
[image: Cover Image]

Acknowledgments

Firstly, thanks to the whole Go community. An active and responsive community guarantees the completion this book.

Specially, I want to give thanks to the following people who helped me understand some implementation details in the official standard compiler and runtime: Robert Griesemer, Ian Lance Taylor, Axel Wagner, Keith Randall, findleyr, Bob Glickstein, Jan Mercl, Brian Candler, Awad Diar, etc. I'm sorry if I forgot mentioning somebody in above lists. There are so many kind and creative gophers in the Go community that I must have missed out on someone.

I also would like to thank all gophers who ever made influences on the Go 101 book, be it directly or indirectly, intentionally or unintentionally.

Thanks to Olexandr Shalakhin for the permission to use one of the wonderful gopher icon designs as the cover image. And thanks to Renee French for designing the lovely gopher cartoon character.

Thanks to the authors of the following open source software and libraries used in building this book:

	golang, https://go.dev/

	gomarkdown, https://github.com/gomarkdown/markdown

	goini, https://github.com/zieckey/goini

	go-epub, https://github.com/bmaupin/go-epub

	pandoc, https://pandoc.org

	calibre, https://calibre-ebook.com/

	GIMP, https://www.gimp.org

Thanks the gophers who ever reported mistakes in this book or made corrections for this book:
ivanburak, Caio Leonhardt，
etc.

About Go Generics 101

Starting from version 1.18 (the current latest version), Go supports custom generics.

This book talks about the custom generics feature of Go programming language.
The content in this book includes:

	custom generic syntax

	type constraints and type parameters

	type arguments and type inference

	how to write valid custom generic code

	current implementation/design restrictions

A reader needs to be familiar with Go general programming to read this book.
In particular, readers of this book should be familiar with
Go type system,
including Go built-in generics, which and Go custom generics are two different systems.

Currently, the book mainly focuses on the syntax of, and concepts in, custom generics.
More practical examples will be provided when I get more experiences of using custom generics.

About Go Custom Generics

The main purpose of custom generics is to avoid code repetitions,
or in other words, to increase code reusability.

For some situations, generics could also lead to cleaner code and simpler APIs
(not always).

For some situations, generics could also improve code execution performance
(again not always).

Before version 1.18, for many Go programmers, the lack of custom generics caused pains in Go programming under some situations.

Indeed, the pains caused by the lack of custom generics were alleviated to a certain extend by the following facts.

	Since version 1.0, Go has been supported built-in generics, which include some built-in generic type kinds (such as map and channel) and generic functions (new, make, len, close, etc).

	Go supports reflection well (through interfaces and the reflect standard package).

	Repetitive code could be generated automatically by using some tools (such as the //go:generate comment directive supported by the official Go toolchain).

However, the pains are still there for many use cases.
The demand for custom generics became stronger and stronger.
In the end, the Go core team decided to support custom generics in Go.

For all sorts of reasons, including considerations of syntax/semantics backward compatibility and implementation difficulties, the Go core team settled down on the type parameters proposal to implement custom generics.

The first Go version supporting custom generics is 1.18.

The type parameters proposal tries to solve many code reuse problems, but not all.
And please note that, not all the features mentioned in the parameters proposal have been implemented yet currently (Go 1.19). The custom generics design and implementation will continue to evolve and get improved in future Go versions. And please note that the proposal is not the ceiling of Go custom generics.

Despite the restrictions (temporary or permanent ones) in the current Go custom generics design and implementation,
I also have found there are some details which are handled gracefully and beautifully in the implementation.

Although Go custom generics couldn't solve all code reuse problems,
personally, I believe Go custom generics will be used widely in future Go programming.

First Look of Custom Generics

In the custom generics world, a type may be declared as a generic type,
and a function may be declared as generic function.
In addition, generic types are defined types, so they may have methods.

The declaration of a generic type, generic function, or method of a generic type
contains a type parameter list part, which is the main difference from
the declaration of an ordinary type, function, or method.

A generic type example

Firstly, let's view an example to show how generic types look like.
It might be not a perfect example, but it does show the usefulness of custom generic types.

package main

import "sync"

type Lockable[T any] struct {
 sync.Mutex
 Data T
}

func main() {
 var n Lockable[uint32]
 n.Lock()
 n.Data++
 n.Unlock()

 var f Lockable[float64]
 f.Lock()
 f.Data += 1.23
 f.Unlock()

 var b Lockable[bool]
 b.Lock()
 b.Data = !b.Data
 b.Unlock()

 var bs Lockable[[]byte]
 bs.Lock()
 bs.Data = append(bs.Data, "Go"...)
 bs.Unlock()
}

In the above example, Lockable is a generic type.
Comparing to non-generic types, there is an extra part, a type parameter list,
in the declaration (specification, more precisely speaking) of a generic type.
Here, the type parameter list of the Lockable generic type is [T any].

A type parameter list may contain one and more type parameter declarations
which are enclosed in square brackets and separated by commas.
Each parameter declaration is composed of a type parameter name and a (type) constraint.
For the above example, T is the type parameter name and any is the constraint of T.

Please note that any is a new predeclared identifier introduced in Go 1.18.
It is an alias of the blank interface type interface{}.
We should have known that all types implements the blank interface type.

(Note, generally, Go 101 books don't say a type alias is a type.
They just say a type alias denotes a type.
But for convenience, the Go Generics 101 book often says any is a type.)

We could view constraints as types of (type parameter) types.
All type constraints are actually interface types.
Constraints are the core of custom generics and
will be explained in detail in the next chapter.

T denotes a type parameter type.
Its scope begins after the name of the declared generic type
and ends at the end of the specification of the generic type.
Here it is used as the type of the Data field.

Since Go 1.18, value types fall into two categories:

	type parameter type;

	ordinary types.

Before Go 1.18, all values types are ordinary types.

A generic type is a defined type.
It must be instantiated to be used as value types.
The notation Lockable[uint32] is called an instantiated type (of the generic type Lockable).
In the notation, [uint32] is called a type argument list and uint32 is called a type argument,
which is passed to the corresponding T type parameter.
That means the type of the Data field of the instantiated type Lockable[uint32] is uint32.

A type argument must implement the constraint of its corresponding type parameter.
The constraint any is the loosest constraint, any value type could be passed to the T type parameter.
The other type arguments used in the above example are: float64, bool and []byte.

Every instantiated type is a named type and an ordinary type.
For example, Lockable[uint32] and Lockable[[]byte] are both named types.

The above example shows how custom generics avoid code repetitions for type declarations.
Without custom generics, several struct types are needed to be declared,
like the following code shows.

package main

import "sync"

type LockableUint32 struct {
 sync.Mutex
 Data uint32
}

type LockableFloat64 struct {
 sync.Mutex
 Data float64
}

type LockableBool struct {
 sync.Mutex
 Data bool
}

type LockableBytes struct {
 sync.Mutex
 Data []byte
}

func main() {
 var n LockableUint32
 n.Lock()
 n.Data++
 n.Unlock()

 var f LockableFloat64
 f.Lock()
 f.Data += 1.23
 f.Unlock()

 var b LockableBool
 b.Lock()
 b.Data = !b.Data
 b.Unlock()

 var bs LockableBytes
 bs.Lock()
 bs.Data = append(bs.Data, "Go"...)
 bs.Unlock()
}

The non-generic code contains many code repetitions,
which could be avoided by using the generic type demonstrated above.

An example of a method of a generic type

Some people might not appreciate the implementation of the above generic type.
Instead, they prefer to use a different implementation as the following code shows.
Comparing with the Lockable implementation in the last section, the new one
hides the struct fields from outside package users of the generic type.

package main

import "sync"

type Lockable[T any] struct {
 mu sync.Mutex
 data T
}

func (l *Lockable[T]) Do(f func(*T)) {
 l.mu.Lock()
 defer l.mu.Unlock()
 f(&l.data)
}

func main() {
 var n Lockable[uint32]
 n.Do(func(v *uint32) {
 *v++
 })

 var f Lockable[float64]
 f.Do(func(v *float64) {
 *v += 1.23
 })

 var b Lockable[bool]
 b.Do(func(v *bool) {
 *v = !*v
 })

 var bs Lockable[[]byte]
 bs.Do(func(v *[]byte) {
 *v = append(*v, "Go"...)
 })
}

In the above code, a method Do is declared for the generic base type Lockable.
Here, the receiver type is a pointer type, which base type is the generic type Lockable.
Different from method declarations for ordinary base types,
there is a type parameter list part
following the receiver generic type name Lockable in the receiver part.
Here, the type parameter list is [T].

The type parameter list in a method declaration for a generic base type
is actually a duplication of the type parameter list specified
in the generic receiver base type specification. To make code clean,
type parameter constraints are (and must be) omitted from the list.
That is why here the type parameter list is [T], instead of [T any].

Here, T is used in a value parameter type, func(*T).

	The type of its method Do of the instantiated type Lockable[uint32] is func(f func(*uint32)).

	The type of its method Do of the instantiated type Lockable[float64] is func(f func(*float64)).

	The type of its method Do of the instantiated type Lockable[bool] is func(f func(*bool)).

	The type of its method Do of the instantiated type Lockable[[]byte] is func(f func(*[]byte)).

Please note that, the type parameter names used in a method declaration for a generic base type
are not required to be the same as the corresponding ones used in the generic type specification.
For example, the above method declaration is equivalent to the following rewritten one.

func (l *Lockable[Foo]) Do(f func(*Foo)) {
 ...
}

Though, it is a bad practice not to keep the corresponding type parameter names the same.

BTW, the name of a type parameter may even be the blank identifier _
if it is not used (this is also true for the type parameters in generic type
and function declarations). For example,

func (l *Lockable[_]) DoNothing() {
}

A generic function example

Now, let's view an example of how to declare and use generic (non-method) functions.

package main

// NoDiff checks whether or not a collection
// of values are all identical.
func NoDiff[V comparable](vs ...V) bool {
 if len(vs) == 0 {
 return true
 }

 v := vs[0]
 for _, x := range vs[1:] {
 if v != x {
 return false
 }
 }
 return true
}

func main() {
 var NoDiffString = NoDiff[string]
 println(NoDiff("Go", "Go", "Go")) // true
 println(NoDiffString("Go", "go")) // false

 println(NoDiff(123, 123, 123, 123)) // true
 println(NoDiff[int](123, 123, 789)) // false

 type A = [2]int
 println(NoDiff(A{}, A{}, A{})) // true
 println(NoDiff(A{}, A{}, A{1, 2})) // false

 println(NoDiff(new(int))) // true
 println(NoDiff(new(int), new(int))) // false

 println(NoDiff[bool]()) // true

 // _ = NoDiff() // error: cannot infer V

 // error: *** does not implement comparable
 // _ = NoDiff([]int{}, []int{})
 // _ = NoDiff(map[string]int{})
 // _ = NoDiff(any(1), any(1))
}

In the above example, NoDiff is a generic function.
Different from non-generic functions, and similar to generic types,
there is an extra part, a type parameter list, in the declaration of a generic function.
Here, the type parameter list of the NoDiff generic function is [V comparable], in which
V is the type parameter name and comparable is the constraint of V.

comparable is new predeclared identifier introduced in Go 1.18.
It denotes an interface that is implemented by all comparable types.
It will be explained with more details in the next chapter.

Here, the type parameter V is used as the variadic (value) parameter type.

The notations NoDiff[string], NoDiff[int] and NoDiff[bool] are called instantiated functions (of the generic function NoDiff).
Similar to instantiated types, in the notations, [string], [int] and [bool] are called type argument lists.
In the lists, string, int and bool are called type arguments, all of which are passed to the V type parameter.

The whole type argument list may be totally omitted from an instantiated function expression
if all the type arguments could be inferred from the value arguments.
That is why some calls to the NoDiff generic function have no type argument lists in the above example.

	In the call NoDiff("Go", "Go", "Go"), the type argument is inferred as string, the default type of the value arguments.

	In the call NoDiff(123, 123, 123, 123), the type argument is inferred as int, the default type of the value arguments.

	In the two calls with A{} and A{1, 2} as value arguments, the type argument is inferred as [2]int, the type of the value arguments.

	In the two calls with new(int) as value arguments, the type argument is inferred as *int, the type of the value arguments.

Please note that all of these type arguments implement the comparable interface.
Incomparable types, such as []int and map[string]int may not be passed as type arguments
of calls to the NoDiff generic function.
And please note that, although any is a comparable (value) type, it doesn't implement comparable, so it is also not an eligible type argument.
This will be talked about in detail in the next chapter.

The above example shows how generics avoid code repetitions for function declarations.
Without custom generics, we need to declare a function for each type argument used in the example.
The bodies of these function declarations would be almost the same.

Generic functions could be viewed as simplified forms of methods of generic types

The generic function shown in the above section could be viewed as a simplified
form of a method of a generic type, as shown in the following code.

package main

type NoDiff[V comparable] struct{}

func (nd NoDiff[V]) Do(vs ...V) bool {
 ... // same as the body of the above generic function
}

func main() {
 var NoDiffString = NoDiff[string]{}.Do
 println(NoDiffString("Go", "go")) // false

 println(NoDiff[int]{}.Do(123, 123, 789)) // false

 println(NoDiff[*int]{}.Do(new(int))) // true
}

In the above code, NoDiff[string]{}.Do, NoDiff[int]{}.Do
and NoDiff[*int]{}.Do are three method values of different
instantiated types.

We could view a generic type as a type parameter space,
and view all of its methods as some functions sharing the same type parameter space.

To make descriptions simple, sometimes, methods of generic types
are also called as generic functions in this book.

Constraints and Type Parameters

A constraint means a type constraint, it is used to constrain some type parameters.
We could view constraints as types of types.

The relation between a constraint and a type parameter is like
the relation between a type and a value.
If we say types are value templates (and values are type instances),
then constraints are type templates (and types are constraint instances).

A type parameter is a type which is declared in a type parameter list
and could be used in a generic type specification or a generic function/method declaration.
Each type parameter is a distinct named type.

Type parameter lists will be explained in detail in a later section.

As mentioned in the previous chapter, type constraints are actually
interface types.
In order to let interface types be competent to act as the constraint role,
Go 1.18 enhances the expressiveness of interface types by supporting several new notations.

Enhanced interface syntax

Some new notations are introduced into Go to make it possible to use interface types as constraints.

	The ~T form, where T is a type literal or type name.
T must denote a non-interface type whose underlying type is itself
(so T may not be a type parameter, which is explained below).
The form denotes a type set, which include all types whose
underlying type is T.
The ~T form is called a tilde form or type tilde in this book
(or underlying term and approximation type elsewhere).

	The T1 | T2 | ... | Tn form, which is called a union of terms (or type/term union in this book).
Each Tx term is a tilde form, type literal, or type name,
and it may not denote a type parameter.
There are some requirements for union terms.
These requirements will be described in a section below.

Note that, a type literal always denotes an unnamed type,
whereas a type name may denote a named type or unnamed type.

Some legal examples of the new notations:

// tilde forms
~int
~[]byte
~map[int]string
~chan struct{}
~struct{x int}

// unions of terms
uint8 | uint16 | uint32 | uint64
~[]byte | ~string
map[int]int | []int | [16]int | any
chan struct{} | ~struct{x int}

We know that, before Go 1.18, an interface type may embed

	arbitrary number of method specifications (method elements, one kind of interface elements);

	arbitrary number of type names (type elements, the other kind of interface elements),
but the type names must denote interface types.

Go 1.18 relaxed the limitations of type elements, so that now an interface type
may embed the following type elements:

	any type literals or type names, whether or not they denote interface types, but they must not denote type parameters.

	tilde forms.

	term unions.

The orders of interface elements embedded in an interface type are not important.

The following code snippet shows some interface type declarations,
in which the interface type literals in the declarations of N and O
are only legal since Go 1.18.

type L interface {
 Run() error
 Stop()
}

type M interface {
 L
 Step() error
}

type N interface {
 M
 interface{ Resume() }
 ~map[int]bool
 ~[]byte | string
}

type O interface {
 Pause()
 N
 string
 int64 | ~chan int | any
}

Embedding an interface type in another one is equivalent to (recursively) expanding the elements in the former into the latter. In the above example, the declarations of M, N and O are equivalent to the following ones:

type M interface {
 Run() error
 Stop()
 Step() error
}

type N interface {
 Run() error
 Stop()
 Step() error
 Resume()
 ~map[int]bool
 ~[]byte | string
}

type O interface {
 Run() error
 Stop()
 Step() error
 Pause()
 Resume()
 ~map[int]bool
 ~[]byte | string
 string
 int64 | ~chan int | any
}

We could view a single type literal, type name or tilde form as a term union with only one term.
So simply speaking, since Go 1.18, an interface type may specify some methods and embed some term unions.

An interface type without any embedding elements is called an empty interface.
For example, the predeclared any type alias denotes an empty interface type.

Type sets and method sets

Before Go 1.18, an interface type is defined as a method set.
Since Go 1.18, an interface type is defined as a type set.
A type set only consists of non-interface types.

	The type set of a non-interface type literal or type name only contains the type denoted by the type literal or type name.

	As just mentioned above, the type set of a tilde form ~T is the set of types whose underlying types are T. In theory, this is an infinite set.

	The type set of a method specification is the set of non-interface types whose method sets include the method specification.
In theory, this is an infinite set.

	The type set of an empty interface is the set of all non-interface types.
In theory, this is an infinite set.

	The type set of a union of terms T1 | T2 | ... | Tn is the union of the type sets of the terms.

	The type set of a non-empty interface is the intersection of the type sets of its interface elements.

As the type set of an empty interface type (for example, the predeclared any) contains all non-interface types.

By the current specification,
two unnamed constraints are equivalent to each other if their type sets are equal.

Given the types declared in the following code snippet,
for each interface type, its type set is shown in its preceding comment.

type Bytes []byte // underlying type is []byte
type Letters Bytes // underlying type is []byte
type Blank struct{}
type MyString string // underlying type is string

func (MyString) M() {}
func (Bytes) M() {}
func (Blank) M() {}

// The type set of P only contains one type:
// []byte.
type P interface {[]byte}

// The type set of Q contains
// []byte, Bytes, and Letters.
type Q interface {~[]byte}

// The type set of R contains only two types:
// []byte and string.
type R interface {[]byte | string}

// The type set of S is empty.
type S interface {R; M()}

// The type set of T contains:
// []byte, Bytes, Letters, string, and MyString.
type T interface {~[]byte | ~string}

// The type set of U contains:
// MyString, Bytes, and Blank.
type U interface {M()}

// V <=> P
type V interface {[]byte; any}

// The type set of W contains:
// Bytes and MyString.
type W interface {T; U}

// Z <=> any. Z is a blank interface. Its
// type set contains all non-interface types.
type Z interface {~[]byte | ~string | any}

Please note that interface elements are separated with semicolon (;),
either explicitly or implicitly (Go compilers will
insert some missing semicolons as needed in compilations).
The following interface type literals are equivalent to each other.
The type set of the interface type denoted by them is empty.
The interface type and the underlying type of the type S
shown in the above code snippet are actually identical.

interface {~string; string; M();}
interface {~string; string; M()}
interface {
 ~string
 string
 M()
}

If the type set of a type X is a subset of an interface type Y,
we say X implements (or satisfies) Y.
Here, X may be an interface type or a non-interface type.

Because the type set of an empty interface type is a super set of the type sets of any types,
all types implement an empty interface type.

In the above example,

	the interface type S, whose type set is empty, implements all interface types.

	all types implement the interface type Z, which is actually a blank interface type.

The list of methods specified by an interface type is called the method set of the interface type.
If an interface type X implements another interface type Y, then the method set of X must be a super set of Y.

Interface types whose type sets can be defined entirely by a method set (may be empty)
are called basic interface types.
Before 1.18, Go only supports basic interface types.
Basic interfaces may be used as either value types or type constraints,
but non-basic interfaces may only be used as type constraints (as of Go 1.19).

In the above examples, L, M, U, Z and any are basic types.

In the following code, the declaration lines for x and y both compile okay,
but the line declaring z fails to compile.

var x any
var y interface {M()}

// error: interface contains type constraints
var z interface {~[]byte}

Whether or not to support non-basic interface types as value types in future Go versions in unclear now.

Note, before Go toolchain 1.19, aliases to non-basic interface types were not supported.
The following type alias declarations are only legal since Go toolchain 1.19.

type C[T any] interface{~int; M() T}
type C1 = C[bool]
type C2 = comparable
type C3 = interface {~[]byte | ~string}

More about the predeclared comparable constraint

As aforementioned, besides any, Go 1.18 also introduces another new predeclared identifier comparable,
which denotes an interface type that is implemented by all comparable types.

The comparable interface type could be embedded in other interface types
to filter out incomparable types from their type sets.
For example, the type set of the following declared constraint C contains only one type: string, because the other three types in the union are all incomprarable types.

type C interface {
 comparable
 []byte | string | func() | map[int]bool
}

Currently (Go 1.19), the comparable interface is treated as a non-basic interface type.
So, now, it may only be used as type parameter constraints, not as value types.
The following code is illegal:

var x comparable = 123

The type set of the comparable interface is the set of all comparable types.
The set is a subset of the type set of the any interface,
so comparable undoubtedly implements any, and not vice versa.

On the other hand, starting from Go 1.0, all basic interface types are treated as comparable types.
The blank interface type any is not an exception.
So it looks that any (as a value type) should satisfy (implement) the comparable constraint.
This is quite odd.

After deliberation, Go core team believe that
it is a design flaw
to treat all interface types as comparable types and it is a pity that
the comparable type has not been supported since Go 1.0 to avoid this flaw.

Go core team try to make up for this flaw in Go custom generics age.
So they decided that all basic interface types don't satisfy (implement) the comparable constraint.
A consequence of this decision is it causes diffculties to some code designs.

To avoid the consequence, a proposal has been made to
permit using comparable as value types.
Whether or not it should be accepted is still under discuss.
It could be accepted in as earlier as Go 1.19.

Another benefit brought by the proposal is that it provides a way to
ensure some interface comparisons will never panic.
For example, calls to the following function might panic at run time:

func foo(x, y any) bool {
 return x == y
}

var _ = foo([]int{}, []int{}) // panics

If the comparable type could be used as a value type,
then we could change the parameter types of the foo function
to comparable to ensure the calls to the foo function will never panic.

func foo(x, y comparable) bool {
 return x == y
}

var _ = foo([]int{}, []int{}) // fails to compile

More requirements for union terms

The above has mentioned that a union term may not be a type parameter. There are two other requirements for union terms.

The first is an implementation specific requirement: a term union with more than one term cannot contain the predeclared identifier comparable or interfaces that have methods.
For example, the following term unions are both illegal (as of Go toolchain 1.19):

[]byte | comparable
string | error

To make descriptions simple, this book will view the predeclared comparable interface type
as an interface type having a method (but not view it as a basic interface type).

Another requirement (restriction) is that the type sets of all non-interface type terms in a term union must have no intersections. For example, in the following code snippet, the term unions in the first declaration fails to compile, but the last two compile okay.

type _ interface {
 int | ~int // error
}

type _ interface {
 interface{int} | interface{~int} // okay
}

type _ interface {
 int | interface{~int} // okay
}

The three term unions in the above code snippet are equivalent to each other in logic,
which means this restriction is not very reasonable.
So it might be removed in later Go versions, or become stricter to defeat the workaround.

Type parameter lists

From the examples shown in the last chapter, we know type parameter lists
are used in generic type specifications, method declarations for generic base types
and generic function declarations.

A type parameter list contains at least one type parameter declaration
and is enclosed in square brackets.
Each parameter declaration is composed of a name part and a constraint part
(we can think the constraints are implicit in method declarations for generic base types).
The name represents a type parameter constrained by the constraint.
Parameter declarations are comma-separated in a type parameter list.

In a type parameter list, all type parameter names must be present.
They may be the blank identifier _ (called blank name).
All non-blank names in a type parameter list must be unique.

Similar to value parameter lists, if the constraints of
some successive type parameter declarations in a type parameter list are identical,
then these type parameter declarations could share a common
constraint part in the type parameter list.
For example, the following two type parameter lists are equivalent.

[A any, B any, X comparable, _ comparable]
[A, B any, X, _ comparable]

Similar to value parameter lists, if the right] token in a type parameter list
and the last constraint in the list are at the same line, an optional comma is allowed
to be inserted between them.
The comma is required if the two are not at the same line.

For example, in the following code, the beginning lines are legal, the ending lines are not.

// Legal ones:
[T interface{~map[int]string}]
[T interface{~map[int]string},]
[T interface{~map[int]string},
]
[A, B any, _, _ comparable]
[A, B any, _, _ comparable,]
[A, B any, _, _ comparable,
]
[A, B any,
_, _ comparable]

// Illegal ones:
[A, B any, _, _ comparable
]
[T interface{~map[int]string}
]

Variadic type parameters are not supported.

To make descriptions simple, the type set of the constraint of a type parameter
is also called the type set of the type parameter and type set of a value of
the type parameter in this book.

Simplified constraint form

In a type parameter list, if a constraint only contains one element
and that element is a type element,
then the enclosing interface{} may be omitted for convenience.
For example, the following two type parameter lists are equivalent.

[X interface{string|[]byte}, Y interface{~int}]
[X string|[]byte, Y ~int]

The simplified constraint forms make code look much cleaner.
For most cases, they don't cause any problems.
However, it might cause parsing ambiguities for some special cases.
In particular, parsing ambiguities might arise when the type parameter list
of a generic type specification declares a single type parameter
which constraint presents in simplified form and starts with * or (.

For example, does the following code declare a generic type?

type G[T *int] struct{}

It depends on what the int identifier denotes.
If it denotes a type (very possible, not absolutely),
then compilers should think the code declares a generic type.
If it denotes a constant (it is possible), then compilers
will treat T *int as a multiplication expression and
think the code declares an ordinary array type.

It is possible for compilers to distinguish what the int identifier denotes,
but there are some costs to achieve this. To avoid the costs,
compilers always treat the int identifier as a value expression
and think the above declaration is an ordinary array type declaration.
So the above declaration line will fail to compile
if T or int don't denote integer constants.

Then how to declare a generic type with a single type parameter with *int as the constraint?
There are two ways to accomplish this:

	use the full constraint form, or

	let a comma follow the simplified constraint form.

The two ways are shown in the following code snippet:

// Assume int is a predeclared type.
type G[T interface{*int}] struct{}
type G[T *int,] struct{}

The two ways shown above are also helpful for
some other special cases which might also cause parsing ambiguities.
For example,

// PA might be array pointer variable, or a type name.
// Compilers don't treat it as a type name.
type K[cap (*PA)] struct{}

// S might be a string constant, or a type name.
// Compilers don't treat it as a type name.
type L[len (S)] struct{}

The following is another case which might cause parsing ambiguity.

// T, int and bool might be three constant integers,
// or int and bool are both predeclared types.
type C5[T *int|bool] struct{}

We should insert a comma after the presumed constraint *int|bool to remove the ambiguity.

type C5[T *int|bool,] struct{} // compiles okay

(Note: this way doesn't work with Go toolchain 1.18. It was a bug and has been fixed since Go toolchain 1.19.)

We could also use full constraint form or exchange the places of *int and bool to make it compile okay.

// Assume int and bool are predeclared types.
type C5[T interface{*int|bool}] struct{}
type C5[T bool|*int] struct{}

On the other hand, the following two weird generic type declarations are both legal.

// "make" is a declared type parameter.
// Its constraint is interface{chan int}.
type PtrToChan[make (chan int)] *make

// "new" is a declared type parameter.
// Its constraint is interface{[3]float64}.
type Matrix33[new ([3]float64)] [3]new

The two declarations are really bad practices. Don't use them in serious code.

Each type parameter is a distinct named type

Since Go 1.18, named types include

	predeclared types, such as int, bool and string.

	defined non-generic types.

	instantiated types of generic types.

	type parameter types (the types declared in type parameter lists).

Two different type parameters are never identical.

The type of a type parameter is a constraint, a.k.a an interface type.
This means the underlying type of a type parameter type should be an interface type.
However, this doesn't mean a type parameter behaves like an interface type.
Its values may not box non-interface values and be type asserted (as of Go 1.19).
In fact, it is almost totally meaningless to talk about underlying types of type parameters.
We just need to know that the underlying type of a type parameter is not itself.
And we ought to think that two type parameters never share an identical underlying type,
even if the constraints of the two type parameters are identical.

In fact, a type parameter is just a placeholder for the types in its type set.
Generally speaking, it represents a type which owns the common traits of the types in its type set.

As the underlying type of a type parameter type is not the type parameter type itself,
the tilde form ~T is illegal if T is type parameter.
So the following (equivalent) type parameter lists are illegal.

[A int, B ~A] // error
[A interface{int}, B interface{~A}] // error

As mentioned above, type parameters are also disallowed to be embedded
as type names and type terms in an interface type.
The following declarations are also illegal.

type Cx[T int] interface {
 T
}

type Cy[T int] interface {
 T | []string
}

In fact, currently (Go 1.19), type parameters may not be embedded in struct types, too.

Composite type literals (unnamed types) containing type parameters are ordinary types

For example, *T is always an ordinary (pointer) type.
It is a type literal, so its underlying type is itself, whether or not T is a type parameter.
The following type parameter list is legal.

[A int, B *A] // okay

For the same reason, the following type parameter lists are also legal.

[T ~string|~int, A ~[2]T, B ~chan T] // okay
[T comparable, M ~map[T]int32, F ~func(T) bool] // okay

The scopes of a type parameters

Go specification says:

	The scope of an identifier denoting a type parameter of a function or declared by a method receiver begins after the name of the function and ends at the end of the function body.

	The scope of an identifier denoting a type parameter of a type begins after the name of the type and ends at the end of the specification of the type.

So the following type declaration is valid, even if the use of type parameter E is ahead of its declaration.
The type parameter E is used in the constraint of the type parameter S,

type G[S ~[]E, E int] struct{}

Please note,

	as mentioned in the last section, although E is a type parameter type, []E is an ordinary (slice) type.

	the underlying type of S is interface{~[]E}, not []E.

	the underlying type of E is interface{int}, not int.

By Go specification, the function and method declarations in the following code all fail to compile.

type C any
func foo1[C C]() {} // error: C redeclared
func foo2[T C](T T) {} // error: T redeclared

type G[G any] struct{x G} // okay
func (E G[E]) Bar1() {} // error: E redeclared

The following Bar2 method declaration should compile okay, but it doesn't now (Go toolchain 1.19). This is a bug which will be fixed in Go toolchain 1.20.

type G[G any] struct{x G} // okay
func (v G[G]) Bar2() {} // error: G is not a generic type

More about generic type and function declarations

We have seen a generic type declaration and some generic function declarations in the last chapter.
Different from ordinary type and function declarations, each of the generic ones has a
type parameter list part.

This book doesn't plan to further talk about generic type and function declaration syntax.

The source type part of a generic type declaration must be an ordinary type.
So it might be

	a composite type literal. As mentioned above, a composite type literal always represents an ordinary type.

	a type name which denotes an ordinary type.

	an instantiated type. Type instantiations will be explained in detail in the next chapter.
For now, we only need to know each instantiated type is a named ordinary type.

The following code shows some generic type declarations with all sorts of source types.
All of these declarations are valid.

// The source types are ordinary type names.
type (
 Fake1[T any] int
 Fake2[_ any] []bool
)

// The source type is an unnamed type (composite type).
type MyData [A any, B ~bool, C comparable] struct {
 x A
 y B
 z C
}

// The source type is an instantiated type.
type YourData[C comparable] MyData[string, bool, C]

Type parameters may not be used as the source types in generic type declarations.
For example, the following code doesn't compile.

type G[T any] T // error

Generic Instantiations and Type Argument Inferences

In the last two chapters, we have used several instantiations of generic types and functions.
Here, this chapter makes a formal introduction for instantiated types and functions.

Generic type/function instantiations

Generic types must be instantiated to be used as types of values, and
generic functions must be instantiated to be called or used as function values.

A generic function (type) is instantiated by substituting a type argument list
for the type parameter list of its declaration (specification).
The lengths of the (full) type argument list is the same as the type parameter list.
Each type argument is passed to the corresponding type parameter.
A type argument must be a non-interface type or a basic interface type and it is
valid only if it satisfies (implements) the constraint of its corresponding type parameter.

Instantiated functions are non-generic functions.
Instantiated types are named ordinary value types.

Same as type parameter lists, a type argument list is also enclosed in square brackets
and type arguments are also comma-separated in the type argument list.
The comma insertion rule for type argument lists is also the same as type parameter lists.

Two type argument lists are identical if their lengths are equal and all of their corresponding types are identical.
Two instantiated types are identical if they are instantiated from the same generic type and with the same type argument list.

In the following program, the generic type Data is instantiated four times.
Three of the four instantiations have the same type argument list
(please note that the predeclared byte is an alias of the predeclared uint8 type).
So the type of variable x, the type denoted by alias Z, and the underlying type of
the defined type W are the same type.

package main

import (
 "fmt"	
 "reflect"
)

type Data[A int64 | int32, B byte | bool, C comparable] struct {
 a A
 b B
 c C
}

var x = Data[int64, byte, [8]byte]{1<<62, 255, [8]byte{}}
type Y = Data[int32, bool, string]
type Z = Data[int64, uint8, [8]uint8]
type W Data[int64, byte, [8]byte]

// The following line fails to compile because
// []uint8 doesn't satisfy the comparable constraint.
// type T = Data[int64, uint8, []uint8] // error

func main() {
 println(reflect.TypeOf(x) == reflect.TypeOf(Z{})) // true
 println(reflect.TypeOf(x) == reflect.TypeOf(Y{})) // false
 fmt.Printf("%T\n", x) // main.Data[int64,uint8,[8]uint8]
 fmt.Printf("%T\n", Z{}) // main.Data[int64,uint8,[8]uint8]
}

The following is an example using some instantiated functions
of a generic function.

package main

type Ordered interface {
 ~int | ~uint | ~int8 | ~uint8 | ~int16 | ~uint16 |
 ~int32 | ~uint32 | ~int64 | ~uint64 | ~uintptr |
 ~float32 | ~float64 | ~string
}

func Max[S ~[]E, E Ordered](vs S) E {
 if len(vs) == 0 {
 panic("no elements")
 }

 var r = vs[0]
 for i := range vs[1:] {
 if vs[i] > r {
 r = vs[i]
 }
 }
 return r
}

type Age int
var ages = []Age{99, 12, 55, 67, 32, 3}

var langs = []string {"C", "Go", "C++"}

func main() {
 var maxAge = Max[[]Age, Age]
 println(maxAge(ages)) // 99

 var maxStr = Max[[]string, string]
 println(maxStr(langs)) // Go
}

In the above example, the generic function Max is instantiated twice.

	The first instantiation Max[[]Age, Age] results a func([]Age] Age function value.

	The second one, Max[[]string, string], results a func([]string) string function value.

Type argument inferences for generic function instantiations

In the generic function example shown in the last section,
the two function instantiations are called full form instantiations,
in which all type arguments are presented in their containing type argument lists.
Go supports type inferences for generic function instantiations,
which means a type argument list may be partial or even be omitted totally,
as long as the missing type arguments could be inferred from value parameters
and present type arguments.

For example, the main function of the last example in the last section could be rewritten as

func main() {
 var maxAge = Max[[]Age] // partial argument list
 println(maxAge(ages)) // 99

 var maxStr = Max[[]string] // partial argument list
 println(maxStr(langs)) // Go
}

A partial type argument list must be a prefix of the full argument list.
In the above code, the second arguments are both omitted,
because they could be inferred from the first ones.

If an instantiated function is called directly and some suffix type arguments
could be inferred from the value argument types, then the type argument list
could be also partial or even be omitted totally.
For example, the main function could be also rewritten as

func main() {
 println(Max(ages)) // 99
 println(Max(langs)) // Go
}

The new implementation of the main function shows that the calls of
generics functions could be as clean as ordinary functions (at least sometimes),
even if generics function declarations are more verbose.

Please note that, type argument lists may be omitted totally but may not be blank.
The following code is illegal.

func main() {
 println(Max[](ages)) // syntax error
 println(Max[](langs)) // syntax error
}

The inferred type arguments in a type argument list must be a suffix of the type argument list.
For example, the following code fails to compile.

package main

func foo[A, B, C any](v B) {}

func main() {
 // error: cannot use _ as value or type
 foo[int, _, bool]("Go")
}

Type arguments could be inferred from element types, field types,
parameter types and result types of value arguments.
For example,

package main

func luk[E any](v struct{x E}) {}
func kit[E any](v []E) {}
func wet[E any](v func() E) {}

func main() {
 luk(struct{x int}{123}) // okay
 kit([]string{"go", "c"}) // okay
 wet(func() bool {return true}) // okay
}

If the type set of the constraint of a type parameter contains only one type
and the type parameter is used as a value parameter type in a generic function,
then compilers will attempt to infer the type of an untyped value argument
passed to the value parameter as that only one type. If the attempt fails,
then that untyped value argument is viewed as invalid.

For example, in the following program, only the first function call compiles.

package main

func foo[T int](x T) {}
func bar[T ~int](x T) {}

func main() {
 // The default type of 1.0 is float64.

 foo(1.0) // okay
 foo(1.23) // error: cannot use 1.23 as int

 bar(1.0) // error: float64 does not implement ~int
 bar(1.2) // error: float64 does not implement ~int
}

Sometimes, the inference process might be more complicate.
For example, the following code compiles okay.
The type of the instantiated function is func([]Ints, Ints).
A []int value argument is allowed to be passed to an Ints value parameter,
which is why the code compiles okay.

func pat[P ~[]T, T any](x P, y T) bool { return true }

type Ints []int
var vs = []Ints{}
var v = []int{}

var _ = pat[[]Ints, Ints](vs, v) // okay

But both of the following two calls don't compile.
The reason is the missing type arguments are inferred from value arguments,
so the second type arguments are inferred as []int
and the first type arguments are (or are inferred as) []Ints.
The two type arguments together don't satisfy the type parameter list.

// error: []Ints does not implement ~[][]int
var _ = pat[[]Ints](vs, v)
var _ = pat(vs, v)

Please read Go specification for the detailed type argument inference rules.

Type argument inferences don't work for generic type instantiations

Currently (Go 1.19), inferring type arguments of instantiated types from value literals is not supported. That means the type argument list in a generic type instantiation must be always in full forms.

For example, in the following code snippet, the declaration line for variable y is invalid,
even if it is possible to infer the type argument as int16.

type Set[E comparable] map[E]bool

// compiles okay
var x = Set[int16]{123: false, 789: true}

// error: cannot use generic type without instantiation.
var y = Set{int16(123): false, int16(789): true}

Another example:

import "sync"

type Lockable[T any] struct {
 sync.Mutex
 Data T
}

// compiles okay
var a = Lockable[float64]{Data: 1.23}

// error: cannot use generic type without instantiation
var b = Lockable{Data: float64(1.23)} // error

It is unclear whether or not type argument inferences
for generic type instantiations
will be supported in future Go versions.

For the same reason, the following code doesn't compile (as of Go toolchain 1.19).

type Getter[T any] interface {
 Get() T
}

type Age[T uint8 | int16] struct {
 n T
}

func (a Age[T]) Get() T {
 return a.n
}

func doSomething[T any](g Getter[T]) T {
 return g.Get()
}

// The twol lines fail to compile.
var z = doSomething(Age[uint8]{255}) // error
var w = doSomething(Age[int16]{256}) // error

// The two lines compile okay.
var x = doSomething[uint8](Age[uint8]{255})
var y = doSomething[int16](Age[int16]{256})

Pass basic interface types as type arguments

The above has mentioned that a basic interface type may be used as a type argument
and passed to a type parameter if the basic interface type satisfies (implements)
the constraint of the type parameter.
The following code shows such an example.

package main

type Base[T any] []T

type _ Base[any]
type _ Base[error]

func Gf[T any](x T) {}

var _ = Gf[any]
var _ = Gf[error]

func main() {
 Gf[any](123)
 Gf[any](true)
 Gf[error](nil)
}

Pass type parameters as type arguments

Same as ordinary types, if the constraint of a type parameter satisfies (implements)
the constraint of another type parameter, the the former may be used as type arguments
and passed to the latter.
For example, the following code is valid.

func Foo[T any](x T) {}

func Bar[V comparable, E error](x V, y E)() {
 var _ = Foo[V] // okay
 var _ = Foo[E] // okay

 // Use implicit type arguments.
 Foo(x) // okay
 Foo(y) // okay
}

More about instantiated types

As an instantiated type is an ordinary type,

	it may be embedded in an interface type as a type name elements.

	it may be used as union terms if it is an interface type without methods.

	it may be embedded in struct types if it satisfies
the requirements for the embedded fields.

The generic type declarations C1 and C2 in the following code are both valid.

package main

type Slice[T any] []T

type C1[E any] interface {
 Slice[E] // an ordinary type name
}

type C2[E any] interface {
 []E | Slice[E] // okay
}

func foo[E any, T C2[E]](x T) {}

func main() {
 var x Slice[bool]
 var y Slice[string]
 foo(x)
 foo(y)
}

The following code shows an ordinary struct type declaration
which embeds two instantiations of the generic type Set.
To avoid duplicate field names, one of the embedded fields
uses an alias to an instantiation of the generic type.

package main

type Set[T comparable] map[T]struct{}

type Strings = Set[string]

type MyData struct {
 Set[int]
 Strings
}

func main() {
 var md = MyData {
 Set: Set[int]{},
 Strings: Strings{},
 }
 md.Set[123] = struct{}{}
 md.Strings["Go"] = struct{}{}
}

About the instantiation syntax inconsistency between custom generics and built-in generics

From previous contents, we could find that the instantiation syntax of Go custom generics
is inconsistent with Go built-in generics.

type TreeMap[K comparable, V any] struct {
 // ... // internal implementation
}

func MyNew[T any]() *T {
 return new(T)
}

// The manners of two instantiations differ.
var _ map[string]int
var _ TreeMap[string, int]

// The manners of two instantiations differ.
var _ = new(bool)
var _ = MyNew[bool]()

Personally, I think the inconsistency is pity and it increases the load of cognition burden in Go programming.
On the other hand, I admit that it is hard (or even impossible) to make the syntax consistent.
It is a pity that Go didn't support custom generics from the start.

Operations on Values of Type Parameter Types

This chapter will talk about which operations on values of type parameters
are valid and which are invalid in generic function bodies.

Within a generic function body,
an operation on a value of a type parameter is valid only if it is
valid for values of every type in the type set of the constraint of the type parameter.
In the current custom generic design and implementation (Go 1.19),
it is not always vice versa.
Some extra requirements must be met to make the operation valid.

Currently, there are many such restrictions. Some of them are temporary
and might be removed from future Go versions, some are permanent.
The temporary ones are mainly caused by implementation workload,
so they need some time and efforts to be removed eventually.
The permanent ones are caused by the custom generics design principles.

The following contents of this chapter will list these restrictions.
Some facts and related concepts will also be listed.

The type of a value used in a generic function must be a specified type

As mentioned in a previous chapter, since Go 1.18,
value types in Go could be categorized in two categories:

	type parameter types: the types declared in type parameter lists.

	ordinary types: the value types not declared in type parameter lists.
Before Go 1.18, there are only ordinary types.

Go custom generics are not implemented as simple code text templates.
This is a fundamental difference from code generation.
There is a principle rule in Go programming:
every typed expression must have a specified type,
which may be either an ordinary type, or a type parameter.

For example, in the following code snippet, only the function dot doesn't compile.
the other ones compile okay.
The reasons are simple:

	in the function foo, the type of x is T, which is a type parameter.
Certainly, in uses of the function, x might be instantiated as int or string,
but which doesn't change the fact that, from the view of compilers,
its type is a type parameter.

	in the function bar, the types of x[i] and x[y] are both a type parameter, E.

	in the function win, the types of x[1] and x[y] are both a specified ordinary type, int.

	in the function dot, the types of x[1] and x[y] are might be int or string (two different ordinary types), though they are always identical.

func foo[T int | string](x T) {
 var _ interface{} = x // okay
}

func bar[T []E, E any](x T, i, j int) () {
 x[i] = x[j] // okay
}

func win[T ~[2]int | ~[8]int](x T, i, j int) {
 x[i] = x[j] // okay
}

func dot[T [2]int | [2]string](x T, i, j int) {
 x[i] = x[j] // error: invalid operation
 var _ any = x[i] // error: invalid operation
}

The element types of strings are viewed as byte, so the following code compiles,

func ele[ByteSeq ~string|~[]byte](x ByteSeq, n int) {
 _ = x[n] // okay
}

For the same reason (the principle rule), in the following code snippet,
the functions nop and jam both compile okay,
but the function mud doesn't.

func nop[T *Base, Base int32|int64](x T) {
 *x = *x + 1 // okay
}

func jam[T int32|int64](x *T) {
 *x = *x + 1 // okay
}

func mud[T *int32|*int64](x T) {
 *x = *x + 1 // error: invalid operation
}

The same, in the following code snippet, only the function box fails to compile,
the other two both compile okay.

func box[T chan int | chan byte](c T) {
 _ = <-c // error: no core type
}

func sed[T chan E, E int | byte](c T) {
 _ = <-c // okay
}

type Ch <-chan int
func cat[T chan int | Ch](c T) {
 _ = <-c // okay
}

Type parameters may be type asserted to.

import "fmt"

func nel[T int | string](v T, x any) {
 if _, ok := x.(T); ok {
 fmt.Printf("x is a %T\n", v)
 } else {
 fmt.Printf("x is not a %T\n", v)
 }
}

This rule might be relaxed to some extent in future Go versions.

Type parameters may be not used as types of (local) named constants

That means values of type parameters are all non-constants.

For example, the following function fails to compile.

func f[P int]() {
 const y P = 5 // error: invalid constant type P
}

This fact will never be changed.

Because of this fact, converting a constant to a type parameter yields
a non-constant value of the argument passed to the type parameter.
For example, in the following code, the function h compiles,
but the function g doesn't.

const N = 5

func g[P int]() {
 const y = P(N) // error: P(N) is not constant
}

func h[P int]() {
 var y = P(N) // okay
 _ = y
}

Because of the conversion rule, the return results of the two
functions, mud and tex, are different.

package main

const S = "Go"

func mud() byte {
 return 64 << len(string(S)) >> len(string(S))
}

func tex[T string]() byte {
 return 64 << len(T(S)) >> len(T(S))
}

func main() {
 println(mud()) // 64
 println(tex()) // 0
}

Please read the strings in Go article
and this issue
for why the two functions return different results.

The core type of a type

A non-interface type always has a core type, which
is the underlying type of the non-interface type.
Generally, we don't care about such case in using custom generics.

An interface type might have a core type or not.

	Generally speaking, if all types in the type set of the interface type (a constraint)
share an identical underlying type,
then the identical underlying type is called the core type of the interface type.

	If the types in the type set of then interface type don't share an identical underlying type
but they are all channel types
which share an identical element type E, and all directional channels in them have the same direction,
then the core type of the interface type is the directional channel type
chan<- E or <-chan E, depending on the direction of the directional channels present.

	For cases other than the above two, the interface type has not a core type.

For example, in the following code, each of the types shown in the first group
has a core type (indicated in the tail comments), yet the types shown in the
second group all have no core types.

type (
 Age int // int
 AgeC interface {Age} // int
 AgeOrInt interface {Age | int} // int
 Ints interface {~int} // int

 AgeSlice []Age // []Age
 AgeSlices interface{~[]Age} // []Age
 AgeSliceC interface {[]Age | AgeSlice} // []Age

 C1 interface {chan int | chan<- int} // chan<- int
 C2 interface {chan int | <-chan int} // <-chan int
)

type (
 AgeOrIntSlice interface {[]Age | []int}
 OneParamFuncs interface {func(int) | func(int) bool}
 Streams interface {chan int | chan Age}
 C3 interface {chan<- int | <-chan int}
)

Many operations require the constraint of a type parameter has a core type.

To make descriptions simple, sometimes, we also call the core type of the constraint
of a type parameter as the core type of the type parameter.

A function is required to have a core type to be callable

For example, currently (Go 1.19), in the following code, the functions foo and bar don't compile, bit the tag function does.
The reason is the F type parameters in the foo and bar generic functions
both have not a core type, even

but the F type parameter in the tag generic function does have.

func foo[F func(int) | func(any)] (f F, x int) {
 f(x) // error: invalid operation: cannot call non-function f
}

func bar[F func(int) | func(int)int] (f F, x int) {
 f(x) // error: invalid operation: cannot call non-function f
}

type Fun func(int)

func tag[F func(int) | Fun] (f F, x int) {
 f(x) // okay
}

It is unclear whether or not the rule will be relaxed in future Go versions.

The type literal in a composite literal must have a core type

For example, currently (Go 1.19), in the following code snippet,
the functions foo and bar compile okay, but the other ones don't.

func foo[T ~[]int] () {
 _ = T{}
}

type Ints []int

func bar[T []int | Ints] () {
 _ = T{} // okay
}

func ken[T []int | []string] () {
 _ = T{} // error: invalid composite literal type T
}

func jup[T [2]int | map[int]int] () {
 _ = T{} // error: invalid composite literal type T
}

An element index operation requires the container operand's type set may not include maps and non-maps at the same time

And if all types in the type set are maps, then their underlying types must be identical
(in other words, the type of the operand must have a core type).
Otherwise, their element types must be identical.
The elements of strings are viewed as byte values.

For example, currently (Go 1.19), in the following code snippet, only the functions foo and bar compile okay.

func foo[T []byte | [2]byte | string](c T) {
 _ = c[0] // okay
}

type Map map[int]string
func bar[T map[int]string | Map](c T) {
 _ = c[0] // okay
}

func lag[T []int | map[int]int](c T) {
 _ = c[0] // invalid operation: cannot index c
}

func vet[T map[string]int | map[int]int](c T) {
 _ = c[0] // invalid operation: cannot index c
}

The restriction might be removed in the future Go versions
(just my hope, in fact I'm not sure on this).

If the type of the index expression is a type parameter,
then all types in its type set must be integers.
The following function compiles okay.

func ind[K byte | int | int16](s []int, i K) {
 _ = s[i] // okay
}

(It looks the current Go specification is not correct on this.
The specification requires the index expression must has a core type.)

A (sub)slice operation requires the container operand has a core type

For example, currently (Go 1.19), the following two functions both fail to compile,
even if the subslice operations are valid for all types in the corresponding type sets.

func foo[T []int | [2]int](c T) {
 _ = c[:] // invalid operation: cannot slice c: T has no core type
}

func bar[T [8]int | [2]int](c T) {
 _ = c[:] // invalid operation: cannot slice c: T has no core type
}

The restriction might be removed in the future Go versions
(again, just my hope, in fact I'm not sure on this).

There is an exception for this rule. If the container operand's type set
only include string and byte slice types, then it is not required to have a core type.
For example, the following function compiles okay.

func lol[T string | []byte](c T) {
 _ = c[:] // okay
}

Same as element index operations, if the type of an index expression is a type parameter,
then all types set of its type set must be all integers.

In a for-range loop, the ranged container is required to have a core type

For example, currently (Go 1.19), in the following code,
only the last two functions, dot1 and dot2, compile okay.

func values[T []E | map[int]E, E any](kvs T) []E {
 r := make([]E, 0, len(kvs))
 // error: cannot range over kvs (T has no core type)
 for _, v := range kvs {
 r = append(r, v)
 }
 return r
}

func keys[T map[int]string | map[int]int](kvs T) []int {
 r := make([]int, 0, len(kvs))
 // error: cannot range over kvs (T has no core type)
 for k := range kvs {
 r = append(r, k)
 }
 return r
}

func sum[M map[int]int | map[string]int](m M) (sum int) {
 // error: cannot range over m (M has no core type)
 for _, v := range m {
 sum += v
 }
 return
}

func foo[T []int | []string] (v T) {
 // error: cannot range over v (T has no core type)
 for range v {}
}

func bar[T [3]int | [6]int] (v T) {
 // error: cannot range over v (T has no core type)
 for range v {}
}

type MyInt int

func cat[T []int | []MyInt] (v T) {
 // error: cannot range over v (T has no core type)
 for range v {}
}

type Slice []int

func dot1[T []int | Slice] (v T) {
 for range v {} // okay
}

func dot2[T ~[]int] (v T) {
 for range v {} // okay
}

The restriction is intended. I think its intention is to ensure both of
the two iteration variables always have a specified type
(either an ordinary type or a type parameter type).
However, this restriction is over strict for this intention.
Because, in practice, the key types or element types of some containers are identical,
even if the underlying type of the containers are different.
And in many use cases, one of the two iteration variables is ignored.

I'm not sure whether or not the restriction will be removed in future Go versions.
In my opinion, the restriction reduces the usefulness of Go custom generics in some extent.

If all possible types are slice and arrays, and their element types are identical,
we could use plain for loops to walk around this restriction.

func cat[T [3]int | [6]int | []int] (v T) {
 for i := 0; i < len(v); i++ { // okay
 _ = v[i] // okay
 }
}

The call to the len predeclared function is valid here.
A later section will talk about this.

The following code also doesn't compile, but which is reasonable.
Because the iterated elements for string are rune values,
whereas the iterated elements for []byte are byte values.

func mud[T string | []byte] (v T) {
 for range v {} // error: cannot range over v (T has no core type)
}

If it is intended to iterate the bytes in either byte slices and strings,
we could use the following code to achieve the goal.

func mud[T string | []byte] (v T) {
 for range []byte(v) {} // okay
}

The conversion []byte(v) (if it follows the range keyword) is specifically
optimized by the official standard Go compiler so that it doesn't duplicate
underlying bytes.

The following function doesn't compile now (Go 1.19),
even if the types of the two iteration variables are always int and rune.
Whether or not it will compile in future Go versions is unclear.

func aka[T string | []rune](runes T) {
 // cannot range over runes (T has no core type)
 for i, r := range runes {
 _ = i
 _ = r
 }
}

Type parameter involved conversions

Firstly, we should know the conversion rules for ordinary types/values.

By the current specification (Go 1.19),
given two types From and To, assume at least one of them is a type parameter,
then a value of From can be converted to To if a value of each type in
the type set of From can be converted to each type in the type set of T
(note that the type set of an ordinary type only contains the ordinary type itself).

For example, all of the following functions compile okay.

func pet[A ~int32 | ~int64, B ~float32 | ~float64](x A, y B){
 x = A(y)
 y = B(x)
}

func dig[From ~byte | ~rune, To ~string | ~int](x From) To {
 return To(x)
}

func cov[V ~[]byte | ~[]rune](x V) string {
 return string(x)
}

func voc[V ~[]byte | ~[]rune](x string) V {
 return V(x)
}

The following function doesn't compile, even if the conversion in it
is valid for all possible type arguments.
The reason is []T is an ordinary type, not a type parameter,
and its underlying type is itself.
There is not a rule which allows converting values from []T to string.

func mud[T byte|rune](x []T) string {
 // error: cannot convert x (variable of type []T)
 // to type string
 return string(x)
}

Future Go versions might relax the rules
to make the conversion in the above example valid.

By using the official standard Go compiler, in the following program,

	the functions tup and pad don't compile.
The reason is values of type AgePtr can't be directly converted to *int.

	all the other three generic functions compile okay, but the dot function
should not compile by the above described rule.
This might be a bug of the standard compiler, or the rule described in
the current Go specification needs a small adjustment.

package main

type Age int
type AgePtr *Age

func dot[T ~*Age](x T) *int {
 return (*int)(x) // okay
}

func tup(x AgePtr) *int {
 // error: cannot convert x (variable of type AgePtr)
 // to type *int
 return (*int)(x)
}

func tup2(x AgePtr) *int {
 return (*int)((*Age)(x))
}

func pad[T AgePtr](x T) *int {
 // error: cannot convert x to type *int
 return (*int)(x)
}

func pad2[T AgePtr](x T) *int {
 return (*int)((*Age)(x))
}

func main() {
 var x AgePtr
 var _ = dot[AgePtr](x)
 var _ = tup2(x)
 var _ = pad2[AgePtr](x)
}

The following function also fails to compile,
because string values may not be converted to int.

func eve[X, Y int | string](x X) Y {
 return Y(x) // error
}

Type parameter involved assignments

Firstly, we should know the assignment rules for ordinary types/values.

In the following descriptions, the type of the destination value is called as the destination type, and the type of the source value is called as the source type.

By the current specification (Go 1.19), for a type parameter involved assignment,

	if the destination type is a type parameter and the source value is
an untyped value, then the assignment is valid only if
the untyped value is assignable to each type in the type set of
the destination type parameter.

	if the destination type is a type parameter but the source type is an ordinary type,
then the assignment is valid only if the source ordinary type is
unnamed
and its values is assignable to each type in the type set of the destination type parameter.

	if the source type is a type parameter but the destination type is an ordinary type,
then the assignment is valid only if the destination ordinary type is unnamed
and values of each type in the type set of the source type parameter
are assignable to the destination ordinary type.

	if both of the destination type and the source type are type parameters,
then the assignment is invalid.

From the rules, we could get that type value of a named type can not be assigned to another named type.

In the following code snippet, there are four invalid assignments.

func dat[T ~int | ~float64, S *int | []bool]() {
 var _ T = 123 // okay
 var _ S = nil // okay
}

func zum[T []byte](x []byte) {
 var t T = x // okay
 type Bytes []byte
 var y Bytes = x // okay (both are ordinary types)
 x = t // okay
 x = y // okay

 // Both are named types.
 t = y // error
 y = t // error

 // To make the above two assignments valid,
 // the sources in then must be converted.
 t = T(y) // okay
 y = Bytes(t) // okay
}

func pet[A, B []byte](x A, y B){
 // Both are type parameters.
 x = y // error: cannot use y as type A in assignment
 y = x // error: cannot use x as type B in assignment
}

It is unclear whether or not the assignment rules will be relaxed in future Go versions.
It looks the posibility is small.

Calls to predeclared functions

The following are some rules and details for the calls to some predeclared functions
when type parameters are involved.

A call to the predeclared len or cap functions is valid if it is valid for all of the types in the type set of the argument

In the following code snippet, the function capacity fails to compile,
the other two functions both compile okay.

type Container[T any] interface {
 ~chan T | ~[]T | ~[8]T | ~*[8]T | ~map[int]T | ~string
}

func size[T Container[int]](x T) int {
 return len(x) // okay
}

func capacity[T Container[int]](x T) int {
 return cap(x) // error: invalid argument x for cap
}

func capacity2[T ~chan int | ~[]int](x T) int {
 return cap(x) // okay
}

Please note that a call to len or cap always returns a non-constant value
if the type of the argument of the call is a type parameter,
even of the type set of the argument only contains arrays and pointers to arrays.
For example, in the following code,
the first cap and len calls within the first two functions
all fail to compile.

func f[T [2]int](x T) {
 const _ = cap(x) // error: cap(x) is not constant
 const _ = len(x) // error: len(x) is not constant

 var _ = cap(x) // okay
 var _ = len(x) // okay
}

func g[P *[2]int](x P) {
 const _ = cap(x) // error: cap(x) is not constant
 const _ = len(x) // error: len(x) is not constant

 var _ = cap(x) // okay
 var _ = len(x) // okay
}

func h(x [2]int) {
 const _ = cap(x) // okay
 const _ = len(x) // okay
 const _ = cap(&x) // okay
 const _ = len(&x) // okay
}

The rule might be changed.
But honestly speaking, the possibility is very small.
Personally, I think the current behavior is more logical.

Because of this rule, the following two functions return different results.

package main

const S = "Go"

func ord(x [8]int) byte {
 return 1 << len(x) >> len(x)
}

func gen[T [8]int](x T) byte {
 return 1 << len(x) >> len(x)
}

func main() {
 var x [8]int
 println(ord(x), gen(x)) // 1 0
}

Again, please read the strings in Go article
and this issue
for why the two functions return different results.

Please not that, the following function doesn't compile,
because the type of &x is *T, which is a pointer
to a type parameter, instead of a pointer to an array.

func e[T [2]int]() {
 var x T
 var _ = len(&x) // invalid argument: &x for len
 var _ = cap(&x) // invalid argument: &x for cap
}

In other words, a type parameter which type set contains only one type
is not equivalent to that only type.
A type parameter has wave-particle duality.
For some situations, it acts as the types in its type set.
For some other situations, it acts as a distinct type.
More specifically, a type parameter acts as a distinct type
(which doesn't share underlying type with any other types)
when it is used as a component of a composite type.
In the above example. *T and *[2]int are two different (ordinary) types.

A call to the predeclared new function has not extra requirements for its argument

The following function compiles okay.

func MyNew[T any]() *T {
 return new(T)
}

It is equivalent to

func MyNew[T any]() *T {
 var t T
 return &t
}

A call to the predeclared make function requires its first argument (the container type) has a core type

Currently (Go 1.19), in the following code snippet, the functions voc and ted both
fail to compile, the other two compile okay.
The reason is the first argument of a call to the predeclared make function
is required to have a core type.
Neither of the voc and ted functions satisfies this requirement,
whereas both of the other two functions satisfy this requirement.

func voc[T chan bool | chan int]() {
 _ = make(T) // error: invalid argument: no core type
}

func ted[T chan<- int | <-chan int]() {
 _ = make(T) // error: invalid argument: no core type
}

type Stream chan int
type Queue Stream

func fat[T Stream | chan int | Queue | chan<- int]() {
 _ = make(T) // okay
}

func nub[T Stream | chan int | Queue | <-chan int]() {
 _ = make(T) // okay
}

By my understanding, this requirement is in order to make subsequent operations
on the made containers (they are channels in the above example) always legal.
For example, to make sure a value received from the made
channel has a specified type (either a type parameter, or an ordinary type).

Personally, I think the requirement is over strict.
After all, for some cases, the supposed subsequent operations don't happen.

To use values of a type parameter which doesn't have a core type within a generic function,
we can pass such values as value arguments into the function, as the following code shows.

func doSomething(any) {}

func voc2[T chan bool | chan int](x T) {
 doSomething(x)
}

func ted2[T chan<- int | <-chan int](x T) {
 doSomething(x)
}

Because of the same requirement, neither of the following two functions compile.

func zig[T ~[]int | map[int]int](c T) {
 _ = make(T) // error: invalid argument: no core type
}

func rat[T ~[]int | ~[]bool](c T) {
 _ = make(T) // error: invalid argument: no core type
}

Calls to the predeclared new function have not this requirement.

A call to the predeclared delete function requires all types in the type set of its first argument have an identical key type

Note, here, the identical key type may be ordinary type or type parameter type.

The following functions both compile okay.

func zuk[M ~map[int]string | ~map[int]bool](x M, k int) {
 delete(x, k)
}

func pod[M map[K]int | map[K]bool, K ~int | ~string](x M, k K) {
 delete(x, k)
}

A call to the predeclared close function requires all types in the type set of its argument are channel types

The following function compiles okay.

func dig[T ~chan int | ~chan bool | ~chan<- string](x T) {
 close(x)
}

Note that the current Go specification requires that the argument of
a call to the predeclared close function must have a core type.
This is inconsistent with the implementation of the official standard Go compiler.

Calls to predeclared complex, real and imag functions don't accept arguments of type parameter now

Calling the three functions with arguments of type parameters might break the principle rule mentioned in the first section of the current chapter.

This is a problem the current custom generics design is unable to solve.
There is an issue for this.

About constraints with empty type sets

The type sets of some interface types might be empty.
An empty-type-set interface type implements any interface types,
including itself.

Empty-type-set interface types are totally useless in practice,
but they might affect the implementation perfection from theory view.

There are really several imperfections in the implementation
of the current official standard Go compiler (v1.19).

For example,
should the following function compile?
It does with the latest official standard Go compiler (v1.19).
However, one of the above sections has mentioned that a make call
requires its argument must have a core type.
The type set of the constraint C declared in the following code
is empty, so it has not a core type, then the make call within
the foo function should not compile.

// This is an empty-type-set interface type.
type C interface {
 map[int]int
 M()
}

func foo[T C]() {
 var _ = make(T)
}

This following is another example,
in which all the function calls in the function g should compile okay.
However, two of them fail to compile with
the latest official standard Go compiler (v1.19).

func f1[T any](x T) {}
func f2[T comparable](x T) {}
func f3[T []int](x T) {}
func f4[T int](x T) {}

// This is an empty-type-set interface type.
type C interface {
 []int
 m()
}

func g[V C](v V) {
 f1(v) // okay
 f2(v) // error: V does not implement comparable
 f3(v) // okay
 f4(v) // error: V does not implement int
}

The current Go specification specially states:

Implementation restriction: A compiler need not report an error if an operand's type is a type parameter with an empty type set. Functions with such type parameters cannot be instantiated; any attempt will lead to an error at the instantiation site.

So the above shown imperfections are not bugs of the official standard Go compiler.

The Status Quo of Go Custom Generics

The previous chapters explain the basic knowledge about Go custom generics.
This chapter will list some missing features in the current design and
implementation of Go custom generics.

Type declarations inside generic functions are not currently supported

Currently (Go 1.19), local type declarations are not allowed in generic functions.
For example, in the following code, the ordinary function f compiles okay,
but the generic function g doesn't.

func f() {
 type _ int // okay
}

func g[T any]() {
 type _ int // error
}

type T[_ any] struct{}

func (T[_]) m() {
 type _ int // error
}

This restriction might be removed in future Go versions.

Generic type aliases are not supported currently

Currently (Go 1.19), a declared type alias may not have type parameters.
For example, in the following code, only the alias declaration for A is legal,
the other alias declarations are all illegal.

The alias A is actually an alias to an ordinary type func(int) string.

type T[X, Y any] func(X) Y

type A = T[int, string] // okay

// generic type cannot be alias
type B[X any] = T[X, string] // error
type C[X, Y, Z any] = T[X, Y] // error
type D[X any] = T[int, string] // error

Generic type aliases might be supported in future Go versions.

Embedding type parameters in struct types is not allowed now

Due to design and implementation complexities, currently (Go 1.19), type parameters are
disallowed to be embedded in either interface types or struct types.

For example, the following type declaration is illegal.

type Derived[Base any] struct {
 Base // error

 x bool
}

Please view this issue for reasons.

The method set of a constraint is not calculated completely for some cases

The Go specification states:

The method set of an interface type is the intersection of the method sets of each type in the interface's type set.

However, currently (Go toolchain 1.19), only the methods explicitly specified in interface types are calculated into method sets.
For example, in the following code, the method set of the constraint should contain both Foo and Bar,
and the code should compile okay, but it doesn't (as of Go toolchain 1.19).

package main

type S struct{}

func (S) Bar() {}

type C interface {
 S
 Foo()
}

func foobar[T C](v T) {
 v.Foo() // okay
 v.Bar() // v.Bar undefined
}

func main() {}

This restriction is planed to be removed in future Go toochain versions.

No ways to specific a field set for a constraint

We know that an interface type may specify a method set.
But up to now (Go 1.19), it could not specify a (struct) field set.

There is a proposal for this: https://github.com/golang/go/issues/51259.

The restriction might be lifted from future Go versions.

No ways to use common fields for a constraint if the constraint has not a core (struct) type

Currently (Go 1.19), even if all types in the type set of a constraint
are structs and they share some common fields, the common fields still
could not be used if the structs don't share the identical underlying type.

For example, the generic functions in the following example all fail to compile.

package main

type S1 struct {
 X int
}

type S2 struct {
 X int `json:X`
}

type S3 struct {
 X int
 Z bool
}

type S4 struct {
 S1
}

func F12[T S1 | S2](v T) {
 _ = v.X // error: v.x undefined
}

func F13[T S1 | S3](v T) {
 _ = v.X // error: v.x undefined
}

func F14[T S1 | S4](v T) {
 _ = v.X // error: v.x undefined
}

func main() {}

There is a proposal to remove this limit.
A temporary (quite verbose) workaround is to specify/declare some getter and setter methods
for involved constraints and concrete types.

Fields of values of type parameters are not accessible

Currently (Go 1.19), even if a type parameter has a core struct type,
the fields of the core struct type still may not be accessed through
values of the type parameter.
For example, the following code doesn't compile.

type S struct{x, y, z int}

func mod[T S](v *T) {
 v.x = 1 // error: v.x undefined
}

The restriction mentioned in the last section is actually a special case
of the one described in the current section.

The restriction (described in the current section) was added just before
Go 1.18 is released.
It might be removed since a future Go version.

Type switches on values of type parameters are not supported now

It has been mentioned that a type parameter is an interface type from semantic view.
On the other hand, a type parameter has wave-particle duality.
For some situations, it acts as the types in its type set.

Up to now (Go 1.19), values of type parameters may not be asserted.
The following two functions both fail to compile.

func tab[T any](x T) {
 if n, ok := x.(int); ok { // error
 _ = n
 }
}

func kol[T any]() {
 var x T
 switch x.(type) { // error
 case int:
 case []bool:
 default:
 }
}

The following modified versions of the above two functions compile okay:

func tab2[T any](x T) {
 if n, ok := any(x).(int); ok { // error
 _ = n
 }
}

func kol2[T any]() {
 var x T
 switch any(x).(type) { // error
 case int:
 case []bool:
 default:
 }
}

There is a proposal to use type switches directly on type parameters, like:

func kol3[T any]() {
 switch T {
 case int:
 case []bool:
 default:
 }
}

Please subscribe this issue to
follow the progress of this problem.

Generic methods are not supported

Currently (Go 1.19), for design and implementation difficulties,
generic methods (not methods of generic types) are
not supported.

For example, the following code are illegal.

import "sync"

type Lock struct {
 mu sync.Mutex
}

func (l *Lock) Inc[T ~uint32 | ~uint64](x *T) {
 l.Lock()
 defer l.Unlock()
 *x++
}

How many concrete methods do the Lock type have?
Infinite! Because there are infinite uint32 and uint64 types.
This brings much difficulties to make the reflect standard package keep backwards compatibility.

There is an issue for this.

There are no ways to construct a constraint which allows assignments involving types of unspecific underlying types

And there are not such predeclared constraints like the following supposed assignableTo and assignableFrom constraints.

// This function doesn't compile.
func yex[Tx assignableTo[Ty], Ty assignableFrom[Tx]](x Tx, y Ty) {
 y = x
}

There are no ways to construct a constraint which allows conversion involving types of unspecific underlying types

And there are not such predeclared constraints like the following supposed convertibleTo and convertibleFrom constraints.

// This function doesn't compile.
func x2y[Tx convertibleTo[Ty], Ty convertibleFrom[Tx],
 // The second value argument is
 // for type inference purpose.
](xs []Tx, _ Ty) []Ty {
 if xs == nil {
 return nil
 }
 ys := make([]Ty, len(xs))
 for i := range xs {
 ys[i] = Ty(xs[i])
 }
 return ys
}

var bs = []byte{61, 62, 63, 64, 65, 66}
var ss = x2y(bs, "")
var is = x2y(bs, 0)
var fs = x2y(bs, .0)

Currently, there is an ungraceful workaround implementation:

func x2y[Tx any, Ty any](xs []Tx, f func(Tx) Ty) []Ty {
 if xs == nil {
 return nil
 }
 ys := make([]Ty, len(xs))
 for i := range xs {
 ys[i] = f(xs[i])
 }
 return ys
}

var bs = []byte{61, 62, 63, 64, 65, 66}
var ss = x2y(bs, func(x byte) string {
 return string(x)
})
var is = x2y(bs, func(x byte) int {
 return int(x)
})
var fs = x2y(bs, func(x byte) float64 {
 return float64(x)
})

The workaround needs a callback function, which
makes the code verbose and much less efficient,
though I do admit it has more usage scenarios.

EPUB/nav.xhtml

 Table of Contents

 		
 Acknowledgments

 		
 About Go Generics 101

 		
 About Go Custom Generics

 		
 First Look of Custom Generics

 		
 Constraints and Type Parameters

 		
 Generic Instantiations and Type Argument Inferences

 		
 Operations on Values of Type Parameter Types

 		
 The Status Quo of Go Custom Generics

EPUB/images/cover-1000x-356451834.png
Go Generics 101

-=v1.19.c-rev-01clad6-2022/08/29 =-

Tapir Liu

