

 <td>2</td>

 <td>3</td>

 </tr>

 <tr>

 <td>4</td>

 <td>5</td>

 <td>6</td>

 </tr>

 <tr>

 <td>7</td>

 <td>8</td>

 <td>9</td>

 </tr>

 </table>

 </body>

</html>

The table in this example is a 3x3 regular grid, as shown in Figure 11-7.

[image: Image]

Figure 11-7. A regular grid

If you want one cell in the middle column to span all three rows, you apply the rowspan attribute to cell 2, which is the uppermost (and leftmost, but that doesn't matter in this example) cell of the area of the grid you want to cover. You also have to remove the cell elements that the expanded cell will cover—cells 5 and 8, in this case. You can see the changes in Listing 11-9.

Listing 11-9. Expanding a Cell to Cover Multiple Rows

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 td {border: thin solid black; padding: 5px; font-size:x-large};

 </style>

 </head>

 <body>

 <table>

 <tr>

 <td>1</td>

 <td rowspan="3">2</td>

 <td>3</td>

 </tr>

 <tr>

 <td>4</td>

 <td>6</td>

 </tr>

 <tr>

 <td>7</td>

 <td>9</td>

 </tr>

 </table>

 </body>

</html>

You can see the result of these changes in Figure 11-8.

[image: Image]

Figure 11-8. Expanding a cell to cover three rows

The browser is responsible for working out how the other cells you define should be fitted around the expanded cell.

[image: Image] Caution Be careful not to create overlapping cells by having two cells expand into the same area. The purpose of the table element is to represent tabular data. The only reason for using overlapping cells is to have the table element lay out other elements, which is something that should be done using the CSS table feature (described in Chapter 21).

Associating Headers with Cells

The td and th elements define the headers attribute, which can be used to make tables easier to process with screen readers and other assistive technology. The value of the headers attribute is the ID attribute value of one or more th cells. Listing 11-10 shows how you can use this attribute.

Listing 11-10. Using the headers Attribute

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 thead th, tfoot th { text-align:left; background:grey; color:white}

 tbody th { text-align:right; background: lightgrey; color:grey}

 thead [colspan], tfoot [colspan] {text-align:center; }

 </style>

 </head>

 <body>

 <table>

 <thead>

 <tr>

 <th id="rank">Rank</th>

 <th id="name">Name</th>

 <th id="color">Color</th>

 <th id="sizeAndVotes" colspan="2">Size & Votes</th>

 </tr>

 </thead>

 <tbody>

 <tr>

 <th id="first" headers="rank">Favorite:</th>

 <td headers="name first">Apples</td>

 <td headers="color first">Green</td>

 <td headers="sizeAndVote first">Medium</td>

 <td headers="sizeAndVote first">500</td>

 </tr>

 <tr>

 <th id="second" headers="rank">2nd Favorite:</th>

 <td headers="name second">Oranges</td>

 <td headers="color second">Orange</td>

 <td headers="sizeAndVote second">Large</td>

 <td headers="sizeAndVote second">450</td>

 </tr>

 </tbody>

 <tfoot>

 <tr>

 <th colspan="5">© 2011 Adam Freeman Fruit Data Enterprises</th>

 </tr>

 </tfoot>

 </table>

 </body>

</html>

I added the global id attribute to each of the th elements in the thead and the th elements that appear in the tbody. For each td and th in the tbody, I used the headers attribute to associate the cell with the column header. For the td elements, I also specified the row header (the header that appears in the first column).

Adding a Caption to a Table

The caption element lets you define a caption and associate it with a table element. Table 11-9 summarizes the caption element.

[image: Image]

Listing 11-11 shows the caption element in use.

Listing 11-11. Using the caption Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 thead th, tfoot th { text-align:left; background:grey; color:white}

 tbody th { text-align:right; background: lightgrey; color:grey}

 [colspan], [rowspan] {font-weight:bold; border: medium solid black}

 thead [colspan], tfoot [colspan] {text-align:center; }

 caption {font-weight: bold; font-size: large; margin-bottom:5px}

 </style>

 </head>

 <body>

 <table>

 <caption>Results of the 2011 Fruit Survey</caption>

 <thead>

 <tr>

 <th>Rank</th><th>Name</th><th>Color</th>

 <th colspan="2">Size & Votes</th>

 </tr>

 </thead>

 <tbody>

 <tr>

 <th>Favorite:</th><td>Apples</td><td>Green</td>

 <td>Medium</td><td>500</td>

 </tr>

 <tr>

 <th>2nd Favorite:</th><td>Oranges</td><td>Orange</td>

 <td>Large</td><td>450</td>

 </tr>

 <tr>

 <th>3rd Favorite:</th><td>Pomegranate</td>

 <td colspan="2" rowspan="2">

 Pomegranates and cherries can both come in a range of colors

 and sizes.

 </td>

 <td>203</td>

 </tr>

 <tr>

 <th rowspan="2">Joint 4th:</th>

 <td>Cherries</td>

 <td rowspan="2">75</td>

 </tr>

 <tr>

 <td>Pineapple</td>

 <td>Brown</td>

 <td>Very Large</td>

 </tr>

 </tbody>

 <tfoot>

 <tr>

 <th colspan="5">© 2011 Adam Freeman Fruit Data Enterprises</th>

 </tr>

 </tfoot>

 </table>

 </body>

</html>

A table can contain only one caption element, but it doesn't have to be the first element contained in the table. However, it will always be displayed above the table, regardless of where the element is defined. You can see the effect of the caption (and the style I applied to it) in Figure 11-9.

[image: Image]

Figure 11-9. Applying a caption to a table

Working with Columns

The HTML approach to tables is oriented around rows. You place the definitions of your cells inside of tr elements and build up tables row by row. This can make it awkward to apply styles to columns, especially when working with tables that contain irregular cells. The solution to this is to use the colgroup and col elements.

The colgroup element represents a set of columns. Table 11-10 summarizes the colgroup element.

[image: Image]

Listing 11-12 shows the use of the colgroup element.

Listing 11-12. Using the colgroup Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 thead th, tfoot th { text-align:left; background:grey; color:white}

 tbody th { text-align:right; background: lightgrey; color:grey}

 [colspan], [rowspan] {font-weight:bold; border: medium solid black}

 thead [colspan], tfoot [colspan] {text-align:center; }

 caption {font-weight: bold; font-size: large; margin-bottom:5px}

 #colgroup1 {background-color: red}

 #colgroup2 {background-color: green; font-size:small}

 </style>

 </head>

 <body>

 <table>

 <caption>Results of the 2011 Fruit Survey</caption>

 <colgroup id="colgroup1" span="3"/>

 <colgroup id="colgroup2" span="2"/>

 <thead>

 <tr>

 <th>Rank</th><th>Name</th><th>Color</th>

 <th colspan="2">Size & Votes</th>

 </tr>

 </thead>

 <tbody>

 <tr>

 <th>Favorite:</th><td>Apples</td><td>Green</td>

 <td>Medium</td><td>500</td>

 </tr>

 <tr>

 <th>2nd Favorite:</th><td>Oranges</td><td>Orange</td>

 <td>Large</td><td>450</td>

 </tr>

 <tr>

 <th>3rd Favorite:</th><td>Pomegranate</td>

 <td colspan="2" rowspan="2">

 Pomegranates and cherries can both come in a range of colors

 and sizes.

 </td>

 <td>203</td>

 </tr>

 <tr>

 <th rowspan="2">Joint 4th:</th>

 <td>Cherries</td>

 <td rowspan="2">75</td>

 </tr>

 <tr>

 <td>Pineapple</td>

 <td>Brown</td>

 <td>Very Large</td>

 </tr>

 </tbody>

 <tfoot>

 <tr>

 <th colspan="5">© 2011 Adam Freeman Fruit Data Enterprises</th>

 </tr>

 </tfoot>

 </table>

 </body>

</html>

In this example, I defined two colgroup elements. The span attribute specifies how many columns the colgroup element applies to. The first colgroup in the listing applies to the first three columns in the table, and the other element applies to the next two columns. I applied the global id attribute to each colgroup element and defined CSS styles that use the id values as selectors. You can see the effect in Figure 11-10.

[image: Image]

Figure 11-10. Using the colgroup element

The figure demonstrates some of the important aspects of using the colgroup element. The first thing to know is that CSS styles that are applied to colgroups have lower specificity than styles applied to tr, td, and th elements directly. You can see this in the way that the styles applied to the thead, tfoot, and first column of th elements are not affected by the styles that match the colgroups. If I remove all of the styles except those that target the colgroup elements, all of the cells are modified, as shown in Figure 11-11.

[image: Image]

Figure 11-11. Removing all of the styles except those that directly target the colspan elements

The second point to note is that irregular cells are counted as part of the column they start in. You can see this in the third row, where a cell that is matched by the first style extends into the area covered by the other colgroup element.

The final point to be aware of is that the colgroup element includes all of the cells in a column, even those that are in thead and tfoot elements, and it matches both th and td elements. The colgroup element is special because it relates to elements that are not contained within the element. This means you can't use the colgroup element as the basis for more focused selectors (for example, a selector such as #colgroup1 > td doesn't match any elements).

Calling Out Individual Columns

You can use the col element instead of the span attribute of the colgroup element. This allows you to define a group and the distinct columns that exist within it. Table 11-11 summarizes the col element.

[image: Image]

[image: Image]

The advantage of using the col element is greater control. You can apply styles to groups of columns and the individual columns in that group. The col element is placed inside the colgroup element, as shown in Listing 11-13, and each instance of col represents one column in the group.

Listing 11-13. Using the col Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 thead th, tfoot th { text-align:left; background:grey; color:white}

 tbody th { text-align:right; background: lightgrey; color:grey}

 [colspan], [rowspan] {font-weight:bold; border: medium solid black}

 thead [colspan], tfoot [colspan] {text-align:center; }

 caption {font-weight: bold; font-size: large; margin-bottom:5px}

 #colgroup1 {background-color: red}

 #col3 {background-color: green; font-size:small}

 </style>

 </head>

 <body>

 <table>

 <caption>Results of the 2011 Fruit Survey</caption>

 <colgroup id="colgroup1">

 <col id="col1And2" span="2"/>

 <col id="col3"/>

 </colgroup>

 <colgroup id="colgroup2" span="2"/>

 <thead>

 <tr>

 <th>Rank</th><th>Name</th><th>Color</th>

 <th colspan="2">Size & Votes</th>

 </tr>

 </thead>

 <tbody>

 <tr>

 <th>Favorite:</th><td>Apples</td><td>Green</td>

 <td>Medium</td><td>500</td>

 </tr>

 <tr>

 <th>2nd Favorite:</th><td>Oranges</td><td>Orange</td>

 <td>Large</td><td>450</td>

 </tr>

 <tr>

 <th>3rd Favorite:</th><td>Pomegranate</td>

 <td colspan="2" rowspan="2">

 Pomegranates and cherries can both come in a range of colors

 and sizes.

 </td>

 <td>203</td>

 </tr>

 <tr>

 <th rowspan="2">Joint 4th:</th>

 <td>Cherries</td>

 <td rowspan="2">75</td>

 </tr>

 <tr>

 <td>Pineapple</td>

 <td>Brown</td>

 <td>Very Large</td>

 </tr>

 </tbody>

 <tfoot>

 <tr>

 <th colspan="5">© 2011 Adam Freeman Fruit Data Enterprises</th>

 </tr>

 </tfoot>

 </table>

 </body>

</html>

You can use the span attribute to create a col element that represents two columns in the colgroup. The col element represents a single column if you don't use the span attribute. In this example, I applied a style to the colgroup and to one of the col elements it contains. You can see the effect in Figure 11-12.

[image: Image]

Figure 11-12. Using the colgroup and col elements to apply styling to a table

Applying Borders to the table Element

The table element defines the border attribute. When you apply this attribute, it tells the browser you are using the table to represent tabular data, rather than to lay out other elements. Most browsers respond to the border attribute by drawing borders around the table and each individual cell. Listing 11-14 shows the application of the border element.

Listing 11-14. Using the border Attribute

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <table border="1">

 <caption>Results of the 2011 Fruit Survey</caption>

 <colgroup id="colgroup1">

 <col id="col1And2" span="2"/>

 <col id="col3"/>

 </colgroup>

 <colgroup id="colgroup2" span="2"/>

 <thead>

 <tr>

 <th>Rank</th><th>Name</th><th>Color</th>

 <th colspan="2">Size & Votes</th>

 </tr>

 </thead>

 <tbody>

 <tr>

 <th>Favorite:</th><td>Apples</td><td>Green</td>

 <td>Medium</td><td>500</td>

 </tr>

 <tr>

 <th>2nd Favorite:</th><td>Oranges</td><td>Orange</td>

 <td>Large</td><td>450</td>

 </tr>

 <tr>

 <th>3rd Favorite:</th><td>Pomegranate</td>

 <td colspan="2" rowspan="2">

 Pomegranates and cherries can both come in a range of colors

 and sizes.

 </td>

 <td>203</td>

 </tr>

 <tr>

 <th rowspan="2">Joint 4th:</th>

 <td>Cherries</td>

 <td rowspan="2">75</td>

 </tr>

 <tr>

 <td>Pineapple</td>

 <td>Brown</td>

 <td>Very Large</td>

 </tr>

 </tbody>

 <tfoot>

 <tr>

 <th colspan="5">© 2011 Adam Freeman Fruit Data Enterprises</th>

 </tr>

 </tfoot>

 </table>

 </body>

</html>

The value assigned to the border attribute must be 1 or the empty string (""). This attribute doesn't control the style of the border. You do that via CSS. You can see how Google Chrome responds to the presence of the border attribute in Figure 11-13. (Notice that I removed the style element from this example to emphasize the effect of the border attribute.)

[image: Image]

Figure 11-13. The effect of applying the border attribute to a table element

The default border that browsers apply isn't especially appealing, so you typically have to use CSS in addition to the border attribute.

[image: Image] Tip You don't have to apply the border attribute to a table to be able to define borders using CSS. However, if you don't apply the border attribute, the browser is free to assume you are using the table for layout purposes, and it may display the table in an unexpected way. As I write this, mainstream browsers don't pay much attention to the border attribute (aside from applying the default border), but that may change in the future.

Even though the border attribute causes the browser to apply a border to the table and each cell, you still have to target each kind of element individually in your CSS selectors to replace. You are not short of choices when it comes to creating CSS selectors: you can target the outer border of the table through the table element; the header, body, and footer with the thead, tbody, and tfoot elements; columns through the colspan and col elements; and individual cells using the th and td elements. And, if all else fails, you can still explicitly create targets using the id and class global attributes.

Summary

In this chapter, I took you on a tour of the HTML5 support for tables. The most important change in HTML5 is that you can no longer use tables to handle page layouts—for that you must rely on the CSS table support, which I describe in Chapter 21. This limitation aside, tables are endlessly flexible, are easy to style, and can be a pleasure to work with.

C H A P T E R 12

Working with Forms

Forms are the HTML mechanism for gathering input from the user. Forms are incredibly important to web applications, but for many years the functionality defined in HTML has lagged behind the way forms are used. In HTML5, the entire form system has been overhauled and spruced up, aligning the standard with the way forms have evolved in use.

In this chapter, I describe the basics of HTML forms. I start by defining a very simple form and build on it to demonstrate how you configure and control the way the form operates. I introduce a Node.js script you can use to test your forms and see the data that is sent from the browser to the server.

In the chapter that follows, I cover the advanced form features, including the HTML5 changes that have attracted the most attention—the new ways of gathering specific data types from the user, and the ability to validate the data in the browser. These are important enhancements, but a lot of other changes are worthy of note as well. This chapter and the next are worthy of close attention.

As I write this, the mainstream browser support for HTML5 forms is good, but not perfect, and it is worth checking how widely implemented each feature is before adopting it. Table 12-1 provides the summary for this chapter.

[image: Image]

[image: Image]

Creating a Basic Form

To create a basic form, you need three elements: the form, input, and button elements. Listing 12-1 shows an HTML document that contains a simple form.

Listing 12-1. A Simple HTML Form

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <form method="post" action="http://titan:8080/form">

 <input name="fave"/>

 <button>Submit Vote</button>

 </form>

 </body>

</html>

You can see how this appears in the browser in Figure 12-1.

[image: Image]

Figure 12-1. Displaying a basic form in the browser

This form is so simple that it isn't much use, but after you've looked at each of the three core elements, you can start to add to the form and make it more meaningful and useful.

Defining the Form

The starting point is the form element, which denotes the presence of a form in an HTML page. Table 12-2 summarizes the form element.

[image: Image]

[image: Image]

I'll come back and show you how to use the element attributes to configure the form element later in this chapter. For the moment, it is enough to know that the form element tells the browser that it is dealing with an HTML form.

The second critical element is input, which allows you to gather input from the user. You can see in Figure 12-1 that the input element has been displayed by the browser as a simple text box, into which the user can type. This is the most basic type of input element and, as you'll see, there are lots of options for how you gather input from the user (including some nice new additions in HTML5). I explain these in Chapter 13. Table 12-3 summarizes the input element.

[image: Image]

There are 29 attributes that can be applied to the input element, depending on the value of the type attribute. I'll show these attributes and explain their use when we look at the different ways you can gather data from the user in Chapter 13.

[image: Image] Tip You can use elements other than input to collect data from the user. I explain and demonstrate these in Chapter 14.

The final element in the example is button. You need some means for the user to indicate to the browser that all of the data has been entered and that the browser should send the data to the server. The button element is the most commonly used way of doing this (although, as you'll see in Chapter 13, there is another mechanism you can use). Table 12-4 summarizes the button element.

[image: Image]

The button element is a multipurpose element, and I'll explain the uses it can be put to in the “Using the button Element” section, later in this chapter. When used inside a form element and without any attributes, the button element tells the browser to submit the data collected from the user to the server.

Seeing the Form Data

You need a server for the browser to send the data to. To this end, I wrote a simple Node.js script that generates an HTML page containing the data that the form collects from the user. See Chapter 2 for details of obtaining and setting up Node.js. Listing 12-2 shows the script we'll be using. As I mentioned in Chapter 2, I won't be digging into the details of the server-side scripts, but because Node.js is JavaScript-based, you can easily see what the script does by following the descriptions of the JavaScript language features in Chapter 5 and reading some of the documentation available at http://nodejs.org.

Listing 12-2. The formecho.js Script

var http = require('http');

var querystring = require('querystring');

http.createServer(function (req, res) {

 switch(req.url) {

 case '/form':

 if (req.method == 'POST') {

 console.log("[200] " + req.method + " to " + req.url);

 var fullBody = '';

 req.on('data', function(chunk) {

 fullBody += chunk.toString();

 });

 req.on('end', function() {

 res.writeHead(200, "OK", {'Content-Type': 'text/html'});

 res.write('<html><head><title>Post data</title></head><body>');

 res.write('<style>th, td {text-align:left; padding:5px; color:black}\n');

 res.write('th {background-color:grey; color:white; min-width:10em}\n');

 res.write('td {background-color:lightgrey}\n');

 res.write('caption {font-weight:bold}</style>');

 res.write('<table border="1"><caption>Form Data</caption>');

 res.write('<tr><th>Name</th><th>Value</th>');

 var dBody = querystring.parse(fullBody);

 for (var prop in dBody) {

 res.write("<tr><td>" + prop + "</td><td>" + dBody[prop] + "</td></tr>");

 }

 res.write('</table></body></html>');

 res.end();

 });

 } else {

 console.log("[405] " + req.method + " to " + req.url);

 res.writeHead(405, "Method not supported", {'Content-Type': 'text/html'});

 res.end('<html><head><title>405 - Method not supported</title></head><body>' +

 '<h1>Method not supported.</h1></body></html>');

 }

 break;

 default:

 res.writeHead(404, "Not found", {'Content-Type': 'text/html'});

 res.end('<html><head><title>404 - Not found</title></head><body>' +

 '<h1>Not found.</h1></body></html>');

 console.log("[404] " + req.method + " to " + req.url);

 };

}).listen(8080);

This script collects together the data that the browser has submitted and returns a simple HTML document that displays that data in an HTML table. (I described the table element in Chapter 11.) This script listens for browser connections on port 8080 and deals only with forms that are sent from the browser using the HTTP POST method and to the /form URL. You'll see the significance of port 8080 and the /form URL when you look at the attributes supported by the form element later in this chapter. I saved this script to a file called formecho.js. To start the script, I opened a command prompt on titan and typed the following:

bin\node.exe formecho.js

Titan runs Windows Server 2008 R2, so the exact command to start Node.js will be different if you are using another operating system. Figure 12-2 shows the browser displaying the output that is produced by entering Apples into the text box in the example form and pressing the Submit Vote button.

[image: Image]

Figure 12-2. Viewing the form data submitted by the browser using Node.js

There is only one item of data because there is only one input element in the example form. The value in the Name column is fave because that is the value I assigned to the name attribute in the input element. The value in the Value column is Apples because that is what I entered into the text box before pressing the Submit Vote button. I'll show the tabular output from the Node.js script as we create more complex forms.

Configuring the Form

We've created an HTML document that contains a basic form, and we've used Node.js to display the data that is sent to the server. Now it is time for me to show you the basic configuration options you can apply to the form and its contents.

Configuring the Form action Attribute

The action attribute specifies where the browser should send the data collected from the user when the form is submitted. I want the data to be submitted to my Node.js script, which means I want the form to post to the /form URL on port 8080 of my development server, titan. You can see that I already express this in the original form in Listing 12-1, like this:

...

<form method="post" action="http://titan:8080/form">

...

If you don't apply the action attribute to the form element, the browser will send the form data to the same URL that the HTML document was loaded from. This isn't as useless as it might initially appear, and several popular web application development frameworks depend on this feature.

If you specify a relative URL, this value is appended to the URL of the current page or—if you used the base element described in Chapter 7—to the value of the href attribute of that element. Listing 12-3 shows how you can use the base element to set the destination for the form data.

Listing 12-3. Using the base Element to Set a Destination for Form Data

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <base href="http://titan:8080"/>

 </head>

 <body>

 <form method="post" action="/form">

 <input name="fave"/>

 <button>Submit Vote</button>

 </form>

 </body>

</html>

[image: Image] Caution The base element affects all relative URLs in an HTML document, not just the form element.

Configuring the HTTP method Attribute

The method attribute specifies which HTTP method will be used to send the form data to the server. The allowed values are get and post, which correspond to the HTTP GET and POST methods. The default used when you don't apply the method attribute is get, which is unfortunate because most forms require HTTP POST. You can see that I specified the post value for the form in the example, as follows:

...

<form method="post" action="http://titan:8080/form">

...

GET requests are for safe interactions, which means you can make the same request as many times as you want and there will be no side effects. POST requests are for unsafe interactions, where the act of submitting the data changes some kind of state. This is most commonly the case when dealing with web applications. These conventions are set by the World Wide Web Consortium (W3C), which you can read about at www.w3.org/Provider/Style/URI.

The rule of thumb is that GET requests should be used for all read-only information retrieval, while POST requests should be used for any operation that changes the application state. It is important to use the right kind of requests. If you are unsure, err on the side of caution and use the POST method.

[image: Image] Tip The Node.js script I use in this chapter will respond only to POST requests.

Configuring the Data Encoding

The enctype attribute specifies how the browser encodes and presents the data to the server. There are three allowed values for this attribute, which are described in Table 12-5.

[image: Image]

To understand how the different encodings work, you need to add a second input element to your form, as shown in Listing 12-4.

Listing 12-4. Adding an input Element to the Form

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <form method="post" action="http://titan:8080/form">

 <input name="fave"/>

 <input name="name"/>

 <button>Submit Vote</button>

 </form>

 </body>

</html>

You need the second input element so that you can collect two items of data from the user. As you may have guessed, you are building up a form that will allow users to vote for their favorite fruits. The new input element will be used to gather their names. As you can see from this listing, I set the name value of this element to be name. To demonstrate the effect of the different form encodings, I added the enctype attribute to the form and set it to each of the supported encoding types. In each instance, I entered the same data into the text boxes. In the first text box I entered Apples, and in the second I entered Adam Freeman (with the space between my first and second names).

The application/x-www-form-urlencoded Encoding

This is the default encoding, and it is suitable for every kind of form except those that upload files to the server. The name and value of each data item is encoded using the same scheme that is used to encode URLs (hence, the urlencoded part of the name). This is how the encoding is applied to the data in the example form:

fave=Apples&name=Adam+Freeman

Special characters are replaced with their HTML entity counterpart. The name of the data item and the value are separated by the equals sign (=) and data/value tuples are separated by the ampersand character (&).

The multipart/form-data Encoding

The multipart/form-data encoding takes a different approach. It is more verbose and more complex to process, which is why it tends to be used only for forms that need to upload files to the server—something that can't be done using the default encoding. Here is how the data from the example form is encoded:

------WebKitFormBoundary2qgCsuH4ohZ5eObF

Content-Disposition: form-data; name="fave"

Apples

------WebKitFormBoundary2qgCsuH4ohZ5eObF

Content-Disposition: form-data; name="name"

Adam Freeman

------WebKitFormBoundary2qgCsuH4ohZ5eObF--

fave=Apple

name=Adam Freeman

The text/plain Encoding

This encoding should be used with caution. There is no formal specification as to how data should be encoded when using this scheme, and the mainstream browsers encode data in different ways. For example, Google Chrome encodes data in the same way as for the application/x-www-form-urlencoded scheme, whereas Firefox encodes the data as follows:

fave=Apple

name=Adam Freeman

Each data item is placed on a line, and special characters are not encoded. I recommend avoiding this encoding. The variations between browsers make it unpredictable.

Controlling Form Completion

Browsers aid the user by remembering the data they have entered into forms and offering to reuse that data automatically when a similar form is seen again. This technique reduces the need for the user to enter the same data over and over again. A good example is the name and shipping details a user enters when purchasing goods or services online. Every web site has its own shopping cart and registration process, but my browser uses the data I have entered in other forms to speed up the checkout process. Browsers use different techniques to figure out what data to reuse, but a common approach is to look for the name attribute of input elements.

In general, completing forms automatically is beneficial to the user and makes little difference to the web application. But there are times when you don't want the browser to fill out the form. Listing 12-5 shows how you can do this, using the autocomplete attribute on the form element.

Listing 12-5. Disabling the form Element autocomplete Attribute

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <form autocomplete="off" method="post" action="http://titan:8080/form">

 <input name="fave"/>

 <input name="name"/>

 <button>Submit Vote</button>

 </form>

 </body>

</html>

There are two allowed values for the autocomplete attribute: on and off. The on value permits the browser to fill out the form and is the default value that is assumed when you don't apply the attribute.

You can be more specific by applying the autocomplete attribute to individual input elements, as shown in Listing 12-6.

Listing 12-6. Applying the autocomplete Attribute to input Elements

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <form autocomplete="off" method="post" action="http://titan:8080/form">

 <input autocomplete="on" name="fave"/>

 <input name="name"/>

 <button>Submit Vote</button>

 </form>

 </body>

</html>

The autocomplete attribute on the form element sets the default policy for the input elements in the form. However, as the listing shows, you can override that policy for individual elements. In this example, the attribute on the form element disabled autocomplete, but the same attribute applied to the first input element switches it back on—but just for that element. The second input element, to which the autocomplete attribute has not been applied, is subject to the form-wide policy.

In general, you should leave autocomplete enabled—users are accustomed to populating forms automatically and are typically faced with several forms during any kind of web transaction. For you to take this feature away intrudes into the preferences and work habits of your users. I know from my own experience that it is jarring when I try to buy items from sites that disable autocompletion, especially when the form I am trying to fill in wants very basic information such as my name and address. Some sites disable autocomplete for credit card data, which makes more sense—but even then, this approach should be used with caution and the reasons for using this feature should be fully thought through.

Specifying a Target for the Form Response

The default behavior of a browser is to replace the page that contains the form with the response that the server returns after the form has been submitted. You can change this behavior by using the target attribute on the form element. This attribute works in the same way as the target attribute on the a element, and you can select from the range of targets shown in Table 12-6.

[image: Image]

[image: Image]

Each of these values represents a browsing context. The _blank and _self values are self-evident. The others relate to the use of frames, which I explain in Chapter 15. Listing 12-7 shows the target attribute applied to a form element.

Listing 12-7. Using the target Attribute

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <form target="_blank" method="post" action="http://titan:8080/form">

 <input autocomplete="on" name="fave"/>

 <input name="name"/>

 <button>Submit Vote</button>

 </form>

 </body>

</html>

In this example, I specified the _blank target, which tells the browser to display the response from the server in a new window or tab. You can see the effect of this change in Figure 12-3.

[image: Image]

Figure 12-3. Displaying the response from the server in a new tab

Setting the Name of the Form

The name attribute lets you set a unique identifier for a form so that you can distinguish between forms when working with the Document Object Model (DOM). I introduce the DOM in Chapter 25. The name attribute is distinct from the id global attribute, and in most cases, HTML documents use the id attribute for CSS selectors. Listing 12-8 shows a form element to which the name and id attributes have been applied. I used the same value for both attributes for the sake of simplicity.

Listing 12-8. Using the name and id Attributes on a form Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <form name="fruitvote" id="fruitvote"

 method="post" action="http://titan:8080/form">

 <input name="fave"/>

 <input name="name"/>

 <button>Submit Vote</button>

 </form>

 </body>

</html>

The value of the name attribute is not sent to the server when the form is posted, which is why this attribute has value only in the DOM and is not as important as the name attribute on the input element. If an input element doesn't have a name attribute, the data that the user has entered will not be sent to the server when the form is submitted.

Adding Labels to a Form

You have a form that collects data from the user, but it isn't very easy to use. You can see how the input element added in the previous section is displayed by the browser in Figure 12-4.

[image: Image]

Figure 12-4. The example form

The obvious problem is a complete lack of guidance for the user, who would have to read the source HTML to figure out what each of the text boxes is for. You can address this problem by using the label element, which lets you provide some context for each element in a form. Table 12-7 summarizes the label element.

[image: Image]

[image: Image]

Listing 12-9 shows how you can give the user some context.

Listing 12-9. Using the label Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <form method="post" action="http://titan:8080/form">

 <p><label for="fave">Fruit: <input id="fave" name="fave"/></label></p>

 <p><label for="name">Name: <input id="name" name="name"/></label></p>

 <button>Submit Vote</button>

 </form>

 </body>

</html>

I added a label for each of the input elements. Notice that I added an id attribute to the input elements and used these ids as the value for the for attributes on the label elements. This is how you associate labels with inputs, which makes processing forms simpler for screen readers and other assistive technologies. You can see how the labels appear in Figure 12-5.

[image: Image]

Figure 12-5. Adding labels to a form

In the listing, I placed the input elements as contents of the label elements. This isn't a requirement, and the two elements can be defined independently of one another. It is common to define the labels independently of the inputs when laying out complex forms.

[image: Image] Note I added some p elements to the form to provide a very basic layout. This is something I'll do for most of the examples in this chapter because it will make it easier to see the presentation impact of additions to the HTML document. To create prettier layouts for form elements, you can use the CSS table feature, which I describe in Chapter 21. The p element is described in Chapter 9.

Automatically Focusing on an input Element

You can select which input element the browser focuses on when the form is displayed. This means the user can start typing directly into the selected field without having to explicitly select it first. You specify which input element the focus should be applied to with the autofocus attribute, as shown in Listing 12-10.

Listing 12-10. Using the autofocus Attribute

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <form method="post" action="http://titan:8080/form">

 <p>

 <label for="fave">Fruit: <input autofocus id="fave" name="fave"/></label>

 </p>

 <p><label for="name">Name: <input id="name" name="name"/></label></p>

 <button>Submit Vote</button>

 </form>

 </body>

</html>

As soon as the browser displays the page, it will focus on the first input element. You can see the visual cue Google Chrome gives to the user to indicate a focused element in Figure 12-6.

[image: Image]

Figure 12-6. Autofocusing on an input element

You can apply the autofocus attribute only to one input element. If you try to apply the element more than once, the browser will focus on the last element in the document that has the element.

Disabling Individual input Elements

You can disable input elements so that the user cannot enter data into them. This isn't as odd as it might sound. You might want to present a consistent interface that is used for several related tasks, but for which not all of the input elements are germane. You can also use JavaScript to enable the elements based on a user's actions. A common example is enabling a set of input elements to capture an address when the user selects an option to ship to an address that is not the user's billing address. (You would enable the elements through the DOM, which is described in Chapters 25-31. Presenting users with check boxes is described in Chapter 13.)

You disable input elements by applying the disabled attribute, as shown in Listing 12-11.

Listing 12-11. Using the disabled Attribute on input Elements

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <form method="post" action="http://titan:8080/form">

 <p>

 <label for="fave">Fruit: <input autofocus id="fave" name="fave"/></label>

 </p>

 <p>

 <label for="name">Name: <input disabled id="name" name="name"/></label>

 </p>

 <button>Submit Vote</button>

 </form>

 </body>

</html>

In this example, I applied the disabled attribute to the input element that gathers the user's name. You can see how Google Chrome displays a disabled input element in Figure 12-7. The other browsers use a similar style.

[image: Image]

Figure 12-7. Disabling an input element

Grouping Form Elements Together

As you build more complex forms, it can be convenient to group some of the elements together, which you can do using the fieldset element. Table 12-8 summarizes this element.

[image: Image]

[image: Image]

You can see how the fieldset element is applied in Listing 12-12. I added additional input elements to this example to demonstrate that a fieldset can be applied to a subset of the elements in a form.

Listing 12-12. Using the fieldset Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <form method="post" action="http://titan:8080/form">

 <fieldset>

 <p><label for="name">Name: <input id="name" name="name"/></label></p>

 <p><label for="name">City: <input id="city" name="city"/></label></p>

 </fieldset>

 <fieldset>

 <p><label for="fave1">#1: <input id="fave1" name="fave1"/></label></p>

 <p><label for="fave2">#2: <input id="fave2" name="fave2"/></label></p>

 <p><label for="fave3">#3: <input id="fave3" name="fave3"/></label></p>

 </fieldset>

 <button>Submit Vote</button>

 </form>

 </body>

</html>

I used a fieldset element to group together two input elements that gather details about the user, and another fieldset to group three input elements that allow the user to vote for her three favorite fruits. You can see how the browser shows the default style convention for the fieldset element in Figure 12-8.

[image: Image]

Figure 12-8. Using the fieldset element to group input elements together

Adding a Descriptive Label to a fieldset Element

You grouped your input elements together, but you still lack context for the user. You can remedy this by adding a legend element to each of your fieldset elements. Table 12-9 summarizes this element.

[image: Image]

[image: Image]

The legend element must be the first child of a fieldset element, as shown in Listing 12-13.

Listing 12-13. Using the legend Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <form method="post" action="http://titan:8080/form">

 <fieldset>

 <legend>Enter Your Details</legend>

 <p><label for="name">Name: <input id="name" name="name"/></label></p>

 <p><label for="name">City: <input id="city" name="city"/></label></p>

 </fieldset>

 <fieldset>

 <legend>Vote For Your Three Favorite Fruits</legend>

 <p><label for="fave1">#1: <input id="fave1" name="fave1"/></label></p>

 <p><label for="fave2">#2: <input id="fave2" name="fave2"/></label></p>

 <p><label for="fave3">#3: <input id="fave3" name="fave3"/></label></p>

 </fieldset>

 <button>Submit Vote</button>

 </form>

 </body>

</html>

You can see how the browser displays the legend elements in Figure 12-9.

[image: Image]

Figure 12-9. Using the legend element

Disabling Groups of Inputs Using the fieldset Element

I showed you how to disable individual input elements earlier in the chapter. You can also disable multiple input elements in a single step by applying the disabled attribute to the fieldset element. When you do this, all of the input elements contained by fieldset will be disabled, as shown in Listing 12-14.

Listing 12-14. Disabling the input Elements Using the fieldset Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <form method="post" action="http://titan:8080/form">

 <fieldset>

 <legend>Enter Your Details</legend>

 <p><label for="name">Name: <input id="name" name="name"/></label></p>

 <p><label for="name">City: <input id="city" name="city"/></label></p>

 </fieldset>

 <fieldset disabled>

 <legend>Vote For Your Three Favorite Fruits</legend>

 <p><label for="fave1">#1: <input id="fave1" name="fave1"/></label></p>

 <p><label for="fave2">#2: <input id="fave2" name="fave2"/></label></p>

 <p><label for="fave3">#3: <input id="fave3" name="fave3"/></label></p>

 </fieldset>

 <button>Submit Vote</button>

 </form>

 </body>

</html>

You can see the effect of disabling the input elements in Figure 12-10.

[image: Image]

Figure 12-10. Disabling input elements through the fieldset element

Using the button Element

The button element is more flexible than it might first appear. There are three ways you can use button. The key to these different modes of operation is the type attribute, which has three values. These are described in Table 12-10.

[image: Image]

I describe each of these values and the functionality they offer in the following sections.

Using the button Element to Submit Forms

When you set the type attribute to submit, pressing the button will submit the form that contains the button. This is the default behavior when you have not applied the type attribute. When you use the button in this way, you have access to some additional attributes, which are described in Table 12-11.

[image: Image]

For the most part, these attributes allow you to override or supplement the configuration of the form element and specify the action, method, encoding scheme, and target and to control client-side validation. These elements are new in HTML5. Listing 12-15 shows how you can apply these attributes to the button element.

Listing 12-15. Using the button Element Attributes

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <form>

 <p>

 <label for="fave">Fruit: <input autofocus id="fave" name="fave"/></label>

 </p>

 <p>

 <label for="name">Name: <input id="name" name="name"/></label>

 </p>

 <button type="submit" formaction="http://titan:8080/form"

 formmethod="post">Submit Vote</button>

 </form>

 </body>

</html>

In this example, I omitted the action and method attributes from the form element and provided the configuration through the formaction and formmethod attributes on the button element.

Using the button Element to Reset Forms

If you set the type attribute to reset, pressing the button causes all of the input elements in the form to be reset to their initial state. There are no additional attributes available when you use the button element in this way. Listing 12-16 shows the addition of a reset button to the HTML document.

Listing 12-16. Using the button Element to Reset a Form

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <form method="post" action="http://titan:8080/form">

 <p>

 <label for="fave">Fruit: <input autofocus id="fave" name="fave"/></label>

 </p>

 <p>

 <label for="name">Name: <input id="name" name="name"/></label>

 </p>

 <button type="submit">Submit Vote</button>

 <button type="reset">Reset</button>

 </form>

 </body>

</html>

You can see the effect of resetting a form in Figure 12-11.

[image: Image]

Figure 12-11. Resetting a form

Using button as a Generic Element

If you set the type attribute to button, you create a button element that is, well...just a button. It has no special meaning and won't do anything when you press it. Listing 12-17 shows the addition of such a button to the example HTML document.

Listing 12-17. Using a Generic Button

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <form method="post" action="http://titan:8080/form">

 <p>

 <label for="fave">Fruit: <input autofocus id="fave" name="fave"/></label>

 </p>

 <p>

 <label for="name">Name: <input id="name" name="name"/></label>

 </p>

 <button type="submit">Submit Vote</button>

 <button type="reset">Reset</button>

 <button type="button">Do NOT press this button</button>

 </form>

 </body>

</html>

This may not seem like a useful way to use the element, but as I explain in Chapter 30, you can use JavaScript to perform actions when a button is pressed. This allows you to create customized behaviors in your web pages.

Notice that I styled the text contained in the button element. You can use any phrasing elements to mark up the text. You can see the effect of this markup in Figure 12-12.

[image: Image]

Figure 12-12. Adding a generic button element

Working with Elements Outside the Form

In HTML4, the input, button, and other form-related elements had to be contained within the form element, just as I demonstrated in all of the examples so far in this chapter. In HTML5, that restriction has been removed, and you can associate elements with forms anywhere in the document. You do this using the form attribute, which is defined by input, button, and the other form-related elements I describe in Chapter 14. To associate an element with a form that is not an antecedent, you simply set the form attribute to the id value of the form. Listing 12-18 gives an example.

Listing 12-18. Using the form Attribute

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <form id="voteform" method="post" action="http://titan:8080/form">

 <p>

 <label for="fave">Fruit: <input autofocus id="fave" name="fave"/></label>

 </p>

 </form>

 <p>

 <label for="name">Name: <input form="voteform" id="name" name="name"/>

 </label>

 </p>

 <button form="voteform" type="submit">Submit Vote</button>

 <button form="voteform" type="reset">Reset</button>

 </body>

</html>

In this example, only one of the input elements is a descendent of the form element. The other input element and both of the button elements are outside of the form element, but they use the form attribute to associate themselves with the form.

Summary

In this chapter, I showed you the basics of the HTML5 support for forms. You saw how to use the form element to denote a form and configure the way that the form functions. I showed you the basic input element, which lets you gather simple text data from the user, and the button element, which lets the user submit or reset a form (and which you can use as a generic button).

There are some useful new form features in HTML5. The headline items are covered in the next chapter, but even the basic form operations have been improved. The ability to associate an element with a form that is not an antecedent, the support for automatically focusing on an element, and the enhancements to the button element are all welcome additions.

C H A P T E R 13

Customizing the Input Element

In the previous chapter, I showed you the basic use of the input element, which produced a simple text box in which the user can enter data. The problem with this approach is that the user can enter any data. This can be fine in some situations, but in other cases you might want a specific kind of data value from the user. In such cases, you can configure the input element to collect data from users in different ways. You configure the input element through the type attribute, for which there are 23 different values in HTML5. After you have selected the type value you want, you have access to additional attributes. There are 30 attributes available for the input element in total, and many of these can be used with only certain type values. I'll explain all of the different types and the associated attributes in this chapter. Table 13-1 provides the summary for this chapter.

[image: Image]

[image: Image]

Using the input Element for Text Input

If you set the type attribute to text, the browser will display a single-line text box. This is the same style for the input element that you saw in the last chapter, and the style that is used when you omit the type attribute entirely. Table 13-2 summarizes the attributes that are available for this input element type (these attributes are in addition to those described in the previous chapter).

[image: Image]

[image: Image]

In the following sections, I describe the attributes that are available for this text type of input.

[image: Image] Tip For multiline text boxes, use the textarea element, which I describe in Chapter 14.

Specifying the Element Size

There are two attributes that have an effect on the size of the text box. The maxlength attribute specifies an upper limit for the number of characters that the user can enter, and the size attribute specifies how many characters the text box can display. For both attributes, the number of characters is expressed as a positive integer value. Listing 13-1 shows both of these attributes in use.

Listing 13-1. Using the maxlength and size Attributes

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <form method="post" action="http://titan:8080/form">

 <p>

 <label for="name">

 Name: <input maxlength="10" id="name" name="name"/>

 </label>

 </p>

 <p>

 <label for="city">

 City: <input size="10" id="city" name="city"/>

 </label>

 </p>

 <p>

 <label for="fave">

 Fruit: <input size="10" maxlength="10" id="fave" name="fave"/>

 </label>

 </p>

 <button type="submit">Submit Vote</button>

 </form>

 </body>

</html>

For the first input element, I have applied the maxlength attribute with a value of 10. This means that the browser is free to determine the amount of space that the text box occupies on the screen, but the user can only enter up to ten characters. If the user tries to enter more than ten characters, the browser will discard the input.

For the second input element, I have applied the size attribute, also with a value of 10. This means that the browser must ensure that it sizes the text box so that it can display ten characters. The size attribute doesn't apply any restriction on the number of characters that the user can enter.

I have applied both attributes to the third input element. This has the effect of fixing the size onscreen and limiting the number of characters that the user can enter. You can see how these attributes affect the display and data entry in Figure 13-1.

[image: Image]

Figure 13-1. Using the maxlength and size attributes

In Figure13-1, you can see the layout in the browser and the data that is passed to the server when the form is submitted. I have used Firefox for this example because my preferred browser, Chrome, doesn't properly implement the size attribute. When looking at the data that has been submitted to the server, notice that the city data item contains more characters than are displayed on the screen. As I mentioned, this is because the size attribute doesn't limit the number of characters that the user can enter, just the number that the browser can display.

Setting Values and Using Placeholders

The text box has been empty in all of the form examples so far, but this need not be the case. You can use the value attribute to specify a default value and the placeholder attribute to give the user a helpful hint about the kind of data that they should enter. Listing 13-2 shows these attributes in use.

Listing 13-2. Using the value and placeholder Attributes

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <form method="post" action="http://titan:8080/form">

 <p>

 <label for="name">

 Name: <input placeholder="Your name" id="name" name="name"/>

 </label>

 </p>

 <p>

 <label for="city">

 City: <input placeholder="Where you live" id="city" name="city"/>

 </label>

 </p>

 <p>

 <label for="fave">

 Fruit: <input value="Apple" id="fave" name="fave"/>

 </label>

 </p>

 <button type="submit">Submit Vote</button>

 </form>

 </body>

</html>

Use the placeholder attribute when you need the user to enter data, and you want to provide some context to help the user decide what data to provide. Use the value attribute to provide a default value, either because the user has previously provided this information, or because it is a common choice that is likely to be correct. You can see how the browser represents the values specified by these attributes in Figure 13-2.

[image: Image]

Figure 13-2. Providing placeholders and default values

[image: Image] Tip When you use the button element to reset the form (as described in Chapter 12), the browser restores the placeholders and the default values.

Using a Data List

The list attribute allows you to specify the id value of a datalist element, which will be used to suggest options to the user when they enter data into the text box. Table 13-3 describes the datalist element.

[image: Image]

[image: Image]

The datalist element is new in HTML5 and allows you to define a set of values that assist the user in providing the data you require. Different types of input elements use the datalist element in slightly different ways. For the text type, the values are presented as autocomplete suggestions. You specify the values you want to give to the user through the option element, which is described in Table 13-4.

[image: Image]

Listing 13-3 shows the datalist and option elements used to create a set of values for a text box.

[image: Image] Tip You'll see the option element again when you look at the select and optgroup elements in Chapter 14.

Listing 13-3. Using the datalist Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <form method="post" action="http://titan:8080/form">

 <p>

 <label for="name">

 Name: <input placeholder="Your name" id="name" name="name"/>

 </label>

 </p>

 <p>

 <label for="city">

 City: <input placeholder="Where you live" id="city" name="city"/>

 </label>

 </p>

 <p>

 <label for="fave">

 Fruit: <input list="fruitlist" id="fave" name="fave"/>

 </label>

 </p>

 <button type="submit">Submit Vote</button>

 </form>

 <datalist id="fruitlist">

 <option value="Apples" label="Lovely Apples"/>

 <option value="Oranges">Refreshing Oranges</option>

 <option value="Cherries"/>

 </datalist>

 </body>

</html>

Each option element contained inside of the datalist represents a value that you want to propose to the user. The value attribute specifies the data value that will be used in the input element if that option is selected. You can use a different label to describe the option by using the label attribute or by defining content within the option element. You can see that I have done this for the Apples and Oranges option elements in Listing 13-3. Figure 13-3 shows how the browser uses the option elements defined in the datalist.

[image: Image]

Figure 13-3. Using a datalist with a text input element

Take care when using a different label when working with the text input type; the user might not understand why clicking an item called Lovely Apples leads to just Apples being entered in the text box. Some browsers, such as Opera, take a slightly different approach when the label and value are different, as shown in Figure 13-4.

[image: Image]

Figure 13-4. Opera displaying different value and labels

This is an improvement (although notice that the label attribute is detected, but the content of the option element is ignored), but can still be confusing.

Creating Read-Only and Disabled Text Boxes

The readonly and disabled attributes allow you to create text boxes that the user cannot edit. Each creates a different visual effect. Listing 13-4 shows both attributes.

Listing 13-4. Using the readonly and disabled Attributes

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <form method="post" action="http://titan:8080/form">

 <p>

 <label for="name">

 Name: <input value="Adam" disabled id="name" name="name"/>

 </label>

 </p>

 <p>

 <label for="city">

 City: <input value="Boston" readonly id="city" name="city"/>

 </label>

 </p>

 <p>

 <label for="fave">

 Fruit: <input id="fave" name="fave"/>

 </label>

 </p>

 <button type="submit">Submit Vote</button>

 </form>

 </body>

</html>

You can see how the browser deals with these attributes in Figure 13-5.

[image: Image]

Figure 13-5. Using the disabled and readonly attributes

The first input element in Listing 13-4 has the disabled attribute, which has the effect of graying out the text box and preventing the user from editing the text. The second input element has the readonly attribute, which prevents the user from editing the text, but doesn't affect the appearance of the text box. When you submit the forms, the values that were defined with the value attribute are submitted to the server, as shown in Figure 13-6.

[image: Image]

Figure 13-6. Form data from input elements with the disabled and readonly attributes

Notice that the data from the input element, with the disabled attribute, is not submitted to the server. If you want to use this attribute and you need to ensure that the server receives a value for the input element, then consider adding a hidden type input element (see the section “Using the input Element to Create Hidden Data Items,” later in this chapter).

My advice is to use the readonly attribute with caution. Although the data is submitted to the user, there is no visual cue to the user that the field isn't editable; the browser simply ignores the keystrokes, which can cause confusion.

Specifying Text Directionality

The dirname attribute allows you to specify the name of the data value submitted to the server, and contains the text direction for the data that the user has entered. At the time of writing, none of the mainstream browsers support this attribute.

Using the input Element for Password Input

The password value for the type attribute creates an input element for entering a password. The characters that the user types are represented by a masking character, such as an asterisk (*). Table 13-5 lists the additional attributes that are available when the type attribute is set to password. Many of these are shared with the text type and work in the same way.

[image: Image]

Listing 13-5 shows the password type in use.

Listing 13-5. Using the password Type

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <form method="post" action="http://titan:8080/form">

 <p>

 <label for="name">

 Name: <input value="Adam" id="name" name="name"/>

 </label>

 </p>

 <p>

 <label for="password">

 Password: <input type="password" placeholder="Min 6 characters"

 id="password" name="password"/>

 </label>

 </p>

 <p>

 <label for="fave">

 Fruit: <input value="Apples" id="fave" name="fave"/>

 </label>

 </p>

 <button type="submit">Submit Vote</button>

 </form>

 </body>

</html>

In Listing 13-5, I have used the placeholder attribute to give the user some guidance about the kind of password that I am expecting. When the user starts to type, the browser removes the placeholder and replaces each typed character with a circular bullet (different browsers use different masking characters). You can see this effect in Figure 13-7.

[image: Image]

Figure 13-7. Using the password type of the input element

At the risk of stating the obvious, the masking applies only to the display of the text that the user enters. When you submit the form, the server receives the password in clear text, as you can see in Figure13-8, which shows the response from the Node.js script.

[image: Image]

Figure 13-8. Submitting a form that contains a password field

[image: Image] Caution The password type of the input element doesn't protect the password when it is submitted to the server. The value that the user entered is transmitted as clear text. If security is important to your site and application (and it should be), you should consider using SSL/HTTPS to encrypt communications between the browser and your server.

Using the input Element to Create Buttons

The submit, reset, and button types of input element create buttons that are very similar to those created when using the button element, described in Chapter 12. Table 13-6 summarizes these input types.

[image: Image]

The additional attributes that are available when you use the submit type are the same as when you use the button element. You can find descriptions and demonstrations of these attributes in Chapter 12. The reset and button types don't define any additional attributes.

For all three of these input types, the label that is displayed on the button is taken from the value attribute, as shown in Listing 13-6.

Listing 13-6. Using the input Element to Create Buttons

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <form method="post" action="http://titan:8080/form">

 <p>

 <label for="name">

 Name: <input value="Adam" id="name" name="name"/>

 </label>

 </p>

 <p>

 <label for="password">

 Password: <input type="password" placeholder="Min 6 characters"

 id="password" name="password"/>

 </label>

 </p>

 <p>

 <label for="fave">

 Fruit: <input value="Apples" id="fave" name="fave"/>

 </label>

 </p>

 <input type="submit" value="Submit Vote"/>

 <input type="reset" value="Reset Form"/>

 <input type="button" value="My Button"/>

 </form>

 </body>

</html>

You can see how the browser displays these buttons in Figure 13-9. As you can see, they have the same appearance as when you use the button element.

[image: Image]

Figure 13-9. Using input elements to create buttons

The difference between using the input element to create buttons and using the button element is that you can use the button element to display marked up text (you can see an example of this in Chapter 12). Some older browsers, notably IE6, do odd things to button elements, which is why most web sites tend toward using input elements—they have traditionally been handled more consistently.

Using the input Element to Restrict Data Entry

HTML5 introduces some new values for the input element's type attribute that let you be more specific about the kind of data that you want from the user. In the following sections, I'll introduce each new type value and demonstrate its use. Table 13-7 summarizes these new type values.

[image: Image]

Some of these input types present users with strong visual cues as to the kind of restrictions on the data that they may enter or choose (e.g., the checkbox and radiobutton types). Others, such as the email and url types, rely on input validation, which I describe in Chapter 14.

Using the input Element to Obtain a Number

The number value for the type attribute creates an input box that will only accept numeric values. Some browsers, notably Chrome, will also display selector arrows that will increment and decrement the numeric value. Table 13-8 describes the additional attributes that are available when using this input type.

[image: Image]

The values for the min, max, step, and value attributes can be expressed as integer or decimal numbers; for example, 3 and 3.14 are both valid. Listing 13-7 shows the number type of input in use.

Listing 13-7. Using the number Type of the input Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <form method="post" action="http://titan:8080/form">

 <p>

 <label for="name">

 Name: <input value="Adam" id="name" name="name"/>

 </label>

 </p>

 <p>

 <label for="password">

 Password: <input type="password" placeholder="Min 6 characters"

 id="password" name="password"/>

 </label>

 </p>

 <p>

 <label for="fave">

 Fruit: <input value="Apples" id="fave" name="fave"/>

 </label>

 </p>

 <p>

 <label for="price">

 $ per unit in your area:

 <input type="number" step="1" min="0" max="100"

 value="1" id="price" name="price"/>

 </label>

 </p>

 <input type="submit" value="Submit Vote"/>

 </form>

 </body>

</html>

In Listing 13-7, I solicit the price that the user pays for their favorite fruit in their area. I have specified a minimum value of 1, a maximum value of 100, a step of 1, and a starting value of 1. You can see how the browser displays this type of input element in Figure 13-10. I have shown both Firefox and Chrome in this figure; notice that Chrome displays the small arrow buttons that can be used to increment the numeric value, but Firefox does not.

[image: Image]

Figure 13-10. Chrome and Firefox displaying the number type of the input element

Using the input Element to Obtain a Number in a Given Range

An alternative approach to obtaining a numeric value is to use the range type of input element, which restricts the user to selecting a value from a predetermined range. The range type supports the same set of attributes as the number type (shown in Table 13-8), but the way that the browser displays the element is different. Listing 13-8 shows the range type in use.

Listing 13-8. Using the range Type of the input Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <form method="post" action="http://titan:8080/form">

 <p>

 <label for="name">

 Name: <input value="Adam" id="name" name="name"/>

 </label>

 </p>

 <p>

 <label for="password">

 Password: <input type="password" placeholder="Min 6 characters"

 id="password" name="password"/>

 </label>

 </p>

 <p>

 <label for="fave">

 Fruit: <input value="Apples" id="fave" name="fave"/>

 </label>

 </p>

 <p>

 <label for="price">

 $ per unit in your area: 1

 <input type="range" step="1" min="0" max="100"

 value="1" id="price" name="price"/>100

 </label>

 </p>

 <input type="submit" value="Submit Vote"/>

 </form>

 </body>

</html>

You can see how the browser displays the range type in Figure 13-11.

[image: Image]

Figure 13-11. Using the range type of input element

Using the input Element to Obtain a Boolean Response

The checkbox type of the input element creates a check box that allows the user to make a true/false choice. This value for the type attribute supports the additional attributes shown in Table 13-9.

[image: Image]

Listing 13-9 shows the checkbox type of input element in use.

Listing 13-9. Using an input Element to Create a Check Box

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <form method="post" action="http://titan:8080/form">

 <p>

 <label for="name">

 Name: <input value="Adam" id="name" name="name"/>

 </label>

 </p>

 <p>

 <label for="password">

 Password: <input type="password" placeholder="Min 6 characters"

 id="password" name="password"/>

 </label>

 </p>

 <p>

 <label for="fave">

 Fruit: <input value="Apples" id="fave" name="fave"/>

 </label>

 </p>

 <p>

 <label for="veggie">

 Are you vegetarian: <input type="checkbox" id="veggie" name="veggie"/>

 </label>

 </p>

 <input type="submit" value="Submit Vote"/>

 </form>

 </body>

</html>

You can see how the browser displays this kind of input element in Figure 13-12.

[image: Image]

Figure 13-12. Creating a check box with an input element

The wrinkle that arises with the checkbox type is that when the form is submitted, a data value is sent to the server only if the user has checked the check box. So, if I submit the form as it is shown in Figure13-12, I get the response from the Node.js script shown in Figure 13-13.

[image: Image]

Figure 13-13. The data items submitted by the form shown in the previous figure

Notice that there is a value for the password element, but not for the checkbox. The absence of a data item for a checkbox type input element indicates that the user has not checked the box; the presence of a data value indicates the user has checked the box, as shown in Figure 13-14.

[image: Image]

Figure 13-14. Submitting a form where a check box is checked

Using the input Element to Create Fixed Choices

The radio type of the input element allows you to create a group of radio buttons that let the user pick from a fixed set of options. This is useful when there are a small number of valid data values that you can work with. Table 13-10 describes the additional attributes that are support by this type of input element.

[image: Image]

Each input element with the type radio represents a single option to the user. You create a set of exclusive options by ensuring that the input elements all have the same value for the name attribute. You can see how this works in Listing 13-10.

Listing 13-10. Using the radio Type to Create Fixed Choices

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <form method="post" action="http://titan:8080/form">

 <p>

 <label for="name">

 Name: <input value="Adam" id="name" name="name"/>

 </label>

 </p>

 <p>

 <label for="password">

 Password: <input type="password" placeholder="Min 6 characters"

 id="password" name="password"/>

 </label>

 </p>

 <p>

 <fieldset>

 <legend>Vote for your favorite fruit</legend>

 <label for="apples">

 <input type="radio" checked value="Apples" id="apples"

 name="fave"/>

 Apples

 </label>

 <label for="oranges">

 <input type="radio" value="Oranges" id="oranges" name="fave"/>

 Oranges

 </label>

 <label for="cherries">

 <input type="radio" value="Cherries" id="cherries" name="fave"/>

 Cherries

 </label>

 </fieldset>

 </p>

 <input type="submit" value="Submit Vote"/>

 </form>

 </body>

</html>

In this example, I have created three input elements that are of the radio type. The value of the name attribute for all three is fave, which means that the browser will treat them as related to one another. This means that selecting one of the buttons will cause the other two to be unselected. I use the value attribute to specify the data value to send to the server when the form is submitted, and I have used fieldset and legend attributes to give the user a visual cue that the three buttons are related (this is optional; both the fieldset and legend elements are described in Chapter 12). I have applied the checked attribute on the first of the radio elements so that there is always a value selected. You can see how the browser displays these input elements in Figure 13-15.

[image: Image]

Figure 13-15. Using the input element to create a set of radio buttons

At most, one of the radio buttons will be checked. There can be no checked buttons if the checked attribute is not applied and the user doesn't make a selection. Like the checkbox type of input element, no value will be submitted to the server if the element isn't checked, which means that no data item will be present if the user doesn't make a selection.

Using the input Element to Obtain Formatted Strings

The email, tel, and url type values configure the input element to accept only input that is a valid e-mail address, telephone number, or URL, respectively. All three of these types support the additional attributes shown in Table 13-11.

[image: Image]

The email type also supports the multiple attribute which, when applied, allows the input element to accept multiple e-mail addresses. You can see all three types of input elements used in Listing 13-11.

Listing 13-11. Using the email, tel, and url input Types

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <form method="post" action="http://titan:8080/form">

 <p>

 <label for="name">

 Name: <input value="Adam" id="name" name="name"/>

 </label>

 </p>

 <p>

 <label for="password">

 Password: <input type="password" placeholder="Min 6 characters"

 id="password" name="password"/>

 </label>

 </p>

 <p>

 <label for="email">

 Email: <input type="email" placeholder="user@domain.com"

 id="email" name="email"/>

 </label>

 </p>

 <p>

 <label for="tel">

 Tel: <input type="tel" placeholder="(XXX)-XXX-XXXX"

 id="tel" name="tel"/>

 </label>

 </p>

 <p>

 <label for="url">

 Your homepage: <input type="url" id="url" name="url"/>

 </label>

 </p>

 <input type="submit" value="Submit Vote"/>

 </form>

 </body>

</html>

These input types appear as regular text boxes to the user, and only validate the data that the user has entered when the form is submitted. This is part of the new HTML5 support for input validation, which I describe in Chapter 14. The quality of the validation is variable. All of the mainstream browsers cope well with the email type and properly detect valid e-mail addresses. The url type is a bit hit and miss. Some browsers simply prepend http:// to whatever the user enters, some require the user to enter a value that begins with http:// but don't validate the rest of the value, and some just let the user submit any value without validation. The tel input type is the least well supported. None of the mainstream browsers apply any kind of useful validation, as I write this.

Using the input Element to Obtain Times and Dates

HTML5 has also introduced some input element types to gather dates and times from the user. Table 13-12 describes these input types.

[image: Image]

Dates and times are notoriously difficult to deal with and, sadly, the specification of these new input element type falls far short of the ideal. The date formats are taken from RFC 3339 (available at http://tools.ietf.org/html/rfc3339), which describes timestamps that are rigidly described and formatted. This is a very different expression of dates from the many regional variations that are actually in use and which users will expect. As an example, few users will realize that the T in the datetime format denotes the start of the time segment, and that the Z represents the invariant Zulu Time Zone. All of the input element types described in Table 13-12 support the additional attributes described in Table 13-13.

[image: Image]

[image: Image]

Listing 13-12 shows the date type in use.

Listing 13-12. Using the date Type of the input Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <form method="post" action="http://titan:8080/form">

 <p>

 <label for="name">

 Name: <input value="Adam" id="name" name="name"/>

 </label>

 </p>

 <p>

 <label for="password">

 Password: <input type="password" placeholder="Min 6 characters"

 id="password" name="password"/>

 </label>

 </p>

 <p>

 <label for="fave">

 Fruit: <input value="Apples" id="fave" name="fave"/>

 </label>

 </p>

 <p>

 <label for="lastbuy">

 When did you last buy: <input type="date"

 id="lastbuy" name="lastbuy"/>

 </label>

 </p>

 <input type="submit" value="Submit Vote"/>

 </form>

 </body>

</html>

The browser support for these new input types is still very limited. As I write this, Opera has the best support and provides a date-picker widget, as shown in Figure 13-16.

[image: Image]

Figure 13-16. Selecting a date with Opera

The next best implementation is in Chrome, which presents the same kind of text box as for the number type of input element, with small up and down buttons to increment and decrement the time. The other mainstream browsers simply preset a single-line text box and leave the user to figure everything out. I am sure that this situation will improve, but until then I recommend looking at the calendar pickers that are available with popular JavaScript libraries such as jQuery.

Using the input Element to Obtain a Color

The color type of input element restricts the user to selecting a color. This input type supports the additional attribute list, which I describe in the section “Using a Data List,” earlier in this chapter.

Color values are expressed as exactly seven characters: a leading #, followed by three two-digit hexadecimal values representing the red, green, and blue values (for example, #FF1234). CSS color names, such as red or black, are not supported. You can see this type of input element in use in Listing 13-13.

Listing 13-13. Using the color Type of the input Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <form method="post" action="http://titan:8080/form">

 <p>

 <label for="name">

 Name: <input value="Adam" id="name" name="name"/>

 </label>

 </p>

 <p>

 <label for="password">

 Password: <input type="password" placeholder="Min 6 characters"

 id="password" name="password"/>

 </label>

 </p>

 <p>

 <label for="fave">

 Favorite Fruit: <input type="text" id="fave" name="fave"/>

 </label>

 </p>

 <p>

 <label for="color">

 Color: <input type="color" id="color" name="color"/>

 </label>

 </p>

 <input type="submit" value="Submit Vote"/>

 </form>

 </body>

</html>

Most of the browsers don't implement any special support for this type of the input element. Google Chrome lets the user type in a value and reports formatting problems when performing input validation (which I describe in Chapter 14). The best support is available in Opera, which displays a simple color picker that can be expanded to a full-range color selector dialog, as shown in Figure 13-17.

[image: Image]

Figure 13-17. The color picker support in Opera

Using the input Element to Obtain Search Terms

The search type of input element presents the user with a single-line text box for entering search terms. This is an unusual input type because it doesn't really do anything. There are no built-in restrictions on the data that the user can enter, and there are no special features, such as searching the local page or using the user's default search engine to perform a search. This type of input element supports the same additional attributes as the text type, and you can see it in use in Listing 13-14.

Listing 13-14. Using the search Type of the input Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <form method="post" action="http://titan:8080/form">

 <p>

 <label for="name">

 Name: <input value="Adam" id="name" name="name"/>

 </label>

 </p>

 <p>

 <label for="password">

 Password: <input type="password" placeholder="Min 6 characters"

 id="password" name="password"/>

 </label>

 </p>

 <p>

 <label for="fave">

 Favorite Fruit: <input type="text" id="fave" name="fave"/>

 </label>

 </p>

 <p>

 <label for="search">

 Search: <input type="search" id="search" name="search"/>

 </label>

 </p>

 <input type="submit" value="Submit Vote"/>

 </form>

 </body>

</html>

Browsers can choose to display the text box in a way that makes it obvious that you are gathering search terms. Google Chrome presents a standard text box until the user starts typing, at which point a cancel icon is displayed, as shown in Figure 13-18. At the time of writing, the other mainstream browsers simply treat this type of input as though it were a regular text type.

[image: Image]

Figure 13-18. The search type of input, as displayed by Google Chrome

Using the input Element to Create Hidden Data Items

There are occasions when you want to ensure that data items are sent to the server when the form is submitted, without showing them to the user, or allowing them to be edited. A common example is when a web application is displaying a database record to a user for editing. You often need to include the primary key in the web page so you know which record the user is editing in a simple and easy manner, but you don't want to display that information to the user. You use the hidden type of input element to achieve this effect. Listing 13-15 shows how you can use this type of input element.

Listing 13-15. Creating a hidden Type input Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <form method="post" action="http://titan:8080/form">

 <input type="hidden" name="recordID" value="1234"/>

 <p>

 <label for="name">

 Name: <input value="Adam" id="name" name="name"/>

 </label>

 </p>

 <p>

 <label for="password">

 Password: <input type="password" placeholder="Min 6 characters"

 id="password" name="password"/>

 </label>

 </p>

 <p>

 <label for="fave">

 Favorite Fruit: <input type="text" id="fave" name="fave"/>

 </label>

 </p>

 <input type="submit" value="Submit Vote"/>

 </form>

 </body>

</html>

In this example, I have created a hidden input element whose name attribute has a value of recordID and whose value attribute is 1234. When the page is displayed, the browser doesn't provide any visual representation of the input element, as you can see in Figure 13-19.

[image: Image]

Figure 13-19. A web page with a hidden input element

When the user submits the form, the browser includes a data item using the name and value we have provided for the hidden input element. You can see this in Figure13-20, which shows the response from the Node.js script when the form shown in the previous figure is submitted.

[image: Image]

Figure 13-20. The response from the server showing the hidden data value

[image: Image] Caution This kind of input element is only suitable for data that is being hidden for convenience or usability, and not because it is sensitive or has an impact on security. The user can see hidden input elements by looking at the HTML for a page, and the data value is sent from the browser to the server as clear text. Most web application frameworks have support for keeping sensitive data securely at the server and associating it with the requests based on sessions identifiers, most typically expressed as cookies.

Using the input Element to Create Image Buttons and Maps

The image type of input element allows you to create buttons that display an image and submit the form when clicked. This type of input element supports the additional attributes shown in Table 13-14.

[image: Image]

Listing 13-16 shows the image type of the input element in use.

Listing 13-16. Using the image Type of the input Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <form method="post" action="http://titan:8080/form">

 <input type="hidden" name="recordID" value="1234"/>

 <p>

 <label for="name">

 Name: <input value="Adam" id="name" name="name"/>

 </label>

 </p>

 <p>

 <label for="password">

 Password: <input type="password" placeholder="Min 6 characters"

 id="password" name="password"/>

 </label>

 </p>

 <p>

 <label for="fave">

 Favorite Fruit: <input type="text" id="fave" name="fave"/>

 </label>

 </p>

 <input type="image" src="accept.png" name="submit"/>

 </form>

 </body>

</html>

You can see how the browser displays this type of input element in Figure 13-21.

[image: Image]

Figure 13-21. Using the image type of input element

When the user clicks the image, the browser submits the form and includes two data items representing the image input element. These represent the x and y coordinates where the user clicked, relative to the top-left corner of the image. You can see how the data values are submitted in Figure13-22, which shows the response from the Node.js script when the form in the previous figure was submitted.

[image: Image]

Figure 13-22. The Node.js response to a form containing an image input element

The fact that the coordinates are provided means that you can use images that contain regions representing different actions and responses to the user depending on where on the image they clicked.

Using the input Element to Upload Files

The final type of input element is file, which allows you to upload files to the server as part of the form submission. This type of input supports the additional attributes shown in Table 13-15.

[image: Image]

Listing 13-17 shows the file type of input element in use.

Listing 13-17. Using the file Type of the input Element to Upload Files

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <form method="post" action="http://titan:8080/form"

 enctype="multipart/form-data">

 <input type="hidden" name="recordID" value="1234"/>

 <p>

 <label for="name">

 Name: <input value="Adam" id="name" name="name"/>

 </label>

 </p>

 <p>

 <label for="password">

 Password: <input type="password" placeholder="Min 6 characters"

 id="password" name="password"/>

 </label>

 </p>

 <p>

 <label for="fave">

 Favorite Fruit: <input type="text" id="fave" name="fave"/>

 </label>

 </p>

 <p>

 <input type="file" name="filedata"/>

 </p>

 <input type="submit" value="Submit"/>

 </form>

 </body>

</html>

You can upload files only when the encoding type for the form is multipart/form-data. As you can see, I have used the enctype attribute of the form element to set the encoding. You can see how the browser displays the input element in Figure 13-23.

[image: Image]

Figure 13-23. The file type of the input element

When the user clicks the Choose File button, they are presented with a dialog that allows a file to be selected. When the form is submitted, the contents of the file will be sent to the server.

Summary

In this chapter, I have shown you the many different types of input elements available. No other HTML element has so many different functions, and any web page or web application that requires interaction with the user will depend heavily on the input element.

In the next chapter, I'll show you some other kinds of elements you can use in forms. I'll also demonstrate the new HTML5 input validation feature, which allows you to check that the user has entered the kind of data you want to work with before the form is submitted.

C H A P T E R 14

Other Form Elements and Input Validation

In this chapter, I complete the tour of the HTML form features. There are five further elements that you can use in HTML forms, and I describe each of them in turn. I also explain the new input validation features that have been introduced in HTML5. These new features allow you to apply constraints to the data that a user enters, and prevent a form from being submitted until those constrains are satisfied. Table 14-1 provides the summary for this chapter.

[image: Image]

Using the Other Form Elements

In the following sections, I describe the five other elements you can use in a form. These are select, optgroup, textarea, output, and keygen.

Creating Lists of Options

The select element lets you create lists of options from which the user can make a selection. This is a more compact alternative to the radiobutton type of the input element that you saw in Chapter 13, and is ideally suited for larger sets of options. Table 14-2 summarizes the select element.

[image: Image]

The name, disabled, form, autofocus, and required attributes work in the same way as for the input elements. The size attribute specifies how many choices you want to show to the user and when the multiple attribute is applied, the user is able to select more than one value.

You use the option element to define the choices that you want to present to the user. This is the same option element used with the datalist element in Chapter 12. Listing 14-1 shows how you use the select and option elements.

Listing 14-1. Using the select and option Elements

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <form method="post" action="http://titan:8080/form">

 <input type="hidden" name="recordID" value="1234"/>

 <p>

 <label for="name">

 Name: <input value="Adam" id="name" name="name"/>

 </label>

 </p>

 <p>

 <label for="password">

 Password: <input type="password" placeholder="Min 6 characters"

 id="password" name="password"/>

 </label>

 </p>

 <p>

 <label for="fave">

 Favorite Fruit:

 <select id="fave" name="fave">

 <option value="apples" selected label="Apples">Apples</option>

 <option value="oranges" label="Oranges">Oranges</option>

 <option value="cherries" label="Cherries">Cherries</option>

 <option value="pears" label="Pears">Pears</option>

 </select>

 </label>

 </p>

 <input type="submit" value="Submit"/>

 </form>

 </body>

</html>

In Listing 14-1, I have used the select element and defined four option elements to represent the choices that I want to offer to the user. I have applied the selected attribute to the first of the option elements so that it is selected automatically when the page is displayed. You can see the initial appearance of the select element and how the browser displays the option elements in Figure 14-1.

[image: Image]

Figure 14-1. Using the select element to preset the user with a list of options

You can use the size attribute on the select element to show more than one option to the user, and the multiple attribute to allow the user to select more than one option, as shown in Listing 14-2.

Listing 14-2. Using the size and multiple Attributes on the select Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <form method="post" action="http://titan:8080/form">

 <input type="hidden" name="recordID" value="1234"/>

 <p>

 <label for="name">

 Name: <input value="Adam" id="name" name="name"/>

 </label>

 </p>

 <p>

 <label for="password">

 Password: <input type="password" placeholder="Min 6 characters"

 id="password" name="password"/>

 </label>

 </p>

 <p>

 <label for="fave" style="vertical-align:top">

 Favorite Fruit:

 <select id="fave" name="fave" size="5" multiple>

 <option value="apples" selected label="Apples">Apples</option>

 <option value="oranges" label="Oranges">Oranges</option>

 <option value="cherries" label="Cherries">Cherries</option>

 <option value="pears" label="Pears">Pears</option>

 </select>

 </label>

 </p>

 <input type="submit" value="Submit"/>

 </form>

 </body>

</html>

In Listing 14-2, I have applied the size and multiple attributes, which creates the effect you can see in Figure 14-2. You can select multiple options by pressing the Ctrl button while clicking. I have also applied an inline style (as described in Chapter 4) to change the vertical alignment so that the label is aligned with the top of the select element (by default, it aligns to the bottom, which looks a little odd).

[image: Image]

Figure 14-2. Using the select element to display and select multiple items

Adding Structure to a select Element

You can add some structure to a select element by using the optgroup element. Table 14-3 describes this element.

[image: Image]

[image: Image]

You use the optgroup element to group option elements together. The label attribute lets you create a title for the grouped options and the disabled attribute lets you prevent the user from selecting any of the option elements that are contained in the optgroup. Listing 14-3 shows the optgroup element in use.

Listing 14-3. Using the optgroup Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <form method="post" action="http://titan:8080/form">

 <input type="hidden" name="recordID" value="1234"/>

 <p>

 <label for="name">

 Name: <input value="Adam" id="name" name="name"/>

 </label>

 </p>

 <p>

 <label for="password">

 Password: <input type="password" placeholder="Min 6 characters"

 id="password" name="password"/>

 </label>

 </p>

 <p>

 <label for="fave" style="vertical-align:top">

 Favorite Fruit:

 <select id="fave" name="fave">

 <optgroup label="Top Choices">

 <option value="apples" label="Apples">Apples</option>

 <option value="oranges" label="Oranges">Oranges</option>

 </optgroup>

 <optgroup label="Others">

 <option value="cherries" label="Cherries">Cherries</option>

 <option value="pears" label="Pears">Pears</option>

 </optgroup>

 </select>

 </label>

 </p>

 <input type="submit" value="Submit"/>

 </form>

 </body>

</html>

You can see how the optgroup element adds structure to a list of option elements in Figure 14-3. The optgroup labels are purely for structure; the user cannot select these as values.

[image: Image]

Figure 14-3. Using the optgroup element

Capturing Multiple Lines of Text

The textarea element creates a multiline text box into which the user can enter more than one line of text. Table 14-4 summarizes the textarea element.

[image: Image]

[image: Image]

The rows and cols attributes specify the dimensions of the textarea, and you can set the wrap attribute to hard or soft to control how line breaks are added to the text entered by the user. The other attributes work in the same way as the corresponding attributes on the input element, described in Chapters 12 and 13. Listing 14-4 show the textarea element in use.

Listing 14-4. Using the textarea Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <form method="post" action="http://titan:8080/form">

 <input type="hidden" name="recordID" value="1234"/>

 <p>

 <label for="name">

 Name: <input value="Adam" id="name" name="name"/>

 </label>

 </p>

 <p>

 <label for="password">

 Password: <input type="password" placeholder="Min 6 characters"

 id="password" name="password"/>

 </label>

 </p>

 <p>

 <label for="fave" style="vertical-align:top">

 Favorite Fruit:

 <select id="fave" name="fave">

 <optgroup label="Top Choices">

 <option value="apples" label="Apples">Apples</option>

 <option value="oranges" label="Oranges">Oranges</option>

 </optgroup>

 <optgroup label="Others">

 <option value="cherries" label="Cherries">Cherries</option>

 <option value="pears" label="Pears">Pears</option>

 </optgroup>

 </select>

 </label>

 </p>

 <p>

 <textarea cols="20" rows="5" wrap="hard" id="story"

 name="story">Tell us why this is your favorite fruit</textarea>

 </p>

 <input type="submit" value="Submit"/>

 </form>

 </body>

</html>

In Listing 14-4, I have added a textarea that is 20 columns wide and 5 rows high. You can see how the browser displays this in Figure 14-4.

[image: Image]

Figure 14-4. Using the textarea element

The wrap attribute controls how line breaks are inserted into the text when the form is submitted. If you set the wrap attribute to hard, the content will have line breaks inserted so that no line in the submitted text has more characters than the value of the cols attribute.

Denoting the Result of a Calculation

The output element represents the result of a calculation. Table 14-5 summarizes this element.

[image: Image]

Listing 14-5 shows the output element in use.

Listing 14-5. Using the output Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <form onsubmit="return false"

 oninput="res.value = quant.valueAsNumber * price.valueAsNumber">

 <fieldset>

 <legend>Price Calculator</legend>

 <input type="number" placeholder="Quantity" id="quant" name="quant"/> x

 <input type="number" placeholder="Price" id="price" name="price"/> =

 <output for="quant name" name="res"/>

 </fieldset>

 </form>

 </body>

</html>

In Listing 14-5, I have used the JavaScript event system to create a simple calculator (you can learn more about events in Chapter 30. There are two number type input elements and as the user types, the values of the input elements are multiplied and the result is displayed in the output element. You can see how this appears in the browser in Figure 14-5.

[image: Image]

Figure 14-5. Using the output element

Creating Public/Private Key Pairs

You use the keygen element to generate a public/private pair of keys. This is an important function of public key cryptography, which underpins much of web security, including client certificates and SSL. When the form is submitted, a new pair of keys is created. The public key is sent to the server, and the private key is retained by the browser and added to the user's key store. Table 14-6 summarizes the keygen element.

[image: Image]

The name, disabled, form, and autofocus attributes work just as they do for the input element, as described in Chapter 12. The keytype attribute specifies the algorithm that will be used to generate the key pair, but the only supported value is RSA. The challenge attribute specifies a challenge phrase that is sent to the server along with the public key.

The browser support for this element is patchy, and those browsers that do support the element present it to the user in different ways. My recommendation is to avoid using this element until support improves.

Using Input Validation

When you solicit input from users, you run the risk of receiving data that you can't use. This can be because the user has made a mistake, or you have failed to clearly communicate the kind of response you were looking for.

HTML5 introduces support for input validation, which is where you provide the browser with some basic information about the kind of data you require. The browser uses this information to check that the user has entered usable data before the form is submitted. If the data is problematic, the user is prompted to correct the problem and can't submit the form until the issue is resolved.

Performing validation in the browser is not a new idea, but prior to HTML5 you had to use a JavaScript library, such as the excellent jQuery validation plugin. Having built-in validation support with HTML5 is certainly convenient but, as you shall see, the support is rudimentary and inconsistent across browsers.

The benefit of input validation in the browser is that the user gets immediate feedback about problems. Without this feature, the user has to submit the form, wait for the server to respond, and then deal with any problems that are reported. On a low-performing network and an over-utilized server, this can be a slow and frustrating process.

[image: Image] Caution Input validation in the browser complements, rather than replaces, validation at the server. You cannot rely on users to employ browsers that properly support input validation, and it is a small matter for a malicious user to craft a script that will send input directly to your server without any form of validation at all.

You manage input validation through attributes. Table 14-7 shows which elements (and input types) support the different validation attributes.

[image: Image]

Ensuring the User Provides a Value

The simplest kind of input validation is to ensure that the user provides a value. You do this with the required attribute. The user cannot submit the form until a value has been provided, although no limits are placed on what the value can be. Listing 14-6 shows the required attribute in use.

Listing 14-6. Using the required Attribute

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <form method="post" action="http://titan:8080/form">

 <input type="hidden" name="recordID" value="1234"/>

 <p>

 <label for="name">

 Name:

 <input type="text" required id="name" name="name"/>

 </label>

 </p>

 <p>

 <label for="password">

 Password: <input type="password" required

 placeholder="Min 6 characters" id="password" name="password"/>

 </label>

 </p>

 <p>

 <label for="accept">

 <input type="checkbox" required id="accept" name="accept"/>

 Accept Terms & Conditions

 </label>

 </p>

 <input type="submit" value="Submit"/>

 </form>

 </body>

</html>

In Listing 14-6, I have applied the required attribute to three types of input elements. The user will not be able to submit the form until they have provided values for all three. For the text and password types, this means that the user has to enter text into the text box, and the box has to be checked for the checkbox type.

[image: Image] Tip An initial value set with the value attribute will satisfy the required validation attribute. If you want to force the user to enter a value, consider using the placeholder attribute instead. See Chapter 12 for details of both the value and the placeholder attributes.

Each browser that supports input validation does so in a slightly different way, but the effect is much the same: when the user clicks the button to submit the form, the first element that has the required attribute and that does not have a value is flagged for the user's attention. The user can then correct the omission and submit the form again. If there are other omissions, then the next problem element is flagged. The process continues until the user has provided a value for all of the elements with the required attribute. You can see how Google Chrome attracts the user's attention to a problem in Figure 14-6.

[image: Image]

Figure 14-6. Google Chrome attracting the user's attention to a required field

The HTML5 input validation support is fairly basic, especially if you are used to the richer functionality available through libraries such as jQuery. For example, each problem is highlighted to the user in turn, meaning that if there are multiple problems in a form, the user is forced to undertake a voyage of gradual discovery by repeatedly submitting the form and fixing one problem at a time. There is no summary of all of the validation errors and you have no control over the appearance of the validation error warning.

Ensuring a Value Is Within Bounds

You use the min and max attributes to ensure that numeric and date values are within a specific range. Listing 14-7 shows these attributes applied to the number type of the input element.

Listing 14-7. Using the min and max Attributes

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <form method="post" action="http://titan:8080/form">

 <input type="hidden" name="recordID" value="1234"/>

 <p>

 <label for="name">

 Name:

 <input type="text" id="name" name="name"/>

 </label>

 </p>

 <p>

 <label for="password">

 Password: <input type="password"

 placeholder="Min 6 characters" id="password" name="password"/>

 </label>

 </p>

 <p>

 <label for="price">

 $ per unit in your area:

 <input type="number" min="0" max="100"

 value="1" id="price" name="price"/>

 </label>

 </p>

 <input type="submit" value="Submit"/>

 </form>

 </body>

</html>

You need not apply both attributes. You create an upper limit for the value if you apply just the max attribute, and a lower limit if you apply just the min attribute. When you apply both, you constrain the upper and lower values to create a range. The min and max values are inclusive, meaning that if you specify a max value of 100, then any value up to and including 100 is allowed.

You can see how the browser reports a range validation error in Figure 14-7.

[image: Image]

Figure 14-7. A range validation error

[image: Image] Tip The min and max attributes only result in validation when the user provides a value. The browser will allow the user to submit the form if the text box is empty. For this reason, the mix and max attributes are often used in conjunction with the required attribute, described in the previous section.

Ensuring a Value Matches a Pattern

The pattern attribute ensures that a value matches a regular expression. Listing 14-8 shows the pattern attribute in use.

Listing 14-8. Using the pattern Attribute

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <form method="post" action="http://titan:8080/form">

 <input type="hidden" name="recordID" value="1234"/>

 <p>

 <label for="name">

 Name:

 <input type="text" id="name" name="name" pattern="^.* .*$"/>

 </label>

 </p>

 <p>

 <label for="password">

 Password: <input type="password"

 placeholder="Min 6 characters" id="password" name="password"/>

 </label>

 </p>

 <input type="submit" value="Submit"/>

 </form>

 </body>

</html>

In Listing 14-8, I have applied a simple pattern to ensure that the user enters two names, separated by a space. This is not a sensible way of validating that a value is a name, because it ignores all of the regional variations for names, but it does provide a suitable example of the validation support. You can see how the browser displays a pattern validation error in Figure 14-8.

[image: Image]

Figure 14-8. A pattern validation error

[image: Image] Tip The pattern attribute only results in validation when the user provides a value. The browser will allow the user to submit the form if the text box is empty. For this reason, this attribute is often used in conjunction with the required attribute, described earlier in the chapter.

Ensuring a Value Is an E-mail Address or URL

The email and url types of the input element, which I described in Chapter 13, ensure that the user has entered a valid e-mail address or fully qualified URL, respectively (well, almost—the browser support for the email type is fairly decent, but the url type is somewhat sketchy).

We can combine the pattern attribute with these types of input elements to further restrict the values that the user can enter; for example, limiting e-mail address to a particular domain. Listing 14-9 provides a demonstration.

Listing 14-9. Using the pattern Attribute with the email input Element Type

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <form method="post" action="http://titan:8080/form">

 <input type="hidden" name="recordID" value="1234"/>

 <p>

 <label for="name">

 Name:

 <input type="text" id="name" name="name" pattern="^.* .*$"/>

 </label>

 </p>

 <p>

 <label for="password">

 Password: <input type="password"

 placeholder="Min 6 characters" id="password" name="password"/>

 </label>

 </p>

 <p>

 <label for="email">

 Email: <input type="email" placeholder="user@mydomain.com" required

 pattern=".*@mydomain.com$" id="email" name="email"/>

 </label>

 </p>

 <input type="submit" value="Submit"/>

 </form>

 </body>

</html>

In Listing 14-9, I have used three of the validation features. The email type of the input element ensures that use enters a valid e-mail address. The required attribute ensures that the user provides a value. The pattern attribute ensures that the user enters an e-mail address that belongs to a specific domain (mydomain.com). The use of the email input type and the pattern attribute might seem redundant, but the input element is still responsible for ensuring that everything before the @ character is valid as an e-mail address.

Disabling Input Validation

There are times when you want to allow the user to submit the form without validating the contents. A good example is when the user needs to save progress through an incomplete process. You want the user to be able to save whatever they have entered so that they can resume the process later. This would be a frustrating process if all errors had to be corrected before progress could be saved.

You can submit the form without validation either by applying the novalidate attribute to the form element, or the formnovalidate attribute to the types of the button and input elements that can submit forms. Listing 14-10 shows how you can disable form validation.

Listing 14-10. Disabling Input Validation

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <form method="post" action="http://titan:8080/form">

 <input type="hidden" name="recordID" value="1234"/>

 <p>

 <label for="name">

 Name:

 <input type="text" id="name" name="name" pattern="^.* .*$"/>

 </label>

 </p>

 <p>

 <label for="password">

 Password: <input type="password"

 placeholder="Min 6 characters" id="password" name="password"/>

 </label>

 </p>

 <p>

 <label for="email">

 Email: <input type="email" placeholder="user@mydomain.com" required

 pattern=".*@mydomain.com$" id="email" name="email"/>

 </label>

 </p>

 <input type="submit" value="Submit"/>

 <input type="submit" value="Save" formnovalidate/>

 </form>

 </body>

</html>

In this example, I have added an input element to the HTML document that will submit the form without validation, allowing the user to save progress (assuming of course, that there is a corresponding feature implemented at the server that will accept values from the browser without applying further validation).

Summary

In this chapter, I have shown you the remaining elements that you can use in a form, and I demonstrated the new input validation features that have been introduced in HTML5.

C H A P T E R 15

Embedding Content

In this chapter, I introduce the elements you can use to embed content in your HTML document. Until now, I have largely focused on using HTML elements to create structure and meaning in your documents. The elements in this chapter allow you to enrich those documents.

[image: Image] Note Some of the HTML5 elements for embedding content are covered elsewhere in this book. See the “Other Embedding Elements” section at the end of this chapter for details.

Table 15-1 provides the summary for this chapter.

[image: Image]

[image: Image]

Embedding an Image

The img element allows you to embed an image into an HTML document. Table 15-2 summarizes this element, which is one of the most widely used in HTML.

[image: Image]

To embed an image, you need to use the src and alt attributes, as shown in Listing 15-1.

Listing 15-1. Embedding an Image

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 Here is a common form for representing the three activities in a triathlon.

 <p>

 </p>

 The first icon represents swimming, the second represents cycling and the third

 represents running.

 </body>

</html>

The src attribute specifies the URL for the image you want to embed. In this case, I specified a relative URL for the image file triathlon.png. The alt attribute defines the fallback content for the img element. This content will be shown if the image cannot be displayed (either because the image can't be located, because the image format is not supported by the browser, or because the browser or the device the user is using cannot display images). You can see the image in Figure 15-1.

[image: Image]

Figure 15-1. Embedding an image with the img element

You use the width and height attributes to specify the size (in pixels) of an image displayed by the img element. Images are not loaded until after the HTML markup has been processed, which means that if you omit the width and height attributes, the browser doesn't know how much space on the screen to allocate to the image. As a consequence, the browser has to determine the size from the image file itself and then reposition content on the screen to accommodate it. This can be jarring to the user, who may have already started to read the content contained directly in the HTML. Specifying the width and height attributes gives the browser the opportunity to lay out the elements on the page correctly, even though the image has yet to be loaded.

[image: Image] Caution The width and height attributes tell the browser what the size of the image is, not what you would like it to be. You should not use these attributes to dynamically resize images.

Embedding an Image in a Hyperlink

A common use of the img element is to create an image-based hyperlink in conjunction with the a element (which I described in Chapter 8). This is the counterpart to the image-based submit button for forms (described in Chapter 12). Listing 15-2 shows how you can use the img and a elements together.

Listing 15-2. Using the img and a Elements to Create a Server-Side Image Map

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 Here is a common form for representing the three activities in a triathlon.

 <p>

 <img src="triathlon.png" ismap alt="Triathlon Image"

 width="200" height="67"/>

 </p>

 The first icon represents swimming, the second represents cycling and the third

 represents running.

 </body>

</html>

The browser doesn't display the image any differently, as you can see in Figure 15-2. It is important, therefore, to give the user visual cues that particular images represent hyperlinks. This can be done with CSS or, preferably, by the content of the images.

[image: Image]

Figure 15-2. Embedding an image in a hyperlink

If you click on the image, the browser will navigate to the URL specified by the href attribute of the parent a element. If you apply the ismap attribute to the img element, you create a server-side image map, which means that the position you clicked on the image is appended to the URL. For example, if you clicked 4 pixels from the top and 10 pixels from the left edges of the images, the browser will navigate to the following:

http://titan/listings/otherpage.html?10,4

(Obviously, this URL is based on the fact that I loaded the original HTML document from my development server, titan, and the href attribute on the a element is a relative URL.) Listing 15-3 show the contents of otherpage.html, which contains a simple script that displays the coordinates of the click.

Listing 15-3. The Contents of otherpage.html

<!DOCTYPE HTML>

<html>

 <head>

 <title>Other Page</title>

 </head>

 <body>

 <p>The X-coordinate is ??</p>

 <p>The Y-coordinate is ??</p>

 <script>

 var coords = window.location.href.split('?')[1].split(',');

 document.getElementById('xco').innerHTML = coords[0];

 document.getElementById('yco').innerHTML = coords[1];

 </script>

 </body>

</html>

You can see the effect of the mouse click in Figure 15-3.

[image: Image]

Figure 15-3. Displaying the coordinates of a mouse click on an image embedded in a hyperlink

The presumption with a server-side image map is that the server will act differently when the user clicks in different regions of the image, perhaps returning different responses. If you omit the ismap attribute from the img element, the coordinates of the mouse click are not included in the requested URL.

Creating a Client-Side Image Map

You can create a client-side image map, where clicking on regions in an image cause the browser to navigate to different URLs. This is done without needing any direction from the server, meaning that you need to define the regions for the image and the actions they lead to using elements. The key element for a client-side image map is map, which is summarized in Table 15-3.

[image: Image]

The map element contains one or more area elements, each of which denotes a region in the image that can be clicked on. Table 15-4 summarizes the area element.

[image: Image]

[image: Image]

The attributes for the area element can be broken into two categories, the first of which deals with the URL that will be navigated to by the browser if the user clicks in the region of the image that area represents. These are described in Table 15-5 and are similar to corresponding attributes you have seen on other elements.

[image: Image]

The more interesting attributes form the second category: the shape and coords attributes. You use these to denote the regions of an image the user can click on. The shape and coords attributes work together. The meaning of the coords attribute depends on the value of the shape attribute, as described in Table 15-6.

[image: Image]

[image: Image]

Now that I've described the elements, we can move on to an example. One of the difficulties in demonstrating image maps is that area elements are invisible on the browser screen. To that end, Figure 15-4 illustrates two of the regions I intend to define in the example, using the triathlon.png image from the previous section. For simplicity, I make both areas rectangular.

[image: Image]

Figure 15-4. Planning the areas of an image map

From this diagram, you can create the map and area elements, as shown in Listing 15-4.

Listing 15-4. Creating an Image Map

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 Here is a common form for representing the three activities in a triathlon.

 <p>

 </p>

 The first icon represents swimming, the second represents cycling and the third

 represents running.

 <map name="mymap">

 <area href="swimpage.html" shape="rect" coords="3,5,68,62" alt="Swimming"/>

 <area href="cyclepage.html" shape="rect" coords="70,5,130,62" alt="Running"/>

 <area href="otherpage.html" shape="default" alt="default"/>

 </map>

 </body>

</html>

Notice the addition of the usemap attribute on the img element. The value of this attribute must be a hash-name reference, which means a string that starts with a # character, followed by the value of the name attribute of the map you want to use—in this case, #mymap. This is how you associate the map element with the image.

If the user clicks on the swimming part of the image, the browser navigates to swimpage.html. If the user clicks on the cycling part of the image, they browser navigates to cyclepage.html. Clicking anywhere else on the image causes the browser to navigate to otherpage.html.

[image: Image] Tip Notice that you don't need to use the a element to explicitly create a hyperlink when working with client-side image maps.

Embedding Another HTML Document

The iframe element allows you to embed another HTML document within the existing one. Table 15-7 summarizes this element.

[image: Image]

[image: Image]

Listing 15-5 shows how the iframe element can be used.

Listing 15-5. Using the iframe Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <header>

 <h1>Things I like</h1>

 <nav>

 Fruits I Like

 Activities I Like

 </nav>

 </header>

 <iframe name="myframe" width="300" height="100">

 </iframe>

 </body>

</html>

In this example, I created an iframe with a name attribute value of frame. This creates a browsing context called myframe. I can then use this browsing context with the target attribute of other elements—specifically, a, form, button, input, and base. I use the a element to create a pair of hyperlinks which, when followed, will load the URLs specified in their href attributes into the iframe. You can see how this works in Figure 15-5.

[image: Image]

Figure 15-5. Using an iframe to embed external HTML documents

The width and height attributes specify the size in pixels. The src attribute specifies a URL that should be loaded and displayed in the iframe initially, and the srcdoc attribute allows you to define an HTML document to display inline.

HTML5 introduces two new attributes for the iframe element. The first, seamless, instructs the browser to display the iframe contents as though they were an integral part of the main HTML document. You can see from the figure that a border is applied by default and that a scrollbar is present if the content is larger than the size specified by the width and height attributes.

The second attribute, sandbox, applies restrictions to the HTML document. When the attribute is applied with no value, like this:

...

<iframe sandbox name="myframe" width="300" height="100">

</iframe>

...

the following are disabled:

	scripts

	forms

	plugins

	links that target other browsing contexts

In addition, the content in the iframe is treated as though it originated from a different source than the rest of the HTML document, which enforces additional security measures. You can enable individual features by defining values for the sandbox attribute, like this:

...

<iframe sandbox="allow-forms" name="myframe" width="300" height="100">

</iframe>

...

The set of values that can be used is described in Table 15-8. Unfortunately, none of the mainstream browsers support the sandbox and seamless attributes as I write this, so I am unable to demonstrate either.

[image: Image]

Embedding Content Using Plugins

The object and embed elements both originated as a way to extend the capabilities of browsers by adding support for plugins that could process content the browser didn't support directly. These elements were introduced during the browser wars I mentioned in Chapter 1, and each was conceived by a different camp.

More recently, the object element has been part of the HTML4 specification, but the embed element has not—even though the embed element has been widely used. To bring parity to these two elements, HTML5 adds support for the embed element. This gives you two very similar elements for the sake of compatibility.

Although the object and embed elements are generally used for plugins, they can also be used to embed content that the browser can handle directly, such as images. I'll give you a demonstration of why this can be useful later in this section.

Using the embed Element

I will start with the embed element, which is summarized by Table 15-9.

[image: Image]

Listing 15-6 shows the embed element in use. For this example, I embedded a video from www.youtube.com, showing a talk from some Google engineers about HTML5.

Listing 15-6. Using the embed Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <embed src="http://www.youtube.com/v/qzA60hHca9s?version=3"

 type="application/x-shockwave-flash" width="560" height="349"

 allowfullscreen="true"/>

 </body>

</html>

The src attribute specifies the location of the content, and the type attribute specifies the MIME type of the content so that the browser knows what to do with it. The width and height attributes determine the size that the embedded content will occupy on screen. Any other attributes you apply are considered parameters for the plugin or the content. In this case, I applied an attribute called allowfullscreen, which the YouTube video player uses to enable full-screen viewing. You can see how the browser renders this content in Figure 15-6.

[image: Image]

Figure 15-6. Embedding a YouTube video

Using the object and param Elements

The object element achieves the same result as the embed element, but it works in a slightly different way and has some additional features. Table 15-10 summarizes the object element.

[image: Image]

[image: Image]

Listing 15-7 shows how you can use the object element to embed the same YouTube video as in the previous example.

Listing 15-7. Using the object and param Attributes

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <object width="560" height="349"

 data="http://www.youtube.com/v/qzA60hHca9s?version=3"

 type="application/x-shockwave-flash">

 <param name="allowFullScreen" value="true"/>

 </object>

 </body>

</html>

The data attribute provides the location for the content, and the type, width, and height attributes have the same meaning as for the embed element. You define the parameters that will be passed to the plugin using the param element. You use one param element for each parameter you need to define. The element is summarized in Table 15-11. As you might imagine, the name and value attributes define the name and value of the parameter.

[image: Image]

[image: Image]

Specifying Fallback Content

One of the advantages of the object element is that you can include content that will be displayed if the content you specify is not available. Listing 15-8 provides a simple demonstration.

Listing 15-8. Using the Fallback Content Feature of the object Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <object width="560" height="349" data="http://titan/myimaginaryfile">

 <param name="allowFullScreen" value="true"/>

 Sorry! We can't display this content

 </object>

 </body>

</html>

In this example, I used the data attribute to refer to a file that doesn't exist. The browser will attempt to load this nonexistent content and, when it fails to do so, display the content inside the object element instead. The param elements are ignored, leaving just your phrasing and flow content to be displayed, as shown in Figure 15-7.

[image: Image]

Figure 15-7. Relying on fallback content in an object element

Notice that I removed the type attribute in the listing. When there is no type attribute present, the browser tries to determine the type of content from the data itself. For some combinations of browsers and plugins, the plugin will still be loaded even when the data isn't available. This means that an empty region is displayed on screen and the fallback content isn't used.

Other Uses for the object Element

Although the object element is mostly used to embed content for plugins, it was originally intended as a more generic alternative to several elements, including img. In the following sections, I describe some of the other ways you can use the object element. Even though these features have been in the HTML specification for some time, not all of the browsers support all of the features. I include these sections for completeness, but I recommend that you stick to the more specific elements, such as s.

[image: Image] Tip The form attribute allows the object element to be associated with HTML forms (which are the topic of Chapter 12). This is a new addition in HTML5. Currently, none of the browsers support this attribute and the HTML5 specification is vague as to how this feature will work.

Using the object Element to Embed Images

As I mentioned, one of the elements that object was intended to replace is img. As a consequence, you can use the object element to embed images in your HTML documents. Listing 15-9 gives a demonstration.

Listing 15-9. Embedding an Image with the object Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <object data="triathlon.png" type="image/png">

 </object>

 </body>

</html>

In this example, I used the data attribute to refer to the image I used earlier in the chapter. The browser embeds and displays the image just as it does when you use the img element, as shown by Figure 15-8.

[image: Image]

Figure 15-8. Embedding an image with the object element

Using the object Element to Create Client-Side Image Maps

You can use the object element to create client-side image maps as well. The usemap attribute can be used to associate a map element with an object element, as shown in Listing 15-10. I used the same map and area elements as I did when performing the same task with the img element.

Listing 15-10. Creating a Client-Side Image Map with the object Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <map name="mymap">

 <area href="swimpage.html" shape="rect" coords="3,5,68,62" alt="Swimming"/>

 <area href="cyclepage.html" shape="rect" coords="70,5,130,62" alt="Running"/>

 <area href="otherpage.html" shape="default" alt="default"/>

 </map>

 <object data="triathlon.png" type="image/png" usemap="#mymap">

 </object>

 </body>

</html>

[image: Image] Caution Not all browsers support image maps created with the object element. At the time of this writing, Google Chrome and Apple Safari do not support this feature.

Using the object Element as a Browsing Context

You can use the object element to embed one HTML document inside of another, just as you did with the iframe element. If you apply the name attribute, you create a browsing context you can use with the target attribute of elements, such as a and form. Listing 15-11 shows how you can do this.

Listing 15-11. Creating a Browsing Context with the object Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <header>

 <h1>Things I like</h1>

 <nav>

 Fruits I Like

 Activities I Like

 </nav>

 </header>

 <object type="text/html" name="frame" width="300" height="100">

 </object>

 </body

</html>

This feature works only if you set the type attribute to text/html—even then, browser support is not universal. At the time of this writing, Google Chrome and Apple Safari are the only mainstream browsers that support this feature.

Embedding Numeric Representations

There are two elements that are new to HTML5 that allow you to embed representations of numeric values in your documents.

Showing Progress

The progress element can be used to indicate the gradual completion of a task. Table 15-12 summarizes the progress element.

[image: Image]

The value attribute defines the current progress, which is on a scale between zero and the value of the max attribute. When the max attribute is omitted, the scale is between zero and 1. You express progress using floating-point numbers, such as 0.3 for 30%.

Listing 15-12 shows the progress element and some buttons. Pressing a button updates the value displayed by the progress element. I connected the buttons and the progress element together using some simple JavaScript. I describe the techniques I use in Part IV of this book.

Listing 15-12. Using the progress Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <progress id="myprogress" value="10" max="100"></progress>

 <p>

 <button type="button" value="30">30%</button>

 <button type="button" value="60">60%</button>

 <button type="button" value="90">90%</button>

 </p>

 <script>

 var buttons = document.getElementsByTagName('BUTTON');

 var progress = document.getElementById('myprogress');

 for (var i = 0; i < buttons.length; i++) {

 buttons[i].onclick = function(e) {

 progress.value = e.target.value;

 };

 }

 </script>

 </body>

</html>

You can see how the progress element is used to display different values in Figure 15-9.

[image: Image]

Figure 15-9. Using the progress element

Showing a Ranged Value

The meter element shows a value displayed in the context of the range of possible values. Table 15-13 summarizes this element.

[image: Image]

[image: Image]

The min and max attributes set the bounds for the range of possible values. These can be expressed using floating-point numbers. The display for the meter element can be broken into three segments: too low, too high, and just right. The low attribute sets the value under which a value is considered to be too low, and the high attribute sets the value over which a value is considered to be too high. The optimum attribute specifies the “just right” value. You can see these attributes applied to the meter element in Listing 15-13.

Listing 15-13. Using the meter Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <meter id="mymeter" value="90"

 min="10" max="100" low="40" high="80" optimum="60"></meter>

 <p>

 <button type="button" value="30">30</button>

 <button type="button" value="60">60</button>

 <button type="button" value="90">90</button>

 </p>

 <script>

 var buttons = document.getElementsByTagName('BUTTON');

 var meter = document.getElementById('mymeter');

 for (var i = 0; i < buttons.length; i++) {

 buttons[i].onclick = function(e) {

 meter.value = e.target.value;

 };

 }

 </script>

 </body>

</html>

In this example, the button elements set the value attribute of the meter element to values that are in the too-low and too-high ranges and to the optimum value. You can see how this appears in the browser in Figure 15-10.

[image: Image]

Figure 15-10. Using the meter element

The optimum attribute doesn't have any visual effect on the appearance of the meter element as it is currently implemented. Browsers that support the meter element differentiate only values that are lower than the low value and higher than the high value, as the figure shows.

Other Embedding Elements

There are further elements that can be used to embed content in an HTML document. These are covered in depth in later chapters, but they are mentioned here for completeness.

Embedding Audio and Video

HTML5 defines several new attributes that support embedding audio and video into an HTML document without the need for plugins. These elements (audio, video, source, and track) are covered in depth in Chapter 34.

Embedding Graphics

The canvas element is another major area of functionality introduced in HTML5, allowing the addition of dynamic graphics in an HTML document. The canvas element is covered in Chapters 35 & 36..

Summary

In this chapter, I introduced the elements that allow you to enrich your HTML documents with embedded content. These elements range from simple additions, such as images, to rich and extensible technologies available through plugins.

P A R T III

Cascading Style Sheets

In this part of the book, I will show you how to use Cascading Style Sheets (CSS) to control the way that content is presented to users in the browser. CSS can be surprisingly subtle and expressive, and allows you to exert a very high degree of control over your content with very little effort.

C H A P T E R 16

CSS in Context

In the chapters that follow, I describe the properties defined by CSS, more properly known as Cascading Style Sheets. Chapter 4 provided a quick refresher in the basics of CSS, and this chapter provides some additional context before we start digging into the details.

Understanding CSS Standardization

CSS has had a difficult past. During the period when browsers were seen as tools to fragment the market, browser-makers used CSS as a key tool to create features that were unique to their software. It was a mess—properties with the same name were handled in different ways, and browser-specific properties were used to access browser-specific functionality. The idea was to force web developers to make their site or application work on just one browser.

The good news is that browsers mostly differentiate themselves on speed, ease-of-use and, to a growing extent, compliance with standards such as CSS. The bad news is that the standardization process for CSS isn't ideal.

As you'll see in the following chapters, there is a lot of functionality in CSS. Rather than try to create a monolithic standard, the W3C (the standards body for CSS as well as for HTML) decided to break CSS3S into modules and let each one follow its own timeline. This is a great idea—it certainly beats the monolithic approach—but it means that there is no overall standard for CSS3 compliance. Instead, you have to consider each module in turn and decide whether or not it has broad enough support to use.

A further complication is that very few of the CSS3 modules have reached the end of the standardization process. Some modules, especially those that introduce new areas of functionality to CSS, are still in an early stage of the process and are subject to change. Properties might be added, changed, or removed; modules might be merged or killed off; and the relationship between modules might change (because modules often depend on properties or units defined in other modules). This means you might find that some of the newer properties have changed since I wrote this book.

In the chapters that follow, I included properties from modules that seem stable and are expected to be implemented by the mainstream browsers reasonably quickly. For the most part, these features are stable and can be relied on in recent browser releases. To help you decide if using a property is suitable for your project, I included the CSS version to which each property was added in the “Properties Quick Reference” section later in this chapter.

During the more volatile stages of a module's definition, browsers will implement a feature using a browser-specific prefix. This isn't like the bad old days—these are trial implementations that allow early adopters to test out a browser's implementation of a particular set of properties. I generally avoid properties that are available this way, but some CSS3 features are so important that I used the prefixes in the example. In all cases, the browser-specific implementations are very close to the specification. Each browser has a different prefix. You can see the prefixes for the most popular browsers in Table 16-1.

[image: Image]

Understanding the Box Model

One of the fundamental concepts in CSS is the box model. If an element is visible, it will occupy a rectangular region of the page. This is known as the element's box. There are four parts to this box, as shown in Figure 16-1.

[image: Image]

Figure 16-1. The CSS box model

Two of the parts can be visible: the contents and the border. Padding is the amount of space between the content and the border, and the margin is the space between the border and the other elements on the page. Understanding how these four parts relate to one another is essential to getting the best out of CSS. In the following chapters, I'll introduce you to the CSS properties that let you control the margin, padding, and border and control the appearance of the content overall.

An element can contain other elements. In this case, the parent element's context box is known as the child element's container block (or sometimes just container). This relationship is shown in Figure 16-2.

[image: Image]

Figure 16-2. The box model relationship between parent and child elements

You can use the characteristics of the containing block to determine the appearance of an element. This is true not only for cascading and inherited properties, but also for explicitly defined properties, as you'll see in Chapter 21 when you look at layouts for elements.

Selectors Quick Reference

I describe the CSS selectors in depth in Chapters 17 and 18. For quick reference, Table 16-2 summarizes the selectors and shows in which version of CSS they were added.

[image: Image]

[image: Image]

[image: Image]

[image: Image]

Properties Quick Reference

In Chapters 19–24, I describe the CSS properties. For quick reference, the following sections summarize those properties and the version of CSS to which they were added.

Border and Background Properties

Table 16-3 summarizes the properties that can be used to apply borders and backgrounds to an element. These properties are described in full in Chapter 19.

[image: Image]

[image: Image]

[image: Image]

Box Model Properties

Table 16-4 summarizes the properties that can be used to configure an element's box. These properties are described in full in Chapter 20.

[image: Image]

[image: Image]

Layout Properties

Table 16-5 summarizes the properties that can be used to create layouts for elements. These properties are described in full in Chapter 21.

[image: Image]

[image: Image]

Text Properties

Table 16-6 summarizes the properties that can be used to style text. These properties are described in full in Chapter 22.

[image: Image]

[image: Image]

Transition, Animation, and Transform Properties

Table 16-7 summarizes the properties that can be used to change the appearance of elements, often over a period of time. These properties are described in full in Chapter 23.

[image: Image]

[image: Image]

Other Properties

Table 16-8 summarizes the properties that don't fit neatly into the other chapters. These properties are described in full in Chapter 24.

[image: Image]

Summary

In this chapter, I provided some context for the chapters that follow, in which I describe the CSS properties. I also provided quick reference tables that will let you find the property you seek when you use CSS in a real project. It is important that you take into account the CSS version in which a property was defined when considering CSS features for use in your projects. As I explained at the start of the chapter, some CSS3 modules are still unstable and others are not as widely implemented as we might like.

C H A P T E R 17

Using the CSS Selectors—Part I

In Chapter 4, I explained that you use CSS selectors to identify which elements you want to apply a style to when using the style element or an external stylesheet. In this chapter and the next, I describe and demonstrate the core CSS3 selectors. You will see how easy it is to make selections and how you can tailor those selections to meet broad or very specific conditions.

These selectors were introduced over time and in different versions of CSS. The mainstream browsers have fairly good support for all of the selectors, but you might find that coverage in less popular browsers is a little patchy. To help you work out what you can rely on, I have indicated in which version of CSS each selector was introduced. Table 17-1 provides the summary for this chapter.

[image: Image]

[image: Image]

Using the Basic CSS Selectors

There are a set of selectors that are very straightforward to use. Think of them as the basic selectors. You can use these selectors for making wide selections in a document, or as the foundation for more narrow matches when combined together (a technique I describe later in this chapter). In each of the following sections, I show you how to use one of the basic selectors.

Selecting All Elements

The universal selector matches every element in the document. This is the most fundamental of the CSS selectors, but is rarely used because it matches so widely. Table 17-2 summarizes the selector.

[image: Image]

Listing 17-1 shows an example of a style that uses the universal selector.

Listing 17-1. Using the Universal Selector

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 * {

 border: thin black solid;

 padding: 4px;

 }

 </style>

 </head>

 <body>

 Visit the Apress website

 <p>I like apples and oranges.</p>

 Visit the W3C website

 </body>

</html>

The style that I have defined in Listing 17-1 puts a thin black box around the selected elements. This is one of the styles I'll use to demonstrate the way that selectors match in this chapter. You can see the effect of this selector in Figure 17-1.

[image: Image]

Figure 17-1. Using the universal CSS selector

If the figure looks a little odd it is because the universal selector really does match every element in the document, including the html and body elements. This selector is an effective, but somewhat brutal, tool and you should use it with caution.

Selecting Elements by Type

You can select all of the instances of an element in a document by specifying the element type as the selector (e.g., if you want to select all of the a elements then you use a as the selector). Table 17-3 provides a summary of the element type selector.

[image: Image]

Listing 17-2 provides an example.

Listing 17-2. Using the Element Type Selector

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 a {

 border: thin black solid;

 padding: 4px;

 }

 </style>

 </head>

 <body>

 Visit the Apress website

 <p>I like apples and oranges.</p>

 Visit the W3C website

 </body>

</html>

You can see the effect of this selector in Figure 17-2.

[image: Image]

Figure 17-2. Selecting elements by type

[image: Image] Tip You can apply a style to multiple element types by separating the types with a comma. See the section “Combining Selectors,” later in this chapter, for an example.

Selecting Elements by Class

The class selector allows us to select elements that have been assigned to a particular class using the class global attribute. Table 17-4 describes this selector. I describe the class attribute in Chapter 3.

[image: Image]

Listing 17-3 provides a demonstration of this selector.

Listing 17-3. Selecting Elements by Class

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 .class2 {

 border: thin black solid;

 padding: 4px;

 }

 </style>

 </head>

 <body>

 Visit the Apress website

 <p>I like apples and oranges.</p>

 Visit the W3C website

 </body>

</html>

In Listing 17-3, I have used the selector .class2. This has the effect of selecting all elements of any type that have been assigned to the class class2.

There are two ways of expressing this selector: with and without the universal selector. The selectors *.class2 and .class are equivalent. The first form is more descriptive, but the second form is the one that is most commonly used. This is a recurring pattern in CSS selectors. As you proceed through the available selectors, you will see that each of them is effectively a filter that narrows the scope of the selector so that it matches fewer elements. You can combine these selectors to create focused matches. I'll show you different techniques for combining selectors in the section “Combining Selectors,” later in this chapter.

In Listing 17-3, there are two elements assigned to the target class: an a element and a span element. You can see the effect of the style in Figure 17-3.

[image: Image]

Figure 17-3. Using the class selector

You can be more specific and limit the selection to a single type of element that has been assigned to a class. You do this by replacing the universal selector with the element type, as shown in Listing 17-4.

Listing 17-4. Using the Class Selector for a Single Element Type

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 span.class2 {

 border: thin black solid;

 padding: 4px;

 }

 </style>

 </head>

 <body>

 Visit the Apress website

 <p>I like apples and oranges.</p>

 Visit the W3C website

 </body>

</html>

In this case, I have narrowed the scope of the selector so that it will match only span elements that have been assigned to class2. You can see the effect of this narrowed scope in Figure 17-4.

[image: Image]

Figure 17-4. Narrowing the scope of the class selector

[image: Image] Tip If you want to select elements that have membership in multiple classes, you can specify the class names separated with a period (e.g., span.class1.class2). This will select only elements that are assigned to both class1 and class2.

Selecting Elements by ID

The ID selector lets you select elements by the value of the global id attribute, which I described in Chapter 3. Table 17-5 summarizes this selector.

[image: Image]

As I explained in Chapter 3, the value of an element's id attribute must be unique within the HTML document. This means that when you use the ID selector, you are looking for a single element. Listing 17-5 demonstrates the use of the id selector.

Listing17-5. Using the id Selector

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 #w3canchor {

 border: thin black solid;

 padding: 4px;

 }

 </style>

 </head>

 <body>

 Visit the Apress website

 <p>I like apples and oranges.</p>

 Visit the W3C website

 </body>

</html>

In this example, I have selected the element with the id of w3canchor. You can see the effect of this in Figure 17-5.

[image: Image]

Figure 17-5. Selecting an element by ID

It might seem that if you are targeting an individual element for a style, you could achieve the same effect by using the element's style attribute. This is true, but the real value of this selector comes when you combine it with other selectors, a technique I demonstrate later in this chapter.

Selecting Elements by Attribute

The attribute selector allows you to match attributes based on different aspects of attributes, as described in Table 17-6.

[image: Image]

[image: Image]

You can choose to match all of the elements (or all elements of a given type) whose attributes meet the condition by using the universal selector (*) or, in the more common form, by omitting the universal selector and putting the condition inside of the square braces (the [and] characters). Listing 17-6 demonstrates the attribute selector in use.

Listing 17-6. Using the Element Attribute Selector

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 [href] {

 border: thin black solid;

 padding: 4px;

 }

 </style>

 </head>

 <body>

 Visit the Apress website

 <p>I like apples and oranges.</p>

 Visit the W3C website

 </body>

</html>

In Listing 17-6, I have used the simplest form of the attribute selector, which matches any element that has an href attribute, irrespective of the value assigned to the attribute. In the example HTML document, this means that both the a elements will be selected, as shown in Figure 17-6.

[image: Image]

Figure 17-6. Selecting elements based on the presence of an attribute

You can create more sophisticated conditions to match attributes, as shown in Table 17-7. These conditions have been added to CSS in two waves, so I have indicated in which version of CSS each is supported.

[image: Image]

The last two conditions bear additional explanation. The ~= condition is useful for dealing with attributes that support multiple values that are separated by a space character, such as the class global attribute. Listing 17-7 gives a demonstration.

Listing 17-7. Selecting Based on One of Multiple Values

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 [class~="class2"] {

 border: thin black solid;

 padding: 4px;

 }

 </style>

 </head>

 <body>

 Visit the Apress website

 <p>I like apples and oranges.</p>

 Visit the W3C website

 </body>

</html>

In Listing 17-7, I've used the class global attribute because it is the only attribute I have introduced so far that accepts multiple values. You don't need to use the attribute selector to match class values; the class selector handles multiple class memberships automatically.

The condition that I have used in the selector is to match elements who define the class attribute and whose value for this attribute includes class2. I have highlighted the class attributes of the content elements and you can see the effect of the selector in Figure 17-7.

[image: Image]

Figure 17-7. Selecting based on a multivalue attribute

The |= condition is useful when several pieces of information are expressed in an attribute value and separated by hyphens. A good example of this is the lang global attribute, which can be used with language specifiers that contain regional subtags (for example, en-us is English as spoken in the United States, and en-gb is English as spoken in the United Kingdom). Listing 17-8 shows how you can select all of the English tags, without having to enumerate all of the regional variations (of which there are many).

Listing 17-8. Using the |= Attribute Condition

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 [lang|="en"] {

 border: thin black solid;

 padding: 4px;

 }

 </style>

 </head>

 <body>

 Visit the Apress website

 <p>I like apples and oranges.</p>

 Visit the W3C website

 </body>

</html>

You can see the effect of this selector in Figure 17-8. Notice that the selector matches the second a element, which has no regional subtag (i.e., the value of the lang element is en and not en-us or en-gb), as well those that do have subtags.

[image: Image]

Figure 17-8. Selecting elements based on lang attributes

Combining Selectors

You can be much more specific in the elements that you select by creating combinations of selectors. These either broaden the range of elements that a style will be applied to or do the opposite: allow you to be incredibly specific in what you select. In the following sections, I'll show you the different ways you can combine selectors.

Creating Selector Unions

Creating a list of comma-separated selectors means that the style is applied to the union of all of the elements that each of the individual selectors matches. Table 17-8 summarizes unions of selectors.

[image: Image]

Listing 17-9 provides an example of creating a union of selectors.

Listing 17-9. Creating Selector Unions

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 a, [lang|="en"] {

 border: thin black solid;

 padding: 4px;

 }

 </style>

 </head>

 <body>

 Visit the Apress website

 <p>I like apples and oranges.</p>

 Visit the W3C website

 </body>

</html>

In Listing 17-9, I have specified a type selector (a) and an attribute selector ([lang|="en"]) separated by a comma (a, [lang|="en"]). The browser will evaluate each selector in turn and apply the style to the selected elements. You can mix and match different types of selectors freely and there doesn't need to be any commonality between the elements that are matched. You can see the effect of the selector from Listing 17-9 in Figure 17-9.

[image: Image]

Figure 17-9. Creating selector unions

You can combine as many selectors as you require, each separated from the last by a comma.

Selecting Descendant Elements

You can use the descendant selector to select elements that are contained within another element. Table 17-9 provides a summary.

[image: Image]

The first selector is applied and then the descendants of the matched elements are evaluated against the second selector. The descendant selector will match any element contained within the elements matched by the first selector, not just the immediate children. Listing 17-10 provides a demonstration.

Listing 17-10. Selecting Descendants

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 p span {

 border: thin black solid;

 padding: 4px;

 }

 </style>

 </head>

 <body>

 Visit the Apress website

 <p>I like apples and oranges.</p>

 Visit the W3C website

 </body>

</html>

The selector in Listing 17-10 selects span elements that are descendants of p elements. Given the HTML in the example, I could just have selected the span element directly to get the same result, but this approach is more flexible, as the following example demonstrates.

Listing 17-11. A More Complex Descendant Selector Example

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 #mytable td {

 border: thin black solid;

 padding: 4px;

 }

 </style>

 </head>

 <body>

 <table id="mytable">

 <tr><th>Name</th><th>City</th></tr>

 <tr><td>Adam Freeman</td><td>London</td></tr>

 <tr><td>Joe Smith</td><td>New York</td></tr>

 <tr><td>Anne Jones</td><td>Paris</td></tr>

 </table>

 <p>I like apples and oranges.</p>

 <table id="othertable">

 <tr><th>Name</th><th>City</th></tr>

 <tr><td>Peter Pererson</td><td>Boston</td></tr>

 <tr><td>Chuck Fellows</td><td>Paris</td></tr>

 <tr><td>Jane Firth</td><td>Paris</td></tr>

 </table>

 </body>

</html>

In Listing 17-11, I have defined two simple tables, each of which defines the id attribute. Using the ID selector, I select the table with the id value of mytable and then select the td elements that it contains. You can see the effect in Figure 17-10.

[image: Image]

Figure 17-10. Selecting descendant elements

Notice that I am not selecting direct descendants in this example. I am skipping over the tr elements to select the td elements.

Selecting Child Elements

The counterpart to the descendant selector is the child selector, which will only match elements that are directly contained in matched elements. Table 17-10 summarizes the child selector.

[image: Image]

Listing 17-12 provides a demonstration of how you can select child elements.

Listing 17-12. Selecting Child Elements

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 body > * > span, tr > th {

 border: thin black solid;

 padding: 4px;

 }

 </style>

 </head>

 <body>

 <table id="mytable">

 <tr><th>Name</th><th>City</th></tr>

 <tr><td>Adam Freeman</td><td>London</td></tr>

 <tr><td>Joe Smith</td><td>New York</td></tr>

 <tr><td>Anne Jones</td><td>Paris</td></tr>

 </table>

 <p>I like apples and oranges.</p>

 <table id="othertable">

 <tr><th>Name</th><th>City</th></tr>

 <tr><td>Peter Pererson</td><td>Boston</td></tr>

 <tr><td>Chuck Fellows</td><td>Paris</td></tr>

 <tr><td>Jane Firth</td><td>Paris</td></tr>

 </table>

 </body>

</html>

In this selector, I have created a union of child selectors. In the first, I am looking for span elements that are children of any element that is a child of the body element. In the second, I am looking for th elements that are children of tr elements. You can see which elements are matched in Figure 17-11.

[image: Image]

Figure 17-11. Selecting child elements

Selecting Sibling Elements

You can select elements that immediately follow other elements using the immediate sibling selector. Table 17-11 summarizes this selector.

[image: Image]

Listing 17-13 shows how you can select immediate sibling elements.

Listing 17-13. Using the Immediate Sibling Selector

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 p + a {

 border: thin black solid;

 padding: 4px;

 }

 </style>

 </head>

 <body>

 Visit the Apress website

 <p>I like apples and oranges.</p>

 Visit the W3C website

 Visit Google

 </body>

</html>

In Listing 17-13, the selector will match a elements that immediately follow a p element. As you can see in Figure17-12, there is only one such element in the listing and it is the a element, which creates a hyperlink to the W3C website.

[image: Image]

Figure 17-12. Selecting an immediate sibling

You can make the selection a little looser by using the general sibling selector, which selects elements that follow another specified element, but not necessarily immediately. Table 17-12 describes this element.

[image: Image]

[image: Image]

Listing 17-14 shows how you can use the general sibling selector.

Listing 17-14. Using the General Sibling Selector

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 p ~ a {

 border: thin black solid;

 padding: 4px;

 }

 </style>

 </head>

 <body>

 Visit the Apress website

 <p>I like apples and oranges.</p>

 Visit the W3C website

 Visit Google

 </body>

</html>

We are not limited to elements that immediately follow an element matched by the first selector, which means that the second selector will match against two a elements in this example. The excluded a element (the one that links to http://apress.com) is not selected because it precedes the p element; we can only select siblings that follow on). You can see the effect of this selector in Figure 17-13.

[image: Image]

Figure 17-13. Using the general sibling selector

Using Pseudo-Element Selectors

So far, you have seen selections using the elements defined in the HTML document. CSS also includes pseudo-selectors, which provide more complex functionality but don't directly correspond to the elements defined in the document. There are two kinds of pseudo-selectors: pseudo-elements and pseudo-classes. In this section, I describe and demonstrate the pseudo-element selectors. As their name suggests, pseudo-elements don't really exist; they are a convenience provided by CSS to let you make helpful selections.

Using the ::first-line Selector

The ::first-line selector matches the first line of a block of text. Table 17-13 summarizes the ::first-line selector.

[image: Image]

Listing 17-15 shows an example of using the ::first-line selector.

Listing 17-15. Using the ::first-line Pseudo-Element Selector

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 ::first-line {

 background-color:grey;

 color:white;

 }

 </style>

 </head>

 <body>

 <p>Fourscore and seven years ago our fathers brought forth

 on this continent a new nation, conceived in liberty, and

 dedicated to the proposition that all men are created equal.</p>

 <p>I like apples and oranges.</p>

 Visit the W3C website

 </body>

</html>

I have used the selector on its own in this example, but it can also be applied as a modifier to other selectors. For example, if I wanted to select the first line of only p elements, I could specify p::first-line as the selector.

[image: Image] Tip The pseudo-element selector is prefixed with two colon characters (::), but browsers will recognize the selector with just one colon (i.e., :first-line instead of ::first-line). This makes the format consistent with the pseudo-class selectors I described earlier in this chapter for purposes of backward compatibility.

The browser will reassess what the first line is as the browser window is resized. This means that the style is always correctly applied to the first line of the text, as shown in Figure 17-14.

[image: Image]

Figure 17-14. The browser ensures that the style is applied to the first line, even when the window is resized

Using the ::first-letter Selector

The ::first-letter selector does just what its name suggests: it selects the first letter in a block of text. Table 17-14 summarizes this pseudo-element selector.

[image: Image]

[image: Image]

Listing 17-16 shows the selector in use.

Listing 17-16. Using the ::first-letter Pseudo-Element Selector

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 ::first-letter {

 background-color:grey;

 color:white;

 border: thin black solid;

 padding: 4px;

 }

 </style>

 </head>

 <body>

 <p>Fourscore and seven years ago our fathers brought forth

 on this continent a new nation, conceived in liberty, and

 dedicated to the proposition that all men are created equal.</p>

 <p>I like apples and oranges.</p>

 Visit the W3C website

 </body>

</html>

You can see the effect of this selector in Figure 17-15.

[image: Image]

Figure 17-15. Using the ::first-letter selector

Using the :before and :after Selectors

The :before and :after selectors are unusual in that they generate content and add it to the document. I introduced the :before selector in Chapter 9, and showed you how to use it to create custom lists. The :after selector is the counterpart to :before and adds content following an element, as opposed to before an element. Table 17-15 describes these selectors.

[image: Image]

Listing 17-17 demonstrates these attributes in use.

Listing 17-17. Using the :before and :after Selectors

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 a:before {

 content: "Click here to "

 }

 a:after {

 content: "!"

 }

 </style>

 </head>

 <body>

 Visit the Apress website

 <p>I like apples and oranges.</p>

 Visit the W3C website

 </body>

</html>

In Listing 17-17, I have selected the a elements and applied the :before and :after pseudo-selectors. When using these selectors, you specify the content you want to insert by setting a value for the content property. This is a special property that you may use only with these selectors. In this example, the content Click here to will be inserted before the content of the a elements, and an exclamation mark (!) will be inserted after the content. You can see the effect of these additions in Figure 17-16.

[image: Image]

Figure 17-16. Using the :before and :after selectors

Using the CSS Counter Feature

The :before and :after selectors are often used with the CSS counter feature, which lets you generate numeric content. I gave an example of using these counters to create custom lists in Chapter 9. Listing 17-18 gives a demonstration.

Listing 17-18. Using the CSS Counter Feature

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 body {

 counter-reset: paracount;

 }

 p:before {

 content: counter(paracount) ". ";

 counter-increment: paracount;

 }

 </style>

 </head>

 <body>

 Visit the Apress website

 <p>I like apples and oranges.</p>

 <p>I also like mangos and cherries.</p>

 Visit the W3C website

 </body>

</html>

To create a counter, you use the special counter-reset property and set the value to be the name you want to use for the counter, like this:

counter-reset: paracount;

This has the effect of initializing a counter called paracount counter and setting the value to 1. You can specify a different initial value by adding a number after the counter name, like this:

counter-reset: paracount 10;

If you want to define multiple counters, you simply add the names (and optional initial values) to the same counter-reset declaration, like this:

counter-reset: paracount 10 othercounter;

This declaration creates a counter called paracount (with an initial value of 10) and a counter called othercounter (with an initial value of 1). After you have initialized a counter, you can use it in the content property of styles that use the :before and :after selectors, like this:

content: counter(paracount) ". ";

Because this declaration has been used in a selector that includes :after, this has the effect of including the current value of the counter in the HTML before every element that the selector matches and, in this case, appending a period and a space after each value. The value is expressed as a decimal integer by default (1, 2, 3, etc.), but you can specify other numeric formats as well, like this:

content: counter(paracount, lower-alpha) ". ";

The additional argument to the counter function is the style of number you want. You may use any of the supported values for the list-style-type property, which I describe in Chapter 24.

You increment the counter using the special counter-increment property. The value for this property is the name of the counter you want to increment, like this:

counter-increment: paracount;

Counters are incremented by one by default, but you can specify a different increment by adding the step size you want to the declaration, like this:

counter-increment: paracount 2;

You can see the effect of the counter from Listing 17-18 in Figure 17-17.

[image: Image]

Figure 17-17. Using counters with generated content

Summary

In this chapter I have described the CSS selectors and pseudo-elements, which are the means by which you identify the elements that you want to apply a style to. The selectors allow you to match elements in broad sweeps or, by combining selectors, narrow your focus to elements in particular parts of your HTML documents. The pseudo-elements are a convenience that let you select content that doesn't really exist in the document. You'll see a similar principle in the next chapter when you examine pseudo-classes.

Learning the selectors is the key to getting the most out of CSS. In the chapters that follow, you will see lots of examples of selectors at work and I recommend that you take the time to experiment and become familiar with them yourself.

C H A P T E R 18

Using the CSS Selectors—Part II

In this chapter, I continue your tour of the CSS selectors and show you the pseudo-classes. As with the pseudo-elements, these are not classes that have been applied to your elements, but a convenience that allows you to select elements based on some common characteristics. Table 18-1 provides the summary for this chapter.

[image: Image]

[image: Image]

Using the Structural Pseudo-Class Selectors

The structural pseudo-class selectors allow you to select elements based on where they are in the document. These selectors are prefixed with a colon character (:); for example, :empty. You may use these selectors on their own or combined with another selector; for example, p:empty.

Using the :root Selector

The :root selector selects the root element in the document. This is perhaps the least useful of the pseudo-class selectors, because it will always return the html element. Table 18-2 summarizes the :root selector.

[image: Image]

Listing 18-1 shows the :root selector in use.

Listing 18-1. Using the :root Selector

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 :root {

 border: thin black solid;

 padding: 4px;

 }

 </style>

 </head>

 <body>

 Visit the Apress website

 <p>I like apples and oranges.</p>

 Visit the W3C website

 </body>

</html>

You can see the effect of this selector in Figure 18-1. It can be a little hard to make out, but there is a border around the entire document.

[image: Image]

Figure 18-1. Using the :root selector

Using the Child Selectors

The child selectors allow you to select single elements that are directly contained inside other elements. Table 18-3 summarizes these selectors.

[image: Image]

Using the :first-child Selector

The :first-child selector will match elements that are the first element defined by the element that contains them (the parent element, as it is known). Listing 18-2 shows the :first-child selector in use.

Listing 18-2. Using the :first-child Selector

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 :first-child {

 border: thin black solid;

 padding: 4px;

 }

 </style>

 </head>

 <body>

 Visit the Apress website

 <p>I like apples and oranges.</p>

 Visit the W3C website

 </body>

</html>

In Listing 18-2, I have used the :first-child selector on its own, meaning that it will match any element that is the first child of its containing element. You can see which elements are selected in Figure 18-2.

[image: Image]

Figure 18-2. Using the :first-child selector

You can be more specific by using the :first-child selector as a modifier and, optionally, combining it with other selectors. Listing 18-3 shows how.

Listing 18-3. Combining the :first-child Selector with Other Selectors

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 p > span:first-child {

 border: thin black solid;

 padding: 4px;

 }

 </style>

 </head>

 <body>

 Visit the Apress website

 <p>I like apples and oranges.</p>

 Visit the W3C website

 </body>

</html>

This selector will match any span element that is the first child of a p element. There is only one such element in the HTML in this example, and you can see the match in Figure 18-3.

[image: Image]

Figure 18-3. Combining the :first-child selector with another selector

Using the :last-child Selector

The :last-child selector selects elements that are the last elements defined by their containing element. Listing 18-4 shows the :last-child selector in use.

Listing 18-4. Using the :last-child Selector

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 :last-child {

 border: thin black solid;

 padding: 4px;

 }

 </style>

 </head>

 <body>

 Visit the Apress website

 <p>I like apples and oranges.</p>

 Visit the W3C website

 </body>

</html>

You can see which elements this selector matches in Figure 18-4. Notice that there is a border around the content area. This happens because the body element is the last child of the html element and is, therefore, matched by the selector.

[image: Image]

Figure 18-4. Using the :last-child selector

Using the :only-child Selector

The :only-child selector matches elements that are the only elements contained by their parent. Listing 18-5 shows this selector in use.

Listing 18-5. Using the :only-child Selector

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 :only-child {

 border: thin black solid;

 padding: 4px;

 }

 </style>

 </head>

 <body>

 Visit the Apress website

 <p>I like apples and oranges.</p>

 Visit the W3C website

 </body>

</html>

The only element that has a single child is the p element, which contains one span element. You can see that this is only element the selector matches in Figure 18-5.

[image: Image]

Figure 18-5. Using the :only-child selector

Using the :only-of-type selector

The :only-of-type selector matches elements that are the only child of their type defined by their parent. Listing 18-6 provides a demonstration.

Listing 18-6. Using the :only-of-type Selector

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 :only-of-type {

 border: thin black solid;

 padding: 4px;

 }

 </style>

 </head>

 <body>

 Visit the Apress website

 <p>I like apples and oranges.</p>

 Visit the W3C website

 </body>

</html>

You can see the elements that this selector matches in Figure 18-6. You can see that this selector matches quite widely when used on its own. In any document, there are usually a number of elements that are the only ones of their type defined by their parent. Of course, you can narrow the match by combining this selector with others.

[image: Image]

Figure 18-6. Using the :only-of-type selector

Using the nth-Child Selectors

The nth-child selectors are similar to the child selectors I described in the previous section, but they allow you to specify an index to match elements in a particular position. Table 18-4 summarizes the nth-child selectors.

[image: Image]

Each of these selectors takes an argument, which is the index of the element you are interested in; the indexes start at 1. Listing 18-7 shows the :nth-child selector in use.

Listing 18-7. Using the :nth-child Selector

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 body > :nth-child(2) {

 border: thin black solid;

 padding: 4px;

 }

 </style>

 </head>

 <body>

 Visit the Apress website

 <p>I like apples and oranges.</p>

 Visit the W3C website

 </body>

</html>

In Listing 18-7, I have selected all elements that are the second child of a body element. There is only one such element, as shown in Figure 18-7.

[image: Image]

Figure 18-7. Using the :nth-child element

I am not going to demonstrate the other nth-child selectors because they function in the same way as the corresponding regular child selector, with the addition of an index value.

Using the UI Pseudo-Class Selectors

The UI pseudo-class selectors allow you to select elements based on their state. Table 18-5 describes the UI selectors.

[image: Image]

[image: Image]

Selecting Enabled/Disabled Elements

Some elements have enabled and disabled states. Those that do are the ones that can be used to collect input from the user. The :enabled and :disabled selectors will not match any element that cannot be disabled. Listing 18-8 gives an example of using the :enabled selector.

Listing 18-8. Using the :enabled Selector

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 :enabled {

 border: thin black solid;

 padding: 4px;

 }

 </style>

 </head>

 <body>

 <textarea> This is an enabled textarea</textarea>

 <textarea disabled> This is a disabled textarea</textarea>

 </body>

</html>

The HTML in Listing 18-8 contains two textarea elements, one of which defines the disabled attribute. The :enabled selector will select the first textarea but not the second, as you can see in Figure 18-8.

[image: Image]

Figure 18-8. Using the :enabled selector

Selecting Checked Elements

Radio buttons and check boxes that are checked (either through the checked attribute or by the user) can be selected through the :checked selector. The problem in demonstrating this selector is that there isn't much styling that you can apply to check boxes and radio buttons. Listing 18-9 shows the application of the :checked selector.

Listing 18-9. Using the :checked Selector

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 :checked + span {

 background-color: red;

 color: white;

 padding: 5px;

 border: medium solid black;

 }

 </style>

 </head>

 <body>

 <form method="post" action="http://titan:8080/form">

 <p>

 <label for="apples">Do you like apples:</label>

 <input type="checkbox" id="apples" name="apples"/>

 This will go red when checked

 </p>

 <input type="submit" value="Submit"/>

 </form>

 </body>

</html>

To get around the styling limitations, I have used the sibling selector (described in Chapter 17) to change the appearance of the span element, which adjacent to the check box. You can see the transition from unchecked to checked in Figure 18-9.

[image: Image]

Figure 18-9. Selecting checked elements

There is no specific selector for unchecked elements, but you can combine :checked with the negation selector, which is described in the section “Using the Negation Selector,” later in this chapter.

Selecting Default Elements

The :default element selects the default element from among a group of similar elements. For example, the submit button is always the default button in a form. You can see the :default selector used in Listing 18-10.

Listing 18-10. Using the :default Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 :default {

 outline: medium solid red;

 }

 </style>

 </head>

 <body>

 <form method="post" action="http://titan:8080/form">

 <p>

 <label for="name">Name: <input id="name" name="name"/></label>

 </p>

 <button type="submit">Submit Vote</button>

 <button type="reset">Reset</button>

 </form>

 </body>

</html>

This selector is most often used with the outline property, which I describe in Chapter 19. You can see the effect of this selector in Figure 18-10.

[image: Image]

Figure 18-10. Using the :default selector

Selecting Valid and Invalid input Elements

The :valid and :invalid selectors match input elements that have met or failed their input validation requirements, respectively. You can learn more about input validation in Chapter 14. Listing 18-11 shows these selectors in use.

Listing 18-11. Using the :valid and :invalid Selectors

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 :invalid {

 outline: medium solid red;

 }

 :valid {

 outline: medium solid green;

 }

 </style>

 </head>

 <body>

 <form method="post" action="http://titan:8080/form">

 <p>

 <label for="name">Name: <input required id="name" name="name"/></label>

 </p>

 <p>

 <label for="name">City: <input required id="city" name="city"/></label>

 </p>

 <button type="submit">Submit</button>

 </form>

 </body>

</html>

In Listing 18-11, I have applied a red outline for invalid elements and a green outline for valid elements. There are two input elements in the document, and both have the required attribute. This means that they will be valid only if a value has been entered. You can see the effect of these selectors in Figure 18-11.

[image: Image]

Figure 18-11. Selecting valid and invalid input elements

[image: Image] Tip Notice that the submit button has been affected as well, at least in Chrome. This occurs because the logic behind the :valid selector is fairly simplistic and selects any input element that is not invalid. To filter out certain input elements, you can use the attribute selectors described in Chapter 17, or a more specific selector, such as those described next.

Selecting input Elements with Range Limitations

A more specific variation on input validation is to select input elements that have a constraint on the range of values that they can contain. The :in-range selector matches input elements that are in range and the :out-of-range selector selects those that are not. Listing 18-12 shows these attributes in use.

Listing 18-12. Using the :in-range and :out-of-range Selectors

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 :in-range {

 outline: medium solid green;

 }

 :out-of-range: {

 outline: medium solid red;

 }

 </style>

 </head>

 <body>

 <form method="post" action="http://titan:8080/form">

 <p>

 <label for="price">

 $ per unit in your area:

 <input type="number" min="0" max="100"

 value="1" id="price" name="price"/>

 </label>

 </p>

 <input type="submit" value="Submit"/>

 </form>

 </body>

</html>

As I write this, none of the mainstream browsers implement the :out-of-range selector, and only Chrome and Opera support the :in-range selector. I expect this to change quickly because this functionality is tied to the new HTML5 support, which is likely to have very widespread adoption. You can see the effect of the :in-range selector in Figure 18-12.

[image: Image]

Figure 18-12. The effect of the :in-range selector

Selecting Required and Optional input Elements

The :required selector matches input elements that have the required attribute. This ensures that the user must enter a value before submitting the HTML form with which the input element is associated (you can get more details about the required attribute in Chapter 14). The :optional selector selects input elements that do not have the required attribute. Both attributes are shown in Listing 18-13.

Listing 18-13. Selecting Required and Optional input Elements

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 :required {

 outline: medium solid green;

 }

 :optional {

 outline: medium solid red;

 }

 </style>

 </head>

 <body>

 <form method="post" action="http://titan:8080/form">

 <p>

 <label for="price1">

 $ per unit in your area:

 <input type="number" min="0" max="100" required

 value="1" id="price1" name="price1"/>

 </label>

 <label for="price2">

 $ per unit in your area:

 <input type="number" min="0" max="100"

 value="1" id="price2" name="price2"/>

 </label>

 </p>

 <input type="submit" value="Submit"/>

 </form>

 </body>

</html>

In Listing 18-13, I have defined two number type input elements. One has the required attribute, but otherwise the two are identical. You can see the effect of the selectors and the associated styles in Figure 18-13. Note that the submit type input has also been selected. The :optional selector doesn't distinguish between types of input elements.

[image: Image]

Figure 18-13. Selecting required and optional input elements

Using the Dynamic Pseudo-Class Selectors

The dynamic pseudo-class selectors are so-called because they match elements based on conditions that change, as opposed to the fixed state of the document. The division between static and dynamic selectors has blurred with the wider use of JavaScript to modify the documents contents and the state of elements, but these are still considered to be a separate category of selectors.

Using the :link and :visited Selectors

The :link selector matches hyperlinks and the :visited selector matches those hyperlinks that the user has previously visited. Table 18-6 summarizes these selectors.

[image: Image]

Browsers are free to decide how long a link remains visited after a user has clicked on it. When the user clears the browser history, or when the history naturally times out, links will return to the unvisited state. Listing 18-14 shows these selectors in use.

Listing 18-14. Using the :link and :visited Selectors

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 :link {

 border: thin black solid;

 background-color: lightgrey;

 padding: 4px;

 color:red;

 }

 :visited {

 background-color: grey;

 color:white;

 }

 </style>

 </head>

 <body>

 Visit the Apress website

 <p>I like apples and oranges.</p>

 Visit the W3C website

 </body>

</html>

The only point to note in this example is that only some properties can be applied to links using the :visited selector. You can change the colors and the font, but that's about it. You can see the change when a link is visited in Figure 18-14. I start with a pair of links that have not been visited and click one of them to go to the http://apress.com web site. When I return to the example HTML, the visited link is styled differently.

[image: Image]

Figure 18-14. Using the :link and :visited selectors

 [image: Image] Tip The :visited selector will match any link for which the href property is a URL that the user has visited from any page, not just your page. The most common use for the :visited selector is to apply a style so that visited links are not differentiated from unvisited ones.

Using the :hover Selector

The :hover selector will match any element that the user's mouse hovers over. The selected elements change as the user moves their mouse around the document. Table 18-7 describes this selector.

[image: Image]

The browser is free to interpret the :hover selector in a way that makes sense for the display that is being used, but most browsers associate the selector with the movement of the mouse over the window. Listing 18-15 shows the selector being used.

Listing 18-15. Using the :hover Selector

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 :hover {

 border: thin black solid;

 padding: 4px;

 }

 </style>

 </head>

 <body>

 Visit the Apress website

 <p>I like apples and oranges.</p>

 Visit the W3C website

 </body>

</html>

This selector will match multiple nested elements, as you can see in Figure 18-15.

[image: Image]

Figure 18-15. Using the :hover selector

Using the :active Selector

The :active selector matches elements during the period when the user is activating them. Once again, browsers have latitude about how they interpret this activation, but for most browsers it occurs when the mouse is pressed (or in result to a finger press on a touch screen). Table 18-8 summarizes the :active selector.

[image: Image]

Listing 18-16 gives an example of using this selector.

Listing 18-16. Using the :active Selector

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 :active {

 border: thin black solid;

 padding: 4px;

 }

 </style>

 </head>

 <body>

 Visit the Apress website

 <p>I like apples and oranges.</p>

 <button>Hello</button>

 </body>

</html>

I have added a button to the markup in the listing, but the :active selector isn't limited to elements with which the user can interact. Any element in which the mouse has been pressed will be selected, as you can see in Figure 18-16.

[image: Image]

Figure 18-16. Using the :active selector

Using the :focus Selector

The last of the dynamic pseudo-class selectors is :focus, which selects elements while they have the focus. Table 18-9 summarizes this selector.

[image: Image]

Listing 18-17 demonstrates the use of this selector.

Listing 18-17. Using the :focus Selector

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 :focus{

 border: thin black solid;

 padding: 4px;

 }

 </style>

 </head>

 <body>

 <form>

 Name: <input type="text" name="name"/>

 <p/>

 City: <input type="text" name="city"/>

 <p/>

 <input type="submit"/>

 </form>

 </body>

</html>

The style is applied to each element, in turn, as I tab through the input elements in the markup. You can see the effect shown in Figure 18-17.

[image: Image]

Figure 18-17. The effect of the :focus selector

Other Pseudo-Selectors

There are a few selectors that don't fit neatly into the categories I have used to group selectors in this chapter. In the following sections, I'll explain each of them in turn.

Using the Negation Selector

The negation selector lets you invert any selection. It is a surprisingly useful selector, and it is often overlooked. Table 18-10 summarizes the negation selector.

[image: Image]

Listing 18-18 shows the negation selector in use.

Listing 18-18. Using the Negation Selector

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 a:not([href*="apress"]) {

 border: thin black solid;

 padding: 4px;

 }

 </style>

 </head>

 <body>

 Visit the Apress website

 <p>I like apples and oranges.</p>

 Visit the W3C website

 </body>

</html>

This selector matches all a elements that don't have an href element that contains the string apress. You can see the effect of this selector in Figure 18-18.

[image: Image]

Figure 18-18. Using the negation selector

Using the :empty Selector

The :empty selector matches elements that define no children. This selector is summarized in Table 18-11. It is hard to illustrate this selector because its matches contain no content.

[image: Image]

Using the :lang Selector

The :lang selector matches elements based on the lang global attribute (described in Chapter 3). Table 18-12 summarizes this selector.

[image: Image]

Listing 18-19 shows the lang selector in use.

Listing 18-19. Using the lang Selector

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 :lang(en) {

 border: thin black solid;

 padding: 4px;

 }

 </style>

 </head>

 <body>

 Visit the Apress website

 <p>I like apples and oranges.</p>

 Visit the W3C website

 </body>

</html>

This selector matches elements that have a lang attribute that denotes they are written in English. The effect of the :lang selector is the same as the |= attribute selector example in Listing 17-8 in Chapter 17.

Using the :target Selector

In Chapter 3, I mention that you could append a fragment identifier to a URL to navigate directly to an element based on the value of the id global attribute. For example, if the HTML document example.html has an element with an id value of myelement, then you can navigate directly to that element by requesting example.html#myelement. The :target selector matches the element that the URL fragment identifier refers to. Table 18-13 summarizes this selector.

[image: Image]

Listing 18-20 shows the :target selector in action.

Listing 18-20. Using the :target Selector

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 :target {

 border: thin black solid;

 padding: 4px;

 color:red;

 }

 </style>

 </head>

 <body>

 Visit the Apress website

 <p id="mytarget">I like apples and oranges.</p>

 Visit the W3C website

 </body>

</html>

You can see how the requested URL changes the element matched by the :target selector in Figure 18-19.

[image: Image]

Figure 18-19. Using the :target selector

Summary

In this chapter I have described the CSS selectors, which are the means by which you identify the elements that you want to apply a style to. The selectors allow you to match elements in broad sweeps or, by combining selectors, narrow your focus to elements in particular parts of your HTML documents. Learning the selectors is the key to getting the most out of CSS.

C H A P T E R 19

Using Borders and Backgrounds

In this chapter, I introduce the properties that you can use to apply background and borders to an element. These are very commonly used features that have been enhanced in CSS3. For example, you can now create borders with curved edges, use images for borders, and create drop shadows for elements. These might seem like simple things, but their omission from CSS has led to endless efforts to provide these features in other ways, with mixed success. Table 19-1 provides the summary for this chapter.

[image: Image]

[image: Image]

Applying a Border

Let's start with the properties that control borders. These are very commonly applied and they will give you something visible to work with when you consider the margin and padding properties in Chapter 20. The three key properties for basic borders are border-width, border-style, and border-color. Table 19-2 describes all three properties.

[image: Image]

You can see these properties in use in Listing 19-1.

Listing 19-1. Defining a Basic Border

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style type="text/css">

 p {

 border-width: 5px;

 border-style: solid;

 border-color: black;

 }

 </style>

 </head>

 <body>

 <p>

 There are lots of different kinds of fruit - there are over 500 varieties

 of banana alone. By the time we add the countless types of apples, oranges,

 and other well-known fruit, we are faced with thousands of choices.

 </p>

 </body>

</html>

In Listing 19-1, I have used a p element to denote a paragraph, and the style element to apply a border using the border-width, border-style, and border-color properties.

Defining the Border Width

You may express the border-width property as a regular CSS length, as a percentage of the width of the area that the border will be drawn around, or as one of three shortcut values. Table 19-3 describes these options. The default border-width value is medium.

[image: Image]

Defining the Border Style

The border-style property can be one of the values shown in Table 19-4. The default value is none, meaning that no border is drawn.

[image: Image]

You can see how each of these border types appear in Figure 19-1.

[image: Image]

Figure 19-1. The different values for the border-style property

Some browsers have problems applying two-color border styles, such as inset and outset, when the border-color property is black. These browsers, including Google Chrome, use black for both tones, which creates an effect identical to the solid style. Smarter browsers know to use a shade of gray, including Firefox. To create the figure (which shows Chrome), I set the border-color property to gray for the groove, inset, outset, and ridge styles.

Applying a Border to a Single Side

You can apply different borders to each side of an element using properties that are more specific, as described in Table 19-5.

[image: Image]

You can either build up the border using these properties, or use them in conjunction with their more generic counterparts to override specific edges of a border. Listing 19-2 shows the latter approach.

Listing 19-2. Using the Side-Specific Border Properties

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style type="text/css">

 p {

 border-width: 5px;

 border-style: solid;

 border-color: black;

 border-left-width: 10px;

 border-left-style: dotted;

 border-top-width: 10px;

 border-top-style: dotted;

 }

 </style>

 </head>

 <body>

 <p>

 There are lots of different kinds of fruit - there are over 500 varieties

 of banana alone. By the time we add the countless types of apples, oranges,

 and other well-known fruit, we are faced with thousands of choices.

 </p>

 </body>

</html>

You can see the effect of these properties in Figure 19-2.

[image: Image]

Figure 19-2. Applying borders to individual edges

Using the border Shorthand Properties

Rather than use individual properties for the style, width, and color, you can use shorthand properties that set all three values in one step. Table 19-6 describes these properties.

[image: Image]

You set the values for these properties by specifying the width, style, and color values in a single line, separated by spaces, as shown in Listing 19-3.

Listing 19-3. Using the border Shorthand Properties

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style type="text/css">

 p {

 border: medium solid black;

 border-top: solid 10px;

 }

 </style>

 </head>

 <body>

 <p>

 There are lots of different kinds of fruit - there are over 500 varieties

 of banana alone. By the time we add the countless types of apples, oranges,

 and other well-known fruit, we are faced with thousands of choices.

 </p>

 </body>

</html>

Notice that I have not specified a color for the border-top property. If you omit one or more of the values, the browser will use whatever value has been previously defined; in this case, the color specified by the border shorthand property. You can see the effect of these properties in Figure 19-3.

[image: Image]

Figure 19-3. Using the border shorthand properties

Creating a Border with Rounded Corners

You can create a border with rounded corners using the border radius feature. There are five properties associated with this capability. Table 19-7 summarizes each of these.

[image: Image]

You define a curved corner by specifying two radii values, either as a length or as a percentage. The first value specifies the horizontal radius, and the second specifies the vertical radius. Percentage values are of the horizontal and vertical size of the element's box. You can see how the radii values are used to determine the curve of a border in Figure 19-4.

[image: Image]

Figure 19-4. Using radii to specify the curve of a border

As you can see in the figure, the radii values are used to project an oval that intersects with the element's box, and shapes the corner of the border. Listing 19-4 shows these values expressed as part of a style declaration.

Listing 19-4. Creating a Curved Border

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style type="text/css">

 p {

 border: medium solid black;

 border-top-left-radius: 20px 15px;

 }

 </style>

 </head>

 <body>

 <p>

 There are lots of different kinds of fruit - there are over 500 varieties

 of banana alone. By the time we add the countless types of apples, oranges,

 and other well-known fruit, we are faced with thousands of choices.

 </p>

 </body>

</html>

If you supply only one value, then both the horizontal and vertical radii will use this value. You can see the effect, as shown by the browser, in Figure 19-5. I have magnified the curved border area to make it clearer to see.

[image: Image]

Figure 19-5. Creating a curved border

 [image: Image] Tip Notice that the border touches the text in the figure. To create space between an element's content and its border, you add padding, which is covered in Chapter 20.

The border-radius shorthand property lets you specify one value for all four corners, or four individual values in a single value, as shown in Listing 19-5.

Listing 19-5. Using the border-radius Shorthand Property

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style type="text/css">

 p {

 border: medium solid black;

 }

 #first {

 border-radius: 20px / 15px;

 }

 #second {

 border-radius: 50% 20px 25% 5em / 25% 15px 40px 55%

 }

 </style>

 </head>

 <body>

 <p id="first">

 There are lots of different kinds of fruit - there are over 500 varieties

 of banana alone. By the time we add the countless types of apples, oranges,

 and other well-known fruit, we are faced with thousands of choices.

 </p>

 <p id="second">

 There are lots of different kinds of fruit - there are over 500 varieties

 of banana alone. By the time we add the countless types of apples, oranges,

 and other well-known fruit, we are faced with thousands of choices.

 </p>

 </body>

</html>

In Listing 19-5, there are two paragraphs, each of which has its own border-radius declaration. The first declaration specifies just two values, which are applied to all four corners of the border. Notice that the horizontal values are separated from the vertical values by a / character. The second declaration specifies eight values. The first four values are the horizontal radius values for each corner and the last four are the horizontal counterparts. These sets of values are also separated by a / character.

You can see the effect of these declarations in Figure 19-6. The result is a little odd, but it demonstrates how you can use a single declaration to define a different curve for each corner, and how you can freely mix percentage and length values.

[image: Image]

Figure 19-6. Using the border-radius shorthand property

Using Images As Borders

You are not limited to borders defined by the border-style property. You may also use images to create truly custom borders for your elements. There are five properties that configure individual aspects of an image border, plus a shorthand property that you may use to configure everything in a single declaration. Table 19-8 shows all six properties.

[image: Image]

[image: Image]

The problem is that, as I write this, the mainstream browsers do not support these properties. You can use images as borders, but only through the shorthand property and only with the browser-specific prefixes that I described in Chapter 16 (and IE doesn't support this feature at all). This allows me to demonstrate the basic feature, but not to show you the individual properties. The browser-specific shorthand properties work in the same way as the border-image property, so you should have no problems transferring the examples in this section to the standard properties when the browsers support them.

Slicing an Image

The key to using an image as a border is slicing. You specify values that are offsets into the image, which the browser uses to slice the image into nine parts. To demonstrate the effect of the slices, I have created an image that will make it easy to see how the browser performs the slices, and uses each slice. You can see this image in Figure 19-7.

[image: Image]

Figure 19-7. An image designed to demonstrate the border feature

This image is 90 pixels by 90 pixels, and each of the individual tiles are 30 pixels by 30 pixels. The middle tile is transparent. To slice the image, you provide insets from the top, right, bottom, and left edges of the image, expressed as lengths or percentages of the image size. You can provide different values for all four insets, or two values (which are used for the horizontal and vertical insets), or just a single value, which is then used for all four insets. For this image, I used a single value of 30px, which created the required slices, as shown in Figure 19-8.

[image: Image]

Figure19-8. Slicing a border image

Slicing the image generates eight tiles. The tiles marked 1, 3, 6, and 8 are used to draw the corners of the border, and the tiles marked 2, 4, 5, and 7 are used to draw the border edges. Listing 19-6 shows the browser-specific properties used to slice an image and apply it as a border.

Listing 19-6. Slicing an Image and Using It As a Border

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style type="text/css">

 p {

 -webkit-border-image: url(bordergrid.png) 30 / 50px;

 -moz-border-image: url(bordergrid.png) 30 / 50px;

 -o-border-image: url(bordergrid.png) 30 / 50px;

 }

 </style>

 </head>

 <body>

 <p>

 There are lots of different kinds of fruit - there are over 500 varieties

 of banana alone. By the time we add the countless types of apples, oranges,

 and other well-known fruit, we are faced with thousands of choices.

 </p>

 </body>

</html>

Each property declaration has the same arguments. You have to use the url function to specify the image (this is required because the CSS specification reserves the right to implement other means of obtaining images). In each case, I have provided a single slice value of 30, matching the tile size of the example image. Note than when specifying the slice, you don't provide the units, as they are assumed to be pixels.

The / character is used to separate the slice values from the border width values. We can specify different widths for each side of the element, but I have provided a single value that will be used for all four; in this case, I have chosen a border width of 50px. Figure 19-9 shows how Chrome displays the image. Firefox and Opera look exactly the same.

[image: Image]

Figure 19-9. Using an image for a border

You can see how the browser has used each slice of the image. The slices marked 2 and 7 can be a little hard to make out, but they have been used for the top and bottom edges, respectively.

Controlling the Slice Repeat Style

You can see in Figure 19-10 that the slices have been stretched to fill the space available in the border. You can change the repeat style to get a different effect. This is the responsibility of the border-image-repeat property, but you can also specify the repeat style using the shorthand properties. Table 19-9 describes the values that you can use to define the repeat style.

[image: Image]

As I write this, support for the repeat style values is patchy. None of the browsers support the space value, and Chrome doesn't support the round value. Listing 19-7 shows how you can use the repeat and round values with Firefox to change the border repeat style.

Listing 19-7. Controlling the Slice repeat Style

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style type="text/css">

 p {

 -moz-border-image: url(bordergrid.png) 30 / 50px round repeat;

 }

 </style>

 </head>

 <body>

 <p>

 There are lots of different kinds of fruit - there are over 500 varieties

 of banana alone. By the time we add the countless types of apples, oranges,

 and other well-known fruit, we are faced with thousands of choices.

 </p>

 </body>

</html>

In Listing 19-7, the first value specifies the horizontal repeat style, and the second specifies the vertical. If you provide just one value, it will be used for both the horizontal and vertical repeats. You can see the difference between these values in Figure 19-10.

[image: Image]

Figure 19-10. The round and repeat values for border slice repetition

Notice that the top and bottom edges don't contain any partial slices. The 2 and 7 numerals have been stretched slightly and then repeated, so that there are no broken bits. By contrast, the left and right edges, which are set to use the repeat style, are fragmented to fill the space.

Setting Element Backgrounds

The second visible area of the box model is the element's contents. In this section, I'll introduce the properties that you can use to style the background of this area. (For details of how to style the content itself, see Chapter 22.) The properties are described in Table 19-10.

[image: Image]

Setting the Background Color and Image

The starting point for element backgrounds is to set a background color or an image—or both—using background properties, as demonstrated in Listing 19-8.

Listing 19-8. Setting the Background Color and Image

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style type="text/css">

 p {

 border: medium solid black;

 background-color: lightgray;

 background-image: url(banana.png);

 background-size: 40px 40px;

 background-repeat: repeat-x;

 }

 </style>

 </head>

 <body>

 <p>

 There are lots of different kinds of fruit - there are over 500 varieties

 of banana alone. By the time we add the countless types of apples, oranges,

 and other well-known fruit, we are faced with thousands of choices.

 </p>

 </body>

</html>

In this example, I have set the background-color to lightgray, and used the url function to load an image called banana.png for the background-image property. You can see the effect of this image in Figure 19-11. The background image is always drawn over the background color.

[image: Image]

Figure 19-11. Using a background color and image

This image overwhelms the element's text somewhat, but then background images tend to do that unless chosen very carefully. Notice that the image is repeated horizontally across the element in the figure. This is achieved through the background-repeat property, the allowed values for which are described in Table 19-11.

[image: Image]

You can specify a value for both the horizontal and vertical repeats, but if you provide only one value, the browser will use that style of repeat in both directions. The exceptions are repeat-x and repeat-y, where the browser will use the no-repeat style for the second value.

Setting the Background Image Size

The image I have specified is too large for the element, so I have used the background-size property to specify that the image should be resized to 40 pixels by 40 pixels. In addition to lengths, you can specify percentages (which are derived from the width and height of the image), and some predefined values, described in Table 19-12.

[image: Image]

The contain value ensures that the image is scaled so that all of it can be seen inside of the element. The browser determines if the image length or height is larger, and uses this as the axis for scaling. By contract, for the cover value, the browser selects the smallest value, and scales the image along this axis. This means that not all of the image will be displayed. You can see the two different size styles in Figure 19-12.

[image: Image]

Figure 19-12. The contain and cover size styles

The banana image is taller than it is wide. This means that when you use the cover value, the image will be scaled so that the width is displayed fully, even if not all of the image height can be displayed. You can see this effect in the uppermost element Figure 19-12. When using the contain value, the image is scaled so that the largest axis is visible in its entirety, meaning that the entire image will be displayed, even if it doesn't cover the entire background area. You can see this effect in the lower element in Figure 19-12.

Setting the Background Image Position

The background-position property lets you instruct the browser as to where the background image should be located. This is most useful when you are not repeating the image. You can see this property in use in Listing 19-9.

Listing 19-9. Positioning the Background Image

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style type="text/css">

 p {

 border: 10px double black;

 background-color: lightgray;

 background-image: url(banana.png);

 background-size: 40px 40px;

 background-repeat: no-repeat;

 background-position: 30px 10px;

 }

 </style>

 </head>

 <body>

 <p>

 There are lots of different kinds of fruit - there are over 500 varieties

 of banana alone. By the time we add the countless types of apples, oranges,

 and other well-known fruit, we are faced with thousands of choices.

 </p>

 </body>

</html>

This declaration tells the browser to draw the background image 30 pixels from the left edge and 10 pixels from the top edge. I specified the position using lengths, but you can also use the predefined values shown in Table 19-13.

[image: Image]

The first value controls the vertical position and can be top, bottom, or center. The second value controls the horizontal position and can be left, right, or center. You can see the effect of positioning the image in Figure 19-13.

[image: Image]

Figure 19-13. Positioning the background image

Setting the Attachment for the Background

When you apply a background to an element that has a viewport, you can specify how the background is attached to the content. A good example of an element with a viewport is textarea (described in Chapter 14), which will automatically add scrollbars to display content. Another common example is the body element, which can have scrollbars when the content is longer than the browser window (you can find details of the body element in Chapter 7). You control the background attachment using the background-attachment property. Table 19-14 describes the allowed values.

[image: Image]

Listing 19-10 shows the textarea element used with the border-attachment property.

Listing 19-10. Using the border-attachment Property

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style type="text/css">

 textarea {

 border: medium solid black;

 background-color: lightgray;

 background-image: url(banana.png);

 background-size: 60px 60px;

 background-repeat: repeat;

 background-attachment: scroll;

 }

 </style>

 </head>

 <body>

 <p>

 <textarea rows="8" cols="30">

 There are lots of different kinds of fruit - there are over 500 varieties

 of banana alone. By the time we add the countless types of apples, oranges,

 and other well-known fruit, we are faced with thousands of choices.

 </textarea>

 </p>

 </body>

</html>

I can't demonstrate the different attachment modes in figures. This is something that you have to see in the browser yourself. To see the difference between the fixed and scroll modes, use the example HTML document, resize the browser window so that the textarea isn't fully shown, and then scroll using the browser scrollbar (not the textarea one).

Setting the Background Image Origin and Clipping Style

The origin of the background specifies where the background color and image are applied. The clipping style determines the region where the background color and image are drawn in the element's box. The background-origin and background-clip properties control these features, and each has the same three allowed values, which are described in Table 19-15.

[image: Image]

Listing 19-11 shows the use of the background-origin property.

Listing 19-11. Using the background-origin Property

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style type="text/css">

 p {

 border: 10px double black;

 background-color: lightgray;

 background-image: url(banana.png);

 background-size: 40px 40px;

 background-repeat: repeat;

 background-origin: border-box;

 }

 </style>

 </head>

 <body>

 <p>

 There are lots of different kinds of fruit - there are over 500 varieties

 of banana alone. By the time we add the countless types of apples, oranges,

 and other well-known fruit, we are faced with thousands of choices.

 </p>

 </body>

</html>

In Listing 19-11, I have selected the border-box value, which means that the browser will draw the background color and image under the border. I say under, because the border is always drawn over the background. You can see the effect in Figure 19-14.

[image: Image]

Figure 19-14. Using the background-origin property

The background-clip property determines which portion of the background is visible by applying a clipping box. Anything outside the box is discarded and not shown. You have the same three values available as for the background-origin property, and you can see the effect of combining these properties in Listing 19-12.

Listing 19-12. Using the background-clip Property

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style type="text/css">

 p {

 border: 10px double black;

 background-color: lightgray;

 background-image: url(banana.png);

 background-size: 40px 40px;

 background-repeat: repeat;

 background-origin: border-box;

 background-clip: content-box;

 }

 </style>

 </head>

 <body>

 <p>

 There are lots of different kinds of fruit - there are over 500 varieties

 of banana alone. By the time we add the countless types of apples, oranges,

 and other well-known fruit, we are faced with thousands of choices.

 </p>

 </body>

</html>

This combination tells the browser to draw the background within the border box, but discard anything outside of the content box. You can see the effect, which is quite subtle, in Figure 19-15.

[image: Image]

Figure 19-15. Using the border-origin and border-clip properties together

Using the background Shorthand Property

The background property allows you to set all of the different background values in a single declaration. Here is the format for the value of this property, referencing the individual properties:

background: <background-color> <background-position> <background-size>

 <background-repeat> <background-origin> <background-clip> <background-attachment>

 <background-image>

This is quite a lengthy value declaration, but you may omit values. If you do, then the browser will use the defaults. Listing 19-13 shows the border shorthand property in use.

Listing 19-13. Using the border Shorthand Property

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style type="text/css">

 p {

 border: 10px double black;

 background: lightgray top right no-repeat border-box content-box

 local url(banana.png);

 }

 </style>

 </head>

 <body>

 <p>

 There are lots of different kinds of fruit - there are over 500 varieties

 of banana alone. By the time we add the countless types of apples, oranges,

 and other well-known fruit, we are faced with thousands of choices.

 </p>

 </body>

</html>

This single property is equivalent to the following set of individual properties:

background-color: lightgray;

background-position: top right;

background-repeat: no-repeat;

background-origin: border-box;

background-position: content-box;

background-attachment: local;

background-image: url(banana.png);

 [image: Image] Tip Not all browsers support this property, at present.

Creating a Box Shadow

One of the most keenly awaited CSS3 features is the ability to add drop shadows to an element's box. You do this using the drop-shadow property, which is described in Table 19-16.

[image: Image]

The value for the box-shadow element is made up as follows:

box-shadow: hoffset voffset blur spread color inset

These individual value elements are described in Table 19-17.

[image: Image]

[image: Image]

 [image: Image] Caution Take care when omitting the color value. This should be an optional value, allowing the browser to apply a standard color, perhaps one that is appropriate for the user's operating system or browser choice. But at the time of writing, Webkit-based browsers won't draw a border in a color is not specified. For this reason, it is worth explicitly specifying a color in the box-shadow value.

You can see this property used in Listing 19-14.

Listing 19-14. Creating a Drop Shadow

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style type="text/css">

 p {

 border: 10px double black;

 box-shadow: 5px 4px 10px 2px gray;

 }

 </style>

 </head>

 <body>

 <p>

 There are lots of different kinds of fruit - there are over 500 varieties

 of banana alone. By the time we add the countless types of apples, oranges,

 and other well-known fruit, we are faced with thousands of choices.

 </p>

 </body>

</html>

You can see the effect of this property in Figure 19-16.

[image: Image]

Figure 19-16. A box shadow applied to an element

You may define multiple shadows in a single box-shadow declaration. To do this, separate each declaration with a comma, as shown in Listing 19-15.

Listing 19-15. Applying Multiple Shadows to an Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style type="text/css">

 p {

 border: 10px double black;

 box-shadow: 5px 4px 10px 2px gray, 4px 4px 6px gray inset;

 }

 </style>

 </head>

 <body>

 <p>

 There are lots of different kinds of fruit - there are over 500 varieties

 of banana alone. By the time we add the countless types of apples, oranges,

 and other well-known fruit, we are faced with thousands of choices.

 </p>

 </body>

</html>

In Listing 19-15, I have defined two shadows, one of which is inset. You can see the effect in Figure 19-17.

[image: Image]

Figure 19-17. Defining multiple shadows for an element

Using Outlines

Outlines are an alternative to borders. They are most useful for temporarily drawing the attention of a user to an element, such as a button that must be pressed or an error in data entry. You draw outlines outside of the border box. The key difference between a border and an outline is that outlines are not considered to be part of the page, and so do not cause the page layout to be adjusted when you apply them. Table 19-18 describes the elements that relate to outlines.

[image: Image]

Listing 19-16 shows the application of an outline. I have included a simple script in this example so that I can demonstrate the way in which outlines are drawn without causing the page to be laid out again.

Listing 19-16. Using an Outline

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 p {

 width: 30%;

 padding: 5px;

 border: medium double black;

 background-color: lightgray;

 margin: 2px;

 float: left;

 }

 #fruittext {

 outline: thick solid red;

 }

 </style>

 </head>

 <body>

 <p>

 There are lots of different kinds of fruit - there are over 500

 varieties of banana alone. By the time we add the countless types of

 apples, oranges, and other well-known fruit, we are faced with

 thousands of choices.

 </p>

 <p id="fruittext">

 There are lots of different kinds of fruit - there are over 500

 varieties of banana alone. By the time we add the countless types of

 apples, oranges, and other well-known fruit, we are faced with

 thousands of choices.

 </p>

 <p>

 There are lots of different kinds of fruit - there are over 500

 varieties of banana alone. By the time we add the countless types of

 apples, oranges, and other well-known fruit, we are faced with

 thousands of choices.

 </p>

 <button>Outline Off</button>

 <button>Outline On</button>

 <script>

 var buttons = document.getElementsByTagName("BUTTON");

 for (var i = 0; i < buttons.length; i++) {

 buttons[i].onclick = function(e) {

 var elem = document.getElementById("fruittext");

 if (e.target.innerHTML == "Outline Off") {

 elem.style.outline = "none";

 } else {

 elem.style.outlineColor = "red";

 elem.style.outlineStyle = "solid";

 elem.style.outlineWidth = "thick";

 }

 };

 }

 </script>

 </body>

</html>

You can see the effect of applying an outline in Figure 19-18. Notice how the elements do not change position. This is because outlines are not assigned their own space in the page layout.

[image: Image]

Figure 19-18. Applying an outline to an element

Summary

In this chapter, I have shown you the properties that you can use to add borders, backgrounds, and outlines to an element's box.

You can select borders from a set of simple styles, or completely customize them using images. The key technique for image borders is slicing, in which an image is divided up into sections, each of which is then used to draw part of the border.

You can use backgrounds to complement borders. I showed you how to create color or image backgrounds, and how you can configure them to relate to the rest of the element's box.

I finished this chapter by demonstrating drop shadows, which, along with curved borders, are the main new features that CSS3 adds to the area of borders and backgrounds.

C H A P T E R 20

Working with the Box Model

In this chapter, I cover the CSS properties you can use to configure an element’s box model. As I explained in Chapter 16, the box model is one of the fundamental concepts in CSS, and you use it to configure the appearance of elements and the overall layout of your documents. Table 20-1 provides the summary for this chapter.

[image: Image]

[image: Image]

Applying Padding to an Element

Padding adds space between an element’s contents and its border. You can set padding for individual edges of the content box, or use a shorthand padding property to apply values in a single declaration. The padding properties are listed in Table 20-2.

[image: Image]

When specifying padding using percentage values, the percentage is always derived from the width of the containing block; the height isn’t taken into account. Listing 20-1 shows how you can apply padding to an element.

Listing 20-1. Applying Padding to an Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style type="text/css">

 p {

 border: 10px double black;

 background-color: lightgray;

 background-clip: content-box;

 padding-top: 0.5em;

 padding-bottom: 0.3em;

 padding-right: 0.8em;

 padding-left: 0.6em;

 }

 </style>

 </head>

 <body>

 <p>

 There are lots of different kinds of fruit - there are over 500 varieties

 of banana alone. By the time we add the countless types of apples, oranges,

 and other well-known fruit, we are faced with thousands of choices.

 </p>

 </body>

</html>

In Listing 20-1, I have applied a different amount of padding to each side of the box. You can see the effect this has in Figure 20-1. I have set the background-clip property (described in Chapter 19) so that the background color doesn’t cover the padding area, which will emphasize the effect of the padding.

[image: Image]

Figure 20-1. Applying padding to an element

You can use the padding shorthand property to set the padding for all four edges in a single declaration. You can specify one to four values for this property. When you supply four values, they are used to set the padding for the top, right, bottom, and left edges, respectively. As you omit values, the best-matching specified value is used: if you omit the left value, it is the same as the right; if you omit the bottom value, it is the same as the top. If you omit all but one value, then all four edges take on that same padding value.

Listing 20-2 shows how you use the padding shorthand property. I have added a curved border to this example to show how you can use padding to ensure that the border doesn’t get drawn over the element content.

Listing 20-2. Using the padding Shorthand Property

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style type="text/css">

 p {

 border: 10px solid black;

 background: lightgray;

 border-radius: 1em 4em 1em 4em;

 padding: 5px 25px 5px 40px;

 }

 </style>

 </head>

 <body>

 <p>

 There are lots of different kinds of fruit - there are over 500 varieties

 of banana alone. By the time we add the countless types of apples, oranges,

 and other well-known fruit, we are faced with thousands of choices.

 </p>

 </body>

</html>

You can see how the browser displays the border and padding in Figure 20-2.

[image: Image]

Figure 20-2. Using the shorthand padding property

Without the padding, the border would have been drawn over the text, as it was in Chapter 19. With the padding, you can ensure that there is sufficient space between the content and the border to prevent this from happening.

Appling Margin to an Element

Margin is space between the element border and whatever surrounds it on the page. This includes other elements and the parent element. Table 20-3 summarizes the properties that control margin.

[image: Image]

[image: Image]

As with the padding properties, the percentage values are always derived from the width of the containing block, even when used for padding the top and bottom edge. Listing 20-3 shows the effect of adding margin.

Listing 20-3. Adding Margin to Elements

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style type="text/css">

 img {

 border: 4px solid black;

 background: lightgray;

 padding: 4px;

 margin:4px 20px;

 }

 </style>

 </head>

 <body>

 </body>

</html>

In Listing 20-3, there are two img elements. I have specified 4 pixels of margin for the top and bottom edges, and 20 pixels of margin for the left and right edges. You can see how the margin creates space around the element in Figure 20-3, which shows the img elements with and without margin.

[image: Image]

Figure 20-3. The effect of applying margin to elements

Margin isn’t always drawn, even when you apply it with one of the margin properties. For example, if you apply margin to an element that has the display value inline, margin isn’t displayed at the top and bottom edges. I explain the display property in the section “Setting an Element Box Type,” later in this chapter.

Controlling the Size of an Element

Browsers will set the sizes of elements based on the flow of content on the page. There are some horrifically detailed rules that browsers must follow about how to allocate size. You can override this behavior by using the size-related properties, which are described in Table 20-4.

[image: Image]

The default value for all these properties is auto, meaning that the browser will figure out the width and height of the element. You can specify sizes explicitly using lengths or percentages. The percentage values are calculated from the width of the containing block (even when dealing with height). Listing 20-4 shows how you can set the size of an element.

Listing 20-4. Setting the Size of an Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style type="text/css">

 div {

 width: 75%;

 height: 100px;

 border: thin solid black;

 }

 img {

 background: lightgray;

 border: 4px solid black;

 margin: 2px;

 height: 50%;

 }

 #first {

 box-sizing: border-box;

 width: 50%;

 }

 #second {

 box-sizing: content-box;

 }

 </style>

 </head>

 <body>

 <div>

 </div>

 </body>

</html>

There are three key elements in this example. A div element contains two img elements. You can see how the browser displays these elements in Figure 20-4.

[image: Image]

Figure 20-4. Setting the size of element

The div element is a child of the body element. When I express the width of the div element as 75%, I am telling the browser that I want the div element to be 75 percent of the width of the containing block (the body content box in this case), whatever that might be. If the user resizes the browser window, the body element will be resized and this will lead to my div element being resized to preserve the 75% relationship. You can see the effect that resizing the browser window has in Figure 20-5. I added a border to the div element to make it easy to see its size.

[image: Image]

Figure 20-5. Resizing the browser window to demonstrate a relative size relationship

You can see that the div is always 75 percent of the width of the body element, which fills the browser window. I specified the height of the div element to be 100px, which is an absolute value and which won’t change as the containing block is resized. You can see how part of the div element is hidden when I resized the browser window to be long and short.

I have done much the same thing with the img elements. One has a width value that is expressed as 50% of the containing block, meaning that the image is resized to maintain that relationship, even though this means that the aspect ratio of the image is not preserved. I have not set a width value for the second img element, which leaves the browser to figure it out. By default, the width will be derived from the height, set so that the aspect ratio is maintained.

[image: Image] Tip Notice how the images spill over the edge of the div elements Figure 20-5. This is known as overflow. I’ll show you how to control overflow later in this chapter.

Setting the Sized Box

The two img elements in my example have the same height value (50%), but they look different on the screen. This is because I have used the box-sizing property to change the part of the element’s box that the size properties apply to for one of the elements.

By default, the height and width are calculated and applied for the element’s content box. This means that if you set an element’s height property to 100px, for example, then the real height onscreen will be 100 pixels, plus the top and bottom padding, border, and margin values. The box-sizing property lets you specify which of the element’s box areas will be sized to apply styling, meaning that you don’t have to account for the variation yourself. Table 20-4 shows the allowed values.

[image: Image] Tip A common use for the size properties is to try and create a grid layout. It works, but a much better way is to use the table layout feature instead. You can get details of how this works in Chapter 21.

Setting Minimum and Maximum Sizes

You can use the min- and max- properties to set limits in which the browser is free to size the element. This allows the browser some latitude in how sizing is applied. Listing 20-5 gives a demonstration.

Listing 20-5. Setting min and max Ranges for Size

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style type="text/css">

 img {

 background: lightgray;

 border: 4px solid black;

 margin: 2px;

 box-sizing: border-box;

 min-width: 100px;

 width:50%;

 max-width: 200px;

 }

 </style>

 </head>

 <body>

 </body>

</html>

In Listing 20-5, I have applied the min-width and max-width properties to a single img element, and set the initial width to be 50 percent of the containing block. This gives the browser some leeway to resize the image to maintain the 50 percent relationship within the upper and lower bounds I have defined. The browser will use this leeway to preserve the aspect ratio of the image, as shown in Figure 20-6.

[image: Image]

Figure 20-6. Setting bounds for element size using the min-width property

Figure 20-6 shows what happens when I resize the browser window to make it smaller. As the window gets smaller, the browser resizes the image to preserve the percentage relationship between the img element and the body element. When the minimum width is reached, the browser can no longer resize the image. You can see this in the last frame of the figure, where the image is clipped by the bottom of the browser window.

[image: Image] Note The browser support for the box-sizing property is variable.

Dealing with Overflowing Content

When you start to change the size of elements, you quickly arrive at a point where the content is too large to be displayed within an element’s content box. The default behavior is for the content to spill out and be drawn anyway. Listing 20-6 creates an element that has a fixed size that is too small to display its content.

Listing 20-6. Creating an Element That Is Too Small to Fully Display Its Content

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style type="text/css">

 p {

 width: 200px;

 height: 100px;

 border: medium double black;

 }

 </style>

 </head>

 <body>

 <p>

 There are lots of different kinds of fruit - there are over 500 varieties

 of banana alone. By the time we add the countless types of apples, oranges,

 and other well-known fruit, we are faced with thousands of choices.

 </p>

 </body>

</html>

I have specified absolute values for the width and height properties, which creates the effect you can see in Figure 20-7.

[image: Image]

Figure 20-7. The default appearance of an element whose content is too large to display

We can change this behavior by using the overflow properties, which are described in Table 20-5.

[image: Image]

The overflow-x and overflow-y properties set the style for horizontal and vertical overflows, and the overflow shorthand property lets you define the style for both directions in a single declaration. Table 20-6 shows the allowed values for these properties.

[image: Image]

Listing 20-7 shows the overflow properties in use.

Listing 20-7. Controlling Content Overflow

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style type="text/css">

 p {

 width: 200px;

 height: 100px;

 border: medium double black;

 }

 #first {overflow: hidden;}

 #second { overflow: scroll;}

 </style>

 </head>

 <body>

 <p id="first">

 There are lots of different kinds of fruit - there are over 500 varieties

 of banana alone. By the time we add the countless types of apples, oranges,

 and other well-known fruit, we are faced with thousands of choices.

 </p>

 <p id="second">

 There are lots of different kinds of fruit - there are over 500 varieties

 of banana alone. By the time we add the countless types of apples, oranges,

 and other well-known fruit, we are faced with thousands of choices.

 </p>

 </body>

</html>

In Listing 20-7, the first paragraph has the hidden value for the overflow property, and the second paragraph has the scroll value. You can see the effect of these values in Figure 20-8.

[image: Image]

Figure 20-8. Using the hidden and scroll values for the overflow property

[image: Image] Tip This is an area for which the CSS module has yet to settle down. There are proposals to extend the set of overflow-related properties so that marquee behavior is supported (this is where the contents of the element span across the display so that all of the content is visible over time). The following properties are defined by CSS3, but have yet to be implemented by any of the mainstream browsers: overflow-style, marquee-direction, marquee-loop, marquee-play-count, marquee-speed, and marquee-style.

Controlling Element Visibility

You can control the visibility of your elements using the visibility property, which is described in Table 20-7. This might seem like an odd thing to do, but you can create some sophisticated effects by using this property with JavaScript.

[image: Image]

Table 20-8 describes the allowed values for the visibility property.

[image: Image]

Listing 20-8 demonstrates changing the visibility of an element using JavaScript and some button elements (which are described in Chapter 12).

Listing 20-8. Using the visibility Property

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style type="text/css">

 tr > th { text-align:left; background:gray; color:white}

 tr > th:only-of-type {text-align:right; background: lightgray; color:gray}

 </style>

 </head>

 <body>

 <table>

 <tr>

 <th>Rank</th><th>Name</th><th>Color</th><th>Size</th>

 </tr>

 <tr id="firstchoice">

 <th>Favorite:</th><td>Apples</td><td>Green</td><td>Medium</td>

 </tr>

 <tr>

 <th>2nd Favorite:</th><td>Oranges</td><td>Orange</td><td>Large</td>

 </tr>

 </table>

 <p>

 <button>Visible</button>

 <button>Collapse</button>

 <button>Hidden</button>

 </p>

 <script>

 var buttons = document.getElementsByTagName("BUTTON");

 for (var i = 0; i < buttons.length; i++) {

 buttons[i].onclick = function(e) {

 document.getElementById("firstchoice").style.visibility =

 e.target.innerHTML;

 };

 }

 </script>

 </body>

</html>

The script in this example locates the element with the id value of firstchoice and sets the value of the visibility property based on which of the button elements has been pressed. In this way, you can toggle between the visible, hidden, and collapse values. You can see the effect of each value in Figure 20-9.

[image: Image]

Figure 20-9. The effect of the values for the visibility property

The collapse value is only applicable to table-related elements, such as tr and td. You can learn more about these elements in Chapter 11. Some browsers, such as Chrome, don’t implement the collapse value at all (which is why I have used Firefox for Figure 20-9).

[image: Image] Tip You can use the none value for the display property to get the same effect as the collapse value on nontable elements or in browsers that don’t implement this feature. I cover the display property next.

Setting an Element Box Type

The display property provides a way for you to change the type of box for an element, which changes the way that an element is laid out on the page. In Part II of this book, you will have noticed that some of the elements have a style convention that includes a value for the display property. Many elements use the default value, inline, but some specify other values. The set of allowed values for the display property are described in Table 20-9.

[image: Image]

[image: Image]

These values cause a lot of confusion, and they have a profound effect on the layout of your documents. I explain each kind of box type in the sections that follow.

Understanding Block-Level Elements

When you use the block value, you create a block-level element. This is an element that is vertically distinct from those that surround it. You would usually achieve this effect by placing a line break before and after the element, creating a sense of separation between the element and its surroundings, much like a paragraph appears in a book. The p element, which denotes a paragraph, includes the block value for the display property in its default style convention, but you may apply this value to any element, as shown in Listing 20-9.

Listing 20-9. Using the block Value of the display Property

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style type="text/css">

 p {border: medium solid black}

 span {

 display: block;

 border: medium double black;

 margin: 2px;

 }

 </style>

 </head>

 <body>

 <p>

 There are lots of different kinds of fruit - there are over 500 varieties

 of banana alone. By the time we add the countless types of apples, oranges,

 and other well-known fruit, we are faced with thousands of choices.

 </p>

 <p>

 One of the most interesting aspects of fruit is the variety available in

 each country. I live near London, in an area which is known for

 its apples. When travelling in Asia, I was struck by how many different

 kinds of banana were available - many of which had unique flavours and

 which were only avaiable within a small region.

 </p>

 </body>

</html>

You can see the effect that block-level elements have on the layout through two different element types. The first is the p element, which, as I mentioned, uses the block value for the display property in its default style convention (you can learn more about the p element in Chapter 9). I also wanted to demonstrate that you can apply this property value to any element, so I have included a span element and explicitly set the display property for this element type in the style element. You can see the visual effect of this box type in Figure 20-10.

[image: Image]

Figure 20-10. Using the block value of the display property

You have seen how the p element is displayed before. I have added a border to the elements in this example to make the vertical spacing more evident. Notice that the span element, to which I applied the block value, is also visually distinct within the box of the containing p element.

Understanding Inline-Level Elements

When you use the inline value, you create inline-level elements, which are displayed without being visually distinct from the surrounding content, such as a word in a line of text. Listing 20-10 shows how you can apply this value, even to elements such as p, which are block-level elements by default.

Listing 20-10. Using the inline Value for the display Property

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style type="text/css">

 p {

 display: inline;

 }

 span {

 display: inline;

 border: medium double black;

 margin: 2em;

 width: 10em;

 height: 2em;

 }

 </style>

 </head>

 <body>

 <p>

 There are lots of different kinds of fruit - there are over 500 varieties

 of banana alone. By the time we add the countless types of apples, oranges,

 and other well-known fruit, we are faced with thousands of choices.

 </p>

 <p>

 One of the most interesting aspects of fruit is the variety available in

 each country. I live near London, in an area which is known for

 its apples. When travelling in Asia, I was struck by how many different

 kinds of banana were available - many of which had unique flavours and

 which were only avaiable within a small region.

 </p>

 </body>

</html>

I have applied the inline property to both the p and span elements, and you can see the effect in Figure 20-11. You can see that there is no separation between the p elements and that the span element is shown inline with the rest of the text.

[image: Image]

Figure 20-11. Using the inline value of the display property

When using the inline value, the browser will ignore certain properties, such as width, height, and margin. I have defined values for all three properties to the span element in the listing, but you can see that they have not been applied in the layout.

Understanding Inline-Block Elements

The inline-block value creates an element whose box is a mix of block and inline characteristics. The outside of the box is treated like an inline element. This means that there is no vertical distinctiveness and the content appears alongside the surrounding content. However, the inside of the box is treated like a block element, and properties such as width, height, and margin are applied. You can see the effect of this in Listing 20-11.

Listing 20-11. Using the inline-block Value

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style type="text/css">

 p {

 display: inline;

 }

 span {

 display: inline-block;

 border: medium double black;

 margin: 2em;

 width: 10em;

 height: 2em;

 }

 </style>

 </head>

 <body>

 <p>

 There are lots of different kinds of fruit - there are over 500 varieties

 of banana alone. By the time we add the countless types of apples, oranges,

 and other well-known fruit, we are faced with thousands of choices.

 </p>

 <p>

 One of the most interesting aspects of fruit is the variety available in

 each country. I live near London, in an area which is known for

 its apples. When travelling in Asia, I was struck by how many different

 kinds of banana were available - many of which had unique flavours and

 which were only avaiable within a small region.

 </p>

 </body>

</html>

The only change in this listing is the new display property value for the span element, but the visual effect is significant because the properties that were ignored previously (when the display value was inline) are now applied. You can see the effect in Figure 20-12.

[image: Image]

Figure 20-12. Using the inline-block value for the display property

Understanding Run-In Elements

The run-in value creates a box whose type depends on the surrounding elements. There are three situations that the browser must evaluate to determine the nature of a run-in box.

	If a run-in element contains an element whose display value is block, then the run-in element becomes a block-level element.

	Otherwise, if the next sibling element to a run-in element is a block element, then the run-in element becomes the first inline-level element in the sibling. I demonstrate this condition in Listing 20-12.

	Otherwise, the run-in element is treated as a block-level element.

Of these three conditions, the second one bears demonstration. Listing 20-12 shows a run-in element whose sibling is a block-level element.

Listing 20-12. A run-in Element with a Block-Level Sibling

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style type="text/css">

 p {

 display: block;

 }

 span {

 display: run-in;

 border: medium double black;

 }

 </style>

 </head>

 <body>

 There are lots of different kinds of fruit - there are over 500 varieties

 of banana alone.

 <p>

 By the time we add the countless types of apples, oranges,

 and other well-known fruit, we are faced with thousands of choices.

 </p>

 </body>

</html>

You can see how the run-in element is treated as part of the block that follows in Figure 20-13 (although I should note that not all of the browsers correctly support this property).

[image: Image]

Figure 20-13. A run-in element with a block-level sibling

If the sibling element isn’t a block-level element, then the run-in is treated as a block. An example of this relationship is shown in Listing 20-13.

Listing 20-13. A run-in Element with an Inline Sibling

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style type="text/css">

 p {

 display: inline;

 }

 span {

 display: run-in;

 border: medium double black;

 }

 </style>

 </head>

 <body>

 There are lots of different kinds of fruit - there are over 500 varieties

 of banana alone.

 <p>

 By the time we add the countless types of apples, oranges,

 and other well-known fruit, we are faced with thousands of choices.

 </p>

 </body>

</html>

In this example, the run-in element is displayed as a block, as shown in Figure 20-14.

[image: Image]

Figure 20-14. A run-in element displayed as a block-level element

Hiding Elements

The none value tells the browser not to create any kind of box for an element, or for any descendent elements. When the display property is set to none, the element doesn’t occupy any space in the page layout. Listing 20-14 shows an HTML document that has a simple script that toggles the display property of a p element between block and none.

Listing 20-14. Using the none Value of the display Property

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <p id="toggle">

 There are lots of different kinds of fruit - there are over 500 varieties

 of banana alone. By the time we add the countless types of apples, oranges,

 and other well-known fruit, we are faced with thousands of choices.

 </p>

 <p>

 One of the most interesting aspects of fruit is the variety available in

 each country. I live near London, in an area which is known for

 its apples. When travelling in Asia, I was struck by how many different

 kinds of banana were available - many of which had unique flavours and

 which were only avaiable within a small region.

 </p>

 <p>

 <button>Block</button>

 <button>None</button>

 </p>

 <script>

 var buttons = document.getElementsByTagName("BUTTON");

 for (var i = 0; i < buttons.length; i++) {

 buttons[i].onclick = function(e) {

 document.getElementById("toggle").style.display=

 e.target.innerHTML;

 };

 }

 </script>

 </body>

</html>

You can see how the none value causes the element to be removed from the layout in Figure 20-15.

[image: Image]

Figure 20-15. The effect of the none value for the display property

Creating Floating Boxes

You can use the float property to create floating boxes, which are shifted to one side until the left or right edge touches the edge of the containing block or another floating box. Table 20-10 summarizes the property.

[image: Image]

Table 20-11 describes the allowed values for the float property.

[image: Image]

Listing 20-15 shows the float property in use.

Listing 20-15. Using the float Property

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 p.toggle {

 float:left;

 border: medium double black;

 width: 40%;

 margin: 2px;

 padding: 2px;

 }

 </style>

 </head>

 <body>

 <p class="toggle">

 There are lots of different kinds of fruit - there are over 500 varieties

 of banana alone. By the time we add the countless types of apples, oranges,

 and other well-known fruit, we are faced with thousands of choices.

 </p>

 <p class="toggle">

 One of the most interesting aspects of fruit is the variety available in

 each country. I live near London, in an area which is known for

 its apples.

 </p>

 <p>

 When travelling in Asia, I was struck by how many different

 kinds of banana were available - many of which had unique flavours and

 which were only avaiable within a small region.

 </p>

 <p>

 <button>Left</button>

 <button>Right</button>

 <button>None</button>

 </p>

 <script>

 var buttons = document.getElementsByTagName("BUTTON");

 for (var i = 0; i < buttons.length; i++) {

 buttons[i].onclick = function(e) {

 var elements = document.getElementsByClassName("toggle");

 for (var j = 0; j < elements.length; j++) {

 elements[j].style.cssFloat = e.target.innerHTML;

 }

 };

 }

 </script>

 </body>

</html>

In this example, there are a number of p elements, two of which have a float value of left. This means that they will be shifted to the left until they hit the edge of the containing box or another floating element. Because there are two elements that are shifted, the first will be moved to the containing block edge and the second will abut the first. You can see this effect in Figure 20-16.

[image: Image] Tip Notice that when I refer to the float property in JavaScript, I have to use cssFloat. You’ll get into styling elements with JavaScript in Chapter 29

[image: Image]

Figure 20-16. Using the left value of the float property

Notice how the rest of the content flows around the floating elements. In this example, I also added some button elements and a simple script that changes the float value for the two p elements based on which button is pressed. If you press the Right button, you can see how the elements are shifted to the right, as shown in Figure 20-17. Notice the order in which the elements appear: the first element defined in the document is furthest to the right.

[image: Image]

Figure 20-17. Using the right value of the float property

The final button, None, disables the float effect by setting the float value to none. This restores the default box behavior of the element. The p element is a block-level element by default, and you can see the effect in Figure 20-18.

[image: Image]

Figure 20-18. Using the none value of the float property

Preventing Floating Elements from Stacking Up

By default, floating elements will stack up next to one another. You can prevent this from happening by using the clear property, which specifies that one or both edges of a floating element must not adjoin the edge of another floating element. Table 20-12 summarizes the clear property.

[image: Image]

Table 20-13 describes the allowed values of the clear element.

[image: Image]

Listing 20-16 shows the clear property in use.

Listing 20-16. Using the clear Property

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 p.toggle {

 float:left;

 border: medium double black;

 width: 40%;

 margin: 2px;

 padding: 2px;

 }

 p.cleared {

 clear:left;

 }

 </style>

 </head>

 <body>

 <p class="toggle">

 There are lots of different kinds of fruit - there are over 500 varieties

 of banana alone. By the time we add the countless types of apples, oranges,

 and other well-known fruit, we are faced with thousands of choices.

 </p>

 <p class="toggle cleared">

 One of the most interesting aspects of fruit is the variety available in

 each country. I live near London, in an area which is known for

 its apples.

 </p>

 <p>

 When travelling in Asia, I was struck by how many different

 kinds of banana were available - many of which had unique flavours and

 which were only avaiable within a small region.

 </p>

 <p>

 <button>Left</button>

 <button>Right</button>

 <button>None</button>

 </p>

 <script>

 var buttons = document.getElementsByTagName("BUTTON");

 for (var i = 0; i < buttons.length; i++) {

 buttons[i].onclick = function(e) {

 var elements = document.getElementsByClassName("toggle");

 for (var j = 0; j < elements.length; j++) {

 elements[j].style.cssFloat = e.target.innerHTML;

 }

 };

 }

 </script>

 </body>

</html>

This is a simple extension of the previous example, with the addition of a new style that clears the left edge of the second p element. You can see how this changes the page layout in Figure 20-19 (the elements are floating left in this figure).

[image: Image]

Figure 20-19. Clearing the left edge of a floating element

The left edge of the p element isn’t allowed to be next to another floating element, and so the browser moves the element down the page. The right edge remains uncleared, which means that when you float the elements to the right, they can touch one another, as shown in Figure 20-20.

[image: Image]

Figure 20-20. The uncleared right edge of a right-floating element

Summary

In this chapter, I have shown how you can perform the basic configuration of an element’s box model, changing the way that it appears in the page layout. You started with the basic properties, such as padding and margin, and continued through into more complex concepts, such as ranges for widths and heights and overflowing content.

The most important concept in this chapter is the effect of the different kinds of box that you can create for an element. Understanding the relationship between block- and inline-level elements is essential to mastering HTML5 layouts, and floating elements and clearing edges are very widely used techniques to create flexibility in pages.

In the next chapter, I’ll show you some more complex models that CSS supports for creating element layouts.

C H A P T E R 21

Creating Layouts

In this chapter, I will show you the different options available for controlling the layout of elements on the page. With the increased emphasis separating the semantic significance of HTML elements from their presentational impact, the role of CSS in laying out elements has become more important in HTML5. There are some very useful layout features in CSS3 and, of course, you can use the existing facility from earlier versions of CSS.

There are two proposed layout models for CSS3 that have yet to mature enough for me to cover in this chapter. The first, template layouts, allows you to create flexible to contain elements. None of the browsers implement this module, but you can experiment with the functionality through a jQuery plugin available at http://a.deveria.com/?p=236. The other new module creates flexible grids for layouts. Unfortunately, as I write this, the specification is not yet complete and there is no implementation available.

The entire area of layouts in CSS3 remains volatile. One of the layout styles that I do cover in this chapter—the flexible box model—offers excellent features, but the standard keeps changing and I have had to demonstrate the approach to layouts using browser-specific properties that were implemented against an early draft of the standard.

Given the early nature of these new features, I suggest considering using a CSS framework for creating sophisticated page layouts. I recommend Blueprint, which you can download from www.blueprintcss.org. A CSS framework may give you the functionality you require until the CSS3 layout features mature. Table 21-1 provides the summary for this chapter.

[image: Image]

[image: Image]

Positioning Content

The simplest way of directing content is through positioning, which allows you to change the way that an element is laid out by the browser. Table 21-2 describes the positioning properties.

[image: Image]

Setting the Position Type

The position property sets the method by which an element is positioned. The allowed values are described in Table 21-3.

[image: Image]

The different values for the position property specify different elements against which the element is positioned. You use the top, bottom, left, and right properties to offset the element from the element specified by the position property. Listing 21-1 demonstrates the effect of the different values.

Listing 21-1. Using the position Property

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 img {

 top: 5px;

 left:150px;

 border: medium double black;

 }

 </style>

 </head>

 <body>

 <p>

 There are lots of different kinds of fruit - there are over 500 varieties

 of banana alone. By the time we add the countless types of apples, oranges,

 and other well-known fruit, we are faced with thousands of choices.

 </p>

 <p>

 One of the most interesting aspects of fruit is the variety available in

 each country. I live near London, in an area which is known for

 its apples.

 </p>

 <p>

 When travelling in Asia, I was struck by how many different

 kinds of banana were available - many of which had unique flavours and

 which were only avaiable within a small region.

 </p>

 <p>

 <button>Static</button>

 <button>Relative</button>

 <button>Absolute</button>

 <button>Fixed</button>

 </p>

 <script>

 var buttons = document.getElementsByTagName("BUTTON");

 for (var i = 0; i < buttons.length; i++) {

 buttons[i].onclick = function(e) {

 document.getElementById("banana").style.position =

 e.target.innerHTML;

 };

 }

 </script>

 </body>

</html>

In this example, I have added a small script to the page that changes the value of the position property on an img element based on button presses. Notice that I have set the left property to 150px and the top property to 5px. This means that the img element will be offset by 150 pixels along the horizontal axis, and 5 pixels along the vertical axis when any position value other than static is applied. Figure 21-1 shows the transition from static (the default value) to relative.

[image: Image]

Figure 21-1. The static and relative values for the position property

The relative value applies the top, bottom, left, and right properties to position the element relative to where it would be under the static value. As you can see in the figure, the left and top values of 150px cause the img element to be moved down and to the right.

The absolute value causes the element to be positioned relative to the nearest ancestor that has a position value other than static. There is no such element in this example, which means that the element is positioned relative to the body element, as shown in Figure 21-2.

[image: Image]

Figure 21-2. The absolute value of the position property

Notice that when I scroll the browser page, the img element moves with the rest of the content. This is in contrast to how the fixed value works, as shown in Figure 21-3.

[image: Image]

Figure 21-3. The fixed value of the position property

When you use the fixed value, the element is placed relative to the browser window. This means that the element occupies the same location, even when the rest of the content is scrolled up or down.

Setting the Z-Order

The z-index property lets you specify the front-to-back order in which elements are drawn. This property is summarized in Table 21-4.

[image: Image]

The value for the z-index value is a number, and negative values are allowed. The smaller the value, the further to the back the element will be drawn. This property has utility only when elements overlap, as is the case in Listing 21-2.

Listing 21-2. Using the z-index Property

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 img {

 border: medium double black;;

 background-color: lightgreay;

 position: fixed;

 }

 #banana {

 z-index: 1;

 top: 15px;

 left:150px;

 }

 #apple {

 z-index: 2;

 top: 25px;

 left:120px;

 }

 </style>

 </head>

 <body>

 <p>

 There are lots of different kinds of fruit - there are over 500 varieties

 of banana alone. By the time we add the countless types of apples, oranges,

 and other well-known fruit, we are faced with thousands of choices.

 </p>

 <p>

 One of the most interesting aspects of fruit is the variety available in

 each country. I live near London, in an area which is known for

 its apples.

 </p>

 <p>

 When travelling in Asia, I was struck by how many different

 kinds of banana were available - many of which had unique flavours and

 which were only avaiable within a small region.

 </p>

 </body>

</html>

In this example, I have created two fixed position img elements and set the top and left values so that the elements overlap. The z-index value of the img element with the id value of apple is the larger of the two values and, therefore, will be drawn over the banana image, as shown in Figure 21-4.

[image: Image]

Figure 21-4. Using the z-index property

The default value for the z-index property is zero, which is why the browser has drawn the images over the p elements.

Creating Multicolumn Layouts

The multicolumn feature allows you to lay out content in multiple vertical columns, much like you would see in a newspaper. Table 21-5 describes the multicolumn properties.

[image: Image]

[image: Image]

Listing 21-3 shows the multicolumn layout applied to an HTML document.

Listing 21-3. Using the Multicolumn Layout

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 p {

 column-count: 3;

 column-fill: balance;

 column-rule: medium solid black;

 column-gap: 1.5em;

 }

 img {

 float: left;

 border: medium double black;

 background-color: lightgray;

 padding: 2px;

 margin: 2px;

 }

 </style>

 </head>

 <body>

 <p>

 There are lots of different kinds of fruit - there are over 500 varieties

 of banana alone. By the time we add the countless types of apples, oranges,

 and other well-known fruit, we are faced with thousands of choices.

 One of the most interesting aspects of fruit is the variety available in

 each country. I live near London, in an area which is known for

 its apples.

 When travelling in Asia, I was struck by how many different

 kinds of banana were available - many of which had unique flavours and

 which were only avaiable within a small region.

 And, of course, there are fruits which are truely unique - I am put in mind

 of the durian, which is widely consumed in SE Asia and is known as the

 "king of fruits". The durian is largely unknown in Europe and the USA - if

 it is known at all, it is for the overwhelming smell, which is compared

 to a combination of almonds, rotten onions and gym socks.

 </p>

 </body>

</html>

In this example, I have applied some of the multicolumn properties to a p element. This element contains a mix of text and img elements, and you can see the column effect in Figure 21-5.

[image: Image]

Figure 21-5. A multicolumn layout

[image: Image] Note The figure shows Opera, which is the only browser that supports the multicolumn layout at the time of writing. Not all of the properties are implemented, but the basic functionality is present.

As Figure 21-5 shows, the content of the p element flows from one column to the next, much as in the style of a newspaper page. I applied the float property to the img elements in this example so that the text content of the p element will flow nicely around the images. Details of the float property can be found in Chapter 20.

I used the column-count property to specify three columns in this layout. The browser will adjust the width of the columns as the window is resized to preserve the number of columns. An alternative is to specify the desired width of the columns instead, as shown in Listing 21-4.

Listing 21-4. Setting the Width of the Columns

…

<style>

 p {

 column-width: 10em;

 column-fill: balance;

 column-rule: medium solid black;

 column-gap: 1.5em;

 }

 img {

 float:left;

 border: medium double black;

 background-color: lightgray;

 padding: 2px;

 margin: 2px;

 }

</style>

…

When you apply this property, the browser preserves the specified column width by adding and removing columns to the element, as shown in Figure 21-6.

[image: Image]

Figure 21-6. Defining columns by width, rather than count

Creating Flexible Box Layouts

The flexible box layout (also known as flexbox) is a CSS3 enhancement that adds a new value for the display property (flexbox), and defines some additional properties. The flexible layout lets you create fluid interfaces that respond well when the browser window is resized. This is done by distributing unused space in a container block among the contained elements. The specification for flexbox defines the following new properties:

	flex-align

	flex-direction

	flex-order

	flex-pack

As I write this, the standard for the flexible box layout remains volatile. The names of the properties and their values have recently changed. The mainstream browsers have implemented the core functionality of this feature using browser-specific properties and values, based on the previous property names.

The flexbox is a useful and important addition to CSS, and so I am going to show you the functionality based on the earlier draft of the standard and using the –webkit prefixed properties. This is not ideal, but it will give you a sense of what the flexbox does and, hopefully, leave you in a position to easily transition to the finished standard when it becomes available and widely implemented. Given the difference between the specification and the implementation, let’s start with a definition of the problem that the flexbox sets out to solve. Listing 21-5 shows a simple layout with a problem.

Listing 21-5. An HTML Document with a Layout Problem

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 p {

 float:left;

 width: 150px;

 border: medium double black;

 background-color: lightgray;

 }

 </style>

 </head>

 <body>

 <div id="container">

 <p id="first">

 There are lots of different kinds of fruit - there are over 500 varieties

 of banana alone. By the time we add the countless types of apples,

 oranges, and other well-known fruit, we are faced with thousands

 of choices.

 </p>

 <p id="second">

 One of the most interesting aspects of fruit is the variety available in

 each country. I live near London, in an area which is known for

 its apples.

 </p>

 <p id="third">

 When travelling in Asia, I was struck by how many different kinds of

 banana were available - many of which had unique flavours and which

 were only avaiable within a small region.

 </p>

 </div>

 </body>

</html>

There are three p elements contained within a div. I want to display the p elements in a horizontal row, which is easily done using the float property (described in Chapter 20). You can see how the browser displays this HTML in Figure 21-7.

[image: Image]

Figure 21-7. An element with undistributed empty space

The problem you can use the flexbox to solve is how you deal with the block of empty space that appears to the right of the p elements. There are several ways that you can solve this problem. For example, you could use percentage widths, but the flexbox gives you a much more fluid and elegant alternative. Table 21-6 shows the three -webkit properties that implement the core of flexbox functionality (I have omitted the –webkit prefix for brevity).

[image: Image]

[image: Image]

Creating a Simple Flexbox

You create a flexbox using the display property. The standard value will be flexbox, but you must use –webkit-box until the standard is completed and implemented. You tell the browser how to allocate the unused space between elements using the box-flex property. You can see the new display values and the box-flex property in Listing 21-6.

Listing 21-6. Creating a Simple Flexbox

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 p {

 width: 150px;

 border: medium double black;

 background-color: lightgray;

 margin: 2px;

 }

 #container {

 display: -webkit-box;

 }

 #second {

 -webkit-box-flex: 1;

 }

 </style>

 </head>

 <body>

 <div id="container">

 <p id="first">

 There are lots of different kinds of fruit - there are over 500 varieties

 of banana alone. By the time we add the countless types of apples,

 oranges, and other well-known fruit, we are faced with thousands

 of choices.

 </p>

 <p id="second">

 One of the most interesting aspects of fruit is the variety available in

 each country. I live near London, in an area which is known for

 its apples.

 </p>

 <p id="third">

 When travelling in Asia, I was struck by how many different kinds of

 banana were available - many of which had unique flavours and which

 were only avaiable within a small region.

 </p>

 </div>

 </body>

</html>

The display property is applied to the flexbox container. This is the element that will have the additional space and whose contents you want to lay out flexibly. The box-flex property is applied to elements inside the flexbox container and tells the browser which elements should be flexed in size as the size of the container changes. In this case, I have selected the p element, which has an id value of second.

[image: Image] Tip Notice that I have removed the float property from the style declaration for the p elements. Flexbox elements cannot contain floating elements.

You can see how the browser flexes the size of the selected element in Figure 21-8.

[image: Image]

Figure 21-8. A flexing element

I have expanded the browser window in Figure 21-8, which has caused the div container to expand and the second paragraph to flex to take up the additional space. Flexing isn’t just about additional space; when I shrink the browser window, the flexing element is the one that is resized to accommodate the space loss, as shown in Figure 21-9. Notice that the elements to which the box-flex property is applied do not change in size.

[image: Image]

Figure 21-9. A flexing element resized to accommodate less space

Flexing Multiple Elements

You can tell the browser to flex the sizes of more than one element by applying the box-flex property. The values that you set determine the ratio that the browser will use to allocate space. Listing 21-7 shows changes to the style element of the previous example.

Listing 21-7. Creating Multiple Flex Elements

…

<style>

 p {

 width: 150px;

 border: medium double black;

 background-color: lightgray;

 margin: 2px;

 }

 #container {

 display: -webkit-box;

 }

 #first {

 -webkit-box-flex: 3;

 }

 #second {

 -webkit-box-flex: 1;

 }

</style>

…

I have applied the box-flex property to the p element with the id of first. The value of this property is 3, meaning that the browser will allocate three times of the additional space to the first element as it will to the second element. When you create ratios like this, you are referring to only the flexibility of the element. You use the ratio to allocate additional space or to reduce the size of the element, not to change its preferred size. You can see how the ratio is applied in Figure 21-10.

[image: Image]

Figure 21-10. Creating a flexibility ratio

Dealing with Vertical Space

The box-align property lets you tell the browser what to do with any additional vertical space. This element is summarized in Table 21-7.

[image: Image]

The default is to stretch the elements vertically so that they fill the space. You can see this in Figure 21-10, where the first two p elements have been sized so that there is empty space under their contents. Table 21-8 shows the allowed values for the box-align property.

[image: Image]

Listing 21-8 shows the style element changes to apply the box-align property. Note that this property is applied to the flex container and not the content elements.

Listing 21-8. Applying the box-align Property

…

<style>

 p {

 width: 150px;

 border: medium double black;

 background-color: lightgray;

 margin: 2px;

 }

 #container {

 display: -webkit-box;

 -webkit-box-direction: reverse;

 -webkit-box-align: end;

 }

 #first {

 -webkit-box-flex: 3;

 }

 #second {

 -webkit-box-flex: 1;

 }

</style>

…

In this example, I have selected the end value, which will mean that the content elements are placed on the bottom edge of the container element, and any vertical space will be displayed above them. You can see the effect of this value in Figure 21-11.

[image: Image]

Figure 21-11. Applying the box-align property

Dealing with Maximum Sizes

The flexbox model will respect maximum size values for content elements. The browser will flex the size of elements to fill additional space until the maximum sizes are reached. The box-pack property tells the browser what to do if all of the flexible elements have reached their maximum sizes before all of the additional space has been allocated. This property is summarized in Table 21-9.

[image: Image]

Table 21-10 describes the allowed values for this property.

[image: Image]

[image: Image]

Listing 21-9 shows the box-pack property in use. Notice that I have defined max-width values for the p elements (you can learn more about the max-width in Chapter 20).

Listing 21-9. Using the box-pack Property

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

<style>

 p {

 width: 150px;

 max-width: 250px;

 border: medium double black;

 background-color: lightgray;

 margin: 2px;

 }

 #container {

 display: -webkit-box;

 -webkit-box-direction: reverse;

 -webkit-box-align: end;

 -webkit-box-pack: justify;

 }

 #first {

 -webkit-box-flex: 3;

 }

 #second {

 -webkit-box-flex: 1;

 }

</style>

 </head>

 <body>

 <div id="container">

 <p id="first">

 There are lots of different kinds of fruit - there are over 500 varieties

 of banana alone. By the time we add the countless types of apples,

 oranges, and other well-known fruit, we are faced with thousands

 of choices.

 </p>

 <p id="second">

 One of the most interesting aspects of fruit is the variety available in

 each country. I live near London, in an area which is known for

 its apples.

 </p>

 <p id="third">

 When travelling in Asia, I was struck by how many different kinds of

 banana were available - many of which had unique flavours and which

 were only avaiable within a small region.

 </p>

 </div>

 </body>

</html>

You can see the effect of this property in Figure 21-12. After the flexible p elements have reached their maximum widths, the browser starts allocating the additional space between the elements. Notice that the space is only between the content elements; no space is placed before the first element or after the last.

[image: Image]

Figure 21-12. Using the box-pack property

Creating Table Layouts

For many years, the HTML table element has been widely used for laying out web pages, but the increased emphasis on the semantic significance of HTML elements makes this undesirable, and in HTML5 you must be careful only to use the table element to present tabular data (see Chapter 11 for details).

Of course, the reason that using the table element has been so popular is because it solves a very common layout problem: creating simple grids to hold content. Fortunately, you can use the CSS table layout feature to lay out your pages much as you would using the table element, but without abusing its semantic significance. You create CSS table layouts by using the display property. The values that relate to this feature are described in Table 21-11. Each of the values shown in the table corresponds to an HTML element.

[image: Image]

The process of applying these values is demonstrated in Listing 21-10.

Listing 21-10. Creating a CSS Table Layout

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 #table {

 display: table;

 }

 div.row {

 display: table-row;

 background-color: lightgray;

 }

 p {

 display: table-cell;

 border: thin solid black;

 padding: 15px;

 margin: 15px;

 }

 img {

 float:left;

 }

 </style>

 </head>

 <body>

 <div id="table">

 <div class="row">

 <p>

 There are lots of different kinds of fruit - there are over 500

 varieties of banana alone. By the time we add the countless types of

 apples, oranges, and other well-known fruit, we are faced with

 thousands of choices.

 </p>

 <p>

 One of the most interesting aspects of fruit is the variety available

 in each country. I live near London, in an area which is known for

 its apples.

 </p>

 <p>

 When travelling in Asia, I was struck by how many different kinds of

 banana were available - many of which had unique flavours and which

 were only avaiable within a small region.

 </p>

 </div>

 <div class="row">

 <p>

 This is an apple.

 </p>

 <p>

 This is a banana.

 </p>

 <p>

 No picture here

 </p>

 </div>

 </div>

 </body>

</html>

You can see the effect of these values in Figure 21-13.

[image: Image]

Figure 21-13. A simple CSS table layout

The behavior that table layouts are prized for is the automatic sizing of cells so that the widest or tallest content sets the size for the entire column or row. You can see this effect in Figure 21-13.

Summary

In this chapter, I have shown you the CSS features for creating layouts, ranging from the simple positioning of elements to the fluidity of the flexible box layout. I also showed you how to create table layouts without needing to abuse the table HTML element.

Layouts are an area that is receiving much attention in various CSS3 modules, but it is still early days and not all the feature sets are properly defined or implemented by the browsers. There is plenty to work within the interim (especially if you adopt a CSS layout framework), and I recommend you keep a close eye as CSS new layout modules gain acceptance.

C H A P T E R 22

Styling Text

In this chapter, I show you the CSS properties you can use to style text. This is a volatile area for CSS3. There are some very useful new features that have been widely adopted (and which I explain in the sections that follow). There are also some very speculative proposals whose future is uncertain. These tend to deal with very technical typographic details, and it is not certain that there is sufficient demand to drive these proposals into standards. That said, the features that have been embraced by the mainstream browsers make working with text a lot more flexible and pleasant. Table 22-1 provides the summary for this chapter.

[image: Image]

[image: Image]

[image: Image] Tip The color property can be used to set the color of text. This property is described in Chapter 24.

Applying Basic Text Styles

In the following sections, I’ll show you how to use the properties that apply basic text styling.

Aligning and Justifying Text

There are properties available for managing the alignment and justification of textual content, as described in Table 22-2.

[image: Image]

The text-align property is simple enough, although it is important to note that you can align text to an explicitly named edge (using the left and right values) or to the edges that are innate to the language being used (with the start and end values). This is an important distinction when dealing with right-to-left languages. Listing 22-1 shows the text-align property applied to blocks of text.

Listing 22-1. Aligning Text

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 #fruittext {

 width: 400px;

 margin: 5px;

 padding: 5px;

 border: medium double black;

 background-color: lightgrey;

 }

 </style>

 </head>

 <body>

 <p id="fruittext">

 There are lots of different kinds of fruit - there are over 500

 varieties of banana alone. By the time we add the countless types of

 apples, oranges, and other well-known fruit, we are faced with

 thousands of choices.

 One of the most interesting aspects of fruit is the

 variety available in each country. I live near London, in an area which is

 known for its apples.

 </p>

 <p>

 <button>Start</button>

 <button>End</button>

 <button>Left</button>

 <button>Right</button>

 <button>Justify</button>

 <button>Center</button>

 </p>

 <script>

 var buttons = document.getElementsByTagName("BUTTON");

 for (var i = 0; i < buttons.length; i++) {

 buttons[i].onclick = function(e) {

 document.getElementById("fruittext").style.textAlign =

 e.target.innerHTML;

 };

 }

 </script>

 </body>

</html>

In this example, I added a simple script that changes the value of the text-align property for a p element based on button presses. Figure 22-1 shows the effect of some of the property values on the alignment of the text.

[image: Image]

Figure 22-1. The effect of the center and right values for the text-align property

When using the justify value, you can use the text-justify property to specify how spacing is added to the text. The allowed values for this property are described in Table 22-3.

[image: Image]

Dealing with Whitespace

Whitespace is usually collapsed or ignored in HTML. This allows you to separate the layout of your HTML documents from the appearance on the page. Listing 22-2 shows an HTML document with a text block that contains white space.

Listing 22-2. An HTML Document with White Space

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 #fruittext {

 width: 400px;

 margin: 5px;

 padding: 5px;

 border: medium double black;

 background-color: lightgrey;

 }

 </style>

 </head>

 <body>

 <p id="fruittext">

 There are lots of different kinds of fruit - there are over 500

 varieties

 of banana alone. By the time we add the countless types of

 apples, oranges, and other well-known fruit, we are faced with

 thousands of choices.

 One of the most interesting aspects of fruit is the

 variety available in each country. I live near London,

 in an area which is

 known for its apples.

 </p>

 </body>

</html>

I introduced some spaces, tabs, and line breaks into the text. When the browser encounters multiple white-space characters (such as multiple spaces), they are collapsed, meaning that they are replaced with a single space character. Other types of white space, such as line breaks, are simply ignored and the browser wraps the text so that individual lines fit within the boundaries of the element. You can see the way that the browser displays the text in the example in Figure 22-2.

[image: Image]

Figure 22-2. The default handling of white space in an HTML document

This isn’t always convenient—sometimes you want to preserve the formatting of the text as it is in the source HTML document. You can control the handling of white space characters with the whitespace property, which is summarized in Table 22-4.

[image: Image]

The allowed values for the whitespace property are described in Table 22-5.

[image: Image]

Listing 22-3 demonstrates the application of the whitespace property.

Listing 22-3. Using the whitespace Property

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 #fruittext {

 width: 400px;

 margin: 5px;

 padding: 5px;

 border: medium double black;

 background-color: lightgrey;

 white-space: pre-line;

 }

 </style>

 </head>

 <body>

 <p id="fruittext">

 There are lots of different kinds of fruit - there are over 500

 varieties

 of banana alone. By the time we add the countless types of

 apples, oranges, and other well-known fruit, we are faced with

 thousands of choices.

 One of the most interesting aspects of fruit is the

 variety available in each country. I live near London,

 in an area which is

 known for its apples.

 </p>

 </body>

</html>

You can see the effect of the pre-line value in Figure 22-3. The text is wrapped so that the contents fit into the element, but the line breaks are preserved.

[image: Image]

Figure 22-3. Using the pre-line value for the whitespace property

[image: Image] Tip The CSS3 module for text defines the whitespace property as shorthand for two other properties: bikeshedding and text-wrap. Neither of these properties has been implemented yet, and the definition of the bikeshedding property is incomplete. (One of the outstanding issues is to pick a more meaningful name.)

Specifying Text Direction

The direction property lets you tell the browser about the directionality of a block of text, as described in Table 22-6.

[image: Image]

You can see a simple application of the direction property in Listing 22-4.

Listing 22-4. Using the direction Property

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 #first {

 direction: ltr;

 }

 #second {

 direction: rtl;

 }

 </style>

 </head>

 <body>

 <p id="first">

 This is left-to-right text

 </p>

 <p id="second">

 This is right-to-lefttext

 </p>

 </body>

</html>

You can see the effect of this property in Figure 22-4.

[image: Image]

Figure 22-4. Using the direction property

[image: Image] Caution The direction property has been removed from the latest draft of the relevant CSS module, although no reason has been given and it may be restored before the module is finalized.

Specifying the Space Between Words, Letters, and Lines

You can tell the browser how much space to place between words, letters, and lines. The relevant properties are described in Table 22-7.

[image: Image]

Listing 22-5 shows all three properties applied to a block of text.

Listing 22-5. Using the letter-spacing and word-spacing Properties

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 #fruittext {

 margin: 5px;

 padding: 5px;

 border: medium double black;

 background-color: lightgrey;

 word-spacing: 10px;

 letter-spacing: 2px;

 line-height: 3em;

 }

 </style>

 </head>

 <body>

 <p id="fruittext">

 There are lots of different kinds of fruit - there are over 500

 varieties of banana alone. By the time we add the countless types of

 apples, oranges, and other well-known fruit, we are faced with

 thousands of choices.

 </p>

 </body>

</html>

You can see the effect of these properties in Figure 22-5.

[image: Image]

Figure 22-5. Applying the word-spacing and letter-spacing properties

Controlling Word Breaks

The word-wrap property tells the browser what to do when a word is longer than its containing block is wide. The allowed values for this property are described in Table 22-8.

[image: Image]

Listing 22-6 shows the application of the word-wrap property.

Listing 22-6. Using the word-wrap Property

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 p {

 width:150px;

 margin: 15px;

 padding: 5px;

 border: medium double black;

 background-color: lightgrey;

 float:left;

 }

 #first {

 word-wrap: break-word;

 }

 #second {

 word-wrap: normal;

 }

 </style>

 </head>

 <body>

 <p id="first">

 There are lots of different kinds of fruit - there are over 500

 varieties of madeupfruitwithaverylongname alone.

 </p>

 <p id="second">

 There are lots of different kinds of fruit - there are over 500

 varieties of madeupfruitwithaverylongname alone.

 </p>

 </body>

</html>

There are two p elements in this example, to which I have applied the values of the word-wrap property. You can see the effect of the property in Figure 22-6.

[image: Image]

Figure 22-6. Using the word-wrap property

The left-most p element in the figure uses the break-word value, so the very long word in the text is broken and wrapped across two lines to make it fit. The other p element uses the default value, normal, which means the browser won’t break the word, even though it flows over the edge of the p element.

[image: Image] Tip You can use the overflow property (described in Chapter 20) to stop the browser from displaying the overflowing text, although this will have the effect of simply not displaying the part of the word that doesn’t fit.

Indenting the First Line

The text-indent property allows you to specify an indentation for the first line of a block of text, expressed either as a length or as a percentage of the width of the containing element. Table 22-9 summarizes this property.

[image: Image]

Listing 22-7 shows the use of this property.

Listing 22-7. Using the text-indent Property

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 p {

 margin: 15px;

 padding: 5px;

 border: medium double black;

 background-color: lightgrey;

 float:left;

 text-indent: 15%;

 }

 </style>

 </head>

 <body>

 <p>

 There are lots of different kinds of fruit - there are over 500

 varieties of banana alone. By the time we add the countless types of

 apples, oranges, and other well-known fruit, we are faced with

 thousands of choices.

 One of the most interesting aspects of fruit is the

 variety available in each country. I live near London, in an area which is

 known for its apples.

 </p>

 </body>

</html>

You can see the effect that this property has in Figure 22-7.

[image: Image]

Figure 22-7. Indenting the first line in a block of text

Decorating and Transforming Text

There are two properties, text-decoration and text-transform, that allow you to decorate and transform text. These are described in Table 22-10.

[image: Image]

The text-decoration property applies an effect to a block of text, such as underlining it. The default value is none (meaning no decoration is applied). The text-transform property changes the case of a block of text and, once again, the default value is none. You can see both properties applied, along with a script to switch between them, in Listing 22-8.

Listing 22-8. Using the text-decoration and text-transform Properties

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 p {

 border: medium double black;

 background-color: lightgrey;

 text-decoration: line-through;

 text-transform: uppercase;

 }

 </style>

 </head>

 <body>

 <p>

 There are lots of different kinds of fruit - there are over 500

 varieties of banana alone. By the time we add the countless types of

 apples, oranges, and other well-known fruit, we are faced with

 thousands of choices.

 One of the most interesting aspects of fruit is the

 variety available in each country. I live near London, in an area which is

 known for its apples.

 </p>

 </body>

</html>

Figure 22-8 shows the effect of the uppercase value of the text-transform property and the line-through value of the text-decoration property applied together.

[image: Image]

Figure 22-8. Decorating and transforming text

[image: Image] Tip The blick value for the text-decoration property should be used sparingly. It creates an effect that is very annoying, especially if the user will be working with the page for a protracted period. I recommend finding a less irritating way to draw a user’s attention.

Creating Text Shadows

In Chapter 19, I showed you how to create shadows for elements. You can do much the same thing for text using the text-shadow property, which is summarized in Table 22-11.

[image: Image]

The h-shadow and v-shadow values specify the offset for the shadow. Values are expressed as lengths and negative values are allowed. The blur value is another length value and specifies the degree of blur that will be applied to the shadow. This value is optional. The color value specifies the color of the shadow. Listing 22-9 shows the text-shadow property in use.

Listing 22-9. Using the text-shadow Property

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 h1 {

 text-shadow: 0.1em .1em 1px lightgrey;

 }

 p {

 text-shadow: 5px 5px 20px black;

 }

 </style>

 </head>

 <body>

 <h1>Thoughts about Fruit</h1>

 <p>

 There are lots of different kinds of fruit - there are over 500

 varieties of banana alone. By the time we add the countless types of

 apples, oranges, and other well-known fruit, we are faced with

 thousands of choices.

 </p>

 </body>

</html>

I applied two different shadows to the text in this example. You can see the effect in Figure 22-9. Notice that the shadow follows the shape of the text characters, rather than the containing element.

[image: Image]

Figure 22-9. Applying shadows to text

Working with Fonts

One of the most fundamental changes you can make to text is to the font that is used to display the characters. Table 22-12 describes the font-related properties. Balance in typography is very difficult to achieve—on one hand, there are advanced users who want to control every aspect of their typography (of which there are many). On the other hand, there are regular designers and programmers who want ready access to key typographic features, but don’t want to get bogged down in the detail. Sadly, CSS font support satisfies neither party. Very few of the deep technical aspects of typefaces are exposed, but those that are exposed present little use to the mainstream designer or programmer. There some proposed CSS3 modules that would enhance typeface support, but they are at an early stage and have yet to attract any mainstream implementations.

[image: Image]

The format for the font property value is as follows:

font: <font-style> <font-variant> <font-weight> <font-size> <font-family>

Selecting a Font

The font-family property specifies the fonts that will be used, in order of preference. The browser begins with the first font in the list and works its way down until it finds a font that can be used. This approach is required because you can use the fonts installed on a user’s computer and, of course, different users will have different fonts installed based on operating system and preference.

As a final backstop, CSS defines some generic fonts that are available everywhere. These are broad categories of fonts, known as the generic font families, and there can be variations in the exact font that is used by a browser to render them. A summary of the generic font families can be found in Table 22-13.

[image: Image]

Listing 22-10 shows the font-family property applied to a block of text.

Listing 22-10. Using the font-family Property

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 p {

 padding: 5px;

 border: medium double black;

 background-color: lightgrey;

 margin: 2px;

 float: left;

 font-family: "HelveticaNeue Condensed", monospace;

 }

 </style>

 </head>

 <body>

 <p>

 There are lots of different kinds of fruit - there are over 500

 varieties of banana alone. By the time we add the countless types of

 apples, oranges, and other well-known fruit, we are faced with

 thousands of choices.

 </p>

 </body>

</html>

In this example, I specified HelveticaNeue Condensed for the font-family property. This is a font that is used by Apress and isn’t available on every system. I specified the generic monospace as the fallback to be used if HelveticaNeue Condensed isn’t available. You can see the effect this has in Figure 22-10.

[image: Image]

Figure 22-10. Using the font-family property

The browser on the right of the figure is running on the machine I use to write this book. It has the Apress fonts installed, so the browser is able to find and use HelveticaNeue Condensed. The browser on the left is from one of my test machines, which doesn’t have HelveticaNeue Condensed installed. You can see that it has fallen back to using the generic monospace.

[image: Image] Tip One problem that can occur when using a fallback font is that the fonts have different sizes on screen. You can see this in the figure, where the fallback font is larger than the first-choice font. The font-size-adjust property can be used to express a scaling ratio, but this is supported only by Firefox at present.

Setting the Font Size

The font-size property lets you specify the size of the font. The allowed values for this property are described in Table 22-14.

[image: Image]

[image: Image]

Listing 22-11 shows the font-size property in use.

Listing 22-11. Using the font-size Property

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 p {

 padding: 5px;

 border: medium double black;

 background-color: lightgrey;

 margin: 2px;

 float: left;

 font-family: sans-serif;

 font-size: medium;

 }

 #first {

 font-size: xx-large;

 }

 #second {

 font-size: larger;

 }

 </style>

 </head>

 <body>

 <p>

 There are lots of different kinds of fruit - there are over 500

 varieties of banana alone. By the time we add the

 countless types of apples, oranges, and other

 well-known fruit, we are faced with thousands of choices.

 </p>

 </body>

</html>

In this example, I applied three font-size declarations. You can see the effect they have in Figure 22-11.

[image: Image]

Figure 22-11. Using the font-size property

Setting the Font Style and Weight

You can set the weight of the font using the font-weight property—increasing the weight makes the text bolder. The font-style property allows you to select between normal, italic, and oblique fonts. There is a distinction between italic and oblique fonts, but it is tediously technical and for the most part makes little or no difference to the appearance of text. Listing 22-12 demonstrates these properties.

Listing 22-12. Using the font-weight and font-style Properties

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 p {

 padding: 5px;

 border: medium double black;

 background-color: lightgrey;

 margin: 2px;

 float: left;

 font-family: sans-serif;

 font-size: medium;

 }

 #first {

 font-weight: bold;

 }

 #second {

 font-style: italic;

 }

 </style>

 </head>

 <body>

 <p>

 There are lots of different kinds of fruit - there are over 500

 varieties of banana alone. By the time we add the

 countless types of apples, oranges, and other

 well-known fruit, we are faced with thousands of choices.

 </p>

 </body>

</html>

You can see the effect of these properties in Figure 22-12.

[image: Image]

Figure 22-12. Using the font-weight and font-style properties

Using Web Fonts

I already alluded to one of the biggest problems with CSS fonts. The fact that you can’t rely on the font you want to be installed on the user’s machine. A solution to this problem is to use web fonts, where you can download a font and use it on your page without requiring any action on the part of the user. You specify web fonts using @font-face, as shown in Listing 22-13.

Listing 22-13. Using a Web Font

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 @font-face {

 font-family: 'MyFont';

 font-style: normal;

 font-weight: normal;

 src: url('http://titan/listings/MyFont.woff');

 }

 p {

 padding: 5px;

 border: medium double black;

 background-color: lightgrey;

 margin: 2px;

 float: left;

 font-size: medium;

 font-family: MyFont, cursive;

 }

 #first {

 font-weight: bold;

 }

 #second {

 font-style: italic;

 }

 </style>

 </head>

 <body>

 <p>

 There are lots of different kinds of fruit - there are over 500

 varieties of banana alone. By the time we add the

 countless types of apples, oranges, and other

 well-known fruit, we are faced with thousands of choices.

 </p>

 </body>

</html>

When you use @font-face, you use the standard font properties to describe the font you are using. The font-family property defines the name by which you can refer to the downloaded font, and the font-style and font-weight properties tell the browser what the style and weight settings are for the font, which means that you can create italic and bold characters. The src property is used to specify the location of the font file. Web fonts come in many different formats, but the WOFF format seems to be the most widely supported and available.

[image: Image] Tip Some web servers won’t send font files to the browser by default. You may have to add the file type or MIME type to your server’s configuration.

You can see the effect of the web font in Figure 22-13.

[image: Image]

Figure 22-13. Using a web font

There are a lot of web font resources available. My favorite is provided by Google. You can see the fonts they have on offer and get instructions for how to include them in your HTML at www.google.com/webfonts. (this was the source for the font I used in the example.)

Summary

In this chapter, you saw the CSS properties that allow you to style text. The effects you can apply range from the simple (such as basic alignment) to the sophisticated (using custom fonts and creating text shadows). This is another volatile area for CSS. There are some interesting proposals for properties that would allow greater control over the appearance of text, but it is not yet clear if there is sufficient interest to drive adoption and it is entirely possible that these proposals will not become standards.

C H A P T E R 23

Transitions, Animations, and Transforms

In this chapter, I introduce three different ways that you can apply simple special effects to HTML elements: transitions, animations, and transforms. I’ll explain and demonstrate each of these terms later in the chapter. All three features are new in CSS3 and, as I write this, are supported only through browser-specific prefixes. This is something I expect to change reasonably quickly, because these features are going to be extremely popular with web designers and developers.

Applying effects to HTML elements isn’t a new idea, and most of the good JavaScript libraries available contain at least a few of the effects that are now rolled into CSS3. The advantage of using CSS3 over JavaScript is performance. Much of the new functionality is about changing the value of CSS properties over time, and this is something that can be handled with less overhead directly in the browser engine. Despite this, these effects (even the basic ones) can take a lot of processing power, especially on complex web pages. For this reason, you should use the effects I describe in this chapter sparingly. Causing the user’s computer to grind to a halt is always unwelcome, especially if you are just showing off your animation skills.

Another reason to use these effects infrequently is that they can be hugely distracting and annoying. Use these effects to enhance the task that the user is performing with your page—whatever that might be—and don’t apply effects to elements that are not core to that task. Table 23-1 provides the summary for this chapter.

[image: Image]

[image: Image]

Using Transitions

The browser normally applies changes in CSS properties to an element immediately. If you use the :hover selector, for example, the browser applies the properties you associate with the selector as soon as the user moves the mouse over the element. Listing 23-1 gives an example.

Listing 23-1. Immediately Applying a New Property Value

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 p {

 padding: 5px;

 border: medium double black;

 background-color: lightgray;

 font-family: sans-serif;

 }

 #banana {

 font-size: large;

 border: medium solid black;

 }

 #banana:hover {

 font-size: x-large;

 border: medium solid white;

 background-color: green;

 color: white;

 padding: 4px;

 }

 </style>

 </head>

 <body>

 <p>

 There are lots of different kinds of fruit - there are over 500

 varieties of banana alone. By the time we add the

 countless types of apples, oranges, and other

 well-known fruit, we are faced with thousands of choices.

 </p>

 </body>

</html>

In this example, there is a span element for which there are two specific styles. One style is applied universally (with the selector #banana), and one is applied only when the user moves the mouse over the element (with the selector #banana:hover).

[image: Image] Tip I have used the color property in this example. You can learn more about this property in Chapter 24.

The browser responds when the user moves the mouse over the span element, and applies the new property values immediately. You can see the change in Figure 23-1.

[image: Image]

Figure 23-1. The immediate application of change CSS property values

The CSS transition feature allows you to control the rate at which new property values are applied. So, for example, you can choose to change the appearance of the span element in the example gradually, to make the effect of moving the mouse over the word banana less jarring. Table 23-2 describes the properties that let you do this.

[image: Image]

The transition-delay and transition-duration properties are specified as CSS times, which are a number followed by either ms (to denote milliseconds) or s (to denote seconds).

The format for the transition shorthand property is as follows:

transition: <transition-property> <transition-duration> <transition-timing-function>

 <transition-delay>

Listing 23-2 shows how you can apply a transition to the example HTML document. As I write this, none of the mainstream browsers support the transition properties directly However, all but Internet Explorer implement the properties with the browser-specific prefix. I have used the –webkit prefix in the listing.

[image: Image] Note The animations feature is not yet implemented by any of the mainstream browsers using the standard properties. Much like transitions, all of the browsers except Internet Explorer implement the functionality using the browser-specific prefixes. In Listing 23-2, I used the –webkit prefix, meaning that this example will work with Safari and Chrome. If you want to work with Firefox or Opera, simply substitute –webkit for –moz or –o. This is another important area of enhancement in CCS3, and I expect that it will soon be implemented properly.

Listing 23-2. Using a Transition

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 p {

 padding: 5px;

 border: medium double black;

 background-color: lightgray;

 font-family: sans-serif;

 }

 #banana {

 font-size: large;

 border: medium solid black;

 }

 #banana:hover {

 font-size: x-large;

 border: medium solid white;

 background-color: green;

 color: white;

 padding: 4px;

 -webkit-transition-delay: 100ms;

 -webkit-transition-property: background-color, color, padding,

 font-size, border;

 -webkit-transition-duration: 500ms;

 }

 </style>

 </head>

 <body>

 <p>

 There are lots of different kinds of fruit - there are over 500

 varieties of banana alone. By the time we add the

 countless types of apples, oranges, and other

 well-known fruit, we are faced with thousands of choices.

 </p>

 </body>

</html>

In this example, I have added a transition to the style that is applied through the #banana:hover selector. This transition will be started 100 milliseconds after the user moves the mouse over the span element, have a duration of 500 milliseconds, and apply to the background-color, color, padding, font-size, and border properties. Figure 23-2 shows the gradual progression of the transition.

[image: Image]

Figure 23-2. The gradual application of a transition

Notice how I specified multiple properties in the example. Each of the transition properties will take comma-separated values so that you can have concurrent transitions effects. You can specify multiple values for the delay and duration as well, which means that different property transitions start at different times and run for different durations.

Creating Inverse Transitions

Transitions take effect only when the style they are associated with is applied. My example style uses the :hover selector, which means that the style is only applied when the user’s mouse is over the span element. As soon as the user moves the mouse away from the span element, only the #banana style applies and, by default, the appearance of the element instantly snaps back to its original state.

It is for this reason that most transitions come in pairs: the transition to the temporary state and the inverse transition back in the other direction. Listing 23-3 shows how you can smooth the return to the original style through the application of a second transition.

Listing 23-3. Creating a Second Transition

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 p {

 padding: 5px;

 border: medium double black;

 background-color: lightgray;

 font-family: sans-serif;

 }

 #banana {

 font-size: large;

 border: medium solid black;

 -webkit-transition-delay: 10ms;

 -webkit-transition-duration: 250ms;

 }

 #banana:hover {

 font-size: x-large;

 border: medium solid white;

 background-color: green;

 color: white;

 padding: 4px;

 -webkit-transition-delay: 100ms;

 -webkit-transition-property: background-color, color, padding,

 font-size, border;

 -webkit-transition-duration: 500ms;

 }

 </style>

 </head>

 <body>

 <p>

 There are lots of different kinds of fruit - there are over 500

 varieties of banana alone. By the time we add the

 countless types of apples, oranges, and other

 well-known fruit, we are faced with thousands of choices.

 </p>

 </body>

</html>

I have omitted the transition-property property in this example. This causes all of the property changes to be applied gradually throughout the duration of the transition. I have also specified an initial delay of 10 milliseconds and duration of 250 milliseconds. Adding a brief inverse transition makes the return to the original state less jarring.

[image: Image] Tip The browser doesn’t apply transitions when first laying out the page. This means that the properties in the #banana style are applied immediately when the HTML document is first displayed, and then applied gradually through a transition thereafter.

Selecting How Intermediate Values Are Calculated

When you use a transition, the browser has to work out intermediate values between the initial and final values for each property. You use the transition-timing-function property to specify the way that intermediate values are determined, expressed as a set of four points representing a cubic Bezier curve. There are five preset curves to choose from, represented by the following values:

	ease (the default value)

	linear

	ease-in

	ease-out

	ease-in-out

You can see each curve in Figure 23-3. The line shows the rate at which the intermediate values progress toward the final value over time.

[image: Image]

Figure 23-3. The timing function curves

The easiest way to make sense of these values is to experiment in your own HTML document. There is one additional value, cubic-bezier, that allows you to specify a custom curve. However, my experience is that the transitions are not as smooth as they could be and that a lack of granularity undermines most of these values and makes specifying a custom curve largely pointless. Hopefully the implementations will improve as they converge on the final standard. Listing 23-4 shows the application of the transition-timing-function property.

Listing 23-4. Using the transition-timing-function Property

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 p {

 padding: 5px;

 border: medium double black;

 background-color: lightgray;

 font-family: sans-serif;

 }

 #banana {

 font-size: large;

 border: medium solid black;

 -webkit-transition-delay: 10ms;

 -webkit-transition-duration: 250ms;

 }

 #banana:hover {

 font-size: x-large;

 border: medium solid white;

 background-color: green;

 color: white;

 padding: 4px;

 -webkit-transition-delay: 100ms;

 -webkit-transition-property: background-color, color, padding,

 font-size, border;

 -webkit-transition-duration: 500ms;

 -webkit-transition-timing-function: linear;

 }

 </style>

 </head>

 <body>

 <p>

 There are lots of different kinds of fruit - there are over 500

 varieties of banana alone. By the time we add the

 countless types of apples, oranges, and other

 well-known fruit, we are faced with thousands of choices.

 </p>

 </body>

</html>

I have selected the linear value, which is the one that I find gives me the least stuttering transition.

Using Animations

CSS animations are essentially enhanced transitions. You have more options, more control, and more flexibility in how you move from one CSS style to another. Table 23-3 describes the animation properties.

[image: Image]

[image: Image]

The format for the animation shorthand property is as follows:

animation: <animation-name> <animation-duration> <animation-timing-function>

 <animation-delay> <animation-iteration-count>

Notice that none of these properties allow you to specify the CSS properties that will be animated. This is because animations are defined in two parts. The first part is contained within the style declaration and uses the properties shown in Table 23-3. This defines the style of the animation, but not what is to be animated. The second part is created with the @key-frames rule, and is used to define the set of properties that the animation will apply to. You can see both parts of the animation in Listing 23-5.

Listing 23-5. Creating an Animation

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 p {

 padding: 5px;

 border: medium double black;

 background-color: lightgray;

 font-family: sans-serif;

 }

 #banana {

 font-size: large;

 border: medium solid black;

 }

 #banana:hover {

 -webkit-animation-delay: 100ms;

 -webkit-animation-duration: 500ms;

 -webkit-animation-iteration-count: infinite;

 -webkit-animation-timing-function: linear;

 -webkit-animation-name: 'GrowShrink';

 }

 @-webkit-keyframes GrowShrink {

 to {

 font-size: x-large;

 border: medium solid white;

 background-color: green;

 color: white;

 padding: 4px;

 }

 }

 </style>

 </head>

 <body>

 <p>

 There are lots of different kinds of fruit - there are over 500

 varieties of banana alone. By the time we add the

 countless types of apples, oranges, and other

 well-known fruit, we are faced with thousands of choices.

 </p>

 </body>

</html>

To understand what is happening in this example, you have to look at both parts of the animation. The first part is the use of the animation properties in the style with the #banana:hover selector. Let’s start with the basic properties: the animation will start 100 milliseconds after the style has been applied, will have a duration of 500 milliseconds, will repeat indefinitely, and intermediate values will be calculated using the linear function. With the exception of repeating the animation, these properties have direct counterparts in transitions.

These basic properties don’t describe the set of properties that will be animated. To do this, I need to use the animation-name property. By setting the value of this property to GrowShrink, I have instructed the browser to find a set of key frames called GrowShrink and use the values of the basic properties to animate the properties specified by the key frames. Here is the key frame declaration from the listing (I have removed the –webkit prefix):

@keyframes GrowShrink {

 to {

 font-size: x-large;

 border: medium solid white;

 background-color: green;

 color: white;

 padding: 4px;

 }

}

I start the declaration with @keyframes and then specify the name by which this set will be known. In this case, the name is GrowShrink. Inside the declaration, I specify the set of properties that will be animated. In this case, I have specified five properties and their values inside of a to declaration. This is the simplest kind of key frame set. The to declaration defines both the set of properties to animate and the final values for those properties at the end of the animation. (I’ll show you more complex key frames shortly.) The initial values for the animation are taken from the property values of the animated element prior to the style being applied.

The animation in the listing is similar to the example I used for transitions earlier in the chapter, and the effect even looks the same when you view the HTML document in a browser and move the mouse over the span element. At least it looks the same initially, and then the animation repeats itself, which is the first of the differences. The span element grows in size, reaches its maximum, and then returns to its original state, at which point the animation starts over. You can see the effect in Figure 23-4.

[image: Image]

Figure 23-4. Repeating states in an animation

Working with Key Frames

The key frames aspect of CSS animations is extremely flexible and well worth exploring. In the sections that follow, I’ll show some different ways to express key frames in order to create more complex effects.

Setting an Initial State

In the previous example, the initial values for the animated properties were taken from the element itself. You can specify an alternate set of initial values using the from clause, as shown in Listing 23-6.

Listing 23-6. Specifying an Alternate Initial State

…

<style>

 p {

 padding: 5px;

 border: medium double black;

 background-color: lightgray;

 font-family: sans-serif;

 }

 #banana {

 font-size: large;

 border: medium solid black;

 }

 #banana:hover {

 -webkit-animation-delay: 100ms;

 -webkit-animation-duration: 250ms;

 -webkit-animation-iteration-count: infinite;

 -webkit-animation-timing-function: linear;

 -webkit-animation-name: 'GrowShrink';

 }

 @-webkit-keyframes GrowShrink {

 from {

 font-size: xx-small;

 background-color: red;

 }

 to {

 font-size: x-large;

 border: medium solid white;

 background-color: green;

 color: white;

 padding: 4px;

 }

 }

</style>

…

In this example, I have provided initial values for the font-size and background-color properties. The initial values for the other properties specified in the to clause will be taken from the element when the animation commences. You can see the effect of the new clause in Figure 23-5. The text size and background color of the span element switch to the initial values specified in the from clause at the start of the animation.

[image: Image]

Figure 23-5. Setting an initial state with a from clause

Specifying Intermediate Key Frames

You can add additional key frames to define intermediate stages in the animation. You do this by adding percentage clauses, as demonstrated in Listing 23-7.

Listing 23-7. Adding Intermediate Key Frames

…

<style>

 p {

 padding: 5px;

 border: medium double black;

 background-color: lightgray;

 font-family: sans-serif;

 }

 #banana {

 font-size: large;

 border: medium solid black;

 }

 #banana:hover {

 -webkit-animation-delay: 100ms;

 -webkit-animation-duration: 2500ms;

 -webkit-animation-iteration-count: infinite;

 -webkit-animation-timing-function: linear;

 -webkit-animation-name: 'GrowShrink';

 }

 @-webkit-keyframes GrowShrink {

 from {

 font-size: xx-small;

 background-color: red;

 }

 50% {

 background-color: yellow;

 padding: 1px;

 }

 75% {

 color: white;

 padding: 2px;

 }

 to {

 font-size: x-large;

 border: medium solid white;

 background-color: green;

 padding: 4px;

 }

 }

</style>

…

For each percentage clause, you define the point in the animation where the properties and values specified in the clause should be fully applied. In this example, I have defined a 50% and a 75% clause.

There are two uses for intermediate key frames. The first is to define a new rate of change for a property. I have done this for the padding property. At the midway point (defined by the 50% clause), the padding for the animated element will be 1px. At 75%, it will be 2px, and by the end of the animation it will be set to 4px. The browser will calculate the progression of values required to move from one key frame to another using the timing function specified by the animation-timing-function property, giving a smooth progression from one key frame to the next.

[image: Image] Tip If you prefer, you may use 0% and 100% instead of from and to when defining the first and last key frames.

The other use for intermediate key frames is to define values to create more complex animations. I have done this with the background-color property. The initial value (red) is defined in the from clause. At the 50 percent point, the value will be yellow, and at the end of the animation, it will be green. By adding a nonsequential intermediate value, I have created two color transitions in a single animation: red to yellow, and yellow to green Notice that I have not provided an intermediate value in the 75% clause. This is because you don’t have to provide values for every key frame. You can see the effect of the new key frames in Figure 23-6.

[image: Image]

Figure 23-6. Adding intermediate key frames

Setting the Repeat Direction

When you set an animation to repeat, you have a choice about what happens when the browser reaches the end of the animation. You specify your preference using the animation-direction property, using the values that are described in Table 23-4.

[image: Image]

[image: Image]

You can see the animation-direction property in Listing 23-8.

Listing 23-8. Using the animation-direction Property

<style>

 p {

 padding: 5px;

 border: medium double black;

 background-color: lightgray;

 font-family: sans-serif;

 }

 #banana {

 font-size: large;

 border: medium solid black;

 }

 #banana:hover {

 -webkit-animation-delay: 100ms;

 -webkit-animation-duration: 250ms;

 -webkit-animation-iteration-count: 2;

 -webkit-animation-timing-function: linear;

 -webkit-animation-name: 'GrowShrink';

 -webkit-animation-direction: alternate;

 }

 @-webkit-keyframes GrowShrink {

 to {

 font-size: x-large;

 border: medium solid white;

 background-color: green;

 padding: 4px;

 }

 }

</style>

In this example, I have used the animation-iteration-count property to specify that the animation should be performed only twice. At the end of the second iteration, the animated element will return to its original state. I have used the alternate value for the animation-direction property so that the animation is played forward and then backward. You can see the effect in Figure 23-7.

[image: Image]

Figure 23-7. Setting the direction of the animation to alternate

If I had used the infinite value for the animation-iteration-count property, the animation would have been played forward and backward for as long as the mouse was hovering over the span element, creating a simple pulsing effect.

The normal value causes the animation to jump back to the start and each iteration is played forward. You can see the effect of this in Figure 23-8.

[image: Image]

Figure 23-8. Setting the direction of the animation to normal

Understanding the End State

One of the limitations of CSS animations is that the values for the properties defined by the key frames in an animation are only applied during the animation itself. At the end of the animation, the appearance of the animated element will revert to its original state. Listing 23-9 gives an example.

Listing 23-9. Loss of Animation State at the End of the Animation

…

<style>

 p {

 padding: 5px;

 border: medium double black;

 background-color: lightgray;

 font-family: sans-serif;

 }

 #banana {

 font-size: large;

 border: medium solid black;

 }

 #banana:hover {

 -webkit-animation-delay: 100ms;

 -webkit-animation-duration: 250ms;

 -webkit-animation-iteration-count: 1;

 -webkit-animation-timing-function: linear;

 -webkit-animation-name: 'GrowShrink';

 }

 @-webkit-keyframes GrowShrink {

 to {

 font-size: x-large;

 border: medium solid white;

 background-color: green;

 padding: 4px;

 }

 }

</style>

…

You can see the effect this creates in Figure 23-8. Even though the mouse is still hovering over the span element, the appearance of the element is reset once the animation is complete.

[image: Image]

Figure 23-9. The reverted appearance of an element, after the animation is complete

The reason that this happens is because CSS animations animate the application of a new style, but don’t make any persistent changes themselves. If you want to preserve the appearance of the element at the end of the animation, you must use a transition as described earlier in this chapter.

Applying Animations to the Initial Layout

One advantage that animations have over transitions is that you can apply them to the initial layout of the page. Listing 23-10 gives an example.

Listing 23-10. Animating an Element at Initial Layout

…

<style>

 p {

 padding: 5px;

 border: medium double black;

 background-color: lightgray;

 font-family: sans-serif;

 }

 #banana {

 font-size: large;

 border: medium solid black;

 -webkit-animation-duration: 2500ms;

 -webkit-animation-iteration-count: infinite;

 -webkit-animation-direction: alternate;

 -webkit-animation-timing-function: linear;

 -webkit-animation-name: 'ColorSwap';

 }

 @-webkit-keyframes ColorSwap {

 to {

 border: medium solid white;

 background-color: green;

 }

 }

</style>

…

In this example, I have defined the animation in the style with the #banana selector. This style is applied automatically when the page is loaded, which means that the animation is applied as soon as the browser displays the HTML.

[image: Image] Tip You should use this approach with particular caution. Animating the page when you are not responding to a user action should be used sparingly, and the animation effects should be subtle and not prevent the user from reading or interacting with the wider page.

Reusing Key Frames

You can use the same set of key frames for multiple animations, each of which can be configured with different values for the animation properties. Listing 23-11 gives a demonstration.

Listing 23-11. Reusing Key Frames Across Multiple Animations

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

<style>

 p {

 padding: 5px;

 border: medium double black;

 background-color: lightgray;

 font-family: sans-serif;

 }

 span {

 font-size: large;

 border: medium solid black;

 }

 #banana {

 -webkit-animation-duration: 2500ms;

 -webkit-animation-iteration-count: infinite;

 -webkit-animation-direction: alternate;

 -webkit-animation-timing-function: linear;

 -webkit-animation-name: 'ColorSwap';

 }

 #apple {

 -webkit-animation-duration: 500ms;

 -webkit-animation-iteration-count: infinite;

 -webkit-animation-direction: normal;

 -webkit-animation-timing-function: ease-in-out;

 -webkit-animation-name: 'ColorSwap';

 }

 @-webkit-keyframes ColorSwap {

 to {

 border: medium solid white;

 background-color: green;

 }

 }

</style>

 </head>

 <body>

 <p>

 There are lots of different kinds of fruit - there are over 500

 varieties of banana alone. By the time we add the

 countless types of apples, oranges, and other

 well-known fruit, we are faced with thousands of choices.

 </p>

 </body>

</html>

Listing 23-11 shows two styles, each of which uses the ColorSwap key frames. The animation associated with the #apple selector will be performed over a short direction, using a different timing function, and will also be played forward.

Applying Multiple Animations to Multiple Elements

A variation on the previous example is to target multiple elements with the same animation. You do this by expanding the scope of the selector for the style that contains the animation details, as shown in Listing 23-12.

Listing 23-12. Targeting Multiple Elements

…

<style>

 p {

 padding: 5px;

 border: medium double black;

 background-color: lightgray;

 font-family: sans-serif;

 }

 span {

 font-size: large;

 border: medium solid black;

 }

 #banana, #apple {

 -webkit-animation-duration: 2500ms;

 -webkit-animation-iteration-count: infinite;

 -webkit-animation-direction: alternate;

 -webkit-animation-timing-function: linear;

 -webkit-animation-name: 'ColorSwap';

 }

 @-webkit-keyframes ColorSwap {

 to {

 border: medium solid white;

 background-color: green;

 }

 }

</style>

…

In this example, both span elements in the document are matched by the selector, so both will be animated using the same key frames and the same configuration. You can see the effect in Figure 23-10.

[image: Image]

Figure 23-10. Animating multiple elements with the same animation

You can also apply multiple animations to an element by simply adding comma-separated values to the animation properties. Listing 23-13 shows how you can apply multiple key frames to a single element.

Listing 23-13. Applying Multiple Key Frames to a Single Element

…

<style>

 p {

 padding: 5px;

 border: medium double black;

 background-color: lightgray;

 font-family: sans-serif;

 }

 span {

 font-size: large;

 border: medium solid black;

 }

 #banana, #apple {

 -webkit-animation-duration: 1500ms;

 -webkit-animation-iteration-count: infinite;

 -webkit-animation-direction: alternate;

 -webkit-animation-timing-function: linear;

 -webkit-animation-name: 'ColorSwap', 'GrowShrink';

 }

 @-webkit-keyframes ColorSwap {

 to {

 border: medium solid white;

 background-color: green;

 }

 }

 @-webkit-keyframes GrowShrink {

 to {

 font-size: x-large;

 padding: 4px;

 }

 }

</style>

…

In this example, I have applied the ColorSwap and GrowShrink key frames to the #banana and #apple elements. The browser will apply both key frames simultaneously.

Stopping and Starting Animations

You can stop and resume an animation through the animation-play-state property. When this property has a value of paused, the animation will be halted. The value playing will resume the animation. Listing 23-14 shows how you can use JavaScript to change the value of this property. I’ll explain more about how you can use JavaScript in similar situations in Part IV of this book.

Listing 23-14. Stopping and Starting an Animation

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 #fruittext {

 padding: 5px;

 border: medium double black;

 background-color: lightgray;

 font-family: sans-serif;

 }

 #banana {

 -webkit-animation-duration: 2500ms;

 -webkit-animation-iteration-count: infinite;

 -webkit-animation-direction: alternate;

 -webkit-animation-timing-function: linear;

 -webkit-animation-name: 'GrowShrink';

 }

 @-webkit-keyframes GrowShrink {

 from {

 font-size: large;

 border: medium solid black;

 }

 to {

 font-size: x-large;

 border: medium solid white;

 background-color: green;

 color: white;

 padding: 4px;

 }

 }

 </style>

 </head>

 <body>

 <p id="fruittext">

 There are lots of different kinds of fruit - there are over 500

 varieties of banana alone. By the time we add the

 countless types of apples, oranges, and other

 well-known fruit, we are faced with thousands of choices.

 </p>

 <p>

 <button>Running</button>

 <button>Paused</button>

 </p>

 <script>

 var buttons = document.getElementsByTagName("BUTTON");

 for (var i = 0; i < buttons.length; i++) {

 buttons[i].onclick = function(e) {

 document.getElementById("banana").style.webkitAnimationPlayState =

 e.target.innerHTML;

 };

 }

 </script>

 </body>

</html>

Using Transforms

CSS transforms allow you to apply linear transformations to elements, meaning that you can rotate, scale, skew, and translate elements. Table 23-5 shows the properties that you use to apply transforms.

[image: Image]

Applying a Transform

You apply a transform to an element through the transform property. The allowed values for this property are a set of predefined functions, as described in Table 23-6.

[image: Image]

You can see an example of a transform in Listing 23-15. As with the other CSS features in this chapter, the mainstream browsers don’t yet implement transforms directly. I have used the –moz prefix in the listing because Firefox has the most complete implementation.

Listing 23-15. Applying a Transform to an Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 p {

 padding: 5px;

 border: medium double black;

 background-color: lightgray;

 font-family: sans-serif;

 }

 #banana {

 font-size: x-large;

 border: medium solid white;

 background-color: green;

 color: white;

 padding: 4px;

 -moz-transform: rotate(-45deg) scaleX(1.2);

 }

 </style>

 </head>

 <body>

 <p id="fruittext">

 There are lots of different kinds of fruit - there are over 500

 varieties of banana alone. By the time we add the

 countless types of apples, oranges, and other

 well-known fruit, we are faced with thousands of choices.

 </p>

 </body>

</html>

In this example, I have added a transform property declaration to the #banana style, specifying two transforms. The first is a rotation of -45deg (i.e., a counterclockwise 45-degree rotation), and the second is a scaling with a factor of 1.2 along the x axis. You can see the effect of these transformations in Figure 23-11.

[image: Image]

Figure 23-11. Rotating and scaling an element

As you can see, the element has been rotated and scaled as specified. Notice that the layout of the page hasn’t changed to accommodate the transforms. The element overwrites some of the surrounding content.

Specifying an Origin

The transform-origin property allows you to specify the origin around which the transform will be applied. By default, the center of the element is used, but you can select a different origin using the values described in Table 23-7.

[image: Image]

To define a value, you provide a value for each of the x and y axes. If you supply only one value, the second value is assumed to be center. Listing 23-16 shows the use of the transform-origin property.

Listing 23-16. Using the transform-origin Property

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 p {

 padding: 5px;

 border: medium double black;

 background-color: lightgray;

 font-family: sans-serif;

 }

 #banana {

 font-size: x-large;

 border: medium solid white;

 background-color: green;

 color: white;

 padding: 4px;

 -moz-transform: rotate(-45deg) scaleX(1.2);

 -moz-transform-origin: right top;

 }

 </style>

 </head>

 <body>

 <p id="fruittext">

 There are lots of different kinds of fruit - there are over 500

 varieties of banana alone. By the time we add the

 countless types of apples, oranges, and other

 well-known fruit, we are faced with thousands of choices.

 </p>

 </body>

</html>

In this example, I have moved the origin to the top-right corner of the element. You can see the effect this has in Figure 23-12.

[image: Image]

Figure 23-12. Specifying an origin for a transform

Animating and Transitioning a Transform

You can apply animations and transitions to a transform, just as you would any other CSS property. Listing 23-17 contains a demonstration.

Listing 23-17. Applying a Transition to a Transform

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 p {

 padding: 5px;

 border: medium double black;

 background-color: lightgray;

 font-family: sans-serif;

 }

 #banana {

 font-size: x-large;

 border: medium solid white;

 background-color: green;

 color: white;

 padding: 4px;

 }

 #banana:hover {

 -moz-transition-duration: 1.5s;

 -moz-transform: rotate(360deg);

 }

 </style>

 </head>

 <body>

 <p id="fruittext">

 There are lots of different kinds of fruit - there are over 500

 varieties of banana alone. By the time we add the

 countless types of apples, oranges, and other

 well-known fruit, we are faced with thousands of choices.

 </p>

 </body>

</html>

In this example, I have defined a transition that will apply a 360-degree rotation transform over a period of 1.5 seconds. This transition will be applied when the user hovers over the span element. You can see the effect in Figure 23-13.

[image: Image]

Figure 23-13. Combining transitions with transforms

Summary

In this chapter, I have shown you three new features in CSS3 that give you enormous control over the appearance of your elements. Transitions, transforms, and animation are simple to use, and deliver reasonable performance and great flexibility. I recommend using these features sparingly, but careful application can enhance the appearance and overall user experience of web pages and applications. I have used the browser-specific prefixes throughout this chapter, but the implementations are very close to the standard and I would expect the browsers to offer support for the real property names soon.

C H A P T E R 24

Other CSS Properties and Features

In this chapter, I finish up my coverage of CSS with the properties that didn't fit into the other chapters. These are important and useful properties, but I couldn't find a way of incorporating them into the themes that the other chapters followed. In this chapter, you'll see how to set the foreground color and opacity of elements, and how to apply special styles to HTML table and list elements. Table 24-1 provides the summary for this chapter.

[image: Image]

Setting Element Color and Transparency

You have seen different uses for CSS colors throughout this part of the book, with the background-color property, the border-color property, and so on. There are two additional properties that relate to colors. Table 24-2 describes these properties.

[image: Image]

Setting the Foreground Color

The color property sets the foreground color for the element. In principle, elements can have a different interpretation of what the color property means to them, but in practice, the color property sets the color of text. Listing 24-1 shows the color property in use.

Listing 24-1. Using the color Property

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 p {

 padding: 5px;

 border: medium double black;

 background-color: lightgray;

 font-family: sans-serif;

 }

 #banana {

 font-size: x-large;

 border: medium solid white;

 background-color: green;

 color: rgba(255, 255, 255, 0.7);

 }

 a:hover {

 color: red;

 }

 </style>

 </head>

 <body>

 <p id="fruittext">

 There are lots of different kinds of fruit - there are over 500

 varieties of banana alone. By the time we add the

 countless types of apples, oranges, and other well-known fruit, we are faced

 with thousands of choices.

 Learn more about Bananas

 </p>

 </body>

</html>

In this example, I have used the color property twice: once to set the foreground color and transparency for the span element, and once to set the foreground color of a elements when the mouse hovers over them. You can see the effect in Figure 24-1. The effect might be hard to make out on the printed page. To understand the effect, you should display the example HTML document in a browser.

[image: Image]

Figure 24-1. Using the color property to set the foreground

Setting Element Opacity

Notice that I used the rgba function to set the color of the span element in the previous example. I made the text slightly transparent by providing an alpha value that is less than 1. It might be difficult to see from the figure, but the effect is that the text is allowing some of the background color to show through.

You can use the opacity property to make entire elements and their text content transparent. The allowed range for this property is from zero (meaning completely transparent) to 1 (meaning completely opaque). Listing 24-2 shows the opacity property in use.

Listing 24-2. Using the opacity Property

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 p {

 padding: 5px;

 border: medium double black;

 background-color: lightgray;

 font-family: sans-serif;

 }

 #banana {

 font-size: x-large;

 border: medium solid white;

 background-color: green;

 color: white;

 opacity: 0.4;

 }

 a:hover {

 color: red;

 }

 </style>

 </head>

 <body>

 <p id="fruittext">

 There are lots of different kinds of fruit - there are over 500

 varieties of banana alone. By the time we add the

 countless types of apples, oranges, and other well-known fruit, we are faced

 with thousands of choices.

 Learn more about Bananas

 </p>

 </body>

</html>

In this example, I set the opacity of the span element to 0.4. The effect is shown in Figure24-2, but might be hard to make out on the printed page.

[image: Image]

Figure 24-2. Setting the opacity of an element

Styling Tables

There are a number of properties that let you style the unique characteristics of the table element, which I introduced in Chapter 11. Table 24-3 summarizes these properties.

[image: Image]

Collapsing Table Borders

The border-collapse property lets you control the way that the browser draws borders for the table element. You can see the default approach in Figure 24-3.

[image: Image]

Figure 24-3. The default appearance of a table with borders

The browser draws a border around the table plus a border around each cell, creating a double border effect. You can address this by applying the border-collapse property, as shown in Listing 24-3.

Listing 24-3. Using the border-collapse Property

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 table {

 border-collapse: collapse;

 }

 th, td {

 padding: 2px;

 }

 </style>

 </head>

 <body>

 <table border="1">

 <caption>Results of the 2011 Fruit Survey</caption>

 <colgroup id="colgroup1">

 <col id="col1And2" span="2"/>

 <col id="col3"/>

 </colgroup>

 <colgroup id="colgroup2" span="2"/>

 <thead>

 <tr>

 <th>Rank</th><th>Name</th><th>Color</th>

 <th colspan="2">Size & Votes</th>

 </tr>

 </thead>

 <tbody>

 <tr>

 <th>Favorite:</th><td>Apples</td><td>Green</td>

 <td>Medium</td><td>500</td>

 </tr>

 <tr>

 <th>2nd Favorite:</th><td>Oranges</td><td>Orange</td>

 <td>Large</td><td>450</td>

 </tr>

 </tbody>

 <tfoot>

 <tr>

 <th colspan="5">© 2011 Adam Freeman Fruit Data Enterprises</th>

 </tr>

 </tfoot>

 </table>

 </body>

</html>

The collapse value tells the browser that you don't want borders drawn on every edge of adjacent elements. You can see the effect this has in Figure 24-4.

[image: Image]

Figure 24-4. Collapsing the border for a table

Configuring Separated Borders

If you do use the default separate value for the border-collapse property, you can use some additional properties to refine the appearance. The border-spacing property defines the amount of space that will be drawn between the borders of adjacent elements, as shown in Listing 24-4.

Listing 24-4. Using the border-spacing Property

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 table {

 border-collapse: separate;

 border-spacing: 10px;

 }

 th, td {

 padding: 2px;

 }

 </style>

 </head>

 <body>

 <table border="1">

 <caption>Results of the 2011 Fruit Survey</caption>

 <colgroup id="colgroup1">

 <col id="col1And2" span="2"/>

 <col id="col3"/>

 </colgroup>

 <colgroup id="colgroup2" span="2"/>

 <thead>

 <tr>

 <th>Rank</th><th>Name</th><th>Color</th>

 <th colspan="2">Size & Votes</th>

 </tr>

 </thead>

 <tbody>

 <tr>

 <th>Favorite:</th><td>Apples</td><td>Green</td>

 <td>Medium</td><td>500</td>

 </tr>

 <tr>

 <th>2nd Favorite:</th><td>Oranges</td><td>Orange</td>

 <td></td><td></td>

 </tr>

 </tbody>

 <tfoot>

 <tr>

 <th colspan="5">© 2011 Adam Freeman Fruit Data Enterprises</th>

 </tr>

 </tfoot>

 </table>

 </body>

</html>

In this example, I have specified a 10-pixel gap between borders. You can see the effect in Figure 24-5.

[image: Image]

Figure 24-5. Using the border-spacing property

Dealing with Empty Cells

You can also tell the browser how to handle empty cells. By default, the browser draws a separate border when a cell is empty, as you can see in Figure 24-5. You can control this behavior using the empty-cells property. The show value, which is the default, creates the effect in Figure24-3, while the hide value tells the browser not to draw the border. Listing 24-5 shows the addition of the empty-cells property to the style element of the previous example.

Listing 24-5. Using the empty-cells Property

<style>

 table {

 border-collapse: separate;

 border-spacing: 10px;

 empty-cells: hide;

 }

 th, td {

 padding: 2px;

 }

</style>

You can see the effect of this change in Figure 24-6.

[image: Image]

Figure 24-6. Using the empty-cells property

Positioning the Caption

As I explained in Chapter 11, when you add a caption element to a table, it is displayed at the top of the table, even when it is not the first child element. You can change this behavior using the caption-side property. This property has two values: top (the default) and bottom. Listing 24-6 shows the application of this property.

Listing 24-6. Using the caption-side Property

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 table {

 border-collapse: collapse;

 caption-side: bottom;

 }

 th, td {

 padding: 5px;

 }

 </style>

 </head>

 <body>

 <table border="1">

 <caption>Results of the 2011 Fruit Survey</caption>

 <colgroup id="colgroup1">

 <col id="col1And2" span="2"/>

 <col id="col3"/>

 </colgroup>

 <colgroup id="colgroup2" span="2"/>

 <thead>

 <tr>

 <th>Rank</th><th>Name</th><th>Color</th>

 <th colspan="2">Size & Votes</th>

 </tr>

 </thead>

 <tbody>

 <tr>

 <th>Favorite:</th><td>Apples</td><td>Green</td>

 <td>Medium</td><td>500</td>

 </tr>

 <tr>

 <th>2nd Favorite:</th><td>Oranges</td><td>Orange</td>

 <td></td><td></td>

 </tr>

 </tbody>

 <tfoot>

 <tr>

 <th colspan="5">© 2011 Adam Freeman Fruit Data Enterprises</th>

 </tr>

 </tfoot>

 </table>

 </body>

</html>

You can see the effect of this property in Figure 24-7.

[image: Image]

Figure 24-7. Using the caption-side property to move the caption

Specifying the Table Layout

By default, the browser sets the width of the table based on the widest cell in each column. This means that you don't have to worry about figuring out the sizes yourself, but it also means that the browser has to receive all of the table content before it can determine the layout for the page.

The approach that the browser takes to displaying tables is controlled by the table-layout property, and the default value, described above, is set by the value auto. You can disable the automatic layout by using the other allowed value fixed. In fixed mode, the size of the table is set by the width values for the table and for individual columns. If there is no column width information available, the browser will allocate the space evenly across the columns.

As a consequence, the browser is able to determine the width of each column after receiving just one row of the table data. The data for subsequent rows is wrapped to make it fit (which can cause rows to be higher than they would be in the auto mode).

Listing 24-7 shows the table-layout property in use.

Listing 24-7. Using the table-layout Property

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 table {

 border-collapse: collapse;

 caption-side: bottom;

 table-layout: fixed;

 width: 100%;

 }

 th, td {

 padding: 5px;

 }

 </style>

 </head>

 <body>

 <table border="1">

 <caption>Results of the 2011 Fruit Survey</caption>

 <colgroup id="colgroup1">

 <col id="col1And2" span="2"/>

 <col id="col3"/>

 </colgroup>

 <colgroup id="colgroup2" span="2"/>

 <thead>

 <tr>

 <th>Rank</th><th>Name</th><th>Color</th>

 <th colspan="2">Size & Votes</th>

 </tr>

 </thead>

 <tbody>

 <tr>

 <th>Really Really Really Long Title:</th>

 <td>Apples</td><td>Green</td>

 <td>Medium</td><td>500</td>

 </tr>

 <tr>

 <th>2nd Favorite:</th><td>Oranges</td><td>Orange</td>

 <td></td><td></td>

 </tr>

 </tbody>

 <tfoot>

 <tr>

 <th colspan="5">© 2011 Adam Freeman Fruit Data Enterprises</th>

 </tr>

 </tfoot>

 </table>

 </body>

</html>

In this example, I have set the width of the table element to occupy 100 percent of the available space, and set the layout style to fixed. I have also changed the contents of one of the cells in the second row to demonstrate the effect on the layout, which is shown in Figure 24-8.

[image: Image]

Figure 24-8. Using the table-layout property

Notice how the available space is allocated evenly across the five columns and how the long title in the second row is wrapped to make it fit, causing that row to be much higher than the others.

Styling Lists

There are a number of properties that are specific to styling lists. Table 24-4 summarizes these properties.

[image: Image]

The format for the list-style shorthand property is as follows:

list-style: <list-style-type> <list-style-position> <list-style-image>

Setting the List Marker Type

You use the list-style-type property to set the style of marker (also sometimes known as the bullet) for a list. You can see the allowed values for this property in Table 24-5.

[image: Image]

Table 24-5 shows only some of the available styles. There are a great many more, representing different alphabets, symbol styles, and numeric conventions. You can find a full list at www.w3.org/TR/css3-lists. Listing 24-8 shows the list-style-type property in use.

Listing 24-8. Using the list-style-type Property

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 ol {

 list-style-type: lower-alpha;

 }

 </style>

 </head>

 <body>

 I like apples and oranges.

 I also like:

 bananas

 mangoes

 <li style="list-style-type: decimal">cherries

 plums

 peaches

 grapes

 </body>

</html>

You can apply this property to entire lists or individual list items. I have done both in this example (although the result isn't something that would make sense to a reader). You can see the effect in Figure 24-9.

[image: Image]

Figure 24-9. Setting the list marker type

Using an Image As a List Marker

You can use an image as the marker through the list-style-image property. Listing 24-9 shows this property in action.

Listing 24-9. Using an Image As a List Marker

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 ul {

 list-style-image: url('banana-vsmall.png');

 }

 </style>

 </head>

 <body>

 I like apples and oranges.

 I also like:

 bananas

 mangoes

 cherries

 plums

 peaches

 grapes

 </body>

</html>

You can see the effect of applying this property in Figure 24-10.

[image: Image]

Figure 24-10. Using an image as a list marker

Positioning the Marker

You can specify the position of the marker in relation to the li element's content box using the list-style-position property. The allowed values are inside (meaning that the marker is inside the content box) and outside (meaning that the marker is outside the content box). Listing 24-10 shows the list-style-position property and its values in use.

Listing 24-10. Specifying the Position of the Marker

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 li.inside {

 list-style-position: inside;

 }

 li.outside {

 list-style-position: outside;

 }

 li {

 background-color: lightgray;

 }

 </style>

 </head>

 <body>

 I like apples and oranges.

 I also like:

 These are the inside items:

 <li class="inside">bananas

 <li class="inside">mangoes

 <li class="inside">cherries

 These are the outside items:

 <li class="outside">plums

 <li class="outside">peaches

 <li class="outside">grapes

 </body>

</html>

I have broken the li items into two classes and applied different values of the list-style-position property. You can see the effect in Figure 24-11.

[image: Image]

Figure 24-11. Positioning the marker

In this figure, I have set the background-color property for all of the li elements so that you can see the effect of each position value.

Styling the Cursor

The cursor property lets you change the appearance of the cursor. Table 24-6 summarizes this element.

[image: Image]

The different values for the cursor property cause the browser to display different styles of cursor when the mouse passes over the styled element. You can see the property in use in Listing 24-11.

Listing 24-11. Using the cursor Property

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 p {

 padding: 5px;

 border: medium double black;

 background-color: lightgray;

 font-family: sans-serif;

 }

 #banana {

 font-size: x-large;

 border: medium solid white;

 background-color: green;

 color: rgba(255, 255, 255, 0.7);

 cursor: progress;

 }

 </style>

 </head>

 <body>

 <p id="fruittext">

 There are lots of different kinds of fruit - there are over 500

 varieties of banana alone. By the time we add the

 countless types of apples, oranges, and other well-known fruit, we are faced

 with thousands of choices.

 </p>

 </body>

</html>

You can see the effect in Figure 24-12. I have magnified the cursor to show that it switches to the Windows 7 wait cursor when I pass the mouse over the span element.

[image: Image]

Figure 24-12. Setting the cursor style

Summary

In this chapter, I have described the CSS properties that don't really fit anywhere else. That's not to say that these properties are not important, just that they didn't fit into the theme of the earlier chapters. The properties in this chapter allow you to set the color and opacity of all elements, and apply specific styles to lists and tables, which are essential HTML features in their own right.

P A R T IV

Working with the DOM

The Domain Object Model (DOM) allows you to use JavaScript to explore and manipulate the contents of an HTML document. It is an essential set of features for creating rich content. In the chapters that follow, I'll show you how to gain access to the DOM, how to find and change JavaScript objects that represent elements in the document, and how to respond to user interactions using events.

C H A P T E R 25

The DOM in Context

In this part of the book, you will explore the Document Object Model (the DOM). You can achieve some complex effects using the elements and CSS properties I have shown you so far, but if you want to get total control of your HTML, you need to use JavaScript. The DOM is the connection between JavaScript and the contents of your HTML document. Using the DOM, you can add, remove, and manipulate elements. You can respond to user interaction using events and you can take complete control of CSS.

From this point on, you are at the programming end of HTML5. Until now, you've created content using element and CSS declarations, but it is time to put on your programmer hat and start using JavaScript. Chapter 5 gives a tour of the JavaScript basics, if you need a refresher.

Understanding the Document Object Model

The DOM is a collection of objects representing the elements in your HTML document. The name says it all: the DOM is quite literally a model, which is comprised of objects that represent your document. The DOM is a key tool in web development and provides the bridge between the structure and content of your HTML documents and JavaScript. To give an example, Listing 25-1 shows a simple HTML document.

Listing 25-1. A Simple HTML Document

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 </head>

 <body>

 <p id="fruittext">

 There are lots of different kinds of fruit - there are over 500

 varieties of banana alone. By the time we add the

 countless types of apples, oranges, and other well-known fruit, we are faced

 with thousands of choices.

 </p>

 <p id="apples">

 One of the most interesting aspects of fruit is the

 variety available in each country. I live near London, in an area which is

 known for its apples.

 </p>

 </body>

</html>

You can see how the browser displays the sample HTML document in Figure 25-1.

[image: images]

Figure 25-1. Displaying the basic HTML document

As part of the process of displaying your HTML document, the browser parses the HTML and creates a model. The model preserves the hierarchy of the HTML elements, as shown in Figure25-2, and each element is represented by a JavaScript object.

[image: images]

Figure 25-2. The hierarchy of elements in an HTML document

As you'll see in the chapters that follow, you can use the DOM to get information about the document or to make changes to it. This is the foundation of modern web applications.

Each model object in the model has properties and methods. When you use these to change the state of the object, the browser reflects the changes in the corresponding HTML element and updates your document.

All of the DOM objects that represent elements support the same set of basic features. These are HTMLElement objects and the core functionality defined by HTMLElement is always available to use, irrespective of the kind of element that an object represents. In addition, some objects define extra functionality that let you perform operations that reflect the unique characteristics of specific HTML elements. I describe these extra features in Chapter 31. This is an important point to note: every object in the document model that represents an element supports at least the HTMLElement features and, in some cases, extra features.

Not all of the objects available to you represent HTML elements. As you'll soon see, there are objects that represent collections of elements, objects that represent information about the DOM itself and, of course, the Document object, which is our gateway into the DOM and the subject of Chapter 26.

[image: images] Note I am skipping over some detail here. If you are familiar with the concepts of object-oriented programming, then it may help you to know that HTMLElement is an interface that is implemented by the objects contained in the DOM. The objects used to represent more specific elements are interfaces that are derived from HTMLElement, meaning that you can treat an object either as an implementation or HTMLElement, or its more specific subtype. Don't worry if you are not familiar with object-oriented concepts. It isn't important to understand them for mainstream web programming. I won't be referring to them again and I will be referring to everything as an object for simplicity.

Understanding DOM Levels and Compliance

As you start to work with the DOM, you will encounter web articles and tutorials that mention DOM levels (that a certain feature is defined by DOM Level 3, for example). The DOM levels are the version numbers for the standardization process and, for the most part, you should ignore them.

The standardization process for the DOM has been a mixed success. There are standards and documents that describe each DOM level, but they are not fully implemented and the browsers have simply cherry-picked useful features and ignored others. Worse, there is a degree of inconsistency between the features that are implemented.

Part of the problem has been that the DOM specification has been developed separately from the HTML standard. HTML5 attempts to address this problem by including a core set of DOM features that should be implemented. However, this has yet to take effect and fragmentation remains.

There are a number of ways that you can deal with variability in DOM features. The first is to use a JavaScript library, such as jQuery, which irons out the differences between browser implementation. The advantage of using a library is consistency, but the disadvantage is that you are limited to the features that the library supports. If you want to go outside of the library features, you are back to using the DOM directly and face the same issue anyway. (That's not to say that jQuery and its alternatives don't have value; they can be very useful and are well worth a look.)

The second approach is conservatism: use only the features that you know are widely supported. This is the most sensible approach for the most part, although it does require careful and thorough testing. Furthermore, you have to be careful about testing new releases of browsers to make sure that support for features hasn't changed or been removed.

Testing for DOM Features

A third approach is to test for the presence of the property or method on the DOM object that is associated with a feature. Listing 25-2 contains a simple example.

[image: images] Tip Don't worry about the detail in the script in Listing 25-2. I'll explain all of the objects and features that it uses in the chapters that follow.

Listing 25-2. Testing for a Feature

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <p id="paratext">

 There are lots of different kinds of fruit - there are over 500 varieties

 of banana alone. By the time we add the countless types of apples, oranges,

 and other well-known fruit, we are faced with thousands of choices.

 </p>

 <script>

 var images;

 if (document.querySelectorAll) {

 images = document.querySelectorAll("#paratext > img");

 } else {

 images = document.getElementById("paratext").getElementsByTagName("img");

 }

 for (var i = 0; i < images.length; i++) {

 images[i].style.border = "thick solid black";

 images[i].style.padding = "4px";

 }

 </script>

 </body>

</html>

In this example, the script uses an if clause to determine whether the document object defines a method called querySelectorAll. If the clause evaluates to true, then the browser supports the feature, and I can go on and use it. If the clause evaluates to false, then I can take an alternative approach to achieve the same goal.

This is advice that you will often see when it comes to the DOM, but it is usually given glibly and without pointing out the drawbacks, which can be serious.

The first drawback is that there isn't always an alternative approach to achieve the effect of a given feature. My neat example in Listing 25-2 works because the feature I am testing for is a convenience enhancement built on top of other functions, but this isn't always the case.

The second drawback is that I am only testing for the presence of the feature, and not the quality and consistency of its implementation. Many features, especially when they are new, take several browser releases to stabilize and achieve consistency. This is less of a problem than it used to be, but you can easily end up with unexpected results because of variations in the way that browsers implement a feature you rely on.

The third drawback is that you have to test every feature that you rely on. This requires extreme diligence and produces code that is littered with endless tests. That's not to say that this can't be a useful technique, but it has flaws and should not be taken as a substitute for proper testing.

The DOM Quick Reference

The following sections provide a quick reference for the objects, methods, properties, and events that I describe in the chapters that follow.

The Document Members

Chapter 26 describes the Document object, which represents the current document and is your gateway into the DOM. Table 25-1 summarizes the members that this object defines.

[image: image]

[image: image]

[image: image]

Chapter 26 also describes the Location object, which is summarized in Table 25-2.

[image: image]

[image: image]

The Window Members

Chapter 27 describes the Window object, which defines a wide range of features. Table 25-3 summarizes the members that this object defines.

[image: image]

[image: image]

[image: image]

Chapter 27 also describes the History object, whose members are summarized in Table 25-4.

[image: image]

[image: image]

Chapter 27 also describes the Screen object, whose members are summarized in Table 25-5.

[image: image]

The HTMLElement Members

Chapter 28 describes the HTMLElement object, which represents the HTML elements in the document. Table 25-6 summarizes the members that this object defines.

Table 25-6. The HTMLElement Object

[image: image]

[image: image]

[image: image]

Chapter 28 also describes the Text object, which is used to represent text content in a document. Table 25-7 describes the members of the Text object.

[image: image]

DOM CSS Properties

Chapter 29 describes how you can use the DOM to work with CSS styles in a document. The properties of the CSSStyleDeclaration object and the styles they correspond to (and the chapters in which they are described) are listed in Table 25-8.

[image: image]

[image: image]

[image: image]

[image: image]

The DOM Events

Chapter 30 explains the DOM event system. There are a number of different events available, as described in Table 25-9.

[image: image]

[image: image]

[image: image]

Summary

In this chapter, I have provided some context for the DOM and the role it plays in HTML documents. I have also explained how DOM specification levels bear little relationship to the features implemented by the mainstream browsers, and the different approaches you can take to ensure that the DOM features you rely on are available in the browsers you target. Although, it must be said, none of these approaches replace diligent and thorough testing.

This chapter also included some quick reference tables for the objects, members, and events that I describe in the chapters that follow.

C H A P T E R 26

Working with the Document Object

In this chapter, I introduce you to one of its key components of the DOM: the Document object. The Document object is the gateway to the functionality of the DOM and provides you with information about the current document and a set of features to explore, navigate, search, and otherwise manipulate the structure and content. Table 26-1 provides the summary for this chapter.

[image: Image]

[image: Image]

You access the Document object through the global document variable; this is one of the key objects that the browser creates for us. The Document object provides you with information about the document as a whole and gives you access to the individual objects in the model. The best way to get started with the DOM is with an example. Listing 26-1 shows the example document from the previous chapter, with the addition of a script that demonstrates some basic DOM features.

Listing 26-1. Using the Document Object

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 </head>

 <body>

 <p id="fruittext">

 There are lots of different kinds of fruit - there are over 500

 varieties of banana alone. By the time we add the

 countless types of apples, oranges, and other well-known fruit, we are faced

 with thousands of choices.

 </p>

 <p id="apples">

 One of the most interesting aspects of fruit is the

 variety available in each country. I live near London, in an area which is

 known for its apples.

 </p>

 <script>

 document.writeln("<pre>URL: " + document.URL);

 var elems = document.getElementsByTagName("p");

 for (var i = 0; i < elems.length; i++) {

 document.writeln("Element ID: " + elems[i].id);

 elems[i].style.border = "medium double black";

 elems[i].style.padding = "4px";

 }

 document.write("</pre>");

 </script>

 </body>

</html>

The script is short and simple, but it neatly captures many of the different uses of the DOM. I'll break down the script into pieces and explain what is going on. One of the most basic things we can do with the Document object is get information about the HTML document that we are working with. The first line in the script does just that:

document.writeln("<pre>URL: " + document.URL);

In this case, I have read the value of the document.URL property, which returns the URL of the current document. This is the URL that the browser used to load the document in which the script is running. I'll show you the different pieces of information you can get from the Document object in the “Getting Information from the Document” section, later in this chapter.

The statement also calls the writeln method:

document.writeln("<pre>URL: " + document.URL);

This method appends content to the end of the HTML document. In this case, I have written the opening tag of a pre element and the value of the URL property. This is a very simple example of modifying the DOM, meaning that I have changed the structure of the document. I describe manipulating the DOM in more detail in Chapter 28.

Next, I select some elements from the document:

var elems = document.getElementsByTagName("p");

There is a range of methods for selecting elements, which I'll explain in the “Obtaining HTML Element Objects” section, later in this chapter. The getElementsByTagName selects all of the elements of a given type, in this case, p elements. Any p elements that are contained in the document are returned from the method and placed in the variable called elems. As I explained, all elements are represented by the HTMLElement object, which provides the basic functionality to represent HTML elements. The result from the getElementsByTagName method is a collection of HTMLElement objects.

Now that I have a collection of HTMLElement objects to work with, I use a for loop to enumerate the contents of the collection and process each p element that the browser has found in the HTML document:

for (var i = 0; i < elems.length; i++) {

 document.writeln("Element ID: " + elems[i].id);

 elems[i].style.border = "medium double black";

 elems[i].style.padding = "4px";

}

For each HTMLElement in the collection, I read the id property to get the value of the id attribute and use the document.writeln method to append the result to the contents of the pre element that I started earlier:

for (var i = 0; i < elems.length; i++) {

 document.writeln("Element ID: " + elems[i].id);

 elems[i].style.border = "medium double black";

 elems[i].style.padding = "4px";

}

The id property is one of a number of properties defined by HTMLElement. I'll show you the other properties in Chapter 28. You can use these properties to obtain information about an element or to modify it (and, by doing so, the HTML element that it represents). In this case, I have used the style property to change the value of the CSS border and padding properties:

for (var i = 0; i < elems.length; i++) {

 document.writeln("Element ID: " + elems[i].id);

 elems[i].style.border = "medium double black";

 elems[i].style.padding = "4px";

}

These changes create an inline style for each of the elements that you found using the getElementsByTagName earlier (I described inline styles in Chapter 4). When you change an object, the browser applies the change to the corresponding element immediately, in this case, by adding padding and a border to the p elements.

The last line of the script writes the end tag for the pre element that I opened back at the start of the script. I use the write method to do this, which is just like writeln but doesn't append end-of-line characters to the string that is added to the document. This doesn't make much of difference unless you are writing preformatted content or content for which you have specified nonstandard whitespace handling (see Chapter 22 for details).

The use of the pre element means that the end-of-line characters added by the writeln method will be used to structure the content. You can see the effect on the display of the document in Figure 26-1.

[image: Image]

Figure 26-1. The effect of the script on the basic HTML document

Working with Document Metadata

As I explained in the previous section, one use for the Document object is to provide you with information about the document. Table 26-2 describes the properties you can use to get document metadata.

[image: Image]

[image: Image]

Getting Information from the Document

You can get some useful information about the document using the metadata properties, as demonstrated by Listing 26-2.

Listing 26-2. Using the Document Object to Obtain Metadata

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 </head>

 <body>

 <script>

 document.writeln("<pre>");

 document.writeln("characterSet: " + document.characterSet);

 document.writeln("charset: " + document.charset);

 document.writeln("compatMode: " + document.compatMode);

 document.writeln("defaultCharset: " + document.defaultCharset);

 document.writeln("dir: " + document.dir);

 document.writeln("domain: " + document.domain);

 document.writeln("lastModified: " + document.lastModified);

 document.writeln("referrer: " + document.referrer);

 document.writeln("title: " + document.title);

 document.write("</pre>");

 </script>

 </body>

</html>

These properties provide you with some useful insights into the document that you are working with. You can see the values for these properties as displayed by the browser in Figure 26-2.

[image: Image]

Figure 26-2. Basic information about the document

Understanding Quirks Mode

The compatMode property tells you how the browser has handled the content in the document. There is a lot of nonstandard HTML in the world, and browsers try to display such pages even when they don't conform to the HTML specification. Some of this content relies on features that date back to the days when browsers competed on their unique differences, rather than standards compliance. The compatMode property will return one of two values, as described in Table 26-3.

[image: Image]

Using the Location Object

The document.location property returns a Location object that gives you fine-grained information about the document's address and allows you to navigate to other documents. Table 26-4 describes the functions and properties of the Location object.

[image: Image]

The simplest use for the document.location property is to get information about the location of the current object, as shown in Listing 26-3.

Listing 26-3. Using the Location Object to Get Information About the Document

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 </head>

 <body>

 <script>

 document.writeln("<pre>");

 document.writeln("protocol: " + document.location.protocol);

 document.writeln("host: " + document.location.host);

 document.writeln("hostname: " + document.location.hostname);

 document.writeln("port: " + document.location.port);

 document.writeln("pathname: " + document.location.pathname);

 document.writeln("search: " + document.location.search);

 document.writeln("hash: " + document.location.hash);

 document.write("</pre>");

 </script>

 </body>

</html>

The search property returns the query string portion of the URL, and the hash property returns the URL fragment. Figure 26-3 shows the values returned by the Location properties for the URL http://titan/listings/example.html?query=apples#apples.

[image: Image]

Figure 26-3. Using the Location object to get information

[image: Image] Tip Notice that the property doesn't return a value when the port is 80, the default for HTTP.

Using the Location Object to Navigate Elsewhere

You can also use the Location object available through the document.location property to navigate elsewhere. There are a couple of different ways of doing this. First, you can assign a new value to one of the properties that I used in the previous example, as shown in Listing 26-4.

Listing 26-4. Navigating to a Document by Assigning a New Value to a Location Property

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 </head>

 <body>

 <p>

 There are lots of different kinds of fruit - there are over 500 varieties

 of banana alone. By the time we add the countless types of apples, oranges,

 and other well-known fruit, we are faced with thousands of choices.

 </p>

 <button id="pressme">Press Me</button>

 <p>

 One of the most interesting aspects of fruit is the variety available in

 each country. I live near London, in an area which is known for

 its apples.

 </p>

 <script>

 document.getElementById("pressme").onclick = function() {

 document.location.hash = "banana";

 }

 </script>

 </body>

</html>

This example contains a button element that, when clicked, causes a new value to be assigned to the document.location.hash property. The association between the button and the JavaScript function that will be executed when it is clicked is made using an event. This is the purpose of the onclick property, and you can learn more about events in Chapter 30.

This change causes the browser to navigate to the element whose id attribute value matches the hash value, the img element in this case. You can see the effect of this navigation in Figure 26-4.

[image: Image]

Figure 26-4. Using the Location object to navigate

Although I navigated to a different location within the same document, you can use the properties of the Location object to navigate to other documents as well. However, this is usually done through the href property, since you can set the complete URL. You can also use the methods that the Location object defines.

The difference between the assign and replace methods is that replace removes the current document from the browser's history, meaning that when the user clicks the back button, for example, the browser will skip over the current document, as though it had never been visited. Listing 26-5 shows the use of the assign method.

Listing 26-5. Navigating Using the assign Method of the Location Object

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 </head>

 <body>

 <button id="pressme">Press Me</button>

 <script>

 document.getElementById("pressme").onclick = function() {

 document.location.assign("http://apress.com");

 }

 </script>

 </body>

</html>

When the user clicks the button element, the browser will navigate to the specified URL, which in this case is http://apress.com.

Reading and Writing Cookies

The cookie property allows you to read, add to, and update the cookies associated with the document. Listing 26-6 gives a demonstration.

Listing 26-6. Reading and Creating Cookies

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 </head>

 <body>

 <p id="cookiedata">

 </p>

 <button id="write">Add Cookie</button>

 <button id="update">Update Cookie</button>

 <script>

 var cookieCount = 0;

 document.getElementById("update").onclick = updateCookie;

 document.getElementById("write").onclick = createCookie;

 readCookies();

 function readCookies() {

 document.getElementById("cookiedata").innerHTML = document.cookie;

 }

 function createCookie() {

 cookieCount++;

 document.cookie = "Cookie_" + cookieCount + "=Value_" + cookieCount;

 readCookies();

 }

 function updateCookie() {

 document.cookie = "Cookie_" + cookieCount + "=Updated_" + cookieCount;

 readCookies();

 }

 </script>

 </body>

</html>

The cookie property works in a slightly odd way. When you read the value of the property, you get back all of the cookies that are associated with the document. Cookies are name/value pairs in the form name=value. If multiple cookies are available, all are returned as the result of the cookie property, separated by a semicolon, for example: name1=value1;name2=value2.

By contrast, when you want to create a new cookie, you assign a new name/value pair as the value of the cookie property, and it is added to the set of cookies for the document. You can set only one cookie at a time. If you set a value whose name portion corresponds to an existing cookie, then the value portion is used to update the cookie.

To demonstrate this, the listing contains a script that reads, creates, and updates cookies. The readCookies function reads the value of the document.cookie property and sets the result as the content of a paragraph (p) element.

There are two button elements in the document. When the Add Cookie button is clicked, the createCookie function assigns a new value to the cookie property, which will be added to the cookie collection. The Update Cookie button causes the updateCookie function to be invoked. This function provides a new value for an existing cookie. You can see the effect of this script in Figure26-5, but to truly get a feel for what's happening, I recommend you load this document and play around.

[image: Image]

Figure 26-5. Adding and updating cookies

In this case, I have added three cookies, one of which has been updated to have a new value. Although the name=value form is the default for adding cookies, you can apply some additional data that changes the way the cookie is handled. These additions are described in Table 26-5.

[image: Image]

Each of these additional items is prepended to the name/value pair and separated with a semicolon, like this:

document.cookie = "MyCookie=MyValue;max-age=10";

Understanding the Ready State

The document.readyState property gives you information about the current stage in the process of loading and parsing the HTML document. Remember that, by default, the browser executes your scripts as soon as it encounters the script element in the document, but that script execution can be deferred using the defer attribute (as described in Chapter 7). As you have already seen in some of the examples and as I'll explain in detail in Chapter 30, you can use the JavaScript event system to execute individual functions in response to changes in the document or user actions.

In all of these situations, it can be useful to know what stage the browser has got to in loading and processing the HTML. The readyState property returns three different values, which are described in Table 26-6.

[image: Image]

The value of the readyState property moves from loading to interactive to complete as the browser loads and processes the document. This property is most useful in conjunction with the readystatechange event, which is triggered each time the value of the readyState property changes. I'll explain events in Chapter 30, but Listing 26-7 shows how you can use the event and the property together to achieve a common task.

Listing 26-7. Using the Document Ready State to Defer Script Execution

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <script>

 document.onreadystatechange = function() {

 if (document.readyState == "interactive") {

 document.getElementById("pressme").onclick = function() {

 document.getElementById("results").innerHTML = "Button Pressed";

 }

 }

 }

 </script>

 </head>

 <body>

 <button id="pressme">Press Me</button>

 <pre id="results"></pre>

 </body>

</html>

This script uses the document ready state to defer execution of a function until the document reaches the interactive stage. This script relies on being able to find elements in the document that have not been loaded by the browser at the point where the script is being executed. By deferring execution until the document has been completely loaded, I can be sure that the elements will be found. This is an alternative to putting the script element at the end of the document. I explain how to find elements in the “Obtaining HTML Element Objects” section, later in this chapter. I explain how to use events in Chapter 30.

Getting DOM Implementation Details

The document.implementation property provides you with information about the browser implementation of the DOM features. This property returns a DOMImplementation object, which has one method that you are interested in: the hasFeature method. You can use this method to determine which DOM features are implemented, as demonstrated in Listing 26-8.

Listing 26-8. Using the document.implementation.hasFeature Method

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 </head>

 <body>

 <script>

 var features = ["Core", "HTML", "CSS", "Selectors-API"];

 var levels = ["1.0", "2.0", "3.0"];

 document.writeln("<pre>");

 for (var i = 0; i < features.length; i++) {

 document.writeln("Checking for feature: " + features[i]);

 for (var j = 0; j < levels.length; j++) {

 document.write(features[i] + " Level " + levels[j] + ": ");

 document.writeln(document.implementation.hasFeature(features[i],

 levels[j]));

 }

 }

 document.write("</pre>")

 </script>

 </body>

</html>

This script checks some of the different DOM features and the defined feature levels. This isn't as useful as it might appear. First, browsers don't always report the features they implement correctly. Some implement features but don't report them through the hasFeature method, and others claim to implement features but don't. Second, a browser reporting that a feature doesn't mean that it is implemented in a useful way. This is less of a problem than it has been, but there are some differences between DOM implementations.

If you are intending to write code that works on all mainstream browsers (and you should be), then the hasFeature method is not much use. Instead, check your code thoroughly during the testing phase, test for the support and fallback when you need to, and, optionally, consider using a JavaScript library (such as jQuery), which can help smooth out differences in the DOM implementations.

Obtaining HTML Element Objects

One of the key functions of the Document object is to act as a gateway to the objects that represent the elements in your document. You can perform this task in a few different ways. There are properties that return objects that represent specific types of element in the document, there are some handy methods that let you match for elements using search criteria, and you can treat the DOM as a tree and navigate through its structure. In the sections that follow, I introduce these techniques.

[image: Image] Tip Obviously, you want to obtain these objects in order to do interesting things with them. I'll describe how to use these objects in Chapter 38, in which I describe the features of the HTMLElement object.

Using Properties to Obtain Element Objects

The Document object provides you with a set of properties that return objects that represent specific elements or types of elements in the document. These properties are summarized in Table 26-7.

[image: Image]

[image: Image]

Most of the properties described in Table 26-7 return an HTMLCollection object. This is the way that the DOM represents a collection of objects that represent elements. Listing 26-9 demonstrates the two ways in which you can access the objects contained in the collection.

Listing 26-9. Working with the HTMLCollection Object

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 pre {border: medium double black;}

 </style>

 </head>

 <body>

 <pre id="results"></pre>

 <p>

 There are lots of different kinds of fruit - there are over 500 varieties

 of banana alone. By the time we add the countless types of apples, oranges,

 and other well-known fruit, we are faced with thousands of choices.

 </p>

 <p>

 One of the most interesting aspects of fruit is the variety available in

 each country. I live near London, in an area which is known for

 its apples.

 </p>

 <script>

 var resultsElement = document.getElementById("results");

 var elems = document.images;

 for (var i = 0; i < elems.length; i++) {

 resultsElement.innerHTML += "Image Element: " + elems[i].id + "\n";

 }

 var srcValue = elems.namedItem("apple").src;

 resultsElement.innerHTML += "Src for apple element is: " + srcValue + "\n";

 </script>

 </body>

</html>

The first way of working with an HTMLCollection is to treat it like an array. The length property returns the number of items in the collection, and the standard JavaScript array indexer is supported (the element[i] notation) to provide direct access to individual objects in the collection. This is the first approach I use in the example, having used the document.images property to get an HTMLCollection containing object representing all of the img elements in the document.

[image: Image] Tip Notice that I used the innerHTML property to set the contents of the pre element. I'll explain this property in more detail in Chapter 38.

The second approach is to use the namedItem method, which returns the item in the collection that has the specified id or name attribute value (if there is one). This is the second approach I use in the example, where I use the namedItem method to retrieve the object representing the img element with the id attribute value of apple.

[image: Image] Tip Notice that I read the value of the src property on one of the objects. This is a property that is implemented by HTMLImageElement objects, which are used to represent img elements. I explain more about this kind of object in Chapter 31. The other property I use, id, is part of HTMLElement and so is available for all types of element.

Using Array Notation to Obtain a Named Element

You can also use array-style notation to obtain an object representing a named element. This is an element that has an id or name attribute value. Listing 26-10 provides an example.

Listing 26-10. Obtaining Named Element Objects

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 pre {border: medium double black;}

 </style>

 </head>

 <body>

 <pre id="results"></pre>

 <p>

 There are lots of different kinds of fruit - there are over 500 varieties

 of banana alone. By the time we add the countless types of apples, oranges,

 and other well-known fruit, we are faced with thousands of choices.

 </p>

 <p>

 One of the most interesting aspects of fruit is the variety available in

 each country. I live near London, in an area which is known for

 its apples.

 </p>

 <script>

 var resultsElement = document.getElementById("results");

 var elems = document["apple"];

 if (elems.namedItem) {

 for (var i = 0; i < elems.length; i++) {

 resultsElement.innerHTML += "Image Element: " + elems[i].id + "\n";

 }

 } else {

 resultsElement.innerHTML += "Src for element is: " + elems.src + "\n";

 }

 </script>

 </body>

</html>

You can see how I have used the array-style indexer to obtain an object representing the element with an id value of apple. An oddity of obtaining elements this way is that you can get different kinds of results, depending on the contents of the document and the order of the elements.

The browser looks at all of the elements in the document in a depth-first order, trying to match either the id or name attribute to the specified value. If the first match is an id attribute, then the browser stops searching (because id values must be unique in documents) and returns an HTMLElement representing the matched element.

If the first match is against a name attribute value, then you will receive either an HTMLElement (if there is only one matching element) or an HTMLCollection (if there is more than one). The browser won't match id values once it has started to match name values.

You can see how I use the namedItem property as a test to see which kind of result I have received. In the example I receive an HTMLElement because the value I specified matches an id value.

[image: Image] Tip You can also refer to named elements as properties. So, for example, document[apple] and document.apple have the same meaning. I tend to prefer the dot-notation format because it makes it clearer that I am trying to obtain element objects, but it is a matter of personal preference.

Searching for Elements

The Document object defines a number of methods that you can use to search for elements in the document. These methods are described in Table 26-8.

[image: Image]

As you might expect, some of these methods return multiple elements. I have shown these as returning an array of HTMLElement objects in the table, but this isn't strictly true. In fact, these methods return a NodeList, which is part of the underlying DOM specification that deals with generic structured document formats and not just HTML. However, for these purposes, you can treat them like arrays and keep the focus on HTML5.

The search methods can be broken into two categories. Listing 26-11 shows demonstrates the first of these categories—those methods whose name begins with getElement.

Listing 26-11. Using the document.getElement* Methods

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 pre {border: medium double black;}

 </style>

 </head>

 <body>

 <pre id="results"></pre>

 <p>

 There are lots of different kinds of fruit - there are over 500 varieties

 of banana alone. By the time we add the countless types of apples, oranges,

 and other well-known fruit, we are faced with thousands of choices.

 </p>

 <p>

 One of the most interesting aspects of fruit is the variety available in

 each country. I live near London, in an area which is known for

 its apples.

 </p>

 <script>

 var resultsElement = document.getElementById("results");

 var pElems = document.getElementsByTagName("p");

 resultsElement.innerHTML += "There are " + pElems.length + " p elements\n";

 var fruitsElems = document.getElementsByClassName("fruits");

 resultsElement.innerHTML += "There are " + fruitsElems.length

 + " elements in the fruits class\n";

 var nameElems = document.getElementsByName("apple");

 resultsElement.innerHTML += "There are " + nameElems.length

 + " elements with the name 'apple'";

 </script>

 </body>

</html>

These methods work just as you might expect, and there is only one behavior to note. When using the getElementById method, the browser will return null if no element can be found with the specified id value. By contrast, the other methods will always return an array of HTMLElement objects, but the length property will return 0 to indicate no matches.

Searching with CSS Selectors

A useful alternative is to search using CSS selectors. Selectors allow you to find a broader range of elements in the document. I describe CSS selectors in Chapters 17 and 18. Listing 26-12 demonstrates obtaining element objects in this way.

Listing 26-12. Obtaining Element Objects Using CSS Selectors

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 pre {border: medium double black;}

 </style>

 </head>

 <body>

 <pre id="results"></pre>

 <p>

 There are lots of different kinds of fruit - there are over 500 varieties

 of banana alone. By the time we add the countless types of apples, oranges,

 and other well-known fruit, we are faced with thousands of choices.

 </p>

 <p>

 One of the most interesting aspects of fruit is the variety available in

 each country. I live near London, in an area which is known for

 its apples.

 </p>

 <script>

 var resultsElement = document.getElementById("results");

 var elems = document.querySelectorAll("p, img#apple")

 resultsElement.innerHTML += "The selector matched " + elems.length

 + " elements\n";

 </script>

 </body>

</html>

In this example, I have used a selector that will match all p elements and the img element that has an id value of apple. It is hard to achieve the same effect using the other document methods, and I find that I use the selectors more frequently than the getElement methods.

Chaining Searches Together

A nice DOM feature is that all but one of the search methods the Document object implements are also implemented by HTMLElement objects, allowing you to chain searches together. The exception is the getElementById method, which is available only through the Document object. Listing 26-13 provides a demonstration of chaining searches.

Listing 26-13. Chaining Searches Together

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 pre {border: medium double black;}

 </style>

 </head>

 <body>

 <pre id="results"></pre>

 <p id="tblock">

 There are lots of different kinds of fruit - there are over 500 varieties

 of banana alone. By the time we add the countless

 types of apples,

 <span="orange">oranges</span="orange">, and other well-known fruit, we are

 faced with thousands of choices.

 </p>

 <script>

 var resultsElement = document.getElementById("results");

 var elems = document.getElementById("tblock").getElementsByTagName("span");

 resultsElement.innerHTML += "There are " + elems.length + " span elements\n";

 var elems2 = document.getElementById("tblock").querySelectorAll("span");

 resultsElement.innerHTML += "There are " + elems2.length

 + " span elements (Mix)\n";

 var selElems = document.querySelectorAll("#tblock > span");

 resultsElement.innerHTML += "There are " + selElems.length

 + " span elements (CSS)\n";

 </script>

 </body>

</html>

There are two chained searches in this example, both of which I have started with the getElementById method (which gives me a single object to work with). In the first example, I chain a search using the getElementsByTagName method, and in the second I use a very simple CSS selector through the querySelectorAll method. Each of these examples returns the collection of span elements contained in the p element whose id is tblock.

Of course, you can achieve the same effect using the CSS selector methods applied solely to the Document object (which I have shown as the third part of the example), but this feature can be convenient when you are dealing with HTMLElement objects that have been produced by another function in your script (or by a third-party script). You can see the results of the searches in Figure 26-6.

[image: Image]

Figure 26-6. Chaining searches together

Navigating the DOM Tree

An alternative approach to searching for elements is to treat the DOM like a tree and navigate its hierarchical structure. There are a set of properties and methods that are supported by all DOM objects that let us do just that; they are described in Table 26-9.

[image: Image]

Listing 26-14 shows a script that lets you navigate around the document, displaying information about the currently selected element in a pre element.

Listing 26-14. Navigating the DOM Tree

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 pre {border: medium double black;}

 </style>

 </head>

 <body>

 <pre id="results"></pre>

 <p id="tblock">

 There are lots of different kinds of fruit - there are over 500 varieties

 of banana alone. By the time we add the countless

 types of apples,

 <span="orange">oranges</span="orange">, and other well-known fruit, we are

 faced with thousands of choices.

 </p>

 <p>

 One of the most interesting aspects of fruit is the variety available in

 each country. I live near London, in an area which is known for

 its apples.

 </p>

 <p>

 <button id="parent">Parent</button>

 <button id="child">First Child</button>

 <button id="prev">Prev Sibling</button>

 <button id="next">Next Sibling</button>

 </p>

 <script>

 var resultsElem = document.getElementById("results");

 var element = document.body;

 var buttons = document.getElementsByTagName("button");

 for (var i = 0; i < buttons.length; i++) {

 buttons[i].onclick = handleButtonClick;

 }

 processNewElement(element);

 function handleButtonClick(e) {

 if (element.style) {

 element.style.backgroundColor = "white";

 }

 if (e.target.id == "parent" && element != document.body) {

 element = element.parentNode;

 } else if (e.target.id == "child" && element.hasChildNodes()) {

 element = element.firstChild;

 } else if (e.target.id == "prev" && element.previousSibling) {

 element = element.previousSibling;

 } else if (e.target.id == "next" && element.nextSibling) {

 element = element.nextSibling;

 }

 processNewElement(element);

 if (element.style) {

 element.style.backgroundColor = "lightgrey";

 }

 }

 function processNewElement(elem) {

 resultsElem.innerHTML = "Element type: " + elem + "\n";

 resultsElem.innerHTML += "Element id: " + elem.id + "\n";

 resultsElem.innerHTML += "Has child nodes: "

 + elem.hasChildNodes() + "\n";

 if (elem.previousSibling) {

 resultsElem.innerHTML += ("Prev sibling is: "

 + elem.previousSibling + "\n");

 } else {

 resultsElem.innerHTML += "No prev sibling\n";

 }

 if (elem.nextSibling) {

 resultsElem.innerHTML += "Next sibling is: "

 + elem.nextSibling + "\n";

 } else {

 resultsElem.innerHTML += "No next sibling\n";

 }

 }

 </script>

 </body>

</html>

The important part of the script is shown in bold; this is the section that does the actual navigation. The rest of the script deals with the setup, processing button clicks and display information about the currently selected element. You can see the effect of the script in Figure 26-7.

[image: Image]

Figure 26-7. Navigating the DOM tree

Summary

In this chapter, I introduced you to the Document object, which the browser creates for you and which acts as the gateway into the Document Object Model (DOM). I explained how you get information about the document, how you find and obtain objects that represent elements in the document, and how you can navigate the DOM as a tree structure.

C H A P T E R 27

Working with the Window Object

The Window object has been added to the HTML specification as part of HTML5. Prior to this, it has been an unofficial standard; browsers have implemented roughly the same set of features in a broadly consistent way. With HTML5, the Window object in the specification incorporates the de facto functionality and a few enhancements. Implementation of this object is mixed; different browsers have different levels of compliance. This chapter focuses on the features that have a reasonable level of support.

[image: Image] NoteSome of the advanced features described in this chapter rely on DOM events, which are the topic of Chapter 30. If you are unfamiliar with events, you may wish to read that chapter and then return to the examples in this one.

The Window object has been a bit of a dumping ground for features that don't have a natural home elsewhere. You will see what I mean as we tour the features of this object. Table 27-1 provides the summary for this chapter.

[image: Image]

[image: Image]

Obtaining a Window Object

You can get a Window object in two ways. The official HTML5 way is to use the defaultView property on the Document object. Another approach is to use the window global variable, which all of the browsers support. Listing 27-1 demonstrates both techniques.

Listing 27-1. Obtaining a Window Object

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body id="bod">

 <table>

 <tr><th>outerWidth:</th><td id="owidth"></td></tr>

 <tr><th>outerHeight:</th><td id="oheight"></td></tr>

 </table>

 <script type="text/javascript">

 document.getElementById("owidth").innerHTML =window.outerWidth;

 document.getElementById("oheight").innerHTML

 = document.defaultView.outerHeight;

 </script>

 </body>

</html>

In the script I use the Window object to read the value of a pair of properties, outerWidth and outerHeight, which are explained in the following section.

Getting Information about the Window

As its name suggests, the basic functionality of the Window object relates to the window in which the document is currently displayed. Table 27-2 lists the properties and methods that handle this functionality. For the purposes of HTML, tabs within a browser window are treated as windows in their own right.

[image: Image]

Listing 27-2 shows how to use these properties to get information about the window.

Listing 27-2. Getting Information About the Window

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 table { border-collapse: collapse; border: thin solid black;}

 th, td { padding: 4px; }

 </style>

 </head>

 <body>

 <table border="1">

 <tr>

 <th>outerWidth:</th><td id="ow"></td><th>outerHeight:</th><td id="oh">

 </tr>

 <tr>

 <th>innerWidth:</th><td id="iw"></td><th>innerHeight:</th><td id="ih">

 </tr>

 <tr>

 <th>screen.width:</th><td id="sw"></td>

 <th>screen.height:</th><td id="sh">

 </tr>

 </table>

 <script type="text/javascript">

 document.getElementById("ow").innerHTML = window.outerWidth;

 document.getElementById("oh").innerHTML = window.outerHeight;

 document.getElementById("iw").innerHTML = window.innerHeight;

 document.getElementById("ih").innerHTML = window.innerHeight;

 document.getElementById("sw").innerHTML = window.screen.width;

 document.getElementById("sh").innerHTML = window.screen.height;

 </script>

 </body>

</html>

The script in this example displays the value of various Window properties in a table. Notice that I used the screen property to obtain a Screen object. This object provides information about the screen that the window is displayed on and defines the properties shown in Table 27-3.

[image: Image]

You can see the effect of the script in Figure 27-1.

[image: Image]

Figure 27-1. Displaying information about the window and screen

Interacting with the Window

The Window object provides a set of methods through which you can interact with the window that contains your document. These methods are described in Table 27-4.

[image: Image]

All of these methods should be used with caution because they take the control of the browser window away from the user. Users have very fixed expectations of how applications should behave, and windows that scroll, print, and close themselves are largely unwelcome. If you must use these methods, put control in the hands of the user, and provide clear visual cues about what is going to happen.

Listing 27-3 shows some of the window interaction methods in use.

Listing 27-3. Interacting with the Window

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <p>

 <button id="scroll">Scroll</button>

 <button id="print">Print</button>

 <button id="close">Close</button>

 </p>

 <p>

 There are lots of different kinds of fruit - there are over 500 varieties

 of banana alone. By the time we add the countless types of apples, oranges,

 and other well-known fruit, we are faced with thousands of choices.

 One of the most interesting aspects of fruit is the variety available in

 each country. I live near London, in an area which is known for

 its apples.

 When traveling in Asia, I was struck by how many different

 kinds of banana were available - many of which had unique flavors and

 which were only available within a small region.

 And, of course, there are fruits which are truly unique - I am put in mind

 of the durian, which is widely consumed in SE Asia and is known as the

 "king of fruits." The durian is largely unknown in Europe and the USA - if

 it is known at all, it is for the overwhelming smell, which is compared

 to a combination of almonds, rotten onions and gym socks.

 </p>

 <script>

 var buttons = document.getElementsByTagName("button");

 for (var i = 0; i < buttons.length; i++) {

 buttons[i].onclick = handleButtonPress;

 }

 function handleButtonPress(e) {

 if (e.target.id == "print") {

 window.print();

 } else if (e.target.id == "close") {

 window.close();

 } else {

 window.scrollTo(0, 400);

 }

 }

 </script>

 </body>

</html>

The script in this example prints, closes, and scrolls the window in response to button presses.

Prompting the User

The Window object contains a set of methods for prompting the user in different ways, as described in Table 27-5.

[image: Image]

Each of these methods presents a different kind of prompt. Listing 27-4 demonstrates how they can be used.

Listing 27-4. Prompting the User

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 table { border-collapse: collapse; border: thin solid black;}

 th, td { padding: 4px; }

 </style>

 </head>

 <body>

 <button id="alert">Alert</button>

 <button id="confirm">Confirm</button>

 <button id="prompt">Prompt</button>

 <button id="modal">Modal Dialog</button>

 <script type="text/javascript">

 var buttons = document.getElementsByTagName("button");

 for (var i = 0 ; i < buttons.length; i++) {

 buttons[i].onclick = handleButtonPress;

 }

 function handleButtonPress(e) {

 if (e.target.id == "alert") {

 window.alert("This is an alert");

 } else if (e.target.id == "confirm") {

 var confirmed

 = window.confirm("This is a confirm - do you want to proceed?");

 alert("Confirmed? " + confirmed);

 } else if (e.target.id == "prompt") {

 var response = window.prompt("Enter a word", "hello");

 alert("The word was " + response);

 } else if (e.target.id == "modal") {

 window.showModalDialog("http://apress.com");

 }

 }

 </script>

 </body>

</html>

These features should be used with caution. Each browser handles the prompts differently and creates a different experience for the user.

As an example, consider Figure27-2, which shows the different approaches taken by Chrome and Firefox for the alert prompt. The prompts may look similar, but the effect is quite different. Chrome takes the specification literally and creates a modal dialog. This means that the browser won't do anything else until the user has clicked the OK button and dismissed the prompt. The user can't switch tabs, close the current tab, or do anything else with the browser. Firefox takes a more liberal view and limits the effect of the prompt to the current tab. This is a more sensible approach, but it is a different approach, and inconsistency is something to consider carefully when selecting features to use in a web application.

[image: Image]

Figure 27-2. Chrome and Firefox showing an alert prompt

The showModalDialog method creates a popup window—a feature that has been much abused by advertisers. In fact, it's has been so abused that all of the browsers make efforts to limit the use of this feature to sites that the user has previously approved. If you are relying on a popup to present the user with critical information, you run the risk that the message simply won't be seen.

[image: Image] Tip If you want to attract the user's attention, consider using inline dialog boxes provided by a JavaScript library such as jQuery. They are simple to use, less intrusive, and behaviorally and visually consistent across browsers. For more information about jQuery, see my book Pro jQuery, published by Apress.

Getting General Information

The Window object provides access to objects that return more general information, including details of the current location (the URL from which the document was loaded) and the user's browsing history. These properties are described in Table 27-6.

[image: Image]

The Document object is the subject of Chapter 26. The Location object that is returned by the Window.location property is the same as for the Document.location property, which I also described in Chapter 26. We'll look at working with the browser history next.

Working with the Browser History

The Window.history property returns a History object, which you can use to perform basic operations on the browser history. Table 27-7 describes the properties and methods that the History object defines.

[image: Image]

[image: Image]

Navigating Within the Browsing History

The back, forward, and go methods tell the browser to navigate to a URL in the history. The back and forward methods have the same effect as the browser back and forward buttons. The go method navigates to a place in the history relative to the current document. A positive value specifies the browser should go forward in the history, and a negative value specifies to move backward. The magnitude of the value specifies how many steps. For example, a value of -2 tells the browser to navigate to the document before last in the history. Listing 27-5 demonstrates the use of these three methods.

Listing 27-5. Navigating Within the Browser History

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <button id="back">Back</button>

 <button id="forward">Forward</button>

 <button id="go">Go</button>

 <script type="text/javascript">

 var buttons = document.getElementsByTagName("button");

 for (var i = 0 ; i < buttons.length; i++) {

 buttons[i].onclick = handleButtonPress;

 }

 function handleButtonPress(e) {

 if (e.target.id == "back") {

 window.history.back();

 } else if (e.target.id == "forward") {

 window.history.forward();

 } else if (e.target.id == "go") {

 window.history.go("http://www.apress.com");

 }

 }

 </script>

 </body>

</html>

In addition to these basic functions, HTML5 provides support for changing the browser history, within certain constraints. The best place to start is with an example of the kind of problem that changing the history can help solve, as provided by Listing 27-6.

Listing 27-6. Dealing with the Browser History

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <p id="msg"></p>

 <button id="banana">Banana</button>

 <button id="apple">Apple</button>

 <script type="text/javascript">

 var sel = "No selection made";

 document.getElementById("msg").innerHTML = sel;

 var buttons = document.getElementsByTagName("button");

 for (var i = 0; i < buttons.length; i++) {

 buttons[i].onclick = function(e) {

 document.getElementById("msg").innerHTML = e.target.innerHTML;

 };

 }

 </script>

 </body>

</html>

This example contains a script that displays a message based on which button the user clicks. It's all very simple. The problem is that when the user navigates away from the example document, the information about which button was clicked is lost. You can see this effect in Figure 27-3.

[image: Image]

Figure 27-3. The regular history sequence

The sequence of events is as follows:

	I navigate to the example document. The No selection made message is displayed.

	I click the Banana button. The Banana message is displayed.

	I navigate to http://apress.com.

	I click the back button to return to the example document.

At the end of this sequence, I am back at the example document, and no record of my previous selection is available. This is the regular behavior of a browser—the browsing history is handled using URLs. When I click the back button, the browser returns to the URL of my example, and I start all over again. The history of my session looks like this:

	http://titan/listings/example.html

	http://apress.com

Inserting an Entry into the History

The History.pushState method lets you add a URL to the browser history, with some constraints. The URL must be from the same server name and port as the current document. One approach to adding URLs is to use just the query string or hash fragment appended to the current document, as shown in Listing 27-7.

Listing 27-7. Adding an Entry to the Browser History

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <p id="msg"></p>

 <button id="banana">Banana</button>

 <button id="apple">Apple</button>

 <script type="text/javascript">

 var sel = "No selection made";

 if (window.location.search == "?banana") {

 sel = "Selection: Banana";

 } else if (window.location.search == "?apple") {

 sel = "Selection: Apple";

 }

 document.getElementById("msg").innerHTML = sel;

 var buttons = document.getElementsByTagName("button");

 for (var i = 0; i < buttons.length; i++) {

 buttons[i].onclick = function(e) {

 document.getElementById("msg").innerHTML = e.target.innerHTML;

 window.history.pushState("", "", "?" + e.target.id);

 };

 }

 </script>

 </body>

</html>

The script in this example uses the pushState method to add an item to the browser history. The URL that it added is the URL of the current document plus a query string indicating which button the user clicked. I also added some code that uses the Location object (described in Chapter 26) to read the query string and the selected value. Two user-discernible changes arise from this script. The first occurs when the user clicks one of the buttons, as shown in Figure 27-4.

[image: Image]

Figure 27-4. The effect of pushing an item into the browser history

When the user clicks the Banana button, the browser navigation bar shows the URL I pushed into the browsing history. The document isn't reloaded; only the history and the displayed URL change. At this point, the browser history looks like this:

	http://titan/listings/example.html

	http://titan/listings/example.html?banana

Each time a button is clicked, a new URL is added to the history, creating a record of the user's path through the navigation. The benefit of these additional entries comes when the user navigates elsewhere and then returns to the document, as shown in Figure 27-5.

[image: Image]

Figure 27-5. Preserving application breadcrumbs through the browser history

This time, when the user clicks the back button, the URL that I inserted into the history is loaded, and the script uses the query string to preserve some simple application state. This is a simple but useful technique.

Adding an Entry for a Different Document

You don't need to use the query string or the document fragment as the URL when you add an item to the browser history. You can specify any URL that comes from the same source as the current document. However, there is an oddity to note. Listing 27-8 provides a demonstration.

Listing 27-8. Using a Different URL in a History Entry

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <p id="msg"></p>

 <button id="banana">Banana</button>

 <button id="apple">Apple</button>

 <script type="text/javascript">

 var sel = "No selection made";

 if (window.location.search == "?banana") {

 sel = "Selection: Banana";

 } else if (window.location.search == "?apple") {

 sel = "Selection: Apple";

 }

 document.getElementById("msg").innerHTML = sel;

 var buttons = document.getElementsByTagName("button");

 for (var i = 0; i < buttons.length; i++) {

 buttons[i].onclick = function(e) {

 document.getElementById("msg").innerHTML = e.target.innerHTML;

 window.history.pushState("", "", "otherpage.html?" + e.target.id);

 };

 }

 </script>

 </body>

</html>

This script has only one change: I set the URL argument to the pushState method to be otherpage.html. Listing 27-9 shows the contents of otherpage.html.

Listing 27-9. The Contents of otherpage.html

<!DOCTYPE HTML>

<html>

 <head>

 <title>Other Page</title>

 </head>

 <body>

 <h1>Other Page</h1>

 <p id="msg"></p>

 <script>

 var sel = "No selection made";

 if (window.location.search == "?banana") {

 sel = "Selection: Banana";

 } else if (window.location.search == "?apple") {

 sel = "Selection: Apple";

 }

 document.getElementById("msg").innerHTML = sel;

 </script>

 </body>

</html>

I still use the query string to maintain the user's selection, but the document itself has changed. And this is where the oddity comes in. Figure 27-6 shows what you can expect when you run this example.

[image: Image]

Figure 27-6. Using a different URL in a history entry

As the figure shows, the other document's URL is displayed in the navigation box, but the document itself doesn't change. And here's the catch: if the user navigates away to another document and then clicks the back button, the browser can choose either to display the original document (example.html in this case) or the document specified (otherpage.html). You have no way of controlling which one will be used. And what's worse is that different browsers operate in different ways.

Storing Complex State in the History

Notice that when I used the pushState method in the last couple of examples, I used empty strings ("") for the first two arguments. The middle argument is ignored by all of the mainstream browsers and is of no interest here. But the first argument can be very useful, because it allows you to associate a complex state object with a URL in the browser history.

In the previous examples, I used the query string to represent the user's choice, which is fine for such a simple piece of data, but not much help if you have more complex data to preserve. Listing 27-10 demonstrates how to use the first pushState argument to store something more complex.

Listing 27-10. Storing a State Object in the Browser History

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 * { margin: 2px; padding: 4px; border-collapse: collapse;}

 </style>

 </head>

 <body>

 <table border="1">

 <tr><th>Name:</th><td id="name"></td></tr>

 <tr><th>Color:</th><td id="color"></td></tr>

 <tr><th>Size:</th><td id="size"></td></tr>

 <tr><th>State:</th><td id="state"></td></tr>

 <tr><th>Event:</th><td id="event"></td></tr>

 </table>

 <button id="banana">Banana</button>

 <button id="apple">Apple</button>

 <script type="text/javascript">

 if (window.history.state) {

 displayState(window.history.state);

 document.getElementById("state").innerHTML = "Yes";

 } else {

 document.getElementById("name").innerHTML = "No Selection";

 }

 window.onpopstate = function(e) {

 displayState(e.state);

 document.getElementById("event").innerHTML = "Yes";

 }

 var buttons = document.getElementsByTagName("button");

 for (var i = 0; i < buttons.length; i++) {

 buttons[i].onclick = function(e) {

 var stateObj;

 if (e.target.id == "banana") {

 stateObj = {

 name: "banana",

 color: "yellow",

 size: "large"

 }

 } else {

 stateObj = {

 name: "apple",

 color: "red",

 size: "medium"

 }

 }

 window.history.pushState(stateObj, "");

 displayState(stateObj);

 };

 }

 function displayState(stateObj) {

 document.getElementById("name").innerHTML = stateObj.name;

 document.getElementById("color").innerHTML = stateObj.color;

 document.getElementById("size").innerHTML = stateObj.size;

 }

 </script>

 </body>

</html>

In this example, I represent the user's selection using an object with three properties, containing the name, color, and size of the fruit that the user has picked, like this:

stateObj = { name: "apple", color: "red", size: "medium"}

 When the user makes a selection, I use the History.pushState method to create a new history entry and associate the state object with it, like this:

window.history.pushState(stateObj, "");

I haven't specified a URL in this example, which means that the state object is associated with the current document. (I did this to demonstrate the possibility; I could have specified a URL as in the previous examples.)

You can use two ways to retrieve the state object when the user returns to your document. The first is through the history.state property, like this:

...

if (window.history.state) {

 displayState(window.history.state);

...

The problem you face is that not all browsers make the state object available through this property (Chrome doesn't, for example). To deal with this, you must listen for the popstate event as well. I explain events in Chapter 30, but this example is important for working with the history feature, so you may want to return to this section after you have read that chapter. Here is the code that listens and responds to the popstate event:

window.onpopstate = function(e) {

 displayState(e.state);

 document.getElementById("event").innerHTML = "Yes";

}

Notice that I display the state information in a table element, along with details of how the state object was obtained: via the property or the event. You can see how this appears in Figure27-7, but this an example that really needs to be experimented with firsthand.

[image: Image]

Figure 27-7. Using a state object in the browser history

[image: Image] Caution You must be careful not to rely on the state information being available. The browser's history can be lost in a number of different situations, including the user explicitly deleting it.

Replacing an Item in the History

The previous examples have all focused on adding items to the history in addition to the current document, but you can use the replaceState method to replace the entry for the current document. Listing 27-11 provides a demonstration.

Listing 27-11. Replacing the Current Entry in the Browser History

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <p id="msg"></p>

 <button id="banana">Banana</button>

 <button id="apple">Apple</button>

 <script type="text/javascript">

 var sel = "No selection made";

 if (window.location.search == "?banana") {

 sel = "Selection: Banana";

 } else if (window.location.search == "?apple") {

 sel = "Selection: Apple";

 }

 document.getElementById("msg").innerHTML = sel;

 var buttons = document.getElementsByTagName("button");

 for (var i = 0; i < buttons.length; i++) {

 buttons[i].onclick = function(e) {

 document.getElementById("msg").innerHTML = e.target.innerHTML;

 window.history.replaceState("", "", "otherpage?" + e.target.id);

 };

 }

 </script>

 </body>

</html>

Using Cross-Document Messaging

The Window object is a gateway to another new feature in HTML5 called cross-document messaging. Under normal circumstances, scripts from different sources (known as origins) are not allowed to communicate, although communication between scripts is such a sought-after feature that there have been endless hacks and workarounds to bypass the browser security measures.

[image: Image] NoteThis is an advanced topic that uses events, which are described in Chapter 30. You may wish to read that chapter before reading this section.

UNDERSTANDING SCRIPT ORIGINS

Browsers use components of a URL to determine the origin of a resource such as a script. Limitations are placed on interaction and communication between scripts from different origins. If the protocol, hostname, and port are the same, then two scripts are considered to be from the same origin, even if other parts of the URL are different. The following table gives some examples, each of which is compared to the URL http://titan.mydomain.com/example.html.

[image: Image]

Scripts can use the document.domain property to change their origin, although only to widen the focus of the current URL. For example, scripts that originate from http://server1.domain.com and http://server2.domain.com can both set the domain property to domain.com in order to have the same origin.

HTML5 provides a specification for this kind of communication through the Window method described in Table 27-8.

[image: Image]

To set the scene for this feature, Listing 27-12 shows the problem I'm trying to solve.

Listing 27-12. The Cross-Document Problem

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <p id="status">Ready</p>

 <button id="send">Send Message</button>

 <p>

 <iframe name="nested" src="http://titan:81/otherdomain.html" width="90%"

 height="75px"></iframe>

 </p>

 <script>

 document.getElementById("send").onclick = function() {

 document.getElementById("status").innerHTML = "Message Sent";

 }

 </script>

 </body>

</html>

This document contains an iframe element that loads a document from a different source. Scripts are from the same source only if they come from the same host and port. I will be loading this document from port 80 on the server called titan, so a second server on port 81 is considered a different source. Listing 27-13 shows the content of the otherdomain.html document, which will be loaded by the iframe.

Listing 27-13. The otherdomain.html Document

<!DOCTYPE HTML>

<html>

 <head>

 <title>Other Page</title>

 </head>

 <body>

 <h1 id="banner">This is the nested document</h1>

 <script>

 function displayMessage(msg) {

 document.getElementById("banner").innerHTML = msg;

 }

 </script>

 </body>

</html>

The goal is for the main document, example.html, to be able to call the displayMessage function defined in the script element of the embedded document, otherdomain.html.

I use the postMessage method, but I need to call that method on the Window that contains the document I want to target. Fortunately, the Window object provides the support needed to find embedded documents, as described in Table 27-9.

[image: Image]

[image: Image]

For this example, I am going to use the array-style notation to locate the Window object I want, so that I can call the postMessage method. Listing 27-14 shows the required additions to the example.html document.

Listing 27-14. Locating a Window Object and Invoking the postMessage Method

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <p id="status">Ready</p>

 <button id="send">Send Message</button>

 <p>

 <iframe name="nested" src="http://titan:81/otherdomain.html" width="90%"

 height="75px"></iframe>

 </p>

 <script>

 document.getElementById("send").onclick = function() {

 window["nested"].postMessage("I like apples", "http://titan:81");

 document.getElementById("status").innerHTML = "Message Sent";

 }

 </script>

 </body>

</html>

I find the Window object that contains the script that I want to send the message to (window["nested"]), and then call the postMessage method. The two arguments are the message that I want to send and the origin of the target script, which in this case is http://titan:81, but will differ for your environment if you are following this example.

[image: Image] Caution As a security measure, the browser will discard the message if the postMessage method is called with the wrong target origin.

To receive the message, I need to listen for the message event in the other script. (As noted earlier, I explain events in Chapter 30, and you may wish to read that chapter now if you are unfamiliar with events and their operation.) The browser passes a MessageEvent object, which defines the properties shown in Table 27-10.

[image: Image]

Listing 27-15 shows how to use the message event to receive a cross-document message.

Listing 27-15. Listening for the Message Event

<!DOCTYPE HTML>

<html>

 <head>

 <title>Other Page</title>

 </head>

 <body>

 <h1 id="banner">This is the nested document</h1>

 <script>

 window.addEventListener("message", receiveMessage, false);

 function receiveMessage(e) {

 if (e.origin == "http://titan") {

 displayMessage(e.data);

 } else {

 displayMessage("Message Discarded");

 }

 }

 function displayMessage(msg) {

 document.getElementById("banner").innerHTML = msg;

 }

 </script>

 </body>

</html>

You can learn about the addEventListener method in Chapter 30. Note that when a message event is received, I check the origin property of the MessageEvent object to make sure I recognize and trust the other script. This is an important precaution that prevents messages from unknown and untrusted scripts being acted on. I now have a simple mechanism for sending a message from one script to another, even though they have different origins. You can see the effect in Figure 27-8.

[image: Image]

Figure 27-8. Using the cross-document messaging feature

Using Timers

A useful feature provided by the Window object is the ability to set one-off and recurring timers. These timers are used to execute a function after a preset period. Table 27-11 summarizes the methods that support this feature.

[image: Image]

The setTimeout method creates a timer that executes the specified function just once, whereas the setInterval method creates a timer that executes a function repeatedly. These methods return a unique identifier that can later be used as an argument to the clearTimeout and clearInterval methods to cancel the timer. Listing 27-16 shows the use of the timer methods.

Listing 27-16. Using the Timing Methods

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <p id="msg"></p>

 <p>

 <button id="settime">Set Time</button>

 <button id="cleartime">Clear Time</button>

 <button id="setinterval">Set Interval</button>

 <button id="clearinterval">Clear Interval</button>

 </p>

 <script>

 var buttons = document.getElementsByTagName("button");

 for (var i = 0; i < buttons.length; i++) {

 buttons[i].onclick = handleButtonPress;

 }

 var timeID;

 var intervalID;

 var count = 0;

 function handleButtonPress(e) {

 if (e.target.id == "settime") {

 timeID = window.setTimeout(function() {

 displayMsg("Timeout Expired");

 }, 5000);

 displayMsg("Timeout Set");

 } else if (e.target.id == "cleartime") {

 window.clearTimeout(timeID);

 displayMsg("Timeout Cleared");

 } else if (e.target.id == "setinterval") {

 intervalID = window.setInterval(function() {

 displayMsg("Interval expired. Counter: " + count++);

 }, 2000);

 displayMsg("Interval Set");

 } else if (e.target.id == "clearinterval") {

 window.clearInterval(intervalID);

 displayMsg("Interval Cleared");

 }

 }

 function displayMsg(msg) {

 document.getElementById("msg").innerHTML = msg;

 }

 </script>

 </body>

</html>

The script in this example sets and cancels timers and intervals that call the displayMsg function to set the content of a p element. You can see the effect in Figure 27-9.

[image: Image]

Figure 27-9. Using timers and intervals

Timers and intervals can be useful, but you should consider their use carefully. Users expect an application's state to remain consistent except when they are directly interacting with it. If you find yourself using timers to change the application state automatically, then you may wish to consider if the result is helpful to the user or just plain annoying.

Summary

In this chapter, I have shown you the odd collection of functionality that is grouped together through the Window object. Some of the features are directly related to windows, such as the ability to get the inner and outer size of the browser window and the screen on which it is displayed. Other functions are less directly related. These include the history and cross-document messaging features, which are important HTML5 features.

C H A P T E R 28

Working with DOM Elements

In the previous chapter, some of the features of the HTMLElement object leaked through into the discussion of the document-level features. We can now turn our focus toward the element object itself and give it the attention it deserves. In this chapter, I'll show you the different HTMLElement properties and methods, and demonstrate how to use them. Table 28-1 provides the summary for this chapter. Please note that not all of the examples work in all of the mainstream browsers.

[image: Image]

[image: Image]

Working with Element Objects

HTMLElement objects provide a set of properties that you can use to read and modify data about the element that is being represented. Table 28-2 describes these properties.

[image: Image]

Listing 28-1 shows the use of some of the basic properties listed in the table.

Listing 28-1. Using the Basic Element Data Properties

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 p {border: medium double black;}

 </style>

 </head>

 <body>

 <p id="textblock" dir="ltr" lang="en-US">

 There are lots of differentß kinds of fruit - there are over 500 varieties

 of banana alone. By the time we add the countless

 types of apples,

 <span="orange">oranges, and other well-known fruit, we are

 faced with thousands of choices.

 </p>

 <pre id="results"></pre>

 <script>

 var results = document.getElementById("results");

 var elem = document.getElementById("textblock");

 results.innerHTML += "tag: " + elem.tagName + "\n";

 results.innerHTML += "id: " + elem.id + "\n";

 results.innerHTML += "dir: " + elem.dir + "\n";

 results.innerHTML += "lang: " + elem.lang + "\n";

 results.innerHTML += "hidden: " + elem.hidden + "\n";

 results.innerHTML += "disabled: " + elem.disabled + "\n";

 </script>

 </body>

</html>

You can see the results that the browser provides for these properties in Figure 28-1.

[image: Image]

Figure 28-1. Getting information about an element

Working with Classes

You can deal with the classes that an element belongs to in two ways. The first is to use the className property, which returns a list of the classes. You add or remove classes by changing the value of the string. You can see both reading and modifying the classes in this way in Listing 28-2.

[image: Image] Tip A common use for classes is to target elements with styles. You'll learn how to work with styles in the DOM in Chapter 29.

Listing 28-2. Using the className Property

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 p {

 border: medium double black;

 }

 p.newclass {

 background-color: grey;

 color: white;

 }

 </style>

 </head>

 <body>

 <p id="textblock" class="fruit numbers">

 There are lots of different kinds of fruit - there are over 500 varieties

 of banana alone. By the time we add the countless types of apples, oranges,

 and other well-known fruit, we are faced with thousands of choices.

 </p>

 <button id="pressme">Press Me</button>

 <script>

 document.getElementById("pressme").onclick = function(e) {

 document.getElementById("textblock").className += " newclass";

 };

 </script>

 </body>

</html>

In this example, clicking the button triggers the script, which appends a new class to the list for the element. Notice that I need to add a leading space to the value I appended to the className property value. This is because the browser expects a list of classes, each separated by a space. The browser will apply styles whose selectors are class-based when I make a change like this, meaning that there is a clear visual change in this example, as shown in Figure 28-2.

[image: Image]

Figure 28-2. Using the className property

The className property is easy to use when you want to quickly add classes to an element, but it becomes hard work if you want to do anything else, such as removing a class. Fortunately, you can use the classList property, which returns a DOMTokenList object. This object defines some useful methods and properties that allow you to manage the class list, as described in Table 28-3.

[image: Image]

In addition to these properties and methods, you can also retrieve classes by index, using array-style notation. The use of the DOMTokenList object is shown in Listing 28-3.

Listing 28-3. Using the classList Property

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 p {

 border: medium double black;

 }

 p.newclass {

 background-color: grey;

 color: white;

 }

 </style>

 </head>

 <body>

 <p id="textblock" class="fruit numbers">

 There are lots of different kinds of fruit - there are over 500 varieties

 of banana alone. By the time we add the countless types of apples, oranges,

 and other well-known fruit, we are faced with thousands of choices.

 </p>

 <pre id="results"></pre>

 <button id="toggle">Toggle Class</button>

 <script>

 var results = document.getElementById("results");

 document.getElementById("toggle").onclick = toggleClass;

 listClasses();

 function listClasses() {

 var classlist = document.getElementById("textblock").classList;

 results.innerHTML = "Current classes: "

 for (var i = 0; i < classlist.length; i++) {

 results.innerHTML += classlist[i] + " ";

 }

 }

 function toggleClass() {

 document.getElementById("textblock").classList.toggle("newclass");

 listClasses();

 }

 </script>

 </body>

</html>

In this example, the listClasses function uses the classList property to obtain and enumerate the classes that the p element belongs to, using the array-style indexer to retrieve class names.

The toggleClass function, which is invoked when the button is clicked, uses the toggle method to add and remove a class called newclass. A style is associated with this class, and you can see the visual effect of the class change in Figure 28-3.

[image: Image]

Figure 28-3. Enumerating and toggling a class

Working with Element Attributes

There are properties for some of the most important global attributes, but there is also support for reading and setting any attribute on an element. Table 28-4 describes the available methods and properties defined by the HTMLElement object for this purpose.

[image: Image]

[image: Image]

The four methods for working with attributes are easy to use and behave just as you might expect. Listing 28-4 demonstrates the use of these methods.

Listing 28-4. Using the Attribute Methods

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 p {border: medium double black;}

 </style>

 </head>

 <body>

 <p id="textblock" class="fruit numbers">

 There are lots of different kinds of fruit - there are over 500 varieties

 of banana alone. By the time we add the countless types of apples, oranges,

 and other well-known fruit, we are faced with thousands of choices.

 </p>

 <pre id="results"></pre>

 <script>

 var results = document.getElementById("results");

 var elem = document.getElementById("textblock");

 results.innerHTML = "Element has lang attribute: "

 + elem.hasAttribute("lang") + "\n";

 results.innerHTML += "Adding lang attribute\n";

 elem.setAttribute("lang", "en-US");

 results.innerHTML += "Attr value is : " + elem.getAttribute("lang") + "\n";

 results.innerHTML += "Set new value for lang attribute\n";

 elem.setAttribute("lang", "en-UK");

 results.innerHTML += "Value is now: " + elem.getAttribute("lang") + "\n";

 </script>

 </body>

</html>

In this example, I check for, add, and change the value of the lang attribute. You can see the results produced by this script in Figure 28-4.

[image: Image]

Figure 28-4. Using the attribute methods

Working with the data-* Attributes

In Chapter 3, I described how HTML5 supports custom attributes that are prefixed with data-, such as data-mycustomattribute. You can work with these custom attributes in the DOM via the dataset property, which returns an array of values, indexed by the custom part of the name. Listing 28-5 contains an example.

Listing 28-5. Using the dataset Property

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 p {border: medium double black;}

 </style>

 </head>

 <body>

 <p id="textblock" class="fruit numbers" data-fruit="apple" data-sentiment="like">

 There are lots of different kinds of fruit - there are over 500 varieties

 of banana alone. By the time we add the countless types of apples, oranges,

 and other well-known fruit, we are faced with thousands of choices.

 </p>

 <pre id="results"></pre>

 <script>

 var results = document.getElementById("results");

 var elem = document.getElementById("textblock");

 for (var attr in elem.dataset) {

 results.innerHTML += attr + "\n";

 }

 results.innerHTML += "Value of data-fruit attr: " + elem.dataset["fruit"];

 </script>

 </body>

</html>

The array of values that the dataset property returns isn't indexed by position as in regular arrays. If you want to enumerate the data-* attributes, you can do so using a for…in statement, as shown in the listing. Alternatively, you can request a value by name. Note that you need to provide only the custom part of the attribute name. For example, if you want the value of the data-fruit attribute, you request the value dataset[“fruit”]. You can see the effect of this script in Figure 28-5.

[image: Image]

Figure 28-5. Using the dataset property

Working with All Attributes

You can obtain a collection containing all of the attributes for an element through the attributes property, which returns an array of Attr objects. The properties of the Attr object are described in Table 28-5.

[image: Image]

Listing 28-6 shows how to use the attributes property and the Attr object to read and modify an element's attributes.

Listing 28-6. Working with the attributes Property

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 p {border: medium double black;}

 </style>

 </head>

 <body>

 <p id="textblock" class="fruit numbers" data-fruit="apple" data-sentiment="like">

 There are lots of different kinds of fruit - there are over 500 varieties

 of banana alone. By the time we add the countless types of apples, oranges,

 and other well-known fruit, we are faced with thousands of choices.

 </p>

 <pre id="results"></pre>

 <script>

 var results = document.getElementById("results");

 var elem = document.getElementById("textblock");

 var attrs = elem.attributes;

 for (var i = 0; i < attrs.length; i++) {

 results.innerHTML += "Name: " + attrs[i].name + " Value: "

 + attrs[i].value + "\n";

 }

 attrs["data-fruit"].value = "banana";

 results.innerHTML += "Value of data-fruit attr: "

 + attrs["data-fruit"].value;

 </script>

 </body>

</html>

As you can see from the listing, the attributes in the array of Attr objects are indexed by position and name. In this example, I enumerate the names and values of the attributes applied to an element, and then modify the value of one of them. You can see the effect of this script in Figure 28-6.

[image: Image]

Figure 28-6. Using the attributes property

Working with Text

The text content of an element is represented by a Text object, which is presented as a child of the element in the document model. Listing 28-7 shows an element with some text content.

Listing 28-7. An Element with Text Content

...

<p id="textblock" class="fruit numbers" data-fruit="apple" data-sentiment="like">

 There are lots of different kinds of fruit - there are over 500 varieties

 of banana alone. By the time we add the countless types of apples, oranges,

 and other well-known fruit, we are faced with thousands of choices.

</p>

...

When the browser represents the p element in the document model, there will be an HTMLElement object for the element itself and a Text object for the content, as shown in Figure 28-7.

[image: Image]

Figure 28-7. The relationship between the objects representing an element and its content

If an element has children and they contain text, each will be handled in the same way. Listing 28-8 adds an element to the paragraph.

Listing 28-8. Adding an Element to the Paragraph

...

<p id="textblock" class="fruit numbers" data-fruit="apple" data-sentiment="like">

 There are lots of different kinds of fruit - there are over 500 varieties

 of banana alone. By the time we add the countless types of apples, oranges,

 and other well-known fruit, we are faced with thousands of choices.

</p>

...

The addition of the b element changes the hierarchy of nodes used to represent the p element and its contents, as illustrated by Figure 28-8.

[image: Image]

Figure 28-8. The effect of adding an element to the paragraph

The first child of the p element is a Text object that represents the text from the start of the block to the b element. Then there is the b element, which has its own child Text object representing the text contained between the start and end tags. Finally, the last child of the p element is a Text object representing the text that follows the b element through to the end of the block. Table 28-6 describes the members supported by the Text object.

[image: Image]

[image: Image]

Unfortunately, there are no convenient ways to locate Text elements, other than by finding their parent element object and navigating through their children. This makes working with the Text elements harder than it should be. Listing 28-9 shows some of the Text element methods and properties in use.

Listing 28-9. Dealing with Text

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 p {border: medium double black;}

 </style>

 </head>

 <body>

 <p id="textblock" class="fruit numbers" data-fruit="apple" data-sentiment="like">

 There are lots of different kinds of fruit - there are over 500

 varieties of banana alone. By the time we add the countless types of apples,

 oranges, and other well-known fruit, we are faced with thousands of choices.

 </p>

 <button id="pressme">Press Me</button>

 <pre id="results"></pre>

 <script>

 var results = document.getElementById("results");

 var elem = document.getElementById("textblock");

 document.getElementById("pressme").onclick = function() {

 var textElem = elem.firstChild;

 results.innerHTML = "The element has " + textElem.length + " chars\n";

 textElem.replaceWholeText("This is a new string ");

 };

 </script>

 </body>

</html>

When the button element is pressed, I display the number of characters in the first Text child of the p element and change its content using the replaceWholeText method.

[image: Image] Caution An important point to note when working with text is that whitespace is not collapsed. This means that any spaces or other whitespace characters that have been used to add structure to the HTML are counted as part of the text.

Modifying the Model

In the previous sections, I have shown you how to use the DOM to modify individual elements. You can change the attributes and the text content, for example. You can do this because there is a live link between the DOM and the document itself. As soon as you make a change to the DOM, the browser makes a corresponding change in the document. You can use this link to go further and change the structure of the document itself. You can add, remove, duplicate, and copy elements in any way you please. You do this by altering the DOM hierarchy, and since the link is live, the changes you make to the hierarchy are immediately reflected in the browser. Table 28-7 describes the properties and methods that are available for altering the DOM hierarchy.

[image: Image]

[image: Image]

These properties and methods are available on all element objects. In addition, the document object defines two methods that allow you to create new elements. This is essential when you want to add content to your document. These creation methods are described in Table 28-8.

[image: Image]

Creating and Deleting Elements

You create new elements through the document object, and then insert them by finding an existing HTMLElement and using one of the methods described previously. Listing 28-10 provides a demonstration.

Listing 28-10. Creating and Deleting Elements

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 table {

 border: solid thin black;

 border-collapse: collapse;

 margin: 10px;

 }

 td { padding: 4px 5px; }

 </style>

 </head>

 <body>

 <table border="1">

 <thead><th>Name</th><th>Color</th></thead>

 <tbody id="fruitsBody">

 <tr><td>Banana</td><td>Yellow</td></tr>

 <tr><td>Apple</td><td>Red/Green</td></tr>

 </tbody>

 </table>

 <button id="add">Add Element</button>

 <button id="remove">Remove Element</button>

 <script>

 var tableBody = document.getElementById("fruitsBody");

 document.getElementById("add").onclick = function() {

 var row = tableBody.appendChild(document.createElement("tr"));

 row.setAttribute("id", "newrow");

 row.appendChild(document.createElement("td"))

 .appendChild(document.createTextNode("Plum"));

 row.appendChild(document.createElement("td"))

 .appendChild(document.createTextNode("Purple"));

 };

 document.getElementById("remove").onclick = function() {

 var row = document.getElementById("newrow");

 row.parentNode.removeChild(row);

 }

 </script>

 </body>

</html>

The script in this example uses the DOM to add and remove rows from an HTML table (which is described in Chapter 11). When adding the row, I start by creating a tr element, and then use it as the parent for the td and Text objects. Notice how I use the method results to chain the calls together and (slightly) simplify the code.

As you can see, the process of creating elements is laborious. You need to create the element, associate it with its parent, and repeat the process for any child elements or text content. The process for removing elements is also awkward. You must find the element, navigate to the parent element, and then use the removeChild method. You can see the effect of this script in Figure 28-9.

[image: Image]

Figure 28-9. Using the DOM to create and remove elements

Duplicating Elements

You can use the cloneNode method to duplicate existing elements. This can be a convenient way to avoid the process of creating the elements you want from scratch. Listing 28-11 demonstrates this technique.

Listing 28-11. Duplicating Elements

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 table {

 border: solid thin black;

 border-collapse: collapse;

 margin: 10px;

 }

 td { padding: 4px 5px; }

 </style>

 </head>

 <body>

 <table border="1">

 <thead><tr><th>Multiply</th><th>Result</th></tr></thead>

 <tbody id="fruitsBody">

 <tr><td class="sum">1 x 1</td><td class="result">1</td></tr>

 </tbody>

 </table>

 <button id="add">Add Row</button>

 <script>

 var tableBody = document.getElementById("fruitsBody");

 document.getElementById("add").onclick = function() {

 var count = tableBody.getElementsByTagName("tr").length + 1;

 var newElem = tableBody.getElementsByTagName("tr")[0].cloneNode(true);

 newElem.getElementsByClassName("sum")[0].firstChild.data = count

 + " + " + count;

 newElem.getElementsByClassName("result")[0].firstChild.data =

 count * count;

 tableBody.appendChild(newElem);

 };

 </script>

 </body>

</html>

In this example, I duplicate an existing row in a table to create more rows. The Boolean argument to the cloneNode method specifies whether the child elements of the element should be duplicated as well. In this case, I have specified true, because I want the td elements that are contained in the tr element to form the structure of my new row.

[image: Image] Tip Note the awkward way that I need to set the text for the table cells in this example. Dealing with Text objects really is a pain. For a simpler approach, see the “Working with HTML Fragments” section later in this chapter.

Moving Elements

When moving elements from one part of the document to another, you simply need to associate the element you want to move with its new parent. You don't need to dislocate the element from its starting position. Listing 28-12 provides a demonstration by moving a row from one table to another.

Listing 28-12. Moving Elements

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 table {

 border: solid thin black;

 border-collapse: collapse;

 margin: 10px;

 float: left;

 }

 td { padding: 4px 5px; }

 p { clear:left; }

 </style>

 </head>

 <body>

 <table border="1">

 <thead><tr><th>Fruit</th><th>Color</th></tr></thead>

 <tbody>

 <tr><td>Banana</td><td>Yellow</td></tr>

 <tr id="apple"><td>Apple</td><td>Red/Green</td></tr>

 </tbody>

 </table>

 <table border="1">

 <thead><tr><th>Fruit</th><th>Color</th></tr></thead>

 <tbody id="fruitsBody">

 <tr><td>Plum</td><td>Purple</td></tr>

 </tbody>

 </table>

 <p>

 <button id="move">Move Row</button>

 </p>

 <script>

 document.getElementById("move").onclick = function() {

 var elem = document.getElementById("apple");

 document.getElementById("fruitsBody").appendChild(elem);

 };

 </script>

 </body>

</html>

When the button element is pressed, the script moves the tr element with the id of apple and calls the appendChild element on the tbody element with the id of fruitsBody. This has the effect of moving the row from one table to another, as shown in Figure 28-10.

[image: Image]

Figure 28-10. Moving an element from one part of a document to another

Comparing Element Objects

You can compare element objects in two ways. The first is simply to see if they represent the same element, which you can do using the isSameNode method. This allows you to compare objects that you have obtained from different queries, as shown in Listing 28-13.

Listing 28-13. Comparing Element Objects

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 table {

 border: solid thin black;

 border-collapse: collapse;

 }

 td { padding: 4px 5px; }

 </style>

 </head>

 <body>

 <table border="1">

 <thead><tr><th>Fruit</th><th>Color</th></tr></thead>

 <tbody id="fruitsBody">

 <tr id="plumrow"><td>Plum</td><td>Purple</td></tr>

 </tbody>

 </table>

 <pre id="results"></pre>

 <script>

 var elemByID = document.getElementById("plumrow");

 var elemByPos

 = document.getElementById("fruitsBody").getElementsByTagName("tr")[0];

 if (elemByID.isSameNode(elemByPos)) {

 document.getElementById("results").innerHTML = "Objects are the same";

 }

 </script>

 </body>

</html>

The script in this example locates element objects using two different techniques: by searching for a specific id and by searching by tag type from the parent element. The isSameNode method returns true when these objects are compared because they represent the same element.

The alternative is to test to see if element objects are equal, which you can do by using the isEqualNode method. Elements are equal if they are of the same type, have the same attribute values, and each of their children is also equal and in the same order. Listing 28-14 demonstrates a pair of equal elements.

Listing 28-14. Working with Equal Elements

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 table {

 border: solid thin black;

 border-collapse: collapse;

 margin: 2px 0px;

 }

 td { padding: 4px 5px; }

 </style>

 </head>

 <body>

 <table border="1">

 <thead><tr><th>Fruit</th><th>Color</th></tr></thead>

 <tbody>

 <tr class="plumrow"><td>Plum</td><td>Purple</td></tr>

 </tbody>

 </table>

 <table border="1">

 <thead><tr><th>Fruit</th><th>Color</th></tr></thead>

 <tbody>

 <tr class="plumrow"><td>Plum</td><td>Purple</td></tr>

 </tbody>

 </table>

 <pre id="results"></pre>

 <script>

 var elems = document.getElementsByClassName("plumrow");

 if (elems[0].isEqualNode(elems[1])) {

 document.getElementById("results").innerHTML = "Elements are equal";

 } else {

 document.getElementById("results").innerHTML = "Elements are NOT equal";

 }

 </script>

 </body>

</html>

In this example, the two tr elements are equal, even though they are distinct elements in different parts of the document. If I changed any of the attributes or the content of the child td element, then the elements would no longer be equal.

Working with HTML Fragments

The innerHTML and outerHTML properties and the insertAdjacentHTML method are convenient syntax shortcuts that allow you to work with fragments of HTML, thus avoiding the need to create elaborate hierarchies of element and text objects. Listing 28-15 demonstrates using the innerHTML and outerHTML properties to get the HTML from elements.

Listing 28-15. Using the innerHTML and outerHTML Properties

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 table {

 border: solid thin black;

 border-collapse: collapse;

 margin: 5px 2px;

 float: left;

 }

 td { padding: 4px 5px; }

 p {clear: left};

 </style>

 </head>

 <body>

 <table border="1">

 <thead><tr><th>Fruit</th><th>Color</th></tr></thead>

 <tbody>

 <tr id="applerow"><td>Plum</td><td>Purple</td></tr>

 </tbody>

 </table>

 <textarea rows="3" id="results"></textarea>

 <p>

 <button id="inner">Inner HTML</button>

 <button id="outer">Outer HTML</button>

 </p>

 <script>

 var results = document.getElementById("results");

 var row = document.getElementById("applerow");

 document.getElementById("inner").onclick = function() {

 results.innerHTML = row.innerHTML;

 };

 document.getElementById("outer").onclick = function() {

 results.innerHTML = row.outerHTML;

 }

 </script>

 </body>

</html>

The outerHTML property returns a string containing the HTML defining the element and the HTML of all of its children. The innerHTML property returns just the HTML of the children. In this example, I defined a pair of buttons that display the inner and outer HTML for a table row. I displayed the content in a textarea element, so that the browser treats the strings returned by these properties as text and not HTML. You can see the effect of the script in Figure 28-11.

[image: Image]

Figure 28-11. Displaying the outerHTML property for a table row

Changing the Document Structure

You can use the outerHTML and innerHTML properties to change the structure of the document as well. I have been using the innerHTML property in many of the examples in this part of the book as a convenient way of setting the content of elements, because I can use the property to set text content without needing to create Text elements. Listing 28-16 shows how to use these properties to modify the document model.

Listing 28-16. Modifying the Document Model

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style>

 table {

 border: solid thin black;

 border-collapse: collapse;

 margin: 10px;

 float: left;

 }

 td { padding: 4px 5px; }

 p { clear:left; }

 </style>

 </head>

 <body>

 <table border="1">

 <thead><tr><th>Fruit</th><th>Color</th></tr></thead>

 <tbody>

 <tr><td>Banana</td><td>Yellow</td></tr>

 <tr id="apple"><td>Apple</td><td>Red/Green</td></tr>

 </tbody>

 </table>

 <table border="1">

 <thead><tr><th>Fruit</th><th>Color</th></tr></thead>

 <tbody id="fruitsBody">

 <tr><td>Plum</td><td>Purple</td></tr>

 <tr id="targetrow"><td colspan="2">This is the placeholder</td></tr>

 </tbody>

 </table>

 <p>

 <button id="move">Move Row</button>

 </p>

 <script>

 document.getElementById("move").onclick = function() {

 var source = document.getElementById("apple");

 var target = document.getElementById("targetrow");

 target.innerHTML = source.innerHTML;

 source.outerHTML = '<tr id="targetrow"><td colspan="2">' +

 'This is the placeholder</td>';

 };

 </script>

 </body>

</html>

In this example, I used the innerHTML property to set the child elements of a table row and the outerHTML to replace an element inline. These properties work on strings, meaning that you can obtain HTML fragments by reading the property values or by creating strings from scratch, as shown in the listing. You can see the effect in Figure 28-12.

[image: Image]

Figure 28-12. Using the innerHTML and outerHTML properties

Inserting HTML Fragments

The innerHTML and outerHTML properties are useful for replacing existing elements, but if you want to use an HTML fragment to insert new elements, you must use the insertAdjacentHTML method. This method takes two arguments. The first is a value from Table 28-9 indicating where the fragment should be inserted relative to the current element, and the second is the fragment to insert.

[image: Image]

Listing 28-17 shows the use of the insertAdjacentHTML method to insert fragments of HTML in and around a table row element.

Listing 28-17. Using the insertAdjacentHTML Method

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <table border="1">

 <thead><tr><th>Fruit</th><th>Color</th></tr></thead>

 <tbody id="fruitsBody">

 <tr id="targetrow"><td>Placeholder</td></tr>

 </tbody>

 </table>

 <p>

 <button id="ab">After Begin</button>

 <button id="ae">After End</button>

 <button id="bb">Before Begin</button>

 <button id="be">Before End</button>

 </p>

 <script>

 var target = document.getElementById("targetrow");

 var buttons = document.getElementsByTagName("button");

 for (var i = 0; i < buttons.length; i++) {

 buttons[i].onclick = handleButtonPress;

 }

 function handleButtonPress(e) {

 if (e.target.id == "ab") {

 target.insertAdjacentHTML("afterbegin", "<td>After Begin</td>");

 } else if (e.target.id == "be") {

 target.insertAdjacentHTML("beforeend", "<td>Before End</td>");

 } else if (e.target.id == "bb") {

 target.insertAdjacentHTML("beforebegin",

 "<tr><td colspan='2'>Before Begin</td></tr>");

 } else {

 target.insertAdjacentHTML("afterend",

 "<tr><td colspan='2'>After End</td></tr>");

 }

 }

 </script>

 </body>

</html>

In this example, I use the different position values to demonstrate how to insert HTML fragments in different locations. This example is best to experiment with in a browser, but you can see the basic effect in Figure 28-13.

[image: Image]

Figure 28-13. Inserting HTML fragments into a document

Inserting an Element into a Text Block

An important variation on modifying the model is to add an element to a text block, represented by a Text object. Listing 28-18 shows how this is done.

Listing 28-18. Inserting an Element into a Text Block

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <p id="textblock">There are lots of different kinds of fruit - there are over

 500 varieties of banana alone. By the time we add the countless types of

 apples, oranges, and other well-known fruit, we are faced with thousands of

 choices.

 </p>

 <p>

 <button id="insert">Insert Element</button>

 </p>

 <script>

 document.getElementById("insert").onclick = function() {

 var textBlock = document.getElementById("textblock");

 textBlock.firstChild.splitText(10);

 var newText = textBlock.childNodes[1].splitText(4).previousSibling;

 textBlock.insertBefore(document.createElement("b"),

 newText).appendChild(newText);

 }

 </script>

 </body>

</html>

In this example, I have done the slightly difficult task of taking a word from the existing text and making it a child of a new b element. As with the previous examples, dealing with the model means some verbose code. Figure 28-14 shows the result.

[image: Image]

Figure 28-14. Inserting an element into a block of text

Summary

This chapter introduced the functionality of the HTMLElement and Text objects, which represent elements and content, respectively, in HTML documents. You saw how to get information about elements from objects; how to work with text content; and how to use the capabilities of the DOM to add, modify, duplicate, move, and delete elements. Working with the DOM can require verbose scripts, but the live link between the object model and the way that the document is displayed to the user makes the effort worthwhile.

C H A P T E R 29

Styling DOM Elements

As you will recall from Chapter 4, you can apply styles to an element indirectly (through a stylesheet or the style element) or directly (through the style attribute). In this chapter, I show how you can use the DOM to work with the CSS styles in your document—both the ones you have explicitly defined, as well as the computed style that the browser uses to actually display elements. The specification for working with CSS in the DOM contains some deep hierarchies of object types, many of which are not implemented by the browsers. I have simplified the objects in this chapter to focus on those that the browsers use. Table 29-1 provides the summary for this chapter. Please note that not all of the examples work in all of the mainstream browsers.

[image: image]

[image: image]

Working with Stylesheets

You access the CSS stylesheets available in your document using the document.styleSheets property, which returns a collection of objects representing the stylesheets associated with the document. Table 29-2 summarizes the document.styleSheets property.

[image: image]

Each stylesheet is represented by a CSSStyleSheet object, which provides the set of properties and methods for manipulating the styles in the document. Table 29-3 summarizes the CSSStyleSheet members.

[image: image]

[image: image]

Getting Basic Information About Stylesheets

The place to start is to get some basic information about the stylesheets defined in the document. Listing 29-1 gives a demonstration.

Listing 29-1. Getting Basic Information About the Stylesheets in a Document

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style title="core styles">

 p {

 border: medium double black;

 background-color: lightgray;

 }

 #block1 { color: white;}

 table {border: thin solid black; border-collapse: collapse;

 margin: 5px; float: left;}

 td {padding: 2px;}

 </style>

 <link rel="stylesheet" type="text/css" href="styles.css"/>

 <style media="screen AND (min-width:500px)" type="text/css">

 #block2 {color:yellow; font-style:italic}

 </style>

 </head>

 <body>

 <p id="block1">There are lots of different kinds of fruit - there are over

 500 varieties of banana alone. By the time we add the countless types of

 apples, oranges, and other well-known fruit, we are faced with thousands of

 choices.

 </p>

 <p id="block2">

 One of the most interesting aspects of fruit is the variety available in

 each country. I live near London, in an area which is known for

 its apples.

 </p>

 <div id="placeholder"/>

 <script>

 var placeholder = document.getElementById("placeholder");

 var sheets = document.styleSheets;

 for (var i = 0; i < sheets.length; i++) {

 var newElem = document.createElement("table");

 newElem.setAttribute("border", "1");

 addRow(newElem, "Index", i);

 addRow(newElem, "href", sheets[i].href);

 addRow(newElem, "title", sheets[i].title);

 addRow(newElem, "type", sheets[i].type);

 addRow(newElem, "ownerNode", sheets[i].ownerNode.tagName);

 placeholder.appendChild(newElem);

 }

 function addRow(elem, header, value) {

 elem.innerHTML += "<tr><td>" + header + ":</td><td>"

 + value + "</td></tr>";

 }

 </script>

 </body>

</html>

The script in this example enumerates the stylesheets defined in the document and creates a table element containing the basic information available for each. In this document, there are three stylesheets. Two are defined using script elements and the other is contained in an external file called styles.css and is imported into the document using the link element. You can see the output from the script in Figure 29-1.

[image: images]

Figure 29-1. Getting information about the stylesheets in the document

Note that not all properties have values. As an example, the href property will only return a value if the stylesheet has been loaded as an external file.

Working with Media Constraints

As I demonstrated in Chapter 7, you can use the media attribute when defining stylesheets to restrict the circumstances under which the styles will be applied. You can access those constraints through the CSSStyleSheet.media property, which returns a MediaList object. The methods and properties of the MediaList object are described in Table 29-4.

[image: image]

Listing 29-2 demonstrates the use of the MediaList object.

Listing 29-2. Using the MediaList Object

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style title="core styles">

 p {

 border: medium double black;

 background-color: lightgray;

 }

 #block1 { color: white;}

 table {border: thin solid black; border-collapse: collapse;

 margin: 5px; float: left;}

 td {padding: 2px;}

 </style>

 <link rel="stylesheet" type="text/css" href="styles.css"/>

 <style media="screen AND (min-width:500px), PRINT" type="text/css">

 #block2 {color:yellow; font-style:italic}

 </style>

 </head>

 <body>

 <p id="block1">There are lots of different kinds of fruit - there are over

 500 varieties of banana alone. By the time we add the countless types of

 apples, oranges, and other well-known fruit, we are faced with thousands of

 choices.

 </p>

 <p id="block2">

 One of the most interesting aspects of fruit is the variety available in

 each country. I live near London, in an area which is known for

 its apples.

 </p>

 <div id="placeholder"/>

 <script>

 var placeholder = document.getElementById("placeholder");

 var sheets = document.styleSheets;

 for (var i = 0; i < sheets.length; i++) {

 if (sheets[i].media.length > 0) {

 var newElem = document.createElement("table");

 newElem.setAttribute("border", "1");

 addRow(newElem, "Media Count", sheets[i].media.length);

 addRow(newElem, "Media Text", sheets[i].media.mediaText);

 for (var j =0; j < sheets[i].media.length; j++) {

 addRow(newElem, "Media " + j, sheets[i].media.item(j));

 }

 placeholder.appendChild(newElem);

 }

 }

 function addRow(elem, header, value) {

 elem.innerHTML += "<tr><td>" + header + ":</td><td>"

 + value + "</td></tr>";

 }

 </script>

 </body>

</html>

In this example, I create a table for any stylesheet that has a media attribute, enumerating the individual media, the total number of media in the attribute value, and the overall media string. You can see the effect of the script in Figure 29-2.

[image: images]

Figure 29-2. Working with the MediaList object

Disabling Stylesheets

The CSSStyleSheet.disabled property lets you enable and disable all of the styles in a stylesheet in a single step. Listing 29-3 gives a demonstration of using this property to toggle a stylesheet on and off.

Listing 29-3. Enabling and Disabling a Stylesheet

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style title="core styles">

 p {

 border: medium double black;

 background-color: lightgray;

 }

 #block1 { color: white; border: thick solid black; background-color: gray;}

 </style>

 </head>

 <body>

 <p id="block1">There are lots of different kinds of fruit - there are over

 500 varieties of banana alone. By the time we add the countless types of

 apples, oranges, and other well-known fruit, we are faced with thousands of

 choices.

 </p>

 <div><button id="pressme">Press Me </button></div>

 <script>

 document.getElementById("pressme").onclick = function() {

 document.styleSheets[0].disabled = !document.styleSheets[0].disabled;

 }

 </script>

 </body>

</html>

In this example, clicking the button toggles the value of the disabled property on the (sole) stylesheet. When a stylesheet is disabled, none of the styles within the stylesheet are applied to elements, as you can see in Figure 29-3.

[image: images]

Figure 29-3. Disabling and enabling a stylesheet

Working with Individual Styles

The CSSStyleSheet.cssRules property returns a CSSRuleList object that provides access to the individual styles in the stylesheet. The members of this object are described in Table 29-5.

[image: image]

Each CSS style in the stylesheet is represented by a CSSStyleRule object (ignore, if you will, the inconsistency in terminology). The members of the CSSStyleRule are shown in Table 29-6.

[image: image]

Listing 29-4 shows the use of the CSSRuleList object and the basic properties of the CSSStyleRule object. I say basic, because the style property returns a CSSStyleDeclaration property, which lets you dig deeply into a style and which is the same object you use when applying styles to an individual element. You can learn more about the CSSStyleDeclaration object in the section “Working with CSSStyleDeclaration Objects,” later in this chapter.

Listing 29-4. Working with the CSSRuleList and CSSStyleRule Objects

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style title="core styles">

 p {

 border: medium double black;

 background-color: lightgray;

 }

 #block1 { color: white; border: thick solid black; background-color: gray;}

 table {border: thin solid black; border-collapse: collapse;

 margin: 5px; float: left;}

 td {padding: 2px;}

 </style>

 </head>

 <body>

 <p id="block1">There are lots of different kinds of fruit - there are over

 500 varieties of banana alone. By the time we add the countless types of

 apples, oranges, and other well-known fruit, we are faced with thousands of

 choices.

 </p>

 <p id="block2">

 One of the most interesting aspects of fruit is the variety available in

 each country. I live near London, in an area which is known for

 its apples.

 </p>

 <div><button id="pressme">Press Me </button></div>

 <div id="placeholder"></div>

 <script>

 var placeholder = document.getElementById("placeholder");

 processStyleSheet();

 document.getElementById("pressme").onclick = function() {

 document.styleSheets[0].cssRules.item(1).selectorText = "#block2";

 if (placeholder.hasChildNodes()) {

 var childCount = placeholder.childNodes.length;

 for (var i = 0; i < childCount; i++) {

 placeholder.removeChild(placeholder.firstChild);

 }

 }

 processStyleSheet();

 }

 function processStyleSheet() {

 var rulesList = document.styleSheets[0].cssRules;

 for (var i = 0; i < rulesList.length; i++) {

 var rule = rulesList.item(i);

 var newElem = document.createElement("table");

 newElem.setAttribute("border", "1");

 addRow(newElem, "parentStyleSheet", rule.parentStyleSheet.title);

 addRow(newElem, "selectorText", rule.selectorText);

 addRow(newElem, "cssText", rule.cssText);

 placeholder.appendChild(newElem);

 }

 }

 function addRow(elem, header, value) {

 elem.innerHTML += "<tr><td>" + header + ":</td><td>"

 + value + "</td></tr>";

 }

 </script>

 </body>

</html>

This example does two things with these objects. The first is simply to get information about the defined styles, reporting on the parent stylesheet, the selector, and the individual declarations contained in the style. You can see this in Figure 29-4.

[image: images]

Figure 29-4. Getting information about a style

[image: images] Tip Notice how the shorthand properties I used in the style declarations have been expanded by the browser to their constituent properties. Not all browsers do this. Some will display the shorthand properties if they have been used (Firefox, for example, displays the shorthand properties; Chrome, as you can see in the figure, does not). If you are trying to parse the CSS as a string, then you need to take this into account. Although, in general, working directly with CSS values like this is a bad idea. See the section on the CSSStyleDeclaration object (“Working with CSSStyleDeclaration Objects”), later in this chapter, for a better approach.

The script also demonstrates how easily you can change a style. When the button is clicked, the selector for one of the styles is changed from #block1 to #block2, which has the effect of changing which of the p elements the style applies to. As with other changes to the DOM, the browser reflects the new selector immediately and updates the way that styles are applied, as shown in Figure 29-5.

[image: images]

Figure 29-5. Changing the selector for a style

Working with Element Styles

To obtain the properties defined in an element’s style attribute, you read the value of the style property defined by HTMLElement objects (you can learn more about the HTMLElement objects in Chapter 28). The style property returns a CSSStyleDeclaration object, which is the same kind of object that you can obtain through stylesheets. I describe this object in detail in the next section. To demonstrate the HTMLElement.style property, I have used the CSSStyleDeclaration.cssText property in Listing 29-5 to display and modify the style properties that are applied to an element.

Listing 29-5. Obtaining a CSSStyleDeclaration Object from an HTMLElement

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 </head>

 <body>

 <p id="block1"

 style="color:white; border: thick solid black; background-color: gray">

 There are lots of different kinds of fruit - there are over

 500 varieties of banana alone. By the time we add the countless types of

 apples, oranges, and other well-known fruit, we are faced with thousands of

 choices.

 </p>

 <div><button id="pressme">Press Me </button></div>

 <div id="placeholder"></div>

 <script>

 var placeholder = document.getElementById("placeholder");

 var targetElem = document.getElementById("block1");

 displayStyle();

 document.getElementById("pressme").onclick = function() {

 targetElem.style.cssText = "color:black";

 displayStyle();

 }

 function displayStyle() {

 if (placeholder.hasChildNodes()) {

 placeholder.removeChild(placeholder.firstChild);

 }

 var newElem = document.createElement("table");

 addRow(newElem, "Element CSS", targetElem.style.cssText);

 placeholder.appendChild(newElem);

 }

 function addRow(elem, header, value) {

 elem.innerHTML += "<tr><td>" + header + ":</td><td>"

 + value + "</td></tr>";

 }

 </script>

 </body>

</html>

This script displays the value of the style attribute for an element and, when the button is clicked, changes that value to apply a different style. You can see the effect in Figure 29-6.

[image: images]

Figure 29-6. Reading and changing the style applied to an element

I have used Firefox in this figure because it displays the shorthand property names in the cssText value.

[image: image] Tip In the section on stylesheets, I explained that it isn’t a good idea to try and parse the value of the cssText property. The same applies when working with individual elements. See the section on the CSSStyleDeclaration object that follows for a more robust approach to digging into the detail of CSS property values.

Working with CSSStyleDeclaration Objects

It doesn’t matter if you are dealing with stylesheets or an element’s style attribute. To get complete control of CSS via the DOM, you have to use the CSSStyleDeclaration object. Table 29-7 describes the members of this important object.

[image: image]

In addition to the item method, most browsers support array-style notation, so that item(4) and item[4] are equivalent.

Working with the Convenience Properties

The easiest way to work with a CSSStyleDeclaration object is through the convenience properties, which correspond to individual CSS properties. You can determine the current value for a CSS property by reading the corresponding object property, and change the CSS value by assigning a new value to the object property.

[image: images] Tip The values that I read and modify in this section are the configured values. You are effectively reading and modifying the values defined in the HTML document, either in a stylesheet or applied directly to an element. When the browser comes to display an element, it will generated a set of computed values, where the browser styles, the stylesheets, and style attributes are allowed to cascade and inherit using the model I described in Chapter 4. See the section “Working with Computed Styles” for details of how to obtain the computed CSS values for an element.

Listing 29-6 provides a demonstration.

Listing 29-6. Working with CSSStyleDeclaration Object Convenience Properties

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style title="core styles">

 #block1 { color: white; border: thick solid black; background-color: gray;}

 p {

 border: medium double black;

 background-color: lightgray;

 }

 table {border: thin solid black; border-collapse: collapse;

 margin: 5px; float: left;}

 td {padding: 2px;}

 </style>

 </head>

 <body>

 <p id="block1">There are lots of different kinds of fruit - there are over

 500 varieties of banana alone. By the time we add the countless types of

 apples, oranges, and other well-known fruit, we are faced with thousands of

 choices.

 </p>

 <p id="block2" style="border: medium dashed blue; color: red; padding: 2px">

 One of the most interesting aspects of fruit is the variety available in

 each country. I live near London, in an area which is known for

 its apples.

 </p>

 <div><button id="pressme">Press Me </button></div>

 <div id="placeholder"></div>

 <script>

 var placeholder = document.getElementById("placeholder");

 displayStyles();

 document.getElementById("pressme").onclick = function() {

 document.styleSheets[0].cssRules.item(1).style.paddingTop = "10px";

 document.styleSheets[0].cssRules.item(1).style.paddingRight = "12px";

 document.styleSheets[0].cssRules.item(1).style.paddingLeft = "5px";

 document.styleSheets[0].cssRules.item(1).style.paddingBottom = "5px";

 displayStyles();

 }

 function displayStyles() {

 if (placeholder.hasChildNodes()) {

 var childCount = placeholder.childNodes.length;

 for (var i = 0; i < childCount; i++) {

 placeholder.removeChild(placeholder.firstChild);

 }

 }

 displayStyleProperties(document.styleSheets[0].cssRules.item(1).style);

 displayStyleProperties(document.getElementById("block2").style);

 }

 function displayStyleProperties(style) {

 var newElem = document.createElement("table");

 newElem.setAttribute("border", "1");

 addRow(newElem, "border", style.border);

 addRow(newElem, "color", style.color);

 addRow(newElem, "padding", style.padding);

 addRow(newElem, "paddingTop", style.paddingTop);

 placeholder.appendChild(newElem);

 }

 function addRow(elem, header, value) {

 elem.innerHTML += "<tr><td>" + header + ":</td><td>"

 + value + "</td></tr>";

 }

 </script>

 </body>

</html>

The script in Listing 29-6 displays the values of four CSSStyleDeclaration convenience properties. These are read from objects obtained from a stylesheet and from an element’s style attribute to demonstrate the two different ways you can get these objects. You can see how the values are displayed in Figure 29-7.

[image: images]

Figure 29-7. Reading values from style convenience properties

The border, color, and padding convenience properties correspond to the CSS properties with the same name. The paddingTop convenience property corresponds to the padding-top CSS property. This is the general naming pattern for multiword CSS properties: remove the hyphens and capitalize the first letter of the second and subsequent words. As you can see, there are convenience properties for both shorthand and individual CSS properties (padding and paddingTop, for example). The convenience properties return an empty string ("") when there is no value set for the corresponding CSS property.

When the button is clicked, the script modifies the value of the individual padding properties using the paddingTop, paddingBottom, paddingLeft, and paddingRight convenience properties on the CSSStyleDeclaration object obtained from the first stylesheet in the document. You can see the effect in Figure 29-8. Not only do the changed values have an immediate effect on the appearance of the document, but the shorthand and individual convenience properties are synchronized to reflect the new values.

[image: images]

Figure 29-8. Changing CSS properties via a CSSStyleDeclaration object

Working with the Regular Properties

The convenience properties are simple to use if you already know the name of the CSS properties you need to work with, and there is a convenience property available for it. If you need to explore the CSS properties programmatically, or get/set a CSS property for which there is no corresponding convenience property, then the other members of the CSSStyleDeclaration object can be very useful. Listing 29-7 shows some of these properties in use.

Listing 29-7. Using the Regular Properties of the CSSStyleDeclaration Object

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style title="core styles">

 p {

 color: white;

 border: medium double black;

 background-color: gray;

 padding-top: 5px;

 }

 table {border: thin solid black; border-collapse: collapse;

 margin: 5px; float: left;}

 td {padding: 2px;}

 </style>

 </head>

 <body>

 <p id="block1">There are lots of different kinds of fruit - there are over

 500 varieties of banana alone. By the time we add the countless types of

 apples, oranges, and other well-known fruit, we are faced with thousands of

 choices.

 </p>

 <div><button id="pressme">Press Me </button></div>

 <div id="placeholder"></div>

 <script>

 var placeholder = document.getElementById("placeholder");

 displayStyles();

 document.getElementById("pressme").onclick = function() {

 var styleDeclr = document.styleSheets[0].cssRules[0].style;

 styleDeclr.setProperty("background-color", "lightgray");

 styleDeclr.setProperty("padding-top", "20px");

 styleDeclr.setProperty("color", "black");

 displayStyles();

 }

 function displayStyles() {

 if (placeholder.hasChildNodes()) {

 var childCount = placeholder.childNodes.length;

 for (var i = 0; i < childCount; i++) {

 placeholder.removeChild(placeholder.firstChild);

 }

 }

 var newElem = document.createElement("table");

 newElem.setAttribute("border", "1");

 var style = document.styleSheets[0].cssRules[0].style;

 addRow(newElem, "border", style.getPropertyValue("border"));

 addRow(newElem, "color", style.getPropertyValue("color"));

 addRow(newElem, "padding-top", style.getPropertyValue("padding-top"));

 addRow(newElem, "background-color",

 style.getPropertyValue("background-color"));

 placeholder.appendChild(newElem);

 }

 function addRow(elem, header, value) {

 elem.innerHTML += "<tr><td>" + header + ":</td><td>"

 + value + "</td></tr>";

 }

 </script>

 </body>

</html>

In this example, I read the style properties from only one source: the stylesheet. I use the getPropertyValue method to retrieve a value for a CSS property, and the setProperty method to define new values. Notice that you use the real CSS property names with these methods, and not the names of the convenience properties.

Exploring Properties Programmatically

In the examples so far, I have explicitly named the CSS properties I wanted to work with. If I want to obtain information about which properties have been applied without prior knowledge, I must explore via the CSSStyleDeclaration members, as shown in Listing 29-8.

Listing 29-8. Programmatically Exploring CSS Properties

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style title="core styles">

 p {

 color: white;

 background-color: gray;

 padding: 5px;

 }

 table {border: thin solid black; border-collapse: collapse;

 margin: 5px; float: left;}

 td {padding: 2px;}

 </style>

 </head>

 <body>

 <p id="block1">There are lots of different kinds of fruit - there are over

 500 varieties of banana alone. By the time we add the countless types of

 apples, oranges, and other well-known fruit, we are faced with thousands of

 choices.

 </p>

 <div id="placeholder"></div>

 <script>

 var placeholder = document.getElementById("placeholder");

 displayStyles();

 function displayStyles() {

 var newElem = document.createElement("table");

 newElem.setAttribute("border", "1");

 var style = document.styleSheets[0].cssRules[0].style;

 for (var i = 0; i < style.length; i++) {

 addRow(newElem, style[i], style.getPropertyValue(style[i]));

 }

 placeholder.appendChild(newElem);

 }

 function addRow(elem, header, value) {

 elem.innerHTML += "<tr><td>" + header + ":</td><td>"

 + value + "</td></tr>";

 }

 </script>

 </body>

</html>

The script in this example enumerates the properties in the first style in the stylesheet. You can see the results in Figure 29-9.

[image: images]

Figure 29-9. Enumerating the properties in a style

Getting Style Property Importance

As I explained in Chapter 4, you can apply !important to a property declaration to give priority to the value when the browser assesses which values are used to display an element. When working with the CSSStyleDeclaration object, you can use the getPropertyPriority method to see if !important has been applied to a property, as demonstrated in Listing 29-9.

Listing 29-9. Getting the Importance of a Property

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style title="core styles">

 p {

 color: white;

 background-color: gray !important;

 padding: 5px !important;

 }

 table {border: thin solid black; border-collapse: collapse;

 margin: 5px; float: left;}

 td {padding: 2px;}

 </style>

 </head>

 <body>

 <p id="block1">There are lots of different kinds of fruit - there are over

 500 varieties of banana alone. By the time we add the countless types of

 apples, oranges, and other well-known fruit, we are faced with thousands of

 choices.

 </p>

 <div id="placeholder"></div>

 <script>

 var placeholder = document.getElementById("placeholder");

 displayStyles();

 function displayStyles() {

 var newElem = document.createElement("table");

 newElem.setAttribute("border", "1");

 var style = document.styleSheets[0].cssRules[0].style;

 for (var i = 0; i < style.length; i++) {

 addRow(newElem, style[i], style.getPropertyPriority(style[i]));

 }

 placeholder.appendChild(newElem);

 }

 function addRow(elem, header, value) {

 elem.innerHTML += "<tr><td>" + header + ":</td><td>"

 + value + "</td></tr>";

 }

 </script>

 </body>

</html>

The getPropertyPriority method returns important for high priority values, and the empty string ("") if no importance has been specified.

[image: image] Tip You can use the setProperty method to specify whether a value is important. I omitted the importance argument when I demonstrated the setProperty method earlier in the chapter, but if you want !important applied to a value, then specify important as the third argument to the setProperty method.

Using the Fine-Grained CSS DOM Objects

By enumerating the properties in a style and using the getPropertyValue method, you can discover which properties have been used. However, you still need to know something about each property to make use of it. For example, you have to know that values for the width property are expressed as lengths, and the values for the animation-delay property are expressed as time spans.

In some situations, you don’t want to have this knowledge in advance, and so you can use the CSSStyleDeclaration.getPropertyCSSValue method to obtain CSSPrimitiveValue objects that represent the values defined for each property in the style. Table 29-8 describes the members of the CSSPrimitiveValue object.

[image: image]

The key to the CSSPrimitiveValue object is the primitiveType property, which tells you the units that the value of the property has been expressed in. The set of defined unit types is shown in Table 29-9. These correspond to the CSS units I described in Chapter 4.

[image: image]

Listing 29-10 shows how you can use this object to determine the number of units and the unit type of a CSS property value.

Listing 29-10. Using the CSSPrimitiveValue Object

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style title="core styles">

 p {

 color: white;

 background-color: gray !important;

 padding: 7px !important;

 }

 table {border: thin solid black; border-collapse: collapse;

 margin: 5px; float: left;}

 td {padding: 2px;}

 </style>

 </head>

 <body>

 <p id="block1">There are lots of different kinds of fruit - there are over

 500 varieties of banana alone. By the time we add the countless types of

 apples, oranges, and other well-known fruit, we are faced with thousands of

 choices.

 </p>

 <div id="placeholder"></div>

 <script>

 var placeholder = document.getElementById("placeholder");

 displayStyles();

 function displayStyles() {

 var newElem = document.createElement("table");

 newElem.setAttribute("border", "1");

 var style = document.styleSheets[0].cssRules[0].style;

 for (var i = 0; i < style.length; i++) {

 var val = style.getPropertyCSSValue(style[i]);

 if (val.primitiveType == CSSPrimitiveValue.CSS_PX) {

 addRow(newElem, style[i],

 val.getFloatValue(CSSPrimitiveValue.CSS_PX), "pixels");

 addRow(newElem, style[i],

 val.getFloatValue(CSSPrimitiveValue.CSS_PT), "points");

 addRow(newElem, style[i],

 val.getFloatValue(CSSPrimitiveValue.CSS_IN), "inches");

 } else if (val.primitiveType == CSSPrimitiveValue.CSS_RGBCOLOR) {

 var color = val.getRGBColorValue();

 addRow(newElem, style[i], color.red.cssText + " "

 + color.green.cssText + " "

 + color.blue.cssText, "(color)");

 } else {

 addRow(newElem, style[i], val.cssText, "(other)");

 }

 }

 placeholder.appendChild(newElem);

 }

 function addRow(elem, header, value, units) {

 elem.innerHTML += "<tr><td>" + header + ":</td><td>"

 + value + "</td><td>" + units + "</td></tr>";

 }

 </script>

 </body>

</html>

One of the most useful features of the CSSPrimtiveValue object is that it will convert between one unit and another. In Listing 29-10, the script identifies values that are expressed as pixels and requests the same values as points and inches. This means that you can work with values in the units that suit you, rather than the units as they were originally expressed.

Note that color values are obtained through the GetRGBColorValue method, which returns a RGBColor object. This object has three properties (red, green, and blue), each of which returns its own CSSPrimitiveValue object. You can see how the browser deals with the unit types in Figure 29-10.

[image: images]

Figure 29-10. Working with the CSSPrimtiveValue object

Working with Computed Styles

All of the examples in this chapter so far have focused on the values specified for CSS properties in stylesheets or in style attributes. This is useful for determining what is directly contained within the document, but as I explained in Chapter 4, the browser brings together styles from a number of sources in order to work out which values it should use to display an element. These include properties for which you have not explicitly specified values, either because the values are inherited or because of a browser style convention.

The set of CSS property values that the browser uses to display an element is called the computed style. You can obtain a CSSStyleDeclaration object containing the computed style for an element using the document.defaultView.getComputedStyle method. The object that you get back from this method contains details of all of the properties that the browser uses to display the element, and the value for each of them.

[image: image] Tip You cannot modify the computed style through the CSSStyleDeclaration object that you get from the getComputedStyle method. Instead, you must modify a stylesheet or apply a property directly through the style attribute of an element, as shown earlier in this chapter.

Listing 29-11 demonstrates working with some computed style values.

Listing 29-11. Working with the Computed Style for an Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <meta name="author" content="Adam Freeman"/>

 <meta name="description" content="A simple example"/>

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

 <style title="core styles">

 p {

 padding: 7px !important;

 }

 table {border: thin solid black; border-collapse: collapse;

 margin: 5px; float: left;}

 td {padding: 2px;}

 </style>

 </head>

 <body>

 <p id="block1">There are lots of different kinds of fruit - there are over

 500 varieties of banana alone. By the time we add the countless types of

 apples, oranges, and other well-known fruit, we are faced with thousands of

 choices.

 </p>

 <div id="placeholder"></div>

 <script>

 var placeholder = document.getElementById("placeholder");

 displayStyles();

 function displayStyles() {

 var newElem = document.createElement("table");

 newElem.setAttribute("border", "1");

 var targetElem = document.getElementById("block1");

 var style = document.defaultView.getComputedStyle(targetElem);

 addRow(newElem, "Property Count", style.length);

 addRow(newElem, "margin-top", style.getPropertyValue("margin-top"));

 addRow(newElem, "font-size", style.getPropertyValue("font-size"));

 addRow(newElem, "font-family", style.getPropertyValue("font-family"));

 placeholder.appendChild(newElem);

 }

 function addRow(elem, header, value) {

 elem.innerHTML += "<tr><td>" + header + ":</td><td>"

 + value + "</td></tr>";

 }

 </script>

 </body>

</html>

In this example, I have displayed the value of some properties that I have not explicitly defined values for. You can see the effect in Figure 29-11. You can also see why I have only displayed a few properties. The first row in the table reports how many properties there are in the computed style. The numbers vary between browsers, but the 223 that Chrome reports is typical.

[image: images]

Figure 29-11. Working with the computed style

Summary

In this chapter, I have shown you the different ways that you can use the DOM to operate on the CSS properties and values in your HTML document. You can work through stylesheets or through the style attribute on individual elements, and you can use an extensive collection of objects to dig deep into the detail of styles. Not only can you work with the properties and values that you have explicitly defined, but you can also work with the computed style, which the browser uses to display elements. This allows you to compare what you defined with what is actually used.

C H A P T E R 30

Working with Events

I have been using events in the examples for this part of the book to respond to button clicks. In this chapter, it is time to dig into the details, explain what events really are, show you how they work, and how they fit within the rest of the DOM. In short, events allow you to define JavaScript functions that are invoked in response to a change in the state of an element, such as when the element gains and loses the focus, or when the user clicks the mouse button over the element.

In this chapter, I focus on introducing the event mechanism and the events defined by the document and HTMLElement objects. These are the events that are used most often and apply to all documents and elements. Table 30-1 provides the summary for this chapter.

[image: Image]

[image: Image]

Using Simple Event Handlers

There are a few different ways that you can handle events. The most direct way is to create a simple event handler using an event attribute. Elements define an event attribute for each of the event that they support. For example, the onmouseover event attribute is the event attribute for the global mouseover event, which is triggered when the user moves the pointer over the area of the browser screen that is occupied by the element. (This is a general pattern; for most events, there will be a corresponding event attribute defined as on<eventname>).

Implementing a Simple Inline Event Handler

The most direct way of using an event attribute is to assign the attribute a set of JavaScript statements. When the event is triggered, the browser will execute the statements you have provided. Listing 30-1 gives a simple example.

Listing 30-1. Handling an Event with Inline JavaScript

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 p {

 background: gray;

 color:white;

 padding: 10px;

 margin: 5px;

 border: thin solid black

 }

 </style>

 </head>

 <body>

 <p onmouseover="this.style.background='white'; this.style.color='black'">

 There are lots of different kinds of fruit - there are over

 500 varieties of banana alone. By the time we add the countless types of

 apples, oranges, and other well-known fruit, we are faced with thousands of

 choices.

 </p>

 </body>

</html>

In this example, I have specified that two JavaScript statements should be executed in response to the mouseover event by setting them at the value for the onmouseover event attribute for the p element in the document. Here are the statements:

this.style.background='white';

this.style.color='black'

These are CSS properties that are applied directly to the element’s style attribute, as explained in Chapter 4. The browser sets the value of the special variable this to be the HTMLElement object representing the element that triggered the event, and the style property returns the CSSStyleDeclaration object for the element.

[image: Image] Tip Notice that I use double quotes to delimit the overall attribute value, and single quotes to specify the colors I want as JavaScript string literals. You can use them in the other order if you prefer, but this is the technique for embedding quoted values in an attribute.

If you load the document into a browser, the initial style defined in the style element is applied to the p element. When you move the mouse over the element, the JavaScript statements will be executed and change the values assigned to the background and color CSS properties, using the techniques I described in Chapter 4. You can see the transition in Figure 30-1.

[image: Image]

Figure 30-1. Handling the MouseOver event

This is a one-way transition; the style doesn’t reset when the mouse leaves the element’s screen area. Many events come in pairs. The event that is the counterpart to mouseover is called mouseout, and you handle this event through the onmouseout event attribute, as shown in Listing 30-2.

Listing 30-2. Handling the MouseOut Event

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 p {

 background: gray;

 color:white;

 padding: 10px;

 margin: 5px;

 border: thin solid black

 }

 </style>

 </head>

 <body>

 <p onmouseover="this.style.background='white'; this.style.color='black'"

 onmouseout="this.style.removeProperty('color');

 this.style.removeProperty('background')">

 There are lots of different kinds of fruit - there are over

 500 varieties of banana alone. By the time we add the countless types of

 apples, oranges, and other well-known fruit, we are faced with thousands of

 choices.

 </p>

 </body>

</html>

With this addition, you have an element that responds to the mouse entering and exiting the screen space it occupies. You can see the new transition in Figure 30-2.

[image: Image]

Figure 30-2. The transition effect of combining counterpart events

Listing 30-2 shows the first of two problems with inline event handlers: they are verbose and make the HTML very hard to read. The second problem is that the JavaScript statements apply to only one element. I have to duplicate those statements on every other p element that I want to behave in this way.

Implementing a Simple Event-Handling Function

We can address some of the verbosity and duplication by defining a function and specifying the function name as the value for the event attributes in the element. Listing 30-3 shows how you achieve this.

Listing 30-3. Using a Function to Handle an Event

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 p {

 background: gray;

 color:white;

 padding: 10px;

 margin: 5px;

 border: thin solid black

 }

 </style>

 <script type="text/javascript">

 function handleMouseOver(elem) {

 elem.style.background='white';

 elem.style.color='black';

 }

 function handleMouseOut(elem) {

 elem.style.removeProperty('color');

 elem.style.removeProperty('background');

 }

 </script>

 </head>

 <body>

 <p onmouseover="handleMouseOver(this)" onmouseout="handleMouseOut(this)">

 There are lots of different kinds of fruit - there are over

 500 varieties of banana alone. By the time we add the countless types of

 apples, oranges, and other well-known fruit, we are faced with thousands of

 choices.

 </p>

 <p onmouseover="handleMouseOver(this)" onmouseout="handleMouseOut(this)">

 One of the most interesting aspects of fruit is the variety available in

 each country. I live near London, in an area which is known for

 its apples.

 </p>

 </body>

</html>

In this example, I define JavaScript functions that contain the statements I want performed in response to the mouse events and specify those functions in the onmouseover and onmouseout attributes. The special value this refers to the element that has triggered the event.

This approach is an improvement over the previous technique. There is less duplication and the code is somewhat easier to read. But I like to separate out my events from the HTML elements, and to do this I need to revisit our old friend, the DOM.

Using the DOM and the Event Object

The simple handlers I demonstrated in the earlier sections are fine for basic tasks, but if you want to perform more sophisticated handling (and more elegant definition of event handlers), switch to working with the DOM and the JavaScript Event object. Listing 30-4 shows how you can use the Event object and how you can use the DOM to associate a function with an event.

Listing 30-4. Using the DOM to Set Up Event Handling

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 p {

 background: gray;

 color:white;

 padding: 10px;

 margin: 5px;

 border: thin solid black

 }

 </style>

 </head>

 <body>

 <p>

 There are lots of different kinds of fruit - there are over

 500 varieties of banana alone. By the time we add the countless types of

 apples, oranges, and other well-known fruit, we are faced with thousands of

 choices.

 </p>

 <p>

 One of the most interesting aspects of fruit is the variety available in

 each country. I live near London, in an area which is known for

 its apples.

 </p>

 <script type="text/javascript">

 var pElems = document.getElementsByTagName("p");

 for (var i = 0; i < pElems.length; i++) {

 pElems[i].onmouseover = handleMouseOver;

 pElems[i].onmouseout = handleMouseOut;

 }

 function handleMouseOver(e) {

 e.target.style.background='white';

 e.target.style.color='black';

 }

 function handleMouseOut(e) {

 e.target.style.removeProperty('color');

 e.target.style.removeProperty('background');

 }

 </script>

 </body>

</html>

This is the approach that you have seen in the examples in previous chapters. The script (which I have had to move to the bottom of the page, because I am working with the DOM), finds all of the elements that I want to handle events for, and sets a function name for the event handler property. There are properties like this for all the events. They are all named in the same way: on, followed by the name of the event. You can learn more about the available events in the Working with the HTML Events section later in this chapter.

[image: Image] Tip Notice that I use the name of the function to register it as an event listener. A common mistake is to put parentheses after the function name, so handleMouseOver() is used instead of handleMouse. This has the effect of calling your function when the script is executed and not when the event is triggered.

The functions that handle events in the listing define a parameter called e. This will be set to an Event object created by the browser and that represents the event when it is triggered. The Event objects provide you with information about what’s happened and let you respond to user interactions with more flexibility than including code in element attributes. In this example, I have used the target property to obtain the HTMLElement that triggered the event so I can use the style property and change its appearance.

Before I show you the event object, I want to demonstrate an alternative approach to specifying which functions are used to process events. The event properties (the ones that are named on*) are generally the easiest approach, but you can also use the addEventListener method, which is implemented by the HTMLElement object. You can also use the removeEventListener method to disassociate a function and an event. Both methods let you express the event type and the functions that handle them as arguments, as shown in Listing 30-5.

Listing 30-5. Using the addEventListener and removeEventListener Methods

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 p {

 background: gray;

 color:white;

 padding: 10px;

 margin: 5px;

 border: thin solid black

 }

 </style>

 </head>

 <body>

 <p>

 There are lots of different kinds of fruit - there are over

 500 varieties of banana alone. By the time we add the countless types of

 apples, oranges, and other well-known fruit, we are faced with thousands of

 choices.

 </p>

 <p id="block2">

 One of the most interesting aspects of fruit is the variety available in

 each country. I live near London, in an area which is known for

 its apples.

 </p>

 <button id="pressme">Press Me</button>

 <script type="text/javascript">

 var pElems = document.getElementsByTagName("p");

 for (var i = 0; i < pElems.length; i++) {

 pElems[i].addEventListener("mouseover", handleMouseOver);

 pElems[i].addEventListener("mouseout", handleMouseOut);

 }

 document.getElementById("pressme").onclick = function() {

 document.getElementById("block2").removeEventListener("mouseout",

 handleMouseOut);

 }

 function handleMouseOver(e) {

 e.target.style.background='white';

 e.target.style.color='black';

 }

 function handleMouseOut(e) {

 e.target.style.removeProperty('color');

 e.target.style.removeProperty('background');

 }

 </script>

 </body>

</html>

The script in this example uses the addEventListener method to register the handleMouseOver and handleMouseOut functions as event handlers for the p elements. When the button is clicked, the removeEventListener method is used to disassociate the handleMouseOut function for the p element with the id value of block2. Notice that I have used the onclick property to set up the handler for the click event on the button element to demonstrate that you can freely mix and match techniques in the same script.

The advantage of the addEventListener method is that it allows you access to some of the advanced event features, as I describe shortly. The members of the Event object are described in Table 30-2.

[image: Image]

[image: Image] Tip The Event object defines the functionality that is common to all events. However, as you’ll see when I show you the basic events later in this chapter, there are other event-related objects that define extra functionality that is specified to a particular kind of event.

Distinguishing Events by Type

The type property tells you which kind of event you are dealing with. This value is provided as a string, such as mouseover. Being able to detect the type of event allows you to use one function to deal with multiple types, as shown in Listing 30-6.

Listing 30-6. Using the type Property

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 p {

 background: gray;

 color:white;

 padding: 10px;

 margin: 5px;

 border: thin solid black

 }

 </style>

 </head>

 <body>

 <p>

 There are lots of different kinds of fruit - there are over

 500 varieties of banana alone. By the time we add the countless types of

 apples, oranges, and other well-known fruit, we are faced with thousands of

 choices.

 </p>

 <p id="block2">

 One of the most interesting aspects of fruit is the variety available in

 each country. I live near London, in an area which is known for

 its apples.

 </p>

 <script type="text/javascript">

 var pElems = document.getElementsByTagName("p");

 for (var i = 0; i < pElems.length; i++) {

 pElems[i].onmouseover = handleMouseEvent;

 pElems[i].onmouseout = handleMouseEvent;

 }

 function handleMouseEvent(e) {

 if (e.type == "mouseover") {

 e.target.style.background='white';

 e.target.style.color='black';

 } else {

 e.target.style.removeProperty('color');

 e.target.style.removeProperty('background');

 }

 }

 </script>

 </body>

</html>

In the script for this example, I use the type property to work out what kind of event I am dealing with inside of a single event-handling function, handleMouseEvent.

Understanding Event Flow

An event has three phases to its life cycle: capture, target, and bubbling. In this section, I’ll explain each of these phases and show you how they work and how you can use event listener functions to get control of them.

Understanding the Capture Phase

When an event is triggered, the browser identifies the element that the event relates to, which is referred to as the target for the event. The browser identifies all of the elements between the body element and the target and checks each of them to see if they have any event handlers that have asked to be notified of events of their descendants. The browser triggers any such handler before triggering the handlers on the target itself. Listing 30-7 provides a demonstration.

Listing 30-7. Capturing Events

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 p {

 background: gray;

 color:white;

 padding: 10px;

 margin: 5px;

 border: thin solid black

 }

 span {

 background: white;

 color: black;

 padding: 2px;

 cursor: default;

 }

 </style>

 </head>

 <body>

 <p id="block1">

 There are lots of different kinds of fruit - there are over

 500 varieties of banana alone. By the time we add

 the countless types of apples, oranges, and other well-known fruit, we are

 faced with thousands of choices.

 </p>

 <script type="text/javascript">

 var banana = document.getElementById("banana");

 var textblock = document.getElementById("block1");

 banana.addEventListener("mouseover", handleMouseEvent);

 banana.addEventListener("mouseout", handleMouseEvent);

 textblock.addEventListener("mouseover", handleDescendantEvent, true);

 textblock.addEventListener("mouseout", handleDescendantEvent, true);

 function handleDescendantEvent(e) {

 if (e.type == "mouseover" && e.eventPhase == Event.CAPTURING_PHASE) {

 e.target.style.border = "thick solid red";

 e.currentTarget.style.border = "thick double black";

 } else if (e.type == "mouseout" && e.eventPhase == Event.CAPTURING_PHASE) {

 e.target.style.removeProperty("border");

 e.currentTarget.style.removeProperty("border");

 }

 }

 function handleMouseEvent(e) {

 if (e.type == "mouseover") {

 e.target.style.background='white';

 e.target.style.color='black';

 } else {

 e.target.style.removeProperty('color');

 e.target.style.removeProperty('background');

 }

 }

 </script>

 </body>

</html>

In this example, I have defined a span element as a child of the p element and registered handlers for the mouseover and mouseout events. Notice that when I registered with the parent (the p element), I added a third argument to the addEventListener method, like this:

textblock.addEventListener("mouseover", handleDescendantEvent, true);

This additional argument tells the browser that I want the p element to receive events for its descendant elements during the capture phase. When the mouseover event is triggered, the browser starts at the root of the HTML document and starts working its way down the DOM toward the target (the element that triggered the event). For each element in the hierarchy, the browser checks to see if it has registered an interest in captured events. You can see the sequence for the example document in Figure 30-3.

[image: Image]

Figure 30-3. The capture event flow

At each element, the browser invokes any capture-enabled listeners. In this case, the browser will find and invoke the handleDescendantEvent function that I registered with the p element. When the handleDescendantEvent function is called, the Event object contains information about the target element (via the target property), and the element that has led the function to be invoked, via the currentTarget property. I use both of these properties so that I can change the style of the p element and the span child. You can see the effect in Figure 30-4.

[image: Image]

Figure 30-4. Dealing with event capture

Event capture gives each of an element’s ancestors a chance to react to an event before it is passed to the element itself. A parent element event handler can stop flow of the event down toward the target by calling the stopPropagation or stopImmediatePropagation functions on the Event object. The difference between these functions is that stopPropagation will ensure that all of the event listeners registered for the current element will be invoked, whereas stopImmediatePropagation ignores any untriggered listeners. Listing 30-8 shows the addition of the stopPropagation function to the handleDescendantEvent event handler.

Listing 30-8. Preventing Further Event Flow

...

function handleDescendantEvent(e) {

 if (e.type == "mouseover" && e.eventPhase == Event.CAPTURING_PHASE) {

 e.target.style.border = "thick solid red";

 e.currentTarget.style.border = "thick double black";

 } else if (e.type == "mouseout" && e.eventPhase == Event.CAPTURING_PHASE) {

 e.target.style.removeProperty("border");

 e.currentTarget.style.removeProperty("border");

 }

 e.stopPropagation();

}

...

With this change, the browser capture phase ends when the handler on the p element is invoked. No other elements will be inspected, and the target and bubble phases (described shortly) will be skipped. In terms of the example, this means that the style changes in the handleMouseEvent function will not be applied in response to the mouseover event, as you can see in Figure 30-5.

[image: Image]

Figure 30-5. Stopping event propagation

Notice that in the handler, I check the event type and establish which phase the event is in by using the eventPhase property, like this:

...

if (e.type == "mouseover" && e.eventPhase == Event.CAPTURING_PHASE) {

...

Enabling capture events when registering an event listener doesn’t stop events that are targeted at the element itself. In this case, the p element occupies space on the browser screen and will respond to mouseover events as well. To avoid this, I check to make sure that I only apply style changes when dealing with events that are in the capture phase (i.e., events that are targeted at a descendant element and that I am only processing because I have registered a capture-enabled listener). The eventPhase property will return one of the three values shown in Table 30-3, representing the three phases in the event life cycle. I explain the other two phases in the following sections.

[image: Image]

Understanding the Target Phase

The target phase is the simplest of the three. When the capture phase has finished, the browser triggers any listeners for the event type that have been added to the target element, as shown in Figure 30-6.

[image: Image]

Figure 30-6. The target phase

You’ve already seen this phase in previous examples. The only point to note here is that you can make multiple calls to the addEventListener function, and so there can be more than one listener for a given event type.

[image: Image] Tip If you call the stopPropagation or stopImmediatePropagation functions during the target phase, you stop the flow of the event, and the bubble phase won’t be performed.

Understanding the Bubble Phase

After the target phase has been completed, the browser starts working its way up the chain of ancestor elements back toward the body element. At each element, the browser checks to see if there are listeners for the event type that are not capture-enabled (i.e., the third argument to the addEventListener function is false). This is known as event bubbling. Listing 30-9 gives an example.

Listing 30-9. Event Bubbling

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 p {

 background: gray;

 color:white;

 padding: 10px;

 margin: 5px;

 border: thin solid black

 }

 span {

 background: white;

 color: black;

 padding: 2px;

 cursor: default;

 }

 </style>

 </head>

 <body>

 <p id="block1">

 There are lots of different kinds of fruit - there are over

 500 varieties of banana alone. By the time we add

 the countless types of apples, oranges, and other well-known fruit, we are

 faced with thousands of choices.

 </p>

 <script type="text/javascript">

 var banana = document.getElementById("banana");

 var textblock = document.getElementById("block1");

 banana.addEventListener("mouseover", handleMouseEvent);

 banana.addEventListener("mouseout", handleMouseEvent);

 textblock.addEventListener("mouseover", handleDescendantEvent, true);

 textblock.addEventListener("mouseout", handleDescendantEvent, true);

 textblock.addEventListener("mouseover", handleBubbleMouseEvent, false);

 textblock.addEventListener("mouseout", handleBubbleMouseEvent, false);

 function handleBubbleMouseEvent(e) {

 if (e.type == "mouseover" && e.eventPhase == Event.BUBBLING_PHASE) {

 e.target.style.textTransform = "uppercase";

 } else if (e.type == "mouseout" && e.eventPhase == Event.BUBBLING_PHASE) {

 e.target.style.textTransform = "none";

 }

 }

 function handleDescendantEvent(e) {

 if (e.type == "mouseover" && e.eventPhase == Event.CAPTURING_PHASE) {

 e.target.style.border = "thick solid red";

 e.currentTarget.style.border = "thick double black";

 } else if (e.type == "mouseout" && e.eventPhase == Event.CAPTURING_PHASE) {

 e.target.style.removeProperty("border");

 e.currentTarget.style.removeProperty("border");

 }

 }

 function handleMouseEvent(e) {

 if (e.type == "mouseover") {

 e.target.style.background='black';

 e.target.style.color='white';

 } else {

 e.target.style.removeProperty('color');

 e.target.style.removeProperty('background');

 }

 }

 </script>

 </body>

</html>

I have added a new function called handleBubbleMouseEvent and added it to the p element in the document. The p element has two event listeners now, one that is capture-enabled and one that is bubble-enabled. When you use the addEventListener method, you are always in one of these states, meaning that an element’s listeners will always be notified about decedent element events in addition to its own events. The choice is whether the listener is invoked before or after the target phase for events from descendants.

The result of this new addition is that you have three listener functions that will be triggered for the mouseover event on the span element in the document. The handleDescendantEvent function will be triggered during the capture phase, the handleMouseEvent function will be invoked during the target phase, and handleBubbleMouseEvent during the bubble phase. You can see the effect of this in Figure 30-7.

[image: Image]

Figure 30-7. The bubble phase

The appearance of the element is now affected by the style changes in all of the listener functions, as shown in Figure 30-8.

[image: Image]

Figure 30-8. The effect of adding a handler for the bubble phase

[image: Image] Tip Not all events support bubbling. You can check to see whether an event will bubble using the bubbles property. A value of true indicates that the event will bubble, and false means that it won’t.

Working with Cancellable Events

Some events define a default action that will be performed when an event is triggered. As an example, the default action for the click event on the a element is that the browser will load the content at the URL specified in the href attribute. When an event has a default action, the value of its cancelable property will be true. You can stop the default action from being performed by calling the preventDefault function. Listing 30-10 gives an example of working with a cancellable event in an event-handler function.

Listing 30-10. Cancelling a Default Action

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 a {

 background: gray;

 color:white;

 padding: 10px;

 border: thin solid black

 }

 </style>

 </head>

 <body>

 <p>

 Visit Apress

 Visit W3C

 </p>

 <script type="text/javascript">

 function handleClick(e) {

 if (!confirm("Do you want to navigate to " + e.target.href + " ?")) {

 e.preventDefault();

 }

 }

 var elems = document.querySelectorAll("a");

 for (var i = 0; i < elems.length; i++) {

 elems[i].addEventListener("click", handleClick, false);

 }

 </script>

 </body>

</html>

In this example, I use the confirm function to prompt the user to see whether they really want to navigate to the URL that the a element leads to. If the user clicks the Cancel button, then I call the preventDefault function. This means that the browser will no longer navigate to the URL.

Note that calling the preventDefault function doesn’t stop the event from flowing through the capture, target, and bubble phases. These phases will still be performed, but the browser won’t perform the default action at the end of the bubble phase. You can test to see whether the preventDefault function has been called on an event by an earlier event handler by reading the defaultPrevented property; if it returns true, then the preventDefault function has been called.

Working with the HTML Events

HTML defines a set of events, which I describe in the section that follow, grouped by type. The first section, the document and window events, are applied to the Document and Window objects, which I discussed in Chapters 25 and 26.

The other events are defined by all HTMLElement objects and are effectively generic. To support the unique characteristic of each type of event, the browser dispatches objects that have additional properties beyond those of the core Event object. This will make sense as you go through the examples.

The Document and Window Events

In addition to the features that you have seen in earlier chapters, the Document object defines the event described in Table 30-4. You can see an example of this event being used in Chapter 25.

[image: Image]

The window object defines a wide range of events, which are described in Table 30-5. You can handle some of these events through the body element, but support for this approach is a little patchy, and using window tends to be more reliable.

[image: Image]

[image: Image]

Working with Mouse Events

You already saw the mouseover and mouseout events earlier in this chapter, but the complete set of mouse-related events is shown in Table 30-6.

[image: Image]

When a mouse event is triggered, the browser dispatches a MouseEvent object. This is an Event object with the additional properties and methods shown in Table 30-7.

[image: Image]

Listing 30-11 shows how you can use the additional functionality provided by the MouseEvent object.

Listing 30-11. Using the MouseEvent Object to Respond to Mouse Events

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 p {

 background: gray;

 color:white;

 padding: 10px;

 margin: 5px;

 border: thin solid black

 }

 table { margin: 5px; border-collapse: collapse; }

 th, td {padding: 4px;}

 </style>

 </head>

 <body>

 <p id="block1">

 There are lots of different kinds of fruit - there are over

 500 varieties of banana alone. By the time we add the countless types of

 apples, oranges, and other well-known fruit, we are faced with thousands

 of choices.

 </p>

 <table border="1">

 <tr><th>Type:</th><td id="eType"></td></tr>

 <tr><th>X:</th><td id="eX"></td></tr>

 <tr><th>Y:</th><td id="eY"></td></tr>

 </table>

 <script type="text/javascript">

 var textblock = document.getElementById("block1");

 var typeCell = document.getElementById("eType");

 var xCell = document.getElementById("eX");

 var yCell = document.getElementById("eY");

 textblock.addEventListener("mouseover", handleMouseEvent, false);

 textblock.addEventListener("mouseout", handleMouseEvent, false);

 textblock.addEventListener("mousemove", handleMouseEvent, false);

 function handleMouseEvent(e) {

 if (e.eventPhase == Event.AT_TARGET) {

 typeCell.innerHTML = e.type;

 xCell.innerHTML = e.clientX;

 yCell.innerHTML = e.clientY;

 if (e.type == "mouseover") {

 e.target.style.background='black';

 e.target.style.color='white';

 } else {

 e.target.style.removeProperty('color');

 e.target.style.removeProperty('background');

 }

 }

 }

 </script>

 </body>

</html>

The script in this example updates cells in a table in response to two kinds of mouse events. You can see the effect in Figure 30-9.

[image: Image]

Figure 30-9. Dealing with mouse events

Working with Focus Events

The focus-related events are triggered into response to elements gaining and losing the focus. Table 30-8 summarizes these events.

[image: Image]

These events are represented by a FocusEvent object, which adds the property shown in Table 30-9 to the core Event object functionality.

[image: Image]

Listing 30-12 demonstrates the use of the focus events.

Listing 30-12. Using the Focus Events

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 p {

 background: gray;

 color:white;

 padding: 10px;

 margin: 5px;

 border: thin solid black

 }

 </style>

 </head>

 <body>

 <form>

 <p>

 <label for="fave">Fruit: <input autofocus id="fave" name="fave"/></label>

 </p>

 <p>

 <label for="name">Name: <input id="name" name="name"/></label>

 </p>

 <button type="submit">Submit Vote</button>

 <button type="reset">Reset</button>

 </form>

 <script type="text/javascript">

 var inputElems = document.getElementsByTagName("input");

 for (var i = 0; i < inputElems.length; i++) {

 inputElems[i].onfocus = handleFocusEvent;

 inputElems[i].onblur = handleFocusEvent;

 }

 function handleFocusEvent(e) {

 if (e.type == "focus") {

 e.target.style.backgroundColor = "lightgray";

 e.target.style.border = "thick double red";

 } else {

 e.target.style.removeProperty("background-color");

 e.target.style.removeProperty("border");

 }

 }

 </script>

 </body>

</html>

The script in this example uses the focus and blur events to change the style of a pair of input elements. You can see the effect in Figure 30-10.

[image: Image]

Figure 30-10. Using the focus and blur events

Working with Keyboard Events

The keyboard events are triggered in response to key presses. The set of events in this category is shown in Table 30-10.

[image: Image]

These events are represented by a FocusEvent object, which adds the property shown in Table 30-11 to the core Event object functionality.

[image: Image]

[image: Image]

Listing 30-13 shows some of the keyboard events in use.

Listing 30-13. Using the Keyboard Events

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style type="text/css">

 p {

 background: gray;

 color:white;

 padding: 10px;

 margin: 5px;

 border: thin solid black

 }

 </style>

 </head>

 <body>

 <form>

 <p>

 <label for="fave">Fruit: <input autofocus id="fave" name="fave"/></label>

 </p>

 <p>

 <label for="name">Name: <input id="name" name="name"/></label>

 </p>

 <button type="submit">Submit Vote</button>

 <button type="reset">Reset</button>

 </form>

 <script type="text/javascript">

 var inputElems = document.getElementsByTagName("input");

 for (var i = 0; i < inputElems.length; i++) {

 inputElems[i].onkeyup = handleKeyboardEvent;

 }

 function handleKeyboardEvent(e) {

 document.getElementById("message").innerHTML = "Key pressed: " +

 e.keyCode + " Char: " + String.fromCharCode(e.keyCode);

 }

 </script>

 </body>

</html>

The script in this example changes the content of a span element to display key strokes sent to a pair of input elements. Notice how I use the String.fromCharCode function to convert the value of the keyCode property into a more useful value. You can see the effect of this script in Figure 30-11.

[image: Image]

Figure 30-11. Using the key events

Working with Form Events

The form element defines two special events that are particular to that element. These are described in Table 30-12.

[image: Image]

You can see how the form events are used in Chapters 33 and 34, when I show you Ajax.

Summary

In this chapter, I have explained how the event system allows you to react to changes in the state of your document elements. I showed you the different ways of handling events, from the simple on* properties, using handler functions, and the addEventListener method, each of which has its own merits. I also explained the three phases of an event’s life cycle—capture, at target, and bubbling—and how you can use these phases to intercept events as they are propagated. I finished this chapter with a description of the events that are available for most HTML elements.

C H A P T E R 31

Using the Element-Specific Objects

The Document Object Model (DOM) defines a set of objects that represent the different types of HTML elements in a document. These objects can be treated as HTMLElement objects and, for the most part, that’s what you typically do in your scripts. But if you want to access some attribute or feature that is unique to an element, you can usually do so using one of these objects.

These objects are not much use. They generally define properties that correspond to attributes supported by an element, the value of which you can access through the features of the HTMLElement. There are a couple of exceptions—the form elements have some helpful methods for use with input validation, and the table elements have some methods that can be used to build up the content of tables.

The Document and Metadata Objects

This section describes the objects that represent the data and metadata elements. You can learn more about these elements in Chapter 7.

The base Element

The base element is represented by the HTMLBaseElement object. This object doesn’t define any additional events, but there are two properties, which are shown in Table 31-1.

[image: Image]

The body Element

The body element is represented by the HTMLBodyElement object. This object doesn’t define any additional properties, but the set of events is shown in Table 31-2.

[image: Image]

[image: Image] Tip Some browsers support these events through the window object, which I describe in Chapter 27.

The link Element

The link element is represented by the HTMLLinkElement object, which defines the properties shown in Table 31-3.

[image: Image]

The meta Element

The meta element is represented by the HTMLMetaElement object, which defines the properties shown in Table 31-4.

[image: Image]

The script Element

The script element is represented in the DOM by the HTMLScriptElement object, which defines the additional properties described in Table 31-5.

[image: Image]

The style Element

The style element is represented in the DOM by the HTMLStyleElement object, which defines the additional properties shown in Table 31-6.

[image: Image]

[image: Image]

The title Element

The title element is represented by the HTMLTitleElement object in the DOM. This object defines the property shown in Table 31-7.

[image: Image]

Other Document and Metadata Elements

The head and html elements are represented by the HTMLHeadElement and HTMLHtmlElement objects, respectively. These objects do not define any additional methods, properties, or events beyond those of HTMLElement. The noscript element doesn’t have a special DOM object and is represented solely by HTMLElement.

The Text Elements

This section describes the objects that represent the text elements. You can learn more about these elements in Chapter 8.

The a Element

The a element is represented by the HTMLAnchorElement object, which defines the properties shown in Table 31-8. In addition to defining properties that correspond to the element attributes, this object defines a set of convenience properties that allows you to easily get or set components of the URL specified by the href attribute.

[image: Image]

[image: Image]

The del and ins Elements

The del and ins elements are both represented by the HTMLModElement. You can tell them apart using the tagName property defined by HTMLElement. See Chapter 26 for details. The additional properties defined by HTMLModElement are described in Table 31-9.

[image: Image]

The q Element

The q element is represented by the HTMLQuoteElement object. The property that this object defines is described in Table 31-10.

[image: Image]

The time Element

The time element is represented by the HTMLTimeElement object. The additional properties defined by this object are shown in Table 31-11.

[image: Image]

Other Text Elements

The br and span elements are represented by the HTMLBRElement and HTMLSpanElementobjects, respectively. These objects do not define any additional methods, properties, or events beyond those of HTMLElement. The following elements are represented solely by HTMLElement: abbr, b, cite, code, dfn, em, i, u, kbd, mark, rt, rp, ruby, s, samp, small, strong, sub, sup, var, and wbr.

The Grouping Elements

This section describes the objects that represent the grouping elements. You can learn more about these elements in Chapter 9.

The blockquote Element

The blockquote element is represented by the HTMLQuoteElement object. This is the same object that the q element uses, which I described in Table 31-10.

The li Element

The li element is represented by the HTMLLIElement object, which defines the property shown in Table 31-12.

[image: Image]

The ol Element

The ol element is represented by the HTMLOListElement object, which defines the properties shown in Table 31-13.

[image: Image]

Other Grouping Elements

Table 31-14 shows the set of grouping elements that are represented by element-specific objects that do not define any additional functionality beyond that of HTMLElement.

[image: Image]

[image: Image]

The following elements do not have corresponding elements in the DOM and are represented by HTMLElement: dd, dt, figcaption, and figure.

The Section Elements

This section describes the objects that represent the section elements. You can learn more about these elements in Chapter 10.

The details Element

The details element is represented by the HTMLDetailsElement object. The property that this object defines is described in Table 31-15.

[image: Image]

Other Section Elements

The h1-h6 elements are represented by the HTMLHeadingElement object, but this object doesn’t define any additional properties. The following section elements are not represented by specific objects: address, article, aside, footer, header, hgroup, nav, section, and summary.

The Table Elements

This section describes the objects that represent the table elements. You can learn more about these elements in Chapter 11.

The col and colgroup Elements

The col and colgroup elements are both represented by the HTMLTableColElement object, which defines the property shown in Table 31-16.

[image: Image]

The table Element

The table element is represented by the HTMLTableElement object. This is one of the most useful of the element-specific objects. The properties and methods defined by this object are described in Table 31-17.

[image: Image]

The thead, tbody, and tfoot Elements

The thead, tbody, and tfoot elements are all represented by the HTMLTableSectionElement object. The property and methods defined by this object are shown in Table 31-18.

[image: Image]

The th Element

The th element is represented by the HTMLTableHeaderCellElement object. The property defined by this object is described in Table 31-19.

[image: Image]

The tr Element

The tr element is represented by the HTMLTableRowElement object, which defines the properties and methods shown in Table 31-20.

[image: Image]

[image: Image]

Other Table Elements

Table 31-21 shows the set of table elements that are represented by element-specific objects that do not define any additional functionality beyond that of HTMLElement.

[image: Image]

The Form Elements

This section describes the objects that represent the form elements. You can learn more about these elements in Chapters 12–14.

The button Element

The button element is represented by the HTMLButtonElement object, which defines the properties and methods shown in Table 31-22.

[image: Image]

[image: Image]

The datalist Element

The datalist element is represented by the HTMLDataListElement object, which defines the property shown in Table 31-23.

[image: Image]

The fieldset Element

The fieldset element is represented by the HTMLFieldSetElement object, which defines the properties shown in Table 31-24.

[image: Image]

The form Element

The form element is represented by the HTMLFormElement object, which defines the properties and methods shown in Table 31-25.

[image: Image]

The input Element

The input element is represented by the HTMLInputElement object, which supports the properties and methods shown in Table 31-26.

[image: Image]

[image: Image]

The label Element

The label element is represented by the HTMLLabelElement object, which defines the properties shown in Table 31-27.

[image: Image]

The legend Element

The legend element is represented by the HTMLLegendElement object, which defines the property shown in Table 31-28.

[image: Image]

The optgroup Element

The optgroup element is represented by the HTMLOptGroupElement object, which defines the properties shown in Table 31-29.

[image: Image]

The option Element

The option element is represented by the HTMLOptionElement object, which defines the properties shown in Table 31-30.

[image: Image]

The output Element

The output element is represented by the HTMLOutputElement object, which defines the properties shown in Table 31-31.

[image: Image]

[image: Image]

The select Element

The select element is represented by the HTMLSelectElement object, which implements the properties and methods shown in Table 31-32.

[image: Image]

[image: Image]

The textarea Element

The textarea element is represented by the HTMLTextAreaElement object, which defines the methods and properties described in Table 31-33.

[image: Image]

[image: Image]

The Content Elements

This section describes the objects that represent the elements used to embed content in a document. You can learn more about these elements in Chapter 15.

[image: Image] Note The other content elements, such as canvas and video, are described later in Chapter 34.

The area Element

The area element is represented by the HTMLAreaElement, which implements the properties shown in Table 31-34.

[image: Image]

[image: Image]

The embed Element

The embed element is represented by the HTMLEmbedElement object, which implements the properties shown in Table 31-35.

[image: Image]

[image: Image]

The iframe Element

The iframe element is represented by the HTMLIFrameElement object, which implements the properties described in Table 31-36.

[image: Image]

The img Elements

The img element is represented by the HTMLImageElement object, which implements the properties described in Table 31-37.

[image: Image]

[image: Image]

The map Element

The map element is represented by the HTMLMapElement object, which implements the properties shown in Table 31-38.

[image: Image]

The meter Element

The meter element is represented by the HTMLMeterElement object, which implements the properties shown in Table 31-39.

[image: Image]

The object Element

The object element is represented by the HTMLObjectElement object, which implements the properties shown in Table 31-40.

[image: Image]

The param Element

The param element is represented by the HTMLParamElement object, which implements the properties shown in Table 31-41.

[image: Image]

The progress Element

The progress element is represented by the HTMLProgressElement object, which implements the properties shown in Table 31-42.

[image: Image]

Summary

In this chapter, I listed the set of objects that are used to represent different types of elements in the DOM. For the most part, these are not especially useful—with two exceptions. The first exception is the form elements, which provide some useful control over validation and form submission. The second exception is the table elements, which provide methods for managing the content of tables. These exceptions aside, the objects described in this chapter are largely a collection of properties that represent specific attributes—the values of which can be accessed through the ubiquitous HTMLElement object.

P A R T V

Advanced Features

In this final part of the book, I'll show you some of the advanced features available in HTML5. These include Ajax (for making requests to the web server in the background) and the canvas element (which allows us to use JavaScript to perform drawing operations).

C H A P T E R 32

Using Ajax – Part I

Ajax is a key tool in modern web application development. It allows you to send and retrieve data from a server asynchronously and process the data using JavaScript. Ajax is an acronym for Asynchronous JavaScript and XML. The name arose when XML was the data transfer format of choice although, as I’ll explain later, this is no longer the case.

Ajax is another one of those contentious technologies. It is so useful in creating rich web applications that designers and developers have created a lore around its use and regularly engage in vicious sniping contests about the right way to do Ajax. This is largely rubbish and not needed. Ajax is surprisingly simple when you get down to the details, and you’ll be making requests like a master in no time at all. My standard advice for dealing with zealots applies when dealing with Ajax zealots: nod politely, back away, and do the right thing for your project.

[image: Image] Tip You will see Ajax capitalized in a number of different ways. “Ajax” seems to be the most widely used at the moment, but AJAX is pretty common, and some people even use AJaX (picky people who believe that you never capitalize “and”). They all refer to the same technologies and techniques. I have tried to consistently use Ajax in this book.

The key specification for Ajax is named after the JavaScript object you use to set up and make requests: XMLHttpRequest. There are two levels of this specification. All of the mainstream browsers implement Level 1, which is the base level of functionality. Level 2 extends the original specification to include additional events, some features that make it easier to work with form elements, and support for some related specifications, such as CORS (which I'll explain later in this chapter).

In this chapter, I explain the Ajax basics, showing you how to create, configure, and execute simple requests. I'll show you how the progress of a request is signaled through events, how to deal with request and application errors, and how to make requests across origins.

All of the examples in this chapter are about getting data from the server. The next chapter is all about sending data—particularly, form data, which is one of the most common uses for Ajax. Table 32-1 provides the summary for this chapter.

[image: Image]

Getting Started with Ajax

The key to Ajax is the XMLHttpRequest object, and the best way to understand this object is through an example. Listing 32-1 shows the basic use of the XMLHttpRequest object.

Listing 32-1. Using the XMLHttpRequest Object

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <div>

 <button>Apples</button>

 <button>Cherries</button>

 <button>Bananas</button>

 </div>

 <div id="target">

 Press a button

 </div>

 <script>

 var buttons = document.getElementsByTagName("button");

 for (var i = 0; i < buttons.length; i++) {

 buttons[i].onclick = handleButtonPress;

 }

 function handleButtonPress(e) {

 var httpRequest = new XMLHttpRequest()s;

 httpRequest.onreadystatechange = handleResponse;

 httpRequest.open("GET", e.target.innerHTML + ".html");

 httpRequest.send();

 }

 function handleResponse(e) {

 if (e.target.readyState == XMLHttpRequest.DONE &&

 e.target.status == 200) {

 document.getElementById("target").innerHTML

 = e.target.responseText;

 }

 }

 </script>

 </body>

</html>

In this example, there are three button elements, each of which is labeled for a different fruit: Apples, Cherries, and Bananas. There is also a div element which, as you begin, displays a simple message telling the user to press one of the buttons. You can see the appearance of this document in Figure 32-1.

[image: Image]

Figure 32-1. The starting state of a simple Ajax example

When one of the buttons is pressed, the script in the example loads another HTML document and sets it as the content inside of the div element. There are three other documents, and they correspond to the labels on the button elements: apples.html, cherries.html, and bananas.html. Figure 32-2 shows one of these documents being displayed in response to a button press.

[image: Image]

Figure 32-2. Displaying an asynchronously loaded document

The three additional documents are pretty simple—there is an image and a paragraph of text taken from the Wikipedia page for the relevant fruit. For reference, Listing 32-2 shows the contents of cherries.html, but all three documents follow the same structure (and are included in the source code download for this book, freely available at apress.com).

Listing 32-2. The Contents of cherries.html

<!DOCTYPE HTML>

<html>

 <head>

 <title>Cherries</title>

 <style>

 img {

 float: left; padding: 2px; margin: 5px;

 border: medium double black; background-color: lightgrey;

 }

 </style>

 </head>

 <body>

 <p>

 True cherry fruits are borne by members of the subgenus Cerasus, which is

 distinguished by having the flowers in small corymbs of several together

 (not singly, nor in racemes), and by having a smooth fruit with only a weak

 groove or none along one side. The subgenus is native to the temperate

 regions of the Northern Hemisphere, with two species in America,

 three in Europe, and the remainder in Asia. The majority of eating cherries

 are derived from either Prunus avium, the wild cherry (sometimes called the

 sweet cherry), or from Prunus cerasus, the sour cherry.

 </p>

 </body>

</html>

As the user presses each fruit button, the browser goes off and retrieves the requested documents asynchronously, without reloading the main document. This is archetypal Ajax behavior.

If you turn your attention to the script, you can see how this is achieved. You start with the handleButtonPress function, which is called in response to the click event from the button controls:

function handleButtonPress(e) {

 var httpRequest = new XMLHttpRequest();

 httpRequest.onreadystatechange = handleResponse;

 httpRequest.open("GET", e.target.innerHTML + ".html");

 httpRequest.send();

}

The first step is to create a new XMLHttpRequest object. Unlike most of the objects you saw in the DOM, you don't access this kind of object through a global variable defined by the browser. Instead, you use the new keyword, like this:

var httpRequest = new XMLHttpRequest();

The next step is to set an event handler for the readystatechange event. This event is triggered several times through the request process, giving you updates about how things are going. I'll come back to this event (and the others that are defined by the XMLHttpRequest object) later in this chapter. I set the value of the onreadystatechange property to handleResponse, a function that we'll come to shortly:

httpRequest.onreadystatechange = handleResponse;

Now you can tell the XMLHttpRequest object what you want it to do. You use the open method, specifying the HTTP method (GET in this case) and the URL that should be requested:

httpRequest.open("GET", e.target.innerHTML + ".html");

[image: Image] Tip I showed the simplest form of the open method here. You can also provide the browser with credentials to use when making the request to the server, like this: httpRequest.open("GET", e.target.innerHTML + ".html", true, "adam", "secret"). The last two arguments are the username and password that should be sent to the server. The other argument specifies whether the request should be performed asynchronously. This should always be set to true.

I am composing the request URL based on which button the user pressed. If the Apples button is pressed, I request the URL Apples.html. The browser is smart enough to deal with relative URLs, and it uses the location of the current document as needed. In this case, my main document is loaded from the URL http://titan/listings/example.html, so Apples.html is assumed to refer to http://titan/listings/Apples.html. The URLs for your environment will be different, but the effect is the same.

[image: Image] Tip It is important to select the right HTTP method for your request. As I explained in Chapter 12, GET requests are for safe interactions, such that you can make the same request over and over without causing any side effects. POST requests are for unsafe interactions, where each request leads to some kind of change at the server and repeated requests are likely to be problematic. There are other HTTP methods, but GET and POST are the most widely used—so much so that if you want to use a different method, you must use the convention described in the “Overriding the Request HTTP Method” section of this chapter to ensure that your request passes through firewalls.

The final step in this function is to call the send method, like this:

httpRequest.send();

I am not sending any data to the server in this example, so there is no argument for the send method. I'll show you how to send data later in this chapter, but in this simple example, you are only requesting HTML documents from the server.

Dealing with the Response

As soon as the script calls the send method, the browser makes the background request to the server. Because the request is handled in the background, Ajax relies on events to notify you about how the request progresses. In this example, I handle these events with the handleResponse function:

function handleResponse(e) {

 if (e.target.readyState == XMLHttpRequest.DONE && e.target.status == 200) {

 document.getElementById("target").innerHTML = e.target.responseText;

 }

}

When the readystatechange event is triggered, the browser passes an Event object to the specified handler function. This is the same Event object that I described in Chapter 30, and the target property is set to the XMLHttpRequest that the event relates to.

A number of different stages are signaled through the readystatechange event, and you can determine which one you are dealing with by reading the value of the XMLHttpRequest.readyState property. The set of values for this property are shown in Table 32-2.

[image: Image]

[image: Image]

The DONE status doesn't indicate that the request was successful—only that it has been completed. You get the HTTP status code through the status property, which returns a numerical value—for example, a value of 200 indicates success. Only by combining the readyState and status property values can you determine the outcome of a request.

You can see how I check for both properties in the handleResponse function. I set the content of the div element only if the readyState value is DONE and the status value is 200. I get the data that the server sent using the XMLHttpRequest.responseText property, like this:

document.getElementById("target").innerHTML = e.target.responseText;

The responseText property returns a string representing the data retrieved from the server. I use this property to set the value of the innerHTML property of the div element, so as to display the requested document's content. And with that, you have a simple Ajax example—the user clicks on a button, the browser requests a document from the server in the background and, when it arrives, you handle an event and display the requested document's content. Figure 32-3 shows the effect of this script and the different documents it displays.

[image: Image]

Figure 32-3. The effect of the script in the basic Ajax example

The Lowest Common Dominator: Dealing with Opera

Before we move on, we must spend a moment dealing with Opera's implementation of the XMLHttpRequest standard, which is…well, not as good or complete as the other browsers. The example shown at the start of this chapter will work perfectly well for the other mainstream browsers, but you need to make some changes to deal with a couple of problems in Opera. Listing 32-3 shows the example, which has the required changes.

Listing 32-3. Modifying the Example to Support Opera

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <div>

 <button>Apples</button>

 <button>Cherries</button>

 <button>Bananas</button>

 </div>

 <div id="target">

 Press a button

 </div>

 <script>

 var buttons = document.getElementsByTagName("button");

 for (var i = 0; i < buttons.length; i++) {

 buttons[i].onclick = handleButtonPress;

 }

 var httpRequest;

 function handleButtonPress(e) {

 httpRequest = new XMLHttpRequest();

 httpRequest.onreadystatechange = handleResponse;

 httpRequest.open("GET", e.target.innerHTML + ".html");

 httpRequest.send();

 }

 function handleResponse() {

 if (httpRequest.readyState == 4 && httpRequest.status == 200) {

 document.getElementById("target").innerHTML

 = httpRequest.responseText;

 }

 }

 </script>

 </body>

</html>

The first problem is that Opera doesn't dispatch an Event object when it triggers the readystatechange event. This means that you must assign the XMLHttpRequest object to a global variable in order to refer to it later. I defined a var called httpRequest, which I refer to when I create the object in the handleButtonPress function and again when I process the finished request in the handleResponse function.

This may not seem like a big deal, but if the user presses a button when a request is being processed, a new XMLHttpRequest object will be assigned to the global variable and you will lose the ability to interact with the original request.

The second problem is that Opera doesn't define the ready state constants on the XMLHttpRequest object. This means that you have to check the value of the readyState property using the numeric values I showed in Table 32-2. Instead of XMLHttpRequest.DONE, you have to check for the value 4.

I hope Opera will have upgraded and improved its XMLHttpRequest implementation by the time you read this book, but if not, you need to write your scripts to accommodate this bad behavior.

Using the Ajax Events

Now that you have built and explored a simple example, you can start to dig into the features that the XMLHttpRequest object supports and how you can use them in your requests. The place to start is with the additional events that are defined in the Level 2 specification. You saw one of these already—readystatechange, which was carried over from Level 1—but there are others as well, as described in Table 32-3.

[image: Image]

Most of these events are triggered at a particular point in the request. The exceptions are readystatechange (which I described previously) and progress, which can be triggered several times to give progress updates.

Aside from readystatechange, the events shown in the table are defined in Level 2 of the XMLHttpRequest specification. As I write this, support for these events varies. Firefox has the most complete support, for example. Opera doesn't support them at all, and Chrome supports some of them, but not in a way that matches the specification.

[image: Image] Caution The readystatechange event is the only reliable way to track request progress at this time, given the patchy implementation of the Level 2 events

When dispatching the events, the browser uses the regular Event object (described in Chapter 30) for the readystatechange event and the ProgressEvent object for the others. The ProgressEvent object defines all of the members of the Event object, plus the additions described in Table 32-4.

[image: Image]

Listing 32-4 shows how these events can be used. I have shown Firefox here, which has the most complete and correct implementation.

Listing 32-4. Using the One-Off Events Defined by XMLHttpRequest

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 table { margin: 10px; border-collapse: collapse; float: left}

 div {margin: 10px;}

 td, th { padding: 4px; }

 </style>

 </head>

 <body>

 <div>

 <button>Apples</button>

 <button>Cherries</button>

 <button>Bananas</button>

 </div>

 <table id="events" border="1">

 </table>

 <div id="target">

 Press a button

 </div>

 <script>

 var buttons = document.getElementsByTagName("button");

 for (var i = 0; i < buttons.length; i++) {

 buttons[i].onclick = handleButtonPress;

 }

 var httpRequest;

 function handleButtonPress(e) {

 clearEventDetails();

 httpRequest = new XMLHttpRequest();

 httpRequest.onreadystatechange = handleResponse;

 httpRequest.onerror = handleError;

 httpRequest.onload = handleLoad;

 httpRequest.onloadend = handleLoadEnd;

 httpRequest.onloadstart = handleLoadStart;

 httpRequest.onprogress = handleProgress;

 httpRequest.open("GET", e.target.innerHTML + ".html");

 httpRequest.send();

 }

 function handleResponse(e) {

 displayEventDetails("readystate(" + httpRequest.readyState + ")");

 if (httpRequest.readyState == 4 && httpRequest.status == 200) {

 document.getElementById("target").innerHTML

 = httpRequest.responseText;

 }

 }

 function handleError(e) { displayEventDetails("error", e);}

 function handleLoad(e) { displayEventDetails("load", e);}

 function handleLoadEnd(e) { displayEventDetails("loadend", e);}

 function handleLoadStart(e) { displayEventDetails("loadstart", e);}

 function handleProgress(e) { displayEventDetails("progress", e);}

 function clearEventDetails() {

 document.getElementById("events").innerHTML

 = "<tr><th>Event</th><th>lengthComputable</th>"

 + "<th>loaded</th><th>total</th></tr>"

 }

 function displayEventDetails(eventName, e) {

 if (e) {

 document.getElementById("events").innerHTML +=

 "<tr><td>" + eventName + "</td><td>" + e.lengthComputable

 + "</td><td>" + e.loaded + "</td><td>" + e.total

 + "</td></tr>";

 } else {

 document.getElementById("events").innerHTML +=

 "<tr><td>" + eventName

 + "</td><td>NA</td><td>NA</td><td>NA</td></tr>";

 }

 }

 </script>

 </body>

</html>

This is a variation of the previous example. I registered handler functions for some of events, and I created a record of each event that I process in a table element. You can see how Firefox triggers the events in Figure 32-4.

[image: Image]

Figure 32-4. Level 2 events as triggered by Firefox

Dealing with Errors

When working with Ajax, you have to be aware of two kinds of errors. The difference between them is driven by different perspectives.

The first kind of error is a problem from the point of view of the XMLHttpRequest object—some issue that prevents a request being made to a server, such as the hostname not resolving in the DNS, the connection request being refused, or a URL being invalid.

The second kind of error is a problem from the point of view of our application, but not the XMLHttpRequest object. This occurs when a request was successfully made to the server and the server accepted the request, processed it, and generated a response, but that response didn't lead to the content you were hoping for. This can arise if the URL you requested doesn't exist, for example.

There are three ways you can deal with these errors, as demonstrated by Listing 32-5.

Listing 32-5. Dealing with Ajax Errors

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <div>

 <button>Apples</button>

 <button>Cherries</button>

 <button>Bananas</button>

 <button>Cucumber</button>

 <button id="badhost">Bad Host</button>

 <button id="badurl">Bad URL</button>

 </div>

 <div id="target">Press a button</div>

 <div id="errormsg"></div>

 <div id="statusmsg"></div>

 <script>

 var buttons = document.getElementsByTagName("button");

 for (var i = 0; i < buttons.length; i++) {

 buttons[i].onclick = handleButtonPress;

 }

 var httpRequest;

 function handleButtonPress(e) {

 clearMessages();

 httpRequest = new XMLHttpRequest();

 httpRequest.onreadystatechange = handleResponse;

 httpRequest.onerror = handleError;

 try {

 switch (e.target.id) {

 case "badhost":

 httpRequest.open("GET", "http://a.nodomain/doc.html");

 break;

 case "badurl":

 httpRequest.open("GET", "http://");

 break;

 default:

 httpRequest.open("GET", e.target.innerHTML + ".html");

 break;

 }

 httpRequest.send();

 } catch (error) {

 displayErrorMsg("try/catch", error.message);

 }

 }

 function handleError(e) {

 displayErrorMsg("Error event", httpRequest.status

 + httpRequest.statusText);

 }

 function handleResponse() {

 if (httpRequest.readyState == 4) {

 var target = document.getElementById("target");

 if (httpRequest.status == 200) {

 target.innerHTML = httpRequest.responseText;

 } else {

 document.getElementById("statusmsg").innerHTML =

 "Status: " + httpRequest.status + " "

 + httpRequest.statusText;

 }

 }

 }

 function displayErrorMsg(src, msg) {

 document.getElementById("errormsg").innerHTML = src + ": " + msg;

 }

 function clearMessages() {

 document.getElementById("errormsg").innerHTML = "";

 document.getElementById("statusmsg").innerHTML = "";

 }

 </script>

 </body>

</html>

Dealing with Setup Errors

The first kind of error you need to deal with occurs when you pass bad data to the XMLHttpRequest object, such as a malformed URL. This is surprisingly easy to do when generating the URL based on user input. To simulate this kind of problem, I added a button labeled Bad URL to the example document. Pressing this button leads to the following call to the open method:

httpRequest.open("GET", "http://");

I have lost count of the number of times that I have seen this problem (and, sadly, the number of times I have caused it). Typically, the user is prompted to enter a value into an input element, the contents of which are used to generate a URL for an Ajax request. When the user triggers the request without entering a value, the open method is passed a partial URL or, as in this case, just the protocol part.

This is an error that prevents the request from being performed, and the XMLHttpRequest object will throw an error when this sort of thing happens. This means you need to use a try…catch statement around the code that sets up the request, like this:

try {

 …

 httpRequest.open("GET", "http://");

 …

 httpRequest.send();

} catch (error) {

 displayErrorMsg("try/catch", error.message);

}

The catch clause is your opportunity to recover from the error. You might choose to prompt the user to enter a value, fall back to a default URL, or simply abandon the request. For this example, I simply display the error message by calling the displayErrorMsg function. This function is defined in the example script and displays the Error.message property in the div element with the ID of errormsg.

Dealing with Request Errors

The second kind of error arises when the request is made but something goes wrong with it. To simulate this kind of problem, I added a button labeled Bad Host to the example. When this button is pressed, the open method is called with a URL that cannot be used:

httpRequest.open("GET", "http://a.nodomain/doc.html");

There are two problems with this URL. The first is that the hostname won't resolve in the DNS, so the browser won't be able to make the connection to a server. This problem won't be apparent to the XMLHttpRequest object until after it starts to make the request, so it signals the problem in two ways. If you have registered a listener for the error event, the browser will dispatch an Event object to your listener function. Here is my function from the example:

function handleError(e) {

 displayErrorMsg("Error event", httpRequest.status + httpRequest.statusText);

}

The degree of information you get from the XMLHttpRequest object when this kind of error occurs can vary between browsers and, sadly, you most often get a status of 0 and an empty statusText value.

The second problem is that the URL has a different origin from the script that is making the request—and this isn't allowed by default. Usually, you are allowed to make Ajax requests only to the URLs with the same origin that the script was loaded from. The browser can report this problem by throwing an Error or by triggering an error event—it differs between browsers. Different browsers check the origin at different times, which means that you don't always see the same problem highlighted by the browser. (You can use the Cross Site Resource Specification, or CORS, to overcome the same-origin limitation. See the “Making Cross-Origin Ajax Requests” section later in this chapter).

Dealing with Application Errors

The final kind of error arises when the request succeeds from the point of view of the XMLHttpRequest object, but it doesn't give you the data you were hoping for. To create this kind of problem, I added a button labeled Cucumber to the example document. Pressing this button causes the requested URL to be generated as for the Apples, Cherries, and Bananas buttons, except that there is no cucumber.html document on the server.

When this happens there is no error as such (because the request itself succeeds), and you determine what happened from the status property. When you request a document that doesn't exist, you get a status code of 404, meaning that the server cannot find the requested document. You can see how I handle any code that is not 200 (meaning OK):

if (httpRequest.status == 200) {

 target.innerHTML = httpRequest.responseText;

} else {

 document.getElementById("statusmsg").innerHTML =

 "Status: " + httpRequest.status + " " + httpRequest.statusText;

}

For this example, I simply display the status and statusText values. In a real application, you would need to recover in a useful and meaningful way—perhaps by displaying some fallback content or alerting the user to the problem, depending on what makes sense for the application.

Getting and Setting Headers

The XMLHttpRequest object lets you set headers for the request to the server and read the headers from the server's response. Table 32-5 describes the header-related methods.

[image: Image]

Overriding the Request HTTP Method

You don't often need to add to or change the headers in Ajax requests. The browser knows what it needs to send, and the server knows how to respond. But there are a couple of exceptions. The first is the X-HTTP-Method-Override header.

The HTTP standard, which is typically used to request and transport HTML documents over the Internet, defines a number of methods. Most people know about GET and POST because they are by far the most widely used. But there are others, including PUT and DELETE, and there is a growing trend to use these HTTP methods to give meaning to the URLs that are requested from a server. So, as a simple example, if you wanted to view, say, a user record, you would make a request like this:

httpRequest.open("GET", "http://myserver/records/freeman/adam");

I am just showing the HTTP method and the request URL here. For this request to work, there would have to be a server-side application that knows how to understand this request and turn it into a suitable piece of data to send back to the server. If you wanted to delete the data, you might do the following:

httpRequest.open("DELETE", "http://myserver/records/freeman/adam");

The key here is to express what you want the server to do through the HTTP method, rather than by encoding it in the URL in some way. This is part of a trend called RESTful APIs. The rest of what makes up a RESTful API is a topic of frequent and vociferous debate, which I am not going to get into here.

The problem with using the HTTP method in this way is that a lot of mainstream web technologies support only GET and POST and many firewalls allow only GET and POST requests to pass through. There is a convention to avoid this restriction, which is to use the X-HTTP-Method-Override header to specify the HTTP method you want to use, while actually sending a POST request. Listing 32-6 gives a demonstration.

Listing 32-6. Setting a Request Header

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <div>

 <button>Apples</button>

 <button>Cherries</button>

 <button>Bananas</button>

 </div>

 <div id="target">Press a button</div>

 <script>

 var buttons = document.getElementsByTagName("button");

 for (var i = 0; i < buttons.length; i++) {

 buttons[i].onclick = handleButtonPress;

 }

 var httpRequest;

 function handleButtonPress(e) {

 httpRequest = new XMLHttpRequest();

 httpRequest.onreadystatechange = handleResponse;

 httpRequest.open("GET", e.target.innerHTML + ".html");

 httpRequest.setRequestHeader("X-HTTP-Method-Override", "DELETE");

 httpRequest.send();

 }

 function handleError(e) {

 displayErrorMsg("Error event", httpRequest.status

 + httpRequest.statusText);

 }

 function handleResponse() {

 if (httpRequest.readyState == 4 && httpRequest.status == 200) {

 document.getElementById("target").innerHTML

 = httpRequest.responseText;

 }

 }

 </script>

 </body>

</html>

In this example, I used the setRequestHeader method on the XMLHttpRequest object to indicate that I want this request to be processed as though I had used the HTTP DELETE method. Notice that I set the header after calling the open method. The XMLHttpRequest object will throw an error if you try to use the setRequestHeader method before the open method.

[image: Image] Tip Overriding the HTTP method works only if the server-side web application framework understands the X-HTTP-Method-Override convention and your server-side application is set up to look for and understand the less-used HTTP methods.

Disabling Content Caching

The second header that can be useful to add to an Ajax request is Cache-Control, especially when writing and debugging scripts. Some browsers will cache the content that is obtained via an Ajax request and not request it again during the browsing session. In the context of the example I have been using in this chapter, this means that any changes to apples.html, cherries.html, and bananas.html would not immediately be reflected in the browser. Listing 32-7 shows how you can set the header to avoid this.

Listing 32-7. Disabling Content Caching

…

function handleButtonPress(e) {

 httpRequest = new XMLHttpRequest();

 httpRequest.onreadystatechange = handleResponse;

 httpRequest.open("GET", e.target.innerHTML + ".html");

 httpRequest.setRequestHeader("Cache-Control", "no-cache");

 httpRequest.send();

}

…

You set the header value in the same way as for the previous example, but the header you are interested in is Cache-Control and the value you want is no-cache. With this statement in place, changes to the content you request through Ajax are shown when the documents are next requested.

Reading Response Headers

You can read the HTTP headers that the server sends in the response to an Ajax request through the getResponseHeader and getAllResponseHeaders methods. For the most part, you don't care what the headers say because they are part of the transaction between the browser and server. Listing 32-8 shows how you can use these properties.

Listing 32-8. Reading Response Headers

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 #allheaders, #ctheader {

 border: medium solid black;

 padding: 2px; margin: 2px;

 }

 </style>

 </head>

 <body>

 <div>

 <button>Apples</button>

 <button>Cherries</button>

 <button>Bananas</button>

 </div>

 <div id="ctheader"></div>

 <div id="allheaders"></div>

 <div id="target">Press a button</div>

 <script>

 var buttons = document.getElementsByTagName("button");

 for (var i = 0; i < buttons.length; i++) {

 buttons[i].onclick = handleButtonPress;

 }

 var httpRequest;

 function handleButtonPress(e) {

 httpRequest = new XMLHttpRequest();

 httpRequest.onreadystatechange = handleResponse;

 httpRequest.open("GET", e.target.innerHTML + ".html");

 httpRequest.send();

 }

 function handleResponse() {

 if (httpRequest.readyState == 2) {

 document.getElementById("allheaders").innerHTML =

 httpRequest.getAllResponseHeaders();

 document.getElementById("ctheader").innerHTML =

 httpRequest.getResponseHeader("Content-Type");

 } else if (httpRequest.readyState == 4 && httpRequest.status == 200) {

 document.getElementById("target").innerHTML

 = httpRequest.responseText;

 }

 }

 </script>

 </body>

</html>

The response headers are available when the readyState changes to HEADERS_RECEIVED (which has the numerical value of 2). The headers are the first thing that the server sends back in a response, which is why you can read them before the content itself is available. In this example, I set the contents of two div elements to the value of one header (Content-Type) and all of the headers, obtained with the getResponseHeader and getAllResponseHeader methods. You can see the result in Figure 32-5.

[image: Image]

Figure 32-5. Reading the response headers

From this, you can tell that titan, my development server, is running version 7.5 of the IIS web server (which is what you would expect from a Windows Server 2008 R2 server owned by someone who does a lot of .NET development) and that I last modified the apples.html document on August 29 (but took the screenshot on September 1).

Making Cross-Origin Ajax Requests

By default, browsers limit scripts to making Ajax requests within the origin of the document that contains them. As you will recall, an origin is the combination of the protocol, hostname, and port of a URL. This means that when I load a document from http://titan, a script contained within the document cannot usually make a request to http://titan:8080 because the port in the second URL is different and, therefore, outside of the document origin. An Ajax request from one origin to another is called a cross-origin request.

[image: Image] Tip This policy is intended to reduce the risks of a cross-site scripting (CSS) attack, where the browser (or user) is tricked into executing a malicious script. CSS attacks are outside the scope of this book, but there is a nice Wikipedia article at http://en.wikipedia.org/wiki/Cross-site_scripting that provides a good introduction to the topic.

The problem with this policy is that it is a blanket ban—no cross-origin requests. This has led to the use of some very ugly tricks to trick the browser into making requests that contravene the policy. Fortunately, there is now a legitimate means of making cross-origin requests, defined in the Cross-Origin Resource Sharing (CORS) specification.

[image: Image] Note This is an advanced topic that requires some basic knowledge about HTTP headers. Since this is a book about HTML5, I am not going to go into any real detail about HTTP. My suggestion is that if you are unfamiliar with HTTP, you should skip over this section.

To set the scene, let us look at the problem we are trying to fix. Listing 32-9 shows an HTML document that contains a script that wants to make a cross-origin request.

Listing 32-9. A Script That Wants to Make a Cross-Origin Request

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <div>

 <button>Apples</button>

 <button>Cherries</button>

 <button>Bananas</button>

 </div>

 <div id="target">Press a button</div>

 <script>

 var buttons = document.getElementsByTagName("button");

 for (var i = 0; i < buttons.length; i++) {

 buttons[i].onclick = handleButtonPress;

 }

 var httpRequest;

 function handleButtonPress(e) {

 httpRequest = new XMLHttpRequest();

 httpRequest.onreadystatechange = handleResponse;

 httpRequest.open("GET", "http://titan:8080/" + e.target.innerHTML);

 httpRequest.send();

 }

 function handleResponse() {

 if (httpRequest.readyState == 4 && httpRequest.status == 200) {

 document.getElementById("target").innerHTML

 = httpRequest.responseText;

 }

 }

 </script>

 </body>

</html>

The script in this example appends the contents of the button that the user has pressed, appends it to http://titan:8080, and tries to make an Ajax request (for example, http://titan:8080/Apples). I will be loading this document from http://titan/listings/example.html, which means that the script is trying to make a cross-origin request.

The server that the script is trying to reach is running under Node.js. Listing 32-10 shows the code, which I saved in a file called fruitselector.js. (See Chapter 2 for details of obtaining Node.js.)

Listing 32-10. The fruitselector.js Node.js Script

var http = require('http');

http.createServer(function (req, res) {

 console.log("[200] " + req.method + " to " + req.url);

 res.writeHead(200, "OK", {"Content-Type": "text/html"});

 res.write('<html><head><title>Fruit Total</title></head><body>');

 res.write('<p>');

 res.write('You selected ' + req.url.substring(1));

 res.write('</p></body></html>');

 res.end();

}).listen(8080);

This is a very simple server—it generates a short HTML document based on the URL that the client has requested. If the client requests http://titan:8080/Apples, for example, the following HTML document will be generated and returned by the server:

<html>

 <head>

 <title>Fruit Total</title>

 </head>

 <body>

 <p>You selected Apples</p>

 </body>

</html>

As it stands, the script in example.html won't be able to get the data it wants from the server. The way you fix this is to add a header to the response that the server sends back to the browser, as shown in Listing 32-11.

Listing 32-11. Adding the Cross-Origin Header

var http = require('http');

http.createServer(function (req, res) {

 console.log("[200] " + req.method + " to " + req.url);

 res.writeHead(200, "OK", {

 "Content-Type": "text/html",

 "Access-Control-Allow-Origin": "http://titan"

 });

 res.write('<html><head><title>Fruit Total</title></head><body>');

 res.write('<p>');

 res.write('You selected ' + req.url.substring(1));

 res.write('</p></body></html>');

 res.end();

}).listen(8080);

The Access-Control-Allow-Origin header specifies an origin that should be allowed to make cross-origin requests to this document. If the origin specified by the header matches the origin of the current document, the browser will load and process the data contained in the response.

[image: Image] Tip Supporting CORS means that the browser has to apply the cross-origin security policy after it has contacted the server and has obtained the response header, meaning that the request is made even if the response is discarded because the required header is missing or specified a different domain. This is a very different approach from browsers that don't implement CORS and that simply block the request, never contacting the server.

With the addition of this header to the response from the server, the script in the example.html document is able to request and receive the data from the server, as demonstrated by Figure 32-6.

[image: Image]

Figure 32-6. Enabling cross-origin Ajax requests

Using the Origin Request Header

As part of CORS, the browser will add an Origin header to the request that specifies the origin of the current document. You can use this to be more flexible about how you set the value of the Access-Control-Allow-Origin header, as shown in Listing 32-12.

Listing 32-12. Using the Origin Request Header

var http = require('http');

http.createServer(function (req, res) {

 console.log("[200] " + req.method + " to " + req.url);

 res.statusCode = 200;

 res.setHeader("Content-Type", "text/html");

 var origin = req.headers["origin"];

 if (origin.indexOf("titan") > -1) {

 res.setHeader("Access-Control-Allow-Origin", origin);

 }

 res.write('<html><head><title>Fruit Total</title></head><body>');

 res.write('<p>');

 res.write('You selected ' + req.url.substring(1));

 res.write('</p></body></html>');

 res.end();

}).listen(8080);

I modified the server script to set the Access-Control-Allow-Origin response header only when the request includes an Origin header whose value contains titan. This is a very slack way of checking the source of the request, but you can tailor this approach to be more rigorous within the context of your own projects.

[image: Image] Tip You can also set the Access-Control-Allow-Origin header to an asterisk (*), which means that cross-origin requests from any origin will be permitted. You should think carefully about the security implications before using this setting.

Advanced CORS Features

The CORS specification defines a number of additional headers that can be used to enforce fine-grained control over cross-origin requests, including limiting requests to specific HTTP methods. These advanced features require a preflight request, where the browser makes a request to the server to determine what the constraints are and then a second request to obtain the data itself. As I write this, these advanced features are not reliably implemented.

Aborting Requests

The XMLHttpRequest object defines a method that allows you to abort a request, as described in Table 32-6.

[image: Image]

To demonstrate this feature, I modified the fruitselector.js Node.js script to introduce a 10-second delay, as shown in Listing 32-13.

Listing 32-13. Introducing a Delay at the Server

var http = require('http');

http.createServer(function (req, res) {

 console.log("[200] " + req.method + " to " + req.url);

 res.statusCode = 200;

 res.setHeader("Content-Type", "text/html");

 setTimeout(function() {

 var origin = req.headers["origin"];

 if (origin.indexOf("titan") > -1) {

 res.setHeader("Access-Control-Allow-Origin", origin);

 }

 res.write('<html><head><title>Fruit Total</title></head><body>');

 res.write('<p>');

 res.write('You selected ' + req.url.substring(1));

 res.write('</p></body></html>');

 res.end();

 }, 10000);

}).listen(8080);

When the server receives a request, it writes the initial response headers, pauses for 10 seconds, and then completes the response. Listing 32-14 shows how you can use the aborting features of the XMLHttpRequest at the browser.

Listing 32-14. Aborting Requests

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <div>

 <button>Apples</button>

 <button>Cherries</button>

 <button>Bananas</button>

 </div>

 <div>

 <button id="abortbutton">Abort</button>

 </div>

 <div id="target">Press a button</div>

 <script>

 var buttons = document.getElementsByTagName("button");

 for (var i = 0; i < buttons.length; i++) {

 buttons[i].onclick = handleButtonPress;

 }

 var httpRequest;

 function handleButtonPress(e) {

 if (e.target.id == "abortbutton") {

 httpRequest.abort();

 } else {

 httpRequest = new XMLHttpRequest();

 httpRequest.onreadystatechange = handleResponse;

 httpRequest.onabort = handleAbort;

 httpRequest.open("GET", "http://titan:8080/" + e.target.innerHTML);

 httpRequest.send();

 document.getElementById("target").innerHTML = "Request Started";

 }

 }

 function handleResponse() {

 if (httpRequest.readyState == 4 && httpRequest.status == 200) {

 document.getElementById("target").innerHTML

 = httpRequest.responseText;

 }

 }

 function handleAbort() {

 document.getElementById("target").innerHTML = "Request Aborted";

 }

 </script>

 </body>

</html>

I added an Abort button to the document, which calls the abort method on the XMLHttpRequest object to abort an inflight request. We have plenty of time to do this now that I have introduced a delay at the server.

The XMLHttpRequest signals an abort through the abort event and the readystatechange event. In this example, I respond to the abort event and update the contents of the div element with an id of target to indicate that the request has been aborted. You can see the effect in Figure 32-7.

[image: Image]

Figure 32-7. Aborting a request

Summary

In this chapter, I introduced you to Ajax through the XMLHttpRequest object. Ajax allows you to make background requests and create a smoother experience for users. I explained how the XMLHttpRequest object signals progress of a request through a series of events, how you can detect and deal with different kinds of errors, and how you can set request headers to give direction to either the browser or the server as to the kind of operation you require. As a more advanced topic, I introduced the Cross Origin Request Specification (CORS) – a set of response headers which allows a script to make an Ajax request to another origin. This is a useful technique – as long as you have the ability to add headers to the response from the server.

All of the examples in this chapter have been about retrieving data from the server. In the next chapter, I'll show you how to send data as well.

C H A P T E R 33

Using Ajax—Part II

In this chapter, I will continue describing how Ajax works, showing you how to send data to the client. Sending forms and files are two common uses for Ajax, which allow web applications to create a richer experience for the user. I'll also show you how to monitor progress as you send data to the server and how to deal with different response formats sent back by the server in response to an Ajax request. Table 33-1 provides the summary for this chapter. The first three listings set up the server and HTML document used in the other examples.

[image: Image]

[image: Image]

Getting Ready to Send Data to the Server

One of the most common uses of Ajax is to send data to the server. Most typically, clients send form data—the values entered into input elements contained by a form element. Listing 33-1 shows a simple form, which will be the basis for this part of the chapter. I saved this HTML into a file named example.html.

Listing 33-1. A Basic Form

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 .table {display:table;}

 .row {display:table-row;}

 .cell {display: table-cell; padding: 5px;}

 .label {text-align: right;}

 </style>

 </head>

 <body>

 <form id="fruitform" method="post" action="http://titan:8080/form">

 <div class="table">

 <div class="row">

 <div class="cell label">Bananas:</div>

 <div class="cell"><input name="bananas" value="2"/></div>

 </div>

 <div class="row">

 <div class="cell label">Apples:</div>

 <div class="cell"><input name="apples" value="5"/></div>

 </div>

 <div class="row">

 <div class="cell label">Cherries:</div>

 <div class="cell"><input name="cherries" value="20"/></div>

 </div>

 <div class="row">

 <div class="cell label">Total:</div>

 <div id="results" class="cell">0 items</div>

 </div>

 </div>

 <button id="submit" type="submit">Submit Form</button>

 </form>

 </body>

</html>

The form in this example contains three input elements and a submit button. The input elements allow the user to specify how many of three different kinds of fruit to order, and the button submits the form to the server. For more information about these elements, see Chapters 12, 13, and 14.

Defining the Server

For the examples, you need to create the server that will process requests. Once again, I used Node.js, largely because it is simple and it uses JavaScript. See Chapter 2 for details on obtaining Node.js. I won't go into how this script works, but since it is written in JavaScript, you should be able to get a fair idea of what's going on. That said, understanding the server script isn't essential to understanding Ajax, and you can readily treat the server as a black box if you like. Listing 33-2 shows the fruitcalc.js script.

Listing 33-2. The fruitcalc.js Script for Node.js

var http = require('http');

var querystring = require('querystring');

var multipart = require('multipart');

function writeResponse(res, data) {

 var total = 0;

 for (fruit in data) {

 total += Number(data[fruit]);

 }

 res.writeHead(200, "OK", {

 "Content-Type": "text/html",

 "Access-Control-Allow-Origin": "http://titan"});

 res.write('<html><head><title>Fruit Total</title></head><body>');

 res.write('<p>' + total + ' items ordered</p></body></html>');

 res.end();

}

http.createServer(function (req, res) {

 console.log("[200] " + req.method + " to " + req.url);

 if (req.method == 'OPTIONS') {

 res.writeHead(200, "OK", {

 "Access-Control-Allow-Headers": "Content-Type",

 "Access-Control-Allow-Methods": "*",

 "Access-Control-Allow-Origin": "*"

 });

 res.end();

 } else if (req.url == '/form' && req.method == 'POST') {

 var dataObj = new Object();

 var contentType = req.headers["content-type"];

 var fullBody = '';

 if (contentType) {

 if (contentType.indexOf("application/x-www-form-urlencoded") > -1) {

 req.on('data', function(chunk) { fullBody += chunk.toString();});

 req.on('end', function() {

 var dBody = querystring.parse(fullBody);

 dataObj.bananas = dBody["bananas"];

 dataObj.apples = dBody["apples"];

 dataObj.cherries= dBody["cherries"];

 writeResponse(res, dataObj);

 });

 } else if (contentType.indexOf("application/json") > -1) {

 req.on('data', function(chunk) { fullBody += chunk.toString();});

 req.on('end', function() {

 dataObj = JSON.parse(fullBody);

 writeResponse(res, dataObj);

 });

 } else if (contentType.indexOf("multipart/form-data") > -1) {

 var partName;

 var partType;

 var parser = new multipart.parser();

 parser.boundary = "--" + req.headers["content-type"].substring(30);

 parser.onpartbegin = function(part) {

 partName = part.name; partType = part.contentType};

 parser.ondata = function(data) {

 if (partName != "file") {

 dataObj[partName] = data;

 }

 };

 req.on('data', function(chunk) { parser.write(chunk);});

 req.on('end', function() { writeResponse(res, dataObj);});

 }

 }

 }

}).listen(8080);

I have highlighted the section of the script that requires attention: the writeResponse function. This function is called after the form values have been extracted from the request, and it is responsible for generating the response to the browser. At the moment, this function produces a simple HTML document such as the one shown in Listing 33-3, but we will change and enhance this function as we deal with different formats later in the chapter.

Listing 33-3. The Simple HTML Document Generated by the writeResponse Function

<html>

 <head>

 <title>Fruit Total</title>

 </head>

 <body>

 <p>27 items ordered</p>

 </body>

</html>

This is a simple response, but it's a good place to start. The effect is that the server totals the number of fruit that the user has ordered through the input elements in the form. The rest of the server-side script is responsible for decoding the various data formats that the client may be sending using Ajax. You can start the server like this:

bin\node.exe fruitcalc.js

This script is intended for use only in this chapter. It isn't a general-purpose server, and I don't recommend you use any part of it for a production service. Many assumptions and shortcuts are tied to the examples that follow in this chapter, and the script is not suitable for any kind of serious use.

Understanding the Problem

The problem I want to use Ajax to solve is illustrated neatly in Figure 33-1.

[image: Image]

Figure 33-1. Submitting a simple form

When you submit a form, the browser displays the result as a new page. This has two implications:

	The user must wait for the server to process the data and generate the response.

	Any document context is lost, as the results are displayed as a new document.

This is an ideal situation in which to apply Ajax. You can make the request asynchronously, so the user can continue to interact with the document while the form is processed.

Sending Form Data

The most basic way to send data to a server is to collect and format it yourself. Listing 33-4 shows the addition of a script to the example.html document that uses this approach.

Listing 33-4. Manually Collecting and Sending Data

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 .table {display:table;}

 .row {display:table-row;}

 .cell {display: table-cell; padding: 5px;}

 .label {text-align: right;}

 </style>

 </head>

 <body>

 <form id="fruitform" method="post" action="http://titan:8080/form">

 <div class="table">

 <div class="row">

 <div class="cell label">Bananas:</div>

 <div class="cell"><input name="bananas" value="2"/></div>

 </div>

 <div class="row">

 <div class="cell label">Apples:</div>

 <div class="cell"><input name="apples" value="5"/></div>

 </div>

 <div class="row">

 <div class="cell label">Cherries:</div>

 <div class="cell"><input name="cherries" value="20"/></div>

 </div>

 <div class="row">

 <div class="cell label">Total:</div>

 <div id="results" class="cell">0 items</div>

 </div>

 </div>

 <button id="submit" type="submit">Submit Form</button>

 </form>

 <script>

 document.getElementById("submit").onclick = handleButtonPress;

 var httpRequest;

 function handleButtonPress(e) {

 e.preventDefault();

 var form = document.getElementById("fruitform");

 var formData = "";

 var inputElements = document.getElementsByTagName("input");

 for (var i = 0; i < inputElements.length; i++) {

 formData += inputElements[i].name + "="

 + inputElements[i].value + "&";

 }

 httpRequest = new XMLHttpRequest();

 httpRequest.onreadystatechange = handleResponse;

 httpRequest.open("POST", form.action);

 httpRequest.setRequestHeader('Content-Type',

 'application/x-www-form-urlencoded');

 httpRequest.send(formData);

 }

 function handleResponse() {

 if (httpRequest.readyState == 4 && httpRequest.status == 200) {

 document.getElementById("results").innerHTML

 = httpRequest.responseText;

 }

 }

 </script>

 </body>

</html>

This script looks more complicated than it is. To explain, I'll break down the individual steps. All of the action happens in the handleButtonPress function, which is called in response to the click event of the button element.

The first thing I do is call the preventDefault method on the Event object that the browser has dispatched to the function. I described this method in Chapter 30, when I explained that some events have default actions associated with them. For a button element in a form, the default action is to post the form using the regular, non-Ajax approach. I don't want this to happen—hence the call to the preventDefault method.

[image: Image] Tip I like to place the call to the preventDefault method at the start of my event handler function because it makes debugging easier. If I called this method at the end of the function, any uncaught error in the script would cause execution to terminate and the default action to be performed. This happens so quickly that it can be impossible to read the details of the error from the browser script console.

The next step is to gather and format the values of the input elements, like this:

var formData = "";

var inputElements = document.getElementsByTagName("input");

for (var i = 0; i < inputElements.length; i++) {

 formData += inputElements[i].name + "=" + inputElements[i].value + "&";

}

I use the DOM to obtain the set of input elements and create a string that contains the name and value attributes of each. The name and value are separated by an equal sign (=), and information about each input element is separated by an ampersand (&). The result looks like this:

bananas=2&apples=5&cherries=20&

If you look back to Chapter 12, you will see that this is the default way of encoding form data—the application/x-www-form-urlencoded encoding. Even though this is default encoding used by the form element, it isn't the default encoding used by Ajax, so I need to add a header to tell the server which data format to expect, like this:

httpRequest.setRequestHeader('Content-Type','application/x-www-form-urlencoded');

The rest of the script is a regular Ajax request, just like the ones in the previous chapter, with a couple of exceptions.

First, I use the HTTP POST method when I call the open method on the XMLHttpRequest object. As a rule, data is always sent to the server using the POST method rather than the GET method. For the URL to make the request to, I read the action property of the HTMLFormElement:

httpRequest.open("POST", form.action);

The form action will cause a cross-origin request, which I deal with at the server using the CORS technique described in the previous chapter.

The second point of note is that I pass the string I want to send to the server as an argument to the send method, like this:

httpRequest.send(formData);

When I get the response back from the server, I use the DOM to set the contents of the div element with the id of results. You can see the effect in Figure 33-2.

[image: Image]

Figure 33-2. Using Ajax to post a form

The HTML document that the server returns in response to the form post is displayed on the same page, and the request is performed asynchronously. This is a much nicer effect than we started with.

Sending Form Data Using a FormData Object

A neater way of gathering form data is to use a FormData object, which is defined as part of the XMLHttpRequest Level 2 specification.

[image: Image] Note As I write this, Chrome, Safari, and Firefox support the FormData object, but Opera and Internet Explorer do not.

Creating a FormData Object

When you create a FormData object, you can pass an HTMLFormElement object (described in Chapter 31), and the value of all of the elements in the form will be gathered up automatically. Listing 33-5 gives an example. The listing shows only the script because the HTML remains the same.

Listing 33-5. Using a FormData Object

...

<script>

 document.getElementById("submit").onclick = handleButtonPress;

 var httpRequest;

 function handleButtonPress(e) {

 e.preventDefault();

 var form = document.getElementById("fruitform");

 var formData = new FormData(form);

 httpRequest = new XMLHttpRequest();

 httpRequest.onreadystatechange = handleResponse;

 httpRequest.open("POST", form.action);

 httpRequest.send(formData);

 }

 function handleResponse() {

 if (httpRequest.readyState == 4 && httpRequest.status == 200) {

 document.getElementById("results").innerHTML

 = httpRequest.responseText;

 }

 }

</script>

...

Of course, the key change is the use of the FormData object:

var formData = new FormData(form);

The other change to be aware of is that I no longer set the value of the Content-Type header. When using the FormData object, the data is always encoded as multipart/form-data (as described in Chapter 12).

Modifying a FormData Object

The FormData object defines a method that lets you add name/value pairs to the data that will be sent to the server. The method is described in Table 33-2.

[image: Image]

You can use the append method to supplement the data that is gathered from the form, but you can also create FormData objects without using an HTMLFormElement. This means that you can use the append method to be selective about which data values are sent to the client. Listing 33-6 provides a demonstration. Once again, I show only the script element, since the other HTML elements are unchanged.

Listing 33-6. Selectively Sending Data to the Server Using the FormData Object

...

<script>

 document.getElementById("submit").onclick = handleButtonPress;

 var httpRequest;

 function handleButtonPress(e) {

 e.preventDefault();

 var form = document.getElementById("fruitform");

 var formData = new FormData();

 var inputElements = document.getElementsByTagName("input");

 for (var i = 0; i < inputElements.length; i++) {

 if (inputElements[i].name != "cherries") {

 formData.append(inputElements[i].name, inputElements[i].value);

 }

 }

 httpRequest = new XMLHttpRequest();

 httpRequest.onreadystatechange = handleResponse;

 httpRequest.open("POST", form.action);

 httpRequest.send(formData);

 }

 function handleResponse() {

 if (httpRequest.readyState == 4 && httpRequest.status == 200) {

 document.getElementById("results").innerHTML

 = httpRequest.responseText;

 }

 }

</script>

...

In this script, I create a FormData object without providing an HTMLFormElement object. I then use the DOM to find all of the input elements in the document and add name/value pairs for all of those whose name attribute doesn't have a value of cherries. You can see the effect in Figure 33-3, where the total value returned by the server excludes the value supplied by the user for cherries.

[image: Image]

Figure 33-3. Selectively sending data using a FormData object

Sending JSON Data

You are not limited to sending just form data with Ajax. You can send pretty much anything, including JavaScript Object Notation (JSON) data, which has emerged as a popular data format. The roots of Ajax are in XML, but that is a verbose format. When you are running a web application that must transmit a high number of XML documents, verbosity translates into real costs in terms of bandwidth and system capacity.

JSON is often referred to as the fat-free alternative to XML. JSON is easy to read and write, is more compact than XML, and has gained incredibly wide support. JSON has grown beyond its roots in JavaScript, and a huge number of packages and systems understand and use the format.

Here is how a simple JavaScript object looks when represented using JSON:

{"bananas":"2","apples":"5","cherries":"20"}

This object has three properties: bananas, apples, and cherries. The values for these properties are 2, 5, and 20, respectively.

JSON doesn't have all of the functional richness of XML, but for many applications, those features aren't used. JSON is simple, lightweight, and expressive. Listing 33-7 demonstrates how easily you can send JSON data to the server.

Listing 33-7. Sending JSON Data to the Server

...

<script>

 document.getElementById("submit").onclick = handleButtonPress;

 var httpRequest;

 function handleButtonPress(e) {

 e.preventDefault();

 var form = document.getElementById("fruitform");

 var formData = new Object();

 var inputElements = document.getElementsByTagName("input");

 for (var i = 0; i < inputElements.length; i++) {

 formData[inputElements[i].name] = inputElements[i].value;

 }

 httpRequest = new XMLHttpRequest();

 httpRequest.onreadystatechange = handleResponse;

 httpRequest.open("POST", form.action);

 httpRequest.setRequestHeader("Content-Type", "application/json");

 httpRequest.send(JSON.stringify(formData));

 }

 function handleResponse() {

 if (httpRequest.readyState == 4 && httpRequest.status == 200) {

 document.getElementById("results").innerHTML

 = httpRequest.responseText;

 }

 }

</script>

...

In this script, I create a new Object and define properties that correspond to the name attribute values of the input elements in the form. I could use any data, but the input elements are convenient and consistent with the earlier examples.

In order to tell the server that I am sending JSON data, I set the Content-Type header on the request to application/json, like this:

httpRequest.setRequestHeader("Content-Type", "application/json");

I use the JSON object to convert to and from the JSON format. (Most browsers support this object directly, but you can add the same functionality to older browsers with the script available at https://github.com/douglascrockford/JSON-js/blob/master/json2.js.) The JSON object provides two methods, as described in Table 33-3.

[image: Image]

In Listing 33-7, I use the stringify method and pass the result to the send method of the XMLHttpRequest object. Only the data encoding in this example has changed. The effect of submitting the form in the document remains the same.

Sending Files

You can send a file to the server by using a FormData object and an input element whose type attribute is file. When the form is submitted, the FormData object will automatically ensure that the contents of the file that the user has selected are uploaded along with the rest of the form values. Listing 33-8 shows how to use the FormData object in this way.

[image: Image] Note Using Ajax to upload files is tricky for browsers that don't yet support the FormData object. There are a lot of hacks and workarounds—some using Flash and others involving complicated sequences of posting forms to hidden iframe elements. They all have serious drawbacks and should be used with caution.

Listing 33-8. Sending a File to the Server Using the FormData Object

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 .table {display:table;}

 .row {display:table-row;}

 .cell {display: table-cell; padding: 5px;}

 .label {text-align: right;}

 </style>

 </head>

 <body>

 <form id="fruitform" method="post" action="http://titan:8080/form">

 <div class="table">

 <div class="row">

 <div class="cell label">Bananas:</div>

 <div class="cell"><input name="bananas" value="2"/></div>

 </div>

 <div class="row">

 <div class="cell label">Apples:</div>

 <div class="cell"><input name="apples" value="5"/></div>

 </div>

 <div class="row">

 <div class="cell label">Cherries:</div>

 <div class="cell"><input name="cherries" value="20"/></div>

 </div>

 <div class="row">

 <div class="cell label">File:</div>

 <div class="cell"><input type="file" name="file"/></div>

 </div>

 <div class="row">

 <div class="cell label">Total:</div>

 <div id="results" class="cell">0 items</div>

 </div>

 </div>

 <button id="submit" type="submit">Submit Form</button>

 </form>

 <script>

 document.getElementById("submit").onclick = handleButtonPress;

 var httpRequest;

 function handleButtonPress(e) {

 e.preventDefault();

 var form = document.getElementById("fruitform");

 var formData = new FormData(form);

 httpRequest = new XMLHttpRequest();

 httpRequest.onreadystatechange = handleResponse;

 httpRequest.open("POST", form.action);

 httpRequest.send(formData);

 }

 function handleResponse() {

 if (httpRequest.readyState == 4 && httpRequest.status == 200) {

 document.getElementById("results").innerHTML

 = httpRequest.responseText;

 }

 }

 </script>

 </body>

</html>

In this example, the significant change occurs in the form element. The addition of the input element leads to the FormData object uploading whatever file the user selects. You can see the effect of the addition in Figure 33-4.

[image: Image]

Figure 33-4. Adding an input element to upload files through the FormData object

[image: Image] Tip In Chapter 37, I show you how to use the drag-and-drop API to allow users to drag files to be uploaded from the operating system, rather than using a file chooser.

Tracking Upload Progress

You can track the progress of your data upload as it is sent to the server. You do this through the upload property of the XMLHttpRequest object, which is described in Table 33-4.

[image: Image]

The XMLHttpRequestUpload object that the upload property returns defines only the attributes required to register handlers for the events described in the previous chapter: onprogress, onload, and so on. Listing 33-9 shows how to use these events to display upload progress to the user.

Listing 33-9. Monitoring and Displaying Upload Progress

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 .table {display:table;}

 .row {display:table-row;}

 .cell {display: table-cell; padding: 5px;}

 .label {text-align: right;}

 </style>

 </head>

 <body>

 <form id="fruitform" method="post" action="http://titan:8080/form">

 <div class="table">

 <div class="row">

 <div class="cell label">Bananas:</div>

 <div class="cell"><input name="bananas" value="2"/></div>

 </div>

 <div class="row">

 <div class="cell label">Apples:</div>

 <div class="cell"><input name="apples" value="5"/></div>

 </div>

 <div class="row">

 <div class="cell label">Cherries:</div>

 <div class="cell"><input name="cherries" value="20"/></div>

 </div>

 <div class="row">

 <div class="cell label">File:</div>

 <div class="cell"><input type="file" name="file"/></div>

 </div>

 <div class="row">

 <div class="cell label">Progress:</div>

 <div class="cell"><progress id="prog" value="0"/></div>

 </div>

 <div class="row">

 <div class="cell label">Total:</div>

 <div id="results" class="cell">0 items</div>

 </div>

 </div>

 <button id="submit" type="submit">Submit Form</button>

 </form>

 <script>

 document.getElementById("submit").onclick = handleButtonPress;

 var httpRequest;

 function handleButtonPress(e) {

 e.preventDefault();

 var form = document.getElementById("fruitform");

 var progress = document.getElementById("prog");

 var formData = new FormData(form);

 httpRequest = new XMLHttpRequest();

 var upload = httpRequest.upload;

 upload.onprogress = function(e) {

 progress.max = e.total;

 progress.value = e.loaded;

 }

 upload.onload = function(e) {

 progress.value = 1;

 progress.max = 1;

 }

 httpRequest.onreadystatechange = handleResponse;

 httpRequest.open("POST", form.action);

 httpRequest.send(formData);

 }

 function handleResponse() {

 if (httpRequest.readyState == 4 && httpRequest.status == 200) {

 document.getElementById("results").innerHTML

 = httpRequest.responseText;

 }

 }

 </script>

 </body>

</html>

In this example, I added a progress element (described in Chapter 15) and used it to provide data upload progress information to the user. I obtain an XMLHttpRequestUpload object by reading the XMLHttpRequest.upload property, and register functions to respond to the progress and load events.

The browser won't give progress information for small data transfers, so the best way to test this example is to select a large file. Figure 33-5 shows the progress of a movie file being sent to the server.

[image: Image]

Figure 33-5. Displaying progress as data is uploaded to the server

Requesting and Processing Different Content Types

So far, all of the Ajax examples return a complete HTML document, including the head, title, and body elements. These elements are overhead and, given how little data is actually being transmitted from the server, the ratio of useful to useless information isn't ideal.

Fortunately, you don't need to return complete HTML documents. In fact, you don't need to return HTML at all. In the following sections, I'll show you how to deal with different kinds of data and, in doing so, reduce the amount of overhead that Ajax requests incur.

Receiving HTML Fragments

The simplest change to make is to have the server return an HTML fragment instead of the entire document. To do this, I first need to make a change to the writeResponse of the Node.js server script, as shown in Listing 33-10.

Listing 33-10. Modifying the Server to Send Back an HTML Fragment

...

function writeResponse(res, data) {

 var total = 0;

 for (fruit in data) {

 total += Number(data[fruit]);

 }

 res.writeHead(200, "OK", {

 "Content-Type": "text/html",

 "Access-Control-Allow-Origin": "http://titan"});

 res.write('You ordered ' + total + ' items');

 res.end();

}

...

Instead of a fully formed document, the server now sends just a fragment of HTML. Listing 33-11 shows the client HTML document.

Listing 33-11. Working with HTML Fragments

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 .table {display:table;}

 .row {display:table-row;}

 .cell {display: table-cell; padding: 5px;}

 .label {text-align: right;}

 </style>

 </head>

 <body>

 <form id="fruitform" method="post" action="http://titan:8080/form">

 <div class="table">

 <div class="row">

 <div class="cell label">Bananas:</div>

 <div class="cell"><input name="bananas" value="2"/></div>

 </div>

 <div class="row">

 <div class="cell label">Apples:</div>

 <div class="cell"><input name="apples" value="5"/></div>

 </div>

 <div class="row">

 <div class="cell label">Cherries:</div>

 <div class="cell"><input name="cherries" value="20"/></div>

 </div>

 <div class="row">

 <div class="cell label">Total:</div>

 <div id="results" class="cell">0 items</div>

 </div>

 </div>

 <button id="submit" type="submit">Submit Form</button>

 </form>

 <script>

 document.getElementById("submit").onclick = handleButtonPress;

 var httpRequest;

 function handleButtonPress(e) {

 e.preventDefault();

 var form = document.getElementById("fruitform");

 var formData = new Object();

 var inputElements = document.getElementsByTagName("input");

 for (var i = 0; i < inputElements.length; i++) {

 formData[inputElements[i].name] = inputElements[i].value;

 }

 httpRequest = new XMLHttpRequest();

 httpRequest.onreadystatechange = handleResponse;

 httpRequest.open("POST", form.action);

 httpRequest.setRequestHeader("Content-Type", "application/json");

 httpRequest.send(JSON.stringify(formData));

 }

 function handleResponse() {

 if (httpRequest.readyState == 4 && httpRequest.status == 200) {

 document.getElementById("results").innerHTML

 = httpRequest.responseText;

 }

 }

 </script>

 </body>

</html>

I have removed some of the recent additions for uploading files and monitoring progress. I send the data to the server as JSON and receive an HTML fragment in return (although there is no relationship between the data format that I used to send data to the server and the data format that I get back from the server).

Since I have control of the server, I made sure that the Content-Type header is set to text/html, which tells the browser that it is dealing with HTML, even though the data it gets doesn't start with a DOCTYPE or an html element. You can use the overrideMimeType method if you want to override the Content-Type header and specify the data type yourself, as shown in Listing 33-12.

Listing 33-12. Overriding the Data Type

<script>

 document.getElementById("submit").onclick = handleButtonPress;

 var httpRequest;

 function handleButtonPress(e) {

 e.preventDefault();

 var form = document.getElementById("fruitform");

 var formData = new Object();

 var inputElements = document.getElementsByTagName("input");

 for (var i = 0; i < inputElements.length; i++) {

 formData[inputElements[i].name] = inputElements[i].value;

 }

 httpRequest = new XMLHttpRequest();

 httpRequest.onreadystatechange = handleResponse;

 httpRequest.open("POST", form.action);

 httpRequest.setRequestHeader("Content-Type", "application/json");

 httpRequest.send(JSON.stringify(formData));

 }

 function handleResponse() {

 if (httpRequest.readyState == 4 && httpRequest.status == 200) {

 httpRequest.overrideMimeType("text/html");

 document.getElementById("results").innerHTML

 = httpRequest.responseText;

 }

 }

</script>

Specifying the data type can be useful if the server doesn't classify the data the way you want it. This most often happens when you are delivering fragments of content from files and the server has preconfigured notions of how the Content-Type header should be set.

Receiving XML Data

XML is less popular in web applications than it used to be, having largely been replaced by JSON. That said, it can still be useful to deal with XML data, especially when working with legacy data sources. Listing 33-13 shows the changes to the server script required to send XML to the browser.

Listing 33-13. Sending XML Data from the Server

function writeResponse(res, data) {

 var total = 0;

 for (fruit in data) {

 total += Number(data[fruit]);

 }

 res.writeHead(200, "OK", {

 "Content-Type": "application/xml",

 "Access-Control-Allow-Origin": "http://titan"});

 res.write("<?xml version='1.0'?>");

 res.write("<fruitorder total='" + total + "'>");

 for (fruit in data) {

 res.write("<item name='" + fruit + "' quantity='" + data[fruit] + "'/>")

 total += Number(data[fruit]);

 }

 res.write("</fruitorder>");

 res.end();

}

This revised function generates a short XML document, like this one:

<?xml version='1.0'?>

<fruitorder total='27'>

 <item name='bananas' quantity='2'/>

 <item name='apples' quantity='5'/>

 <item name='cherries' quantity='20'/>

</fruitorder>

This is a superset of the information that I need to display in the client, but it is no longer in a format that I can just display using the DOM innerHTML property. Fortunately, the XMLHttpRequest object makes it easy to work with XML, which is not surprising since XML is the x in Ajax. Listing 33-14 shows how to work with XML in the browser.

Listing 33-14. Working with an XML Ajax Response

<script>

 document.getElementById("submit").onclick = handleButtonPress;

 var httpRequest;

 function handleButtonPress(e) {

 e.preventDefault();

 var form = document.getElementById("fruitform");

 var formData = new Object();

 var inputElements = document.getElementsByTagName("input");

 for (var i = 0; i < inputElements.length; i++) {

 formData[inputElements[i].name] = inputElements[i].value;

 }

 httpRequest = new XMLHttpRequest();

 httpRequest.onreadystatechange = handleResponse;

 httpRequest.open("POST", form.action);

 httpRequest.setRequestHeader("Content-Type", "application/json");

 httpRequest.send(JSON.stringify(formData));

 }

 function handleResponse() {

 if (httpRequest.readyState == 4 && httpRequest.status == 200) {

 httpRequest.overrideMimeType("application/xml");

 var xmlDoc = httpRequest.responseXML;

 var val = xmlDoc.getElementsByTagName("fruitorder")[0].getAttribute("total");

 document.getElementById("results").innerHTML = "You ordered "

 + val + " items";

 }

 }

</script>

All of the changes to the script to work with the XML data occur in the handleResponse function. The first thing that I do when the request has completed successfully is override the MIME type of the response:

httpRequest.overrideMimeType("application/xml");

This isn't really needed in this example, because the server is sending a complete XML document. But when dealing with XML fragments, it is important to explicitly tell the browser that you are working with XML; otherwise, the XMLHttpRequest object won't properly support the responseXML property, which I use in the following statement:

var xmlDoc = httpRequest.responseXML;

The responseXML property is an alternative to responseText. It parses the XML that has been received and returns it as a Document object. You can then employ this technique to navigate through the XML using the DOM features for HTML (described in Chapter 26), like this:

var val = xmlDoc.getElementsByTagName("fruitorder")[0].getAttribute("total");

This statement obtains the value of the total attribute in the first fruitorder element, which I then use with the innerHTML property to display a result to the user:

document.getElementById("results").innerHTML = "You ordered "+ val + " items";

HTML VS. XML IN THE DOM

It is time for an admission. In Part IV of this book, I deliberately smoothed over the relationship between HTML, XML. and the DOM. All of the features that I described for navigating and dealing with elements in an HTML document are equally available for dealing with XML.

In fact, the objects that represent HTML elements are derived from some core objects that arise from XML support. For the most part, and for most readers of the book, the HTML support is what matters. If you are working with XML, you may wish to spend some time reading up on the core XML support, which you can find defined at www.w3.org/standards/techs/dom.

Having said that, if you are doing a lot of work with XML, you might want to consider an alternative encoding strategy. XML is verbose and performing complex processing at the browser isn't always ideal. A more tailored and terse format, such as JSON, may serve you better.

Receiving JSON Data

JSON data is generally easier to work with than XML because you end up with a JavaScript object that you can interrogate and manipulate using the core language features. Listing 33-15 shows the changes required to the server script to generate a JSON response.

Listing 33-15. Generating a JSON Response at the Server

function writeResponse(res, data) {

 var total = 0;

 for (fruit in data) {

 total += Number(data[fruit]);

 }

 data.total = total;

 var jsonData = JSON.stringify(data);

 res.writeHead(200, "OK", {

 "Content-Type": "application/json",

 "Access-Control-Allow-Origin": "http://titan"});

 res.write(jsonData);

 res.end();

}

All I need to do to generate a JSON response is define the total property on the object that is passed as the data parameter to the function and use JSON.stringify to represent the object as a string. The server sends a response to the browser, like this:

{"bananas":"2","apples":"5","cherries":"20","total":27}

Listing 33-16 shows the script changes required at the browser to deal with this response.

Listing 33-16. Receiving a JSON Response from the Server

<script>

 document.getElementById("submit").onclick = handleButtonPress;

 var httpRequest;

 function handleButtonPress(e) {

 e.preventDefault();

 var form = document.getElementById("fruitform");

 var formData = new Object();

 var inputElements = document.getElementsByTagName("input");

 for (var i = 0; i < inputElements.length; i++) {

 formData[inputElements[i].name] = inputElements[i].value;

 }

 httpRequest = new XMLHttpRequest();

 httpRequest.onreadystatechange = handleResponse;

 httpRequest.open("POST", form.action);

 httpRequest.setRequestHeader("Content-Type", "application/json");

 httpRequest.send(JSON.stringify(formData));

 }

 function handleResponse() {

 if (httpRequest.readyState == 4 && httpRequest.status == 200) {

 var data = JSON.parse(httpRequest.responseText);

 document.getElementById("results").innerHTML = "You ordered "

 + data.total + " items";

 }

 }

</script>

JSON is exceptionally easy to work with, as these two listings demonstrate. This ease of use, plus the compactness of the representation, is why JSON has become so popular.

Summary

In this chapter, I finished explaining the intricacies of Ajax. I showed you how to send data to the server, both manually and using the FormData object. You learned how to send a file and how to monitor progress as the data is uploaded to the server. I also covered how to deal with different data formats sent by the server: HTML, fragments of HTML, XML, and JSON.

C H A P T E R 34

Working with Multimedia

HTML5 includes support for playing back audio and video files in the browser without the use of plugins such as Adobe Flash. Browser plugins are a major cause of browser crashes and Flash, in particular, is a notorious cause of problems.

As a related aside, I have come to loathe Flash for media playback. I like to listen to podcasts when I am writing, and Chrome uses Flash to play these by default. I like the ease of integration, but every now and again something goes wrong and I have a locked-up machine. It drives me crazy and makes me curse Adobe every time. The ubiquity of Flash is useful; the quality of the software leaves a lot to be desired.

As you'll see in this chapter, the HTML support for native audio and video has a lot of potential, but there are still some wrinkles to be ironed out. These are largely related to the formats each browser supports and the different interpretations browsers have about their ability to play file formats. Table 34-1 provides the summary for this chapter.

[image: Image] Tip If you want to re-create the examples in this chapter, you may need to add some MIME types to your web server. You can see which ones are required in Listing 34-7.

[image: Image]

[image: Image]

Using the video Element

You use the video element to embed video content into a web page. Table 34-2 describes the video element.

[image: Image]

Listing 34-1 shows the basic use of this element.

Listing 34-1. Using the video Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <video width="360" height="240" src="timessquare.webm"

 autoplay controls preload="none" muted>

 Video cannot be displayed

 </video>

 </body>

</html>

If you have ever seen video in a web page before, the result of using the video element will be familiar, as shown in Figure 34-1.

[image: Image]

Figure 34-1. Using the video element

If the browser doesn't support the video element or cannot play the video, the fallback content (the content between the start and end tags) will be displayed instead. In this example, I provided a simple text message, but a common technique is to offer video playback using a non-HTML5 technique (such as Flash) to support older browsers.

There are a number of attributes for the video element, which I describe in Table 34-3.

[image: Image]

Preloading the Video

The preload attribute tells the browser whether it should optimistically download the video when the page that contains the video element is first loaded. Preloading the video reduces the initial delay when the user starts playback, but can be a waste of network bandwidth if the user doesn't view the video. The allowed values for this attribute are described in Table 34-4.

[image: Image]

The decision about preemptively loading video should be driven by the likelihood that the user will want to watch the video, balanced against the bandwidth required to automatically load the video content. Automatically loading the video results in a smoother user experience, but it can drive up capacity costs significantly, which are wasted when the user navigates away from the page without viewing the video.

The metadata value for this attribute can be used to strike a modest balance between the none and auto values. The problem with the none value is that the video content is shown as a blank region of the screen. The metadata value causes the browser to get enough information to show the user the first frame of the video, without having to download all of the content. Listing 34-2 shows the none and metadata values in use in the same document.

Listing 34-2. Using the none and metadata Values for the preload Attribute

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <video width="360" height="240" src="timessquare.webm"

 controls preload="none" muted>

 Video cannot be displayed

 </video>

 <video width="360" height="240" src="timessquare.webm"

 controls preload="metadata" muted>

 Video cannot be displayed

 </video>

 </body>

</html>

You can see how these values affect the display shown to the user in Figure 34-2.

[image: Image]

Figure 34-2. Using the none and metadata values for the preload attribute

[image: Image] Caution The metadata value gives a nice preview to the user, but some caution is required. In playing around with this property and using a network analyzer, I found that browsers tended to preemptively download the entire video, even though only the metadata was requested. In all fairness, the preload attribute expresses a preference that the browser is free to ignore. However, if you need to constrain bandwidth consumption, the poster attribute may provide a better alternative. See the next section for details.

Displaying a Placeholder Image

You can present the user with a placeholder image by using the poster attribute. This image will be shown in place of the video until the user starts playback. Listing 34-3 shows the poster attribute in use.

Listing 34-3. Using the poster Attribute to Specify a Placeholder Image

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <video width="360" height="240" src="timessquare.webm"

 controls preload="none" poster="poster.png">

 Video cannot be displayed

 </video>

 </body>

</html>

I took a screenshot of the first frame of the video file and superimposed the word Poster on top of it. This picture includes the video controls to indicate to the user that the poster represents a video clip. I also included an img element in this example to demonstrate that the poster image is shown by the video element without modification. Figure 34-3 shows the poster in both forms.

[image: Image]

Figure 34-3. Using a poster for a video clip

Setting the Video Size

If the width and height attributes are omitted, the browser displays a small placeholder element that is resized to the intrinsic dimensions of the video when the metadata becomes available (that is, when the user starts playback or if the preload attribute is set to metadata). This can create a jarring effect as the page layout is adjusted to accommodate the video.

If you do specify the width and height attributes, the browser preserves the video's aspect ratio—you don't have to worry about the video being stretched in either direction. Listing 34-4 shows the application of the width and height attributes.

Listing 34-4. Applying the width and height Attributes

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 video {

 background-color: lightgrey;

 border: medium double black;

 }

 </style>

 </head>

 <body>

 <video src="timessquare.webm" controls preload="auto" width="600" height="240">

 Video cannot be displayed

 </video>

 </body>

</html>

In this example, I set the width attribute so that it is out of ratio with the height attribute. I also applied a style to the video element to emphasize the way that the browser uses only some of the space allocated to the element to preserve the aspect ratio of the video. Figure 34-4 shows the result.

[image: Image]

Figure 34-4. The browser preserving the aspect ratio of a video

Specifying the Video Source (and Format)

The simplest way of specifying the video is to use the src attribute, giving the URL of the video file that is required. This is the approach I took in the previous examples and which is shown again in Listing 34-5.

Listing 34-5. Specifying a Video Source Using the src Attribute

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <video src="timessquare.webm" controls width="360" height="240">

 Video cannot be displayed

 </video>

 </body>

</html>

In this listing, I used the source element to specify the file timessquare.webm. This is a file encoded in the WebM format. And with this, you enter the difficult world of video formats. Earlier in the book, I mentioned the browser wars—an attempt by several companies to assert control over the browser market through nonstandard additions to HTML and related technologies. Happily, those days have passed and compliance with standards is seen as a selling point for browsers, along with speed, ease of use, and a catchy logo.

Sadly, the same point has not been reached when it comes to video formats. There is the potential for some parties to make a lot of money if they can establish their own formats as the dominant ones for HTML5. License fees can be charged, royalties can be levied, and patent portfolios can grow in value. As such, there is no universally supported video format, and if you want to use video to target a wide range of HTML5 users, you can expect to encode your video in a number of formats. Table 34-5 shows the formats that have strong support at the moment (although this will almost certainly change over time).

[image: Image]

The sad fact is that there isn't a single format that can be used to target all of the mainstream browsers—until there is, encoding the same video in multiple formats is required.

[image: Image] Note There is a whole level of detail in video encoding I am going to skip right over. It involves containers, codecs, and other exciting concepts. The upshot is that there are options and choices within each format that trade off quality or compactness for compatibility—given the shifting landscape of browser support for video, the combinations change frequently. I recommend that you consult the release notes for the mainstream browsers to determine support levels or, as I do, just encode in every possible permutation and see what gives the broadest support.

You use the source element to specify multiple formats. This element is described in Table 34-6.

[image: Image]

Listing 34-6 shows how you can use the source element to provide the browser with a choice of video formats.

Listing 34-6. Using the source Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <video controls width="360" height="240">

 <source src="timessquare.webm"/>

 <source src="timessquare.ogv"/>

 <source src="timessquare.mp4"/>

 Video cannot be displayed

 </video>

 </body>

</html>

The browser works its way down the list in sequence looking for a video file it can play. This may mean multiple requests for the server to get additional information about each file. One of the ways the browser works out whether it can play a video is through the MIME type returned by the server. You can provide a hint to the user by applying the type attribute to the source element, specifying the MIME type of the file, as shown in Listing 34-7.

Listing 34-7. Applying the type Attribute on the source Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <video controls width="360" height="240">

 <source src="timessquare.webm" type="video/webm" />

 <source src="timessquare.ogv" type="video/ogg" />

 <source src="timessquare.mp4" type="video/mp4" />

 Video cannot be displayed

 </video>

 </body>

</html>

[image: Image] Tip The media attribute provides the browser with guidance about the kind of device that the video is best suited for. See Chapter 7 for details of how to define values for this attribute.

The track Element

The HTML5 specification includes the track element, which provides a mechanism for additional content related to the video. This includes subtitles, captions, and the chapter title. Table 34-7 describes this element, but none of the mainstream browsers currently implement this element.

[image: Image]

Using the audio Element

The audio element allows you to embed audio content into an HTML document. This element is described in Table 34-8.

[image: Image]

You can see that the audio element has a lot in common with the video element. Listing 34-8 shows the audio element in use.

Listing 34-8. Using the audio Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <audio controls src="mytrack.mp3" autoplay>

 Audio content cannot be played

 </audio>

 </body>

</html>

You specify the audio source using the src attribute. Even though the world of audio formats is less contentious than video, there still isn't a format that all of the browsers can play natively, although I am more hopeful this will change for audio than video.

[image: Image] Tip By applying the autoplay attribute and omitting the controls attributes, you can create a situation where audio is played automatically and the user has no way to stop it. On behalf of all of your users, I beg you not to do this—especially if you intend to play dreary, synthetic, anonymous, and essentially unidentifiable music. Inflicting music like this on your users makes every transaction reminiscent of an interminable elevator ride, and this is especially true if your audio tracks have no discernible instruments involved. Please don't inflict bland, soulless, and pointless music on your users, and certainly don't make it start automatically and leave the user without the means to disable it.

Listing 34-9 shows how you can use the source element to provide multiple formats.

Listing 34-9. Using the source Element to Provide Multiple Audio Formats

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <audio controls autoplay>

 <source src="mytrack.ogg" />

 <source src="mytrack.mp3" />

 <source src="mytrack.wav" />

 Audio content cannot be played

 </audio>

 </body>

</html>

In both of these examples, I used the controls attribute so that the browser will display the default controls to the user. There are some variations between browsers, but Figure 34-5 gives you an idea of what to expect.

[image: Image]

Figure 34-5. The default controls for an audio element in Google Chrome

Working with Embedded Media via the DOM

The audio and video elements have enough in common that the HTMLMediaElement object defines the core functionality for both of them in the DOM. The audio element is represented in the DOM by the HTMLAudioElement object, but this defines no additional functionality beyond HTMLMediaElement. The video element is represented by the HTMLVideoElement object. This does define some additional properties, which I describe later in this chapter.

[image: Image] Tip The audio and video elements have so much in common that the only difference is the amount of screen space they occupy. The audio element isn't laid out with a chunk of screen to display video images. You can actually use the audio element to play video files (although you get only the soundtrack, obviously), and you can use the video element to play audio files (although the video display remains blank). Strange but true.

Getting Information About the Media

The HTMLMediaElement object defines a number of members you can use to get and modify information about the element and the media associated with it. These are described in Table 34-9.

[image: Image]

The HTMLVideoElement object defines the additional properties shown in Table 34-10.

[image: Image]

Listing 34-10 shows some of the HTMLMediaElement properties being used to get basic information about a media element.

Listing 34-10. Getting Basic Information About a Media Element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 table {border: thin solid black; border-collapse: collapse;}

 th, td {padding: 3px 4px;}

 body > * {float: left; margin: 2px;}

 </style>

 </head>

 <body>

 <video id="media" controls width="360" height="240" preload="metadata">

 <source src="timessquare.webm"/>

 <source src="timessquare.ogv"/>

 <source src="timessquare.mp4"/>

 Video cannot be displayed

 </video>

 <table id="info" border="1">

 <tr><th>Property</th><th>Value</th></tr>

 </table>

 <script>

 var mediaElem = document.getElementById("media");

 var tableElem = document.getElementById("info");

 var propertyNames = ["autoplay", "currentSrc", "controls", "loop", "muted",

 "preload", "src", "volume"];

 for (var i = 0; i < propertyNames.length; i++) {

 tableElem.innerHTML +=

 "<tr><td>" + propertyNames[i] + "</td><td>" +

 mediaElem[propertyNames[i]] + "</td></tr>";

 }

 </script>

 </body>

</html>

The script in this example displays the value of a number of the properties in a table, alongside the video element. You can see the results in Figure 34-6.

[image: Image]

Figure 34-6. Displaying basic information about a video element

I showed Opera in the figure because it is the only browser that properly implements the currentSrc property. This property displays the value of the src attribute, either from the media element itself or from the source element in use when there is a choice of formats available.

Assessing Playback Capabilities

The canPlayType method can be used to get an idea of whether the browser can play a particular media format. This method returns one of the values shown in Table 34-11.

[image: Image]

These values are obviously vague—and this goes back to the complexity around some media formats and the encoding options that can be used when creating them. Listing 34-11 shows the canPlayType method in use.

Listing 34-11. Using the canPlayType Method

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 table {border: thin solid black; border-collapse: collapse;}

 th, td {padding: 3px 4px;}

 body > * {float: left; margin: 2px;}

 </style>

 </head>

 <body>

 <video id="media" controls width="360" height="240" preload="metadata">

 Video cannot be displayed

 </video>

 <table id="info" border="1">

 <tr><th>Property</th><th>Value</th></tr>

 </table>

 <script>

 var mediaElem = document.getElementById("media");

 var tableElem = document.getElementById("info");

 var mediaFiles = ["timessquare.webm", "timessquare.ogv", "timessquare.mp4"];

 var mediaTypes = ["video/webm", "video/ogv", "video/mp4"];

 for (var i = 0; i < mediaTypes.length; i++) {

 var playable = mediaElem.canPlayType(mediaTypes[i]);

 if (!playable) {

 playable = "no";

 }

 tableElem.innerHTML +=

 "<tr><td>" + mediaTypes[i] + "</td><td>" + playable + "</td></tr>";

 if (playable == "probably") {

 mediaElem.src = mediaFiles[i];

 }

 }

 </script>

 </body>

</html>

In the script in this example, I use the canPlayType method to assess a set of media types. If I receive a probably response, I set the src attribute value for the video element. Along the way, I record the response for each media type in a table.

Some caution is required when trying to select media in this way, because the way that browsers assess their ability to play a format differs. For example, Figure 34-7 shows the response from Firefox.

[image: Image]

Figure 34-7. Assessing media format support in Firefox

Firefox is very bullish about WebM and certain that the Ogg and MP4 files can't be played—yet, Firefox seems to handle Ogg video files very well. Figure 34-8 shows the response from Chrome.

[image: Image]

Figure 34-8. Assessing media format support in Chrome

Chrome takes a much more conservative view, yet it will happily play all three of my media files. In fact, Chrome is so conservative that I don't get a probably response from the canPlayType method and so don't make a media selection.

It is hard to criticize the browsers for the inconsistency of their responses. There are too many variables to be able to give definitive answers, but the different ways in which support is assessed means that the canPlayType method should be used very carefully.

Controlling Media Playback

The HTMLMediaElement object defines a number of members that allow you to control playback and get information about playback. These properties and methods are described in Table 34-12.

[image: Image]

Listing 34-12 shows how you can use the properties in the table to get information about playback.

Listing 34-12. Using HTMLMediaElement Properties to Get Details of Media Playback

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 table {border: thin solid black; border-collapse: collapse;}

 th, td {padding: 3px 4px;}

 body > * {float: left; margin: 2px;}

 div {clear: both;}

 </style>

 </head>

 <body>

 <video id="media" controls width="360" height="240" preload="metadata">

 <source src="timessquare.webm"/>

 <source src="timessquare.ogv"/>

 <source src="timessquare.mp4"/>

 Video cannot be displayed

 </video>

 <table id="info" border="1">

 <tr><th>Property</th><th>Value</th></tr>

 </table>

 <div>

 <button id="pressme">Press Me</button>

 </div>

 <script>

 var mediaElem = document.getElementById("media");

 var tableElem = document.getElementById("info");

 document.getElementById("pressme").onclick = displayValues;

 displayValues();

 function displayValues() {

 var propertyNames = ["currentTime", "duration", "paused", "ended"];

 tableElem.innerHTML = "";

 for (var i = 0; i < propertyNames.length; i++) {

 tableElem.innerHTML +=

 "<tr><td>" + propertyNames[i] + "</td><td>" +

 mediaElem[propertyNames[i]] + "</td></tr>";

 }

 }

 </script>

 </body>

</html>

This example includes a button element which, when pressed, causes the current values of the currentTime, duration, paused, and ended properties to be displayed in a table. You can see the effect in Figure 34-9.

[image: Image]

Figure 34-9. Taking a snapshot of playback property values in response to a button press

You can use the playback methods to replace the default media controls. Listing 34-13 provides a demonstration.

Listing 34-13. Replacing the Default Media Controls

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <video id="media" width="360" height="240" preload="auto">

 <source src="timessquare.webm"/>

 <source src="timessquare.ogv"/>

 <source src="timessquare.mp4"/>

 Video cannot be displayed

 </video>

 <div>

 <button>Play</button>

 <button>Pause</button>

 </div>

 <script>

 var mediaElem = document.getElementById("media");

 var buttons = document.getElementsByTagName("button");

 for (var i = 0; i < buttons.length; i++) {

 buttons[i].onclick = handleButtonPress;

 }

 function handleButtonPress(e) {

 switch (e.target.innerHTML) {

 case 'Play':

 mediaElem.play();

 break;

 case 'Pause':

 mediaElem.pause();

 break;

 }

 }

 </script>

 </body>

</html>

In this example, I omitted the controls attribute from the video element and use the play and pause methods, triggered by button presses, to start and stop the media playback. You can see the effect in Figure 34-10.

[image: Image]

Figure 34-10. Replacing the default media controls

[image: Image] Tip The HTML specification defines a series of events related to loading and playing media, exposed through the controller property of the HTMLMediaElement object. As I write this, none of the mainstream browsers support this property or the MediaController object that it should return.

Summary

In this chapter, I showed you how HTML5 supports native media playback through the video and audio elements and how you can control those elements using the DOM. Native media support has a lot of potential, given the difficulties with plugins like Flash, but it is an approach that is still at an early stage of adoption. You will be stuck with a mix-and-match approach until the format support issues are resolved and there is a critical mass of browser support for this approach.

C H A P T E R 35

Using the Canvas Element – Part I

In the previous chapter I alluded to (and briefly ranted about) the love/hate relationship that most web application developers and designers have with Adobe Flash. The hate comes from the lack of stability and security because Adobe recently has been accused of poor software quality. The love for Flash comes from its ubiquity of installation and the way that it can be used to produce rich content.

As a native alternative to Flash, HTML5 defines the canvas element. If you have read any description of the new capabilities in HTML5, the canvas was likely to have been one of the first features mentioned and it was probably described as a Flash-killer.

As is often the case, the hype and the reality don't match up. The canvas element is a drawing surface that we configure and drive using JavaScript. It is flexible, relatively easy to use and it provides enough features that it can replace Flash for some kinds of rich content. But calling the canvas element a Flash-killer (or even a Flash-replacement) is premature, as it will be a while before the canvas takes over.

This is the first of two chapters on the canvas element. In this chapter, I show you how to get set up with the canvas element and introduce the objects that we use in JavaScript to interact with the canvas. I also show you the support for basic shapes, how to use solid colors and gradients and how to draw images on the canvas. The next chapter shows you how to draw more complex shapes and how to apply effects and transformations. Table 35-1 provides the summary for this chapter.

[image: Image]

[image: Image]

Getting Started with the Canvas Element

The canvas element is pretty simple in that all of its functionality is exposed through a JavaScript object, so the element itself only has two attributes, as shown in Table 35-2.

[image: Image]

The content of a canvas element is used as a fallback if the browser doesn't support the element itself. Listing 35-1 shows the canvas element and some simple fallback content.

Listing 35-1. Using the canvas element with basic fallback content

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 canvas {border: medium double black; margin: 4px}

 </style>

 </head>

 <body>

 <canvas width="500" height="200">

 Your browser doesn't support the <code>canvas</code> element

 </canvas>

 </body>

</html>

As you might imagine, the width and height attributes specify the size of the element on screen. You can see how the browser displays this example in Figure 35-1 (although, of course, there isn't much to see at this point).

[image: Image] Tip I applied a style to the canvas element in this example to set a border. Otherwise there would be no way to see the canvas in the browser window. I'll show a border in all of the examples in this chapter, so it is always clear how the operations I describe relate to the canvas coordinates.

[image: Image]

Figure 35-1. Adding the canvas element to an HTML document

Getting a Canvas Context

In order to draw on a canvas element, we need to get a context object, which is an object that exposes drawing functions for a particular style of graphics. In our case, we will be working with the 2d context, which is used to perform two-dimensional operations. Some browsers provide support for an experimental 3D context, but this is still at an early stage.

We get a context through the object that represents the canvas element in the DOM. This object, HTMLCanvasElement, is described in Table 35-3.

[image: Image]

The key method is getContext – to get the two-dimensional context object, we request pass the 2d argument to the method. Once we have the context, we can begin drawing. Listing 35-2 provides a demonstration.

Listing 35-2. Obtaining a two-dimensional context object for a canvas

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 canvas {border: medium double black; margin: 4px}

 </style>

 </head>

 <body>

 <canvas id="canvas" width="500" height="100">

 Your browser doesn't support the <code>canvas</code> element

 </canvas>

 <script>

 var ctx = document.getElementById("canvas").getContext("2d");

 ctx.fillRect(10, 10, 50, 50);

 </script>

 </body>

</html>

I have emphasized the key statement in this listing. I use the document object to find the object representing the canvas element in the DOM and call the getContext method, using the argument 2d. You will see this statement, or a close variation, in all of the examples in this chapter.

Once I have the context object, I can begin to draw. In this example, I have called the fillRect method, which draws a filled rectangle on the canvas. You can see the (simple) effect in Figure 35-2.

[image: Image]

Figure 35-2. Obtaining a context object and performing a simple drawing operations

Drawing Rectangles

Let us begin with the canvas support for rectangles. Table 35-4 describes the relevant methods, all of which we apply to the context object (and not the canvas itself).

[image: Image] Tip We can draw more complex shapes, but I don't show you how to do that until Chapter 36. We can use rectangles to explore some of the canvas features without getting bogged down in how the other shapes work.

[image: Image]

All three of these methods take four arguments. The first two (x and y as shown in the table) are the offset from the top-left corner of the canvas element. The w and h arguments specify the width and height of the rectangle to draw. Listing 35-3 shows the use of the fillRect and strokeRect methods.

Listing 35-3. Using the fillRect and strokeRect methods

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 canvas {border: thin solid black; margin: 4px}

 </style>

 </head>

 <body>

 <canvas id="canvas" width="500" height="140">

 Your browser doesn't support the <code>canvas</code> element

 </canvas>

 <script>

 var ctx = document.getElementById("canvas").getContext("2d");

 var offset = 10;

 var size = 50;

 var count = 5;

 for (var i = 0; i < count; i++) {

 ctx.fillRect(i * (offset + size) + offset, offset, size, size);

 ctx.strokeRect(i * (offset + size) + offset, (2 * offset) + size,

 size, size);

 }

 </script>

 </body>

</html>

The script in this example uses the fillRect and strokeRect methods to create a series of filled and unfilled rectangles. You can see the result in Figure 35-3.

[image: Image]

Figure 35-3. Drawing filled and unfilled rectangles

I wrote the script this way to emphasize the programmatic nature of the canvas element. I used a JavaScript for loop to draw these rectangles. I could have used ten individual statements, all with specific coordinate parameters, but one of the joys of the canvas is that we don't need to do this. It can be hard to get your head around this aspect of the canvas if you are not from a programming background.

The clearRect method removes whatever has been drawn in the specified rectangle. Listing 35-4 provides a demonstration.

Listing 35-4. Using the clearRect method

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 canvas {border: thin solid black; margin: 4px}

 </style>

 </head>

 <body>

 <canvas id="canvas" width="500" height="140">

 Your browser doesn't support the <code>canvas</code> element

 </canvas>

 <script>

 var ctx = document.getElementById("canvas").getContext("2d");

 var offset = 10;

 var size = 50;

 var count = 5;

 for (var i = 0; i < count; i++) {

 ctx.fillRect(i * (offset + size) + offset, offset, size, size);

 ctx.strokeRect(i * (offset + size) + offset, (2 * offset) + size,

 size, size);

 ctx.clearRect(i * (offset + size) + offset, offset + 5, size, size -10);

 }

 </script>

 </body>

</html>

In this example, I use the clearRect method to clear an area of the canvas that has previously been drawn on by the fillRect method. You can see the effect in Figure 35-4.

[image: Image]

Figure 35-4. Using the clearRect method

Setting the Canvas Drawing State

Drawing operations are configured by the drawing state. This is a set of properties that specify everything from line width to fill color. When we draw a shape, the current settings in the drawing state are used. Listing 35-5 provides a demonstration, using the lineWIdth property, which is part of the drawing state and sets the width of lines used for shapes such as those produced by the strokeRect method.

Listing 35-5. Setting the drawing state before performing an operation

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 canvas {border: thin solid black; margin: 4px}

 </style>

 </head>

 <body>

 <canvas id="canvas" width="500" height="70">

 Your browser doesn't support the <code>canvas</code> element

 </canvas>

 <script>

 var ctx = document.getElementById("canvas").getContext("2d");

 ctx.lineWidth = 2;

 ctx.strokeRect(10, 10, 50, 50);

 ctx.lineWidth = 4;

 ctx.strokeRect(70, 10, 50, 50);

 ctx.lineWidth = 6;

 ctx.strokeRect(130, 10, 50, 50);

 ctx.strokeRect(190, 10, 50, 50);

 </script>

 </body>

</html>

When I use the strokeRect method, the current value of the lineWidth property is used to draw the rectangle. In the example, I set the property value to 2, 4, and finally 6 pixels, which has the effect of making the lines of the rectangles thicker. Note that I have not changed the value between the last two calls to strokeRect. I have done this to demonstrate that the value of the drawing state properties do not change between drawing operations, as shown in Figure 35-5.

[image: Image]

Figure 35-5. Changing a drawing state value between drawing operations

Table 35-5 shows the basic drawing state properties. There are other properties, which we will encounter as we look at more advanced features.

[image: Image]

Setting the Line Join Style

The lineJoin property determines how lines that join one another are drawn. There are three values: round, bevel, and miter. The default value is miter. Listing 35-6 shows the three styles in use.

Listing 35-6. Setting the lineJoin property

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 canvas {border: thin solid black; margin: 4px}

 </style>

 </head>

 <body>

 <canvas id="canvas" width="500" height="140">

 Your browser doesn't support the <code>canvas</code> element

 </canvas>

 <script>

 var ctx = document.getElementById("canvas").getContext("2d");

 ctx.lineWidth = 20;

 ctx.lineJoin = "round";

 ctx.strokeRect(20, 20, 100, 100);

 ctx.lineJoin = "bevel";

 ctx.strokeRect(160, 20, 100, 100);

 ctx.lineJoin = "miter";

 ctx.strokeRect(300, 20, 100, 100);

 </script>

 </body>

</html>

In this example, I have used the lineWidth property so that the strokeRect method will draw rectangles with very thick lines and then used each of the lineJoin style values in turn. You can see the result in Figure 35-6.

[image: Image]

Figure 35-6. The lineJoin property

Setting the Fill & Stroke Styles

When we set a style using the fillStyle or strokeStyle properties, we can specify a color using the CSS color values that I described in Chapter 35-4, using either a name or a color model. Listing 35-7 provides an example.

Listing 35-7. Setting colors using the fillStyle and strokeStyle properties

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 canvas {border: thin solid black; margin: 4px}

 </style>

 </head>

 <body>

 <canvas id="canvas" width="500" height="140">

 Your browser doesn't support the <code>canvas</code> element

 </canvas>

 <script>

 var ctx = document.getElementById("canvas").getContext("2d");

 var offset = 10;

 var size = 50;

 var count = 5;

 ctx.lineWidth = 3;

 var fillColors = ["black", "grey", "lightgrey", "red", "blue"];

 var strokeColors = ["rgb(0,0,0)", "rgb(100, 100, 100)",

 "rgb(200, 200, 200)", "rgb(255, 0, 0)",

 "rgb(0, 0, 255)"];

 for (var i = 0; i < count; i++) {

 ctx.fillStyle = fillColors[i];

 ctx.strokeStyle = strokeColors[i];

 ctx.fillRect(i * (offset + size) + offset, offset, size, size);

 ctx.strokeRect(i * (offset + size) + offset, (2 * offset) + size,

 size, size);

 }

 </script>

 </body>

</html>

In this example, I define two arrays of colors using the CSS color names and the rgb model. I then assign these colors to the fillStyle and strokeStyle properties in the for loop which calls the fillRect and strokeRect methods. You can see the effect in Figure 35-7.

[image: Image]

Figure 35-7. Setting the fill and stroke style using CSS colors

[image: Image] Note Of course, anything that involves colors loses something when reproduced in shades of grey on the printed page, so you may wish to load the example in a browser to see the effect. If so, you can get all of the code samples for this book free-of-charge from apress.com.

Using Gradients

We can also set the fill and stroke styles using gradients, rather than solid colors. A gradient is a gradual progression between two or more colors. The canvas element supports two kinds of gradients: linear and radial, using the methods described in Table 35-6.

[image: Image]

Both of these methods return a CanvasGradient object, which defines the method shown in Table 35-7.The arguments describe the line or circle used by the gradient, which is explained in the following examples.

[image: Image]

Using a Linear Gradient

A linear gradient is one in which we specify the colors we want along a line. Listing 35-8 shows how we can create a simple linear gradient.

Listing 35-8. Creating a linear gradient

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 canvas {border: thin solid black; margin: 4px}

 </style>

 </head>

 <body>

 <canvas id="canvas" width="500" height="140">

 Your browser doesn't support the <code>canvas</code> element

 </canvas>

 <script>

 var ctx = document.getElementById("canvas").getContext("2d");

 var grad = ctx.createLinearGradient(0, 0, 500, 140);

 grad.addColorStop(0, "red");

 grad.addColorStop(0.5, "white");

 grad.addColorStop(1, "black");

 ctx.fillStyle = grad;

 ctx.fillRect(0, 0, 500, 140);

 </script>

 </body>

</html>

When we use the createLinearGradient method, we supply four values that are used as the start and end coordinates of a line on the canvas. In this example, I have used coordinates to describe a line that starts at the point 0, 0 and ends at 500, 140. These points correspond to the top-left and bottom-right corners of the canvas, as shown in Figure 35-8.

[image: Image]

Figure 35-8. The line in a linear gradient

The line represents the gradient. We can now use the addColorStop method on the CanvasGradient returned by the createLinearGradient method to add colors along the gradient line, like this:

grad.addColorStop(0, "red");

grad.addColorStop(0.5, "white");

grad.addColorStop(1, "black");

The first argument to the addColorStop method is the position on the line that we want to apply the color, which we specify using the second argument. The start of the line (the coordinate 0, 0 in this example) is represented by the value 0 and the end of the line by the value 1. In the example, I have told the canvas that I want the color red at the start of the line, the color white half way along the line, and the color black at the end of the line. The canvas will then work out how to gradually transition between those colors at those points. We can specify as many color stops as we like (but if we get carried away, we end up with something that looks like a rainbow).

Once we have defined the gradient and added the color stops, we can assign the CanvasGradient object to set the fillStyle or strokeStyle properties, like this:

ctx.fillStyle = grad;

Finally, we can draw a shape. In this example, I drew a filled rectangle, like this:

ctx.fillRect(0, 0, 500, 140);

This rectangle fills the canvas, showing the entire gradient, as you can see in Figure 35-9.

[image: Image]

Figure 35-9. Using a linear gradient in a filled rectangle

You can see that the colors change along the line of the gradient. There is solid red in the top-left corner, solid white in the middle of the line, and solid black in the bottom-right corner, and the color gradually shifts between these points.

Using a Linear Gradient with a Smaller Shape

When we define the gradient line, we do so relative to the canvas – not the shapes that we draw. This tends to cause some confusion at first. Listing 35-9 contains a demonstration of what I mean.

Listing 35-9. Using a gradient with a shape that doesn't fill the canvas

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 canvas {border: thin solid black; margin: 4px}

 </style>

 </head>

 <body>

 <canvas id="canvas" width="500" height="140">

 Your browser doesn't support the <code>canvas</code> element

 </canvas>

 <script>

 var ctx = document.getElementById("canvas").getContext("2d");

 var grad = ctx.createLinearGradient(0, 0, 500, 140);

 grad.addColorStop(0, "red");

 grad.addColorStop(0.5, "white");

 grad.addColorStop(1, "black");

 ctx.fillStyle = grad;

 ctx.fillRect(10, 10, 50, 50);

 </script>

 </body>

</html>

The change in this example is simply to make the rectangle smaller. You can see the result in Figure 35-10.

[image: Image]

Figure 35-10. Missing the gradations in a gradient

This is what I mean about the gradient line relating to the canvas. I have drawn my rectangle in a region that is solid red. (In fact, if we were able to zoom in close enough, we might be able to detect tiny gradations toward white, but the general appearance is of a solid color.) The best way to think about this is that when we draw a shape, we are allowing part of the underlying gradient show through, which means we have to think about how the gradient line relates to the area we are going to expose. Listing 35-10 shows how we can target the gradient line for a shape.

Listing 35-10. Making the gradient line match a desired shape

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 canvas {border: thin solid black; margin: 4px}

 </style>

 </head>

 <body>

 <canvas id="canvas" width="500" height="140">

 Your browser doesn't support the <code>canvas</code> element

 </canvas>

 <script>

 var ctx = document.getElementById("canvas").getContext("2d");

 var grad = ctx.createLinearGradient(10, 10, 60, 60);

 grad.addColorStop(0, "red");

 grad.addColorStop(0.5, "white");

 grad.addColorStop(1, "black");

 ctx.fillStyle = grad;

 ctx.fillRect(0, 0, 500, 140);

 </script>

 </body>

</html>

In this example, I have set the gradient line so that it starts and stops within the area that I want to reveal with my smaller rectangle. However, I have drawn the rectangle to reveal all of the gradient so you can see the effect of the change, as shown in Figure 11.

[image: Image]

Figure 35-11. The effect of moving and shortening the gradient line

You can see how the gradations have been shifted to the area I am going to expose with the smaller rectangle. The last step is to match the rectangle to the gradient, as shown in Listing 35-11.

Listing 35-11. Matching the shape to the gradient

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 canvas {border: thin solid black; margin: 4px}

 </style>

 </head>

 <body>

 <canvas id="canvas" width="500" height="140">

 Your browser doesn't support the <code>canvas</code> element

 </canvas>

 <script>

 var ctx = document.getElementById("canvas").getContext("2d");

 var grad = ctx.createLinearGradient(10, 10, 60, 60);

 grad.addColorStop(0, "red");

 grad.addColorStop(0.5, "white");

 grad.addColorStop(1, "black");

 ctx.fillStyle = grad;

 ctx.fillRect(10, 10, 50, 50);

 </script>

 </body>

</html>

[image: Image] Tip Notice that the numeric values I used as arguments in the createLinearGradient method are different from the parameters I used in the fillRect method. The createLinearGradient values represent a pair of coordinates in the canvas, whereas the fillRect values represent the width and height of a rectangle relative to a single coordinate. If you find that the gradient and shape don't line up, this is likely to be the cause of the problem.

Now the shape and the gradient are perfectly aligned, as shown in Figure 35-12. Of course, we don't always want them perfectly aligned. We might want to expose a specific region of a larger gradient in order to get a different effect. Whatever the goal, it is important to understand the relationship between the gradient and the shapes that we use it with.

[image: Image]

Figure 35-12. Aligning shape and gradient

Using a Radial Gradient

We define radial gradients using two circles. The start of the gradient is defined by the first circle, the end of the gradient by the second circle and we add color stops between them. Listing 35-12 provides an example.

Listing 35-12. Using a radial gradient

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 canvas {border: thin solid black; margin: 4px}

 </style>

 </head>

 <body>

 <canvas id="canvas" width="500" height="140">

 Your browser doesn't support the <code>canvas</code> element

 </canvas>

 <script>

 var ctx = document.getElementById("canvas").getContext("2d");

 var grad = ctx.createRadialGradient(250, 70, 20, 200, 60, 100);

 grad.addColorStop(0, "red");

 grad.addColorStop(0.5, "white");

 grad.addColorStop(1, "black");

 ctx.fillStyle = grad;

 ctx.fillRect(0, 0, 500, 140);

 </script>

 </body>

</html>

The six arguments to the createRadialGradient method represent:

	The coordinate for the center of the start circle (the first and second arguments)

	The radius of the start circle (the third argument)

	The coordinate for the center of the finish circle (the fourth and fifth arguments)

	The radius of the finish circle (the sixth argument)

The values in the example give the start and end circles as shown in Figure 35-13. Notice that we can specify gradients that are outside of the canvas (this is true for linear gradients as well).

[image: Image]

Figure 35-13. The start and end circles in a radial gradient

In this example, the start circle is the smaller one and is encompassed by the finish circle. When we add color stops on this gradient, they are placed on a line between the edge of the start circle (a stop value of 0.0) and the edge of the finish circle (a stop value of 1.0).

[image: Image] Tip Be careful when specifying circles such that one does not contain the other. There are some inconsistencies between browsers in how to derive the gradations and the results are messy.

Since we are able to specify the position of both circles, the distance between the circle edges can vary and the rate of gradation between colors will also vary. You can see the effect in Figure 35-14.

[image: Image]

Figure 35-14. Using a radial gradiation

The figure shows the whole gradient, but the same rules apply for how the gradient relates to drawing shapes. Listing 35-13 creates a pair of smaller shapes that reveal subsections of the gradient.

Listing 35-13. Using smaller shapes with a radial gradient

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 canvas {border: thin solid black; margin: 4px}

 </style>

 </head>

 <body>

 <canvas id="canvas" width="500" height="140">

 Your browser doesn't support the <code>canvas</code> element

 </canvas>

 <script>

 var ctx = document.getElementById("canvas").getContext("2d");

 var grad = ctx.createRadialGradient(250, 70, 20, 200, 60, 100);

 grad.addColorStop(0, "red");

 grad.addColorStop(0.5, "white");

 grad.addColorStop(1, "black");

 ctx.fillStyle = grad;

 ctx.fillRect(150, 20, 75, 50);

 ctx.lineWidth = 8;

 ctx.strokeStyle = grad;

 ctx.strokeRect(250, 20, 75, 50);

 </script>

 </body>

</html>

Notice that I am able to use the gradient for both the fillStyle and strokeStyle properties, enabling us to use gradients for lines as well as solid shapes, as shown by Figure 35-15.

[image: Image]

Figure 35-15. Using a radial gradient for both fills and strokes

Using Patterns

In addition to solid colors and gradients, we can create patterns. We do this using the createPattern method, which is defined by the canvas context object. The 2D drawing context defines support for three types of pattern – image, video, and canvas – but only the image pattern is implemented (and only by Firefox and Opera. As I write this, the other browsers ignore this pattern type.).

To use an image pattern, we pass an HTMLImageElement object as the first argument to the createPattern method. The second argument is the repeat style, which must be one of the values shown in Table 35-8.

[image: Image]

Listing 35-14 shows how we can create and use an image pattern.

Listing 35-14. Using an image pattern

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 canvas {border: thin solid black; margin: 4px}

 </style>

 </head>

 <body>

 <canvas id="canvas" width="500" height="140">

 Your browser doesn't support the <code>canvas</code> element

 </canvas>

 <script>

 var ctx = document.getElementById("canvas").getContext("2d");

 var imageElem = document.getElementById("banana");

 var pattern = ctx.createPattern(imageElem, "repeat");

 ctx.fillStyle = pattern;

 ctx.fillRect(0, 0, 500, 140);

 </script>

 </body>

</html>

The document in this example contains an img element, which isn't visible to the user because I have applied the hidden attribute (described in Chapter 4). In the script, I use the DOM to locate the HTMLImageElement object that represents the img element as the first argument to the createPattern method. For the second argument, I use the repeat value, which causes the image to be repeated in both directions. Finally, I set the pattern as the value for the fillStyle property and use the fillRect method to draw a filled rectangle which is the same size as the canvas. You can see the result in Figure 35-16.

[image: Image]

Figure 35-16. Creating an image pattern

The pattern is copied from the current state of the img element, meaning the pattern won't change if we use JavaScript and the DOM to change the value of the src attribute value of the img element.

As with gradients, the pattern applies to the entire canvas and we decide which portions of the pattern are shown by the shapes we draw. Listing 35-15 shows using the pattern for smaller fill and stroke shapes.

Listing 35-15. Using smaller shapes with an image pattern

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 canvas {border: thin solid black; margin: 4px}

 </style>

 </head>

 <body>

 <canvas id="canvas" width="500" height="140">

 Your browser doesn't support the <code>canvas</code> element

 </canvas>

 <script>

 var ctx = document.getElementById("canvas").getContext("2d");

 var imageElem = document.getElementById("banana");

 var pattern = ctx.createPattern(imageElem, "repeat");

 ctx.fillStyle = pattern;

 ctx.fillRect(150, 20, 75, 50);

 ctx.lineWidth = 8;

 ctx.strokeStyle = pattern;

 ctx.strokeRect(250, 20, 75, 50);

 </script>

 </body>

</html>

You can see the result in Figure 35-17.

[image: Image]

Figure 35-17. Using smaller shapes with an image pattern

Saving and Restoring Drawing State

We can save the drawing state and return to it later using the methods described in Table 35-9.

[image: Image]

The saved drawing states are stored in a last-in, first-out (LIFO) stack, such that the last state we saved using the save method is the first one restored by the restore method. Listing 35-16 shows these methods in use.

Listing 35-16. Saving and restoring state

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 canvas {border: thin solid black; margin: 4px}

 </style>

 </head>

 <body>

 <canvas id="canvas" width="500" height="140" preload="auto">

 Your browser doesn't support the <code>canvas</code> element

 </canvas>

 <div>

 <button>Save</button>

 <button>Restore</button>

 </div>

 <script>

 var ctx = document.getElementById("canvas").getContext("2d");

 var grad = ctx.createLinearGradient(500, 0, 500, 140);

 grad.addColorStop(0, "red");

 grad.addColorStop(0.5, "white");

 grad.addColorStop(1, "black");

 var colors = ["black", grad, "red", "green", "yellow", "black", "grey"];

 var cIndex = 0;

 ctx.fillStyle = colors[cIndex];

 draw();

 var buttons = document.getElementsByTagName("button");

 for (var i = 0; i < buttons.length; i++) {

 buttons[i].onclick = handleButtonPress;

 }

 function handleButtonPress(e) {

 switch (e.target.innerHTML) {

 case 'Save':

 ctx.save();

 cIndex = (cIndex + 1) % colors.length;

 ctx.fillStyle = colors[cIndex];

 draw();

 break;

 case 'Restore':

 cIndex = Math.max(0, cIndex -1);

 ctx.restore();

 draw();

 break;

 }

 }

 function draw() {

 ctx.fillRect(0, 0, 500, 140);

 }

 </script>

 </body>

</html>

In this example, I have defined an array that contains CSS color names and a linear gradient. The current drawing state is saved using the save method when the Save button is pressed. When the Restore button is pressed, the previous drawing state is restored. After either button press, the draw function is called, which uses the fillRect method to draw a filled rectangle. The fillStyle property is advanced and retarded in the array and saved and restored when the buttons are pressed because this property is part of the drawing state. You can see the effect in Figure 35-18.

[image: Image]

Figure 35-18. Saving and restoring the drawing state

The contents of the canvas are not saved or restored; only the property values for the drawing state are saved or restored. This includes properties we have seen in this chapter, such as lineWidth, fillStyle, and strokeStyle, and some additional properties that I describe in Chapter 36.

Drawing Images

We can draw images on the canvas by using the drawImage method. This method takes three, five, or nine arguments. The first argument is always the source of the image, which can be the DOM object that represents an img, video, or another canvas element. Listing 35-17 gives an example, using an img element as the source.

Listing 35-17. Using the drawImage method

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 canvas {border: thin solid black; margin: 4px}

 </style>

 </head>

 <body>

 <canvas id="canvas" width="500" height="140" preload="auto">

 Your browser doesn't support the <code>canvas</code> element

 </canvas>

 <script>

 var ctx = document.getElementById("canvas").getContext("2d");

 var imageElement = document.getElementById("banana");

 ctx.drawImage(imageElement, 10, 10);

 ctx.drawImage(imageElement, 120, 10, 100, 120);

 ctx.drawImage(imageElement, 20, 20, 100, 50, 250, 10, 100, 120);

 </script>

 </body>

</html>

When using three arguments, the second and third arguments give the coordinate on the canvas at which the image should be drawn. The image is drawn at its intrinsic width and height. When using five arguments, the additional arguments specify the width and height at which the image should be drawn, overriding the intrinsic size.

When using nine arguments:

	The second and third arguments are the offset into the source image.

	The fourth and fifth arguments are the width and height of the region of the source image that will be used.

	The sixth and seventh arguments specify the canvas coordinate at which the top-left corner of the selected region will be drawn.

	The eighth and ninth arguments specify the width and height to which the selected region will be draw.

You can see the effect of these arguments in Figure 35-19.

[image: Image]

Figure 35-19. Drawing an image

Using Video Images

We can use a video element as the source of the image for the drawImage method. When we do this, we take a snapshot of the video. Listing 35-18 provides a demonstration.

Listing 35-18. Using video as the source for the drawImage element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 canvas {border: thin solid black}

 body > * {float:left;}

 </style>

 </head>

 <body>

 <video id="vid" src="timessquare.webm" controls preload="auto"

 width="360" height="240">

 Video cannot be displayed

 </video>

 <div>

 <button id="pressme">Snapshot</button>

 </div>

 <canvas id="canvas" width="360" height="240">

 Your browser doesn't support the <code>canvas</code> element

 </canvas>

 <script>

 var ctx = document.getElementById("canvas").getContext("2d");

 var imageElement = document.getElementById("vid");

 document.getElementById("pressme").onclick = function(e) {

 ctx.drawImage(imageElement, 0, 0, 360, 240);

 }

 </script>

 </body>

</html>

In this example, I have a video element, a button, and a canvas element. When the button is pressed, the current video frame is used to paint the canvas using the drawImage method. You can see the result in Figure 35-20.

[image: Image]

Figure 35-20. Using a video as the source for the canvas drawImage method

If you find yourself looking at HTML5 demos, you will often see the canvas used to draw over a video. This is done using the technique I just showed you, combined with a timer (such as that described in Chapter 27). Listing 35-19 shows how to put this together. This is not a technique I am particularly fond of. If you want to know why, just watch the CPU load on the machine displaying a document of this type.

Listing 35-19. Using the canvas to display and draw on video

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 canvas {border: thin solid black}

 body > * {float:left;}

 </style>

 </head>

 <body>

 <video id="vid" hidden src="timessquare.webm" preload="auto"

 width="360" height="240" autoplay></video>

 <canvas id="canvas" width="360" height="240">

 Your browser doesn't support the <code>canvas</code> element

 </canvas>

 <script>

 var ctx = document.getElementById("canvas").getContext("2d");

 var imageElement = document.getElementById("vid");

 var width = 100;

 var height = 10;

 ctx.lineWidth = 5;

 ctx.strokeStyle = "red";

 setInterval(function() {

 ctx.drawImage(imageElement, 0, 0, 360, 240);

 ctx.strokeRect(180 - (width/2),120 - (height/2), width, height);

 }, 25);

 setInterval(function() {

 width = (width + 1) % 200;

 height = (height + 3) % 200;

 }, 100);

 </script>

 </body>

</html>

In this example, there is a video element to which I have applied the hidden attribute, so that it is not visible to the user. I have used two timers – the first fires every 25 milliseconds and draws the current video frame and then a stroked rectangle. The second timer fires every 100 milliseconds and changes the values used for the rectangle. The effect is that the rectangle changes size and is superimposed over the video image. You can get a sense of the effect in Figure 35-21, although to fully appreciate what is happening, you should load the example document into a browser.

[image: Image]

Figure 35-21. Using timers to recreate overlaid video on a canvas

We can't use the built-in controls when using a video element like this. I have used the autoplay attribute to keep the example simple, but a more useful solution is to implement custom controls as shown in Chapter 34.

Using Canvas Images

We can use the contents of one canvas as the source for the drawImage method on another, as shown in Listing 35-20.

Listing 35-20. Using a canvas as the source for the drawImage method

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 canvas {border: thin solid black}

 body > * {float:left;}

 </style>

 </head>

 <body>

 <video id="vid" hidden src="timessquare.webm" preload="auto"

 width="360" height="240" autoplay></video>

 <canvas id="canvas" width="360" height="240">

 Your browser doesn't support the <code>canvas</code> element

 </canvas>

 <div>

 <button id="pressme">Press Me</button>

 </div>

 <canvas id="canvas2" width="360" height="240">

 Your browser doesn't support the <code>canvas</code> element

 </canvas>

 <script>

 var srcCanvasElement = document.getElementById("canvas");

 var ctx = srcCanvasElement.getContext("2d");

 var ctx2= document.getElementById("canvas2").getContext("2d");

 var imageElement = document.getElementById("vid");

 document.getElementById("pressme").onclick = takeSnapshot;

 var width = 100;

 var height = 10;

 ctx.lineWidth = 5;

 ctx.strokeStyle = "red";

 ctx2.lineWidth = 30;

 ctx2.strokeStyle = "black;"

 setInterval(function() {

 ctx.drawImage(imageElement, 0, 0, 360, 240);

 ctx.strokeRect(180 - (width/2),120 - (height/2), width, height);

 }, 25);

 setInterval(function() {

 width = (width + 1) % 200;

 height = (height + 3) % 200;

 }, 100);

 function takeSnapshot() {

 ctx2.drawImage(srcCanvasElement, 0, 0, 360, 240);

 ctx2.strokeRect(0, 0, 360, 240);

 }

 </script>

 </body>

</html>

In this example, I have added a second canvas element and a button. When the button is pressed, I use the HTMLCanvasElement object that represents the original canvas as the first argument in a call to the drawImage method on the context object of the second canvas. In essence, pressing the button takes a snapshot of the left-hand canvas and displays it on the right-hand canvas. We copy everything on the canvas, including the red overlaid rectangle. We can perform further drawing operations, which is why I have drawn a thick black border on the second canvas as part of the snapshot. You can see the effect in Figure 22.

[image: Image]

Figure 35-22. Using one canvas as the source for the drawImage method on another canvas

Summary

In this chapter, I have introduced the canvas element, showing how to draw basic shapes, how to configure, save, and restore the drawing state, and how to use solid colors and gradients in drawing operations. I also showed how we can draw images using the contents of img, video, or other canvas elements as the image source. In Chapter 36, I'll show how to draw more complex shapes and how to apply effects and transformations.

C H A P T E R 36

Using the Canvas Element – Part II

In this chapter, I continue describing the features of the canvas element, showing how we can draw more complex shapes (including arcs and curves), how we can limit operations using a clipping region and how we can draw text. I also describe the effects and transformations that we can apply to the canvas, including shadows, transparency, rotations, and translations. Table 36-1 provides the summary for this chapter.

[image: Image]

[image: Image]

Drawing Using Paths

The examples in the Chapter 35 all relied on our ability to draw rectangles. Rectangles are a useful shape, but they are not always what's required. Fortunately, the canvas element and its context provide a set of methods that allow us to draw shapes using paths. Paths are essentially a set of individual lines (known as sub-paths) which cumulatively form a shape. We draw sub-paths much as we would use a pen to draw on a piece of paper without lifting the nib from the page - each sub-path starts from the point on the canvas where the last sub-path ended. Table 2 shows the methods that are available for drawing basic paths.

[image: Image]

The basic sequence for drawing a path is as follows:

	Call the beginPath method

	Move to the start position using the moveTo method

	Draw sub-paths with methods such as arc, lineTo, etc.

	Optionally call the closePath method

	Call the fill or stoke methods

In the sections that follow, I'll show you how to use this sequence with the different sub-path methods.

Drawing Paths with Lines

The simplest paths are those made up of straight lines. Listing 36-1 provides a demonstration.

Listing 36-1. Creating a path from straight-lines

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 canvas {border: thin solid black}

 body > * {float:left;}

 </style>

 </head>

 <body>

 <canvas id="canvas" width="500" height="140">

 Your browser doesn't support the <code>canvas</code> element

 </canvas>

 <script>

 var ctx = document.getElementById("canvas").getContext("2d");

 ctx.fillStyle = "yellow";

 ctx.strokeStyle = "black";

 ctx.lineWidth = 4;

 ctx.beginPath();

 ctx.moveTo(10, 10);

 ctx.lineTo(110, 10);

 ctx.lineTo(110, 120);

 ctx.closePath();

 ctx.fill();

 ctx.beginPath();

 ctx.moveTo(150, 10);

 ctx.lineTo(200, 10);

 ctx.lineTo(200, 120);

 ctx.lineTo(190, 120);

 ctx.fill();

 ctx.stroke();

 ctx.beginPath();

 ctx.moveTo(250, 10);

 ctx.lineTo(250, 120);

 ctx.stroke();

 </script>

 </body>

</html>

In this example, I have created three paths. You can see how they appear on the canvas in Figure 36-1.

[image: Image]

Figure 36-1. Creating simple paths with the lineTo method

For the first path, I explicitly drew two lines and then used the closePath method. The canvas will close the path. I then call the fill method to fill the shape with the style specified by the fillStyle property (I have used a solid color in this example, but we can use any of the gradients and patterns described in Chapter 35).

For the second shape, I specified three sub-paths, but didn't close the shape. You can see that I called both the fill and stroke methods to fill the shape with color and draw a line along the path. Notice that the fill color is drawn as though the shape were closed. The canvas element assumes a sub-path from the last point to the first and uses this to fill the shape. By contrast, the stroke method only follows sub-paths that have been defined.

[image: Image] Tip For the second shape, I called the fill method before the stroke method, which causes the canvas to fill the shape with solid color and then draw a line that follows the path. We get a different visual effect if the lineWidth property is greater than 1 and we call the stroke method first. Wider lines are drawn on both sides of the path, so part of the line is covered by the fill method when it is called, effectively narrowing the line width.

For the third shape, I have simply drawn a line between two points because paths don't have to have multiple sub-paths. When we draw lines or leave shapes open, we can use the lineCap property to set the style for how the line is terminated. The three allowed values for this property are: butt, round, and square (butt is the default). Listing 36-2 shows this property and each of its values in use.

Listing 36-2. Setting the lineCap property

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 canvas {border: thin solid black}

 body > * {float:left;}

 </style>

 </head>

 <body>

 <canvas id="canvas" width="200" height="140">

 Your browser doesn't support the <code>canvas</code> element

 </canvas>

 <script>

 var ctx = document.getElementById("canvas").getContext("2d");

 ctx.strokeStyle = "red";

 ctx.lineWidth = "2";

 ctx.beginPath();

 ctx.moveTo(0, 50);

 ctx.lineTo(200, 50);

 ctx.stroke();

 ctx.strokeStyle = "black";

 ctx.lineWidth = 40;

 var xpos = 50;

 var styles = ["butt", "round", "square"];

 for (var i = 0; i < styles.length; i++) {

 ctx.beginPath();

 ctx.lineCap = styles[i];

 ctx.moveTo(xpos, 50);

 ctx.lineTo(xpos, 150);

 ctx.stroke();

 xpos += 50;

 }

 </script>

 </body>

</html>

The script in this example draws a very thick line for each of the styles. I have also added a guide line to demonstrate that the round and square styles are drawn beyond the end of the line, as shown in Figure 36-2.

[image: Image]

Figure 36-2. The three lineCap styles

Drawing Rectangles

The rect method adds a rectangular sub-path to the current path. If you need a stand-alone rectangle, then the fillRect and strokeRect methods described in Chapter 35 are more suitable. The rect method is useful when you need to add a rectangle to a more complex shape, as demonstrated by Listing 36-3.

Listing 36-3. Drawing a rectangle with the rect method

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 canvas {border: thin solid black}

 body > * {float:left;}

 </style>

 </head>

 <body>

 <canvas id="canvas" width="500" height="140">

 Your browser doesn't support the <code>canvas</code> element

 </canvas>

 <script>

 var ctx = document.getElementById("canvas").getContext("2d");

 ctx.fillStyle = "yellow";

 ctx.strokeStyle = "black";

 ctx.lineWidth = 4;

 ctx.beginPath();

 ctx.moveTo(110, 10);

 ctx.lineTo(110, 100);

 ctx.lineTo(10, 10);

 ctx.closePath();

 ctx.rect(110, 10, 100, 90);

 ctx.rect(110, 100, 130, 30);

 ctx.fill();

 ctx.stroke();

 </script>

 </body>

</html>

We don't have to use the moveTo method when using the rect method because we specify the coordinates of the rectangle as the first two method arguments. In the listing, I have drawn a pair of lines, called closePath to create a triangle and then drawn two adjoining rectangles. You can see the result in Figure 36-3.

[image: Image]

Figure 36-3. Using the rect method to draw rectangles

Sub-paths don't have to touch to form part of a path. We can have several disconnected sub-paths and they are still treated as being part of the same shape. Listing 36-4 gives a demonstration.

Listing 36-4. Working with disconnected sub-paths

...

<script>

 var ctx = document.getElementById("canvas").getContext("2d");

 ctx.fillStyle = "yellow";

 ctx.strokeStyle = "black";

 ctx.lineWidth = 4;

 ctx.beginPath();

 ctx.moveTo(110, 10);

 ctx.lineTo(110, 100);

 ctx.lineTo(10, 10);

 ctx.closePath();

 ctx.rect(120, 10, 100, 90);

 ctx.rect(150, 110, 130, 20);

 ctx.fill();

 ctx.stroke();

</script>

...

In this example, the sub-paths are not connected, but the overall result is still a single path. When I call the stroke or fill methods, the effects are applied to all of the sub-paths I created, as you can see in Figure 36-4.

[image: Image]

Figure 36-4. Using disconnected sub-paths

Drawing Arcs

We use the arc and arcTo methods to draw arcs on the canvas, although each method draws the arc in a different way. Table 36-3 describes the arc-related methods in the canvas.

[image: Image]

Using the arcTo Method

Listing 36-5 demonstrates using the arcTo method.

Listing 36-5. Using the arcTo method

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 canvas {border: thin solid black}

 body > * {float:left;}

 </style>

 </head>

 <body>

 <canvas id="canvas" width="500" height="140">

 Your browser doesn't support the <code>canvas</code> element

 </canvas>

 <script>

 var ctx = document.getElementById("canvas").getContext("2d");

 var point1 = [100, 10];

 var point2 = [200, 10];

 var point3 = [200, 110];

 ctx.fillStyle = "yellow";

 ctx.strokeStyle = "black";

 ctx.lineWidth = 4;

 ctx.beginPath();

 ctx.moveTo(point1[0], point1[1]);

 ctx.arcTo(point2[0], point2[1], point3[0], point3[1], 100);

 ctx.stroke();

 drawPoint(point1[0], point1[1]);

 drawPoint(point2[0], point2[1]);

 drawPoint(point3[0], point3[1]);

 ctx.beginPath();

 ctx.moveTo(point1[0], point1[1]);

 ctx.lineTo(point2[0], point2[1]);

 ctx.lineTo(point3[0], point3[1]);

 ctx.stroke();

 function drawPoint(x, y) {

 ctx.lineWidth = 1;

 ctx.strokeStyle = "red";

 ctx.strokeRect(x -2, y-2, 4, 4);

 }

 </script>

 </body>

</html>

The arc drawn by the arcTo method depends on two lines. The first line is drawn from the end of the last sub-path to the point described by the first two method arguments. The second line is drawn from the point described by the first two arguments to the point described by the third and fourth arguments. The arc is then drawn as the shortest line between the end of the last sub-path and the second point that describes an arc of a circle with the radius specified by the last argument. To make this easier to understand, I have added some additional paths to the canvas to provide some context, as shown in Figure 36-5.

[image: Image]

Figure 36-5. Using the arcTo method

You can see the two lines drawn in red. I have specified a radius and the length of both lines are all the same, which means that we end up with a neat curve that just touches the last point of the previous sub-path and the point described by the third and fourth method arguments. The radius and the line lengths are not always so conveniently sized, so the canvas will adjust the arc it draws as required. As a demonstration, Listing 36-6 uses the events described in Chapter 30 to monitor mouse movements and draw arc lines for different points as the mouse is moved across the screen.

Listing 36-6. Drawing arcs in response to mouse movements

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 canvas {border: thin solid black}

 body > * {float:left;}

 </style>

 </head>

 <body>

 <canvas id="canvas" width="500" height="140">

 Your browser doesn't support the <code>canvas</code> element

 </canvas>

 <script>

 var canvasElem = document.getElementById("canvas");

 var ctx = canvasElem.getContext("2d");

 var point1 = [100, 10];

 var point2 = [200, 10];

 var point3 = [200, 110];

 draw();

 canvasElem.onmousemove = function (e) {

 if (e.ctrlKey) {

 point1 = [e.clientX, e.clientY];

 } else if(e.shiftKey) {

 point2 = [e.clientX, e.clientY];

 } else {

 point3 = [e.clientX, e.clientY];

 }

 ctx.clearRect(0, 0, 540, 140);

 draw();

 }

 function draw() {

 ctx.fillStyle = "yellow";

 ctx.strokeStyle = "black";

 ctx.lineWidth = 4;

 ctx.beginPath();

 ctx.moveTo(point1[0], point1[1]);

 ctx.arcTo(point2[0], point2[1], point3[0], point3[1], 50);

 ctx.stroke();

 drawPoint(point1[0], point1[1]);

 drawPoint(point2[0], point2[1]);

 drawPoint(point3[0], point3[1]);

 ctx.beginPath();

 ctx.moveTo(point1[0], point1[1]);

 ctx.lineTo(point2[0], point2[1]);

 ctx.lineTo(point3[0], point3[1]);

 ctx.stroke();

 }

 function drawPoint(x, y) {

 ctx.lineWidth = 1;

 ctx.strokeStyle = "red";

 ctx.strokeRect(x -2, y-2, 4, 4);

 }

 </script>

 </body>

</html>

The script in this example moves different points based on which key is pressed as the mouse is moved. If the control key is pressed, the first point is moved (the one that represents the end of the previous sub-path). If the shift key is pressed, the second point is moved (the point represented by the first two arguments to the arcTo method). If neither key is pressed, the third point is moved (the one represented by the third and fourth method arguments). It is worth spending a moment playing with this example to get a sense for how the arc relates to the position of the two lines. You can see a snapshot of this in Figure 36-6.

[image: Image]

Figure 36-6. The relationship between the lines and the arc

Using the arc Method

The arc method is a little simpler to work with. We specify a point on the canvas using the first two method arguments. We specify the radius of the arc with the third argument and then we specify the start and end angle for the arc. The final argument specifies whether the arc is drawn in the clockwise or anticlockwise direction. Listing 36-7 gives some examples.

Listing 36-7. Using the arc method

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 canvas {border: thin solid black}

 body > * {float:left;}

 </style>

 </head>

 <body>

 <canvas id="canvas" width="500" height="140">

 Your browser doesn't support the <code>canvas</code> element

 </canvas>

 <script>

 var ctx = document.getElementById("canvas").getContext("2d");

 ctx.fillStyle = "yellow";

 ctx.lineWidth = "3";

 ctx.beginPath();

 ctx.arc(70, 70, 60, 0, Math.PI * 2, true);

 ctx.stroke();

 ctx.beginPath();

 ctx.arc(200, 70, 60, Math.PI/2, Math.PI, true);

 ctx.fill();

 ctx.stroke();

 ctx.beginPath();

 var val = 0;

 for (var i = 0; i < 4; i++) {

 ctx.arc(350, 70, 60, val, val + Math.PI/4, false);

 val+= Math.PI/2;

 }

 ctx.closePath();

 ctx.fill();

 ctx.stroke();

 </script>

 </body>

</html>

You can see the shapes that are described by these arcs in Figure 36-7.

[image: Image]

Figure 36-7. Using the arc method

As the first and second arcs show, we can use the arc method to draw complete circles or regular arcs, just as you would expect. However, as the third shape shows, we can use the arc method to create more complex paths. If we use the arc method and we have already drawn a sub-path, then a line is drawn directly from the end of the previous sub-path to the coordinates described by the first two arguments to the arc method. This line is drawn in addition to the arc we described. I use this quirk in conjunction with a for loop to connect together four small arcs drawn around the same point, leading to the shape shown in the Figure 36-7.

Drawing Bezier Curves

The canvas supports drawing two kinds of Bezier curves: cubic and quadratic. You have probably used Bezier curves in a drawing package. We pick a start and end point and then add one or more control points that shape the curve. The problem with Bezier curves on the canvas is that we don't have any visual feedback, which makes it harder to get the curves we want. In the examples that follow, I'll add some code to the script to provide some context, but in a real project you‘ll have to experiment to get the curves you require. Table 36-4 shows the methods we can use to draw curves.

[image: Image]

Drawing Cubic Bezier Curves

The bezierCurveTo method draws a curve from the end of the previous sub-path to the point specified by the 5th and 6th method arguments. There are two controls points – these are specified by the first four arguments. Listing 36-8 shows the use of this method (and with some additional paths to make it easier to understand the relationship between the argument values and the curve that is produced).

Listing 36-8. Drawing cubic Bezier curves

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 canvas {border: thin solid black}

 body > * {float:left;}

 </style>

 </head>

 <body>

 <canvas id="canvas" width="500" height="140">

 Your browser doesn't support the <code>canvas</code> element

 </canvas>

 <script>

 var canvasElem = document.getElementById("canvas");

 var ctx = canvasElem.getContext("2d");

 var startPoint = [50, 100];

 var endPoint = [400, 100];

 var cp1 = [250, 50];

 var cp2 = [350, 50];

 canvasElem.onmousemove = function(e) {

 if (e.shiftKey) {

 cp1 = [e.clientX, e.clientY];

 } else if (e.ctrlKey) {

 cp2 = [e.clientX, e.clientY];

 }

 ctx.clearRect(0, 0, 500, 140);

 draw();

 }

 draw();

 function draw() {

 ctx.lineWidth = 3;

 ctx.strokeStyle = "black";

 ctx.beginPath();

 ctx.moveTo(startPoint[0], startPoint[1]);

 ctx.bezierCurveTo(cp1[0], cp1[1], cp2[0], cp2[1],

 endPoint[0], endPoint[1]);

 ctx.stroke();

 ctx.lineWidth = 1;

 ctx.strokeStyle = "red";

 var points = [startPoint, endPoint, cp1, cp2];

 for (var i = 0; i < points.length; i++) {

 drawPoint(points[i]);

 }

 drawLine(startPoint, cp1);

 drawLine(endPoint, cp2);

 }

 function drawPoint(point) {

 ctx.beginPath();

 ctx.strokeRect(point[0] -2, point[1] -2, 4, 4);

 }

 function drawLine(from, to) {

 ctx.beginPath();

 ctx.moveTo(from[0], from[1]);

 ctx.lineTo(to[0], to[1]);

 ctx.stroke();

 }

 </script>

 </body>

</html>

To give you a sense of how the curves are drawn, the script in this example moves the control points on a Bezier curve in response to mouse movement. If the shift key is pressed then the first control point is moved. The second control point is moved if the control key is pressed. You can see the effect in Figure 36-8.

[image: Image]

Figure 36-8. Drawing a cubic Bezier curve

Drawing Quadratic Bezier Curves

A quadratic Bezier curve has only one control point and so the quadraticCurveTo method has two fewer arguments than the bezierCurveTo method. Listing 36-9 shows the previous example reworked to display a quadratic curve, drawn with the quadraticCurveTo method.

Listing 36-9. Drawing a quadratic Bezier curve

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 canvas {border: thin solid black}

 body > * {float:left;}

 </style>

 </head>

 <body>

 <canvas id="canvas" width="500" height="140">

 Your browser doesn't support the <code>canvas</code> element

 </canvas>

 <script>

 var canvasElem = document.getElementById("canvas");

 var ctx = canvasElem.getContext("2d");

 var startPoint = [50, 100];

 var endPoint = [400, 100];

 var cp1 = [250, 50];

 canvasElem.onmousemove = function(e) {

 if (e.shiftKey) {

 cp1 = [e.clientX, e.clientY];

 }

 ctx.clearRect(0, 0, 500, 140);

 draw();

 }

 draw();

 function draw() {

 ctx.lineWidth = 3;

 ctx.strokeStyle = "black";

 ctx.beginPath();

 ctx.moveTo(startPoint[0], startPoint[1]);

 ctx.quadraticCurveTo(cp1[0], cp1[1], endPoint[0], endPoint[1]);

 ctx.stroke();

 ctx.lineWidth = 1;

 ctx.strokeStyle = "red";

 var points = [startPoint, endPoint, cp1];

 for (var i = 0; i < points.length; i++) {

 drawPoint(points[i]);

 }

 drawLine(startPoint, cp1);

 drawLine(endPoint, cp1);

 }

 function drawPoint(point) {

 ctx.beginPath();

 ctx.strokeRect(point[0] -2, point[1] -2, 4, 4);

 }

 function drawLine(from, to) {

 ctx.beginPath();

 ctx.moveTo(from[0], from[1]);

 ctx.lineTo(to[0], to[1]);

 ctx.stroke();

 }

 </script>

 </body>

</html>

You can see an example curve in Figure 36-9.

[image: Image]

Figure 36-9. A quadratic Bezier curve

Creating a Clipping Region

As demonstrated earlier in this chapter, we can use the stroke and fill methods to draw or fill a path. There is an alternative, which is to use the method described in Table 36-5.

[image: Image]

Once we define a clipping region, only paths that occur inside of the region are shown on the screen. Listing 36-10 gives a demonstration.

Listing 36-10. Using a clipping region

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 canvas {border: thin solid black}

 body > * {float:left;}

 </style>

 </head>

 <body>

 <canvas id="canvas" width="500" height="140">

 Your browser doesn't support the <code>canvas</code> element

 </canvas>

 <script>

 var ctx = document.getElementById("canvas").getContext("2d");

 ctx.fillStyle = "yellow";

 ctx.beginPath();

 ctx.rect(0, 0, 500, 140);

 ctx.fill();

 ctx.beginPath();

 ctx.rect(100, 20, 300, 100);

 ctx.clip();

 ctx.fillStyle = "red";

 ctx.beginPath();

 ctx.rect(0, 0, 500, 140);

 ctx.fill();

 </script>

 </body>

</html>

The script in this example draws a rectangle that fills the canvas, creates a smaller clipping region and then draws another canvas-filling rectangle. As you can see in Figure 36-10, only the part of the second rectangle which fits within the clipping region is drawn.

[image: Image]

Figure 36-10. The effect of a clipping region

Drawing Text

We can draw text on the canvas, although the support for doing so is pretty basic. Table 36-6 shows the methods available.

[image: Image]

[image: Image]

There are three drawing state properties that we can use to control the way that text is drawn, as shown in Table 36-7.

[image: Image]

Listing 36-11 shows how we can fill and stroke text. We specify the value for the font property using the same format string as for the CSS font shorthand property, which I described in Chapter 22.

Listing 36-11. Drawing text on the canvas

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 canvas {border: thin solid black}

 body > * {float:left;}

 </style>

 </head>

 <body>

 <canvas id="canvas" width="350" height="140">

 Your browser doesn't support the <code>canvas</code> element

 </canvas>

 <script>

 var ctx = document.getElementById("canvas").getContext("2d");

 ctx.fillStyle = "lightgrey";

 ctx.strokeStyle = "black";

 ctx.lineWidth = 3;

 ctx.font = "100px sans-serif";

 ctx.fillText("Hello", 50, 100);

 ctx.strokeText("Hello", 50, 100);

 </script>

 </body>

</html>

Text is drawn using the fillStyle and strokeStyle properties, meaning that we have the same set of colors, gradients and patterns as for shapes. In this example, I have filled and stroked the text in two solid colors. You can see the effect in Figure 36-11.

[image: Image]

Figure 36-11. Filling and stroking text

Using Effects and Transformations

We can apply a number of effects and transformations to the canvas, as described in the following sections.

Using Shadows

There are four drawing state properties that we can use to add shadows to the shapes and text we draw on the canvas. These properties are described in Table 36-8.

[image: Image]

Listing 36-12 shows how we can apply shadows using these properties.

Listing 36-12. Applying shadows to shapes and text

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 canvas {border: thin solid black}

 body > * {float:left;}

 </style>

 </head>

 <body>

 <canvas id="canvas" width="500" height="140">

 Your browser doesn't support the <code>canvas</code> element

 </canvas>

 <script>

 var ctx = document.getElementById("canvas").getContext("2d");

 ctx.fillStyle = "lightgrey";

 ctx.strokeStyle = "black";

 ctx.lineWidth = 3;

 ctx.shadowOffsetX = 5;

 ctx.shadowOffsetY = 5;

 ctx.shadowBlur = 5;

 ctx.shadowColor = "grey";

 ctx.strokeRect(250, 20, 100, 100);

 ctx.beginPath();

 ctx.arc(420, 70, 50, 0, Math.PI, true);

 ctx.stroke();

 ctx.beginPath();

 ctx.arc(420, 80, 40, 0, Math.PI, false);

 ctx.fill();

 ctx.font = "100px sans-serif";

 ctx.fillText("Hello", 10, 100);

 ctx.strokeText("Hello", 10, 100);

 </script>

 </body>

</html>

This example applies shadows to text, a rectangle, a complete circle. and two arcs. As shown in Figure 36-12, the shadows are applied to shapes irrespective of whether they are open, closed, filled, or stroked.

[image: Image]

Figure 36-12. Applying shadows to text and shapes

Using Transparency

We can set the transparency of the text and shapes we draw in two ways. The first is to specify a fillStyle or strokeStyle value using the rgba function (instead of rgb), as described in Chapter 4. We can also use the globalAlpha drawing state property, which is applied universally. Listing 36-13 shows the use of the globalAlpha property.

Listing 36-13. Using the globalAlpha property

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 canvas {border: thin solid black}

 body > * {float:left;}

 </style>

 </head>

 <body>

 <canvas id="canvas" width="300" height="120">

 Your browser doesn't support the <code>canvas</code> element

 </canvas>

 <script>

 var ctx = document.getElementById("canvas").getContext("2d");

 ctx.fillStyle = "lightgrey";

 ctx.strokeStyle = "black";

 ctx.lineWidth = 3;

 ctx.font = "100px sans-serif";

 ctx.fillText("Hello", 10, 100);

 ctx.strokeText("Hello", 10, 100);

 ctx.fillStyle = "red";

 ctx.globalAlpha = 0.5;

 ctx.fillRect(100, 10, 150, 100);

 </script>

 </body>

</html>

The value for the globalAlpha values may range from 0 (completely transparent) to 1 (completely opaque, which is the default value). In this example, I draw some text, set the globalAlpha property to 0.5 and then fill a rectangle partly over the text. You can see the result in Figure 36-13.

[image: Image]

Figure 36-13. Using transparency through the globalAlpha property

Using Composition

We can use transparency in conjunction with the globalCompositeOperation property to control the way that shapes and text are drawn onto the canvas. The allowed values for this property are described in Table 36-9. For this property, the source consists of any operations performed once the property has been set and the destination image is the state of the canvas at the time that the property was set

[image: Image]

[image: Image]

The values for the globalCompositeOperation property can create some striking effects. Listing 36-14 contains a select element that contains options for all of the composition values. It is worth spending a moment playing with this example to see how each composition mode works.

Listing 36-14. Using the globalCompositeOperation property

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 canvas {border: thin solid black; margin: 4px;}

 body > * {float:left;}

 </style>

 </head>

 <body>

 <canvas id="canvas" width="300" height="120">

 Your browser doesn't support the <code>canvas</code> element

 </canvas>

 <label>Composition Value:</label><select id="list">

 <option>copy</option>

 <option>destination-atop</option><option>destination-in</option>

 <option>destination-over</option><option>distination-out</option>

 <option>lighter</option><option>source-atop</option>

 <option>source-in</option><option>source-out</option>

 <option>source-over</option><option>xor</option>

 </select>

 <script>

 var ctx = document.getElementById("canvas").getContext("2d");

 ctx.fillStyle = "lightgrey";

 ctx.strokeStyle = "black";

 ctx.lineWidth = 3;

 var compVal = "copy";

 document.getElementById("list").onchange = function(e) {

 compVal = e.target.value;

 draw();

 }

 draw();

 function draw() {

 ctx.clearRect(0, 0, 300, 120);

 ctx.globalAlpha = 1.0;

 ctx.font = "100px sans-serif";

 ctx.fillText("Hello", 10, 100);

 ctx.strokeText("Hello", 10, 100);

 ctx.globalCompositeOperation = compVal;

 ctx.fillStyle = "red";

 ctx.globalAlpha = 0.5;

 ctx.fillRect(100, 10, 150, 100);

 }

 </script>

 </body>

</html>

You can see the source-out and destination-over values in Figure 36-14. Some browsers interpret the styles in slightly different ways, so you may not see exactly what the figure shows.

[image: Image]

Figure 36-14. Using the globalCompositeOperation property

Using a Transformation

We can apply a transformation to the canvas, which is then applied to any subsequent drawing operations. Table 36-10 describes the transformation methods.

[image: Image]

The transformations created by these methods only apply to subsequent drawing operations – the existing contents of the canvas remain unchanged. Listing 36-15 shows how we can use the scale, rotate, and translate methods.

Listing 36-15. Using transformations

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 canvas {border: thin solid black; margin: 4px;}

 body > * {float:left;}

 </style>

 </head>

 <body>

 <canvas id="canvas" width="400" height="200">

 Your browser doesn't support the <code>canvas</code> element

 </canvas>

 <script>

 var ctx = document.getElementById("canvas").getContext("2d");

 ctx.fillStyle = "lightgrey";

 ctx.strokeStyle = "black";

 ctx.lineWidth = 3;

 ctx.clearRect(0, 0, 300, 120);

 ctx.globalAlpha = 1.0;

 ctx.font = "100px sans-serif";

 ctx.fillText("Hello", 10, 100);

 ctx.strokeText("Hello", 10, 100);

 ctx.scale(1.3, 1.3);

 ctx.translate(100, -50);

 ctx.rotate(0.5);

 ctx.fillStyle = "red";

 ctx.globalAlpha = 0.5;

 ctx.fillRect(100, 10, 150, 100);

 ctx.strokeRect(0, 0, 300, 200);

 </script>

 </body>

</html>

In this example, I fill and stroke some text and then scale, translate, and rotate the canvas, which affects the filled rectangle and the stroked rectangle that I draw subsequently. You can see the effect in Figure 36-15.

[image: Image]

Figure 36-15. Transforming the canvas

Summary

In this chapter, I have shown how to draw on the canvas using different kinds of paths, including lines, rectangles, arc, and curves. I also demonstrated the canvas text facilities and how we can apply effects such as shadows and transparency. I finished this chapter by demonstrating the different composition modes and transformations that the canvas supports.

C H A P T E R 37

Using Drag & Drop

HTML5 adds support for drag and drop. This is something that we had to rely on JavaScript libraries such as jQuery to handle previously. The advantage of having drag and drop built into the browser is that it is properly integrated into the operating system and, as you will see, works between browsers.

It is still early days for this feature and there is a significant gap between the specification and the implementations offered by the mainstream browsers. Not all parts of the specification are implemented by all browsers and some features are implemented in substantially different ways. In this chapter, I have showed you what currently works. This isn't the complete set of features defined by the HTML5 standard, but it is enough to get up and running. Table 37-1 provides the summary for this chapter.

[image: Image]

[image: Image]

Creating the Source Items

We tell the browser which elements in the document can be dragged through the draggable attribute. There are three permitted values for this attribute, which are described in Table 37-2.

[image: Image]

The default is the auto value, which leaves the decision up to the browser, which typically means that all elements can be dragged by default and that we have to explicitly disable dragging by setting the draggable attribute to false. When using the drag and drop feature, I tend to explicitly set the draggable attribute to true, even though the mainstream browsers consider all elements to be draggable by default. Listing 37-1 shows a simple HTML document that has some elements that can be dragged.

Listing 37-1. Defining the draggable items

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 #src > * {float:left;}

 #target, #src > img {border: thin solid black; padding: 2px; margin:4px;}

 #target {height: 81px; width: 81px; text-align: center; display: table;}

 #target > p {display: table-cell; vertical-align: middle;}

 #target > img {margin: 1px;}

 </style>

 </head>

 <body>

 <div id="src">

 <div id="target">

 <p>Drop Here</p>

 </div

 </div>

 <script>

 var src = document.getElementById("src");

 var target = document.getElementById("target");

 </script>

 </body>

</html>

In this example, there are three img elements, each of which has the draggable attribute set to true. I have also created a div element with an id of target, which we will shortly set up to be the recipient of our dragged img elements. You can see how this document appears in the browser in Figure 37-1.

[image: Image]

Figure 37-1. Three draggable images and a target

We can drag the fruit images without doing any further work, but the browser will indicate that we can't drop them anywhere. This is usually done by showing a no-entry sign as the cursor, as shown in Figure 37-2.

[image: Image]

Figure 37-2. The browser showing that the dragged item cannot be dropped

Handling the Drag Events

We take advantage of the drag and drop feature through a series of events. These are events that are targeted at the dragged element and events that are targeted at potential drop zones. Table 37-3 describes those events that are for the dragged element.

[image: Image]

We can use these events to emphasize the drag operation visually, as demonstrated in Listing 37-2.

Listing 37-2. Using the events targeted at the dragged element

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 #src > * {float:left;}

 #target, #src > img {border: thin solid black; padding: 2px; margin:4px;}

 #target {height: 81px; width: 81px; text-align: center; display: table;}

 #target > p {display: table-cell; vertical-align: middle;}

 #target > img {margin: 1px;}

 img.dragged {background-color: lightgrey;}

 </style>

 </head>

 <body>

 <div id="src">

 <div id="target">

 <p id="msg">Drop Here</p>

 </div

 </div>

 <script>

 var src = document.getElementById("src");

 var target = document.getElementById("target");

 var msg = document.getElementById("msg");

 src.ondragstart = function(e) {

 e.target.classList.add("dragged");

 }

 src.ondragend = function(e) {

 e.target.classList.remove("dragged");

 msg.innerHTML = "Drop Here";

 }

 src.ondrag = function(e) {

 msg.innerHTML = e.target.id;

 }

 </script>

 </body>

</html>

I have defined a new CSS style that is applied to elements in the dragged class. I add the element that has been dragged to this class in response to the dragstart event and remove it from the class in response to the dragend event. In response to the drag event, I set the text displayed in the drop zone to be the id value of the dragged element. The drag event is called every few milliseconds during the drag operation, so this is not the most efficient technique, but it does demonstrate the event. You can see the effect in Figure 3. Note that we still don't have a working drop zone, but we are getting closer.

[image: Image]

Figure 37-3. Using the dragstart, dragend, and drag events

Creating the Drop Zone

To make an element a drop zone, we need to handle the dragenter and dragover events. These are two of the events which are targeted at the drop zone. The complete set is described in Table 37-4.

[image: Image]

The default action for the dragenter and dragover events is to refuse to accept any dragged items, so the most important thing we must do is prevent the default action from being performed. Listing 37-3 contains an example.

[image: Image] Note The specification for drag and drop tells us that we must also apply the dropzone attribute to the element we want to make into a drop zone, and that the value of the attribute should contain details of the operations and data types that we are willing to accept. This is not how the browsers actually implement the feature. For this chapter, I have described the way things really work, rather than how they have been specified.

Listing 37-3. Creating a drop zone by handling the dragenter and dragover events

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 #src > * {float:left;}

 #target, #src > img {border: thin solid black; padding: 2px; margin:4px;}

 #target {height: 81px; width: 81px; text-align: center; display: table;}

 #target > p {display: table-cell; vertical-align: middle;}

 #target > img {margin: 1px;}

 img.dragged {background-color: lightgrey;}

 </style>

 </head>

 <body>

 <div id="src">

 <div id="target">

 <p id="msg">Drop Here</p>

 </div>

 </div>

 <script>

 var src = document.getElementById("src");

 var target = document.getElementById("target");

 var msg = document.getElementById("msg");

 target.ondragenter = handleDrag;

 target.ondragover = handleDrag;

 function handleDrag(e) {

 e.preventDefault();

 }

 src.ondragstart = function(e) {

 e.target.classList.add("dragged");

 }

 src.ondragend = function(e) {

 e.target.classList.remove("dragged");

 msg.innerHTML = "Drop Here";

 }

 src.ondrag = function(e) {

 msg.innerHTML = e.target.id;

 }

 </script>

 </body>

</html>

With these additions, we have an active drop zone. When we drag an item over the drop zone element, the browser will indicate that it will be accepted if we drop it, as shown in Figure 37-4.

[image: Image]

Figure 37-4. The browser indicating that an item can be dropped

Receiving the Drop

We receive the dropped element by handling the drop event, which is triggered when an item is dropped on the drop zone element. Listing 37-4 shows how we can respond to the drop event using a global variable as a conduit between the dragged element and the drop zone.

Listing 37-4. Handling the drop event

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 #src > * {float:left;}

 #src > img {border: thin solid black; padding: 2px; margin:4px;}

 #target {border: thin solid black; margin:4px;}

 #target { height: 81px; width: 81px; text-align: center; display: table;}

 #target > p {display: table-cell; vertical-align: middle;}

 img.dragged {background-color: lightgrey;}

 </style>

 </head>

 <body>

 <div id="src">

 <div id="target">

 <p id="msg">Drop Here</p>

 </div>

 </div>

 <script>

 var src = document.getElementById("src");

 var target = document.getElementById("target");

 var msg = document.getElementById("msg");

 var draggedID;

 target.ondragenter = handleDrag;

 target.ondragover = handleDrag;

 function handleDrag(e) {

 e.preventDefault();

 }

 target.ondrop = function(e) {

 var newElem = document.getElementById(draggedID).cloneNode(false);

 target.innerHTML = "";

 target.appendChild(newElem);

 e.preventDefault();

 }

 src.ondragstart = function(e) {

 draggedID = e.target.id;

 e.target.classList.add("dragged");

 }

 src.ondragend = function(e) {

 var elems = document.querySelectorAll(".dragged");

 for (var i = 0; i < elems.length; i++) {

 elems[i].classList.remove("dragged");

 }

 }

 </script>

 </body>

</html>

I set the value of the draggedID variable when the dragstart event is triggered. This allows me to keep a note of the id attribute value of the element that has been dragged. When the drop event is triggered, I use this value to clone the img element that was dragged and add it as a child of the drop zone element.

[image: Image] Tip In the example, I prevented the default action for the drop event. Without this, the browser can do some unexpected things. For example, in this scenario, Firefox navigates away from the page and displays the image referenced by the src attribute of the dragged img element.

You can see the effect in Figure 37-5.

[image: Image]

Figure 37-5. Responding to the drag event

Working with the DataTransfer Object

The object dispatched along with the events triggered for drag and drop is DragEvent, which is derived from MouseEvent. The DragEvent object defines all of the functionality of the Event and MouseEvent objects (which is described in Chapter 30), with the additional property shown in Table 37-5.

[image: Image]

We use the DataTransfer object to transfer arbitrary data from the dragged element to the drop zone element. The properties and methods that the DataTransfer object defines are described in Table 37-6.

[image: Image]

In the previous example, I cloned the element itself; however, the DataTransfer object allows us a more sophisticated approach. The first thing we can do is to use the DataTransfer object to transfer data from the dragged element to the drop zone, as demonstrated in Listing 37-5.

Listing 37-5. Using the DataTransfer object to transfer data

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 #src > * {float:left;}

 #src > img {border: thin solid black; padding: 2px; margin:4px;}

 #target {border: thin solid black; margin:4px;}

 #target { height: 81px; width: 81px; text-align: center; display: table;}

 #target > p {display: table-cell; vertical-align: middle;}

 img.dragged {background-color: lightgrey;}

 </style>

 </head>

 <body>

 <div id="src">

 <div id="target">

 <p id="msg">Drop Here</p>

 </div>

 </div>

 <script>

 var src = document.getElementById("src");

 var target = document.getElementById("target");

 target.ondragenter = handleDrag;

 target.ondragover = handleDrag;

 function handleDrag(e) {

 e.preventDefault();

 }

 target.ondrop = function(e) {

 var droppedID = e.dataTransfer.getData("Text");

 var newElem = document.getElementById(droppedID).cloneNode(false);

 target.innerHTML = "";

 target.appendChild(newElem);

 e.preventDefault();

 }

 src.ondragstart = function(e) {

 e.dataTransfer.setData("Text", e.target.id);

 e.target.classList.add("dragged");

 }

 src.ondragend = function(e) {

 var elems = document.querySelectorAll(".dragged");

 for (var i = 0; i < elems.length; i++) {

 elems[i].classList.remove("dragged");

 }

 }

 </script>

 </body>

</html>

I use the setData method when responding to the dragstart event to set the data that I want to transfer. There are only two supported values for the first argument which specifies the type of data—Text or Url (and only Text is reliably supported by the browsers). The second argument is the data we want to transfer: in this case, the id attribute of the dragged element. To retrieve the value, I use the getData method, using the data type as the argument.

You might be wondering why this is a better approach than using a global variable. The answer is that it works across browsers, and by this, I don't mean across windows or tabs in the same browsers, but across different types of browser. This means that I can drag an element from a Chrome document and drop it in a Firefox document because the drag and drop support is integrated with the same feature in the operating system. If you open a text editor, type the word banana, select it and then drag it to the drop zone in the browser, you will see the banana image being displayed, just as it was when we dragged one of the img elements in the same document.

Filtering Dragged Items by Data

We can use the data stored in the DataTransfer object to be selective about the kinds of elements that we are willing to accept in the drop zone. Listing 37-6 shows how.

Listing 37-6. Using the DataTransfer object to filter dragged elements

…

<script>

 var src = document.getElementById("src");

 var target = document.getElementById("target");

 target.ondragenter = handleDrag;

 target.ondragover = handleDrag;

 function handleDrag(e) {

 if (e.dataTransfer.getData("Text") == "banana") {

 e.preventDefault();

 }

 }

 target.ondrop = function(e) {

 var droppedID = e.dataTransfer.getData("Text");

 var newElem = document.getElementById(droppedID).cloneNode(false);

 target.innerHTML = "";

 target.appendChild(newElem);

 e.preventDefault();

 }

 src.ondragstart = function(e) {

 e.dataTransfer.setData("Text", e.target.id);

 e.target.classList.add("dragged");

 }

 src.ondragend = function(e) {

 var elems = document.querySelectorAll(".dragged");

 for (var i = 0; i < elems.length; i++) {

 elems[i].classList.remove("dragged");

 }

 }

</script>

…

In this example, I get the data value from the DataTransfer object and check to see what it is. I indicate that I am willing to accept the dragged element only if the data value is banana. This has the effect of filtering out the apple and cherry images. When the user drags these over the drop-zone, the browser will indicate that they cannot be dropped.

[image: Image] Tip This kind of filtering doesn't work in Chrome, as the getData method doesn't work when called in handlers for the dragenter and dragover events.

Dragging and Dropping Files

Hidden deep in the browser is another new HTML5 feature, called the File API, which allows us to work with files on the local machine, albeit in a tightly controlled manner. Part of the control is that we don't usually interact with the File API directly. Instead, it is exposed through other features, including drag and drop. Listing 37-7 shows how we can use the File API to respond when the use drags files from the operating system and drops them in our drop zone.

Listing 37-7. Dealing with files

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 body > * {float: left;}

 #target {border: medium double black; margin:4px; height: 75px;

 width: 200px; text-align: center; display: table;}

 #target > p {display: table-cell; vertical-align: middle;}

 table {margin: 4px; border-collapse: collapse;}

 th, td {padding: 4px};

 </style>

 </head>

 <body>

 <div id="target">

 <p id="msg">Drop Files Here</p>

 </div>

 <table id="data" border="1">

 </table>

 <script>

 var target = document.getElementById("target");

 target.ondragenter = handleDrag;

 target.ondragover = handleDrag;

 function handleDrag(e) {

 e.preventDefault();

 }

 target.ondrop = function(e) {

 var files = e.dataTransfer.files;

 var tableElem = document.getElementById("data");

 tableElem.innerHTML = "<tr><th>Name</th><th>Type</th><th>Size</th></tr>";

 for (var i = 0; i < files.length; i++) {

 var row = "<tr><td>" + files[i].name + "</td><td>" +

 files[i].type+ "</td><td>" +

 files[i].size + "</td></tr>";

 tableElem.innerHTML += row;

 }

 e.preventDefault();

 }

 </script>

 </body>

</html>

When the user drops files on our drop zone, the files property of the DataTransfer object returns a FileList object. We can treat this as an array of File objects, each of which represents a file that the user has dropped (the user can select multiple files and drop them in one go). Table 37-7 shows the properties of the File object.

[image: Image]

In the example, the script enumerates the files that are dropped on the drop zone and displays the values of the File properties in a table. You can see the effect in Figure37-6, where I have dropped some of example files on the drop zone.

[image: Image]

Figure 37-6. Displaying data about files

Uploading Dropped Files in a Form

We can combine the drag and drop feature, the File API and uploading data using an Ajax request to allow users to drag the files that want included in a form submission from the operating system. Listing 37-8 contains a demonstration.

Listing 37-8. Combining drag and drop, the File API and the FormData object

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 .table {display:table;}

 .row {display:table-row;}

 .cell {display: table-cell; padding: 5px;}

 .label {text-align: right;}

 #target {border: medium double black; margin:4px; height: 50px;

 width: 200px; text-align: center; display: table;}

 #target > p {display: table-cell; vertical-align: middle;}

 </style>

 </head>

 <body>

 <form id="fruitform" method="post" action="http://titan:8080/form">

 <div class="table">

 <div class="row">

 <div class="cell label">Bananas:</div>

 <div class="cell"><input name="bananas" value="2"/></div>

 </div>

 <div class="row">

 <div class="cell label">Apples:</div>

 <div class="cell"><input name="apples" value="5"/></div>

 </div>

 <div class="row">

 <div class="cell label">Cherries:</div>

 <div class="cell"><input name="cherries" value="20"/></div>

 </div>

 <div class="row">

 <div class="cell label">File:</div>

 <div class="cell"><input type="file" name="file"/></div>

 </div>

 <div class="row">

 <div class="cell label">Total:</div>

 <div id="results" class="cell">0 items</div>

 </div>

 </div>

 <div id="target">

 <p id="msg">Drop Files Here</p>

 </div>

 <button id="submit" type="submit">Submit Form</button>

 </form>

 <script>

 var target = document.getElementById("target");

 var httpRequest;

 var fileList;

 document.getElementById("submit").onclick = handleButtonPress;

 target.ondragenter = handleDrag;

 target.ondragover = handleDrag;

 function handleDrag(e) {

 e.preventDefault();

 }

 target.ondrop = function(e) {

 fileList = e.dataTransfer.files;

 e.preventDefault();

 }

 function handleButtonPress(e) {

 e.preventDefault();

 var form = document.getElementById("fruitform");

 var formData = new FormData(form);

 if (fileList || true) {

 for (var i = 0; i < fileList.length; i++) {

 formData.append("file" + i, fileList[i]);

 }

 }

 httpRequest = new XMLHttpRequest();

 httpRequest.onreadystatechange = handleResponse;

 httpRequest.open("POST", form.action);

 httpRequest.send(formData);

 }

 function handleResponse() {

 if (httpRequest.readyState == 4 && httpRequest.status == 200) {

 var data = JSON.parse(httpRequest.responseText);

 document.getElementById("results").innerHTML = "You ordered "

 + data.total + " items";

 }

 }

 </script>

 </body>

</html>

In this example, I have added a drop zone to an example taken from Chapter 33, where I demonstrated how to use the FormData object to upload form data to a server. We can include files dropped in the drop zone by using the FormData.append method, passing in a File object as the second argument to the method. When the form is submitted, the contents of the files will automatically be uploaded to the server as part of the form request.

Summary

In this chapter, I showed you the support for dragging and dropping elements. The implementation of this feature leaves a lot to be desired, but it holds promise and I expect that the mainstream browsers will start to address the inconsistencies before long. If you can't wait until then (or you don't care about dragging to and from other browsers and the operating system), then you should consider using a JavaScript library such as jQuery and jQuery UI.

C H A P T E R 38

Using Geolocation

The Geolocation API allows us to obtain information about the current geographic position of the user (or at least the position of the system on which the browser is running). This isn't part of the HTML5 specification, but it is usually grouped up as part of the new features associated with HTML5. Table 38-1 provides the summary for this chapter.

[image: Image]

Using Geolocation

We access the geolocation feature through the global navigator.geolocation property, which returns a Geolocation object – the methods of this object are described in Table 38-2.

[image: Image]

[image: Image]

Getting the Current Position

As its name suggests the getCurrentPosition method obtains the current position, although the position information isn't returned as the result of the method itself. Instead, we supply a success callback function which is invoked when the position information is available – this allows for the fact that there can be a delay between requesting the position and it becoming available. Listing 38-1 shows how we can get the position information using this method.

Listing 38-1. Obtaining the current position

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 table {border-collapse: collapse;}

 th, td {padding: 4px;}

 th {text-align: right;}

 </style>

 </head>

 <body>

 <table border="1">

 <tr>

 <th>Longitude:</th><td id="longitude">-</td>

 <th>Latitude:</th><td id="latitude">-</td>

 </tr>

 <tr>

 <th>Altitude:</th><td id="altitude">-</td>

 <th>Accuracy:</th><td id="accuracy">-</td>

 </tr>

 <tr>

 <th>Altitude Accuracy:</th><td id="altitudeAccuracy">-</td>

 <th>Heading:</th><td id="heading">-</td>

 </tr>

 <tr>

 <th>Speed:</th><td id="speed">-</td>

 <th>Time Stamp:</th><td id="timestamp">-</td>

 </tr>

 </table>

 <script>

 navigator.geolocation.getCurrentPosition(displayPosition);

 function displayPosition(pos) {

 var properties = ["longitude", "latitude", "altitude", "accuracy",

 "altitudeAccuracy", "heading", "speed"];

 for (var i = 0; i < properties.length; i++) {

 var value = pos.coords[properties[i]];

 document.getElementById(properties[i]).innerHTML = value;

 }

 document.getElementById("timestamp").innerHTML = pos.timestamp;

 }

 </script>

 </body>

</html>

The script in this example calls the getCurrentPosition, passing the displayPosition function as the method argument. When the position information is available, the nominated function is invoked and the browser passes in a Position object which gives the details of the position – the details are displayed in the cells of a table element. The Position object is pretty simple, as you can see in Table 38-3.

[image: Image]

We are really interested in the Coordinates object, which is returned by the Position.coords property. Table 38-4 describes the properties of the Coordinates object.

[image: Image]

Not all of the data values in the Coordinates object will be available all of the time. The mechanism by which the browser obtains the location information is unspecified and there are a number of techniques that are used. Mobile devices increasingly have GPS, accelerometer, and compass facilities, which means that the most accurate and complete data will be available on those platforms.

We can still get location information for other devices – the browsers use a geolocation service that tries to determine location based on network information. If your system has a Wi-Fi adaptor, then the networks that are in range are compared with a catalogue of networks taken as part of the surveys done for street-level views, such as Google Street View. If Wi-Fi isn't available, then the IP address provided by your ISP can be used to get a general idea of location.

The accuracy of locations inferred from network information varies, but it can be startlingly accurate. When I started testing this feature, I was surprised by just how narrowly my location was reported. In fact, it was so accurate, that I have substituted the location of the Empire State Building in the screenshots – with the real location information (derived from my and nearby Wi-Fi networks) you can easily find my house and see photos of my car on the driveway. Scary stuff – so much so that the first thing that all of the browsers do when a document uses the geolocation feature is ask the user to grant permission – you can see how Chrome does this in Figure 38-1.

[image: Image]

Figure 38-1. Granting permission for the geolocation feature

If the user approves the request, then the location information is obtained and, when it is available, the callback function is invoked. You can see the kind of data available from my desktop machine in Figure 38-2.

[image: Image]

Figure 38-2. Displaying location information provided by the geolocation service

The computer that I use to write books doesn't have any kind of specialized location hardware installed – no GPS, compass, altimeter, or accelerometer. For that reason, the only data that is available is latitude and longitude and the accuracy of those values. For my location, Chrome estimates that I am within 69 meters (which is about 75 yards) of the position that has been reported (which is an underestimation in my case).

[image: Image] Tip Chrome, Firefox, and Opera all use the Google geolocation service. Internet Explorer and Safari use their own. I can only report on my location, but the Microsoft service reported accuracy to around 48,000 meters (about 30 miles). I found that the data was accurate to about 3 miles. The Apple service reported an accuracy of 500 meters, but provided the best data of all – it identified my location within a few feet. Wow!

Handling Geolocation Errors

We can provide a second argument to the getCurrentPosition method, which allows us to supply a function that will be invoked if there is an error obtaining the location. The function is passed a PositionError object, which defines the properties described in Table 38-5.

[image: Image]

There are three possible values for the code property. These properties are described in Table 38-6.

[image: Image]

Listing 38-2 shows how we can receive errors using the PositionError object.

Listing 38-2. Handling errors with the PositionError object

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 table {border-collapse: collapse;}

 th, td {padding: 4px;}

 th {text-align: right;}

 </style>

 </head>

 <body>

 <table border="1">

 <tr>

 <th>Longitude:</th><td id="longitude">-</td>

 <th>Latitude:</th><td id="latitude">-</td>

 </tr>

 <tr>

 <th>Altitude:</th><td id="altitude">-</td>

 <th>Accuracy:</th><td id="accuracy">-</td>

 </tr>

 <tr>

 <th>Altitude Accuracy:</th><td id="altitudeAccuracy">-</td>

 <th>Heading:</th><td id="heading">-</td>

 </tr>

 <tr>

 <th>Speed:</th><td id="speed">-</td>

 <th>Time Stamp:</th><td id="timestamp">-</td>

 </tr>

 <tr>

 <th>Error Code:</th><td id="errcode">-</td>

 <th>Error Message:</th><td id="errmessage">-</td>

 </tr>

 </table>

 <script>

 navigator.geolocation.getCurrentPosition(displayPosition, handleError);

 function displayPosition(pos) {

 var properties = ["longitude", "latitude", "altitude", "accuracy",

 "altitudeAccuracy", "heading", "speed"];

 for (var i = 0; i < properties.length; i++) {

 var value = pos.coords[properties[i]];

 document.getElementById(properties[i]).innerHTML = value;

 }

 document.getElementById("timestamp").innerHTML = pos.timestamp;

 }

 function handleError(err) {

 document.getElementById("errcode").innerHTML = err.code;

 document.getElementById("errmessage").innerHTML = err.message;

 }

 </script>

 </body>

</html>

The simplest way to create an error is to refuse permission when prompted by the browser. The script in this example displays the details of the error in the table element and you can see the effect in Figure 38-3.

[image: Image]

Figure 38-3. Displaying details of a geolocation error

Specifying Geolocation Options

The third argument we can provide to the getCurrentPosition method is a PositionOptions object. This feature allows us to exert some control over the way that locations are obtained. Table 38-7 shows the properties that this object defines.

[image: Image]

Setting the highAccuracy property to true only asks the browser to give the best possible result – there are no guarantees that it will lead to a more accurate location. For mobile devices, a more accurate location may be available if a power-saving mode is disabled or, in some cases, the GPS feature is switched on (low accuracy locations may be derived from Wi-Fi or cell tower data). For other devices, there may not be higher-accuracy data available. Listing 38-3 shows how we can use the PositionOptions object when requesting a location.

Listing 38-3. Specifying options when requesting location data

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 table {border-collapse: collapse;}

 th, td {padding: 4px;}

 th {text-align: right;}

 </style>

 </head>

 <body>

 <table border="1">

 <tr>

 <th>Longitude:</th><td id="longitude">-</td>

 <th>Latitude:</th><td id="latitude">-</td>

 </tr>

 <tr>

 <th>Altitude:</th><td id="altitude">-</td>

 <th>Accuracy:</th><td id="accuracy">-</td>

 </tr>

 <tr>

 <th>Altitude Accuracy:</th><td id="altitudeAccuracy">-</td>

 <th>Heading:</th><td id="heading">-</td>

 </tr>

 <tr>

 <th>Speed:</th><td id="speed">-</td>

 <th>Time Stamp:</th><td id="timestamp">-</td>

 </tr>

 <tr>

 <th>Error Code:</th><td id="errcode">-</td>

 <th>Error Message:</th><td id="errmessage">-</td>

 </tr>

 </table>

 <script>

 var options = {

 enableHighAccuracy: false,

 timeout: 2000,

 maximumAge: 30000

 };

 navigator.geolocation.getCurrentPosition(displayPosition,

 handleError, options);

 function displayPosition(pos) {

 var properties = ["longitude", "latitude", "altitude", "accuracy",

 "altitudeAccuracy", "heading", "speed"];

 for (var i = 0; i < properties.length; i++) {

 var value = pos.coords[properties[i]];

 document.getElementById(properties[i]).innerHTML = value;

 }

 document.getElementById("timestamp").innerHTML = pos.timestamp;

 }

 function handleError(err) {

 document.getElementById("errcode").innerHTML = err.code;

 document.getElementById("errmessage").innerHTML = err.message;

 }

 </script>

 </body>

</html>

There is an oddity here in that we don't create a new PositionOptions object. Instead, we create a plain Object and define properties that match those in the table. In this example, I have indicated that I don't require the best level of resolution, that I am prepared to wait for 2 seconds before the request should timeout and I am willing to accept data that has been cached for up to 30 seconds.

Monitoring the Position

We can receive ongoing updates about the position by using the watchPosition method. This method takes the same arguments as the getCurrentPosition method and works in the same way – the difference is that the callback functions will be repeatedly called as the position changes. Listing 38-4 shows how we can use the watchPosition method.

Listing 38-4. Using the watchPosition method

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 table {border-collapse: collapse;}

 th, td {padding: 4px;}

 th {text-align: right;}

 </style>

 </head>

 <body>

 <table border="1">

 <tr>

 <th>Longitude:</th><td id="longitude">-</td>

 <th>Latitude:</th><td id="latitude">-</td>

 </tr>

 <tr>

 <th>Altitude:</th><td id="altitude">-</td>

 <th>Accuracy:</th><td id="accuracy">-</td>

 </tr>

 <tr>

 <th>Altitude Accuracy:</th><td id="altitudeAccuracy">-</td>

 <th>Heading:</th><td id="heading">-</td>

 </tr>

 <tr>

 <th>Speed:</th><td id="speed">-</td>

 <th>Time Stamp:</th><td id="timestamp">-</td>

 </tr>

 <tr>

 <th>Error Code:</th><td id="errcode">-</td>

 <th>Error Message:</th><td id="errmessage">-</td>

 </tr>

 </table>

 <button id="pressme">Cancel Watch</button>

 <script>

 var options = {

 enableHighAccuracy: false,

 timeout: 2000,

 maximumAge: 30000

 };

 var watchID = navigator.geolocation.watchPosition(displayPosition,

 handleError,

 options);

 document.getElementById("pressme").onclick = function(e) {

 navigator.geolocation.clearWatch(watchID);

 };

 function displayPosition(pos) {

 var properties = ["longitude", "latitude", "altitude", "accuracy",

 "altitudeAccuracy", "heading", "speed"];

 for (var i = 0; i < properties.length; i++) {

 var value = pos.coords[properties[i]];

 document.getElementById(properties[i]).innerHTML = value;

 }

 document.getElementById("timestamp").innerHTML = pos.timestamp;

 }

 function handleError(err) {

 document.getElementById("errcode").innerHTML = err.code;

 document.getElementById("errmessage").innerHTML = err.message;

 }

 </script>

 </body>

</html>

In this example, the script uses the watchPosition method to monitor the location. This method returns an ID value which we can pass to the clearWatch method when we want to stop monitoring. I do this when the button element is pressed.

[image: Image] Caution The current versions of the mainstream browsers don't implement the watchPosition method very well and updated locations are not always forthcoming. You may be better served using a timer (which I described in Chapter 27) and periodically calling the getCurrentPosition method.

Summary

In this chapter, I have described the Geolocation API, which provides information about the current location of the system that the browser is hosted by. I explained that the mechanism used by the browser to obtain location data varies and that location data isn't restricted only to those devices that have GPS support.

C H A P T E R 39

Using Web Storage

Web storage allows us to store simple key/value data in the browser. Wen storage is similar to cookies, but better implemented and we can store greater amounts of data. There are two kinds of web storage – local storage and session storage. Both types share the same mechanism, but the visibility of the stored data and its longevity differ. Table 39-1 provides the summary for this chapter.

[image: Image] Tip There is another storage specification, the Indexed Database API, which allows richer data storage and SQL-like queries. This specification is still volatile and the browser implementations are experimental and unstable as I write this.

[image: Image]

Using Local Storage

We access the local storage feature through the localStorage global property – this property returns a Storage object, which is described in Table 39-2. The Storage object is used to store pairs of strings, organized in key/value form.

[image: Image]

The Storage object allows us to store key/value pairs where both the key and the value are strings. Keys must be unique, which means the value is updated if we call the setItem method using a key that already exists in the Storage object. Listing 39-1 shows how we can add, modify, and clear the data in the local storage.

Listing 39-1. Working with local storage

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 body > * {float: left;}

 table {border-collapse: collapse; margin-left: 50px}

 th, td {padding: 4px;}

 th {text-align: right;}

 input {border: thin solid black; padding: 2px;}

 label {min-width: 50px; display: inline-block; text-align: right;}

 #countmsg, #buttons {margin-left: 50px; margin-top: 5px; margin-bottom: 5px;}

 </style>

 </head>

 <body>

 <div>

 <div><label>Key:</label><input id="key" placeholder="Enter Key"/></div>

 <div><label>Value:</label><input id="value" placeholder="Enter Value"/></div>

 <div id="buttons">

 <button id="add">Add</button>

 <button id="clear">Clear</button>

 </div>

 <p id="countmsg">There are items</p>

 </div>

 <table id="data" border="1">

 <tr><th>Item Count:</th><td id="count">-</td></tr>

 </table>

 <script>

 displayData();

 var buttons = document.getElementsByTagName("button");

 for (var i = 0; i < buttons.length; i++) {

 buttons[i].onclick = handleButtonPress;

 }

 function handleButtonPress(e) {

 switch (e.target.id) {

 case 'add':

 var key = document.getElementById("key").value;

 var value = document.getElementById("value").value;

 localStorage.setItem(key, value);

 break;

 case 'clear':

 localStorage.clear();

 break;

 }

 displayData();

 }

 function displayData() {

 var tableElem = document.getElementById("data");

 tableElem.innerHTML = "";

 var itemCount = localStorage.length;

 document.getElementById("count").innerHTML = itemCount;

 for (var i = 0; i < itemCount; i++) {

 var key = localStorage.key(i);

 var val = localStorage[key];

 tableElem.innerHTML += "<tr><th>" + key + ":</th><td>"

 + val + "</td></tr>";

 }

 }

 </script>

 </body>

</html>

In this example, I report on the number of items in the local storage and enumerate the set of stored name/value pairs to populate a table element. I have added two input elements, and I use their contents to store items when the Add button is pressed. In response to the Clear button, I clear the contents of the local storage. You can see the effect in Figure 39-1.

[image: Image]

Figure 39-1. Working with local storage

The browser won't delete the data we add using the localStorage object unless the user clears the browsing data. (The specification also allows the data to be removed for security reasons, but the kind of security problems that require local data to be deleted are not articulated.)

Listening for Storage Events

The data stored via the local storage feature is available to any document that has the same origin. The storage event is triggered when one document makes a change to the local storage and we can listen to this event in other documents from the same origin to make sure that we stay abreast of changes.

The object dispatched with the storage event is a StorageEvent object, whose members are described in Table 39-3.

[image: Image]

Listing 39-2 shows a document, which I have saved as storage.html, that listens and catalogues the events issued by the local storage object.

Listing 39-2. Cataloguing local storage events

<!DOCTYPE HTML>

<html>

 <head>

 <title>Storage</title>

 <style>

 table {border-collapse: collapse;}

 th, td {padding: 4px;}

 </style>

 </head>

 <body>

 <table id="data" border="1">

 <tr>

 <th>key</th>

 <th>oldValue</th>

 <th>newValue</th>

 <th>url</th>

 <th>storageArea</th>

 </tr>

 </table>

 <script>

 var tableElem = document.getElementById("data");

 window.onstorage = handleStorage;

 function handleStorage(e) {

 var row = "<tr>";

 row += "<td>" + e.key + "</td>";

 row += "<td>" + e.oldValue + "</td>";

 row += "<td>" + e.newValue + "</td>";

 row += "<td>" + e.url + "</td>";

 row += "<td>" + (e.storageArea == localStorage) + "</td></tr>";

 tableElem.innerHTML += row;

 };

 </script>

 </body>

</html>

The storage event is triggered through the Window object of any document that shares the changed storage. In this example, I add a new row to a table element each time an event is received – you can see the effect in Figure 39-2.

[image: Image]

Figure 39-2. Displaying the details of storage events

The events in the figure show me adding new items to local storage. The sequence was:

	Add a new pair: Banana/Yellow

	Add a new pair: Apple/Red

	Update the value associated with Apple to Green

	Add a new pair: Cherry/Red

	Press the Clear button (which calls the clear method)

You can see that null is used when there is no value to report in the event. For example, when I add a new item to storage, the oldValue property returns null. The last event in the table has the key, oldValue, and newValue properties as null. This is the event that was triggered in response to the clear method being called, which removes all of the items from storage.

The url property helpfully tells us which document has triggered the change. The storageArea property returns the Storage object that has changed, which can be the local or session storage objects (I'll explain session storage shortly). For this example, we only receive events from the local storage object.

[image: Image] Note Events are not dispatched within the document that made the change. I guess it is assumed that we already know what happened. The events are only available in other documents from the same origin.

Using Session Storage

Session storage works just like local storage, except that the data is private to each browsing context and is removed when the document is closed. We access session storage through the sessionStorage global variable, which returns a Storage object (previously described in Table 39-2). You can see session storage in use in Listing 39-3.

Listing 39-3. Using session storage

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 body > * {float: left;}

 table {border-collapse: collapse; margin-left: 50px}

 th, td {padding: 4px;}

 th {text-align: right;}

 input {border: thin solid black; padding: 2px;}

 label {min-width: 50px; display: inline-block; text-align: right;}

 #countmsg, #buttons {margin-left: 50px; margin-top: 5px; margin-bottom: 5px;}

 </style>

 </head>

 <body>

 <div>

 <div><label>Key:</label><input id="key" placeholder="Enter Key"/></div>

 <div><label>Value:</label><input id="value" placeholder="Enter Value"/></div>

 <div id="buttons">

 <button id="add">Add</button>

 <button id="clear">Clear</button>

 </div>

 <p id="countmsg">There are items</p>

 </div>

 <table id="data" border="1">

 <tr><th>Item Count:</th><td id="count">-</td></tr>

 </table>

 <script>

 displayData();

 var buttons = document.getElementsByTagName("button");

 for (var i = 0; i < buttons.length; i++) {

 buttons[i].onclick = handleButtonPress;

 }

 function handleButtonPress(e) {

 switch (e.target.id) {

 case 'add':

 var key = document.getElementById("key").value;

 var value = document.getElementById("value").value;

 sessionStorage.setItem(key, value);

 break;

 case 'clear':

 sessionStorage.clear();

 break;

 }

 displayData();

 }

 function displayData() {

 var tableElem = document.getElementById("data");

 tableElem.innerHTML = "";

 var itemCount = sessionStorage.length;

 document.getElementById("count").innerHTML = itemCount;

 for (var i = 0; i < itemCount; i++) {

 var key = sessionStorage.key(i);

 var val = sessionStorage[key];

 tableElem.innerHTML += "<tr><th>" + key + ":</th><td>"

 + val + "</td></tr>";

 }

 }

 </script>

 </body>

</html>

This example works in the same way as the one for local storage, except the visibility and life are restricted. These restrictions have a consequence on how the storage event is dealt with – remember that storage events are only triggered for documents that share storage. In the case of session storage, this means that the events will be triggered only for embedded documents, such as those in an iframe. Listing 39-4 shows an iframe added to the previous example which contains the storage.html document.

Listing 39-4. Using storage events with session storage

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 body > * {float: left;}

 table {border-collapse: collapse; margin-left: 50px}

 th, td {padding: 4px;}

 th {text-align: right;}

 input {border: thin solid black; padding: 2px;}

 label {min-width: 50px; display: inline-block; text-align: right;}

 #countmsg, #buttons {margin-left: 50px; margin-top: 5px; margin-bottom: 5px;}

 iframe {clear: left;}

 </style>

 </head>

 <body>

 <div>

 <div><label>Key:</label><input id="key" placeholder="Enter Key"/></div>

 <div><label>Value:</label><input id="value" placeholder="Enter Value"/></div>

 <div id="buttons">

 <button id="add">Add</button>

 <button id="clear">Clear</button>

 </div>

 <p id="countmsg">There are items</p>

 </div>

 <table id="data" border="1">

 <tr><th>Item Count:</th><td id="count">-</td></tr>

 </table>

 <iframe src="storage.html" width="500" height="175"></iframe>

 <script>

 displayData();

 var buttons = document.getElementsByTagName("button");

 for (var i = 0; i < buttons.length; i++) {

 buttons[i].onclick = handleButtonPress;

 }

 function handleButtonPress(e) {

 switch (e.target.id) {

 case 'add':

 var key = document.getElementById("key").value;

 var value = document.getElementById("value").value;

 sessionStorage.setItem(key, value);

 break;

 case 'clear':

 sessionStorage.clear();

 break;

 }

 displayData();

 }

 function displayData() {

 var tableElem = document.getElementById("data");

 tableElem.innerHTML = "";

 var itemCount = sessionStorage.length;

 document.getElementById("count").innerHTML = itemCount;

 for (var i = 0; i < itemCount; i++) {

 var key = sessionStorage.key(i);

 var val = sessionStorage[key];

 tableElem.innerHTML += "<tr><th>" + key + ":</th><td>"

 + val + "</td></tr>";

 }

 }

 </script>

 </body>

</html>

You can see how the events are reported in Figure 39-3.

[image: Image]

Figure 39-3. Storage events from session storage

Summary

In this chapter, I have described the web storage feature, which allows us to store key/value pairs in the browser. This is a simple feature, but the longevity of local storage can make it especially useful, particularly for storing simple user preferences.

C H A P T E R 40

Creating Offline Web Applications

The offline application cache feature lets us specify all of the resources that our web application requires, so that the browser can download them all when the HTML document is loaded. By doing this, we enable the user to continue to use our application even when they do not have network access.

At the time of writing, the support for the features in this chapter is exceptionally variable – I recommend you consider this chapter as a signpost for the direction that offline applications are generally following, rather than as a proscriptive reference. Table 40-1 provides the summary for this chapter.

[image: Image]

Defining the Problem

To understand the kind of problem we can solve by creating an offline web application, we need an example. Listing 40-1 shows a very simple application that relies on resources which are loaded from the server as-needed.

Listing 40-1. A simple web application

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 <style>

 img {border: medium double black; padding: 5px; margin: 5px;}

 </style>

 </head>

 <body>

 <div>

 <button id="banana">Banana</button>

 <button id="apple">Apple</button>

 <button id="cherries">Cherries</button>

 </div>

 <script>

 var buttons = document.getElementsByTagName("button");

 for (var i = 0; i < buttons.length; i++) {

 buttons[i].onclick = handleButtonPress;

 }

 function handleButtonPress(e) {

 document.getElementById("imgtarget").src = e.target.id + "100.png";

 }

 </script>

 </body>

</html>

There is an img element, whose src attribute is set in response to button presses. Different buttons will cause the browser to request different images from the web server. There are three images that may be required through the life of the application:

	banana100.png

	apple100.png

	cherries100.png

One of the images, banana100.png is loaded when the document loads, since it is specified as the initial value of the src attribute of the img element. You can see how the document appears in the browser in Figure 40-1.

[image: Image]

Figure 40-1. A simple web application

I have used Firefox in this chapter because it has an easily accessible offline mode (there is an option in the File – Web Developer menu). We can see the problem I am trying to fix when I switch the browser to offline, which simulates losing the network connection without my having to disable my wireless adapter, as shown in Figure 40-2.

[image: Image]

Figure 40-2. Requesting an unavailable resource when offline

When I press the Apple button, the browser tries to load the apple100.png image, but, of course, there is no network connection and the request fails. If I click on the Banana button, however, the correct image is displayed because banana100.png is in the browser cache from when the document was first loaded. Our goal in creating an offline application is to make sure that all of the resources we require are available so that the application works, even when offline.

Defining the Manifest

The manifest allows us to list all of the resources that we need to work offline. Listing 40-2 shows a manifest for the example web application.

Listing 40-2. A simple manifest

CACHE MANIFEST

example.html

banana100.png

apple100.png

cherries100.png

A manifest file is a simple text file. The first line is always CACHE MANIFEST and then we list the resources we require for the application, one per line of text.

[image: Image] Tip The specification for offline application recommends that we add the HTML document itself to the manifest, even though it will already be in the browser cache by the time the manifest is loaded and read.

There is no fixed naming scheme for manifest files, but the .appcache suffix is most commonly used. I saved the file in the example as fruit.appcache. Whatever naming scheme you use, you must arrange for the web server to describe the content to the browser using the text/cache-manifest MIME type.

[image: Image] Caution The browser will not use the cache file if the MIME type is not correctly set by the server.

We associate the manifest file with the document through the manifest attribute of the html element, as shown in Listing 40-3.

Listing 40-3. Associating a manifest file with an HTML document

<!DOCTYPE HTML>

<html manifest="fruit.appcache">

 <head>

 <title>Example</title>

 <style>

 img {border: medium double black; padding: 5px; margin: 5px;}

 </style>

 </head>

 <body>

 <div>

 <button id="banana">Banana</button>

 <button id="apple">Apple</button>

 <button id="cherries">Cherries</button>

 </div>

 <script>

 var buttons = document.getElementsByTagName("button");

 for (var i = 0; i < buttons.length; i++) {
 buttons[i].onclick = handleButtonPress;

 }

 function handleButtonPress(e) {

 document.getElementById("imgtarget").src = e.target.id + "100.png";

 }

 </script>

 </body>

</html>

When we apply the manifest attribute to the html element, the browser may prompt the user to allow us to store the offline content locally. The way browsers handle this varies. Chrome and Opera allow us to cache offline data without the user being prompted. At the other end of the spectrum is Firefox, which requires explicit approval from the user, as shown in Figure 40-3.

[image: Image]

Figure 40-3. Seeking user permission to store offline data

The browser will download all of the content specified in the manifest even if it hasn't yet been required. For our simple application, this means that all three of our images are downloaded. Now the application continues to work properly, even when I am offline, as shown in Figure 40-4.

[image: Image]

Figure 40-4. Creating an offline application

As you can see, creating an offline web application is very simple. We just create the manifest, ensure it contains the resources our application needs, and then set the value of the manifest attribute on the html element in our document.

Specifying Manifest Sections

We can add different sections to the manifest file. There are three different sections available, which I describe in the sections that follow.

Defining the Cache Section

We can list the files we need to cache at the start of the manifest, or we can create a CACHE section in the file. Listing 40-4 gives an example.

Listing 40-4. Defining a CACHE manifest file section

CACHE MANIFEST

example.html

banana100.png

CACHE:

apple100.png

cherries100.png

I have placed some of the resources in the default section at the start of the manifest file and others in the CACHE section. This is equivalent to the previous manifest, but it allows us to define the resources we want after the other sections I describe in the following section.

Defining the Fallback Section

The FALLBACK section allows us to specify how the browser should handle resources which we haven't included in the manifest. Listing 40-5 gives an example.

Listing 40-5. Defining a FALLBACK section in the manifest

CACHE MANIFEST

example.html

banana100.png

FALLBACK:

*.png offline.png

CACHE:

apple100.png

In this example, I have added a FALLBACK section. This new section contains one item, which tells the browser that it should use the offline.png file whenever it needs a png file that is not cached offline.

[image: Image] Tip We don't need to add fallback resources to the CACHE section of the manifest as the browser will automatically download fallback resources.

I have removed cherries100.png from the CACHE section so that we have a resource that the application requires which is not available. You can see how the browser handles the fallback in Figure 40-5.

[image: Image]

Figure 40-5. Using fallback content

The offline.png image is a simple cross. Providing fallbacks for images isn't ideal, but at least we can maintain the structure and layout of the page. Fallbacks can be much more useful for links to other documents. Listing 40-6 shows a change to our web application document that contains a link to another HTML file.

Listing 40-6. Adding a link to another file

<!DOCTYPE HTML>

<html manifest="fruit.appcache">

 <head>

 <title>Example</title>

 <style>

 img {border: medium double black; padding: 5px; margin: 5px;}

 </style>

 </head>

 <body>

 <div>

 <button id="banana">Banana</button>

 <button id="apple">Apple</button>

 <button id="cherries">Cherries</button>

 </div>

 Link to another page

 <script>

 var buttons = document.getElementsByTagName("button");

 for (var i = 0; i < buttons.length; i++) {

 buttons[i].onclick = handleButtonPress;

 }

 function handleButtonPress(e) {

 document.getElementById("imgtarget").src = e.target.id + "100.png";

 }

 </script>

 </body>

</html>

We can then create a fallback document that will be used if the HTML file that we linked to is not in the offline cache. I have called this page offline.html and its contents are shown in Listing 40-7.

Listing 40-7. The offline.html document

<!DOCTYPE HTML>

<html>

 <head>

 <title>Offline</title>

 </head>

 <body>

 <h1>Your browser is offline.</h1>

 Here is some placeholder content

 </body>

</html>

We can then add a fallback entry to the cache manifest file, as shown in Listing 40-8.

Listing 40-8. Adding a fallback entry to the manifest for HTML files

CACHE MANIFEST

example.html

banana100.png

FALLBACK:

*.png offline.png

* offline.html

CACHE:

apple100.png

The file that I have linked to (otherpage.html) is not in the manifest and so it won't be included in the offline cache. If I click on the link in the main document while offline, I am shown the fallback document instead, as illustrated by Figure 40-6. (The message that the fallback page displays isn't especially helpful, but it does demonstrate the feature. In a real application, we could display a more useful message or even define scripts that provide some kind of reduced functionality with the resources we have in the offline cache.)

[image: Image]

Figure 40-6. Using fallback content for HTML documents

Defining the Network Section

The NETWORK section of the manifest file defines the set of resources that should not be cached, and which the browser should always request from the server, even when offline. Listing 40-9 shows the use of the NETWORK section.

Listing 40-9. Defining the NETWORK section in the manifest

CACHE MANIFEST

example.html

banana100.png

FALLBACK:

* offline.html

NETWORK:

cherries100.png

CACHE:

apple100.png

In this example, I have added the cherries100.png image to the NETWORK section. This addition means that the browser will try to request this image from the server, even when offline (although it will use a cached copy of the image if it is loaded outside of the manifest, that is, the user presses the Cherries button before the browser goes offline).

[image: Image] Tip Having a network section for an offline application may seem odd, but the browser will use the cached data even when it is online.

Detecting the Browser State

We can determine if the browser is online or offline through the window.navigator.onLine property, which is described in Table 40-2.

[image: Image]

This property is only definitive if the browser is sure that it is offline. A true value doesn't confirm that the browser is online but rather that it doesn't know for sure that it is offline. Listing 40-10 shows this property in use.

Listing 40-10. Detecting the state of the browser

<!DOCTYPE HTML>

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 The browser is: unknown.

 <script>

 var statusValue;

 if (window.navigator.onLine) {

 statusValue = "online";

 } else {

 statusValue = "offline";

 }

 document.getElementById("status").innerHTML = statusValue;

 </script>

 </body>

</html>

You can see both states shown in Figure 40-7, achieved using the handy offline mode in Firefox. The state is rarely so certain in real life. The browser is free to make its own assessment of its status and most browsers don't default to offline until they have tried and failed to make a request (on the other hand, some mobile browsers will go into offline mode as soon as they lose network coverage).

[image: Image]

Figure 40-7. Detecting the browser state

Working with the Offline Cache

We can work directly with the offline cache by calling the window.applicationCache property, which returns an ApplicationCache object. The members that this object defines are described in Table 40-3.

[image: Image] Caution This is an advanced topic and the caching mechanism can be incredibly frustrating to work with. Ask yourself if you really need to take control of the cache before using the objects and techniques that I describe in this section.

[image: Image]

The status property will return a numeric vale that corresponds to the set shown in Table 40-4.

[image: Image]

In addition to the methods and the status property, the ApplicationCache object defines a set of events which are triggered when the status of the cache changes. These events are described in Table 40-5.

[image: Image]

[image: Image]

We can combine the methods and the values of the status property to take explicit control of the offline cache, as demonstrated in Listing 40-11.

Listing 40-11. Working directly with the application cache

<!DOCTYPE HTML>

<html manifest="fruit.appcache">

 <head>

 <title>Example</title>

 <style>

 img {border: medium double black; padding: 5px; margin: 5px;}

 div {margin-top: 10px; margin-bottom: 10px}

 table {margin: 10px; border-collapse: collapse;}

 th, td {padding: 2px;}

 body > * {float: left;}

 </style>

 </head>

 <body>

 <div>

 <div>

 <button id="banana">Banana</button>

 <button id="apple">Apple</button>

 <button id="cherries">Cherries</button>

 </div>

 <div>

 <button id="update">Update</button>

 <button id="swap">Swap Cache</button>

 </div>

 The status is:

 </div>

 <table id="eventtable" border="1">

 <tr><th>Event Type</th></tr>

 </table>

 <script>

 var buttons = document.getElementsByTagName("button");

 for (var i = 0; i < buttons.length; i++) {

 buttons[i].onclick = handleButtonPress;

 }

 window.applicationCache.onchecking = handleEvent;

 window.applicationCache.onnoupdate = handleEvent;

 window.applicationCache.ondownloading = handleEvent;

 window.applicationCache.onupdateready = handleEvent;

 window.applicationCache.oncached = handleEvent;

 window.applicationCache.onobselete = handleEvent;

 function handleEvent(e) {

 document.getElementById("eventtable").innerHTML +=

 "<tr><td>" + e.type + "</td></td>";

 checkStatus();

 }

 function handleButtonPress(e) {

 switch (e.target.id) {

 case 'swap':

 window.applicationCache.swapCache();

 break;

 case 'update':

 window.applicationCache.update();

 checkStatus();

 break;

 default:

 document.getElementById("imgtarget").src = e.target.id

 + "100.png";

 }

 }

 function checkStatus() {

 var statusNames = ["UNCACHED", "IDLE", "CHECKING", "DOWNLOADING",

 "UPDATEREADY", "OBSOLETE"];

 var status = window.applicationCache.status;

 document.getElementById("status").innerHTML = statusNames[status];

 }

 </script>

 </body>

</html>

This example contains buttons that call the update and swapCache methods of the ApplicationCache object. The script also defines a listener to some of the events and displays the event type in a table element. Next, we need a manifest. Listing 40-12 shows the one used for this example.

Listing 40-12. The manifest for the cache example

CACHE MANIFEST

CACHE:

example.html

banana100.png

cherries100.png

apple100.png

FALLBACK:

* offline.html

There is nothing new in the manifest. It lists the main document, the image files it uses, and a general fallback document. You can see how the example is displayed in Figure 40-8.

[image: Image]

Figure 40-8. Manually controlling the cache

There are two points to note in this figure. The first is the sequence of events. When the document is loaded, the browser detects the manifest attribute on the html element and starts downloading and caching the content. You can see the effect of this in the table element—the checking, downloading and cached events are fired.

Making the Update

To effect a change in the cache, we have to make an update of some kind on the server. To switch the cherries for the lemon, I am simply going to overwrite the cherries100.png file on the server with my lemon image. To be clear: the filename is still cherries100.png but the content has been changed to a lemon.

The browser checks to see if the manifest file has changed when we call the update method on the ApplicationCache object; however, it doesn't check to see if any of the individual files specified in the manifest have been modified. So, to get the browser to load my modified image, I also need to make a change to the manifest file. For simplicity, I have changed the name of the fallback HTML file, as shown in Listing 40-13.

Listing 40-13. Making a change to the manifest file

CACHE MANIFEST

CACHE:

example.html

banana100.png

cherries100.png

apple100.png

FALLBACK:

* offline2.html

[image: Image] Caution A major cause of confusion when debugging the offline cache is that the browser honors the caching policy for the individual entries in the manifest file. This means that you can get into a real mess if you have set different cache expiration headers on different types of content, as the browser will check some for updates and not others. To get immediate changes in the cache (well, sort-of-immediate—see the note later in this section about that), the safest thing to do is to set your web server so that it sets the Cache-Control header to no-cache. This tells the browser not to check for updates each time a resource is required (although you won't want to do this on a production server).

Getting the Update

Now that we have made a change at the server, we can ask the browser to update the offline cache. To do this, press the Update button. The effect is shown in Figure 40-9.

[image: Image]

Figure 40-9. Downloading an update to the offline cache

A new sequence of events will be shown (checking, downloading, updateready) and the status of the cache will change to UPDATEREADY. At this point, the browser has downloaded the modified content, but it has not been applied to the cache we are using, which is to say that clicking on the Cherries button will still show us a picture of cherries, even though the browser has downloaded and cached the lemon substitute with the same name.

Applying the Update

When we are ready to receive the updated content, we can press the Swap Cache button, which calls the swapCache method on the ApplicationCache object. The updated content is applied to the offline cache for our application.

[image: Image] Caution Another cause of confusion when working with the cache is the effect that applying an update has. The changes are only used the next time that a resource is requested from the cache. This means that any stylesheets or script files that are cached will not be reloaded by the browser and you will have to explicitly reload the document that contains them to benefit from any changes.

When we press the Cherries button, we see the picture of the lemon, as shown in Figure 40-10.

[image: Image]

Figure 40-10. Applying an update to the offline cache

[image: Image] Caution The final area of frustration is that there can be a lag between applying the update and the updated content being used in a document. In writing this chapter, I encountered delays that ranged from just a few seconds to ten minutes or more.

Summary

In this chapter, I have shown you how to create offline applications that can function even when the browser cannot connect to a network. This is a really useful feature and once you get the configuration you need, the results are great; however, testing and debugging with the application cache can be a maddening process, especially if you take direct control of the cache through the ApplicationCache object.

Index

[image: Image] A

a element, 19, 41, 43, 47–49, 51–52, 109, 796

abbr element, 109, 253, 256

abbreviations, denoting, 173–174

abort() method, 845

aborting requests, for Ajax, 844–846

absolute lengths, 58

accesskey attribute, 13, 25–26

action attribute, 287–288

active selector, 457–458

addEventListener method, 701, 765, 772, 775–776, 780–781, 783, 787, 792

address element, 111, 217–218, 222, 230, 233, 241, 244–246

after selector, 432–434

Ajax (Asynchronous JavaScript and XML), 821–872

aborting requests, 844–846

cross-origin requests, 840–844

error handling, 832–836

application errors, 835–836

request errors, 835

setup errors, 834–835

events for, 829–832

headers for, 836–840

disabling content caching, 838

overriding request HTTP method, 836–837

reading response headers, 838–840

and Opera browser, 827–829

overview, 822–827

receiving data with, 866–872

HTML fragments, 866–868

JSON data, 871–872

XML data, 869–870

sending data with

files, 861–862

form data, 853–856

JSON data, 859–861

server for, 851–853

tracking upload progress, 863–865

using FormData object, 856–859

align, 252–253, 256, 259–260, 262–263, 269, 272, 275

angles, CSS, 66

animation-iteration-count property, 596–597

animation-play-state property, 582, 603

animation properties, for CSS, 408

animations, 589–603

applying multiple, 601–603

applying to initial layout, 599

and end state, 597–598

key frames for, 592–595

reusing, 599–601

setting initial state, 592–593

specifying intermediate key frames, 594–595

repeat direction for, 595–597

stopping and starting, 603

of transforms, 608–609

annotating

with text elements, 157–167

denoting foreign or technical terms, 160–161

denoting important text, 163–164

denoting keywords and product names, 157–158

emphatic stress, 158–160

fine print, 165–166

showing inaccuracies or corrections, 161–162

superscripts and subscripts, 167

underlining text, 164–165

application errors, for Ajax, 835–836

application/x-www-form-urlencoded encoding, for forms, 290

ApplicationCache object, 997, 1007–1013

applying update, 1013

getting update, 1012

making update, 1011

arcs, in canvas element, 936–942

using arc method, 940–942

using arcTo method, 937–940

area element, 114, 811

area elements, 638

Array() method, 72, 93

array notation, using to obtain elements, 669–670

Array object, 95

arrays, 92–96

built-in methods for, 95–96

contents of

enumerating, 94–95

reading and modifying, 94

literal style, 93–94

article class, 217, 227, 237–238, 240–242, 244–245, 248

article element, 105, 107, 111, 237–240

aside element, 111, 217, 227, 240–244

asynchronous execution, of scripts, 147

Asynchronous JavaScript and XML (Ajax), 821–872

aborting requests, 844–846

cross-origin requests, 840–844

error handling, 832–836

application errors, 835–836

request errors, 835

setup errors, 834–835

events for, 829–832

headers for, 836–840

disabling content caching, 838

overriding request HTTP method, 836–837

reading response headers, 838–840

and Opera browser, 827–829

overview, 822–827

receiving data with, 866–872

HTML fragments, 866–868

JSON data, 871–872

XML data, 869–870

sending data with

files, 861–862

form data, 853–856

JSON data, 859–861

server for, 851–853

tracking upload progress, 863–865

using FormData object, 856–859

attachment, for backgrounds, 485–486

attributes

for elements, 19–20, 714–715

applying multiple attributes to, 19

Boolean attributes, 20

custom attributes, 20

data-* attributes, 713–714

global. See global attributes

selecting elements by, 418–421

audio element, 114

author defined attributes, 20

author styles, 49–50

autocomplete attribute, 291–292

axis, 253, 256

[image: Image] B

b element, 105, 109

background-color property, 40, 42, 612, 628

background properties, for CSS, 402–404

backgrounds, 479–489

attachment for, 485–486

clipping style for, 486–488

image origin for, 486–488

position of, 483–484

setting, 480–482

shorthand properties for, 489

size of, 482–483

base element, 108, 117, 124–125, 793

bdi element, 182–184

bdo element, 180–181

before selector, 432–434

beginPath() method, 930

Bezier curves, in canvas element, 942–946

cubic Bezier curves, 942–944

quadratic Bezier curves, 944–946

bgcolor, 252–253, 256

block-level elements, 514–515

blockquote element, 110, 191, 199, 201, 204, 798

body element, 13, 18, 23, 108, 117, 121–122, 192, 194, 793

boolean attribute, 22

Boolean attributes, 20

boolean type, 78

border-box value, 487

border property, 44, 251–253, 261, 264, 266, 272, 277, 279

borders, 466–479

applying to single side, 469–470

collapsing, 615–616

images as, 475–479

slice repeat style, 478–479

slicing image, 475–477

properties for CSS, 402–404

with rounded corners, 471–474

separated, 617–618

shorthand properties for, 470–471

style of, 467–469

for tables, 277

width of, 467

box model, of CSS, 398–399

box properties, for CSS, 404–405

box-shadow declaration, 491

box-shadow element, 490

br element, 109

breaks, 168–171

forcing, 168–169

indicating opportunity for safe, 169–171

thematic, 202–203

browser state, detecting, 1006–1007

browser styles, 47–48, 67

browsers, 9

competition in market, 4

support for HTML, 7

browsing context

object element as, 389

targeting, 156–157

bubble phase, for DOM events, 780–782

built-in methods, for arrays, 95–96

button elements, 304–308, 803

as generic element, 307–308

to reset forms, 306–307

to submit forms, 305–306

buttons, 325–326

[image: Image] C

Cache-Control header, 1012

cache section, of manifest file, 1002

calc keyword, 66

calc() method, 39, 66

calculations, of CSS units, 65–66

cancellable events, 783–784

canvas element, 114, 372, 393, 897, 927–956

arcs in, 936–942

using arc method, 940–942

using arcTo method, 937–940

Bezier curves in, 942–946

cubic Bezier curves, 942–944

quadratic Bezier curves, 944–946

clipping regions with, 946–947

composition in, 952–954

drawing state for, 904–918

fill style, 906–907

gradients in, 907–913

line join style, 905–906

patterns in, 916–918

radial gradient in, 913–916

saving and restoring, 919–921

stroke style, 906–907

getting context for, 899–900

images in, 921–927

canvas images, 925–927

video images, 922–925

overview, 898–899

rectangles in, 901–903

shadows with, 949–950

text in, 947–949

transformations in, 955–956

transparency in, 951–952

using paths in, 930–936

CanvasGradient method, 908–909

caption element, 112, 251, 269–272, 275, 277, 552

caption-side property, 611, 619, 621

captions, for tables, 269–270, 619–620

capture phase, for DOM events, 775–779

cascading, of styles, 49

specificity and order assessments, 51–54

tweaking order, 50

Cascading Style Sheets (CSS), 16, 39–69, 397–411, 436–465, 495–497, 529

angles, 66

animation properties, 408

animations, 589–603

applying multiple, 601–603

applying to initial layout, 599

and end state, 597–598

key frames for, 592–595, 599–601

repeat direction for, 595–597

stopping and starting, 603

background properties, 402–404

backgrounds, 479–489

attachment for, 485–486

clipping style for, 486–488

image origin for, 486–488

position of, 483–484

setting, 480–482

shorthand properties for, 489

size of, 482–483

border properties, 402–404

borders, 466–479

applying to single side, 469–470

images as, 475–479

with rounded corners, 471–474

shorthand properties for, 470–471

style of, 467–469

width of, 467

box model of, 398–399

box properties, 404–405

colors, 56–57, 612–613

cursors, 628–629

defining styles, 129–135

media attribute, 131–135

scoped attribute, 131

type attribute, 131

elements in

block-level elements, 514–515

hiding, 521

inline-block elements, 517–518

inline-level elements, 516–517

minimum and maximum sizes, 506–507

run-in elements, 518–520

size for, 505

visibility of, 511–513

floating, 522–529

layout properties, 405–406

lengths, 57–66

absolute, 58

relative, 59–66

lists, 623–628

image as list marker, 625–626

list marker type, 623–625

positioning marker, 626–628

margins, 501–502

opacity, 613–614

outlines, 492–495

and overflowing content, 507–510

padding, 498–501

properties for DOM, 646

selectors for, 399–402, 430–434, 457–458

all elements, 412–413, 432–434

checked elements, 448–449

child elements, 425–427

child selectors, 439–445

counter feature, 434

default elements, 449–450

descendant elements, 423–425

disabled elements, 447–448

elements by attribute, 418–421

elements by class, 414–416

elements by ID, 417–418

elements by type, 413–414

elements with range limitations, 452–460

enabled elements, 447–448, 456–459

invalid input elements, 450–461

negation selector, 459–460

optional input elements, 453–454

required input elements, 438–462

sibling elements, 427–429

unions, 422–423

using to obtain elements, 672–673

valid input elements, 450–455

shadow, 490–492

standardization of, 397

styles, 40–47

applying inline, 41–42

browser, 47–48

cascading of, 49

CSS properties, 40–41

embedded, 42–44

external stylesheets, 44–47

inheritance, 54–56

user, 48

tables, 614–623

collapsing borders, 615–616

configuring separated borders, 617–618

empty cells, 619

positioning caption, 619–620

specifying layout, 621–623

testing for feature support, 67

text, 555–579

direction property, 562–563

and fonts, 571–577

spacing of, 564–565

text-align property, 556–558

text-decoration property, 568–569

text-indent property, 567–568

text-shadow property, 570–571

text-transform property, 568–569

whitespace property, 558–562

word-wrap property, 565–567

text properties, 407

times, 66

tools for, 67–69

browser style reporting, 67

CSS frameworks, 69

LESS, 69

SelectorGadget, 68

transform properties, 408

transforms, 604–609

animating of, 608–609

applying, 604–606

specifying origin, 606–608

transition properties, 408

transitions

creating, 582–589

selecting how intermediate values are calculated, 587–589

catch clause, 96–97

cellpadding, 252

cells, in tables, 267–269

cellspacing, 252

chaining searches together, to obtain elements, 673–674

char, 253, 256, 259–261, 271, 275

character encoding

declaring, 128

of external stylesheets, 46–47

charoff, 253, 256, 259–261, 271, 275

charset attribute, 117, 126

checkboxes, 331–333

checked attribute, 643

checked elements, selectors for, 448–449

checkStatus() method, 1010

checkValidity() method, 805, 807, 809–811, 815

Cherries button, 1006, 1012–1013

cherries 100.png file, 1011

child elements, selecting elements by, 425–427

child selectors, 439–445

nth-child selectors, 443–446

selectors for, 440–443

childNodes, 675

children, parents, descendants, siblings and, 23

Choose File button, 350

chunk.toString() method, 851–852

citations, 177–178

cite element, 106, 109

class attributes, 26–28, 195

classes

for elements, 708–711

overview, 279

selecting elements by, 414–416

clear element, 526

clear() method, 988

clear property, 498, 526–527

clearEventDetails() method, 831

clearInterval method, 680, 702–703

clearMessages() method, 833–834

clearTimeout method, 680, 702–703

clearWatch method, 975, 984

client-side image maps, with object element, 388

clip() method, 946

clipping regions, with canvas element, 946–947

clipping style, for backgrounds, 486–488

closePath() method, 930

code element, 15–16, 23, 109

col element, 112, 251, 271, 274–277, 279, 552, 800

colgroup element, 112, 251–252, 272–273, 275–277, 552, 800

colgroups, 273

color picker, 340–342

color property, 40, 42, 49–53, 55

color value, 490

colors, CSS, 56–57, 612–613

ColorSwap, 599–603

colspan headers, 253, 256, 264–265, 269, 272, 274–275, 277, 279

columns, in tables, 271–276

compact attributes, 107, 205, 207

comparing, elements, 725–726

composition, in canvas element, 952–954

computed styles, for elements, 761–763

contact information, 244–245

containing block, 64

content elements, 811–816

area element, 811

embed element, 812

iframe element, 813

img elements, 813

map element, 814

meter element, 814

object element, 815

param element, 816

progress element, 816

content, embedding, 371–393

audio, 393

canvas element, 393

embed element, 382–383

iframe element, 379–382

img element, 372–379

map element, 375–379

meter element, 391–393

object element, 384–389

as browsing context, 389

client-side image maps with, 388

embedding images with, 387

fallback content for, 386–387

progress element, 389–391

video, 393

content property, 433, 435

contenteditable attribute, 13, 28–29

context, for canvas element, 899–900

contextmenu attribute, 14, 29

convenience properties, in CSSStyleDeclaration object, 749–752

Convenience property, 749, 797, 812

cookie property, 663

cookies, reading and writing, 662–664

Coordinates object, 977

corrections, showing, 161–162

counter feature, 191, 211, 213, 434

counter-increment property, 435

counter-reset declaration, 435

counter-reset property, 434

createCaption() method, 800

createCookie function, 663

createTBody() method, 801

createTFoot() method, 801

createTHead() method, 801

cross-document messaging, with Window object, 697–701

cross-origin requests, for Ajax, 840–844

CSS (Cascading Style Sheets), 16, 39–69, 397–411, 436–465, 495–497, 529

angles, 66

animation properties, 408

animations, 589–603

applying multiple, 601–603

applying to initial layout, 599

and end state, 597–598

key frames for, 592–595, 599–601

repeat direction for, 595–597

stopping and starting, 603

background properties, 402–404

backgrounds, 479–489

attachment for, 485–486

clipping style for, 486–488

image origin for, 486–488

position of, 483–484

setting, 480–482

shorthand properties for, 489

size of, 482–483

border properties, 402–404

borders, 466–479

applying to single side, 469–470

images as, 475–479

with rounded corners, 471–474

shorthand properties for, 470–471

style of, 467–469

width of, 467

box model of, 398–399

box properties, 404–405

colors, 56–57, 612–613

cursors, 628–629

defining styles, 129–135

media attribute, 131–135

scoped attribute, 131

type attribute, 131

elements in

block-level elements, 514–515

hiding, 521

inline-block elements, 517–518

inline-level elements, 516–517

minimum and maximum sizes, 506–507

run-in elements, 518–520

size for, 505

visibility of, 511–513

floating, 522–529

layout properties, 405–406

lengths, 57–66

absolute, 58

relative, 59–66

lists, 623–628

image as list marker, 625–626

list marker type, 623–625

positioning marker, 626–628

margins, 501–502

opacity, 613–614

outlines, 492–495

and overflowing content, 507–510

padding, 498–501

properties for DOM, 646

selectors for, 399–402, 430–434, 457–458

all elements, 412–413, 432–434

checked elements, 448–449

child elements, 425–427

child selectors, 439–445

counter feature, 434

default elements, 449–450

descendant elements, 423–425

disabled elements, 447–448

elements by attribute, 418–421

elements by class, 414–416

elements by ID, 417–418

elements by type, 413–414

elements with range limitations, 452–460

enabled elements, 447–448, 456–459

invalid input elements, 450–461

negation selector, 459–460

optional input elements, 453–454

required input elements, 438–462

sibling elements, 427–429

unions, 422–423

using to obtain elements, 672–673

valid input elements, 450–455

shadow, 490–492

standardization of, 397

styles, 40–47

applying inline, 41–42

browser, 47–48

cascading of, 49

CSS properties, 40–41

embedded, 42–44

external stylesheets, 44–47

inheritance, 54–56

user, 48

tables, 614–623

collapsing borders, 615–616

configuring separated borders, 617–618

empty cells, 619

positioning caption, 619–620

specifying layout, 621–623

testing for feature support, 67

text, 555–579

direction property, 562–563

and fonts, 571–577

spacing of, 564–565

text-align property, 556–558

text-decoration property, 568–569

text-indent property, 567–568

text-shadow property, 570–571

text-transform property, 568–569

whitespace property, 558–562

word-wrap property, 565–567

text properties, 407

times, 66

tools for, 67–69

browser style reporting, 67

CSS frameworks, 69

LESS, 69

SelectorGadget, 68

transform properties, 408

transforms, 604–609

animating of, 608–609

applying, 604–606

specifying origin, 606–608

transition properties, 408

transitions

creating, 582–589

selecting how intermediate values are calculated, 587–589

CSS property, 40, 51, 64, 208, 748, 752–753, 755, 759, 761

CSS table, 112

cssFloat, 524, 528

CSSPrimitiveValue object, 758–761

CSSRuleList object, 742–743

CSSStyleDeclaration object, 646–647, 748–761

convenience properties in, 749–752

CSSPrimitiveValue object, 758–761

properties in, 753–758

CSSStyleDeclaration property, 743

CSSStyleDeclaration.cssText property, 746

CSSStyleDeclaration.getPropertyCSSValue method, 758

CSSStyleRule object, 735, 742–743

CSSStyleSheet object, 735–736

CSSStyleSheet.media property, 739

ctx.beginPath() method, 931, 933–935, 939, 941, 943, 945, 947, 950

ctx.clip() method, 947

ctx.closePath() method, 931, 935–936, 941

ctx.fill() method, 931, 935–936, 941, 947, 950

ctx.restore() method, 920

ctx.save() method, 920

ctx.stroke() method, 931–933, 936–937, 939, 943–945, 950

cubic Bezier curves, in canvas element, 942–944

cursor property, 611, 628

cursors, in CSS, 628–629

custom attribute, 20

Custom.css file, 48

[image: Image] D

data-* attributes, for elements, 713–714

data, from forms, 285–287

data list, for text input, 316–319

datalist element, 113, 803

DataTransfer object, 957, 965–972

Date object, 798

dates

denoting with time element, 189–190

input elements for, 338–340

dayOfWeek object, 84

dd element, 111

debuggers, JavaScript, 102

default elements, selectors for, 449–450

defaultView property, 680

definitions, 174–175

del element, 109, 187–189, 797

delete keyword, 72, 85

DELETE method, 837

deleteCaption() method, 800

deleteTFoot() method, 801

deleteTHead() method, 801

deleting, elements, 720–721

descendant elements, selecting elements by, 423–425

descendants, children, parents, siblings and, 23

description lists, 210

details element, 112, 217, 229–230, 246–249, 799

details section, 246–249

detecting, browser state, 1006–1007

dfn element, 109

dir attribute, 14, 29, 643

direction property, 562–563

dirname attribute, for text input, 322

disabled attribute, 20, 643

disabled elements, selectors for, 447–448

disabling

elements, in forms, 298–299, 303–304

stylesheets, 741–742

text input, 320–322

validation, 368

displayData() method, 989, 993–995

displayStyle() method, 747

displayStyles() method, 750, 754–755, 757, 760, 762

displayValues() method, 893

div elements, 106, 111, 195–197

dl element, 111

DOCTYPE element, 22, 108

doctype element, 117–119

document elements, and metadata elements, 108

Document members, for DOM, 637–639

document/metadata Elements, 108

Document object, 635, 637, 640, 653–678, 784, 870

cookies, reading and writing, 662–664

element objects in, 667–674

chaining searches together, 673–674

searching with CSS selectors, 672–673

using array notation to obtain, 669–670

using properties to obtain, 667–669

events for, 784

getting information from, 657–658

implementation property, 666

Location object in, 659–662

navigating tree, 675–678

readyState property, 664–666

Document Object Model (DOM), 23, 633–652

compliance with, 635–637

CSS properties, 646

Document members, 637–639

elements in

attributes for, 713–715

classes for, 708–711

comparing objects, 725–726

creating and deleting, 720–721

duplicating, 722–723

inserting into text block, 732–733

moving, 723–724

text in, 716–719

events, 650, 770–784

bubble phase, 780–782

cancellable events, 783–784

capture phase, 775–779

distinguishing events by type, 773–774

target phase, 779

HTMLElement members, 643–645

innerHTML and outerHTML properties, 727–732

changing document structure with, 728–729

inserting HTML fragments with, 730–732

multimedia in, 886–895

assessing playback capabilities, 889–892

controlling media playback, 892–895

getting information about media, 887–889

overview, 633–635

Window members, 640–643

document.cookie property, 653, 663

Document.location property, 687

documents, 20–24, 117–150

content, 23

describing with metadata elements, 122–140

base, 124–125

declaring character encoding, 128

defining CSS styles, 129–135

denoting external resources, 135–140

simulating header, 128–129

specifying name/value pairs, 126–127

title, 122–123

element types, 24

metadata, 22–23

outer structure, 21–22

parents, children, descendants, and siblings, 23

scripting elements, 140–150

noscript element, 147–150

script element, 140–147

structure of, 118–122

body element, 121–122

doctype element, 118–119

head element, 120–121

html element, 119–120

document.writeln function, 76

DOM (Document Object Model), 23, 633–652

compliance with, 635–637

CSS properties, 646

Document members, 637–639

elements in

attributes for, 713–715

classes for, 708–711

comparing objects, 725–726

creating and deleting, 720–721

duplicating, 722–723

inserting into text block, 732–733

moving, 723–724

text in, 716–719

events, 650, 770–784

bubble phase, 780–782

cancellable events, 783–784

capture phase, 775–779

distinguishing events by type, 773–774

target phase, 779

HTMLElement members, 643–645

innerHTML and outerHTML properties, 727–732

changing document structure with, 728–729

inserting HTML fragments with, 730–732

multimedia in, 886–895

assessing playback capabilities, 889–892

controlling media playback, 892–895

getting information about media, 887–889

overview, 633–635

Window members, 640–643

DOM object, 736, 796, 921

drag & drop, 957–973

DataTransfer object, 965–972

drop zone for, 961–964

events for, 959–961

of files, 968–972

source items, 958–961

DragEvent object, 965

draggable attribute, 14, 30

draw() method, 920, 939, 943, 945, 954

drawing state, for canvas element, 904–918

fill style, 906–907

gradients in, 907–913

line join style, 905–906

patterns in, 916–918

radial gradient in, 913–916

saving and restoring, 919–921

stroke style, 906–907

drop zone, for drag & drop, 961–964

dropzone attribute, 14, 30

dt element, 111

duplicating, elements, 722–723

[image: Image] E

editors, 10

elements

abbr element, 109, 253, 256

address element, 111, 217–218, 222, 230, 233, 241, 244–246

arcs, in canvas element, 936–942

using arc method, 940–942

using arcTo method, 937–940

area elements, 114, 638, 811

array notation, using to obtain elements, 669–670

article element, 105, 107, 111, 237–240

aside element, 111, 217, 227, 240–244

attributes for, 19–20, 714–715

applying multiple to element, 19

Boolean, 20

custom, 20

data-* attributes, 713–714

audio element, 114

b element, 105, 109

base element, 108, 117, 124–125, 793

bdi element, 182–184

bdo element, 180–181

Bezier curves, in canvas element, 942–946

cubic Bezier curves, 942–944

quadratic Bezier curves, 944–946

block-level elements, 514–515

blockquote element, 110, 191, 199, 201, 204, 798

body element, 13, 18, 23, 108, 117, 121–122, 192, 194, 793

box-shadow element, 490

br element, 109

button elements, 304–308, 803

as generic element, 307–308

to reset forms, 306–307

to submit forms, 305–306

canvas element, 114, 372, 393, 897, 927–956

arcs in, 936–942

Bezier curves in, 942–946

clipping regions with, 946–947

composition in, 952–954

drawing state for, 904–918

getting context for, 899–900

images in, 921–927

overview, 898–899

rectangles in, 901–903

shadows with, 949–950

text in, 947–949

transformations in, 955–956

transparency in, 951–952

using paths in, 930–936

caption element, 112, 251, 269–272, 275, 277, 552

chaining searches together, to obtain elements, 673–674

checked elements, selectors for, 448–449

child elements, selecting elements by, 425–427

cite element, 106, 109

classes for, 708–711

clear element, 526

client-side image maps, with object element, 388

clipping regions, with canvas element, 946–947

code element, 15–16, 23, 109

col element, 112, 251, 271, 274–277, 279, 552, 800

colgroup element, 112, 251–252, 272–273, 275–277, 552, 800

comparing, elements, 725–726

comparing objects, 725–726

composition, in canvas element, 952–954

computed styles for, 761–763

content elements, 811–816

area element, 811

embed element, 812

iframe element, 813

img elements, 813

map element, 814

meter element, 814

object element, 815

param element, 816

progress element, 816

context, for canvas element, 899–900

creating and deleting, 720–721

in CSS

block-level elements, 514–515

hiding, 521

inline-block elements, 517–518

inline-level elements, 516–517

minimum and maximum sizes, 506–507

run-in elements, 518–520

size for, 505

visibility of, 511–513

CSSStyleDeclaration object, 748–761

convenience properties in, 749–752

CSSPrimitiveValue object, 758–761

properties in, 753–758

cubic Bezier curves, in canvas element, 942–944

data-* attributes, for elements, 713–714

datalist element, 113, 803

dd element, 111

default elements, selectors for, 449–450

del element, 109, 187–189, 797

deleting, 720–721

descendant elements, selecting elements by, 423–425

descriptions of, 107–108

details element, 112, 217, 229–230, 246–249, 799

dfn element, 109

disabled elements, selectors for, 447–448

div elements, 106, 111, 195–197

dl element, 111

doctype, 118–119

DOCTYPE element, 22, 108

doctype element, 117–119

document and metadata, 108

document elements, 793–796

base element, 793

body element, 793

link element, 794

meta element, 794

and metadata elements, 108

script element, 795

style element, 795

title element, 796

document/metadata Elements, 108

in Document object, 667–674

chaining searches together, 673–674

searching with CSS selectors, 672–673

using array notation to obtain, 669–670

using properties to obtain, 667–669

drawing state, for canvas element, 904–918

fill style, 906–907

gradients in, 907–913

line join style, 905–906

patterns in, 916–918

radial gradient in, 913–916

saving and restoring, 919–921

stroke style, 906–907

dt element, 111

duplicating, 722–723

duplicating, elements, 722–723

a element, 19, 41, 43, 47–49, 51–52, 109, 796

em element, 109

embed elements, 114, 382–383, 638, 812

embedding, 114

empty elements, 17

enabled elements, selectors for, 447–448

fallback content, for object element, 386–387

fieldset element, 113, 804

adding labels to, 301–302

disabling groups of inputs with, 303–304

figcaption element, 111, 214

figure element, 105, 111

flow elements, 24

focusing input element, automatically, 297–298

footer element, 112, 232, 236, 238, 243–244, 247, 261–263

form elements, 802–810

button element, 803

datalist element, 803

fieldset element, 804

form element, 804

input element, 805

label element, 807

legend element, 807

optgroup element, 807

option element, 808

output element, 808

select element, 809

textarea element, 810

formatted strings, input elements for, 336–338

forms, 113

getElement methods, 673

grouping elements, 798–799

blockquote element, 798

in forms, 299–304

li element, 798

ol element, 799

overview, 110–111

h1 element, 217, 221, 225, 227, 232, 235, 239, 242, 244, 247

h1-h6 element, 112

h2 element, 218, 222, 224, 226, 231, 238, 241, 243, 247–248

h3 element, 217, 219–220, 223, 225–226, 231, 237, 241, 247

h6 element, 218, 220–222, 224, 226–227, 229, 232, 244

head element, 13, 23, 117, 120–123, 126, 140, 638

header element, 112, 220, 230, 232, 234, 236, 239, 242, 244, 247

hgroup element, 106, 217, 221, 225, 231, 235, 238, 241, 243, 247

hiding, of elements, 521

highlighting, with mark element, 186–187

hr element, 18, 111, 191, 202

html elements, 13, 18, 21–23, 108, 117, 119–121

i element, 109

ID, selecting elements by, 417–418

iframe elements, 114, 379–382, 641, 699–700, 813

img elements, 114, 372–379, 813

inline-block elements, 517–518

inline-level elements, 516–517

input elements, 311, 350–362, 805

buttons, 325–326

hidden data items, 343–346

images, 346–348

keygen element, 361–362

output element, 360–361

password input, 322–324

restricted data type values, 326–342

search terms, 342–343

select element, 352–359

text input, 312–322

textarea element, 357–359

to upload files, 348

validation of, 362–368

ins element, 109, 187–189, 797

inserting into text block, 732–733

invalid input elements, selectors for, 450–451

kbd element, 109

keygen element, 113, 361–362

label element, 113, 807

language elements, 178–184

bdi element, 182–184

bdo element, 180–181

ruby, rt, and rp, 178–180

legend element, 113, 807

li element, 208–210, 219, 226, 234, 239, 243, 248, 798

link element, 39, 45, 108, 118, 135–139, 794

map element, 114, 375–379, 814

mark element, 109, 186–187

mark, highlighting text with, 186–187

meta element, 108, 117–118, 125–128, 149, 794

metadata elements, 13, 22–24, 122–140

base, for relative URLs, 124–125

declaring character encoding, 128

defining CSS styles, 129–135

denoting external resources, 135–140

document elements and, 108

setting document title with, 122–123

simulating header, 128–129

specifying name/value pairs, 126–127

meter element, 114, 391–393, 814

mouseenter element, 651

mouseleave element, 651

moving, 723–724

nav element, 112, 233, 235, 237, 239, 241–245

noscript element, 108, 118, 147–150

numbers, input elements for, 327–331

object element, 114, 384–389, 815

as browsing context, 389

client-side image maps with, 388

embedding images with, 387

fallback content for, 386–387

ol element, 107, 111, 204–206, 799

optgroup element, 113, 355–357, 807

option elements, 113, 808

optional input elements, selectors for, 453–454

output element, 113, 360–361, 808

p element, 111, 191, 193–195

param element, 114, 816

paths, using in canvas element, 930–936

phrasing elements, 24

poster attribute, of video element, 878

pre element, 111, 191, 197–199, 655–656, 669, 675

preload attribute, of video element, 876–877

presentation, of elements, 105–106

progress element, 114, 389–391, 816

q element, 109, 797

quadratic Bezier curves, in canvas element, 944–946

rectangles, in canvas element, 901–903

required input elements, selectors for, 453–454

resetting forms, button element for, 306–307

rp element, 110, 178–180

rt element, 110, 178–180

ruby element, 110, 178–180

run-in elements, 518–520

s element, 110

samp element, 110

script element, 140–147, 639, 795

deferring execution of script, 144–146

defining inline script, 142

executing script asynchronously, 147

loading external scripting library, 143–144

scripting elements, 140–150

noscript element, 147–150

script element, 140–147

search terms, input elements for, 342–343

section elements, 111–112, 224–229, 248

sectioning, 111–112

select element, 113, 352–359, 809

selecting, 106–107

selectors for

all elements, 412–413

attribute, 418–421

checked, 448–449

child elements, 425–427

class, 414–416

default, 449–450

descendant elements, 423–425

disabled, 447–448

enabled, 447–448

ID, 417–418

invalid input, 450–451

optional input, 453–454

with range limitations, 452

required input, 453–454

sibling elements, 427–429

type, 413–414

valid input, 450–451

self-closing tags, 17

semantic/presentation divide, 105–106

semantic/presentation divide, of elements, 105–106

sematic element, 15

sibling elements, selecting elements by, 427–429

small element, 110

source element, 114

span element, 41, 54–56, 110–111, 184–185, 196

strong element, 110

style element, 34, 42, 45, 52, 109, 130–131, 137–138, 795

style property, 746–748

styleSheets property, 736–745

disabling, 741–742

getting information about, 737–738

individual styles in, 742–745

media attribute for, 739–740

sub element, 110

submitting forms, button element for, 305–306

summary element, 112, 217, 230, 246–249, 251–252

sup element, 110

svg element, 114

table elements, 112, 551–552, 800–802, 1010–1011

col and colgroup elements, 800

col element, 800

colgroup element, 800

table element, 800

tbody element, 801

tfoot element, 801

th element, 801

thead element, 801

thead, tbody, and tfoot elements, 801

tr element, 802

tbody element, 112, 260, 264, 269, 273, 275–276, 278–279, 801

td element, 251, 253, 257, 261, 265, 267, 272, 274, 276, 279

text elements, 109–110, 151–190, 796–798

abbreviations, denoting, 173–174

annotating with, 157–167

breaks, 168–171

citations, 177–178

definitions, 174–175

del and ins elements, 797

del element, 797

a element, 796

hyperlinks, 153–157

ins element, 187–189, 797

language elements, 178–184

mark element, highlighting text with, 186–187

q element, 797

quotations, 175–176

representing inputs and outputs, 171–172

span element, 184–185

time element, 189–190, 798

text in, 716–719

textarea element, 113, 357–359, 810

tfoot element, 112, 252, 263, 268, 273, 275–276, 278–279, 801

th element, 112, 801

thead element, 113, 801

time, denoting dates and times with, 189–190

time element, 110, 189–190, 798

title element, 22, 109, 117, 120–124, 796

tr element, 113, 802

track element, 114, 883

transformations, in canvas element, 955–956

transparency, in canvas element, 951–952

type, selecting elements by, 413–414

types of, 24

u element, 110

ul element, 111, 207–208, 234–236, 238, 242, 245

unimplemented, 115

unimplemented elements, 115

valid input elements, selectors for, 450–451

validation, of input elements, 362–368

disabling, 368

email type, 367–368

min and max attributes, 364–366

pattern attribute, 366–367

required attribute, 363–364

url type, 367–368

var element, 110

video element, 114, 874–883

poster attribute, 878

preload attribute, 876–877

size of, 879–880

src attribute, 880–882

track element, 883

visibility, of elements, 511–513

void elements, 17–18

wbr element, 110

else clause, 88

em element, 109

email type, 367–368

embed elements, 114, 382–383, 638, 812

embedded styles, 42–44

embedding content, 371–393

audio, 393

canvas element, 393

embed element, 382–383

iframe element, 379–382

img element, 372–379

map element, 375–379

meter element, 391–393

object element, 384–389

as browsing context, 389

client-side image maps with, 388

embedding images with, 387

fallback content for, 386–387

progress element, 389–391

video, 393

embedding, elements for, 114

emphatic stress, 158–160

empty cells, in tables, 619

empty elements, 17

empty selector, 460

enabled elements, selectors for, 447–448

encoding, for forms, 289–291

application/x-www-form-urlencoded encoding, 290

multipart/form-data encoding, 290

text/plain encoding, 291

enctype attribute, 349

end state, and animations, 597–598

entities, 24

enumerating

contents of arrays, 94–95

properties, 83

e.preventDefault() method, 783, 857, 860, 864, 868, 872, 964, 967, 969, 972

equality operator, and identity operator, 86–89

error handling

for Ajax, 832–836

application errors, 835–836

request errors, 835

setup errors, 834–835

for geolocation, 979–980

Error object, 96

Error.message property, 835

errors, handling, in JavaScript language, 96–97

e.stopPropagation() method, 778

Event object, 765, 770–771, 773, 784, 788, 826, 828, 835, 855

events, 765–792

for Ajax, 829–832

for DOM, 650

DOM events, 770–784

bubble phase, 780–782

cancellable events, 783–784

capture phase, 775–779

distinguishing events by type, 773–774

target phase, 779

for drag & drop, 959–961

handlers for, 766–770

HTML events, 784–792

document events, 784

focus events, 788–789

form events, 792

keyboard events, 790–792

mouse events, 785–787

window events, 784

Event.type property, 765

expando attributes, 20

external hyperlinks, 154–155

external resources, denoting, 135–140

defining favicon for page, 138–139

loading stylesheet, 137–138

preemptively fetching, 139–140

external scripts, 72, 143–144

external stylesheets, 44–47

importing from, 45–46

specifying character encoding of, 46–47

[image: Image] F

fallback content, for object element, 386–387

fallback section, of manifest file, 1003–1005

favicons, defining for page, 138–139

fieldset element, 113, 804

adding labels to, 301–302

disabling groups of inputs with, 303–304

figcaption element, 111, 214

figure element, 105, 111

figures, 213–216

File object, 957, 970, 972

FileList object, 970

files

drag & drop of, 968–972

sending with Ajax, 861–862

fill() method, 930

fill style, in drawing state, 906–907

finally clause, 97

fine print, 165–166

first-child selector, 440–442

firstChild, 654, 675–676

flexbox layouts, 541–551

flexing elements in, 546–547

maximum sizes in, 549–551

simple, 544–545

vertical space in, 547–549

float property, 498, 522–526

float value, 524–525

floating, in CSS, 522–529

floating-point numbers, 78

Flow content, 253, 269

flow elements, 24

focus events, 788–789

focus selector, 458–459

FocusEvent object, 788, 790

focusing input element, automatically, 297–298

font-family property, 572–574, 578

font-size property, 57–58, 60, 64

font-size value, 61, 64

font sizes, relative lengths to, 59–61

font-style property, 556, 572, 576–578

fonts, 571–577

font-family property, 572–574

size of, 574–575

style of, 576–577

using web fonts, 577

weight of, 576–577

footer element, 112, 232, 236, 238, 243–244, 247, 261–263

footers, headers and, 229–232

for loop, 72, 94

foreign terms, denoting, 160–161

form elements, 802–810

button element, 803

datalist element, 803

fieldset element, 804

form element, 804

input element, 805

label element, 807

legend element, 807

optgroup element, 807

option element, 808

output element, 808

select element, 809

textarea element, 810

form events, 792

formats, preformatted content, 197–199

formatted strings, input elements for, 336–338

FormData() method, 858

FormData object, 849, 856–859, 861–863, 872, 957, 971–972

FormData.append method, 972

formnovalidate attribute, 369

forms, 281–309

action attribute, 287–288

autocomplete attribute, 291–292

automatically focusing input element, 297–298

button element in, 304–308

as generic element, 307–308

to reset forms, 306–307

to submit forms, 305–306

creating, 282–287

data from, 285–287, 853–856

disabling elements in, 298–299

elements for, 113

elements outside of, 308

encoding for, 289–291

application/x-www-form-urlencoded encoding, 290

multipart/form-data encoding, 290

text/plain encoding, 291

grouping elements in, 299–304

adding label to fieldset element, 301–302

disabling groups of inputs, 303–304

labels for, adding, 295–296

method attribute, 288

name of, 294–295

target attribute, 292–293

frame, 252

function keyword, 71

function() method, 30, 81, 84, 723, 727, 732, 744, 750, 772, 852

functions, 74–77

with parameters, 75–76

that return results, 76–77

using as methods, 80–81

[image: Image] G

geolocation, 975–985

error handling, 979–980

getCurrentPosition method, 976–978

options for, 981–983

using, 975–978

watchPosition method, 983

Geolocation object, 975

GET method, 856

getAllResponseHeaders() method, 836

getCurrentPosition method, 975–983, 985

getElement methods, 673

getElementById method, 661–663, 665, 668, 670, 672–674, 676

getElementsByClassName method, 671

getElementsByName method, 671

getElementsByTagName method, 654–655, 671–672, 674, 676

getRGBColorValue() method, 758

GetRGBColorValue method, 761

getStringValue() method, 758

global attributes, 25–36

accesskey, 25–26

class, 26–28

contenteditable, 28–29

contextmenu, 29

dir, 29

draggable, 30

dropzone, 30

hidden, 30–31

id, 31–32

lang, 32–33

spellcheck, 33–34

style, 34

tabindex, 34–35

title, 35–36

global variables, 77

gradients, in drawing state, 907–913

grouping, 191–216

div element, 195–197

elements for, 110–111

figures, 213–216

into lists, 204–213

custom, 211–213

description, 210

li element, 208–210

ol element, 204–206

ul element, 207–208

need for, 192–193

paragraphs, 193–195

preformatted content, 197–199

quoting from other sources, 199–201

thematic breaks, 202–203

grouping elements, 110, 798–799

blockquote element, 798

in forms, 299–304

adding label to fieldset element, 301–302

disabling groups of inputs, 303–304

li element, 798

ol element, 799

[image: Image] H

h1 element, 217, 221, 225, 227, 232, 235, 239, 242, 244, 247

h1-h6 element, 112

h2 element, 218, 222, 224, 226, 231, 238, 241, 243, 247–248

h3 element, 217, 219–220, 223, 225–226, 231, 237, 241, 247

h6 element, 218, 220–222, 224, 226–227, 229, 232, 244

handleAbort() method, 846

handleMouseOver() method, 771

handleResponse() method, 828, 833, 839, 846, 857, 860, 865, 868, 872, 972

handlers, for events, 766–770

hasChildNodes() method, 654, 675–677

head element, 13, 23, 117, 120–123, 126, 140, 638

header element, 112, 220, 230, 232, 234, 236, 239, 242, 244, 247

headers

for Ajax, 836–840

disabling content caching, 838

overriding request HTTP method, 836–837

reading response headers, 838–840

and footers, 229–232

simulating, 128–129

for tables, 256–257, 267–269

headings, 218–221

hiding subheadings, 221–224

for tables, 259–261

height property, 60–61, 253, 256

hgroup element, 106, 217, 221, 225, 231, 235, 238, 241, 243, 247

hidden attribute, 14, 30–31

hidden data items, 343–346

hiding, of elements, 521

highAccuracy property, 981

highlighting, with mark element, 186–187

History object, 642, 687–696

adding entry for different document, 692–694

inserting entry into, 690–692

navigating within, 688–690

replacing item in, 696

storing complex state in, 694–696

History.pushState method, 695

hover selector, 456

hr element, 18, 111, 191, 202

href attribute, 19, 124–125

href attributes, 638

html elements, 13, 18, 21–23, 108, 117, 119–121

HTML events, 784–792

document events, 784

focus events, 788–789

form events, 792

keyboard events, 790–792

mouse events, 785–787

window events, 784

HTML file, 143, 1004–1005, 1011

HTML fragments, receiving with Ajax, 866–868

HTML (Hypertext Markup Language), 13–36

documents, 20–24

content, 23

element types, 24

metadata, 22–23

outer structure, 21–22

parents, children, descendants, and siblings, 23

elements, 14–18

attributes for, 19–20

empty, 17

self-closing tags, 17

void, 17–18

entities, 24

global attributes, 25–36

accesskey, 25–26

class, 26–28

contenteditable, 28–29

contextmenu, 29

dir, 29

draggable, 30

dropzone, 30

hidden, 30–31

id, 31–32

lang, 32–33

spellcheck, 33–34

style, 34

tabindex, 34–35

title, 35–36

tools, 36

HTML5 (Hypertext Markup Language 5), 3–8

current state of, 7

history of, 3–5

competition in browser market, 4

HTML standard, 5

JavaScript language, 3–4

plugins, 4

semantic HTML, 4

introduction to, 5–7

native multimedia, 6

programmatic content, 6

semantic web, 7

standards for HTML, 5–6

resources for, 8

HTMLAnchorElement object, 796

HTMLAudioElement object, 874, 886

HTMLBaseElement object, 793

HTMLBodyElement object, 793

HTMLButtonElement object, 803

HTMLCanvasElement object, 900, 927

HTMLDataListElement object, 803

HTMLDetailsElement object, 799

HTMLElement members, for DOM, 643–645

HTMLElement object, 643, 645, 706, 711, 720, 746, 765, 771, 784, 793

HTMLElement.style property, 746

HTMLEmbedElement object, 812

HTMLFieldSetElement object, 804

HTMLFormElement object, 804, 857, 859

HTMLHeadingElement object, 800

HTMLIFrameElement object, 813

HTMLImageElement object, 813, 916–917

HTMLInputElement object, 805

HTMLLabelElement object, 807

HTMLLegendElement object, 807

HTMLLIElement object, 798

HTMLLinkElement object, 794

HTMLMapElement object, 814

HTMLMediaElement object, 886–887, 896

HTMLMetaElement object, 794

HTMLMeterElement object, 814

HTMLObjectElement object, 815

HTMLOListElement object, 799

HTMLOptGroupElement object, 807

HTMLOptionElement object, 808

HTMLOutputElement object, 808

HTMLParamElement object, 816

HTMLProgressElement object, 816

HTMLQuoteElement object, 797–798

HTMLScriptElement object, 795

HTMLSelectElement object, 809

HTML.style property, 735

HTMLStyleElement object, 795

HTMLTableColElement object, 800

HTMLTableElement object, 800

HTMLTableHeaderCellElement object, 801

HTMLTableRowElement object, 802

HTMLTableSectionElement object, 801

HTMLTextAreaElement object, 810

HTMLTimeElement object, 798

HTMLTitleElement object, 796

HTMLVideoElement object, 886–887

HTTP method, 825–826, 836, 838, 844

httpRequest.abort() method, 846

httpRequest.getAllResponseHeaders() method, 839

httpRequest.send() method, 823, 825, 828, 831, 833, 837–839, 841, 846

hyperlinks, 153–157

external, 154–155

img element in, 373–375

internal, 156

relative URLs, 155

targeting browsing context, 156–157

Hypertext Markup Language 5> (HTML5), 3–8

current state of, 7

history of, 3–5

competition in browser market, 4

HTML standard, 5

JavaScript language, 3–4

plugins, 4

semantic HTML, 4

introduction to, 5–7

native multimedia, 6

programmatic content, 6

semantic web, 7

standards for HTML, 5–6

resources for, 8

Hypertext Markup Language (HTML), 13–36

documents, 20–24

content, 23

element types, 24

metadata, 22–23

outer structure, 21–22

parents, children, descendants, and siblings, 23

elements, 14–18

attributes for, 19–20

empty, 17

self-closing tags, 17

void, 17–18

entities, 24

global attributes, 25–36

accesskey, 25–26

class, 26–28

contenteditable, 28–29

contextmenu, 29

dir, 29

draggable, 30

dropzone, 30

hidden, 30–31

id, 31–32

lang, 32–33

spellcheck, 33–34

style, 34

tabindex, 34–35

title, 35–36

tools, 36

[image: Image] I

i element, 109

icons, defining favicon for page, 138–139

id attribute, 14, 31–32, 195, 268–269, 272–273, 275, 277, 279

ID, selecting elements by, 417–418

id values, 51

identity operator, 72, 86–89, 101

if statement, 88, 100

iframe elements, 114, 379–382, 641, 699–700, 813

image, as list marker, 625–626

image origin, for backgrounds, 486–488

image type, 312, 346–347

images

as borders, 475–479

slice repeat style, 478–479

slicing image, 475–477

in canvas element, 921–927

canvas images, 925–927

video images, 922–925

embedding with object element, 387

input elements using, 346–348

img elements, 114, 372–379, 813

implementation property, 666

in expression, 72, 85

inaccuracies, showing, 161–162

infinite value, 597

inherit value, 55

inheritance, 54–56

initial state, for animations, 592–593

inline-block elements, 517–518

inline-level elements, 516–517

inline scripts, 71–72, 142

inline style application, 41–42

innerHTML property, 669, 727–732

changing document structure with, 728–729

inserting HTML fragments with, 730–732

input elements, 311, 350–362, 805

buttons, 325–326

hidden data items, 343–346

images, 346–348

keygen element, 361–362

output element, 360–361

password input, 322–324

restricted data type values, 326–342

checkboxes, 331–333

color picker, 340–342

dates and times, 338–340

formatted strings, 336–338

numbers only, 327–329

numbers within range, 329–331

radio buttons, 334–336

search terms, 342–343

select element, 352–359

text input, 312–322

dirname attribute, 322

disabling, 320–322

setting values for, 315

specifying size, 313–315

using data list, 316–319

textarea element, 357–359

to upload files, 348

validation of, 362–368

disabling, 368

email type, 367–368

min and max attributes, 364–366

pattern attribute, 366–367

required attribute, 363–364

url type, 367–368

inputs, representing outputs and, 171–172

ins element, 109, 187–189, 797

integer numbers, 78

interacting, with Window object, 683–684

interactive stage, 665

internal hyperlinks, 156

invalid input elements, selectors for, 450–451

irregular tables, 263–267

[image: Image] J

JavaScript language

arrays, 92–96

built-in methods for, 95–96

contents of, 94–95

literal style, 93–94

comparing undefined and null values, 97–102

functions, 74–77

with parameters, 75–76

that return results, 76–77

handling errors, 96–97

operators, 86–92

equality and identity, 86–89

explicitly converting types, 89–92

overview, 3–4

statements, 74

tools for, 102–103

variables, 77–86

objects, 79–81

primitive types, 77–79

JavaScript object, 821, 859, 871, 898

JSON data, with Ajax

receiving, 871–872

sending, 859–861

JSON object, 860

JSON.parse method, 850

JSON.stringify method, 849

[image: Image] K

kbd element, 109

key frames, for animations, 592–595

reusing, 599–601

setting initial state, 592–593

specifying intermediate key frames, 594–595

keyboard events, 790–792

keygen element, 113, 361–362

keywords, denoting product names and, 157–158

[image: Image] L

label element, 113, 807

labels, for forms, 295–296, 301–302

lang attribute, 14, 32–33, 644

lang selector, 461

language elements, 178–184

bdi element, 182–184

bdo element, 180–181

ruby, rt, and rp, 178–180

last-child selector, 442–443

lastChild, 654, 675

layout properties, for CSS, 405–406

layouts, 531–554

flexbox layouts, 541–551

flexing elements in, 546–547

maximum sizes in, 549–551

simple, 544–545

vertical space in, 547–549

multicolumn layouts, 537–541

positioning content, 532–537

position type, 532–535

z-order, 535–537

table layouts, 551

for tables, 621–623

legend element, 113, 807

length property, 95, 668, 672

lengths, CSS, 57–66

absolute lengths, 58

relative lengths, 59–66

LESS framework, 69

li element, 208–210, 219, 226, 234, 239, 243, 248, 798

libraries

of external scripts, 143–144

JavaScript, 102

line join style, in drawing state, 905–906

link element, 39, 45, 108, 118, 135–139, 794

link selector, 454–455

list-style-image property, 611, 625

list-style-position property, 611, 626–627

list-style-type property, 435, 611, 623–624

lists, 623–628

grouping into, 204–213

custom list, 211–213

description list, 210

li element, 208–210

ol element, 204–206

ul element, 207–208

list markers for

image as, 625–626

positioning, 626–628

specifying type, 623–625

literal format

arrays, 93–94

objects, 80

local storage, 987–992

local variables, 77

localStorage.clear() method, 989

Location object, 639, 659–662

Log In button, 25

[image: Image] M

manifest attribute, 997, 1000–1002, 1011

manifest file, for offline applications, 999–1006

cache section, 1002

fallback section, 1003–1005

network section, 1005–1006

map element, 114, 375–379, 814

margins, 501–502

mark element, 109, 186–187

markers, for lists

image as, 625–626

positioning, 626–628

specifying type, 623–625

markup, keeping simple, 106

max attribute, 392

maximum sizes, in flexbox layouts, 549–551

media attribute, 131–135, 739–740

MediaController object, 896

mediaElem.pause() method, 895

mediaElem.play() method, 895

MediaList object, 735, 739, 741

message event, 701

MessageEvent object, 701

meta element, 108, 117–118, 125–128, 149, 794

metadata elements, 13, 22–24, 122–140

base, for relative URLs, 124–125

declaring character encoding, 128

defining CSS styles, 129–135

media attribute, 131–135

scoped attribute, 131

type attribute, 131

denoting external resources, 135–140

defining favicon for page, 138–139

loading stylesheet, 137–138

preemptively fetching, 139–140

document elements and, 108

setting document title with, 122–123

simulating header, 128–129

specifying name/value pairs, 126–127

meter element, 114, 391–393, 814

method attribute, 288

methods

adding and deleting properties and, 84–85

using functions as, 80–81

MIME type, 136, 154, 849, 870, 873, 882, 887, 970, 1000

min and max attributes, 364–366

min attribute, 392

MLHttpRequest object, 836, 844

modules, multipart, 11

mouse events, 785–787

mouseenter element, 651

MouseEvent object, 785–786, 965

mouseleave element, 651

moving, elements, 723–724

multicolumn layouts, 537–541

multimedia, 873–896

audio element, 884–886

in DOM, 886–895

assessing playback capabilities, 889–892

controlling media playback, 892–895

getting information about media, 887–889

native, 6

video element, 874–883

poster attribute, 878

preload attribute, 876–877

size of, 879–880

src attribute, 880–882

track element, 883

multipart/form-data encoding, for forms, 290

multipart module, 11

multipart.parser() method, 852

myArray variable, 93–97

myData variable, 79–82, 84–86, 98–100

myData.printMessages() method, 81

myFunc function, 75–76

myFunc() method, 75

[image: Image] N

name attribute, 371, 376, 379–380, 389

name, of forms, 294–295

name/value pairs, specifying, 126–127

namedItem method, 668–670

namedItem property, 670

name=value form, 664

native multimedia, 6

nav element, 112, 233, 235, 237, 239, 241–245

navigating

Document object tree, 675–678

within History object, 688–690

with Location object, 660–662

navigation blocks, 233–237

negation selector, 459–460

network section, of manifest file, 1005–1006

nextSibling, 675–677

Node.js environment, 10–11

NodeList, 671

None, 218, 221, 225, 230, 233, 237, 241, 244, 247

noscript element, 108, 118, 147–150

novalidate attribute, 369

nowrap, 253, 256

nth-child selectors, 445–446

null values, comparing with undefined values, 97–102

Number function, 91–92

number type, 78–79, 90–91

numbers, input elements for, 327–331

[image: Image] O

object element, 114, 384–389, 815

as browsing context, 389

client-side image maps with, 388

embedding images with, 387

fallback content for, 386–387

Object() method, 72, 79, 851, 860, 867–868, 870, 872

objects, 79–81

literal format, 80

properties

adding and deleting methods and, 84–85

determining if object has, 85–86

enumerating, 83

reading and modifying values of, 82

using functions as methods, 80–81

offline applications, 997–1014

ApplicationCache object, 1007–1013

applying update, 1013

getting update, 1012

making update, 1011

detecting browser state, 1006–1007

manifest file for, 999–1006

cache section, 1002

fallback section, 1003–1005

network section, 1005–1006

reason for, 998–999

ol element, 107, 111, 204–206, 799

only-child selector, 443–444

only-of-type selector, 444–445

opacity, in CSS, 613–614

Opera browser, and Ajax, 827–829

operators, 86–92

equality and identity, 86–89

explicitly converting types, 89–92

numbers to strings, 90–91

strings to numbers, 91–92

optgroup element, 113, 355–357, 807

optimum attribute, 392–393

option elements, 113, 808

optional input elements, selectors for, 453–454

options, for geolocation, 981–983

order assessments, specificity and, of styles, 51–54

origin property, 701

otherclass class, 28

otherpage.html, 693–694

outerHTML property, 727–732

changing document structure with, 728–729

inserting HTML fragments with, 730–732

outlines, 492–495

output element, 113, 360–361, 808

outputs, representing inputs and, 171–172

overflowing content, 507–510

[image: Image] P

p element, 111, 191, 193–195

padding property, 44, 498–501

paracount counter, 435

paragraphs, 193–195

param element, 114, 816

parameters, functions with, 75–76

parentNode, 675–676

parents, children, descendants, siblings and, 23

parseFloat, 92

parseInt, 92

password input, 322–324

paths, using in canvas element, 930–936

pattern attribute, 351, 366–368

patterns, in drawing state, 916–918

pause() method, 892

percentages, relative lengths with, 64

Phrasing content, 218, 247

phrasing elements, 24

pixels, relative lengths with, 61–63

play() method, 892

plugins, 4

polyglot documents, 21

popstate event, 695

Position object, 977

position, of backgrounds, 483–484

Position.coords property, 977

PositionError object, 979

PositionError.code property, 979

positioning

content, 532–537

position type, 532–535

z-order, 535–537

list markers, 626–628

PositionOptions object, 981, 983

POST method, 856

poster attribute, of video element, 878

postMessage method, 699–700

pre element, 111, 191, 197–199, 655–656, 669, 675

preformatted content, 197–199

preload attribute, of video element, 876–877

presentation, of elements, 105–106

preventDefault() method, 773

previousSibling, 675–677

primitive types, 77–79

boolean, 78

number, 78–79

string, 78

PRINT type, 739

printMessages method, 81, 83

processStyleSheet() method, 744

product names, denoting keywords and, 157–158

programmatic content, 6

progress element, 114, 389–391, 816

progress, when uploading files with Ajax, 863–865

ProgressEvent object, 830

prompting user, with Window object, 685–686

prop variable, 83

properties

adding and deleting methods and, 84–85

in CSSStyleDeclaration object, 753–758

determining if object has, 85–86

enumerating, 83

reading and modifying values of, 82

using to obtain elements, 667–669

variables and, differentiating between undefined and null values for, 100

pushState argument, 694

pushState method, 690–691, 693–694

[image: Image] Q

q element, 109, 797

quadratic Bezier curves, in canvas element, 944–946

querySelectorAll method, 653, 671, 673–674

quirks mode, and Document object, 658

quotations, 175–176

quoting, from other sources, 199–201

[image: Image] R

radial gradient, in drawing state, 913–916

radio buttons, 334–336

reading, cookies, 662–664

readyState property, 664–666

readystatechange event, 665

real numbers, 78

receiving data, with Ajax, 866–872

HTML fragments, 866–868

JSON data, 871–872

XML data, 869–870

rectangles, in canvas element, 901–903

rel attribute, 118, 136, 140

relative lengths, 59–66

CSS units

calculations of, 65–66

without wide support, 64–65

to font size, 59–61

with percentages, 64

with pixels, 61–63

relative URLs

base element for, 124–125

href attribute, 124–125

target attribute, 125

overview, 155

repeat direction, for animations, 595–597

request errors, for Ajax, 835

required attribute, 351, 363–364, 366–368

required input elements, selectors for, 453–454

requirements, for HTML 5. See tools

res.end() method, 842–845, 851, 866, 869, 871

reset() method, 805

resetting forms, button element for, 306–307

restore() method, 919

restoring, drawing state, 919–921

restricted data type values, 326–342

checkboxes, 331–333

color picker, 340–342

dates and times, 338–340

formatted strings, 336–338

numbers only, 327–329

numbers within range, 329–331

radio buttons, 334–336

return keyword, 76

reusing key frames, for animations, 599–601

reverse() method, 95

reversed attribute, 107, 205–206

RGBColor object, 761

root selector, 438–439

rounded corners, for borders, 471–474

rowspan, 263–264, 266, 269–270, 272–273, 275–276, 278

rp element, 110, 178–180

rt element, 110, 178–180

ruby element, 110, 178–180

run-in elements, 518–520

[image: Image] S

s element, 110

samp element, 110

sample code, 11

save() method, 919

saving, drawing state, 919–921

scoped attribute, 131

scopes, 253, 256

Screen object, 641, 643, 681–682

screen property, 682

script element, 140–147, 639, 795

deferring execution of script, 144–146

defining inline script, 142

executing script asynchronously, 147

loading external scripting library, 143–144

scripting elements, 140–150

noscript element, 147–150

script element, 140–147

deferring execution of script, 144–146

defining inline script, 142

executing script asynchronously, 147

loading external scripting library, 143–144

search terms, input elements for, 342–343

section elements, 111–112, 224–229, 248

sectioning, elements for, 111–112

sections, 217–249

article element, 237–240

contact information, 244–245

details section, 246–249

headers and footers, 229–232

headings, 218–224

navigation blocks, 233–237

section element, 224–229

sidebars, 240–243

select element, 113, 352–359, 809

Selecting property, 53

SelectorGadget tool, 68

selectors, 430–432

all elements, 412–413, 432–434

checked elements, 448–449

child elements, 425–427

child selectors, 439–445

nth-child selectors, 443–446

valid input, 440–443

counter feature, 434

for CSS, 399–402

default elements, 449–450

descendant elements, 423–425

disabled elements, 447–448

elements by attribute, 418–421

elements by class, 414–416

elements by ID, 417–418

elements by type, 413–414

elements with range limitations, 452–460

enabled elements, 447–448, 456–459

invalid input elements, 450–461

negation selector, 459–460

optional input elements, 453–454

required input elements, 438–439, 453–462

root selector, 457–458

selecting elements by, 430–434

sibling elements, 427–429

unions, 422–423

valid input elements, 450–455

self-closing tags, 17

semantic HTML, 4

semantic/presentation divide, of elements, 105–106

semantic web, 7

sematic element, 15

sending data, with Ajax

files, 861–862

form data, 853–856

JSON data, 859–861

server for, 851–853

tracking upload progress, 863–865

using FormData object, 856–859

server, for Ajax requests, 851–853

servers, web, 10

session storage, 992–995

sessionStorage.clear() method, 993, 995

setInterva.function() method, 924, 926

setInterval method, 680, 702–703

setTimeout method, 680, 702–703

setTimeout.function() method, 845

setup errors, for Ajax, 834–835

shadows, 490–492, 949–950

shift() method, 96

shorthand properties

for backgrounds, 489

for borders, 470–471

showModalDialog method, 679, 685–686

sibling elements, selecting elements by, 427–429

siblings, children, parents, descendants and, 23

sidebars, 240–243

sites, support for HTML, 7

size

of backgrounds, 482–483

of fonts, 574–575

for text input, 313–315

of video element, 879–880

small element, 110

sort() method, 96

source element, 114

source items, for drag & drop, 958–961

spacing, of text, 564–565

span element, 41, 54–56, 110–111, 184–185, 196

specificity, and order assessments, 51–54

spellcheck attribute, 14, 33–34

src attribute, 118, 141–143, 880–882

SSStyleSheet.cssRules property, 742

SSStyleSheet.disabled property, 741

standardization, of CSS, 397

standards, for HTML, 5–6

start attribute, 205

starting, animations, 603

statements, 74

stopImmediatePropagation() method, 773

stopping, animations, 603

stopPropagation() method, 773

storage event, local storage, 990–992

Storage object, 987–988, 990, 992

StorageEvent object, 990

string type, 78, 91–92

string values, 78, 92

stroke() method, 930

stroke style, in drawing state, 906–907

strong element, 110

style attribute, 14, 34, 39, 41–42, 61

style element, 34, 42, 45, 52, 109, 130–131, 137–138, 795

style property, 746–748

styles, 40–47

applying inline, 41–42

of borders, 467–469

browser, 47–48

cascading of, 49

specificity and order assessments, 51–54

tweaking order, 50

CSS, defining, 129–135

CSS properties, 40–41

embedded, 42–44

external stylesheets, 44–47

importing from, 45–46

specifying character encoding of, 46–47

of fonts, 576–577

inheritance, 54–56

user, 48

stylesheets

external, 44–47

importing from, 45–46

specifying character encoding of, 46–47

loading, 137–138

styleSheets property, 736–745

disabling, 741–742

getting information about, 737–738

individual styles in, 742–745

media attribute for, 739–740

sub element, 110

subheadings, hiding, 221–224

submit() method, 805

submitting forms, button element for, 305–306

subscripts, superscripts and, 167

summary element, 112, 217, 230, 246–249, 251–252

sup element, 110

superscripts, and subscripts, 167

svg element, 114

Swap Cache button, 1013

swapCache() method, 1008, 1010, 1013

[image: Image] T

tabindex attribute, 14, 34–35

table elements, 112, 551–552, 800–802, 1010–1011

col element, 800

colgroup element, 800

table element, 800

tbody element, 801

tfoot element, 801

th element, 801

thead element, 801

tr element, 802

table layouts, 551

tables, 251–279, 614–623

borders for, 277

captions for, 269–270

collapsing borders, 615–616

columns in, 271–276

configuring separated borders, 617–618

creating, 252–256

elements for, 112

empty cells, 619

headers for, 256–257, 267–269

irregular, 263–267

positioning caption, 619–620

specifying layout, 621–623

structure of, 257–263

adding footer, 261–263

denoting headings and body, 259–261

takeSnapshot() method, 926

target attribute, 125, 292–293, 380, 389

target phase, for DOM events, 779

target selector, 462

tbody element, 112, 260, 264, 269, 273, 275–276, 278–279, 801

td element, 251, 253, 257, 261, 265, 267, 272, 274, 276, 279

technical terms, denoting, 160–161

testing, for CSS feature support, 67

text, 555–579

in canvas element, 947–949

direction property, 562–563

in elements, 716–719

and fonts, 571–577

font-family property, 572–574

size of, 574–575

style of, 576–577

using web fonts, 577

weight of, 576–577

spacing of, 564–565

text-align property, 556–558

text-decoration property, 568–569

text-indent property, 567–568

text-shadow property, 570–571

text-transform property, 568–569

whitespace property, 558–562

word-wrap property, 565–567

text-align property, 556–558

text-decoration property, 568–569

text elements, 109–110, 151–190, 796–798

abbreviations, denoting, 173–174

annotating with, 157–167

denoting foreign or technical terms, 160–161

denoting important text, 163–164

denoting keywords and product names, 157–158

emphatic stress, 158–160

fine print, 165–166

showing inaccuracies or corrections, 161–162

superscripts and subscripts, 167

underlining text, 164–165

breaks, 168–171

forcing, 168–169

indicating opportunity for safe, 169–171

citations, 177–178

definitions, 174–175

del element, 797

a element, 796

hyperlinks, 153–157

external, 154–155

internal, 156

relative URLs, 155

targeting browsing context, 156–157

ins element, 187–189, 797

language elements, 178–184

bdi element, 182–184

bdo element, 180–181

ruby, rt, and rp, 178–180

mark element, highlighting text with, 186–187

q element, 797

quotations, 175–176

representing inputs and outputs, 171–172

span element, 184–185

time element, 189–190, 798

text-indent property, 567–568

text input, 312–322

dirname attribute, 322

disabling, 320–322

setting values for, 315

specifying size, 313–315

using data list, 316–319

Text object, 645

text/plain encoding, for forms, 291

text properties, for CSS, 407

text-shadow property, 570–571

text-transform property, 568–569

text type, 313, 317, 322, 342–343

textarea element, 113, 357–359, 810

tfoot element, 112, 252, 263, 268, 273, 275–276, 278–279, 801

tfooter, 262

th element, 112, 801

thead element, 113, 801

thematic breaks, 202–203

time element, 110, 189–190, 798

timers, with Window object, 702–704

times

CSS, 66

input elements for, 338–340

title attribute, 14, 35–36, 644

title element, 22, 109, 117, 120–124, 796

TMLMediaElement object, 892

toggleHidden() method, 30

tools, 9–11, 36

browsers, 9

for CSS, 67–69

browser style reporting, 67

CSS frameworks, 69

LESS framework, 69

SelectorGadget tool, 68

editors, 10

for JavaScript language, 102–103

Node.js environment, 10–11

sample code, 11

web servers, 10

toString() method, 90–91

tr element, 113, 802

track element, 114, 883

transform-origin property, 582, 606–607

transform property, 408, 582, 604, 606

transformations, in canvas element, 955–956

transforms, 604–609

animating of, 608–609

applying, 604–606

specifying origin, 606–608

transition properties, for CSS, 408

transitions

creating, 582–589

selecting how intermediate values are calculated, 587–589

transparency, in canvas element, 951–952

try clause, 96

type attribute, 131, 205

type, selecting elements by, 413–414

types

explicitly converting, 89–92

numbers to strings, 90–91

strings to numbers, 91–92

primitive, 77–79

boolean, 78

number, 78–79

string, 78

[image: Image] U

u element, 110

ul element, 111, 207–208, 234–236, 238, 242, 245

undefined values, comparing with null values, 97–102

underlining, 164–165

Uniform Resource Locators (URLs), 124–125, 155

unimplemented elements, 115

Update button, 1012

update() method, 1007, 1011

updateCookie function, 663

uploading files

with Ajax, showing progress, 863–865

input elements for, 348

url type, 367–368

URLs (Uniform Resource Locators), 124–125, 155

user agents, 21

user styles, 48

[image: Image] V

val.getRGBColorValue() method, 760

valid input elements, selectors for, 450–451

validation, of input elements, 362–368

disabling, 368

email type, 367–368

min and max attributes, 364–366

pattern attribute, 366–367

required attribute, 363–364

url type, 367–368

valign, 253, 256, 259–261, 271, 275

value attribute, 191, 209, 213, 390, 392

values, for text input, 315

var element, 110

var keyword, 71, 77

variables, 77–86

objects, 79–81

literal format, 80

properties, 82–86

using functions as methods, 80–81

primitive types, 77–79

boolean, 78

number, 78–79

string, 78

and properties, differentiating between undefined and null values for, 100

vertical space, in flexbox layouts, 547–549

video element, 114, 874–883

poster attribute, 878

preload attribute, 876–877

size of, 879–880

src attribute, 880–882

track element, 883

visibility, of elements, 511–513

visited selector, 454–455

void elements, 17–18

[image: Image] W

watchPosition method, 983–985

wbr element, 110

weather property, 99

web developing, semantic, 7

web development tools. See tools

web fonts, 577

web servers, 10

web storage

local storage, 987–992

session storage, 992–995

weight, of fonts, 576–577

whitespace property, 558–562

width property, 57–58, 64, 252–253, 256, 271, 275, 467

window global variable, 679–680

Window members, for DOM, 640–643

Window object, 679–704

cross-document messaging, 697–701

events for, 784

getting information from, 681–682, 687

and History object, 687–696

adding entry for different document, 692–694

inserting entry into, 690–692

navigating within, 688–690

replacing item in, 696

storing complex state in, 694–696

interacting with, 683–684

obtaining, 680

prompting user, 685–686

timers in, 702–704

window.applicationCache.swapCache() method, 1010

window.applicationCache.update() method, 1010

Window.location property, 687

Window.print() method, 651, 784

word-wrap property, 565–567

writeln method, 73

writing, cookies, 662–664

[image: Image] X

XML data, receiving with Ajax, 869–870

XMLHttpRequest() method, 823, 833, 838, 841, 855, 858, 862, 867, 870, 972

XMLHttpRequest object, 822, 825–826, 829, 832, 835, 846, 856, 863, 870

XMLHttpRequest.readyState property, 826

XMLHttpRequest.responseText property, 827

XMLHttpRequestUpload object, 849, 863, 865

XMLHttpRequest.upload property, 865

[image: Image] Z

z-order, 535–537

OEBPS/Images/t2305.jpg
b ool Lo gttt oot
Property Description Values
ransfors Specifes the transform function t0 apply. SeeTable23-
s
Specifes the origin of the transform.

transfors-origin

See Table 23-

OEBPS/Images/t2306.jpg
AT A N SRR T

Value Description

translate(clength or %) Translate an clementin the X, ¥, or both directions.
translate(clength or ©)

translate¥(<length or %)

scale(<number>) Scale an element along one or both axes
scaleX (cnunber>)

scale¥(cnunber>)

rotate(<angles) Rotate an element.

sken(cangle>) ke an element along one or both axes.

skenX(<angler)

skenY(<angler)

ratrix(é-6 x cmumbers) Specify a custom transform. Most browsers don't et implement z-axis

scaling, 5o the last two numbers are ignored (and in some cases must be
omitted).

OEBPS/Images/t2303.jpg
SRR SRR LT

Property Description Values

anisation-delay Sets a delay before the animation commences. <tine>

anisation-direction ‘Specifies whether the animation should beplayed norsal
backviard on alternate cycles. alternate

animation-duration ‘Specifies the span of time over which the animation ~ <tine>
will be performed.

animation-iteration-count Specifies the number of times that the animation will _infinite
be performed. <umber>

N e Seaciiies T nina of o snlinaiion.: o

OEBPS/Images/t2304.jpg
SRS S VRN RO e S

Value Description

Every iteration of the animation i played forward. If there are multiple ierations,

normal T il G TR Y e M S T T SRS 0 6 P’

OEBPS/Images/1108.jpg
/W Bomse
& & C[O ttan/list

1| |3
4)|2(6
e

OEBPS/Images/t2307.jpg
SRS 10 DEIRCSES LN T
Value Descrption

© Speciies theoign ofthe lements xor y i
Qg Spociesadistance,

Lokt Speciisapositon on the s

e

@ Speciiesapositon on they s

botton

OEBPS/Images/1109.jpg
Beompe \©2
€ 5 ¢ [@utan/istngsec

entmi

Results of the 2011 Fruit Survey

o TS

Favorite: Apples Green

BB O O e o
S Favait: P i
e P ertes s can btk o2 oo colrs v .

Preppie Biown Very Lage

Data Eaterprises.

OEBPS/Images/1106.jpg
/Bt

€ 5 @ O ttavisings/ecmplehiml e

I T T T
[T e— Medum 00

Jad Eavort: Ormges Orange Loces 50

2011 Ada

OEBPS/Images/1107.jpg
[Gomole
& 5 C[O ttan/ist

12)3
4||5(6
7\8(9

OEBPS/Images/1104.jpg
B Gemple x
€ 5 € [® ttanflistings/exampletmi FAFY

o o oo e]

Favorite: Apples Green
2ud Favorite: Oranges ~ Orange.

ng:
31 Favorite: Pomegranate A kind of greeny-red Varies from medium to large:

OEBPS/Images/1105.jpg
B Forvle x

€ - C O tianisingyoample IEY
JRaake ___[Name _Color _____Jsee]

Favorite: Apples Green
2ud Favarit

3rd Favorit

Oranges Orange.
Yomegranate A kind of srccay-red Varies from medin to larze:

T 7S T S

Luge

OEBPS/Images/1102.jpg
(=] 8)
Example =
€ € Otitan,

stings/example.html RS
Apples Green Mediom
Oranges Orange Large

Pomegranate A kind of greeny-red Varies from medium to large

OEBPS/Images/t1211.jpg
I L0 L AN O\ SN SO ST LI L S ST PR AN

Attribute Description

form. ‘Specifies the form (or forms) with which the button is associated. See the “Working
with Elements Outside the Form” section for detail.

RLio

formaction ‘Overrides the action attribute on the forn clement, and specifies a new
which the form will be submitted. See the *Configuring the Form Actor
carlierin this chapter for detail of the act on attribute.

formenctype ‘Overrides the enctype attribute on the forn element, and specifies the encoding
scheme for the form data. See the “Configuring the Data Encoding” section earlier
i this chaper for details of the enctype attribute.

formethod ‘Overtides the sethod attribute on the forn element. See the “Configuring the HTTP
Method" section earler in this chapter for details of the nethod atuibute.

forntarget Overtides the target attribute on the forn element, See the “Specifying a Target for
the Form Response” section earlier in this chapter for detail of the target attribute.

formovalidate Overrides the novalidate attribute on the forn element to specify whether clent-
side validation should be performed. See Chapter 14 for details of input validation.

OEBPS/Images/t2301.jpg
P

AT S—

Problem Solution Listing

Createa basic transition. Use the transition-delay, txansition-property,or 23-1,23:2
transition-duration properties, or the transition
shorthand property

Create an inverse transition. Define a counter-transition in the base styleforan ~ 23-3
clement.

Specify howintermediate Use the trans tion- tiring- function property. 234

property values are

calculated duringa

transition.

Ciaites bask avikuation. Usethia andantion-delay, sndeatios-deratise, 23.5

OEBPS/Images/1103.jpg
Eample &

¢ & € [® titan/listings/examplehtm

Rank Name Color
Favorit

Apples Green
2nd Favorite: Oranges Orange

Medium
Large

Size

w A

3rd Favorite: Pomegranate A kind of greeny-red Varies from medium to large

OEBPS/Images/3522.jpg

OEBPS/Images/t1210.jpg
S A ST P N T e

Value

Description

subnit

reset

button

Specifies that the button will be used to submit a form
Specifies that the button will be used o reseta form

Specifies that the button has no specific semantic significance.

OEBPS/Images/t2302.jpg
SISk, o & PRGNS CIODEOER:

Property Description Values
transition-delay Specifies a delay after which the transi <tines
transition-duration Specifies the time span over which the transi <tine>
be performed.
transition-property Specifies the property that the transition applies to. <string>
transition-tining-function Specifies the way that intermediate values are See Listing
caleulated during the transition. 234,
transition Shorthand to specify all of the details ofa transition S Listing.
inone declaration. 52

OEBPS/Images/3521.jpg

OEBPS/Images/1101.jpg
/ B eample 3
€ C | O titan/listings/example.tm| A

Apples Green Mediom
Oranges Orange Large

OEBPS/Images/3520.jpg

OEBPS/Images/t1103a.jpg
Local Attributes: ~ None
Contents: One or more td orth elements
Tag Style: Start and end tags
NewinHTMLS? No

Changes in Thealign, char, charof f, valign, and bgcolor attributes are
HTMLS obsolete. You must use CSS instead.

Style Convention tr { display: table-row; vertical-align: inherit;

border-color: inherit;}

OEBPS/Images/U2701.jpg
URL

http://titan.mydorain. con/apps/other. htrl

https://titan. nydonain. con/apps/other.htrl

http://titan:81.nydorain. con/apps/exanple. htnl Different origin; port differs

http://myserver. mydorain. con/doc.htnl Different origin; host differs

OEBPS/Images/t1204.jpg
Table 12-4. The button Element

Element:
Element Type:

Permitted
Parents:

Local Attributes:

Contents:
Tag Style:
New in HTML5?

Changes in
HTMLS

Style Convention

button
Phrasing

Any parent that can contain phrasing elements

nane, disabled, form, type, value, autofocus, plus other attributes
based on the value of the type attribute

Phrasing Content
Start and end tags
No

‘There are new atributes, which are available depending on the
value of the type attribute. (See the “Using the button Element”
section for details)

None

OEBPS/Images/t1203.jpg
Table 12-3. The input Element

Element:
Element Type:

Permitted
Parents:

Local Autributes:

Contents:
Tag Style:

New in HTML5?

Changes in
HTMLS

Style Convention

input
Phrasing

Any element that can contain phrasing elements

nane, disabled, forn, type, plus other attributes based on the
value of the type attribute

None

Ve

No, but there are some new types of input, which are accessed
through the type attribute. (See Chapter 13 for details)

‘There are new values for the type attribute in HTMLS, and there
are several new attributes that are used with specific values for
the type attribute.

None. The appearance of this element is determined by the type
attribute.

OEBPS/Images/t1206.jpg
AT CE T DA IR SR ST A DN S,

Attibute_ Description

_blank Opens the server responsein a new window (or tab)

GEEER DR Te e

OEBPS/Images/t1205.jpg
I LIS L Y LI T PSR

Value Description

application/x-www-forw-urlencoded This s the default encoding that is used when you don’t apply
theenctype attribute. This encoding cannot be used to upload

fles o the server.
rultipart/forn-data “This encoding is used to upload fils to the server.

“This encoding varies between browsers See the following text

text/plain
for more details.

OEBPS/Images/t2303a.jpg
aniration-play-state

aniation-tining-function

aniration

Allows the animation to be paused and resumed.

Specifies how intermediate animation values are
calculated. See the section “Using Transitions,”
catierin this chapter,for details of these values.

Shorthand propery.

<String

sunning
paused

ease
Linear
ease-out
ease-in-out
cubic-bezier

See the
Tollowing,
explanation.

OEBPS/Images/t1208.jpg
Table 12-8. The fieldset Element

Element:
Element Type:

Permitted
Parents:

Local Attributes:
Contents:
Tag Style:
New in HTML5?

Changes in
HTML5

fieldset

Flow

Any parent that can contain flow elements, usually as a

descendent of a form element

name, form, disabled

Anoptional Legend element, followied by flow content

Startand end tags

No

‘The form attribute has been added in HTMLS. See the “Worl

with Eleaiants Outside the Fosm” sectic ol th

e vy

OEBPS/Images/3519.jpg
(bt v |
Do Ll
€) [O vt anistings/cxamplertm %)=

et)

OEBPS/Images/t1207.jpg
Table 12-7. The lavel Element

Element:
Element Type:

Permitted
Parents:

Local Autributes:
Contents:
TagStyle:
New in HTML5?

Changes in
HTMLS

label
Phrasing

Any parent that can contain phrasing elements

for, forn
Phrasing Content
Startand end tags
No

‘The form attribute has been added in HTMLS. See the “Working
with Elements Outside the Form” section of this chapter for
A e S

OEBPS/Images/3518.jpg
esc

OEBPS/Images/3517.jpg
| ST
0 sample
€3 (O] mepsrianstngsieampie o &)l

OEBPS/Images/t1209.jpg
Table 12-9. The legend Element

Element:
Element Type:

Permitted
Parents:

Local Attributes:
Contents:
TagStyle:

New in HTMI 52

legend
N/A

‘The fieldset element

None
Phrasing Content
Startand end tags

No

OEBPS/Images/3516.jpg
S

OEBPS/Images/3515.jpg
/@ eampe e
| € » ¢ @ titanistings/examplentm

w A

T

OEBPS/Images/3514.jpg
o [) e

€ > ¢ O

OEBPS/Images/3513.jpg
0,0)

(540, 140)

OEBPS/Images/3512.jpg
7 =i
(e . O e—

€ 3 C O titan/lstngs/examplentmi RS

4

OEBPS/Images/3511.jpg
o | e

€ 5 ¢ O manistgs/eampien A

OEBPS/Images/3510.jpg
€ 3 & O tanfistings/examplehmi A

OEBPS/Images/t1202.jpg
Table 12-2. The table Element

Element:
Element Type:

Permitted
Parents:

Local Autributes:

Contents:
Tag Style:

New in HTMI 52

form
Flow

Any element that can contain flow elements, but the forn
element cannot be a descendant of another form.

action, method, enctype, name, accept-charset, novalidate,
target, autoconplete

Flow content (but particularly label and input elements)
Startand end tags

o

OEBPS/Images/t1201.jpg
L SO oY

Problem Solution Listing

Createa basic form. Use the form, snput, andbut ton clements. 1

Specify the URL that the form Use the action attribute on the foxn clement (orthe 3 (and 15)

datais sent to. formaction atribute on the buton elemen).

Specify the vay in which the Use the enctype attibute on the form clement (or the 4 (and 15)

form data s encoded for formenctype atribute on the button element)

transmission to the server.

Control auto-completion. Use the autocorplete attibute on the form or input 5,6
clement

Specify here theresponse Use the target attribute on the forn clement (or the 7

from the server should be forntarget attribute on the button clement).

displayed

Specifyanemefortheform Use the name attribute on the fors elemant. 8

OEBPS/Images/t3501a.jpg
ERNIN B KR SEac T

Create aradial gradient

Createa patiem

Saveand restore the drawing
state

Draw an image on the canvas

b o b et o T o g
colors o the gradient by calling the addColorStop
‘method

Call the createRadialGradient method and add
colors o the gradient by calling the addColorStop
‘method

Call the createPattern method, specifying the source
of the pattern image and the repeat syle

Use the save and restore methods.

Use the drawTnage method, specifying an ing, canvas
orvideo clementas the source.

811

12,13

115

16

1720

OEBPS/Images/t2106a.jpg
box-pack

individual elements within the flexbox
container.

Tells the browser how o allocate space when
the flexible elements have reached their
‘maximum size.

start
end
center
Justify

OEBPS/Images/3509.jpg
e
€ > C Oritan/i

w A

OEBPS/Images/3508.jpg
h

(500, 140)

OEBPS/Images/3507.jpg
/ ©Eampie
€ > C | Qrimnis

OEBPS/Images/3506.jpg
o [e
©osmele
€ > & O tanistings/cxampich & A

OEBPS/Images/3505.jpg
@ bk
€ > C Oanistingse

LI

OEBPS/Images/3504.jpg
© Ecmple Ao

€ > C O titan/listings/examplehtr

OEBPS/Images/3503.jpg
© Eample
| € 5 & (@ tmanyiistings/example ntmi % x‘

OEBPS/Images/3502.jpg
/ @ ampie R
€ 3 C [© titenistingy/eramplehm EY

OEBPS/Images/1322.jpg
I

€ 5 @ O ttangdoiom & A
Form Data

recordlD e] |

reme Adam

password mysecret

s = [

wbaitx |9

submit 1

OEBPS/Images/2411.jpg
€ 9 C O titan/listings/examplentm! ¥¢| X

Thike apples and oranges. T also lke:

These are the inside items:
* bananas
* mangoes
® cherries
These are the outside items.
o phums
 peaches
* grapes

OEBPS/Images/3501.jpg
/@ bampie \
€ + € Qutanistings/examplehim| Y

OEBPS/Images/t3610.jpg
AT L SR RO ———

Name Description Retums

seale(ascales, <yscaler) Scales the canvas by Scale in the x-axis andyScale vold
they-asis

rotate(cangler) Rotatesthe canvas clockise around the point (0,0) vodd

by the specified number of radians.

translate(co, o) Teanslates the canvas by xalong the x-axisandy void
along the y-axis.

transfomn(a, b, , d, e,) Combines the existing transformation with the votd
matrix specified by the valuesa-f.

setfxansforn(a, b, ¢, ¢, ¢, f) Replacesthe existing ransformation vith the matrix void
specified by the values a-f.

OEBPS/Images/1323.jpg
(e Otltan/hs(\rus/e)ar’vu‘eH’v(wiA

Name: Adam

Password: |V 6 cheracters

Faverte Frit |
[E——

OEBPS/Images/2412.jpg
I Eemple
€ 9 C |® titan/listings/example htm)

There are lots of different kind| a alare

over 500 varieties of banalak.
8S)]

time we add the countless typ:
oranges, and other well-known fruft, we are -

OEBPS/Images/1320.jpg
@ postanta

‘ € - C | O titan8080/form RN ‘
Form Data
o
recordD 1234
name Adam
‘password mysecret
fave Apples

OEBPS/Images/1321.jpg
Y|\

OEBPS/Images/2410.jpg
€ - C |® titan/listings/example.html
Tiike apples and oranges. T also lke:

< bananas
< mangoes
< chemies
< phms
<D peaches
< grapes

OEBPS/Images/t3609.jpg
O L LTS

Value

Description

copy.
destination-atop

destination-in

destination-over

Draw the source over the destination,ignoring any transparency

Show the canvas where the

Same as souzce- in but using the destination image instead of the source image.
and vice versa

Same as souzce-over but using the destination image instead of the source image
e et

OEBPS/Images/t3603.jpg
L it S B Lol e

Description

Retums

[T —
Cndhngledssection)

arcTo(xa, y1, %2, y2,720)

Draws an are to (x,v) with radius xad, start angle
startangle, and finish angle endéngle. The optional
direction parameter specifies the direction of the arc

Drawan are t (2, y2) that passes (x1, y1) and has radius
rad

void

void

OEBPS/Images/t2301a.jpg
Setan inidal state for an
animation.

Specify intermediate key
frames for an animation.

Specify the direction of
altemnate repeats of the
animation.

Preserve the final state of an
animation.

Apply animationsin the
initial page layout.

Reuse key frames.

Apply multple animations.
toan clement

Pause and resume an
animation.

Applya transform to an
clement.

Specify an origin fora
transform.

Animate or ransitiona
transform.

SRR ONESENON - COU N TR B
properties. The aniration-nase value must correspond
0.2 set of key frames defined using ékeyfrares

Add a fron clause to the ékey franes declaration.
Add clauses to the ékeyfrares declaration, using the.
‘name of the clause to specify the percentae point of

the animation to which the key frame pertains.

Use theaniation-diection property.

Animations revert to the initial state at completion;
consider using a transform instead.

Include the animation properties n styles that apply.
10 clements in their base state.

Create multiple styles that contain the aniration-nane
property and whose values refer o the same!
keyfranes declaration

Specify multiple gkey frares declarations as the value
of the anination-nare property.

Use theanisation-play-state property.

Use the transforn property.

Use the transforn-origin property

Include the trans forn property in the transitioned
style orin a ekeyfranes declaration.

29

2312,2313

214

215

OEBPS/Images/t3604.jpg
AN SN ENTIN SN

Description

Retums

beztercurveTo(oxt, o1, o2, €52,
%)

quadraticCurveto(cx, 1y, %, ¥)

Dravis a Bezier curve to the point (x, y) with the
control points (cxt, cy) and (©x2, €y2).

Dravis a quadratic Bezier curve to (x, y) with the
control point (cx, cy).

void

void

OEBPS/Images/t3601.jpg
i e

Solution Listing

Draw a shape using lines Use the beginPath, roveTo, LineToand, 1
optionally, the closePath methods.

Set the style used to draw the end of lines et the LineCap property 2

Draw rectangles as partof a path Use the rect method 34

Drawan arc Use the axc orazcTo methods. 57

Drawa cubic or quadratic Bezier curve Use the bezierCurveToor 89
quadraticCurveTo methods

Limit the effect of drawing operations toa Use the c1ip method 10

particular region of the canvas.

Draw text on the canvas Use the fillText or strokeText n
‘methods

‘Add shadows to text or shapes. Use the shadow properties 12

S e M v Uhon fhis ghobalIoks Gty 13

OEBPS/Images/t3602.jpg
SN = TN . SO BN

Name Description Retums

beginpath() Begins a new path void

closepath() Attempts o close the existing path by draving a i from the votd
‘end ofthe lastine o the inital coordinates

10 Fillthe shape described by the sub-paths votd

isPointInPath(x, y) Retuns true f thespecified pointis contained by theshape boolean
descrbed by the current path

LineTo(x, y) Draues a sub-path t the specified coordinates void

noveTox,) Motes to the specified coordinates without drawing a sub-path void

rect(x, ,) Draws a rectangle whose top-left comers isat s, y) with widdhw void
and heighth.

stroke() Draws the outline of the shape as described by the sub-paths void

OEBPS/Images/1319.jpg
/ B Bample

€ > C | titan/listings/examplentml %2 X

Name: [Adam

Password:

Favorite Fruit: [Applos

Subnit Vote

OEBPS/Images/2408.jpg
/W eampie

€ 2 C [titan/listings/examplehtmi LIRS
Rank Name Color Size & Votes
Really Really
Really Long | Apples Green Medum 00
Oranges Orange

©2011 Adam Froeman Fruit Data Enterprises

Restits of the 2011 Fru Survey

OEBPS/Images/t3607.jpg
SKICIRH 7 o NER (LD S IR
Name Description Retums
font Sets the font used when textis drawn string
textAlign Sets the alignment of the text:start, end, loft, Tight, center string

textBaseline Sets the text baseline: top, hanging, widdle, alphabetic, deographic, botton string

OEBPS/Images/2409.jpg
€ 9 C @ titan/listings/example.htm!

Thike apples and oranges. T aiso like:

2 bananas
b. mangoes
3. cherries
d phms
e peaches
£ grapes

i

7]

OEBPS/Images/t3608.jpg
KRN, S SRR IR

Name Descrption Retums
v Sets the dogreeof bl n the shadow nunber
shadonGolor Set the colorafthe shadovs string
shadendffsetX Setsthe xoffet for the shadovw nonber
shadon0ffsety Setsthey-offetfor the shadow nober

OEBPS/Images/1317.jpg
W Opera

= pl =

Nome: Adars
‘Password i 6 charactus

Faverke Fruc

HERETT
EEERTT

OEBPS/Images/2406.jpg
/ Boampe x
= € @ titan/listings/

Reslts of tac 2011 Fruit Survey

[Ramk Name | [Color | [Size & Votes

[Favorite: | [Apples | [Greca | [Medim] [500)

[20d Favorite:] [Oranges| [Orange]

©2011 Adam Freeman Fruit Data Enterprises

OEBPS/Images/t3605.jpg
bl

SR .

Name Description Returns

clip() Createsanew clipping region void

OEBPS/Images/1318.jpg
I Sample X
€ 9 C O titan/listings/examplehtml Y| X

Name: [Adam

Password: [l/in 5 characters

Favorite Frut.

Search: [applos poars| x

OEBPS/Images/2407.jpg
/B eompic
= € | ® titan/listings/examplehtml ¥¢| N

Rank Name | Color | Size & Votes

Favorite: | Apples |Green | Medum | 500

2nd Favorite: | Oranges | Orange

©2011 Adam Freeman Fruit Data Enterprises
Resuts of the 2011 Fruit Survey

OEBPS/Images/t3606.jpg
ol T i

Name Description Returns

FllText(<texts, x, y, width) Dravss and fill the specified tex at the posi void

‘The optional width argument sets an upper
Kot eggarrhatssdy

OEBPS/Images/1315.jpg
[T

/ B Bemple =
€ S C O titan/listings/exam; 78 ‘\‘

Name: |Adam J

Vote for your favorite fruit
© Apples © Oranges © Cherries ‘

OEBPS/Images/2404.jpg
Eample

| € C | ® titan/listings/example.htm| ¢ X

Resuls of the 2011 Fruit Survey

Rank
Favorite:

Name

Apples

Color
Green

Size & Votes
Medium |500

2nd Favorite:

Oranges

Orange

Lage [450

© 2011 Adam Freeman Fruit Data Enterprises|

OEBPS/Images/1316.jpg
[€ * D 0 [® Web | tunisings/campienmi
Name: Adam

| Password: [Min 6 characters
i |
Favourite Fruit]
‘When did you last buy: 2011.07-14 +

] iy’ [DIERE
Mon Tue Wed Thu Fri Sat Sun
27 2 2 30 1 2 3
4 5 6 7

OEBPS/Images/2405.jpg
I Semple x\
€ 5 & O thtan/listings/cxamplehtmi RS
Resuits of the 2011 Fruit Survey
Rank Name | [Color| [Size & Votes|
Favorite: | |Apples | Green | [Medium| [500]
[20d Favorite:| [Oranges| [Orange|
© 2011 Adam Freeman Fruit Data Enterprises

OEBPS/Images/1313.jpg
@ Post data ;

‘(- € | ® titan8080/form KN
Form Data
o
‘name Adam
password
o= P

OEBPS/Images/2402.jpg
. | E |
B Eorple
& > C O ttanfistings/eamplehtm! %X

There are lots of different kinds of fruit - there are over 500 variefies

of [S=1011=) alone. By the fime we add the countiess types of
apples, oranges, and other well-known fruit, we are faced with

thousands of choices. Learn more about Bananas

OEBPS/Images/1314.jpg
= >

/B sampe -
€ 3 ¢ [O tanisings/examp| / @ Por e
[[€ > ¢ tnsosoiom ZIR
o e Form Data
Password: [l charmcters | = v
it [Apples
Axe you vegetarian:
Apples
(Subrt Vote | =

OEBPS/Images/2403.jpg
Eample

€ C' | ® titan/listings/example.ntml v | X

Results of the 2011 Fruit Survey

Rank || Name || Color |[Size & Votes
Favorite: |[Apples |[Green |[Medium [[500
2nd Favorite: | Oranges|[Orange [Large |[450

© 2011 Adam Freeman Fruit Data Enterprises

OEBPS/Images/1311.jpg
Eample x

€ 3 C | O titan/listings/example.ntmi IR N

Name: [Atam

Passwordt 1)

Fit: Apples
§ per unitin your area: 1 0 100

Submit Vate

haracte:

OEBPS/Images/1312.jpg
€ > C |@ian/istings/examplehtml ¥y A

Neme: |Adam

Password: [11n &

Fruit: [Apples

Are you vegetarian® [

actors

OEBPS/Images/2401.jpg
= D i

B Borple
€ 3 € (O titan/lstings/examplentmi ey

[ETRETIE| alone. By the ime we add the countiess types of apples,
oranges, and other well.known frut, we are faced ith thousands of

choices. Leam mare about Bananas

There are lots of different kinds of fruit - there are over 500 varieties of

OEBPS/Images/1310.jpg
==
[€ » ¢ [0 uaisingsoampenm

€9 B reiepicangeren

N o] =

Pasword [] Pusevort: Vi i
Frie nr Fuit s
e — Sper s yousen

(Somivas]

OEBPS/Images/t2509.jpg
AR T A Do

Name Description
blur Triggered when the clementloses the focus.

elick Triggered when the mouse button is pressed and released.
dblelick ‘Triggered vhen the mouse button is pressed and released twice.
focus Triggered when the element gains the focus.

focusin Triggered when the element s just about to gain the focus.
Po— Trleusssd vion ha lemsent 1s st abott tohone fha foous:

OEBPS/Images/t2107.jpg
TableZ21-7. The box-align Property

Property Description Values
box-align Specifies how the browser should handle excess start
vertical space. end
stretch

center

OEBPS/Images/t2108.jpg
o el el iy ook Sl

Value

Description

start

end

center

stretch

‘The clements are placed along the top edge of the container, and any empty space.

will be shown beneath them.

‘The elements are placed along the bottom edge of the container, and any empty
space will be shown above them.

d shown above and below the elements.

‘Any additional space is divided equally a

Adjust the height of the elements to fll the available space.

OEBPS/Images/t2105.jpg
Table21-5. The Multicolumn Properties
Property Description Values
column-count Specifies the ideal number of columns. cumber>
column-f411 Specifies how the contentshouldbe balance
distributed between columns. The. ftaroy

OEBPS/Images/t2106.jpg
Table 21-6. The —webkit Flexbox Properties

Property scription Values
box-align Tells the browser how to deal with additional ~ start
space when the height of the content elements ~ end
is less than the height of the container. center
baseline
stretch
[- Specifies the flexibillty of an element: applied to <nmber>

OEBPS/Images/t2109.jpg
TableZ21-9. The box-pack Property

Property Description Values
box-pack ‘Specifies how to deal with additional space if it cannot start
be allocated to flexible elements. end
Justify

center

OEBPS/Images/t1011.jpg
Table 10-11. The aaaress Element

Element:
Element Type:

Permitted
Parents:

Local Atributes:

Contents:

address
Flow

Any element that can contain flow elements

None

Flow content, but the hi-h6, section, header, footer, nav,
article, and aside elements may not be used as descendants of

OEBPS/Images/t1010.jpg
Table 10-10. The asiae Element

Element: aside
ElementType: Flow

Permitted Any element that can contain flow elements, but this element
Parents: cannot be a descendant of the addzess element.

Local Attributes: None
Contents: style clements and flow content

TagStyle: Startand end tags

NewinHTMLS? Yes

Changes in N/A
HTMLS

Style Convention aside { display: block; }

OEBPS/Images/t1013.jpg
Table 10-13. The summary Element

Element:

Element Type:

Permitted
Parents:

Local Attributes:
Contents:
TagStyle:
New in HTMLS?

Changes in
HTMLS

Style Convention

sunmary
N/A

‘The details element

None
Phrasing content
Startand end tags
Yes

N/A

sunmary { display: block; }

OEBPS/Images/t2103.jpg
e e d G i et]

Value Description
static “The clement s aid out as normal (this s the default value).

relative ‘The clement s positioned relative o s normal position.

absolute “The element s positioned relative o ts first ancestor that has a pos3tion value.

fixed

other than static.

‘The element s positioned relative to the browser windorw.

OEBPS/Images/t1012.jpg
Table 10-12. The details Element

Element:
Element Type:

Permitted
Parents:

Local Attributes:
Contents:
TagStyle:
New in HTMLS?

Changes in
HTMLS

Style Convention

details
Flow

Any element that can contain flow elements

open
An (optional) surmary element and flow content
Startand end tags

Yes

N/A

details { display: block; }

OEBPS/Images/t2104.jpg
Table21

. The fioat Property

Property Description Values

2-index Sets the relative front-to-back order of an element. <nunber>

OEBPS/Images/t0807a.jpg
convention

Style Convention § { font-style: italic; }

OEBPS/Images/t2101.jpg
AL S oY

Problem Solution Listing
Change the way that an element is Use the position property. 211
positioned inside its container block.

Offseta positioned element from the edges Use the top, bottom, Left, or right 211
ofits container block. properties.

Set the front-to-back order for a positioned Use the z-index property. 212

clement.

Create alayout similar to a newspaper
ey

Use amulticolumn layout

OEBPS/Images/t2102.jpg
I i o L LR S Y,
Property Description Values
position Sets the positioning method. See Table 213
left Sets offset values for positioned elements. <lengths
right Py

top avto

botton

2-index Sets the front-to-back ordering of elemens. nusber

OEBPS/Images/t3108a.jpg
-l
hreflang

type

text

protocol

host

hostnare

port

pathnare

search

hash

RN KL IR S
Comresponds o the hrefLang atribute
Cortesponds o the type atrbute

Gets orsets the text contained by the clement

Convenience property to get or et the protocol component
ofthe href attribute value.

Convenience property to get or set the host component of
thehref attribute value

Convenience property to get or set the host name from the.
href attribute value

Convenience property to get or se the port component of
thehref attribute value

Convenience property to get or set the path of thehref
auibute value

Convenience property to get or set the query sring of the
href attribute value

Convenience property to get or se the document fragment
component of the href attribute value

sring
string
string
string

string

string

string

string

string

string

string

OEBPS/Images/t1006.jpg
Table 10-6. The header Element

Element: header

Element Type: Flow

Permitted Any element that can contain flows elements.

Parents: ‘The header element cannot be a descendent of the address or
footer element and cannot be a descendant of another header
element

Local Attributes: None

Contents: Flow content

TagStyle: Startand end tags
NewinHTMLS? Yes

Changes in N/A
HTMLS

Style Convention ~ header { display: block; }

OEBPS/Images/t2105a.jpg
colum-gap

colum-rule

colum-rule-color

colum-rule-style

colum-rule-width

columns

column-span

column-width

balance value means that the browser
should minimize variations in column
lengths, and the auto value means that
columns should be flled sequentially.

Specifies the distance between
columns.

Shorthand property for setting the
column-rule-* properties in a single
declaration.

Specifies the color of the rule between
columns.

Specifies the style of the rule between
columns.

Specifies the width of the rule between
columns.

Shorthand property for setting the
column-span and column-width
properties.

Specifies how many columns an
element should span.

Specifies the width of the columns.

<lengths

atdthy cstyles
<color>

<color>
Same as for the border
~style property

<length>

<lengths cumber>

none
all

<length>

OEBPS/Images/t2214a.jpg
saengkin LS FOIL S NIRRT & Lo M Y.

@ ‘Sets the font sze as a percentage of the parent element’s font sze.

OEBPS/Images/t1005.jpg
Table 10-5. The section Element

Element: section

Element Type: Flow

Permitted Any element that can contain flow elements. The section
Parents: element cannot be a child of the address element.

Local Attributes: None
Contents: style elements and flow content.
Tag Style: Startand end tags

New in HTML5? Yes

Changes in N/A
HTMLS

Style Convention ~ section { display: block; }

OEBPS/Images/t1008.jpg
Table 10-8. The nav Element

Element:
Element Type:

Permitted
Parents:

Local Attributes:
Contents:
TagStyle:

New in HTMI 52

nav
Flow

Any element that can contain flow elements, but this element
cannot be a descendant of the address element.

None
Flow content.
Startand end tags

s

OEBPS/Images/t1007.jpg
Table 10-;

The jooter Element

Element:
Element Type:

Permitted
Parents:

Local Attributes:

Contents:

Tag Style:

footer
Flow

Any element that can contain flow elements.
The footer element cannot be a descendent of the address or
header element and cannot be a descendant of another footer
element.

None

Flow content.

S i i

OEBPS/Images/t1009.jpg
Table 10-9. The article Element

Element: article
ElementType: Flow

Permitted Any element that can contain flow elements, but this element
Parents: cannot be a descendant of the addzess element.

Local Attributes: None
Contents: style clements and flow content.

TagStyle: Startand end tags

NewinHTMLS? Yes

Changes in N/A
HTMLS

Style Convention article { display: block; }

OEBPS/Images/t1002.jpg
Table 10-2. The h1-h6 Elements

Element: hi-hé

Element Type: Flow

Permitted ‘The hgroup element or any element that can contain flow

Parents: elements. These elements cannot be descendants of the address.
clement.

Local Atributes: None

Contents: Phrasing content
TagStyle: Startand end tags
NewinHTML5? No

Changes in None
HTMLS

Style Convention ~ See Table 10-3.

OEBPS/Images/t1001.jpg
N A A R—

Problem Solution Listing
Denote a heading, Use the hi-h3 elements. 1
Denote a group of headings, only the firstof which Use thehgzaup element. 23
should be reflected in the document outline.

Denote significant topic or concept. Use the section clement. 1
Denote headers and footers. Use theheader and footer elements. 5
Denote a concentration of navigation elements. Use thenav element. 6
Denote a major topic or concept that couldbe Use thearticle element. 7
distributed independently.

Denote content thatis tangentially elated to the Use theas ide element. 8
surtounding content.

Denote contact information for a documentor Use theaddress clement. 9
article.

Create a section the user can expand to get Use the details and sumazy 10

additional details.

clements.

OEBPS/Images/t1004.jpg
Table 10-

. The hgroup Element

Element:
Element Type:

Permitted
Parents:

Local Attributes:
Contents:
TagStyle:
New in HTMLS?

Changes in
HTMLS

Style Convention

hgroup
Flow

Any element that can contain flow elements

None
One or more header elements (h1-h6)
Startand end tags

Yes

N/A

hgroup { display: block; }

OEBPS/Images/t1003.jpg
SO LUk O AT 0 N0 CORR

Element

Style Convention

nt

n

h

h

I (display: block; font-size: Zem; margin-before: 0.67eny; margin-after: 0 67em;
‘margin-start: 0 margin-end: 0;font-weight: bold; }

h2 (display: block; font-size: 1.Sem; margin-before: 0.83em; margin-afeer: 0 8%m;
‘margin-start: 0; margin-end: 0;font-weight: bold;

3 (display: block; font-size: 1.1 Tem; margin-before: 1em; margin-after: lem;
‘margin-start: 0; margin-end: 0; font-weight: bold;

hd (display: block; margin-before: 1.33em; margin-after: 1.33em; margin-start: ;
- dints gl vy e P T

OEBPS/Images/t0805a.jpg
Local Attributes None

Contents Phrasing content
TagStyle Startand end tag required
New in HTML5 No

Changes in ‘The b element had only presentational meaning in HTML

HTMLS HIMLS, it has the semantic meaning described previously, and
the presentation aspect has been downgraded to being the style
convention

Style Convention b { font-weight: bolder; }

OEBPS/Images/3305.jpg
(=)
© > 0| Oumireangirs_) %

-

[p———

OEBPS/Images/3304.jpg
N Ecrple
€ 9 C @ twnfisiings/examplentml 78| N

Banamas: [2

Apples: [5
Cherries: [20

Fie cheris prg

Totak 0 tems

OEBPS/Images/2213.jpg
| B S|
Y Earple

€2 c(o

titan/istings/example.ht WA

There ave 1ot of diffevent Kinds of feuit -
Theve Ove. over 500 vavieties of banana Aol By
+he time we 0dd the covntless e of agples,
oranges, and other well-known Fruit, we ave
faced with thovsande of choices.

OEBPS/Images/3303.jpg
/ W eample X
€ 3 C (@ fitan/listings/example il RN

Bananas: [2

Apples: [§

Chentes: [20

Totat 7 items ordered

5

OEBPS/Images/t3412.jpg
A Al WO AP TS) L TR DS et

Wember Descrption Retums
currentlite Returnsthe current playback point n the media le nunber
duration Retuns the totallength of the media fle- nusber
ended Returns true f the media flehas finished playing boslean
pause() Pauses playback of the media void
paused Returns txueif playback is paused; returns false othervise boolean
play() Starts playback ofthe media votd

OEBPS/Images/3302.jpg
Example. «\‘,
€ 3 & (O twanisings/eemplenmi

Bananas: 2

Appes: [5

OEBPS/Images/2211.jpg
B Bamole

€ > C O fitan/lis

There are lots of different kinds of fuit - there are over 500

varieties of DAN@N aore. By tre tme e add e

countless fypes of apples, oranges, and other well-
known fruit, we are faced with thousands of choices.

OEBPS/Images/3301.jpg
T A © O ruitTetsl 0

€ 3 ¢ [Qttanistng/eampienm % A [l € 5 & ©ttans0s0/om #|a |
B 7 27 e ondered

Apples €

Chentes: 20

OEBPS/Images/t3410.jpg
o T T LY T A e oo

Wember Description Retums
height Getsorststhe value of the hedght attribute nunber
poster Getsor setsthe value of theposter attibute string
videatieight Getsthe intrinsic heightof the video nunber
videorideh Gets the intinsic width of the video nunber
dth Gets or sets thevalue ofthe wideh atibute nunber

OEBPS/Images/2212.jpg
=0 i

mple ¢

S C | ® titan/listings/e

trnl WA

There are Iots of diferent kinds of frutt - there are over 500
varieties of banana alone. By the time we add the courtiess
types of apples, oranges, and other well-known frui, we are
Faced with thousands of choices

OEBPS/Images/t3411.jpg
R T I D L ChT..

Value Description
" (emptystring) The browser cannot play the media type.
raybe ‘The browser mightbe able to play the media type.

probably ‘The brovser s reasonably confident thatit can play the media type.

OEBPS/Images/2210.jpg
=

€ - C [© tanstngs/examph: P S————

hexe axe lots of differe) [Merears bisof difersntkinds o i - s are
b;nana alome. By the time| | Over 500 Narietis of banana abre. By the fime we
2y add the countiess typas of apples, oranges, and ofher

countless types of appleg
hor wer1 ymoun Eraney uf| | wel-knoum frui we are faced wit inousands of

thousands of choices. choices.

OEBPS/Images/t3106a.jpg
Lo AN 0 W P Stxing

scoped Cortesponds to the scoped attribute. boolean

OEBPS/Images/t3405.jpg
TENRN. XTEH ST VN SN T DTy

Description ‘Support
eb This is a format backed by Google with a goal of creating a patent- Opera
free, royalty-free format. The people behind the MPa/H. 264 format Chrome
have been openly secking a patent pool to use to begin ltigation Firefox.
againstkebW (or at least to worry people enough to prevent them
from using .
Ogg/Theora Ogg Theora s an open, royalty-free, and patent-free format.
Ma/M.264 Thisisaformat thatis presently free to use until 2015 because the Internet Explorer

licensor has publically waived its usual distribution fee schedule.

Chrome
Safari

OEBPS/Images/t3406.jpg
Table 34-6. The source Element

Element:
Element Type:

Permitted
Parents:

Local Attributes:
Contents:
TagStyle:
New in HTMLS?

Changes in
HTMLS

Style Convention

source
N/A

video, audio

szc, type, media

None

element

Yes.

N/A

None

OEBPS/Images/t3403.jpg
b ol

AR S T,

Attribute_Description

autoplay I present, this attrbute causes the browser to start playing the video as soon as itis able
todoso,

prelosd Tell thebrovser whther o ot oload the video in dvance. Seth et section for

controls The browser will not display controls unless this attribute i present.

loop Ifpresent, this attribute tlls the browser to repeat the video

poster Specifies an image to display when the video data is being loaded. See the “Displaying a
Placeholder Image” section for details.

height Specifies the height of the video. See the *Setting the Video Size” section for details.

width Specifies the width of the video. Sce the *Setting the Video Size” section for details

ruted fthis attibute s present, the video will be muted initially.

sxc Specifies the video to display. See the *Setting the Video Source (and Forma)” section for

deails.

OEBPS/Images/t3404.jpg
SR TN IO SRR .

Value Description

none “The video will not be loaded untilthe user starts playback.

retadata Only the metadata for the video (widih, height, irst frame, duration, and other such
information) should be loaded before the user starts playback.

auto Requests that the browser download the video in ts entirety as soon as possible

The browser s free to ignore this request. Thisis the default behavior.

OEBPS/Images/t3409.jpg
R A g e N e
Member Description Returns
autoplay Getsor setsthe presence of the autoplay auibue boolean
canPlayType(ctypes) Getsan indication of whether the browser can laya string
particular MIME type
currentsre Getsthe currentsource string
contrals Getsorsets the presence of the controls atribute boolean
defanlvuted Getsorsets the il presence of the uted atcebute boolean
Loop Gets o sets the presence ofthe loop attribute boolean
nited Gets orsets the presence of the uted atibute boolean
preload Gets or sets the value of the preload attribute string
se Gets or sets the valueof the src atrbute string
volure Getsor sets the volume on a scale from0.0t01.0 nurber

OEBPS/Images/2208.jpg
B campe

« WA
WW
. e

OEBPS/Images/t3407.jpg
Table 34-

. The track Element

Element:
Element Type:

Permitted
Parents:

Local Attributes:
Contents:
TagStyle:
New in HTMLS?

Changes in
HTMLS

Style Convention

source
N/A

video, audio

kind, src, srclang, label, default
None

Void element

Yes.

N/A

None

OEBPS/Images/2209.jpg
B Somple
€ - C O titan/istings

ampletm v

Thoughts about Fruit

There are lots of different kinds of fuit - there are over 500 varieiies of
banena alone By the tme we add the countiess types of apples, oranges,
and other wel known fiut, we are faced wih thousands of choiczs.

OEBPS/Images/t3408.jpg
Table 34-8. The auaio Etement

Element:
Element Type:

Permitted
Parents:

Local Attributes:
Contents:
TagStyle:
New in HTMLS?

Changes in
HTMLS

Style Convention

audio
Flow/Phrasing

Any element that can contain flow or phrasing elements

autoplay, preload, controls, loop, ruted, sxc
souzce and track elements, plus phrasing and flow content
Startand end tags

Yes

N/A

None

OEBPS/Images/2206.jpg
gname zlone.

There are lots of
difereat kinds of it -
thee are over 500
varicties of
‘madevpfiuitwihaverslongy

OEBPS/Images/2207.jpg
There are lots of different kinds of it - there arc
over 500 varieties of banana alone. By the time we add the
‘comtless types of appies. oranges. and other well-known fiui
e ate faced with thousands of choices. Ons of the most
interesting aspects of it is the vasicty available in cach country
Liive near London, n an area which is known for ifs apples.

OEBPS/Images/2204.jpg
/B cample
& € |® titan/listings/exampl v7 | A

‘This is left-to-sight text

This s right-to-left text

OEBPS/Images/2205.jpg
B semvle
€>clo

ttanyisiings

There are

lots of different

varieties of banana

of apples,

thousands

oranges,

of choices

alone. By

and other

the time we add the

well-known fruit,

kinds of fruit - there

we

are over 500

couatless types

are faced with

OEBPS/Images/1113.jpg
/B @
€ 9 € (O tan/istings/eampichim

Resiscfthe 2011 FrtSuvey
Color I S & Vores

= TFedm

ormge 0

IPowsgsasates and cheries can bod come & eng of colors and sizes.

== i
2011 Adam Frooman Frit Data Eaterprises

OEBPS/Images/2202.jpg
B sornple
& C O titany

There are lots of diferent kinds of fuit - ther are over 500
varieties of banana alone. By the time we add the countless fypes
of apples. oranges, and other well-known fruit, we are faced with
thousands f choices. One of the most interesting aspects of i is
the varicty available in cach country. 1 live ncar London, in an arca
which s known for its apples.

OEBPS/Images/t3401.jpg
SR L

Problem Solution Listing
Include a video in an HTML document. Use the video element. 1
Specify i a video file should be loaded Use the preload aturibute. 2
before the user starts playback.

Specify an image that will be shown undl Use the poster attribute. 3
video playback sarts.

Set the size of the video on screen. Use the width and height at 4
g S S L Use the src attsibute. 5

OEBPS/Images/2203.jpg
B sompic
€ 5 € [® tian/listings/exar

There are lots of different kinds of fut - there are over 500
varieties

of banana alone. By the time we add the countiss types of
‘apples, oranges, and other vrell known frit, we are faced with
thousands of choices.

One of the most interesting aspects of fuitis the
vasiety avalable in each country. | ive near Loadon,

inan area which is
knowa for its apples.

OEBPS/Images/t3402.jpg
Table 34-2. The viaeo Element

Element: video
Element Type: Flow/Phrasing

Permitted Any element that can contain flow or phrasing elements
Parents:

Local Attributes: autoplay, preload, controls, loop, poster, height, width, muted,

src
Contents: source and track elements, plus phrasing and flow content
TagStyle: Startand end tags

NewinHTMLS? Yes

Changes in N/A
HTMLS

Style Convention None

OEBPS/Images/1111.jpg
J B 5

©

€ O titan/istings/exampiehim

Resuks of e 2011 Fru Suvey

OEBPS/Images/1112.jpg
amplehtmi ES

N T ST S

= e
v O] - P

203

2011 Ad ruit Data Enterprises

Resulfs of the 2011 Fruit Survey

OEBPS/Images/2201.jpg
oA

(3
€ 5 C[Oumaismgrenmpen:

oA

Thore e oo e K ot s e o 01

e of b soce. By the e e s e s s

JEp——— T —"—-

[y v S ——

e vty e echcom. e e Leodon, i marcs
ik e o o £ e

e et of et e oo v 0|
e of b e 51 et e o e ot o
<Faopkes e s i o ot e fced 5
s o hices O ol he s e tngspects o k.
vty e cch o, T e Lodon, e

i e o

) (o) (]) (] (o)

) (o) (]) (] (o)

OEBPS/Images/1110.jpg
oot -
€ 5 € (O ttaisingyexample i

Results of the 2011 Fralt Survey

I T = T [S— S —]

OEBPS/Images/t3301a.jpg
RN S IO L b BRI . AT

Receive JSON data from the server Use the J50N.parse method 15,16

OEBPS/Images/t0301a.jpg
b idiaocpe hikat e e it o
clement.

‘Add a context menu o an clement.

Specify the layout direction of an element’s
content.

Specifythatan element can be draggod.

Specify that an element can be used as a.
target on which to drop other elements

Indicate that an element and its contents
are not relevant.

Assign a unique identifer o an element so
that a syle can be applied or so that the.
element can be selected programmaticaly.

Specify the language in which the content
of an clement i expressed.

Specify whether the contents of an element
should be checked for spelling errors.

Define a style directly o an element.

Specify the order in which the Tab key
moves between clements in an HTML
document

Provide additional information about an
element (which will typically be used toin a
tool tip)

‘Sl fs crEaRiani AR SOt
atuibute.

Use the contextrenu global aturibute.
(Note that this attrbute has no
browser support currently.)

Use the dix global attibute.

Use the draggable global attribute.
(See Chapter 37 for details of HTMLS.
dragand drop)

Use the dropzone global atuibute. (See.
Chapter 37 for details of HTMLS drag
anddrop)

Use the hidden global attibute.

Use the id global attribute.

Use the lang global attribute.
Use the spelLcheck glabal attribute.
Use the style gobal attribute.

Use the tabindex global auibute.

Use the title global artibute.

i

19

20

2

2

u

25

E

OEBPS/Images/t2504a.jpg
Anngth,

pushstate(cstater, <titles,
arly)

replacestate(cstates,
citles,
)

state

Returns the number of items in the history.

‘Adds an enuy to the browserhistory.

Replaces the current entry in the browser
history.

Returns the state data associated with the
current document in the browser history.

e

void

void

object

OEBPS/Images/2020.jpg
=@ i

/B arvie x
€ > € [O fitan/listings/example IR
When [Gre of the most nterestng | | There e lots of differzat
R |copects cf i the inds of it - there are
inAsa. Jover 500 varictes of
WS |couny. Tive near [benana fone By the tme | |
Stk Yl o1don in an area which i || add the coutiess types
B0% inown for its apples. of apples. orenges, end
many other well-know ik, ve
@fferen kinds of banana were e e ot ousenie o]
avabie - many of vich had wique | i

flavours and which swere only avaiable
within 2 small region

Lot (g [vione]

OEBPS/Images/t2502a.jpg
hostnare.

heef

pathnare

port

protocol
reload()

replace(URLY)

resolvelRL(<RL)

search

S O A N D e T
document URL.

Gets or sets the current document's ocation.

Gets or sets the path component of the
document URL.

Gets or sets the port component of the
document URL.

Getsor sets the protocol component of the
document URL.

Reloads the current document

Removes the current document and navigates
t0 the one specified by the URL.

Resolves the specified relative URL t0 an
absolute one.

Gets or sets the query componentof the
document URL.

string
string

string

string

string
void

void

string

string

OEBPS/Images/2019.jpg
[
€ > ¢ Ottayis:

[There are lots of difercat
incs of it - there arc
over 500 varictics of
banaca slone. By the tme
ve add the couttess
types of apples. oranges.
and other well-knosm.
e, we ave faced with
housands of cheices.

When traveling i Asia, | was struck.
b how many differen kinds of
banana were avaiable - meny of
ich bad sique flavoues and which
were only avaisbie wikia 2 small
egion.

[One of the most
nceresting aspects of i
s the varity avaiibic in
cach coustey. Tive near

A

OEBPS/Images/t0303a.jpg
Strade; s

OEBPS/Images/2017.jpg
/ B smple
€ > C | @ titan/listings/examplehtml RS
When e of the most nteresting | | There are lots of differeat

travelling |, et of fruit is the
inAsia. T ariety available in cach
il |country. 1 live ncar
Stuk bY| 1 ondon, in an area which i

Bow |l own for its apples.

‘many

different kinds of banana were

available - many of which bad unique
flavours and which were orly avaizble
within a small region

lkinds of frui - there are
lover 500 varieties of
[banana alone. By the time
[we add the countless types
lof apples, oranges. and
lother wel-knowa fruit, we
late faced with thousands of|
|choices.

OEBPS/Images/2018.jpg
/ B Bemple x &
€ > C | @ titan/listings/examplehtml

| There are lots of diferent
lkinds of fruit - there are
lover 500 varieties of

lbanana alone. By the time
[we add the countless

types of apples, oranges,
land other viell-known
(i, we are faced with
|thousands of choices.

One of the most
interesting aspects of fiuit
i the variety availsble in
cach country. 1 live near
[London, in an area which

I

OEBPS/Images/2015.jpg
el |

(=
€ 3 ¢ Qs

==

B
€ > ¢ Ouawisingse

wplehim A
Thece ar s of e i ofrt - here s o
of boama aone. By the e e add th couates by
cxanges and cthe el knora . we e
choies

O o the most xerescn aspestsof s he vasery sadable i
<oy, e nex Loudon, n 0 vea whic s koo for &5
appies When ek n Asa was swuck by o mary dffcen:
s of banana e avalable - aa of iich hod e flvows
e which e caty vable ik a s regon.

(i) 1)

One ofthe ot meceting spect
e r—

aspies. When vl s A4
Kinds of acana wece 2
and wich ware ocly

OEBPS/Images/2016.jpg
/ W barpie =

€ > C | ® titan/listings/example.him! w* A
There are lots of dilereat] [One of the most interesting | VA<
linds of fruk - there are | | aspects of fruit is the ravelling
lover 500 varicties of variety avaiable i each | 24521

was

lbanana alone. By the time | |couniry. 1 live near
e add the comatless types | |London, n an area whichis|
of apples, oranges, and | |known for its apples.

|other well-known fuit, we
|are faced with thousands of|
|choices.

struck by
|how
many
differeat kinds of banana were
lavailable - many of which had unique
fiavours and which were only avaiable

vithin a small region.

None

OEBPS/Images/2013.jpg
Eample &
€ 9 C | O titan/listings/example.htm!

e add the countess types of appl
thousends of choices,

OEBPS/Images/2014.jpg
= | B

FE

‘(- 2 C |® titan/listings/example.ntm T a

[Thcec asc lots of differcnt kinds of fruit - there arc over 500 varictics of banana alonc.

By the time we add the countless types of apples, oranges, end ofhir well-known fuit, we
are faced with thousands of cheices.

OEBPS/Images/2011.jpg
B Bl
€ 9 C | © ttan/listings/examplehtm | A

‘There are lots of different kinds of fruit - there are over 500 varieties of banam
alone. By the tine we add the countless types of apples, oranges, and other wel-
Known fiuit, e arc faced with thousands of choices. One of the mostintcresting
aspects of fruitis the variety avaiable ia each country. [[live near London]. inan
‘area which is known for its apples. When travelling in Asia. | was struck by how
many cifferent kinds of banana were availeble - many of which bad wique flavours
‘and which were only avaiable wihin a small region.

OEBPS/Images/2012.jpg
o=@

EBample \ &

€ > C @ titan/listings/example.html w A

‘There are lots of different kinds of fruit - there are over 500 varieties of banasa alone. ‘

By the time we add the countless types of apples, oranges, and other well-known
fruit, we are faced with thonsands of choices One of the most interesting aspacts of

St is the variety available in cach country. live near London I in

2 aren swhich ic lonven fo its annlas When travelling in Asia T was el ho how

OEBPS/Images/2010.jpg
e \
€ 3 C[Qiitay

[T are bots of et Kinds of - e ave over 500 varicies o b

Jons. By thetime we ad the counless types of appls, oranges, nd ofber well-
b i, we ace faced with thousands of choices.

[Ore o he most iteesing aspects of e i he vriey evadble n cach courtry
e neor London

a0 srea which s kaown for 5 apples. Whee raveliog i Asia | was sk by
v sy et inds of banasa were svalable - many of which had unigue
o and which were oaly aviable il a sall egion

OEBPS/Images/t1501a.jpg
ST S SN PR NCONE TORORL Y. SN B, RO, DS 5, S SN
use a plugin. elements. See Chaper 34.

Embed graphics into an HTML document. Use the canvas element. See Chapters
35836,

OEBPS/Images/t3205.jpg
A SR O SNSRI O W ST C AN L

Method Description Retumns

sethequesticader(cheaders, values) Sets the header o the specifed value void

setesponselicadex(<header>) Gets the value of the specified header string
string

getAlIResponscheaders() Getsallof the headers in single stri

OEBPS/Images/t2503b.jpg
print()
prompt(cusgs, <val>)

screenteft
screen

screentop
screent

scrolly(o, <)
scrollTo(<xs, <y>)

self

setinterval (<function>,
<tine>)

setTireout (cfunctions,
<tine>)

showtodalbialog(<url>)

stop()

top

b oot ol g o o

Displays a dialog prompring the user to enter
avalue.

Returns a Screen object describing the screen,

Gets the number of pisels from the left edge of
the windovs to the left edge of the screen.

Gets the number of pisels from the top edge
of the window to the top edge of the screen.

Scrolls the document relative to its current
position.

Scrolls to the specified position.
Returns the kindow for the current document

Creates a timer that vill call the specified
function every tine milliseconds.

Creates a timer that vil call the specified
function once after time milliseconds.

Displays a pop-
specified URL.

window showing the

Stops the document oading,

Returns the top-mostKindox.

void
string
Screen

nurber

nurber

void

void

int

int

void

void

Windon

OEBPS/Images/t3206.jpg
SR A NR TS A,

Member Description Retums

abort() Terminates the current request void

OEBPS/Images/t0302a.jpg
style
table

t
textarea
B

title

o

AN AP
Defines a CSS syle

Denotes tabular data

Denotes table cell

Creates amultlinetest box o gather input from the user
Creates a table headercell

Deines the titefor an HTML document

Denotesa table row

n

OEBPS/Images/2008.jpg
==

Example

le 2 ¢ @® titan/listings/example.htm

ere are lots of different kinds
fruit - there are over 500

varieties of banana alone. By the
ime we add the countless types
apples, oranges, and other

y the time we add the

w A

m

OEBPS/Images/t2110.jpg
S LI O I YN DA

Value Description

“The clements are laid out from the lft edge and any unallocated space i displayed to
the rightof the final lement.

start

= The elements are laid out from the right edge and any unallocated space is displaved

OEBPS/Images/2009.jpg
O

SR Orges Orsape Lrse

[EES I e |

OEBPS/Images/t2111.jpg
A TNOL L LR SN RO YIRS T N A0 SN

Value

Description

table
inline-table

table-caption
table-column
table-column-group
table-header-group
table-ro-group
table-footer-group
table-zon

table-cell

Behaves like the table clement.

tes an inline-level clement (sce
level clements).

Behaves like the table clement, but
‘Chapter 20 for details of block- and i

Behaves ke the caption lement
Behaves likethe col lement
Behaves ke the colgroup lement.
Behaves likethe thead element.
Behaves ke the thody clement.
Behaves likethe oot clement.
Behaves likethe trclement

Behaves like the td clement.

OEBPS/Images/2006.jpg

OEBPS/Images/2007.jpg
/B eampie il

€ 9 C Otitan/listings/examplentml ¥¥ '\‘

of fruit - there are over 500
s of banana alone. By the

‘we add the countless types

of apples, oranges, and other
wwell-known fruit, we are faced
with thousands of choices.

OEBPS/Images/2004.jpg
==t

I Bemple &
€ 3 €@ tan/istings/examplenmi ve| X |

OEBPS/Images/t2503a.jpg
confirn(casg>)
defaultvien
docurent.
focus()
franes

ristory
tonesieight

——

outerheight

outeridth

S———

pagenoffset

parent

s T

o b e e e
prompt.

Returns the kindow for the active documen

Returns the Docurent abject asociated with
his windov:

Focuse the window.

Returns anarray of the Window objects or the
nested Lfzare dlements i the document.

Provides access o the browser history.
Getsthe hoightofthe window: content area.
Getsthe width o the windowscontent are.

Returns the number o nested rane
clements in the document.

providsdealsof e curent documend's

Returns the éindox that opened the curtent
browsing context

Getsthe heightofthe windov,
borders, menu bars,ec.

duding
Getsthe widih ofthe windovs, including.
borders, menubars,oc.

Getsthe number of piscls tht the window
has been scrolled horizontally fromthe top-
eftcorner.

Getsthe number of pixels tht the window
has been scolled vertcaly from the top-lee

Returns the parent o the current indow.

T R TR A TP Mo

boolean

Windos

Docurent

votd

Windou(]

Hstory

Location

Windou

ber

Windou

o

OEBPS/Images/t3203.jpg
AN S EO AN Y N ST TS LOY.
Name Description Event Type.
abort Triggered when the requested is aborted Progressévent
error Triggered when the request fails Progressévent
load “Triggered when the request completes successfully. Progresstvent
Loadend Teggerd when the requst completes,ather succesfllyar - ProgeessEvent
loadstart Triggered when the request starts Progressivent
progress ‘Triggered o indicate progress during the request Progressevent
readystatechange Triggered at different stages in the request life cycle Event

tireout ‘Triggered if the request times out Progresstvent

OEBPS/Images/2005.jpg
/B \E
€ 3 C Otten e ¥ /W eompic

-‘. € 2 C Otitan/l
J
[9
‘ d

|

OEBPS/Images/t3204.jpg
SRR (ST ST ST R 1 TR

Name. Description Event Type.
Returns true if the total lengh of the data stream can be boolean

lengthcomputable Reume

Loaded Returns the amount of data that has been loaded so far nusber

total Retuns the total amount of data available Pusber

OEBPS/Images/2002.jpg
B Eomple 3
€ > C |@titan/listings/e

‘There are lots of dffecent kinds of it - there are over
500 varieties of banana alone. By the time we add the

‘countless types of apples, oranges, and other wellknown
fuit, we are faced with thousands of choices.

OEBPS/Images/t3201.jpg
kLol

T R S

Problem Solution Listing

Make an Ajax request. Create an XLt tpRequest object, and call theopen and send 13
methods.

Usetheone-offevents (o Use the Level 2 events, such as onload, onloadstart, and 4

track request progress. onloadend

Detectand deal with errors. Respond to error events, or use try. . catch statements. 5

Set headers for an Ajax Use the setRequestiieader method. 67

request

Read the headers from the Use the getResponselieader and getAllResponschieaders 8

server response. methods.

Make cross-origin Ajax Set the Access-Control-Allow-Origin headerin the server 9-12

request. response.

Aborta request. Use theabort method. 13,4

OEBPS/Images/2003.jpg
W oot
| € 3 ¢ Oty

B compe

€ > C O htanistings,

=

)

OEBPS/Images/t3202.jpg
AR TS PR A L
Value Numeric Value _ Description

= o “The AU tpRequest object has been created
ovenep 1 ‘The apen method has been called.

HEADERS RECEIVED 2 e e s e S R G

OEBPS/Images/2001.jpg
I Bxemple
€ > C Otitan/list

‘There are lots of different kinds of fruit - there are over 500
vasieties of banana alone. By the time we add the countless

types of apples, oranges, and other well-known frut, we are
faced with thousands of choices.

OEBPS/Images/t3701a.jpg
IR ETRR A S o— ADISEL RN TS PRGN NIRRT,

OEBPS/Images/4010.jpg
Gicneed =P

[O eample

g himl

€)2|[0 ntpsitarvistnc:

Event Type
[ehecking
(& —
leached
[ehecking

[Shormes) [odis]

[LUpdate | _Swap Cache updatercady

‘The siams is: UPDATERFADY

OEBPS/Images/t1301a.jpg
TEBNITIEE VIO 1O S0 W SV DL DO

Restrictthe user to a limited number of
choices.

Restrictthe user 10 aspecific format of
string,

Restrictthe user 0 time or date.

Restrictthe user to selecting a color

Restrictthe user to entering terms for
search,

Create an input element thatis not
displayed to the user.

Create image buttons that submit the form.

Upload a il to the server.

ST R P e
clement

Use the radio type of input element.
Use the enail, tel, orurl types of
input clement.

Use the datetine, datetive-Local,
date, ronth, tire, or weck types of input
clenient.

Use the color type of input element.

Use the search type of input element.

Use the hidden type of input cloment.

Use the inage type of input element.

Use the file type of input element and
set the encoding for the form to
multipart/for-data.

S

1310

1311

1312

1313

1314

1315

1316

1317

OEBPS/Images/t2501b.jpg
Links.

location

nextsibling
parentiode

previoussibling

queryselector(selectors)

queryselectorhll(<selectors)

readystate

referrer

scripts

title

b R
Returns objects representingall thea and
area clements in the document that have href
auributes.

Provides information about the URL of the:
current document.

Returns the sibling clement defined after the
current element.

Returns the parent clement

Returns the sibling element defined before
the current element

Returns the first element that matches the
specified CSS selector.

Returns all of the elements that match the
specified CSS selector.

Returns the state of the current document
Returns the URL ofthe document that linked

o the current document (his s the value of
the corresponding HTTP header),

Returns objects representingall the script
clements.

Gets or sets the tle of the current document.

HIMLCollection

Location

HIMLElerent
HIMLELerent.

HIMLELerent.

HIMLELerent.

HTMLELerent(]

string

string

HIMLCollection

string

OEBPS/Images/t2501a.jpg
defaultCharset

defaultvion

six

domain

csbeds
plugins

"

fores

getElenenttyld (cidh)

gotelenentstyClasshane(cclas
5)

getclenentstytare cnares)
getclenentsdyTaghane(<taps)

rasChilhodes)

resd

tages

tsplenentation

lastchila

lasthodified

b v fsetronpuat
thebrowser.

PN W

R thekindaw object for the current
document See Chapter 2 for detals f this
object

Gots o sets the test divection forthe
document.

Gots o sets the dominfor the current
document.

Retums objects epresentingll the ebed
clements inthe document.

Returns th s child clement of an lement.

Retums objects epresentingll the forn
clements inthe document

Rt theclement with the specfed 14
walue

Returns theclements with the spcified class
value

Reums the elements with the specified nare
el

Retus theclmentsofthe specfied ype.

Retums txue ifthe current clementhas chikd
clemens

Reums an object represcnting the hesd
clement.

Retums objecs epresentingall he irg
clements.

Provides information sboutthe DOM features
hat e available.

Returns the last child clemen.

[-

Sl S

string

indow

string

sering

WMCallection
MMLElesent

ML Callection

HMELesent

M ELesent()

MELesentl]
HELesent(]

boolean

M Uesdelerent

MMLCallection

DovIsplerentation

WMELenent

P

OEBPS/Images/4009.jpg
[Bample:

D | [) hetp/ftitan/istings/example.htri
P 5

<

o)

Event Type

|checking
[downloading]

lchecking
ldownloading|

([Update] [Swap Cache |

[pdateready

OEBPS/Images/4008.jpg
| Dsarpe [+l =

(OB e €3(0 e rmme

Event Type
hecking

OEBPS/Images/4007.jpg
() Barple
2| [D retpsitanic

‘The browser is: offline.

OEBPS/Images/4006.jpg
() ampe

(OD =

e

=y =)

)2 O hupsmanisings cirempage.nomt o <) el

Your browser is offline.

Here is some placeholder content

OEBPS/Images/4005.jpg
D Eample

)| tpstitnizing/ome]

OEBPS/Images/4004.jpg
() example
€2 | D ntip/itaistogs/cren

OEBPS/Images/4003.jpg
[Demre RS -

(O rrr—

| T webste (ttan) 2 asing to stoe dota on
| B your computer for otine use.

<

[atow] [Nevertorthi ste

OEBPS/Images/4002.jpg
= T
[bemoe. [+ -

€)2|[D miosmimtrgseangie it |
mn |

OEBPS/Images/4001.jpg
| RSN |E=E] =)

€)3 (D) riss/ianfisings/campietint S

Banana] [Apple | [Cherres | J

OEBPS/Images/kevin_grant.jpg

OEBPS/Images/t2304a.jpg
RS animation is piayed ROIward and ten in reverse. 1is 1s two Rerations of the

altemate animation for the purposes o the aniat on-iterat on-count propery.

OEBPS/Images/t3012.jpg
Table 30-12. The form Events

Name Description

submit Triggered when the form s submitted.

reset Triggered when the form s reset.

OEBPS/Images/t3010.jpg
b Lol

B e e e o

Name Description
keydown Triggered when the user presses a key
keypress Triggered when a user presses and releases a key.

keyup. Triggered when the user releases a key.

OEBPS/Images/t3011.jpg
A N N ST

Name Description Returns

char Returns the character represented by the key press. string

key Returns the key that was pressed. string
Returns tzue if the Ctrl key was down when the key was

ctrikey b boolean

shiftkey ‘Returns true if the Shift key was down when the keywas boolean

OEBPS/Images/t1303a.jpg
Changes in
HTMLS:

Style Convention: ~ None

OEBPS/Images/t3009.jpg
L b

e e il

Name Description Returns

“The element that i about g or ose the focus; this

relatedTarget propertyis used only by the focusin and focusout evens.

HIMLELerent

OEBPS/Images/t3007.jpg
SRR, TN OTIRERTORE Litet.

Name Description Retums

i Indicates which button has been clicked; 0 i the main mouse button, 1 isthe

O middle button, and 2 is the secondary/right bution. msber

altkey Retmstrueifthe alt/option keywas clicked when the eventyas triggered. boolean
Returns the X position of the mouse when the event vias tiggered, relative to

X e element’ viewport mber

Clienty Retums the Y position of the mouse when the event was triggered, relative 0 ey
the element’s viewport.

cereens Retumsthe X position of the mouse when the event was triggered, relativet |\
the screen coordinate system.

screeny Retumsthe Y position of the mouse vihen the event was tiggered, reativeto b
the screen coordinate system.

shiftkey Returnstrue ifthe Shift key was pressed when the event was triggered. boolean

ctrlkey Retumstrue fthe Curl key was pressed when the event was triggered. boolean

OEBPS/Images/t3008.jpg
i B i e i
Name Description

blur Triggered when the elementloses the focus

focus. Triggered when the element gains the focus

focusin Triggered when the clementis just about to gain the focus.

focusout Triggered when the clementis just about to lose the focus.

OEBPS/Images/t3001.jpg
A .

Problem Solution Listing
Handle an event inline. Use one of the on* attributes on an element. 301,
302

Handle an event i function. Define the function and use its name as the value for the 30-3
on* atribute.

Usethe DOM to handle events. Use the standard DOM search techniques and assigna 30-4,
function using the on* properties or the 305
addéventListener method of the HTNLELenent object that
represents the element.

Distinguish between event types. Use the Event. type property. 306

Process an event beforeit reaches Use event capture. 307

adescendant clement.

Stopan event from being Use the stopPropagation orstopImediatePropagation 308

propagated. methods on the Event abject.

Process an event afterithas Use event bubbling. 309

ezt iepanr e

OEBPS/Images/t3002.jpg
bt e i el Sk e

Name Description Retums
type The name of the event (e, rouseover). string
target “The element at which the eventis trgeted. HIMLELenent
currentTarget The clement whose event listeners are curendy WTWLELenent
being invoked.
eventphase The phase in the event life cycle. nuber
bubbles Retums txu if the event wil bubble troughthe boolean
document, false otherwis:
cancelable Returns true if the event has a defaultaction thatcan boolean
be canceled,false athervise:
tinestanp The time at which the event was created, or0 f the string
timeisn't avalable
stoppropagation() Halts the flow of the event through the elementtree votd
afer the cventlisteners or the current clement have.
been tiggered.
stoplmediatePopagation() Immediately hltsthe flow ofthe even through the void
clement trec, untiggered eventiseners or the
current clement vill be gnored.
preventDetault() Prevents the browser rom performing the default void
action associated vith the cvent
defaultprevented Returns true ifpreventbefault() has been called. boolean

OEBPS/Images/t3005.jpg
SRS I SN LIpans [N

Name Description

onabort ‘Triggered when the loading of a document or resource is aborted.

onafterprint ‘Triggered when the window.print() method is called, before the user is presented
with the print options.

onbeforeprint “Triggered after the user has printed the document

onexror ‘Triggered when there is an error loading a document or resource.

onhashchange Triggered when the hash fragment changes.

et Tiienmad silien it loading of adeounsent or Tesouscs I condlels:

OEBPS/Images/t3006.jpg
RTINS N S SO T

Name Description

click Triggered when the mouse button is licked and released.

dblclick Triggered when the mouse button is clicked and released twice.

wousedown Triggered when the mouse button isclicked.

mouseenter Triggered when the pointer is moved to be within the screen region occupied by the.
clementor one of its descendants.

mouseleave Triggered when the pointer is moved to be outside the screen region occupied by the
clement and allts descendants.

mouserove Triggered when the pointer is moved while over the element.

mouseout Thisis the same as for rouseleave, except that this event will rigger while the pointeris
sell over a descendant element.

mouseover Thisisthe same as for rouseenter, except that this event il rigger while the pointeris

rouseup

sellover a descendant element.

Triggeted when the mouse button s released.

OEBPS/Images/t3003.jpg
AT L S R S e

Name Description

CAPTURING.pHASE inthe capture phase.

AT_TARGET i the target phase.

BUBBLING PHASE The event i in the bubble phase.

OEBPS/Images/t3004.jpg
B b

s b i ks e e o

Name Descriptic

readystatechange Triggered when the value ofthe readystate property changes

OEBPS/Images/t1302a.jpg
pattern

placeholder

readonly

required

value

A

‘Specifies regular expression pattern for the purposes of input
validation. See Chapter 14 for details.

‘Specifies a hint 1o the user as to the kind of input that you expect. See
the section “Setting Values and Using Placeholders” for details.

Ifpresent, his attribute makes the text box read-only, and the user
cannot edit the content. See the section *Creating Read-Only and
Disabled Text Boxes” for details.

‘Specifies that the user must enter a value for the purposes of input
validation. See Chapter 14 for details.

‘Specifies the width of the clement,expressed as the number of
characters that are visible in the text box. See the section *Specifying
the Element Size” for detals.

‘Specifiesthe inital value for the text box. See the section "Settings
Values and Using Placeholders” for details.

Yes

Yes

No

Yes

No

No

OEBPS/Images/t3132a.jpg
Mllvalidae

validationtessage

checkvalidity()
setCustowalidity(crsg>)

Labels

Returns true if the element will be subject to
input validation when the form is submitted:
returns false othervise

Returns the error message that vould be shown
to the user ifinput validation wias applied

Performs input validation on the element
Sets a custom validation message

Returns the label clements associated with this
clement

ontem

string

boolean
void

HTMLLabelElerent(]

OEBPS/Images/andy_olsen.jpg

OEBPS/Images/t1701a.jpg
DS SN AP

Seleet the frstline of a block of text.
Seleet the firstleter of a block of text,
Insert content into an element

Insert numeric content nto an clement

RSN DL SpRciing,.

Usethe :fixst-Line slector.
Use the s fixst-letter selector.
Usethe :before and :after selectors.

Use the counter function.

SElR R

1717

1718

OEBPS/Images/t1507a.jpg
Local Attributes:
Contents:
Tag Style:
New in HTMLS?

Changes in
HTMLS

Style Convention

SIC, srcdoc, name, width, height, sandbox, seamless
Character data

Startand end tags

No

‘The sandbox and seanless attributes are new in HTMLS.

‘The longdesc, align, al lowtransparency, franeborder,
narginheight, marginwidth, and scrolling attributes are
obsolete.

ifrane { border: 2px inset; }

OEBPS/Misc/page-template.xpgt

	
		
			
		
		
			
		
		
			
			
		
		
			
		
		
			
			
		
		
			
				
				
				
				
				
				
		
	
	
		
	

OEBPS/Images/t0911.jpg
b

ST RV L SN,

Element

Description

Style Convention

a

&

Pl

Denotes a description

Denotes a term within a description list.

Denotes a definition within a description it

a1 { display: block;
argin-before: 1en;
margin-after: 1om;
margin.start
argin-en

dt { display: block; }

dd { display: block;
margin-start: 40p; }

OEBPS/Images/t0910.jpg
Table9-10. The li Element

Element u
ElementType N/A
Permitted ul, ol menu

BaEsy

OEBPS/Images/t0913.jpg
Table 9-13. The jigcaption Element

Element
Element Type

Permitted
Parents

Local Attributes
Contents
TagStyle
New in HTMLS

Chsnaes it

figeaption
N/A

figure

None

Flow content
Startand end tag
Yes

N/A

OEBPS/Images/t0912.jpg
Table 9-12. The figure Element

Element figure
ElementType Flow

Permitted Any element that can contain flow elements
Parents

Local Aributes None
Contents Flow content and, optionally, one figcaption element
Tagstyle Startand end tag

New in HTML5 Yes

Changes in N/A
HTMLS

Style Convention figure { display: block; margin-before: tem;
margin-after: len; margin-start: 4opx;
nargin-end: dopx; '}

OEBPS/Images/t2901a.jpg
TN S S .

Getor set property priority.

‘Work with the fine-grained CSS
DOM objects.

Obtain the computed style for an
clement.

SRER. S0 I L S VS ey .
getPropertyValue method.

Use the getPropertyPriority and setProperty
methods.

Use the getPropertyCssvalue method.

Use the docurent. defaultView. getConputedStyle
method.

=

299

2010

201

OEBPS/Images/t2707a.jpg
Lo g Sl e]
)

replacestate(cstates, <titler,
)

state

‘Adds an entry to the browser history

Replaces the current eny in the browser
history.

Returns the state data associated with the
current document in the browser history

void

void

object

OEBPS/Images/t0904.jpg
Table 9-4. The pre Element

Element
Element Type

Permitted
Parents

Local Attributes
Contents
TagStyle
New in HTMLS

Changes in
HTMILS

pre
Flow

Any element that can contain flow elements

None

Phrasing content

Start and end tag required
No

None

OEBPS/Images/t3133a.jpg
_—
e
value
textlength

willvalidate

validationvessage

checkvalidity()
setCustomalidity(crsg>)

Labels

e e o
Retums textarea

Returns the content of the lement

Returns the length of the value atrbute
Returns tue f the lement il be subject to
input validation when the form is subitted;

returns false othervise

Returns the error message that viould be shown
to the user ifinput validation wias applied

Performs input validation on the element
Sets a custom validation message

Returns the label clements associated with this
clement

sriwg
string
string
nunber

boolean

string

boolean
void

HTMLLabelElerent(]

OEBPS/Images/t0903.jpg
Table9-3. The div Element

Item Description
Element div
ElementType Flow

Permitted i ki e i it Rl

OEBPS/Images/t0906.jpg
Table

. The hr Element

Element
Element Type

Permitted
Parents

Local Attributes
Contents
TagStyle

New in HTMLS

Changes in
HTMLS

hr
Flow

Any element that can contain flow elements

None

None

Void element

No

‘The hr element had only presentational meaning in HTMLA. In

HTMLS, it has the semantic meaning described previously, and
the presentation aspect has been downgraded to being the style

convention. In addition, the following local attributes are
obsolete in HTMLS: align, width, noshade, size, color.

hr { display: block; margin-before: 0.5em;
margin-after: 0.5em; margin-start: auto;
margin-end: auto; border-style: inset;
border-width: 1px; }

OEBPS/Images/t0905.jpg
Table 9-5. The blockquote Element

Element

Element Type

Permitted
Parents

Local Attributes
Contents
TagStyle

New in HTMIL5

blockquote
Flow

Any element that can contain flow elements

cite
Flow content
Start and end tag required

No

OEBPS/Images/t0908.jpg
AR T RTINS SR IS VLN VRN O r S

Valie Description Example
T Decimal numbers (defaul) Loy s il s
a Lowercase Latin characters b, e d
A Uppercase Latn characters 8, G0

Lowercase Roman characters

Uppercase Roman characters

L, I, 0L, W

OEBPS/Images/t0907.jpg
Table9-7. The ol Element
Element ol

ElementType Flow

Permitted Any element that can contain flow elements

BaEsy

OEBPS/Images/t1506a.jpg
cixcle

poly

default

SRS AP By NI T T L S OC R A
The top edge of the image to the top side of the rectangle
- The leftedge of the image to the right side of the rectangle

The top edge of the image to the bottom side of the rectangle

“This value represents a cireular area. The coords attribute must consist of three
‘commasseparated integers representing the fllowing:

The distance from the left edge of the image to the crcle center
- The distance from the top edge of the image to the clrele center
- The radius of the crcle

‘This value represents a palygon. The coords attribute must be at least six comma.
separated integers, each pair of which represents a point o the polygon.

‘This value is the default area, which covers the entire image. No coords value is
required when using this value for the shape attibute.

OEBPS/Images/t0909.jpg
Table

). The ul Element

Element

Element Type

Permitted
Parents

Local Attributes
Contents
TagStyle
New in HTMLS

Changes in
HTMLS

Style Conventi

ul
Flow

Any element that can contain flow elements

None

Zero or more 1i elements

Startand end tag

No

‘The type and conpact attributes are obsolete

ul { display: block; list-style-type: disc;
margin-before: lem; margin-after: iem;

margin-start: 0; margin-end: 0;
padding-star }

OEBPS/Images/0910.jpg
B sampie
& & € [Otanistings/eampizhim KN

Tikce apples and oranzes.

Listng 23. Using the codz element
var Truits = [vapplest, "oranges”, "mangoss, "enerriest

Gosumsnt.uriteln ("I 1ike " + frsita.lengh ¢ U Eruite™);

You can see other fruis [ke here.

OEBPS/Images/t0902.jpg
Table 9-2. The p Element

Element P

Element Type Flow

Permitted Any element that can contain flow elements
Parents

Local Auributes None
Contents Phrasing content
Tagstyle Startand end tag required
New in HTML5 No

Changes in ‘The align attribute is obsolete in HTMLS (it was deprecated in
HTMLS HTML4)

Style Convention p { display: block; margin-before: tem;
margin-after: lem; margin-start: 0;
nargin-end: 0; }

OEBPS/Images/t0901.jpg
SRR LI —

Problem Solution Listing
Denote a paragraph Use the p element 92
Apply global attributes to a region of Use the div element 93
content without denoting any other content
grouping,
Preserve layout in the HTML source Use the pre element 94
document
Denote content quoted from another Use the blockquote element. 95
Denote a paragraph-level thematic break. Use thehx element. 96
Create alistinwhich the order of temsis Use theol and 11 elements. 07
significant.
Create alistinwhich the order oftemsis Use theul and 11 elements. 98
not significant,
Create an ordered list in which the. Use the value atiribute of the 11 99
numbering of tems s nonsequential. element contained within an ol

element.
Create alistof terms and their definitions. Use the . dt, and dd clements. 910
G M N e D T thie il olainais Niooadamotion:” B:I1

OEBPS/Images/t0505a.jpg
i § Like pop, but operates on the first element in the array. ~ object

slice(cstarts, cend) Returns.a sub-array. Arzay
sort() Sortsthe tems in the array n place. Array
unshif(citen) Like push, but inserts the new element at the sartof the void

OEBPS/Images/0909.jpg
/Bl N\

€« € | ® titan/listings/exemple.htm!

Tike apples and oranges. T aso Bke:

7 bananas
9. mangoss, inchuding
© a Haden mangocs
© b, Keitt mangoes
© c Kent mangoes
11. cherries
13. phuns, including
© d Flephant Heart phms.
© e Stanley phums

© £ Sencza plums
15 peaches

17, grapes.

‘You can see other fruis | ke here.

OEBPS/Images/0907.jpg
B e
€ & € |O ttanistings/examplzhtm IR

Tike apples and oranges. T also lik:

bananas
mangoes
cherries
phoms
peaches
mapes

You can see other fuits T ke here.

OEBPS/Images/0908.jpg
Eample x

€ - C | O titan/listings/example htm

Tike apples and oranges. T also like:

bananas
mangoes
cherties
phms
peaches
mapes

RS

You can see other s T like here

OEBPS/Images/0905.jpg
€ 5 €[titanflstings/example htmi IR

local store cost $t-eech $2 for 3.

The apple furms a tree thatis small and deciduous, reaching 3 to 12 metres (9.8 to
39) tall, with a broad. often densely twigey crown A

The leaves are atenately aranged simple ovals $ to 12 cmlong and 3-6 I
centimctres (1.2-2.41in) broad on a 2 to 5 centietres (0.79 to 2.0 in) petiole with I
‘anacute tp, serrated margin 206 a sghtly downy underside. Blossoms are prodaced
o spring simutancously with the budding of the leaves.

The flowers are white with a pik tinge that gracually fades, five petaled, and 25 to
3.5 centimetres (0.9 to 1 4 in) in diameter. The fuit matures i avtumn, and is
typically 5 to 9 centimetres (2.0 to 3.5 in) in diameter.

The center of the fruk contains five caspels arranged i 2 fve-point star, each carpel
containing one to three seeds, called pips. 4

‘Warning: Eating too many orasges cen give you heart bum.

OEBPS/Images/0906.jpg
B Bomple \©

€ €' | ® titan/listings/example htm

Tike apples and oranges. I also lke:

‘bananas
‘mangoes
cherries
phums
peaches
grapes

EXC R

You can see other fruits I like here.

OEBPS/Images/0903.jpg
J————

/B vampie &

€ & C [©tian/istings/examplentni Yol A
Simvmumiecs (ramies Femosode: ks Gaitay

fox (var i - 07 3 < fruizs.lemgth; it0) (
documenc.writeln("I like " + Trults(il);

»

Tiike apples and oranges. T ako like bananas, mangoes, cherris, apri
and grapes. You can scc ofher fruits [ke

. phims, peaches

OEBPS/Images/0904.jpg
L

B emple \

€ > C [Otitan/listings/examplentmi XA

Tt apples and oranges. [also like bananas, wangoss, cherries, apricots, phums, peaches and
grapes. You can see other fuits [like here

My favorite kind of orange is the mandarin, properly known as citrus rericulata. Oranges atmy
local store cost St-cach S2 for 3

The apple forms a tree that is small and deciduous, reaching 3 to 12 mezes 9.8 to
39) tall, with 2 broad, often densely twiggy crown. The leaves are alternately
arranged simple ovals 5 to 12 cm loag and 3-6 centimetres (1.2-24 in) broad ona
2to 5 centimetres (0.79 to 2.0in) petiole with anacute tp, serrated masgin and a
lightly downy wnderside. Blossoms are produced in spring simultaneously with the
‘budding of the leaves. The flowers are white with a pink tinge that gradually fades,
fve petaled, and 2.5 t0 3.5 centimetres (0.9 to 1.4 in) i iameter. The fuit
‘matures in autumn, and is typically 5 to 9 centimetres (2.0t03.5 n) in diameter.
The center of the fruk contans five carpels amanged in afive-pointstar, cach carpel i~
contaning one o three seeds, called pips.

‘Warning: Eating too many oranges can give you hcart bun.

OEBPS/Images/0901.jpg
€ & C Qi

e apples and cranges 1 o e bananas, masgoss, cheries
apricots phens, peaches and gapes. You cansee oher fis ke Ltz

‘Waraing: Eatin (00 sy ocanges can give you heart bam, My averte
i of orange s the mandari,property ko as citus rriclata.
Oremges at my local sicre ot §3-each 52 for 3. The FDOC regultes
e Fleida i indusey. sl semember the best apple L evr ased. |
onght .13 fcock on December T

OEBPS/Images/0902.jpg
ESEEER)

B sorpie
€ 5 € [@titanflistings/example.tm IR

Ttike apples and oranges. I also lice bananas, mangoes, cherries, apricats,
‘phums, peaches and grapes. You can see other fiuis T e here

‘Warning: Eating too many oranges can give you heart bum

My favorte kind of orange is the mandarin, properly known as cifrus
reticulata Oranges at my local store cost S+-each S2 for 3

The FDOC regulates the Florida cirus indusiry.

1 stll remember the best apple I ever tasted. [bought & at 3 o'clock on
Desentber Tt

OEBPS/Images/t3131a.jpg
setCustonValidity(cmsg>) Setsa custom validation message wia

Labels Returns the label clements associated with this HTMLLabelELenent[]
clement

OEBPS/Images/t1811.jpg
Table 18-11. The :empty Seiector

Selector: senpty

Matches: Selects elements that contain no child elements

Since CSS Version: 3

OEBPS/Images/t1810.jpg
Table 18-10. The N

egation Selector

Selector: <not(cselecton)

Matches: Inverts the selection selector

Since CSS Version: 3

OEBPS/Images/t1813.jpg
Table 18-13. The :target Selector
Selector: starget
Matches: Selects the element referred to by the URL fragment

identifier

Since CSS Version: 3

OEBPS/Images/t2903.jpg
T L O N DT ST

Member Description Retums
esshules Returns the setof rules in the stylesheet. Coshuleist
deleteRule(<pos») Removes a rule from the syleshet void
disabled Gets or sets the disabled state of the sylesheet. boolean
href Returns the href for linked stylesheets. string
insertRule(crules, pos>) Inserts a new rule into the stylesheet. nusber
nedia Returns the set of media constraints applied tothe edialist

preryarwey

OEBPS/Images/t1812.jpg
Table 18-12. The :lang Selector

Selector: slang(ctarget languages)

Selects elements based on the value of the lang global
autribute

Matches:

Since CSS Version: 2

OEBPS/Images/t2904.jpg
SIS SN Y S R

Member Description Retums
appendvediun(<rediun) ‘Adds anew medium to the list void
deletevediun(<rediur) Removes a medium from the st void
sten(<pos») Returns the media at the specified index. string
length Returns the number of media nusber
redialext Returns the text value of the redia attribute. string

OEBPS/Images/t2901.jpg
Bl

S —"

Problem Solution Listing

Getbasic information about a Usethe Cssstylesheet properties. 291

stylesheet.

Get details of the media constraints Use the Medial st object. 292

applied to-a stylesheet.

Enable or disable a stylesheet Use the disabled property of the CSsStylesheet 293
object.

Get details of individual stes Use the CSSRuleList and CSSStyleRule objects. 2044

defined within a stylesheet,

Obtain the stle from an elements Use the KTAL_style property. 295

style atiibute

Getor set values for core CSS. Use the convenience properties of the 296

properties. Cssstyledeclaration object

Getor set properties for all CSS Use the setProperty and getPropertyValue 297

propesties.

R,

OEBPS/Images/t2902.jpg
Bl ot e

R

Property Description Retums

docunent.stylesheets Returns the collection of stylesheets. Cssstylesheet[]

OEBPS/Images/2910.jpg
B bl A«
€ 5 C [©ttan/listings/example bl

[backgromd-calor 128 128 128 Jcoten)
[peddng-wp. |7 ot
lpeddng top: 528 Jpoiats

[paddngtopr__|0.0729166641531398 ches.
[pecdng rige 17 Joes

OEBPS/Images/t2508b.jpg
s o
Lststyle
Liststylelsage
Liststyloposicion
Lststylerype
—
waginotton
rargintete
S—
waginiop
sabesght
—
sineight
—
outline
oulinecolor
owtlinesiyle
n—
—
padting
pasogtotton
padsingert

paddingRight

A
Liststyle
List-style-inage
List-style-position
List-style-type
rasgin
rargin-botton
rargin-left
rasgin-sight
rasgin-top
raxheight
raxddth
nin-height
ninideh
outline
outline-color
outline-style
outline-wldth
overflon
padding
padding-botton
padding-left
i

.

24

24

24

2

2

2

2

2

2

2

2

20

2

2

2

2

2

20

OEBPS/Images/2911.jpg
/ B oormpe *

€ & C [fitan/listings/example.nimi |

There are lots of different kinds of fu - there ate over 500 varieties of banana alone. By the

time we add the countless types of apples, oranges, and other well-known frui, we are faced
with thousands of choices.

[Property Cout[223

jmargin-top: | 16px

[font-size: 16px

[font-famdy. | Times New Roman|

OEBPS/Images/t2508a.jpg
sl by
pordessiyle
porderiop
vozderTopColor
soxderTapstyle
soxderTaphidth
porderidth
captionside
cleax

colox
cisloat
sirection
display
crptycells
font
-
fossize
fotstyle
fontasiant
fotiesght
eight

Nk

Capaeing
border-style
bonder-top
border-top-color
border-top-style
border-topdth
border-sddth
caption-side
clesr

color

foat

dizection
display
erpty-cells
font
font-farily
font-size
-
font vt
fontoweight
hetghe

Relber sclie

24

2

2

2

24

2

2

24

2

P

2

P

2

=

OEBPS/Images/t2508c.jpg
Lo L g
tablelayout
textalign
textoecoration
textIndent
textshados
textTransforn
wisibility
whitespace
width
wordspacing

2ndex

esingop.
table-Layout
text-align
toxt-decoration
text-indent
toxt-shados
toxt-transforn
visibility
whitespace
width
word-spacing

2-index

2

2

2

2

2

20

2

20

2

2

OEBPS/Images/t0717.jpg
Table 7-17. The script Element

Element
Element Type

Permitted Parents

Local Attributes

Contents

TagStyle

New in HTMLS

Changes in HTMLS

Style Convention

script
Metadata/phrasing

Any element that can contain metadata or phrasing
elements

type, src, defer, async, charset

Seript language statements or empty if an external
JavaScriptlibrary is specified

Astartand end tag are required; self-closing tags are not
permitted, even when referencing an external JavaScript
library

No

‘The type attribute is optional in HTMLS; the async and
defer attributes have been added; the HTML4 language
attribute is obsolete in HTMLS.

None

OEBPS/Images/t1806.jpg
SRR SO, £ 100 TN S R NG ey

Selector Description 88 Version

link Selecs link elements. 1

Selectslink elements that the user has visited. !

OEBPS/Images/t0716.jpg
O T D I L T

Value Description

alterate Links to an altemative version of the document,such as a translation to another
language

author Links to the author of the document.

help Links to help related to the current document.

icon Specifies an icon resource. See Listing 7-14 for an example.

Mcense Links 1o license associated with the current document,

pingback Specifies a pingback server, which allows a blog to be notified automatically when
other web sites link to

prefetch Preemprively fetches a resource. See Listing 7-15 for an example.

sylesheet

Loads an external CSS stylesheet. See Listing 7-13 for an example.

OEBPS/Images/t1805.jpg
SRS S0 A0 LI ACNY.

Selector Description €8 Version

senabled Selects elements that are n their enabled state. 8

BB R o e e S 9

OEBPS/Images/t0719.jpg
Table

19. The noscript Element

Element
Element Type

Permitted Parents

Local Attributes
Contents
TagStyle

New in HTMLS
Changes in HTMLS

Style Convention

noscript
Metadata/phrasing/flow

Any element that can contain metadata, phrasing, or flow
elements

None

Phrasing and flow elements

Astart and end tag are both required
No

None

None

OEBPS/Images/t1808.jpg
Table 18-8. The :active Selector

Selector: sactive

The elements that are presently activated by the user; this
usually means those elements that are under the pointer
when the mouse button is pressed

Matche

Since CSS Version: 2

OEBPS/Images/t0718.jpg
A AR L ST I S,

Atribute Description

type ‘Specifis the type of the script that s references or defined. This attribute can be
omitted for JavaSeript scripts.

sz Specifies the URL for an external script fle. See the following demonstration.

defer ‘Specifies how the script will be excuted. See the following demonstration. These

e - o mp e i T S T R SR

OEBPS/Images/t1807.jpg
Table 18-7. The :hover Selector
Selector: hover
Matches: ‘The elements that occupy the position onscreen under the

mouse pointer

Since CSS Version: 2

OEBPS/Images/t1809.jpg
Table 18-9. The ;focus Selector

Selector: +focus

Matches: Selects the element that has the focus

Since CSS Version: 2

OEBPS/Images/2909.jpg
/ W Bample &
€ 5 €| titan/listings/example.ntmi A

There are lots of different kinds of fuit - there are over 500 varicties of banana alone. By the
time we add the countless types of apples, oranges, and other well-known fruit, we are faced
with thousands of choices.

|color: |white
|background-color:|rgb(128, 128, 128)|
paddingtop:__[5px

padding right__[3px
[padding-bottom: | 5px

[padding et [spx

OEBPS/Images/1818.jpg
@© Eample
€ > C | ® titan/listings/example.html % A

Visit the Apress website

T ke apples and oranges.

Visit the W3C website

OEBPS/Images/2907.jpg
/B zampe
€ = € [©ttanistingyerampentn

foorder.[medims dovble ek [border_[raechum dshed]
Jcobr b ea
fpudiog paddng e
[paddingTop: [paddingTop|2px

n cach county. | Fve nesr Loadon, e n ares |

OEBPS/Images/1819.jpg
© Bample
€

‘Visit the Apress website

1ike apples and oranges.

Visi the WiC websi

Visit the Apress website

Tike apples and oranges.

OEBPS/Images/2908.jpg
(R <\
€ 9 C [stawistng/campientm Y

There arelos of dffernt kinds of it - here are aver 500 varieie of banzna alore. By the tme we add the

‘countess types of apples, oranges, and other wel-kpown it we are faced withthousands of choices

o,

T of e acst ntcresting aspects ot & the variety avele n coch country. 1 ive near Landon, 2 an arce
which i known or i appies.

T L D D S

fborder.[mediun double back] [border. _[median dashed bl
feobr: b red
padding: _[10px 12px Spx Spx | [padding_[2px.
|paddingTop10px [paddingTop2px

OEBPS/Images/1816.jpg
Lo |

/@ bomote =
e —
€ 3 ¢ [@ttaryisin| / @ oot B

€ 3 C O ritan/listings/example.nimi v X

Visit the Apress website

1ike appls and oranges. Vist the Apress website
olo] 1y Tike apples and oranges.

\/_‘@

OEBPS/Images/2905.jpg
/ B Eemple

/B eample \
«

€ | @ titan/listings/example.html

One of the most interesting aspect:
apples.

OEBPS/Images/t0711.jpg
Table

11. The style Element

Element
Element Type

Permitted Parents

Local Attributes
Contents
TagStyle

New in HTMLS
Changes in HTMLS

Style Convention

style
NA

Any element that can contain metadata plus, head, div,
noscript, section, article, aside

type, media, scoped
C5S styles

Start and end tag enclosing text

No

‘The scoped attribute has been added in HTMLS

None

OEBPS/Images/1817.jpg
=t
Qe * —
€ 3 O wanisinoved /6o 5 B
e [——

[— O AT
P —

OEBPS/Images/2906.jpg
e 5]
&2 (B

There are lots of diffrent ki o fui - the axc over 500 vericies of banasa alonc. By
dess types of spples, canges, and other well-nown i, we are

There ae otsof dffsentkinds of fuit - there ace over 500 vaictcs of basena alon. By the |

i we acd the countess types of sples, ranges, and othes well-known fu, we are fced
with thovsands of choices

(o]

Element CSS: color: blsck:

OEBPS/Images/t0710.jpg
A W AT I TN S S N S S,

Attribute Value Description

refresh ‘This specifies a period, in seconds,after which the current page should reload
from the server. You can also specifya different URL to be loaded. For
example:

<reta http-cquiva"refresh” content

hetp: /. apress.con”/>

default-style “This specifies the preferred stylesheet that should be used wih this page. The
value of the content attribute must match the title artribute on a seript or
Link elementin the same document,

content-type Thisis an alternative way of specifying the character encoding of the HTML
page. For example:

<meta http-equiv="content-type" content="text/htrl charset-UTF-s

OEBPS/Images/1814.jpg
faTs
€3 c Qi

e

15

poes s rsngs.

OEBPS/Images/2903.jpg
/B e \
/ Beerpe

€ > C O titanjlistings/cxample.htm

pes of apples, cranges, and other wel known frak, ve are
faced wih thousands

hoices

OEBPS/Images/t0713.jpg
T5ie /=13 Feaons Jor the i AUTIDULE Of (18 si)ie INement

Feature Description Example
width Specifies the width or height of the width:200px
height browser window. Units are expressed aspx

for pixels.
device-width Specifies the width or height of the entire min-device-height:200px
device-height device (and not just the browser window).

bpesiseapuistont s g smoniny

OEBPS/Images/t1802.jpg
Table 18-2. The :root Selector

Selector: sxoot

Selects the root element in the document; this is the hnl
element

Matches:

Since CSS Version: 3

OEBPS/Images/1815.jpg
© Bample s
€ > C |@titan/listings/examplehiml 2| A

the Apress websie

Tike |appies | and oranges
Te
st the W3C website

OEBPS/Images/2904.jpg
B Ao
€ 5 & (O uuningscanychin

e

[P { border-top-width mediun|

|medium; border-top-style: o
[border-top-color: black; bor

color: rgb(211, 211, 211; }

[pmcaiiestect caesvies

oo o

OEBPS/Images/t0712.jpg
bl

N R D, THTALI SAY B C I A TR s B

Device Description

all Aaoly s stade to any device fihis is the dalils.

OEBPS/Images/t1801.jpg
SRR e

Problem Solution Listing
Select the root element i the document Use the tzoot selector. 181
Select achild element ast:child, sonly- 182
child,or sonly-of-type selectors. through
18:6
Select achild ata specific index. Usethe inth-child, :nth-Last-child, 187
inth-of-type, or inth-last-of-type
selectors
Select clements that are enabled or disabled. Use the enabled or :disabled selectors. 188
Select radio button or check box elements Use the :checked selector. 189
thatare checked.
Select the default element. Use the sdefault selector. 18:10
Select elements based on i Use the :valid or : invalid selectors. 1811
Select range-constrained input clements. Use the sin-xange and :out-of-range 1812
selectors
Select input elements based on the presence Use the :equixed or soptional selectors. 18-13

‘i Facasived] stirlats;

OEBPS/Images/1812.jpg
N Erple
€ > C @ tian/lislings/examplet 3¢ | A

Spomimowaral 7]

OEBPS/Images/2901.jpg
Esample

€ 9 € [waniistings/examplenni

Onaof:

wples.

index [0 Inder |1 ndex |2
liet. =] et [il
e [core syes] e . e .
= restiess | [tvpes festiess [vpe: testiss
lownerNode[STYLE | [ownceNode: LINK. ownerNode: STYLE|

OEBPS/Images/t0715.jpg
LIS L0 TR NI ORI R Ve S DI,

Atribute Descrption

et Specifies the URL ofthe resoutce that the Link lement efes o

hreflang. Specifis the language of the linked resource.

nedia Specifcs the devicethat thelnked content s inended for. This atrbute ses the
Same device and feature values that 1 descrbed in Tables 7-10 and -1

el Specifcs the kind of relationship betieen the document and thelnked resource.

sizes Specifcs the sizeof cons. shovw you an example of using the Link lement t oad

type

favicon laterin the chapter.

Specifies the MIME type of the linked resource, such as text/ css or irage/x-icon.

OEBPS/Images/t1804.jpg
SR 104, FUEROF LIRIA e EInrs

Selector Description 88 Version
nth-child(n) ‘Selects elements that are the nth child of their paren 3
h-last-child(n) Selects elements thatare the nih from last child of their 3
parent.
h-of -type(n) ‘Selects elements that are the nth child of their type definedby 3
their parent.
h-last-of-type(n) Selects clements that are the nth from st child of their type 3

defined by their parent.

OEBPS/Images/1813.jpg
B Emple

N [

§ per wit in your are

OEBPS/Images/2902.jpg
SR <\

€ 2 C O ttanistings/example.nur %A

[Media Count]2
[Media 0 |screen and (min-vidsh 500p%)
[Media 1 Jprac

OEBPS/Images/t0714.jpg
Table 7-14. The link Element

THlatiank Yink

OEBPS/Images/t1803.jpg
b et md ookS o

Selector Description S8 Version

first-child Selects clements that are thefirst children of their containing 2
clements.

st-child Selects clements that e the last children of their containing 3

clements.

only-child Selects clements that are the sole clement defined by their 3
containing clement.

only-of-type Selects clements that are the sole element of their type defined by 3

their containing element.

OEBPS/Images/1810.jpg

OEBPS/Images/1811.jpg
I Bample
€ >C Oman/nsungs/e{} QA

S —

OEBPS/Images/t2509b.jpg
e Rl ol e

subnit ‘Triggered when a form is submitted.

OEBPS/Images/t2509a.jpg
souscenter

souseleave

sousewp

onafterprint

oobeforeprint

oohashchange
onload
oopapstate
onresize
onunload

e

R I
‘Triggored when user presses and releasesa key.
Trigorod when the e relesses a ey

Trigerod hen the mouse buton i pressed.

Triggered when the pointer i moved t be wihin thescreen region occupied by
the lementor one of s descendants.

Triggered when the pointer s moved 0 be outsde thescreen regon occupied
by the lement and allitsdescendants.

Trigsered when the pointer is moved whil ove the clement.

‘The same asforsouseleave, except that this event il rigger while the pointer i
sl over a descendant element

‘The same asforsouscenter, except that thisevent il igger while th poier
stllover a descendant clement.

Triggorod when the mouse buton i relased.
Trigsered when theloading o a document o resource s aborted.

Trigsered when thekindow.pent () method s calld,before the user s
presented with the print optons.

riggeredafter the user has printed the document.
‘Triggered when thereis a erorloading a document o resource.
Trigerod vhen thehs fagment changes

Trigerod when the oadingof a document or resource s complete

Trigsored to provide a state object associated with the browser history. See
Chapter 26 fora demonstration of this vent.

Triggered when the windonw i esized.
Triggered when the document s unloaded from the window/browser.

e s e

OEBPS/Images/t0706.jpg
Table 7-6. The title Element

Element title

Element Type Metadata

Permitted Parents head

Local Attributes None

Contents ‘Thetitle of the document or a meaningful description of

its contents

TagStyle Startand end tag enclosing text
New in HTMLS No
Changes in HTMLS None

Style Convention title { display: none; }

OEBPS/Images/t0705.jpg
Table 7-5. The boay Element

Element body
Element Type N/A

Permitted Parents htl

Local Attributes None

Contents All phrasing and flow elements

TagStyle Start and end tag required

New in HTMLS No

Changes in HTMLS Thealink, background, bgcolor, 1ink, margintop,

marginbotton, narginleft, marginrightn, rarginwidth,
text, and v1ink attributes are obsolete; the effect that
these attributes had can be achieved with CSS

Style Convention body { display: block; margin: 8px; }
body:focus { outline: none; }

OEBPS/Images/t0708.jpg
Table

). The meta Element

Element

Element Type
Permitted Parents
Local Attributes
Contents
TagStyle

New in HTMLS

Changes in HTMLS

Style Convention

neta
Metadata

head

name, content, charset, http-equiv
None

Void

No

The charset attribute is new in HTMLS.
InHTML4, the http-equiv attribute could have any
number of different values. In HTMLS, this has been
changed so that only the values I describe in this table are
permitted.

The HTMLA schene attribute is now obsolete.

‘Youno longer specify the language for the page using a
meta element (11l show you how to do this in HTMLS later
in this chapten).

None

OEBPS/Images/t0707.jpg
Table7-7.

The base Element

Element

Element Type
Permitted Parents
Local Attributes
Contents
TagStyle

New in HTMLS
Changes in HTMLS

Style Convention

base
Metadata
head

href, target
None

Void

No

None

None

OEBPS/Images/t0709.jpg
A T TR A NI IR AR e e
Metadata Name Description

application nane ‘The name of the web application that the current page is part of

author ‘The name of the author of the current page

description Adeseription of the current page.

generator ‘The name of the software that generated the HTML (thisis usually used vhen

using some kind of server framevwork to generate HTML pages, such as Ruby
on Rails, ASP.NET, etc.)

keywords Asetof commasseparated strings that describe the content of the page

OEBPS/Images/1809.jpg
B Comeie

& & C |0 titan/listings/examplehtml % g‘

Do youlike appls:) This will go red whea checked

(Sibma

OEBPS/Images/1807.jpg
© Bemple
€>C (‘;)man/hsungs/examplenmﬁ Q[

Visit the Apress website

Tike apples and oranges.

Visit the W3C website

OEBPS/Images/1808.jpg
® Example
€ > C |® titan/listings/example.ntr ¥ | X

This is an enabled
textarea

This is a disabled
textarea ol

OEBPS/Images/1805.jpg
‘(— > C ® titan/listings/example.htn 78 -\j
Tlike | apples | and oranges.

Visit the W3C website

OEBPS/Images/1806.jpg
© Eample x (&
€ 3 C [O titan/listings/examplehtr ¥ \‘

Vi

Tiike | apples | and oranges.

Visit the W3C website

OEBPS/Images/1803.jpg
® Bample x \\&
€ 9 C O titan/listings/examplehtn vy X

Visit the Apress website

Tiike | apples | and oranges.

the W3C website

OEBPS/Images/t0702.jpg
Table 7-2. The doctype Element

Element doctype

Element Type N/A

OEBPS/Images/0712.jpg
/ Weemee
| € + ¢ [0 tanisngs/eampentm & ¥| X
Javaseript s required

You cannotus i page withont Javascript

Tiike 2pp1s and cranges.

OEBPS/Images/1804.jpg
/ ® bample
‘(— > C ® titan/listings/example.htn ¥ -\‘

Visit the Apress website

Thke apples and| oranges

I

Visit the W3C website

OEBPS/Images/t0701.jpg
S At LR ——

Problem Solution Listing
Denote that a document contains HTMLS. Use the doctype element. 71
Denote the startof the HTML markupina Use the el element. 72
document

Denote the start of the metadata section of Use the head element. 3
an HTML document.

Denote the startof the content section of an Use the body element. 74
HTML document.

Specifythe tide of an HTML documen Use the title lement. 75
Define the URL against which relative URLs Use the base clement. 76
contained in the HTML document will be

resolved.

Add descr Use therneta element 77
‘an HTML document.

Specify the character encoding of an HTML Use the meta element with the charset 7-8

OEBPS/Images/1801.jpg
® Bample x
€ 5 C O titan/listings/example.ntr 77| X

Visit the Apress website

Tike apples and oranges.

Visit the W3C website

OEBPS/Images/t0704.jpg
Table 7-4. The head Element

Element head

Element Type NiA

Permitted Parents htnl

Local Attributes None

Contents One title element is required; other metadata elements
are optional

TagStyle Startand end tag enclosing other elements

New in HTMLS No

Changes in HTML5 . -

OEBPS/Images/1802.jpg
® Bample \
€ - C | @ titan/listings/examplehtn ¢ | A

Visit the Apress website

Thke | apples| and oranges.

OEBPS/Images/t0703.jpg
Table 7-3. The htmi Element
Element htnl

Element Type N/A

Permitted Parents None

Local Attributes mani fest—see Chapter 40 for details

Contents One head and one body element

OEBPS/Images/t0501a.jpg
Create an object

Add methods o an abject.

Getor seta property from an object
Enumerate the propertiesin an object.

Add a property or method to an object.

Delete s property from an object.
Determine fan object defines a property.

Determine f oo variables have the same
value, rogardiessof type.

Determinef o variables have the same
value and type.

Explicidy convert from ane type to another.

Create an array.

Read or modifythe contents ofan array.

Enumerate the contentsof an array:
Handle errors.

Comparenull andundefined values.

birsedi - st Al Dl iasarc-
walueliterally.

Use new Object() orthe objectlitersl
syntax.

Create a new property, and assigna
function to

Use dotor array-indes stye notation,

Use the for...in statement.

Assign a value to the praperty name.
that you require.

Use the delete keywiord.
Use the in expression.

Use the equalit operator

Use the ideniity operator

Use theNusber orstring functions.

Usenew Axray() orthearay lteral
iy

Use index notation to retreve or assign
anewvalue 0. position in the artay.

Useaforloop.

Use atry...catch statement

Coercea value to the boolean ype, or
e the equlity operator (-») (o treat
ull and undefined as being the same.
and the identity opeator (v-=) 1 treat
them s diferont values.

101

12

13

1

15,16

N

1921

.22

225

%27

22

a3

336

OEBPS/Images/0711.jpg
/ Beemoe <\
| € > ¢ [® ttan/istings/examplentmi RN

Ifike chesaes and orenges

sssscmcson | 2

OEBPS/Images/0710.jpg
Bample

| € » & [©ttan/istings/example.rtm!

A

Thike apples and oranges.

OEBPS/Images/t2506b.jpg
AT -

hasattribute(coanes)

resovettributecnanes)

setttribute(coanes,
)

appendchild(TmLElesent)

clonelode(boolean)

comaredocumentyasition(iTHL
Elecent)

e

SnsertadjacentiTHL (cposs,
)

insertBefore(crenclon,
ehildelem)

isEqualiode(HTH ELenents)

sssaneode(HTHLELesent)
outeniL
resoveChild(HTHLElesent)

seplaceChild(HTHLELerent,
MM Elenent)

createElenent(ctapy)

createtextiode ctext)

FANDECS HM XA OF O MOSIIN SIIN

Retums true ifthe element has the speciied
attbue,

Removes thespecifed tbute from the
clement.

Applies anstbute with the specifed name
andvalue.

Appends thespecifed lement asa chid of
he current clemen.

Copies an clement.

Determines the relatve position ofan
clement.

Gots or sets the e

nserts HTML rla

Insrts the firs clement before the second
{child) lement.

Determines whetherthespecified lementis
cqual o the current clement.

Determinos whethor thespecified clementis
hesame s the current dement

Gets or st an eement's HTML and contents,

Removes thespecifed chikd of the current
clemen.

Replacesa child of the curent lement.

Creates a mew HTHLELenent object with the
specifedtag type.

Creates a new Text abjectwith thespecifed

b

boolean

votd

woid

WHElerent
i ELenent

nusber

string

woid

WHElerent

boolean

boolean

sting

WM Elerent

WHElerent

M Elenent

Text

OEBPS/Images/t2506a.jpg
classList

classtore
dir

sisabled

ridden
4
tang

spellcheck

tablndex

cappare
title

20d(cclass»)
contains <class>)
Length
renove(<class»)
togsle(<class»)

steributes

i

P00 OF 5005 TR WOt OF CR0NIS AR 0 loent

belongs 0

Gets or sets the s of casses that the cement

belongs 0.

Gets or setsthe value of the diz atuibute.

Gets or sets thepresence of thedisabled

st

Gets or scts thepresence ofthehidden

aurbute

Gets or sets thevalue of the 1t
Gets or setsthevalue of the Lang attibute.

Gets or scts thepresence of the spellcheck

aurbute

te.

Gets or sets thevalue of the tabindex

bt

Retums the tag name indicatin the clement

ype)

Gets or setsthevalue o the title atrbute.

‘Adds the specifid clas o the clement.

Retumns trve fthe lement belongs o the.

specified class.

Returns the number o lasses to which the

clement belongs.

Removes thespecified classfrom the element.

Addsthe class it is not presen, and removes

s present.

Retums the atrbutes applied o the element.

el

——

D0MTokenList

string
string

boolean

boolean

string

string

boolean

nusber

string

string

vod

boolean

nusber
botd
boolean

ateat)

stringl nanes]

OEBPS/Images/0709.jpg
/B eemoe &

€ & C O ttan/istings/examplehtm!

Thisis o the eatermal seipt

Tke app1e5 and oranges.

e

OEBPS/Images/0706.jpg

OEBPS/Images/0705.jpg
/ © suample &

| € » ¢ @ iitaniistings/examplentmi

Tiike appies and oranges.

OEBPS/Images/0708.jpg
=L

[@) !
€ 9 C |® tanistings/examplermi RS
This e from the scrpt

e ——

OEBPS/Images/0707.jpg
€ & C O titan/listings/examplentmi RN

Itk appes and oranges.

OEBPS/Images/0702.jpg
[Beerwe | -
€« C' | ® titan/listings/example.html PIEN

OEBPS/Images/0701.jpg

OEBPS/Images/0704.jpg
|/ @ sample @
€ 2 € (O titan/lstings/examplentmi 3| X,

Tike appies and oranges

/ © eampie
€ 5 € O titan/istings/example il

Tke app1es and oranges

Visit Apress.com Page 2

OEBPS/Images/0703.jpg
/ ©sange B
€ & @ OQtitn/isings/eamplentml Yz X |

Ihkce apeies and oranges.

OEBPS/Images/t2701a.jpg
Perform simple operations on the browser
history

Manipulate the browser history

Send a message (0 script running in
different document

Set one-offor repeating timers

b

Use thebback, forward, and go methods
on the History object returned by the
Window. history property

Use the pushstate and replacestate
methods on the Kistozy object
returned by the hindow. history
property

Use the eross-document messaging
feature

Use the setInterval, set Tireout,
cleartnterval, and clearTireout
methods on the Kindow object

5

611

1215

OEBPS/Images/t1504a.jpg
TagStyle:
New in HTML5?

Changes in
HTMLS

Style Convention

b

No

‘The rel, media, and hreflang attributes are new in HTMLS.
‘The nohref attribute is now obsolete.

area | display: none; |

OEBPS/Images/t2701.jpg
AR L

Problem Solution Listing

Obtain aindow object Use document. defaultView or the 1
window global variable

Getinformation about a window Use the kindow informational 2
properties.

Interact with the window Use the methods defined by the Kindo 3
object

Prompt the user with a modal dialog Use thealert, confin, prowpt, and 4

window

shouedaIntalan wlivods o aMERdGa

OEBPS/Images/t2702.jpg
LR L e WU UM ML AL

Name Description Returns
Imcrteight | Getohe eightof the windaw content area e
p— Getsthe widihof the window content area nnber
et Gt heightof thevindow inludingborders,menubars and niber
i Getsthe widihof the window,inludingborders, menubars, and b
Gotsthe number ofpsels thettho windowhasboensciolled mber
pageN0ffset horizontally from the top-left corer
Getsthe number ofpssls that tho windowhasboenscrolled miber
PagerOiaet vertically from the top-left comer
Retums Screen objctdescrbing the creen screen
Gotsthe number ofpsls rom th lf edgeof ho windowtothe b
serentert Jekdgeof the scroan (vt albrowsers mplementboh propetes
orcalculate hsvalue i hesame ey
screentop Gotstho nurber ofpssls rom th op edge of howindowtothe mber
St 1opedgeaf he sceen (oot il browsers mpletnentbohpropertis

or calculate this value in the same viay)

OEBPS/Images/t2705.jpg
AT S BRI TR

Name Description Retums
[Displaysadinog window t0the uerand it foritovoid
confirm(casg>) Displays a dialog window with an OK/Cancel prompt boolean
pronpt(cusgs, <val>) Displays a dialog prompting the user to enteravalue string
showtodalbialog(<urls) Displays a popup window showing the specified URL void

OEBPS/Images/t2003a.jpg
margin This shorthand property sets the 1-4auto, <length>, or <>
‘margin for all edges in a single
declaration.

OEBPS/Images/t2706.jpg
RS L . T
Name Description Returns
docunent Returns the Docusent object associated with this window Docunent
history Provides access to the browser history History

Tocation Provides details of the current document's location Location

OEBPS/Images/t2703.jpg
A oy ST ORI CRRRIL S YOl

Name Description Returns

The height of the portion of the screen available for displaying windows nurber

WaEINt (ovcludes toolbars, men bars, and so.on)

i ‘The widdh of the portion of the screen available for displaying vindows nusber
aLRAh (oycludes toolbars, menu bars, and so on)
colorbepth The color depth of the screen nusber
height The height of the screen nusber

width The width of the screen nusber

OEBPS/Images/3803.jpg
€ 9 C | ®titan/listings/examplehtm (330N
Longitude: - Latitude: |-
Alfitudo: - Accuracy: |-
Alfitude Accuracy: - Heading: |-
Speed: |-| Time Stamp: -
Error Code: 1| Frror Message: | User denied Geolocation

OEBPS/Images/t2704.jpg
bl bl

s R AT NS RGN IRy

Name Descrption Retums
blux() Unfocusesthe indow votd
close() Closes the window (notall browsers allowaseript . vold
close the window)
focus() Focusesthe window votd
print() Prompis the user 0 print he page votd
scrollby(oo, o) Serolls the document elative o its currnt position. vodd
scrollTo(co, <) Scrolls 0 the specified position votd
stop() Stops the document from loading votd

OEBPS/Images/3802.jpg
/@ eampie &

€ > C @ titanlistings/example htmi [ERAIRN
Longitude:|-73.986171| Latitude:] 40.745716
Alitude: Accuracy:| 69
Alitade Accuracy: Heading:

Speed: Time Stamp: | 1315990701832

OEBPS/Images/3801.jpg
ESESE

/ @ arple & e

€ 3 € O taisings/examplenim %A

Leammore %

o " e e e

Longitude:|-| Latitude: |-

Atinde || Accuracy: -
e Accurscy:|| Tendig|- |

Speed:

Time Stamp: |-

OEBPS/Images/t1608.jpg
b ocalbinrh e e ki

Property Description 33 Level
border-collapse ‘Specifes the display style for borders on adjacent able calls 2
border-spacing. Specifies the spacing between table cell borders 2
caption-side Specifies the position of a table caption 2
color Sets the foreground color for an element 1
cursor Sets the style of the cursor 2
enpty-cells ‘Specifies how borders are drawn on empry table cells 2
List-style Shorthand property to specify ast style 1
List-style-rage ‘Specifies an image to be used as a list marker 1
Mst-style-position Specifies the position of alst marker relative to alistitem 1
List-style-type ‘Specifis the type of marker used i 1
opacity Setsthe transparency for an element 3
table-layout ‘Specifies how the size of a table s determined 2

OEBPS/Images/t1607.jpg
N R L P P

Property Description C88 Level
ekeyfrares Specifies one or more key frames for an animation 3
aniration Shorthand property for animations 3
anisation-delay Specifes a delay before an animation starts 3
anisation-direction Specifies how alternate repeats of an animation are performed 3
anisation-duration Specifies the duration of an animation 3
anisation-iteration- Specifies the numberof times an animation will be repeated 3
count.
anisation-nare Specifies the name of the set of key frames that will be used for 3
an animation
anisation-play-state Specifies whether the animation is playing or is paused 3
anixation-tining- Specifies the function used to calculate property values 3
function between key frames in an animation
transforn Specifiesa transform to apply to an element 3
transforn-origin Specifies an origin for which 1 ransform vl be applied 3
transition Shorthand property for ransitions. 5
el Dot s dakiy bl i thdultion st 3

OEBPS/Images/2709.jpg
© Bample \

€ - C [® titan/listings/example.ntm % A&

Interval expired. Counter: 6

(Set Time] [Clear Time] [Set intenal | [Clear Intenal

OEBPS/Images/2707.jpg
€2 c o

OEBPS/Images/t1602.jpg
Selector Description 85 Level
. Selects all clements. 2
<type> Selects elements of thespecifid type. 1
~cclass> Selects clements ofthespecifid class. 1
pers Selects elements with the specified valuefor the id 1
atwibute.
(attr] Selects elements thatdefine the atribute att,regardless of 2
the value assigned to the attrbute.
(attr="val") Selects clements thatdefine att and whose value for s 2

i

OEBPS/Images/2708.jpg
/@ ampe
€ 9 ¢ [@uawisi

This is the neste

T & 5 ¢ ©uowising

e

Message Sent

Sendiessane

Tlike apples

OEBPS/Images/t1601.jpg
Lok B i e L oS

Browser Profix
Chiome bkt
Safart

Opera E
Firefox e
Interet Explorer s

OEBPS/Images/2705.jpg
R

=

€3¢ Own a EES

S b

OEBPS/Images/t1604.jpg
NG ITR S IR TR

Property Description €88 Level

box-sizing Sets the bos to which the size-related properties apply to 3

Wi Chiis G sk btk iois o s Basilan alesisor 1

OEBPS/Images/2706.jpg

OEBPS/Images/t1603.jpg
Bl b ooy ol bionen bt i

Property Description 55 Level
background Shorthand propertyto s all background values. 1
Sets the atachmentofthe backgzound tothe clement Thisis 1
background-attachnent usoful hen deaing with clements that have scroling regons.
Sots the area inwhich the backgzound color and mageare 3
backgzound-clip vsble
background-color Setsthe background color 1
background-inage Sets the mage for the background. 1
background-origin Setsthe point at which the background image will b dravn. 3
background-position Positions the image inthe clement's box. !
backsround-repeat Specife the repeat sl or the background image 1
background-size Specifies the size at which the background image will be drawn. 3

OEBPS/Images/2703.jpg

OEBPS/Images/t1606.jpg
SO O AN A e

Property Description C88 Level
efont-face Specifies aweb font for use 3
direction Specifies the directionality of ext 2
font Shorthand property to set detals of the font in a single 1

font-fanily

font-size
font-style
font-variant
font-weight
Letter-spacing
Line-height
text-align
toxt-decoration

P

declaration

Specifies the listof font families to be used, in order of
preference

‘Specifies the size of the font

Specifies whether font vl be norma,talic or oblique
‘Specifies if the font should be displayed in small caps form
Specifes the weight (boldness) of the text

Specifesthe space betveen ltters

‘Specifies the height of a line of text.

Specifiesthe alignment of ext

Specifie the decoration of ext

Specifies the indentation of text

OEBPS/Images/2704.jpg
l=la)

e

/ @ Eample x

C | ® titan/listings/examp}

‘

nemibarana 3[R, |

OEBPS/Images/t1605.jpg
SO P I A TR

Property Description 83 Level

botton Sets the bottom-edge offset for a positioned clement 2

colum-count Specifies the number of columns in a multicolum layout. 3

column-fi11 ‘Specifies how content should be distributed between columns 3
ina multicolumn layout.

colum-gap speciesthe disance beoween columns inamlicoluma 3

colum-zule Shorthand to define the rule between columns in a 3
‘multicolumn layout

column-rule-color Specifies the color ofthe rule in a multicolumn layout. 3

colum-ule-style Specifies the syle of the rule in a multicolumn layout. 3

column-xule-width ‘Specifies the width of the ule in a multicolum layout 3

colurns ‘Shorthand for setting the column-span and colum-width 3
‘properties in amulticolumn layout.

colurn-span ‘Specifies how many columns an element should spar 3
multicolum layour.

colum-width ‘Specifies the width of columns in a multicolumn layout. 3

display ‘Specifies the way in which the element i displayed on the 1
page.

flexalign “These propertics are defined by the fleible box layout, but they 3

flex-dizection are not yet implemented.

flex-order

flex-pack

left T e e e e

OEBPS/Images/2701.jpg
g Example \

€ C' | ® titan/listings/example.html

outerWidth: |416 | outerHeight: 198
innerWidth: [109 | innerHeight: | 109
screen.width: | 1920 | screen.height: [1080

OEBPS/Images/2702.jpg
[Qzane

D pese o g € [O] ottimbigoampcnms 77 -] o

Thisissm et

s

[~

OEBPS/Images/t0704a.jpg
Style Convention None

OEBPS/Images/t0813a.jpg
Changes in No
HTMLS

Style Convention Display subsequent content on a new line (not possible through
css)

OEBPS/Images/t3202a.jpg
i) 3 SR SO N ST N .

oo 4 The response is complete or has failed.

OEBPS/Images/t0502.jpg
FENRG:

TR IS I

Operator Description

Pre- or post- increment and decrement

A Addition, subtraction, muliplication, division, remainder

Less than, less than or equal to, more than, more than or equal to

Equality and inequality tests

Identity and nonidentity tests

o, || Logical AND and OR

Assignment
. String concatenation

B ‘Three operand conditional statement

OEBPS/Images/t0501.jpg
AR Y.

Problem Solution Listing

Define an inline scriptin a document. Use the script element 1

Execute a statement immediately. Definea statement dircctly in the 2
script element

[O N P w— 35

OEBPS/Images/t0504.jpg
R I I

Wethod Description
Nober(cstn>) Parses the specifed strng o create an integer ot real value
parselnt(cstr) Parsesthe specified strng o createan integer value

parsefloat(cstn) Parsesthe specified sting o create an integer orreal vlue

OEBPS/Images/t0503.jpg
A U (S 0 ORI

Wethod Description Retums
tostring() Represents a number in base 10 string
tostring(2) Represents a number in binary, octal, or hexadecimal string
tostring(8) notation.

tostring(16)

tof ixed(n) Represents a real number with n digit after the decimal poin¢ ~ string
toExponential(n) Represents a number using exponential notation withone string

digicbefore the decimal point and n digits after

tobrecision(n) Represents a number with n significant digis, using string

exponential notation if required

OEBPS/Images/t0506.jpg
b ot b e B o

Property Description Returns
ressage ‘Adescription of the error condition. string
nare The name of the error. This s Exror, by default string
nusber The ertor number, if any,for this kind of error nusber

OEBPS/Images/t2110a.jpg
T AN TS SOL WA

i Any unallocated additional space is allocated evenly on the left side of the first
centex clement and the right side of the final clement.

Justify ‘Any unallocated space is spread evenly between the elements.

OEBPS/Images/t0505.jpg
AT .

Hethod Description Retums

concat (<otherarzay) Concatenates the contentsof the array vith thoarray Arzay
specified by the argument. Mullple arrays can be
Specified.

Join(<separaton>) Joinsal of the lements in the array to forma string The string
argument specifies the character used to deimit the
tems.

pop0) Treats an aay like astack, and removes and rewums e abject
asttem n the aray.

push(citem) reats an aray like a stack,and appends the specified void
item to the aray.

Ry i e e o e M i vk g

OEBPS/Images/t2001a.jpg
rsdrbes sl and b
displayed as a word in a paragraph.

Set the box type so that an elementis
treated like an inline element on the
outside, but a block element on the.
inside.

Set the box type so that the way in
which an clementis displayed
depends on the clements around it

Hide an element andits contents.

Shift an element to the left or right so
thatts positioned against the edge
of the containing box or another
floating element

Prevent a floating element from
being placed against another
floating element.

ShemTan ang Sne yais ok Can G 15y POopeRty.

Use the inline-block value of the display propery.

Use the run-1n value of the display property.

Use the none value of the display property.

Use the float property.

Use the clear property.

ozl

2011

2012,
2013

2014

215

OEBPS/Images/1601.jpg
<—— Margin Edge
<——— Border Edge
Padding Edge

Element Content

Content Edge

OEBPS/Images/1602.jpg
Padding

Element Content

Element Content

OEBPS/Images/t0817a.jpg
NewmnHIMLS No

Changes in None
HTMLS

Style Convention None

OEBPS/Images/t0816a.jpg
Changes in None
HTMLS

Style Convention ~ None

OEBPS/Images/t0901a.jpg
DU,

Denotea figure (and optionally,a caption).

TRELRS s Lo TS Sele s SO
counter feature.

Use the figure and figcaption
clements.

912

OEBPS/Images/t3114a.jpg
ul

HIMLULIstElement

OEBPS/Images/t3005a.jpg
‘onpopstate SANEPRUE S5 L S A T N TN . T
Chapter 27 for a demonstration.

onresize Triggered when the window s resized

onunload ‘Triggered when the document s unloaded from the window/browser.

OEBPS/Images/0501.jpg
(=8

/ © Bamoic A ©

/)

¢ & € |Otitn/isings/eamplentml 1 A |

E

OEBPS/Images/t2907.jpg
I N L.

Member Description Retums
essText Gets orsets the text of the style. string
getPropertyCsSValue(cnanes) Gets the specified property Cosprimitivevalue
getPropertyPriority(cnane>) Gets the prioriy of the specified property. string
getPropertyValue(cnanes) Gets the specified value asa tring string
sten(cpos>) Gets the item at the specified position. string

Length Gets the number of tems. nunber

parentRule Gets the syle ule ifthere s one. cssstyleRule
revoveProperty (cnare>) Removes the specified property. string
setproperty(<nave, cvalue>, Sets the value and priorityfor the specified void

Gprloritys) propeny.

astyler Convenience property o get orsetthe. string

specified CSS property.

OEBPS/Images/t2908.jpg
b Lokt

TS N N COF O ST TR AN L.

Member Description Retums
cssText Getsa text representation of the value. stxing
getFloatvalue(<type>) Getsanumber value nunber
gethGiColorvalue() Getsa color value. RGBColor
getStringValue () Getsa string value. string
prinitiveType Gets the unit type for the value. nunber
setFloatvalue(<type>, <values) Setsanumeric value void
setstringlalue(ctyper, calues) Setsavalue fora string-basedvalue. void

OEBPS/Images/t2905.jpg
SIS A O S L R e
Member Description Retums
iten(<pos>) Retumms the €SS stle at the specifed index. cssstyletule

Length Returns the number of syles inthe styleshet nusber

OEBPS/Images/t2906.jpg
LA T e e e
Wember Descripion Retums
csstext Getsorststhetest including the selecon) for the stle. string
parentstylesheet Getsthestylesheet to which this stle belongs. cssstylesheet
selectorText Getsor sets theselector text fo thestyle string

Gets an abject representing te syles. Cssstyleeclaration

style

OEBPS/Images/t2909.jpg
Table 29-9. The Members of the CSSPrimitiveValue Object

Primitive Unit Type

Description

€S5_NUMBER
CS5_PERCENTAGE
€ss_eMs

€ss_px

css o

€ss_IN

€ss_PT

€ss_pC

€S5_DEG
€s5_RAD
(S5_GRAD.
css s

€ss.s
€S5_STRING

(55_RGBCOLOR

‘The unitis expressed as a number.
The unitis expressed as a percentage.
The unitis expressed in ems.

The unit is expressed in CSS pixels.
‘The unit s expressed in centimeters.
‘The unit s expressed in inches.

The unit s expressed points.

‘The unit is expressed in picas.

The unit s expressed in degrees.

‘The unit is expressed in radians.

‘The unit is expressed in gradians.
‘The unit is expressed in milliseconds.
The unit s expressed in seconds.

The unit is expressed as string

The unitis expressed as a color

OEBPS/Images/t2503.jpg
Name Description Retuns
- Deplsduleindoniothovrad g
i o i
clearInterval (<id>) Cancels an interval timer. void
close() Closes the window. void

OEBPS/Images/t2504.jpg
FHNEID A S LTI U,

Name Description Retums
back() ‘Goes one step back i the history. void
forvard() Goes one step forward in the history. void
go(cinde) Goes to a position in the history relative tothe void

current document. Positve values are
st ey e g

OEBPS/Images/t2501.jpg
bl

SRR NS

Name Description Retums
S Returns an object representing the currently i
et mment focused element in the document HIMLElesent.
Returns an object representing the body o
body. clementin the document. ST Eloent
Retums the document character set
Eractersee encoding. This is a read-only property. string
Gets or sts the document character set
charset peioirlss string
childNodes Returns the setof child elements. HTMLElerent(]
conpatode Gets compatibility mode for the document. string
" Gets orsets the caokies for the current
cookie Gots o set string

OEBPS/Images/3609.jpg
@ ot x

€ 3 C (O titan/lstings/example.iim|

OEBPS/Images/t2502.jpg
DR AT ICEION GRS
Name Description Retums
assign(<URLY) Navigates o the specified URL. void
Gets or sets the hash component of the .
hash document URL. string
- Gets or sets the host component of the s

breepurdadepp e

OEBPS/Images/3608.jpg
/@eame a3l

a

€ 3 C [© ttaniisings/eramplentr

A

OEBPS/Images/t2507.jpg
A Sy TINE SEREL TG

Namo Description Retums
appenddatalcstringy) Appends the specified suing 0 the endof the void
blackof text
@t Getsorsets the text string
deletebtacof fsets, Removes thetextfrom the suing. The irst void
<couts) number s the offse,and the second is the
number of characters to emove.
insextoata(coffsets, Inserts the specifed suingatthe specified void
cstring) offet
Length Returns the number of characters. nuber
seplacebataloffsets, Replacesa region of textwith the specified void
“counts, <string) sring
xeplaceoleText(cstring) Replacesallof the text Text
splitlext(cnusbers) Splis the existing Text clemen Text
specified offse. e the section “Inserting an
Elementinto a Text Block, late n thi
chapter,for a demonstration of this method.
substringdatal coffsets, Returns substring from the text. string

<count>)

wholeText

Gets the text.

string

OEBPS/Images/3607.jpg
© bompic
€ 3 ¢ O uanisigseanle

OEBPS/Images/t2508.jpg
i it s ek e o

Wember Comosponds To See Chapter
background background 19
backgroundattachment background-attacheent 19
BackgroundColor Background-color 19
backgroundlsage backgound-trage 19
backgroundposition background-position 19
backgroundicpeat background-repeat 19
border border 19
bordertatton border-botton 19
bordertattorcolor border-bottor-color 19
bordertottosstyle. border-bottor-style 19
bordestottomidth border-botton-width 19
borderCallapse border-collapse u
bordeColor border-color 19
borderteft boxder-lefe 19
borderteftColor border-left-color 19
bordertefestyle border-lefe-style 19
borderteftuidth border-lefe-uidth 19
bordertight border-right 19
bordertightcolor border-right-color 19

bordertightstyle border-right-style 19

borderRightiidth S e 19

OEBPS/Images/3606.jpg
=

€3 ¢ O

OEBPS/Images/t2505.jpg
SKICNT kP FONE SOOTION S EEE

Name Description Retums

Returns the height of the portion of the screen nusber
availbeight available for displaying window:s (excludes

toolbars, etc).

Returns the widih of the portion of the screen nunber
availuidth available for displaying windowis (excludes

toolbars, etc)
colordepth Returns the color depth of the screen. nurber
height Returns the height of the screen. nurber
width Returns the widih of the screen. nusber

OEBPS/Images/3605.jpg
/ @zomie

OEBPS/Images/t2506.jpg
AT R PO TR SR

Name Description Retums

Gets orsets the presence of the checked

checked bty

boolean

OEBPS/Images/3604.jpg
/ ©eamsie &

mplehtmi

€ 3 C O ttanisting:

oA

N

OEBPS/Images/3603.jpg
/ @ amsle
€ 3 C O ttanisting:

=

oA

OEBPS/Images/3602.jpg
© bompe
€ 3 C [Oiitanfistings/e¥g| A

OEBPS/Images/3601.jpg
@ bamsle
€ 3 € O titan/1isting

OEBPS/Images/t0701a.jpg
Lo]
Specify a default stylesheet for an HTML
document or refresh the content ofa page.
periodically.

Define inline styles.

Load an external resource,including a

stylesheet or a favicon.

Preemptively load a resource thatis
expected to be needed soon,

Define a scriptinline.

Load an external script fle

Control when and howa scriptis executed.

Display content when JavaScript
supported oris disabled.

Lot o
Use the neta element with the http-
equiv attibute.

Use the style clement.

Use the Link element

Use the Link element with the rel
auribute value prefetch

Use the script element

Usethe script element with the szc
attribute.

Use the script element with the async
ordefer attributes

Use the noscript element.

79

7-10 through 7-
12
713 through 7-
15

716

717

7-18and 7-19

20 through 7-

2

and7-26

OEBPS/Images/t0810a.jpg
TagStyle
New in HTMLS

Changes in
HTMLS

Style Convention

Startand end tag required

No

‘The u element had only presentational meaning in HTML
HTMLS, it has the semantic meaning described previously, and

the presentation aspect has been downgraded to being the style
convention

u { text-decoration:underline; }

OEBPS/Images/t1402.jpg
Table 14-2. The select Element

Element: select
ElementType: Phrasing

Permitted Any element that can contain phrasing elements
Parents

Local Attributes: name, disabled, form, size, multiple, autofocus, required
Contents: option and optgroup elements

TagStyle: Startand end tag

NewinHTMLS? No

Changes in ‘The forn, autofocus and required attributes are new in HTML5
HTMLS:

Style Convention: None, the appearance of this element s platform- and browser-

specific

OEBPS/Images/t1401.jpg
S

AT SE—

Problem Soluion Listng
Create alistof optons to present tothe U theselect eloment. w1z
Add stucture tothelistof optionsina Use the optgroup clement. 13
select dlement

Obtain multiple linesoftext from the user. Use the textarea element. 144
Denote theresult of a calculation. Use theautput clement, us
Generate public/private key par. Use the keygen lement -
Ensure that the usee provides avalue fora Use the requixed attribute us
form element.

Ensure thata value s within bounds. Use thenin andmax atrbutes. 7
Ensure thata value matches aregular Use thepattern atrbute. 148,109
expression.

Disable input validation. Use thenovalidate or formovalidate 14-10

Botndiesiog

OEBPS/Images/t1404.jpg
Table 14-4. The textarea Element

Element: textarea
ElementType: Phrasing
Permitted Any element that can contain phrasing elements, but most

P olcalys fiaw

OEBPS/Images/t1403.jpg
Table 14-3. The optgroup Element
Element: optgroup
ElementType: N/A

Permitted Thasalect dnest

OEBPS/Images/t1406.jpg
Table 14-

. The keygen Element

Element:

Element Type:

Permitted
Parents:

Local Attributes:
Contents:
TagStyle:
New in HTMLS?

Changes in
HTMLS:

Style Convention:

keygen
Phrasing

Any element that can contain phrasing elements

challenge, keytype, autofocus, nane, disabled, forn
None

Void

Yes

N/A

None

OEBPS/Images/t1405.jpg
Table 14-5. The output Element

Element: output
ElementType: Phrasing

Permitted Any element that can contain phrasing elements
Parents:

Local Attributes: name, form, for

Contents: Phra

ng content
TagStyle: Startand end tag
Newin HTMLS? Yes

Changes in N/A
HTMLS:

Style Convention: output { display: inline; }

OEBPS/Images/t1407.jpg
SN A CNIUTLING CRNE TR

Validation Atribute _ Elements

required textarea, select, input (the text, password, checkbox, xadio, file, datetire,
datetine- local, date, ronth, tine, week, nurber, enail, url search, and tel types)

win,max input (the datetine, datetire-Local, date, nonth, tise, weck, nurber, and range.
types)

pattern input (the text, password,exail, url, search, and tel types)

OEBPS/Images/2501.jpg
€ 3 C (O titan/istings/example ntmi A

There are lots of different kinds of fuit - there are over 00 varieties of banana alone. By the
e we add the counlless ypes of apples, oranges, and otbir well-knows fuit, we ae faced
with thousands of choices.

One of the most interesting aspects of it s the variety avaiable in each country. T ive near
London, in an area whick is known for is apples.

OEBPS/Images/2502.jpg

OEBPS/Images/square.jpg

OEBPS/Images/t3137a.jpg
usevsp
sovap
idth
height

conplete

e oo
Corresponds to the userap artribute
Corresponds to the sss3p auibute
Cortesponds o thewideh rwibute
Corresponds to the height atribute

Returns true f the image has been downloaded

string
string
boolean
nurber
nurber

boolean

OEBPS/Images/t0302.jpg
SURSES SR Y.

Element Descrption Chapter
a Creates ahyperlink s
body Denotes the content o an HTML document 7
button Createsabutton or submitting forms I
cote Denotes fragment of computer ode s
oacrve Denotesthe sart of an HTML document 7
head Denotes the header secton of an HTML document J
e 5
el Denotes the HTML section of a document 7
input Denotes input supplied by a user s
Label e i ey -

OEBPS/Images/t0301.jpg
ATRSD LA -

Problem Solution Listing
Apply markup to content. Use an HTML element 15
Fine-tune the way that a browser handles Apply one or more attributes tothe 6-10
HTML clements. clement.
Declare thata document contains HTML. Use theDOCTYPE and henl lements. 11
Describe an HTML document Use the head element to contain one or 12
‘more of the metadata elements (which
are described in Chapter 7).
Add content o an HTML document Use the body element to contain text 13
and other HTML_ clements.
Add a shorteut key to select an element Use the accesskey global atribute. 1
Classify elements together, either so thata Use the class global atribute. 1507

consistent style can be applied o so that
the clements can be located
Srteramnatdl

OEBPS/Images/t0303.jpg
S

o e e

Character Entity Name Entity Number
B at; s160;

> 5t we;

i samp; w130;

€ Beuro; B304

£ Spound; w1635

s Bsect; ans67;

© scopy; ar169;

. Bre

OEBPS/Images/1407.jpg
/@ eampe Gl
& > C [ftan/lisings/exampiehtm Y
Weme |

Password: |Min § characters

S per wnitin your are: [101] o

[Sebmt] Value must be less than

or equal to 100.

OEBPS/Images/1408.jpg
/B eempie &
€ > C | Otianistings/exanplent | A

Name: [Adan|

Passwo| Please match the
requested format.

OEBPS/Images/1405.jpg
/

B campie
€ 3 ¢ [0 taniistings/examplentmi

Price Caleulator

122 B =[x

2806

OEBPS/Images/1406.jpg
= =

fexamplentml ¥2| &

Name:

Passwol Please fill out this field.

[Aceept Terms & Conditons

Submi.

OEBPS/Images/0313.jpg
Ry

OEBPS/Images/1403.jpg
& e
€ 3 C O titanistings/eamplehiml ¢ X

Name: [Adam

OEBPS/Images/0312.jpg
© Eample
€ S C O titan/listings/examplentm! Y| X

Apress web sit

OEBPS/Images/1404.jpg
B Eample &
€ 3 C O titanfistings/examplehtml 77| X,

Name: Adam
Passwword: /¢ chavacie

Favorite Fru [Apies [3]

Tell us why cthis 1s
your favorite fruic

OEBPS/Images/0315.jpg
® Bample &
€ 9 C @ itan/listings/examplehtml

Visit the Apfhss site
‘Apress Publshing

wiwapresscom

OEBPS/Images/1401.jpg
[N
A “\ B —)

€ 3 C (@ ttan/istngs/e| / W=
& 2 ¢ [Otmnistingz/ecmpizrm ve| X

Neme: Adam |
Name: [Adam

Password: Vi 6 charact

Password: [V 6 clactors

Favorke Fruie:

Submt

OEBPS/Images/0314.jpg
Qe & O I

& > 0@ umsmguenmd oo o[€ 3 @ Ouwmimvosmpon 5
N e] | € @ O vnmastennoe] e TS|

| s
Comy 1 oy s s |
(o) (=)

OEBPS/Images/1402.jpg
[EE—

B Eomple. x {2y
€ 3 C Otitn/istings/eomplenm 7 X

Name: |Adam

Password: |1/ 6 characte

OEBPS/Images/0311.jpg

OEBPS/Images/0310.jpg
@ Exemple x

€ > C @ titan/listings/example.html IR S

Tris i right-to-left [

This s leftto-right

OEBPS/Images/t0703a.jpg
TagStyle Start and end tag enclosing other elements
New in HTML5 No

Changes in HTML5 Thenmanifest attribute has been added in HTMLS;
the HTML4 version attribute is now obsolete

Style Convention htnl { display: block; }
htrl:focus { outline: none;}

OEBPS/Images/t2709a.jpg
[parent.
self

top
Tength
[<index>]

[enane>]

e e S
Retumns the kindos fo the curent document

Returns the topmost kindou

Returns the number of nested ifrare clementsinthe document

Returns the éindow for the nested document at the specified index

Returns the kindow for the nested document with the specified name

oo

Window

Window

nusber

Window

Window

OEBPS/Images/t3001a.jpg
SRR UM (AUIICE RERHT
associated with an event.

Respond o mouse actions.

Respond to clements gaining and
losing the focus.

Response to key presses.

ABITON PERVEI ML TR OO i buent st

Handle the mouse events

Use the focus events.

Use the keyboard events.

E ol

301

3012

3013

OEBPS/Images/t3134a.jpg
b ot
href
carget
el
nedia
hrefLang.

type

protocol

host

hostnare

port

pathnare

search

hash

SRR N D S W
Cortesponds o the href atrbute
Corresponds to the target artibute
Corresponds to the el atrbute
Corresponds to the edsa attribute
Corresponds o thehreflang attrbute
Corresponds o the type atbute

Convenience property to get or set the protocol
‘component of the href atribute value

Convenience property to get or set the host
‘component of the href attribute value

Convenience property to get or set the host name.
from the href attribute value

Convenience property o getor set the port
‘component of the href attribute value

Convenience property to get o set the path of the
href attribute value

Convenience property to get orset the query
string of the href attribute value

‘Convenience property o getor set the document
fragment component of the href attribute value

By
string
string
string
string
string
string

string

string

string

string

string

string

string

OEBPS/Images/t3807.jpg
SISy LTS LA

Name Description Retums

enabletighiccuracy Tels he browser that we would likethe best possble resul_boolean

tineout Setsalimit on o many mllseconds posiion request nurber
can take before a timeout eror i reported

raxinunage Tell the browser that we are willing 1o accept acached nusber

location, as long as tis no older than the specified number
of milliseconds

OEBPS/Images/t1901a.jpg
SRS WE S
between the background and
the scrolling region of an
clement.

Specify the region in which
the background s drawn and
the region in which itis
visible,

Setall of the background-
related properties in a single
declaration.

Add box shadaws to an.
clement.

‘BB A UAEREToWW- STRACTMINGS PRupaEty.

Use the background-origin and background-clip
properties

Use thebackground shorthand property.

Use box-shadow property.

19-10

19-11,19-
12

1913

19-14,19-
15

OEBPS/Images/t3801.jpg
Lol

e

Problem Solution Listing
Get the current position Use the getCurzentPosition method, supplying a function that 1
will be invoked when the position data is available
Handle geolocation errors Pass a second argument to the getCurrentPosition method, 2
specifying a function that will be invoked if there s an error
Specify options for Pass third argument to the getCurrentPosition method, 3
geolocation requests specifying the options required
Monitor the position Use the watchPosi tion and clearWatch methods 1

OEBPS/Images/0309.jpg
S — Lo |
//Sﬁ(lmpk —
€ > C Qtitanlis| / @ berple

’76-)6‘
K tight now

#

OEBPS/Images/t3802.jpg
s

N DRTRORMSON sjeat.

Name Description Retums

getCurrentposition(callback, Get the current position void
"arrexCallback, options)

OEBPS/Images/t2710.jpg
AT A N YO

Name Description Returns.
data Returns the message sent by the other script object
origin Returns the origin of the sending seript string

source Returns the window associated vith the sending script Window

OEBPS/Images/t2711.jpg
S-S5 ATORUE MNNAEK

Name Description Retums

clearlnterval (<id>) Cancels an interval imer void

ClearTincout (cid>) Cancels a timeout timer void

setInterval (<functions, <tines) Creates atimer that wil call the specified int
function every tize miliseconds

setTiseout(cfunction, <tise) Creates atimer that will call the specified int

function once afer tire milliscconds

OEBPS/Images/0306.jpg
©tempie x

€ 9 C O titan/listings/example.html w N

Apress web site

W3C web site

OEBPS/Images/t3805.jpg
SRR ooy e L TLTOCIATY. Qe
Name Description Returns
code Returns a code indicating the type of error nusber

Returns astring that describes the error string

ressage

OEBPS/Images/0305.jpg
€ 5 € ©anisings/campil / @ banple

C @ titanlstings/example i

| a

OEBPS/Images/t3806.jpg
Table 38-6. Values for the PositionError.code property

Value Description
1 ‘The user did not grant permission to use the geolocation feature
2 ‘The position could not be determined

3 The attempt to request the location timed out

OEBPS/Images/0308.jpg
© Eample
€ > C | ® titan/istings/example.ntml w N

Apress web site

C web sit

OEBPS/Images/t3803.jpg
SR e, SO LTSN,
Name Description Returns
coords Returns the coordinates for the current position Coordinates
tivestarp Retums the tme that the coordinate information was obtained string

OEBPS/Images/0307.jpg
€ 3 C O tan/istings/eamplentml $¥| X

OEBPS/Images/t3804.jpg
IR Hl, SN NG IS BT
Name Description Returns
latitude Returns the latitude in decimal degrees nusber
longitude Returns the longitude in decimal degrees nusber
altitude Returns the height in meters nusber
accuracy Returs the accuracy of the coordinates in meters. nusber
altituderccuracy Returns the accuracy of the altiude in meters. nusber
heading Returns the direction of travel in degrees nusber

nusber

speed

Returns the speed of travel in meters/second

OEBPS/Images/0302.jpg
/@ tiingtram B
« C | @ file:///C/Users/Adam/Documents/Boo ¥¥ | &

Ilce appies and oranges.

OEBPS/Images/0301.jpg
Ike

StartTag End Tag
<code> || apples || </code>

Content

and oranges.

OEBPS/Images/t4005a.jpg
progress LS S D
cached Allof the content specified in the manifest has been downloaded and cached
updateready Newresources have been downloaded and are ready for use

obsolete ‘The cache has become obsolete

OEBPS/Images/0304.jpg
Atiribute Name

| like <a

'

href |=

“apples.hitml”

Attribute Value

>apples and oranges

OEBPS/Images/0303.jpg
/ @ totngosrtmt
€ € | file//C/Users/Adam/Documents/Books/ Definitivi ¥ | A

Ttike appies and oranges.

Today was warm and sunny

OEBPS/Images/t2903a.jpg
——— Returns the element in which the styleis defined. ~ HTMLElement
title Returns the value of the tie atribute. string

type Returns the value of the type attibute. string

OEBPS/Images/t0702a.jpg
Permitted Parents None

Local Attributes None

Contents None

TagStyle Single open tag

New in HTMLS No

Changes in HTMLS TheDTD that vas requlied in HIMIA s chalte i

Style Convention None

OEBPS/Images/t2709.jpg
A T TR .

Name Description Returns
defaultvien Returns theindou for the active document Windon
fraves Returns an array of the Kindow objects for the nested ifrare elements Windou(]

in the document

p— Tt the i ade it otiamad tha crivant Devslig conldat indow

OEBPS/Images/t2707.jpg
bt oo i rvio sl aor i

Name Description Retums
back() ‘Goes one step back in the history void
forvard() Goes one step forvward in the history. void
golcinde) Goes o a position in the history elative to the void

current document; positive values are forward,
and negative values are backsward

Tt Tatuiriie this inuion f Mtiis i i datry: -

OEBPS/Images/t3135a.jpg
e RSN W 1 TP WA String
width Coresponds to the width attribute. string

height Corresponds to the hedght attribute: string

OEBPS/Images/t2708.jpg
FOER O SO AR L SR S O,

Name Description Retums

postiessage(csg>, <origin) Sends the specified message to another document void

OEBPS/Images/t1706a.jpg
L

Since CSS Version: Various (see Table 17-7)

OEBPS/Images/3409.jpg
© eempe \
€ > C @ iitan/istings/example.ntm

currentTme

duration

10 6583995810918
16.215999603271484

pansed

e

fulce

ended

OEBPS/Images/3408.jpg
/@ B "
€ 3 C |O titan/listings/example himi

OEBPS/Images/3407.jpg
L Bample

OD [— (= ‘

Property | Value

video/webm | probably

videology _|no

video/mpd |no

OEBPS/Images/3406.jpg
Property Value
awoplay | false

curcentSre | itptan itings timessquare webm
cortils | tme

oo |fatse

xred|falsc

prelcad | undefined

vohane |1

OEBPS/Images/3405.jpg
/ © Eample @
& > C O titan/listings/example.niml

OEBPS/Images/3404.jpg
/@ eampie
€ 3> C Ouan

OEBPS/Images/3403.jpg
[0

OEBPS/Images/2312.jpg
Lo v [ESRE=)

Bample + T

B hitpu/titanyistings/example bt BiEas ‘
(&2 (B b stsingsiars

There are lots of different kinds of fruit - there are over 500 varieties of
) ne. By the time we add the countless types of apples, oranges,

and off Y nomn fruit, we are faced with thousands of choices.

OEBPS/Images/3402.jpg
/@ ampe G
€ > ¢ Ounistngs/aanple RN

OEBPS/Images/2313.jpg
Boance| [@earpie | Bese
(&) 1“ CRAC ORI

S [H| s d
% oH = Ol = e
= S |

-

OEBPS/Images/3401.jpg

OEBPS/Images/2310.jpg
(e s c

B Eanets

There are lots of different kinds of rut - there are over 500 varieties of
alone. By the tme we add the courtiess types of

aranges, and ofher welkknown fuit, we are faced with thousands of
choices.

OEBPS/Images/2311.jpg
| IESEOR | [EEI=)
| By eampie [e

&) httpy/titan/lstings/example html ~ s

alone. By the time we add the countless types of apples,
%, and other well-known fruit, we are faced with thousands of choices.

OEBPS/Images/t3504.jpg
KR T N S

Name Description Retums

Clearkect(x, y, w, h) Clears the specified rectangle void

fillkect(x, y, w, h) Drawisa filed rectangle void
void

strokeRect(x, y, w, h) Draws an unfiled rectangle

OEBPS/Images/t3505.jpg
I i, o LN SRR SIS FNORIE TR

Name Description Default
fllstyle Gets orsets the style used fr filed shapes black
Lineloin Gets orsets the style used when lines meet in a shape niter
Linesidth Gets orsets the vidth oflines 1.0
black

strokestyle Gets or sets the style used forlines.

OEBPS/Images/t3502.jpg
Table.

5-2. The canvas element

Element:

Element Type:

Permitted
Parents:

Local Attributes:
Contents:

TagStyle:

New in HTML5?

Changes in
HTMLS

Style Convention

canvas

Phrasing/Flow

Any element that can contain phrasing or flow elements

height, width
Phrasing or flow content
Startand end tag.

Yes

N/A

None

OEBPS/Images/t3503.jpg
AT AV LR N L
Member Description Retums
height Cortesponds o the height atribute number
width Cortesponds o the widih attribute number

Returns a drawing context for the canvas abject

getlontext(ccontext)

OEBPS/Images/2309.jpg
B Eerpld [B Bomple | / Y Bemole | / BN Bemple I Bomple
escjesrclerciesrcdesc oy
Thet There are I Thete are lols ¢
banana| alone.
oranges, | | oranges, 4| | oranges, an|| | oranges, anq | | Or2nges, and of
choices. choices. choices.

choices.

choices.

OEBPS/Images/t3508.jpg
AT S DR R R
Value Description

repeat “The image should be repeated verically and horizontally
repeatox The image should b repeated horizontally

repeaty The image should be repeated vertically

no-repeat ‘The image should not be repeated in the pattern

OEBPS/Images/t3509.jpg
LR DA -
Value Description
save() Saves the values for the drawing state properties and pushes them on the state stack

restore() Pops thefirstset of values from the state stack and uses them to set the drawing state

OEBPS/Images/2307.jpg
!

W]/ Weorye | [Wewree |/ Beorpe | Bempe | /@earve | [Bemse @
(--)ce-)c‘(--)c €r2cdercgerc 6icr”y
Troen el [Thorn srn o] | [There s s [Tnereace | lots of
[bananal alonc?™
oranges, anj| |oranges, oranges, and|| | oranges,a| | oTanges, and off”

choices. choices. choices. choices. | | choices.

OEBPS/Images/t3506.jpg
FERRT ST NI

Name Description Returns

createLinearGradient(x0, 0, x1, y1) Creates alineargradient CanvasGradient

createRadialGradient(x0, 30, 10, X1, y1, 1) Createsaradialgradient CanvasGradient

OEBPS/Images/2308.jpg
(Tl T i T
[esclesrelesrsciesecdenc

==l

0anGes, | |0a0es.< | oranges,an | oanges,and | FaGeS.
choces. | |enoices” | | chjces.

OEBPS/Images/t3507.jpg
Jo.

L 0 LSRRI HNe T

Name Description Retums

addColorStop(<positions, <colors) Adds asolid color o the gradient line void

OEBPS/Images/2305.jpg
Woampic
le»c

Bt

OEBPS/Images/2306.jpg

OEBPS/Images/2303.jpg
S

ease ‘ease-in ‘ease-out ‘ease-in-out linear

OEBPS/Images/2304.jpg
Y Gorle | /Y omple
esrclesrc 01:

lots’
[panne]

oranges, and .
choices.

OEBPS/Images/1212.jpg
/ B sample
€ 9 C | O titan/listings/examplentm| A

Fruit |

Name:

(Submit Vote) (Reset] (Do NOT press s butten

OEBPS/Images/2301.jpg
=)

B ey)
€ > C [Qaniistngs/exar| / B eemsie

€ » C O ttaistings/eamplenin RS
There are .
varietes of o= o cifteeent inds of it - ere are over 500

Countiess (ypes of appleSy

i, we arataced win nousang. | 1S O LENEIIE] abore Bythe ime weaddihe | =

‘countless types of apples, oranges, and ofher welkknown
i, we are faced with thousands of choices

OEBPS/Images/t0907a.jpg
Local Attributes
Contents
TagStyle

New in HTMLS

Changes in
HTMLS

start, reversed, type
Zero or more 1i elements.
Startand end tag

No

‘The reversed attribute has been added in HTMLS.

‘The start and type attributes, which were deprecated in HTMLA,
have been restored in HTMLS, but with semantic (rather than
presentational) significance.

‘The copact attribute is now obsolete.

ol { display: block; list-style-type: decinal;
margin-before: lem; margin-
margin-start: 0; margin-end: 0;
padding-start: 4opx; }

OEBPS/Images/2302.jpg
Bemse &
€ 3 C Otitan/listing

Thare ara lafs {

Thore ara inte o different
alone. By®

oranges, and oter wellH
choices.

al

oranges, and g
choices.

OEBPS/Images/t3501.jpg
TR

i e

Problem Solution Listing

Prepare a canvas for drawing Find the canvas elementinthe DOMand call he 1.2
getContext method on the HTHLCanvasObject

Drav a rectangle Use the fi11Rect or strokeRect methods. 3

Cleararectangle Use the clearRect method 4

Setthestyleforadiawing Set the values for the draving state properties (such 5,6

operation s LineWidth and Lineloin) prior to performing the

Use solid colors in drawing
proserig

operation

Set the illstyle or strokestyle properties to.a
s e oo e ol

OEBPS/Images/1210.jpg
€ > C O iitan/listings/example.htm!

LIRS

Enter You Detals

Name:

[]

Vote For Your Three Favorite Fruts

1.

#2:

£

OEBPS/Images/1211.jpg
/Boame @

€ 3 C (O ttanistings/eamplzniml___ ge| X
Frit fhppes | | /Boampe \

€ - C O titan/listings/example htmi
Name: | Adam Freeman
e [—

Name:

OEBPS/Images/t1314.jpg
bbb Bt bt e e e el b bt Ao il

Atribute Description New in HTHLS
are Provides a textdescripton of the clement. This s useful for No
wsers who require asssive technologis.
fomaction s forthe button clement, deseribed in Chapter 12 Yes
fomenctype Asfor the button lement, described in Chaprer 12. Yes
formethod s forthe button clement,described n Chaper 12, Yes
forntarget Asor the button lement, described in Chapter 12. Yes
formovalidate s forthe button clement,described in Chapter 12. Yes
height Specifiesthe height of the image in pixels (the image wilbe No
cliplayed at s natural heght i this atribute s not applied)
s Specifcsthe URL for theimage that should b displaed. No
dth Specifes the widh ofthe image n pixcls the imagevillbe o

displayed at its natural width ifthis attibute is not applied)

OEBPS/Images/t2404.jpg
SN SR, S LI AN YO e,

Property.

Description

Values

List-style-type
List-style-inage

Mst-style-position

Mst-style

‘Specifis the type of marker used in the list

Specifies an image for use as a marker.

relation to the

Specifies the position of the marker
Jist item box.

‘Shorthand property to set alllst characteristics

See Table 24-5.
cinage>

inside
outside

ee the folloving
explanation.

OEBPS/Images/t1313.jpg
e L O A TN U AL SN TN . R 1T
Atribute Description New in HTHLS
List Specifies the id of a datal st element that provides values for the Yes
element. See the section “Using a Data List," earlierin this chaper, for
details.
win Specifies the minimum acceptable value for the purposes of input_ Yes.

validation (and sets the limits for the decrement button, f displayed).
See Chapter 14 for details of input validation.

ax Specifies the maximum acceptable value for the purposes of input Yes
alicition Gand sats the lails for the cremint iafion. ¥ dissleved

OEBPS/Images/t2405.jpg
e

e e et e

Value Description
none No marker wil be shown,

box Use the specified shape as the marker. Note that notall browsers supportall
check shapes.

circle

diarond

disc

dash

square

dectnal Use decimal numbers for the markers.

binazy Use binary numbers for the markers.

lover-alpha Use lowercase alpha characters for the markers.

uppez-alpha Use uppercase alpha characters for the markers.

OEBPS/Images/t2402.jpg
S i e LMY e ST

Property Description Values

color Sets the foreground color of an element <color>
<umbers

opacity Sets the transparency of an element.

OEBPS/Images/t1315.jpg
N R L S SIS I RIS NP EE YO0 WP Spaeny

Attribute

Description

New in HTHLS

accept

miltiple

required

‘Specifies the set of mime-types that will be accepted. REC2046
defines MIME types (http: //<ools. ietf.oxg/herl/rfczod6).

‘When applied, this attribute specifies that the input element
can upload multiple les. At the time of writing, none of the
mainstream browsers have implemented this atribute.

Specifies that the user must provide a value for the purposes of
nput validation. See Chapter 14 for details

No

Yes

Yes

OEBPS/Images/t2403.jpg
Lot

B e T ol

Property Description Values
border-collapse Specifies how borders on adjacent cells are handled. collapse
separate

border-spacing

caption-side

enpty-cells

table-layout

‘Specifies the spacing between adjacent cell borders

‘Specifies the location of the capt ion element.

‘Specifies how borders are drawn on empty cels.

‘Specifiesthe layout sty for the table.

o2 clengths

top
botton

hide
show

auto
Fixed

OEBPS/Images/1209.jpg
€ 5 C O titan/listings/example Y| X

(—Enter Your Details

Name:

City:

[Vote For Your Three Favorite Fruits

#1

#2:

£

‘Submit Vote

OEBPS/Images/1207.jpg
/ W Esarple &
| € 9 C O titan/listings/examplehtm! v X

Fruit: |
Name:

OEBPS/Images/t2406.jpg
oo d et B v

Property Description Values

cursor Sets the style for the cursor. auto, crosshair, default, help, sove, pointer,
progress, text, wait, n-resize, s-xesize, e-resize, w-
Tesize, ne-resize, nu-resize, se-esize, and sw-

OEBPS/Images/1208.jpg
/B eempie
€ > C |@titan/listings/examplentn v¢| A

Name:

ax[]

#1

#2

#:

OEBPS/Images/1205.jpg
€ ¥ C @titan/listings/eamplentr 7| A

Fruit:

Name:

OEBPS/Images/1206.jpg
/ W sampie &)
€ > C | @ titan/listings/examplehtml ¥¥| A
Fruit ||
Name:

OEBPS/Images/1203.jpg

OEBPS/Images/1204.jpg
B eample &
€ = C O titan/listings/example.htm! WA

[Applos | [Adam Frooman ‘Submit Vot

OEBPS/Images/1201.jpg
y B Bemple \ &
€ 5 C O titan/listings/exam

OEBPS/Images/t1310.jpg
SR R RS S IR IO N TR LY
Attribute Description New in HTHLS
checked Ifapplied, this attibute ensures that the radio button is selected when No.
initially displayed to the user or ihen the form i reset.
required ‘Specifies that the user must select one of the radio buttons for the Yes
purposes ofinput validation. See Chapter 14 for details
value ‘Specifies the data value that s submitted to the server when the check No

box s checked.

OEBPS/Images/1202.jpg
o —
JBeanie N\ =
€ 3 C [Qtamisingyeamien] [@ronam oL

hopies Somva) || € 2 @ (O tiunaosotom o

Form Data

OEBPS/Images/t2401.jpg
S M R

Problem Solution Listing
Set the foreground color of an clement. Use the color property. 21
Set the transparency for an element. Use the opacity propenty. 22
Specify how borders of adjacent bl Use the border-collapse and border-spacing 213
cellsare drawn, properties. through
25
Specify the position of a table caption. Use the caption-side property 26
Specify how the size of a tableis Use the table-layout property. 27
determined.
Specify the type of marker used inalist. Use the list-style-type property. 28
Use an image as list marker. Use the List-style-inage property. 29
Specify the position of a st marker. Use the List-style-position property. 210
Specify the cursor. Use the cursor property. 211

OEBPS/Images/t1312.jpg
ST SN LLS RIS SR TRNURINS SN S LRRIRON T s L
Type Description
datetine Obtains a global date and tme, including time zone.

datetine-local Obtains alocal date and time, (with no time zone.
information)

date Obtains alocal date (with no time or time zone) 2012-07-20

ronth Obtains a vear and month (no day, time, or time 201108

zoneinformation)

tive Obtains a time. 17:49:44.726

weck Obtains the current eeek. 2011430

OEBPS/Images/t1311.jpg
Ay NG 0 SRS A IO A SN P WU RS LI

Attribute Description New in HTHLS

List ‘Specifis the 1d ofa datalist element that provides values for the Yes
element. See the section *Using a Data List” earler n this chapter, for
details

maxlength Specifies the maximum number of characters that the user can enter No.
into the text box.See the section *Specifying the Element Size,” earlier
inthis chaper,for details.

pattern Specifies a regular expression pattern for the purposes of input Yes
validation. See Chapter 14 for details.

placcholder Specifies hint to the user as to the kind of input that you expect. See Yes
the section *Setting Values and Using Placeholders,” arlier in this
chapter, for details.

readonly Ifpresent, this attribute makes the text box read-only, and the user No.
cannot edit the content.

required ‘Specifies that the user must provide a value for the purposes of input Yes
validation. See Chapter 14 for details,

size ‘Specifies the width of the element,expressed as the number of No
characters that are visible in the text box. See the section *Specifying
the Element Size,” carlier n this chapter, for details.

value ‘Specifies the inital value for the element, See the section *Setting No

Values and Using Placoholders,” earler n this chapter, or detals. For
theerail type, this can bea single address, or multiple addresses
separated by commas.

OEBPS/Images/t2009a.jpg
conpact

flexbox

table
inline-table
‘table-ron-group.
table-header-group.
table-footer-gzoup.
table-ron
table-colum-gzoup.
table-colum
table-cell
table-caption

by
Tuby-base
Tuby-text
zuby-base-group
Tuby-text-group

gt o o
‘The type of box s ether a block or a marker bos (similar to that produced
by the List-iten type). At the time of this viting, mainstream browsers
do not support this value.

“This value relates to the flexible box layout, described in Chapter 21

‘These values relate to laying out elements n a table. See Chapter 21 for
detals.

These values relate to laying out textwith ruby annotations.

The element isn't visible and takes no space in the layout

OEBPS/Images/t3401a.jpg
RN F A S NS . SO S S, Wl

Include audio in an HTML document. Use the audio clement, 89

Manipulate media elements throughthe Use the HT¥LediaELesent, 10

DOM. HTMLVideoE Lenent, or HTHLAudiof Lenent
object.

Obtain an indication of whethera media Use the canPlayType method, n

formatis supported by the browser.

Control media playback Use the play and pause methods of the 12,13
HTMUvediat Lerent, and the properties.
that provide playback details.

OEBPS/Images/t1202a.jpg
Changes in ‘The novalidate and autocomplete attributes are newin HTMLS.
HTMLS

Style Convention forn { display: block; margin-top: Oem; }

OEBPS/Images/t1008a.jpg
Changes in N/A
HTMLS

Style Convention nav { display: block; }

OEBPS/Images/t1303.jpg
Table 13-3. The aatalist Element

Element:
Element Type:

Permitted
Parents:

Local Attributes:
Contents:
TagStyle:

New in HTMI 52

datalist
Phrasing

Any parent that can contain phrasing elements

None
opt ion elements and phrasing content
Start and end

e

OEBPS/Images/t1302.jpg
S S e AT AT BT G L O T e Y
Attribute. Description New in HTHLS
diznane Specifies avalue for the name of the directionality of the text.See the ~ No
Section “Specifying Text Directionality” for detals
st Specifies the id of a datalist element that provides values for this Yes
element.See the section “Using a Data List” for det
maxlength Specifies the maximum number of characters that the user can enter No

ae tha text box: Sae the sectien “Soeciiiag the Blaant Sins” foe

OEBPS/Images/t1305.jpg
Lo

e AN TR AT 0T O TR TG, Y

Attribute Description New in HTHLS

maxlength Specifies the maximum number of characters that the user can enter No.
into the passwiord box. Sec the section *Specifying the Element Size,”
carlierin this chapter,for details.

pattern ‘Specifies regular expression pattern for the purposes of input Yes
validation. See Chapter 14 for details.

placeholder Specifies hint to the user as to the kind of input that you expect. See Yes
the section *Setting Values and Using Placeholders,” arlier in this
chapter, for details

readonly Ifpresent, this attribute makes the password bos read-only, and the No,
user cannot edi the content. See the section " Creating Read-Only and
Disabled Text Boxes,” earlier in this chaper, for details.

required ‘Specifies that the user must enter a value for the purposes of nput Yes
validation. See Chapter 14 for details.

size ‘Specifis the width of the element, expressed as the number of No
characters that are visible in the password box. See the section
‘Specifying the Element Size,” carlier in this chapter, for details.

value ‘Specifis the iniial value for the password, No

OEBPS/Images/t1304.jpg
Table 13

4. The option Element

Element:
Element Type:

Permitted
Parents:

Local Attributes:
Contents:

TagStyle:

New in HTML5?

Changes in
HTMLS:

Style Convention:

option
N/A

datalist, select, optgroup

disabled, selected, label, value
Character data

Void or start and end

No

None

None

OEBPS/Images/t1307.jpg
b Lo

e

Type Description New in HTHLS
checkbox Restricts the input to a true/false check bos. No
color Restricts the input (o a color Yes
date Restricts the input o a date. Yes
datetine Restricts the input o a global date and time vith time zone. Yes
datetine-local Restricts the input to a global date and time vithout time zone. Yes
enatl Restricts the input to a properly formatted e-mail address. Yes
ronth Restricts the input to a year and month. Yes
nurber Restrits the input to an integer or floating-point number. Yes
radiobutton Restricts the input to a fixed set of choices. No
zange Restricts the input to a specified range. Yes
tel Restricts the input to a properly formatted telephone number. Yes
tize Restricts the input o a time of day. Yes
weck Restricts the input to a year and week. Yes
url Restrits the input o a fully qualified URL. Yes

OEBPS/Images/t1306.jpg
S

o e i e K e o

Type Descrption ‘Addiional Attbutes

subnit Creates abutton thatsubmits the form. fornaction, fornenctype, formethod,
foratarget, formovalidate

reset Creates a button that resetsthe form None

button Creates abutton that erforms noaction. None

OEBPS/Images/t1309.jpg
I e TN T T AN N L O STEOUNEE SV
Attribute Description New in HTHLS
checked Ifapplied, this attibute ensures that the check box s checked when No.

initially displayed to the user or ihen the form i reset.

required ‘Specifis that the user must check the check box for the purposes of Yes
input validation. See Chapter 14 for details.

value ‘Specifies the data value that is submitted to the server when the check No
box i checked: defaults toon

OEBPS/Images/t1308.jpg
AR ek T TN LGN S e Iy S0

Attribute Description New in HTHLS

st ‘Specifies the 1d ofa datalist clement that provides values for this Yes
element.See the section *Using a Data List” earler n this chapter, for
details of the datalist clement.

win ‘Specifies the minimum acceptable value for the purposes of input_~ Yes
validation (and sets the limits for the dectement button, if displayed).
See Chapter 14 for details of input validation.

rax ‘Specifies the maximum acceptable value or the purposes of input — Yes
validation (and sets the limits for the increment button, i displayed).
See Chapter 14 for details of input validation.

readonly Ifpresent, this atribute makes the input box read-only, and the user No.
‘cannot edit the content. See the scction *Creating Read-Only and
Disabled Text Boxes,” earlie in this chapter,for detai

required Specifies that the user must provide a value for the purposes of input ~ Yes
validation. See Chapter 14 for details

step Specifies the granularity of increments and decrements (o the value. Yes

value ‘Specifies the inital value for the element No

OEBPS/Images/3615.jpg
|/ © eampie
€sc QMBV\/‘SY ings/examplentmi

@I][I

OEBPS/Images/3614.jpg
€ 3 C O ttanfistings/examplentm

OEBPS/Images/3613.jpg
R)

/ @ semple &

€ 3 C |Otitan/isings/eemplentml ¥z A

Hello

OEBPS/Images/3612.jpg

OEBPS/Images/3611.jpg
o o

/ ®Eample &
€ 3 ¢ [©uanisings/example.nim RN

Hello

OEBPS/Images/3610.jpg
€ 3 ¢ O uanlistngsiexmplenn

* A

OEBPS/Images/t1301.jpg
TN St SO SO

Problem Solution Listing

Set the size and capacity of an fnput Use the size and raxlength atributes. 13-1

clement.

Setan initial value o an input element ora Use the value and placeholder 132

hint as to the kind of data required. attributes

Provide suggested values to the user. Use the datalist elementand thelist 133
attribute on the fnput element.

Create read-only or disabled input Use the disabled and readonly 13-4

clements attributes

Hide the characters that a user enters from Use the password type of input 135

view. clemen.

Create buttons using an input element. Use the subnit, reset, orbutton types 136
of input clement.

Restriet the user to a numeric value. Use the nurber type of input element. 137

Restrictthe user to a range of numerlc. Use the range type of input clement, 138

OEBPS/Images/0101.jpg

OEBPS/Images/t1201a.jpg
SHNE SR InE AL
clement.

Auomatically focus on an
input clement when the form
isloaded.

Disable an individual input
clement.

Group input elements
together.

Adda descriptive label toa
Fieldset clement.

Disable a group of input
clements.

Use thebutton clement to
submita form.

Use thebutton clement to
reseta form,

Use thebutton clementas
generic button control.

Associate an element with
forn thatis notan
antecedent.

Eaihe \Svel & Sl

Use the autofocus attribute on the input clement.

Apply the disabled attribute to the input element.

Use the fieldset clement.

Use the legend clement.

Apply the disabled attribute to the ficldset clement.

Set the value of the type attribute to subrit.

Set the value of the type attibute to zeset.

Set the value of the type attibute to button,

Use the form attibute.

10

12

1

15

16

7

1

OEBPS/Images/t1007a.jpg
NewinHIMLSt Yes

Changes in N/A
HTMLS

Style Convention footer { display: block; }

OEBPS/Images/t1908a.jpg
Dorder-image This shorthand property setsall ~ Same as for individual properties; see
values in one declaration. the following

OEBPS/Images/t2201a.jpg
SUNCETRN IR LN SARTONE, FONL SR L SRS, TR T L
font variant, and font-weight properties.

Usea custom font Use gfont-face. 13

OEBPS/Images/3207.jpg
A

OEBPS/Images/3206.jpg
=

(2| E i)
/ B Bample =

€ | © titan/listings/exam|

© titanylistings/example.htm! 1% | X |

OEBPS/Images/3205.jpg
© barsic S

€ > € @titan/listras/oamplen %
(Bananss)

[Dete. Thu. 01 Sep 2011 073336 GMT X-Powered-By. ASP.NET Content-Leagi:
1358 Last-Modiied: Mon, 2 Aug 2011 18:18:33 GMT Server: Microsoft-IIS/1.5
[ETag "769beef7866c:1 0" Content-Type: texthul Accept-Ranges bytes

‘The apple forms a tree that is small and deciduons, reaching 3 to 12 mefres
(9.8 1039) tall, with a broad. often denscly twigey crown. The leaves are
altemately arranged simple ovals 5 to 12 cmlong 20d 3 to 6 centimetres.
(121024) broad en a2 to 5 centimetres (0.79 to 2.0) petiole with an
acute tp, serrated margin and a slighly downy underside. Blossoms are
nradnueed in sorine smhiansonks with the hudding of the Teaves The flower are white

OEBPS/Images/3204.jpg
ok / Event |lengthComputable [loaded | total
LR Dl e | sty [NA NA |Na
(Chomes) CBanan | 1 ctatet) [NA N |Na
Evear[iengthComput | loadstart | false o o
— Y "
m::]; = readystate(?) [NA NA [N
b seadystate(3) [NA
) N readystate(t) |NA
=t load e 1358|1358

rcadysate) [NA
= e

loadend |true 1358|1358

o T e z e ofthe
iz five carpels armanged in 8 ive-point sar, cach__~

OEBPS/Images/3203.jpg
Qe o
€ e o

€ 3 © [0 v g (o) ()

(o) (o] | Banaa s h common e o eceous s o e gems Mo and-
o e ey oo Bsoas co i v sz ad oo

T b, i vl e, s e Aot o s eble

o /| s e o e 3 e s s

ot ot e blisinn. The s v of b e M

1559 st s bbb M s s e sk

[betvarspriprtin-ssoriro bbbt ,

ey, et m A o oty of i s

OEBPS/Images/2112.jpg

OEBPS/Images/3202.jpg
/@ eampie

€ > C O titan/listings/example.htri AR N

True cherry fruis are borne by members of the subgerus Cerasus,
which s distinguished by having the flowers in small corymbs of
several together (qot singly, nor i racemes), and by having 2
smooth finit with caly a weak groove or nonc along one side. The
subgenus is rative to the temperate regions of the Northern
Hemisphere, with two species in America, three in Eutope, and the
temainder ia Asia. The majority of eating cherries are derived fiom ether Prumus avium.
the wild cherry (sometimes called the sweet cherry). or from Prunus cerasus, the sour

OEBPS/Images/2113.jpg
B Eomple
€ 5 C Otitan ex nt LR
There are lots of fferent kinds of | One of the most ‘When traveling in Asa,
fiuit - there are over 500 varieties | interesting aspects of | was struck by how many
of banana alone. By the tme we | it the variety different kinds of banana
add the countless types of apples, available in each ‘were available - many of
oranges, and other well-known country. 1live near ‘which had unique flavours
fruit, we are faced with thousands London, in an area and which were only
of choices. ‘which is known for avaiable within a small

its apples. region.
‘This is an apple. ‘This is a banana. No picture here

OEBPS/Images/3201.jpg
@ Bample &
€ > C O titan/listings/example html o

Press abutton

OEBPS/Images/2110.jpg
R bl \

e

€ | @ ttan/lstings/exam

e over 500 vaictics of banasa done. By the
e we add the comtess fypes of 7pples.
. and other well-known fruf, we are

OEBPS/Images/t0903a.jpg
Parents

Local Attributes None

Contents Phrasing content
TagStyle Startand end tag required
New in HTML5 No

Changes in None, although elements added in HTMLS, such as article and
HTMLS section, should be used in preference to this element

Style Convention div { display: block; }

OEBPS/Images/2111.jpg
Emple

€ & C (O titan/lstings/erampletmi RN
[When travelling in Asia,
was struck by how
different kinds of [There ate lots of different kinds of
%nwmnvﬂabkr [One of the mostinteresting | fiuit - there are over 500 varieties of
yof whichhad | |aspects of fuit s the varicty | [banana alone. By the tine we add
fmique flavours and | available i each coutry. T | jthe countiess types of apples,
[vhich were only live near London, in an area |loranges, and other well-known frui,
fhich is known for s e are faced with thousands of

lavaiablc within a small

gon Jezptes. fehoices

OEBPS/Images/t1111a.jpg
NewinHIMLS: No

Changes in ‘The align, width, char, charoff, and valign attributes are
HTMLS obsolete.

Style Convention col { display: table-column; }

OEBPS/Images/t3304.jpg
SIS AL RO N,

Name Description Retuns

upload Returns an object that can be used to monitor progress X¥LittpRequestUpload

OEBPS/Images/2109.jpg
Sample

« € | @ titan/listings/example htm! | A

[There are fots of [One of the most] [When tayelling in Asia,

iferent kinds of fruit - | iteresting wes struck by how
ere are over 500 laspects of fuit | lmany diferent kinds of

[varities of banara | isthe variety | |banana were avaiable -

Jalone. By the time we | [availabie in each jmany of which had
ladd the countiess types | |country. TEve | junique favours and.
apples, cranges, and | [near London, in| [which were oaly
ther wel-known frut, | fan area which i |avaiable within a small
e are faced with fknown for s | [region.
|tnousands of choices. | fapples.

OEBPS/Images/2107.jpg
Eempe

€ O titan/lis

ings/exampie htmi

o]

WA

OEBPS/Images/2108.jpg
B
| € » ¢ oun

ETT
i of it
e over 500
of b
By e e e
b comtess tpes
cpples,oxanges, and.
el koown fu,
e e fazed it
s ofchices

e most mteresig arpects of rat & B vaney
in cach comiry. 1ive aear Losdon, n 20 area whick s
o for s spples

OEBPS/Images/t2210.jpg
(AU S AT LD TERIRNR I, VIO DRI S YRV

Property Description Values

text-decoration Applies a décor o a black of text none.
underline
overline
Tine-through
blink

text-transforn Applies a transformation to.a block of text none.
capitalize
uppercase
lowercase

OEBPS/Images/2105.jpg
€ 3 D o ®we

There are lots of &fferent
kinds of ruit - there are over
500 varieties of banana alone.
By the tme we add the
countless types of apples,
oranges, and other well-
Known frut, we are faced
with thousands of choices.
One of the most
neresting
aspects of ruitis
the variety.
availble in each

than/litings/example.html

coustry. Tlive sear London, in
an area which s known for its
[— P
When
travellng in
Asia, Twas
sirucke by
how many different kinds of
‘banana were avaiable - many
of which bad usique flavours
and which were only avaiable
‘within a swmall region. And, of
course, there ave fruts which

O & % @ |veviow

are truely urique - 1 am putin
ind ofthe durian, which is
videly consumedin SE Asia
and i known as the "king of
fits". The durian s largely
uknown in Europe and the
USA - fitis known atal itis
for the overwhelning smell
which s compared to a
combination of almonds,
otten onions and gym socks.

OEBPS/Images/2106.jpg
by

€+ Do s

Teschestina | susiirbonmnt [emtevmsant | et

Doniedsn | Sersncun

el LTt

e e

Eeemre

e |,

e e

smmiena : —
eyl perrey et g Leperl B vl

el P el E e
e B e
Al T BT T e
—r el |l T

S e e fced ey e Lt
oo dices Onecl | i of e drn Wi

o ot il omsmed E A
esig ndt fmown e el
e ot | e The o sy

visa)

B & % & [won

OEBPS/Images/2103.jpg
1 i

Bsanpie

€ 5 €| O titan/listings/example.
s
over 500 varities of bahana 3

- }

One of the most interesting aspects of i i
vasiety available in each county. Llive near

EBample

OEBPS/Images/t2213.jpg
Table 22-13. The Generic Font Families

Generic Font Family Example Implementation Font
serif Times

sans-serif Helvetica

cursive Zapf-Chancery

fantasy Western

nonospace Courier

OEBPS/Images/t3302.jpg
L

S PN SR SL TR S SO s

Method Description Retums

append(cnate>, cvalues) Appends aname and value to the data set void

OEBPS/Images/2104.jpg
=3

in cach country. I kve near London, in an area which is known
for s apples.

EBample 3
| € » € @ titan/listings/examplehtm %/ |
Vatieties of banana alony add the countless i
types of apples, o known fruit, we are
faced with thousan)
One of the most in is the variety available

OEBPS/Images/t2214.jpg
S LT - IO AT .

Value Description
wc-small Sets the font size. The browser is responsible for deciding the exact size that each
xswall value represents, but the sizes are guaranteed to increase as you move down the
srall listof values.

ediun

large

wlarge

c-large

sraller Sets the font size relative o the font size of the parent element.

frmonn

OEBPS/Images/t3303.jpg
e s s e . B atebihie, el

Wethod Doscription Retums
parse(cjson) Parsesa JSON-encoded sirng and creates an object abject
stringty(cpgect) CpatsSON-encoded represnationsof e spcitd string

OEBPS/Images/1012.jpg
eample

€ & C Otitan/lis

Things I like

by Adam Freeman

Questions and comments? Email me

Contents

o ErutsILke
o Activites T Like

OEBPS/Images/2101.jpg
/W eample
€ C | @ titan/listings/e|

London, in an area which is knoy

/|
Whes travelling in Asiz,] vas stry
dfferent kinds of banana were avq

‘which had unique flavours and wh
avaiable vithin a smallregion.

L5

/B somple

€ - C | titan/listings/examplentn g | X

Vet avasaUIE il CaLil COaLy. LIV tial

Loadon, in an area which is known for its apples.

‘When traveling in Asia, T was struck by how many
differcat kiads of banana were available - many of
which had unique flavours and which were oxly
avaiable within a smal region.

[Static | Relative | [Absoute | | Fixed|

<

OEBPS/Images/t0818a.jpg
Permitted
Parents

Local Attributes
Contents
TagStyle
New in HTMLS

Changesin
HTMLS

Style Convention

Any element that can contain phrasing content

cite

Phrasing content
Startand end tag

No

None

q { display: inline; }

q:before { content: open-quote; }

qrafter { content: close-quote; }

OEBPS/Images/t2211.jpg
.

SR 108 NECR SCIMAD EVORMILY.

Property Description Values

text-shadon Applies ashadow o ablockof <h-shadow> <v-shadow> <blur> <color>
text

OEBPS/Images/1013.jpg
(= L
€ 3 ¢ [Ouanisissieol

Things I like

by Adsm Treoman

[Activities 1 lik

B
€ C Quawiin

et s e snd e e g oyt o b5 ek

' Ko of Triahon
e e it s o - s, O s . g o O, wtch
ot of e obovine.

[T .
2 mere
3. 10mnm

OEBPS/Images/2102.jpg
Lo 3}
B o

€ 9 C | Otitanfistings/examplenim ¥

There are lots of défer
over 00 vaneies of b

add the counes pes
otherwell known i, b
of choies.

o

One of the most interesting aspecs offut s the
variety avaiable in each country. | ive near Londof

e

«
‘add the coustles types|
other wel know i,
of choices.

C | © titan/listings/example htr 77| A

w3
ros

One o the most interesting aspects of fuitis the
variety avaable in each county. 1 live neas London,
2 area which i known for its apples

‘When savelig in Asia, | was siruck by bow many

OEBPS/Images/t2212.jpg
b Lol

s ATEE I S TOpETINg.:

Property

Description

Values

font-fanily
font-size

font-style

font-variant

font-neight

font

‘Specifies the font family for a block of text
‘Specifiesthe size of the font for a block of text

Specifiesthe style for a font

‘Specifies whether or not the text should be displayed ina
small-caps font

‘specifies the weight for a font (the thickness of the
characters)

‘Shorthand property to set fonts in a single declaration

SeeTable22-13.
SeeTable22-14.

noreal
italic
oblique

noreal
srallcaps

noreal
bold

bolder

lighter

<nusber 100-900>

See sections that
follow.

OEBPS/Images/t3301.jpg
bl

T E—

Problem Solution Listing
Send form data to the server Use the DOM to get individual values
and concatenate them in the URL-
encoded format
Encode and send form data withoutusing Use a Forrdata object 5
the DOM
Send additional form values or sendform Use the append method on the 6
data selectively Fornbata object
Send JSON data Use the JSON.stringify methodand 7
set the content type for the request
application/json
Send a il to the server Add an input clement o a form whose 8
‘ypeis file and use a ForData object
Track progress as data is uploaded tothe Use the X¥UHttpRequestUpload object 9
Receive HTML fragments from the server Read the respanseText property 10,11
Tovarticliths MTME tyos st by the srvar: U s avarS4atinsTvis riadhod 12

OEBPS/Images/1010.jpg
o I Learned to Love Citrus

1 tke apples and oranges.

Additional fruits

1 also lce bananas, mangoes, cherries, apricots, phams, peaches and grapes.

You can see other fruis [ke here

More Information: Learn More About Fruit

OEBPS/Images/1011.jpg
[Fruits I Like

JEow I Learned to Love Citrus

Tike apples and oranges. Lorem ipsum dolor cit

amet, consectenr adipisicing elt, sed do eiusmod ‘Why Fruit is Healthy
tempor incididunt ut labore et dolore magna aliqua.

‘Ut enim ad mirimn veniam, quis nosirud exercitaton .
lamco labors isi ut aliquip ex ea commodo Z::imﬁf;h’ﬁw
consequat. Dus aute rure dolor i reprehendert in

vohuptate velt esse cifum dolore eu fugiat nulla 1. Fruit contains lots of vitamins
‘pariatur. Excepteur sint occaecat cupidatat non 2. Fruitis a source of fibre
proident, sunt in culpa qui officia deserunt molitanim | 3. Fruit contaias few calorics
idest laborum.

Talso Hce baranas, mangoes, cherries, apricots, phus, peaches and grapes. Lorem ipsum
dolor sit amet, consectetur adipisicing elt, sed do eiusmod tempor incididunt ut labore et

OEBPS/Images/t2206.jpg
.

3% STN ATVOON, L patly

Property Description Values

direction Sets the direction for the text 1tr
tl

OEBPS/Images/t2207.jpg
ANRER T ST

Property Description Values
letter-spacing Sets the space between letters noral
Clength>
word-spacing Sets the space betvieen words normal
ength>
Line-height Sets the height of ach line noral
<nurber>
Clengehs

&

OEBPS/Images/t2204.jpg
I

el oy s 4

Property Description Values

whitespace Specfes how whitespacecharacterswillbe See Table22:5
process

OEBPS/Images/t2205.jpg
AR I Y T T

Value Descrption

roreal This s the defaulvalue Whitespace is cllapsed, and lines ase wappecd

nourap Whitespace iscollapsed, butlines are notvrappod.

- Whitespace s preserved, and tex will wrap only n ine breaks This s thesame
effect that the pre element has (described in Chapter 8).

e Whitespace iscollapsed,and extwill wiap 0 make lines it orwhen alinebreak is

pre:line encountered.

P Whispace b presrsed,and el sp o mabe e o when alinebrcskis

OEBPS/Images/1009.jpg
| T s

OEBPS/Images/t2208.jpg
ZARTRER T SIS RN S e

Value Description

nornal ‘Words are not broken, even when they cannot be fitted into the containing element

break-word Words are broken to make them fit

OEBPS/Images/t2209.jpg
AU S SO LAY CINI = IO

Property Description Values

text-indent Sets the indentation of the firsline of text Clengths
&

OEBPS/Images/1007.jpg
3. 10km

OEBPS/Images/1008.jpg
ompie «\

€ 2 ¢ Ot

Things I like

by Adam Freeman

Contents

* Eninsllie
© Addionl Fruis

% Bl
o Kinds of Trahion
© The ki of tiain] s siming for

OEBPS/Images/1005.jpg
R B3]

[%] (o) [D](#][@ eb | esncngieampiercms g

[Fruits I Lil
w1 Leared o Love Citras

Tike apples and orangs

Additional fruits

Takeo B banaras, mangoes, cherries, apricots, phis, peaches and grapes.

[More information

= sexchwan oo 2

+oemwNs@EO

Jpdte Ready @ YVien 10930

OEBPS/Images/t1110.jpg
Table 11-10. The colgroup Element

Elemen colgroup
ElementType: N/A
Permitted ‘The table element

Parents:
Local Attributes: ~ span

Contents: Zero or more col elements (can be used only when the span
attribute is not applied)

TagStyle: Void if used with the span attribute; otherwise, start and end tags
NewinHTML5? No

Changes in Thewidth, char, charoff, and valign attributes are obsolete.
HTMLS

Style Convention ~ colgroup { display: table-colum-group; }

OEBPS/Images/1006.jpg
E—
/B s &

€ & C O titanflistings/example

Tlike apples and oranges

OEBPS/Images/1003.jpg
Beerpie R @
€ 5 € O titan/listings/example.ntmi RN

w I Learned to Love C

Tiice apples and cranges

[Additional fruits

Takso e bananas, mangoss, cherries apricots, phams, peaches and grapes.

Yoo can see ot fs Tk heze

Tl to s, cyele and run. | am i eaning for y fivst itilon, but it i haed work

ds of Triathlon

OEBPS/Images/t2202.jpg
TN PO 0. ML T I £ Y.
Property Description Values
text-align Specifies the alignmentfor a block of text start
end
lefe
right
center
Justify
Specifies the technique thatwill be used to justiy the text when See Table 22-3.

text-justify

the justify value for the text-align property is used

OEBPS/Images/1004.jpg
S

ttp/ttan/lstings/example.htr o-@ox| @77
Eromple x
[Fruits I Like
How | Learned to Love Citrus

T like apples and oranges.

dditional fruits

Talso like bananas, mangoes, cherries, apricots, plums, peaches and grapes.

[More information

You can see other fruits I like here,

Tlike to swim, cycle and run. | am in training for my first triathlon, butitis hard work

inds of thlon

OEBPS/Images/t1111.jpg
Table 11-11. The col Element

Element: col
ElementType: ~ N/A

Permitted ‘The colgroup element
Parents:

Local Attributes: ~ span
Contents: None

Tag Stvle: Void

OEBPS/Images/t2203.jpg
SRS LN CTOR .

Value Description

i “The broveserwill eect the justfcation technique. his i the simplest approach,
but it can lead to slight presentation diffrences beteen browsers.

none Justiication ofthe textis disabled.

— Spacing s distributed betuseen words. This s suited to languages that se word

inter-1deograph

inter-cluster

distribute

kashida

separators, such as English

‘Spacing s distributed between words and atinter-graphemic boundaries. Thi
suited to languages such as Japanese and Korean.

‘Spacing s distributed between words and at grapheme cluster boundaries. Thisis
suited to languages such as Tha.

‘Spacing s distributed between words and at grapheme cluster boundaries n all
scripts except those that use connected or cursive styles

Justification is applied by elongating characters (applies only to cursive scripts).

OEBPS/Images/1001.jpg
B gl
€ > C [titan/isting

Fruits I like

1ice apples and oranges.

Additional fruits

Talso ke bananas, mangoss, cherries, apricots, phums, peaches and exapes.
More information

'You can see other fruits [kke here.
Activities I like L
Tlike to swim, cycle and run. T am in training for my first triathlon, but it is hard work-

Kinds of Triathlon

There are diferent kinds of iathlon - sprint, Olympic and s0 00, -

OEBPS/Images/1002.jpg
[
€ 5 ¢ O trnistings/exampie mmi PN

[Fruits I Like

w1 Learned to Love Citrus

Tiice apples and oranges.

Additional fruits e

Takso e bananas, mangoss, cherries apricots, phams, peaches and grapes.

[More information

You can see other s ke bece.

ctivities I like

Llike 10 swim, eyele and run. | amin taining o my fst iahlon, but it s bard work.

thlon

OEBPS/Images/t2201.jpg
o e n

Solution Listing
‘Aligna block of ext. Use the text-al ign and text-just ify properties. 1
Define how white space s Use theshitespace property. 23
processed.

Specify the direction that Use the direction property 4
text should be draw in.

Specify the spacing Use the letter-spacing, word-spacing, and Line-height 5
between words, letters, properties.

andlines of ext.

Specify how overflowing Use theword-srap property.

text should be broken.

Specify the indentation of Use the text-indent property. 7
text

Decorate or transform Use the text-decoration or text-transforn property. 8
text

Applya drop shadow toa Use the text -shadow property. 9

ek e

OEBPS/Images/t1105.jpg
Table 11-5. The th Element

Element: th
ElementType: N/A

Permitted The tr element
Parents:

Local Attributes: colspan, zowspan, scope, headers

Contents: Phrasing content

TagStyle: Startand end tags

NewinHTMLS? No

Changes in ‘The scope attribute is obsolete. See the scope attribute on the th
HTMLS element instead.

‘The abbr, axis, align, width, char, chaxoff, valign, bgcolor,
height, and nowrap attributes are obsolete, and you must use CSS
instead.

Style Convention th { display: table-cell; vertical-align: inherit;
font-weight: bold; text-align: center; }

OEBPS/Images/t1104.jpg
Table 11-4. The ta Etement

Element:
Element Type:

Permitted
Parents:

Local Attributes:
Contents:
Tag Style:
New in HTML5?

Changes in
HTML5

Style Convention

td
N/A

The tr element

colspan, zowspan, headers
Flow content

Startand end tags

No

‘The scope attribute is obsolete. See the scope attribute on the th
element instead.

‘The abbr, axis, align, width, char, chaxoff, valign, bgcolor,

height, and nowrap attributes are obsolete, and you must use CSS
instead.

td { display: table-cell; vertical-align: inherit; }

OEBPS/Images/t1107.jpg
Table 11-7. The theaa Element

Element: th

ElementType: N/A

Permitted ‘The table element
Parents:

Local Attributes: None

Contents: Zero or more tr elements
TagStyle: Start and end tags
NewinHTMLS? No

Changes in Thealign, char, charof f, and valign attributes are obsolete.
HTMLS

Style Convention ~ thead { display: table-header-grouy
vertical-align: middle; border-color: inherit; }

OEBPS/Images/t1106.jpg
Table 11

. The thody Element

Element:
Element Type:

Permitted
Parents:

Local Attributes:
Contents:
TagStyle:
New in HTML5?

Changes in
HTMLS

Style Convention

thody
N/A

The table element

None

Zero or more tr elements
Startand end tags

No

Thealign, char, charof f, and valign attributes are obsolete.

thead { display: table-header-group;
vertical-align: middle; border-color: inherit; }

OEBPS/Images/t1109.jpg
Table 11

). The caption Element

Element:
Element Type:

Permitted
Parents:

Local Attributes:
Contents:
TagStyle:
New in HTMLS?

Changes in
HTMLS

Style Convention

caption
N/A

The table element

None
Flow content (but no table elements)
Startand end tags

No

‘Thealign attribute is obsolete.

caption { display: table-caption; text-align: center; }

OEBPS/Images/t1108.jpg
Table 11-8. The tfoot Element

Element: toot
ElementType: ~ N/A

Permitted ‘The table element
Parents:

Local Attributes: None

Contents: Zero or more tr elements
Tag Style: Start and end tags
NewinHTMLS? No

Changes in ‘The tfoot element can now appear before or after the tbody or tr
HTML5 elements. In HTMLA, the tfoot element could appear only before
these elements.

Thealign, char, charof f, and valign attributes are obsolete.

Style Convention ~ tfoot { display: table-footer-grou
vertical-align: middle; border-color: inherit; }

OEBPS/Images/t1101.jpg
A M R—

Problem Solution Listing

Createa basic table. Use the table, tr, and td cloments. 1,2

Add header cells 0. table. Use the th element. g

Differentiate between column and row Use the thead and tbody clements. 45

headers.

Adda footer toa table. Use the tfoot clement 6

Create irregular table grids Use the span attribute defined by the 7-9
thand td clements.

Associate cells with headers forassistive Use the headers attribute defined by 10

technology. thetdand th element

Adda caption to.a table. Use the caption element. n

Work with columns instead of rows ina Use the colgroup and col elements. 12,13

table.

Denote that a table s not being used tolay Use the border attribute defined bythe 14

outa page.

table clement.

OEBPS/Images/t0905a.jpg
Changes in None
HTMLS

Style Convention blockquote { display: block; margin-befor
-after: lem; margin-start: 40px
in-end: 40px; }

OEBPS/Images/t1103.jpg
Table 11-3. The tr Element

Element: tr
ElementType: N/A
Permitted ‘The table, thead, tfoot, and tbody elements.

P

OEBPS/Images/3410.jpg
© Erample
€ c

OEBPS/Images/t1102.jpg
Table 11-2. The table Element

Element:
Element Type:

Permitted
Parents:

Local Attributes:

Contents:

TagStyle:
New in HTMLS?

Changes in
HTMLS

Style Convention

table
Flow

Any element that can contain flow elements

border

‘The caption, colgroup, thead, tbody, tfoot, tr, th, and td
elements

Startand end tags.
No

‘The summary, align, width, bgcolor, cellpadding, cellspacing,
frare, and rules attributes are obsolete. You must use CSS
instead.

‘The value of the border attribute must be 1. The thickness of the
border must then be set using CSS.

table { display: table; border-collaps
border-spaciny

separate;
2px; border-color: gray; }

OEBPS/Images/t1003a.jpg
- I SRETRA: ERCES, SO SRS AU TN (I
‘margin-start:0; margin-end: 0;font-weight: bold;)

AT, R S 1 D"

[16 {display: block font-size: .67em; margin-befo
‘margin-start:0; margin-end: 0;font-weight: bold;)

 33em; margin-after: 2.33em;

OEBPS/Images/t0904a.jpg
Style Convention pre { display: block; font-family: monospace;
white-space: pre; margin: lem 0; }

OEBPS/Images/t3119.jpg
L TR L

Name Description Retums

xons Retuns the setof ows for thissection of the HT¥LTablekonElerent (]
wble

insextRon(cindens) Inserts a new row at the specified index WL TableRontlerent

deletefon(<indexs) Removes the row at the specified index. void

OEBPS/Images/t3117.jpg
R N L.

Name Description Retums

border Cortesponds o the border atribute string

caption Retums the able’s caption element HIMLELenent

createCaption() Retums the table’s caption element,creating it HTMLElenent
ifrequired

deleteCaption() Removes the able’s caption element void

thead Returns the table’s thead clement HIMTablesectiontlerent

cxeateThead() Retums the thead element, creating one if HIMLTablesectiontlerent
required

deleteThead() Removes the table's thead element void

toot Retums the table’s tfoot element HIMLTablesectiontlerent

createTFoot() Retumshe i clement,creaing ne HIMLTableSectiontlerent
require

deleteTFoot() Removes the table’s ¢ oot element void

t8odies Retums the thody elements HPMLTablesection€lerent]

createTBody() Retums the tbody element, creating one if WML Tablesectiontlerent
required

rows Retums the rows in the table WML Tablekon lerent(]

insertRon(cinde) Createsanewrowin the table at the specified HTHLTablekon€lerent
position

deleteRon(cindex») Deletes the table row atthe specified index void

OEBPS/Images/t3118.jpg
e Ly

Name Description Retums

rows Returns the setof rows for this section of the HT¥LTableRonElenent (]
table

insertRon(cindex) Inserts a new row at the specified index. HIMLTableRosELenent

deleteRon(cindexs) Removes the row at the specified index void

OEBPS/Images/t2601a.jpg
CESRTIRRE WA O L T
document using a CS$ selector.

Chain searches for elements
together.

Navigate the DOM tree.

A8 LD SOcIMeITE., JUery S8 ACIOK OF
docunent.queryselectorAL methods.

Callthe search methods on the result of an carlier
search,

Use the document/element methods and properties
suchashasChildiodes(), firstChild, and lastChild.

2%

13

1

OEBPS/Images/t3111.jpg
A R AR AP L.y
Name Descrption Retums
dateTine Comesponds o the datet ine atribute string
pubdate Comresponds o the pbdate atribute string

valuersDate Parses the time and date, and returns aDate object Date

OEBPS/Images/3009.jpg
B eame 2 &y
& 5 € |©uanisings/eampiertmi Y

 banana alone. By
the time we add the countless types of apples, oranges. and other well-known fiuit, we are

Faced with thousan

X [393
Y: |68

OEBPS/Images/t3112.jpg
FARANE B ST xener

Name Description Retums

value Cortesponds to the value attribute nurber

OEBPS/Images/3008.jpg
/ Rbargte
€ 5 €[tanistingsjecampientm

There e s o it kinds
By the e we add he g
e o faed with thonse

e, By the tu we adkd the ovatess yps
Knowa . we e foced eh thowsands of chic

OEBPS/Images/3007.jpg
</

title || meta | | style | |seript p
12
span

> handleDescendantEvent

'/ _handleBubbleMouseEvent

X handleMouseEvent
)

OEBPS/Images/t3110.jpg
B b i e

Name Description Retums

cite Cortesponds to the cite attribute: string

OEBPS/Images/3006.jpg
html |~

1

\\ » handleDescendantEvent
/

I
/

head body
title meta style script p
¥

span

‘>/>)|anu[eMauseEvenl

OEBPS/Images/t3115.jpg
¥ i 02

U AR S R L e

Name Description Retums

open Cortesponds to the open attribute: boolean

OEBPS/Images/3005.jpg
faryie

There ar o
By thetme we add he.

/

C (© ttanistings/exampte.n:

A Sfrcr i of it - hre

«

—

C O utanistngs/examplenm

OEBPS/Images/t3116.jpg
AR A L R L

Name Description Retums

span Corresponds to the span attribute: nusber

OEBPS/Images/3004.jpg
argte

By thefme we add the <
we e faced it thousn

«

€ |© ttenistings/exemol

There s s of
e

Kaowa . we ae foced ieh thousands

OEBPS/Images/t3113.jpg
e b b i e b
Name Descrption Retums
reversed Corresponds o the reversed atbute boolean
start Cortesponds o the start atribute nunber
Cortesponds o the type arbute string

type

OEBPS/Images/3003.jpg
html I_l\

head

——

body /_w

title

meta

style

script »

handleDescendantEvent

OEBPS/Images/t3114.jpg
Table 31-14. Grouping element objects with no adaitional properties
Name DOM Object

div HTMLDivElement

dl HTMLDListElement

hr HTMLHRE lement

P HIMLParagraphtlement

pre HTMLPreElement

OEBPS/Images/3002.jpg
[— P s

b e By

oter webkoovn i, we

OEBPS/Images/3001.jpg
J B |

i Tr—
€ 5 € Otunisinye] /e

€ 5 ¢ (O anisings/eamplerim [N
[e

bonaoa alose. By the e we o
other sl known it we e

Thers are ot of et ki oF i - there are e SO0 varieties of
‘banans sk By the e we addthe comss s of pples, oramges, and

OEBPS/Images/t1511a.jpg
Local Attributes:
Contents:
TagStyle:
New in HTMLS?

Changesin
HTMLS

Style Convention

name, value
None

Void

No

None

paran { display: none; }

OEBPS/Images/t1208a.jpg
details of this attribute.

Style Convention fieldset { display: block; margin-start: 2px;
margin-end: 2px; padding-before: 0.35em;
padding-start: 0.75en; padding-end: 0.75e
padding-after: 0.625em; boxder: 2px groow

OEBPS/Images/t3108.jpg
LRSS L S N HERGETR e,

Name. Description Retums
heef Comesponds to thehref atribute string
target Corresponds o the target aribute string
Wl B e i S i

OEBPS/Images/t3109.jpg
S e L O A
Name Description Retums
cite Coresponds to the cite attribute: string

string

dateTine Corresponds to the datet ire attribute

OEBPS/Images/t3106.jpg
bt bbb bl i i

Name Description Retums
disabled Corresponds o the disabled attribute boolean
oo

mdia Bt e e sk

OEBPS/Images/t3107.jpg
b i

A SN L Lt N NETRRRE Ry,

Name Description Retums

toxt Gets or sets the content of the title element string

OEBPS/Images/t2011.jpg
SN TN RS AN ETOR T,

Value Description
Tt “The element s shifted so that the left edge touches the left edge of the.

L containing block or the right edge of another floating block.

gt “The element s shifted so that the right edge touches the right edge of the

containing block or the left edge of another floating block.

The clementis not floated.

OEBPS/Images/t2012.jpg
Table20-12. The clear Property

Property Description Values
clear Specifies whether the element can be floated nextto~ left
another floating element. right
both

none

OEBPS/Images/t3101.jpg
Dl I ST TN IR LS

Name Description Retums
href Cortesponds to the href attribute string
string

target

Cortesponds to the target attribute

OEBPS/Images/t2010.jpg
Table 20-10. The jioat Property

Property Description Values
float Sets the floating style for an element left
right

none

OEBPS/Images/t2602a.jpg
Chsek
conpatiode
cokie
defauntcharset

defaultvien

dir
donain

inplenentation

lastodified

location

readystate

referrer

title

Gets or sets the document character set encodir

Gets the compatibility mode for the document.
Gets orsets the cookies for the current document.
Gets the default character encoding used by the broviser.

Returns the indowobject for the current document; see
Chapter 27 for details o this object,

Gets orsets the text direction for the document.
Gets orsets the domain for the current document.

Provides information about the DOM features that are
available.

Returns the last modified time of the document (or the
current tme if no modification time s available).

Provides information about the URL of the current
document.

Returns the state of the current document, This is a read-
only property.

Returns the URL of the document that linked to the current
document (this is the value of the corresponding HTTP
headen

Gets o sets the tie of the current document (the contents
of the title element, described in Chapter 7).

nrs
string
string
string

Window

string
string

DoMInplerentation

string

Location

string

string

string

OEBPS/Images/t3104.jpg
b ool et ot i e it

Name Description Retums
nare Cortesponds to the nane attribute string
hetpEquiv Corresponds o the http-equiv attribute. string
content Cortesponds to the content attribute string

OEBPS/Images/t3105.jpg
D e i e e

Name Descrption Retums
s Corresponds to thesrc atrbute string
asyne Coresponds o the async atrbute boolean
defer Cortesponds o thedefer attribute boolean
type Cortesponds o the type atrbute string
charset Corresponds o the charset attrbute string
text Cortesponds o the text atrbute string

OEBPS/Images/t2013.jpg
AT T LT T

Value Descrption
Lefe “The leftedge of the lement may not adjoin another loating dlement
ight “The right e of the element may not adjoin another Roatin eloment.
both Neither edge may adjoin another fostng dlement

‘The element s not cleared and either edge may adjoin another floating element.

OEBPS/Images/t3102.jpg
e e e

Description

error Triggered when there s an error loading a resource, such as a script or image
load Triggered when the document and its resources have been loaded
unload i

red when the browser unloads the document (typically, because the user has
navigated elsevihere)

OEBPS/Images/t3103.jpg
I R L RS N LAY
Name Description Retums
disabled Comesponds to the disabledartibute boolean
href Cortesponds o the href atrbute string
el Corresponds o the zel atibute string
nedia Cortesponds o the nedia atribute string
hreflang Corresponds to thehreflang atribute string
type Cortesponds o the type atrbute string

OEBPS/Images/t1510a.jpg
Tag Style:
New in HTMLS?
Changes in

HTML5

Style Convention

‘example.
Startand end tags
No

‘The forn attribute is new in HTMLS.

‘The archive, classid, code, codebase, codetype, declare, standby,
align, hspace, vspace, and border attributes are obsolete.

None

OEBPS/Images/t1207a.jpg
Style Convention label { cursor: default; }

OEBPS/Images/t3606a.jpg
strokeText(ctext>, x, y, width) Draws and strokes the specified text at the position void
(5,y). The optional width argument sets an upper
limit on the width of the text

OEBPS/Images/t2008.jpg
T S LI T

Value Description
collapse ‘The clement isn'tvisible and doesn't oceupy space in the page layout.
hidden ‘The element isn'tisible, but it sill occupies space in the page layou.

visible “This s the default value. The element s visible on the page.

OEBPS/Images/t2009.jpg
TSRO TN ORI STy Y

Value Description
inline ‘The box i displayed like a word in aline of text
block The bosx s displayed like a paragraph.
inline-block ‘The box i displayed like a line of text.

List-iten

kind of marker (such as an index number).

etk bonh st on e samtou

ically with a bullet or some other

e

OEBPS/Images/t2006.jpg
AT MG SODR Ve

Description

“This value leaves the broviser to work out what to do. Typically, this means that a
scrollbar s displayed when the contentisclipped, but not othervise (his s in

o contrast o the scrolL value, which displays a scrollbar whether or not tis
required)
i ‘The content s clipped so that only the portion inside the content box i displayed.
No mechanism s provided for the user o sce the clipped part of the content.
ao-corliat ‘The content i removed if it cannot be displayed completely. This value is not
loscontent supported by any of the mainstream browsers.
Roditp ‘The content i hidden if it cannot be displayed completely. This value is not

supported by any of the mainstream browsers.

‘The browser will add a scrolling mechanisim so that the user can see the content.
scroll “This s typically a scrollbar, but thisis dependent on the platform and browser.
‘The scrollbar will be visible even ifthe content doesn't overflow

“This s the default value, The element's content is isplayed, even though it

visible overflows the content box.

OEBPS/Images/t2007.jpg
Table 20-7. The visibility Property

Property Description Values
visibility Setsthe visibility of an element. collapse
hidden

visible

OEBPS/Images/t2001.jpg
A S oY

Problem

Solution

Set the size of the box padding area.

Set the size of the box margin area.

Set the size of an element,

Set which part of the bos sizes apply
.

Setting bounds for an element's size.

Set the manner in which overflowing
content is handled.

Set the visibility of an clement.

Set the type of box for an element

Set the box type so an element is
displayed with vertical
oo ahinecal)

Use the padding shorthand element or the padding -
top, padding.botton, padding-left, or padding-right
properties.

Use the rargin shorthand elementor thenargin-top,
rargin-bottor, mazgin-left, ornargin-right
properties.

Use the width and height properties.

Use the box-sizing property.

Use the max-width, nin-
height properties.

dth, nax-hedght, andmin-

Use the overflow, overflow-x, or overflow-y
properties

Use the visibility property (also sce the none value.
for the display property).

Usethe display property.

Use the block value of the display property.

203

2044
204
205
206,20~
7

208

209

OEBPS/Images/t2004.jpg
Table 20-4. The size Properties
Property Description Values
width Set the vidth and height for the auto
height clement. <length>
&
min-width Set the minimum acceptable widthor auto
min-height height for the element. <length>
&
nax-width Set the maximum acceptable width or auto
max-height height for the element. <lengths
S
box-sizing Sets which part of an element’s boxis content-box
used for sizing. padding-box
border-box

nargin-box

OEBPS/Images/t2005.jpg
Table 20-5. The overjlow Properties

Property Description Values
overflow-x Set the horizontal or vertical overflow See Table 20-6.
overflo-y style.

overflo Shorthand property. overflow

overflow-x overflow-y

OEBPS/Images/t2002.jpg
Table 20-2. The paading Properties

Property Description

Values

padding-top Sets the padding for the top edge.
padding-right Sets the padding for the right edge.
padding-botton Sets the padding for the bottom edge.
padding-left Sets the padding for the left edge.

padding ‘This shorthand property sets the
padding for all edges in a single
declaration.

<lengths or <%
<lengths or <%
<lengths or <%
<lengths or %>

I-4clength> or <% values

OEBPS/Images/t2003.jpg
Table 20-3. The margin Properties

Property

Description

Values

margin-top

margin-right

margin-botton

nargin-left

Sets the margin for the top edge.

Sets the margin for the right edge.

Sets the margin for the bottom edge.

Sets the margin for the left edge.

auto
<length>
&

auto
<length>
s

auto

<length>
P

auto
ength>
<&

OEBPS/Images/t1513a.jpg
Permitted Any element that can contain phrasing elements
Parents:

Local Auributes: value,min,nax, low, high, opt iun, forn
Contents: Phrasing content

Tag Style: Startand end tags

New in HTML5? Yes.

Changes in N/A
HTMLS

Style Convention None

OEBPS/Images/t1404a.jpg
Local Attributes: name, disabled, form, readonly, maxlength, autotocus, required,
placeholder, dixnane, rows, wrap, cols

Contents: Text, which represents the content for the element
TagStyle: Startand end tag
NewinHTMLS? No

Changes in ‘The form, autofocus, required, placeholder, and wrap attributes
HTMLS are new in HTML5

Style Convention None

OEBPS/Images/t1403a.jpg
Parents:
Local Attributes:
Contents:

TagStyle:

New in HTML5?

Changes in
HTMLS:

Style Convention:

label, disabled
option elements
Startand end tag
No

None

None

OEBPS/Images/t1209a.jpg
Changes in None
HTMLS

Style Convention legend { display: block; padding-start: 2px;
padding-end: 2px; border: none; }

OEBPS/Images/t4003.jpg
el o et g

Name Description Retums

update() Updates the cache to ensure that the latest versions of the tems in void
the manifest are downloaded

swapcache() Swaps the current cache for a more recently updated one void

status Retums the status of the cache nusber

OEBPS/Images/t4002.jpg
AN ST DL FTOpeTLY.

Name Description Retums

window.navigator.online Returns false if the browser s definitely offine and tzue if boolean
the browser might be online

OEBPS/Images/t4001.jpg
AT L S

Problem

Solution

Enable offine caching,

Specify the resources to
be cached in an offine
application

Specity fallback content
tobeused when
resources are not
available

Specify esources which
arealvays equested
from the server

Determineifthe
browser s offine

Work with the offine
cache directly

Create a manifest ile and refer to it in the ranifest.
attribute of the htnl element

Listthe resources at the top or in the CACHE section of the.

‘manifest file

Listthe content in the FALLBACK section of the manifest e

Listthe content in the NETWORK section of the man

Read the value of the window. navigator. onLine property.

Get an ApplicationCache object by reading the
window.applicationCache property

58

10

13

OEBPS/Images/t4005.jpg
A T N NN A e oy

Description
checking ‘The browser is obtaining the initial manifest oris checking for a manifest update
noupdate ‘There is no update available and the current manifest is the latest

S Wi b b dbnlonline ceet aectlin S e witst

OEBPS/Images/t4004.jpg
A VI I LS WSRO N I

Value Name Description

o oD “There is no caching for this document or the cached data has yet to be
downloaded

1 L ‘The cache is not performing any action

2 G ‘The browser i checking for updates o the manifetor the ems speciied

3 DOMLOING The browser s downloading manifest or content updates

4 UPDATEREADY There updated cached data available.

s ossoLeTe ‘The cached data i obsolete and should not be used - this is caused by the

request for the manifest file returning a 4xx HTTP code (usually indicating
that the manifest file has been removed/ deleted)

OEBPS/Images/t3601a.jpg
s N

Transform the canvas

‘Usethaglotaiionpos Lheiparation
propersy

Use oneof the ransformation
methods, such as rotate or scale.

o

15

OEBPS/Images/t1313a.jpg
readonly

required

step

value

TR, % SO C N R ML Yen o,

Ifpresent, this at

ute makes the text box read-only, and the user
cannot edi

the content.

‘Specifies that the user must provide a value for the purposes of input
validation. See Chapter 14 for details

Specifies the granularity of increments and decrements (o the value.

Specifies the nitial value for the element.

No

Yes

Yes

No

OEBPS/Images/U001.jpg
oy o3 y6a

OEBPS/Images/t3142.jpg
ELoeitil

i o e e by o

Name Description Retums

value Corresponds to the value attibute nunber

rax Corresponds to the rax attribute nurber

position Corresponds to the position attibute nurber

form Returns the form that this element is associated with HINLFornElencnt
Labels Returns the label lements associated with this clement KT LabelElenent[]

OEBPS/Images/t3140.jpg
AR S LA IOl SITIE SR

Name Description Retums
data Corresponds o the data attribute string
type Corresponds o the type attribute: string
form Returns the form that this clement is associated HIMLFornElesent
with
nare Corresponds o the nare attribute: string
usetap Corresponds o theuserap attribute string
width Corresponds o thewidth attribute. string
height Corresponds o the height attribute string
contentbocurent Returns the docurent object Docunent
contentiindon Returns the window object Windon
willvalidate Returns tzue if the clement will be subject to boolean
input validation when the form is submitted;
returns false otherwise
validationvessage Returns the error message that would be shown string
o the user if input validation was applied.
checkvalidity() Performs input validation on the clement boolean
setCustomalidity(isg>) Setsa custom validation message void
Tabels Returns the label elements associated vith this HTNLLabelElenent[]

clement

OEBPS/Images/t3141.jpg
S VR EEL L AT NS I R

Name Description Returns
nare Corresponds to the nave atuibute string
string

value

Corresponds to the value autibute

OEBPS/Images/t3139.jpg
AR SR LR A L
Name Description Retums
value Corresponds to the value atwibute nunber
x Corresponds to theax atrbute nunber
fom Retums the form that his clement is associated with HTWLfornElerent

Labels Returns the abel lements associated with this clement KT LabelElenent[]

OEBPS/Images/t3133.jpg
ERER Lt TN DL R T (N

Name Description Returns
autofocus Corresponds to the autofocus attribute boolean

cols Corresponds t the cls aturibute nurber

dirhane Corresponds o the dirtare attribute. string

disabled Corresponds o the disabled attribute boolean

forn Returns the form that this elementis associated WML FornElerent

with,

maxtength Corresponds to the saxlength attribute nurber

nare Corresponds to the nare aturibute string
placcholder Corresponds to the placeholder attribute. string

readonly Corresponds o the readenly attribute boolean
required Corresponds to the requized attribute boolean

S B e e i skt o—

OEBPS/Images/t3134.jpg
FRDSE T T S SRR Sy

Name Description Retums

ale Corresponds to thealt attribute string

—— Ctavasonds w e foerdl sttty string

OEBPS/Images/t3131.jpg
B N L ST I Y.

Name Description Retums
henlfor Corresponds t the for attribute string
forn Returns the form this elementis associated with HTMLForwELenent
nare Corresponds to the nane attribute string
type Coresponds o the type aturibute string
value Corresponds to the value attribute string
willvalidate Returns tzue if the element will be subject to boolean
input validation when the form is submitted;
retumns false othervise
validationVessage Returns the error message that would be shown string
to the user if input validation vias applied
checkValidity() Paxhnc gt vilidallon cm s dliesant -

OEBPS/Images/t3132.jpg
S LT L IO O L,

Name Description Retums
autofocus Corresponds to the autofocus attribute boolean
disabled Corresponds o the disabled attribute boolean
forn Returns the form that this clementis associated WT¥LForsElerent
with
miltiple Corresponds to the multiple attribute boolean
nare Corresponds to the nane aturibute string
required Corresponds o the requized attribute boolean
stze Coresponds o the size attribute nusber
type Returns select-nultiple f the clementhas the string
multiple attribute, and select-one otherwise
options. Returns the collection of option elements. HTMLOptionElevent[]
Length Getsor sets the number of option clements nusber
[<indexs] Getsthe element a the specified index HTMLElenent
selectedoptions Returns the selected opton elements HTMLOptionlesent]
selectedIndex Returns the index of the first sclected option nusber
clement
- Gk ot i aiictod vilus T

OEBPS/Images/t3137.jpg
DRSNS 2 I 13 S ATREL TN L

Name Description Returns

alt Clnedon tha it il e

OEBPS/Images/t3138.jpg
S AT L AN D L

Name Description Retums

nare Corresponds to the nase atribute string

areas Returns the axea elements in the map HIMLAzeaElenent[]
HIMLElerent(]

inages

Returns the rg and object elements in the map.

OEBPS/Images/t3135.jpg
El Rt i S e o

Name Description Returns

e i s i e skt string

OEBPS/Images/t3136.jpg
b ocles

P SNV LR YIS SOe.

Name Description Retums
e Corresponds o the sxc atibute string
secdoc Cortesponds o thescedoc attribute string
nane Corresponds o the nare atibute string
sandoox Corresponds to the sandox artribute string
seanless Corresponds o the searless atribute string
idth Cortesponds o the wideh rwibute string
height Corresponds o the height aibute string
contentDocument Retums the docunent abject Docunent
contentiindos Retums the windowobject window

OEBPS/Images/t3130.jpg
bbb R S e b o
Name Descrption Returns
disibled Corresponds o the disabled tribute boolean

form Returnsthe forn this clement is associated ith WM Foraclenent
Label Cortesponds o the Label atribute string

selected Comesponds o the selectedattrbute boolean

value Cortesponds o the value atribute string

text Cortesponds o the text atrbute string

index Retumns the index ofthis lement inthe parentselect element nusber

OEBPS/Images/t1206a.jpg
self SOPCR TN SN MCH S CUK W AT L G)

_top Opens the server response in the full body of the window.

<frane> Opens the server response in the specified frame

OEBPS/Images/t3128.jpg
Bl ol

I 0 N SRR Y.

Name Description Returns

forn Returns the forn associated vith this clement WIMLFornElenent

OEBPS/Images/t3129.jpg
et b ot el b s

e
Name Description Retums
disabled Cortesponds o the disabled atrbute boolean

string

Tabel Conesponds to the label attribute.

OEBPS/Images/t3122.jpg
bl e

R L N ENIE L

Name Description Retums

autofocus Comesponds o the autofocus atuibute boolean

disabled Corresponds o the disabled attribute disabled

forn Returns the fors elementwith which the elementis HI¥LForElerent
associated; corresponds to the formatribute

formaction Corresponds to the fornaction attribute string

T ool te s Risictin i g

OEBPS/Images/t3123.jpg
Lt

AT AL AT TS L

Name. Description Returns

options Returns the collection ofoption elements contained HIMLOpt ton€lenent(]
within the datalist element

OEBPS/Images/t3120.jpg
SRR N L S L O S L

Name Description Retums
roulndex Returns the position of the row in the table munber
SectionkoaTndex Returns the position of the row in the table nunbex

ey

OEBPS/Images/t3121.jpg
Table 31-21. Table Element Objects with No Additional Properties

Name DOM Object

caption HTMLTableCaptionElement

td HTMLTableDataCel1ELement

OEBPS/Images/t3126.jpg
et e s d b 2

Name Description Retums
accept Corresponds to the accept atribute sering
a1t Comesponds tothe it tbute sering
autocompete Comesponds o the autaconplete aurbute string
autofocss Coresponds o the utofocusatribute boolean
checked Returms trveif he clementis checked boolean
sinione Comesponds o the iznane stcbute string
sisabled Comesponds o the isabled strbute boolean
foxe Corresponds o the foe atrbute string
forviction Comesponds o the orsaction stribute string
forstnctype Comesponds o the orsenctypeatrbute string
farmethos Corresponds to the formethad stbute string
formoaidate Comesponds o the formovalidate strbute sing
foraTarget Comesponds o the orstarget atribute string
e Comesponds o he list arrbute MM Elesent
P Comesponds o the s atbute sering
raxtength Coresponds o the sxlengehstbute nusber
win Comesponds tothe in tbute string
tiple Comesponds o the ultiple atbute boolean
e Corresponds o the nre atbute string
pattern Corresponds o the ot ternatbute string

s L

Tk eariie

P

OEBPS/Images/t3127.jpg
SR e AT LA DL IR T £ 0ok
Name Description Returs
fom Returns the form associated with this element HINLFornElenent
henlfor Cormesponds o the for attibute string

control Returns the element specified by the for aturibute HIMLElerent

OEBPS/Images/t3124.jpg
KIS e AT L A PRI O

Name Description Retums
disabled Corresponds o the disabled atribute boolean

fom Corresponds o the fornatibute WM ForaElesent
nane Corresponds o the are atbute string

elenents Retums a collection containing the form controls within HTYLELenent(]

the fieldset

OEBPS/Images/t3125.jpg
oot

el i bt b bk o

Name Description Returns
acceptcharset Corresponds to the accept-charset atibute string

action Corresponds o the action attibute string
avtocoplete Comesponds to the autocorplete attribute string
enctype Cortesponds o the enctype aturibute. string
encoding Cortesponds o the enctype atrbute. string
nethod Cortesponds o the nethod atibute string

nave Cortesponds o the nare atribute string
novalidate Cortesponds o the noval idate aturibute boolean
target Corresponds o the target attibute string
elerents Retums the clements i the form KWL Elerent(]
Length Retums the number of elements in the form nuber
[enanes) Retums the form element with the specified name HIMLElenent.
[cindeno] Retums the form element at the specified index HIWLElenent
subnit () ‘Submits the form void

reset() Resets the form void
checkValidity() Retums trueifall of the form elements pass input boolean

validation; returns false otherwise

OEBPS/Images/3011.jpg
Erample A -

| € 5 ¢ [©uanistngs/eampienm Y

=

Key pressed: 65 Char: A

OEBPS/Images/3010.jpg
€ o ¢ Quaisigyeempenm % A

P83 This i focused

OEBPS/Images/0817.jpg
| [ESSEER)
B Eemnle +
€)2 | [repuranistngeiens 77 || (- ceegie 5] [[B [#2]<]

Llike apples and oranges. The FDOC regulates the Florida citrus industry.

“The apple s the pomacous fruit of the apple tree, species Malus domestica
in the rose family:

Oranges are often made into OI (Orange Juice)

OEBPS/Images/1906.jpg
B Ecrple
€ 3 C @ twnlisings/examplentm IR N

here are lots of different kinds of frut - there are over 500
arieties of banana alone. By the time we add the countiess types
‘apples. oranges. and other well-known fit, we are faced wi

onsands of choices.

OEBPS/Images/0818.jpg
o 1)
Eampie ~x\ N
| € + & (@ tianistings/examplenimi EEY

Tiike apples and oranges. The FDOC regulates the Florida citrus indistry.
This i eft-to-right. e oranges

This i right-to-1ef: segparo ekl I

OEBPS/Images/1907.jpg
90px

3

2

SUpx
>

1

xdos

OEBPS/Images/0815.jpg
el
Example A ©
€ & C O titan/listings/eramplenun IR S

Thke apples and oranges. The FDOC regulates the Florida citrus indhustry

"The apple is the pomaceons fut of the apple ree, species Makus
‘domestica in the rose family "

My favorite book on frut is Fruit: Edible, Inedible, Incredible by
Stappy & Kesseler

OEBPS/Images/1904.jpg

OEBPS/Images/0816.jpg
B Exarple
€ 5 € [© tawistings/exampletmi Y

Tike apples end oranges. The FDOC rcaiates the Florida cirs indsry

“The spple s the pomaceous iy GFbe | Orasga Juice inthe
e ato OJ

s
Oranges are often made ito O

OEBPS/Images/1905.jpg

OEBPS/Images/0813.jpg
€ 5 C O titanlistings/example html %A

vaz fraics = [“applest, Moranges", "mangoest, Mehsrriesn]:

docamens.writeln ("I like * + fraits.length + 7 fruivs”
The variable i this example & fruits
‘The output from the code s T Like 4 fruite

When prompted for my favorite it [typed: chezzass

OEBPS/Images/1902.jpg
==

/ o
€ > C O titan/listings/example.htm! NI

There are ot of different kinds of fruit - there are over 500

vaticties of banana alone. By the time we add the countless

wivpes of apples, oranges, and other well-known fru, we are
d with thousands of choices.

OEBPS/Images/t0801.jpg
S LR P

Problem Solution Listing
Create a hyperlink to another document. Use thea clement, with either an a1,82
absolute or relative URLas the href
attribute value.
Create a hyperlink 0 an elementin the Use thea clement, with a CSS-style D 83
same document Selector for the target clement.
Denote text without imparting any Use theb oru elements. 84,89
additional importance or significance.
Denote emphatic sress. Use the en clement. a5
Denote scientific or foreign-language Use the £ element 86

p oy

OEBPS/Images/0814.jpg
[E]

/B zamve &
€ 3 @O ttanistngs/exampichm RN

Tiike appies and oranges. The FDOC regulbtes the Florida citrus indusry.

“The apple s the pomaceous it of the apple tres, species Maus domestica in the
cose family."

OEBPS/Images/1903.jpg
B omple x
€ 5 ¢ |© titan/lisiings/example.tm I -\‘

arieties of banana alone. By the time we add the countless

pes of apples, oranges, znd other well-keown fuit, we are

OEBPS/Images/0811.jpg
B Example x \\&
= C' O titan/listings/exam| v¢ | N\ ‘

‘This is a very long word: =
Supercalifragisticexpialidocious. We can H
help the browser display long words with the

OEBPS/Images/t0803.jpg
SRS LR Ol INE DN

Attribute__Description

href Specifies the URL of the resource that the clement refers o.

hreflang Specifies the language of the linked resource.

redia Specifies the device that the linked content s intended for. This attribute uses the same
device and feature values that | described in Chapter 7

el Specifies the kind of relationship between the document and the linked resource. This
attribute uses the same values as the zel attribute of the Link element, as described in
Chapter 7.

target Specifies the brovsing context in which the linked resource should be opened.

type

Specifies the MIME type of the linked resource, such as text/htnl

OEBPS/Images/t3120a.jpg
e Returns the collection of cell elements oo B
insertCell(cinde) Inserts a new cell at the specified index. HIMLElenent

deleteCell(cindexs) Deletes the cell at the specified index. void

OEBPS/Images/0812.jpg
/ W Eample
€« C' | © titan/listings/exam| 72 | N
This is a very long word: Supercalifragilistic

expialidocious. We can help the browser
display long words with the wb= element.

OEBPS/Images/1901.jpg

OEBPS/Images/t0802.jpg
Table8-2. The a Element

Element

Element Type

Permitted
Parents

Local Attributes
Contents
TagStyle
New in HTMLS

Changes in
HIMLS

Style Convention

a

‘Thea element s considered as a phrasing element when it
contains phrasing content, and as a flow element when it
contains flow content

Any element that can contain phrasing content

href, hreflang, media, rel, target, type
Phrasing content and flow clements
Start and end tag required

No

“This element can now contain flow as well as phrasing content.
“The media attribute has been added. The target attribute, which
was deprecated in HTML4, has now been reinstated.

In HTMLS, an a element without an href value is a placeholder
fora hyperlink

“The id, coords, shape, urn, charset, methods, and rev attributes
are obsolete.

a:link, a:visited {
color: blue;
text-decoration: underline; cursor: auto;

a:link:active, a:visited:active {
color: blue;
}

OEBPS/Images/t3011a.jpg
F——
o, Raurst it e o whas th o —

repeat Retumns true if the key is being held down. boolean

OEBPS/Images/0810.jpg
€ & € [Otitanfistings/example htmi

&

1 WANDERED loncly as a cloud
That flosts on igh o'er vales and Fi,
When all at once | saw a crowd,

A bost, of goiden daffod;

OEBPS/Images/t0406a.jpg
mm
pt

pc

Mil

limeters
Points (1 point is 1/72 of an inch)

Picas (1 pica s 12 points)

OEBPS/Images/Cover.jpg
THE EXPERT'S VOICE® IN WEB DEVELOPMENT

- s s IS TII LIV IILII S 74

The Definitive Guide to

HTMLS

ALL Y0U NEED TO KNOW T0 USE
HIMLS PROFESSIONALLY

Adam Freeman

TILTLISSSSSSSSSSSS LSS 77>~ ~
Apress’

OEBPS/Images/t1604a.jpg
o
float

height
nargin
nargin-botton
nargin-left
rargin-right
nargin-top
naxheight
nadeh
nin-heighe
nin-uddth
overflon
overflowx
overflony
pasding
padding-botton
padeing-leit
padeing-ight
pading-top
visibility

width

bbbl il ot

Shifts an element o the e orrght edge of s contining
block,ortothe edge of another loating cloment

Sots thebeightof an lement'sbox
Shorthand propety o et the margn forl four dges
Setsthe marginfor the bottom edge o the margin box
Sots the marginfor thelctadge ofth margi box

Setsthe margin forthe right edge of the margin box.

Sets the marginfor the top edge f the margi box
Sets the masimum heght for the clment

Sets the masimum widthfor the clement

Sets the minimum height forth clemen

Setsthe minimu widh o the clement

Shorthand propety o et the oerflow sy fr both axes
Sets the syl for handling oveflowsingcontenton the s
Sets the syl for handling oveflowing contenton they-axs

‘Shorthard propery o st the padding forallfouredes.

Sets the padding fortheleft cdge.

Sets the padding fortherght edge
Sets the padding forthe op edge
Setsthevisibilty or s element.

Setsthe width o an lement

OEBPS/Images/0808.jpg
/ B arpie x
| € 5 & (O uanisings/esemplenmi

[SER)
e A

Oranges at my local sore are S1 cach (pus)

OEBPS/Images/0809.jpg
/ B arpic x
| € + & (O uanisings/esemplenmi

[SER)
e A

The point 5,9 the 10% point.

OEBPS/Images/0806.jpg
B emple
€ 9 C O titan/listings/exempletm RS

Tiike appics and oranges. Warning: Eating too many oranges can
give youheart burn.

OEBPS/Images/0807.jpg
=afch

B e
€ & C O titan/listings/example htmi LIRS

Tiike appics and oranges. Warning: Eating too many oranges can
give youheart bum.

OEBPS/Images/0804.jpg
Ecomple x

& & € Otin/isings/oamplertml ¥y X

Ttike apples and oranges. My favorite kind of orange s the.
‘mandarin, properly known as citrus reticulata

OEBPS/Images/0805.jpg
[ESEEERE)
W Es &
€ 5 € @ titen/listings/exemplehtm RS

Ilike apples and oranges. My favorite kind of crange s the
‘mandarin, property known as cirrus rericulata. Oranges at my
focal store cost $1-cach $2 for 3.

OEBPS/Images/0802.jpg
=
g Eample

€ 5 € [0 tn/istngs/exampleniml W X,

Iike apples and oranges.

OEBPS/Images/0803.jpg
=]
\©)._ -
€ 5 € [0 tEn/istngs/exampleniml W A,

g Eample

Zike apples and oranges.

OEBPS/Images/0801.jpg
% A

1like apples and oranges.

OEBPS/Images/t2804a.jpg
-
setateribute(cnanes)

hasattribute(cnane>)

renoventtribute(<nane>)

setattribute(cnanes, value>)

Returns the data-* attributes
Retums the value of the specified attribute

Retums tzue if the element has the specified
atribute

Removes the specified attribute from the
clement

‘Applies an attribute with the specified name
andvalue

Shring] cname>]
string

boolean

void

void

OEBPS/Images/t1603a.jpg
porder-botton
porder-botten-calor

vorder-botton-Left-
rodiin

sozder-botton-right-
rodiis

porder-botton-style
porder-botton-idth
porder-color

porder-rage

porder.image-outset
S —
voder.tmage-slice
porde-inage-source
vorder-ixage-idth
SUNSRN
poder-eft-colox
porder-left-style
porder-left-idth
porde-radius
S—

O R e e

o N e B R PO

‘Shorthand propert o se all border values for the botiom
ede.

Setsthe color forthe botom edi border.

Setsthe radius for a comer. ¢ used for ursed borders.

Setsthe

jus for come. I’ used for urved borders

Setsthessl fo the bottom dge order
Sets the widih for the btom-dge border
Sets thecolor ofthe bordor forall s
Shorthand fo image-based borders.

‘Speciiesthe area outside the border bos that will b used t0
displa the image.

Specifies the ropeat sty for the bordermage.
Specifies th ofets for the mage slices

Specifies th source forthe border image

Sets e width of the image border
Shorthand to st th borderforth et cdge
Setsthecolor fo theef-cdge order

Sets the e for the left-dge border.

Sets the width for he lfesd border.

‘Shorthand for specifying curved edge for border.
Shorthand to st the borderfor th ight cdge

e s e

OEBPS/Images/t1712a.jpg
tollow an element that matches the first selector

Since CSS Version:

OEBPS/Images/t1603b.jpg
booonis e L
border-sight-width
border-style
border-top
border-top-color
border-top-Left-radius

border-top-xight-
radius

border-top-style
border-top-width
border-width
box-shado
outline-color
outline-offset

outline-style
outline-width

outline

ot s el it i
‘Sots the widih of the ight-edge border.

‘Shorthand to set the style for all border edges.
‘Shorthand to set the border or the top edge.

Sets the color of the top-edge border.

Sets the radius for a corner. I¢s used for curved borders.

Sets the radius for a corner. Its used for curved borders.

Setsthe style for the top-edge border.
Sets the width for the top-edge border.
Sets the widih for all borders.

Applies one or more drop shadows.
Sets the color of the outline.

Sets the offsetof the outline.

Sets the syle of the outline.

Sets the widih of the outline.

‘Shorthand property to set the outline in a single declaration.

OEBPS/Images/t0602a.jpg
-

noscript

script

style

title

ST S RISTHNIYAIE RUION. i Ce I,

Contains content that il be displayed when
seripting s disabled or unavailable n the browser

Defines a script black, either inline orin an
external file

Defines a CsS style

Sets the tide for the document

Gl

Metadata/Phrasing

Metadata/Phrasing

Metadata

Metadata

A

Unchanged

Changed

Changed

No

OEBPS/Images/t2801a.jpg
SRR SRS R N
Compare two elements for equality

‘Work direetly with HTML fragments

Insert an elementinto a text block

LR TRNG LN TR
Use the isEqualtiode method

Use the fnnexiT¥L and outerHTHL properties
and the insertAdjacentTé. method

Use the splitText and appendchild methods

oo

1

1517

18

OEBPS/Images/t2607a.jpg
AP ANOETIIE (T SRS KO MR MR

scripts Returns objects representing al the script elements HTMLCollection

OEBPS/Images/t1606a.jpg
ey Specifies the justification of text
text-shadon ‘Specifies a drop shadow for a block of text
text-transforn Applies a ransformation t0.a block of text

vord-spacing Specifies the spacing between words

OEBPS/Images/t0601a.jpg
Changes in ‘The reversed attribute has been added in HTML5.

HTMLS ‘The start and type attributes, which were deprecated in HTMLA,
have been restored in HTMLS, but with sematic (rather than
presentational) significance.

The conpact atribute s now obsolete.

Style Convention ol { display: block; list-style-type: deciral;
margin-before: lem; margin-after: lem;
margin-start: 0; margin-end: 0;
padding-start: dopx; }

OEBPS/Images/t1714a.jpg
since (35S Version:

OEBPS/Images/t1605a.jpg
position Sets the positioning method for an element.
right Sets the right-edge offset fo a positioned clement.
top Sets the top-edge offset for a positioned clement.

2-index Sets the front-to-back order for positioned elements.

OEBPS/Images/1708.jpg
© b \ =

€ 3 C (O fitan/listings/exemplehimi Ry

Visi the Apress website

Iike [apples] and oranges.

Vit the WAC et

OEBPS/Images/1709.jpg
© bamse &

€ > € O tian/listings/exemplehtml %3

Visi the Apress website

Iike [apples] and oranges.

T Wit nd

OEBPS/Images/1706.jpg
= =)
(- T

€ > C O titan/listings/examplentm! 2| A

Visit the Apress website|

Thikce apples and oranges.

Visit the W3C website|

OEBPS/Images/t0601.jpg
Table6-.

The ol Element

Element:
Element Type:

Permitted
Parents:

Local Attributes:
Contents:
Tag Style:

New in HTMI 52

ol
Flow

Any element that can contain flow elements

start, reversed, type
Zero or more 1i elements
Start and end tags

No

OEBPS/Images/1707.jpg
© base
€ 3 C O titanlistings/exampleimi EIRY

=afct
‘N

Visi the Apress website

Iike

Vi

apples]

W

‘and oranges.

OEBPS/Images/1704.jpg
npc

foum. - 5

€ 3 C O titan/listings/examplentm! 2| A

the Apress website

Tike | apples | and cranges.

the W3C website

OEBPS/Images/t0603.jpg
SO I A0 LR D

Element__ Description Type New(Changed
a Createsa hyperlnk Phrasing/Flow Changed
abbr Denotesan abbreviation Phrasing Unchanged
b Offetsa span oftext without additional emphasis Phasing Changed
orimportance
br Denotes alinebreak Phiasing Unchanged
cite Denotes the i of another work Phrasing Changed
cate Denotes a fragment of computer code Phrasing Unchanged
s Denote text thathas been removed fromthe Phrasing/Flowi New
document
#in Denotes the definition of a term Phrasing Unchanged
o Denotesa spanof text with emphaticsress Phrasing Unchanged
s Denotesaspanof text thatsofadiferen nature Phrasing Changed

than the surrounding content,such as a word
S sl Liniban

OEBPS/Images/1705.jpg
=
N i

€ > C O titan/listings/examplentm! 2| A

the Apress website

Tikce apples and oranges.

Visit the W3C website|

OEBPS/Images/t0602.jpg
bldoo

P LA P T

Element__Description Type NewChanged
base Sets thebasefor eltive URLs Metadata Unchanged
body Denotes contentinan HTML document NA Changed
QOCTVE Denotes thestatof an HTML document A Changed
head Contains documentmetadata A None

Wl Indicatesthestarof HTML i a document NiA Changed
Lk Definesarelationship with an external esource, Metadata Changed

sl s iotiiat o & Bevioans

OEBPS/Images/1702.jpg
€ > C O titan/listings/examplehtm! 3RS

Visi the Apress website

Iike apples and oranges.

T e Wit ni

OEBPS/Images/t0605.jpg
IO L SIU CRCEION EATNATIY,

Element Description Type New(Changed
address Denotes contact information for a documentor Flow New
article
article Denotes an independent block of content Flow New
aside Denotes content thatis tangentially related to Flow New
the surrounding content
details Createsa sectionthe usercanexpand toget Flow New
additional details
footer Denotes a footer region Fow New
hi-he Denotes a heading Flow Unchanged
header Denotes a heading region Flow New
hgroup Hides all but the first of set of headings from ~ Flow New
the document outline.
nav Denotes a significant concentration of Flow New
navigation elements
section Denotes a significant concept or topics Flow. New
sumary Denotes atideor description for the contentin N/A New

an enclosing details clement

OEBPS/Images/1703.jpg
© bamse \ =

€ > C O titan/listings/examplehtm! R \‘

Visi the Apress website

Iike [apples] and oranges.

Visit the W3C wehsie

OEBPS/Images/t0604.jpg
A SO I S

Element Description Type New(Changed
Blockquote Denotes a block of content quoted from another Flow. Unchanged
l Denotes a definition within a d1 element NiA Unchanged
div Ageneric clement that docsn'thave anypre- Flow Unchanged
defined semantic significance. This i the flow
equivalent ofthe span clement.
a Denotes a description list that contains aseries Flow Unchanged
of terms and definitions
@t Denotes a term withina dl element NiA Unchanged
figeaption Denotes a caption for a figure element NiA New
fgure Denotes a figure Fow New
he Denotes a paragraph-level thematic break Flow Changed
1 Denotes aniteminaul, ol orsenu clement N/A Changed
oL Denotes an ordered list o items. Flow Changed
» Denotes a paragraph Flow Changed
pre Denotes contentwhose formatting shouldbe ~ Flow Unchanged
preserved
ul Denotes an unordered list of items. Flow Changed

OEBPS/Images/1701.jpg
/@ anpe &

€ > C | @ titan/listings/example.ntm!

A

the Aoress websio|

1t apples [and oranges.

Vst the W3C websice|

OEBPS/Images/t0402a.jpg
L
font-size
height

padding

text-decoration

widih

O A S LS
Sets the font size of an element’s text
Sets the height of an element

Specifis the amount of space betuveen an clement's
content and its border

Sets the decoration applied to an element's ext—
including underlining, as used in this chapter

Sets the width of an element

20

20

2

20

OEBPS/Images/t3609a.jpg
GaGRARICMITINL

Lighter

source-atop

source-out

RO N S A T S AN G R L ML T S AT M
andvice versa

Display the sum of the source image and destination image, with color values.
approaching 255 (100%) as alimit.

Display the source image wherever both images are opaque. Display the
destination image wherever the destination image is 0paque but the source
image is transparent. Display transparency elsevhere

Display the source image wherever both the source image and destination image
are opaque. Display transparency elsevihere.

Display the source image wherever the source image is opaque and the.
destination image is ransparent. Display transparency elsewhere

Display the source image wherever the source image is opaque: Display the
destination image elsewhere

Exclusive OR o the source image and destination image.

OEBPS/Images/t0401a.jpg
SSSERN S P SRS LA AL O
dynamically.

OEBPS/Images/t0827.jpg
Table 8-

The time Element

Element
Element Type

Permitted
Parents

Local Attributes
Contents
TagStyle
New in HTMLS

Chisiin ki

time
Phrasing

Any element that can contain phrasing content

datetine, pubdate
Phrasing content
Startand end tag
Yes

N/A

OEBPS/Images/t1916.jpg
Table 19-16. The arop-shadow Property

Property Description Values

drop-shadow Specifies a shadow for an element. SeeTable 19-
17.

OEBPS/Images/t0826.jpg
Table 8-26. The ael Element

Element

Element Type

Permitted
Parents

Local Attributes

Contents

TagStyle
New in HTMLS

Changes in
HTMLS

Style Convention

del

“This element is considered as a phrasing element when itis a
child of a phrasing element, and as a flow elementwhen itis the
child of a flow element

Any element that can contain phrasing or flow content

cite,datetine

Phrasing or flow content, depending on the type of the parent
element

Startand end tag.
Yes

N/A

del { text-decoration: line-through; }

OEBPS/Images/t1915.jpg
e ot it et iy S o
Value Description
border-box The background color and image are drawn within the border box.

padding-box

content-box

The background color and image are drawn within the padding box.

The background color and image are drawn within the content bor.

OEBPS/Images/t1918.jpg
Table 19-18. The outiine Properties

Property Descripti Values
outline-color Sets the color out the outline. <color>
outline-offset Sets the offsetof the outline. <length>
outline-style Sets the style of the outline. ‘This value is the

same as for the
border-style
property. See
Table 19-4.

outline-width Sets the width of the oudine. thin
nediun
thick
<length>

outline ‘This shorthand property sets the outlineina <color> <style>
single declaration. <uddth>

OEBPS/Images/t1917.jpg
b s L o e i

Value Description

hoffset “The horizontal offset, vhich is a length value. A postive value offsets the shadow to the
right, and a negative value offsts the shadow (o the left

vofset The vertical offset, which is a length value. A positive value offsets the shadow below
oo Bk i s MR i gk wlactionin ot oloiisiest S B

OEBPS/Images/t0821.jpg
Table8-21. The bdo Etement

Element bdo

ElementType Phrasing

Permitted Any element that can contain phrasing content
Parents

Local Attributes None, but the dix global attribute is required
Contents Phrasing content

TagStyle Startand end tag

NewinHTMLS ~ No

Changes in None
HTMLS

Style Convention None

OEBPS/Images/t1910.jpg
AR A LI RO UG YN

Property

Description

Values

background-color

background-rage

background-repeat
background-size
background-position

background-attachnent

background-clip
background-origin

background

Sets the background color for an element. The color
is drawn behind any images.

Sets the background images for an element. If more
than one image is specified, cach subsequent image
isdraven behind those that precede i

Sets the repeat syle for images.
Sets the size of a background image.
Positions the background image.

Sets the attachment style for images that are in an
clement that has a viewport.

Specifies the dlipping style for images.
Positions the background image.

Shorthand element.

<color>

none o url(inage)

SeeTable 19-11
See Table 19-12.
See Table 19-15.

SeeTable 19-14.

See Table 19-15.
‘See Table 19-15.

ee the folloving

OEBPS/Images/t0820.jpg
Table 8-20. The ruby Element

Element
Element Type

Permitted
Parents

Local Attributes
Contents
TagStyle
New in HTMLS

Changes in
HTMLS

Style Convention

Tuby
Phrasing

Any element that can contain phrasing content

None

Phrasing content and rt and rp elements
Startand end tag

Yes

N/A

ruby { text-indent: 0; }

OEBPS/Images/t0823.jpg
Table 8-23. The span Element

Element span
ElementType Phrasing
Permitted Any element that can contain phrasing content

i

OEBPS/Images/t0822.jpg
Table 8-22. The bdi Element

Element
Element Type

Permitted
Parents

Local Attributes
Contents
TagStyle
New in HTMLS

Changes in
HTMLS

Style Convention

bdi
Phrasing

Any element that can contain phrasing content

None

Phrasing content
Startand end tag
Yes

N/A

None

OEBPS/Images/t1911.jpg
et e, ot e ool

Value Description
repeatx Repeats the image horizontall; he image may be fragmente

xepeatsy Repets the image verticaly the image may be fragmented

repeat Repeats the image in both directions; the image may be fragmented.

space “The image s repested o il the space without creatng fragments, and the remaining,

areaisallocated evenly around the images
round The image isscaled so that it can be repeated without creating fragments.

no-repeat The image is ot repeated.

OEBPS/Images/t0825.jpg
Table 8-25. The ins Element

Element

Element Type

Permitted
Parents

Local Attributes

Contents

TagStyle
New in HTMLS

Changes in
HTMLS

Style Convention

ins

“This element is considered as a phrasing element when itis a
child of a phrasing element, and as a flow elementwhen itis the
child of a flow element

Any element that can contain phrasing or flow content

cite,datetine

Phrasing or flow content, depending on the type of the parent
element

Startand end tag.
Yes

N/A

ins { text-decoration: underline; }

OEBPS/Images/t1914.jpg
R O S NS AL T,

Value Description

fixed ‘The background is fixed to the viewport, meaning that the background doesn't move
when the content i scrolled.

local The background i aitached to the content, meaning that the background moves with
the content when scrolled.

scroll The background i fised to the element, and does not scroll with the content.

OEBPS/Images/t0824.jpg
Table 8-24. The mark Element

Element
Element Type

Permitted
Parents

Local Attributes
Contents
TagStyle
New in HTMLS

Changes in
HTMLS

Style Convention

mark
Phrasing

Any element that can contain phrasing content

None

Phra

ng content
Startand end tag
Yes

N/A

mark { background-color: yellow; color: black; }

OEBPS/Images/t1913.jpg
A e e R e
Value Description

top Positions the image at the top edge.
left Positions the image at theleft edge.
right Positions the image at the right edge.
botton Positions the image at the bottom edge.

center Positions the image at the mid-point.

OEBPS/Images/t1602c.jpg
o St

ety
Yang(clanguage>)

target

Negates a selection (for example, selects all elements that
are not matches by ¢selector).

Selects elements that contain no child elements.
Selects elements based on the value of the Lang attribute.

Selecs the clement reforred to by the URL fragment
identifer

OEBPS/Images/t0816.jpg
Table 8-16. The abbr Element

Element

Element Type

Permitted
Parents

Local Attributes
Contents
TagStyle

New in HTMI5

abbx

Phrasing

Any element that can contain phrasing content

None, but the global title attribute has special meaning
Phrasing content
Startand end tag

No

OEBPS/Images/t1905.jpg
Table 19-5. The Side-Spectfic Border Fropertiss

Property

Description

Values

border-top-width
border-top-style
border-top-color

border-botton-width
border-botton-style
border-botton-color

border-left-width
border-left-style
border-left-color

border-right-width
border-right-style
border-right-color

Defines the top border.

Defines the bottom border.

Defines the left border

Defines the right border

Values are the same as for the
generic properties.

Values are the same as for the
generic properties.

Values are the same as for the
generic properties.

Values are the same as for the
generic propertics.

OEBPS/Images/t0815.jpg
IO S0 e LIRS S SO AL I,

Element _ Description Style Convention
code Denotes a fragment of computer code. code { font-fanily: nonospace; }
var Denotes a variable in.a programming contextora var { font-style: italic; }
placeholder for the reader to mentally insert
specific value.
sarp Denotes output from a program or computer sarp { font-fanily: nonospace; }
system.
Kbd Denotes user input. Kbd { font-fanily: nonospace; }

OEBPS/Images/t1904.jpg
e ! el ot e

Value Description
none Noborder ill be dravan.

dashed ‘The border will be series of rectangular dashes.

dotted ‘The border will be series of circular dots.

double ‘The border will be two paralellines with a gap betwieen them.
groove ‘The border will appear to have be sunken into the page.

inset ‘The border will be such that the content looks sunken into the page.
outset “The border will be such that the content looks raised from the page.
ridge ‘The border will appear raised from the page.

solid ‘The border will be single, unbroken line.

OEBPS/Images/t0818.jpg
Table 8-18. The q Element

Element q

oaTsos Mewiog

OEBPS/Images/t1602b.jpg
e

only-of-type

nth-child(n)

nth-Last-child(n)

nth-of-type(n)

nth-Last-of-type(n)

ensbled

disabled

YR

SHCRERS G 1S SO T L O D UL O,
containing dement.

Selects clementsthatar th soe clement of ther type
defined by theircontaining clement

Selects lementsthat ae the i child of thei parent.

Selects clementsthatarethenihfromlas child of teie
parent.

Selects clementsthat e the nih hild o thei ype defined
by theeparent.

Selects clementsthatar thenth from last hild o their tpe
defined by thei parent.

Scocts lements thatae i thei nablod sate.
Scocts lementsthatare inthei disablod stte.
Scocts lements thatae nachecked tte
Sclocts default clemens.

Selects input clements that are valid orinvalid based on
mputvalidau

Selectsconstrained nput clements tht are within or
outside the speciied ange.

Selects inut clements based on the presence o the
requized aibute.

Selects lnk eements
‘Selects lnk elements the userhas visited.

Selects lementsthatoccupy the positon on screen under
the mouse pointr.

Selects lements thatarepresently activated by the ser.
“This usually means elements tha re unde the ponter
when the mouse button s pressed.

R CEL R S

OEBPS/Images/t1907.jpg
AR ST £y T8 [GORRE TR 1 TOPRIeS.

Property Description

Values

border-top-left-radius Sets the radius fora single
border-top-right-radius comer.
border-botton- loft-radivs

border-botton- right-

Tadius

border-radius ‘This shorthand property
sets all comers at once.

A pair of length or percentage values. The
percentages relate o the width and height of
the border box.

One or four pairs of length or percentage
values, separated by a / character.

OEBPS/Images/t0817.jpg
Table 8-17. The ajn Element

Element

Element Type

Permitted
Parents

Local Attributes
Contents

TagStyle

dfn

Phrasing

Any element that can contain phrasing content

None, but the global title attribute has special meaning
Text or one abbr element

Skatand andten

OEBPS/Images/t1602a.jpg
P

fatesseoval’]

fattrrervar)

fatersewal)

fattrlemva)

cselecton, cselecton

cselectons cselectons

selectons > cselectons

cselectons + cselectons

cselectons ~ cselectons

sfisst-line

firstletter

efore
fafter

xo0t

—"

ast-child

LN (N LT S s Vo e
bt stats with the g val.

Sclects clements that define attz and whose value forthis
b endevith the sring 1.

Sclects clements that dofine stz and whose value fortis
bt contains th sting vl

Sclects clements that define stz and whose alue forthis
atibute contains muliple values, once of which s al.

Sclects clements that define attz and whose value s 3.
yphr-saparated st of values, dhe st of which sval

Sclectsthe union of the dlements matched by esch
Indiidual selector

Sclects clements that match the second slector and that
are arbiray descendants of the lements matched by the
st el

Sclects clements that match the second selector and that
e immediae descendants of the lements matched by the
fiseselector

Sclects clements that match thesecond selector and that

Sclects clements that match thesecond slecor and that
Tollow an lementthat matches the irs seoctor

Sclects thefirstline ofa block of ext.
Selectsthe first et of block of text

Inserts contentbefore or aftr the selcted clement

Sclects the oot clement n the document.

Sclects clements thatsee the fist childeen of thir
containing dements.

Sclects clements thatare th st children of their
frscucn ey oo

OEBPS/Images/t1906.jpg
JTahie 19-G. The Snorinand border Properties
Property Description Values

border Sets the border for all edges. <uidth> <style> <color>
border-top Sets the border fora single edge. cwidths <style> <color>

border-botton
border-left
border-right

OEBPS/Images/t1909.jpg
N, I TN SO T S e

Value Description
stretch “The slice issretched o il the space (hissthe defaul.

repeat e slice s repeated to il the space (this canlead to fragments o repesting)
zound “The slice is sretched and repeated to fillthe space vithout creating fragments.
space “The slice s repeated without creating ragments.Any remaining space s

distibuted around the slce.

OEBPS/Images/t0819.jpg
Table 8-19. The cite Element

Element

Element Type

Permitted
Parents

Local Attributes
Contents
TagStyle
New in HTMLS

Changes in
HTMLS

Style Convention

cite
Phrasing

Any element that can contain phrasing content

None
Phrasing content

Startand end tag,

No

The cite element may no longer be used to cite the name of a
person, but rather the title of a cited work only

cite { font-style: italic; }

OEBPS/Images/t1908.jpg
SRS 1071 AR OGTCET AN L TOpE N

Property

Description

Values

border-inage-source

border-inage-slice

border-inage-width

border-inage-outset

border-inage-repeat

Sets the source of the image.

Sets the offsets for s
image.

ing the.

Setsthe width of the border.

Setsthe area outside of the
standard border that will be used to
display the image border.

“The model by which the image s
Ko prin~—ps ety

none or url(cinage>)
1-4 clengths or ¢ values, where the
values elate to the width and height
of the image

anto
1-4 clengths or <% values

14 clengths or <3 values

1 or2 values fromstretch, repeat, or
oS

OEBPS/Images/1917.jpg
Y Example

OEBPS/Images/1918.jpg
€ 5 0 Oummguanper XS

[———y
e o 00 vl

=

OEBPS/Images/1915.jpg

OEBPS/Images/t0810.jpg
Table 8-10. The u Element

Element
Element Type

Permitted
Parents

Local Atuibutes

Conitiat:

u
Phrasing

Any element that can contain phrasing content

None

T

OEBPS/Images/1916.jpg
Example
€ > C Otitan

stings/examplehtm

WA

OEBPS/Images/1913.jpg
(=] & jms

B Example z
€ 9 C |O titan/listings/example.htm w ‘\‘

By the time we add the countless types of apples,
other well known fruit, we are faced with thousands of

OEBPS/Images/t0812.jpg
Table 8-12. The sub ana sup Elements

Element sub and sup
ElementType Phrasing

Permitted Any element that can contain phrasing content
Parents

Local Attributes None

Contents Phrasing content
TagStyle Startand end tag required
New in HTML5 No

Changes in None
HTMLS

Style Convention sub { vertical-align: sub; font-size: smaller; }
sup { vertical-align: super; font-size: smaller;}

OEBPS/Images/t1901.jpg
AN SO SO

Problem Solution Listing
Apply aborder to an element. Use the border-width, border-style, and border-color 18-
properties.
Applyaborder o asingle Use the sde-specific properties, such as border -top- 192
edge of the clement bo. wdth,border-top-styl, and border-top-color.
Specify the syle,color,and Use thebborder property (o set the border for alledges, or 19-3
widthof a border inasingle the border-top, border-boton, border-Left, and border -
declaration. right propertics o set the border for a single edse
Create aborder with rounded Use the border-xadius shorthand property orone ofthe 19-4,19-5
comers. related edge-specific properties.
Usean image to createa Use theborder-rage shorthand property orone of the 19-6, 19-7
borde more specifc related properties o set individual
characteristics.
Define a background color or Use the backgzound-color or backgzound-rage properties. 19-8
mage.
Specify the position ofa Use thebackground-posi tion property. 199

ookl B

OEBPS/Images/1914.jpg

OEBPS/Images/t0811.jpg
Table 8-11. The small Element

Element small
ElementType Phrasing

Permitted Any element that can contain phrasing content
Parents

Local Attributes None

Contents Phrasing content

TagStyle Startand end tag required

NewinHTMLS ~ No

Changes in ‘The stall element had only presentational meaning in HTMLA;
HTMLS in HTMLS, it has the semantic meaning described previously,

and the presentation aspect has been downgraded to being the
style convention

Style Convention small { font-size: smaller; }

OEBPS/Images/0822.jpg
/ B eampie
€ & C (O titan/listings/example.tml 2| A

‘Homophores are words which are pronownced the same, but
have cifferent spelings and meanings For cxample: H

T would fike a pair of pears.

OEBPS/Images/1911.jpg
/ I Bample \ &
‘ € 9 C O titan/listings/example. %% | & ‘

s i A=Y
we are faced with thousands of choices.

OEBPS/Images/t0814.jpg
Table 8-14. The wbr Element

Element

Element Type

Permitted
Parents

Local Attributes
Contents
TagStyle
New in HTMLS

Changes in
HTMLS

Style Convention

whr

Phrasing

Any element that can contain phrasing content

None
N/A
Void
Yes

N/A

Display subsequent content on a new line when wrapping
content is required

OEBPS/Images/t1903.jpg
SR SRR I ALY,

Value Description

clengths Sets the border widdh to a length expressed in CSS measurement units such as
n,px,orca.

<pero Sets the border widih to a cpere> percent of the width of the area around which
the border will be drawn.

thin ‘Sets the border width to preset widihs, the meanings of which are defined by

rediun ‘each browser, but each of which are progressively thicker.

thick

OEBPS/Images/0823.jpg
B omple
€ > C Otitan/listings/example ¥ | A

Homophones are words which are pronounced
the same, but have different spellings and.
‘meanings. For example:

Twould ke a pair of pears

Feanseathesee L can see the sea

OEBPS/Images/1912.jpg
Example
€>cC

OEBPS/Images/t0813.jpg
Table 8-13. The br Element

Element
Element Type

Permitted
Parents

Local Attributes
Contents
TagStyle

New in HTMI5

br
Phrasing

Any element that can contain phrasing content

None
N/A
Void

No

OEBPS/Images/t1902.jpg
Table 19-2, The Basic Border Properties

Property Description

Values

border-width Sets the width of the border.

border-style Sets the style used to draw the border.

bordex-color Sets the color of the border.

SeeTable 19-
3.

See Table 19-
4.

<color>

OEBPS/Images/0820.jpg
/B Eemele
€ 5 C O utanisingy/example i A

Ttk apptesand orengs. e are some sers and the i they purchasd i week:
Adar: 3 pples s 2 cranges

S 52 apples

Joe: Gapples

OEBPS/Images/0821.jpg
B Bample
€ 5 C Ouwnjisings/examplentml 9% | A,

Tiike [apples] and [oranges]

OEBPS/Images/1910.jpg
i | =52

& Erample - =

€)| B nepianistings/mample il

2222222222222222

There are lots of different kinds of fruit - there are over S0 varicties of
‘banana alone. By the fime we add the couatless types of apples, ornees
and b el o, e see Facd with oseands of ches

[eplE= =i

7777777777777777

oo|nu|w 5 H

OEBPS/Images/Title.jpg
The Definitive Guide to
HTML5

Adam Freeman

Apress*

OEBPS/Images/t0805.jpg
Table 8-5. The b Element

Element b

ElementType Phrasing

Permitted Any element that can contain phrasing content

i

OEBPS/Images/t0804.jpg
SV SO P BRI N S S CO

Attribute_ Description

_blank Open the document in a new window (or tab).
_parent Open the documentin the parent frameset.
_self Open the document in the current window (this s the default behavior).

_top Open the documentin the full body of the windor.

<frane> Open the document in the specified frame.

OEBPS/Images/t0807.jpg
Table8-7. The i Element

Element i
ElementType Phrasing

Permitted Any element that can contain phrasing content
Parents

Local Attributes None
Contents Phrasing content
TagStyle Startand end tag required
NewinHTMLS ~ No

Changes in ‘The 1 element had only presentational meaning in HTMLA; in
HTMLS HTMLS, it has the semantic meaning described previously, and
T sk iaiicel armint R aiae dianderad L Laperthe ciod

OEBPS/Images/t0806.jpg
Table 8-

The em Element

Element
Element Type

Permitted
Parents

Local Attributes
Contents
TagStyle
New in HTMLS

Changes in
HTMLS

Style Convention

en
Phrasing

Any element that can contain phrasing content

None

Phra

ng content
Start and end tag required
No

None

em { font-style: italic; }

OEBPS/Images/t0809.jpg
Table 8-

The strong Element

Element

Element Type

Permitted
Parents

Local Attributes
Contents
TagStyle
New in HTMLS

Changes in
HTMLS

Style Convention

strong
Phrasing

Any element that can contain phrasing content

None

Phrasing content

Start and end tag required
No

None

strong { font-weight: bolder; }

OEBPS/Images/t0808.jpg
Table 8-8. The s Element

Element
Element Type

Permitted
Parents

Local Attributes
Contents
TagStyle
New in HTMLS

Changes in
HTMLS

Style Convention

s
Phrasing

Any element that can contain phrasing content

None
Phrasing content
Start and end tag required

No

‘The s element had only presentational meaning in HTMLA; in
HIMLS, it has the semantic meaning described previously, and
the presentation aspect has been downgraded to being the style
convention

s { text-decoration: line-through; }

OEBPS/Images/t3802a.jpg
EERN RO, S M ‘Start monitoring the current position S
exror, options)

Clearkateh(id) Stop monitoring the current position void

OEBPS/Images/0819.jpg
(el
/B
€ 5 C O utanisingy/example i A

Ttk applesand orengs. e are some sers and the i they purchasd i week:
Adar: 3 pples s 2 cranges

25 e

Joe: Gapples

OEBPS/Images/1908.jpg
S0px

S0pX

)[172/3—(2]13

16178 —5|[7](8

OEBPS/Images/1909.jpg
/B Eempie \

€ 9 ¢ @ titan/listings/exampletm] o

1 -——-

4 There are lots of different kinds of fiuit - there are over 500 varieties of

benana alone. By the time we add the countless types of appies, oranges,
and other well-known fruit, we are faced with thousands of choices.

6 S —

oojeajw]| | 4

OEBPS/Images/t0401.jpg
SR L A

Problem

Solution

Define a style.

Apply a style directly to an
clement.

Create a style that can be
applied to multple elemens.

Create syles that can be
applied to multiple HTML
documents.

Determine which style
properties will be used fora
given element

Override the normal style
cascade.

Usea style property defined by
aparent

Specifya property value in
Sk L R e

Usea property/value declaration.

Use the style atuibute to create an inline style.
Use the style element, and specify a selector and a
number of style declarations.

Create an external stylesheet, and reference it using,

the Link element.

‘Apply the cascade order to your source of tyles, and
‘calculate style speeificity for ti-breaks.

Create an important styl.

Use property inheritance.

Usea relative unit of measure.

3.4

59

1012, 14-16

13

718

OEBPS/Images/0419.jpg
Qo B
€ 5 C O ttamisingsieampienm 35S

mycass2 span. a Clear () Toggle Positon Xpath

o X

. - .

OEBPS/Images/1508.jpg
eSS
/B e &

€ 5 € Ouenisings/examplenm v A

OEBPS/Images/t0403.jpg
TSRS BENCING L

ColorName__ Hex Color Name. Hex Decimal
black #000000 0,0,0 green roos0 0,128,0
silver #ococo [ERTRCI I R0FR00 0,255,0
sray #808080 w8,08,18 [olive o0 128,128,0
white e 255,255,255 | yellow wEER0 255,255,0
nazoon #800000 125,00 navy ook 00,28
red ##F0000 25,00 blue o000 0,0,255
purple #800080 128,0,128 teal mososo 0,128,128
fushia H¥ro0r 255,0,255 aqua ROREFE 0,255,255

OEBPS/Images/1509.jpg
anglc
€ 3 C Ot

e
| € 5 ¢ Qutanis|

[)
€ 3 C (@ uanisings/eanpiehn | X

OEBPS/Images/t0402.jpg
bl o Lt o'
Property Description Chapter
background-color Sets the background color of an element 19

i P R S B "

OEBPS/Images/0416.jpg
/ © Eomple

| € 2 &[@ttnisingseramplentmi EY

Visit the Apress website

OEBPS/Images/1506.jpg
B ampie X
€ & € [O tianistings/exampleh

Google /0 2011: HTML5 & What's Next

OEBPS/Images/t0405.jpg
SRS (T Oar PRI

Function

Descri

Example

(x, g, b)
gha(s, g b, 3)

hsih, s, 1)

hsla(h, s, 1, a)

‘specifies a color using the RGB model.

Specifies a color using the RGE model,
with the addition of an alpha value to
specify opacity. Avalue of 0 s ully
transparent; a value of 1 s fully opaque.

‘specifies a color using the hue,
saturation, and lightness (HSL) modl.

“The same as for HSL, but with the.
addition of an alpha value to specify
opacity.

color: rgb(112, 128, 144)

color: rgba(112, 128, 14, 0.4)

color: hsl(120, 100%, 22%)

color: hsla(120, 100%, 22%, 0.4)

OEBPS/Images/0415.jpg
/@ sampie \ =

€ € | @ titanlistings/example.htm! LIRS

Visit the Apress website

d orans

o fike mangos and cherries

Visit the W3C website

OEBPS/Images/1507.jpg
/|| Bample
€ 2 © [® titan/listings/example html e

Sorry! We can't display this content

OEBPS/Images/t0404.jpg
Table 4-4. Selected CSS Colors

Color Name Hex Decimal

darkgray #agagag 169,169,169
darkslategray #2fafaf 47,79,79

dingray #696969 105,105,105
gray #808080 128,128,128
lightgray #d3d3d3 211,211,211
lightslategray #7889 119,136,153

slategray #108090 112,128,144

OEBPS/Images/0418.jpg
e R R S L e —)

Lo vensieeires

@>F a|m

e o it

IREpE143¢ oG e

=

¥ Compted e Tisiou mmasind -

» sacegron-ateschrent: scrall;
 acuaraina ci seroer-bexs
W,

OEBPS/Images/1504.jpg
3px
68px

aopx

b2px

70px
130px

OEBPS/Images/t0407.jpg
(N8 e (ol TERATI XUNECE Cf MRS SUTERRENL.

Unit dentier Descrption
e Relative to the font sizeofthe lement

e Relative to “x-height” ofthe element's font

ren Relative to the font sze of the oot lement

e Anumberof G55 pixes assumed o be on 2 96dpi displa)
% A percentage of the value of another property

OEBPS/Images/0417.jpg
/@ arme
| € 5 ¢ O taistigyerampienimi

A

Visit the Apess webske

OEBPS/Images/1505.jpg
B compe

€ > et

Things I ']

€ 3 C Otitanvlis

Things I like

Fruits

Tk apples and orenges|

€ > €@ ftanistnoy

Things I like

o EoitsLike
o Actiies 1 Like

Activities I like

Tike to swin, cycle andnn [traving -

OEBPS/Images/t0406.jpg
Table 4-6. CSS absolute units of measurement

Unit Identifier Description

in Inches

Py i s

OEBPS/Images/0412.jpg
[® example
€ C | @ titan/listings/example.ntml 9| X

Visit the Apress website

T e apples and oranges

OEBPS/Images/1502.jpg
 T——
Sample x

€s>cC

titan/listings/exampletml |

‘Here i @ common form for represcnting the three activiics ina
tiathlon.

The firsticon represeas swinming. the second represeats cycling
and the tird represeats running.

OEBPS/Images/0411.jpg
© semple
€ C | @ titan/listings/example.ntml 9| X

Vit the Apress website

T e apples and oranges

OEBPS/Images/1503.jpg
© OtherPage \

|« » ¢ [0

stings/otherpage.itm|?104 oA

The X-coordinate s 10 H

The Y-coordinste i 4

OEBPS/Images/0414.jpg
/ © sampie
€ > C [titanfistings/examplentm 7| X

Visit the Apress website

and

the W3C website

OEBPS/Images/0413.jpg
/ © bampie ®_
| € 2 € | titan/listings/example.ntm ¥¥ | X

Visit the Apress website

Like apples and oranges.

Visit the W3C website

OEBPS/Images/1501.jpg
|
Erample &
€ > C O titan/listings/exampletml %X

‘Here i common form for represcnting the three activiics ina
tiathlon.

The firsticon represeas swinming. the second represeats cycling
and the tird represeats running.

OEBPS/Images/0410.jpg
© semple
= C @ titan/listings/examplehtml ¥ X

Vit the Apress website

T e apples and oranges

OEBPS/Images/t0718a.jpg
charset SIS S SN S O 18 S MR S T, T RIRI s G P
used in conjunction with the szc atuibute.

OEBPS/Images/0409.jpg
[® xample
= C @ titan/listings/examplehtml ¥ X

T e apples and oranges

OEBPS/Images/0408.jpg
© semple S
€ C | @ titan/listings/example.ntml 9| X

Visit the Apress website]

T e apples and oranges

OEBPS/Images/t3901.jpg
Lo

P e

Problem Solution Listing

Store persistent data in the browser Use the localtorage property to obtain aStorage 1
abject

Monitor changes in storage caused Handle the storage event 2

by other documents from the same

origin

Store short-lived data in the browser Use the sessionstorage property to obtain aStorage 3
object

Monitor changes in storageinthe Handle the storage event 1

top-level browsing context

OEBPS/Images/0405.jpg
© bample

€ > C | ® titan/listings/examplentm|

Tike| apples |and oranges.

OEBPS/Images/t2101a.jpg
v Apsgimmate ootttk SR ot AL s B
container. 29

Create table-style layoutfor elements. Use a CSS table layout. 2110

OEBPS/Images/0404.jpg
€ 9 C | ® titan/listings/example.ntml

Tlke apples and oranges.

OEBPS/Images/0407.jpg
© semple
R C' | @ titan/listings/examplehtml Y| X

Visitthe Apress website
T e apples and oranges

Visit the W3C website

OEBPS/Images/t3902.jpg
Lol B s ot ot e

e Sescipion Rears
Gt [—v—r—— i

stttncton) Rerieve he alueassoiaed wihhepecfedkey string
key(<index>) Retrieves the key at the specified index string
et Retums he numberof sored ke e pis aer
rerovelten(<key>) Removes the key/value pair with the specified key string
ettty nlio) Asanekey vl paror s hevaleifheley votd

] Ayl cess o e thevalu sodtedvithahe sting

Specified key

OEBPS/Images/0406.jpg
/ @ Eample
€ € | @ titan/listings/example.html RN

F--a
Tlike | apples 1and oranges.

(R

OEBPS/Images/t3903.jpg
et

R .

Name Description Rotums
ey Retuns thekey that has been changed sering
aldvalue Retuns theoldvalue associated vith the key string
rewtalue Retums the e value associated with the key string
url Returs the URL of the document hat made the change string
storagenrea Retums the Storage object which has changed storage

OEBPS/Images/0401.jpg
Property value Property Value

| S S

background-color: grey | ; | color: white

))

Declaration Declaration

OEBPS/Images/0403.jpg
<style type="text/css">

Selector = a_[{

}

</style>

background-color:grey;
color:white

|€— Declarations

OEBPS/Images/0402.jpg
== -
Torm O o

€ > € [O ttan/istings/exampietm WA

Tike apples and oranges.

Visit the W3C sebs

OEBPS/Images/t0607a.jpg
Oprgroup.
aption
output
select

textarea

T T L S ——
Denotes an option o be presented to theuser
Denotes the result of a calculation

Presents the user with afixed et of optons

Allows the user to enter multiple lines of text

ey
A

Phrasing
Phrasing

Phrasing

SE—
Unchanged
New
Changed

Changed

OEBPS/Images/t0608a.jpg
progress

source

svg

track

video

VIR N R o AR SN
or completion of a task

Denotes a media resource
Denotes structured vector content

Denotes a supplementary media track, such as a
subtitle

Denotes a video resource

it 4

NiA
NiA

NiA

NIA

i

OEBPS/Images/t0801a.jpg
O T N N AT
Denote imporcance.

Denote fine prnt.

Denote superscriptor subscript.

Denote aline ek or an opportunity for
line break.

Represent computer code, the output from
a program, or a variable or input from

Denote an abbreviation.
Denotea defition ofa tem.
Denote quoted conten.

Cite the e of nother work.

Denote ruby annotations for East-Asian
languages.

‘Specify the directionalityfor a span of

solatea span of text forthe purposes of
directionaliy.

‘Apply a global auribute to content

Denote content that has relevance in
another context.

Denote text that has been added or
removed from the document.

Denote a time or date.

S TN
Use the strong clement.
Use e srall element,
Use the suporsub elements.

Use thebx orubr clements.

Use the code, var, sarp, o kbd
elements

Use the abb clement.
Use the g cement.
Usetheq clement

Use hecite dement.

Use the ruby, xt, and zp elements.

Use the bdo clement,

Use the bd element

Use the span clement.

Use the sark element.

Use the s and del clements.

Use the tise clement.

8

810

812,

e

815

816

817

818

a9

820

821,

823

s

825

826

813

822

OEBPS/Images/t0910a.jpg
Local Attributes value (only permitted when child of ol element)
Contents. Flow content

Tag Style Startand end tag

New in HTML5 No

Changesin ‘The value attribute was deprecated in HTML4, but has been
HTMLS restored in HTMLS

Style Convention 11 { display: list-item; }

OEBPS/Images/t2808.jpg
T ETL N DTN A

Member Description Retums
createtlenent(ctag>) Creates anew HTMLEleent object with the specific ag. HTMLELenent
tpe

createTexthode(ctext>) Creates anew Text object with the specified content Text

OEBPS/Images/t2809.jpg
O T N T TR, YT N AP S SN

Value

Description

afterbegin
afterend
beforchegin

beforcend

Inserts the fragment as the first child of the current element
Inserts the fragment immediately before the current clement
Inserts the fragment immediately before the current element

Inserts the fragment as the last child of the current element

OEBPS/Images/t2806.jpg
FO G0 SN MO ER et

Momber Description Retums
appendoata(cstring>) Appends the specfiedsting o the end of the void
block oftext
ata Gets o sos thetext string
deleteData(coffsets, <counts) Removes the text from the suring;the first — void
number s the offset, and the second i the
‘number of characters to remove
Inserts the specified stringat the specified void

inserthata(coffsets, cstring)

borisy

OEBPS/Images/t2807.jpg
T L T .

Member Description Retums

appendChild(HTMLElerent) Appends the specified clementasa HTMLElenent
child of the current clement

cloneode(boolean) Copies an element HIWLElenent

conparebocunentPosition(HTMLELesent) Determines the relative position ofan nurber
clement

innextTvL Gets orsets the clement's contents string

insertdjacenthTHL(<pos>, <texts) Inserts HTML relative o the element void

insertBefore(<nestlem, <childelem) Inserts the first clementbefore the WTMLElerent
second (child) element

isEqualNode(<HTMLE levent>) Deiiatein i i icciiod danntls bocleis

OEBPS/Images/t1805a.jpg
Selects elements that are in a checked state.
Selects defaul clements.

‘Selects input elements that are valid or invalid, based on input
validation.

‘Selects constrained input elements that are within or outside the
specified range.

Selects input elements based on the presence of the requized
aribute.

OEBPS/Images/t1710.jpg
Table 17-10. The Chila Selector

Selector: <first selectors > <second selectors

Matches: Selects elements that match the second selector and are
immediate descendants of the elements matched by the
first selector

Since CSS Version: 2

OEBPS/Images/t2801.jpg
SRS e

Problem Solution Listing
Getinformation about an clement Use the HTMLElerent metadata properties 1
Getor seta single string containing all Use the classkare property 2
of the classes to which an element
belongs
Inspector modify individual lement s the classList property.)
classes
Getor set an element's attributes. Use the attribute, getattribute, setAttribute, 4,6
renoveAttribute, and hashttribute methods
Getor setan dlement's custom Use the dataset property 5
auibutes
Work with an element’s text content UseText objects 79
Create or delete elements Use the docurent. create? methodsand the 10
HIMLELerent methods for managing child
clements
Duplicate an element Use the clonelode method n
R — Due s sppenioickid mutiend 12

OEBPS/Images/t1712.jpg
Table 17-12. The General Sibling Selector

Selector: <first selectors ~ <second selectors

Matches: R RCTN TR - Y L. (WK WS |

OEBPS/Images/t1711.jpg
Table 17-11. The Immedaiate Sibling Selector

Selector: <first selectors + <second selectors

Matches: Selects elements that match the second selector and
immediately follow an element that matches the first
selector

Since CSS Version: 2

OEBPS/Images/t1714.jpg
Table 17-14. The :first-letter Pseudo-Element Selector

Selector: first-letter

Matches: The first letter of text content

OEBPS/Images/t2804.jpg
SR

b b i e

Hember Description Retums

attributes Tiatiins tha aitibai avniied 16 thadlenaas - ME)

OEBPS/Images/t1713.jpg
Table 17-13. The :first-line Pseudo-Element Selector

Selector: first-line
Matches: ‘The first line of text content

Since CSS Version: 1

OEBPS/Images/t2805.jpg
S A T IO AT N AN SNE
Properties Description Retums
nare Returns the name of the attribute. string
value Getsor sets the value ofthe attribute string

OEBPS/Images/2813.jpg
=
B Eerple & T
€ 2 ¢ | titaniisting| / B semple x

€ € @ titan/listings/exe ¥¥ | N
Fruit__|Color] =

Plecelolder Fruit | Color
Before Begin

Ater Begin | (Ater End
(BeomBegn) After Begin | Placeholder

Aficr Ead

[AieBegin) (AlerEnd
BeioaBagn) (BsmEn]

OEBPS/Images/3903.jpg
/ ©ampe \

€ = C O ttan/isings/examplentm * A
Key[Cheny Banana: | Yellow
Value:|Red Apple: | Green
[Cloar] Cherry: |Red
There are 3 kems
key |oldValue|nevValue url storageArea
Banana|mil | Yelow | hitps/itanlistings'example b false
Apple [mi [Red |hitpsitanlistingslexample b fase
Apple [Red |Green | hitpsitanlistings'example i false
Chery |ml [Red | bitpy/titantlisings/exampie himl | false

OEBPS/Images/t2802.jpg
£

Eomtesaia Lot o o

Property __Description Retums
checked Gets o setsthe presence of the checked atribute boolean
Classtist Getsor sershelistof lasses to which the clementbelongs DO¥Tokentist
Classtore Getsor setsthelistofclasse o which the cement belongs string

aix Getsorsets the value ofthe diz atrbute string
disabled Gets or sets the presenceof the disabled atribute boolean
hidden Gets orsets the presence ofthehidden artribute boolean

s Getsorsets the value ofth id artibute string

Lang Gets orsets the value of the Lang attibute string
spellcheck Gt o setsthe presence of thespelLcheck attibute boolean
tablndex Getsorses the value of the tabindex attibute nunber
toplare Retums the tag name (indicating the clement type) string
ttle Getsorsets the value of the title atrbute string

OEBPS/Images/2814.jpg
/B Barple
€ 3 ¢ Otita

There are lots of diffe|

5mE-By the time we add the countless types of appls, oranges,
and other well-known fru, we are faced with thousands of choices.

Insert Element

OEBPS/Images/3902.jpg
(= = e

© Bample) © stonage. &
€ 5 C O titanistings/storagehim KN
key |oldValue newValue url storageArea
Banana | sull Yelow | hitp:/titanlistings/cxample himl | truc
Apple [ml [Red hpitteniitngs exampe b e
Appie |Red [Green optanfistingslexampie b e
Cheny [mil |Red | optnfistings/example b e
il oull mll hitp:titem fistings/example himl | true:

OEBPS/Images/t1715.jpg
AT TR IR)

Selector Description 88 Version

before Inserts content before the content of the selected elements

ter Inserts content after the content of the selected elements 2

OEBPS/Images/t2803.jpg
ool Bt Dol it

Wember Description Retums
ada(cclass>) Addsthe specified lass o the dlement votd
contains(<class») Retums tzu if the lement belongs to the specified dlass boclean
length Returns the number of lasses o hich the clement belongs nurber
zemove(cclass>) Removes the specifed lassfrom the element botd
toggle(cclass») Adds the class it is not presentand removes i ft s present _ boclean

OEBPS/Images/2811.jpg
/B Eremple €
€ & C Otitan/listings/example.ntml RN

Fruit | Color | Fruit| Color

‘P | Purple || Phu | Purple.

[<er sa=rappieroun>
taspramenas

<taspuzplac/case/tes |

(e

OEBPS/Images/3901.jpg
(O O

= € | @ titan/listings/example.htmi w N

Banana: | Yellow,

Apple: | Green
Cherry: |Red

OEBPS/Images/2812.jpg
Weerrie @ —
€ 5 ¢ [Ouanvisingyeampienm | /B sape N
€ 5 C|Ottanisings/exampienimi {7 A,

Fruit | Color Fruit Color_|

B[Velow | [P [pupe || [Fmit | Color | [Frut| Colr

Apple |Red/Green| | Thisis the placeholder ||| [Banana | Yellow. Phm_| Purple
e

OEBPS/Images/2810.jpg
/B bamole &

€ 2 C [titanlistings/example.h

() om.‘/uwms/m.,,mmﬁ -\|
Fruit | Color | [Fruit] Color

Puple

Color
Yellow

Color
Purple
Red/Green

Banana | Yelow
Apple |Red/Green

OEBPS/Images/t0913a.jpg
HiML>

Style Convention figeaption { display: block; }

OEBPS/Images/t1707.jpg
R L LI, NN R DN T,

Condition Descripton 58 Version

(attr] Selects elements that define the aurbute attx, inrespectiveof the 2
value assigned tothe atribute (this is the condition shown in Listing
17-6).
Selects elements that defineattx and whose value for this atribute 2
isval.
Selects elements that defineattx and whose value for this atribute 3
starts with the stringval..
Selects elements that defineattx and whose value for this auribute 3
ends vith the string val..

4a1"] Selects elements that defineattx and vhose value for this atribute 3

contains the string val
Selects elements that defineattx and whose value for this atribute 2
contains mulpl values,one of which s val. See Lising 177 foran
example of using his selector
Selects elements that defineattx and whose value is abyphen- 2

separated lis of values, the Arstof which i vaL. See Listing 17-8 for
an example of using this selector.

OEBPS/Images/t1706.jpg
Table 17-6. The Element Attribute Selector

Selector: [<condition>]
<element type>[<conditions]

Matches: Elements that have attributes that match the specified
condion lece Tabla 177 i tha sitrortel conulioi

OEBPS/Images/t1709.jpg
Table 17-9. The Descendant Selector

Selector: <first selectors <second selectors

Matches: Selects elements that match the second selector and are
descendants of the elements matched by the first selector

Since CSS Version: 1

OEBPS/Images/t1708.jpg
Table 17-8. The Selector Union

Selector: <selectors, cselectors, <selector>

Matches: Selects the union of the elements matched by each
individual selector

Since CSS Version: 1

OEBPS/Images/t3126a.jpg
.
required

s

step

e

value
valueksdate
valuekshurber

selectedoption

steplp(cstep)
steploun(cstep?)

willvalidate

validity

validationvessage

checkvalidity()
SetCustonvalidity(crsgs)

Labels.

T I S — o
Corresponds tothe requized atibute
Cortesponds tothe ize atbute
Cortesponds tothe sc atebute

Cortesponds tothe step atbute
Cormesponds tothe type atbute
Cortesponds tothe value attribute:

Gets or s the value attribute as a date object
Gets orses the value attrbute as a number
Gets the aptin clement from the datalist

specified by the list aribute that matches the.
input clement'svalue

Increases the value by the specified amou
Decreases thevalue by the specified amount

Returms true if the elementwill be subject to
inputvalidation when the form is submited;
retums false othenvise

Returns an assessment of the validity of the input

Returns the error message that viould be shown
tothe user if inputvalidation was applied

Performs input validation on the clement
Sets a custom validation message

Returns the label clements associated with this
clement

S
baolean
nusber
sering
sering
string
string
oate
nusber

HIMLOptionElesent

void
void
boolean

Validitystate

string

boolean
void

HTMLLabelElenent (]

OEBPS/Images/2808.jpg

OEBPS/Images/t1917a.jpg
o

spread

color

inset

(Optional) Specifies the blur radius, which is a length value. The larger the value, the
more blurred the edse of the bosx. For the default value, 0, the edge of the bos s sharp.

(Optional) Specifies the spread radius, which is a length value. Positive values make the
shadow expand in al directions, and negative values cause the shadow to contract
toward the bos.

(Optional) The color of the shadow. If omiteed, the browser will select a color.

(Optional) Causes the shadaw to be inset inside the box. See Listing 19-15 for an
example.

OEBPS/Images/2809.jpg
S Boae *\&

€ > C Otianis € [© ttanist

Name Name|Color
Banaoe | Yelow

Apple | RedGreea|

(Acd Eiement] [Remove Eiement

OEBPS/Images/1717.jpg
© bamle
"

1. Thike apples and oranges.

2. Taiso lke mangos and cherrics.

the W3C websit

OEBPS/Images/2806.jpg
Eample x &

« C' | ® titan/listings/example.html w A

[There are lots of diferent kinds of fiuit - there are over 500 varieties of banana
lelone. By the time we add the countless types of apples, oranges, and other well-
Jknovn fuit, we are faced with thousands of choices.

: 1d Value: cexeblock
class Value: fruit mumbers
data-frait Value: apple
: data-sentiment Value: like
of dsta-fruit atcr: banana

OEBPS/Images/t1701.jpg
S T2 SN S —

Problem Solution Listing
Select all of the elements. Use the universal selector 171
Select clements by type. Use the type selector. 172

Select elements by the value of the class
global attribute.

Select elements by the value of the 1d global
auibute.

Select elements based on attributes.

Create a union of selectors.

Select descendants of an lement.

Use the dlass selector.

Use the id selector

Use the attributes selectors.

Separate the selectors with a comma,

Separate the selectors with a space.

T T

through

178
179

17-10,17-
i

T

OEBPS/Images/2807.jpg

OEBPS/Images/1715.jpg
®© Bample &
€ > C |® titan/listings/example.htm| 7¢ |

Fouxscme ‘and seven years ago our fathers brought
frth on this continent a new nation, conceived in
liberty, and dedicated to the proposition that all men are
created equal

[ke apples and oranges.

Visit the W3C website

OEBPS/Images/2804.jpg
Eampie

€ > C [© ttan/listings/example him Y| X

ere are lots of diferert kinds of frui - there are over 300 varietis of banana
2. By the time we add the countless types of appls, oranges, and other
el known frui, we are faced with thousands of choices.

Slement has lang attzibate: false
Adding lang atcribute

Attr value is : ea-US

Set new valus for lang sttzibuce
Value is now: en-UK

OEBPS/Images/t1703.jpg
Table 17-3. The Element Type Selector

Selector: <elenent type>

Matches: All elements of the specified type

Since CSS Version: 1

OEBPS/Images/1716.jpg
©Bampe

Click here to

the Apress website!
Tike apples and oranges

Click here to Visi the W3C websitel

OEBPS/Images/2805.jpg
=8
Wearpe
€ 9 C O titan/listings/examplehtm o A

[There are lots of different kinds of frat - there are over 500 varistes of banaa.
lelonc. By the time we edd the countiess types of apples, oranges, and ofher vl
ywn fi, we are faced with thousands of choices

Exuic
sentinent
Value of dasa-fruit accr: apple

OEBPS/Images/t1702.jpg
Table 17-2. The Universal Selector

Selector: *

Matches: All elements

Since CSS Version: 2

OEBPS/Images/1713.jpg
® bample

€ > C | titen/listings/example.ntml

ist the Apress website

Thike apples and oranges.

Visit the W3C website

OEBPS/Images/2802.jpg
/B Eompe

/B e,
€ 5 C O titanfistings/examplenim ey

There are lots of ifecent kinds of f - there are over 500 varides of banara alone.
B th tme we add the countecs types of apples, oranges, and other well knovn it
boy

OEBPS/Images/t1705.jpg
Table 17-5. The Element id Selector

Selector: #<idvalue>
<elenent type>.ticidvalue>

Matches: ‘The element that has the specified value for the id global
attribute

Since CSS Version: 1

OEBPS/Images/1714.jpg
€ > C O ttan/listings/exemplehtm

s fathecs brought forth on his contineat a pew
‘conceived i Berty, and dedicated tothe proposiion thatall men e created equal

e s s
Vithe WIC setsie (

@ brample

€ 3 C O fitan/listings/exampletml A

ourscore and seven years ago ou fathers brought fort on 3
contincnt a ncw nation, conceived in ibery, and dedicated to the
proposiion that ol men are created equal

I

OEBPS/Images/2803.jpg
(== \
€ 5 C Ouaisingsion

o o o G s

OEBPS/Images/t1704.jpg
Table 17-4. The Element Class Selector

Selector: ~<classnane> (or *..<classnane>)
<elenent type>..<classnane>

Matches: Elements that belong to the specified class.
When used with an element type, all elements of the
specified type that belong to the specified class are
selected.

Since CSS Version: 1

OEBPS/Images/1711.jpg
@ Ecmple \

€ 3 ¢ [Quaniistings/examplentl Y A
Name || city

Adam Freeman London

JoaSmith New York
Anpe Jones Paris

Tiike |apples | and crasges

Name | City

Peter Pererson Boston
Chuck Fellows Paris
JascFih Paris

OEBPS/Images/1712.jpg
@ Eample
€ 3 C O titan/listings/example html YIRS

isit the Apress website

Tike apples and oranges.

Visit the W3C website | Visit Google:

OEBPS/Images/2801.jpg
ample \
/B

€ 5 € (O tnisings/exmplenm 3N

lasg: en-J5
hidden: false
disabled: undefs

OEBPS/Images/1710.jpg
4 & C |® titan/listings/examplehtml IR S

Name City

Adam Freeman | London

Joe Snith New York

Aune Jones | Paris

Tlike apples and oranges.

Name City
Peter Pererson Boston
Chuck Fellows Paris
JaneFith Paris

OEBPS/Images/t0827a.jpg
HiML>

Style Convention None

OEBPS/Images/t1011a.jpg
TagStyle:
New in HTMLS?

Changes in
HTMLS

Style Convention

this element.
Startand end tags
Yes

N/A

address { display: block; font-style: italic; }

OEBPS/Images/t0607.jpg
Bl ol b

Element _ Description Type New(Changed
buttan Denotes a button that wil submit or reset the form ~ Phrasing Changed

or that can be used as a generic button)
datalist Defines a setof suggested values for the user Fow Changed
fleldset Denotesa group of form elements. Flow Changed
forn Denotes an HTML form Flow Changed
input Denotes a control to gather data from the user Phrasing Changed
keygen Generates a public/private key pair Phrasing New
Label Denotes alabel for form element Phrasing Changed
lagend Denotes a descriptive label for a fieldset element N/A Unchanged

OEBPS/Images/t0606.jpg
AT CaE B

Element Description Type New(Changed
caption Adds a caption o a table N/A Changed
N/A Changed

o Thisotns & aloale Sl

OEBPS/Images/t0608.jpg
S AT O e

Element _ Description Type New(Changed
area Denotes an area for a client-side image map Phrasing Changed
audio Denotes an audio resource NiA New
canvas Provides a dynamic graphics canvas Phrasing/Flow New
erbed Embeds contentinan HTML document usinga Phrasing New
plugin
ifrane Embeds one documentin anotherby creatinga Phrasing Changed
browsing context
ing Embeds animage Phrasing Changed
wap Denotes the definition of a client-side imagemap Phrasing/Flow Changed
eter Embeds a representation of a numeric value Phrasing New
displayed within the range of possible values
object Embeds contentin an HTML document, and can Phrasing/Flow Changed
also be used to create browsing contexts and to
create client-side image maps.
paran Denotes a parameter that will be passed t0.a plugin N/ Unchanged

sty e T ey

OEBPS/Images/1308.jpg
==
/ @rostaato \
€ < C |Otitan8080/form) A
Form Data
o
name Adam
password mysecret
fave Apples.

OEBPS/Images/1309.jpg
B Eample
€ > C | Otitan/listings/examplentm| 78| A

Name: |Adam

Password: [Vin 5 characters

Frut: [Apples

ResaFom)

OEBPS/Images/1306.jpg
[E=RE]
/ @pestaza A =
€ < C |Otitnaoso/form * A
Form Data
o
city Boston
fave

OEBPS/Images/1307.jpg
B Gerpe

Name: Adam |

Password: [1in ¢ e

€ > € Qtitan/listings/erar

Eample

€ 3 ¢ O tan/isings/eamplentn % | X,

Name: [Adam

OEBPS/Images/1304.jpg
¥ Opera — [ESRER)
emple & >
€ > D o [Oue

I ‘Name: [Your name

City:[Where you live l
| |
Fruit |
[Apples — Lovely Apples| |
Cherries
O ® % 6 [vemw. | - —o——

OEBPS/Images/1305.jpg
Gample

€ > C | © tian/listings/example.ntml w A\

Name: [Adam

Ciy: [Boston

Fruit:

OEBPS/Images/1302.jpg
[T

/ Boampe A
€ & C @ titanylistings/exampletml WA
Name: Your name

City: [Where you live

Frut Apple

OEBPS/Images/1303.jpg
[ESEE] =
v "
(€)3 | (B vepssirompisingesampiontmt 77 -] | 32 ||

Name: Your nome

City: | Where you live:

Fruit

OEBPS/Images/t2807a.jpg
is5aneNode(HTHLElencnt)

outertTvL

TemoveChild(HTMLElerent)

replaceChild(HTMLElenent, HI¥LElerent)

S PR O .

Determines f the specified clementis
the same as the current element

Gets or sets an element’s HTML and
contents

Removes the specified child of the
current element

Replaces a child of the current
clement

boolean

string

HPMLELenent

HIMLELenent

OEBPS/Images/1301.jpg
[P |

Form Data

Name: Adem Froom

iy ve n Lowdon

Fruic Pomegraral

OEBPS/Images/adam_freeman.jpg

OEBPS/Images/t0713a.jpg
Tesolution

orientation

aspect-ratio
device-aspect-
ratio

color
onochrone:

color-index

scan

grid

Specifies the pixel density of the device.
Units are dps (dots per inch) or dpen (dots
per centimeter).

Specifies the orientation of the device. The
supported values are portrait and
Landscape. There are no modifiers for this
feature.

Specifies the pixel ratio of the brovser
window or the entire device. Values are
expressed as the number of width pixels
over the number of height pixels.

‘Specifies the number of bits per pixel of
color or monochrome devices.

Specifies the number of colors that the
display can show.

Specifies the scanning mode of a TV. The
supported values are progressive and
interlace. There are no modifiers for this
feature.

one-line pager displays. The supported
values are 0 and 1, where1 is a grid device.
‘There are no modifiers for this feature.

max-resolution:600dpl

orientation:portrait

min-aspect-ratio:16/9

min-nonochrone:2

max-color-index:256

scan:interlace

grid:o

OEBPS/Images/t3702.jpg
Ao YR S AR S
Value Description

true The clement can be dragged
false The element cannot be dragged

auto The browser may decide fan element can be dragged

OEBPS/Images/t3703.jpg
b Lol

T R S N O,

Name Description
dragstart Triggered when the clementis first dragged
drag Triggered repeatedly as the clementis being dragged

dragend

Triggered when the drag operation is completed

OEBPS/Images/t3701.jpg
Lot

S I R

Problem Solution Listing

Enable dragging for an HTML element Set the draggable anribute to true 1

Manage the dragging lifecycle Handle the dragstart, drag and 2
dragend events

Create a drop zone Handle the dragenter and dragover 3
events

Receive a dropped elementin the drop. ‘Handle the drop event 4

‘Transfer data from the dropped elementto Use theDataTzansfer object 5

the drop zone

Filteritems based on the content they carry Use the getData method of the 6
DataTxansfer object

Process files dragged from the operating Use the files property of the 7

system and dropped in the drop zone DataTxansfer object

Upload files dragged from the operating Use the append method of the. 8

o sl i anit i e i i S

FornData object, passing the File

OEBPS/Images/t3706.jpg
A L AL T .

Name Description Retums
types Retums the formats for the data sting(]
getoata(cfornaty) Returns the data for specific format string
setata(cformaty, cdata) Sets the data for agiven format void
clearbata(<formats) Removes the data for a given format void
files Returns alist ofthe files that have been dragged Filelist

OEBPS/Images/t3707.jpg
IO TeE i SN ENDDOTEEY GUp N Y VIR TS s
Name Description Retus
nare Gets the name of thefile string
type Getsthe type of fle, expressed as a MIME type string

nusber

size Gets the size (inbytes) of the file

OEBPS/Images/t3704.jpg
RO AT S —
Name Description

dragenter Triggered when a dragged clement entrs the screen space accupied by the drop zane
dragover Triggered when a dragged element moves within the drop zane

dragleave Triggered when a dragged element leavesthe drop zone without being dropped

drop

Triggered when a dragged element is dropped in the drop zone

OEBPS/Images/t3705.jpg
o

(S PP SRR W SO0 SO S

Name Description Returns

dataTransfer Returns the object used to transfer data to the drop zone Datazansfer

OEBPS/Images/t0603a.jpg
b

»
=t

suby

sap

snall

span

strong
sub
s

tire

AARAIEN RANE T .
document

Denotes userinput

Denotes content thatsh
relevance in another cont

Denotes content quoted from another source
Demotes parametersfor use with the by clement
Denotes anotation for use with the by element

Denotes anotation o be placed above o o the
right o characters i alogographic lnguage

Denotes text that s nolongeraccurate.

Denotes output from a computer program

Denotes fine print
‘A generic clement that does o have semantic
meaning o it ovn. Use his element t0 apply.
elobal attributes without imparting additonal
semantic signiicance.

Denotes textthat s important

Denotes subscripttext

Denotes superscripttext

Denotes atimeor date

Offcts a span of text without addiional emphasis
orimportance

Denotes avarible from a program or computer

Denotes a place where a line reak can be safely
placed

e i

Pheasing

rsing.

Phrssing
Phrssing
Pheasing

Pheasing

Phessing
Pheasing
Pheasing

Phessing

Phrssing
Phessing

Phessing

Pheasing

Pheasing

Pheasing

S

Unchanged

New

Unchanged
New
New

New

Changed
Unchanged
Changed

Unchanged

Unchanged
Unchanged
Unchanged
New

Changed

Unchanged

New

OEBPS/Images/t0712a.jpg
e
braille
handheld
projection
print

tty

v

P P L WY O DA
Apply this style to Braile devices.
‘Apply this style to handheld devices.
Apply this style to projectors

Apply this style n print preview and when the page i printed.

Apply this style when the content is shown on a computer screen.
Apply this style o fived-width devices, such as teletypes.

Apply this style o televisions.

OEBPS/Images/t2608.jpg
Property Description Retums
getElerentyld(<id) Retumshe lement it hespecifed 4 T clerent
setelenentstyclasstane(cclass) Retumshe lementswith the pecfedclass T clernt(]
getelenentstylare(cnanes) Retumsthe lmentswith the pecfednane T clernt(]
setelenentstyTaglane(<tag>) Returns the elements of the speciied type HIKLELerent[]
queryselector(<selecton) Returns the firstclement that matches the HTMLElerent
specified CSS selector
aueryselectorl] (<selectors) Returns al of the clements that match the HTMLEleven[]

specified C5S selector

OEBPS/Images/t1801a.jpg
SENE SRS

Select the clement that the mouse is currently

Selecttheactive clement.
Select the focused clement.

Negate another slector
Sclectclements that have no content.
Select clements based on language

Selects the clement referred to ina URL
fragment.

NS IR S ST BAC .

Use the thover selector.

Usethe sactive selector.
Use the s focus selector
Usethe negation selctor
Use the ety selctor
Use the :Lang slector.

Use the starget selector.

ben

1815

1816

1817

1818

1819

1820

OEBPS/Images/t2609.jpg
T I (P
Property Descripion Retums
hildiodes Retuns theset of hild clements WinLELenent(]
fizsecnine Returns the irst child slement T
hosChildiodes() Returs trueif the current clement haschild claments boolean
Lastchilg Returns the st child clement i Elenent
nextsibling Ftums e siblingcloment definedafe th curent M ELrert
clement

parentiode Retums the parent cement T
previoussibling Retums thesbling clement defined before the cureent HT¥LElerent

clement

OEBPS/Images/t1607a.jpg
‘transition-duration Specifies the duration of a transition 3

transition-property Specif

s one or more properties that will be transitioned. 3

transition-tining- Specifies the function used to calculate intermediate property 3
function values during the transition

OEBPS/Images/t1512.jpg
Table 15-12. The progress Element

Element: progress

ElementType: Phrasing

Permitted Any element that can contain phrasing elements
Parents:

Local Attributes: value,max, form
Contents: Phrasing content

TagStyle: Startand end tags

NewinHTML5? Yes

Changes in N/A
HTMLS

Style Convention None

OEBPS/Images/t2602.jpg
b i

ORCHITEN e TYopm s

Property Description Retuns
characterset Returns the document character set encoding. Thisisa string
perss T RS

OEBPS/Images/t1511.jpg
Table I5-11. The param Element

Element: paran
ElementType: N/A
Permitted ‘The object element

et

OEBPS/Images/t2603.jpg
e L e e e

Value Description
The document conforms t0 a valid HTML specification (although this need not be
Cesitomat HTMLS; valid HTMLA documents vill eturn this value, t00).

BackCompat The document contains nonstandard festures and has triggered the quirks mode.

OEBPS/Images/t1513.jpg
Table I5-13. The meter Element

Element: meter

oakTsoe Heniog

OEBPS/Images/t2601.jpg
S e ——

Problem Solution Listing
Perform basic DOM tasks. Use the basic DOM API features. 1
Getting information aboutthe Use the docusent metadata properties. 2
document.

Getinformation about the Usethe docusent. location property. 3
documentlocation.

Navigate o a new document. Change a property value o the Locat on object. 45
Read and write cookies. Use the docurent. cookie property. 6
Determine how the browseris Use the docurent. zeadystate property. 7
progressing in processing the

document.

Get details of the DOM features Use the docusent. irplerentation property. 8
implemented by the browser.

Obtain objects representing Usethe docusent properties, such as irages, Links, 9,10
specific element types. and scripts

Search for elements in the Use the docurent. getElerent* methods. n

beatswrivacig

OEBPS/Images/t2606.jpg
AR NI ST EN T S S TR ey

Value Description

Loading “The brovsser is loading and processing the document.

‘The document has been parsed, but the browser s sill loading linked

interactive resources (images, media file, and so onl.

complete ‘The document has been parsed and all of the resources have been loaded.

OEBPS/Images/3706.jpg
[N —)
Cume <

€ C | ® titan/listings/example.html w A
Name | Type |Size
Disip s Hewe: Example himl | texthiml | 1658

lemonpng | image/png| 6298
cherries himl |texthiml | 1075

cherries png |image/png| 7659

OEBPS/Images/t2607.jpg
A e N, SN U W LSS SN

Property Descrption Retums
activeElerent Returms an object representing the currently focused WTWLElerent
dlement

body Returns an objectrepresenin the body clement HTWLELerent
enbeds Returms objectsrepresening.al the crbed clements WI¥LGollection
plugins

fores Retums objectsrepresentingll the forn clements WI¥LCollection
head Returms an objectrepresenting the head eement HWUeadelerent
inages Returns objectsrepresentingal the g lements H¥LCollection
Links i ot ronesssnting) e n el e dameniits: BFRCARaskion

OEBPS/Images/3705.jpg
€ > C | O titan/listings/examplehtm

<

\gs/example.htmi

&

&

&

OEBPS/Images/t2604.jpg
(AT N PRI AR SUNS = ORTTHIAL.

Property Description Retums
protocal Getsor sets the protocol component o the document URL string
host Gets o sets the host component of the document URL. string
href Gets or sets the current document's location string
hostnane Gets or sets the host name component of the document URL ~ string
port Gets or sets the port component o the document URL. string
pathnane Gets or sets the path component of the document URL string
search Gets or sets the query component o the document URL string
hash Gets or sets the hash component o the document URL string
assign(<URL) Navigates o the specified URL void
replace(<URLY) Removes the current document and navigates o the one void
specified by the URL.
relaad() Relaads the current document void

resolvelRL(<RLY) Resolves the specified relative URL to an absolute one. string

OEBPS/Images/3704.jpg
€ > C Otitan/listings/oemplehtml

0 |&b

OEBPS/Images/t2605.jpg
IR L0 NSRRI L ROS LTS LTS Lo RONG. 10 i LINAE

Addition Description
< Sets the path associated with the cookie; ths default to the path of the.

mthpaiS Current document if not specified.

R Sets the domain associated with the cookie; this defaults o the domain of

rax-agescseconds>

expires=cdate>

the current docu

entif not specified

Sets the life of the cookie in terms of the number of seconds from the
‘moment it vas create.

Sets the life of the cookie using a GMT-format date.

‘The cookie wil be sent only over a secure (HTTPS) connection.

OEBPS/Images/3703.jpg
=

OEBPS/Images/3702.jpg
€ 5 C O titan/listings/examplentml ¥%| X

)

&

B

OEBPS/Images/3701.jpg
[F==rc

/ @tmpie

&

& > C [@titan/lstings/examplentm EY

<

&

Drop Here

OEBPS/Images/t0606a.jpg
SigTows.
wable
thody
@

thoot

@
thead

o

b d b e e
Denotesa table

Denotes the body o atable
Denotes an individual tablecell
Denotes foote fora able
Denotesan individual header cell
Denotes a header fora able

Denotes a row of table cells

N/A

NiA

NiA

NiA

NiA

NiA

NiA

T
Changed
Changed
Changed
Changed
Changed
Changed

Changed

OEBPS/Images/t1510.jpg
Table I5-10. The object Element

Element:

Element Type:

Permitted
Parents:

Local Auributes:

Contents:

object

“This element is considered as a phrasing element when it
contains phrasing content and as a flow element vhen it
contains flow content.

Any element that can contain phrasing or flow content

data, type, height, width, usenap, nane, forn

Zero or more paran elements and, optionally, phrasing or flow
S S e e

OEBPS/Images/t1509.jpg
Table 15-9. The embed Element

Element:
Element Type:

Permitted
Parents:

Local Attributes:
Contents:
TagStyle:

New in HTML5?

Changes in
HTMLS

Style Convention

enbed
Phrasing

Any element that can contain phrasing content

stC, type, height, width
None

Vi

Yes, although this has been a widely used unofficial element for
some years.

N/A

None

OEBPS/Images/t3122a.jpg
————
formovalidate
fornTarget
nase

e

value

Labels

A N T Sy
Corresponds o the formovalidate atrbute
Corresponds o the forntazget atuibute
Corresponds to the e atibute
Corresponds o the type atibute
Corresponds to the value atwibute

Returns the Iabel elements whose atribute refers to this
button clement

»ris
string
string
string
string
sting

HTMLLabelElerent(]

OEBPS/Images/t1508.jpg
R T T e a— p—

Value Description

allow-forns Enables forms

allow-scripts nablesscripts

allow-top-navigation Allows links that arget the top-level browsing contexts, which allows the
e documant b repacedwih anoher o fora e b o window

allow-sare-origin Allows content i the 1fzare to be treated as though it originated from
the samelocation as the rest of the document

OEBPS/Images/t1501.jpg
e e

Problem Solution Listing
Embed an image into an HTML document. Use the irg orcbject clemen L9
Create an image-based hyperlink. Usean isg cementinsideana 2
clement
Createa lient-side image map. Use the ig ordbject clement in 3410
conjunction with the 1ap and azea
elements.
Embed another HTML document Use the i rare element 5
Embed content using aplu Use the enbed or object element. &8
Create abrowsing context. Use theabiect element with thenare 11

attribute defining the name of the
Daowelog context.

OEBPS/Images/t1503.jpg
Table 15-3. The map Element

Element:

Element Type:

Permitted
Parents:

Local Attributes:
Contents:
TagStyle:
New in HTML5?

Changes in
HTMLS

Style Convention

map

‘The nap element s considered as a phrasing element when it
contains phrasing content and as a flow element when it
contains flow content.

Any element that can contain phrasing or flow content

name
One or more area elements
Startand end tags

No

If the id attribute is used, it must have the same value as the nare
attribute.

None

OEBPS/Images/t1502.jpg
Table 15-2. The img Element

Element: ing

ElementType: Phrasing

Permitted Any element that can contain phrasing content
Parents:

Local Attributes: sxc, alt, height, width, usenap, ismap
Contents: None

TagStyle: v

NewinHTML5? No

Changes in ‘The border, longdesc, nane, align, hspace, and vspace attributes
HTMLS are obsolete in FITMLS.

Style Convention None

OEBPS/Images/2606.jpg
/ W Essmple
€ € | ® titan/listings/example.htm! RN

[fhex= aze 2 span elements
[theze aze 2 span elemence (Mix)
[there are 2 span elements (css)

‘There are lots of different kinds of fruit - there are over 500 varieties of
banana alene. By the time we add the countless types of apples, oranges,
‘and other well-known fiuit, we are faced with thousands of choices.

OEBPS/Images/t1505.jpg
S A S OOy IO A S S A T e ST

Attribute Description

href ‘The URL that the browser should load when the region is clicked on

ait ‘The alternative content, Sec the corresponding atiribute on the irg clement.

target The browsing content in which the URL should be displayed. See the corresponding.
attribute on the base clementin Chapter 7.

rel Describes the relationship betsveen the current and target documents. See the
corresponding atribute on the Link element in Chapter 7

redia ‘The media for which the area is valid. See the corresponding atribute on the style
clement in Chapter 7.

hreflang ‘The language of the target document

type

The MIME type of the target document

OEBPS/Images/2607.jpg
/ B eampie \

= € | ® titan/listings/example.htm|

[Flement type: [object ATMLParagraphElement]
[Element 1d: tblock

[ias child nodes: true

Prev sibling is: [object Text]

ext sibling is: [object Text]

There are lots of different kinds of frut - there are over 500 varieties of
banana alone. By the time we add the countless fypes of apples, oranges,
‘and other well-known fruit, we are faced with thousands of choices.

0

One of the most interesting aspects of fuit s the variety avallable in each
country. I five near London, in an area which is known for its apples.

([Parent] [First Child | [Prev Sibling] [Next Sibling]

4

OEBPS/Images/t1504.jpg
Table I5-4. The area Element

Element:
Element Type:

Permitted
Parents:

Local Attributes:

G

area
Phrasing

‘The nap element

alt, href, target, rel, media, hreflang, type, shape, coords

N

OEBPS/Images/2604.jpg
/@ e
€ 3 € [O sunisingseram]
Thees e ot of e i of i

e we 2k e comtes typesof]
i honesd f choes

ke aveing i Asa.was sk by Bow ey e s of b e avalaie -
many of which Fd e o o whih e ny bl vith 3 o

OEBPS/Images/t1507.jpg
Table 15-7. The ijrame Element
Element: ifrane

ElementType: Phrasing

Permitted Any element that can contain phrasing content

P

OEBPS/Images/2605.jpg
=

/B Bample &
€ 9 C [titan/listings/example.ntml w A

Cookie_}

Add Cookie | [Update Cookis |

“Vaiue_1; Cookie_2=Updated 2: Cookie

OEBPS/Images/t1506.jpg
e

e oo bt o ok

Shape Value Nature and Meaning of the coords Value

rect “This value represents a rectangular area. The coords attribute must consistof four
e Ml B e M T

OEBPS/Images/2602.jpg
Eample
€ C | @ titan/listings/example.html WA

characterSer: I50-8859-1
charsec: I150-8859-1

compatiede: CSS1Compat
AafaulzCharsst: IS0-2859-1

sz

donain: titan

lastModified: 10/16/2011 18:10:28

OEBPS/Images/2603.jpg
/ © sampie \
€ - € |Otitan/listings/evamplehtmi?query=apples¢apples | A

protesel: huep:
nost: titan

nostnane: titan

port:

pachnane: /listings/example.htal
seazch: ?query-apples

nasn: tapples

OEBPS/Images/2601.jpg
o
€ > C O titan/listings/o

Thece acelots of dffceat ki of ik - thre e over S00 vasieties of basasa sone. By the me we add the
countes tpes of appes, oxanges, e otber wel-kpown fuit, we e aced wilhtousands of chcices.

(One of the st neresting aspects of i is the vriey avabible i each comy. | e nea London, nanarea | |=
whichis know for s apples.

UL Betp: //cican/aistanos/exaxole. e
Elenenc 10: craiccexc
Elenent 10: apples

ampientm!

OEBPS/Images/1510.jpg
/B ampe
€ > c Qi

1]

OEBPS/Images/t2806a.jpg
Jengch

replacedata(coffsets, <counts,
<string)

replacekholeText(cstrings)

splitText(<nurbers)

substringdata(<offsets, ccount>)

wholeText

Returns the number of characters

Replaces a region of text vith the specified.
string.

Replaces all of the text

‘Splis the existing Text element into two at
the specified offset (sec the “Inserting
Elementinto a Text Block” section later in
this chapter for a demonsation ofthis
method)

Returns a substring from the text

Gets the text

Yamper:

void

Text

Text

string

string

OEBPS/Images/t0410.jpg
SFEARR e T oty OO MREY,

Unitdentifier Description

B ‘Specifies time in seconds

s Specifies time in milliseconds (15 is equal to 100015)

OEBPS/Images/t0714a.jpg
Element Type
Permitted Parents
Local Attributes
Contents
TagStyle

New in HTMLS

Changes in HTML5

Style Convention

Metadata

head, noscript

href, rel, hreflang, media, type, sizes
None

Void element

No

Thesizes attribute has been added; the attributes
charset, rev and target are obsolete in HTMLS

None

OEBPS/Images/t0823a.jpg
Local Attributes
Contents
TagStyle
New in HTMLS

Changes in
HTMLS

Style Convention

None

Phrasing content
Startand end tag
No

None

None

OEBPS/Images/t0409.jpg
SRS L AnE IR

Unitdentifier Description

deg ‘Specifis the angle in degrees (values are from 0deg to 360deg)
grad ‘Specifies the angle in gradians (values are from 0grad to 400gzad)
rad Specifis the anglein radians (values are from 07ad to 6.28xad)

tum ‘Specifiesthe angle in complete tums (1turn i equal to 360deg)

OEBPS/Images/t0408.jpg
A I O N DA

Unitdentifier Description

8 Relative t0 @ grid—not widely supported because i depends on some
properties that are not well defined in the CSS specifications.

w Relative to the viewport width—each v s 1/100" of the width display
area for the document (iypically the brovser windov).

w Relative to the viewport height—each vh is 1/100° of the height of the
display area.

w Eachwr unitis 1/100" of the shortest viewport ass (ether the height or

the width, vhichever i the smallest).

) Relative to the average width of a character displayed using the current
typeface. This is poorly defined in the CSS specifications and is not
consistently implemented.

OEBPS/Images/t1912a.jpg
AR A ST SO N S T

Value Description

contain Scales the image, preserving the aspect ratio, o the largest size that can it inside the
display area.

cover Scales the image, preserving the aspect ratio, o the smallestsize that can ft inside the

display area.

auto Thisis the default value. The image will be displayed at full size.

