

SIP

Understanding the Session Initiation Protocol

Fourth Edition

For a complete listing of titles in the Artech House Telecommunications Library, turn to the back of this book.

SIP

Understanding the Session Initiation Protocol

Fourth Edition

Alan B. Johnston

[image:]

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the U.S. Library of Congress.

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library.

Cover design by John Gomes

ISBN 13: 978-1-60807-863-9

© 2016 ARTECH HOUSE

685 Canton Street

Norwood, MA 02062

All rights reserved. Printed and bound in the United States of America. No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the publisher.

All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized. Artech House cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as affecting the validity of any trademark or service mark.

10 9 8 7 6 5 4 3 2 1

Contents

Preface to the Fourth Edition

Acknowledgment

	1
	SIP and the Internet

	1.1
	Signaling Protocols

	1.2
	Internet Multimedia Protocol Stack

	1.2.1
	Physical Layer

	1.2.2
	Data/Link Layer

	1.2.3
	Network Layer

	1.2.4
	Transport Layer

	1.2.5
	Application Layer

	1.2.6
	Utility Applications

	1.2.7
	Multicast

	1.3
	Internet Names

	1.4
	URLs, URIs, and URNs

	1.5
	Domain Name Service

	1.5.1
	DNS Resource Records

	1.5.2
	Address Resource Records (A or AAAA)

	1.5.3
	Service Resource Records (SRV)

	1.5.4
	Naming Authority Pointer Resource Records (NAPTR)

	1.5.5
	DNS Resolvers

	1.6
	Global Open Standards

	1.7
	Internet Standards Process

	1.8
	A Brief History of SIP

	1.9
	Conclusion

	
	References

	2
	Introduction to SIP

	2.1
	A Simple Session Establishment Example

	2.2
	SIP Call with a Proxy Server

	2.3
	SIP Registration Example

	2.4
	SIP Presence and Instant Message Example

	2.5
	Message Transport

	2.5.1
	UDP Transport

	2.5.2
	TCP Transport

	2.5.3
	TLS Transport

	2.5.4
	SCTP Transport

	2.6
	Transport Protocol Selection

	2.7
	Conclusion

	2.8
	Questions

	
	References

	3
	SIP Clients and Servers

	3.1
	SIP User Agents

	3.2
	Presence Agents

	3.3
	Back-to-Back User Agents

	3.4
	SIP Gateways

	3.5
	SIP Servers

	3.5.1
	Proxy Servers

	3.5.2
	Redirect Servers

	3.5.3
	Registrar Servers

	3.6
	Uniform Resource Indicators

	3.7
	Acknowledgment of Messages

	3.8
	Reliability

	3.9
	Multicast Support

	3.10
	Conclusion

	3.11
	Questions

	
	References

	4
	SIP Request Messages

	4.1
	Methods

	4.1.1
	INVITE

	4.1.2
	REGISTER

	4.1.3
	BYE

	4.1.4
	ACK

	4.1.5
	CANCEL

	4.1.6
	OPTIONS

	4.1.7
	SUBSCRIBE

	4.1.8
	NOTIFY

	4.1.9
	PUBLISH

	4.1.10
	REFER

	4.1.11
	MESSAGE

	4.1.12
	INFO

	4.1.13
	PRACK

	4.1.14
	UPDATE

	4.2
	URI and URL Schemes Used by SIP

	4.2.1
	SIP and SIPS URIs

	4.2.2
	Telephone URLs

	4.2.3
	Presence and Instant Messaging URLs

	4.3
	Tags

	4.4
	Message Bodies

	4.5
	Conclusion

	4.6
	Questions

	
	References

	5
	SIP Response Messages

	5.1
	Informational

	5.1.1
	100 Trying

	5.1.2
	180 Ringing

	5.1.3
	181 Call is Being Forwarded

	5.1.4
	182 Call Queued

	5.1.5
	183 Session Progress

	5.1.6
	199 Early Dialog Terminated

	5.2
	Success

	5.2.1
	200 OK

	5.2.2
	202 Accepted

	5.2.3
	204 No Notification

	5.3
	Redirection

	5.3.1
	300 Multiple Choices

	5.3.2
	301 Moved Permanently

	5.3.3
	302 Moved Temporarily

	5.3.4
	305 Use Proxy

	5.3.5
	380 Alternative Service

	5.4
	Client Error

	5.4.1
	400 Bad Request

	5.4.2
	401 Unauthorized

	5.4.3
	402 Payment Required

	5.4.4
	403 Forbidden

	5.4.5
	404 Not Found

	5.4.6
	405 Method Not Allowed

	5.4.7
	406 Not Acceptable

	5.4.8
	407 Proxy Authentication Required

	5.4.9
	408 Request Timeout

	5.4.10
	409 Conflict

	5.4.11
	410 Gone

	5.4.12
	411 Length Required

	5.4.13
	412 Conditional Request Failed

	5.4.14
	413 Request Entity Too Large

	5.4.15
	414 Request-URI Too Long

	5.4.16
	415 Unsupported Media Type

	5.4.17
	416 Unsupported URI Scheme

	5.4.18
	417 Unknown Resource Priority

	5.4.19
	420 Bad Extension

	5.4.20
	421 Extension Required

	5.4.21
	422 Session Timer Interval Too Small

	5.4.22
	423 Interval Too Brief

	5.4.23
	424 Bad Location Information

	5.4.24
	428 Use Identity Header

	5.4.25
	429 Provide Referror Identity

	5.4.26
	430 Flow Failed

	5.4.27
	433 Anonymity Disallowed

	5.4.28
	436 Bad Identity-Info Header

	5.4.29
	437 Unsupported Certificate

	5.4.30
	438 Invalid Identity Header

	5.4.31
	439 First Hop Lacks Outbound Support

	5.4.32
	440 Max Breadth Exceeded

	5.4.33
	469 Bad Info Package

	5.4.34
	494 Security Agreement Required

	5.4.35
	470 Consent Needed

	5.4.36
	480 Temporarily Unavailable

	5.4.37
	481 Dialog/Transaction Does Not Exist

	5.4.38
	482 Loop Detected

	5.4.39
	483 Too Many Hops

	5.4.40
	484 Address Incomplete

	5.4.41
	485 Ambiguous

	5.4.42
	486 Busy Here

	5.4.43
	487 Request Terminated

	5.4.44
	488 Not Acceptable Here

	5.4.45
	489 Bad Event

	5.4.46
	491 Request Pending

	5.4.47
	493 Request Undecipherable

	5.4.48
	494 Security Agreement Required

	5.5
	Server Error

	5.5.1
	500 Server Internal Error

	5.5.2
	501 Not Implemented

	5.5.3
	502 Bad Gateway

	5.5.4
	503 Service Unavailable

	5.5.5
	504 Gateway Timeout

	5.5.6
	505 Version Not Supported

	5.5.7
	513 Message Too Large

	5.5.8
	580 Preconditions Failure

	5.6
	Global Error

	5.6.1
	600 Busy Everywhere

	5.6.2
	603 Decline

	5.6.3
	604 Does Not Exist Anywhere

	5.6.4
	606 Not Acceptable

	5.7
	Questions

	
	References

	6
	SIP Header Fields

	6.1
	Request and Response Header Fields

	6.1.1
	Accept

	6.1.2
	Accept-Encoding

	6.1.3
	Accept-Language

	6.1.4
	Alert-Info

	6.1.5
	Allow

	6.1.6
	Allow-Events

	6.1.7
	Answer-Mode

	6.1.8
	Call-ID

	6.1.9
	Contact

	6.1.10
	CSeq

	6.1.11
	Date

	6.1.12
	Encryption

	6.1.13
	Expires

	6.1.14
	From

	6.1.15
	Feature-Caps

	6.1.16
	Geolocation

	6.1.17
	Geolocation-Routing

	6.1.18
	History Info

	6.1.19
	Policy-Contact

	6.1.20
	Organization

	6.1.21
	Path

	6.1.22
	Priv-Answer-Mode

	6.1.23
	Record-Route

	6.1.24
	Recv-Info

	6.1.25
	Refer-Sub

	6.1.26
	Retry-After

	6.1.27
	Session-ID

	6.1.28
	Subject

	6.1.29
	Supported

	6.1.30
	Timestamp

	6.1.31
	To

	6.1.32
	User-Agent

	6.1.33
	User-to-User

	6.1.34
	Via

	6.2
	Request Header Fields

	6.2.1
	Accept-Contact

	6.2.2
	Authorization

	6.2.3
	Call-Info

	6.2.4
	Event

	6.2.5
	Hide

	6.2.6
	Identity

	6.2.7
	Identity-Info

	6.2.8
	In-Reply-To

	6.2.9
	Info-Package

	6.2.10
	Join

	6.2.11
	Priority

	6.2.12
	Privacy

	6.2.13
	Policy-ID

	6.2.14
	Proxy-Authorization

	6.2.15
	Proxy-Require

	6.2.16
	P-OSP-Auth-Token

	6.2.17
	P-Asserted-Identity

	6.2.18
	P-Preferred-Identity

	6.2.19
	Max-Breadth

	6.2.20
	Max-Forwards

	6.2.21
	Reason

	6.2.22
	Refer-To

	6.2.23
	Referred-By

	6.2.24
	Reply-To

	6.2.25
	Replaces

	6.2.26
	Reject-Contact

	6.2.27
	Request-Disposition

	6.2.28
	Require

	6.2.29
	Resource-Priority

	6.2.30
	Response-Key

	6.2.31
	Route

	6.2.32
	RAck

	6.2.33
	Security-Client

	6.2.34
	Security-Verify

	6.2.35
	Session-Expires

	6.2.36
	SIP-If-Match

	6.2.37
	Subscription-State

	6.2.38
	Suppress-If-Match

	6.2.39
	Target-Dialog

	6.2.40
	Trigger-Consent

	6.3
	Response Header Fields

	6.3.1
	Accept-Resource-Priority

	6.3.2
	Authentication-Info

	6.3.3
	Error-Info

	6.3.4
	Flow-Timer

	6.3.5
	Geolocation-Error

	6.3.6
	Min-Expires

	6.3.7
	Min-SE

	6.3.8
	Permission-Missing

	6.3.9
	Proxy-Authenticate

	6.3.10
	Refer-Events-At

	6.3.11
	Security-Server

	6.3.12
	Server

	6.3.13
	Service-Route

	6.3.14
	SIP-ETag

	6.3.15
	Unsupported

	6.3.16
	Warning

	6.3.17
	WWW-Authenticate

	6.3.18
	RSeq

	6.4
	Message Body Header Fields

	6.4.1
	Content-Encoding

	6.4.2
	Content-Disposition

	6.4.3
	Content-Language

	6.4.4
	Content-Length

	6.4.5
	Content-Type

	6.4.6
	MIME-Version

	6.5
	Questions

	
	References

	7
	Wireless, Mobility, and IMS

	7.1
	IP Mobility

	7.2
	SIP Mobility

	7.3
	IMS and SIP

	7.4
	IMS Header Fields

	7.5
	Conclusion

	7.6
	Questions

	
	References

	8
	Presence and Instant Messaging

	8.1
	Introduction

	8.2
	History of IM and Presence

	8.3
	SIMPLE

	8.4
	Presence with SIMPLE

	8.4.1
	SIP Events Framework

	8.4.2
	Presence Bodies

	8.4.3
	Resource Lists

	8.4.4
	Filtering

	8.4.5
	Conditional Event Notifications and ETags

	8.4.6
	Partial Publication

	8.4.7
	Presence Documents Summary

	8.5
	Instant Messaging with SIMPLE

	8.5.1
	Page Mode Instant Messaging

	8.5.2
	Common Profile for Instant Messaging

	8.5.3
	Instant Messaging Delivery Notification

	8.5.4
	Message Composition Indication

	8.5.5
	Multiple Recipient Messages

	8.5.6
	Session Mode Instant Messaging

	8.6
	Jabber

	8.6.1
	Standardization as Extensible Messaging and Presence Protocol

	8.6.2
	Jingle

	8.6.3
	Interworking with SIMPLE

	8.7
	Conclusion

	8.8
	Questions

	
	References

	9
	Services in SIP

	9.1
	Gateway Services

	9.2
	Emergency Services

	9.3
	SIP Trunking

	9.4
	SIP Service Examples

	9.5
	Voicemail

	9.6
	SIP Video

	9.6.1
	Video Relay Service (VRS)

	9.7
	Facsimile

	9.8
	Conferencing

	9.8.1
	Focus

	9.8.2
	Mixer

	9.8.3
	Non-SIP Conference Control

	9.9
	Application Sequencing

	9.10
	Other SIP Service Architectures

	9.10.1
	Service-Oriented Architecture

	9.10.2
	Servlets

	9.10.3
	Service Delivery Platform

	9.11
	Conclusion

	9.12
	Questions

	
	References

	10
	Network Address Translation

	10.1
	Introduction to NAT

	10.2
	Advantages of NAT

	10.3
	Disadvantages of NAT

	10.4
	How NAT Works

	10.5
	Types of NAT

	10.5.1
	End Point-Independent Mapping NAT

	10.5.2
	Address-Dependent Mapping NAT

	10.5.3
	Address and Port-Dependent Mapping NAT

	10.5.4
	Hairpinning Support

	10.5.5
	IP Address Pooling Options

	10.5.6
	Port Assignment Options

	10.5.7
	Mapping Refresh

	10.5.8
	Filtering Modes

	10.6
	NAT Mapping Examples

	10.7
	NATs and SIP

	10.8
	Properties of a Friendly NAT or How a NAT Should BEHAVE

	10.9
	STUN Protocol

	10.10
	UNSAF Requirements

	10.11
	SIP Problems with NAT

	10.11.1
	Symmetric SIP

	10.11.2
	Connection Reuse

	10.11.3
	SIP Outbound

	10.12
	Media NAT Traversal Solutions

	10.12.1
	Symmetric RTP

	10.12.2
	RTCP Attribute

	10.12.3
	Self-Fixing Approach

	10.13
	Hole Punching

	10.14
	TURN: Traversal Using Relays Around NAT

	10.15
	ICE: Interactive Connectivity Establishment

	10.16
	Conclusion

	10.17
	Questions

	
	References

	11
	Related Protocols

	11.1
	PSTN Protocols

	11.1.1
	Circuit-Associated Signaling

	11.1.2
	ISDN Signaling

	11.1.3
	ISUP Signaling

	11.2
	SIP for Telephones

	11.3
	Media Gateway Control Protocols

	11.4
	H.323

	11.4.1
	Introduction to H.323

	11.4.2
	Example of H.323

	
	References

	12
	Media Transport

	12.1
	Real-Time Transport Protocol (RTP)

	12.2
	RTP Control Protocol (RTCP)

	12.2.1
	RTCP Reports

	12.2.2
	RTCP Extended Reports

	12.3
	Compression

	12.4
	RTP Audio Video Profiles

	12.4.1
	Audio Codecs

	12.4.2
	Video Codecs

	12.4.3
	Audio and Video Multiplexing over Same Ports

	12.5
	Conferencing

	12.6
	ToIP—Conversational Text

	12.7
	DTMF Transport

	12.8
	Questions

	
	References

	13
	Negotiating Media Sessions

	13.1
	Session Description Protocol (SDP)

	13.1.1
	Protocol Version

	13.1.2
	Origin

	13.1.3
	Session Name and Information

	13.1.4
	URI

	13.1.5
	E-Mail Address and Phone Number

	13.1.6
	Connection Data

	13.1.7
	Bandwidth

	13.1.8
	Time, Repeat Times, and Time Zones

	13.1.9
	Encryption Keys

	13.1.10
	Media Descriptions

	13.1.11
	Attributes

	13.2
	SDP Extensions

	13.3
	The Offer Answer Model

	13.3.1
	Rules for Generating an Offer

	13.3.2
	Rules for Generating an Answer

	13.3.3
	Rules for Modifying a Session

	13.3.4
	Special Case—Call Hold

	13.4
	Static and Dynamic Payloads

	13.5
	SIP Offer/Answer Exchanges

	13.6
	Conclusion

	13.7
	Questions

	
	References

	14
	Internet Threats and Attacks

	14.1
	Introduction

	14.2
	Attack Types

	14.2.1
	Denial of Service (DoS)

	14.2.2
	Man-in-the-Middle

	14.2.3
	Replay and Cut-and-Paste Attacks

	14.2.4
	Theft of Service

	14.2.5
	Eavesdropping

	14.2.6
	Impersonation

	14.2.7
	Poisoning Attacks (DNS and ARP)

	14.2.8
	Credential and Identity Theft

	14.2.9
	Redirection/Hijacking

	14.2.10
	Session Disruption

	14.3
	Attack Methods

	14.3.1
	Port Scans

	14.3.2
	Malicious Code

	14.3.3
	Buffer Overflow

	14.3.5
	Password Theft/Guessing

	14.3.6
	Tunneling

	14.3.7
	Bid Down

	14.4
	Summary

	14.5
	Questions

	
	References

	15
	SIP Security and Identity

	15.1
	Basic Security Concepts

	15.1.1
	Encryption

	15.1.2
	Public Key Cryptography

	15.1.3
	Diffie-Hellman Cryptography

	15.1.4
	Message Authentication

	15.1.5
	Digital Certificates

	15.2
	Security Protocols

	15.2.1
	IPSec

	15.2.2
	TLS

	15.2.3
	DTLS

	15.2.4
	DNSSEC

	15.2.5
	Secure MIME

	15.3
	SIP Security Model

	15.3.1
	Basic Authentication

	15.3.2
	Digest Authentication

	15.3.3
	Pretty Good Privacy

	15.3.4
	S/MIME

	15.3.5
	SIP Use of TLS

	15.3.6
	Secure SIP

	15.4
	Identity

	15.4.1
	Telephone Number Identity

	15.4.2
	SIP URI Identity

	15.4.3
	Trust Domains for Asserted Identity

	15.4.4
	Interdomain SIP Identity

	15.4.5
	SIP and Certificates

	15.4.6
	Other Asserted Identity Methods

	15.4.7
	Privacy

	15.5
	Conclusion

	15.6
	Questions

	
	References

	16
	Media Security

	16.1
	Introduction

	16.2
	Secure RTP

	16.3
	Generation of Media Encryption Keys

	16.3.1
	Preshared Keys

	16.3.2
	Public Key Encryption

	16.3.3
	Authenticated Key Management and Exchange

	16.4
	SDP Security Descriptions

	16.5
	Multimedia Internet Keying (MIKEY)

	16.6
	DTLS-SRTP Key Agreement

	16.7
	ZRTP Media Path Key Agreement for VoIP

	16.8
	Questions

	
	References

	17
	SIP PSTN Gateway Security

	17.1
	Introduction

	17.2
	PSTN Security Model

	17.3
	Gateway Security

	17.3.1
	Gateway Security Architecture

	17.3.2
	Gateway Types

	17.3.3
	Gateways and Caller ID

	17.3.4
	Caller ID and Privacy

	17.3.5
	SIP/ISUP Interworking

	17.4
	Telephone Number Mapping in the DNS

	
	References

	18
	Peer-to-Peer SIP

	18.1
	P2P Properties

	18.2
	P2P Properties of SIP

	18.3
	P2P Overlays

	18.4
	RELOAD

	18.5
	Host Identity Protocol

	18.6
	Conclusion

	18.7
	Questions

	
	References

	19
	Web Real-Time Communications

	19.1
	Introduction to WebRTC

	19.2
	WebRTC Basics

	19.3
	WebRTC Architecture

	19.4
	WebRTC Protocols

	19.5
	SIP Signaling for WebRTC

	19.6
	Conclusion

	
	References

	20
	Call Flow Examples

	20.1
	SIP Call with Authentication, Proxies, and Record-Route

	20.2
	SIP Call with Stateless and Stateful Proxies with Called Party Busy

	20.3
	SIP to PSTN Call Through Gateway

	20.4
	PSTN to SIP Call Through Gateway

	20.5
	Parallel Search

	20.6
	Call Setup with Proxy Server

	20.7
	SIP Presence and Instant Message Example

	
	References

	21
	Future Directions

	21.1
	Bug Fixes and Clarifications

	21.2
	More Extensions

	21.3
	Better Identity

	21.4
	SIP and WebRTC

	21.5
	Making Features Work Better

	21.6
	IPv6 Transition

	21.7
	More SIP Trunking

	21.8
	Security Deployment

	21.9
	Better Interoperability

	
	References

	
	Appendix

	A.1
	ABNF Rules

	A.2
	Introduction to XML

	
	References

About the Author

Index

Preface to the Fourth Edition

This fourth edition of the book, much like the SIP protocol itself, is a refinement, rather than a wholesale revolution. There are updates and additions throughout the book, but the major changes are new chapters on security and a new chapter on WebRTC, a related technology that didn’t even exist when the third edition was published. Large parts of the security sections are based on material originally written for my book, Understanding VoIP Security, so thanks to Dave Piscitello for collaborating with me on that project.

I would like to take this opportunity to thank additional key people who have contributed to my writing, teaching, and researching career related to SIP.

To my colleagues at MCI, thanks for getting me started in SIP, including Vint Cerf who approved the publication of my first ever Internet-Draft submission to the IETF and Henry Sinnreich who was my partner-in-crime for many years in promoting SIP internally and externally. Thanks to Mark Walsh at Artech House for giving me my first break in publishing. Thanks to Professor Paul Min at Washington University in St. Louis, who invited me to give adjunct teaching a try, and to Dean Jody O’Sullivan, who for many years supported my Internet Communications elective class at Washington University in St Louis. A big thank you to Harvey Waxman, Phil Edholm, and Anwar Siddiqui – my former colleagues at Avaya who all supported my IETF standards work and my writing. Thank you to my current colleagues, Avayans Dan Romascanu, Jake Chacko, and Barbara Augun for their continued support. Thanks to Carol Davids and Dean Bob Carlson for getting me involved as an adjunct at Illinois Institute of Technology. And for this edition, thanks to Marissa Koors, who has been very patient with my writing schedule.

And of course, thanks to all my colleagues in the IETF and SIP Forum, and others in the real-time communication industry. As a community, we are beginning to age, and we recently have lost one of our best, Francois Audet, whose SIP RFCs are referenced throughout this book, especially in the security chapters. We all miss him deeply as a friend, a colleague, and a source of great knowledge on SIP and real-time communication.

And thank you, reader, for your interest and attention. I wish you well with all your SIP projects and deployments!

Acknowledgment

Material in Chapters 14 through 17 was jointly developed with Dave Piscitello from our book, Understanding VoIP Security.

1

SIP and the Internet

The Session Initiation Protocol (SIP) is a signaling, presence, and instant messaging protocol developed to set up, modify, and tear down multimedia sessions; request and deliver presence; and send and receive instant messages [1]. When teaching or lecturing about SIP, I begin by explaining that SIP is an Internet protocol. This actually means much more than just that SIP runs over the Internet. This means that SIP uses and takes advantage of the Internet architecture and protocol suite. This chapter will introduce the Transmission Control Protocol/Internet Protocol (TCP/IP) suite that is the foundation for the Internet and SIP. First, some of the basic concepts of Internet protocols such as TCP, IP, User Datagram Protocol (UDP), and the Domain Name System (DNS) will be covered. SIP, along with many other Internet protocols, has been developed by the Internet Engineering Task Force (IETF). The processes, steps, and life cycle involved in the development of Internet standards will also be covered. This chapter ends with a brief history of SIP.

1.1 Signaling Protocols

This book is about the session initiation protocol (SIP). As the name implies, the protocol allows two end points to establish media sessions with each other. The main signaling functions of the protocol are as follows:

• Location of an end point;

• Contacting an end point to determine willingness to establish a session;

• Exchange of media information to allow a session to be established;

• Modification of existing media sessions;

• Teardown of existing media sessions.

SIP has also been extended to request and deliver presence information (online/off-line status and location information such as that contained in a buddy list) as well as instant message sessions. These functions include:

• Publishing and uploading of presence information;

• Requesting delivery of presence information;

• Presence and other event notification;

• Transporting of instant messages.

While some of the examples discuss SIP from a telephony perspective, there will be many nontelephony uses for SIP. SIP will likely be used to establish a set of session types that bear almost no resemblance to a telephone call.

The following section will introduce the Internet multimedia protocol stack and discuss these protocols at a high level.

1.2 Internet Multimedia Protocol Stack

Figure 1.1 shows the five layer Internet multimedia protocol stack. The layers shown and protocols identified will be discussed.

1.2.1 Physical Layer

The physical layer is the lowest layer of the protocol stack. It shows how devices are physically connected with each other. Common physical layer methods include copper (coax, twisted pair, or other wired connections), photons (fiber optics, laser light, or other photonic sources), or phonons (radio waves, microwaves, or other electromagnetic transmissions).

1.2.2 Data/Link Layer

The next layer is the data/link layer, which could be an Ethernet local area network (LAN), Point-to-Point Protocol (PPP), a digital subscriber line (DSL), or even a wireless 802.11 network. This layer performs such functions as symbol exchange, frame synchronization, and physical interface specification. Ethernet typically adds a 13-octet header and a 3-octet footer to every packet sent. Note that an octet is 8 bits of data, sometimes called a byte.

[image:]

Figure 1.1 The Internet multimedia protocol stack.

1.2.3 Network Layer

The next layer in Figure 1.1 is the network or Internet layer. IP [2] is used at this layer to route a packet across the network using the destination IP address. IP is a connectionless, best-effort packet delivery protocol. IP packets can be lost, delayed, or received out of sequence. Each packet is routed on its own using the IP header appended to the physical packet. Most IP address examples in this book use the older version of IP, version 4 (IPv4). IPv4 addresses are 4 octets long, usually written in “dotted decimal” notation (for example, 207.134.3.5). At the IP layer, packets are not acknowledged. A checksum is calculated to detect corruption in the IP header, which could cause a packet to become misrouted. However, corruption or errors in the IP payload are not detected; a higher layer must perform this function if necessary, and it is usually done at the transport layer. IP uses a single-octet protocol number in the packet header to identify the transport layer protocol that should receive the packet.

IP version 6 (IPv6) [3] was developed by the IETF as a replacement for IPv4. IPv6 traffic is ramping up, and most Internet sites and services support IPv6 today. The biggest initial networks of IPv6 are wireless telephony carriers who need the most important advantage of IPv6 over IPv4—a much enlarged addressing space. IPv6 increases the addressing space from 32 bits in IPv4 to 128 bits, providing for over approximately 3.4 × 1038 IPv6 addresses. An IPv6 address is typically written as a sequence of eight hexadecimal numbers separated by colons. For example, 0:0:0:0:aaaa:bbbb:cccc:dddd is an IPv6 address written in this format. It is also common to drop sequences of zeros with a single double colon. This same address can then be written as ::aaaa:bbbb:cccc:dddd. SIP can use either IPv4 or IPv6.

IP addresses used over the public Internet are assigned in blocks by regional Internet registries (RIR). For example, the American Registry for Internet Numbers (ARIN) allocates addresses in North America while Réseaux IP Européens Network Coordination Centre (RIP ENCC) allocates addresses in Europe. The Internet Assigned Number Association (IANA) manages the overall IP address pool, delegating blocks to the RIRs. Individual end users and enterprises use IP addresses allocated to them by their Internet Service Provider (ISP) from a regional registry.

As a result of this centralized assignment, IP addresses are globally unique. This enables a packet to be routed across the public Internet using only the destination IP address. Various protocols are used to route packets over an IP network, but they are outside of the scope of this book. Subnetting and other aspects of the structure of IP addresses are also not covered here. There are other excellent sources [4] that cover the entire suite of TCP/IP in more detail.

Private IP addresses are addresses that are not routable on the public Internet but can be routable on a stub network LAN. A router performing network address translation (NAT) is used when a host with a private IP address needs to access resources on the public Internet. NAT temporarily binds or maps a host’s private IP address, which is only routable within the LAN with a public IP address that has been allocated to the NAT. The NAT rewrites IP packets as they pass through in both directions, allowing connections. A detailed description of NAT and how it affects SIP and Internet communications can be found in Chapter 10. There are three IPv4 address blocks that have been allocated for private addresses in [5]:

10.0.0.0 - 10.255.255.255 or 10/8

172.16.0.0 - 172.31.255.255 or 172.16/12

192.168.0.0 - 192.168.255.255 or 192.168/16

Configuration information for IP can be manually configured in a host or it can be learned automatically. Typically, a host needs to know its own IP address, default gateway, subnet mask, and DNS server addresses. One common protocol for this is Dynamic Host Configuration Protocol (DHCP), which is defined by [6]. DHCP allows a host to autodiscover all these parameters upon initialization of the IP stack. There are various DHCP extensions that have been defined to autoconfigure other protocols, including SIP.

1.2.4 Transport Layer

The next layer shown in Figure 1.1 is the transport layer. It uses a 2-octet port number from the application layer to deliver the datagram or segment to the correct application layer protocol at the destination IP address. There are two commonly used transport layer protocols: TCP and UDP. In addition, there are two uncommon transport protocols: Stream Control Transmission Protocol (SCTP) and Datagram Congestion Control Protocol (DCCP), which are beginning to be used on the Internet. There is also the Transport Layer Security (TLS) protocol, which provides security on top of TCP. These protocols are introduced in the following sections.

1.2.4.1 TCP

TCP [7] provides reliable, connection-oriented transport over IP. A TCP connection between two hosts over an IP network is sometimes known as a socket. TCP is a client/server protocol. Servers “listen” on a specific port number for an incoming request to open a socket. A client sends a request to open a new socket to the server on the well-known port. The combination of the source IP address, source port, destination IP address, and destination port identifies the socket connection. As such, it is possible for two hosts to have multiple TCP connections open between them.

TCP uses sequence numbers and positive acknowledgments to ensure that each block of data, called a segment, has been received. Lost segments are retransmitted until they are successfully received. Figure 1.2 shows the message exchange to establish and tear down a TCP connection. A TCP server listens on a well-known port for a TCP SYN (synchronization) message to open the connection. The SYN message contains the initial sequence number the client will use during the connection. The server responds with an ACK message to acknowledge the SYN with an acknowledgment number and then follows up with its own SYN message containing its own initial sequence number. Often, these two messages are combined into one SYN-ACK message that does both functions. The client completes the three-way handshake with an ACK or a DATA packet with the AK flag set to the server acknowledging the server’s sequence number. Now that the connection is open, either client or server can send data in DATA packets (segments). The connection is closed when either side sends a FIN packet that receives an ACK. This exchange is shown in Figure 1.2.

[image:]

Figure 1.2 TCP handshake example.

TCP sends data in units called segments. The maximum segment size (MSS) is negotiated between the hosts during the handshake and is usually based on the maximum transmission unit (MTU) of the local network. In general, the larger the segment size, the more efficient the transport, except when packet loss is present when smaller segments can result in fewer retransmissions. A typical MTU value for the Internet is 1,500 octets.

TCP uses cumulative acknowledgements for reliability. The recipient sends ACK packets including the next sequence number it expects to receive. If a sender does not receive an ACK within a certain time period, the segment is resent. An example is shown in Figure 1.3.

TCP also has built-in flow control. Flow control is used by a receiver to slow down the rate of transmission to allow the receiver to properly process or buffer incoming segments. TCP uses a sliding window for end-to-end control.

Senders can only send the number of octets in the window before waiting for an ACK. A receiver can reduce the size of the window in ACK messages, even setting it to 0 to cause the sender to stop sending. Once the receiver has caught up, another ACK can be sent to increase the window size and resume the flow of segments. This is shown in Figure 1.4.

[image:]

Figure 1.3 TCP reliability example.

TCP also has built in congestion control. TCP uses a slow-start algorithm to attempt to avoid congestion. When congestion occurs, TCP uses a fast retransmit and a fast recovery. The details of how these algorithms work can be found in any good TCP/IP reference such as [4].

TCP adds a 20-octet header field to each packet and is a stream-oriented transport. An application using TCP to send messages must provide its own framing or separation between messages. Error segments are detected by a checksum covering both the TCP header and payload.

1.2.4.2 Transport Port Numbers

Ports numbers are used by the transport layer to multiplex and demultiplex multiple connections on a single host. Otherwise, a pair of hosts could only have a single connection between them. Also, messages for different protocols can be separated by using different port numbers. Often these port numbers are associated with a specific protocol. Others are registered to a particular protocol. Ports are a 16-bit integer. Ports in the range 0 to 1023 are called well-known ports. Ports in the range of 1024 through 49151 are known as registered ports. Ports in the range of 49152 through 65535 are known as dynamic, private, or ephemeral ports. For example, Web servers use the well-known port of 80, SIP uses the registered ports of 5060 and 5061, and RTP usually uses a dynamic port.

[image:]

Figure 1.4 TCP use of Windows.

1.2.4.3 UDP

UDP [8] provides unreliable transport across the Internet. It is a best-effort delivery service, since there is no acknowledgment of sent datagrams. Most of the complexity of TCP is not present, including sequence numbers, acknowledgments, and window sizes. UDP does detect datagrams with errors with a checksum. It is up to higher-layer protocols to detect this datagram loss and initiate a retransmission if desired.

UDP does not provide congestion control or flow control—if any of these functions are needed, they must be built into the application layer protocol. UDP is best suited for short, single packet exchanges such as DNS or routing queries. It is also good for real-time, low-latency transports protocols such as SIP and RTP.

UDP adds an 8-octet header field to datagrams. Applications and protocols that use UDP must do their own framing—they must break up information into individual UDP packets. For a message-oriented protocol, this typically means one message or request per UDP datagram.

1.2.4.4 TLS

TLS [9] is based on the Secure Sockets Layer (SSL) protocol first used in Web browsers. TLS uses TCP for transport, although it has been extended to also run over UDP. TLS is commonly used today on the Internet for secure Web sites using the secure HTTP (https) URI scheme.

The TLS protocol has two layers: the TLS Transport Protocol and the TLS Handshake Protocol. The TLS Transport Protocol is used to provide a reliable and private transport mechanism. Data sent using the TLS Transport Protocol is encrypted so that a third party cannot intercept the data. A third party also cannot modify the transported data without one of the parties discovering this. The TLS Handshake Protocol is used to establish the connection, negotiate the encryption keys used by the TLS Transport Protocol, and provide authentication.

The key agreement scheme selects an encryption algorithm and generates a one-time key based on a secret passed between the two sides. During the handshake, the parties exchange certificates, which can be used for authentication. The cryptographic computations for a TLS connection are not trivial, and the multiple round trips needed to open a connection can add to message latency. Also, certificate verification can introduce processing delays. However, TLS transport has clear security advantages over UDP or TCP. TLS is widely supported due to its use in secure Web browsers and servers. TLS will be discussed more in Chapter 15.

1.2.4.5 SCTP

SCTP [10] is similar to TCP in that it provides reliable stream-based transport. However, it has some advantages over TCP transport for a message-based protocol. First, it has built-in message segmentation, so that individual messages are separated at the transport layer. Another advantage is that SCTP avoids the head-of-line blocking problem of TCP. This is a TCP problem in which a dropped segment with a large window causes the entire window’s worth of messages to wait in a buffer (that is, be blocked) until the dropped segment is retransmitted.

SCTP also supports multihoming, so if one of a pair of load balancing servers fails, the other can immediately begin receiving the messages without even requiring a DNS or other database lookup.

As a transport protocol, SCTP requires operating system level support to be used, which will initially delay its use in the Internet. Also, as we shall see in Chapter 10 on NAT traversal, the use of new transports on the Internet is severely limited by their support in middle boxes such as NAT. Also, note that the advantages of SCTP over TCP only occur during packet loss. In a zero-loss network, the performance of the two is identical. SCTP is not commonly supported in Internet hosts today, but it is being used in WebRTC, as discussed in Chapter 19.

1.2.4.6 DCCP

DCCP [11] is another new transport protocol that tries to provide congestion and flow control similar to TCP but without the reliability or in-order delivery of TCP. It shows some promise for use as a real-time transport. However, its support is very limited today, and limited NAT support will delay its adoption.

1.2.5 Application Layer

The top layer shown in Figure 1.1 is the application layer. This includes signaling protocols such as SIP and media transport protocols such as Real-Time Transport Protocol (RTP), which is introduced in Chapter 12. HTTP, SMTP, File Transfer Protocol (FTP), and Telnet are all examples of application layer protocols. SIP can theoretically use any transport protocol, although it is currently standardized to run over TCP, UDP, and SCTP. The use of TCP, TLS, SCTP, and UDP transport for SIP will be discussed in the next chapter.

1.2.6 Utility Applications

Two Internet utility applications are also shown in Figure 1.1. The most common use of the DNS (well-known port number 53) is to resolve a symbolic name (such as example.org, which is easy to remember) into an IP address (which is required by IP to route the packet). Also shown is DHCP. DHCP allows an IP device to download configuration information upon initialization. Common fields include a dynamically assigned IP address, DNS addresses, subnet masks, maximum transmission unit (MTU), or maximum packet size, and server addresses for e-mail and Web browsing. SIP has a DHCP extension for configuration [12].

Another utility is Internet Control Message Protocol (ICMP), a control and diagnostic protocol that runs between single IP routing hops—between routers and between routers and hosts. It runs directly on top of the IP layer without a transport protocol, using protocol 1. The most common ICMP message is a Type 8 Echo Request or ping. Ping tests can be used to verify connectivity. A Type 0 Echo Reply is a ping response whose latency is often measured and displayed. Other ICMP error messages include a Type 3 Destination Unreachable message or a Type 11 TTL Exceeded for Datagram where TTL stands for Time to Live. ICMP is also used to provide the traceroute (tracert on Windows) Internet utility used to discover IP hops between hosts.

1.2.7 Multicast

In normal Internet packet routing, or unicast routing, a packet is routed to a single destination. In multicast routing, a single packet is routed to a set of destinations. Single LAN segments running a protocol such as Ethernet offer the capability for packet broadcast, where a packet is sent to every node on the network. Scaling this to a larger network with routers is a recipe for disaster, as broadcast traffic can quickly cause congestion. An alternative approach for this type of packet distribution is to use a packet reflector that receives packets and forwards copies to all destinations that are members of a broadcast group. For a number of years, the Internet Multicast Backbone Network (MBONE), an overlay of the public Internet, has used multicast routing for high-bandwidth broadcast sessions. Participants who wish to join a multicast session send a request to join the session to their local MBONE router using a protocol known as Internet Group Management Protocol (IGMP). That router will then begin to broadcast the multicast session on that LAN segment.

Additional requests to join the session from others in the same LAN segment will result in no additional multicast packets being sent, since the packets are already being broadcast. If the router is not aware of any multicast participants on its segment, it will not forward any of the packets. Routing of multicast packets between routers uses special multicast routing protocols to ensure that packet traffic on the backbone is kept to a minimum. Multicast IPv4 Internet addresses are reserved in the range of 224.0.0.0 to 239.255.255.255.

Multicast transport is always UDP, since the handshake and acknowledgments of TCP are not possible. Certain addresses have been defined for certain protocols and applications. The scope or extent of a multicast session can be limited using the TTL field in the IP header. This field is decremented by each router that forwards the packet, which limits the number of hops the packet takes. SIP support for multicast will be discussed in Section 3.9. Multicast is slowly becoming a part of the public Internet as service providers begin supporting it, and it is finding an important application today in the streaming of real-time video to set-top boxes sometimes known as IPTV. There is another approach known as application layer multicast, which uses peer-to-peer technology, which does not require any changes at the IP layer. This will be discussed in Chapter 18.

1.3 Internet Names

Internet addresses, covered in Chapter 2, are used to route individual datagrams over the Internet. However, they are not very friendly for humans to use. IPv4 addresses can be as long as 12 digits, while IPv6 addresses can be as long as 32 hexadecimal digits. A given Internet host with only one IP address may have many identities. Also, some Internet identities are that of the human user, not the actual host. For example, an e-mail address identifies a user, not a particular host on the Internet. The user may utilize multiple Internet hosts to access e-mail.

Internet names began with RFC 822 [13], which defined the user@host format that is so familiar today with e-mail addresses. These text-based names were defined to enable a piece of software known as a parser to be able to extract the various parts of the address and any parameters. In addition, some of the first Internet applications such as e-mail used a text-based way of encoding protocol messages. The method of encoding both Internet names and messages was defined in RFC 822 as Backus Naur Format (BNF). BNF was developed by John Backus to define the early programming language ALGOL. Today, many Internet protocols, including SIP, are defined using Augmented Backus Naur Form (ABNF) [14], which is based on BNF. The Appendix has an introduction to ABNF.

1.4 URLs, URIs, and URNs

Uniform Resource Locators (URLs) are an addressing scheme developed for the World Wide Web (WWW). It is defined in RFC 1738 [15] and is a syntax for representing a resource available on the Internet. The general form is:

scheme:scheme-specific-part

for example, consider:

http://www.artechhouse.com/Default.aspx

The token http identifies the scheme or protocol to be used, in this case HTTP. The specifier follows the “:” and contains a domain name (www.artechhouse.com), which can be resolved into an IP address, and a file name (/Default.aspx). URLs can also contain additional parameters or qualifiers relating to transport, but they can never contain spaces. For example, telnet://host.company.com:24 indicates that the Telnet Protocol should be used to access host.company.com using port 24. New schemes for URLs for new protocols are easily constructed, and dozens have been defined, such as mailto, tel, and https. The sip and sips schemes will be introduced in Section 4.2.

Most protocols reference URLs, but with SIP we mainly reference Uniform Resource Indicators (URIs). This is due to the mobility aspects of SIP, which means that a particular address (URI) is not tied to a single physical device but instead is a logical entity that may move around and change its location in the Internet. However, the terms URL and URI are often used almost interchangeably in other contexts.

Some other examples include:

http://www.ese.wustl.edu

sip:barney@fwd.rubble.example.com

mailto:help@example.org?Subject=Help!

Common SIP and Internet Communications URL and URI schemes are listed in Table 1.1. The details of SIP and SIPs URIs are covered in Section 4.2.

Uniform Resource Names (URNs) are defined by [16]. A URN provides a standard name for a resource but does not provide any information for how to access the resource. An example URN namespace is International Standard Book Numbers (ISBNs):

URN:ISBN:1-60783-995-4

URN namespaces are often used to identify XML extensions.

1.5 Domain Name Service

The Domain Name Service [17] is used on the Internet to map a symbolic name (such as www.example.com) to an IP address (such as 100.101.102.103, which is an example IPv4 address). DNS is also used to obtain information needed to route various protocol messages, including SIP messages. The use of names instead of numerical addresses is one of the Internet’s greatest strengths because it gives the Internet a human, friendly feel. Domain names are organized in a hierarchy. Each level of the name is separated by a dot, with the highest-level domain on the right side. (Note that the dots in a domain name have no correspondence to the dots in an IP address written in dotted decimal notation.) General top-level domains are shown in Table 1.2 (see http://www.icann.org/tlds for the latest list). Some such as com, net, and edu are commonly encountered, while others such as aero and coop are rare. There is also a set of country domains such as: us (United States), uk (United Kingdom), ca (Canada), and au (Australia). Each of these top-level domains has just one authority that assigns that domain to a user or group. Many new top-level domains are coming.

Table 1.1

URL and URI Schemes Used in Internet Communications

	Scheme
	Protocol

	sip
	SIP

	sips
	Secure SIP (TLS)

	tel
	Telephone number and dial string

	im
	Instant messaging inbox

	pres
	Presence

	xmpp
	Jabber IM and presence

	h323
	H.323

	http
	Hypertext Tranfer Protocol

	mailto
	Electronic mail address

Once a domain name has been assigned, the authority places a link in their DNS server to the DNS server of the user or group who has been assigned the domain. For example, when example.org is allocated to a company, the authoritative DNS server for the top-level com domain entry for example contains the IP address of the company’s DNS server(s). A name can then be further qualified by entries in the company’s DNS server to point to individual servers in their network. For example, the company’s DNS server may contain entries for www.example.com, ftp.example.com, and smtp.example.com. A number of types of DNS record types are defined. The DNS records used to resolve a host name into an IP address are called address records, or A records. Other types of records include CNAME (canonical name or alias records), MX (mail exchange records), SRV (service records, used by SIP and other protocols), and TXT (free-form text records). Another type of DNS record is a PTR, or pointer record, used for reverse lookups. Reverse lookups are used to map an IP address back to a domain name. These records can be used to generate server logs that show not only the IP addresses of clients served, but also their domain name. Web browsing provides an example of the use of the DNS system. Another type of DNS record is known as a Naming Authority Pointer (NAPTR) record that can be used by a protocol known as ENUM [18] to map global telephone numbers into Internet URLs.

Table 1.2

Generic Top-Level Domains (gTLDs)

	Domain
	Description

	com
	Company

	net
	Network

	int
	Internet

	org
	Not-for-profit organization

	edu
	University or college

	gov
	U.S. government

	mil
	U.S. military

	arpa
	ARPAnet

	info
	Information

	biz
	Business

	museum
	Museum

	name
	Name

	pro
	Professional

	aero
	Air transport industry

	coop
	Cooperatives

1.5.1 DNS Resource Records

DNS resource records are text records that are stored in DNS servers and retrieved by DNS resolvers. Each record has a minimum of four fields: name, type, class, and time to live (TTL). The name is the owner of the record and the resource being identified. The type is the type of resource records such as A, AAAA, MX, SRV, NAPTR, PTR, or TXT. Class is the class of address, which is IN for Internet addresses (all other network addresses are CH for Chaos). The TTL field is a 32-bit integer count of the number of seconds the record should be cached before being discarded.

Common DNS resource record types are listed in Table 1.3. The resource records used by SIP are discussed in detail in the following sections.

1.5.2 Address Resource Records (A or AAAA)

The most common type of resource record is an address record. As the name suggests, it provides an address for a resource or a host name. Besides the name, TTL, class, and type fields it includes a target field, which is an IP address. An A record provides [17] an IPv4 address, while an AAAA record [19] provides an IPv6 address. An AAAA record is usually called a “quad A” record.

Structure:

Name TTL Class A Target

For example,

Table 1.3

Common DNS Resource Record Types

	RR Type
	Reference
	Description

	A
	RFC 1035
	Address IPv4 (see Section 1.5.2)

	AAAA
	RFC 3596
	Address IPv6 (see Section 1.5.2)

	CNAME
	RFC 1035
	Canonical name, used for aliases

	MX
	RFC 1035
	Mail Exchange

	NAPTR
	RFC 2915
	Naming Authority Pointer Record, See Section 1.5.4

	NS
	RFC 1035
	Name Server records

	PTR
	RFC 1035
	Reverse domain name lookup

	SOA
	RFC 1035
	Start of Authority

	SPF
	RFC 4408
	Sender Policy Framework for Authorizing E-mail

	SRV
	RFC 2782
	Services (see Section 1.5.3)

	TXT
	RFC 1035
	Text records

ese.wustl.edu.

3600 IN A 128.252.168.2 ietf.org.

300 IN AAAA 2610:a0:c779:b::d1ad:35b4

are examples of an A record and an AAAA record. Notice the “.” used after the host name—this is to indicate that the address is absolute.

1.5.3 Service Resource Records (SRV)

Service resource records or SRV records [20] are used to lookup a host that provides a particular service. A number of services have been defined for SRV records including SIP service. SRV records use an underscore (_) in the service name to distinguish it from normal host names, which may not include an underscore.

Structure:

Service.Proto.Name TTL Class SRV Priority Weight Port Target

The priority field is used to set the relative priority of this record, as an SRV query might return several SRV resource records. The priority is a 16-bit unsigned integer. Resolvers should use the lowest value record (highest priority). The weight is a relative weight used to select between records with the same priority. It is also a 16-bit unsigned integer. The port is the transport port number that should be used for this service. This allows multiple instances of the same service to be run on the same host—each can utilize a different port number. The target is the domain name of the host. To reach the desired service, the target address and port number should be used.

For example,

_sip._udp.example.com. 300 IN SRV 0 100 5060 sip.example.com.

This example resource record is for SIP service using UDP as the transport protocol. The priority of this record is 0, indicating that it is the highest priority. The port number is 5060, the registered port for SIP. The target is sip. example.org, which will require an address (A or AAAA) lookup to resolve to an IP address. The use of SRV records in SIP will be discussed in Section 2.6.

1.5.4 Naming Authority Pointer Resource Records (NAPTR)

Naming authority pointer resource records or NAPTR records [21] are used to point to another record or URI. They are used by SIP to discover which transport protocols a given domain or server supports. In a protocol known as ENUM, they are used to resolve a telephone number into a URI. The usage of NAPTR records in SIP are discussed in Section 2.6.

Structure:

Domain TTL Class Type Order Preference Flags Service Regexp Replacement

Example:

example.org 3600 IN NAPTR 1 0 “s” “SIP+D2U” “” _sip._udp.example.org

1.5.5 DNS Resolvers

DNS resolvers are the software in an Internet host that looks up DNS records and sends DNS requests. When a user types in a Web address, such as www. artechhouse.com, the name must be resolved to an IP address before the browser can send the request for the index Web page from the Artech House Web server. The Web browser first launches a DNS query to the IP address for its DNS server, which has been manually configured or set up using DHCP.

The first step of the DNS resolver is to check the local DNS cache to see if the desired host name is already cached. If so, it returns that value without performing a lookup. If the value is not cached, then a query will be launched. If the DNS resolver is configured with the IP address of one or more DNS servers, it may simply forward the request to that DNS server and let that server take care of the request. Alternatively, it could resolve the address on its own using the following steps. The DNS resolver would check to see if the authoritative DNS server for the top-level domain (e.g., com) is stored in its cache. If not, it will have to query a DNS root server (e.g., “.”) for this information. DNS resolvers are configured with the IP addresses of the 16 DNS root servers. One of these will be selected and the query sent. With the authoritative DNS server name for the top-level domain, the resolver will then query that DNS server for the next-level domain name (e.g., “example.org”). Once it has the authoritative DNS server for that domain, another query will be launched for the next-level domain name (e.g., “www.example.com”). This continues until the actual host name records are retrieved. At every stage, DNS servers can return cached values instead of launching a new query.

If the DNS server happens to have the name’s A record stored locally (cached) from a recent query, it will return the IP address. If not, the DNS root server will then be queried to locate the authoritative DNS server for Artech House, which must contain the A records for the artechhouse.com domain. The HTTP GET request is then sent to that IP address, and the Web browsing session begins. There is only one authoritative DNS server for a domain, and it is operated by the owner of the domain name. Due to a very efficient caching scheme built into DNS, a DNS request often does not have to route all the way to this server. DNS is also used by an SMTP server to deliver an e-mail message. An SMTP server with an e-mail message to deliver initiates a DNS request for the MX record of the domain name in the destination e-mail address. The response to the request allows the SMTP server to contact the destination SMTP server and transfer the message. A similar process is defined for locating a SIP server using SRV, or service, DNS records.

1.6 Global Open Standards

SIP is an example of a global, open, Internet standard. Global means that the same protocol is used regardless of the country. A Web browser or Web server works the same if it is located in the United States, Europe, or Asia. This contrasts with telephony protocols, which have historically been highly regionalized. For example, ISDN User Part (ISUP), which forms the basis for today’s telephone network, has numerous national and regional varieties. Telephone equipment can only be used in the country for which it was manufactured. Switching gear used to handle international traffic to many different countries is some of the most complicated and expensive telephone equipment. As a result, features, services, and innovation have spread very slowly over the PSTN. Contrast this to the Internet where new applications and services are immediately available worldwide to anyone with Internet connectivity.

SIP is an example of an open standard. This means that any individual or company can access the standard, participate in the standards process, and have their voices heard and their issues discussed. Again, this contrasts with other standards bodies, which have closed membership, expensive fees, or geographical restrictions. Internet standards have always been freely available to download over the Internet.

SIP is a standard because it provides a definition for how different vendors, providers, and users can interconnect and interoperate their communication equipment. As such, SIP defines message formats and state machines (i.e., “bits on the wire”). SIP does not specify architectures, business models, exact service definitions, or user interfaces.

1.7 Internet Standards Process

The Internet Engineering Task Force (IETF) [22] is the body that develops standards for the Internet. It is a loosely organized group of implementers, vendors, service providers, and academics who work together to solve Internet problems and develop new protocols. Anyone can participate in the IETF standards process. The first step is to find the working group in the area of interest and join their e-mail mailing list. Most of the IETF work is done over e-mail with exchanges of ideas and discussions about the standards. The basic operation and principles of the IETF are described in the well-written “Tao of the IETF” [23].

Standards begin life as a working document known as an Internet Draft. These documents are only valid for 6 months. After this time, they are either updated or they expire. A document that gains support from participants and is heading in the right direction can be adopted by a working group as an official working group document. A working group is a group of interested parties within the IETF who have been chartered to work on a particular problem or protocol. Documents that have been adopted by a working group typically have a file name beginning draft-ietf-wg-... where wg is the name of the working group. Individual drafts usually have a file name beginning draft-author-lastname.... The document will continue to be refined and improved until the working group chairs determine that it is ready for a final review, known as Last Call. There is a Working Group Last Call (WGLC) and an IETF Last Call (IETF LC). Current Internet Drafts are listed at http://www.ietf.org/internet-drafts.

At this point, the document is considered and discussed by a group known as the Internet Engineering Steering Group [24], which consists of around a dozen members. This body discusses and then votes on approval of the document. Once approved, the document is published as part of the Request for Comments (RFC) Series. RFC documents are protocol standards, informational documents, or best current practices (BCP). RFC documents are identified by their numbers; for example, SIP is RFC 3261. RFC numbers are sequential. RFCs have been published since the 1960s, and the number of new RFCs has increased since the turn of the century. There is even a tradition of publishing “April 1st RFCs,” which are essentially jokes. These RFCs appear completely serious and cannot be distinguished from normal RFCs, except that the subject matter is usually ridiculous and the RFC will be dated April 1. More than a few humorless engineers have been caught off guard by these documents, and some even show up on vendor specification sheets and request for proposals! RFCs are archived by the RFC editor [25]. RFCs can replace (obsolete) or add to (update) existing RFCs—this information is available on the RFC editor’s Web site and is crucial information for developers and implementers. For example, the original SIP specification was published as RFC 2543. Then RFC 3261 was published, which obsoletes RFC 2543. An implementor finding and coding to RFC 2543 will not interoperate with current SIP implementations on the Internet.

Inside the IETF is another body known as the Internet Architecture Board or IAB [26]. This group does not vote to approve standards but addresses architectural and high-level issues affecting the Internet. There is a companion group to the IETF known as the Internet Research Task Force (IRTF) [27]. The IRTF looks at topics and protocols that won’t be deployed on the Internet for more than a few years. There is also the Internet Assigned Names Association (IANA) [28]. IANA allocates and manages the pool of Internet addresses. IANA allocates addresses to regional bodies who then allocate them to Internet service providers (ISPs), enterprises, governments, and universities. The Internet Corporation for Assigned Names and Numbers (ICANN) [29] manages the top-level Internet domains. The World Wide Web Consortium (W3C) [30] is responsible for all things relating to the Web, including Hypertext Markup Language (HTML) and Extensible Markup Language (XML), introduced in the Appendix. The W3C is also developing standards for applications to use the Web to interact; this is known as Web services.

The International SIP Forum [31] is an organization that promotes the use of the SIP. They are a membership nonprofit organization that holds regular meetings and discusses issues of interest to vendors, service providers, and users of SIP. Currently, there are over 50 member companies. The SIP Forum publishes SIP recommendations, which describe how to utilize IETF SIP standards. For example, in 2011, version 1.1 of the SIPconnect SIP trunking recommendation [32] was published, which is discussed in Section 9.2.

1.8 A Brief History of SIP

SIP was originally developed by the IETF Multi-Party Multimedia Session Control Working Group (MMUSIC). Version 1.0 was submitted as an Internet Draft in 1997. Significant changes were made to the protocol and resulted in a second version, version 2.0, which was submitted as an Internet Draft in 1998. The protocol achieved proposed standard status in March 1999 and was published as RFC 2543 [33] in April 1999. In September 1999, the now-closed SIP Working Group was established by the IETF to meet the growing interest in the protocol. An Internet Draft containing bug fixes and clarifications to SIP was submitted in July 2000, referred to as RFC 2543 “bis.” This document was eventually published as RFC 3261 [1], which obsoletes (or replaces) the original RFC 2543 specification. In addition, many SIP extension RFC documents have been published.

The popularity of SIP in the IETF has led to the formation of other SIP-related working groups. The now closed Session Initiation Protocol Investigation (SIPPING) working group was formed to investigate applications of SIP, develop requirements for SIP extensions, and publish best current practice (BCP) documents about the use of SIP. Currently, the SIPCORE working group is responsible for the core SIP standards. The SIP for Instant Messaging and Presence Leveraging Extensions (SIMPLE) working group was formed to standardize related protocols for presence and instant messaging applications. Other now-closed working groups that made use of SIP include the PSTN and Internet Internetworking (PINT) working group and the Service in the PSTN/IN Requesting Internet Services (SPIRITS) working group.

To advance from proposed standard to standard, a protocol must have multiple independent interworking implementations and limited operational experience. Since the early days of RFC 2543, SIP interoperability test events, called SIPit (formerly called “bakeoffs”), have been held a few times per year. For the latest information about SIPit, visit http://www.sipit.net. (Note that the SIP Forum is a marketing/promotion organization for SIP and does not have any standardization function.) The final level, known as standard, is achieved after operational success has been demonstrated.

SIP incorporates elements of two widely used Internet protocols: Hypertext Transport Protocol (HTTP) used for Web browsing and Simple Mail Transport Protocol (SMTP) used for e-mail. From HTTP, SIP borrowed a client/server design and the use of URLs and URIs. From SMTP, SIP borrowed a text-encoding scheme and header style. For example, SIP reuses SMTP headers such as To, From, Date, and Subject.

SIP is also a protocol still under development. A number of key extensions are still being developed. As a result, this book will contain some references to Internet Drafts instead of RFCs. Implementers must be very careful when working from an Internet Draft as there may be an issued RFC that replaces it, or another Internet Draft may come out in the future to replace it. In short, an understanding of the IETF process and the stage of development of a particular extension may be needed in some areas. In this book, only stable and mature SIP extensions are discussed; the few that have Internet Draft references will likely be published as RFCs around the same time this edition is published.

1.9 Conclusion

This chapter has introduced the Internet, Internet architecture, and standards processes. Various bodies involved in Internet standards including the IETF, IRTF, IESG, and IAB have been discussed, as well as the basics of the Domain Name Service and Uniform Resource Locators and Indicators.

References

[1] Rosenberg, J., H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M. Handley, and E. Schooler, “SIP: Session Initiation Protocol,” RFC 3261, June 2002.

[2] “Internet Protocol,” RFC 791, 1981.

[3] Deering, S., and R. Hinden, “Internet Protocol, Version 6 (IPv6) Specification,” RFC 1883, 1995.

[4] Wilder, F., A Guide to the TCP/IP Protocol Suite, Norwood, MA: Artech House, 1998.

[5] Rekhter, Y., et al., “Address Allocation for Private Internets,” RFC 1918, February 1996.

[6] Alexander, S., and R. Droms, “DHCP Options and BOOTP Vendor Extensions,” RFC 2132, March 1997.

[7] “Transmission Control Protocol,” RFC 793, 1981.

[8] Postal, J., “User Datagram Protocol,” RFC 768, 1980.

[9] Dierks, T., et al., “The TLS Protocol Version 1.0,” RFC 2246, 1999.

[10] Stewart, R., et al., “Stream Control Transmission Protocol,” RFC 2960, 1999.

[11] Phelan, T., “Datagram Transport Layer Security (DTLS) over the Datagram Congestion Control Protocol (DCCP),” RFC 5238, May 2008.

[12] Schulzrinne, H., “Dynamic Host Configuration Protocol (DHCP-for-IPv4) Option for Session Initiation Protocol (SIP) Servers,” RFC 3361, August 2002.

[13] Crocker, D., “Standard for the Format of ARPA Internet Text Messages,” STD 11, RFC 822, August 1982.

[14] Crocker, D., and P. Overell, “Augmented BNF for Syntax Specifications: ABNF,” STD 68, RFC 5234, January 2008.

[15] Berners-Lee, T., L. Masinter, and M. McCahill, “Uniform Resource Locators (URL),” RFC 1738, December 1994.

[16] Moats, R., “URN Syntax,” RFC 2141, May 1997.

[17] Mockapetris, P., “Domain Names—Implementation and Specification,” STD 13, RFC 1035, November 1987.

[18] Faltstrom, P., and M. Mealling, “The E.164 to Uniform Resource Identifiers (URI) Dynamic Delegation Discovery System (DDDS) Application (ENUM),” RFC 3761, April 2004.

[19] Thomson, S., et al., “DNS Extensions to Support IP Version 6,” RFC 3596, October 2003.

[20] Gulbrandsen, A., P. Vixie, and L. Esibov, “A DNS RR for Specifying the Location of Services (DNS SRV),” RFC 2782, February 2000.

[21] Mealling, M., and R. Daniel, “The Naming Authority Pointer (NAPTR) DNS Resource Record,” RFC 2915, September 2000.

[22] http://www.ietf.org.

[23] https://www.ietf.org/tao.html.

[24] http://www.iesg.org.

[25] http://www.rfc-editor.org.

[26] http://www.iab.org.

[27] http://www.irtf.org.

[28] http://www.iana.org.

[29] http://www.icann.org.

[30] http://www.w3c.org.

[31] http://www.sipforum.org.

[32] http://www.sipforum.org/sipconnect.

[33] Handley, M., et al., “SIP: Session Initiation Protocol,” RFC 2543, March 1999.

2

Introduction to SIP

Often the best way to learn a protocol is to look at examples of its use. While the terminology, structures, and format of a new protocol can be confusing at first read, an example message flow can give a quick grasp of some of the key concepts of a protocol. The example message exchanges in this chapter will introduce SIP as defined by RFC 3261 [1].

The first example shows the basic message exchange between two SIP devices to establish and tear down a session; the second example shows the message exchange when a SIP proxy server is used. The third example shows SIP registration, and the fourth shows a SIP presence and instant message example. The chapter concludes with a discussion of SIP message transmission using UDP, TCP, TLS, and SCTP. SIP transmission over Websocket is covered in Chapter 19.

The examples will be introduced using call flow diagrams between a called and calling party, along with the details of each message. Each arrow in the figures represents a SIP message, with the arrowhead indicating the direction of transmission. The thick lines in the figures indicate the media stream. In these examples, the media will be assumed to be RTP [2] packets containing audio, but it could be another protocol. Details of RTP are covered in Chapter 12.

2.1 A Simple Session Establishment Example

Figure 2.1 shows the SIP message exchange between two SIP-enabled devices. The two devices could be SIP phones, phone clients running on a laptop or PC (known as softclients), tablets, or mobile phones. It is assumed that both devices are connected to an IP network such as the Internet and know each other’s IP address.

[image:]

Figure 2.1 A simple SIP session establishment example.

The calling party, Tesla, begins the message exchange by sending a SIP INVITE message to the called party, Marconi. The INVITE contains the details of the type of session or call that is requested. It could be a simple voice (audio) session, a multimedia session such as a videoconference, or a gaming session. The INVITE message contains the following fields:

INVITE sip:Marconi@radio.example.org SIP/2.0

Via: SIP/2.0/UDP lab.high-voltage.example.org:5060;branch=z9hG4bKfw19b

Max-Forwards: 70

To: G. Marconi <sip:Marconi@radio.example.org>

From: Nikola Tesla <sip:n.tesla@high-voltage.example.org>;tag=76341

Call-ID: j2qu348ek2328ws

CSeq: 1 INVITE

Subject: About That Power Outage...

Contact: <sip:n.tesla@lab.high-voltage.example.org>

Content-Type: application/sdp

Content-Length: ...

v=0

o=Tesla 2890844526 2890844526 IN IP4

s=Phone Call

c=IN IP4 100.101.102.103

t=0 0

m=audio 49170 RTP/AVP 0

a=rtpmap:0 PCMU/8000

Since SIP is a text-encoded protocol, this is actually what the SIP message would look like “on the wire” as a UDP datagram being transported over, for example, Ethernet.

The fields listed in the INVITE message are called header fields. They have the form Header: Value CRLF. The first line of the request message, called the start line, lists the method, which is INVITE, the Request-URI, then the SIP version number (2.0), all separated by spaces. Each line of a SIP message is terminated by a Carriage Return Line Feed (CRLF). The Request-URI is a special form of SIP URI and indicates the resource to which the request is being sent, also known as the request target. SIP URIs are discussed in more detail in Section 4.2.

The first header field following the start line shown is a Via header field. Each SIP device that originates or forwards a SIP message stamps its own address in a Via header field, usually written as a host name that can be resolved into an IP address using a DNS query. The Via header field contains the SIP version number (2.0), a “/”, then UDP for UDP transport, a space, the hostname or address, a colon, then a port number (in this example, the “well-known” SIP port number 5060). Transport of SIP using TCP, UDP, TLS, and SCTP and the use of port numbers are covered later in this chapter. The branch parameter is a transaction identifier. Responses relating to this request can be correlated because they will contain this same transaction identifier.

The next header field shown is the Max-Forwards. It is initialized to some large integer and decremented by each SIP server, which receives and forwards the request, providing simple loop detection.

The next header fields are the To and From header fields, which show the originator and destination of the SIP request. SIP requests are routed based on the Request-URI instead of the To URI. This is because the Request-URI can be changed and rewritten as a request is forwarded, while the To URI generally stays the same. When a name label is used, as in this example, the SIP URI is enclosed in brackets <>. The name label could be displayed during alerting, for example, but is not used by the protocol.

The Call-ID header field is an identifier used to keep track of a particular SIP session. The originator of the request creates a locally unique string. Some older implementations also add an “@” and its host name to the string. In addition to the Call-ID, each party in the session also contributes a random identifier, unique for each call. These identifiers, called tags, are included in the To and From header fields as the session is established. The initial INVITE shown contains a From tag but no To tag.

The initiator of the session that generates the establishing INVITE generates the unique Call-ID and From tag. In the response to the INVITE, the user agent answering the request will generate the To tag. The combination of the local tag (contained in the From header field), remote tag (contained in the To header field), and the Call-ID uniquely identifies the established session, known as a dialog. This dialog identifier is used by both parties to identify this call because there could be multiple calls set up between them. Subsequent requests within the established session will use this dialog identifier, as will be shown in the following examples.

The next header field shown is the CSeq, or command sequence. It contains a number, followed by the method name, INVITE in this case. This number is incremented for each new request sent. In this example, the command sequence number is initialized to 1, but it could start at another integer value.

The Via header fields plus the Max-Forwards, To, From, Call-ID, and CSeq header fields represent the minimum required header field set in any SIP request message. Other header fields can be included as optional additional information or information needed for a specific request type. A Contact header field is also required in this INVITE message, which contains the SIP URI of Tesla’s communication device, known as a user agent (UA); this URI can be used to route messages directly to Tesla. The optional Subject header field is present in this example. It is not used by the protocol, but could be displayed during alerting to aid the called party in deciding whether to accept the call. The same sort of useful prioritization and screening commonly performed using the Subject and From header fields in an e-mail message is also possible with a SIP INVITE request.

The Content-Type and Content-Length header fields indicate that the message body is Session Description Protocol or SDP [3] and contains 158 octets of data. The basis for the octet count of 158 is shown in Table 2.1, where the CR LF at the end of each line is shown as a ©® and the octet count for each line is shown on the right-hand side. A blank line separates the message body from the header field list, which ends with the Content-Length header field. In this case, there are seven lines of SDP data describing the media attributes that the caller Tesla desires for the call. This media information is needed because SIP makes no assumptions about the type of media session to be established—the caller must specify exactly what type of session (audio, video, gaming) that he wishes to establish. The SDP field names are listed in Table 2.2, and will be discussed in detail in Chapter 13, but a quick review of the lines shows the basic information necessary to establish a session.

Table 2.1

Content-Length Calculation Example

	Line
	Total

	v=0©®
	05

	o=Tesla 2890844526 2890844526 IN IP4 lab.high-voltage.example.org©®
	66

	s=Phone Call©®
	14

	c=IN IP4 100.101.102.103©®
	26

	t=0 0©®
	07

	m=audio 49170 RTP/AVP 0©®
	25

	a=rtpmap:0 PCMU/8000©®
	22

	
	158

Table 2.2

SDP Data from Example

	SDP Parameter
	Parameter Name

	v=0
	Version number

	o=Tesla 2890844526 2890844526 IN IP4 lab.high-voltage.example.org
	Origin

	s=-
	Call Subject

	c=IN IP4 100.101.102.103
	Connection

	t=0 0
	Time

	m=audio 49170 RTP/AVP 0
	Media

	a=rtpmap:0 PCMU/8000
	Attributes

Table 2.2 includes the:

• Connection IP address (100.101.102.103);

• Media format (audio);

• Port number (49170);

• Media transport protocol (RTP);

• Media encoding (PCM μ Law);

• Sampling rate (8,000 Hz).

INVITE is an example of a SIP request message. There are five other methods or types of SIP requests defined in the core SIP specification RFC 3261 with others defined in extension RFCs, which update RFC 3261. The next message in Figure 2.1 is a 180 Ringing message sent in response to the INVITE. This message indicates that the called party, Marconi, has received the INVITE and that alerting is taking place. The alerting could be ringing a phone, a flashing message on a screen, or any other method of attracting the attention of the called party, Marconi.

The 180 Ringing is an example of a SIP response message. Responses are numerical and are classified by the first digit of the number. A 180 response is an informational class response, identified by the first digit being a 1. Informational responses are used to convey noncritical information about the progress of the call. Many SIP response codes were based on HTTP version 1.1 response codes with some extensions and additions. Anyone who has ever browsed the World Wide Web has likely received a “404 Not Found” response from a Web server when a requested page was not found. 404 Not Found is also a valid SIP client error class response in a request to an unknown user. The other classes of SIP responses are covered in Chapter 5.

The response code number in SIP alone determines the way the response is interpreted by the server or the user. The reason phrase, Ringing in this case, is suggested in the standard, but any text can be used to convey more information. For instance, 180 Hold your horses, I’m trying to wake him up! is a perfectly valid SIP response and has the same meaning as a 180 Ringing response.

The 180 Ringing response has the following structure:

SIP/2.0 180 Ringing

Via: SIP/2.0/UDP lab.high-voltage.example.org:5060;branch=z9hG4bKfw19b;received=100.101.102.103

To: G. Marconi <sip:marconi@radio.example.org>;tag=a53e42

From: Nikola Tesla <sip:n.tesla@high-voltage.example.org>;tag=76341

Call-ID: j2qu348ek2328ws

CSeq: 1 INVITE

Contact: <sip:marconi@tower.radio.example.org>

Content-length: 0

The message was created by copying many of the header fields from the INVITE message, including the Via, To, From, Call-ID, and CSeq, and then adding a response start line containing the SIP version number, the response code, and the reason phrase. This approach simplifies the message processing for responses.

The Via header field contains the original branch parameter but also has an additional received parameter. This parameter contains the literal IP address that the request was received from (100.101.102.103), which typically is the same address that the URI in the Via resolves using DNS (lab.high-voltage.org).

Note that the To and From header fields are not reversed in the response message as one might expect them to be. Even though this message is sent to Marconi from Tesla, the header fields read the opposite. This is because the To and From header fields in SIP are defined to indicate the direction of the request, not the direction of the message. Since Tesla initiated this request, all responses to this INVITE will read To: Marconi From: Tesla.

The To header field now contains a tag that was generated by Marconi. All future requests and responses in this session or dialog will contain both the tag generated by Tesla and the tag generated by Marconi.

The response also contains a Contact header field, which contains an address at which Marconi can be contacted directly once the session is established.

When the called party, Marconi, decides to accept the call (i.e., the phone is answered), a 200 OK response is sent. This response also indicates that the type of media session proposed by the caller is acceptable. The 200 OK is an example of a success class response. The 200 OK message body contains Marconi’s media information:

SIP/2.0 200 OK

Via: SIP/2.0/UDP lab.high-voltage.example.org:5060;branch=z9hG4bKfw19b

;received=100.101.102.103

To: G. Marconi <sip:marconi@radio.example.org>;tag=a53e42

From: Nikola Tesla <sip:n.tesla@high-voltage.org>;tag=76341

Call-ID: j2qu348ek2328ws

CSeq: 1 INVITE

Contact: <sip:marconi@tower.radio.example.org>

Content-Type: application/sdp

Content-Length: ...

v=0

o=Marconi 2890844528 2890844528 IN IP4 tower.radio.example.org

s=Phone Call

c=IN IP4 200.201.202.203

t=0 0

m=audio 60000 RTP/AVP 0

a=rtpmap:0 PCMU/8000

This response is constructed the same way as the 180 Ringing response and contains the same To tag and Contact URI. However, the media capabilities must be communicated in a SDP message body added to the response. From the same SDP fields as Table 2.2, the SDP contains:

• End-point IP address (200.201.202.203);

• Media format (audio);

• Port number (60000);

• Media transport protocol (RTP);

• Media encoding (PCM μ-Law);

• Sampling rate (8,000 Hz).

The final step is to confirm the media session with an acknowledgment request. The confirmation means that Tesla has successfully received Marconi’s response. This exchange of media information allows the media session to be established using another protocol: RTP in this example.

ACK sip:marconi@tower.radio.example.org SIP/2.0

Via: SIP/2.0/UDP lab.high-voltage.example.org:5060;branch=z9hG4bK321g

Max-Forwards: 70

To: G. Marconi <sip:marconi@radio.example.org>;tag=a53e42

From: Nikola Tesla <sip:n.tesla@high-voltage.example.org>;tag=76341

Call-ID: j2qu348ek2328ws

CSeq: 1 ACK

Content-Length: 0

The command sequence, CSeq, has the same number as the INVITE, but the method is set to ACK. At this point, the media session begins using the media information carried in the SIP messages. The media session takes place using another protocol, typically RTP. The branch parameter in the Via header field contains a newer transaction identifier than the INVITE, since an ACK sent to acknowledge a 200 OK is considered a separate transaction.

This message exchange shows that SIP is an end-to-end signaling protocol. A SIP network or SIP server is not required for the protocol to be used. Two end points running a SIP protocol stack and knowing each other’s IP addresses can use SIP to set up a media session between them. Although less obvious, this example also shows the client-server nature of the SIP protocol. When Tesla originates the INVITE request, he is acting as a SIP client. When Marconi responds to the request, he is acting as a SIP server. After the media session is established, Marconi originates the BYE request and acts as the SIP client, while Tesla acts as the SIP server when he responds. This is why a SIP-enabled device must contain both SIP user agent server and SIP user agent client software—during a typical session, both are needed. This is quite different from other client-server Internet protocols such as HTTP or FTP. The Web browser is always an HTTP client, and the Web server is always an HTTP server, and similarly for FTP. In SIP, an end point will switch back and forth during a session between being a client and a server.

In Figure 2.1, a BYE request is sent by Marconi to terminate the media session:

BYE sip:n.tesla@lab.high-voltage.example.org SIP/2.0

Via: SIP/2.0/UDP tower.radio.example.org:5060;branch=z9hG4bK392kf

Max-Forwards: 70

To: Nikola Tesla <sip:n.tesla@high-voltage.example.org>;tag=76341

From: G. Marconi <sip:marconi@radio.example.org>;tag=a53e42

Call-ID: j2qu348ek2328ws

CSeq: 1392 BYE

Content-Length: 0

The Via header field in this example is populated with Marconi’s host address and contains a new transaction identifier since the BYE is considered a separate transaction from the INVITE or ACK transactions shown previously. The To and From header fields reflect that this request is originated by Marconi, as they are reversed from the messages in the previous transaction. However, Tesla is able to identify the dialog using the presence of the same local and remote tags and Call-ID as the INVITE and tear down the correct media session.

Notice that all of the branch IDs shown in the example so far begin with the string z9hG4bK. This is a special string that indicates that the branch ID has been calculated using strict rules defined in RFC 3261 and is as a result usable as a transaction identifier.1

The confirmation response to the BYE is a 200 OK:

SIP/2.0 200 OK

Via: SIP/2.0/UDP tower.radio.example.org:5060;branch=z9hG4bK392kf;received=200.201.202.203

To: Nikola Tesla <sip:n.tesla@high-voltage.example.org>;tag=76341

From: G. Marconi <sip:marconi@radio.example.org>;tag=a53e42

Call-ID: j2qu348ek2328ws

CSeq: 1392 BYE

Content-Length: 0

The response echoes the CSeq of the original request: 1392 BYE. No ACK is sent since ACK is only sent in response to INVITE requests.

2.2 SIP Call with a Proxy Server

In the SIP message exchange of Figure 2.1, Tesla knew the IP address of Marconi and was able to send the INVITE directly to that address. This will not be the case in general—an IP address cannot be used like a telephone number. One reason is that IP addresses are often dynamically assigned due to the shortage of IPv4 addresses. Also, an IP address does not uniquely identify a user, but identifies a node on a particular physical IP network. You have one IP address at your office, another at home, and still another when you log on remotely while traveling. Ideally, there would be one address that would identify you wherever you are. In fact, there is an Internet protocol that does exactly that with e-mail. SMTP uses a host or system independent name (an e-mail address) that does not correspond to a particular IP address. It allows e-mail messages to reach you regardless of what your IP address is and where you are logged onto the Internet.

In addition, a request routed using only IP addresses will reach only one end point—only one device. Since communication is typically user-to-user instead of device-to-device, a more useful addressing scheme would allow a particular user to call another particular user, which would result in the request reaching the target user regardless of which device they are currently using, or if they have multiple devices.

SIP uses e-mail-like names for addresses. The addressing scheme is part of a family of Internet addresses known as URIs, as described in Section 1.4. SIP URIs can also handle telephone numbers, transport parameters, and a number of other items. A full description, including examples, can be found in Section 4.2. For now, the key point is that a SIP URI is a name that is resolved to an IP address by using a SIP proxy server and DNS lookups at the time of the call, as will be seen in the next example. Figure 2.2 shows an example of a more typical SIP call with a type of SIP server called a proxy server. In this example, the caller Schrodinger calls Heisenberg through a SIP proxy server. A SIP proxy operates in a similar way to a proxy in HTTP and other Internet protocols. A SIP proxy does not set up or terminate sessions, but sits in the middle of a SIP message exchange, receiving messages and forwarding them. This example shows one proxy, but there can be multiple proxies in a signaling path.

SIP has two broad categories of URIs: ones that correspond to a user, and ones that correspond to a single device or end point. The user URI is known as an address of record (AOR), and a request sent to an address of record will require database lookups and service and feature operations, which can result in the request being sent to one or more end devices. A device URI is known as a contact, and typically does not require database lookups. An address of record URI is usually used in To and From header fields, as this is the general way to reach a person and is suitable for storing in address books and in returning missed calls. A device URI is usually used in a Contact header field and is associated with a particular user for a shorter period of time. The method of relating (or binding) a contact URI with an address of record URI will be discussed in Section 2.3.

[image:]

Figure 2.2 SIP call example with a proxy server.

Because Schrodinger does not know exactly where Heisenberg is currently logged on and what device he is currently using, a SIP proxy server is used to route the INVITE. First, a DNS lookup of Heisenberg’s SIP URI domain name (munich.example.org) is performed (see Section 2.6 for the details), which returns the IP address of the proxy server proxy.munich.example.org, which handles that domain. The INVITE is then sent to that IP address:

INVITE sip:werner.heisenberg@munich.org SIP/2.0

Via: SIP/2.0/UDP 100.101.102.103:5060;branch=z9hG4bKmp17a

Max-Forwards: 70

To: Heisenberg <sip:werner.heisenberg@munich.example.org>

From: E. Schrodinger <sip:schroed5244@wave.example.org>;tag=42

Call-ID: 4827311-391-32934

CSeq: 1 INVITE Subject: Where are you exactly?

Contact: <sip:schroed5244@pc33.wave.example.org>

Content-Type: application/sdp

Content-Length: 159

v=0

o=schroed5244 2890844526 2890844526 IN IP4 100.101.102.103

s=Phone Call

t=0 0

c=IN IP4 100.101.102.103

m=audio 49170 RTP/AVP 0

a=rtpmap:0 PCMU/8000

The proxy looks up the SIP URI in the Request-URI (sip:werner. heisenberg@munich.example.org) in its database and locates Heisenberg. This completes the two-step process of:

1. DNS lookup by user agent to locate the IP address of the proxy. Database lookup is performed by the proxy to locate the IP address.

2. The INVITE is then forwarded to Heisenberg’s IP address with the addition of a second Via header field stamped with the address of the proxy.

INVITE sip:werner.heisenberg@200.201.202.203

Via: SIP/2.0/UDP proxy.munich.example.org:5060;branch=z9hG4bK83842.1

Via: SIP/2.0/UDP 100.101.102.103:5060;branch=z9hG4bKmp17a

Max-Forwards: 69

To: Heisenberg <sip:werner.heisenberg@munich.example.org>

From: E. Schrodinger <sip:schroed5244@wave.example.org>;tag=42

Call-ID: 4827311-391-32934

CSeq: 1 INVITE

Contact: <sip:schroed5244@pc33.wave.example.org>

Content-Type: application/sdp

Content-Length: 159

v=0

o=schroed5244 2890844526 2890844526 IN IP4 100.101.102.103

s=Phone Call

c=IN IP4 100.101.102.103

t=0 0 m=audio 49172 RTP/AVP 0

a=rtpmap:0 PCMU/8000

From the presence of two Via header fields, Heisenberg knows that the INVITE has been routed through a proxy server. Having received the INVITE, a 180 Ringing response is sent by Heisenberg to the proxy:

SIP/2.0 180 Ringing

Via: SIP/2.0/UDP proxy.munich.example.org:5060;branch=z9hG4bK83842.1;received=100.101.102.105

Via: SIP/2.0/UDP 100.101.102.103:5060;branch=z9hG4bKmp17a

To: Heisenberg <sip:werner.heisenberg@munich.example.org>;tag=314159

From: E. Schrodinger <sip:schroed5244@wave.example.org>;tag=42

Call-ID: 4827311-391-32934

CSeq: 1 INVITE

Contact: <sip:werner.heisenberg@200.201.202.203>

Content-Length: 0

Again, this response contains the Via header fields, and the To, From, Call-ID, and CSeq header fields from the INVITE request. The response is then sent to the address in the first Via header field, proxy.munich.example.org to the port number listed in the Via header field: 5060, in this case. Notice that the To header field now has a tag added to it to identify this particular dialog. Only the first Via header field contains a received parameter, since the second Via header already contains the literal IP address in the URI. The Contact header field contains the device URI of Heisenberg, and there is no NAT in between.

The proxy receives the response, checks that the first Via header field has its own address (proxy.munich.example.org), uses the transaction identifier in the Via header to locate the transaction, removes that Via header field, then forwards the response to the address in the next Via header field: IP address 100.101.102.103, port 5060. The resulting response sent by the proxy to Schrodinger is:

SIP/2.0 180 Ringing

Via: SIP/2.0/UDP 100.101.102.103:5060;branch=z9hG4bKmp17a

To: Heisenberg <sip:werner.heisenberg@munich.example.org>;tag=314159

From: E. Schrodinger <sip:schroed5244@wave.example.org>;tag=42

Call-ID: 4827311-391-32934

CSeq: 1 INVITE

Contact: <sip:werner.heisenberg@200.201.202.203>

Content-Length: 0

The use of Via header fields in routing and forwarding SIP messages reduces complexity in message forwarding. The request required a database lookup by the proxy to be routed. The response requires no lookup because the routing is imbedded in the message in the Via header fields. This ensures that responses route back through the same set of proxies as the request. The call is accepted by Heisenberg, who sends a 200 OK response:

SIP/2.0 200 OK

Via: SIP/2.0/UDP proxy.munich.example.org:5060;branch=z9hG4bK83842.1;received=100.101.102.105

Via: SIP/2.0/UDP 100.101.102.103:5060;branch=z9hG4bKmp17a

To: Heisenberg <sip:werner.heisenberg@munich.example.org>;tag=314159

From: E. Schrodinger <sip:schroed5244@wave.example.org>;tag=42

Call-ID: 4827311-391-32934

CSeq: 1 INVITE

Contact: <sip:werner.heisenberg@200.201.202.203>

Content-Type: application/sdp

Content-Length: 159

v=0

o=heisenberg 2890844526 2890844526 IN IP4 200.201.202.203

s=Phone Call

c=IN IP4 200.201.202.203

t=0 0 m=audio 49172 RTP/AVP 0

a=rtpmap:0 PCMU/8000

The proxy forwards the 200 OK message to Schrodinger after removing the first Via header field:

SIP/2.0 200 OK Via: SIP/2.0/UDP 100.101.102.103:5060;branch=z9hG4bKmp17a

To: Heisenberg <sip:werner.heisenberg@munich.example.org>;tag=314159

From: E. Schrodinger <sip:schroed5244@wave.example.org>;tag=42

Call-ID: 4827311-391-32934

CSeq: 1 INVITE

Contact: <sip:werner.heisenberg@200.201.202.203>

Content-Type: application/sdp

Content-Length: 159

v=0

o=heisenberg 2890844526 2890844526 IN IP4 200.201.202.203

s=phone call

c=IN IP4 200.201.202.203

t=0 0

m=audio 49170 RTP/AVP 0

a=rtpmap:0 PCMU/8000

The presence of the Contact header field with the SIP URI address of Heisenberg in the 200 OK allows Schrodinger to send the ACK directly to Heisenberg, bypassing the proxy. (Note that the Request-URI is set to Heisenberg’s Contact URI and not the URI in the To header field.) This request and all future requests continue to use the tag in the To header field:

ACK sip:werner.heisenberg@200.201.202.203

Via: SIP/2.0/UDP 100.101.102.103:5060;branch=z9hG4bKka42

Max-Forwards: 70

To: Heisenberg <sip:werner.heisenberg@munich.example.org>;tag=314159

From: E. Schrodinger <sip:schroed5244@wave.example.org>;tag=42

Call-ID: 4827311-391-32934

CSeq: 1 ACK

Content-Length: 0

This shows that the proxy server is not really “in the call.” It facilitates the two end points locating and contacting each other, but it can drop out of the signaling path as soon as it no longer adds any value to the exchange. This role of helping the two user agents locate each other is sometimes called rendezvous and is a key function of the SIP protocol. A proxy server can force further messaging to route through it by inserting a Record-Route header field, which is described in Section 6.1.23. In addition, it is possible to have a proxy server that does not retain any knowledge of the fact that there is a session established between Schrodinger and Heisenberg (referred to as call state information). This is discussed in Section 2.3.1. Note that the media is always end-to-end and not through the proxy.

In SIP the path of the signaling messages is totally independent of the path of the media. In telephony, this is described as the separation of control channel and bearer channel.

The media session is ended when Heisenberg sends a BYE message:

BYE sip:schroed5244@pc33.wave.org SIP/2.0

Via: SIP/2.0/UDP 200.201.202.203:5060;branch=z9hG4bK4332

Max-Forwards: 70

To: E. Schrodinger <sip:schroed5244@wave.example.org>;tag=42

From: Heisenberg <sip:werner.heisenberg@munich.example.org> ;tag=314159

Call-ID: 4827311-391-32934

CSeq: 2000 BYE

Content-Length: 0

Note that Heisenberg’s CSeq was initialized to 2000. Each SIP device maintains its own independent CSeq number space. This is explained in some detail in Section 6.1.5. The Request-URI is set to Schrodinger’s Contact URI. Schrodinger confirms with a 200 OK response:

SIP/2.0 200 OK

Via: SIP/2.0/UDP 200.201.202.203:5060;branch=z9hG4bK4332

To: E. Schrodinger <sip:schroed5244@wave.example.org>;tag=42

From: Heisenberg <sip:werner.heisenberg@munich.example.org> ;tag=314159

Call-ID: 4827311-391-32934

CSeq: 2000 BYE

Content-Length: 0

Not discussed in the previous example is the question of how the database accessed by the proxy contained Heisenberg’s current IP address. There are many ways this could be done using SIP or other protocols. The mechanism for accomplishing this using SIP is called registration and is discussed in the next section.

2.3 SIP Registration Example

In this example, shown in Figure 2.3, Heisenberg sends a SIP REGISTER request to a type of SIP server known as a registrar server. The SIP registrar server receives the message and uses the information in the request to update the database used by proxies to route SIP requests. Contained in the REGISTER message To header is the SIP URI address of Heisenberg. This is Heisenberg’s well-known address, perhaps printed on his business card or published on a Web page or in a directory. Also contained in the REGISTER is a Contact URI, which represents the current device (and its IP address) that the user Heisenberg is currently using. The registrar binds the SIP URI of Heisenberg and the IP address of the device in a database that can be used, for example, by the proxy server in Figure 2.2 to locate Heisenberg. When a proxy server with access to the database receives an INVITE request addressed to Heisenberg’s URI (i.e., an incoming call), the request will be proxied to the Contact URI of the currently registered device.

This registration has no real counterpart in the telephone network, but it is very similar to the registration a wireless phone performs when it is turned on. A mobile phone sends its identity to the base station (BS), which then forwards the location and phone number of the mobile phone to a home location register (HLR). When the mobile switching center (MSC) receives an incoming call, it consults the HLR to get the current location of the mobile phone. Further aspects of SIP mobility are discussed in Chapter 7.

[image:]

Figure 2.3 SIP registration example.

The REGISTER message sent by Heisenberg to the SIP registrar server has the form:

REGISTER sip:registrar.munich.org SIP/2.0

Via: SIP/2.0/UDP 200.201.202.203:5060;branch=z9hG4bKus19

Max-Forwards: 70

To: Werner Heisenberg <sip:werner.heisenberg@munich.example.org>

From: Werner Heisenberg <sip:werner.heisenberg@munich.example.org> ;tag=3431

Call-ID: 73764291

CSeq: 1 REGISTER

Contact: sip:werner.heisenberg@200.201.202.203

Content-Length: 0

The Request-URI in the start line of the message contains the address of the registrar server. In a REGISTER request, the To header field contains the URI that is being registered, in this case sip:werner.heisenberg@munich.example.org. This results in the To and From header fields usually being the same, although an example of third-party registration is given in Section 4.1.2. The SIP URI in the Contact address is stored by the registrar.

The registrar server acknowledges the successful registration by sending a 200 OK response to Heisenberg. The response echoes the Contact information that has just been stored in the database and includes a To tag:

SIP/2.0 200 OK

Via: SIP/2.0/UDP 200.201.202.203:5060;branch=z9hG4bKus19

To: Werner Heisenberg <sip:werner.heisenberg@munich.example.org>;tag=8771

From: Werner Heisenberg <sip:werner.heisenberg@munich.example.org>;tag=3431

Call-ID: 73764291

CSeq: 1 REGISTER

Contact: <sip:werner.heisenberg@munich.org>;expires=3600

Content-Length: 0

The Contact URI is returned along with an expires parameter, which indicates how long the registration is valid (in this case, 1 hour, or 3,600 seconds). If Heisenberg wants the registration to be valid beyond that interval, he must send another REGISTER request within the expiration interval.

Registration is typically performed automatically on initialization of a SIP device and at regular intervals determined by the expiration interval chosen by the registrar server. Registration is an additive process—more than one device can be registered against a SIP URI. If more than one device is registered, a proxy may forward the request to either or both devices in a sequential or parallel search. Additional register operations can be used to clear registrations or retrieve a list of currently registered devices.

2.4 SIP Presence and Instant Message Example

This example shows how SIP is used in a presence and instant messaging application. Presence information can be thought of as the state of a user or device, or willingness to communicate at a particular instant. It can be as simple as whether a particular user is signed in or not, whether they are active at their station, or idle or away. For a mobile device, presence information can include the actual location in terms of coordinates, or in general terms such as “in the office,” “traveling,” or “in the lab.” Presence information can even include information about the status or mood of the user, whether they are working, relaxing, or socializing. For all these examples, a presence protocol is mainly concerned about establishing subscriptions or long-term relationships between devices about transferring status information, and the delivery of that information. The actual information transferred, and how that information is presented to the user, is application dependent. In terms of the SIP, SUBSCRIBE is used to request status or presence updates from the presence server (or presentity), and NOTIFY is used to deliver that information to the requestor or presence watcher. SIP presence uses the SIP Events extensions [4, 5].

In this example, Chebyshev wishes to communicate with Poisson. The message flow is shown in Figure 2.4. To find out the status of Poisson, Chebyshev subscribes to Poisson’s presence information by sending a SUBSCRIBE message to Poisson. The request looks like:

SUBSCRIBE sip:poisson@probability.example.org SIP/2.0

Via SIP/2.0/TCP lecturehall21.academy.ru.example.com:5060;branch=z9hG4bK348471123

Max-Forwards: 70

To: M. Poisson <sip:poisson@probability.example.org>

From: P. L. Chebyshev <sip:Chebyshev@academy.ru.example.com>;tag=21171

Call-ID: 58dkfj34924lk34452k592520

CSeq: 3412 SUBSCRIBE

Allow-Events: presence

Allow: ACK, INVITE, CANCEL, BYE, NOTIFY, SUBSCRIBE, MESSAGE

Contact: <sip:pafnuty@lecturehall21.academy.ru.example.com:37129;transport=tcp>

Event: presence

Content-Length: 0

In this example, TCP is used as the transport for the SIP messages as indicated in the Via header field and in the transport=tcp parameter in the Contact URI. Also note that a nondefault port number, port 37129, is used for this Contact URI. This request also contains Allow and Allow-Events header fields, which are used to advertise capabilities. In this example, Chebyshev is indicating support for receiving seven methods listed in the Allow header field, and also presence subscriptions in the Allow-Event header field. As this SUBSCRIBE is creating a dialog (in an analogous way that an INVITE created a dialog in the earlier examples), the From contains a tag but the To header field does not yet contain a tag.

[image:]

Figure 2.4 SIP presence and instant messaging example.

Poisson accepts the subscription request by sending a 200 OK response back to Chebyshev:

SIP/2.0 200 OK Via SIP/2.0/TCP lecturehall21.academy.ru.example.com:5060;branch=z9hG4bK348471123;received=19.34.3.1

To: M. Poisson <sip:poisson@probability.example.org>;tag=25140

From: P. L. Chebyshev <sip:Chebyshev@academy.ru.example.com>;tag=21171

Call-ID: 58dkfj34924lk34452k592520

CSeq: 3412 SUBSCRIBE

Allow-Events: dialog, presence

Allow: ACK, INVITE, CANCEL, BYE, NOTIFY, SUBSCRIBE, MESSAGE

Contact: <sip:s.possion@dist.probability.example.org;transport=tcp>

Event: presence Expires: 3600

Content-Length: 0

In this example, there are no proxy servers between Chebyshev’s watcher and Poisson’s presence server, although there could be any number. The Expires header field indicates that the subscription expires in 1 hour. The actual subscription is begun by Poisson sending the first NOTIFY back to Chebyshev:

NOTIFY sip:pafnuty@lecturehall21.academy.ru.example.com:37129 SIP/2.0

Via SIP/2.0/TCP dist.probablilty.example.org:5060;branch=z9hG4bK4321

Max-Forwards: 70

To: P. L. Chebyshev <sip:Chebyshev@academy.ru.example.com>;tag=21171

From: M. Poisson <sip:poisson@probability.example.org>;tag=25140

Call-ID: 58dkfj34924lk34452k592520

CSeq: 1026 NOTIFY

Allow: ACK, INVITE, CANCEL, BYE, NOTIFY, SUBSCRIBE, MESSAGE

Allow-Events: dialog, presence

Contact: <sip:s.possion@dist.probability.example.org;transport=tcp>

Subscription-State: active;expires=3600

Event: presence

Content-Type: application/pidf+xml

Content-Length: ...

<?xml version=”1.0” encoding=”UTF-8”?> <presence xmlns=”urn:ietf:params:xml:ns:pidf” entity=”sip:poisson@probability.example.org”>

<tuple id=”452426775”>

<status>

<basic>closed</basic>

</status>

</tuple>

</presence>

Note that this NOTIFY is sent within the dialog established with the SUBSCRIBE—it uses the same dialog identifier (Call-ID, local and remote tags)—and the request is sent to the Contact URI provided by Chebyshev in the subscription request. The Subscription-State header field indicates that the subscription has been authorized and activated and that it will expire in 1 hour unless refreshed by Chebyshev (using another SUBSCRIBE request).

The Common Presence and Instant Message Presence Information Data Format (CPIM PIDF) [6] XML message body contains the status information that Poisson is currently off-line (closed).

Chebyshev sends a 200 OK response to the NOTIFY to confirm that it has been received:

SIP/2.0 200 OK Via SIP/2.0/TCP dist.probablilty.example.org:5060;branch=z9hG4bK4321;received=24.32.1.3

To: P. L. Chebyshev <sip:Chebyshev@academy.example.ru.exmaple.com>;tag=21171

From: M. Poisson <sip:poisson@probability.example.org>;tag=25140

Call-ID: 58dkfj34924lk34452k592520

CSeq: 1026 NOTIFY

Content-Length: 0

Later, when Poisson does sign in, this information is provided in a second NOTIFY containing the change in status:

NOTIFY sip:pafnuty@lecturehall21.academy.ru.example.com SIP/2.0

Via SIP/2.0/TCP dist.probablilty.example.org:5060;branch=z9hG4bK334241

Max-Forwards: 70

To: P. L. Chebyshev <sip:Chebyshev@academy.ru.example.com>;tag=21171

From: M. Poisson <sip:poisson@probability.example.org>;tag=25140

Call-ID: 58dkfj34924lk34452k592520

CSeq: 1027 NOTIFY Allow: ACK, INVITE, CANCEL, BYE, NOTIFY, SUBSCRIBE, MESSAGE

Allow-Events: presence

Contact: <sip:s.possion@dist.probability.example.org;transport=tcp>

Subscription-State: active;expires=1800

Event: presence

Content-Type: application/pidf+xml

Content-Length: ...

<?xml version=”1.0” encoding=”UTF-8”?>

<presence xmlns=”urn:ietf:params:xml:ns:pidf” entity=”sip:poisson@probability.

example.org”>

<tuple id=”452426775”>

<status>

<basic>open</basic>

</status>

<contact>sip:s.possion@dist.probability.example.org;transport=tcp</contact>

</tuple>

</presence>

The expiration time indicated in the Subscription-State header field indicates that 30 minutes have passed since the subscription was established. The CPIM PIDF XML message body now indicates that Poisson is online (open) and can be reached via the URI:

sip:s.possion@dist.probability.example.org;transport=tcp

Chebyshev confirms receipt of the NOTIFY with a 200 OK response:

SIP/2.0 200 OK Via SIP/2.0/TCP dist.probablilty.example.org:5060;branch=z9hG4bK334241;received=24.32.1.3

To: P. L. Chebyshev <sip:Chebyshev@academy.ru.example.com>;tag=21171

From: M. Poisson <sip:poisson@probability.example.org>;tag=25140

Call-ID: 58dkfj34924lk34452k592520

CSeq: 1027 NOTIFY

Content-Length: 0

Now that Chebyshev knows that Poisson is online, he sends an instant message to him using the Contact URI from the NOTIFY:

MESSAGE sip:s.possion@dist.probability.example.org SIP/2.0

Via SIP/2.0/TCP lecturehall21.academy.ru.example.com:5060;branch=z9hG4bK3gtr2 Max-Forwards: 70

To: M. Poisson <sip:s.possion@dist.probability.example.org>

From: P. L. Chebyshev <sip:Chebyshev@academy.ru.example.com>;tag=4542

Call-ID: 9dkei93vjq1ei3

CSeq: 15 MESSAGE Allow: ACK, INVITE, CANCEL, BYE, NOTIFY, SUBSCRIBE, MESSAGE

Content-Type: text/plain

Content-Length: 11

Hi There!

Notice that this MESSAGE is sent outside the dialog. Instant messages sent using the MESSAGE method in SIP are like messages—they are not part of any dialog. As a result, each message contains a new Call-ID and From tag. The 200 OK response is used to acknowledge receipt of the instant message.

SIP/2.0 200 OK Via SIP/2.0/TCP lecturehall21.academy.ru.example.com:5060;branch=z9hG4bK3gtr2;received=19.34.3.1

To: M. Poisson <sip:s.possion@dist.probability.example.org>;tag=2321

From: P. L. Chebyshev <sip:Chebyshev@academy.ru.example.com>;tag=4542

Call-ID: 9dkei93vjq1ei3

CSeq: 15 MESSAGE

Content-Length: 0

Poison answers with a reply, which is also sent outside of any dialog, with a new Call-ID and From tag (an instant message response is never sent in a 200 OK reply to a MESSAGE request).

MESSAGE sip:Chebyshev@academy.ru.example.com SIP/2.0

Via SIP/2.0/TCP dist.probablilty.example.org:5060;branch=z9hG4bK4526245

Max-Forwards: 70

To: P. L. Chebyshev <sip:Chebyshev@academy.ru.example.com>

From: M. Poisson <sip:s.possion@dist.probability.example.org> ;tag=14083

Call-ID: lk34452k592520

CSeq: 2321 MESSAGE Allow: ACK, INVITE, CANCEL, BYE, NOTIFY, SUBSCRIBE, MESSAGE

Content-Type: text/plain

Content-Length: 26

Well, hello there to you, too!

This receives a 200 OK reply:

SIP/2.0 200 OK Via SIP/2.0/TCP dist.probablilty.example.org:5060 ;branch=z9hG4bK4 526245;received=24.32.1.3

To: P. L. Chebyshev <sip:Chebyshev@academy.ru.example.com> ;tag=mc3bg5q77wms

From: M. Poisson <sip:s.possion@dist.probability.example.org>; tag=14083

Call-ID: lk34452k592520

CSeq: 2321 MESSAGE

Content-Length: 0

Other presence packages define other sets of information that can be requested by watchers from presence servers. Further examples of SIP presence and instant messaging can be found in Chapter 8.

2.5 Message Transport

As discussed in Chapter 1, SIP is an application layer protocol in the Internet Multimedia Protocol stack shown in Figure 1.1. RFC 3261 defines the use of TCP, UDP, or TLS transport. An extension document describes how SCTP can be used. How a SIP message is transported using these four protocols will be described in the following sections. The compression of SIP for transport over low bandwidth connections, such as wireless, is discussed in Chapter 7.

2.5.1 UDP Transport

When using UDP, each SIP request or response message is carried in a single UDP datagram or packet. For a particularly large message body, there is a compact form of SIP that saves space in representing some header fields with a single character. This is discussed in Chapter 6. Figure 2.5 shows a SIP BYE request exchange during an established SIP session using UDP.

[image:]

Figure 2.5 Transmission of a SIP message using UDP.

The source port is chosen from a pool of available port numbers (above 49172), or the default SIP port of 5060 can be used. The lack of handshaking or acknowledgment in UDP transport means that a datagram could be lost along with a SIP message. However, the checksum enables UDP to discard errored datagrams, allowing SIP to assume that a received message is complete and error-free. The reliability mechanisms built into SIP to handle message retransmissions are described in Section 3.7. The reply is also sent to port 5060, or the port number listed in the top Via header field.

UDP provides the simplest transport for user agents and servers and allows them to operate without the transport layer state. However, UDP offers no congestion control. A series of lost packets on a heavily loaded IP link can cause retransmissions, which in turn produce more lost packets and can push the link into congestion collapse. Also, UDP may only be used for SIP when the message (and its response) is known to be less than the Message Transport Unit (MTU) size of the IP network. For simple SIP messages, this is not a problem. However, for large messages containing multiple message bodies and large header fields, this can be a problem. In this case, TCP must be used, since SIP does not support fragmentation at the SIP layer.

2.5.2 TCP Transport

TCP provides a reliable transport layer, but at a cost of complexity and transmission delay over the network. The use of TCP for transport in a SIP message exchange is shown in Figure 2.6. This example shows an INVITE sent by a user agent at 100.101.103.103 to a type of SIP server called a redirect server at 200.201.202.203. A SIP redirect server does not forward INVITE requests like a proxy, but looks up the destination address and instead returns that address in a redirection class (3xx) response. The 302 Moved Temporarily response is acknowledged by the user agent with an ACK message. Not shown in this figure is the next step, where the INVITE would be resent to the address returned by the redirect server. As in the UDP example, the well-known SIP port number of 5060 is chosen for the destination port, and the source port is chosen from an available pool of port numbers. However, before the message can be sent, the TCP connection must be opened between the two end points. This transport layer datagram exchange is shown in Figure 2.6 as a single arrow, but it is actually a three-way handshake between the end points as shown in Figure 1.2. Once the connection is established, the messages are sent in the stream.

The Content-Length header field is critical when TCP is used to transport SIP, since it is used to find the end of one message and the start of the next. When TCP or another stream-based transport is used, Content-Length is a required header field in all requests and responses.

[image:]

Figure 2.6 Transmission of a SIP message using TCP.

To send the 302 Moved Temporarily response, the server typically opens a new TCP connection in the reverse direction, using 5060 (or the port listed in the top Via header field) as the destination port. The acknowledgment ACK is sent in the TCP stream used for the INVITE. Because this concludes the SIP session, the connection is then closed. If a TCP connection closes during a dialog, a new one can be opened to send a request within the dialog, such as a BYE request to terminate the media session.

As previously mentioned, TCP provides reliable transport and congestion control. It can also transport SIP messages of arbitrary sizes. The disadvantages of TCP include the setup delay in establishing the connection and the need for servers to maintain this connection state at the transport layer.

2.5.3 TLS Transport

SIP can use TLS [7] over TCP the same way as for encrypted transport, with the additional capabilities of authentication. In Section 4.2.1 the secure SIP URI scheme (sips) will be discussed, which uses TLS transport. The default SIP port number for TLS transport is port 5061.

If TLS is used between two proxies, each proxy may have a certificate allowing mutual authentication. However, if a client does not have a certificate, TLS can be used in conjunction with another authentication mechanism, such as SIP digest, to allow mutual authentication.

The SIP use of TLS takes advantage of both the encryption and authentication services. However, the encryption and authentication are only useful on a single hop. If a SIP request takes multiple hops (i.e., includes one or more proxy servers), TLS is not useful for end-to-end authentication. SIP proxies must support TLS and will likely use TLS for long-lived connections. TLS will be covered more in Chapter 14.

2.5.4 SCTP Transport

An extension to SIP defines the use of SCTP [8] with SIP to provide reliable stream-based transport with some advantages over TCP transport for a message-based protocol such as SIP. First, it has built-in message segmentation, so that individual SIP messages are separated at the transport layer. With TCP, the SIP protocol must use the Content-Length calculation to delineate messages. If a TCP connection is being shared by a number of SIP transactions and dialogs, the “head of line blocking” problem discussed in Section 1.2.4.5 can cause the buffer to contain valid SIP messages that could be processed by the server while the retransmission takes place. Due to its message level delineation, SCTP is able to continue to forward messages to the application layer while simultaneously requesting a retransmission of a dropped message. Note that this is only a problem when multiple applications are multiplexed over a single TCP connection. An example of this is a TCP link between two signaling proxy servers. For a user agent to proxy TCP connection, this is usually not a problem unless the two have many simultaneous dialogs established.

SCTP also supports multihoming, so if one of a pair of load balancing SIP proxies fails, the other can immediately begin receiving the messages without even requiring a DNS or other database lookup. The SIP usage of SCTP is described in [9].

2.6 Transport Protocol Selection

Since SIP supports multiple transport protocols, it must have a way of managing them. The full SIP usage of DNS is defined in [10], but the basic steps for a client are listed here. There are two ways that this is achieved. The first is through explicit indications in a SIP URI. The presence of a transport=tcp or transport=sctp [9] indicates that the particular transport protocol should be used for this URI. Note that for TLS transport, the SIPS URI scheme should be used, although some implementations use the nonstandard transport=tls parameter. UDP is used if transport=udp is included. When no transport parameter is included, the following rules are followed:

1. If the URI has a numeric IP address, then UDP should be used for a SIP URI and TCP for a SIPS URI.

2. If the URI does not have a numeric address but has a numeric port number, then UDP should be used for a SIP URI and TCP for a SIPS URI.

3. If the URI does not have a numeric IP address or port, and NAPTR DNS queries are supported, then a DNS NAPTR query should be performed on the host part of the URI. The NAPTR service fields are “SIP+D2U” for UDP, “SIP+D2T” for TCP, and “SIP+D2S” for SCTP transport. The result of the NAPTR regex replacement will be a URI, which is used for an SRV lookup described in the next step. The preference field indicates the relative preference if multiple transports are supported. If no NAPTR records are returned, an SRV query should be performed.

4. The SIP usage of DNS SRV records uses “_sip” or “_sips” for the protocol and “_udp”, “_tcp”, and “_sctp” for UDP, TCP, and SCTP transports. The results of the SRV query will be a target hostname and port number. The request should be sent to that address and port. Full details on SRV record usage are in [11].

5. If no SRV records are found, then an address query for A or an AAAA DNS query should be performed, and UDP should be used for a SIP URI and TCP for a SIPS URI.

A slightly different set of rules are followed by proxy servers, as described in [10].

For example, consider the DNS lookup performed by Schrodinger in Figure 2.2. The URI is sip:werner.heisenberg@munich.example.org, which does not contain a numeric IP address or port, so steps 1 and 2 are not followed. Schrodinger then follows step 3 and performs a NAPTR query on munich.example.com which returns the following record:

munich.example.com. 360 IN NAPTR 100 50 “s” “SIPS+DTU” “” _sip._udp.munich.example.com

Since only UDP transport is supported, step 4 results in an SRV query on _sip._udp.munich.example.de, which returns the following record:

_sip._udp.munich.example.com. 300 IN SRV 0 100 5060 proxy.munich.example.com

Finally, an A lookup is performed on proxy.munich.example.com which returns:

proxy.munich.example.com.3600 IN A 100.101.102.105

As a result, Schrodinger sends the INVITE to 100.101.102.105:5060 as shown in Figure 2.2.

2.7 Conclusion

This chapter introduced the SIP using some common call flow examples including a basic call, call through a proxy server, registration, and presence and instant messaging. The next chapter will explore further the details of SIP and the behavior or standard elements such as user agents, proxies, redirect servers, and registrars.

2.8 Questions

Q2.1 Define a SIP dialog.

Q2.2 What SIP parameter carries the SIP transaction identifier?

Q2.3 Compare proxy, registrar, and redirect servers.

Q2.4 Which SIP methods create dialogs? Which SIP methods end dialogs?

Q2.5 Explain the purpose of the Contact header field in an INVITE.

Q2.6 Is the Content-Length header field mandatory for TCP transport? Why or why not?

Q2.7 What is the purpose of Via header fields?

Q2.8 The DNS application Dig has returned the following values. What are the three types of DNS Resource returned? Explain the meaning of each field of the record for _sip._tcp.iptel.example.org. What IP address and port would a SIP request (Service = sip) be sent to at the iptel.example.org domain, assuming TCP transport (Proto=tcp)?

$ dig _sip._tcp.iptel.example.org in srv

; <<>> DiG 9.3.4 <<>> _sip._tcp.iptel.example.org in srv ;; global

options: printcmd ;; Got answer: ;; ->>HEADER<<- opcode: QUERY,

status: NOERROR, id: 15807 ;; flags: qr rd ra; QUERY: 1, ANSWER: 1,

AUTHORITY: 5, ADDITIONAL: 5

;; QUESTION SECTION: ;_sip._tcp.iptel.example.org. IN SRV

;; ANSWER SECTION:

;; SERVER: 192.168.0.1#53(192.168.0.1) ;; WHEN: Wed Feb 6 09:56:07 2008

;; MSG SIZE rcvd: 248

Q2.9 Explain the difference between the Request-URI and the To URI in a SIP INVITE.

Q2.10 Explain the meaning of each of the parameters in the following Via header field:

Via: SIP/2.0/SCTP room42.lib.example.org:4213 ;branch=z9hG4bK3423;received=13.34.3.1

References

[1] Rosenberg, J., H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M. Handley, and E. Schooler, “SIP: Session Initiation Protocol,” RFC 3261, June 2002.

[2] Schulzrinne, H., et al., “RTP: A Transport Protocol for Real-Time Applications,” STD 64, RFC 3550, July 2003.

[3] Handley, M., V. Jacobson, and C. Perkins, “SDP: Session Description Protocol,” RFC 4566, July 2006.

[4] Roach, A., “SIP—Specific Event Notification,” RFC 6665, July 2012.

[5] Campbell, B., et al., “Session Initiation Protocol (SIP) Extension for Instant Messaging,” RFC 3428, December 2002.

[6] Sugano, H., et al., “Presence Information Data Format (PIDF),” RFC 3863, August 2004.

[7] Dierks, T., and E. Rescorla, “The TLS Protocol Version 1.2,” RFC 5246, August 2008.

[8] Stewart, R., et al., “Stream Control Transmission Protocol,” RFC 4960, September 2007.

[9] Rosenberg, J., H. Schulzrinne, and G. Camarillo, “The Stream Control Transmission Protocol (SCTP) as a Transport for the Session Initiation Protocol (SIP),” RFC 4168, October 2005.

[10] Rosenberg, J., and H. Schulzrinne, “Session Initiation Protocol (SIP): Locating SIP Servers,” RFC 3263, June 2002.

[11] Gulbrandsen, A., P. Vixie, and L. Esibov, “A DNS RR for Specifying the Location of Services (DNS SRV),” RFC2782, February 2000.

1. This string is needed because branch IDs generated by user agents prior to RFC 3261 may have constructed branch IDs which are not suitable as transaction identifiers. In this case, a client must construct its own transaction identifier using the To tag, From tag, Call-ID, and CSeq.

3

SIP Clients and Servers

The client-server nature of SIP has been introduced in the example message flows of Chapter 2. In this chapter, the types of clients and servers in a SIP network will be introduced and defined.

3.1 SIP User Agents

A SIP-enabled end device is called a SIP user agent (UA) [1]. One purpose of SIP is to enable sessions to be established between user agents. As the name implies, a user agent takes direction or input from a user and acts as an agent on their behalf to set up and tear down media sessions with other user agents. In most cases the user will be a human, but the user could also be another protocol, as in the case of a gateway (described in Section 3.4). A UA must be capable of establishing a media session with another UA.

A UA must maintain the state on calls that it initiates or participates in. A minimum call state set includes the local and remote tags, Call-ID, local and remote CSeq header fields, along with the route set and any state information necessary for the media. This information is used to store the dialog information and for reliability. The remote CSeq storage is necessary to distinguish between a new request and a retransmission of an old request. A re-INVITE is used to change the session parameters of an existing or pending call. It uses the same Call-ID and tags as the original INVITE/200 OK exchange, but the CSeq is incremented because it is a new request. A retransmitted INVITE will contain the same Call-ID and CSeq as a previous INVITE. Even after a call has been terminated, the call state must be maintained by a user agent for at least 32 seconds in case of lost messages in the call tear down.

User agents silently discard an ACK for an unknown dialog. Requests to an unknown URI receive a 404 Not Found response. A user agent receiving a request for an unknown dialog responds with a 481 Dialog/Transaction Does Not Exist. Responses from an unknown dialog are also silently discarded. These silent discards are necessary for security. Otherwise, a malicious user agent could gain information about other SIP user agents by spamming fake requests or responses.

A minimal implementation must to be able to interpret any unknown response based on the class (first digit of the number) of the response, but it is not required to understand every response code defined. That is, if an undefined 498 Wrong Phase of the Moon response is received, it must be treated as a 400 Client Error.

A user agent responds to an unsupported request with a 501 Not Implemented response. For example, a UA receiving a method that it does not support would return a 501 response. A SIP UA must support UDP and TCP transport if it sends messages greater than 1,000 octets in size.

A SIP user agent contains both a client application and a server application. The two parts are a user agent client (UAC) and user agent server (UAS). The UAC initiates requests while the UAS generates responses. During a session, a user agent will usually operate as both a UAC and a UAS.

A SIP user agent must also support Session Description Protocol (SDP) for media description. Other types of media description protocols can be used in bodies, but SDP support is mandatory. Details of SDP are in Section 13.1.

A UA must understand any extensions listed in a Require header field in a request. Unknown header fields may be ignored by a UA. A UA should advertise its capabilities and features in any request it sends. This allows other UAs to learn them without having to make an explicit capabilities query. For example, the methods that a UA supports should be listed in an Allow header field. SIP extensions should be listed in a Supported header field. Message body types that are supported should be listed in an Accept header field.

UAs typically register with a proxy server in their domain.

3.2 Presence Agents

A presence agent (PA) [2] is a SIP UA that is capable of receiving subscription requests and generating state notifications as defined by the SIP Events specification [3]. An example of a presence agent can be found in Section 3.4. A presence agent supports the presence event package [2], responds to SUBSCRIBE requests, and sends NOTIFY requests. A presence agent also sometimes publishes event state to an event state compositor (ESC) using PUBLISH requests, as described in Section 4.1.9.

A presence agent can collect presence information from a number of devices. Presence information can come from a SIP device registering, a SIP device publishing presence information [4], or many other non-SIP sources.

A presence server is also a presence UA that can supply presence information about a number of users and can also act as a proxy, forwarding SUBSCRIBE requests to another presence agents.

A presence agent first authenticates a subscription request. If the authentication passes, it establishes a dialog and sends the notifications over that dialog. The subscription can be refreshed by receiving new SUBSCRIBE requests.

Chapter 8 has a complete description of presence agents

3.3 Back-to-Back User Agents

A back-to-back user agent (B2BUA) is a type of SIP UA that receives a SIP request, then reformulates the request and sends it out as a new request. As such, some B2BUAs act like a proxy but do not follow proxy routing rules. For example, a B2BUA device can be used to implement an anonymizer service in which two SIP UAs can communicate without either party learning the other party’s URI, IP address, or other information. To achieve this, an anonymizer B2BUA would reformulate an incoming request with an entirely new From, Via, Contact, Call-ID, and SDP media information, also removing any other SIP header fields that might contain information about the calling party. The response returned would also change the Contact and SDP media information from the called party. The modified SDP would point to the B2BUA itself, which would forward RTP media packets from the called party to the calling party and vice versa. In this way, neither end point learns any identifying information about the other party during the session establishment. (Of course, the calling party needs to know the called party’s URI in order for the call to take place.)

Sometimes B2BUAs are employed to implement other SIP services. However, they break the end-to-end nature of an Internet protocol such as SIP. Also, a B2BUA is a call-stateful single point of failure in a network, which means their use will reduce the reliability of SIP sessions over the Internet. The relayed media suffers from increased latency and increased probability of packet loss, which can reduce the quality of the media session. Geographic distribution of B2BUAs can reduce these effects, but the problem of selecting the best B2BUA for a particular session is a very difficult one since the source and destination IP addresses of the media are not known until the session is actually established (with a 200 OK).

B2BUAs can be a part of many devices. For example, many private branch exchange (PBX) enterprise telephone systems incorporate B2BUA logic. Conference bridges and mixers also use B2BUA logic. Another type of B2BUA present in some SIP networks is application layer gateways (ALG). Some firewalls have ALG functionality built in, which allows a firewall to permit SIP and media traffic while still maintaining a high level of security. Another common type of B2BUA is known as a Session Border Controller (SBC). Some common functions of a SBC are listed in Table 3.1 [5]. Note that many of these functions break the end-to-end security properties of SIP and SIP security.

3.4 SIP Gateways

A SIP gateway is an application that interfaces a SIP network to a network utilizing another signaling protocol. In terms of the SIP protocol, a gateway is just a special type of user agent, where the user agent acts on behalf of another protocol rather than a human. A gateway terminates the signaling path and can also terminate the media path, although this is not always the case. For example, a SIP to H.323 gateway terminates the SIP signaling path and converts the signaling to H.323, but the SIP user agent and H.323 terminal can exchange RTP media information directly with each other without going through the gateway. An example of this is described in Section 11.4.

A SIP to Public Switched Telephone Network (PSTN) gateway terminates both the signaling and media paths. SIP can be translated into, or interwork with, common PSTN protocols such as Integrated Services Digital Network (ISDN), ISDN User Part (ISUP), and other circuit associated signaling (CAS) protocols, which are briefly described in Section 11.1. A PSTN gateway also converts the RTP media stream in the IP network into a standard telephony trunk or line. The conversion of signaling and media paths allows calling to and from the PSTN using SIP. Examples of these gateways are described in Section 16.2. Figure 3.1 shows a SIP network connected via gateways with the PSTN and an H.323 network. The SIP/H.323 interworking function is described in [6].

Table 3.1

Session Border Controller Functions

	Topology Hiding
	Hiding all internal IP addresses to conceal internal topology

	Media Traffic Management
	Controlling which media types and codecs are used

	Fixing Capability Mismatches
	Ensuring interop when multiple ways of implementing features happens (e.g., transfer with REFER or 3PCC)

	Maintaining NAT Mappings
	Keeping SIP-related UDP NAT Mappings alive

	Access Control
	Authenticating and challenging requests.

	Protocol Repair
	Fixing known SIP interoperability failures in devices

	Media Encryption
	Allows SRTP in external network but RTP in internal network

Source: [5].

[image:]

Figure 3.1 A SIP network with gateways.

In Figure 3.1, the SIP network, PSTN network, and H.323 networks are shown as clouds, which obscure the underlying details. Connecting to the SIP cloud are SIP IP telephones, SIP-enabled PCs, and corporate SIP gateways with attached telephones. The clouds are connected by gateways. H.323 terminals and H.323-enabled PCs are attached to the H.323 network. The PSTN cloud connects to ordinary analog black telephones (called because of the original color of their shell), digital ISDN telephones, and corporate private branch exchanges (PBXs). PBXs connect to the PSTN using shared trunks and provide line interfaces for either analog or digital telephones.

Gateways are sometimes decomposed into a media gateway (MG) and a media gateway controller (MGC). An MGC is sometimes called a call agent because it manages call control protocols (signaling), while the MG manages the media connection. This decomposition is transparent to SIP; the protocols used to decompose a gateway are described in Section 11.3.

Another difference between a user agent and a gateway is the number of users supported. While a user agent typically supports a single user (although perhaps with multiple lines), a gateway can support hundreds or thousands of users. A PSTN gateway could support a large corporate customer, or an entire geographic area. As a result, a gateway does not REGISTER every user it supports in the same way that a user agent might. Instead, a non-SIP protocol can be used to inform proxies about gateways and assist in routing. One protocol that has been proposed for this is Telephony Routing over IP (TRIP) [7], which allows an interdomain routing table of gateways to be developed. In addition, there is an extension to the REGISTER method that allows a gateway to register multiple phone numbers [8] with a registrar server within a domain.

3.5 SIP Servers

SIP servers are applications that accept SIP requests and respond to them. A SIP server should not be confused with a user agent server or the client-server nature of the protocol, which describe operation in terms of clients (originators of requests) and servers (originators of responses to requests). A SIP server is a different type of entity; the types of SIP servers discussed in this section are logical entities. Actual SIP server implementations may contain a number of server types or may operate as a different type of server under different conditions. Because servers provide services and features to user agents, they must support both TCP and UDP for transport. Figure 3.2 shows the interaction of user agents, servers, and a location service. Note that the protocol used between a server and the location service or database is generally not SIP and is not discussed in this book.

[image:]

Figure 3.2 SIP user agent, server, and location service interaction.

3.5.1 Proxy Servers

A SIP proxy server receives a SIP request from a user agent or another proxy and acts on behalf of the user agent in forwarding or responding to the request. Just as a router forwards IP packets at the IP layer, a SIP proxy forwards SIP messages at the application layer. A proxy is not a B2BUA since it is only allowed to modify requests and responses according to strict rules set out in RFC 3261. These rules preserve the end-to-end transparency of the SIP signaling while still allowing a proxy server to perform valuable services and functions for user agents.

A proxy server typically has access to a database or a location service to aid it in processing the request (determining the next hop). The interface between the proxy and the location service is not defined by the SIP protocol. A proxy can use any number of types of databases to aid in processing a request. Databases could contain SIP registrations, presence information, or any other type of information about where a user is located. The example in Figure 2.2 introduced a proxy server as a facilitator of SIP message exchange, providing user location services to the caller.

A proxy does not need to understand a SIP request in order to forward it—any unknown request type is assumed to use the non-INVITE transaction model. A proxy should not change the order of header fields or in general modify or delete header fields.

A proxy server is different from a user agent or gateway in three key ways:

1. A proxy server does not issue requests; it only responds to requests from a user agent. (CANCEL and ACK requests are an exception to this rule.)

2. A proxy server has no media capabilities.

3. A proxy server does not parse message bodies; it relies exclusively on SIP header fields.

Figure 3.3 shows a common network topology known as the SIP Trapezoid. In this topology, a pair of user agents in different domains establishes a session using a pair of proxy servers, one in each domain. The trapezoid refers to the shape formed by the signaling and media messages. In this configuration, each user agent is configured with a default outbound proxy server, to which it sends all requests. This proxy server typically will authenticate the user agent and may pull up a profile of the user and apply outbound routing services. In an interdomain exchange, DNS SRV queries will be used to locate a proxy server in the other domain. This proxy, sometimes called an inbound proxy, may apply inbound routing services on behalf of the called party. This proxy also has access to the current registration information for the user, and can route the request to the called party. In general, future SIP requests will be sent directly between the two user agents, unless one or both proxies insert a Record-Route header field.

[image:]

Figure 3.3 A SIP trapezoid.

A proxy server can be either stateless or stateful. A stateless proxy server processes each SIP request or response based solely on the message contents. Once the message has been parsed, processed, and forwarded or responded to, no information (such as dialog information) about the message is stored. A stateless proxy never retransmits a message, and does not use any SIP timers. Note that the stateless loop detection using Via header fields described in RFC 2543 has been deprecated (removed) in RFC 3261 in favor of the use of a mandatory Max-Forwards header field in all requests.

A stateful proxy server keeps track of requests and responses received in the past and uses that information in processing future requests and responses. For example, a stateful proxy server starts a timer when a request is forwarded. If no response to the request is received within the timer period, the proxy will retransmit the request, relieving the user agent of this task. Also, a stateful proxy can require user agent authentication, as described in Chapter 15.

The most common type of SIP proxy is a transaction stateful proxy. A transaction stateful proxy keeps state about a transaction but only for the duration of the pending request. For example, a transaction stateful proxy will keep state when it receives an INVITE request until it receives a 200 OK or a final failure response (e.g., 404 Not Found). After that, it would destroy the state information. This allows a proxy to perform useful search services but minimize the amount of state storage required.

One such example of a search service is a proxy server that receives an INVITE request, then forwards it to a number of locations at the same time, or forks the request. This forking proxy server keeps track of each of the outstanding requests and the response to each, as shown in Figure 3.4. This is useful if the location service or database lookup returns multiple possible locations for the called party that need to be tried.

In the example of Figure 3.4, the INVITE contains:

INVITE sip:support@chaos.example.org SIP/2.0

Via: SIP/2.0/UDP 45.2.32.1:5060 ;branch=z9hG4bK67865

Max-Forwards: 70

To: <sip:support@chaos.example.org>

From: A. N. Sarkovskii <sip:sarkovskii@45.2.32.1>;tag=7643545

Call-ID: 0140092501

CSeq: 1 INVITE

Subject: Bifurcation Question

Contact: <sip:sarkovskii@45.2.32.1>

Content-Type: application/sdp

[image:]

Figure 3.4 Forking proxy operation.

Content-Length: ...

(SDP not shown)

The INVITE is received by the chaos.info proxy server, which forks to two user agents. Each user agent begins alerting, sending two provisional responses back to Sarkovskii. They are:

SIP/2.0 180 Ringing

Via: SIP/2.0/UDP 45.2.32.1:5060;branch=z9hG4bK67865

To: <sip:support@chaos.example.org>;tag=343214112

From: A. N. Sarkovskii <sip:sarkovskii@45.2.32.1>;tag=7643545

Call-ID: 0140092501

CSeq: 1 INVITE

Contact: <sip:agent42@67.42.2.1>

Content-Length: 0

and:

SIP/2.0 180 Ringing

Via: SIP/2.0/UDP 45.2.32.1:5060;branch=z9hG4bK67865

To: <sip:support@chaos.example.org>;tag=a5ff34d9ee201

From: A. N. Sarkovskii <sip:sarkovskii@45.2.32.1>;tag=7643545

Call-ID: 0140092501

CSeq: 1 INVITE Contact: <sip:agent7@67.42.2.32>

Content-Length: 0

The two responses are identical except for having different To tags and Contact URIs. Finally, one of the two UAs answers and sends a 200 OK response:

SIP/2.0 200 OK

Via: SIP/2.0/UDP 45.2.32.1:5060;branch=z9hG4bK67865

To: <sip:support@chaos.example.org>;tag=343214112

From: A. N. Sarkovskii <sip:sarkovskii@45.2.32.1>;tag=7643545

Call-ID: 0140092501

CSeq: 1 INVITE Contact: <sip:agent42@67.42.2.1>

Content-Type: application/sdp

Content-Length: ...

(SDP not shown)

The forking proxy server sends a CANCEL to the second UA to stop that phone alerting. If both UAs had answered, the forking proxy would have forwarded both 200 OK responses back to the caller who then would have had to choose which one, most likely by accepting one and sending a BYE to the other.

A stateful proxy usually sends a 100 Trying response when it receives an INVITE. A stateless proxy never sends a 100 Trying response. A 100 Trying response received by a proxy is never forwarded—it is a single hop only response. A proxy handling a TCP request must be stateful, since a user agent will assume reliable transport and rely on the proxy for retransmissions on any UDP hops in the signaling path.1

The only limit to the number of proxies that can forward a message is controlled by the Max-Forwards header field, which is decremented by each proxy that touches the request. If the Max-Forwards count goes to zero, the proxy discards the message and sends a 483 Too Many Hops response back to the originator.

The SIP session timer extension [9] limits the time period over which a stateful proxy must maintain state information without a refresh re-INVITE. In the initial INVITE request, a Session-Expires header field indicates a timer interval after which stateful proxies may discard state information about the session. User agents must tear down the call after the expiration of the timer. The caller can send re-INVITEs to refresh the timer, enabling a “keep alive” mechanism for SIP. This solves the problem of how long to store state information in cases where a BYE request is lost or misdirected or in other security cases described in later sections. The details of this implementation are described in Section 6.2.35.

3.5.2 Redirect Servers

A redirect server was introduced in Figure 2.6 as a type of SIP server that responds to, but does not forward, requests. Like a proxy server, a redirect server uses a database or location service to look up a user. However, the location information is sent back to the caller in a redirection class response (3xx), which, after the ACK, concludes the transaction. Figure 3.5 shows a call flow that is very similar to the example in Figure 3.2, except the server uses redirection instead of proxying to assist Schrodinger in locating Heisenberg.

The INVITE from Figure 3.5 contains:

INVITE sip:werner.heisenberg@munich.de.example.org SIP/2.0

Via: SIP/2.0/UDP 100.101.102.103:5060 ;branch=z9hG4bK54532

Max-Forwards: 70

To: Heisenberg <sip:werner.heisenberg@munich.de.example.org>

From: E. Schrodinger <sip:schroed5244@wave.example.org>;tag=4313413

Call-ID: 734224912341371927319032

CSeq: 1 INVITE

Subject: Where are you exactly?

Contact: <sip:schroed5244@pc33.wave.example.org>

Content-Type: application/sdp

Content-Length: 150

v=0

o=schroed5244 2890844526 2890844526 IN IP4 100.101.102.103

s=

t=0 0

c=IN IP4 100.101.102.103

m=audio 49172 RTP/AVP 0

a=rtpmap:0 PCMU/8000

[image:]

Figure 3.5 Example with redirect server.

The redirection response to the INVITE is sent by the redirect server:

SIP/2.0 302 Moved Temporarily

Via: SIP/2.0/UDP 100.101.102.103:5060;branch=z9hG4bK54532

To: Heisenberg <sip:werner.heisenberg@munich.de.example.org>;tag=052500

From: E. Schrodinger <sip:schroed5244@wave.example.org>;tag=4313413

Call-ID: 734224912341371927319032

CSeq: 1 INVITE

Contact: sip:werner.heisenberg@200.201.202.203

Content-Length: 0

Schrodinger acknowledges the response:

ACK sip:werner.heisenberg@munich.de.example.org SIP/2.0

Via: SIP/2.0/UDP 100.101.102.103:5060;branch=z9hG4bK54532

Max-Forwards: 70

To: Heisenberg <sip:werner.heisenberg@munich.de.example.org>;tag=052500

From: E. Schrodinger <sip:schroed5244@wave.example.org>;tag=4313413

Call-ID: 734224912341371927319032

CSeq: 1 ACK

Content-Length: 0

Notice that the ACK request reuses the same branch ID as the INVITE and the 302 response. This is because an ACK to a non-2xx final response is considered to be part of the same transaction as the INVITE. Only an ACK sent in response to a 200 OK is considered a separate transaction with a unique branch ID. Also, an ACK to a non-2xx final response is a hop-by-hop response, not an end-to-end response as discussed in Section 3.6.

This exchange completes this call attempt, so a new INVITE is generated with a new Call-ID and sent directly to the location obtained from the Contact header field in the 302 response from the redirect server.

INVITE sip:werner.heisenberg@200.201.202.203 SIP/2.0

Via: SIP/2.0/UDP 100.101.102.103:5060;branch=z9hG4bK92313

Max-Forwards: 70

To: Heisenberg <sip:werner.heisenberg@munich.de.example.org>

From: E. Schrodinger <sip:schroed5244@wave.example.org>;tag=13473

Call-ID: 54-67-45-23-13

CSeq: 1 INVITE Subject: Where are you exactly?

Contact: <sip:schroed5244@pc33.wave.example.org>

Content-Type: application/sdp Content-Length: 150

v=0

o=schroed5244 2890844526 2890844526 IN IP4 100.101.102.103

s=

t=0 0

c=IN IP4 100.101.102.103

m=audio 49172 RTP/AVP 0

a=rtpmap:0 PCMU/8000

The call then proceeds in the same way as Figure 3.2, with the messages being identical. Note that in Figure 3.5, a 180 Ringing response is not sent; instead, the 200 OK response is sent right away. Since 1xx informational responses are optional, this is a perfectly valid response by the UAS if Heisenberg responded to the alerting immediately and accepted the call. In the PSTN, this scenario is called fast answer.

3.5.3 Registrar Servers

A SIP registrar server was introduced in the example of Figure 3.3. A registrar server, also known as a registration server, accepts SIP REGISTER requests; all other requests receive a 501 Not Implemented response. The contact information from the request is then made available to other SIP servers within the same administrative domain, such as proxies and redirect servers. In a registration request, the To header field contains the name of the resource being registered, and the Contact header fields contain the contact or device URIs. The registration server creates a temporary binding between the address of record (AOR) URI in the To and the device URI in the Contact header field.

Registration servers usually require the registering user agent to be authenticated, using the means described in Chapter 15, so that incoming calls cannot be hijacked by an unauthorized user. This could be accomplished by an unauthorized user registering someone else’s SIP URI to point to his or her own UA. Incoming calls to that URI would then ring the wrong UA. Depending on the header fields present, a REGISTER request can be used by a user agent to retrieve a list of current registrations, clear all registrations, or add a registration URI to the list. These types of requests are described in Section 4.1.2.

There are a number of ways in which a proxy may know to fork a request to a set of UAs. One way is through manual configuration, such as entering the information in a Web page or database. Another way is to have multiple registrations for the same AOR. If multiple UAs register against the same AOR, the proxy can fork an incoming request to all of them. The priority of multiple registrations is governed by the q-value included in the Contact header field. For contacts of the same priority, a proxy can fork the request to all of them at the same time. For contacts with different priorities, a proxy can do sequential forking, sending the request in the order specified by the q-values.

For full registration security, TLS must be used as HTTP digest does not provide the needed integrity protection. Otherwise, an attacker can modify the Contact URI in an authenticated REGISTER to point to another UA.

3.6 Uniform Resource Indicators

SIP uses a number of Uniform Resource Identifiers. Common URIs are shown in Table 3.2.

SIP URIs will be discussed in Section 4.2. SIPS will be covered in Chapter 15. Telephony URI is covered in Section 4.2.2. Presence and IM URIs are covered in Chapter 8, along with the XMPP URI. H.323 URIs are covered in Section 11.4. Web URIs are defined in [10].

SIP uses Uniform Resource Indicators or URIs for most addresses. URIs and URLs were introduced in Section 1.4. For SIP, the URI scheme is either sip for a normal SIP URI or sips for a Secure SIP URI. Secure SIP means that a SIP message sent using this URI will be protected using TLS across each hop. SIP URIs must contain either a host name or an IP address. They usually contain a user part, although they do not have to. For example, a URI for a proxy server typically will not have a user part. URIs also may contain parameters. SIP URI parameters are listed in Table 3.3. In this table, URI means any valid URI while URN means any valid URN.

Table 3.2

Common URIs Used with SIP

	URI Scheme
	Use
	Specification

	sip
	SIP
	RFC 326

	sips
	Secure SIP
	RFC 3261

	tel
	Telephony
	RFC 3966

	pres
	Presence
	RFC 3861

	im
	Instant Messaging
	RFC 3861

	xmpp
	XMPP (Jabber)
	RFC 4622

	h323
	H.323
	RFC 3508

	http
	Web
	RFC 7540

	https
	Secure Web
	RFC 2818

Table 3.3

SIP URI Parameters

[image:]

The following is a list of some examples of SIP URIs.

sip:fred@flintstone.example.org

sip:vilma@flintstone.example.org;transport=tcp

sip:the%20great%one@whalers.example.org

sip:7325551212@gw.gateway.com.example.org

sip:192.0.3.4:44352

sip:proxy34.sipstation.com.example.com

sip:r3.example.com;lr

sip:+43321232;user=phone@sp.serviceprovider.example.org

SIP URIs can also be used to encoded telephone numbers. Sometimes, this includes the user=phone parameter.

3.7 Acknowledgment of Messages

Most SIP requests are end-to-end messages between user agents. Proxies between the two user agents simply forward the messages they receive and rely on the user agents to generate acknowledgments or responses.

There are some exceptions to this general rule. The CANCEL method (used to terminate pending calls or searches and discussed in detail in Section 4.1.5) is a hop-by-hop request. A proxy receiving a CANCEL immediately sends a 200 OK response back to the sender and generates a new CANCEL, which is then forwarded in the next hop to the same set of destinations as the original request. (The order of sending the 200 OK and forwarding the CANCEL is not important.) This is shown in Figure 3.4.

Other exceptions to this rule include 3xx, 4xx, 5xx, and 6xx responses to an INVITE request. While an ACK to a 2xx response is generated by the end point, a 3xx, 4xx, 5xx, or 6xx response is acknowledged on a hop-by-hop basis. A proxy server receiving one of these responses immediately generates an ACK back to the sender and forwards the response to the next hop. This type of hop-by-hop acknowledgment is shown in Figure 4.2.

ACK messages are only sent to acknowledge responses to INVITE requests. For responses to all other request types, there is no acknowledgment. A lost response is detected by the UAS when the request is retransmitted.

3.8 Reliability

SIP has reliability mechanisms defined, which allow the use of unreliable transport layer protocols such as UDP. When SIP uses TCP, these mechanisms are not used, since it is assumed that TCP will retransmit the message if it is lost and inform the client if the server is unreachable.

For SIP transport using UDP, there is always the possibility of messages being lost or even received out of sequence, because UDP guarantees only that the datagram is error free. A UAS validates and parses a SIP request to make sure that the UAC has not errored by creating a request missing required header fields or other syntax violations. Reliability mechanisms in SIP include:

• Retransmission timers;

• Increasing command sequence CSeq numbers;

• Positive acknowledgments.

How SIP handles retransmissions depends on the method. One retransmission scheme is defined for INVITEs, known as INVITE transactions, and another is defined for all other methods, known as a non-INVITE transaction.

For non-INVITE transactions, a SIP timer, T1, is started by a UAC or a stateful proxy server when a new request is generated or sent. If no response to the request (as identified by a response containing the identical local tag, remote tag, Call-ID, and CSeq) is received when T1 expires, the request is resent. After a request is retransmitted, the next timer period is doubled until T2 is reached. If a provisional (informational class 1xx) response is received, the UAC or stateful proxy server immediately switches to timer T2. After that, the remaining retransmissions occur at T2 intervals. This capped exponential backoff process is continued until a 64*T1, after which the request is declared dead. A stateful proxy server that receives a retransmission of a request discards the retransmission and continues its retransmission schedule based on its own timers. Typically, it will resend the last provisional response. This retransmission scheme for non-INVITE is shown in Figure 3.6 for a REFER request.

For an INVITE transaction, the retransmission scheme is slightly different. INVITEs are retransmitted starting at T1, and then the timer is doubled after each retransmission. The INVITE is retransmitted until 64*T1 after which the request is declared dead. After a provisional (1xx) response is received, the INVITE is never retransmitted. This retransmission scheme is shown in Figure 3.7. A proxy may discard the transaction state after 3 minutes. A stateful proxy must store a forwarded request or generated response message for 32 seconds. Suggested default values for T1 and T2 are 500 ms and 4 seconds, respectively. Timer T1 is supposed to be an estimate of the roundtrip time (RTT) in the network. Longer values are allowed, but not shorter ones, because this will generate more message retransmissions. See Table 4 in RFC 3261 [1] for a summary of SIP timers.

Note that gaps in CSeq number do not always indicate a lost message. In the authentication examples, not every request (and hence CSeq) generated by the UAC will reach the UAS if authentication challenges occur by proxies in the path.

[image:]

Figure 3.6 A SIP reliability example of a non-INVITE transaction.

3.9 Multicast Support

SIP support for UDP multicast has been mentioned in previous sections. There are two main uses for multicast in SIP.

SIP registration can be done using multicast, by sending the REGISTER message to the well-known “All SIP Servers” URI sip:sip.mcast.net at IP address

224.0.1.75 for IPv4. The ttl parameter is usually set to 1 to indicate that only a single hop should be used.

[image:]

Figure 3.7 A SIP reliability example of an INVITE transaction.

RFC 2543 defined sending other SIP messages, including INVITE, over multicast. However, this was not included in RFC 3261 and is no longer considered standard SIP.

The use of a multicast address is indicated by the maddr parameter in a URI or in a SIP message using the maddr parameter in the Via header field.

3.10 Conclusion

This chapter introduced SIP clients and servers, discussing user agents, gateways, proxies, redirect servers, and registrars. SIP URIs, reliability, and retransmissions were also covered.

3.11 Questions

Q3.1 Fill in the missing messages in the call flow below with two UAs and one proxy (see Figure 3.8).

Q3.2 A User Agent sends an OPTIONS to another User Agent which does not respond. Assume T1 = 500 ms and T2 = 4 seconds. Show the timing of the retransmissions relative to t=0 when the first OPTIONS is sent. How many messages are sent all together?

Q3.3 Fill in the CSeq header fields (number AND method) for each of the messages in Figure 3.9.

Q3.4 Add the missing SIP messages and responses for the call flow in Figure 3.10. Assume the proxy does not Record-Route (Hint: There are six missing messages that will result in just a single media session between Alice and Bob.)

Q3.5 Fill in the time intervals for the retransmission example in Figure 3.11.

Q3.6 What are two ways that a proxy knows to fork a request?

Q3.7 When does a proxy generate an ACK to a response, and when does it just forward the response without generating an ACK?

[image:]

Figure 3.8 Call flow for problem Q3.1.

[image:]

Figure 3.9 Call flow for problem Q3.3.

[image:]

Figure 3.10 Call flow for Question Q3.4.

[image:]

Figure 3.11 Call flow for Question Q3.5

Q3.8 What is the difference between a redirect server and a proxy server?

Q3.9 What is the purpose of a SIP registrar server?

Q3.10 A UA sends a REGISTER. After 2.3 seconds, a 100 Trying response is received. After another 0.7 second, a 200 OK response is received. In total, how many times was the REGISTER request sent?

References

[1] Rosenberg, J., et al., “SIP: Session Initiation Protocol,” RFC 3261, June 2002.

[2] Rosenberg, J., “A Presence Event Package for the Session Initiation Protocol (SIP),” RFC 3856, August 2004.

[3] Roach, A., “SIP—Specific Event Notification,” RFC 6665, July 2012.

[4] Niemi, A., “Session Initiation Protocol (SIP) Extension for Event State Publication,” RFC 3903, October 2004.

[5] Hautakorpi, J., et al., “Requirements from SIP (Session Initiation Protocol) Session Border Control Deployments,” RFC 5853, April 2010.

[6] Schulzrinne, H., and C. Agboh, “Session Initiation Protocol (SIP)-H.323 Interworking Requirements,” RFC 4123, July 2005.

[7] Rosenberg, J., H. Salama, and M. Squire, “Telephony Routing over IP (TRIP),” RFC 3219, January 2002.

[8] Roach, A., “Registration for Multiple Phone Numbers in the Session Initiation Protocol (SIP),” RFC 6140, March 2011.

[9] Donovan, S., and J. Rosenberg, “Session Timers in the Session Initiation Protocol (SIP),” RFC 4028, April 2005.

[10] Belshe, M., et al., “Hypertext Transfer Protocol Version 2 (HTTP/2),” RFC 7540, May 2015.

[11] Burger, E., J. Van Dyke, and A. Spitzer, “Basic Network Media Services with SIP,” RFC 4240, December 2005.

[12] Bormann, C., et al., “Applying Signaling Compression (SigComp) to the Session Initiation Protocol (SIP),” RFC 5049, December 2007.

[13] Jennings, C., F. Audet, and J. Elwell, “Session Initiation Protocol (SIP) URIs for Applications such as Voicemail and Interactive Voice Response (IVR),” RFC 4458, April 2006.

[14] Rosenberg, J., “Obtaining and Using Globally Routable User Agent URIs (GRUUs) in the Session Initiation Protocol (SIP),” RFC 5627, October 2009.

[15] Jennings, C., Mahy, R., and F. Audet, “Managing Client-Initiated Connections in the Session Initiation Protocol (SIP),” RFC 5626, October 2009.

1. TCP usually provides end-to-end reliability for applications. In SIP, however, TCP only provides single-hop reliability. End-to-end reliability is only achieved by a chain of TCP hops or TCP hops interleaved with UDP hops and stateful proxies.

4

SIP Request Messages

This chapter covers the types of SIP requests called methods. Six are described in the SIP specification document RFC 3261 [1]. Eight more methods are described in separate RFC documents. After discussing the methods, this chapter concludes with a discussion of SIP URLs and URIs, tags, and message bodies.

4.1 Methods

SIP requests or methods are considered “verbs” in the protocol, since they request a specific action to be taken by another user agent or server. The INVITE, REGISTER, BYE, ACK, CANCEL, and OPTIONS methods are the original six methods in SIP. The REFER, SUBSCRIBE, NOTIFY, PUBLISH, MESSAGE, UPDATE, INFO, and PRACK methods are described in separate RFCs.

A user agent (UA) receiving a method it does not support replies with a 501 Not Implemented response. Method names are case-sensitive and conventionally use all uppercase for visual clarity to distinguish them from header fields, which use both uppercase and lowercase. Note that a proxy does not need to understand a request method in order to forward the request. A proxy treats an unknown method as if it were an OPTIONS; that is, it forwards the request to the destination if it can. This allows new features and methods useful for user agents to be introduced without requiring support from proxies that may be in the middle. UAs should indicate which methods they support in an Allow header field in requests and responses.

4.1.1 INVITE

The INVITE method is used to establish media sessions between user agents. In telephony, it is similar to a Setup message in ISDN or an initial address message (IAM) in ISUP. (PSTN protocols are briefly introduced in Section 11.1.) Responses to INVITEs are always acknowledged with the ACK method described in Section 4.1.4. Examples of the use of the INVITE method are described in Chapter 2.

An INVITE usually has a message body containing the media information of the caller. The message body can also contain other session information, such as a resource list. If an INVITE does not contain media information, the ACK contains the media information of the UAC. An example of this call flow is shown in Figure 4.1. If the media information contained in the ACK is not acceptable, then the called party must send a BYE to cancel the session—a CANCEL cannot be sent because the session is already established. A media session is considered established when the INVITE, 200 OK, and ACK messages have been exchanged between the UAC and the UAS. A successful INVITE request establishes a dialog between the two user agents, which continues until a BYE is sent by either party to end the session, as described in Section 4.1.3.

A UAC that originates an INVITE to establish a dialog creates a globally unique Call-ID that is used for the duration of the call. A CSeq count is initialized (which need not be set to 1, but must be an integer) and incremented for each new request for the same Call-ID. The To and From headers are populated with the remote and local addresses. A From tag is included in the INVITE, and the UAS includes a To tag in any responses, as described in Section 4.3. A To tag in a 200 OK response to an INVITE is used in the To header field of the ACK and all future requests within the dialog. The combination of the To tag, From tag, and Call-ID is the unique identifier for the dialog.

An INVITE sent for an existing dialog references the same Call-ID as the original INVITE and contains the same To and From tags. Sometimes called a re-INVITE, the request is used to change the session characteristics or refresh the state of the dialog. The CSeq command sequence number is incremented so that a UAS can distinguish the re-INVITE from a retransmission of the original INVITE.

[image:]

Figure 4.1 INVITE without an SDP offer.

If a re-INVITE is refused or fails in any way, the session continues as if the INVITE had never been sent. A re-INVITE must not be sent by a UAC until a final response to the initial INVITE has been received—instead, an UPDATE request can be sent, as described in Section 4.1.14. There is an additional case where two UAs simultaneously send re-INVITEs to each other. This is handled in the same way with a Retry-After header. This condition is called glare in telephony (see Figure 5.3) and occurs when both ends of a trunk group seize the same trunk at the same time.

An Expires header in an INVITE indicates to the UAS how long the call request is valid. For example, the UAS could leave an unanswered INVITE request displayed on a screen for the duration specified in the Expires header. Once a session is established, the Expires header has no meaning—the expiration of the time does not terminate the media session. Instead, a Session-Expires header can be used to place a time limit on an established session without a re-INVITE or UPDATE refresh.

An example INVITE request with a SDP message body is shown here:

INVITE sip:411@salzburg.example.org;user=phone SIP/2.0

Via: SIP/2.0/UDP salzburg.example.org:5060;branch=z9hG4bK1d32hr4

Max-Forwards:70

To: <sip:411@salzburg.at;user=phone>

From: Christian Doppler <sip:c.doppler@salzburg.example.org> ;tag=817234

Call-ID: 12-45-A5-46-F5-43-32-F3-C2

CSeq: 1 INVITE

Subject: Train Timetables

Allow: INVITE, ACK, CANCEL, BYE, OPTIONS, REFER, SUBSCRIBE, NOTIFY

Contact: sip:c.doppler@salzburg.example.org

Content-Type: application/sdp

Content-Length: ...

v=0

o=doppler 2890842326 2890844532 IN IP4 salzburg.example.org

s=

c=IN IP4 50.61.72.83

t=0 0 m=audio 49172 RTP/AVP 97 98 0

a=rtpmap:97 iLBC/8000

a=rtpmap:98 SPEEX/8000

a=rtpmap:0 PCMU/8000

In addition to the required headers, this request contains the optional Subject and Allow header fields. Note that this Request-URI contains a phone number. Phone number support in SIP URIs is described in Section 4.2.

The mandatory and header fields in an INVITE request are shown in Table 4.1.

4.1.2 REGISTER

The REGISTER method is used by a UA to notify a SIP network of its current Contact URI (IP address) and the URI that should have requests routed to this Contact. As mentioned in Section 3.5.3, SIP registration bears some similarity to cell phone registration on initialization. Registration is not required to enable a user agent to use a proxy server for outgoing calls. However, it is necessary for a user agent to register to receive incoming calls from proxies that serve that domain, unless some non-SIP mechanism is used by the location service to populate the SIP URIs and Contacts of end points. A REGISTER request may contain a message body, although its use is not defined in the standard. Depending on the use of the Contact and Expires headers in the REGISTER request, the registrar server will take different actions. Examples of this are shown in Table 4.2. If no expires parameter or Expires header is present, a SIP URI will expire in 1 hour. The presence of an Expires header sets the expiration of Contacts with no expires parameter. If an expires parameter is present, it sets the expiration time for that Contact only. Non-SIP URIs have no default expiration time.

The CSeq is incremented for a REGISTER request. The use of the Request-URI, To, From, and Call-ID headers in a REGISTER request is slightly different than for other requests. The Request-URI contains only the domain of the registrar server with no user portion. The REGISTER request may be forwarded or proxied until it reaches the authoritative registrar server for the specified domain. The To header contains the SIP URI of the address of record (AOR) of the user agent that is being registered. The From contains the SIP URI of the sender of the request, usually the same as the To header. It is recommended that the same Call-ID be used for all registrations by a user agent.

A user agent sending a REGISTER request may receive a 3xx redirection or 4xx failure response containing a Contact header of the location to which registrations should be sent.

Table 4.1

Mandatory Header Fields in an INVITE

Via

To

From

Call-ID

CSeq

Contact

Max-Forwards

Table 4.2

Example Registration Contact URIs

	Request Headers
	Registrar Action

	Contact: *
	Cancel all registrations

	Expires: 0
	

	Contact: sip:galvani@bologna.example.com ;expires=1800
	Add Contact to current registrations; registration expires in 30 minutes

	Contact: sip:sgalvani@192.34.3.1
	Add Contact to current registrations;

	Expires: 1800
	registration expires in 30 minutes

	Contact: mailto:galvani@bologna.example.com ;q=0.1
	Add e-mail URL which does not expire

	No Contact header present
	Return all current registrations in response

A third-party registration occurs when the party sending the registration request is not the party that is being registered. In this case, the From header will contain the URI of the party submitting the registration on behalf of the party identified in the To header. Chapter 2 contains an example of a first-party registration. An example third-party registration request for the user Euclid is shown here:

REGISTER sip:registrar.athens.example.com SIP/2.0

Via: SIP/2.0/UDP 201.202.203.204:5060;branch=z9hG4bK313

Max-Forwards:70

To: sip:euclid@athens.example.com

From: <sip:secretary@academy.athens.example.com>;tag=543131

Call-ID: 48erl8132409wqer

CSeq: 1 REGISTER

Contact: sip:euclid@parthenon.athens.example.com

Contact: mailto:euclid@geometry.example.org

Content-Length: 0

In some cases, the Contact URI provided by a UA in a registration may not be routable. For example, if the UA is behind a NAT, or if a firewall is configured to block incoming requests from arbitrary hosts. If this Contact URI is used outside a SIP dialog (for example, in sending a REFER or performing attended transfer), then call control operations might fail. An extension mechanism has been developed in which a UA can request from a registrar a Globally Routable User Agent URI (GRUU) [2]. This URI can be used in Contact header fields and other places the device wants to be directly reachable. A UA includes a Supported:gruu header field in a REGISTER request and a sip. instance feature tag, and if the registrar supports the mechanism, a GRUU will be returned in the 200 OK to the register in the pub-gruu and temp-gruu Contact header field parameters. The temp-gruu changes each time a registration is refreshed, while the pub-gruu is valid as long as the registration is refreshed. An example Contact header field containing a GRUU is shown here:

Contact: <sip:euclid@201.202.203.204>

;pub-gruu=”sip:euclid@athens.example.com;gr=urn:uuid:00a0dc91e6bdf6”

;temp-gruu=”sip:k20flasdf2da@athens.example.com;gr”

;+sip.instance=”<urn:uuid:00a0dc91e6bdf6>”

;expires=1800

The mandatory headers in a REGISTER request are shown in Table 4.3.

4.1.3 BYE

The BYE method is used to terminate an established media session. In telephony, it is similar to a release message. A session is considered established if an INVITE has received a success class response (2xx) or an ACK has been sent. A BYE is sent only by UAs participating in the session, never by proxies or other third parties. It is an end-to-end method, so responses are only generated by the other UA. A UA responds with a 481 Dialog/Transaction Does Not Exist to a BYE for an unknown dialog.

A BYE cannot be used to cancel pending INVITEs because it will not be forked like an INVITE and may not reach the same set of UAs as the INVITE. An example BYE request looks like the following:

BYE sip:info@hypotenuse.example.org SIP/2.0

Via: SIP/2.0/TCP port443.hotmail.example.com:54212;branch=z9hG4bK312bc

Max-Forwards:70

To: <sip:info@hypotenuse.example.org>;tag=63124

From: <sip:pythag42@hotmail.example.com>;tag=9341123

Call-ID: 34283291273

CSeq: 47 BYE

Content-Length: 0

The mandatory headers in a BYE request are shown in Table 4.4.

4.1.4 ACK

The ACK method is used to acknowledge final responses to INVITE requests. Final responses to all other requests are never acknowledged. Final responses are defined as 2xx, 3xx, 4xx, 5xx, or 6xx class responses. The CSeq number is never incremented for an ACK, but the CSeq method is changed to ACK. This is so that a UAS can match the CSeq number of the ACK with the number of the corresponding INVITE.

Table 4.3

Mandatory Header Fields in a REGISTER

Via

To

From

Call-ID

CSeq

Max-Forwards

Table 4.4

Mandatory Header Fields in a BYE

Via

To

From

Call-ID

CSeq

Max-Forwards

An ACK may contain an application/sdp message body. This is permitted if the initial INVITE did not contain a SDP message body. If the INVITE contained an SDP offer message body, the ACK may not contain an SDP message body. The ACK may not be used to modify a media description that has already been sent in the initial INVITE; a re-INVITE or UPDATE must be used for this purpose. SDP in an ACK is used in some interworking scenarios with other protocols where the media characteristics may not be known when the initial INVITE is generated and sent.

For 2xx responses, the ACK is end-to-end, but for all other final responses it is done on a hop-by-hop basis when stateful proxies are involved. As a result, a proxy will generate an ACK for a 3xx, 4xx, 5xx, or 6xx response to an INVITE, as well as forwarding the response. The end-to-end nature of ACKs to 2xx responses allows a message body to be transported. An ACK generated in a hop-by-hop acknowledgment will contain just a single Via header with the address of the proxy server generating the ACK. The difference between hop-by-hop acknowledgments and response end-to-end acknowledgments is shown in the message fragments of Figure 4.2.

A hop-by-hop ACK reuses the same branch ID as the INVITE since it is considered part of the same transaction. An end-to-end ACK uses a different branch ID as it is considered a new transaction.

A stateful proxy receiving an ACK message must determine whether or not the ACK should be forwarded downstream to another proxy or user agent. That is, is the ACK a hop-by-hop ACK or an end-to-end ACK? This is done by comparing the branch ID for a match pending transaction branch IDs. If there is not an exact match, the ACK is proxied toward the UAS. Otherwise, the ACK is for this hop and is not forwarded by the proxy. Here is an example ACK containing SDP:

ACK sip:laplace@mathematica.example.org SIP/2.0

Via: SIP/2.0/TCP 128.5.2.1:5060;branch=z9hG4bK1834

Max-Forwards:70

[image:]

Figure 4.2 End-to-end versus hop-by-hop acknowledgments.

To: Marquis de Laplace <sip:laplace@mathematica.example.org> ;tag=90210

From: Nathaniel Bowditch <sip:n.bowditch@salem.example.com> ;tag=887865

Call-ID: 152-45-32-N-32-23-47-W

CSeq: 3 ACK

Content-Type: application/sdp

Content-Length: ...

v=0

o=bowditch 2590844326 2590944532 IN IP4

s=Bearing

c=IN IP4 salem.example.org t=0 0

m=audio 32852 RTP/AVP 96 0

a=rtpmap:96 SPEEX/8000

a=rtpmap:0 PCMU/8000

The mandatory and optional headers in an ACK message are shown in Table 4.5.

4.1.5 CANCEL

The CANCEL method is used to terminate pending INVITEs or call attempts. It can be generated by either user agents or proxy servers provided that a 1xx response containing a tag has been received, but no final response has been received. A UA uses the method to cancel a pending call attempt it had initiated earlier. A forking proxy can use the method to cancel pending parallel branches after a successful response has been proxied back to the UAC. CANCEL is a hop-by-hop request and receives a response generated by the next stateful element. The difference between a hop-by-hop request and an end-to-end request is shown in Figure 4.3. The CSeq is not incremented for this method so that proxies and user agents can match the CSeq of the CANCEL with the CSeq of the pending INVITE to which it corresponds.

Table 4.5

Mandatory Header Fields in an ACK

Via

To

From

Call-ID

CSeq

Max-Forwards

The branch ID for a CANCEL matches the INVITE that it is canceling. A CANCEL only has meaning for an INVITE since only an INVITE may take several seconds (or minutes) to complete. All other SIP requests complete immediately (that is, a UAS must immediately generate a final response). Consequently, the final result will always be generated before the CANCEL is received.

A proxy receiving a CANCEL forwards the CANCEL to the same set of locations with pending requests that the initial INVITE was sent. A proxy does not wait for responses to the forwarded CANCEL requests, but responds immediately. A UA confirms the cancellation with a 200 OK response to the CANCEL and replies to the INVITE with a 487 Request Terminated response.

If a final response has already been received, a UA will need to send a BYE to terminate the session. This is also the case in the race condition where a CANCEL and a final response cross in the network, as shown in Figure 4.4. In this example, the CANCEL and 200 OK response messages cross between the proxy and the UAS. The proxy still replies to the CANCEL with a 200 OK, but then also forwards the 200 OK response to the INVITE. The 200 OK response to the CANCEL sent by the proxy only means that the CANCEL request was received and has been forwarded—the UAC must still be prepared to receive further final responses. No 487 response is sent in this scenario. The session is canceled by the UAC sending an ACK then a BYE in response to the 200 OK.

Since it is a hop-by-hop request, a CANCEL may not contain a message body. An example CANCEL request contains:

CANCEL sip:i.newton@cambridge.example.com SIP/2.0

Via: SIP/2.0/UDP 10.downing.example.org:5060;branch=z9hG4bK3134134

[image:]

Figure 4.3 End-to-end versus hop-by-hop requests.

[image:]

Figure 4.4 Race condition in call cancellation.

Max-Forwards:70

To: Isaac Newton <sip:i.newton@cambridge.example.com>

From: Rene Descartes <sip:visitor@10.downing.example.org>;tag=034323

Call-ID: 23d8e0e4e2e505329299e288bbd4155a

CSeq: 32156 CANCEL

Content-Length: 0

The mandatory header fields in a CANCEL request are shown in Table 4.6.

4.1.6 OPTIONS

The OPTIONS method is used to query a user agent or server about its capabilities and discover its current availability. The response to the request lists the capabilities of the user agent or server. A proxy never generates an OPTIONS request. A user agent or server responds to the request as it would to an INVITE (i.e., if it is not accepting calls, it would respond with a 4xx or 6xx response). A success class (2xx) response can contain Allow, Accept, Accept-Encoding, Accept-Language, and Supported headers indicating its capabilities. Feature tags (such as audio, video [3], and isfocus [4]) should be included with the Contact header field.

An OPTIONS request may not contain a message body. A proxy determines if an OPTIONS request is for itself by examining the Request-URI. If the Request-URI contains the address or host name of the proxy, the request is for the proxy. Otherwise, the OPTIONS is for another proxy or user agent and the request is forwarded. An example OPTIONS request and response contains:

OPTIONS sip:user@carrier.example.com SIP/2.0

Via: SIP/2.0/UDP cavendish.kings.cambridge.example.com;branch=z9hG4bK1834

Max-Forwards:70

To: <sip:wiliamhopkins@cambridge.example.com>

From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.example.com> ;tag=34

Call-ID: 747469e729acd305

CSeq: 29 OPTIONS

Content-Length: 0

Table 4.6

Mandatory Header Fields in a CANCEL

Via

To

From

Call-ID

CSeq

Max-Forwards

SIP/2.0 200 OK

Via: SIP/2.0/UDP cavendish.kings.cambridge.example.com;tag=512A6;branch=z9hG4bK0834 ;received=192.0.0.2

To: <sip:wiliamhopkins@cam.ac.uk>;tag=432

From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.example.com> ;tag=34

Call-ID: 747469e729acd305

CSeq: 29 OPTIONS

Contact: <sip:william@tutors.cambridge.example.com>;audio;video

Allow: INVITE, OPTIONS, ACK, BYE, CANCEL, REFER

Supported: replaces, join

Accept-Language: en, de, fr

Content-Type: application/sdp

Content-Length: ...

v=0

o=jc 2590845378 2590945578 IN IP4 tutors.cambridge.example.com

s=

c=IN IP4 tutors.cam.ac.uk

t=0 0

m=audio 32852 RTP/AVP 96 0

a=rtpmap:96 SPEEX/8000

a=rtpmap:0 PCMU/8000

m=video 82852 RTP/AVP 34

a=rtpmap:34 H263/90000

The mandatory headers in an OPTIONS request is listed in Table 4.7.

4.1.7 SUBSCRIBE

The SUBSCRIBE method [5] is used by a UA to establish a subscription for the purpose of receiving notifications (via the NOTIFY method) about a particular event. A successful subscription establishes a dialog between the UAC and the UAS. The subscription request contains an Expires header field, which indicates the desired duration of the existence of the subscription. After this time period passes, the subscription is automatically terminated. The subscription can be refreshed by sending another SUBSCRIBE within the dialog before the expiration time. A server accepting a subscription returns a 200 OK response also containing an Expires header field. The expiration timer can be the same as the request, or the server may shorten the interval, but it may not lengthen the interval. There is no UNSUBSCRIBE method used in SIP—instead a SUBSCRIBE with Expires:0 requests the termination of a subscription and hence the dialog. A terminated subscription (either due to timeout out or a termination request) will result in a final NOTIFY indicating that the subscription has been terminated (see Section 4.1.8 on NOTIFY). A 202 Accepted response to a SUBSCRIBE does not indicate whether the subscription has been authorized—it merely means it has been understood by the server.

Table 4.7

Mandatory Header Fields in an OPTIONS

Via

To

From

Call-ID

CSeq

Max-Forwards

The basic call flow is shown in Figure 4.5. The client sends a SUBSCRIBE, which is successful, and receives NOTIFYs as the requested events occur at the server. Before the expiration of the subscription time, the client re-SUBSCRIBEs to extend the subscription and hence receives more notifications.

Note that a client must be prepared to receive a NOTIFY before receiving a 200 OK response to the SUBSCRIBE. Also, due to forking, a client must be prepared to receive NOTIFYs from multiple servers (the NOTIFYs will have different To tags and hence will establish separate dialogs), although only one 200 OK response to the SUBSCRIBE may be received.

[image:]

Figure 4.5 Example SUBSCRIBE and NOTIFY call flow.

An example SUBSCRIBE request is shown below:

SUBSCRIBE sip:ptolemy@rosettastone.example.com SIP/2.0

Via SIP/2.0/UDP proxy.elasticity.example.org:5060;branch=z9hG4bK348471123

Via SIP/2.0/UDP parlour.elasticity.example.org:5060;branch=z9hG4bKABDA ;received=192.0.3.4

Max-Forwards: 70

To: <sip:Ptolemy@rosettastone.example.com>

From: Thomas Young <sip:tyoung@elasticity.example.org>;tag=1814

Call-ID: 452k59252058dkfj34924lk34

CSeq: 3412 SUBSCRIBE

Allow-Events: dialog

Contact: <sip:tyoung@parlour.elasticity.example.org>

Event: dialog

Content-Length: 0

The type of event subscription is indicated by the required Event header field in the SUBSCRIBE request. Each application of the SIP Events framework [5] defines a package with a unique event tag. Each package defines the following:

• Default subscription expiration interval;

• Expected SUBSCRIBE message bodies;

• What events cause a NOTIFY to be sent, and what message body is expected in the NOTIFY;

• Whether the NOTIFY contains complete state or increments (deltas);

• Maximum notification rate.

A protocol called PSTN and Internet Interworking (PINT) [6] defines methods SUBSCRIBE, NOTIFY, and UNSUBSCRIBE, which have a similar semantic to SIP. A server can distinguish a PINT SUBSCRIBE request from a SIP SUBSCRIBE by the absence of an Event header field in the PINT request. A server should indicate which event packages it supports by listing them in an Allow-Events header field.

If a SUBSCRIBE refresh is sent within a dialog but receives a 481 Dialog Does Not Exist response, this means that the server has already terminated the subscription. The client should consider the dialog and subscription terminated and send a SUBSCRIBE to establish a new dialog and subscription.

An event template package is a special type that can be applied to any other package. The application of a template package to a package is shown by separating the package and template package names with a “.” as in presence. winfo [7] which is the application of the watcher info template package to the presence package. Table 4.8 lists the current set of SIP event and template packages.

Table 4.9 lists the mandatory header fields in a SUBSCRIBE request. Packages are standardized in the IETF based on the requirements in [5].

4.1.8 NOTIFY

The NOTIFY method [5] is used by a user agent to convey information about the occurrence of a particular event. A NOTIFY is always sent within a dialog when a subscription exists between the subscriber and the notifier. However, it is possible for a subscription to be established using non-SIP means (no SUBSCRIBE is sent) and may also be implicit in another SIP request type (for example, a REFER establishes an implicit subscription). Since it is sent within a dialog, the NOTIFY will contain a To tag, From tag, and existing Call-ID. A basic call flow showing NOTIFY is in Figure 4.5.

A NOTIFY request normally receives a 200 OK response to indicate that it has been received. If a 481 Dialog/Transaction Does Not Exist response is received, the subscription is automatically terminated and no more NOTIFYs are sent.

Table 4.8

SIP Event Packages

	Package Name
	Use
	Specification

	call-completion
	Call Completion [8]
	RFC 6910

	certificate
	Certificate (public key) [9]
	RFC 6072

	credential
	Credential (private key) [9]
	RFC 6072

	conference
	Conferencing [10]
	RFC 4579

	consent-pending-additions
	Consent Framework [11]
	RFC 5362

	dialog
	SIP Dialog Information [12]
	RFC 4235

	http-monitor
	Web Page Monitoring [13]
	RFC 5989

	kpml
	Key Press Markup Language[14]
	RFC 4730

	load-control
	Load Filtering Policy [15]
	RFC 7200

	message-summary
	Voicemail [16]
	RFC 3842

	poc-settings
	Push-to-Talk over Cellular [17]
	RFC 4354

	presence
	Presence [18]
	RFC 3845

	reg
	Registration [19]
	RFC 3680

	refer
	Refer [20]
	RFC 3515

	session-spec-policy
	Session-Specific Policy [21]
	RFC 6795

	ua-profile
	User Agent Profile (Configuration) [22]
	RFC 6808

	vq-rtcpxr
	RTCP VoIP Summary [23]
	RFC 6035

	winfo
	Watcher template [7]
	RFC 3857

	xcap-diff
	Changes in XCAP Files [24]
	RFC 5875

Table 4.9

Mandatory Header Fields in a SUBSCRIBE

Via

To

From

Call-ID

CSeq

Max-Forwards

Contact

Event

Allow-Events

NOTIFY requests contain an Event header field indicating the package and a Subscription-State header field indicating the current state of the subscription. The Event header field will contain the package name used in the subscription. Currently defined packages are listed in Table 4.8. The Subscription-State header field will either be active, pending, or terminated.

A NOTIFY is always sent at the start of a subscription and at the termination of a subscription. If a NOTIFY contains incremental (delta) state information, the message body will contain a state version number that will be incremented by 1 for each NOTIFY sent. This way, the receiver of the NOTIFY can tell if information is missing or received out of sequence.

An example NOTIFY request is shown here:

NOTIFY sip:tyoung@parlour.elasticity.example.org SIP/2.0

Via SIP/2.0/UDP cartouche.rosettastone.example.com:5060;branch=z9hG4bK3841323

Max-Forwards: 70

To: Thomas Young <sip:tyoung@elasticity.example.org>;tag=1814

From: <sip:ptolemy@rosettastone.example.com>;tag=5363956k

Call-ID: 452k59252058dkfj34924lk34

CSeq: 3 NOTIFY

Contact: <sip:ptolemy@cartouche.rosettastone.example.com>

Event: dialog

Subscription-State: active;expires=180

Allow-Events: dialog Content-Type: application/xml+dialog

Content-Length: ...

(XML Message body not shown...)

Table 4.10 lists the mandatory header fields in a NOTIFY request.

4.1.9 PUBLISH

The PUBLISH method [25] is used by a user agent to send (or publish) event state information to a server known as an event state compositor (ESC). PUBLISH is most useful when there are multiple sources of event information, such as a number of devices sharing the same AOR. In this case, to find the complete state, another UA would need to subscribe individually to all the devices. Instead, the UA can subscribe to the ESC. Individual UAs send PUBLISHes to the ESC, which processes them and puts them together, generating NOTIFYs to watchers as shown in Figure 4.6.

Table 4.10

Mandatory Header Fields in a NOTIFY

To

Via

To

From

Call-ID

CSeq

Max-Forwards

Event

Allow-Events

Subscription-State

An example PUBLISH request is shown here:

PUBLISH sip:percy@lowell.example.com SIP/2.0

Via SIP/2.0/UDP telescope32.lowell.example.com:54620;branch=z9hG4bK43d132s3

Max-Forwards: 70

To: <sip:percy@lowell.example.com>

From: <sip:percy@lowell.example.com>;tag=5645fg432f

Call-ID: 34jdUhwiQhd72e

CSeq: 352 PUBLISH

Contact: <sip:percy@telescope32.lowell.example.com:54620>

Event: presence

Min-Expires: 1800

Expires: 3600

Allow-Events: presence

Content-Type: application/xml+pidf

Content-Length: ...

(XML Message body not shown...)

A PUBLISH request is similar to a NOTIFY, except it is not sent in a dialog. A PUBLISH request must contain an Expires header field and a Min-Expires header field. The Expires header field indicates the maximum time when the ESC will discard the event state information, unless it is updated or refreshed. The Min-Expires header field indicates the minimum expiration that the ESC may choose. In the 200 OK response to the PUBLISH, the Expires header field will indicate the value chosen by the ESC, which must be between the Min-Expires and Expires intervals. If the Min-Expires interval is too short, the ESC may respond with a 423 Interval Too Brief response containing a Min-Expires interval acceptable to the ESC. The presence UA must then republish the information using this interval.

[image:]

Figure 4.6 PUBLISH call flow example.

When an ESC receives and processes a PUBLISH it generates an entity-tag, a unique identifier for this piece of event state information, and returns the tag in a SIP-ETag header field of the 200 OK response. For example, here is a 200 OK response to the above PUBLISH:

SIP/2.0 200 OK

Via SIP/2.0/UDP telescope32.lowell.example.com:54620;branch=z9hG4bK43d132s3;received=173.34.3.1

Max-Forwards: 70

To: <sip:percy@lowell.example.com>;tag=23211d

From: <sip:percy@lowell.example.com>;tag=5645fg432f

Call-ID: 34jdUhwiQhd72e

CSeq: 352 PUBLISH

Event: presence

Expires: 1800

SIP-ETag: dkfiei4RIUOwqwe23

Allow-Events: presence

Content-Length: 0

Using the entity-tag, the publisher can update a previously published state. In this case, to refresh the previously published state, a PUBLISH containing a SIPIf-Match header field is used containing the assigned entity-tag, but not containing a body. In this way, the state can be refreshed without having to send the information again. For example, this PUBLISH could be used to refresh the first publication, provided it is received within the 30-minute interval:

PUBLISH sip:percy@lowell.example.com SIP/2.0

Via SIP/2.0/UDP telescope32.lowell.example.com:54620;branch=z9hG4bK743d32s3a

Max-Forwards: 70

To: <sip:percy@lowell.example.com>

From: <sip:percy@lowell.example.com>;tag=458234kdf

Call-ID: 739238dkd2df

CSeq: 352 PUBLISH

Contact: <sip:percy@telescope32.lowell.example.com:54620>

CSeq: 353 PUBLISH

Event: presence

Min-Expires: 1800

Expires: 3600

Allow-Events: presence

SIP-If-Match: dkfiei4RIUOwqwe23

Content-Length: 0

If the state had expired, or been updated such that the entity-tag no longer matches or is not valid, the ESC would return a 412 Conditional Request Failed response. To modify the existing state, a PUBLISH would be sent containing the SIP-If-Match header field and a new message body. To remove the published state, a PUBLISH with the SIP-If-Match header field with an Expires:0 and no message body would result in the information being removed.

Note that entity-tags are defined in HTTP [26]. However, the syntax and exact meaning are slightly different for SIP than HTTP.

Multiple presence UAs can publish for the same AOR to an ESC. In this case, the ESC will put the information together in an event specific way before generating notifications to subscribers. This process is referred to as state aggregation or composition.

Mandatory header fields in a PUBLISH are listed in Table 4.11.

4.1.10 REFER

The REFER method [20] is used by a user agent to request another user agent to access a URI or URL resource. The resource is identified by a URI or URL in the required Refer-To header field. Note that the URI or URL can be any type of URI: sip, sips, http, pres, and so forth. When the URI is a sip or sips URI, the REFER is probably being used to implement a call transfer service. REFER can also be used to implement peer-to-peefr call control.

A REFER request can be sent either inside or outside an existing dialog. A typical call flow is shown in Figure 4.7. In this example, a UAC sends a REFER to a UAS. The UAS, after performing an authentication and authorization decides to accept the REFER and responds with a 202 Accepted (or a 200 OK) response. Note that this response is sent immediately without waiting for the triggered request to complete. This is important because REFER uses the non-INVITE method state machine, which requires an immediate final response, unlike an INVITE which may take several seconds (or even minutes) to complete. Since the Refer-To URI in this example is a sip URI, the UAC sends an INVITE setting the Request-URI to the Refer-To URI. This INVITE is successful since it receives a 200 OK response. This successful outcome is communicated back to the UAC using a NOTIFY method (described in Section 4.1.8). The message body of the NOTIFY contains a partial copy of the final response to the triggered request. In this case, it contains the start-line SIP/2.0 200 OK. This part of a SIP message is described in the Content-Type header field as a message/sipfrag [27]. Note that this implicit subscription can be cancelled by including the Refer-Sub: false [28] header field in the REFER. If the 2xx response to the REFER also contains the Refer-Sub: false header field, no NOTIFYs will be sent. There is standards work underway to define option tags nosub and explicitsub [29]. The presence of Require: nosub in a REFER indicates there will be no implicit subscription created. The presence of Require: explicitsub in a REFER indicates there will be no implicit subscription but an explicit subscription available by sending a SUBSCRIBE to the URI in the Refer-Events-At header field.

Table 4.11

Mandatory Header Fields in a PUBLISH

To

Via

To

From

Call-ID

CSeq

Max-Forwards

Contact

Event

Allow-Events

Expires

Min-Expires

[image:]

Figure 4.7 REFER example call flow.

An example of a REFER message is shown here:

REFER sip:m.rejewski@biuroszyfrow.example.com SIP/2.0

Via SIP/2.0/UDP lab34.bletchleypark.example.org:5060;branch=z9hG4bK932039

Max-Forwards: 69

To: <sip:m.rejewski@biuroszyfrow.example.com>;tag=ACEBDC

From: Alan Turing <sip:turing@bletchleypark.example.org> ;tag=213424

Call-ID: 3419fak3kFD23s1A9dkl

CSeq: 5412 REFER

Refer-To: <sip:info@scherbius-ritter.example.com>

Content-Length: 0

Another example is the use of REFER to “push” a Web page. In the example of Figure 4.8, the UAC sends a REFER to the UAS with a Refer-To set to an HTTP URL or a Web page. This causes the UAS to send a 202 Accepted then send an HTTP GET request to the Web server identified by the URL. After the Web page has loaded, the UAS sends a NOTIFY containing a body and HTTP/1.0 200 OK.

A REFER and the SIP request triggered by the REFER may contain the Referred-By header field, which contains information about who requested the request.

Figure 4.9 shows an advanced use of REFER to implement a common PSTN or PBX feature known as attended transfer [30]. In this feature, the transferor is assumed to be in a dialog (in a session) with the transferee. The transferor sends an INVITE to another party, called the transfer target. After the session is established between the transferor and the transfer target, the transferor sends a REFER to the transferee, which causes the transferee to generate a new INVITE (called a triggered INVITE) to the target. The successful INVITE replaces the existing session between the transferor and the transfer target. When the transferee receives notification that the transfer was successful, the session between the transferor and the transferee is terminated with a BYE. This application uses escaped header fields in the Refer-To URI. That is, certain SIP header fields are specified and prepopulated in the URI, which are then copied into the triggered INVITE. In this case, the transferor generates the Replaces header field necessary in the triggered INVITE to make the transfer succeed. The transferee copies the escaped Replaces header and places it in the INVITE.

[image:]

Figure 4.8 REFER example showing Web page push.

The acceptance of a REFER with a 202 Accepted response creates an implicit subscription (a subscription without sending a SUBSCRIBE request; see Section 4.1.7). After sending the 202 Accepted, the target must send an immediate NOTIFY with the status 100 Trying and Subscription-State: active;expires=60, which indicates that the subscription will expire in 60 seconds (the expiration value is chosen by the notifier). The Subscription-State header contains the expiration time of the subscription. If that time period expires before the triggered request has completed, both sides terminate the subscription, with the notifier sending a final notification as discussed next.

The subscription is terminated when the transfer target (the party that accepted the REFER) sends a final notification (a NOTIFY with Subscription-State: terminated;reason=noresource). Usually, this is after the transfer target has received a final response to the triggered request. However, a transfer target that does not wish to establish a subscription and provide a final result of the REFER may send an immediate NOTIFY indicating that the subscription has been terminated. Each REFER sent creates a separate subscription. If more than one REFER is sent within a dialog, the resulting notifications (and subscriptions) are identified by an id parameter in the Event header field. The id parameter is optional in REFER triggered NOTIFYs except when multiple REFERs have been accepted, in which case it is mandatory.

[image:]

Figure 4.9 Use of REFER and Replaces to perform attended transfer feature.

The optional Referred-By header field can be included in a REFER request. The Refer-To header field can also contain feature tags [31] which tell the REFER recipient about the resource being referenced. Table 4.12 lists the mandatory header fields in a REFER request.

4.1.11 MESSAGE

The MESSAGE method [32] is used to transport instant messages (IM) using SIP. IMs usually consist of short messages exchanged in near-real time by participants engaged in a text conversation. MESSAGEs may be sent within a dialog or outside a dialog, but they do not establish a dialog by themselves. The actual message content is carried in the message body as a MIME attachment. All UAs that support the MESSAGE method must support text/plain format; they may also support other formats such as message/cpim [33] or text/html, as shown in Table 8.10.

Table 4.12

Mandatory Header Fields in a REFER

Via

To

From

Call-ID

CSeq

Max-Forwards

Refer-To

A MESSAGE request normally receives a 200 OK response to indicate that the message has been delivered to the final destination. An IM response should not be sent in the message body of a 200 OK, but rather a separate MESSAGE request sent to the original sender. A 202 Accepted response indicates that the request has reached a store-and-forward device and will likely eventually be delivered to the final destination. In neither case does the 2xx response confirm that the message content has been rendered to the user. For this, the delivery notification mechanism is used, which will be discussed later in Section 8.5.2.

A MESSAGE request may use the im (instant message) URI scheme [34] in a Request-URI, although a client should try to resolve to a sip or sips URI.

An example MESSAGE call flow is shown in Figure 4.10.

Note that the MESSAGE method is not the only application of instant messaging with SIP. It is also possible to use SIP to establish an instant message session in a completely analogous way that SIP is commonly used to establish a media session. An INVITE could be used to establish the session with a SDP body that describes the instant message protocol to be used directly between the two users. For example, Message Sessions Relay Protocol (MSRP), covered in Section 8.5.5, can be used for this.

An example MESSAGE request is shown here:

MESSAGE sip:editor@rcs.example.com SIP/2.0

Via SIP/2.0/UDP lab.mendeleev.example.org:5060;branch=z9hG4bK3

Max-Forwards: 70

To: <editor@rcs.example.com>

From: “D. I. Mendeleev” <dmitry@mendeleev.example.org>;tag=1865

Call-ID: 93847197172049343

CSeq: 5634 MESSAGE

Subject: First Row

Contact: <sip:dmitry@lab.mendeleev.example.org>

Content-Type: text/plain

Content-Length: 7

H, He

[image:]

Figure 4.10 A SIP MESSAGE call flow showing instant message transport.

Table 4.13 lists the mandatory header fields in a MESSAGE request.

4.1.12 INFO

The INFO [35] method is used by a UA to send call signaling information to another UA with which it has an established media session. The request is end-to-end and is never initiated by proxies. A proxy will always forward an INFO request—it is up to the UAS to check to see if the dialog is valid. INFO requests for unknown dialogs receive a 481 Transaction/Dialog Does Not Exist response. The original INFO specification RFC 2976 did not have any mechanisms for negotiating which types of INFO bodies are acceptable. The updated specification [35] defines packages for INFO usages, and a mechanism to discover and declare support for packages. The Recv-Info header field is included in requests and responses listing the INFO packages that the UA is willing to receive. The Info-Package header field is included in INFO requests indicating which package is being used.

Table 4.13

Mandatory Header Fields in a MESSAGE

To

Via

To

From

Call-ID

CSeq

Max-Forwards

An INFO method typically contains a message body. The contents may be signaling information, a midcall event, or some sort of stimulus. INFO has been proposed to carry certain PSTN midcall signaling information such as ISUP (ISDN User Part) USR messages.

The INFO method always increments the CSeq. An example INFO method is:

INFO sip:poynting@mason.example.com SIP/2.0

Via: SIP/2.0/UDP cavendish.kings.cambridge.example.org;branch=z9hG4bK24555

Max-Forwards: 70

To: John Poynting <sip:nting@mason.example.com> ;tag=3432

From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.example.org> ;tag=432485820183

Call-ID: e71facaa7f7c0a29276054fe4951a9b6

Info-Package: foo

Content-Type: application/ISUP

Content-Length: ...

(Binary message body not shown)

The mandatory headers in an INFO request are shown in Table 4.14. Note that for backwards compatibility reasons, INFO without Info-Package will need to be accepted.

4.1.13 PRACK

The PRACK [36] method is used to acknowledge receipt of reliably transported provisional responses (1xx). The reliability of 2xx, 3xx, 4xx, 5xx, and 6xx responses to INVITEs is achieved using the ACK method. However, in cases where a provisional response, such as 180 Ringing, is critical in determining the call state, it may be necessary for the receipt of a provisional response to be confirmed. The PRACK method applies to all provisional responses except the 100 Trying response, which is never reliably transported.

Table 4.14

Mandatory Header Fields in an INFO

To

Via

To

From

Call-ID

CSeq

Max-Forwards

Info-Package

A PRACK is generated by a UAC when a provisional response has been received containing an RSeq reliable sequence number and a Supported: 100rel header field. The PRACK echoes the number in the RSeq and the CSeq of the response in a RAck header. The message flow is as shown in Figure 4.11. In this example, the UAC sends the 180 Ringing response reliably by including the RSeq header. When no PRACK is received from the UAC after the expiration of a timer (an “X” is used to represent a lost message), the response is retransmitted. The receipt of the PRACK confirms the delivery of the response and stops all further transmissions. The 200 OK response to the PRACK stops retransmissions of the PRACK request.

Reliable responses are retransmitted using the same exponential backoff mechanism used for final responses to an INVITE. The combination of Call-ID, CSeq number, and RAck number allows the UAC to match the PRACK to the provisional response it is acknowledging. As shown in Figure 4.11, the PRACK receives a 200 OK response, which can be distinguished from the 200 OK to the INVITE by the method contained in the CSeq header.

[image:]

Figure 4.11 PRACK call flow example showing reliable provisional responses.

The PRACK method always increments the CSeq. A PRACK may contain a message body and may be used for offer/answer exchanges. An example exchange contains:

SIP/2.0 180 Ringing

Via: SIP/2.0/UDP lucasian.cambridge.example.org;branch=z9hG4bK452352;received=1.2.3.4

To: Descartes <sip:rene.descartes@metaphysics.example.com>;tag=12323

From: Newton <sip:newton@kings.cambridge.example.org>;tag=981

Call-ID: da6fa909f1c0188c539feb08d4496eb7

RSeq: 314

CSeq: 10 INVITE

Content-Length: 0

PRACK sip:rene.descartes@metaphysics.example.org SIP/2.0

Via: SIP/2.0/UDP lucasian.trinity.cambridge.example.com;branch=z9hG4bKdtyw Max-Forwards: 70

To: Descartes <sip:rene.descartes@metaphysics.example.com>;tag=12323

From: Newton <sip:newton@kings.cambridge.example.org>;tag=981

Call-ID: da6fa909f1c0188c539feb08d4496eb7

CSeq: 2 PRACK

RAck: 314 10 INVITE

Supported: 100rel

Content-Length: 0

SIP/2.0 200 OK

Via: SIP/2.0/UDP lucasian.trinity.cambridge.example.org;branch=z9hG4bKdtyw ;received=1.2.3.4

To: Descartes <sip:rene.descartes@metaphysics.example.com>;tag=12323

From: Newton <sip:newton@kings.cambridge.example.org>;tag=981

Call-ID: da6fa909f1c0188c539feb08d4496eb7

CSeq: 2 PRACK

Require: 100rel

Content-Length: 0

The mandatory header fields in a PRACK request are shown in Table 4.15.

4.1.14 UPDATE

The UPDATE method [37] is used to modify the state of a session without changing the state of the dialog. A session is established in SIP using an INVITE request (see Section 4.1.1) in an offer/answer manner, described in Chapter 13. Typically, a session offer is made in the INVITE and an answer is made in a response to the INVITE. In an established session, a re-INVITE is used to update session parameters. However, neither party in a pending session (INVITE sent but no final response received) may re-INVITE—instead, the UPDATE method is used.

Possible uses of UPDATE include muting or placing on hold pending media streams, performing QoS, or other end-to-end attribute negotiation prior to session establishment.

Figure 4.12 and the following show an example of an UPDATE message.

Table 4.15

Mandatory Header Fields in a PRACK

To

Via

To

From

Call-ID

CSeq

Max-Forwards

RAck

[image:]

Figure 4.12 An UPDATE call flow example showing an offer/answer exchange.

UPDATE sips:beale@bufords.bedford.example.com SIP/2.0

Via SIP/2.0/TLS client.crypto.example.org:5061;branch=z9hG4bK342

Max-Forwards: 70

To: T. Beale <sips:beale@bufords.bedford.example.com>;tag=71

From: Blaise Vigenere <sips:bvigenere@crypto.example.org>;tag=19438

Call-ID: 170189761183162948

CSeq: 94 UPDATE

Contact: <sips:client.crypto.example.org>

Content-Type: application/sdp

Content-Length: ...

(SDP Message body not shown...)

Table 4.16 lists the mandatory header fields in an UPDATE request.

4.2 URI and URL Schemes Used by SIP

SIP supports a number of URI and URL schemes including sip, sips, tel, pres, and im for SIP, secure SIP, telephone, presence, and instant message URIs as described in the following sections. In addition, other URI schemes can be present in SIP header fields as listed in Table 1.2.

4.2.1 SIP and SIPS URIs

The addressing scheme of SIP URLs and URIs has been previously mentioned. SIP URIs are used in a number of places including the To, From, and Contact headers, as well as in the Request-URI, which indicates the destination. SIP URIs are similar to the mailto URL [38] and can be used in hyperlinks on Web pages, for example. They can also include telephone numbers. The information in a SIP URI indicates the way in which the resource (user) should be contacted using SIP.

An example SIP URI contains the scheme sip a “:”, then a username@ host or IPv4 or IPv6 address followed by an optional “:”, then the port number, or a list of “;” separated URI parameters:

sip:joseph.fourier@transform.example.org:5060;transport=udp;user=ip;method=INVITE;ttl=1;maddr=240.101.102.103?Subject=FFT

Table 4.16

Mandatory Header Fields in an UPDATE

To

Via

To

From

Call-ID

CSeq

Max-Forwards

Contact

Note that URIs may not contain spaces or line breaks, so this example would be on a single line. Some SIP URIs, such as a REGISTER Request-URI do not have a username, but begin with the host or IP address. In this example, the port number is shown as 5060, the well-known port number for SIP. For a SIP URI, if the port number is not present 5060 is assumed. For a SIPS URI, port number 5061 is assumed. The transport parameter indicates UDP is to be used, which is the default. TCP, TLS, and SCTP are alternative transport parameters.

The user parameter is used by parsers to determine if a telephone number is present in the username portion of the URI. The assumed default is that it is not, indicated by the value ip. If a telephone number is present, it is indicated by the value phone. This parameter must not be used to guess at the characteristics or capabilities of the user agent. For example, the presence of a user=phone parameter must not be interpreted that the user agent is a SIP telephone (which may have limited display and processing capabilities). In a telephony environment, IP telephones and IP/PSTN gateways may in fact use the reverse assumption, interpreting any digits in a username as digits regardless of the presence of user=phone. The user=dialstring parameter [39] indicates that the user part is a dial string, which includes prefixed digits. For example, a SIP URI where the user part begins with a “9” that the user dialed for an outside line but is not part of the telephone number could indicate that the user part is a dial string.

The method parameter is used to indicate the method to be used. The default is INVITE. This parameter has no meaning in To or From header fields or in a Request-URI but can be used in Contact headers for registration, for example, or in a Refer-To header field.

The ttl parameter is the time-to-live, which must only be used if the maddr parameter contains a multicast address and the transport parameter contains udp. The default value is 1. This value scopes the multicast session broadcast.

The maddr usually contains the multicast address to which the request should be directed, overriding the address in the host portion of the URI. It can also contain a unicast address of an alternative server for requests.

The method, maddr, ttl, and header parameters must not be included in To or From headers, but may be included in Contact headers or in Request-URIs. In addition to these parameters, a SIP URI may contain other user-defined parameters.

Following the “?” parameter, names can be specified to be included in the request. This is similar to the operation of the mailto URL, which allows Subject and Priority to be set for the request. Additional headers can be specified, separated by an “&”. The header name body indicates that the contents of a message body for an INVITE request are being specified in the URI.

If the parameter user=phone is present, then the username portion of the URI can be interpreted as a telephone number. This allows additional parameters in the username portion of the URI, which allows the parameters and structure of a tel URL [40] to be present in the user part of the SIP URI as described in the next section.

The sips URI scheme has the same structure as the sip URI but begins with the sips scheme name. Note that a sips URI is not equivalent to a sip URI with transport=tls, since the sip URI does not have the same security requirements as the sips URI. The requirement is that TLS transport is used end-to-end for the SIP path.

Not shown in the example is the loose route parameter lr, which can be present in sip or sips Record-Route and Route URIs to indicate that the proxy server identified by the URI supports loose routing.

4.2.2 Telephone URLs

The telephone URI scheme, tel [40], can be used to represent a resource identified by a telephone number. Telephone numbers can be of two general forms, local or global. A local number is only valid in a particular geographic area and has only local significance. If the number is used outside of this area, it will either fail or return the wrong resource. A global telephone number, also called an E.164 number, is one that is, in principle, valid anywhere. It contains enough information about the country, region, and locality for the PSTN network to route calls to the correct resource. An example of a local phone number is:

tel:411;phone-context=+1314

This indicates a call to directory assistance valid only within country code 1 and area code 314 as identified in the required phone-context parameter. An example of a global phone number is:

tel:+13145551212

Global phone numbers always begin with the “+” identifier followed by the country code, 1 in this case, followed by the remaining telephone digits.

A tel URL can also contain some characters and information about dialing strings and patterns. For example:

tel:#70555-1212;isub=1000;phone-context=+1

In this example, the dialed digit string, interpreted by a PSTN gateway, would be the DTMF digit # then 70 (to cancel call waiting, for example), then the digits 555–1212. Additional parameters include an ISDN subaddress of 1000. This example shows both types of optional visual separators allowed, either “-” or “.” as the separator.

Tel URLs can also be embedded in Web pages and can be included in HTML as, for example:

Click here to get information about Dallas.

The syntax and parameters of the tel URL may be used in the user portion of a sip URI. For example, the first tel example could be represented as a sip URI as follows:

sip:411;phone-context=+1314@gateway.example.com

The SIP URI adds a domain portion which represents the domain or gateway that will route the request.

4.2.3 Presence and Instant Messaging URLs

The pres URL scheme is defined [34] as a URL scheme that represents a “presentity” or presence agent. The im URL scheme is defined [34] as a URL scheme that represents an “instant inbox” or an instant message client. Both URL schemes do not represent a new protocol but are resolved using DNS SRV resource records, which return another URI that indicates the actual presence or instant messaging protocol. For example, if the presence agent reference by the presence URL:

pres:user@example.com

supports SIP presence, the DNS SRV query would return a SIP URI, for example:

sip:user@example.com

This would then allow a presence agent to send a SUBSCRIBE to this SIP URI to obtain the presence agent of this user.

The same procedure would be used for resolving an im URL into a SIP URI for sending a MESSAGE request.

4.3 Tags

A tag is a cryptographically random number with at least 32 bits of randomness, which is added to To and From headers to uniquely identify a dialog. The examples in Chapters 2 and 20 show the use of the tag header parameter. The To header in the initial INVITE will not contain a tag. A caller must include a tag in the From header, although an RFC 2543 UA generally will not do so as it is optional in that specification. Excluding 100 Trying, all responses will have a tag added to the To header. The sending or receiving of a response containing a From tag creates an early dialog. A tag returned in a 200 OK response is then incorporated as a dialog identifier and used in all future requests for this Call-ID. A tag is never copied across calls. Any response generated by a proxy will have a tag added by the proxy. An ACK generated by either a UA or a proxy will always copy the From tag of the response in the ACK request.

If a UAC receives responses containing different tags, this means that the responses are from different UASs, and the INVITE has been forked. It is up to the UAC as to how to deal with this situation. For example, the UAC could establish separate sessions with each of the responding UAS. The dialogs would contain the same From, Call-ID, and CSeq, but would have different tags in the To header. The UAC also could BYE certain legs and establish only one session.

Note that tags are not part of the To or From URI but are part of the header and always placed outside any “<>”.

4.4 Message Bodies

Message bodies in SIP may contain various types of information. They may contain SDP information, which can be used to convey media information, QoS, or even security information.

The optional Content-Disposition header is used to indicate the intended use of the message body. If not present, the function is assumed to be session, which means that the body describes a media session. Besides session, the other defined function is render, which means that the message body should be presented to the user or otherwise used or displayed. This could be used to pass a small JPEG image file or URI.

The format of the message body is indicated by the Content-Type header. If a message contains a message body, the message must include a Content-Type header. All UAs must support a Content-Type of application/sdp. The encoding scheme of the message body is indicated in the Content-Encoding header. If not specified, the encoding is assumed to be text/plain. The specification of a Content-Encoding scheme allows the message body to be compressed.

The Content-Length header contains the number of octets in the message body. If there is no message body, the Content-Length header should still be included but with a value of 0. Because multiple SIP messages can be sent in a TCP stream, the Content-Length count is a reliable way to detect when one message ends and another begins. If a Content-Length is not present, the UAC must assume that the message body continues until the end of the UDP datagram, or until the TCP connection is closed, depending on the transport protocol.

Message bodies can have multiple parts if they are encoded using Multipart Internet Mail Extensions (MIME). However, message bodies in SIP should be small enough so that they do not exceed the UDP MTU of the network. Proxies may reject requests with large message bodies with a 413 Request Entity Too Large response, since processing large messages can load a server. Guidelines for SIP handling of message bodies is described in [41].

As mentioned in the previous section, SIP carries message bodies the same way that e-mails carry attachments. It is possible to carry multiple message bodies within a single SIP message. This is done using a multipart MIME body. The Content-Type is listed as multipart/mime, and a separator is defined, which is used by the parser to separate the message. Any SIP request or response that can contain a message body may carry a multipart MIME body. An example is in SIP-T (see Section 11.2) in which an INVITE carries both a SDP message body (application/sdp) and an encapsulated ISUP message (application/isup). An example multipart MIME is:

INVITE sip:refertarget@carol.example.com SIP/2.0

Via: SIP/2.0/UDP referree.example.com;branch=z9hG4bKffe209934aac

To: sip:refertarget@carol.example.com

From: <sip:referree@referree.example.com>;tag=2909034023

Call-ID: 9023940-a34658d

CSeq: 9823409 INVITE Max-Forwards: 70

Contact: <sip:referree@bob.example.com>

Referred-By: sip:referror@alice.example.com

;cid=%3C20398823.2UWQFN309shb3@alice.example.com%3E

Content-Type: multipart/mixed;boundary=-*-boundary-*

Content-Length: ...

—-*-boundary-*

Content-Type: application/sdp

Content-Length: ...

v=0

o=referree 2890844526 2890844526 IN IP4 referree.example

s=Session SDP

c=IN IP4 referree.example

t=0 0

m=audio 49172 RTP/AVP 0

a=rtpmap:0 PCMU/8000

—-*-boundary-*

Content-Type: multipart/signed; protocol=”application/pkcs7-signature”;

micalg=sha1; boundary=dragons39

Content-ID: <20398823.2UWQFN309shb3@alice.example.com>

Content-Length: ...

dragon39

Content-Type: message/sipfrag

Content-Disposition: auth-id; handling=optional

From: sip:referror@alice.example.com

Date: Thu, 21 Feb 2002 13:02:03 GMT

Call-ID: 2203900ef0299349d9209f023a

Refer-To: sip:refertarget@carol.example.com

Referred-By: sip:referror@alice.example.com

;cid=%3C20398823.2UWQFN309shb3@alice.example.com%3E

dragon39

Content-Type: application/pkcs7-signature; name=smime.p7s

Content-Transfer-Encoding: base64

Content-Disposition: attachment; filename=smime.p7s

;handling=required

(S/MIME data goes here)

—-*-boundary-*—

Between each body part is a string, in this example -*-boundary-*-, which is defined in the Content-Type header field.

4.5 Conclusion

This chapter covered the six base methods in RFC 3261 plus the eight extension methods defined in other RFCs. In addition, SIP URIs, URLs, tags, and message bodies have been covered.

4.6 Questions

Q4.1 Explain what happens when the expiration interval in an Expires header field in an INVITE expires.

Q4.2 For the three REGISTER requests sent (in this sequence) below, generate appropriate responses to each from the registrar.

REGISTER sip:registrar.athens.gr.example.com SIP/2.0

Via: SIP/2.0/UDP 201.202.203.204:5060;branch=z9hG4bK231U3

Max-Forwards:70

To: sip:euclid@athens.gr.example.com

From: <sip:euclid@athens.gr>;tag=543131

Call-ID: 48erl8132409wqer

CSeq: 1 REGISTER

Contact: <sip:euclid@parthenon.athens.gr.example.com>

Content-Length: 0

REGISTER sip:registrar.athens.gr.example.org SIP/2.0

Via: SIP/2.0/UDP 201.202.203.204:5060;branch=z9hG4bK3r13

Max-Forwards:70

To: sip:euclid@athens.gr.example.org

From: <sip:euclid@athens.gr.example.com>;tag=543131

Call-ID: 48erl8132409wqer

CSeq: 2 REGISTER

Contact: <mailto:euclid@geometry.example.org>

Content-Length: 0

REGISTER sip:registrar.athens.gr.example.org SIP/2.0

Via: SIP/2.0/UDP 201.202.203.204:5060;branch=z9hG4bK3313

Max-Forwards:70

To: sip:euclid@athens.gr

From: <sip:euclid@athens.gr.example.org>;tag=54313

Call-ID: 48erl8132409wqer

CSeq: 3 REGISTER

Content-Length: 0

Q4.3 Is a message body permitted in an ACK? Give an example of this usage.

Q4.4 Explain what happens if a 200 OK and the CANCEL for the INVITE cross on the wire between a proxy and a UA.

Q4.5 If a SUBSCRIBE is forked by a proxy, and multiple subscriptions are established, how will the watcher know this and keep the subscriptions separate?

Q4.6 Generate a suitable PRACK message in response to the 180 Ringing response here:

SIP/2.0 180 Ringing

Via: SIP/2.0/UDP boyden.harvard.example.org;branch=z9hG4bK452352;received=1.2.3.4

To: Clyde <sip:clyde.tombaugh@lowell.example.org>;tag=312323

From: Bill <sip:william.pickering@harvard.example.org> ;tag=877s981

Call-ID: Ldfk37sfa2DF

RSeq: 17314

CSeq: 53 INVITE

Content-Length: 0

Q4.7 Explain how PUBLISH can be used to create, refresh, update, and delete event state.

Q4.8 Generate the SUBSCRIBE that could have caused this NOTIFY to be sent:

NOTIFY sip:e.hubble@mtwilson.example.org SIP/2.0

Via SIP/2.0/UDP room421.caltech.example.org:5060;branch=z9hG4bK3841323

Max-Forwards: 70

To: <sip:e.hubble@mtwilson.example.org>;tag=8311814

From: <sip:georgehale@caltech.example.org>;tag=5363956k

Call-ID: 58kjeGrkre88er

CSeq: 73 NOTIFY

Contact: <sip:georgehale@room421.caltech.example.org>

Event: presence

Subscription-State: active;expires=3540

Allow-Events: dialog

Content-Type: application/xml+dialog

Content-Length: ...

Q4.9 How is a subscribe-created dialog terminated?

Q4.10 Explain when a 412 response might be received in response to a PUBLISH. What should the presence UA do after receiving this response?

References

[1] Rosenberg, J., et al., “SIP: Session Initiation Protocol,” RFC 3261, June 2002.

[2] Rosenberg, J., “Obtaining and Using Globally Routable User Agent (UA) URIs (GRUU) in the Session Initiation Protocol (SIP),” RFC 5726, October 2009.

[3] Rosenberg, J., H. Schulzrinne, and P. Kyzivat, “Indicating User Agent Capabilities in the-Session Initiation Protocol (SIP),” RFC 3840, August 2004.

[4] Johnston, A., and O. Levin, “Session Initiation Protocol (SIP) Call Control—Conferencing for User Agents,” BCP 119, RFC 4579, August 2006.

[5] Roach, A., “SIP-Specific Event Notification,” RFC 6665, July 2012.

[6] Petrack, S., and L. Conroy, “The PINT Service Protocol: Extensions to SIP and SDP for IP Access to Telephone Call Services,” RFC 2848, June 2000.

[7] Rosenberg, J., “A Watcher Information Event Template-Package for the Session Initiation Protocol (SIP),” RFC 3857, August 2004.

[8] Worley, D., et al., “Completion of Calls for the Session Initiation Protocol (SIP),” RFC 6910, April 2013.

[9] Jennings, C., and J. Fischl, “Certificate Management Service for the Session Initiation Protocol (SIP),” RFC 6072, February 2011.

[10] Rosenberg, J., H. Schulzrinne, and O. Levin, “A Session Initiation Protocol (SIP) Event Package for Conference State,” RFC 4575, August 2006.

[11] Camarillo, G., “The Session Initiation Protocol (SIP) Pending Additions Event Package,” RFC 5362, October 2008.

[12] Rosenberg, J., H. Schulzrinne, and R. Mahy, “An INVITE-Initiated Dialog Event Package-for the Session Initiation Protocol (SIP),” RFC 4235, November 2005.

[13] Roach, A., “A SIP Event Package for Subscribing to Changes to an HTTP Resource,” RFC 5989, October 2010.

[14] Burger, E., and M. Dolly, “A Session Initiation Protocol (SIP) Event Package for Key Press Stimulus (KPML),” RFC 4730, November 2006.

[15] Shen, C., H. Schulzrinne, and A. Koike, “A Session Initiation Protocol (SIP) Load-Control Event Package,” RFC 7200, April 2014.

[16] Mahy, R., “A Message Summary and Message Waiting Indication Event Package for the Session Initiation Protocol (SIP),” RFC 3842, August 2004.

[17] Garcia-Martin, M., “A Session Initiation Protocol (SIP) Event Package and Data Format for Various Settings in Support for the Push-to-Talk over Cellular (PoC) Service,” RFC 4354, January 2006.

[18] Rosenberg, J., “A Presence Event Package for the Session Initiation Protocol (SIP),” RFC 3856, August 2004.

[19] Rosenberg, J., “A Session Initiation Protocol (SIP) Event Package for Registrations,” RFC 3680, March 2004.

[20] Sparks, R., “The Session Initiation Protocol (SIP) Refer Method,” RFC 3515, April 2003.

[21] Hilt, V., and G. Camarillo, “A Session Initiation Protocol (SIP) Event Package for Session-Specific Policies,” RFC 6795, December 2012.

[22] Ciavattone, L., et al., “Test Plan and Results Supporting Advancement of RFC 2679 on the Standards Track,” RFC 6808, December 2012.

[23] Pendleton A., et al., “Session Initiation Protocol Event Package for Voice Quality Reporting,” RFC 6035, November 2010.

[24] Urpalainen, J., and D. Willis, “An Extensible Markup Language (XML) Configuration Access Protocol (XCAP) Diff Event Package,” RFC 5875, May 2010.

[25] Niemi, A., “Session Initiation Protocol (SIP) Extension for Event State Publication,” RFC 3903, October 2004.

[26] Fielding, R., et al., “Hypertext Transfer Protocol—HTTP/1.1,” RFC 2616, June 1999.

[27] Sparks, R., “Internet Media Type message/sipfrag,” RFC 3420, November 2002.

[28] Levin, O., “Suppression of Session Initiation Protocol (SIP) REFER Method Implicit Subscription,” RFC 4488, May 2006.

[29] Sparks, R., “Explicit Subscriptions for the REFER Method,” draft-ietf-sipcore-refer-explicit-subscription-00 (work in progress) November 2014.

[30] Sparks, R., and A. Johnston, “Session Initiation Protocol Call Control—Transfer,” RFC 5589, June 2009.

[31] Levin, O., and A. Johnston, “Conveying Feature Tags with the Session Initiation Protocol (SIP) REFER Method,” RFC 4508, May 2006.

[32] Campbell, B., et al., “Session Initiation Protocol (SIP) Extension for Instant Messaging,” RFC 3428, December 2002.

[33] Klyne, G., and D. Atkins, “Common Presence and Instant Messaging (CPIM): Message Format,” RFC 3862, August 2004.

[34] Peterson, J., “Address Resolution for Instant Messaging and Presence,” RFC 3861, August 2004.

[35] Holmberg, C. et al., “The SIP INFO Method,” RFC 6086, January 2011.

[36] Rosenberg, J., and H. Schulzrinne, “Reliability of Provisional Responses in Session Initiation Protocol (SIP),” RFC 3262, June 2002.

[37] Rosenberg, J., “The Session Initiation Protocol (SIP) UPDATE Method,” RFC 3311, September 2002.

[38] Hoffman, P., L. Masinter, and J. Zawinski, “The mailto URL Scheme,” RFC 2368, July 1998.

[39] Rosen, B., “Dial String Parameter for the Session Initiation Protocol Uniform Resource Identifier,” RFC 4967, July 2007.

[40] Schulzrinne, H., “The tel URI for Telephone Numbers,” RFC 3966, December 2004.

[41] Camarillo, G., “Message Body Handling in the Session Initiation Protocol (SIP),” RFC 5621, September 2009.

5

SIP Response Messages

This chapter covers the types of SIP response messages. A SIP response is a message generated by a UAS or a SIP server to reply to a request generated by a UAC. A response may contain additional header fields of information needed by the UAC, or it may be a simple acknowledgment to prevent retransmissions of the request by the UAC. Many responses direct the UAC to take specific additional steps. The responses are discussed in terms of structure and classes. Then each request type is discussed and examined in detail.

There are six classes of SIP responses. The first five classes were borrowed from HTTP; the sixth was created for SIP. The classes are shown in Table 5.1.

If a particular SIP response code is not understood by a UAC, it must be interpreted by the class of the response. For example, an unknown 599 Server Unplugged response must be interpreted by a user agent as a 500 Server Failure response.

The reason phrase is for human consumption only—the SIP uses only the response code in determining behavior. Thus, a 200 Call Failed is interpreted the same as 200 OK. The reason phrases listed here are the suggested ones from the RFC document. They can be used to convey more information, especially in failure class responses—the phrase is likely to be displayed to the user. Some response codes were borrowed from HTTP, sometimes with a slightly different reason phrase. However, not all HTTP response codes are valid in SIP, and some even have a different meaning.

Unless otherwise referenced, the responses described here are defined in RFC 3261 [1].

Table 5.1

SIP Response Classes

	Class
	Description
	Action

	1xx
	Informational
	Indicates status of call prior to completion. Also known as a provisional response.

	2xx
	Success
	Request has succeeded. If for an INVITE, ACK should be sent; otherwise, stop retransmissions of request.

	3xx
	Redirection
	Server has returned possible locations. The client should retry request at another server.

	4xx
	Client error
	The request has failed due to an error by the client. The client may retry the request if reformulated according to response.

	5xx
	Server failure
	The request has failed due to an error by the server. The request may be retried at another server.

	6xx
	Global failure
	The request has failed. The request should not be tried again at this or other servers.

5.1 Informational

The informational class of responses, 1xx, is used to indicate call progress. Informational responses are end-to-end responses and may contain message bodies. The exception to this is the 100 Trying response, which is only a hop-by-hop response and may not contain a message body. Any number of informational responses can be sent by a UAS prior to a final response (2xx, 3xx, 4xx, 5xx, or 6xx class response) being sent. The first informational response received by the UAC confirms receipt of the INVITE, and stops retransmission of the INVITE, as shown in Figure 3.7 For this reason, servers returning 100 Trying responses minimize INVITE retransmissions in the network. Further informational responses have no effect on INVITE retransmissions. A stateful proxy receiving a retransmission of an INVITE will resend the last provisional response sent to date. Informational responses are optional; a UAS can send a final response without first sending an informational response. While final responses to an INVITE receive an ACK to confirm receipt, provisional responses are not acknowledged, except when using the PRACK method described in Section 4.1.13.

All provisional responses with the exception of 100 Trying must echo all Record-Route headers received in the request. However, a RFC 2543 implementation will not do this, as it was not mandated in that document.

5.1.1 100 Trying

This special case response is only a hop-by-hop request. It is never forwarded and may not contain a message body. A forking proxy must send a 100 Trying response, since the extended search being performed may take a significant amount of time. This response can be generated by either a proxy server or a user agent. It only indicates that some kind of action is being taken to process the call; it does not indicate that the user has been located. A 100 Trying response typically does not contain a To tag and hence does not create an early dialog.

5.1.2 180 Ringing

This response is used to indicate that the INVITE has been received by the user agent and alerting is taking place. This response is important in the interworking of telephony protocols, and it is typically mapped to messages such as an ISDN progress or ISUP address complete message (ACM) [2]. When the user agent answers immediately, a 200 OK is sent without a 180 Ringing; this scenario is called the “fast answer” case in telephony.

A UA normally generates its own ring-back tone or remote ringing indication, unless an Alert-Info header field is present.

5.1.3 181 Call is Being Forwarded

This response is used to indicate that the call has been handed off to another end point. It is sent when the information may be of use to the caller. Also, because a forwarding operation may result in the call taking longer to be answered, this response gives a status for the caller.

5.1.4 182 Call Queued

This response is used to indicate that the INVITE has been received and will be processed in a queue. The reason phrase can be used to indicate the estimated wait time or the number of callers in line, as shown in Figure 5.1.

5.1.5 183 Session Progress

The 183 Session Progress response indicates that information about the progress of the session (call state) may be present in a message body or media stream. Unlike a 100 Trying response, a 183 is an end-to-end response and establishes a dialog (must contain a To tag and Contact). Unlike a 180, 181, or 182 response, it does not convey any specific information about the status of the INVITE. A typical use of this response is to allow a UAC to hear an inbound ring tone, busy tone, or recorded announcement in calls through a gateway into the PSTN. This is because call progress information is carried in the media stream in the PSTN. A one-way media connection or trunk is established from the calling party’s telephone switch to the called party’s telephone switch in the PSTN prior to the call being answered. In SIP, the media session is established after the call is answered—after a 200 OK and ACK have been exchanged between the UAC and UAS. If a gateway uses a 180 Ringing response instead, no media path will be established between the UAC and the gateway, and the caller will never hear a ring tone, busy tone, or recorded announcement (e.g., “The number you have dialed has changed, the new number is ...”) since these are all heard in the media path prior to the call being answered. Figure 9.1 shows an example call flow with early media.

[image:]

Figure 5.1 Call queuing with a contact center.

5.1.6 199 Early Dialog Terminated

The 199 Early Dialog Terminated response [3] is sent by a forking proxy to indicate that early dialogs created during forking have been terminated. A UA receiving a 199 response can use it to free up resources that are associated with that early dialog.

5.2 Success

Success class responses indicate that the request has succeeded or has been accepted.

5.2.1 200 OK

The 200 OK response has two uses in SIP. When used to accept a session invitation, it will contain a message body containing the media properties of the UAS (called party). When used in response to other requests, it indicates a successful completion or receipt of the request. The response stops further retransmissions of the request. In response to OPTIONS, the message body may contain the capabilities of the server. A message body may also be present in a response to a REGISTER request. For 200 OK responses to other methods, a message body is not permitted.

5.2.2 202 Accepted

The 202 Accepted response [4] was used to indicate that the UAS has received and understood the request, but that the request may not have been authorized or processed by the server. It was used in responses to SUBSCRIBE (see Section 4.1.7), REFER (see Section 4.1.10), and sometimes MESSAGE (see Section 4.1.11) methods. However, this response [4] has been deprecated for SUBSCRIBE. Testing has shown that some SIP elements do not process a 202 the same as a 200, especially in forking scenarios, which can lead to interoperability failures.

5.2.3 204 No Notification

The 204 No Notification response [4] is used in response to a SUBSCRIBE request that was successful but no notification associated with the request will be sent. This conditional notification can be suppressed using the Suppress-If-Match header field.

5.3 Redirection

Redirection class responses are generally sent by a SIP server acting as a redirect server in response to an INVITE, as described in Section 3.5.2. A UAS can also send a redirection class response to implement certain types of call forwarding features. There is no requirement that a UAC receiving a redirection response must retry the request to the specified address. The UAC can be configured to automatically generate a new INVITE upon receipt of a redirection class response without requiring user intervention. In addition, proxies may also automatically send an ACK to a redirect and proxy the INVITE to the new location provided in the Contact URI of the redirection. To prevent looping, the server must not return any addresses contained in the request Via header field, and the client must check the address returned in the Contact header field against all other addresses tried in an earlier call attempt. Note that this type of transaction looping is different from request looping.

5.3.1 300 Multiple Choices

This redirection response contains multiple Contact header fields, which indicate that the location service has returned multiple possible locations for the sip or sips URI in the Request-URI. The order of the Contact header fields is assumed to be significant. That is, they should be tried in the order in which they were listed in the response.

5.3.2 301 Moved Permanently

This redirection response contains a Contact header field with the new permanent URI of the called party. The address can be saved and used in future INVITE requests.

5.3.3 302 Moved Temporarily

This redirection response contains a URI that is currently valid but is not permanent. As a result, the Contact header field should not be cached across calls unless an Expires header field is present, in which case the location is valid for the duration of the time specified.

5.3.4 305 Use Proxy

This redirection response contains a URI that points to a proxy server who has authoritative information about the calling party. The caller should resend the request to the proxy for forwarding. This response could be sent by a UAS that is using a proxy for incoming call screening. Because the proxy makes the decisions for the UAS on acceptance of the call, the UAS will only respond to INVITE requests that come from the screening proxy. Any INVITE request received directly would automatically receive this response without user intervention.

5.3.5 380 Alternative Service

This response returns a URI that indicates the type of service the called party would like. An example might be a redirect to a voicemail server.

5.4 Client Error

This class of response is used by a server or UAS to indicate that the request cannot be fulfilled as it was submitted. The specific client error response or the presence of certain header fields should indicate to the UAC the nature of the error and how the request can be reformulated. The UAC should not resubmit the request without modifying it based on the response. The same request can be tried in other locations. A forking proxy receipt of a 4xx response does not terminate the search. Typically, client error responses will require user intervention before a new request can be generated.

5.4.1 400 Bad Request

This response indicates that the request was not understood by the server. An example might be a request that is missing required header fields such as To, From, Call-ID, or CSeq. This response is also used if a UAS receives multiple INVITE requests (not retransmissions) for the same Call-ID.

5.4.2 401 Unauthorized

This response indicates that the request requires the user to perform authentication. This response is generally sent by a user agent, since the 407 Proxy Authentication Required (Section 5.4.8) is sent by a proxy that requires authentication. The exception is a registrar server, which sends a 401 Unauthorized response to a REGISTER message that does not contain the proper credentials. An example of this response is:

SIP/2.0 401 Unauthorized

Via: SIP/2.0/UDP proxy.globe.example.com:5060;branch=z9hG4bK2311ff5d.1;received=192.0.2.1;rport=3213

Via: SIP/2.0/UDP 173.23.43.1:5060;branch=z9hG4bK4545

From: <sip:explorer@geographic.example.org>;tag=341323

To: <sip:printer@maps-r-us.example.com>;tag=19424103

From: Copernicus <sip:copernicus@globe.example.com>;tag=34kdilsp3

Call-ID: 1g23hj45m678a7

CSeq: 1 INVITE

WWW-Authenticate: Digest realm=”globe.example.com”,nonce=”8eff88df84f1cec4341ae6e5a359”, qop=”auth”,

opaque=””, stale=FALSE, algorithm=MD5

Content-Length: 0

The presence of the required WWW-Authenticate header field is required to give the calling user agent a chance to respond with the correct credentials. A typical authentication exchange using SIP digest is shown in Figure 15.6. Note that the follow-up INVITE request should use the same Call-ID as the original request; the authentication may fail in some cases if the Call-ID is changed from the initial request to the retried request.

5.4.3 402 Payment Required

This response is a placeholder for future definitions in the SIP. It could be used to negotiate call completion charges.

5.4.4 403 Forbidden

This response is used to deny a request without giving the caller any recourse. It is sent when the server has understood the request, found the request to be correctly formulated, but will not service the request. This response is not used when authorization is required.

5.4.5 404 Not Found

This response indicates that the user identified by the sip or sips URI in the Request-URI cannot be located by the server, or that the user is not currently signed on with the user agent.

5.4.6 405 Method Not Allowed

This response indicates that the server or user agent has received and understood a request but is not willing to fulfill the request. An example might be a REGISTER request sent to a user agent. An Allow header field (Section 6.1.2) must be present to inform the UAC as to what methods are acceptable. This is different from the case of an unknown method, in which a 501 Not Implemented response is returned. Note that a proxy will forward request types it does not understand unless the request is targeted to the proxy server (i.e., the Request-URI is the URI of the proxy server).

5.4.7 406 Not Acceptable

This response indicates that the request cannot be processed due to a requirement in the request message. The Accept header field in the request did not contain any options supported by the UAS.

5.4.8 407 Proxy Authentication Required

This request sent by a proxy indicates that the UAC must first authenticate itself with the proxy before the request can be processed. The response should contain information about the type of credentials required by the proxy in a Proxy-Authenticate header field. The request can be resubmitted with the proper credentials in a Proxy-Authorization header field. Unlike in HTTP, this response may not be used by a proxy to authenticate another proxy.

SIP/2.0 407 Proxy Authorization Required

Via: SIP/2.0/UDP discrete.sampling.example.com:5060;branch=z9hG4bK6563;received=65.64.140.198;rport=17234

From: Shannon <sip:shannon@sampling.example.com>;tag=59204

To: Schockley <sip:shockley@transistor.example.com>;tag=142334

Call-ID: adf8gasdd7fld

CSeq: 1 INVITE

Proxy-Authenticate: Digest realm=”sampling.example.com”, qop=”auth”, nonce=”9c8e88df84df1cec4341ae6cbe5a359”,

opaque=””, stale=FALSE, algorithm=MD5

Content-Length: 0

5.4.9 408 Request Timeout

This response is sent when an Expires header field is present in an INVITE request and the specified time period has passed. This response could be sent by a forking proxy or a user agent. The request can be retried at any time by the UAC, perhaps with a longer time period in the Expires header field or no Expires header field at all. Alternatively, a stateful proxy can send this response after the request transaction times out without receiving a final response.

5.4.10 409 Conflict

This response code has been removed from RFC 3261 but is defined in RFC 2543. It indicates that the request cannot be processed due to a conflict in the request. This response is used by registrars to reject a registration with a conflicting action parameter, which has also been deprecated.

5.4.11 410 Gone

This response is similar to the 404 Not Found response but contains the hint that the requested user will not be available at this location in the future. This response could be used by a service provider when a user cancels their service.

5.4.12 411 Length Required

This response code has been removed from RFC 3261 but is defined in RFC 2543. This response can be used by a proxy to reject a request containing a message body but no Content-Length header field. A proxy that takes a UDP request and forwards it as a TCP request could generate this response, since the use of Content-Length is more critical in TCP requests. However, the response code is not very useful since a proxy can easily calculate the length of a message body in a UDP request (it is until the end of the UDP packet) but cannot with a stream-oriented transport such as TCP. In this case, a missing Content-Length header field would cause the message body to go on indefinitely, which would generate a 513 Message Too Large response instead of a 411 Length Required.

5.4.13 412 Conditional Request Failed

This response code was added to deal with conditional SIP publications. A 2xx response to a PUBLISH request will contain an entity tag in a SIP-ETag header field. A subsequent publish to update this information will contain this entity tag in a SIP-If-Match header field. Should the entity tag stored by the event state compositor not match the entity tag in the SIP-If-Match header field, the event state compositor returns a 412 Conditional Request Failed response [5]. A publishing UA receiving this response code knows that the stored entity tag is no longer valid. As a result, a publication without the entity tag must be performed.

5.4.14 413 Request Entity Too Large

This response can be used by a proxy to reject a request with a message body that is too large. A proxy suffering congestion could temporarily generate this response to save processing long requests.

5.4.15 414 Request-URI Too Long

This response indicates that the Request-URI in the request was too long and cannot be processed correctly. There is no maximum length defined for a Request-URI in the SIP standard document.

5.4.16 415 Unsupported Media Type

This response sent by a user agent indicates that the media type contained in the INVITE request is not supported. For example, a request for a video conference to a PSTN gateway that only handles telephone calls will result in this response. The response should contain header fields to help the UAC reformulate the request.

5.4.17 416 Unsupported URI Scheme

The 416 Unsupported URI Scheme response is used when a UAC uses a URI scheme in a Request-URI that the UAS does not understand. For example, if a Request-URI contains a secure SIP (sips) scheme that a proxy does not understand, it would return a 416 response. Since all SIP elements must understand the sip scheme, the request should be retried using a sip URI in the Request-URI.

5.4.18 417 Unknown Resource Priority

A request containing Require: resource-priority and an unknown value for Resource-Priority header field will receive the 417 Unknown Resource Priority response [6]. A 417 response may contain an Accept-Resource-Priority header field listing supported values. The request can be retried either without the Require: resource-priority header field or containing a value chosen from the Accept-Resource-Priority in the Resource-Priority header field.

5.4.19 420 Bad Extension

This response indicates that the extension specified in the Require or Proxy-Require header field is not supported by the proxy or UA. The response should contain a Supported header field listing the extensions that are supported. The UAC could resubmit the same request without the extension in the Require header field or submit the request to another proxy or UA.

5.4.20 421 Extension Required

The 421 Extension Required response indicates that a server requires an extension to process the request that was not present in a Supported header field in the request. The required extension should be listed in a Required header field in the response. The client should retry the request adding the extension to a Supported header field, or try the request at a different server that may not require the extension.

5.4.21 422 Session Timer Interval Too Small

The 422 Session Timer Interval Too Small response [7] is used to reject a request containing a Session-Expires header field (with too short an interval). The ability to reject short durations is important to prevent excessive re-INVITE or UPDATE traffic. The minimum allowed interval is indicated in the required Min-SE header field. The requestor may retry the request without the Session-Expires header field or with a value greater than or equal to the specified minimum.

5.4.22 423 Interval Too Brief

The 423 Interval Too Brief response [7] is returned by a registrar that is rejecting a registration request because the requested expiration time on one or more Contacts is too brief. The response must contain a Min-Expires header field listing the minimum expiration interval that the registrar will accept. A client requesting a too short interval can unnecessarily load a registrar server with registration refresh requests. This response allows a registrar to protect against this.

5.4.23 424 Bad Location Information

The 424 Bad Location Information response [8] is returned by a proxy or user agent when the location information provided in the request is incorrectly formatted or could not be de-referenced. The response must contain a Geolocation-Error header field which provides additional information about the failure.

5.4.24 428 Use Identity Header

The 428 Use Identity Header response [9] is used by a UAS that is requiring the use of enhanced SIP identity. The request should be resent with an Identity header field containing a signature over selected parts of the SIP message.

5.4.25 429 Provide Referror Identity

The 429 Provide Referror Identity response [10] is used to request that a Referred-By header field be resent with a valid Referred-By security token. The security token is carried as an S/MIME message body. The recipient of this error message (the UA that received and accepted the REFER) should relay this request back to the originator of the REFER by including it in a NOTIFY. The sender of the REFER can then generate the Referred-By security token and include it in the REFER, which would then be copied into the triggered request.

5.4.26 430 Flow Failed

The 430 Flow Failed response [11] is part of the SIP outbound NAT traversal extension. It is used by an edge proxy server to indicate that it has lost the flow (keep-alive failure or timeout) to the UA in the request. The proxy should then resend the request using a different flow-id if available. This approach allows a UA to register through multiple proxy servers as described in Section 10.11.3 with a call flow in Figure 10.9.

5.4.27 433 Anonymity Disallowed

The 433 Anonymity Disallowed response [12] is used to indicate that a request has failed due to anonymity. Anonymity might be because of an invalid URI or display name in the From header field, or by the presence of a Privacy header field requesting privacy. This header field provides a similar service to the anonymous call rejecting service in the PSTN.

5.4.28 436 Bad Identity-Info Header

The 436 Bad Identity-Info response [9] is used to indicate that the URI cannot be accessed from an Identity-Info header field. The Identity-Info header field URI is used to retrieve the certificate associated with the private key that was used to generate the signature in the Identity header field, used for enhanced SIP identity.

5.4.29 437 Unsupported Certificate

The 437 Unsupported Certificate response [9] is used when the certificate obtained using the Identity-Info header field is unable to be used to verify the signature in the Identity header field. This could be because the certificate is expired, not issued by a trusted certificate authority (CA), or for some other reason.

5.4.30 438 Invalid Identity Header

The 438 Invalid Identity Header response [9] is used to indicate that the identity signature in the identity header field does not match the message. This could indicate an attack, or that an intermediary server such as a Session Border Controller (SBC) or Application Layer Gateway (ALG) has modified the message since the signature was generated.

5.4.31 439 First Hop Lacks Outbound Support

The 439 First Hop Lacks Outbound Support response [11] is used by a registrar to indicate to a UA attempting to use the SIP outbound extension that the edge proxy does not support the mechanism, and as a result the mechanism cannot be used.

5.4.32 440 Max Breadth Exceeded

The 440 Max Breadth Exceeded response [13] is used to indicate that a forking proxy operation cannot be carried out due to too many concurrent branches. This is part of an extension to address an amplification vulnerability in forking proxy servers. The full description of the attack and how to protect against it is in [12]. When the Max-Breadth count goes to zero, the 440 Max-Breadth Exceeded response is returned.

5.4.33 469 Bad Info Package

The 469 Bad Info Package response [14] is used to indicate that the Info package requested is not supported. The response will contain a Recv-Info header field indicating which Info packages are supported by the UAS.

5.4.34 494 Security Agreement Required

The 494 Security Agreement Required [15] response is used to reject a request containing a Require: sec-agree header field as part of the security agreement mechanism.

5.4.35 470 Consent Needed

The 470 Consent Needed response [16] is used to reject a request sent to a URI list that had at least one element requiring consent. The elements needing consent will be listed in a Permission-Missing header field.

5.4.36 480 Temporarily Unavailable

This response indicates that the request has reached the correct destination, but the called party is not available for some reason. The reason phrase should be modified for this response to give the caller a better understanding of the situation. The response should contain a Retry-After header indicating when the request may be able to be fulfilled. For example, this response could be sent when a telephone has its ringer turned off, or a “do not disturb” button has been pressed. This response can also be sent by a redirect server.

5.4.37 481 Dialog/Transaction Does Not Exist

This response indicates that a response referencing an existing call or transaction has been received for which the server has no records or state information.

5.4.38 482 Loop Detected

This response indicates that the request has been looped and has been routed back to a proxy that previously forwarded the request. Each server that forwards a request adds a Via header with its address to the top of the request. A branch parameter is added to the Via header, which is a message digest (hash) of the Request-URI, and the To, From, Call-ID, and CSeq number. A second part is added to the branch parameter if the request is being forked. The branch parameter must be checked to allow a request to be routed back to a proxy, provided that the Request-URI has changed. This could happen with a call forwarding feature. In this case, the Via headers would differ by having different branch parameters.

5.4.39 483 Too Many Hops

This response indicates that the request has been forwarded the maximum number of times as set by the Max-Forwards header in the request. This is indicated by the receipt of a Max-Forwards: 0 header in a request. In the following example, the UAC included a Max-Forwards: 4 header in the REGISTER request. A proxy receiving this request five hops later generates a 483 response:

REGISTER sip:registrar.timbuktu.example.com SIP/2.0

Via: SIP/2.0/UDP 201.202.203.204:5060;branch=z9hG4bK45347.1

Via: SIP/2.0/UDP 198.20.2.4:6128;branch=z9hG4bK917a4d4.1

Via: SIP/2.0/UDP 18.56.3.1:5060;branch=z9hG4bK7154.1

Via: SIP/2.0/TCP 101.102.103.104:5060;branch=z9hG4bKa5ff4d3.1

Via: SIP/2.0/UDP 168.4.3.1:5060;branch=z9hG4bK676746

To: sip:explorer@geographic.example.org

From: <sip:explorer@geographic.example.org>;tag=341323

Call-ID: 67483010384

CSeq: 1 REGISTER

Max-Forwards: 0

Contact: sip:explorer@national.geographic.example.org

Content-Length: 0

SIP/2.0 483 Too Many Hops

Via: SIP/2.0/UDP 201.202.203.204:5060;branch=z9hG4bK45347.1

Via: SIP/2.0/UDP 198.20.2.4:6128;branch=z9hG4bK917a4d4.1

Via: SIP/2.0/UDP 18.56.3.1:5060;branch=z9hG4bK7154.1

Via: SIP/2.0/TCP 101.102.103.104:5060;branch=z9hG4bKa5ff4d3.1

Via: SIP/2.0/UDP 168.4.3.1:5060;branch=z9hG4bK676746

To: <sip:explorer@geographic.example.org>;tag=a5642

From: <sip:explorer@geographic.example.org>;tag=341323

Call-ID: 67483010384

CSeq: 1 REGISTER

Content-Length: 0

5.4.40 484 Address Incomplete

This response indicates that the Request-URI address is not complete. This could be used in an overlap dialing scenario in PSTN interworking where digits are collected and sent until the complete telephone number is assembled by a gateway and routed [17]. Note that the follow-up INVITE requests may use the same Call-ID as the original request. An example of overlap dialing is shown in Figure 5.2.

[image:]

Figure 5.2 Overlap dialing to the PSTN with SIP.

5.4.41 485 Ambiguous

This request indicates that the Request-URI was ambiguous and must be clarified in order to be processed. This occurs if the username matches a number of registrations. If the possible matching choices are returned in Contact header fields, then this response is similar to the 300 Multiple Choices response. They are slightly different, however, since the 3xx response returns equivalent choices for the same user, but the 4xx response returns alternatives that can be different users. The 3xx response can be processed without human intervention, but this 4xx response requires a choice by the caller, which is why it is classified as a client error class response. A server configured to return this response must take user registration privacy into consideration; otherwise a vague or general Request-URI could be used by a rogue UA to try to discover sip or sips URIs of registered users.

5.4.42 486 Busy Here

This response is used to indicate that the UA cannot accept the call at this location. This is different from the 600 Busy Everywhere response, which indicates that the request should not be tried elsewhere. In general, a 486 Busy Here is sent by a UAS unless it knows definitively that the user cannot be contacted. This response is equivalent to the busy tone in the PSTN.

5.4.43 487 Request Terminated

This response can be sent by a UA that has received a CANCEL request for a pending INVITE request. A 200 OK is sent to acknowledge the CANCEL, and a 487 is sent in response to the INVITE.

5.4.44 488 Not Acceptable Here

This response indicates that some aspect of the proposed session is not acceptable and may contain a Warning header field indicating the exact reason. This response has a similar meaning to 606 Not Acceptable, but only applies to one location and may not be true globally as the 606 response indicates.

5.4.45 489 Bad Event

The 489 Bad Event response [4] is used to reject a subscription request or notification containing an Event package that is unknown or not supported by the UAS. The response code is also used to reject a subscription request that does not specify an Event package, assuming that the server does not support the PINT protocol (see Section 4.1.7).

5.4.46 491 Request Pending

The 491 Request Pending response is used to resolve accidental simultaneous re-INVITEs by both parties in a dialog. Since both INVITEs seek to change the state of the session, they cannot be processed at the same time. While a user agent is awaiting a final response to a re-INVITE, any re-INVITE request received must be replied to with this response code. This is analogous to the “glare” condition in telephony in which both ends seize a trunk at the same time. The reconsideration algorithm in SIP is for the user agent to generate a delay (randomly selected within a range determined by if the UA sends the initial INVITE or not) then retry the re-INVITE, assuming that another re-INVITE has not been received in the meantime. In this way, one side or the other will “win” the race condition and have the re-INVITE processed. An example is shown in Figure 5.3.

5.4.47 493 Request Undecipherable

The 493 Request Undecipherable response is used when an S/MIME message body cannot be decrypted because the public key is unavailable. If the UAS does not support S/MIME, no message body will be present in the response. If the UAS does support S/MIME, the response will contain a message body containing a public key suitable for the UAC to use for S/MIME encryption. See Section 15.3.4 for more details on S/MIME encryption.

[image:]

Figure 5.3 Simultaneous re-INVITE resolution example.

5.4.48 494 Security Agreement Required

The 494 Security Agreement Required [15] response is used to reject a request containing a Require: sec-agree header field as part of the security agreement mechanism.

5.5 Server Error

This class of responses is used to indicate that the request cannot be processed because of an error with the server. The response may contain a Retry-After header field if the server anticipates being available within a specific time period. The request can be tried at other locations because there are no errors indicated in the request.

5.5.1 500 Server Internal Error

This server error class response indicates that the server has experienced some kind of error that is preventing it from processing the request. The reason phrase can be used to identify the type of failure. The client can retry the request again at this server after several seconds.

5.5.2 501 Not Implemented

This response indicates that the server is unable to process the request because it is not supported. This response can be used to decline a request containing an unknown method. A proxy will forward a request containing an unknown request method. Thus, a proxy will forward an unknown SELFDESTRUCT request, assuming that the UAS will generate this response if the method is not known.

5.5.3 502 Bad Gateway

This response is sent by a proxy that is acting as a gateway to another network, and indicates that some problem in the other network is preventing the request from being processed.

5.5.4 503 Service Unavailable

This response indicates that the requested service is temporarily unavailable. The request can be retried after a few seconds, or after the expiration of the Retry-After header field. Instead of generating this response, a loaded server may refuse the connection. This response code is important in that its receipt triggers a new DNS lookup to locate a backup server to obtain the desired service. The set of SIP DNS procedures for locating SIP servers is detailed in [18].

5.5.5 504 Gateway Timeout

This response indicates that the request failed due to a timeout encountered in the other network to which that the gateway connects. It is a server error class response because the call is failing due to a failure of the server in accessing resources outside the SIP network.

5.5.6 505 Version Not Supported

This response indicates that the request has been refused by the server because of the SIP version number of the request. The detailed semantics of this response have not yet been defined because there is only one version of SIP (version 2.0) currently implemented. When additional version numbers are implemented in the future, the mechanisms for dealing with multiple protocol versions will need to be detailed.

5.5.7 513 Message Too Large

The 513 Message Too Large response is used by a UAS to indicate that the request size was too large for it to process.

5.5.8 580 Preconditions Failure

The 580 Preconditions Failure response [19] is used to reject an SDP offer in which the required preconditions cannot be met.

5.6 Global Error

This response class indicates that the server knows that the request will fail wherever it is tried. As a result, the request should not be sent to other locations. Only a server that has definitive knowledge of the user identified by the Request-URI in every possible instance should send a global error class response. Otherwise, a client error class response should be sent. A Retry-After header field can be used to indicate when the request might be successful. Note that there have been interoperability issues identified [20] with the use of 6xx responses in actual implementations. As such, 6xx responses should be used with care, especially in multidomain and multivendor scenarios.

5.6.1 600 Busy Everywhere

This response is the definitive version of the 486 Busy Here client error response. If there is a possibility that the call to the specified Request-URI could be answered in other locations, this response should not be sent.

5.6.2 603 Decline

This response has the same effect as the 600 Busy Everywhere but does not give away any information about the call state of the server. This response could indicate the called party is busy or simply does not want to accept the call.

5.6.3 604 Does Not Exist Anywhere

This response is similar to the 404 Not Found response but indicates that the user in the Request-URI cannot be found anywhere. This response should only be sent by a server that has access to all information about the user.

5.6.4 606 Not Acceptable

This response can be used to implement some session negotiation capability in SIP. This response indicates that some aspect of the desired session is not acceptable to the UAS, and as a result, the session cannot be established. The response may contain a Warning header field with a numerical code describing exactly what was not acceptable. The request can be retried with different media session information. An example of simple negotiation with SIP is shown in Figure 5.4. If more complicated negotiation capability is required, another protocol should be used.

5.7 Questions

Q5.1 If a UA reboots in the middle of a SIP session and loses all state information, what response is it likely to send to a re-INVITE or BYE from the other UA?

Q5.2 In terms of the behavior of the UAC originator of the request, explain the difference between a 4xx and 5xx response.

Q5.3 Which response would likely be generated to this request?

REGISTER sip:registrar.munich.de.example.com SIP/2.0

Via: SIP/2.0/UDP 200.201.202.203:5060;branch=z9hG4bKsdus19

Max-Forwards: 70

[image:]

Figure 5.4 Session negotiation with SIP.

To: Werner Heisenberg <sip:werner.heisenberg@munich.de.example.com>

From: Werner Heisenberg <sip:werner.heisenberg@munich.de.example.com> ;tag=3431

Call-ID: 7ds376fd4291

CSeq: 1 REGISTER

Contact: <sip:werner.heisenberg@200.201.202.203>;expires=1

Content-Length: 0

Q5.4 Give two differences between a 100 response and a 180 response.

Q5.5 What action should be taken by a UAC that receives a 412 response?

Q5.6 How is a 3xx response different from a REFER?

Q5.7 Generate a SIP call flow with two UAs and a proxy where a 408 response is sent.

References

[1] Rosenberg, J., et al., “SIP: Session Initiation Protocol,” RFC 3261, 2002.

[2] Camarillo, G., et al., “Integrated Services Digital Network (ISDN) User Part (ISUP) to Session Initiation Protocol (SIP) Mapping,” RFC 3398, 2002.

[3] Holmberg, C., “Session Initiation Protocol (SIP) Response Code for Indication of Terminated Dialog,” RFC 6228, May 2011.

[4] Roach, A., “SIP Specific Events,” RFC 6665, 2012.

[5] Niemi, A., and D. Willis, “An Extension to Session Initiation Protocol (SIP) Events for Conditional Event Notification,” RFC 5839, May 2010.

[6] Schulzrinne, H., and J. Polk, “Communications Resource Priority for the Session Initiation Protocol (SIP),” RFC 4412, February 2006.

[7] Donovan, S., and J. Rosenberg, “Session Timers in the Session Initiation Protocol (SIP),” RFC 4028, April 2005.

[8] Polk, J., et al, “Location Conveyance for the Session Initiation Protocol,” RFC 6442, December 2011.

[9] Peterson, J., and C. Jennings, “Enhancements for Authenticated Identity Management in the Session Initiation Protocol (SIP),” RFC 4474, August 2006.

[10] Sparks, R., “The SIP Referred-By Mechanism,” RFC 3892, September 2004.

[11] Jennings, C., and R. Mahy, “Managing Client Initiated Connections in the Session Initiation Protocol (SIP),” RFC 5626, October 2009.

[12] Rosenberg, J., “Rejecting Anonymous Requests in the Session Initiation Protocol (SIP),” RFC 5079, December 2007.

[13] Sparks, R., et al., “Addressing an Amplification Vulnerability in Session Initiation Protocol (SIP) Forking Proxies,” RFC 5393, December 2008.

[14] Holmberg, C. et al., “The SIP INFO Method,” RFC 6086, January 2011.

[15] Arkko, J., et al., “Security Mechanism Agreement for the Session Initiation Protocol (SIP),” RFC 3329, January 2003.

[16] Rosenberg, J., G. Camarillo, and D. Willis, “A Framework for Consent-Based Communications in the Session Initiation Protocol (SIP),” RFC 5360, October 2008.

[17] Anttalainen, T., Introduction to Telecommunications Network Engineering, Norwood, MA: Artech House, 1999.

[18] Rosenberg, J., and H. Schulzrinne, “Session Initiation Protocol (SIP): Locating SIP Servers,” RFC 3263, 2002.

[19] Camarillo, G., W. Marshall, and J. Rosenberg, “Integration of Resource Management and Session Initiation Protocol (SIP),” RFC 3312, October 2002.

[20] Worley, D., “6xx-Class Responses Considered Harmful in the Session Initiation Protocol (SIP),” draft-worley-6xx-considered-harmful-00 (work-in-progress), February 2007.

6

SIP Header Fields

This chapter describes the header fields present in SIP messages. The header fields discussed in this chapter are categorized as request and response, request only, response only, and message body header fields, depending on their usage in SIP. Except as noted, header fields are defined in the SIP specification RFC 3261 [1]. Chapter 7 also lists some special header fields defined for 3GPP IMS and OMA.

SIP header fields in most cases follow the same rules as HTTP header fields [2]. Header fields are defined as Header: field, where Header is the case-insensitive token (but conventionally lowercase with some capitalization) used to represent the header field name, and field is the case-insensitive set of tokens that contain the information. Except when otherwise noted, their order in a message is not important. Header fields can continue over multiple lines as long as the line begins with at least one space or horizontal tab character. Unrecognized header fields are ignored by proxies. Many common SIP header fields have a compact form where the header field name is denoted by a single lower-case character. These header fields are shown in Table 6.1.

6.1 Request and Response Header Fields

This set of header fields can be present in both requests and responses.

6.1.1 Accept

The Accept header field is defined by HTTP [2] and is used to indicate acceptable message Internet media types [3] in the message body. The header field describes media types using the format type/sub-type commonly used in the Internet. If not present, the assumed acceptable message body format is application/sdp. A list of media types can have preferences set using q value parameters. The wildcard “*” can be used to specify all sub-types. Examples are given in Table 6.2.

Table 6.1

Compact Forms of SIP Header Fields

	Header Field
	Compact Form

	Accept-Contact
	a

	Allow-Event
	u

	Call-ID
	i

	Contact
	m

	Content-Encoding
	e

	Content-Length
	l

	Content-Type
	c

	Event
	o

	From
	f

	Identity
	y

	Identity-Info
	n

	Refer-To
	r

	Referred-By
	b

	Reject-Contact
	j

	Request-Disposition
	d

	Session-Expires
	x

	Subject
	s

	Supported
	k

	To
	t

	Via
	v

6.1.2 Accept-Encoding

The Accept-Encoding header field, defined in HTTP [2], is used to specify acceptable message body encoding schemes. Encoding can be used to ensure a SIP message with a large message body fits inside a single UDP datagram. The use of q value parameters can set preferences. If none of the listed schemes are acceptable to the UAC, a 406 Not Acceptable response is returned. If not included, the assumed encoding will be text/plain.

Table 6.2

Examples of an Accept Header Field

	Header Field
	Meaning

	Accept: application/sdp
	This is the default assumed even if no Accept header field is present

	Accept: text/
	Accept all text encoding schemes

	Accept: application/h.245;q=0.1,
	Use SDP if possible, otherwise, use H.245

	application/sdp;q=0.9
	

6.1.3 Accept-Language

The Accept-Language header field, defined in HTTP [2], is used to specify preferences of language. The languages specified can be used for reason phrases in responses, informational header fields such as Subject, or message bodies. The HTTP definition allows the language tag to be made of a primary tag and an optional subtag. This header field could also be used by a proxy to route to a human operator in the correct language. The language tags are registered by IANA, and the primary tag is an ISO-639 language abbreviation. The use of q values allows multiple preferences to be specified. Examples are shown in Table 6.3.

6.1.4 Alert-Info

The Alert-Info header field can be used to provide a “distinctive ring” service. If present in an INVITE, the UAS may use the URI to fetch an alert tone to be used in place of the default alerting tone—that is, it would be rendered to the called party. If present in a 180 Ringing response, the UAC may use the URI to fetch a ring-back tone to be rendered to the calling party. In both uses, the URI is fetched and rendered without user intervention, so careful policy rules are necessary to avoid unwanted sounds and noises being generated.

One use is for a trusted proxy to insert the header field with a local (to the domain of the user agent) URI. This then allows for very simple policy in the user agent in deciding whether or not to render. Another approach is for a URN to be used, which would tell the user agent which service tone to play for the user.

An example is shown here:

Alert-Info: <http://www.example.com/tones/internal_caller.pcm>

6.1.5 Allow

The Allow header field is used to indicate the methods supported by the UA or proxy server sending the response. The header field must be present in a 405 Method Not Allowed response and should be included in a positive response to an OPTIONS request. Allow is often present in INVITE and 200 OK responses. An example is:

Table 6.3

Examples of an Accept-Language Header Field

	Header Field
	Meaning

	Accept-Language: fr
	French is the only acceptable language

	Accept-Language: en, ea
	Acceptable languages include both English and Spanish

	Accept-Language: ea; q=0.5, en ;q=0.9, fr ;q=0.2
	Preferred languages are English, Spanish, and French, in that order

Allow: INVITE, ACK, BYE, INFO, OPTIONS, CANCEL

6.1.6 Allow-Events

The Allow-Events header field [4] is used to list the event packages that are supported. A UA that supports SIP events will then know that it may send a SUBSCRIBE for that event package. The list of currently defined packages is in Table 4.8. The compact form is u.

Examples are shown here:

Allow-Events: dialog

u: conference

6.1.7 Answer-Mode

The Answer-Mode header field [5] is used to request an immediate answer (200 OK) to an INVITE. Two values, Manual and Auto, have been defined. The Manual setting is normal behavior while Auto means the request should be accepted immediately without input from the user. A header field parameter require is defined to indicate that if the requested behavior is not permitted, the request should be rejected with a 403 Forbidden response. This extension can be used for a number of features including loopback tests, intercom, and push-to-talk. The Answer-Mode header field can be included in a 200 OK response to an INVITE to indicate how the request was answered. For example, if the require parameter is not present and the call is answered by the user, an Answer-Mode: Manual header field can be included in the 200 OK. The Priv-Answer-Mode is similar but requests a privilege treatment. The SIP option tag answermode is used to indicate support for this extension. Example:

Answer-Mode: Auto;require

6.1.8 Call-ID

The Call-ID header field is mandatory in all SIP requests and responses. It is part of the dialog used to uniquely identify a call between two user agents. A Call-ID must be unique across calls, except in the case of a Call-ID in registration requests. All registrations for a user agent should use the same Call-ID. A Call-ID is always created by a user agent and is never modified by a server.

The Call-ID must be a cryptographically random identifier. Some security is provided by the randomness of the Call-ID, because this prevents a third party from guessing a Call-ID and presenting false requests. Older UAs generate Call-IDs containing an IP address or host name. However, this is not recommended as it forces topology hiding B2BUAs to rewrite the Call-ID. The compact form of the Call-ID header field is i.

Examples of Call-ID are shown here:

Call-ID: 34a5d553192cc35

Call-ID: 44fer23ei4291dekfer34231232

i: 35866383092031257

6.1.9 Contact

The Contact header field is used to convey a URI that identifies the resource requested or the request originator, depending on whether it is present in a request or response. Once a Contact header field has been received, the URI can be cached and used for routing future requests within a dialog. For example, a Contact header field in a 200 OK response to an INVITE can allow the acknowledgment ACK message and all future requests during this call to bypass proxies and go directly to the called party. However, the presence of Record-Route header fields in an earlier request or default proxy routing configuration in a user agent may override that behavior. When a Contact URI is used in a Request-URI, all URI parameters are allowed with the exception of the method parameter, which is ignored.

Contact header fields must be present in INVITE requests and 200 OK responses to invitations. In some cases, the Contact URI may not resolve directly to the user agent. For example, a UA behind a firewall ALG will need to use a Contact URI that resolves to the firewall ALG address. Otherwise, the use of the user agent’s URI will result in the call failing because of the firewall blocking any direct routed SIP requests. Contact header fields may also be present in 1xx, 2xx, 3xx, and 485 responses. Only in a REGISTER request, a special Contact:*, along with an Expires: 0, header field is used to remove all existing registrations. Examples of Contact header fields in registrations are shown in Table 4.2. Otherwise, wild carding is not allowed. A Contact header field may contain a display name that can be in quotes. If a display name is present, the URI will be enclosed in < >. If any header field parameters are present, the URI will also be enclosed in < > along with any URI parameters, with the header field parameters outside the < >, even if no display name is present.

There are three additional parameters defined for use in Contact header fields: q, action, and expires. They are placed at the end of the URI and separated by semicolons. The q value parameter is used to indicate relative preference, which is represented by a decimal number in the range 0 to 1. The q value is not a probability, and there is no requirement that the q values for a given list of Contacts add up to 1. (The action parameter defined in RFC 2543 has been deprecated and is not used in RFC 3261. It was only used in registration Contact header fields, and is used to specify proxy or redirect operations by the server.) The expires parameter indicates how long the URI is valid and is also only used in registrations. The parameter either contains an integer number of seconds or a date in SIP form (see Section 6.1.11). Examples are shown in Table 6.4.

The Contact header field may contain a feature tag [6], which can be used to indicate the capabilities of the device identified by the Contact URI. For example, the feature tag isfocus is used to indicate that the URI in the Contact header field is a conference URI, and that the dialog is associates with a focus. A focus is a SIP UA that hosts a particular instance of a conference, called a “bridge” or MCU in other protocols. The presence of the isfocus feature tag can be used by a SIP UA that supports advanced conferencing features to invoke certain call control operations [7] or subscribe to the conference package [8]. Section 9.8 has more on SIP conferencing.

Some other common feature tags are listed in Table 6.5. The compact form is m.

6.1.10 CSeq

The command sequence CSeq header field is a required header field in every request. The CSeq header field contains a decimal number that increases for each request. Usually, it increases by 1 for each new request, with the exception of CANCEL and ACK requests, which use the CSeq number of the INVITE request to which it refers.

Table 6.4

Examples of Contact Header Fields

	Header Field
	Meaning

	Contact: sip:bell@telephone.example.com
	A single SIP URI without a display name.

	Contact: Lentz <h.lentz@stpetersburg.example.org:1234>
	A display name with the URI enclosed in < >; the display name is treated as a token and ignored. Port 1234 is used instead of the default 5060.

	Contact: M. Faraday <faraday@effect.example.org>, “Faraday” <mailto:faraday@pop.effect.example.org>
	Two URIs are listed, the second being a non-SIP URI with a display name enclosed in quotes.

	m: <morse@telegraph.example.org;transport=tcp>; expires= “Fri, 13, Oct 1998 12:00:00 GMT”
	The compact form of the header field contains a port number and a URI parameter contained within the < >. An expires header field parameter uses a SIP date enclosed in the quotes.

Table 6.5

Boolean Feature Tags

	Feature Tag
	Meaning

	attendant
	Attendant, human or automata

	automata
	Nonhuman

	image
	Supports images

	message
	Supports messaging

	text
	Supports text media

	audio
	Supports audio media

	video
	Supports video media

	voicemail
	Is a voicemail server

	isfocus
	Is a focus, a conference server

The CSeq count is used by UASs to determine out-of-sequence requests or to differentiate between a new request (different CSeq) or a retransmission (same CSeq). The CSeq header field is used by UACs to match a response to the request it references. For example, a UAC that sends an INVITE request then a CANCEL request can tell by the method in the CSeq of a 200 OK response if it is a response to the invitation or cancellation request. Examples are shown in Table 6.6.

Each user agent maintains its own command sequence number space. For example, consider the case where UA 1 establishes a session to UA 2 and initializes its CSeq count to 1. When user agent 2 initiates a request (such as INVITE or INFO, or even BYE) it will initialize its own CSeq space, totally independent of the CSeq count used by UA 1. The examples of Chapter 20 show this behavior of CSeq.

6.1.11 Date

The Date header field is used to convey the date when a request or response is sent. The format of a SIP date is based on HTTP dates, but allows only the preferred Internet date standard referenced by RFC 1123 [9]. To keep UA date and time logic simple, SIP only supports the use of the GMT time zone. This allows time entries that are stored in date form rather than second count to be easily converted into delta seconds without requiring knowledge of time zone offsets. Date is included in 200 OK responses to REGISTER requests. This allows UAs to automatically set their date and time.

Table 6.6

CSeq Header Field Examples

	Header Field
	Meaning

	CSeq: 1 INVITE
	The command sequence number has been initialized to 1 for this INVITE

	CSeq: 432 REFER CSeq: 6787 INVITE
	The command sequence number is set to 432 for this REFER request If this was the first request by the user agent for this dialog then either the CSeq was initialized to 6787, or the previous request generated for this Call-ID (either an INVITE or other request) would have had a CSeq of 6786 or lower

A Date example is shown here:

Date: Fri, 13 Oct 1998 23:29:00 GM

6.1.12 Encryption

The Encryption header field was defined in RFC 2543 but is not included in RFC 3261. Instead, encryption using S/MIME is defined as discussed in Chapter 15.

6.1.13 Expires

The Expires header field is used to indicate the time interval in which the request or message contents are valid. When present in an INVITE request, the header field sets a time limit on the completion of the INVITE request. That is, the UAC must receive a final response (non-1xx) within the time period or the INVITE request is automatically canceled with a 408 Request Timeout response. Once the session is established, the value from the Expires header field in the original INVITE has no effect—the Session-Expires header field (Section 6.2.34) must be used for this purpose. When present in a REGISTER request, the header field sets the time limit on the URIs in Contact header fields that do not contain an expires parameter. Table 4.3 shows examples of the Expires header field in registration requests. Expires also is used in SUBSCRIBE requests to indicate the subscription duration. The header field may contain a SIP date or a number of seconds. Examples include:

Expires: 60

Expires: Fri, 15 Apr 2000 00:00:00 GMT

6.1.14 From

The From header field is a required header field that indicates the originator of the request. It is one of two addresses used to identify the dialog. The From header field contains a URI, but it may not contain the transport, maddr, or ttl URI parameters. A From header field may contain a tag used to identify a particular call. A From header field may contain a display name, in which case the URI is enclosed in < >. If there is both a URI parameter and a tag, then the URI including any parameters must be enclosed in < >. Examples are shown in Table 6.7. A From tag was optional in RFC 2543 but is mandatory to include in RFC 3261.

6.1.15 Feature-Caps

Feature capabilities of User Agents in SIP are represented by Contact header field parameters. The Feature-Caps header field [10] is way for proxy server, registrars, and B2BUAs to also represent their feature capabilities outside of the Contact header field. An example is:

Feature-Cap: sip.foo

6.1.16 Geolocation

The Geolocation header field [11] is used to convey location information between SIP elements. Location can be conveyed by value, by a URI, or through a SIP intermediary. The SIP element whose location is being conveyed is known as the Target. When conveyed by value, the location is usually carried in a MIME message body with a Content-ID [12]; the Geolocation header field contains a cid URL. When conveyed by reference, the reference URL is carried in the Geolocation header field. Examples are:

Geolocation: <cid:target555321@example.com>

Geolocation: <https://loc44.example.com>

6.1.17 Geolocation-Routing

The Geolocation-Routing header field [11] is used to indicate whether a SIP intermediary may route based on the location information present. If the header field contains “yes,” then routing is permitted. An example is:

Table 6.7

Examples of From Header Field

	Header Field
	Meaning

	From: sip:armstrong@hetrodyne.example.com ;tag=3342436
	A single SIP URI with a tag

	From: Thomas Edison <sips:edison@electric.example.com>;tag=532
	A secure SIP URI with a display name

	f: “James Bardeen” <sip:555.1313@telephone.example.com ;transport=tcp>;tag=3a320f03
	Using the compact form of the header field, a display name in quotes along with a SIP URI with a parameter inside < >

	From: tel:911
	A tel URI without a display name or tag, so no < > is required; generated by a RFC 2543 UA

Geolocation-Routing: yes

6.1.18 History Info

The History-Info header field [13] is an extension header field used to capture and convey routing history associated with a SIP request. Information about a request routing can be added whenever a request is retargeted, the Request-URI is rewritten, and so forth. A Reason header field (Section 6.2.21) is included as a parameter in this header field. Since a request can be forwarded and retargeted multiple times, multiple History-Info header fields can be present (or multiple comma separated History-Info entries). An index parameter is used to keep track of the order of the actions. A common application for History-Info is for voicemail, described in Section 9.4. Below is an example showing three history-info entries, and the escaping of the semicolon (%3B) and equals (%3D) in the Reason header field:

History-Info: <sip:UserA@example.com?Reason=SIP%3Bcause%3D302>

;index=1.1, <sip:UserB@example.com?Privacy=history&Reason=SIP%3

Bcause%3D486>

;index=1.2, <sip:45432@vm.example.com>;index=1.3

6.1.19 Policy-Contact

The Policy-Contact header field [14] can be included by a proxy server in a 488 (Not Acceptable Here) response to INVITE, UPDATE, or PRACK request which is initiating an offer/answer exchange. The header field contains the URIs of policy servers that must be contacted before the UAC retries initiating the offer. Example:

Policy-Contact: <sip:policy.example.com>

6.1.20 Organization

The Organization header field is used to indicate the organization to which the originator of the message belongs. It can also be inserted by proxies as a message is passed from one organization to another. Like all SIP header fields, it can be used by proxies for making routing decisions and by UAs for making call screening decisions.

An example is:

Organization: MCI

6.1.21 Path

The Path header field [15] is an optional header field in REGISTER requests. It can be thought of as a Record-Route mechanism for REGISTER requests, which establishes a route set that is valid for the duration of the registration. The Path header field may be inserted by a proxy, which forwards a REGISTER request to a registrar server. The registrar copies the Path header field into the 200 OK response to the REGISTER, which then provides the route set information to the UA that is registering. In a mobile network, the Path header field can be used to discover and inform the UA of the proxies that can be used to populate preloaded Route header fields. The ob URI parameter in a Path header field can be used to indicate to a UA that an edge proxy supports the SIP outbound extension, described in Section 10.11.3.

An example is:

Path: <sip:proxy2.another.example.com;lr;ob>

6.1.22 Priv-Answer-Mode

The Priv-Answer-Mode header field is similar to the Answer-Mode header field in that it requests special handling by the recipient of the INVITE. The values Manual and Auto and the require parameter are defined. The difference between Priv-Answer-Mode and Answer-Mode relates to the policy on the UA. For example, an intercom call between an executive and an administrator might use the Answer-Mode header field, and a do-not-disturb setting on the executive’s phone could override this feature. However, a building-wide emergency announcement might use the Priv-Answer-Mode header field, which would override the executive’s do-not-disturb setting. An example is:

Priv-Answer-Mode: Auto

6.1.23 Record-Route

The Record-Route header field is used to force routing through a proxy for all subsequent requests in a session (dialog) between two UAs. Normally, the presence of a Contact header field allows UAs to send messages directly bypassing the proxy chain used in the initial request (which probably involved database lookups to locate the called party). A proxy inserting its address into a Record-Route header field overrides this and forces future requests to include a Route header field containing the address of the proxy that forces this proxy to be included.

A proxy wishing to implement this inserts the header field containing its own URI or adds its URI to an already present Record-Route header field. The URI is constructed so that the URI resolves back to the proxy server. The UAS copies the Record-Route header field into the 200 OK response to the request. The header field is forwarded unchanged by proxies back to the UAC. The UAC then stores the Record-Route proxy list plus a Contact header field if present in the 200 OK for use in a Route header field in all subsequent requests. Because Record-Route is bidirectional, messages in the reverse direction will also traverse the same set of proxies. Chapter 20 contains an example of the use of the Record-Route and Route header fields. The lr parameter is new to RFC 3261 and indicates that the proxy server supports “loose routing.” Older RFC 2543 compliant proxy servers create Record-Route URIs that instead of the lr parameter often contain the maddr parameter with an address or host that resolves to that proxy server.

Examples are:

Record-Route: <sip:proxy1.example.com;lr>,

<sip:example.corporation.com;lr>

Record-Route:<sip:139.23.1.44;lr>

6.1.24 Recv-Info

The Recv-Info header field [16] is used to indicate which INFO packages a UA is willing to receive. Defined INFO event packages allow negotiation between UAs of supported applications using INFO. For example:

Recv-Info: foo

6.1.25 Refer-Sub

The Refer-Sub header field [17] is used to request a particular state for an implicit REFER subscription, or to indicate the state of an existing implicit REFER subscription. When a Refer-Sub: false header field is included in a REFER, the recipient of the REFER is requested not to create an implicit subscription and not to send NOTIFYs about the outcome of the referred operation. If the recipient does this, they return the Refer-Sub: false header field in the 2xx response to the REFER. A value of true or the absence of the Refer-Sub header field in the 2xx response to the REFER means that the implicit subscription has been created. The norefsub option tag indicates that a UA supports this mechanism.

6.1.26 Retry-After

The Retry-After header field is used to indicate when a resource or service may be available again. In 503 Service Unavailable responses, it indicates when the server will be available. In 404 Not Found, 600 Busy Everywhere, and 603 Decline responses, it indicates when the called UA may be available again.

The header field can also be included by proxy and redirect servers in responses if a recent registration was removed with a Retry-After header field indicating when the user may sign on again. The contents of the header field can be either an integer number of seconds or a SIP date. A duration parameter can be used to indicate how long the resource will be available after the time specified. Examples of this header field are shown in Table 6.8.

6.1.27 Session-ID

The Session-ID header field [18] is used to uniquely identify a SIP session. There is an extension to add logging capability [19].

Session-ID: ab30317f1a784dc48ff824d0d3715d86; remote=47755a9de7794ba387 653f2099600ef2

6.1.28 Subject

The optional Subject header field is used to indicate the subject of the media session. It can be used by UAs for simple call screening. The contents of the header field can also be displayed during alerting to aid the user in deciding whether to accept the call. The compact form of this header field is s. Some examples are:

Subject: More good info about SIP

s: Are you awake, yet??

6.1.29 Supported

The Supported header field is used to list one or more options implemented by a UA or server. It is typically included in responses to OPTIONS requests. If no options are implemented, the header field is not included. If a UAC lists an option in a Supported header field, proxies or UASs may use the option during the call. If the option must be used or supported, the Require header field is used instead. Table 6.9 shows the current set of defined option tags [20–42].

An example of the header field is:

Supported: rel100

Table 6.8

Examples of Retry-After Header Field

	Header Field
	Meaning

	Retry-After: 3600
	Request can be retried again in 1 hour

	Retry-After: Sat, 21 May 2000 08:00:00 GMT
	Request can be retried after the date listed

	Retry-After: 3600
	Request can be tried after 1 hour

	Retry-After: Mon, 29 Feb 2000 13:30:00 GMT ;duration=1800
	Request can be retried after the specified date for 30 minutes

Table 6.9

Extension Option Tags

	Tag
	Meaning

	100rel
	Reliable provisional response (PRACK) support [35]

	199
	Support for 199 Early Dialog Terminated provisional response

	answermode
	Answer-Mode and Priv-Answer-Mode header fields

	early-session
	Support of early-session content disposition

	eventlist
	Resourcelist extension

	from-change
	From and To URI changes in a dialog [20]

	geolocation- http
	Support for HTTP acquisition of location [11]

	geolocation-sip
	Support for SIP acquisition of location [11]

	gin
	Registration for multiple phone numbers [21]

	gruu
	Globally Routable User Agent URI [22]

	histinfo
	History-Info header field [13]

	ice
	Support for ICE [23]

	join
	Join call control primitive [24]

	multiple-refer
	REFER with resource-list [25]

	norefsub
	REFER without implicit subscription and NOTIFYs [26]

	outbound
	SIP Outbound NAT traversal feature [27]

	path
	Path header field [28]

	policy
	Session policies [14]

	precondition
	SIP Preconditions [29]

	pref
	Caller preferences [30]

	privacy
	Privacy mechanisms [31]

	recipient-list- invite
	INVITE with resource list [32]

	recipient-list- message
	MESSAGE with resource list [33]

	recipient-list- subscribe
	SUBSCRIBE with resource list [34]

	replaces
	Replaces call control primitive [36]

	resource- priority
	Resource-Priority header field [37]

	sdp-anat
	Alternative address for NAT (deprecated) [38]

	sec-agree
	SIP security agreement mechanism [39]

	tdialog
	Target-Dialog header field [40]

	timer
	Session Timer feature [41]

	uui
	Support for SIP User-to-User header field [42]

6.1.30 Timestamp

The Timestamp header field is used by a UAC to mark the exact time a request was generated in some numerical time format. A UAS must echo the header field in the response to the request and may add another numerical time entry indicating the amount of delay. Unlike the Date header field, the time format is not specified. The most accurate time format should be used, including a decimal point. Examples are shown in Table 6.10. The default value of 500 ms is used for T1. Timestamp is not commonly used.

6.1.31 To

The To header field is a required header field in every SIP message used to indicate the recipient of the request. Any responses generated by a UA will contain this header field with the addition of a tag. (Note that an RFC 2543 client will typically only generate a tag if more than one Via header field is present in the request.) Any response generated by a proxy must have a tag added to the To header field. A tag added to the header field in a 200 OK response is used throughout the call and incorporated into the dialog. The To header field URI is never used for routing—the Request-URI is used for this purpose. An optional display name can be present in the header field, in which case the SIP URI is enclosed in < >. If the URI contains any parameters or username parameters, the URI must be enclosed in < > even if no display name is present. The compact form of the header field is t. Examples are shown in Table 6.11.

Table 6.10

Examples of Timestamp Header Field

	Header Field
	Meaning

	Timestamp: 235.15
	Client has stamped a start time for the request.

	Timestamp: 235.15 .95
	This header field from the response has the delay time added by the server.

Table 6.11

Examples of To Header Field

	Header Field
	Meaning

	To: sip:babage@engine.example.org;tag=2443a8f7
	A single SIP URI with a tag and without a display name

	To: Thomas Edison <sips:edison@elec.example.com>
	A display name is used, so the sips URI is enclosed in < >

	t: “Jim B.” <brattain@bell.example.net>
	A display name in quotes along with a SIP URI enclosed within < >

	To: <+1-314-555-1212@example.com ;user=phone>;tag=8f7f7ad6675
	Both a URI parameter and tag are used, so URI is enclosed in < >.

	
	Note that no line breaks are permitted in a URI.

6.1.32 User-Agent

The User-Agent header field is used to convey information about the UA originating the request. Based on the HTTP header field of the same name [2], it can contain manufacturer information, software version, or comments. The field may contain multiple tokens, with the ordering assumed to be from most general to most specific. This information can be used for logging or for generating a specific response for a specific UA. For security reasons, this header field may be suppressed. For example, an attacker probing a UA for vulnerabilities could learn the particular vendor and software load that is susceptible to a particular attack and reuse that attack against other UAs that have the same software as identified by the User-Agent header field.

Examples include:

User-Agent: Acme/v2.2

User-Agent: Carrier/Beta

6.1.33 User-to-User

The User-to-User header field [42] is used to carry ISDN user-to-user (UUI) information. A SIP to ISDN gateway can interwork the service to SIP. Additional packages may be defined in the future for other usages of this header field. This header field is used in contact center applications where information about the call is included in the header field as the call is routed. An example is:

User-to-User: 0fc33d2b7f3100d23a2;encoding=hex;purpose=foo;content=bar

6.1.34 Via

The required Via header field is used to record the SIP route taken by a request and is used to route a response back to the originator. A UA generating a request records its own address in a Via header field. While the ordering of most SIP header fields is not significant, the Via header fields order is significant because it is used to route responses. A proxy forwarding the request adds a Via header field containing its own address to the top of the list of Via header fields. A proxy adding a Via header field always includes a branch tag containing a cryptographic hash of the To, From, Call-ID header fields and the Request-URI. A proxy or UA generating a response to a request copies all the Via header fields from the request in order into the response and then sends the response to the address specified in the top Via header field. A proxy receiving a response checks the top Via header field to ensure that it matches its own address. If it does not, the response has been misrouted and should be discarded. The top Via header field is then removed, and the response forwarded to the address specified in the next Via header field.

Via header fields contain protocol name, version number, and transport (SIP/2.0/UDP, SIP/2.0/TCP, and so forth) and may contain port numbers and parameters such as received, rport, branch, maddr, and ttl. A received tag is added to a Via header field if a UA or proxy receives the request from a different address than that specified in the top Via header field. If an rport tag is included in a Via in a request, a proxy will insert the port on which the request was received and use this port for routing the response. This indicates that a NAT or firewall proxy is in the message path. If present, the received and or rport tags are used in response routing. (The hidden parameter, deprecated in RFC 3261, was used to indicate that the Via header field has been encrypted.) A branch parameter is added to Via header fields by UAs and proxies, which is computed as a hash function of the Request-URI, and the To, From, Call-ID, and CSeq number. A second part is added to the branch parameter if the request is being forked as shown in Figure 3.4. The maddr and ttl parameters are used for multicast transport and have a similar meaning as the equivalent SIP URI parameters. The compact form of the header field is v. Examples are given in Table 6.12.

6.2 Request Header Fields

This set of header fields can only be present in a request.

6.2.1 Accept-Contact

The Accept-Contact [30] header field specifies to which URIs the request may be proxied. Some additional parameters are also defined for Contact header fields such as media, duplex, and language. This header field is part of the caller preferences extensions to SIP, which have been defined to give some control to the caller in the way a proxy server processes a call. The compact form is a.

Table 6.12

Examples of Via Header Field

	Header Field
	Meaning

	Via: SIP/2.0/UDP 100.101.102.103 ;branch=z9hG4bK776a
	IPv4 address using unicast UDP transport and assumed port of 5060

	Via: SIP/2.0/TCP cube451.example.com:60202 ;branch=z9hG4bK776a
	Domain name using TCP transport and port number 60202

	Via: SIP/2.0/UDP 120.121.122.123 ;branch= z9hG4bK56a234f3.1
	Proxy added Via header field with branch

	v: SIP/2.0/UDP proxy.example.org ;branch= z9hG4bK3423423a3.3
	Compact form with domain name using UDP; third search location of forking proxy.

	Via: SIP/2.0/TCP 192.168.1.2 ;received=12.4.5.50 ;rport=42212 ;branch=z9hG4bK334
	IPv4 address is nonglobally unique. Request has been forwarded through a NAT, which has created a mapping with a different IP address and port (mapped address is 12.4.5.50:42212)

Some examples follow:

Accept-Contact: *;language=en

a: *;media=video

6.2.2 Authorization

The Authorization header field is used to carry the credentials of a UA in a request to a server. It can be sent in reply to a 401 Unauthorized response containing challenge information, or it can be sent first without waiting for the challenge if the form of the challenge is known (e.g., if it has been cached from a previous call). The authentication mechanism for HTTP digest is described in Section 14.4.1. Examples are shown in Table 6.13.

6.2.3 Call-Info

The Call-Info header field is included in a request by a UAC or proxy to provide a URI with information relating to the session setup. It may be present in an INVITE, OPTIONS, or REGISTER request. The header field parameter purpose indicates the purpose of the URI and may have the values icon, info, card, or other IANA registered tokens.

An example follows:

Call-Info: <http://www.code.com/my_picture.jpg>;purpose=icon

6.2.4 Event

The Event header field is used in a SUBSCRIBE (see Section 4.1.7) or NOTIFY (see Section 4.1.8) methods to indicate which event package is being used by the method. In a SUBSCRIBE, it lists the event package to which the client would like to subscribe. In a NOTIFY, it lists the event package that the notification contains state information about. Currently defined event packages are listed in Table 4.8. The compact form is o.

Table 6.13

Example of Authorization Header Field

	Header Field
	Meaning

	Authorization: Digest username=”Cust1”, realm=”nonce=”example.9c8e88dfcom”, 84f1cec4341ae6e5a359”, opaque=””, uri=”sip:user2@example.com”,response=”e56131d19580cd833064787ecc”
	This HTTP digest authorization header field contains the credentials of Cust1; the nonce was supplied by the SIP server located at the URI specified. The response contains the hashed username and password. No opaque string is present.

An example follows:

Event: dialog

o: refer

6.2.5 Hide

The Hide header field was defined in RFC 2543 but has been deprecated (removed) from RFC 3261. It was intended to be used by UAs or proxies to request that the next hop proxy encrypts the Via header fields to hide message routing path information. Encrypted Via headers were identified with the hidden Via parameter. However, the security provided and the mechanism requiring next hop trust made the value of this header field minimal.

6.2.6 Identity

The Identity header field [43] is part of the enhanced SIP identity extension, described in more detail in Chapter 15. It is inserted by a proxy server in a forwarded request after the request has been authenticated. The header field contains a digital signature over certain parts of the SIP message and the entire message body. The header field is used to certify the identity in the From header field by a proxy in the domain.

6.2.7 Identity-Info

The Identity-Info header field [43] is part of the enhanced SIP identity extension and is used to convey a URI for the certificates containing the public key of the signing proxy. The alg parameter indicates the algorithm used to generate the signature in the Identity header field. In this example, the certificate is available from the https URI and the algorithm used is RSA with SHA-1:

Identity-Info: <https://atlanta.example.com/atlanta.cer> ;alg=rsa-sha1

6.2.8 In-Reply-To

The In-Reply-To header field is used to indicate the Call-ID that this request references or is returning. For example, a missed call could be returned with a new INVITE and the Call-ID from the missed INVITE copied into the In-Reply-To header field. This allows the UAS to determine that this is not an unsolicited call, which could be used to override call screening logic, for example. Examples of this header field are as follows:

In-Reply-To: a8-43-73-ff-43@example.com

In-Reply-To: 12934375@persistance.example.org, 12934376@persistance.example.org

6.2.9 Info-Package

The Info-Package header field [16] is a mandatory header field in an INFO method used to indicate which INFO package is associated with this message. For example:

Info-Package: foo

6.2.10 Join

The Join header field [24] is used in an INVITE to request that the dialog (session) be joined with an existing dialog (session). The parameters of the Join header field identify the dialog by the Call-ID, To tag, and From tag in a similar way to the Replaces header field.

If the Join header field references a point-to-point dialog between two user agents, the Join header field is effectively a request to turn the call into a conference call. If the dialog is already part of a conference, the Join header field is a request to be added into the conference. An example call flow is shown in Figure 6.1 in which a two-way call is turned into a conference call.

If the dialog referenced in the Join header field does not exist, a 481 Call/Dialog Does Not Exist response is returned. A UA supporting Join should indicate this in all requests with a Supported: join header field.

In the following example, the dialog:

[image:]

Figure 6.1 Use of Join to create a conference call.

To: <sip:moe@example.org>;tag=42312

From: <sip:larry@server.example.org>;tag=3443212

Call-ID: 243134123234

would match the Join header field:

Join: 243134123234;to-tag=42312;from-tag=3443212

6.2.11 Priority

The Priority header field is used by a UAC to set the urgency of a request. Defined values are non-urgent, normal, urgent, and emergency. This header field could be used to override screening or by servers in load-shedding mechanisms. Because this header field is set by the UA, it may not be possible for a carrier network to use this field to route emergency traffic, for example. An example is:

Priority: emergency

6.2.12 Privacy

The Privacy header field [31] is used by a UAC to request varying degrees and types of privacy. Currently defined tags include critical, header, id, session, user, or none.

An example follows:

Privacy: header;user;critical

6.2.13 Policy-ID

The Policy-ID header field [14] is used to convey the URIs of policy servers that have been contacted by a UAC for the request. The header field may be present in any request which initiates an offer/answer exchange.

6.2.14 Proxy-Authorization

The Proxy-Authorization header field is to carry the credentials of a UA in a request to a server. It can be sent in reply to a 407 Proxy Authentication Required response containing challenge information, or it can be sent first without waiting for the challenge if the form of the challenge is known (e.g., if it has been cached from a previous call). The authentication mechanism for SIP digest is described in Section 15.3.2. A proxy receiving a request containing a Proxy-Authorization header field searches for its own realm, and, if found, it processes the entry. If the credentials are correct, any remaining entries are kept in the request when it is forwarded to the next proxy. An example of this is in Figure 6.2.

[image:]

Figure 6.2 Multiproxy authentication example. Note: In this figure, P-A stands for the Proxy-Authorization header

Examples are shown in Table 6.14.

6.2.15 Proxy-Require

The Proxy-Require header field is used to list features and extensions that a UA requires a proxy to support in order to process the request. A 420 Bad Extension response is returned by the proxy listing any unsupported feature in an Unsupported header field. Because proxies by default ignore header fields and features they do not understand, the use of a Proxy-Require header field is needed for the UAC to be certain that the feature is understood by the proxy. If the support of this option is desired but not required, it is listed in a Supported header field instead. An example is:

Table 6.14

Example of Proxy-Authorization Header Field

	Header Field
	Meaning

	Proxy-Authorization: Digest username=”Customer1”, realm=”example.com”,nonce=”9c8e88df84f1cec4341ae6e5a359”, opaque=””, uri=”sip:user@example.com”,response=”e56131d19580cd833064787ecc”
	This digest authorization header field contains the credentials of Customer1; the nonce was supplied by the SIP server located at the URI specified; response contains the hashed username and password ;no opaque string is present

Proxy-Require: timer

6.2.16 P-OSP-Auth-Token

The P-OSP-Auth-Token header field [44] is used to transport an Open Settlements Protocol (OSP) token [45] with a SIP INVITE request. A gateway or proxy server receiving a token can verify the token and use this information about accepting the INVITE or rejecting the call. This approach is suitable for a clearinghouse model of VoIP carrier interconnection.

An example is:

P-OSP-Auth-Token: 3b8a40c10b4930ff19a85766c15182a34048d9398b834d6 ;realm=”carrier.example.com”

6.2.17 P-Asserted-Identity

The P-Asserted-Identity header field [46] is used between trusted intermediaries (proxies) to assert the identity of a UA that has been authenticated using some means such as those described in Chapter 15. A UA receiving a request from a proxy that it trusts will typically render the value in a P-Asserted-Identity header field to the user as a “Verified Caller ID” as opposed to a From header value which is unverified. A proxy receiving a P-Asserted-Identity from another proxy that it does not trust will remove the header field.

An example is:

P-Asserted-Identity: <sip:user@example.com>

6.2.18 P-Preferred-Identity

The P-Preferred-Identity header field [46] is used by a UA to tell a trusted intermediary which identity it would prefer to be asserted on its behalf when more than one identity is associated with that UA.

An example is:

P-Preferred-Identity: <sip:alternate@example.com>

6.2.19 Max-Breadth

The Max-Breadth header field [47] is part of the solution to an amplification attack on forking proxy servers. This header field is inserted by proxy servers and decremented based on the breadth (number of concurrent branches) of a forking operation. When the Max-Breadth count goes to zero, the 440 Max-Breadth Exceeded response is returned. An example is:

Max-Breadth: 32

6.2.20 Max-Forwards

The Max-Forwards header field is used to indicate the maximum number of hops that a SIP request may take. The value of the header field is decremented by each proxy or B2BUA that forwards the request. A proxy receiving the header field with a value of zero discards the message and sends a 483 Too Many Hops response back to the originator.

Max-Forwards is a mandatory header field in requests generated by an RFC 3261-compliant UA. However, an RFC 2543 UA generally will not include the header field. The suggested initial value is 70 hops.

An example is:

Max-Forwards: 10

6.2.21 Reason

The Reason header field [48] can be used in BYE and CANCEL messages to indicate the reason why the session or call attempt is being terminated. It can carry a SIP response code or a Q.850 cause value (from an ISUP REL message, for example).

For example, a forking proxy could include the following header field in a CANCEL sent to a leg after one leg has answered the call.

Reason: SIP ;cause=200 ;text=”Call completed elsewhere”

6.2.22 Refer-To

The Refer-To header field [49] is a required header field in a REFER request, which contains the URI or URL resource that is being referenced. It may contain any type of URI from a sip or sips to a tel URI to an http or mailto URI. For a sip or sips URI, the URI may contain a method or escaped header fields. For example, the following Refer-To header field (where a line break has been added for display):

Refer-To: <sip:UserC@client.example.

com?Replaces=sdjfdjfskdf%3Bto-tag%3D5f35a3%3Bfrom-tag%3D8675309>

contains an escaped Replaces header field. The resulting INVITE message generated by this Refer-To header field would have a Request-URI of

sip:UserC@client.example.com

and a

Replaces: sdjfdjfskdf;to-tag=5f35a3;from-tag=8675309

header field. Note that the characters “;” and “=” are replaced by their hex equivalents %3B and %3D. In the next example, the header field containing a method

Refer-To: < sip:UserC@client.example.com?method=SUBSCRIBE>

would cause a SUBSCRIBE request to be sent instead of an INVITE, which is the default method if none is present. An example of the Refer-To header field in compact form with an HTTP URL is:

r: <http://www.artech-house.com>

6.2.23 Referred-By

The Referred-By header field [50] is an optional header field in a REFER request and a request triggered by a REFER. It provides the recipient of a triggered request with information that the request was generated as a result of a REFER and the originator of the REFER. This information can be presented to the user or have policy applied in deciding how the UA should handle the request.

As this header field could be modified or fabricated, a more secure usage involves the addition of a Referred-By security token. The token is carried as a message body whose content id (cid) is indicated in the Referred-By header field. The token is an S/MIME signature over a message/sipfrag, which contains, at a minimum, the From, Date, Call-ID, Refer-To, and Referred-By header fields from the REFER request. An unsigned Referred-By header field may be rejected with a request that the Referred-By security token be included using the 429 Provide Referror Identity response code (see Section 5.4.25). The compact form is b:

Referred-By: <sip:user@host.example.com>

b: <sips:friend@neighbor.example.com>

6.2.24 Reply-To

The Reply-To header field is used to indicate a sip or sips URI, which should be used in replying to this request. Normally, this URI is present in the From header field (the Contact is not used as it is only assumed valid for the duration of the dialog). However, in some cases, the From cannot be populated with this information, so the URI in this header field should be used instead of the From URI.

An example is:

Reply-To: < sip:l.tolstoy@stpetersburg.example.com>

6.2.25 Replaces

The Replaces header field [36] is used in SIP call control applications. A UA in an established dialog receiving another INVITE with a Replaces header field that matches the existing dialog must accept the INVITE, terminate the existing dialog with a BYE, and transfer all resources and state from the existing dialog to the newly established dialog.

If the Replaces header field matches no dialog, the INVITE must be rejected with a 481 Dialog Does Not Exist response.

In addition, Replaces has one application in pending dialogs. A UAC that has sent an INVITE but has not yet received a final response may receive an INVITE containing a Replaces header field that matches the pending INVITE. The UAC must terminate the pending dialog with a CANCEL (and be prepared to send an ACK and BYE if a 200 OK eventually arrives) and accept the new INVITE.

For an INVITE containing both a Require: replaces and Replaces header field, this results in the return of one of the following set of responses:

• 200 (if a match is found);

• 481 (if no match is found);

• 420 (if Replaces is not supported).

Figure 6.3 shows a call flow using Replaces to implement a feature called “call pickup.” The early parameter means that the replacement should only be done if the dialog is in an early state; if the dialog has transitioned to a confirmed state, the INVITE should be rejected. Figure 4.9 shows the use of Replaces in an “attended transfer example.”

This example Replaces header field:

Replaces: 3232904875945;to-tag=34314;from-tag=2343

would match the dialog identified by:

To: <sip:moe@example.org>;tag=34314

From: <sip:larry@server.example.org>;tag=2343

Call-ID: 3232904875945

[image:]

Figure 6.3 Call flow showing call pickup using Replaces.

6.2.26 Reject-Contact

The Reject-Contact [30] header field specifies the URIs to which the request may not be proxied. Some additional parameters are also defined for Contact header fields such as media, duplex, and language. This header field and Accept-Contact and Request-Disposition are part of the SIP caller preferences extensions. The compact form is j. Examples include:

Reject-Contact: sip:admin@boss.example.com

j: *;media=video

6.2.27 Request-Disposition

The Request-Disposition [30] header field can be used to request servers to either proxy, redirect, or initiate serial or parallel (forking) searches. An example is:

Request-Disposition: redirect

6.2.28 Require

The Require header field is used to list features and extensions that a UAC requires a UAS to support in order to process the request. A 420 Bad Extension response is returned by the UAS listing any unsupported features in an Unsupported header field. If support or use of a feature is desirable but not required, the Supported header field is used instead. See Table 6.9 for a list of feature tags.

An example is:

Require: rel100

6.2.29 Resource-Priority

The Resource-Priority header field [37] is used to convey resource priority in a SIP request. It has been used to interwork with PSTN preemption and priority queuing protocols. The header field contains namespace and a resource priority value, separated by a dot. Multiple values can be included separated by commas. Defined namespaces for Resource-Priority are included in Table 6.15. Resource-Priority namespaces supported can be listed in an Accept-Resource-Priority header field. The resource-priority option tag is used to indicate support for this mechanism.

An example is:

Resource-Priority: dsn.flash

6.2.30 Response-Key

The Response-Key header field was defined in RFC 2543 but was deprecated in RFC 3261 along with all PGP-based encryption in favor of S/MIME encryption.

Table 6.15

Resource-Priority Namespaces

	Value
	Name

	dsn
	Defense Switched Network

	dsrn
	Defense RED Switched Network

	q735
	Commercial implementation of DSN Multi-Level Precedence and Preemption (MLPP)

	ets
	Emergency Telecommunications Service

	wps
	Wireless Priority Service

6.2.31 Route

The Route header field is used to provide routing information for requests. RFC 3261 introduces two types of routing: strict and loose routing, which have similar meaning as the IP routing modes of the same name. In strict routing, a proxy must use the first URI in the Route header field to rewrite the Request-URI, which is then forwarded. In loose routing, a proxy does not rewrite the Request-URI, but forwards the request either to the first URI in the Route header field or to another loose routing element. In loose routing, the request must route through every server in the Route list (but may also route through other servers) before it may be routed based on the Request-URI. In strict routing, the request must only route through the set of servers in the Route header field with the Request-URI being rewritten at each hop. A proxy or UAC can tell if the next element in the route set supports loose routing by the presence of an lr parameter. An example is:

Route: <sip:proxy@example.com;lr>

Chapter 20 contains an example of the use of the Record-Route and Route header fields. Examples of Route header fields constructed from the example Record-Route header fields in Section 6.1.23 are:

Route: <sip:firewall33.corporation.example.org;lr>, <sip:proxy1.

carrier.example.org;lr>

Route: <sip:139.23.1.44;lr>

6.2.32 RAck

The RAck header field [35] is used within a response to a PRACK request to reliably acknowledge a provisional response that contained an RSeq header field. The RAck header field echoes the CSeq and the RSeq from the provisional response. The reliable sequence number is incremented for each response sent reliably. A call flow is shown in Figure 4.11. An example is:

RAck: 8342523 13 INVITE

6.2.33 Security-Client

The Security-Client header field [39] is part of the SIP security agreement extension used to negotiate security settings between a UA and a proxy server. The Security-Client header field is used by a UA to declare the mechanisms that it supports in a SIP request. UAs and servers compare the security mechanisms in the Security-Client header field with the mechanisms in the Security-Server header field (see Section 6.3.11) and choose the common mechanism with the highest preference value. The SIP option tag sec-agree can be used in Supported, Require, and Proxy-Require header fields. For example:

Security-Client: digest

6.2.34 Security-Verify

The Security-Verify header field [39] is part of the SIP security agreement extension, used to negotiate security settings between a UA and a proxy server. The Security-Verify header field is used by a UA to echo the mechanisms received in a Security-Server header (see Section 6.3.11) field from a server. If the request is sent with integrity protection, a proxy and user can detect a bid-down attack in the security agreement negotiation. For example:

Security-Verify: digest

6.2.35 Session-Expires

The Session-Expires header field [41] is used to specify the expiration time of the session. To extend the session, either UA can send a re-INVITE or UPDATE with a new Session-Expires header field. At the expiration of the interval in the Session-Expires, either UA may send a BYE and call-stateful proxies may destroy any state information. A proxy may shorten the expiration time by reducing the interval in the header field as it proxies the request. A UAS confirms the session timer by including the Session-Expires header field in the response to the request. A UAS may also shorten the interval by reducing the interval. An example is:

Session-Expires: 3600

6.2.36 SIP-If-Match

The SIP-If-Match header field [51] is part of the SIP publication mechanism. It is included in a PUBLISH request meant to refresh, modify, or remove previously published state. The header field contains the entity tag of the state information that was returned in a SIP-ETag (Section 6.3.14) header field in a 2xx response to an earlier PUBLISH. If the entity-tag is no longer valid (i.e. the state information has expired, been deleted, replaced, or lost), the server will return a 412 Conditional Request Failed response (Section 5.4.13). See Figure 8.5 for a call flow. An example is:

SIP-If-Match: 73ikd0Kw3e1D0ds

6.2.37 Subscription-State

The Subscription-State header field [3] is a required header field in a NOTIFY request. It indicates the current state of the subscription. Values defined include active, pending, or terminated. Additional parameters include expires, reason, and retry-after. Values defined for the reason parameter include deactivated, giveup, probation, noresource, rejected, and timeout.

An example is:

Subscription-State: terminated ;reason=rejected

6.2.38 Suppress-If-Match

The Suppress-If-Match header field [51] is an extension for conditional notification. Normally, a SUBSCRIBE sent to refresh a subscription will always generate a NOTIFY, even if no state information has changed since the last notification. If a SIP-ETag was included in a previous notification, the entity tag can be included in the Suppress-If-Match header field and included in a refresh SUBSCRIBE. If the state has not changed, a 204 No Notification response is sent and no NOTIFY will be sent. For example:

Suppress-If-Match: Lek31sd

6.2.39 Target-Dialog

The Target-Dialog header field [40] is used for authenticating out of dialog SIP requests. A common use case is for the authorization of out-of-dialog REFERs in call transfer scenarios. The header field contains the dialog identifier of the other dialog, which includes the Call-ID, local, and remote tags.

For example:

Target-Dialog: 3847349833 ;to-tag=434232;from-tag=33424212

6.2.40 Trigger-Consent

The Trigger-Consent header field provided [52] is used in resource lists requests to trigger consent lookups. For example:

Trigger-Consent: sip:alice@atlanta.example.com

6.3 Response Header Fields

These header fields are present only in responses.

6.3.1 Accept-Resource-Priority

The Accept-Resource-Priority header field [37] is used to indicate which Resource-Priority namespaces are supported by the UA. It can be included in a 200 OK to an OPTIONS or in a 417 Unknown Resource Priority response. An example is:

Accept-Resource-Priority: ets

6.3.2 Authentication-Info

The Authentication-Info header field can be inserted in responses when performing mutual authentication using HTTP Digest. In normal HTTP Digest as described in Section 15.3.2, the server challenges the client to provide a shared secret, which the client then provides in a repeat of the request containing an Authorization or WWW-Authenticate header field. For mutual authentication, the server would then provide an Authentication-Info header field containing either a next nonce or a response in an rspauth parameter. The response auth digest is calculated by the server from the SIP response using the same algorithm as the successful request authentication and same shared secret (client’s username and password). In this way, the server proves that it also knows the client’s secret, providing mutual authentication. The credentials are carried in the rspauth parameter in the header field. Few SIP implementations support this header field.

An example is:

Authentication-Info: rspauth=”9105jr98li459jgfp”

6.3.3 Error-Info

The Error-Info header field is used in failure response to convey more information about an error. A UAC receiving the header field in a failure response may fetch and render the URI to the user. The header field can be used to give the client the choice of how the error can be presented to the user. For example, a client with a graphical interface will likely display the reason phrase on the response, which should provide very specific information about the failure. However, an audio-only UA does not have this capability (although a text-to-speech synthesizer could be used to provide this capability). Instead, an audio-only UA could fetch the URI and play the resulting audio stream to the user.

If the URI is a sip or sips URI, the UA may treat the Error-Info as a Contact in a redirection response, which would result in a SIP session established to play the recording.

An example is:

Error-Info: <sip:recording5@announcementsrus.example.com>

6.3.4 Flow-Timer

The Flow-Timer header field [27] is part of the SIP outbound extension described in Section 10.11.3. The Flow-Timer header field is used by a registrar to tell a UA after how many seconds the server will consider the registration flow dead if no keep alive is sent by the UA. For example:

Flow-Timer: 120

6.3.5 Geolocation-Error

The Geolocation-Error header field [11] is used to convey errors relating to location information present in a request. The header field contains a three-digit error code and an error code string that is used for display and logging. Here are the examples from [11]:

Geolocation-Error: 100 ; code=”Cannot Process Location”

Geolocation-Error: 200 ; code=”Permission To Use Location Information”

Geolocation-Error: 201 ; code=”Permission To Retransmit Location Information to a Third Party”

Geolocation-Error: 202 ; code=”Permission to Route based on Location Information”

Geolocation-Error: 300 ; code=”Dereference Failure”

6.3.6 Min-Expires

The Min-Expires header field is used in a 423 Interval Too Brief response (Section 5.4.22) from a registrar rejecting a REGISTER request in which one or more Contacts have an expiration time that is too short. The header field contains an integer number of seconds that represents the minimum expiration interval that the registrar will accept. A client receiving this header field can update the expiration intervals of the registration request accordingly and resend the REGISTER request.

An example is:

Min-Expires: 1200

6.3.7 Min-SE

The Min-SE header field [41] is a required header field in a 422 Session Timer Interval Too Small response (Section 5.4.21). The response may also be present in an INVITE or UPDATE containing a Session-Expires header field. It contains an integer number of seconds.

An example is:

Min-SE: 480

6.3.8 Permission-Missing

The Permission-Missing header field [52] is part of the SIP consent framework. It is used in a 470 Consent Needed response to indicate the URIs to which the relay does not have permission to forward the request. An example of an instant message relay is given in Section 8.5.6. For example:

Permission-Missing: sip:voynitch@yale.example.com

6.3.9 Proxy-Authenticate

The Proxy-Authenticate header field is used in a 407 Proxy Authentication Required authentication challenge by a proxy server to a UAC. It contains the nature of the challenge so that the UAC may formulate credentials in a Proxy-Authorization header field in a subsequent request. Examples are shown in Table 6.16.

6.3.10 Refer-Events-At

The Refer-Events-At header field [56] is used in a 2xx response to a REFER to indicate where a SUBSCRIBE should be sent to receive notifications of the results of the REFER action. An example is:

Refer-Events-At: <sips:4jdfl3rif@example.com>

6.3.11 Security-Server

The Security-Server header field [39] is part of the SIP security agreement extension, used to negotiate security settings between a UA and a proxy server. The Security-Server header field is used by a server to declare the mechanisms it supports in a 494 Security Agreement Required header field. UAs and servers compare the security mechanisms in the Security-Client header field (see Section 6.2.33) with the mechanisms in the Security-Server header field and choose the common mechanism with the highest preference value. The Security-Server header field may also be present in a 421 Extension Required response if the server requires this mechanism. The SIP option tag sec-agree can be used in Supported, Require, and Proxy-Require header fields. An example is:

Table 6.16

Example of Proxy-Authenticate Header Field

	Header Field
	Meaning

	Proxy-Authenticate: Digest realm=”example.com”,
	HTTP digest challenge header field

	nonce=”9c8e88df84f1cec4341ae6e5a359”,
	

	opaque=””, stale=FALSE, algorithm=MD5
	

Security-Server: tls;q=0.5, digest; q=0.4, ipsec-ike;q=0.1

6.3.12 Server

The Server header field is used to convey information about the UAS generating the response. The use and contents of the header field are similar to the User-Agent header field in Section 6.1.32. An example is:

Server: Dotcom/B3

6.3.13 Service-Route

The Service-Route header field [53] can be used in a 2xx response to a REGISTER request. It can be used by a registrar server to provide to the registering UA URIs to include in a preloaded Route header field in future requests. The Service-Route URIs are only valid for the duration of the registration and should be updated when the registration is refreshed.

An example is:

Service-Route: <sip:proxy23.service.provider.example.com;lr>

6.3.14 SIP-ETag

The SIP-ETag header field [54] is part of the SIP publication mechanism. The SIP-ETag header field is returned in a 2xx response to a PUBLISH request. It contains an entity tag uniquely identifying the state information that has been processed. This entity tag can then be used to do conditional publications on this data including refreshing, modifying, and removing, as described in Section 5.4.13. For example:

SIP-ETag: 34dw9qFl

6.3.15 Unsupported

The Unsupported header field is used to indicate options that are not supported by the server. The header field is used in a 420 Bad Extension response to a request containing an unsupported option listed in a Require header field. Because multiple options may have been listed in the Require header field, the Unsupported header field indicates all the unsupported options—the rest can be assumed by the UAC to be supported. See Table 6.7 for a list of option tags.

An example is:

Unsupported: rel100

6.3.16 Warning

The Warning header field is used in a response to provide more specific information than the response code alone can convey. The header field contains a three-digit warning code, a warning agent that indicates what server inserted the header field, and warning text enclosed in quotes used for display purposes. Warning codes in the 1xx and 2xx range are specific to HTTP [2]. The SIP standard defines 12 new warning codes in the 3xx class. The breakdown of the class is shown in Table 6.17. The complete set of defined warning codes is listed in Table 6.18. Warning is not commonly implemented.

Examples are:

Warning: 302 proxy “Incompatible transport protocol”

Warning: 305 room132.hotel.com:5060 “Incompatible media type”

6.3.17 WWW-Authenticate

The WWW-Authenticate header field is used in a 401 Unauthorized authentication challenge by a UA or registrar server to a UAC. It contains the nature of the challenge so that the UAC may formulate credentials in an Authorization header field in a subsequent request. SIP supports HTTP digest authentication mechanisms. Examples are shown in Table 6.19.

6.3.18 RSeq

The RSeq header field [35] is used in provisional (1xx class) responses to INVITEs to request reliable transport. The header field may only be used if the INVITE request contained the Supported: rel100 header field. If present in a provisional response, the UAC should acknowledge receipt of the response with a PRACK method, as described in Section 4.1.13. The RSeq header field contains a reliable sequence number that is an integer randomly initialized by the UAS. Each subsequent provisional response sent reliably for this dialog will have a monotonically increasing RSeq number. The UAS will retransmit a reliably sent response until a PRACK is received with a RAck containing the reliable sequence number and CSeq.

Table 6.17

SIP Warning Codes

	Warning Code Range
	Error Type

	30x, 31x, 32x
	SDP keywords

	33x
	Network services

	34x, 35x, 36x
	Reserved for future use

	37x
	QoS parameters

	38x
	Reserved

	39x
	Miscellaneous

Table 6.18

SIP Warning Code List

	WarningCode
	Description

	300
	Incompatible network protocol

	301
	Incompatible network address formats

	302
	Incompatible transport protocol

	303
	Incompatible bandwidth units

	304
	Media type not available

	305
	Incompatible media format

	306
	Attribute not understood

	307
	Session description parameter not understood

	330
	Multicast not available

	331
	Unicast not available

	370
	Insufficient bandwidth

	399
	Miscellaneous warning

Table 6.19

Example of WWW-Authenticate Header Field

	Header Field
	Meaning

	WWW-Authenticate: Digest realm=”example.com”,nonce=”9c8e88df84f1cec4341ae6e5a359”,opaque=””, stale=FALSE, algorithm=MD5
	HTTP digest challenge

An example is:

RSeq: 23452

6.4 Message Body Header Fields

These header fields contain information about the message body.

6.4.1 Content-Encoding

The Content-Encoding header field is used to indicate that the listed encoding scheme has been applied to the message body. This allows the UAS to determine the decoding scheme necessary to interpret the message body. Multiple listings in this header field indicate that multiple encodings have been used in the sequence in which they are listed. Only encoding schemes listed in an Accept-Encoding header field may be used. The compact form is e. Examples include:

Content-Encoding: text/plain

e: gzip

6.4.2 Content-Disposition

The Content-Disposition header field is used to describe the function of a message body. Defined values include session, icon, alert, and render. The value session indicates that the message body contains information to describe a media session. The value render indicates that the message body should be displayed or otherwise rendered for the user. For all other response classes with message bodies, the default function is render. An example is:

Content-Function: session

6.4.3 Content-Language

The Content-Language header field [2] is used to indicate the language of a message body. It contains a language tag, which identifies the language.

Content-Language: en

6.4.4 Content-Length

The Content-Length is used to indicate the number of octets in the message body. A Content-Length: 0 indicates no message body. As described in Section 2.5.2, this header field is used to separate multiple messages sent within a TCP stream. If not present in a UDP message, the message body is assumed to continue to the end of the datagram. If not present in a TCP message, the message body is assumed to continue until the connection is closed. The Content-Length octet count does not include the CRLF that separates the message header fields from the message body. It does, however, include the CRLF at the end of each line of the message body. An example octet calculation is in Chapter 2. The Content-Length header field is not a required header field to allow dynamically generated message bodies where the Content-Length may not be known a priori. The compact form is l. Examples include:

Content-Length: 0

l: 287

6.4.5 Content-Type

The Content-Type header field is used to specify the Internet media type [3] in the message body. Media types have the familiar form of type/sub-type. If an Accept header field was present in the request, the response Content-Type must contain a listed type, or a 415 Unsupported Media Type response must be returned. The compact form is c. Specific MIME types that are commonly used are listed in Table 6.20, and Tables 8.9 and 8.10 list common MIME types for presence and instant messaging [55].

Content indirection [12] can be used to provide a URI in place of an actual MIME message body. An example is:

Content-Type: message/external-body; access-type=”URL”;

URL=”http://www.example.com/”

The compact form is c. Examples are:

Content-Type: application/sdp

c: text/html

6.4.6 MIME-Version

The MIME-Version header field is used to indicate the version of MIME protocol used to construct the message body. SIP, like HTTP, is not considered MIME-compliant because parsing and semantics are defined by the SIP standard, not the MIME specification [51]. Version 1.0 is the default value. An example is:

MIME-Version: 1.0

6.5 Questions

Q6.1 Show a 200 OK response to an OPTIONS that provides the maximum amount of information about the capabilities of the UA.

Q6.2 Generate a call flow that shows the use of the Reason header field.

Table 6.20

Common Content-Types Present in SIP Requests and Responses

	Content-Type
	Use

	application/sdp
	SDP in INVITE, ACK, or UPDATE requests

	message/sipfrag
	SIP fragment in NOTIFY in refer subscription

	application/xml+dialog
	XML dialog

	application/xml+conf
	XML conference info

	text/plain
	Plaintext

	text/html
	HTML text

	application/isup
	Encapsulated ISUP in INVITE, BYE, or INFO

Q6.3 Give three examples of header fields that a proxy might remove from a request before forwarding. Explain why each header field would be removed.

Q6.4 Give two examples of header fields that a proxy must modify when forwarding a request.

Q6.5 Which three header fields can be present in a REFER request but not in other methods?

Q6.6 Which header fields would a topology hiding element likely need to modify or remove from a request?

Q6.7 A single header field is modified by a UAC after receiving a 410 response, after which the request receives a 200 response. Which header field was modified?

Q6.8 Which two header fields contain SIP entity tags? How are they typically used?

Q6.9 If a B2BUA between two UAs modified the Call-ID header field during a call setup, which header fields might fail to work properly?

Q6.10 Explain which features the Answer-Mode header field can be used to implement.

References

[1] Rosenberg, J., et al., “SIP: Session Initiation Protocol,” RFC 3261, June 2002.

[2] Fielding, R., et al., “Hypertext Transfer Protocol—HTTP/1.1,” RFC 2616, June 1999.

[3] Postel, J., “Media Type Registration Procedure,” RFC 1590, 1994.

[4] Roach, A., “SIP-Specific Event Notification,” RFC 6665, July 2012.

[5] Willis, D., and A. Allen, “Requesting Answering Modes for the Session Initiation Protocol (SIP),” RFC 5373, November 2008.

[6] Rosenberg, J., H. Schulzrinne, and P. Kyzivat, “Indicating User Agent Capabilities in the Session Initiation Protocol (SIP),” RFC 3840, August 2004.

[7] Johnston, A., and O. Levin, “Session Initiation Protocol (SIP) Call Control—Conferencing for User Agents,” RFC 4579, August 2006.

[8] Rosenberg, J., H. Schulzrinne, and O. Levin, “A Session Initiation Protocol (SIP) Event Package for Conference State,” RFC 4575, August 2006.

[9] Braden, R., “Requirements for Internet Hosts: Application and Support,” RFC 1123, 1989.

[10] Holmberg, C., I. Sedlacek, and H. Kaplan, “Mechanism to Indicate Support of Features and Capabilities in the Session Initiation Protocol (SIP),” RFC 6809, November 2012.

[11] Polk, J., B. Rosen, and J. Peterson, “Location Conveyance for the Session Initiation Protocol,” RFC 6442, December 2011.

[12] Burger, E., “A Mechanism for Content Indirection in Session Initiation Protocol (SIP) Messages,” RFC 4483, May 2006.

[13] Barnes, M., et al., “An Extension to the Session Initiation Protocol (SIP) for Request History Information,” RFC 7044, February 2014.

[14] Hilt, V., G. Camarillo, and J. Rosenberg, “A Framework for Session Initiation Protocol (SIP) Session Policies,” RFC 6794, December 2012.

[15] Willis, D., and B. Hoeneisen, “Session Initiation Protocol (SIP) Extension Header Field for Registering Non-Adjacent Contacts,” RFC 3327, December 2002.

[16] Holmberg, C., E. Burger, and H. Kaplan, “Session Initiation Protocol (SIP) INFO Method and Package Framework,” RFC 6086, January 2011.

[17] Levin, O., “Suppression of Session Initiation Protocol (SIP) REFER Method Implicit Subscription,” RFC 4488, May 2006.

[18] Kaplan, H., “A Session Identifier for the Session Initiation Protocol (SIP),” RFC 7329, August 2014.

[19] Dawes, P., “Marking SIP Messages to Be Logged,” Internet-Draft draft-ietf-insipid-logme-marking, Work in progress, February 2015.

[20] Elwell, J., “Connected Identity in the Session Initiation Protocol (SIP),” RFC 4916, June 2007.

[21] Roach, A.B., “Registration for Multiple Phone Numbers in the Session Initiation Protocol (SIP),” RFC 6140, March 2011.

[22] Rosenberg, J., “Obtaining and Using Globally Routable User Agent (UA) URIs (GRUU) in the Session Initiation Protocol (SIP),” RFC 5627, October 2009.

[23] Rosenberg, J., “Indicating Support for Interactive Connectivity Establishment (ICE) in the Session Initiation Protocol (SIP),” RFC 5768, April 2010.

[24] Mahy, R., and D. Petrie, “The Session Initiation Protocol (SIP) Join Header,” RFC 3911, October 2004.

[25] Camarillo, G., et al., “Referring to Multiple Resources in the Session Initiation Protocol (SIP),” RFC 5368, October 2008.

[26] Levin, O., “Suppression of Session Initiation Protocol (SIP) REFER Method Implicit Subscription,” RFC 4488, May 2006.

[27] Jennings, C., R. Mahy, and F. Audet, “Managing Client Initiated Connections in the Session Initiation Protocol (SIP),” RFC 5626, October 2009.

[28] Willis, D., and B. Hoeneisen, “Session Initiation Protocol (SIP) Extension Header Field for Registering Non-Adjacent Contacts,” RFC 3327, 2002.

[29] Camarillo, G., W. Marshall, and J. Rosenberg, “Integration of Resource Management and Session Initiation Protocol (SIP),” RFC 3312, October 2002.

[30] Rosenberg, J., H. Schulzrinne, and P. Zyzivat, “Caller Preferences for the Session Initiation Protocol (SIP),” RFC 3841, August 2004.

[31] Peterson, J., “A Privacy Mechanism for the Session Initiation Protocol,” RFC 3323, November 2002.

[32] Camarillo, G., and A. Johnston, “Conference Establishment Using Request-Contained Lists in the Session Initiation Protocol (SIP),” RFC 5366, October 2008.

[33] Garcia-Martin, M., and G. Camarillo, “Multiple-Recipient MESSAGE Requests in the Session Initiation Protocol (SIP),” RFC 5365, October 2008.

[34] Camarillo, G., A. Roach, and O. Levin, “Subscriptions to Request-Contained Resource Lists in the Session Initiation Protocol (SIP),” RFC 5367, October 2008.

[35] Rosenberg, J., and H. Schulzrinne, “Reliability of Provisional Responses in Session Initiation Protocol (SIP),” RFC 3262, 2002.

[36] Mahy, R., B. Biggs, and R. Dean, “The Session Initiation Protocol (SIP) Replaces Header,” RFC 3891, September 2004.

[37] Schulzrinne, H., and J. Polk, “Communications Resource Priority for the Session Initiation Protocol (SIP),” RFC 4412, February 2006.

[38] Camarillo, G., and J. Rosenberg, “Usage of the Session Description Protocol (SDP) Alternative Network Address Types (ANAT) Semantics in the Session Initiation Protocol (SIP),” RFC 4092, June 2005.

[39] Arkko, J., et al., “Security Mechanism Agreement for the Session Initiation Protocol (SIP),” RFC 3329, January 2003.

[40] Rosenberg, J., “Request Authorization Through Dialog Identification in the Session Initiation Protocol (SIP),” RFC 4538, June 2006.

[41] Donovan, S., and J. Rosenberg, “Session Timers in the Session Initiation Protocol (SIP),” RFC 4028, April 2005.

[42] Johnston, A., and J. Rafferty, “A Mechanism for Transporting User-to-User Call Control Information in SIP,” RFC 7433, January 2015.

[43] Peterson, J., and C. Jennings, “Enhancements for Authenticated Identity Management in the Session Initiation Protocol (SIP),” RFC 4474, August 2006.

[44] Johnston, A., et al., “Session Initiation Protocol Private Extension for an OSP Authorization Token,” IETF Internet-Draft, Work in Progress, February 2003.

[45] European Telecommunications Standards Institute, “Telecommunications and Internet Protocol Harmonization Over Networks (TIPHON); Open Settlement Protocol (OSP) for Inter-Domain Pricing, Authorization, and Usage Exchange,” Technical Specification 101 321, Version 2.1.0.

[46] Jennings, C., J. Peterson, and M. Watson, “Private Extensions to the Session Initiation Protocol (SIP) for Asserted Identity Within Trusted Networks,” RFC 3325, 2002.

[47] Sparks, R., et al., “Addressing an Amplification Vulnerability in Session Initiation Protocol (SIP) Forking Proxies,” RFC 5393, December 2008.

[48] Schulzrinne, H., D. Oran, and G. Camarillo, “The Reason Header Field for the Session Initiation Protocol (SIP),” RFC 3326, 2002.

[49] Sparks, R., “The Session Initiation Protocol (SIP) Refer Method,” RFC 3515, 2003.

[50] Sparks, R., “The SIP Referred-By Mechanism,” RFC 3892, September 2004.

[51] Niemi, A., and D. Willis, “An Extension to Session Initiation Protocol (SIP) Events for Conditional Event Notification,” RFC 5839, May 2010.

[52] Rosenberg, J., G. Camarillo, and D. Willis, “A Framework for Consent-Based Communications in the Session Initiation Protocol (SIP),” RFC 5360, October 2008.

[53] Willis, D., and B. Hoeneisen, “Session Initiation Protocol Extension Header Field for Service Route Discovery During Registration,” RFC 3608, October 2003.

[54] Niemi, A., “Session Initiation Protocol (SIP) Extension for Event State Publication,” RFC 3903, October 2004.

[55] Freed, M., and N. Borenstein, “Multipurpose Internet Mail Extensions (MIME). Part One: Format of Internet Message Bodies,” RFC 2045, 1996.

[56] Sparks, R., “Explicit Subscriptions for the REFER Method,” Internet-Draft draft-ietf-sipcore-refer-explicit-subscription, Work in progress, March 2015.

7

Wireless, Mobility, and IMS

The mobility features of SIP have been discussed in earlier chapters. In this chapter, those aspects will be explored further. The Third Generation Partnership Project (3GPP) [1] has adopted SIP as their call signaling protocol in the Intelligent Multimedia Core Subsystem (IMS). Since then, a number of extensions and usage documents have been authored describing 3GPP’s usage of SIP in Voice over LTE (VoLTE); these will be discussed in this chapter. The future direction of wireless SIP will be discussed in Section 7.5.

7.1 IP Mobility

There are a number of different types of mobility that will be discussed in this chapter, including terminal mobility, personal mobility, and service mobility [2]. Terminal mobility is the ability of an end device to maintain its connection to the Internet as it moves around and possibly changes its point of connection. Personal mobility is the ability to have a constant address (identifier) across a number of devices. Finally, service mobility is the ability of a user to keep the same services when mobile.

Terminal mobility can be addressed by Mobile IP [3], which has been standardized in the IETF. It allows a terminal to keep the same IP address when roaming as it does in its home network. While roaming, the terminal is reachable by a “care of” address, which is registered in the home network. Packets destined for the roaming terminal are received in the home network, then tunneled to the terminal at the “care of” address, as shown in Figure 7.1. Mobile IP has the advantage of hiding the mobile nature of the terminal from layer 3 protocols and above. These protocols can then be used without any modification.

[image:]

Figure 7.1 Triangular routing of IP packets in Mobile IP.

For example, a TCP connection can be maintained since the terminal appears to have a constant IP address. However, Mobile IP has the disadvantage that incoming packets are not routed directly, and as a result, most efficiently. This results in increased packet latency. While this is not a problem for non-real-time services such as Web browsing or e-mail, real-time media transport has critical requirements on packet latency. A solution that has been proposed [2] is based on the fact that a protocol such as SIP already has mobility support built in. In addition, SIP is capable of handling some of the terminal mobility aspects at the application layer. This can result in more efficient RTP packet routing and better efficiency (as the additional overhead of IP packet encapsulation required by Mobile IP are avoided).

Host Identity Protocol (HIP) mobility, described in Section 18.5, is another way for mobility to be supported. HIP does not use the triangular routing of Figure 7.1.

The result is that mobile SIP devices are utilizing two different architectures. One is based on the use of Mobile IP and the other utilizes the built-in mobility support in SIP. The next sections will discuss these two approaches. SIP is ideally suited to provide both personal and service mobility.

7.2 SIP Mobility

Personal mobility is the ability to have a constant identifier across a number of devices. A sip or sips Address of Record URI has exactly this property and is fundamentally supported by SIP. SIP can also support service mobility (the ability of a user to keep the same services when mobile), although some conventions and extensions have been proposed that provide this in certain architectures.

Basic personal mobility is supported by SIP using the REGISTER method, which allows a mobile device to change its IP address and point of connection to the Internet and still be able to receive incoming calls. As discussed in Chapters 2 and 4, registration in SIP temporarily binds a user’s Address of Record (AOR) URI with a Contact URI of a particular device. As a device’s IP address changes, registration allows this information to be automatically updated in the SIP network. An end device can also move between service providers using multiple layers of registrations, in which a registration is actually performed with a Contact as an address of record with another service provider. For example, consider the UA in Figure 7.2, which has temporarily acquired a new SIP URI with a new service provider. (The reasons for doing so could include security, NAT/firewall traversal, or local policy.) The UA then performs a double registration as shown in Figure 7.2. The first registration is with the new service provider, which binds the Contact URI of the device with the new service provider’s AOR URI. The second REGISTER request is routed back to the original service provider and provides the new service provider’s AOR as the Contact URI. As shown later in the call flow, when a request comes in to the original service provider’s network, the INVITE is redirected to the new service provider who then routes the call to the user.

For the first registration message containing the device URI would be:

REGISTER sip:registrar.capetown.example.com SIP/2.0

Via: SIP/2.0/TLS 128.5.2.1:5060;branch=z9hG4bK382112

Max-Forwards: 70

To: Nathaniel Bowditch <sip:bowditch321@capetown.example.com>

From: Nathaniel Bowditch <sip:bowditch321@capetown.example.com> ;tag=887865

Call-ID: 54-34-19-87-34-ar-gr

CSeq: 3 REGISTER

Contact: <sip:nat@128.5.2.1>

Content-Length: 0

and the second registration message with the roaming URI would be:

REGISTER sip:registrar.salem.ma.us SIP/2.0

Via: SIP/2.0/TLS 128.5.2.1:5060;branch=z9hG4bK1834

Max-Forwards: 70

To: Nathaniel Bowditch <sip:n.bowditch@salem.example.org>

From: Nathaniel Bowditch <sip:n.bowditch@salem.example.org> ;tag=344231

Call-ID: 152-45-N-32-23-W3-45-43-12

CSeq: 6421 REGISTER

Contact: <sip:bowditch321@capetown.example.com>

Content-Length: 0

[image:]

Figure 7.2 Precall mobility using SIP REGISTER.

The first INVITE that is depicted in Figure 7.2 would be sent to sip:n. bowditch@salem.example.org; the second INVITE would be sent to sip:bowditch321@capetown.example.com, which would be forwarded to sip:nat@128.5.2.1. It reaches Bowditch and allows the session to be established. Both registrations would need to be periodically refreshed.

A disadvantage of this approach is that SIP does not currently have a means to obtain a local URI. This would have to be done using a non-SIP method such as a Web page signup, which would be coupled with the proper authentication, authorization, and accounting mechanisms.

An optimization of this is for the local registrar to forward the registration information on the roaming UA back to the home registrar. This has been proposed in the IETF [4] but has yet to be adopted or standardized. No changes to SIP messages are required, just a convention adopted by registrars to recognize a roaming registration and take the appropriate action. It is possible that these conventions may become standardized if the authentication and accounting systems needed to properly process such registrations are standardized in the future.

During a session, a mobile device may also change IP address as it switches between one wireless network and another (the Mobile IP protocol is not assumed—it will be discussed in the next section). Basic SIP supports this scenario as well, since a re-INVITE in a dialog can be used to update the Contact URI and change media information in the SDP. This is shown in the call flow of Figure 7.3. Here, Bowditch detects a new wireless network, uses DHCP to acquire a new IP address and then performs a re-INVITE to make the signaling and media flow to the new IP address. If the UA momentarily is able to receive media from both networks, the interruption can be almost negligible. If this is not the case, a few media packets may be lost as the media catches up with the signaling, resulting in a slight interruption to the call. The re-INVITE would appear as follows:

[image:]

Figure 7.3 Midcall mobility using a re-INVITE.

INVITE sip:laplace@client.mathematica.example.org SIP/2.0

Via: SIP/2.0/UDP 65.32.21.2:5060;branch=z9hG4bK34213

Max-Forwards: 70

To: Marquis de Laplace <sip:laplace@mathematica.example.org> ;tag=90210

From: Nathaniel Bowditch <sip:n.bowditch@salem.example.org> ;tag=4552345

Call-ID: 413830e4leoi34ed4223123343ed21

CSeq: 5 INVITE

Contact: <sip:nat@65.43.21.2>

Content-Type: application/sdp

Content-Length: 143

v=0

o=bowditch 2590844326 2590944533 IN IP4 65.32.21.2

s=Bearing

c=IN IP4 65.32.21.2

t=0 0

m=audio 32852 RTP/AVP 96

a=rtpmap:96 iLBC/8000

This contains Bowditch’s new IP address in the Via and Contact header fields and SDP media information.

Note that both of the mobility scenarios in Figures 7.2 and 7.3 do not require cooperation between the two wireless networks. As such, this is a useful scenario in which a UA can hand off a call between, for example, a commercial wireless network and a home or office 802.11 wireless network.

For midcall mobility in which the actual route set (set of SIP proxies that the SIP messages must traverse) must change, a re-INVITE cannot be used. For example, if a proxy is necessary for NAT/firewall traversal, then more than just the Contact URI must be changed—a new dialog must be created. The solution to this is to send a new INVITE (which creates a new dialog and a new route set including the new set of proxies) with a Replaces header (Section 6.2.2.4), which identifies the existing session. The call flow is shown in Figure 7.4. It is similar to that in Figure 7.3 except that a BYE is automatically generated to terminate the existing dialog when the INVITE with the Replaces is accepted. In this scenario, the existing dialog between Bowditch and Laplace includes the old visited proxy server (the proxy Record-Routed during the initial INVITE). The new dialog using the new wireless network requires the inclusion of the new visited proxy server. As a result, an INVITE with Replaces is sent by Bowditch, which creates a new dialog that includes the new visited proxy server (which Record-Routes) but not the old visited proxy server. When Laplace accepts the INVITE, a BYE is automatically sent to terminate the old dialog that routes through the old visited proxy server that is now no longer involved in the session. The resulting media session is established using Bowditch’s new IP address from the SDP in the INVITE.

Services in SIP can be provided in either proxies or in UAs. If the service is resident in the UA, then there are no service mobility problems as the user moves around. However, combining service mobility and personal mobility can be challenging unless each of the user’s devices are identically configured with the same services. Also, end-point resident services are only available when the end point is connected to the Internet. A terminating service such as a call forwarding service implemented in an end point will fail if the end point has temporarily lost its Internet connection. For this and other reasons, some services are implemented in the network using SIP proxy servers. For these services, service mobility for a UA means that the same set of proxies are used to route incoming and outgoing requests when mobile.

[image:]

Figure 7.4 Midcall mobility using INVITE with Replaces.

Due to the nature of the Internet, in general, there is no reason why a UA cannot use the same proxies when connected to the Internet at a different point. That is, a UA that is normally in the United States and is configured to use a set of proxies in the United States can still use those proxies when roaming in Europe, for example. Perhaps the SIP hops will have a slightly higher latency due to more router hops and a call setup request may take a second or two longer to complete. However, this has no impact on the quality of the media session as the media always flows directly between the two UAs and does not traverse the SIP proxy servers. As a result, SIP can easily support service mobility over the Internet.

However, there are some cases in which this service mobility approach will not work. For example, if a local proxy server must be traversed in order to facilitate firewall or NAT traversal, or for some other security reason, then a UA may have to use a different first hop proxy when roaming. In this case, service mobility is still possible provided that:

1. The roaming UA is able to discover the necessary local proxy.

2. Both incoming and outgoing requests are routed through the home proxy in addition to any local proxies.

The first requirement is met by the DHCP extension to SIP [5], which allows a UA to learn of a local proxy server at the same time it learns its IP address and other IP configuration information. The second requirement is met using a preloaded Route header field in requests. Normally a Route header is inserted in a request when a proxy requests it using a Record-Route header field. However, it is possible for a configured UA to include a Route header field. If the Route header contains the URI of the home proxy, the request will be routed to the home proxy after the local proxies have been traversed, meeting the requirement for outgoing requests. For incoming requests, the double registration technique will result in both the home and local proxies being traversed by incoming requests. This will result in a call flow similar to Figure 7.2 but with the home proxy server forwarding the INVITE instead of redirecting.

These SIP mobility capabilities are well suited to use over a wireless network such as 802.11 in a home, office, or public space. As roaming agreements allow such wireless “hotspots” to be linked in metropolitan areas, this will provide a wireless service. However, commercial wireless providers plan a specific purpose wireless telephony network using SIP. For some of their business and service requirements, SIP extensions have been developed, which will be discussed in this chapter.

Wireless SIP clients may also make use of voice codecs such as Opus [6], which is highly tolerant to packet loss that may be experienced in a heavily loaded 802.11 network.

7.3 IMS and SIP

The 3GPP architecture uses SIP in the IP Multimedia Subsystem (IMS). The main elements of the IMS architecture are listed in Table 7.1. An excellent reference text for IMS is [7]. SIP is also a key signaling protocol in Voice over LTE (VoLTE) [8], which is the future of mobile voice networks.

The 3GPP architecture relies on Mobile IP instead of the mobility aspects of SIP described in the previous section. The reasons for doing so are primarily business related rather than technical.

Another requirement of mobility systems is a keep-alive signal, which allows end points and proxies to know that a UA still has network connectivity. On an end point-to-end point basis, this can be done using RTCP (see Section 12.2) reports sent periodically, even when the media is on hold or silence suppression is taking place. However, proxies do not have access to these direct end-to-end reports. Instead, the session timer extension [9] and re-INVITEs can be used for this purpose, or the SIP outbound extension described in Section 10.11.13.

Call Signaling Control Functions (CSCF) are SIP proxies that also sometimes behave as a B2BUA under certain circumstances. For example, if a proxy or P-CSCF loses the radio link to the user equipment (UE) that contains the SIP UA, it can send a BYE on behalf of the UE to tear down the session. The motivation for doing this is for sessions that have a per-minute billing charge, which the out-of-contact UE would otherwise have to pay for but not have the ability to disconnect. To save bandwidth on the wireless connection, a P-CSCF removes Route, Record-Route, Path, Via, Service-Route, and other header fields and reinserts them in the opposite direction. To prevent high bandwidth codecs from being used by a UE, a P-CSCF may edit the list of codecs in an SDP offer or answer, preventing the codec from being used. A P-CSCF may change the To and From headers to provide privacy, which is a B2BUA function.

Table 7.1

IMS Elements

	Element
	Name

	P-CSCF
	Proxy–Call Session Control Function

	I-CSCF
	Interrogating–Call Session Control Function

	S-CSCF
	Serving–Call Session Control Function

	UE
	User Equipment

	MGCF
	Media Gateway Control Function

	MGW
	Media Gateway

	AS
	Application Server

	MRFC
	Media Resource Function Controller

	BGCF
	Breakout Gateway Control Function

	HSS
	Home Subscriber Server

The proxy CSCF provides emergency service, triggers for local services, and normalizes telephone numbers for the rest of the network. The P-CSCF is used as the default outbound proxy server for a UE outside its home network. The Interrogating CSCF queries the HSS to determine the proper service CSCF. The I-CSCF also can do hiding of the S-CSCF network by removing or encrypting Via header fields. The serving CSCF provides the services for the subscriber. It identifies the user’s service profile and privileges.

The 3GPP uses IPv6 addresses due to the number of mobile subscribers envisioned and the fact that with Mobile IP, each device may use more than one IP address at a time. SIP RFC 3261 includes full support for IPv6 addresses, and an extension to SDP [10] adds IPv6 support to SDP.

The 3GPP also uses signaling compression [11] to compress SIP messages transmitted over a wireless link. This is primarily done to minimize latency rather than for bandwidth savings. The use of signaling compression with SIP is described in [12], which defines a parameter comp=sigcomp that can be used in Via header fields and as a URI parameter that can be used, for example, in a Contact header field. IMS also makes heavy use of header fields such as Service-Route [13] and Path [14].

The 3GPP uses the adaptive multirate (AMR) [15] codec for the audio encoding.

7.4 IMS Header Fields

Some SIP header fields have been developed based on 3GPP requirements. These P-headers (which stands for proprietary, preliminary, or private) are defined in syntax only in an informational RFC per the old SIP change process [16]. Some are listed in Table 7.2 [17–21].

In addition, the Open Mobile Alliance (OMA) [22] has registered the P-headers in Table 7.3 [23, 24], which are associated with their Push-to-Talk over Cellular (POC) feature. As part of this feature, a SIP event package is defined [25].

7.5 Conclusion

It is clear that as IP networks become increasingly wireless, SIP is increasingly being utilized over wireless networks. It is well suited for such use for the reasons discussed in this chapter: it both has built-in mobility support when Mobile IP is not used and can also be used with Mobile IP depending on the wireless network design. SIP will be used extensively in mobile service provider networks through VoLTE.

Table 7.2

3GPP P-Headers

	Header Field
	Use

	P-Associated-URI
	Lists other URIs associated with the user [17]

	P-Called-Party-ID
	Lists the URI of the called party [17]

	P-Visited-Network-ID
	Identifies the visited network [17]

	P-Access-Network-Info
	Identifies the access network [17]

	P-Charging-Function-Addresses
	Contains charging information [17]

	P-Charging-Vector
	More charging information [17]

	P-User-Database
	Database address of user’s profile [18]

	P-Served-User
	Identity of served user [19]

	P-Profile-Key
	Key of profile of the destination URI [20]

	P-Early-Media
	Early media authorization [21]

Table 7.3

OMA P-Headers

	Header Field
	Use

	P-Answer-State
	Used in PoC for the answering mode of the handset [23]

	P-Refused-URI-List
	Used in PoC to indicate URI-lists related to failures [24]

7.6 Questions

Q7.1 What types of mobility does SIP provide?

Q7.2 Show the call flow where SIP mobility is in use between two networks where SIP requests must traverse a new proxy server.

Q7.3 Which SIP methods and header fields can be used to implement various types of mobility? Give an example of each.

Q7.4 Discuss how SIP mobility and Mobile IP can provide similar and different functions.

References

[1] http://www.3gpp.org.

[2] Schulzrinne, H., and E. Wedlund, “Application-Layer Mobility Using SIP,” Mobility Mobile Computing and Communications Review (MC2R), Vol. 4, No. 3, July 2000.

[3] Perkins, C., “IP Mobility Support for IPv4, Revised,” RFC 5944, 2010.

[4] Shacham, R., et al., “Session Initiation Protocol (SIP) Session Mobility,” RFC 5631, 2009.

[5] Schulzrinne, H., “Dynamic Host Configuration Protocol (DHCP-for-IPv4) Option for Session Initiation Protocol (SIP) Servers,” RFC 3361, 2002.

[6] Opus audio codec, http://www.opus-codec.org/.

[7] Camarillo, G., and M. Garcia-Martin, The 3G IP Multimedia Subsystem (IMS): Merging the Internet and the Cellular Worlds, 3rd ed., New York: John Wiley & Sons, 2008.

[8] “Official Document IR.92 - IMS Profile for Voice and SMS,” http://www.gsma.com/newsroom/wp-content/uploads/2013/04/IR.92-v7.0.pdf, GSMA, March 2013.

[9] Donovan, S., and J. Rosenberg, “Session Timers in the Session Initiation Protocol (SIP),” RFC 4028, April 2005.

[10] Olson, S., G. Camarillo, and A. Roach, “Support for IPv6 in Session Description Protocol (SDP),” RFC 3266, 2002.

[11] Price, R., et al., “Signaling Compression (SigComp),” RFC 3320, 2003.

[12] Camarillo, G., “Compressing the Session Initiation Protocol (SIP),” RFC 3486, February 2003.

[13] Willis, D., and B. Hoeneisen, “Session Initiation Protocol Extension Header Field for Service Route Discovery During Registration,” RFC 3608, October 2003.

[14] Willis, D., and B. Hoeneisen, “Session Initiation Protocol (SIP) Extension Header Field for Registering Non-Adjacent Contacts,” RFC 3327, 2003.

[15] Sjoberg, J., et al., “Real-Time Transport Protocol Payload Format and File Storage Format for the Adaptive Multi-Rate (AMR) and Adaptive Multi-Rate Wideband (AMR-WB) Audio Codecs,” RFC 3267, June 2002.

[16] Mankin, A., et al., “Change Process for the Session Initiation Protocol (SIP),” RFC 3427, 2002.

[17] Garcia-Martin, M., E. Henrikson, and D. Mills, “Private Header (P-Header) Extensions to the Session Initiation Protocol (SIP) for the 3rd-Generation Partnership Project (3GPP),” RFC 3255, 2003.

[18] Camarillo, G., and G. Blanco, “The Session Initiation Protocol (SIP) P-User-Database Private-Header (P-Header),” RFC 4457, April 2006.

[19] van Elburg, J., “The SIP P-Served-User Private-Header (P-Header) for the 3GPP IP Multimedia (IM) Core Network (CN) Subsystem,” RFC 5502, April 2009.

[20] Camarillo, G., and G. Blanco, “The Session Initiation Protocol (SIP) P-Profile-Key Private Header (P-Header),” RFC 5002, August 2007.

[21] Ejzak, R., “Private Header (P-Header) Extension to the Session Initiation Protocol (SIP) for Authorization of Early Media,” RFC 5009, September 2007.

[22] http://www.openmobilealliance.org.

[23] Allen, A., J. Holm, and T. Hallin, “The P-Answer-State Header Extension to the Session Initiation Protocol for the Open Mobile Alliance Push to Talk over Cellular,” RFC 4964, September 2007.

[24] Hautakorpi, J., and G. Camarillo, “The Session Initiation Protocol (SIP) P-Refused-URI-List Private-Header (P-Header),” RFC 5318, December 2008.

[25] Garcia-Martin, M., “A Session Initiation Protocol (SIP) Event Package and Data Format for Various Settings in Support for the Push-to-Talk over Cellular (PoC) Service,” RFC 4354, January 2006.

8

Presence and Instant Messaging

8.1 Introduction

This chapter will cover presence and instant messaging (IM) with SIP. First the history of IM and presence will be covered. Then the SIP events framework will be explored, showing how presence was added to SIP. The set of protocols known as SIMPLE or SIP for Instant Messaging and Presence Leveraging Extensions will be covered. The two different modes of IM will be covered: page mode and session mode using the Message Session Relay Protocol (MSRP). The Jabber presence and instant messaging protocol, also known as the Extensible Messaging and Presence Protocol (XMPP) will also be introduced. Ongoing work to interwork and map presence and instant messages between XMPP and SIMPLE will also be covered.

8.2 History of IM and Presence

Presence is the ability to sense the willingness of another user to communicate. Instant messaging (IM) is a way of exchanging short text messages in near-real time. Presence is often used to determine when another user is available in order to start an instant message exchange. Instant messages are usually sent when the user hits the enter key or when the user clicks a send button. Often, messages are grouped together in a window and shown in sequential order, turning it into a conversation.

A very early presence tool over TCP/IP was the Unix finger command. Finger allowed a user to look up information about another user, which often included information about the last time the user logged in and the last time mail was read. A very early IM client used on the Internet was known as ICQ (pronounced like “I seek you”) [1]. The first version was released in 1996. It provided basic instant messaging between users. America Online’s AOL Instant Messenger (AIM) was the first widely used instant messaging and presence application [2]. It was released in 1997 and quickly became popular. It introduced the concept of a “buddy list” or a contact list of other users, which is displayed in a small window. Note that this contact list is stored in the network, allowing the user to have access to the contact list regardless of which computer or device from which they log in. This user interface is common to nearly all IM systems today. Many other IM clients and systems have been developed, and nearly all are proprietary closed systems. This has resulted in the development of multi-headed clients that present a common user interface and contact list to the user, but log the user into a number of separate systems on the back end.

To address IM and interoperability, the IETF standardized two IM and presence protocols. One was a set of SIP extensions known as SIMPLE (SIP for Instant Messaging Leveraging Extensions). The other was XMPP (Extensible Messaging and Presence Protocol), which is based on the Jabber open source client. SIMPLE is covered in Section 8.3.4, while XMPP/Jabber is described in Section 8.6. Today, both SIMPLE and XMPP are used to interconnect various closed IM systems. The instant messaging architecture is shown in Figure 8.1 and its elements are in Tables 8.1 and 8.2. Both of these systems are built on top of a basic architecture for instant messaging and presence, which is shown in Figures 8.1 and 8.2.

Table 8.1

Instant Messaging Elements

	Instant Messaging Service
	Protocol used to transport IMs

	Sender
	Formats message for IM Service

	Instant Inbox
	Receives message from IM Service

	Sender User Agent
	User Interface for gathering IM contents from user

	Inbox User Agent
	User Interface for rendering IM to user

Table 8.2

Presence Elements

	Presence Service
	Protocol used to transport presence information

	Presentity
	Publishes presence information to Presence Service

	Presence User Agent
	User Interface for gathering presence information about user

	Watcher
	Requests and receives presence information from Presence Service

	Watcher User Agent
	Renders presence information received to the user

[image:]

Figure 8.2 Presence architecture.

8.3 SIMPLE

In 2001, the IETF chartered a new working group to develop SIP standards and extensions for instant messaging and presence. Over the years, a set of specifications and protocols have been developed, with a few still under development. The standards for presence are summarized in Table 8.3. An overview specification is known as “SIMPLE made simple” [3], which describes how all these protocols work together.

8.4 Presence with SIMPLE

This section will cover presence with SIMPLE. The specifications are summarized in Tables 8.3 and 8.4.

8.4.1 SIP Events Framework

The SIP events framework [4] defines the SUBSCRIBE and NOTIFY methods, as described in Sections 4.1.7 and 4.1.8. SUBSCRIBE is used to establish a dialog and ongoing association between two UAs. In the presence architecture of Figure 8.2, the watcher sends the SUBSCRIBE request to the presentity. If the subscription is authorized, the presentity will send NOTIFYs whenever the state of the presentity changes, and at regular intervals. The basic call flow was shown in Figure 4.5.

Table 8.3

SIMPLE Presence Specifications

	Document
	Title
	Use

	RFC 6665
	SIP Events [4]
	Defines SUBSCRIBE and NOTIFY usage with SIP

	RFC 3903
	SIP publication [5]
	Defines PUBLISH method

	RFC 3863
	PIDF [6]
	Presence Information Data Format

	RFC 3856
	Presence Event Package [7]
	SIP event package used in NOTIFY and PUBLSH methods

	RFC 3857
	Watcher Info Package [8]
	SIP event package used to find out who is watching or subscribing to your state

	RFC 3858
	Watcher Info XML [9]
	Body used for watcher info NOTIFYs and PUBLISHes

	RFC 4480
	RPID [10]
	Rich Presence Information Data format PIDF extensions

	RFC 4482
	CIPID [11]
	Contact Information in Presence Information Data

	RFC 4479
	Data Model [12]
	A Data Model for Presence

	RFC 4662
	Resource List Extension [13]
	Combining subscriptions into a resource list

	RFC 4661
	Filtering [14]
	XML Format for Event notification filtering

	RFC 4825
	XCAP [15]
	XML Configuration Access Protocol

	RFC 4826
	Resource List Format [16]
	XML Format for Resource Lists

	RFC 4827
	XCAP usage for Presence [17]
	Used for manipulating Presence Document

	RFC 5025
	Presence Authorization [18]
	Presence Authorization Rules

	RFC 5196
	UA capabilities extension [19]
	Extensions to PIDF for UA capabilities

	RFC 5261
	XML Patch Framework [20]
	

	RFC 5262
	Partial Presence PIDF [21]
	

	RFC 5263
	Partial Presence [22]
	

	RFC 5264
	Partial Presence Publication [23]
	

	RFC 3861
	Pres URI Scheme [24]
	Use of SRV records for the pres URI scheme.

	RFC 5839
	Conditional Notification [25]
	

	RFC 5875
	XCAP Diff [26]
	

	RFC 6914
	SIMPLE made simple [3]
	

SIP events allow any number of event packages to be defined. Table 4.8 lists common SIP event packages. For presence, the presence package is used, which also uses the application/xml+presence MIME type. This XML format is used to convey the presence state in NOTIFYs.

8.4.2 Presence Bodies

Presence information is conveyed using SIP message bodies in XML (Extensible Markup Language) format. The basic presence document is known as Presence Information Data Format (PIDF) [12] and is shown here:

Table 8.4

SIMPLE Instant Messaging Specifications

	Document
	Title
	Use

	RFC 3428
	SIP extensions for IM [27]
	Defines MESSAGE method for page mode IM

	RFC 3994
	Message Composition [28]
	Used for “is typing” indications for IM

	RFC 5365
	Multiple recipient IMs [29]
	Used to send an IM to a group

	RFC 4975
	MSRP [30]
	Message Sessions Relay Protocol

	RFC 4976
	Relay Extensions for MSRP [31]
	Relays for MSRP for logging and NAT traversal

	RFC 3861
	IM URI Scheme [24]
	Use of SRV records for the IM URI scheme.

	RFC 3862
	CPIM [32]
	Common Profile for Instant Message format

	RFC 5438
	IMDN [33]
	IM Disposition Notification

	Draft
	MSRP Multiparty Chat [34]
	

	RFC 6174
	Media anchoring with MSRP [35]
	

<?xml version=”1.0” encoding=”UTF-8”?>

<presence xmlns=”urn:ietf:params:xml:ns:pidf”

entity=”pres:Sophie.Germain@mathematica.example.org”>

<tuple id=”34g45sfde”>

<status>

<basic>open</basic>

</status>

<contact>sip:sophie@78.34.32.1:51234</contact>

</tuple>

</presence>

The XML document begins with the XML declaration, and then the presentity information is contained in the <presence> element. The presence information is that of the entity listed in the entity attribute. Presence documents consist of <tuple> elements, which contain the <status> of the presentity and can be either open (available) or closed (unavailable). In addition, this example shows <contact> information. Presence information is conveyed in a SIP message using the Content-Type: application/pidf+xml. Note that this Content-Type is also sometimes incorrectly written as application/cpim-pidf+xml.

The next example shows the inclusion of both contact information [Contact Information Presence Information Data (CIPID) [11]], UA capabilities [19], and the presence data model [12]:

<?xml version=”1.0” encoding=”UTF-8”?>

<presence xmlns=”urn:ietf:params:xml:ns:pidf”

xmlns:dm=”urn:ietf:params:xml:ns:pidf:data-model”

xmlns:cipid=”urn:ietf:params:xml:ns:pidf:cipid”

xmlns:caps=”urn:ietf:params:xml:ns:pidf:caps”

entity=”pres:m.c.thomas@brynmawr.example.com”>

<tuple id=”54234g45sfde”>

<status>

<basic>open</basic>

</status>

<contact>sip:mc@dean.brynmawr.example.com</contact>

<caps:servcaps>

<caps:audio>true</caps:audio>

<caps:video>true</caps:video>

</caps:servcaps>

</tuple>

<dm:person id=”1”>

<cipid:card>http://brynmawr.example.com/~m.c.thomas/card.

vcd</c:card>

<cipid:display-name>M. C. Thomas</c:card>

</dm:person>

</presence>

This document defines a default namespace plus three other extension namespaces, dm, cipid, and caps. This example shows that the capabilities of the UA identified by the <contact> element include both audio and video, as indicated by the <audio> and <video> subelements of <servcaps>. The data model element <person> is used to provide personal information about the contact entity, and includes the contact information including a vcard, display name, homepage, icon, and map. The next example shows Rich Presence Information Data (RIPD) [10]:

<?xml version=”1.0” encoding=”UTF-8”?>

<presence xmlns=”urn:ietf:params:xml:ns:pidf”

xmlns:rpid=”urn:ietf:params:xml:ns:pidf:rpid”

entity=”sip:skovalevsky@su.example.com”>

<tuple id=”4sdf432sd”>

<status>

<basic>closed</basic>

</status>

<rpid:class>IM</rpid:class>

<contact>im:skovalesky@su.example.com</contact>

</tuple>

<tuple id=”832thr76jk”>

<status>

<basic>open</basic>

</status>

<rpid:class>voice</rpid:class>

<contact>tel:+465551212</contact>

</tuple>

</presence>

8.4.3 Resource Lists

Resource lists allow a UA to combine multiple individual subscriptions into a single subscription and receive notifications about multiple individual subscriptions in a single notification message. Resource lists are defined in RFC 4662 [13] and are an extension to the SIP events framework [4]. As such, resource lists can be used with any event package. However, the most common use is for subscriptions to a “buddy list” in presence applications. In this application, a contact list or “buddy list” is represented by a SIP URI and stored in a server known as a resource list server or RLS. For example, if a user’s contact list contained 10 SIP URIs, this would normally require 10 separate subscriptions to be maintained, one for each URI in the list. Each of these subscriptions would need to be created, managed, and refreshed, resulting in a lot of overhead traffic messages. With the resource list extension, the list is stored in the RLS, and the presence client creates a single subscription to the RLS over which notifications of the presence of all 10 URIs would be sent. The RLS may need to initiate 10 separate subscriptions, but not the presence UA. An example event list subscription is shown here:

SUBSCRIBE sip:beatrix-321223@lakesdistrict.example.com SIP/2.0

Via: SIP/2.0/TCP cottage43.lakesdistrict.example.com:5060;branch=z9hG4bKwYb6QREiCL

Max-Forwards: 70

To: <sip:beatrix-321223@lakesdistrict.example.com>

From: Beatrix Potter <sip:beatrix@lakesdistrict.example.com> ;tag=6733

Call-ID: dkfj39890wssdfj2938d7

CSeq: 23822 SUBSCRIBE

Contact: <sip:beatrix@cottage.lakesdistrict.example.com;transport=tcp>

Event: presence

Expires: 7200

Supported: eventlist

Accept: application/pidf+xml

Accept: application/rlmi+xml

Accept: multipart/related

Content-Length: 0

In this subscription, the presence of the Supported: eventlist header field indicates that the presence UA supports the extension. The Accept: application/ rlmi+xml also indicates that it is willing to accept notifications that use the resource list format described in the next section. The Event: presence and Accept: application/pidf+xml are to indicate that the subscription is for presence information. A NOTIFY sent during this subscription might look like:

NOTIFY sip:beatrix@cottage43.lakesdistrict.example.com SIP/2.0

Via: SIP/2.0/TCP pres.vancouver.example.com;branch=z9hG4bKMgRenTETmm

Max-Forwards: 70

From: <sip:beatrix-321223@lakesdistrict.example.com>;tag=dkisksk3

To: Beatrix Potter <sip:beatrix@lakesdistrict.example.com> ;tag=673

Call-ID: dkfj39890wssdfj2938d7

CSeq: 997935768 NOTIFY

Contact: <sip:rls34.lakesdistrict.example.com>

Event: presence

Subscription-State: active;expires=7200

Require: eventlist

Content-Type: multipart/related;type=”application/rlmi+xml” ;start=”<38dk2nXYxAE@lakesdistrict.example.com>”

;boundary=”0909e3ksdf893”

Content-Length: 1560

--0909e3ksdf893

Content-Transfer-Encoding: binary

Content-ID: <38dk2nXYxAE@lakesdistrict.example.com>

Content-Type: application/rlmi+xml;charset=”UTF-8”

<?xml version=”1.0” encoding=”UTF-8”?>

<list xmlns=”urn:ietf:params:xml:ns:rlmi”

uri=”sip:beatrix-friends@lakesdistrict.example.com”

version=”1” fullState=”true”>

<resource uri=”sip:hildegard@abbey.example.org”>

<name>Hildegard von Bingen</name>

<instance id=“juwigmtboe“ state=“active“

cid=“K3qrtD83kj2@lakesdistrict.example.com“/>

</resource>

<resource uri=”sip:juana_ines@cuidaddemexico.example.com”>

<name>Sor Juana Ines de la Crux</name>

<instance id=”hqzsuxtfyq” state=”active”

cid=”XdY7yhjxAEw@lakesdistrict.example.com”/></resource>

<resource uri=”sip:mmead@amnh.example.org”>

<name>Margaret Mead</name>

</resource> </list>

--0909e3ksdf893

Content-Transfer-Encoding: binary

Content-ID: <K3qrtD83kj2@lakesdistrict.example.com>

Content-Type: application/pidf+xml;charset=”UTF-8”

<?xml version=”1.0” encoding=”UTF-8”?>

<presence xmlns=”urn:ietf:params:xml:ns:pidf”

entity=”sip:hildegard@abbey.example.org”>

<tuple id=”93sg89ae”> <status>

<basic>open</basic>

</status>

<contact

priority=”1.0”>sip:hildegard@music.abbey.example.org</contact></tuple>

</presence>

--0909e3ksdf893

Content-Transfer-Encoding: binary

Content-ID: <XdY7yhjxAEw@lakesdistrict.example.com->

Content-Type: application/pidf+xml;charset=”UTF-8”

<?xml version=”1.0” encoding=”UTF-8”?>

<presence xmlns=”urn:ietf:params:xml:ns:pidf”

entity=”sip:juana_ines@cuidaddemexico.example.com”> <tuple id=”4rslie74”> <status>

<basic>closed</basic> </status>

</tuple>

</presence>

--0909e3ksdf893-

The notification contains Require: eventlist, which indicates that this is an eventlist notification. The Content-Type: multipart/related;type=”application/rlmi+xml” indicates that the message body is multipart MIME and contains application/rlmi+xml parts, which is the XML format for event lists defined in RFC 4662 [13]. Each part of the multipart MIME is separated by a CRLF and a boundary string, defined to be 0909e3ksdf893 in this example. The Content-Type: application/pidf+xml;charset=”UTF-8” in each part indicates that each part is a PIDF.

A resource list stored on an RLS is not a static list—the presence user may add or delete users from this list at any time. One way to do this is to use XCAP to manipulate the resource list. The format for this resource list is defined in RFC 4826 [16]. An example document is shown here:

<?xml version=”1.0” encoding=”UTF-8”?>

<rls-services xmlns=”urn:ietf:params:xml:ns:rls-services”

xmlns:rl=”urn:ietf:params:xml:ns:resource-lists”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>

<service uri=”sip:astronomers@lists.example.org”>

<list name=”astronomers”>

<rl:entry uri=”sip:janet.taylor@observatory.example.com”/>

<rl:entry uri=”sip:Maria.Kirch.Winkelmann@comets.example.com”/>

</list>

<packages>

<package>presence</package>

</packages>

</service>

</rls-services>

The list is enclosed in a <rls-services> element where each <service> element defines a resource list. In this example, the event list URI is sip:marketing@example.com as defined by the URI attribute to the <service> element. The list is included inside the <list> element.

Instead of using XCAP to create the list, the resource list subscribe extension [36] allows a SUBSCRIBE to create an event list. An example SUBSCRIBE is shown here:

SUBSCRIBE sip:beatrix-321223@lakesdistrict.example.com SIP/2.0

Via: SIP/2.0/TCP cottage43.lakesdistrict.example.com;branch=z9hG4bKwYb6QREiCL

Max-Forwards: 70

To: <sip:beatrix-321223@lakesdistrict.example.com>

From: Beatrix Potter <sip:beatrix@lakesdistrict.example.com> ;tag=26

Call-ID: dkfj39890wssdfj2938d7

CSeq: 23822 SUBSCRIBE

Contact: <sip:beatrix@cottage43.lakesdistrict.example.com;transport=tcp>

Event: presence

Expires: 7200

Require: recipient-list-subscribe

Supported: eventlist

Accept: application/pidf+xml

Accept: application/rlmi+xml |

Accept: multipart/related

Accept: multipart/signed

Accept: multipart/encrypted

Content-Type: application/resource-lists+xml

Content-Disposition: recipient-list

Content-Length: 337

<?xml version=”1.0” encoding=”UTF-8”?>

<resource-lists xmlns=”urn:ietf:params:xml:ns:resource-lists” xmlns:xsi=””http://www.w3.org/2001/XMLSchema-instance”>

<list>

<entry uri=”sip:hildegard@abbey.example.org” />

<entry uri=”sip:juana_ines@cuidaddemexico.example.com” />

<entry uri=”sip:mmead@amnh.example.org” />

</list>

</resource-lists>

The presence of the Require: recipient-list-subscribe indicates that this SUBCRIBE contains a list for the creation of an event list. Note that the Content-Type: application/resource-lists+xml is the same format as the list in [16]. However, this extension only allows list creation with the initial SUBSCRIBE. Refresh SUBSCRIBEs cannot modify the list.

An alternative is defined in [37] that allows a SUBSCRIBE request to create or update an event list. Note that this specification is not yet an RFC but is implemented in industry. An example call flow is shown in Figure 8.3.

An example SUBSCRIBE is shown here:

SUBSCRIBE sips:manya-friends@warszawa.example.com SIP/2.0

Via: SIP/2.0/TLS rs.warszawa.example.com

;branch=z9hG4bKwYb6QREiCL

To: <sips:manya-friends@warszawa.example.com>

From: Manya Sklodowska <sips:manya@warszawa.example.com>;tag=22222

Call-ID: 7jh5dD3Fkifr2

CSeq: 3 SUBSCRIBE

Max-Forwards: 70

Event: presence

Require: adhoclist

Accept: application/pidf+xml

Accept: application/rlmi+xml

Contact: <sips:manya@rs.warszawa.example.com>

Content-Type: application/adrl+xml

Content-Length: ...

[image:]

Figure 8.3 Ad hoc list creation and manipulation.

<?xml version=”1.0”?>

<adhoclist uri=”sip:manya-friends@warszawa” name=”Manya’s Friends”>

<add>

<resource uri=”sips:hypatia@greatlibrary.alexandria.example.org”>

<resource uri=”sips:m.g.mayer@katowice.example.org”>

<resource uri=”sips:pan.chao@imperial.example.org”>

</add>

</adhoclist>

This SUBSCRIBE adds three URIs in the <resource> element contained in the <adhoclist> element. The Require: adhoclist and Content-Type: application/adrl+xml indicate that this SUBSCRIBE is for an RLS that supports adhoc lists. A later refresh SUBSCRIBE could be used to add more URIs and delete others. For example:

SUBSCRIBE sips:manya-friends@warszawa.example.com SIP/2.0

Via: SIP/2.0/TLS rs.warszawa.example.com;branch=z9hG4bKwYb6QREiCL

To: <sips:manya-friends@warszawa.example.com>;tag=32111df

From: Manya Sklodowska <sips:manya@warszawa.example.com>;tag=xz2d

Call-ID: 7jh5dD3Fkifr2

CSeq: 34 SUBSCRIBE

Max-Forwards: 70

Event: presence

Require: adhoclist

Accept: application/pidf+xml

Accept: application/rlmi+xml

Contact: <sips:manya@rs.warszawa.example.com>

Content-Type: application/adrl+xml

Content-Length: ...

<?xml version=”1.0”?>

<adhoclist uri=”sip:manya-friends@warszawa.example.com”name=”Manya’s Friends”>

<add>

<resource

uri=”sips:margaret_cavendish@dutchess.newcastle.example.org”>

</add>

<delete>

<resource uri=”sips:m.g.mayer@katowice.example.org”>

</delete>

</adhoclist>

8.4.4 Filtering

An enhancement to SIP events is to allow the use of filters. A filter is an XML document included in a SUBSCRIBE, which contains information about the type and rate of notifications to be sent during the subscriptions. The filters extension is defined in RFC 4660 [38] while the XML filter format is defined in RFC 4661 [14]. Filters can be defined to apply to a single resource, a set of resources, or all resources in the subscription. Filtering can also be applied to specific domains. Filters can be changed during a subscription by including a new filter in a refresh SUBSCRIBE. A refresh SUBSCRIBE without a filter means continued use of the current filter. Filter removal can be done using the remove=”true” attribute.

Figure 8.4 shows an example of filter creation, manipulation, and removal. For example, consider the SUBSCRIBE containing a filter here:

SUBSCRIBE sip:c.dipisan@authors.example.org SIP/2.0

Via: SIP/2.0/TCP client.example.com:5060;branch=z9hG4bKxjfdsjfk

To: <sip:c.dipisan@authors.example.org>

From: <sip:jane.austen@southhampton.example.com>;tag:12341111

Call-ID: 232432udfidfjmk342

CSeq: 1 SUBSCRIBE Expires: 3600

Event: presence

Contact: <sip:jane@chawton.southhampton.example.com;transport=tcp>

Content-Type: application/simple-filter+xml

Content-Length: ...

<?xml version=”1.0” encoding=”UTF-8”?>

<filter-set xmlns=”urn:ietf:params:xml:ns:simple-filter”>

<ns-bindings>

<ns-binding prefix=”pidf” urn=”urn:ietf:params:xml:ns:pidf”/>

<ns-binding prefix=”rpid” urn=”urn:ietf:params:xml:ns:pidf:rpid”/>

</ns-bindings>

<filter id=”123” uri=”sip:c.dipisan@authors.example.org”>

<what>

<include type=“xpath“>

//pidf:tuple/pidf:status[pidf:basic=“open“]/pidf:basic

</include>

<include type=“xpath“>

//pidf:tuple[pidf:status/pidf:basic=“open“]/rpid:class

</include>

<include type=“xpath“>

//pidf:tuple[pidf:status/pidf:basic=“open“]/pidf:contact

</include>

</what>

</filter>

</filter-set>

[image:]

Figure 8.4 Example event filter creation, manipulation, and removal.

The filter is defined by the Content-Type: application/simple-filter+xml message body. The filter is contained in the <filter-set> element, which includes a single <filter> element. This filter will result in notifications only being sent that have either the value open inside the <status> element in the PIDF <basic>, <contact> elements, or the RPID <class> element. All other notifications would be suppressed.

8.4.5 Conditional Event Notifications and ETags

Another optimization involves the use of conditional notifications as defined in [25]. In the normal operations of SIP events, every SUBSCRIBE will generate an automatic NOTIFY. While the initial NOTIFY usually contains useful initial state, the NOTIFYs sent to refresh SUBSCRIBEs often do not contain any new information. NOTIFYs can be sent with the SIP-ETag header field, which contains an identifier known as the entity-tag for the current state. A subsequent refresh SUBSCRIBE can then include this identifier in a Suppress-If-Match header field. If the entity-tag in the SUBSCRIBE matches the local entity-tag, the automatic NOTIFY will be suppressed and a 204 No Notification response sent. If the entity-tag does not match, indicating a change in state, the NOTIFY will be generated. This is shown in Figure 8.5.

This mechanism can also be used to poll for state. An example is shown in Figure 8.6.

8.4.6 Partial Publication

Another optimization is defined in [23] for the partial publication of presence information. Normally, each time presence information changes, the entire PIDF containing full state must be sent. This extension allows the parts of the PIDF that have changed to be sent. Figure 8.7 shows the basic operation in which first a full publication must be sent. After that, partial publications can be sent. In this flow, the first PUBLISH creates the state information and the second updates it. The third attempts to update it, but the previous state has expired. The full state is then published with the fourth PUBLISH.

For example, consider the partial publication message:

PUBLISH sip:murasaki@kyoto.example.com SIP/2.0

Via: SIP/2.0/TCP court.kyoto.example.com:15332;branch=z9hG4bKfdDsjfk1

To: Murasaki Shikibu <sip:murasaki@kyoto.example.com>

From: Murasaki Shikibu <sip:murasaki@kyoto.example.com>;tag=v1F23d41111

Call-ID: 8Fd3wfldfa

CSeq: 61 PUBLISH

Event: presence

SIP-If-Match: 34616386238299

Expires: 3600

Content-Type: application/pidf-diff+xml

Content-Length: ...

<?xml version=”1.0” encoding=”UTF-8”?>

<p:pidf-diff xmlns=”urn:ietf:params:xml:ns:pidf”

xmlns:p=”urn:ietf:params:xml:ns:pidf-diff”

xmlns:r=”urn:ietf:params:xml:ns:pidf:rpid”

entity=”pres:murasaki@kyoto.example.org”>

<p:add sel=”presence/note” pos=”before”>

<tuple id=”L6erPt47”>

<status>

<basic>open</basic>

</status>

<contact priority=”0.4”>mailto:genji@tales.example.org</contact>

</tuple>

</p:add>

<p:replace sel=”*/tuple[@id=’1d23d0d’]/status/basic/text()”>open</p:replace>

<p:remove sel=”*/r:person/r:status/r:activities/r:busy”/>

<p:replace sel=”*/tuple[@id=’Kcg23d1j’]/contact/@priority”>0.7</p:replace>

</p:pidf-diff>

[image:]

Figure 8.5 Conditional notifications and ETags.

The SIP-If-Match header field containing the entity-tag ensures that this partial presence publication is applied to the correct full presence document, which is identified by the entity-tag. The Content-Type: application/pidfdiff+xml message body is used to convey the partial presence document. The <add>, <replace>, and <remove> elements modify the full state presence document in the appropriate way. In each case, the tuple identifier is used to select the correct element.

[image:]

Figure 8.6 Polling for state.

8.4.7 Presence Documents Summary

Table 8.5 lists the various types of presence documents.

8.5 Instant Messaging with SIMPLE

Instant messaging with SIP was a very early SIP extension in RFC 3428 [27]. In addition to this simple transport, SIP extensions for “iscomposing” or “istyping” have been standardized. Also, a standard for Instant Message Delivery Notification (IMDN) has been developed. Finally, a session mode instant messaging protocol Message Sessions Relay Protocol (MSRP) has been developed.

[image:]

Figure 8.7 Partial publication example.

8.5.1 Page Mode Instant Messaging

Page mode instant messaging is done using the MESSAGE method. It provides transport of a single message between two SIP end points, as described in Section 4.1.11. Typical message body types include text/plain, text/html, and message/cpim [32]. Page mode is suitable for a single message exchange or a series of short messages, similar to paging or SMS on mobile phones. It is not suitable for a long conversation between users or as a channel for transferring files or multimedia clips. For these situations, the session mode should be used.

Table 8.5

Presence Document Formats

	Content-Type
	Use
	Specification

	application/pidf+xml
	Basic Presence Document
	RFC 3863

	application/pidf-diff+xml
	Partial Presence Document
	RFC 5262

	application/rlmi+xml
	Resource List Notification
	RFC 4662

	application/resource-lists+xml
	Resource List Creation
	RFC 4862

	application/adrl+xml
	Ad hoc List Management
	[37]

	application/simple-filter+xml
	Filter in a SUBSCRIBE
	RFC 4661

8.5.2 Common Profile for Instant Messaging

The Common Profile for Instant Messaging (CPIM) [32] was developed as the IETF recognized that multiple Internet protocols have been developed for instant messaging and a common format was needed to support interworking between them. A common message format allows for the possibility of end-to-end encryption and signatures to be used even when different IM protocols are used for transport. Both SIMPLE and XMPP (described in Section 8.6) support CPIM and define mapping between their native IM transport and CPIM, which makes mapping between them easier. An example CPIM message carried in a MESSAGE SIP request is shown here:

MESSAGE allesandra@bologna.example.com SIP/2.0

Via: SIP/2.0/TCP lab.rss.example.org;branch=z9hG4bK7F6sg83dkse

Max-Forwards: 70

From: <sip:florence.nightingale@rss.example.org>;tag=49583

To: Alessandra Giliani <allesandra@bologna.example.com>

Call-ID: 43dKdas88d8V8asd77a

CSeq: 16 MESSAGE

Content-Type: message/cpim

Content-Length: . . .

From: Florence <im:florence.nightingale@rss.example.org>

To: Alessandra <im:alessandra@bologna.example.com>

DateTime: 2000-12-13T13:40:00-08:00

Subject: Statistical Tables

Subject:;lang=it Tabelle Statistiche

NS: MyFeatures <mid:MessageFeatures@id.example.com>

Require: MyFeatures.VitalMessageOption

MyFeatures.VitalMessageOption: Confirmation-requested

MyFeatures.WackyMessageOption: Use-silly-font

Content-Type: text/xml; charset=utf-8

Content-ID: <34do9flsf@rss.example.org>

<body> I have the information you requested about the statistical tables. </body>

The Content-Type: message/cpim header field indicates that the message body is a CPIM message. The next lines are the CPIM headers, followed by a blank line, then the actual CPIM message content. The CPIM message content is preceded by the MIME headers Content-Type and Content-ID. In this case, the actual message is encoded as text/xml. The complete set of CPIM header fields is listed in Table 8.6.

Table 8.6

CPIM Header Fields

	Header
	Meaning

	From
	Sender or originator of IM

	To
	Recipient of IM

	Cc
	Courtesy copy

	DateTime
	Date and time IM was sent

	Subject
	Subject of IM

	NS
	Local Name Space Prefix

	Require
	Header or feature that must be implemented

8.5.3 Instant Messaging Delivery Notification

The format message/cpim was defined so that IM systems standardized by the IETF could interoperate at the message layer. As a result, SIMPLE supports CPIM as does XMPP, allowing interoperability as described in Section 8.6.2. CPIM has also been extended to add delivery notification in [33]. For example, consider the SIP page mode IM here:

MESSAGE sip:florence.nightingale@rss.example.org

Via: SIP/2.0/TCP library.bologna.it;branch=z9hG4bK6sQpg8dks9e22

Max-Forwards: 70

From: Alessandra Giliani <allesandra@bologna.example.com>;tag=6312

To: <sip:florence.nightingale@rss.example.org>

Call-ID: 8765-2555-2103-4723

CSeq: 77 MESSAGE

Content-Type: application/cpim

Content-Length: ...

To: Florence <im:florence.nightingale@rss.example.org>

From: Alessandra <im:alessandra@bologna.example.com>

NS: imdn <urn:ietf:params:imdn>

imdn.Message-ID: 384jk3214jW

DateTime: 2006-04-04T12:16:49-05:00

imdn.Disposition-Notification: positive-delivery,negative-delivery

Content-type: text/plain

Content-length: 19

Grazie, Florence!

The CPIM wrapper begins after the first Content-Length header field and goes to the second Content-Length field. The actual message then follows. The imdn.Disposition-Notification CPIM field indicates that message disposition is requested for this message, and the two types of notification requested are: positive-delivery and negative-delivery. Other notification options are processing or display. An example Internet message delivery notification (IMDN) response is shown here:

MESSAGE allesandra@bologna.example.com SIP/2.0

Via: SIP/2.0/TCP lab.rss.example.org;branch=z9hG4bK83924

Max-Forwards: 70

From: <sip:florence.nightingale@rss.example.org>;tag=823123

To: Alessandra Giliani <allesandra@bologna.example.com>

Call-ID: 8o1eCusjwX99Sfs2M

CSeq: 9321 MESSAGE

Content-Type: application/cpim

Content-Length: ...

From: Florence <im:florence.nightingale@rss.example.org>

To: Alessandra <im:alessandra@bologna.example.com>

NS: imdn <urn:ietf:params:imdn>

imdn.Message-ID: 83jk4ldlf20fks

Content-type: message/imdn+xml

Content-Disposition: notification

Content-length: ...

<?xml version=”1.0” encoding=”UTF-8”?>

<imdn xmlns=”urn:ietf:params:xml:ns:imdn”>

<message-id>384jk3214jW</message-id>

<datetime>2008-04-04T12:16:49-05:00</datetime>

<recipient-uri>im:florence.nightingale@rss.example.org</recipient-uri>

<delivery-notification>

<status>

<delivered/>

</status>

</delivery-notification>

</imdn>

This message is sent in the reverse direction to the IM with the IMDN request and contains the CPIM wrapper and the Content-type: message/imdn+xml, which conveys the actual XML IMDN message. In this case, the status is <delivered/>. Other status values are <delivered>, <failed>, <forbidden>, or <error>. An example exchange is shown in Figure 8.8.

8.5.4 Message Composition Indication

Another instant messaging extension is the message composition indication [28]. This extension can provide the familiar “istyping” indication meaning that the other party in an IM conversation is currently composing media. Two states are assumed: idle and active. Active is the state when composing or typing is taking place. The indications are conveyed using XML objects and transported over the IM channel. For example, if MESSAGE is used:

MESSAGE sip:winifred@192.168.42.1 SIP/2.0

Via: SIP/2.0/TCP mosses.nybg.example.org;branch=z9hG4bK2sdfds

Via: SIP/2.0/TCP mosses.nybg.example.org;branch=z9hG4bK98s;received=73.32.1.2

Via: SIP/2.0/TCP mosses.nybg.example.org;branch=z9hG4bK76dsgFdksWe10;received=128.56.42.1

Max-Forwards: 68

From: sip:britton@nybg.example.org;tag=92349583

To: sip:goldring@paleosoc.example.org

Call-ID: eifk33kfsd2as2df2389sad5lkpoef

CSeq: 186 MESSAGE

Content-Type: application/im-iscomposing+xml

Content-Length: ...

[image:]

Figure 8.8 Instant Message Delivery Notification example.

<?xml version=”1.0” encoding=”UTF-8”?>

<isComposing xmlns=”urn:ietf:params:xml:ns:im-iscomposing”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:schemaLocation=”urn:ietf:params:xml:ns:im-composing

iscomposing.xsd”>

<state>active</state>

<contenttype>text/plain</contenttype>

<refresh>90</refresh>

</isComposing>

The Content-Type: application/im-iscomposing+xml header field indicates that this message is a message composition indication. The composing state is conveyed in the <isComposing> element where the <state> element has the value active. The <contenttype> element indicates that the content being composed is text. The receipt of this message could be used to display an indication of “istyping” to the user for a short period of time, after which the indication times out and the state returns to idle.

8.5.5 Multiple Recipient Messages

An extension allows an instant message to carry a recipient list [29]. An intermediary server known as a relay or exploder can take such a request and replicate the instant messaging to the recipients in the list. This operation is shown in Figure 8.9.

For example:

MESSAGE sip:nancy-list@csiro.example.com SIP/2.0

Via: SIP/2.0/TCP unimelb.csiro.example.com;branch=z9hG4bKhs8asdLs83

Max-Forwards: 70 To: <sip:nancy-list@csiro.example.com>

From: Nancy Tyson Burbidge <sip:nancy.burbidge@csiro.example.com> ;tag=Kjd32331

Call-ID: 8uF2sflFSsa

CSeq: 98712 MESSAGE

Require: recipient-list-message

Content-Type: multipart/mixed;boundary=”boundary2”

Content-Length: 501

--boundary2 Content-Type: text/plain

Hello Everybody!

--boundary2

Content-Type: application/resource-lists+xml

Content-Disposition: recipient-list

<?xml version=”1.0” encoding=”UTF-8”?>

<resource-lists xmlns=”urn:ietf:params:xml:ns:resource-lists”

xmlns:cp=»urn:ietf:params:xml:ns:copycontrol”>

[image:]

Figure 8.9 Multiple recipient messages example.

<list>

<entry uri=”sip:caroline.atkinson@example.org”

cp:copyControl=”to” />

<entry uri=”sip:egould@ramsgate.example.org” cp:copyControl=”to”

<entry uri=”sip:gmolloy@botanicals.example.org”

cp:copyControl=”cc”/>

<entry uri=”sip:jasminb@clearwater.example.org” cp:copyControl=”cc”

</list>

</resource-lists>

--boundary2-

This MESSAGE has a multipart/mixed body which consists of a Content-Type: text/plain instant message followed by a Content-Type: application/ resource-lists+xml body, which contains a list. Note that this list format is the same as that used in SUBSCRIBE requests creating resource lists. The copyControl attribute is defined in [39], which allows for the values of to, cc, or bcc that have the same meaning as in e-mail.

8.5.6 Session Mode Instant Messaging

The Message Session Relay Protocol (MSRP) [30] was developed to meet the needs of a session mode IM system. For this case, the use of the SIP MESSAGE method was determined to be suboptimal. As a result, this is a non-SIP protocol. MSRP uses a SIP offer/answer exchange to establish the MSRP session using SDP. MSRP messages are either SEND requests, which carry a message, or a REPORT request, which reports on the status of a previous message. MSRP allows large messages to be sent by breaking the message into chunks which are sent in separate SEND requests. MSRP uses a stream-based transport such as TCP. As a result, it must provide its own framing. MSRP defines its own URI scheme, which is used when negotiating the session. For example, an SDP offer used to establish an MSRP session:

v=0

o=nancy 2890844526 2890844527 IN IP4 unimelb.example.com

s=

c=IN IP4 unimelb.example.com

t=0 0

m=message 7344 TCP/MSRP *

a=accept-types:text/plain

a=path:msrp://unimelb.csiro.au:27394/Kdsa2s93i9a;tcp

The media line contains the message media type while TCP/MSRP indicates that MSRP will be used over TCP. An example MSRP exchange is shown in Figure 8.10.

MSRP has defined a number of header fields, listed in Table 8.7, and uses error codes shown in Table 8.8. Table 8.9 lists MSRP message types.

[image:]

Figure 8.10 MSRP session example.

Table 8.7

MSRP Header Fields

	Header
	Specification

	To-Path
	RFC 4975

	From-Path
	RFC 4975

	Message-ID
	RFC 4975

	Success-Report
	RFC 4975

	Failure-Report
	RFC 4975

	Byte-Range
	RFC 4975

	Status
	RFC 4975

	Expires
	RFC 4976

	Min-Expires
	RFC 4976

	Max-Expires
	RFC 4976

	Use-Path
	RFC 4976

	WWW-Authenticate
	RFC 4976

	Authorization
	RFC 4976

	Authentication-Info
	RFC 4976

Table 8.8

MSRP Error Codes

	Code
	Meaning

	200
	Successful transaction

	400
	Request failed

	401
	Authorization credentials needed

	403
	Request not allowed

	408
	Timeout

	413
	Stop sending

	415
	Unknown media type

	423
	Parameter out of bounds

	481
	Session does not exist

	501
	Method not understood

	506
	Session already in use

Table 8.9

MSRP Requests

	Request
	Specification

	SEND
	RFC 4975

	REPORT
	RFC 4975

	AUTH
	RFC 4976

	NICKNAME
	draft-ietf-simple-chat

The use and operation of relay with MSRP is defined in [31]. These relays can be used for NAT traversal, logging, and corporate compliance. With MSRP relays, a mechanism for discovery and authentication is defined. An approach to establish MSRP sessions through NATs that use standard ICE mechanisms is defined in [35]. The usage of MSRP in a multiuser chat is described in [34], which also defines a new MSRP request NICKNAME used to set a temporary name, known as a nickname, which can be used as an alias during the multiuser chat session. MSRP multiuser chat uses CPIM messages and the CPIM header to identify the recipient. The recipient can either be the entire chat room or it can be a single participant, in which case it is a private message addressed to a particular nickname.

Table 8.10 lists the common content types in instant messaging.

8.6 Jabber

Jabber is the XML-based instant messaging and presence protocol invented by Jeremie Miller as an open source software project in 1998. The first public release was in 2000, and the protocol was developed by the not for profit Jabber Software Foundation (JSF), which was formed in 2001 and has been renamed to the XMPP Standards Foundation (XSF) [40].

Table 8.10

Common Content-Types in IM

	Content-Type
	Reference

	text/plain
	RFC 3676

	text/html
	RFC 2854

	message/cpim
	RFC 3826

	application/resource-lists+xml
	RFC 4862

	application/im-iscomposing+xml
	RFC 3994

8.6.1 Standardization as Extensible Messaging and Presence Protocol

Jabber was standardized in the IETF in 2004 as Extensible Messaging and Presence Protocol, or XMPP, a core protocol [41] and extensions for instant messaging and presence [42]. Like SIMPLE, Jabber supports CPIM messages for interoperability. The many extensions to XMPP have not been standardized in the IETF but instead standardized by the XSF as XMP extension protocols or XEPs. Jabber uses XML fragments, known as stanzas, to communicate between Jabber clients and Jabber servers. Jabber is a true client/server protocol—Jabber servers are required elements in the architecture and use a server-to-server protocol to talk to other servers and a client-to-server protocol to talk to clients. For addresses, Jabber uses a Jabber ID (JID) in the form of user@domain/resource. Note that JID is not a URI or a URL.

8.6.2 Jingle

Jingle [43] is an XMPP protocol extension for initiating and managing media sessions between two XMPP entities. Jingle provides a way to perform an offer/answer exchange of media capabilities to negotiate an RTP media session. Jingle was designed to easily interwork with SIP [44] and have NAT traversal using ICE, as described in Chapter 10.

8.6.3 Interworking with SIMPLE

Currently work is underway in the IETF to standardize the interworking between XMPP and SIP [45]. A gateway must be used to bridge the two protocols. Since XMPP utilizes permanent subscriptions, the gateway must map them to the soft-state subscriptions used in SIMPLE. While an XMPP URI scheme has been defined [45] that SIMPLE can use, XMPP is unable to use URIs, so the gateway must map between XMPP or SIP URIs and XMPP JIDs. The standards documents for mapping between SIP and XMPP are listed in Table 8.11.

8.7 Conclusion

This chapter showed how presence and instant messaging services can be implemented with SIP using a number of extensions. Additionally, Jabber or XMPP can provide these services and can interwork with SIP through gateways.

8.8 Questions

Q8.1 Create an example resource list creating subscription and show the first notification. Include at least three resources in the list and show at least two different presence states in the notification.

Q8.2 Explain the differences between page mode and session mode instant messaging. Which protocols are typically used for each?

Q8.3 Explain the purpose of CPIM.

Q8.4 Explain why you would not expect to see the SIP header field Content-Type: message/imdn+xml as a header field in a SIP MESSAGE method.

Q8.5 Create a presence document for the user Bob showing his status as available, his contact URI as sip:bob@pc33.example.com, and his device as capable of both audio and video.

Q8.6 How are entity tags used in SIP?

Q8.7 Explain how partial publication works with an example.

Q8.8 What is a resource list server?

Q8.9 Explain conditional event notification.

Table 8.11

SIP and XMPP Interworking Standards

	Specification
	Use

	RFC 7247 [46]
	Core interworking

	RFC 7248 [47]
	Presence interworking

	RFC 7572 [44]
	Instant messaging

	RFC 7573 [48]
	Chat interworking

	draft-ietf-stox-groupchat [49]
	Group chat interworking

	draft-ietf-stox-media [50]
	Media interworking

References

[1] http://www.icq.com.

[2] http://www.aim.com.

[3] Rosenberg, J., “SIMPLE Made Simple: An Overview of the IETF Specifications for Instant Messaging and Presence Using the Session Initiation Protocol (SIP),” RFC 6914, April 2013.

[4] Roach, A., “Session Initiation Protocol (SIP)-Specific Event Notification,” RFC 6665, July 2012.

[5] Niemi, A., “Session Initiation Protocol (SIP) Extension for Event State Publication,” RFC 3903, October 2004.

[6] Sugano, H., et al., “Presence Information Data Format (PIDF),” RFC 3863, August 2004.

[7] Rosenberg, J., “A Presence Event Package for the Session Initiation Protocol (SIP),” RFC 3856, August 2004.

[8] Rosenberg, J., “A Watcher Information Event Template-Package for the Session Initiation Protocol (SIP),” RFC 3857, August 2004.

[9] Rosenberg, J., “An Extensible Markup Language (XML) Based Format for Watcher Information,” RFC 3858, August 2004.

[10] Schulzrinne, H., et al., “RPID: Rich Presence Extensions to the Presence Information Data Format (PIDF),” RFC 4480, July 2006.

[11] Schulzrinne, H., “CIPID: Contact Information for the Presence Information Data Format,” RFC 4482, July 2006.

[12] Rosenberg, J., “A Data Model for Presence,” RFC 4479, July 2006.

[13] Roach, A., B. Campbell, and J. Rosenberg, “A Session Initiation Protocol (SIP) Event Notification Extension for Resource Lists,” RFC 4662, August 2006.

[14] Khartabil, H., et al., “An Extensible Markup Language (XML)-Based Format for Event Notification Filtering,” RFC 4661, September 2006.

[15] Rosenberg, J., “The Extensible Markup Language (XML) Configuration Access Protocol (XCAP),” RFC 4825, May 2007.

[16] Rosenberg, J., “Extensible Markup Language (XML) Formats for Representing Resource Lists,” RFC 4826, May 2007.

[17] Isomaki, M., and E. Leppanen, “An Extensible Markup Language (XML) Configuration Access Protocol (XCAP) Usage for Manipulating Presence Document Contents,” RFC 4827, May 2007.

[18] Rosenberg, J., “Presence Authorization Rules,” RFC 5025, December 2007.

[19] Lonnfors, M., and K. Kiss, “Session Initiation Protocol (SIP) User Agent Capability Extension to Presence Information Data Format (PIDF),” RFC 5196, September 2008.

[20] Urpalainen, J., “An Extensible Markup Language (XML) Patch Operations Framework Utilizing XML Path Language (XPath) Selectors,” RFC 5261, September 2008.

[21] Lonnfors, M., et al., “Presence Information Data Format (PIDF) Extension for Partial Presence,” RFC 5262, September 2008.

[22] Lonnfors, M., et al., “Session Initiation Protocol (SIP) Extension for Partial Notification of Presence Information,” RFC 5263, September 2008.

[23] Niemi, A., M. Lonnfors, and E. Leppanen, “Publication of Partial Presence Information,” RFC 5264, September 2008.

[24] Peterson, J., “Address Resolution for Instant Messaging and Presence,” RFC 3861, August 2004.

[25] Niemi, A., and D. Willis, “An Extension to Session Initiation Protocol (SIP) Events for Conditional Event Notification,” RFC 5839, 2010.

[26] Urpalainen, J., and D. Willis, “An Extensible Markup Language (XML) Configuration Access Protocol (XCAP) Diff Event Package,” RFC 5875, May 2010.

[27] Campbell, B., et al., “Session Initiation Protocol (SIP) Extension for Instant Messaging,” RFC 3428, December 2002.

[28] Schulzrinne, H., “Indication of Message Composition for Instant Messaging,” RFC 3994, January 2005.

[29] Garcia-Martin, M., and G. Camarillo, “Multiple-Recipient MESSAGE Requests in the Session Initiation Protocol (SIP),” RFC 5365, October 2008.

[30] Campbell, B., R. Mahy, and C. Jennings, “The Message Session Relay Protocol (MSRP),” RFC 4975, September 2007.

[31] Jennings, C., R. Mahy, and A. Roach, “Relay Extensions for the Message Sessions Relay Protocol (MSRP),” RFC 4976, September 2007.

[32] Klyne, G., and D. Atkins, “Common Presence and Instant Messaging (CPIM): Message Format,” RFC 3862, August 2004.

[33] Burger, E., and H. Khartabil, “Instant Message Disposition Notification (IMDN),” RFC 5438, February 2009.

[34] Niemi, A., M. Garcia, and G. Sandbakken, “Multi-Party Chat Using the Message Session Relay Protocol (MSRP),” draft-ietf-simple-chat-18 (work in progress), January 2013.

[35] Holmberg, C., Blau, S., and E. Burger, “Connection Establishment for Media Anchoring (CEMA) for the Message Session Relay Protocol (MSRP),” RFC 6714, August 2012

[36] Camarillo, G., A. Roach, and O. Levin, “Subscriptions to Request-Contained Resource Lists in the Session Initiation Protocol (SIP),” RFC 5367, October 2008.

[37] Levin, O., “Ad-Hoc Resource Lists Using SUBSCRIBE in SIMPLE,” draft-levinsimpleadhoc-list-01.txt (work in progress), November 2003.

[38] Khartabil, H., et al., “Functional Description of Event Notification Filtering,” RFC 4660, September 2006.

[39] Garcia-Martin, M., and G. Camarillo, “Extensible Markup Language (XML) Format Extension for Representing Copy Control Attributes in Resource Lists,” RFC 5364, October 2008.

[40] http://www.xsf.org.

[41] Saint-Andre, P., (ed.), “Extensible Messaging and Presence Protocol (XMPP): Core,” RFC 6120, March 2011.

[42] Saint-Andre, P., (ed.), “Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and Presence,” RFC 6121, March 2011.

[43] Ludwig, S., et al., “Jingle,” XSF XEP 0166, June 2007.

[44] Saint-Andre, P., A. Houri., and J. Hildebrand, “Interworking Between the Session Initiation Protocol (SIP) and the Extensible Messaging and Presence Protocol (XMPP): Instant Messaging,” RFC 7572, June 2015.

[45] IETF STOX Working Group, https://tools.ietf.org/wg/stox/.

[46] Saint-Andre, P., A. Houri, and J. Hildebrand, “Interworking between the Session Initiation Protocol (SIP) and the Extensible Messaging and Presence Protocol (XMPP): Architecture, Addresses, and Error Handling,” RFC 7247, May 2014.

[47] Saint-Andre, P., A. Houri, and J. Hildebrand, “Interworking between the Session Initiation Protocol (SIP) and the Extensible Messaging and Presence Protocol (XMPP): Presence,” RFC 7248, May 2014.

[48] Saint-Andre, P., and S. Loreto, “Interworking Between the Session Initiation Protocol (SIP) and the Extensible Messaging and Presence Protocol (XMPP): One-to-One Text Chat Sessions,” RFC 7573, June 2015.

[49] Saint-Andre, P., S. Corretge, and S. Loreto, “Interworking Between the Session Initiation Protocol (SIP) and the Extensible Messaging and Presence Protocol (XMPP): Groupchat,” draft-ietf-stox-groupchat-08 (work in progress), November 2014.

[50] Saint-Andre, P., S. Corretge, and E. Ivov, “Interworking Between the Session Initiation Protocol (SIP) and the Extensible Messaging and Presence Protocol (XMPP): Media Sessions,” draft-ietf-stox-media-04 (work in progress), March 2014.

9

Services in SIP

In this chapter, ways and techniques to implement services using SIP will be covered. Typical services include telephony gateway services, trunking, business services, voicemail, conferencing, fax, and video. Architectures such as application sequencing, service-oriented architecture (SOA), and service delivery platforms will also be introduced.

9.1 Gateway Services

A common application of SIP is in PSTN interworking and replacement. For this application, the most important function is that of a gateway to the PSTN. A gateway is an element that converts one protocol to another—a PSTN gateway converts a SIP and RTP session into a PSTN session. As SIP is a signaling protocol, the gateway will map SIP messages to a PSTN signaling protocol such as Integrated Services Digital Network (ISDN) or ISDN User Part (ISUP). The RTP media session is converted by a gateway into a PCM trunk. Gateways are often decomposed using media gateway protocols such as MGCP and H.248. For more details on these PSTN protocols, see Chapter 11.

We have already seen how SIP can handle telephone numbers, either through a telephony URI [1] or SIP URI [2] with a telephone number in the user part. A SIP proxy server can determine when an INVITE needs to be routed to a gateway for termination in the PSTN. Other types of SIP requests (e.g., presence, instant messaging, and so forth) do not make sense to route to the PSTN. A proxy can also manage a dial plan for a set of UAs. A dial plan maps a dial string (digits dialed on a telephone) into a telephone number suitable for routing on the PSTN. For example, “dial 9 for an outside line” is an example of a very simple dial plan commonly used in business telephone systems. Dial plans also allow private dialing plans within an enterprise. An example of this is when three-digit or four-digit extensions can be used to dial other extensions within the enterprise. A dial string is indicated in a SIP URI when the user=dialstring [3] parameter is present.

A gateway receives incoming INVITEs and maps the telephone number digits, which are then mapped to the called party number in the PSTN signaling. Common gateway INVITE mappings and interworking are defined in [4].

Calls from SIP to the PSTN through a gateway often make use of early media. Early media is RTP media sent prior to the call being answered. In SIP, this means media sent prior to the 200 OK response. This is usually done in SIP by the gateway sending a 183 Session Progress response, which creates an early dialog. RTP media is then sent from the gateway to the UA. Often early media carries special ringback tones to recorded announcements and tones. This is shown in Figure 9.1.

In the other direction, a telephone number dialed in the PSTN can be routed and answered by a SIP UA. PSTN routing is done by assigning telephone numbers to telephone switches. The telephone switch then sends the call to the copper loop or PBX trunk that causes the telephone to ring. For a SIP UA to ring, the SIP/PSTN gateway must appear to the PSTN as a local telephone switch. When the call is routed to the gateway, instead of sending the call to the copper loop or PBX trunk, the gateway creates an INVITE and routes it to a UA on an IP network. The INVITE can be routed to a SIP proxy server to determine the appropriate contact device.

[image:]

Figure 9.1 Early media in SIP.

9.2 Emergency Services

With SIP being used as a signaling protocol in telephony systems and in the PSTN, it is natural that SIP plays a key role in providing emergency services. While this work is under way all around the world, a good example is the work by the National Emergency Number Association (NENA) [5], which is the association of providers of E9-1-1 services in the United States in policy, standards, and technical areas. In the United States, the single-number emergency services number is 911; other parts of the world use 112 or another number. In order to map between these, there is a Uniform Resource Name (URN) for emergency services defined [6]:

urn:service:sos

which would be mapped from or to whatever country-specific number is used.

NENA has been instrumental in adding location services to emergency calls originating from mobile phones. NENA has also developed an architecture for Next Generation 9-1-1 services known as i3 [7]. This document defines an Emergency Services IP Network (ESINet) that is capable of interfacing via IP networks and protocols. SIP is a key protocol in call setup and call control and also for transporting location information. The call taking entity is known as a Public Safety Answering Point (PSAP). The standards used in i3 are from the IETF and also the 3GPP/3GPP2 [8]. An i3 PSAP is multimedia, supporting voice, video, and text. The functional elements in the network are listed in Table 9.1. The IETF standards used to convey location are listed in Table 9.2.

See [7] for a full description of the usage of SIP and VoIP for NG9-1-1.

9.3 SIP Trunking

In the PSTN, a trunk is a dedicated connection between PSTN switches or between a PSTN switch and a Private Branch Exchange (PBX), an enterprise telephone switch or system. A trunk has both signaling and media parts. Trunks in the PSTN originally used one or two pairs of copper wires. With digital trunking and time division multiplexing, the T-1 became the standard trunk in North America with 24 voice circuits multiplexed over two pairs of wires. The E-1 was the European version with 32 voice circuits. With ISDN, the T-1 trunk became a primary rate interface (PRI), which also had 24 circuits. While there is no exact analog in SIP and Internet communications to a trunk, a SIP trunk usually means a shared connection between SIP telephony devices that use IP transport and involve RTP media transport in addition to SIP signaling. The SIP Forum [16] has published a technical recommendation called SIPconnect [17], which describes how SIP and RTP can be configured to provide SIP trunking between a service provider and an enterprise PBX. There are some similarities between SIP trunks and PSTN trunks:

Table 9.1

Functional Elements in NG9-1-1

TDM Gateway

Supplemental Data

Multimedia

Legacy Gateway

Emergency Services Routing Proxy (ESRP)

Border Control Function (BCF)

Emergency Call Routing (ECRF)

Location Validation Function (LVF)

Table 9.2

Location Standards in NG9-1-1

SIP Location Conveyance [9]

HTTP Enabled Location Delivery (HELD) [10]

Presence-based GEOPRIV Location Object Format [11, 12]

DHCP Option for Coordinate-based Location Configuration Information [13]

DHCP Option for Civic Addresses Configuration Information [14, 15]

• The interconnection requires configuration on both sides to work.

• VoIP and telephony services can be delivered over it.

• Telephone numbers or E.164 numbers are the identifiers used.

There are some important differences, however:

• SIP trunks do not have an inherent capacity; they are limited only by the bandwidth of the underlying IP transport and the call setup capacity of the SIP servers.

• Media quality can be better than PSTN quality, depending on the codec used.

• SIP trunks will be extended in the future to provide multimedia, presence, and IM capabilities.

SIPconnect is not a profile of the SIP. Instead, it is a profile of the set of SIP-related protocols. For example, it references the standards shown in Table 9.3. These references cover SIP as well as identity and security, and RTP media. Figure 9.2 shows a typical use of SIP trunks between an enterprise IP PBX and a service provider. The first version of SIPconnect 1.0 was published in 2008. A minor update to SIPconnect 1.1 was published in 2011. In 2015, the SIP Forum was developing SIPconnect 2.0. SIPconnect 2.0 adds media encryption with SRTP and video to the specification.

Table 9.3

SIPconnect Trunking Specifications

	Signaling
	

	RFC 3261
	Core SIP

	RFC 3264
	SIP Offer/Answer protocol

	RFC 3263
	SIP DNS usage

	RFC 3265
	SIP Events

	RFC 3311
	SIP UPDATE method

	RFC 3725
	Third Part Call Control

	RFC 4028
	Session Timer

	RFC 2327
	SDP

	RFC 2782
	DNS SRV

	RFC 3262
	PRACK

	RFC 3311
	UPDATE

	Identity
	

	E.164
	Phone numbers

	RFC 3966
	Telephony URI

	RFC 3761
	ENUM

	RFC 3323
	Privacy mechanism for SIP

	RFC 3325
	SIP Network Asserted Identity (P-Asserted-Identity)

	Media
	

	RFC 3550
	RTP

	RFC 2833
	Telephone Events for DTMF

	T.38
	Fax

	G.168
	ITU-T digital echo cancellation

	G.711
	ITU-T PCM coded

	NAT Traversal
	

	RFC 3581
	Symmetric SIP (rport)

	RFC 3489
	STUN

	Security
	

	RFC 5246
	TLS

	QoS
	

	RFC 2474
	DiffServ QoS

[image:]

Figure 9.2 SIP trunk between enterprise and service provider.

9.4 SIP Service Examples

The SIP service examples document [18] shows examples of how common PBX, centrex, and business telephony features can be implemented using SIP. The features discussed are listed in Table 9.4. For some features, the IETF has developed more detailed best current practice documents such as for call transfer [19], automatic call completion [20], and bridged line appearance/multiple line appearance [21].

Table 9.4

SIP Service Examples Features

Call hold

Consultation hold

Music on hold

Transfer—unattended

Transfer—attended

Transfer—instant messaging

Call forwarding unconditional

Call forwarding—busy

Call forwarding—no answer

Three-way conference

Find-me

Call management (incoming call screening)

Call management (outgoing call screening)

Call park

Call pickup

Automatic redial

Click to dial

9.5 Voicemail

Voicemail is a messaging service commonly associated with telephony applications. It can be implemented as a service in the network (such as that provided by mobile phone providers), in a separate device, such as a home answering machine, or incorporated in a telephony device, such as an enterprise PBX or key system. The service involves call forwarding no answer/busy/unavailable to a storage device that plays a customizable greeting. The user is then alerted by some means that a message is waiting, and can then retrieve the message by dialing into the system. With unified messaging systems, it is becoming increasingly common for a voicemail to be retrievable by other means such as an audio file attachment to an e-mail or a speech recognition system that generates an e-mail or text message of the contents.

In SIP terms, the call forwarding is straightforward, with either a proxy forwarding or end-point redirection (3xx response) used to send the call to the voicemail server. However, some kind of SIP extension is needed to indicate to the voicemail system which mailbox to use, that is, which greeting to play and where to store the recorded message. There are two main ways to do this. One is to use the Request-URI to signal this information while the other is to use a SIP header field extension. For the Request-URI method, the voicemail URI parameters [22] approach is used. For a voicemail system at sip:voicemail. example. com, which is being used to provide voicemail for sip:alice@ example.org, the Request-URI of the INVITE when it is forwarded to the voicemail server could look like:

sip:voicemail.example.com;target=sip:alice@example.com;cause=486

In this way, the Request-URI carries the mailbox identifier as well as the reason the call is being forwarded to voicemail. This is important if the voicemail system plays different prompts depending on if the user is on the phone or does not answer, for example. For the cause parameter, the following values are standardized in Table 9.5. The feature is shown in Figure 9.3.

There are two alternatives for the header field approach. One is a usage of the History-Info header field [23] while the other is the Diversion [24] header field. In this case, the History-Info is populated by the proxy server and included when the INVITE is forwarded to the voicemail server. The Request-URI is set to the voicemail server URI. Note that the History-Info approach provides more information than the voicemail URI approach and allows additional policies to be applied.

Table 9.5

Voicemail URI Cause Parameter Values

	Meaning
	Cause Value

	Unknown/Not available
	404

	User busy
	486

	No reply
	408

	Unconditional
	302

	Deflection during alerting
	487

	Deflection immediate response
	480

	Mobile subscriber not reachable
	503

The other header field approach is the Diversion header field that has been widely deployed but was never standardized by the IETF. Instead, a “Historic” nonstandards-track RFC [24] was published to document this header field. An example of the diversion header field is:

Diversion: <sip:alice@example.com>;reason=no-answer

This approach directly maps ISDN diversion values, simplifying PSTN interworking. For message notification, SIP events along with the message waiting indicator (MWI) event package can be used.

9.6 SIP Video

Establishing video sessions with SIP is essentially orthogonal to the SIP protocol itself—nothing really needs to be changed, even in the offer/answer SDP exchange. However, there are some features and services specific to video that often come up when SIP video is discussed.

For example, consider FastUpdate. This is a signaling message sent by a video mixer to a video sender in a multimedia conference. When switching between video sources, the FastUpdate message indicates that the sender must send a key frame (I-frame) so that subsequent P-frames and B-frames have a reference. One method uses an XML object carried in a SIP request, defined in [25]. Another approach is to use RTCP, defined in [26] using the Full Intra Request command.

Another type of SIP video is “dual video” where multiple video streams are sent, typically a main video and a secondary video. The far end has the ability to switch between the two videos. These are also known as “people and content” streams. Work is underway to standardize this feature for SIP [27] and define interworking with H.239 [28]. These proposals use the Binary Floor Control Protocol (BFCP), originally defined in [29] which will be replaced by [30] when finished.

[image:]

Figure 9.3 SIP voicemail call flow example.

Bandwidth management is more critical with video than audio, and being able to allocate bandwidth between both audio and video streams for best performance is important. Another useful tool is the ability to signal the size of the video and preferred frame rate received [31].

9.6.1 Video Relay Service (VRS)

Video Relay Service (VRS) is a service for deaf, hard-of-hearing and speech-impaired (D-HOH-SI) individuals to allow them to communicate. VRS was initially developed using H.323 terminals. Recently, there is an effort to improve interoperability between VRS services providers and devices by switching to SIP. The SIP Forum created a VRS Task Group [32] to write a specification for SIP VRS. The main elements of the architecture are a Relay User Equipment (RUE), which is a SIP User Agent with extensions and features to support VRS, a VRS service provider, and the iTRS which is the ENUM routing database that resolves a telephone number to an IM URI. The current SIP Forum VRS specification [33] only defines the interface between service providers and the service provider and iTRS database. Future specifications may define more aspects of VRS.

9.7 Facsimile

Facsimile or fax is a common PSTN application. Fax is the telecommunications service for sending copies of documents across the PSTN. Fax machines have scanners to read a document, a modem to encode the digital information over the telephone line, and a printer to output received pages. Fax servers are also used today that send and receive faxes over PSTN trunks but offer alternative output including e-mail, PDF, and text-to-speech. Faxes can be implemented in Internet communications in a number of different ways from simple transport to native implementation. Faxes can be transported using G.711 or another noncompressed codec, although delays and latency can cause problems and failures. Sending faxes directly over IP networks can be done using the T.38 [34] fax over IP standard. The MIME type image/t38 [35] has been defined for the transport of faxes over UDP, using the UDP Transport Layer (UDPTL). While this approach is efficient, it is better to transport faxes over RTP. This allows faxes to utilize various RTP extensions including security, redundancy, and so forth. Faxes over RTP use the audio/t38 [36] MIME type. As such, the SIP offer/answer exchange is needed to negotiate a fax session. For example, the following media line could be used, as will be discussed in Chapter 13:

m=audio 38202 RTP/AVP 96

a=rtpmap:96 t38/8000

a=fmtp:96 T38FaxVersion=2;T38FaxRateManagement=transferredTCF

There is also a sip.fax media feature tag [37] defined to indicate that a UA is fax capable and whether T.38 or G.711 will be used for transport. Here is an example from [37]:

Contact: <sip:bob-tp@pc33.example.com;transport=tcp>;+sip.fax=”t38”

9.8 Conferencing

SIP conferencing is an important application of SIP. The ability to provide a better experience than today’s conventional PSTN teleconferences is an important driver and differentiator for SIP services and endpoints. While SIP conferencing can use the same model as the PSTN, where a centralized mixer/conference bridge accepts media from each participant and mixes the resulting media, there are improvements possible with SIP. Some of the alternative topologies, uses, and applications are described in the SIP conferencing framework document [38]. The resulting SIP extensions and best current practices are described in RFC 4579 known as call control for conferencing [39].

9.8.1 Focus

The centralized point of control for a SIP conference is known as a focus. The focus performs SIP authentication and authorization on behalf of all conference participants and controls the media mixing. Note that this is not exactly the same thing as saying the focus performs media mixing. In some cases, the focus can cause participants in the conference to perform their own mixing if there is a full mesh of media streams among participants in the conference. However, mixing control is done by the focus. The focus also provides information about participants in the conference: their identities and capabilities. This information can be shared with participants in the conference. One SIP method of doing this is using the SIP conference event package [40]. A participant in a conference sends a SUBSCRIBE to the focus, which creates a subscription, resulting in NOTIFYs sent containing information about the conference.

A conference focus uses the isfocus feature tag to indicate that a particular dialog is associated with a conference. This allows a UA to automatically learn that a given point-to-point call is actually part of a conference. This allows behavior such as:

• Use of a conference-specific user interface;

• Automatic subscription for conference events;

• Use of conferencing call control functions.

Some of the conferencing call control functions are described in [39]. The call flows described in this document are listed in Table 9.6.

An example call flow is shown in Figure 9.4 where a conference is joined and two other participants are added, using automated SIP approaches.

9.8.2 Mixer

The mixer creates the media combination that allows each party to participate in the group session. For audio, this means mixing in the loudest speakers at any instant. For video, it can mean showing the video of the loudest speaker, or combining all video pictures into a single screen. For text, it can mean sharing all text messages typed by each participant with attribution. The mixer is under the control of the focus and often it will be a part of the focus.

9.8.3 Non-SIP Conference Control

In addition to the SIP call control means described in [39], the IETF has standardized other conference control protocols. For example, the ability to send media to the group (i.e., act as the presenter) can been controlled as a floor, with only a single floor holder at a time. A floor control protocol provides a method for requesting and granting the floor. The Binary Floor Control Protocol (BFCP) [40] has been developed to enable shared access to a resource within a conference. The Centralized Conference Manipulation Protocol (CCMP) [41] has been defined to create, schedule, and define media types and resources for a SIP conference. CCMP also supports conference control operations during a conference such as muting a participant and removing or adding a participant. CCMP supports multimedia conferences including voice, video, and text sessions and can support a full set of multiuser chats. CCMP, along with SIP conference aware UAs and a focus, allows a full standards-based conferencing system to be built.

Table 9.6

Call Control for Conferencing Functions

Joining a conference, dial out and dial in

Creating a conference, manually and automatically

Adding or deleting a participant

Requesting a participant join a conference

Switching UAs during a conference

Transferring a point-to-point session into a conference

Deleting a conference

Discovery of a conference

[image:]

Figure 9.4 SIP conferencing.

9.9 Application Sequencing

Application sequencing is an approach to delivering services using SIP that has been made popular by the IP Multimedia Subsystem (IMS) developed by 3GPP introduced in Chapter 7. Application sequencing uses a proxy server to selectively route a SIP request to multiple application servers, with each application server providing a feature or service. For example, consider Figure 9.5, which shows an example of application sequencing. The SIP session is established between the two SIP UAs, which are in different domains. Each domain has a service controller, which invokes originating or terminating features on behalf of the calling or called party.

[image:]

Figure 9.5 SIP Application sequencing.

The originating service controller sequences through three application servers. The first two are pure SIP elements, while the third receives an RTP stream. For example, the first application server could be a billing application, the second could be an authentication application, and the third could be a recording application. After the request has sequenced through all three application servers, the service controller forwards the request to the other service controller, which then sequences the request through two application servers to implement features on behalf of the called UA. Finally, the request is forwarded to the UA and the session established. Each application server can choose to either stay out of subsequent dialog signaling (by redirecting or not including a Record-Route URI) or to stay in the path and even act as a B2BUA. While this architecture can provide many services in SIP, it cannot provide services that utilize new media types or require a new user interface. For these and many other SIP features, the features must be implemented in the end-point UAs.

9.10 Other SIP Service Architectures

This section will briefly introduce a number of service architectures that can be supported with SIP including service oriented architecture (SOA), servlets, and the service delivery platform (SDP).

9.10.1 Service-Oriented Architecture

Service-oriented architecture (SOA) is architecture for integrating communications into business processes. SOA uses principles and ideas from object-oriented programming. SOA uses a function known as orchestration, which defines how services are linked together. The current preference with SOA is to have a number of roles including the service provider, service broker, and service requestor. A number of companies and enterprises are currently experimenting with integrating SIP into SOA.

9.10.2 Servlets

Servlets are a Java programming method used to provide services in servers. For example, Figure 9.6 shows how a SIP UA can access SIP servlet services through a proxy server. Servlets are not scripts but actual Java function calls. SIP servlets, defined as version 1.1 in [42], provide basic SIP functions. An excellent reference for understanding and implementing SIP servlets is in [43].

9.10.3 Service Delivery Platform

The service delivery platform (SDP) is architecture for developing and deploying network-based services. The major components include a service creation environment, execution environment, media, control, presence/location services, and integration.

9.11 Conclusion

This chapter has discussed a number of common SIP services and features and some common architectures for delivering those services.

9.12 Questions

Q9.1 Compare and contrast SIP trunks and PSTN trunks.

[image:]

Figure 9.6 SIP services thorough servlets.

Q9.2 Give the role of a focus in SIP and explain how to identify a focus using SIP signaling messages.

Q9.3 Generate a complete SIP call flow for a call between two UAs with one sequencing application server in between that sequences between two SIP-only application servers (no media).

Q9.4 What are the two methods of setting up a SIP call for sending faxes?

Q9.5 Explain the elements in a SIP voicemail system.

Q9.6 Explain how SIP can help discover the fax routing options and negotiate the transport of fax.

Q9.7 What is the role of SIP in the Video Relay Service?

Q9.8 Explain two different SIP header fields used to implement voicemail.

Q9.9 What is the ESINet and what role does SIP play in it?

Q9.10 Show a call flow with early media. Give a use case where early media is needed.

References

[1] Schulzrinne, H., “The tel URI for Telephone Numbers,” RFC 3966, December 2004.

[2] Rosenberg, J., et al., “SIP: Session Initiation Protocol,” RFC 3261, June 2002.

[3] Rosen, B., “Dial String Parameter for the Session Initiation Protocol Uniform Resource Identifier,” RFC 4967, July 2007.

[4] Camarillo, G., et al., “Integrated Services Digital Network (ISDN) User Part (ISUP) to Session Initiation Protocol (SIP) Mapping,” RFC 3398, December 2002.

[5] http://www.nena.org.

[6] Schulzrinne, H., “A Uniform Resource Name (URN) for Emergency and Other Well-Known Services,” RFC 5031, January 2008.

[7] NENA Functional and Interface Standards for Next Generation 9-1-1 Version 1.0 (i3), NENA 08-002 Version 1.0, December 18, 2007.

[8] http://www.3gpp.org.

[9] Polk, J., B. Rosen, and J. Peterson, “Location Conveyance for the Session Initiation Protocol,” RFC 6442, December 2011.

[10] Barnes, M., “HTTP-Enabled Location Delivery (HELD),” RFC 5985, September 2010.

[11] Peterson, J., “A Presence-Based GEOPRIV Location Object Format,” RFC 4119, December 2005.

[12] Winterbottom, J., M. Thomson, and H. Tschofenig, “GEOPRIV Presence Information Data Format Location Object (PIDF-LO) Usage Clarification, Considerations, and Recommendations,” RFC 5491, March 2009.

[13] Polk, J., J. Schnizlein, and M. Linsner, “Dynamic Host Configuration Protocol Option for Coordinate-based Location Configuration Information,” RFC 3825, May 2002.

[14] Schulzrinne, H., “Dynamic Host Configuration Protocol (DHCPv4 and DHCPv6) Option for Civic Addresses Configuration Information,” RFC 4776, November 2006.

[15] Thomson, M. and J. Winterbottom, “Revised Civic Location Format for Presence Information Data Format Location Object (PIDF-LO),” RFC 5139, February 2008.

[16] http://sipforum.org.

[17] http://sipforum.org/sipconnect.

[18] Sparks, R., A. Johnston, and D. Petrie, “Session Initiation Protocol Service Examples,” BCP 144, RFC 5359, October 2008.

[19] Sparks, R., and A. Johnston, “Session Initiation Protocol Call Control—Transfer,” RFC 5589, June 2009.

[20] Worley, D., et al., “Completion of Calls for the Session Initiation Protocol (SIP),” RFC 6910, April 2013.

[21] Johnston, A., M. Soroushnejad, and V. Venkataraman, “Shared Appearances of a Session Initiation Protocol (SIP) Address of Record (AOR),” RFC 7463, March 2015.

[22] Jennings, C., F. Audet, and J. Elwell, “Session Initiation Protocol (SIP) URIs for Applications such as Voicemail and Interactive Voice Response (IVR),” RFC 4458, April 2006.

[23] Barnes, M., et al., “An Extension to the Session Initiation Protocol (SIP) for Request History Information,” RFC 7044, February 2014.

[24] Levy, S., and M. Mohali, “Diversion Indication in SIP,” RFC 5806, March 2010.

[25] Levin, O., R. Even, and P. Hagendorf, “XML Schema for Media Control,” RFC 5168, March 2008.

[26] Wenger, S., et al., “Codec Control Messages in the RTP Audio-Visual Profile with Feedback (AVPF),” RFC 5104, February 2008.

[27] Even, R., “People and Content Video Streams,” draft-even-xcon-pnc-02 (work in progress), March 2007.

[28] International Telecommunication Union, “Role Management and Additional Media Channels,” ITU-T Recommendation H.239, July 2003.

[29] Camarillo, G., J. Ott, and K. Drage, “The Binary Floor Control Protocol (BFCP),” RFC 4582, November 2006.

[30] Camarillo, G., et al., “The Binary Floor Control Protocol (BFCP),” Internet-Draft draftietf-bfcpbis-rfc4582bis (Work in progress), February 2015.

[31] Johansson, I., and K. Jung, “Negotiation of Generic Image Attributes in the Session Description Protocol (SDP),” RFC 6236, May 2011.

[32] SIP Forum Video Relay Service (VRS) Task Group, http://www.sipforum.org/content/view/404/291/.

[33] Kyzivat, P., “SIPForum Video Relay Service (VRS) Interoperability Profile,” VRS US Providers Profile, http://www.sipforum.org/component/option,com_docman/task,cat_view/gid,160/.

[34] ITU-T Recommendation T.38, “Procedures for Real-Time Group 3 Facsimile Communication over IP Networks,” April 2002.

[35] Parsons, G., “Real-Time Facsimile (T.38)—Image/t38 MIME Sub-Type Registration,” RFC 3362, August 2002.

[36] Jones, P., and H. Tamura, “Real-Time Facsimile (T.38)—Audio/t38 MIME Sub-Type Registration,” RFC 4612, August 2006.

[37] Hanes, D., G. Salgueiro, and K. Fleming, “Indicating Fax over IP Capability in the Session Initiation Protocol (SIP),” RFC 6913, March 2013.

[38] Rosenberg, J., “A Framework for Conferencing with the Session Initiation Protocol (SIP),” RFC 4353, February 2006.

[39] Johnston, A., and O. Levin, “Session Initiation Protocol (SIP) Call Control—Conferencing for User Agents,” BCP 119, RFC 4579, August 2006.

[40] Rosenberg, J., H. Schulzrinne, and O. Levin, “A Session Initiation Protocol (SIP) Event Package for Conference State,” RFC 4575, August 2006.

[41] Barnes, M., C. Boulton, S. Romano, and H. Schulzrinne, “Centralized Conferencing Manipulation Protocol,” RFC 6503, March 2012.

[42] “SIP Servlet v1.1,” Java Specification Request JSR-289, August 2008.

[43] Boulton, C., and K. Gronowski, Understanding SIP Servlets 1.1, Norwood, MA: Artech House, 2009.

10

Network Address Translation

This chapter introduces Network Address Translation (NAT) and looks at the issues and challenges involved in making SIP and other Internet communications protocols work through them. The motivations for, advantages, and disadvantages of NAT are discussed. NAT classification terminology is introduced. Techniques for NAT traversal such as hole punching and protocols such as STUN, ICE, and TURN are introduced. SIP and SDP extensions enabling NAT traversal are discussed.

First, here is a word about terminology, which can be a bit confusing in this chapter. While NAT usually stands for network address translation, the function of converting or mapping an inside IP address and port to an outside IP address and port, it also has another meaning as a network address translator, the device which performs this function. Which meaning is used can usually be determined by context. In this chapter, I will mainly use the abbreviation for the function, but there are times when it is common terminology to use it for the device. NAT is also sometimes used as a verb, that is, to NAT is to change the IP address and ports of packets on packets as they pass on the wire. This is also known as NATting. An address that has been changed by a NAT is also known as a NATed address. In this chapter, two other protocols also have an abbreviation used to represent two different things—both STUN and TURN protocols have two different meanings.

10.1 Introduction to NAT

Network address translation (NAT) is used to interconnect IP networks that use different IP address types. For example, in Chapter 1, the concept of private address spaces was introduced. Typically, NAT is used to map an inside address to an outside address. NAT operates at Layer 3 in the Internet protocol stack. Network address and port translation (NAPT) also change the port number in IP packets, operating at Layers 3 and 4. Typically most NATs also perform NAPT, but are still referred to simply as NAT. The reasons for implementing NAT will be discussed in the following sections, but the main reason has to do with the shortage of IPv4 addresses.

The earliest discussion of NAT in the IETF is RFC 1631 [1], which discusses the pros and cons of using NAT. The need for private IP address spaces resulted in the publication of RFC 1918 [2] in 1996 by the IETF, which reserved three IPv4 address blocks. These addresses are not routable on the public Internet—they only have meaning within a private network. RFC 2663 [3] defined NAT for the first time. Recently, serious discussions have started about the standardization of NAT and the architectural implications of NAT have been held in the IETF. In 2004, a working group was formed to develop terminology for NAT, define requirements, and define protocols for the testing and probing of NATs. This working group, known obtusely as BEHAVE (Behavioral Engineering for Hindrance Avoidance) [4] published a number of documents discussed in this chapter. This chapter will make use of some this new terminology and definitions. The next sections cover the advantages and the problem with NAT as discussed in RFC 2993 [5].

10.2 Advantages of NAT

A number of factors led to the development of NAT, and only a few of them relate to the shortage of IPv4 addresses. Many of them are aspects of management. For example, a network can avoid having to renumber IP addresses when changing internet service providers. The management of IP addresses can be simplified if a network must use a number of small individual address blocks. The use of a single private address range is easier to manage in the end devices, with the complexity of the small address blocks being centralized in the NAT. Networks can also use the basic filtering properties of NAT to provide some firewall security. Any host that does not initiate outbound connections to the Internet is not reachable by a host on the Internet. Hosts that do initiate connections are limited by the filtering rules of the NAT in receiving incoming packets.

For Internet service providers (ISPs), NAT can allow an ISP to conserve the number of IP addresses it needs. The number of IP addresses needed is only the maximum number of concurrent connected users rather than the total number of users. Each user can be assigned a private address and will only be assigned a public address when they connect. NAT also allows an ISP to segment their network for management purposes.

10.3 Disadvantages of NAT

There are many problems with NAT. The biggest problem is that they break the end-to-end model of the Internet. The reachability of any Internet host by any other Internet host was part of the Internet from the beginning, and many assumptions about reachability are included in Internet protocols. NAT also breaks the transitive reachability of hosts (e.g., host A can reach host B, host B can reach host C, but host C cannot reach host A). NAT creates a single point of failure in the Internet where fates are shared. For example, in a connection without NAT between host A and host B, as long as both hosts have Internet connectivity they can exchange packets and communicate. Any of the routers and connections between them can fail and the connection can be maintained, possibly with some lost packets. However, if A and B connect through a NAT, the failure of that NAT will cause the connection to fail with no guarantee that either A or B can re-establish it. For example, many failures experienced during Web browsing are not failures of either the Web browser or the Web server, but of a NAT in between. When the NAT fails, the bindings are lost and the connection stalls. This continues until the user hits the refresh button on the Web browser, which closes all the TCP connections and opens new ones, creating new bindings, which allow browsing to continue. The use of NAT also complicates multihoming in a site, since a response must route back through the same NAT that processed the request. NAT also inhibits the implementation of security at the IP layer.

There are cases where NAT will not prevent IP address renumbering. For example, when networks that use the same private address range are combined, the address overlap will require renumbering. NAT with port mapping complicates offering services that use well-known port numbers. For example, Web servers typically use port 80 which can only be allocated once by NAT for a particular public address. If multiple SIP clients are behind the same NAT and share a public IP address, only one of them can be allocated the well-known SIP port of 5060, which can result in routing failures.

NATs that operate at both layer 3 and layer 4 must understand all transport protocols used through it. While this is not a problem for the common TCP and UDP, it is a major problem for newer transport protocols such as the Datagram Congestion Control Protocol (DCCP), Stream Control Transport Protocol (SCCP), and Host Identity Protocol (HIP). As a result, NATs are an impediment to new transport protocols.

Unfortunately, NAT usage is widespread on the Internet today, and with NATs used to transition from IPv4 to IPv6 (“6-to-4” NATs), their usage will continue to grow. As a result, all protocols must be aware of NAT operation and be able to overcome their limitations. The next section will discuss how NAT works.

10.4 How NAT Works

NAT operates at the IP Layer 3. NAPT operates at both the IP and transport layers 3 and 4. NAT creates mappings between inside and outside addresses and ports. These mappings are sometimes called bindings. Mappings are temporary and expire either after a TCP connection is closed with a FIN or after inactivity with UDP transport. There are multiple types of NAT depending on the rules used for mapping and filtering. Older NAT terminology classified NAT in terms of full cone, restricted cone, and symmetric. However, in this chapter, we will use more modern terminology developed by the BEHAVE working group. Some major types of NAT are end point address-independent, end point address-dependent, and end point address and port-dependent. There are also several behavioral options as well.

Table 10.1 lists the parts of the IPv4 and UDP/TCP header field that are modified by NAT. When a request is received on the inside of a NAT and forwarded to the outside, the source address and source port are rewritten. If this is the first packet in a flow, a new mapping will be created to be used for routing responses. If this is not the first packet, an existing mapping will be used. The UDP checksum must also be rewritten. When a response packet is received from the outside of the NAT and forwarded to the inside, the destination address and destination port are rewritten to the inside address and port for this mapping. Again, the UDP checksum must be rewritten.

Note that the fact that NAT operates at Layer 4 with TCP does not mean that the resulting TCP session is no longer end-to-end—the TCP connection is still end-to-end. NAT never maintains a transmission control block or maps sequence numbers. NAT also never performs retransmissions or acknowledgements. As a result, TCP still operates with end-to-end flow control and reliability through NAT.

An example of NAT operation is shown in Figure 10.1. In this example, a SIP client on a host sends a SIP request through a NAT, two routers, and an Ethernet switch. The Ethernet switch operates only at the link and physical layer while the routers operate at the IP, link, and physical layers. These devices only forward the packet without making any changes to the packet. However, the NAT creates a new mapping between the source inside private address 10.0.0.1 port 42723 and the outside public address 172.34.5.1 port 34123 and rewrites the IP and transport layers with this information. When the SIP response comes back, the NAT uses the mapping created to rewrite the IP and transport layers with this information. As a result, the SIP server thinks the SIP client with which it is communicating is at the address 172.34.5.1:34123 while the SIP client thinks it is using the address 10.0.0.1:42723. Since we have seen how SIP imbeds IP addresses and ports into SIP and SDP messages, clearly this will be problematic.

Table 10.1

Parts of an IPv4 and UDP/TCP Header Field Modified by NAT

IP header checksum

Source address

Destination address

Source port

Destination port

UDP checksum

[image:]

Figure 10.1 NAT mapping example with a SIP message.

10.5 Types of NAT

NAT can be characterized by the type of address and port mapping they do, as well as the type of filtering they employ. To see the different types of NAT, we will use the notation shown in Figure 10.2 from RFC 4787 [6]. This figure shows a host X behind a NAT communicating with two different hosts, host 1 and host 2. Packets sent by X have a source address and port of X:x and a destination address and port of Y:y. The NAT has a number of IP addresses to use for mapping, and they are shown as X1, X2, ... (some NATs only have a single IP address to use for mapping such as a home NAT). Packets sent from device X to host 1 are sent by X to Y1:y1 from X;x. As received by Y1, the packets appear to have been received from X1’:x1’. Packets sent by X to Y2 from the same source port x are received by Y2 and appear to have been received from X2’:x2’. That the packets sent to Y2 are sent from the same IP address and port as Y1 is essential for this classification method. The resulting relationship between X1’:x1’ and X2’:x2’ determines the type of NAT mapping.

[image:]

Figure 10.2 NAT mapping classifications.

Note that NAT classification is not precise, and many NATs change behavior over time and under differing conditions. As a result, trying to predict future NAT behavior based on past behavior is problematic. However, a good understanding of NAT behavior is still essential to understanding how to make SIP and Internet communications traverse NAT.

10.5.1 End Point-Independent Mapping NAT

End point-independent mapping (EIM) NAT is where X1’:x1’ = X2’:x2’ for all Y;y (Y1:y1 and Y2:y2 as shown in Figure 10.2). That is, the mapping used is dependent only on the source address and port (X:x), independent of the destination address and port. This type of mapping is known as end point-independent mapping (EIM). This type of NAT is best for SIP and RTP traversal, as we shall see in the next sections.

10.5.2 Address-Dependent Mapping NAT

An address-dependent mapping (ADM) NAT is where X1’:x1’ = X2’:x2’ if and only if Y2 = Y1 in Figure 10.2. That is, the mapping is dependent on the destination IP address of the packet as well as the source address and port. As a result, packets sent by X to different hosts will appear to come from different IP addresses and/or port numbers. This type of NAT is bad for SIP and RTP traversal as we shall see in the following sections.

10.5.3 Address and Port-Dependent Mapping NAT

An address and port-dependent mapping (APDM) NAT is where X1’:x1’ = X2’:x2’ if and only if Y2:y2 = Y1:y1 as shown in Figure 10.2. That is, the mapping is dependent on both the destination address and port as well as the source address and port. As a result, packets sent by X to different ports on the same host will appear to come from different IP addresses and/or port numbers. This type of NAT is the most problematic for SIP and RTP traversal.

10.5.4 Hairpinning Support

Hairpinning is shown in Figure 10.3. Any NAT will allow hosts on the inside of the NAT (sometimes described as behind the same NAT) to use the private address of the other host—these packets can be routed by the NAT without any modification. A NAT supports hairpinning if an internal host can send packets to another internal host using the external address of the other host. Packets routed this way double back on the NAT giving a shape similar to a hairpin. To route these packets, the NAT must look up two mappings to determine the destination. In the example, X has a mapping X:x to X1’:x1’ while Z has a mapping Z:z to X2’:x2’. Hairpinning is supported by the NAT if Z receives a packet sent by X from X;x to X2’:x2’ and vice versa. Support of hairpinning is very beneficial to SIP and RTP traversal. Note that this property is also sometimes called tromboning after the shape of the slide of the instrument.

[image:]

Figure 10.3 Hairpinning support in NAT.

10.5.5 IP Address Pooling Options

NATs that have a number of external or public IP addresses available for mapping have options in the way they allocate from this pool of IP addresses. Having multiple IP addresses is common in large service provider or enterprise NATs and is uncommon in small residential NATs. One pooling policy is known as paired IP address pooling. This policy means that only one external IP address is used for an internal IP address. As a result, all packets sent by this host will appear to come from the same IP address to hosts external to the NAT. This property is very good for SIP and RTP traversal. Another policy is known as arbitrary IP address pooling, which means there could be multiple external IP addresses mapped to an internal IP address. This property is very bad for SIP and RTP transport.

10.5.6 Port Assignment Options

While only NATs that have multiple external IP addresses have address pooling options, every NAT has port assignment options. There are a number of behaviors that are part of implemented NATs. Port preservation means the NAT tries to keep the external port the same as the internal source port. This port assignment approach generally only works if the NAT has a large pool of IP addresses. Otherwise, only one inside host can use a particular port. If a NAT implementing port preservation runs out of a particular port to allocate, it can use one of two strategies. One is to switch to a nonport preservation mode. The other is to do port overloading in which the same port can be used more than once on the inside and outside. Port overloading is very bad for the SIP and RTP transport because it leads to nondeterministic behavior. Another port assignment option is port parity, which preserves the oddness or evenness of ports. This is useful for media transport where the RTP media must be an even port while the RTCP control must use an odd port number. Port contiguity is when the NAT attempts to keep sequential inside ports mapped to sequential outside ports. This can help when an RTCP port is inferred to be one higher than the RTP port. For SIP and RTP traversal, the most important property is that the port assignment mode does not change. Since port preservation always runs the risk of having to switch modes or do port overloading, it is not recommended. Switching port mapping modes makes troubleshooting difficult.

10.5.7 Mapping Refresh

Each time a NAT creates a mapping, it uses up memory resources in storing the information. It also uses up addressing resources since the external mapped IP address and port cannot be reused for another endpoint. As a result, a NAT must have behavior to ensure that old mappings are expired and all resources freed up into the pool.

TCP mappings can be created and removed based on TCP signaling. For example, the exchange of SYN messages tells the NAT to create a new mapping for the connection. The exchange of FIN messages tells the NAT the connection is no longer needed and can be safely closed and the mapping state discarded. However, UDP has no signaling, so the NAT must infer the creation and destruction of a UDP session. Usually, this is done using an inactivity timer. If no packet is received before this timer expires, the connection is considered terminated and the mapping removed. The recommended value is 5 minutes [6], although in practice some NATs use values as short as 30 seconds. Theoretically, a packet from either the inside or outside host can refresh the mapping, although it is usually a good security policy to only allow packets generated internally to refresh the mapping. Otherwise, an outside host could keep the mapping alive by sending refresh packets even after the inside host wants the connection closed.

10.5.8 Filtering Modes

By their basic function, NATs provide filtering functions. If a mapping between an external address and an internal address is not present, packets cannot be sent to that internal host. When a mapping is active, the NAT has options on what additional filtering it can provide. Essentially, these filtering rules control who is permitted to use the mapping. One filtering mode is known as end point independent filtering. In this mode, any external end point is permitted to send packets to the internal host once the mapping is created. Another mode is called address-dependent filtering. This mode allows only external hosts that have received a packet from the internal host to send a packet using the binding. A single packet sent to the external host “opens the latch” and will allow any number of packets to flow in the opposite direction. This filtering mode provides some firewall-like security. Another mode is called address and port-dependent filtering. This mode only allows an external endpoint to send packets from the same external IP address and port to which the internal host has sent a packet. End point-independent filtering is best for SIP and RTP, while address dependent and address and port-dependent filtering make things difficult. This information is summarized in Table 10.2.

Table 10.2

NAT Filtering Mode Summary

End point-independent filtering

Address-dependent filtering

Address and port-dependent filtering

10.6 NAT Mapping Examples

Figure 10.4 shows an example of a NAT. The packet sent from 192.168.0.1:1234 to 2.73.3.2:5678 appears to have come from 23.3.2.8:4219. The packet sent from 192.168.0.1:1234 to 2.73.3.2:5678 appears to have also come from 23.3.2.8:4219. Since these two mapped addresses are the same, this indicates the NAT is an end point-independent mapping NAT. Since the internal and external port numbers are different, no port preservation is used. Since the even internal port maps to an odd external port, port parity is also not used by this NAT.

Figure 10.5 shows another example of a NAT, which has two IP addresses assigned to it, 23.3.2.8 and 23.3.2.9. A packet sent from 192.168.0.1:1234 to 2.73.3.2:5678 appears to have come from 23.3.2.9:4219. The packet sent from 192.168.0.1:1234 to 62.3.9.9:5678 appears to have come from 23.3.2.9:2194. Since this is a different mapped address, this indicates an address-dependent mapping NAT.

Figure 10.6 shows another example. The packet sent from 192.168.0.1:1234 to 2.73.3.2:5678 appears to have come from 23.3.2.8:4219. The packet sent from 192.168.0.1:1234 to 2.73.3.2:9101 appears to have come from 23.3.3.7:6421. Since the mapping is different despite the destination being the same address, this indicates an address and port dependent mapping NAT.

[image:]

Figure 10.4 Example of end point-independent mapping NAT.

[image:]

Figure 10.5 Example of address-dependent mapping NAT.

[image:]

Figure 10.6 Example of address and port-dependent mapping NAT.

Figure 10.7 shows another example NAT. In this example, the packet sent from 192.168.0.1:1234 to 2.73.3.2:5678 appears to have come from 23.3.2.8:4219. The packet sent from 192.168.0.1:1235 to 2.73.3.2:5679 appears to have come from 23.3.2.8:2170. Since these two packets are not sent from the same source address and port, these data provide no information about the type of mapping used by the NAT. However, this indicates paired IP address pooling. No port preservation is used. No port parity or port contiguity is used.

[image:]

Figure 10.7 Example of paired IP address pooling NAT.

10.7 NATs and SIP

Now that we have an understanding of what NAT is and how it works, we can look at its impact on applications and protocols such as SIP and RTP. Overall, NATs work reasonably well with unencrypted client/server protocols such as Web browsing, e-mail, and so forth. However, they can cause problems with IPSec VPNs, which can fail signature checks if the signature includes address and port information. Many NATs have application layer gateways (ALGs) for common applications such as File Transfer Protocol (FTP). However, NAT does cause problems for peer-to-peer protocols such as SIP. NATs also cause problems for protocols that carry imbedded IP addresses and port numbers, such as SIP.

Guidelines for NAT-friendly protocol design were published in 2002 in RFC 3235 [7]. However, this was much too late to be helpful for SIP. The main recommendations were as follows:

• Limit peer-to-peer applications and approaches in favor of client/server applications.

• Do not rely on end-to-end IPSec security.

• Use DNS names not IP addresses.

• Multicast is problematic.

• Avoid session bundles (e.g., one session controlling/establishing another session).

• Use TCP instead of UDP.

Unfortunately, SIP violates most of these recommendations.

Early work on SIP essentially ignored NAT or assumed that IPv6 deployments would cause them to go away. Many properties of SIP assume reflexive routability, which is often not present with NAT. The reality of SIP deployments was that while most servers (proxies, registrars, and so forth) had public IP addresses, most UAs were behind NAT and hence had nonroutable private IP addresses. Since the SIP servers provided rendezvous service, typically the SIP exchange would work while the RTP media session would fail.

Early solutions that were examined included application layer gateways (ALGs) which would effectively make NAT SIP-aware. Another early solution was a simple discovery approach in which a UA would send test packets to determine if it was behind a NAT, and to discover mapped addresses. This protocol was STUN which initially stood for Simple Traversal of UDP through NAT [8] but was updated with a new name of Session Traversal Utilities for NAT [9]. A STUN client sent test packets (essentially pings) to a STUN server, which responds with the mapped address and port the packet appeared to be received from. STUN will be described in Section 10.9. Using the mapped addresses discovered using STUN, UAs tried to fix the IP addresses and ports in their SIP messages. Unfortunately, this did not work under all scenarios and with all types of NAT. Instead, a back-to-back user agent (B2BUA) approach has developed in the industry to ensure both SIP and RTP traverse NAT.

To overcome the deficiencies of STUN, the IETF developed the Interactive Communications Establishment (ICE) [10], which runs a series of end-to-end tests known as connectivity checks using STUN between the two UAs attempting to establish communication. This protocol used an approach known as hole punching, which was developed by peer-to-peer gamers to establish gaming connections.

10.8 Properties of a Friendly NAT or How a NAT Should BEHAVE

The basic properties of a NAT, which is friendly towards SIP and RTP, are summarized in Table 10.3. The NAT should have end point-independent mapping, and paired IP address pooling. The port assignment should not do port preservation or port overloading. Port parity preservation and contiguity is good but not essential. The NAT should use end point-independent or address-dependent filtering. The UDP refresh timer should be 5 minutes.

Table 10.3

How a NAT Should BEHAVE

End point-independent mapping

Address-independent or address-dependent filtering

Pair IP address pooling

Not port preservation

Not port overloading

Port parity preservation is helpful

UDP refresh timer 5 minutes

10.9 STUN Protocol

STUN was first published as RFC 3489 [8] as Simple Traversal of UDP through NAT. It has been significantly updated and revised and published as RFC 5389 with a new acronym expansion, Session Traversal Utilities for NAT [9]. The IETF TRAM (TURN Revised And Modernized) Working Group is working on an update to STUN that will eventually result in a new RFC number for STUN [11]. This updated version of STUN adds the SHA-2 hash and new transports to STUN, as well as other minor updates. The basic operation is shown in Figure 10.8. The main function of STUN is for a STUN client to request a mapping request from a STUN server. The STUN packet sent by the client traverses any number of NATs before reaching the STUN server. The STUN server returns the mapped address in a response. Note that this mapped address is just the one of the outer NATs—there may be many mappings happening, but only the outermost one is visible to the STUN server. The address must be hidden from ALGs in NATs in this response packet or the NAT might try to fix the address and replace it. This is done by an exclusive ORing (XOR), the mapped IP address in the response.

There are four main usages of STUN. The first is for basic mapping discovery. The second is to perform a connectivity check with a server or a peer UA. (This is the usage for ICE.) The third is for media relay usage. The extensions are known as TURN and described in Section 10.14. The fourth is as a keep-alive to refresh NAT mappings for UDP. This is used in the SIP outbound extensions. Another usage of STUN is NAT behavior discovery [12]. This creative usage of STUN allows:

• NAT address mapping;

• NAT filtering behavior;

[image:]

Figure 10.8 STUN: session traversal utilities for NAT.

• Discovery of the mapping lifetime;

• Discovery of support for hairpinning;

• Determination of fragmentation handling;

• Detecting generic ALGs, which rewrite IP addresses.

Note that this usage of STUN has some limitations in that it can only characterize a NAT for a particular address at a particular time. Since a NAT can change its behavior for different addresses and at a later time, care must be taken in using the information derived from these tests.

10.10 UNSAF Requirements

With a number of peer-to-peer protocols such as SIP attempting to fix and work around NAT problems, the Internet Architecture Board (IAB) published RFC 3424 [13] setting the requirements and limitations on IETF solutions to deal with NAT. These approaches are known as Unilateral Self-Address Fixing (UNSAF) approaches, the acronym being chosen to highlight the fact that these approaches could, if not done correctly, make the NAT problem worse. Each protocol that tries to work around NATs must clearly scope the problem and describe the exit strategy and transition plan. The approach must discuss specific issues that might make the approach “brittle” or likely to fail. The approach must also discuss known practical issues encountered with real NAT in deployments.

10.11 SIP Problems with NAT

Consider the typical example of a SIP UA behind a NAT trying to communicate with a SIP server outside the NAT. Since SIP has some client/server properties, some SIP operations will work as long as the requests are originated by the UA. Requests originated by the SIP server may be blocked by lack of mappings or filtering rules. One approach used in practice is to use frequent SIP registrations to create the mapping and then reuse the mapping for incoming requests to the UA. However, this approach does not quite work without some SIP extensions as we shall see. Media negotiated using SIP offer answer is a big problem as the SDP offer and answer will contain private addresses and ports in the c= and m= lines. An example SIP message sent from behind a NAT is shown here:

INVITE sip:UserB@there.example.org SIP/2.0

Via: SIP/2.0/UDP 10.1.1.221:5060;branch=z9hG4bKhjh

From: TheBigGuy <sip:UserA@customer.example.com>;tag=343kdw2

To: TheLittleGuy <sip:UserB@there.example.com>

Max-Forwards: 70

Call-ID: 123456349fijoewr

CSeq: 1 INVITE

Subject: Wow! It Works...

Contact: <sip:UserA@10.1.1.221>

Content-Type: application/sdp

Content-Length: ...

v=0

o=UserA 2890844526 2890844526 IN IP4 UserA.customer.example.com

s=

t=0 0

c=IN IP4 10.1.1.221

m=audio 49170 RTP/AVP 0

a=rtpmap:0 PCMU/8000

There are three main problems with this message. The Via header field contains a private IP address (10.1.1.221) and the listening port (5060) may not have an active mapping or filter rule. The Contact URI is unroutable due to the private IP address. Finally, the SDP information in the c= and m= lines will not work behind the NAT.

Via already has a partial solution for the response routing. The use of the received parameter will record the mapped public IP address, which is then used for routing the response. However, this will only work for a port preservation NAT (which is not recommended NAT behavior). A normal NAT that also changes the port will not work. The Contact URI problem is even more serious. If the request is a REGISTER, the AOR binding will not work since the URI is unroutable. If the request is an INVITE, the ACK and all subsequent requests such as BYE will also fail to route.

There are three main solutions to these problems: symmetric SIP, connection reuse, and SIP outbound. Each of these will be discussed in the following sections.

10.11.1 Symmetric SIP

Symmetric SIP operation uses the rport extension defined in RFC 3581 [14]. Just as the received Via parameter saves the mapped address, the rport parameter saves the mapped port number for use in routing responses. A SIP UA indicates support for this extension by including the rport parameter (without the “=” and an address which is not known) in the SIP request. This tells the next hop proxy that the UA will be listening for the response on the same address and port number that the request was sent from, instead of the address and port listed in the Via. When the proxy receives the request, it stores the mapped port in the rport parameter and then uses this for routing any responses back. The use of rport is shown in Figure 10.1.

10.11.2 Connection Reuse

Connection reuse is a method in SIP to reuse existing TCP connections. It is defined in [15]. Once a connection is opened, UAs can reuse the connection for subsequent connections. If a NAT traversal approach such as ICE is used, connection reuse will reduce the number of times it has to be run. Connection reuse is mainly defined between proxy servers. The usage of connection reuse combined with registration is defined for UAs as SIP outbound in the next section.

10.11.3 SIP Outbound

SIP outbound [16] is a mechanism that combines connection reuse, registration through multiple proxies, and keep-alives. It solves many of the existing problems with SIP NAT traversal, although it requires both UAs and registrars support the extension. The basic configuration is shown in Figure 10.9. UAs have an instance-id, which uniquely identifies them. Multiple registrations by the UA through different proxy servers will have different reg-id. STUN keep-alive messages are used between the UA and the proxy to monitor the flow and keep the NAT mappings active. If the STUN checks reveal the flow has failed (perhaps due to a failure in the UA, the NAT, or the registrar), the UA registers again using the same instance-id but a new flow-id. If one proxy or flow fails, and incoming request can be proxied via the other proxy or flow.This is shown in Figure 10.10.

[image:]

Figure 10.9 SIP outbound.

[image:]

Figure 10.10 SIP outbound call flow.

10.12 Media NAT Traversal Solutions

There are a number of methods used for media traversal of NAT, which will be discussed in the following sections. These solutions involve getting RTP and RTCP negotiated using SIP to work.

10.12.1 Symmetric RTP

Symmetric RTP involves sending RTP from the same port that it is listening for RTP. This results in a UDP connection that the NAT will understand and allow mapping and filtering to work. However, this is only useful if the media flow is bidirectional and if at least one side can get through initially. Symmetric RTP effectively means ignoring address and port information in the SDP, since it will be different from the mapped addresses and ports.

10.12.2 RTCP Attribute

The normal assumption that the RTCP port is one higher than the RTP port only works through NATs that support port contiguity. For most NATs, the RTCP will not work even when RTP does work. A solution to this is to explicitly signal the RTCP port and address using the a=rtcp attribute defined in RFC 3605 [17]. If the mapped RTCP port can be discovered, using STUN, for example, then this approach can work.

10.12.3 Self-Fixing Approach

This approach uses NAT mapping information discovered using STUN, which is then put into the SDP offer or answer to fix the addresses. This works with some NAT such as end point-independent mapping NATs, but will fail to work for address or port-dependent mapping NATs.

The best solution for media NAT traversal is to use hole punching (and a protocol such as ICE) with a backup such as a media relay like TURN as described in the following sections.

10.13 Hole Punching

Hole punching is a probing approach used to discover and actually create NAT mappings and filtering rules. Hole punching will work in many situations that other approaches will fail, although it will not work in every situation—some combinations of NAT properties just will not permit direct exchange of packets between some hosts. Hole punching uses two clients and a rendezvous server. In SIP, the clients are UAs and a proxy server can be the rendezvous server.

In hole punching, two clients simultaneously probe using at least two sets of address, the private address and a discovered public address. The public address could be discovered using a STUN server or with the help of a rendezvous server. The rendezvous server has a public IP address and is reachable by both clients. The rendezvous server helps the two clients exchange address candidate lists. The clients repeatedly try both addresses until one or more work. At that point, they utilize this working address.

Figure 10.11 shows hole punching when the clients are behind different NATs. The private addresses fail since they are not behind the same NAT. The initial test of the public address fails; however, it creates a filtering rule, which allows the test from the other direction to succeed. In this way, the testing has “punched” holes through the NATs and created mappings and filtering rules where none existed prior to hole punching. Note this only works for certain combinations of NAT mapping and filtering rules. For example, this works if both NATs are end point-independent mapping. Another possibility is that both clients are behind the same NAT. In Figure 10.11, this would mean NAT A and NAT B were the same NAT. Note that this situation is not as easy as it sounds to detect—just because two clients use the same private address range does not mean they are behind the same NAT. In this example, the private addresses work while the public addresses fail, with the resulting connection utilizing the private addresses. Alternatively, there could be multiple levels of NAT; ultimately both clients are behind one NAT. While the private addresses fail (due to the multiple levels of NAT), the public addresses work after an initial failure as long as the common NAT supports hairpinning.

[image:]

Figure 10.11 Hole punching architecture.

Figure 10.12 shows an example of hole punching where both NATs are end point-independent mapping with address and port-dependent filtering. In this example, host A has two address candidates, 192.168.0.1:1234, which is host A’s private address, and 23.3.2.9:4219, which is A’s public address learned through a STUN server. Host A shares these address candidates with host B using the rendezvous service. Host B has two address candidates, 10.0.1.13:5678 and 2.72.3.2:31212, which it learns through a STUN server. Host B also shares these addresses with host A through the rendezvous server. At this point, the hole punching begins. Host A sends packets to 10.0.1.13:5678, but these packets go nowhere as this private address is not routable. Host B sends packets to 192.168.0.1:1234, but they also go nowhere as they are not routable. Host A sends a packet to 2.73.3.2:3122. Since NAT A is end point-independent mapping, the existing mapping is used, so this packet is forwarded to NAT B with a source address of 23.3.2.9:4219. This creates a filter rule in NAT A that allows packets to be received from 2.73.3.2:31212 to be forwarded to 23.3.2.9:4219. This packet arrives at NAT B but is dropped by NAT B since there is no filter rule allowing packets from 23.3.2.8:4219 to be received by 2.73.3.2:31212. Host B then sends a packet from 10.0.1.13:5678 to 23.3.2.9:4219. This reuses the mapping of 10.0.1.13:5678 to 2.73.3.2:31212 and creates a filter rule that allows packets from 23.3.2.9:4219 to be forwarded to 2.73.3.2:31212. The packet is forwarded to NAT A. At NAT A, there is an active mapping for 23.73.3.2:31212 and also a filter rule that allows packets to be received from 2.73.3.2:31212. As a result, the packet is forwarded to host A and the hole punching has succeeded. Note that without the failed packet sent by host A, which created this filter rule, this packet would have been blocked. Now host A can send to host B at 2.73.3.2:31212 using the two mappings and two filter rules in place. Note that hole punching also works if Host B sends a packet first, which fails, then Host A sends a packet, which then succeeds.

[image:]

Figure 10.12 Hole punching example.

Figure 10.13 shows another example of hole punching. In this example, NAT A is end point-independent mapping NAT with end point-independent filtering, while NAT B is address and port-dependent mapping with address and port-dependent filtering. A packet sent from host A 192.168.0.1:1234 creates a mapping of 23.3.2.9:4219.

A packet sent from host B 10.0.1.13:5678 creates a mapping of 2.73.3.2:31212. A packet sent from host A 192.168.0.1:1234 to 2.73.3.2:31212 creates a filtering rule in NAT A. The packet reaches NAT B but is dropped due to filtering. A packet sent from host B 10.0.1.13:5678 to 23.3.2.9:4219 creates a new mapping to 2.73.4.1:5732 and creates a new filtering rule in NAT B. The packet reaches NAT A. Since NAT A has end point-independent filtering, the packet is forwarded and host A receives packet. Host A then sends a packet to 2.73.4.1:5732, which reaches host B due to the two mapping and filtering rules. Hole punching works in this case despite the address and port-dependent mapping and filtering in NAT B since NAT A has end point-independent filtering.

[image:]

Figure 10.13 A second hole punching example.

Figure 10.14 shows an example where hole punching fails. NAT A is address and port-dependent mapping with address-dependent filtering while NAT B is address and port-dependent mapping with address-dependent filtering. A packet sent from host A 192.168.0.1:1234 creates a mapping of 23.3.2.9:4219. A packet sent from host B 10.0.1.13:5678 creates a mapping of 2.73.3.2:31212. A packet sent from A 192.168.0.1:1234 to 2.73.3.2:31212 creates a new mapping of 23.3.3.2:7876 and creates a new filtering rule in NAT A. The packet reaches NAT B but is dropped due to filtering. A packet sent from host B 10.0.1.13:5678 to 23.3.2.9:4219 creates a new mapping of 2.73.4.1:5732 and creates a new filtering rule in NAT B. The packet reaches NAT A but is dropped due to filtering.

Additional packets sent will also fail due to filtering, and hole punching fails for this configuration.

Typically hole punching will fail due to a combination of address or port mapping and address or port dependent filtering, such as that shown in Figure 10.14. When hole punching fails, a media relay must be used that is in the public Internet and reachable by both hosts. TURN is a protocol used by a UA to acquire a media relay transport address to use as a fall back when hole punching fails.

[image:]

Figure 10.14 A third hole punching example.

10.14 TURN: Traversal Using Relays Around NAT

TURN is a protocol extension of STUN used for acquiring and configuring a remote relay. TURN has been in development in the IETF for many years. Earlier versions were quite different, and even had a different title: Traversal Using Relay NAT. The current version is defined in RFC 5766 [18]. A minor update to TURN is being done by the IETF TRAM Working Group which will result in a new RFC number for TURN [19]. This update adds IPv6 support and some new transports as well as a number of other minor improvements.

A server operating as a TURN relay uses significant resources on the server. For one thing, each media stream relayed uses up double the bandwidth of the stream (incoming bandwidth + outgoing bandwidth). Also, the relay must process and forward each packet. Media relays also introduce delay (latency) and add extra IP routing hops, which increase the chance of packet loss. As a result, the use of TURN should be minimized for an efficient Internet communication or VoIP system.

10.15 ICE: Interactive Connectivity Establishment

Interactive connectivity establishment (ICE) is the solution to the problem of when to use hole punching and when to use a media relay. ICE is an IETF protocol that standardizes hole punching and is an optimal methodology. Users of ICE gather as many transport addresses as they can (the private and public address pairs in the previous section on hole punching are only a minimum). They are prioritized so the most preferred are tested first. A media relay (TURN) address is included as the lowest priority address. After the candidate addresses are exchanged using a SIP offer answer exchange, both sides begin hole punching and noting successes and failures at the end. Both sides choose the highest priority working transport pairs. In the worst case, this might be the media relay address if the NATs in the path make hole punching fail. The basic call flow is shown in Figure 10.15.

The following is an example set of address candidates in SDP. You can see the two candidate addresses used by Host A in the previous hole punching examples.

v=0

o=hosta 2890844526 2890842807 IN IP4 192.168.0.1

[image:]

Figure 10.15 ICE call flow.

s=

c=IN IP4 23.3.2.9

t=0 0

a=ice-pwd:a8fgdfpdd777uzjYhagZg

a=ice-ufrag:88fgdhhY

m=audio 4219 RTP/AVP 0

a=rtpmap:0 PCMU/8000

a=candidate:1 1 UDP 13d0706431 192.168.0.1 1234 typ host

a=candidate:2 1 UDP 69d4498152 23.3.2.9 4219 typ srflx raddr

192.168.0.1 rport 1234

Besides NAT traversal, ICE has other benefits. For example, address candidates can include both IPv4 and IPv6 addresses for dual stack UAs. As such, ICE can help in the transition between IPv4 and IPv6. ICE also includes keep alives to ensure that UDP mappings do not expire through NATs. ICE also provides a level of media authorization. When both UAs use ICE, media will only flow after a successful ICE check exchange. This ensures that both UAs are willing to send and receive media. Compare this to the case without ICE where a UA will start sending media to the address listed in the SDP without any check or verification. For example, a denial of service packet flood could be introduced by sending a high definition video server an INVITE and include the address of the target. The target will then receive the video stream without the ability to stop or understand.

Trickle ICE [20] is an extension to ICE that provides faster connectivity. Regular ICE waits until all candidates have been gathered before sending them over the signaling channel and starting ICE connectivity checks. As soon as one candidate is available (usually the host candidate which can be read from the network interface card), this candidate is sent over the signaling channel and ICE connectivity checks started. As other candidates become available (through STUN and TURN), those candidates are trickled in and shared over the signaling channel and added to the list of connectivity checks to be performed. Since this exchange of candidates is different from the usual SIP offer/answer exchange, the use of INFO [21] has been proposed to transport the additional candidates over SIP.

10.16 Conclusion

This chapter has looked at the history, justification, and operation of Network Address Translation. The effect of NAT on SIP and RTP has also been discussed. Various approaches to the traversal of SIP and RTP through NAT have been covered including hole punching, relays, STUN, TURN, and ICE. These are summarized in Table 10.4. For more examples of SIP NAT traversal, see the Best Current Practices for SIP NAT Traversal document [22].

Table 10.4

Summary of SIP and RTP NAT Traversal

SIP Symmetric Routing (rport)

Symmetric RTP

Outbound

STUN

ICE

TURN

RTCP port attribute

10.17 Questions

Q10.1 In a few paragraphs, explain how NATs came to be and why they are popular today.

Q10.2 Explain the operation of an address and port dependent mapping NAT that has two IP addresses (19.34.2.1 and 19.34.2.2) assigned to it. Use three examples of UDP packets sent from 192.168.1.101 port 42194 to 204.32.44.21 port 413, 31.32.56.5 port 443, and 204.32.44.21 port 9753. Use port parity preservation in your examples.

Q10.3 Is an end point-independent mapping NAT or an address-dependent mapping NAT more friendly to Internet communications? Why?

Q10.4 Deduce as many properties of the NAT below as you can based on the information in the following tables. Show the filter rules created as A and B begin hole punching. Will hole punching succeed?

X = 10.0.100.1

X1 = 73.42.4.1

X2 = 73.42.4.8

Y1 = 118.3.4.2

Y2 = 65.65.4.3

Active NAT Mapping Table

	10.0.100.1:8080 maps to
	73.42.4.1:3420

	10.0.100.1:4343 maps to
	73.42.4.1:7433

	10.0.100.1:8080 maps to
	73.42.4.8:3212

Filtering Table

73.42.4.8:3212 ⇔ 118.3.4.2:*

73.42.4.8:7433 ⇔ 118.3.4.2:*

73.42.4.1:3420 ⇔ 65.65.4.3:*

Q10.5 Explain the advantages and disadvantages of a SIP user agent supporting ICE.

Q10.6 For the packets of Question Q10.2, assume that each UDP packet contains a SIP OPTIONS request. Show the Via header field in each of the three 200 OK responses, assuming that the user agent has implemented appropriate SIP NAT traversal extensions.

Q10.7 Consider the hole punching scenario shown next.

NAT B is endpoint independent mapping NAT with endpoint dependent filtering.

NAT A is address and port dependent mapping with endpoint independent filtering.

Packet sent from A 192.168.0.1:1234 to a STUN server at 15.1.2.3 creates a mapping of 23.3.2.8:4219

Packet sent from B 10.0.1.13:5678 to a STUN server at 15.1.2.3 creates a mapping of 2.73.3.2:31212

Assume NAT A has only a single IP address. Assume NAT A and B do not implement port preservation.

Show the filter rules created as A and B begin hole punching. Will hold punching succeed?

Q10.8 Repeat Question Q10.7 with everything the same except:

NAT B is address-dependent mapping NAT with end point-dependent filtering. NAT A is address and port-dependent mapping with end point-dependent filtering. Show the filter rules created as A and B begin hole punching. Will hole punching succeed?

Q10.9 For a SIP message sent by host A (hostname of hosta.map-pings.org) to host Y1 in Question Q10.4, show the Via header in the response assuming the rport extension is used.

Q10.10 Explain the relationship between hole punching and ICE.

References

[1] Egevang, K., and P. Francis, “The IP Network Address Translator (NAT),” RFC 1631, May 1994.

[2] Rekhter, Y., et al., “Address Allocation for Private Internets,” BCP 5, RFC 1918, February 1996.

[3] Srisuresh, P., and M. Holdrege, “IP Network Address Translator (NAT) Terminology and Considerations,” RFC 2663, August 1999.

[4] http://www.ietf.org/html.charters/behave-charter.html.

[5] Hain, T., “Architectural Implications of NAT,” RFC 2993, November 2000.

[6] Audet, F., and C. Jennings, “Network Address Translation (NAT) Behavioral Requirements for Unicast UDP,” BCP 127, RFC 4787, January 2007.

[7] Senie, D., “Network Address Translator (NAT)-Friendly Application Design Guidelines,” RFC 3235, January 2002.

[8] Rosenberg, J., et al., “STUN—Simple Traversal of User Datagram Protocol (UDP) Through Network Address Translators (NATs),” RFC 3489, March 2003.

[9] Rosenberg, J., et al., “Session Traversal Utilities for NAT (STUN),” RFC 5389, October 2008.

[10] Rosenberg, J., “Interactive Connectivity Establishment (ICE): A Protocol for Network Address Translator (NAT) Traversal for Offer/Answer Protocols,” RFC 5245, April 2010.

[11] Petit-Huguenin, M., et al., “Session Traversal Utilities for NAT (STUN),” Internet-Draft draft-ietf-tram-stunbis (Work in progress), March 2015.

[12] MacDonald, D., and B. Lowekamp, “NAT Behavior Discovery Using Session Traversal Utilities for NAT (STUN),” RFC 5780, May 2010.

[13] Daigle, L., and IAB, “IAB Considerations for Unilateral Self-Address Fixing (UNSAF) Across Network Address Translation,” RFC 3424, November 2002.

[14] Rosenberg, J., and H. Schulzrinne, “An Extension to the Session Initiation Protocol (SIP) for Symmetric Response Routing,” RFC 3581, August 2003.

[15] Gurbani, V., R. Mahy, and B. Tate, “Connection Reuse in the Session Initiation Protocol (SIP),” RFC 5923, June 2010.

[16] Jennings, C., R. Mahy, and F. Audet, “Managing Client Initiated Connections in the Session Initiation Protocol (SIP),” RFC 5626, October 2009.

[17] Huitema, C., “Real Time Control Protocol (RTCP) Attribute in Session Description Protocol (SDP),” RFC 3605, October 2003.

[18] Rosenberg, J., R. Mahy, and P. Matthews, “Traversal Using Relays Around NAT (TURN): Relay Extensions to Session Traversal Utilities for NAT (STUN),” RFC 5766, October 2008.

[19] Reddy, T., et al., “Traversal Using Relays Around NAT (TURN): Relay Extensions to Session Traversal Utilities for NAT (STUN),” Internet-Draft draft-ietf-tram-turnbis (Work in progress), April 2015.

[20] Ivov, E., E. Rescorla, and J. Uberti, “Trickle ICE: Incremental Provisioning of Candidates for the Interactive Connectivity Establishment (ICE) Protocol,” Internet-Draft draft-ietf-mmusic-trickle-ice (Work in progress), January 2015.

[21] Ivov, E., R. Marocco, and C. Holmberg, “A Session Initiation Protocol (SIP) usage for Trickle ICE,” Internet-Draft draft-ivov-mmusic-trickle-ice-sip (Work in progress), June 2014.

[22] Boulton, C., et al., “NAT Traversal Practices for Client-Server SIP,” RFC 6314, July 2011.

11

Related Protocols

This chapter will introduce some related protocols to SIP. Telephony protocols from the PSTN will be discussed such as circuit-associated signaling, ISDN, and ISUP. Media gateway control protocols such as MGCP and H.248 will be introduced. Finally, H.323 will be discussed. Note that Jabber and Jingle are covered in Chapter 8.

11.1 PSTN Protocols

Three types of PSTN signaling protocols are mentioned in this text: channel-associated signaling (CAS), integrated services digital network (ISDN), and ISDN user part (ISUP). They will be briefly introduced and explained. How these protocols work in the PSTN today is covered elsewhere [1]. There is an effort underway to retire existing PSTN switches and protocols and replace them with IP and SIP-based systems and protocols. For example, the SIP Forum and ATIS (Association of Telecommunication Industry) are jointly developing a SIP Network-to-Network Interface (NNI) specification [SIP-F] and another document about evolving existing databases to handle IP carrier-to-carrier interconnection.

11.1.1 Circuit-Associated Signaling

Circuit-associated signaling (CAS), also known as channel-associated signaling, is a legacy technology still used in the PSTN today. The signaling information uses the same audio circuit as the voice path, with digits and characters represented by audio tones. These are the tones that used to be barely discernible at the beginning of some long-distance calls before the ringtone was heard. The tones are called multifrequency (MF) tones. They are somewhat similar to the tones used to signal between a telephone and a central office switch, which are known as dual-tone multifrequency (DTMF) tones. Long postdial delay can be introduced because of the time taken to outpulse long strings of digits. Also, CAS was susceptible to fraud, as fraudulent tones could be generated by the caller to make free telephone calls. This type of signaling is still used in trunk circuits between a central office and a corporation’s private branch exchange (PBX) switch. DTMF signaling is still commonly used in the PSTN.

11.1.2 ISDN Signaling

ISDN signaling was developed in the 1980s for all digital telephone connections to the PSTN. The most common types of interfaces are the basic rate interface (BRI) and the primary rate interface (PRI). A BRI can contain two 64-Kbps B-channels for either voice or data and a 16-Kbps D-channel for signaling. BRI was designed as a replacement for conventional telephone lines but requires an ISDN telephone or terminal adapter. PRI was designed for higher-volume applications such as PBX trunks. In North America, PRI uses a 1.544-Mbps link called a T-1 or a DS-1, which is divided up into 23 B-channels and one D-channel, with each channel being 64 Kbps. In Europe and much of the rest of the world, it uses 2.048 Mbps with 30 B-channels and one D channel. The H.323 protocol, described later in this chapter, reuses a subset of the ISDN Q.931 signaling protocol used over the D-channel.

11.1.3 ISUP Signaling

ISDN user part (ISUP) is the part of the signaling system no. 7 (SS7) protocol stack used between telephone switches in the PSTN for call signaling. SS7 is a dedicated packet-switched network used all over the world in the PSTN. This signaling method was developed to overcome some of the delay and security problems with CAS. There are examples of ISUP signaling in the call flow examples of Chapter 21. The adoption of this out-of-band signaling protocol was the first step taken by telecommunications carriers away from circuit-switched networks and towards packet-switched networks. The final step will likely be moving the bearer channels onto a packet-switched network as providers move towards an all-VoIP network using SIP.

11.2 SIP for Telephones

SIP for telephones (SIP-T) is a framework for SIP interworking with the PSTN [2]. It includes two approaches: translation and encapsulation. Translation is the direct mapping between PSTN protocols and SIP. The mapping between common PSTN protocols such as ISUP [3], Q.SIG [4], and others has been defined. Examples of SIP interworking with PSTN protocols including ISDN and CAS are in the SIP PSTN call flows document [5]. In this approach, as much of the information that is common to each protocol are mapped between them, with the remaining values being set to configurable defaults. A SIP call from a PSTN gateway is indistinguishable from a SIP call from a native device and is handled as such by the protocol. However, since not every single parameter in a PSTN signaling message has a counterpart (or has any meaning) in SIP, some information is lost if the call routes back to a PSTN termination point.

Encapsulation is another approach that is only useful for SIP/PSTN gateways. Using this approach, PSTN-to-SIP translation is done to construct the appropriate SIP message, and then the PSTN protocol message is encapsulated and included with the SIP message as a message body. If the SIP message is received by another SIP/PSTN gateway, the resulting PSTN signaling message is constructed from both the SIP message and the encapsulated PSTN message that was received by the other gateway. This approach offers the possibility of transparency (i.e., no loss of PSTN information as a call is carried across a SIP network). However, this only works in a network in which only one variation of PSTN protocol is used. Unlike Internet protocols, PSTN protocols vary by region and are not compatible without a special type of PSTN switch capable of converting one message format to another. There are many dozens of protocol variants used throughout the world.

Another disadvantage of encapsulation is that the PSTN message bodies must be encrypted if they are transported over the public Internet, or used in a network with native SIP devices. This is because private information can be carried in PSTN messages because PSTN protocols assume a different trust model than an Internet protocol such as SIP. To prevent accidental disclosure of this information, the message bodies must be encrypted by the originating gateway and decrypted by the terminating gateway, which adds significant processing requirements and call setup delay.

Encapsulated PSTN messages are carried as MIME bodies, which have been standardized for both ISUP and QSIG [6].

11.3 Media Gateway Control Protocols

There are a number of protocols used to decompose the operation of a gateway, which are often used in SIP/PSTN gateways. These protocols are known generally as media gateway control protocols. Their relation to a signaling protocol such as SIP is shown in Figure 11.1. Media gateway control protocols are not peer-level signaling protocols—they do not perform the rendezvous and negotiation functions of a signaling protocol such as SIP. Instead, they allow a gateway to be decomposed into a signaling element and a media component. The media component, a media gateway (MG), can provide PSTN trunks or RTP/SRTP connections, which are under the control of the media gateway controller (MGC). The MGC in turn uses a signaling protocol such as SIP or PSTN signaling to set up connections with other elements. Media gateway controllers used to be called softswitches. Often, a single or pair of media gateway controllers will control a number of media gateways. Media gateway control protocols are master/slave protocols—the MGC tells the MG what to do—there is no negotiation between them. Some common media gateway control protocols include MGCP [7] and H.248 [8]. H.248 was initially jointly published by the ITU-T as H.248 and in the IETF as MEGACO [9]. The current version is maintained by the ITU-T as H.248.1 version 1 [10].

[image:]

Figure 11.1 SIP and media gateway control protocols.

11.4 H.323

A related Internet communications protocol is the ITU recommendation H.323, entitled “Packet-Based Multimedia Communication.” H.323 is introduced as a related protocol to SIP for signaling VoIP and multimedia communication.

11.4.1 Introduction to H.323

H.323 [11] is an umbrella recommendation that covers all aspects of multimedia communication over packet networks. It is part of the H.32x series of protocols that describes multimedia communication over ISDN, broadband (ATM), telephone (PSTN), and packet (IP) networks, as shown in Table 11.1. Originally developed for videoconferencing over a single LAN segment, the protocol has been extended to cover the general problem of telephony over the Internet. The first version was approved by the ITU in 1996 and was adopted by early IP telephony networks. The current version, version 7, was adopted in 2009.

H.323 references a number of other ITU and IETF protocols to completely specify the environment. Each element of the network is defined and standardized. Figure 11.2 shows the main elements: terminals, gatekeepers, gateways, and multipoint control units (MCUs). Terminals, gateways, and MCUs are network end devices, often called end points. An end point originates and terminates media streams that could be audio, video, or data, or a combination of all three. At a minimum, all H.323 end points must support basic G.711 PCM audio transmission. Support of video and data are optional. An H.323 gatekeeper is a server that controls a zone, which is the smallest administrative domain in H.323. If a gatekeeper is present, all end points within that zone must register with and defer to the gatekeeper on authorization decisions to place or accept a call. A gatekeeper also provides services to terminals in a zone, such as gateway location, address translation, bandwidth management, feature implementation, and registration. A gatekeeper is not a required element in an H.323 network, but a terminal’s capabilities without one are severely limited. A gateway is another optional element in an H.323 network. It interfaces the H.323 network with another protocol network, such as the PSTN. An MCU provides conferencing services for terminals.

Some of the protocols referenced by H.323 are shown in Table 11.2. H.225 is used for registration, admission, and status (RAS), which is used for terminal to-gatekeeper communication. A modified subset of Q.931 is used for call setup signaling between terminals. (The H.323 usage of Q.931 is not compatible with Q.931 as used in an ISDN network.) H.245 is used for control signaling or media negotiation and capability exchange between terminals. T.120 is used for multipoint graphic communications. H.323 audio codecs are specified in the ITU G.7xx series. Video codecs are specified in the H.26x series. H.323 also references two IETF protocols, RTP and RTCP, for the media transport which are described in Chapter 12. The H.235 recommendation covers privacy and encryption, while H.450 covers supplementary services such as those commonly found in the PSTN (e.g., call forwarding, call hold, and call park).

Table 11.1

ITU H.32x Family of Standards

	Protocol
	Title

	H.320
	Communication over ISDN Networks

	H.321
	Communication over Broadband ISDN (ATM) Networks

	H.322
	Communication over LANs with Guaranteed QoS

	H.323
	Communication over LANs with Non-Guaranteed QoS (IP)

	H.324
	Communication over PSTN (V.34 Modems)

[image:]

Figure 11.2 Elements of an H.323 network.

11.4.2 Example of H.323

Figure 11.3 shows a basic call flow involving two terminals and a gatekeeper. The flow shows the interaction between the various elements and the various protocols used to establish the session. The call begins with an exchange of H.225.0 RAS messages between the calling terminal and the gatekeeper. All RAS messages are transported using UDP. It is assumed that both terminals have already registered with the gatekeeper using the registration request (RRQ) message. The calling terminal sends an admission request (ARQ) message to the gatekeeper containing the address of the called terminal and the type of session desired. The address could be specified as an H.323 alias, E.164 telephone number, e-mail address, or URL [12]. The gatekeeper knows about all calls in the zone it controls; it decides if the user is authorized to make a call and if there is enough bandwidth or other resources available. In this example, there is enough bandwidth, so the gatekeeper allows the call to continue by sending an admission confirmation (ACF) message. The ACF indicates to the calling terminal that end-point message routing, or the direct exchange of H.225 call signaling messages with the called terminal, is to be used. Alternatively, the gatekeeper can require gatekeeper routed signaling, where the gatekeeper acts like a proxy and forwards all signaling messages between the terminals. The gatekeeper has also translated the destination in the ARQ into a transport address that was returned in the ACF.

[image:]

Figure 11.3 H.323 call flow example.

The terminal is now able to open a TCP connection to the called terminal using the transport address returned in the ACF and send a Q.931 Setup message to the called terminal. The called terminal responds with a Call Proceeding response to the calling terminal. The called terminal must also get permission from the gatekeeper before it accepts the call, so an ARQ is sent to the gatekeeper. When it receives the ACF from the gatekeeper, the called terminal begins alerting the user and sends an Alerting message to the calling terminal. When the user at the called terminal answers, a Connect message is sent. There is no acknowledgment of messages because all these messages are sent using TCP, which provides reliable transport. These call signaling messages used in H.323 are a subset of the Q.931 protocol that covers ISDN D-channel signaling.

Figure 11.3 shows the use of H.323 FastStart, in which the Setup message contains the TerminalCapabilitySet information. This saves multiple messages and round trips compared to opening a second TCP connection between the terminals. In H.245 tunneling, a separate H.245 control channel is not opened. Instead, H.245 messages are encapsulated in Q.931 messages in the call signaling channel. This saves overhead in opening and closing a second TCP connection. Now, the terminals begin sending RTP media packets and also RTCP control packets using the IP addresses and port numbers exchanged in the OpenLogical-Channel messages.

Table 11.2

Protocols Referenced by H.323

	Protocol
	Description

	H.225
	Registration, admission, and status (RAS) and call signaling

	H.245
	Control signaling (media control)

	T.120
	Multipoint graphic communication

	G.7xx
	Audio codecs

	H.26x
	Video codecs

	RTP
	Real-time transport protocol (RFC 3550)

	RTCP
	RTP control protocol (RFC 3550)

	H.235
	Privacy and encryption

	H.450
	Supplementary services

Figure 11.4 shows a call teardown sequence, which either terminal may initiate. In this example, the called terminal sends an EndSessionCommand message in the H.245 control signaling channel. The other terminal responds with an EndSessionCommand message in the H.245 control signaling channel, which can now be closed. The called terminal then sends a disengage request (DRQ) message and receives a disengage confirmation (DCF) message from the gatekeeper. This way, the gatekeeper knows that the resources used in the call have now been freed up. A call detail record (CDR) or other billing record can be written and stored by the gatekeeper. Next, a Q.931 release complete message is sent in the call signaling connection, which can then be closed. Finally, the other terminal sends a DRQ to the gatekeeper over UDP and receives a DCF response.

[image:]

Figure 11.4 H.323 call teardown sequence.

The call flows in Figures 11.3 and 11.4 show direct end-point signaling, in which the calling terminal opens TCP connections to the called terminal and exchanges H.225.0 and H.245 messages. In the ACF response to the calling terminal, the gatekeeper can require gatekeeper routed signaling, where the call signaling and control signaling channels are opened with the gatekeeper, who then opens the channels with the called terminal. In this way, the gatekeeper stays in the signaling path and proxies all signaling messages. This allows the gatekeeper to know the exact call state and be able to invoke features.

References

[1] Anttalainen, T., Introduction to Telecommunications Network Engineering, Norwood, MA: Artech House, 1999.

[2] Vemuri, A., and J. Peterson, “Session Initiation Protocol for Telephones (SIP-T): Context and Architectures,” BCP 63, RFC 3372, September 2002.

[3] Camarillo, G., et al., “Integrated Services Digital Network (ISDN) User Part (ISUP) to Session Initiation Protocol (SIP) Mapping,” RFC 3398, December 2002.

[4] Elwell, J., et al., “Interworking Between the Session Initiation Protocol (SIP) and QSIG,” BCP 117, RFC 4497, May 2006.

[5] Johnston, A., et al., “Session Initiation Protocol (SIP) Public Switched Telephone Network (PSTN) Call Flows,” BCP 76, RFC 3666, December 2003.

[6] Zimmerer, E., et al., “MIME Media Types for ISUP and QSIG Objects,” RFC 3204, December 2001.

[7] Arango, M., et al., “Media Gateway Control Protocol (MGCP) Version 1.0,” RFC 2705, October 1999.

[8] International Telecommunication Union, “H.248.1: Gateway Control Protocol: Version 3,” March 2013.

[9] Cuervo, F., et al., “Megaco Protocol Version 1.0,” RFC 3015, November 2000.

[10] Taylor, T., “Reclassification of RFC 3525 to Historic,” RFC 5125, February 2008.

[11] “Packet-Based Multimedia Communications Systems,” ITU Recommendation H.323, 2009.

[12] Levin, O., “H.323 Uniform Resource Locator (URL) Scheme Registration,” RFC 3508, April 2003.

12

Media Transport

Establishing media sessions is one of the most important applications of SIP in Internet communications. An understanding of the issues relating to media transport of voice, video, DTMF, and text helps motivate the media negotiation capabilities of SIP. In this chapter, the Real-Time Transport Protocol (RTP) will be introduced as the protocol that transports actual media samples. The basic steps in audio and video media encoding and decoding are discussed, along with the effects of common Internet impairments. The RTP header format is covered along with common RTP topologies. The RTP Control Protocol (RTCP) is introduced as a way to monitor call quality. RTP profiles and common codes are discussed—both PSTN codecs and Internet codecs. Common audio and video codecs are discussed. Finally, DTMF transport and conversational text are covered.

12.1 Real-Time Transport Protocol (RTP)

Real-Time Transport Protocol [1] was developed to enable the transport of real-time datagrams containing voice, video, or other information over IP. RTP was not the first VoIP protocol used on the Internet. Network Voice Protocol (NVP) [2] was implemented in 1973 to carry real-time voice communications over the Internet. Early versions of RTP, first implemented in 1992, were used to transport voice over the Internet’s multicast backbone (MBONE). Both H.323 and SIP use RTP for media transport, making it the most common standard for Internet communications.

RTP is defined by the IETF proposed standard RFC 3550 (which updates the original RFC 1889). RTP does not provide any quality of service over the IP network—RTP packets are handled the same as all other packets in an IP network. However, RTP allows for the detection of some of the impairments introduced by an IP network, such as:

• Packet loss;

• Variable transport delay;

• Out-of-sequence packet arrival;

• Asymmetric routing.

Here is how RTP fits into the common media processing steps.

1. Coding. The coding step involves analog to digital conversion (A/D), which is implemented by low pass filtering, followed by sampling. The determination of how many bits per sample is specific to a particular codec (coder/decoder) algorithm. The particular codec used is transported by RTP in the payload type field. The sampling rate is carried in the offer/answer exchange in SDP, which negotiates the media session.

2. Packetization. The packetization step involves breaking the codec sample data into individual datagrams for transport. The determination of packet size is based on a tradeoff between packetization delay (how many sampling intervals must pass before enough data is ready for the datagram) and transport efficiency (each datagram has the fixed overhead of the RTP header and lower layer headers). Typically, packet sizes are chosen to be small so that packetization time is around 20 ms to 30 ms for audio. Packetization involves adding the RTP header to the codec payload.

3. Transport. RTP, as the name suggests, has a real-time nature, which requires a minimum latency (delay) across the Internet. There is never time to detect a missing packet, signal the loss, and wait for a retransmission. This might be possible for nonreal-time streaming media, but not real-time media. As a result, RTP does not usually use TCP transport but instead uses UDP transport and datagrams may be lost or may arrive out of sequence. Various fields in the RTP header field allow the detection of this.

4. Depacketization. The depacketization step involves removing the RTP header from the codec payload.

5. Buffering. The buffering step involves storing or buffering the codec samples before beginning playback. The choice of the buffer size for this step is critical for media quality. Too short a buffer will result in the buffer emptying and gaps in the media playback, while too long a buffer will introduce unpleasant latency. Adapting the size of the playback buffer when jitter or delay variation is occurring is best for media quality.

6. Decoding. The decoding step involves sending the codec packets to the codec algorithm. The right codec is chosen based on the received payload type in the RTP header.

7. Playback. The playback step involves rendering the media to the user as audio, video, or perhaps text (as we shall see in real-time text or text over IP [ToIP]).

In terms of media quality, the two most important factors are the packet loss rate and the end-to-end latency. Lost packets mean gaps in the playback stream that the codec algorithm must try to compensate for. Different codecs use different techniques for packet loss concealment (PLC). For example, interpolation can be used to try to predict the missing samples based on received samples either side of the lost ones. A simple replay algorithm can be useful for some media types. Silence or comfort noise insertion can be used to prevent users noticing the dead air of lost samples. Some codecs employ forward error correction (FEC), which allows partial reconstruction of missing packets under low loss conditions. Note that packets are not really “lost” on the Internet; instead, they are discarded by routers in the Internet due to congestion, or discarded by the RTP stack due to out of order arrival or late arrival resulting in missing their playback interval.

The end-to-end latency of real-time communications in general must be kept to less than 150 ms. Longer latency than this affects the perceived quality of the call, resulting in users interrupting each other and starting and stopping when both parties speak at the same time. There are many sources of delay in the media path. The codec itself introduces delay as it gathers at least one sample or frame before beginning coding and decoding. The packetization step introduces a delay of around 20 ms for audio, the time it takes to gather a full packet’s worth of data before sending it over the Internet. Transport delays are added by the routers and switches that forward and process the IP packets across the Internet. Finally, the buffering delay of the receiver to deal with jitter or delay variation also introduces latency. Some of these sources are shown in Figure 12.1.

Real-Time Transport Protocol (RTP) is an application layer protocol that typically uses UDP for transport over IP. RTP is not text-encoded, but uses a bit-oriented header similar to UDP and IP. RTP version 0 is only used by the “vat” audio tool for MBONE broadcasts. Version 1 was a pre-RFC implementation and is not in use. The current RTP version 2 packet header has 12 octets. RTP was designed to be very general; most of the headers are only loosely defined in the standard; the details are left to profile documents. The header contains:

[image:]

Figure 12.1 Sources of latency and packet loss on the Internet.

• Version (V): This 2-bit field is set to 2, the current version of RTP.

• Padding (P): If this bit is set, there are padding octets added to the end of the packet to make the packet a fixed length. This is most commonly used if the media stream is encrypted.

• Extension (X): If this bit is set, there is one additional extension following the header (giving a total header length of 14 octets). Extensions are defined by certain payload types.

• CSRC count (CC): This 4-bit field contains the number of content source identifiers (CSRC) that are present following the header. This field is only used by mixers that take multiple RTP streams and output a single RTP stream.

• Marker (M): This single bit is used to indicate the end of a complete frame in video or the start of a talk-spurt in silence-suppressed speech.

• Payload type (PT): This 7-bit field defines the codec in use. The value of this field matches the payload type number listed in the SDP.

• Sequence Number: This 16-bit field is incremented for each RTP packet sent and is used to detect missing/out of sequence packets.

• Timestamp: This 32-bit field indicates in relative terms the time when the payload was sampled. This field allows the receiver to remove jitter and to play back the packets at the right interval assuming sufficient buffering.

• Synchronization source identifier (SSRCI): This 32-bit field identifies the sender of the RTP packet. At the start of a session, each participant chooses an SSRC number randomly. Should two participants choose the same number, they each choose again until each party is unique.

• Contributing source identifier (CSRC): There can be none or up to 15 instances of this 32-bit field in the header. The number is set by the CSRC count (CC) header field. This field is only present if the RTP packet is being sent by a mixer, which has received RTP packets from a number of sources and sends out combined packets. A nonmulticast conference bridge would utilize this header.

RTP allows detection of a lost packet by a gap in the Sequence Number. Packets received out of sequence can be detected by out-of-sequence Sequence Numbers. Note that RTP allows detection of these transport-related problems but leaves it up to the codec to deal with the problem. For example, a video codec may compensate for the loss of a packet by repeating the last video frame, while an audio codec may play background noise for the interval. Variable delay or jitter can be detected by the Timestamp field. A continuous bit rate codec such as PCM will have a linearly increasing Timestamp. A variable bit rate codec that sends packets at irregular intervals will have an irregularly increasing Timestamp, which can be used to play back the packets at the correct interval.

RTP media sessions are unidirectional; they define how media is sent from the media source to the media sink. As such, a normal bidirectional media session is actually two RTP sessions, one in each direction.

In a multimedia session established with SIP, the information needed to select codecs and send the RTP packets to the right location is carried in the SDP message body. Under some scenarios, it can be desirable to change codecs during an RTP session. An example of this relates to the transport of dual-tone multiple frequency (DTMF) digits. A low bit rate codec that is optimized for transmitting vocal sounds will not transport the superimposed sine waves of a DTMF signal without introducing significant noise, which may cause the DTMF digit receiver to fail to detect the digit. As a result, it is useful to switch to another codec when the sender detects a DTMF tone. Because an RTP packet contains the payload type, it is possible to change codecs on the fly without any signaling information being exchanged between the UAs. The SIP re-INVITE message exchange allows this change in media session parameters to fail without causing the established session to fail.

The use of random numbers for SSRC provides a minimal amount of security against media spamming where an uninvited third party tries to break into a media session by sending RTP packets during an established call. Unless the third party can guess the SSRC of the intended sender, the receiver will detect a change in SSRC number and either ignore the packets or inform the user that something is going on. This behavior for RTP clients is not universally accepted, because in some scenarios (wireless hand-off, announcement server, call center, and so forth) it might be desirable to send media from multiple sources during the progress of a call.

RTP supports encryption of the media through the secure RTP (SRTP) profile discussed in Chapter 16. RTP supports a number of different topologies [3] including unicast (point-to-point) and multicast (point-to-multipoint). They are summarized in Table 12.1. In RTP, a translator is an element that converts the codec or sampling rate of an RTP stream. An RTP mixer is an element that combines multiple RTP streams into a single RTP stream in a media specific way.

At the start of an RTP session, the sender randomly chooses an initial value of the timestamp and SSRC. If both the sender and receiver happen to choose the same SSRC, both sides choose again to ensure each have a different SSRC. Media samples are encoded by the codec. Based on the packetization interval, once a complete frame of media data is available, the RTP header is populated and the packet sent. The sampling instant is used to update the time-stamp. The sequence number is updated for each RTP packet sent. The receiver first validates the RTP header, using the sequence number to determine if any packets have been lost or received out of sequence. The timestamp is used to playout the media sample by the codec.

12.2 RTP Control Protocol (RTCP)

The RTP Control Protocol (RTCP) is a related protocol also defined in RFC 3550 that allows participants in an RTP session to send each other quality reports and statistics, and exchange some basic identity information. The five types of RTCP packets are shown in Table 12.2. RTCP has been designed to scale for very large conferences. Because RTCP traffic is all overhead, the bandwidth allocated to these messages remains fixed regardless of the number of participants. That is, the more participants in a conference, the less frequently RTCP packets are sent. For example, in a basic two-participant audio RTP session, the RTP/AVP profile states that RTCP packets are to be sent about every 5 seconds; for four participants, RTCP packets can be sent every 10 seconds. Sender reports (SR) or receiver reports (RR) packets are sent the most frequently, with the other packet types being sent less frequently. The use of reports allows feedback on the quality of the connection including information such as:

Table 12.1

RTP Topologies

Point to point

Point to multipoint using multicast

Point to multipoint using an RTP translator

Point to multipoint using an RTP mixer

Point to multipoint using video-switching MCUs

Point to multipoint using RTCP-terminating MCU

Nonsymmetric mixer/translators

Combined topologies

Table 12.2

RTCP Reports

	SR
	Sender report [1]

	RR
	Receiver report [1]

	SDES
	Source description [1]

	BYE
	Goodbye [1]

	APP
	Application-specific [1]

	RTPFB
	Generic RTP Feedback [4]

	PSFB
	Payload-specific [4]

	XR
	Extended report [5]

	AVB
	AVB (Audio Video Bridging) RTCP packet [6]

	RSI
	Receiver Summary Information [7]

	TOKEN
	Port Mapping [8]

	IDMS
	IDMS (Inter-Destination Media Synchronization) Settings [9]

	SMPTETC
	SMPTE time-code mapping [10]

	IJ
	Extended interarrival jitter report [11]

• Number of packets sent and received;

• Number of packets lost;

• Packet jitter.

By default, RTCP uses the next highest port from the RTP port, although this can be changed in the offer/answer exchange as discussed in Chapter 13. Also, it is possible to multiplex RTP and RTCP over the same port [12].

12.2.1 RTCP Reports

RTCP is always sent as a compound packet. This means that every RTCP packet starts with a sender report (SR) or receiver report (RR) and then any additional packets. As their name suggests, sender reports are sent by media senders while receiver reports are sent by media receivers. Since RTP is unidirectional, a bidirectional media session will have two RTP sessions and two RTCP sessions. A source description (SDES) packet is used to exchange information about the sender or receiver. A bye (BYE) packet is used to leave a multicast session. An application-specific (APP) packet is used for RTCP extensions. An important RTCP extension is described in the next section.

12.2.2 RTCP Extended Reports

RTCP extended reports (RTCP-XR) [5] defines seven additional report blocks. They were defined due to limitation of the basic SR and RR. For example, the receiver report contains information about the average packet loss rate. However, for call quality, information about burst packet loss is much more important than average packet loss, since a good codec can cope with individual lost packets but not a long sequence of lost packets. In addition, RTCP-XR defines a way to estimate actual voice call quality and exchange this information. Deriving this information from existing receiver reports is not possible. As a result, the definition of RTCP extended reports has driven additional implementation of RTCP.

12.3 Compression

RTP does not provide very efficient transport of media. For example, consider the iLBC codec used in the 12.2-kb/s mode with 20 ms packetization time (ptime) transported over RTP, UDP, IPv4, and Ethernet. The size in octets of each frame of codec data can be calculated using the formula:

frame = bw * ptime/8

where frame is the frame size in octets (8 bits, or a byte), bw is the codec bandwidth, and ptime is the packetization time. For this example, each frame would contain 38 octets of codec data. RTP has a 12-octet header, UDP adds a 16-octet header, and IPv4 with no options adds 20 octets. Ethernet (IEEE 802.3) adds a 13-octet header and a 3-octet footer. As a result, the header overhead for this example is 60 octets! Overhead makes up over 60% of the total packet size. For normal Internet communications, this is how RTP is utilized. However, for some applications where RTP is to be used over low bit rate or wireless links, compression is performed. Note that saving bandwidth is only one reason to do compression. Compression can also reduce serialization delays when sending packets over very low-speed links.

One method of compression is compressed RTP (CRTP) [13]. This method only compresses the RTP header fields, using the fact that many parts of the header are identical in every packet. For example, V, P, X, CC, PT, and SSRC typically do not change once a session has been set up, so they do not need to be sent every packet. Other parts of the header such as sequence numbers and timestamps can be sent as deltas, resulting in saved bandwidth.

Another method that compresses the entire RTP/UDP/IP stack is robust header compression (ROHC) [14]. ROHC can compress 40 octets of overhead into 2 octets. To do this, codebooks are used to encode and decode common elements. Codebooks can be either static—predefined for a given protocol—or dynamic—constructed and used during a given session. ROHC can also be used to compress SIP and the stack below SIP.

Although UDP is normally used, it is possible to transport RTP over a stream transport such as TCP. To do this, a framing method is used, which is defined in [15]. If TCP is used, the retransmissions of TCP must be carefully managed or the latency of the session will increase with every retransmission, resulting in very poor performance. Also, when using TCP for media, the roles of each end point must be negotiated. One end point will be active and initiate opening the TCP connection, while the other end point will be passive, listening on a port for an open request.

12.4 RTP Audio Video Profiles

The use of profiles enables RTP to be an extremely general media transport protocol. The current audio video profiles defined by RFC 3551 [16] and others are listed in Table 12.3. Four are defined, although only the first one is widely implemented. As secure Internet communications are deployed, the use of the secure audio and video profile (SAVP) is increasing, as described in Chapter 16. The most common profile is the RTP profile for audio and video conferences with minimal control, also known as the RTP/AVP profile. RTP/AVP makes the following specifications for RTP:

• UDP is used for underlying transport.

• RTP port numbers are always even—the corresponding RTCP port number is the next highest port, which is always an odd number.

• No header extensions are used.

Table 12.3

Defined RTP Profiles

	Profile
	Name
	Specification

	RTP Profile for Audio and Video Conferences with Minimal Control
	RTP/AVP
	[16]

	The Secure Real-time Transport Protocol
	RTP/SAVP
	[17]

	RTP Audio-Visual Profile with Feedback
	RTP/AVPF
	[4]

	Extended Secure RTP Profile for RTCP-based Feedback
	RTP/SAVPF
	[18]

Some common audio and video codecs are listed in Tables 12.4 and 12.5. The codecs listed with a payload number in the tables use a static payload number. The RTP/AVP profile document lists details of these codecs, or a reference for the details is provided. Codecs shown with a payload number of dynamic must use a dynamic payload in the range 96–127. Dynamic payloads must be defined dynamically during a session. The minimum payload support is defined as 0 (PCMU) and 5 (DVI4) (although in practice, most only support PCM). The document recommends dynamically assigned UDP port numbers, although ports 5004 and 5005 have been registered for use of the profile and can be used instead. The standard also describes the process of registering new payload types with IANA.

12.4.1 Audio Codecs

There are two main types of audio codecs—PSTN codecs and Internet codecs. PSTN codecs were developed for the circuit-switched world of the PSTN. They have been designed to minimize bandwidth but were not designed to function over a packet-switched network such as the Internet. In particular, their quality rapidly degrades under conditions of packet loss, delay variation (jitter), and other common Internet impairments. Typically, these codecs are only usable when packet loss is less than 1%. Some examples include G.711 (PCM), G.721, G.723, and G.729A. G.711 is also known as pulse coded modulation (PCM), which has two variants, μ-law companding used mainly in the United States and Japan or A-law companding used in the rest of the world. G.711 is uncompressed, with 8-bit samples at 8,000 samples per second resulting in a 64-kb/s data stream. The others implement compression or linear prediction to reduce the bandwidth requirement. However, this compression makes their performance more sensitive to packet loss. For example, a single RTP packet of G.711 lost only affects that sampling interval while a single packet of G.729A can affect audio quality for a number of sampling intervals. These codecs typically require less than 1% packet loss. PSTN codecs are designed based on 8-kHz sampling due a design limitation of the PSTN network which is not present on the Internet. Many of these codecs also have significant intellectual property (IPR) fees and licensing associated with them. Some modern PSTN codecs overcome some of these problems. For example, the adaptive multirate codec (AMR) [19] was developed by the mobile phone industry with packet transport in mind. As a result, it has reasonable performance under packet loss. There is also a wideband version known as AMR-WB. However, AMR still has significant intellectual property and licensing costs.

Table 12.4

Common RTP/AVP Audio Payload Types

	Payload
	Codec
	Bit Rate

	0
	PCMU
	64 kb/s

	3
	GSM
	13 kb/s

	4
	G.723
	5.3 kb/s or 6.3 kb/s

	8
	PCMA
	64 kb/s

	9
	G.722
	128 kb/s

	18
	G.729
	8 kb/s

	
	iLBC
	13.33 or 15.2 kb/s

	
	AMR
	1.8–12.2 kb/s

	
	AMR-WB
	6.6–23.85 kb/s

	
	SPEEX
	2–44 kb/s

	
	MP3
	8–320 kb/s

	
	Opus
	6–510 kb/s

Table 12.5

Common RTP/AVP Video Payload Types

	Payload
	Codec
	Type

	26
	JPEG
	JPEG Video

	31
	H261
	H.261

	32
	MPV
	MPEG-I and MPEG-II

	34
	H263
	H.263

	
	H264
	MPEG-4 AVC

	
	H265
	H.265 HEVC

	
	VP8
	VP8 (also known as WebM)

	
	VP9
	VP9

In contrast, Internet audio codecs were designed with the Internet in mind. They are designed to give good performance even under conditions of packet loss and delay variation. Also, many provide better-than-PSTN quality by ignoring the 8-kHz sampling limitation. One of the first examples of an Internet codec is iLBC, the Internet low bit rate codec [20]. The most recent example is Opus [21] which was standardized by the IETF and is now widely used in WebRTC. Opus operates from narrowband low-bit rate to wideband high-fidelity stereo, which can be adjusted on the fly without requiring out-of-band signaling. Opus also supports constant bit rate and variable bit rate modes and supports frame sizes from 60 ms to an incredibly low latency 2.5 ms. Opus is based on technology from the Skype’s SILK codec and Xiph.Org’s CELT codec, and is available as open source. Opus also has very good packet loss concealment, allowing it to operate even under conditions of 10% packet loss or higher.

12.4.2 Video Codecs

Many of the considerations that apply to audio media transport also apply to video transport. However, there are some key differences. For example, the large amount of information present in every video frame, and the frequency of frame updates means that video requires higher bandwidth than audio. Sending uncompressed video is essentially impractical over the Internet. There are two main techniques in video compression. One is intraframe compression, where information in a single frame is compressed. These frames are called I-frames or key frames. For example, a lossy compression technique such as JPEG could be used. A frame will often be transported in multiple RTP packets. In this case, the marker (M) bit is set on the last packet of a frame to indicate to the codec that the frame is ready for processing and rendering. The other compression technique is interframe compression, where successive frames are compared and differences and predictions made. Predicted frames are known as P-frames and are made relative to a key frame or I-frame. Since often only a small amount of the entire screen changes between each frame, this can result in very compressed, relatively static images. For example, in a telepresence video conference, the I-frame would encode the background image and the face of the person while P-frames could carry their moving lips, blinking eyes, and waving hands. In addition bipredicted frames, or B-frames, which are based on multiple P-frames can be used to increase compression. For moving objects in an image, motion vectors of macroblocks can be used to achieve excellent compression. As a result, a typical video media stream will consist of combinations of I-frames, P-frames, and B-frames.

Since a frame is typically sent over a number of packets, a single lost packet may cause an entire frame to be discarded by the codec. The effect on the quality of the picture depends on the type of frame lost. If it was an I-frame, the loss will have a major impact on quality, and future P-frames and B-frames will result in an incomplete picture until another I-frame is sent. If the lost frame was a P-frame or B-frame, the impact will be less and for a shorter duration. Video codecs employ a number of loss concealment techniques. For example, some use repetition of previous frames, which can work for stationary or slowly moving images. Spatial and frequency interpolation can be used to try to generate lost frames. Also, sending frames using interleaving can provide protection against burst errors. In this approach, parts of different frames are sent out of sequence.

The most common standard video codecs are the H.26x series. H.261 was a very early codec used for video conferencing. H.262 is essentially the same as MPEG-2 which is used in DVDs and HDTV broadcasts. H.264, also known as Advanced Video Coding (AVC) is commonly used on the Internet today through the Flash Player plug-in and also in HTML5 streaming video. H.265, High Efficiency Video Coding (HEVC), is the next generation of this codec which uses approximately half of the bandwidth of H.264. The VP8 [22] codec is also becoming widely used on the Internet for streaming video (WebM) and also real-time communications, where it is used in browsers with WebRTC, as discussed in Chapter 19. VP9 [23] is the next version of this codec. Motion JPEG is a high-quality video codec that only uses I-frames with JPEG compression within each frame. It uses much more bandwidth than H.26x codecs but provides a high-quality picture even during fast action and motion sequences. In addition, there are many proprietary video codecs in use over the Internet.

The IETF is starting an effort to standardize an Internet video codec, similar to the way Opus was standardized as an Internet audio codec. The Internet Video Codec working group, NETVC [24], is starting work in 2015 with work expected to take a few years to complete.

12.4.3 Audio and Video Multiplexing over Same Ports

Traditionally, audio and video media are received on separate UDP ports. However, due to NAT traversal issues, it is becoming increasingly common to multiplex audio and video media on the same port. This is defined in [25] and is often also used along with RTP and RTCP multiplexing. If ICE is used to establish the media session, then audio RTP, video RTP, RTCP, and STUN packets all are received on the same port and need to be de-multiplexed correctly.

12.5 Conferencing

Audio conferencing and videoconferencing are important applications that utilize media transport. Each of these applications has their own media requirements. The details of SIP conferencing are covered in Section 9.8. Audio conferencing requires an audio mixer: a device that combines multiple RTP audio streams into a single stream. A mixer in RTP synchronizes the input media streams then combines them together. The SSRC of each media stream, which was included (mixed) into the resulting stream, will be copied into the contributing SSRC (CSSRC) field of the header. This allows speaker identification during the conference. A typical mixing strategy uses N − 1 mixing—that is, the N loudest speakers will have their media combined and shared, but each speaker will not hear themselves—they get the N − 1 mix. Thus for N = 3, the mixer will produce four distinct mixes, one with all three speakers that is received by nonspeakers and three with only two of the speakers. Each speaker will get a version of this mix. An audio mixer is sometimes called a multipoint control unit (MCU).

Mixing can involve combining multiple video streams into a single stream known as tiling (sometimes called “Hollywood squares” if they are presented in a checkerboard arrangement) or by just selecting a video stream. If “video following audio” is used, the video will switch to the loudest speaker. In other cases, users in a videoconference can select which video stream or streams they view, sometimes from a set of thumbnail images. When video switching is occurring, the new video stream needs an I-frame or key frame to be sent immediately; otherwise, the sequence of P-frames and B-frames being sent will not provide a complete image without the I-frame they reference. This is accomplished using fast update signaling between the video mixer and the video source. One method uses an XML message [26] to convey this signaling. Another method uses a special RTCP message [27] and the audio video profile with feedback (AVPF).

12.6 ToIP—Conversational Text

Conversational text, or text over IP (ToIP), is a bidirectional real-time exchange of text characters. Unlike e-mail where the message is only sent when the user hits send, or instant messaging where the message is sent when the user presses enter or return, conversational text messages are sent character by character, usually in full duplex (i.e., both sides can type at the same time). Devices in the PSTN to accomplish this are known as telecommunications devices for the deaf (TDD). Sometimes they are used only for one direction of the call; a human relay operator receives the conversational text messages from one party and speaks the words to the other party. The PSTN uses many different standards and devices for this communication. T.140 [28] is an International Telecommunications Union (ITU) format for encoding conversational text. RTP has a payload for transporting T.140 information [29] over UDP. This payload can use redundant transmission so that individual lost RTP packets will not result in dropped characters. For conversational text to be truly conversational, the end-to-end latency must be less than 300 ms. An industry group known as the Real-Time Text Taskforce (R3TF) [30] has been formed to help the adoption of this technology to the Internet.

12.7 DTMF Transport

Dual-tone multifrequency (DTMF) tones are commonly used on the PSTN for dialing telephone numbers. Although Internet communications do not utilize dialing, DTMF still must be transported and supported for user signaling—for example, when entering a personal identification number (PIN) or password to access voicemail or interactive voice response (IVR) systems. Calling card, telephone banking, and many other systems use DTMF tones for signaling. DTMF, as the name suggests, generates two superimposed sine waves at particular frequencies to send a particular digit (0–9, *, #, or, less commonly, A–F). In the PSTN, DTMF is typically encoded the same way as voice. However, low bit rate codecs, which are optimized for encoding voice, often do not reliably encode DTMF tones. As a result, there is a need to transport DTMF not as sine waves but as actual digits. This is especially appealing for devices such as SIP phones and mobile phones, which only need to generate DTMF. A payload known as telephone-events [31] has been defined for transport over RTP. This approach is commonly known in the industry as RFC 2833 tones, where RFC 2833 [32] was the original RFC specification for telephone-events.

The payload contains:

• Event: an octet used to encode the event such as the DTMF key pressed;

• End (E) bit: a bit used to indicate the end of the event;

• Reserved (R) bit: a bit reserved for future use, set to zero and ignored;

• Volume: 6 bits for the level of the tone in dBm0;

• Duration: 16 bits used for a timestamp for the event duration.

When a user presses a DTMF key, or a gateway detects a DTMF tone in band, an RTP telephone-events packet is created and sent. The marker (M) bit in the RTP header is set to indicate that this is the first packet sent. If the key is still being pressed or detected, the duration field will not be valid but should be set to a value higher than the update time. Update RTP telephone-events are sent typically every 50 ms. The RTP timestamp for these update packets will be the same as the first RTP packet but the duration will increase for each. When the key is released or the DTMF tone is no longer detected, a final RTP telephone-event packet is created. The end (E) bit will be set and the duration field will contain the actual tone duration. This final RTP packet will be resent two more times for redundancy. If the DTMF keypress or tone duration is less than the update time, only three RTP telephone events will be sent. The first will have the M bit set, all will have the E bit sent and the duration field will indicate the duration.

12.8 Questions

Q12.1 List the purpose of packet loss concealment. List some methods for packet loss concealment in audio codecs.

Q12.2 Why does RTP usually use UDP transport?

Q12.3 Explain the purpose of the sequence and SSRC fields in an RTP packet.

Q12.4 Calculate the bandwidth required for the SPEEX codec operating at 7.5-kb/s, 25-ms packetization time, assuming transport over UDP, IPv4 (no extensions), and 100BaseT Ethernet.

Q12.5 Explain the differences between RTCP receiver reports and RTCP extended reports.

Q12.6 Describe the three different types of video frames. Explain the need for fast update in a video conferencing system. Which types of frames does motion JPEG use?

Q12.7 How many telephone events packets will be sent if the DTMF key # is pressed and held for 185 ms? Assume the recommended update interval. How many bits in total will be sent, assuming transport over UDP, IPv4 (no extensions), and 1000BaseT Ethernet?

Q12.8 Explain the difference between instant messaging and conversational text.

Q12.9 Describe common audio and video mixing techniques.

Q12.10 Explain the need for the payload type field in the RTP header. Use an example with the [21] codec and telephone-events to make your point.

References

[1] Schulzrinne, H., et al., “RTP: A Transport Protocol for Real-Time Applications,” STD 64, RFC 3550, July 2003.

[2] Cohen, D., “Specifications for the Network Voice Protocol (NVP),” RFC 741, November 1976.

[3] Westerlund, M., and S. Wenger, “RTP Topologies,” RFC 5117, January 2008.

[4] Ott, J., et al., “Extended RTP Profile for Real-time Transport Control Protocol (RTCP)-Based Feedback (RTP/AVPF),” RFC 4585, July 2006.

[5] Friedman, T., R. Caceres, and A. Clark, “RTP Control Protocol Extended Reports (RTCP XR),” RFC 3611, November 2003.

[6] “Standard for Layer 3 Transport Protocol for Time Sensitive Applications in Local Area Networks,” IEEE Standard 1733, https://standards.ieee.org/findstds/standard/1733-2011.html.

[7] Ott, J., J. Chesterfield, and E. Schooler, “RTP Control Protocol (RTCP) Extensions for Single-Source Multicast Sessions with Unicast Feedback,” RFC 5760, February 2010.

[8] Begen, A., D. Wing, and T. Van Caenegem, “Port Mapping Between Unicast and Multi-cast RTP Sessions,” RFC 6284, June 2011.

[9] van Brandenburg, R. et al., “Inter-Destination Media Synchronization (IDMS) Using the RTP Control Protocol (RTCP),” RFC 7272, June 2014

[10] Singer, D., “Associating Time-Codes with RTP Streams,” RFC 5484, March 2009.

[11] Singer, D., and H. Desinei, “Transmission Time Offsets in RTP Streams,” RFC 5450, March 2009.

[12] Perkins, C., and M. Westerlund, “Multiplexing RTP Data and Control Packets on a Single Port,” RFC 5761, April 2010.

[13] Casner, S., and V. Jacobson, “Compressing IP/UDP/RTP Headers for Low-Speed Serial Links,” RFC 2508, February 1999.

[14] Bormann, C., et al., “Robust Header Compression (ROHC): Framework and Four Profiles: RTP, UDP, ESP, and Uncompressed,” RFC 3095, July 2001.

[15] Lazzaro, J., “Framing Real-Time Transport Protocol (RTP) and RTP Control Protocol (RTCP) Packets over Connection-Oriented Transport,” RFC 4571, July 2006.

[16] Schulzrinne, H., and S. Casner, “RTP Profile for Audio and Video Conferences with Minimal Control,” STD 65, RFC 3551, July 2003.

[17] Baugher, M., et al., “The Secure Real-Time Transport Protocol (SRTP),” RFC 3711, March 2004.

[18] Ott, J., and E. Carrara, “Extended Secure RTP Profile for Real-time Transport Control Protocol (RTCP)-Based Feedback (RTP/SAVPF),” RFC 5124, February 2008.

[19] Sjoberg, J., et al., “Real-Time Transport Protocol (RTP) Payload Format and File Storage Format for the Adaptive Multi-Rate (AMR) and Adaptive Multi-Rate Wideband (AMRWB) Audio Codecs,” RFC 3267, June 2002.

[20] Andersen, S., et al., “Internet Low Bit Rate Codec (iLBC),” RFC 3951, December 2004.

[21] Valin, JM, K. Vos, and T. Terriberry, “Definition of the Opus Audio Codec,” RFC 6716, September 2012.

[22] Bankoski, J., et al., “VP8 Data Format and Decoding Guide,” RFC 6386, November 2011.

[23] Grange, A., and H. Alvestrand, “A VP9 Bitstream Overview,” Internet-Draft, Work in progress, February 2013.

[24] https://datatracker.ietf.org/wg/netvc/documents/.

[25] Westerlund, M., C. Perkins, and J. Lennox, “Sending Multiple Types of Media in a Single RTP Session,” Internet-Draft, Work in progress, March 2015.

[26] Levin, O., R. Even, and P. Hagendorf, “XML Schema for Media Control,” RFC 5168, March 2008.

[27] Wenger, S., et al., “Codec Control Messages in the RTP Audio-Visual Profile with Feedback (AVPF),” RFC 5104, February 2008.

[28] ITU-T Recommendation T.140 (1998)—Text Conversation Protocol for Multimedia Application, with Amendment 1, (2000).

[29] Hellstrom, G., and P. Jones, “RTP Payload for Text Conversation,” RFC 4103, June 2005.

[30] http://www.realtimetext.org/.

[31] Schulzrinne, H., and T. Taylor, “RTP Payload for DTMF Digits, Telephony Tones, and Telephony Signals,” RFC 4733, December 2006.

[32] Schulzrinne, H., and S. Petrack, “RTP Payload for DTMF Digits, Telephony Tones and Telephony Signals,” RFC 2833, May 2000.

13

Negotiating Media Sessions

One of the most important uses of SIP is to negotiate the setup of sessions, as the name suggests. To do this, SIP uses another protocol, Session Description Protocol, to describe the actual parameters of the media session. This includes information such as media type, codec, bit rate, and the IP address and port numbers for the media session. In short, negotiating media sessions is all about exchanging the data necessary to begin the RTP media sessions described in Chapter 12 or SRTP media sessions described in Chapter 16. This chapter will introduce the Session Description Protocol (SDP) and the Offer/Answer protocol, which is the way SIP uses SDP to negotiate sessions.

13.1 Session Description Protocol (SDP)

The Session Description Protocol (SDP), originally defined by RFC 2327 [1], was developed by the IETF MMUSIC working group. It is more of a description syntax than a protocol in that it does not provide a full-range media negotiation capability. The original purpose of SDP was to describe multicast sessions set up over the Internet’s multicast backbone, the MBONE. The first application of SDP was by the experimental Session Announcement Protocol (SAP) [2] used to post and retrieve announcements of MBONE sessions. SAP messages carried an SDP message body, and were the template for SIP’s use of SDP. Even though it was designed for multicast, SDP has been applied to the more general problem of describing general multimedia sessions established using SIP. SDP is currently specified by RFC 4566 [3], which is mostly compatible with RFC 2327. There is an updated RFC which is being developed [4] and will replace RFC 4566 when it is finalized.

As seen in the examples of Chapter 2, SDP contains the following information about the media session:

• IP address (IPv4 or IPv6 address or host name);

• RTP profile (usually RTP/AVP although there are others such as RTP/SAVP);

• Port number (used by UDP or TCP for transport);

• Media type (audio, video, interactive whiteboard, and so forth);

• Media encoding scheme (PCM A-Law, MPEG II video, and so forth).

In addition, SDP contains information about the following:

• Subject of the session;

• Start and stop times;

• Contact information about the session.

Like SIP, SDP uses text coding. An SDP message is composed of a series of lines, called fields, whose names are abbreviated by a single lower-case letter, and are in a required order to simplify parsing. The set of SDP fields from RFC 4566 is shown in Table 13.1. The order in this table is the required order in SDP. Optional fields can be skipped, but must be in the correct order if present.

SDP was not designed to be easily extensible, and parsing rules are strict. The only way to extend or add new capabilities to SDP is to define a new attribute type. However, unknown attribute types can be silently ignored. An SDP parser must not ignore an unknown field, a missing mandatory field, or an out-of-sequence line. An example SDP message containing many of the optional fields is shown here:

v=0

o=johnston 2890844526 2890844526 IN IP4 43.32.1.5

s=IETF Update

i=This broadcast will cover the latest from the IETF

u=http://www.example.com

e=Alan Johnston alan@example.com

p=+1-314-555-3333 (Daytime Only)

c=IN IP4 225.45.3.56/236

b=CT:144

t=2877631875 2879633673

m=audio 49172 RTP/AVP 0

a=rtpmap:0 PCMU/8000

m=video 23422 RTP/AVP 31

a=rtpmap:31 H261/90000

Table 13.1

SDP Fields

	Field
	Name
	Mandatory/Optional

	v=
	Protocol version number
	m

	o=
	Owner/creator and session identifier
	m

	s=
	Session name
	m

	i=
	Session information
	o

	u=
	Uniform Resource Identifier
	o

	e=
	E-mail address
	o

	p=
	Phone number
	o

	c=
	Connection information
	m

	b=
	Bandwidth information
	o

	t=
	Timer session starts and stops
	m

	r=
	Repeat times
	o

	z=
	Time zone corrections
	o

	k=
	Encryption key (deprecated)
	o

	a=
	Attribute lines
	o

	m=
	Media information
	o

	a=
	Media attributes
	o

The general form of a SDP message is:

x=parameter1 parameter2 ... parameterN

The line begins with a single lower-case letter, for example, x. There are never any spaces between the letter and the =, and there is exactly one space between each parameter. Each field has a defined number of parameters. Each line ends with a CRLF. The individual fields will now be discussed in detail.

13.1.1 Protocol Version

The v= field contains the SDP version number. Because the current version of SDP is 0, a valid SDP message will always begin with v=0.

13.1.2 Origin

The o= field contains information about the originator of the session and session identifiers. This field is used to uniquely identify the session. The field contains:

o=username session-id version network-type address-type address

The username parameter contains the originator’s login or host or - if none. The session-id parameter is a Network Time Protocol (NTP) [5] time-stamp or a random number used to ensure uniqueness. The version is a numeric field that is increased for each change to the session, also recommended to be a NTP timestamp. The network-type is always IN for Internet. The address-type parameter is either IP4 or IP6 for IPv4 or IPv6 address either in dotted decimal form or a fully qualified host name.

13.1.3 Session Name and Information

The s= field contains a name for the session. It can contain any nonzero number of characters. The optional i= field contains information about the session. It can contain any number of characters.

13.1.4 URI

The optional u= field contains a uniform resource indicator (URI) with more information about the session.

13.1.5 E-Mail Address and Phone Number

The optional e= field contains an e-mail address of the host of the session. If a display name is used, the e-mail address is enclosed in <>. The optional p= field contains a phone number. The phone number should be given in globalized format, beginning with a +; then the country code, a space, or -; and then the local number. Either spaces or - are permitted as spacers in SDP. A comment may be present inside ().

13.1.6 Connection Data

The c= field contains information about the media connection. The field contains:

c=network-type address-type connection-address

The network-type parameter is defined as IN for the Internet. The address type is defined as IP4 for IPv4 addresses and IP6 for IPv6 addresses. The connection-address is the IP address or host that will be sending the media packets, which could be either multicast or unicast. If multicast, the connection-address field contains:

connection-address=base-multicast-address/ttl/number-of-addresses

where ttl is the time-to-live value, and number-of-addresses indicates how many contiguous multicast addresses are included starting with the base-multicast-address.

Note that if ICE (Interactive Connectivity Establishment) is used, as described in the previous chapter, the c= IP addresses will not be used for media. Instead, the a=candidate addresses will be used by ICE to establish the media session.

13.1.7 Bandwidth

The optional b= field contains information about the bandwidth required. It is of the form:

b=modifier:bandwidth-value

The modifier is either CT for conference total or AS for application specific. CT is used for multicast session to specify the total bandwidth that can be used by all participants in the session. AS is used to specify the bandwidth of a single site. The bandwidth-value parameter is the specified number of kilobytes per second. RFC 3556 [6] defines modifiers for specifying the RTCP bandwidth. RS indicates that the bandwidth specified is RTCP of senders, while RR indicates that the specified bandwidth is that of RTCP receivers.

13.1.8 Time, Repeat Times, and Time Zones

The t= field contains the start time and stop time of the session.

t=start-time stop-time

The times are specified using NTP [5] timestamps. For a scheduled session, a stop-time of zero indicates that the session goes on indefinitely. A start-time and stop-time of zero for a scheduled session indicates that it is permanent. The optional r= field contains information about the repeat times that can be specified in either in NTP or in days (d), hours (h), or minutes (m). The optional z= field contains information about the time zone offsets. This field is used if a reoccurring session spans a change from daylight savings to standard time, or vice versa.

13.1.9 Encryption Keys

The optional k= field was used to carry encryption keys. However, its use is no longer recommended and was included in RFC 4566 for parser compatibility reasons. Instead, a=crypto or a=key-mgt should be used, whose use is described in Chapter 16.

13.1.10 Media Descriptions

The optional m= field contains information about the type of media session. The field contains:

m=media port transport format-list

The media parameter is either audio, video, text, application, message, image, or control. The port parameter contains the port number. The transport parameter contains the transport protocol or the RTP profile used. The set of defined RTP profiles is in Table 12.3. The format-list contains more information about the media. Usually, it contains media payload types defined in RTP audio video profiles. More than one media payload type can be listed, allowing multiple alternative codecs for the media session. For example, the following media field lists three codecs:

m=audio 49430 RTP/AVP 0 6 8 99

One of these four codecs can be used for the audio media session. If the intention is to establish three audio channels, three separate media fields would be used. For non-RTP media, Internet media types should be listed in the format-list. For example,

m=application 52341 udp wb

could be used to specify the application/wb media type. Common SDP media types are listed in Table 13.2.

13.1.11 Attributes

The optional a= field contains attributes of the preceding media session. This field can be used to extend SDP to provide more information about the media. If not fully understood by a SDP user, the attribute field can be ignored. There can be one or more attribute fields for each media payload type listed in the media field. For the media line example in Section 13.1.10, the following four attribute fields could follow the media field:

a=rtpmap:0 PCMU/8000

a=rtpmap:6 DVI4/16000

a=rtpmap:8 PCMA/8000

a=rtpmap:99 iLBC

Other attributes are shown in Table 13.3. Full details of the use of these attributes are in the standard document [3].

Attributes can be either session level or media level in SDP. Session level means that the attribute is listed before the first media line in the SDP. If this is the case, the attribute applies to all the media lines below it. Media level means it is listed after a media line. In this case, the attribute only applies to this particular media stream. SDP can include both session level and media level attributes. If the same attribute appears as both, the media level attribute overrides the session level attribute for that particular media stream.

Table 13.2

Common SDP Media Types

	Example
	Type

	m=audio 49122 RTP/AVP 0
	Audio media, also used for telephone-events (DTMF) [7]

	m=video 52134 RTP/SAVP 24
	Video media [7]

	m=text 11000 RTP/AVP 98
	Real-time text (T.140) [8]

	m=application 12454 wb udp m=application 3422 TCP/TLS/BFCP * m=application 554 TCP/RTSP rtsp
	Application media, used for white board (wb), BFCP, RTSP, and others [3]

	m=application 12345 UDP/DTLS/SCTP
	WebRTC Data Channel [9]

	m=message 12763 TCP/MSRP *
	Message media for MSRP [10]

	m=image 54111 TCP t38
	Fax (T.38) [11] Note: Fax can also use the m=audio media type [12]

	m=control 48321 H323 mc
	Control media [1]

Table 13.3

SDP Attribute Values Defined in RFC 4566

	Attribute
	Name

	a=rtpmap:
	RTP/AVP list

	a=fmtp:
	Format transport

	a=ptime:
	Length of time in milliseconds for each packet

	a=maxptime:
	Maximum ptime

	a=cat:
	Category of the session

	a=keywds:
	Keywords of session

	a=tool:
	Name of tool used to create SDP

	a=orient:
	Orientation for whiteboard sessions

	a=type:
	Type of conference

	a=charset:
	Character set used for subject and information fields

	a=sdplang:
	Language for the session description

	a=lang:
	Default language for the session

	a=framerate:
	Maximum video frame rate in frames per second

	a=quality:
	Suggests quality of encoding

	a=direction:
	Direction for symmetric media

	a=inactive
	Inactive mode

	a=recvonly
	Receive only mode

	a=sendrecv
	Send and receive mode

	a=sendonly
	Send only mode

Note that the connection data field can also be session level or media level. There are three possibilities:

• A single c= field at the session level. This is the most common case.

• A session level c= field and some media-level c= fields.

• Each media level field with no session-level stream.

The same rules for attributes apply when both session and media-level c= fields are present; the media field overrides the session level for that particular media stream.

13.2 SDP Extensions

There are a number of SDP extensions that have been defined. Common ones are summarized in Table 13.4.

The RTCP IP address and port attribute, a=rtcp [13] is covered in Chapter 10. The a=setup and a=connection attributes are used for connection-oriented media, such as TCP. Section 8.5.6 shows the use of these attributes in establishing MSRP sessions. Another example is shown below of Binary Floor Control Protocol (BFCP) [18] session establishment, which shows the use of many of these SDP attributes. The first m= media line is for a BFCP stream running over TLS over TCP. The a=connection:new indicates that a new TCP connection needs to be opened and that this end point will do a passive open (the other end point will do the active open). The a=fingerprint contains a fingerprint of the certificate to be exchanged during the TLS handshake, as described in Section 15.2.2; the a=confid and a=userid attributes contain the conference ID and user ID of the user. The a=floorid attributes indicate that floor 1 is associated with a=label:1, which is associated with the m=audio stream while floor 2 is associated with a=label:2, which is associated with the

m=video stream.

v=0

o=bob 2808844564 2808844564 IN IP4 130.43.2.1

s=

t=0 0

c= m=application 54052 TCP/TLS/BFCP *

a=setup:passive

a=connection:new

a=fingerprint:sha-256 77:6A:1F:E9:D4:F8:2A:97:3C:49:B5:F9:8D:52:10:

62:89:C0:19:55:2C:48:3F:84:ED:A1:A1:7D:F4:EC:65:E7

a=floorctrl:s-only

a=confid:38921838776

a=userid:bob a=floorid:1 m-stream:1

Table 13.4

Common SDP Extensions

	Attribute
	Name

	a=rtcp
	Port and IP address for RTCP [13]

	a=mid
	Media Session Identifier

	a=group
	Grouping of media streams [14]

	a=setup
	Connection oriented media

	a=connection
	TCP transport [15]

	a=key-mgt
	Key management for MIKEY [16]

	a=crypto
	Key management for SRTP [17]

	a=floorctrl
	Binary Floor Control Protocol (BFCP) information [18]

	a=confid
	

	a=userid
	

	a=floorid
	

	a=fingerprint
	Connection-oriented media using TLS [19]

	a=label
	Media Label [20]

	a=accept-types
	

	a=accept-wrapped-types
	

	a=max-size
	Message Session Relay Protocol (MSRP) information [21]

	a=path
	

	a=ice-pwd
	

	a=ice-ufrag
	Interactive Connectivity Establishment (ICE) [22]

	a=ice-lite
	

	a=ice-mismatch
	

	a=ice-options
	

	a=chatroom
	Chat Room Name for MSRP Multiuser Chat [23]

	a=max-message-size
	Max message size for SCTP [24]

	a=sctp-port
	Port used for SCTP [24]

	a=msid
	Media Stream ID for WebRTC [25]

a=floorid:2 m-stream:2

m=audio 54026 RTP/AVP 0

a=label:1

m=video 54042 RTP/AVP 31

a=label:2

13.3 The Offer Answer Model

The use of SDP with SIP is given in the SDP offer answer RFC 3264 [26]. The default message body type in SIP is application/sdp. The calling party lists the media capabilities that they are willing to receive in SDP, usually in either an INVITE or in an ACK. The called party usually lists their media capabilities in the 200 OK response to the INVITE. More generally, offers or answers may be in INVITEs, PRACKs, or UPDATEs or in reliably sent 18x or 200 responses to these methods.

Because SDP was developed with scheduled multicast sessions in mind, many of the fields have little or no meaning in the context of dynamic sessions established using SIP. In order to maintain compatibility with the SDP protocol, however, all required fields are included. A typical SIP use of SDP includes the version, origin, subject, time, connection, and one or more media and attribute fields are shown in Table 13.1. The subject and time fields are not used by SIP but are included for compatibility. In the SDP standard, the subject field is a required field and must contain at least one character, suggested to be s=- if there is no subject. The time field is usually set to t=0 0.

SIP uses the connection, media, and attribute fields to set up sessions between UAs. The origin field has limited use with SIP. Usually, the session-id is kept constant throughout a SIP session and the version is incremented each time the SDP is changed. If the SDP being sent is unchanged from that sent previously, the version is kept the same.

Because the type of media session and codec to be used is part of the connection negotiation, SIP can use SDP to specify multiple alternative media types and to selectively accept or decline those media types. The offer answer specification, RFC 3264 [26], recommends that an attribute containing a=rtpmap: be used for each media field. A media stream is declined by setting the port number to zero for the corresponding media field in the SDP response. In the following example, the caller Tesla wants to set up an audio and video call with two possible audio codecs and a video codec in the SDP carried in the initial INVITE:

v=0

o=Tesla 2890844526 2890844526 IN IP4 lab.high-voltage.example.org

s=c=IN IP4 100.101.102.103

t=0 0

m=audio 49170 RTP/AVP 0 8

a=rtpmap:0 PCMU/8000

a=rtpmap:8 PCMA/8000

m=video 49172 RTP/AVP 32

a=rtpmap:32 MPV/90000

The codecs are referenced by the RTP/AVP profile numbers 0, 8, and 32. The called party Marconi answers the call, chooses the second codec for the first media field, and declines the second media field, only wanting a PCM A-Law audio session.

v=0

o=Marconi 2890844526 2890844526 IN IP4 tower.radio.example.org

s=c

=IN IP4 200.201.202.203

t=0 0

m=audio 60000 RTP/AVP 8

a=rtpmap:8 PCMA/8000

m=video 0 RTP/AVP 32

If this audio-only call is not acceptable, then Tesla would send an ACK then a BYE to cancel the call. Otherwise, the audio session would be established and RTP packets exchanged. As this example illustrates, unless the number and order of media fields are maintained, the calling party would not know for certain which media sessions were being accepted and declined by the called party.

The offer/answer rules are summarized in the following sections.

13.3.1 Rules for Generating an Offer

An SDP offer must include all required SDP fields (this includes v=, o=, s=, c=, and t=). It usually includes a media field (m=), but it does not have to. The media lines contain all codecs listed in preference order. The only exception to this is if the end point supports a huge number of codecs, the most likely to be accepted or most preferred should be listed. Different media types include audio, video, text, MSRP, BFCP, and so forth.

13.3.2 Rules for Generating an Answer

An SDP answer to an offer must be constructed according to these rules. The answer must have the same number of m= lines in the same order as the offer. Individual media streams can be declined by setting the port number to 0. Streams are accepted by sending a nonzero port number. The listed payloads for each media type must be a subset of the payloads listed in the offer. Note that for dynamic payloads, the same dynamic payload number does not need to be used in each direction. Usually, only a single payload is selected. More than one may be selected, but end points doing this must be capable of dynamically switching between them without signaling. Since many simple end points can only have one codec running at a time, this should be avoided. One common exception is to accept a media codec and also telephone-events (Section 12.7). This allows the codec to be used except when a DTMF key is pressed when a telephone-events payload is used.

13.3.3 Rules for Modifying a Session

Either party can initiate another offer/answer exchange to modify the session. When a session is modified, the following rules must be followed. The origin (o=) line version number must either be the same as the last one sent, which indicates that this SDP is identical to the previous exchange, or it may be incremented by one, which indicates new SDP that must be parsed. The offer must include all existing media lines and they must be sent in the same order. Additional media streams can be added to the end of the m= line list. An existing media stream can be deleted by setting the port number to 0. This media line must remain in the SDP in this and all future offer/answer exchanges for this session. For an existing media stream, any aspect can be changed.

13.3.4 Special Case—Call Hold

One party in a call can temporarily place the other on hold (i.e., suspending the remote side from sending media packets). This is done by sending an INVITE with an identical SDP to that of the original INVITE but with a=sendonly attribute present. The call is made active again by sending another INVITE with the a=sendrecv attribute present. (Note that older RFC 2543 compliant UAs may initiate hold using a c= address of 0.0.0.0.) For further examples of SDP use with SIP, see the SDP offer answer examples document [27].

13.4 Static and Dynamic Payloads

The payload type (PT) is used to identify the media codec in the media line of SDP as described in Section 13.1.10. This same payload type is also carried in individual RTP media packets sent during the media session. RFC 3551 defines some static payload types. These payloads are considered static because a given payload number defined in the specification always refers to that particular codec. For example, PT 0 for audio always means G.711 PCM codec. The use of a=rtpmap attribute for static payloads is optional, although it is considered good practice to include it. However, static payloads are no longer allocated by the IETF. Instead, all new codecs must make use of dynamic payload types. Dynamic payload types are in the range of 96 to 127. Payloads in this range do not refer to a particular codec; instead, the required a=rtpmap attribute must be used to indicate the payload. There are a number of rules associated with the use of dynamic payloads in the SDP offer answer exchange. They are:

• Dynamic payloads must be negotiated with SDP.

• The a=rtpmap attribute is mandatory.

• Dynamic payload numbers cannot be redefined within a session.

• Dynamic payload numbers do not need to be the same in both directions of a bidirectional session.

The last rule means that it is possible that payload 97 means one codec in one direction but another codec in a different direction.

13.5 SIP Offer/Answer Exchanges

The main offer/answer exchanges with SIP are in the INVITE/200 OK exchange or in the 200 OK/ACK exchange, if the INVITE did not contain an offer. There are other offer/answer modes, summarized in Table 13.5, which is taken from [28]. Support of the specification listed implies that the user agent supports this additional offer/answer exchange mode.

13.6 Conclusion

This chapter has covered the use of SDP in the Offer/Answer Protocol to negotiate the establishment and modification of media sessions. Core SDP and the Offer/Answer Protocol allow basic media sessions to be established. Some SDP extensions are required for more advanced media setup and control.

13.7 Questions

Q13.1 Create an SDP offer for Bob offering audio and video with the following audio codecs: iLBC, GSM and video codecs: MPV, and H.261. Bob wants to receive audio media on port 60322, video on port 60324, and RTCP on port 60326. Bob would prefer a packetization time of 30 ms for audio.

Q13.2 Create an SDP answer for Alice to Bob’s offer from the previous question, accepting video but declining audio. You can choose whichever ports and codecs you like.

Table 13.5

SIP Offer/Answer Exchange Modes

	Offer
	Answer
	Specification

	INVITE
	200 to INVITE
	RFC 3261

	2xx to INVITE
	ACK
	RFC 3261

	INVITE
	Reliable 18x to INVITE
	RFC 3262

	Reliable 18x to INVITE
	PRACK
	RFC 3262

	PRACK
	200 to PRACK
	RFC 3262

	UPDATE
	200 to UPDATE
	RFC 3311

Source: [28].

Q13.3 Find the three syntax errors in this SDP example.

v=0

o=alice 289084526 28904529 IP4 231.3.43.1

s=

c=IN IP4 231.3.43.1

m=audio 49170 RTP/AVP 0 97 98

a=rtpmap:97 iLBC/8000

Q13.4 Create an SDP offer by Alice that could have resulted in the following SDP answer.

v=0

o=bob 2808844564 2808844564 IN IP4 130.43.2.1

s=t

=0 0

m=audio 49174 RTP/AVP 0

c=IN IP4 130.43.2.1

a=rtpmap:0 PCMU/8000

a=recvonly m=text 49176 RTP/AVP 96

c=IN IP4 130.43.2.2

a=rtpmap:96 t140/1000

Q13.5 Indicate the IP address and port number associated with each of the three media streams.

v=0

o=Tesla 2890844526 2890844526 IN IP4 lab.high-voltage.example.org

s=c=IN IP4 100.101.102.103

t=0 0 m=audio 49170 RTP/AVP 0 8

c=IN IP4 101.102.103.106 a=rtpmap:0 PCMU/8000

a=rtpmap:8 PCMA/8000

m=video 49172 RTP/AVP 34

a=rtpmap:34 H263/90000

m=video 53132 RTP/AVP 26

c=IN IP4 100.102.103.4

a=rtpmap:26 JPEG/90000

Q13.6 Describe in words the offer and answer in the SDP below.

Offer:

v=0

o=alice 2890844526 2890844526 IN IP4 host.atlanta.example.com

s=

c=IN IP4 host.atlanta.example.com

t=0 0

m=audio 49170 RTP/AVP 0 8 97

a=rtpmap:0 PCMU/8000

a=rtpmap:8 PCMA/8000

a=rtpmap:97 iLBC/8000

m=video 51372 RTP/AVP 31 32

a=rtpmap:31 H261/90000

a=rtpmap:32 MPV/90000

Answer:

v=0

o=bob 2808844564 2808844564 IN IP4 host.biloxi.example.com

s= c=IN IP4 host.biloxi.example.com

t=0 0

m=audio 49174 RTP/AVP 0

a=rtpmap:0 PCMU/8000

m=video 49172 RTP/AVP 32

c=IN IP4 otherhost.biloxi.example.com

a=rtpmap:32 MPV/90000

Q13.7 Find two errors in the offer/answer exchange:

Offer:

v=0

o=Tesla 2890844526 2890844526 IN IP4 lab.high-voltage.example.org

s=c

=IN IP4 100.101.102.103

t=0 0 m=audio 49170 RTP/AVP 0 8

a=rtpmap:0 PCMU/8000

a=rtpmap:8 PCMA/8000

m=video 49172 RTP/AVP 32

a=rtpmap:32 MPV/90000

Answer:

v=0

o=Marconi 2890844526 2890844526 IN IP4 tower.radio.example.org

s=

c=IN IP4 200.201.202.203

t=0 0

m=audio 60000 RTP/AVP 98

a=rtpmap:98 iLBC/8000

Q13.8 Is it permissible to define payload 98 as iLBC codec in one direction and payload 97 as iLBC in the other direction?

Q13.9 A user agent supports RFC 3261 and RFC 3262, but does not support RFC 3311. Which offer/answer modes does this user agent support? Which is likely to be the most commonly used?

Q13.10 For the offer/answer exchange below, generate a new offer answer exchange between Marconi and Tesla where Marconi puts the audio stream on hold.

Offer:

v=0

o=Tesla 2890844526 2890844526 IN IP4 lab.high-voltage.example.org

s=c

=IN IP4 100.101.102.103

t=0 0

m=audio 49170 RTP/AVP 0 8

a=rtpmap:0 PCMU/8000

a=rtpmap:8 PCMA/8000

m=video 49172 RTP/AVP 32

a=rtpmap:32 MPV/90000

Answer:

v=0

o=Marconi 2890844526 2890844526 IN IP4 tower.radio.example.org

s=c

=IN IP4 200.201.202.203

t=0 0

m=audio 60000 RTP/AVP 8

a=rtpmap:8 PCMA/8000

m=video 0 RTP/AVP 32

References

[1] Handley, M., and V. Jacobson, “SDP: Session Description Protocol,” RFC 2327, April 1998.

[2] Handley, M., C. Perkins, and E. Whelan, “Session Announcement Protocol,” RFC 2974, October 2000.

[3] Handley, M., V. Jacobson, and C. Perkins, “SDP: Session Description Protocol,” RFC 4566, July 2006.

[4] Handley, M., et al., “SDP: Session Description Protocol,” Internet-Draft, Work in progress, May 2015.

[5] Mills, D., “Network Time Protocol (Version 3): Specification, Implementation, and Analysis,” RFC 1305, March 1992.

[6] Casner, S. “Session Description Protocol (SDP) Bandwidth Modifiers for RTP Control Protocol (RTCP) Bandwidth,” RFC 3556, July 2003.

[7] Schulzrinne, H., and S. Casner, “RTP Profile for Audio and Video Conferences with Minimal Control,” STD 65, RFC 3551, July 2003.

[8] Hellstrom, G., and P. Jones, “RTP Payload for Text Conversation,” RFC 4103, June 2005.

[9] Holmberg, C., S. Loreto, and G. Camarillo, “Stream Control Transmission Protocol (SCTP)-Based Media Transport in the Session Description Protocol (SDP),” Internet-Draft, Work in progress, March 2015.

[10] Campbell, B., R. Mahy, and C. Jennings, “The Message Session Relay Protocol (MSRP),” RFC 4975, September 2007.

[11] Parsons, G., “Real-Time Facsimile (T.38) - image/t38 MIME Sub-Type Registration,” RFC 3362, August 2002.

[12] Jones, P., and H. Tamura., “Real-Time Facsimile (T.38) - Audio/t38 MIME Sub-Type Registration,” RFC 4612, August 2006.

[13] Huitema, C., “Real Time Control Protocol (RTCP) Attribute in Session Description Protocol (SDP),” RFC 3605, October 2003.

[14] Camarillo, G., and H. Schulzrinne, “The Session Description Protocol (SDP) Grouping Framework,” RFC 5888, June 2010.

[15] Yon, D., and G. Camarillo, “TCP-Based Media Transport in the Session Description Protocol (SDP),” RFC 4145, September 2005.

[16] Arkko, J., et al., “Key Management Extensions for Session Description Protocol (SDP) and Real Time Streaming Protocol (RTSP),” RFC 4567, July 2006.

[17] Andreasen, F., M. Baugher, and D. Wing, “Session Description Protocol (SDP) Security Descriptions for Media Streams,” RFC 4568, July 2006.

[18] Camarillo, G., “Session Description Protocol (SDP) Format for Binary Floor Control Protocol (BFCP) Streams,” RFC 4583, November 2006.

[19] Lennox, J., “Connection-Oriented Media Transport over the Transport Layer Security (TLS) Protocol in the Session Description Protocol (SDP),” RFC 4572, July 2006.

[20] Levin, O., and G. Camarillo, “The Session Description Protocol (SDP) Label Attribute,” RFC 4574, August 2006.

[21] Campbell, B., R. Mahy, and C. Jennings, “The Message Session Relay Protocol (MSRP),” RFC 4975, September 2007.

[22] Rosenberg, J., “Interactive Connectivity Establishment (ICE): A Protocol for Network Address Translator (NAT) Traversal for Offer/Answer Protocols,” RFC 5245, April 2010.

[23] Niemi, A., M. Garcia-Martin, and G. Sandbakken, “Multi-Party Chat Using the Message Session Relay Protocol (MSRP),” draft-ietf-simple-chat-03 (work in progress), January 2013.

[24] Holmberg, C., and S. Loreto, “Stream Control Transmission Protocol (SCTP)-Based Media Transport in the Session Description Protocol (SDP),” Work in progress, March 2015.

[25] Alvestrand, H., “WebRTC MediaStream Identification in the Session Description Protocol,” Work in progress, April 2015.

[26] Rosenberg, J., and H. Schulzrinne, “An Offer/Answer Model with Session Description Protocol (SDP),” RFC 3264, June 2002.

[27] Johnston, A., and R. Sparks, “Session Description Protocol (SDP) Offer/Answer Examples,” RFC 4317, December 2005.

[28] Sawada, T., and P. Kyzivat, “SIP (Session Initiation Protocol) Usage of the Offer/Answer Model,” Internet-Draft, draft-ietf-sipping-sip-offeranswer-10 (work in progress), January 2009.

14

Internet Threats and Attacks

This chapter discusses Internet threats and attacks. We will use these threats and attacks to analyze the security model of SIP in the next chapter.

14.1 Introduction

This chapter introduces and discusses a variety of common attack types and methods encountered on the Internet. While examples and applications of many kinds of attacks are discussed here, the purpose of this chapter is to familiarize readers with Internet attacks in general, and the attacks early adopters of SIP systems have documented. Readers interested in a deeper understanding of Internet attacks should refer to additional sources that focus specifically with hacking, anti-hacking, network forensics, and incident response [1–4].

14.2 Attack Types

In this section, we will describe some common Internet attack types. Note that these attacks are not, in general, specific to SIP and are encountered on the Internet for almost any application.

14.2.1 Denial of Service (DoS)

As the name suggests, the purpose of a denial of service (DoS) attack is to overload a computer (host, switch, server) or application and cause it to slow down or cease operating entirely. DoS attacks can be grouped into two classes: flooding and exploitation.

14.2.1.1 DoS Flooding

In a flooding attack, an attacker directs large volumes of traffic at a target or set of targets and attempts to exhaust resources of the target(s) such as bandwidth, CPU processing, memory, or even storage. Flooding is an apt analogy for this type of attack. Just as relentless waves of ocean water will eventually exceed the intended capacity of a levee and cause it to break, a similarly relentless flow of traffic exceeding the capacity of a switch, server, application or circuit will exceed that resource’s capacity to operate, and it will fail. By causing the resource to fail, the attacker succeeds in denying or seriously retarding service to legitimate users of the resource.

A DoS flooding attack can be directed at different levels of the TCP/IP stack. For example, directing a large volume of IP or Internet Control Message Protocol (ICMP) traffic at the target can be sufficient to cause congestion and wholesale packet discard, including discard of legitimate traffic. In a “smurf” attack, for example, an attacker sends ICMP echo request packets (“pings”) to broadcast addresses of IP networks from a forged (spoofed) IP address. The host at the forged address (the target) is deluged with ICMP echo responses, and the network over which the IP broadcast is sent is often congested as well [5]. In this case, the nature and content of the packets do not matter, as long as they have the target as the destination IP address and the traffic volume is greater than the resources at or along the path to the target.

SYN flooding is a common TCP level attack. In a SYN flood attack, the attacker submits TCP connection requests (TCP SYN packets) faster than your server can process them. Your server must respond to an incoming TCP SYN packet with a SYN-AK packet and wait for a reply (TCP AK) to complete TCP’s three-way handshake. If no reply is forthcoming, your server suspects that it is lost and retransmits the SYN-AK. The attacker knows this, so he withholds replies to your server’s TCP SYN-AKs and continues to request additional TCP connections, expecting that your server will persist in retrying and keep the connection “half opened.” Unless you configure your server to detect this hostile activity and adjust how it responds, the attacker will force your server into devoting its resources for connections that will not ever complete, leaving nothing for connections your users might wish to make.

Attackers can, in general, use IP, ICMP, and TCP-level DoS attacks to attack any network equipment (SIP end points, proxies, and servers) used to provide SIP service that is not either configured to thwart such attacks, or protected by a security system capable of DoS prevention. DoS attacks against SIP service are not limited to network and transport-level attacks. At the application layer, the flooding traffic can be SIP messages. SIP message floods force the targeted SIP system to parse, process, and possibly generate responses. This activity consumes bandwidth as well as resources on the server and at intermediate systems (e.g., SIP proxies) along the signaling path. Cryptography does not prevent DoS attacks. In fact, cryptography can make DOS attacks more effective. For example, SIP systems that employ cryptographic authentication and message encryption can be flooded with forged messages. SIP systems attacked in this manner can waste even more resources processing encrypted messages than plain text messages. The following are several types of flooding attacks that use SIP.

• Control packet floods: The attacker floods VoIP servers or end points with unauthenticated call control packets. For example, the attacker could flood the target with INVITE, REGISTER, or response messages. This form of DoS attack can easily be distributed. Any open administrative and maintenance port on call processing and VoIP-related servers can be a target for this attack. If successful, the attacker prevents the target device from processing new calls and may cause in-session calls to disconnect.

• Call data floods: The attacker floods a SIP end point or proxy with call data traffic, attempting to exhaust that device’s CPU or to exceed bandwidth available to the end point. One form of such an attack is launched from a server, which typically has greater capacity than a SIP end point. The attack uses SIP and RTSP to open large numbers of RTP sessions and push media at the targeted end point [6]. RTP sessions can consume considerable bandwidth, especially when uncompressed media (high-quality video) are transferred, so this is a good example of a bandwidth exhaustion attack. If successful, the attacker prevents a SIP end point from processing new calls and may cause in-session calls to disconnect. While the phone is under attack, the user cannot retrieve voicemail, access feature set configuration data, or call customer support.

• SIP application flood attacks: The attacker floods a voicemail or Short Messaging Service application (or server) with messages. The goal is to keep the application busy and inhibit legitimate users from leaving or retrieving voicemail or text messages, force the application to record unsolicited messages until all mailboxes have exceeded defined message limits to prevent legitimate callers from leaving messages for subscribers, or force the SIP application to halt service because its storage capacity is exceeded.

An attacker can also attempt to deny service by attacking services that SIP systems rely upon for correct TCP/IP operation. The theory behind such attacks is simple: if SIP systems cannot connect to IP networks, they cannot place calls. By launching a DoS attack against servers that support Dynamic Host Configuration Protocol (DHCP), DNS, or BOOTP, an attacker can inhibit and block not only voice applications but also data applications. For example, in networks where SIP and data end points rely on DHCP-assigned addresses, a DoS attack that disables a DHCP server prevents all end points from acquiring IP addresses, DNS, and routing (e.g., default gateway) information.

14.2.1.2 Exploitation DoS

In an exploitation attack, the attacker tries to find some implementation flaw that will cause a target to fail. We consider this a DoS attack because the service rendered by the targeted resource is unavailable until it is restored. Exploitation attacks do not always require floods of traffic. For example, a single, cleverly crafted URL can be sufficient to cause an unpatched Apache or Microsoft Web server to terminate abnormally (crash). Some exploitation attacks try to force buffer overflow conditions (see Section 14.3.3); for example, the well-known SQL Slammer exploit forced a buffer overflow in the Microsoft SQL Server Resolution Service. Attackers commonly abuse URL encoding in HTTP or HTTPS requests to force a Web application into doing something the designers did not anticipate (e.g., cross-site scripting, SQL injection). Attackers are particularly interested in exploitation attacks that result in a privilege escalation, a situation where a Web application’s response to a malformed URL provides the attacker with administrative privileges [7].

Exploitation attacks are also known as implementation DoS attacks and are not limited to Web applications. An attacker can send malformed SIP and RTP packets to VoIP servers to exploit a protocol implementation vulnerability, force a failure condition, and ideally, “get root” privileges (e.g., system administrator-level access). Attackers have used malformed H.323 packets to exploit a Windows ISA memory leak and exhaust resources (CVE-2001-00546) and to exploit Nortel BCM DoS vulnerabilities [8]. Attackers have also used malformed SIP INVITE messages to deny service and execute arbitrary code on the Alcatel OmniPCX Enterprise 5.0 Lx (other SIP implementations were affected as well; see CERT Advisory CA-2003-06 [9]).

14.2.1.3 Distributed Denial of Service (DDoS)

Any host or server with limited bandwidth, storage, or resources is a possible target for DoS. However, applications can be designed and configured to provide some protection against DoS. For example, a SIP proxy server application can operate in a stateless mode for certain unauthenticated transactions. Server operating systems can also be configured to detect and prevent resource depletion, such as the SYN Attack Prevention in Windows Server 2003 [10].

The ubiquity of Internet access puts SIP servers that might seem overpro-visioned at risk to DoS attacks. Against such formidable targets, attackers employ distributed denial of service (DDoS) techniques. Over time, attackers can gain control of a large number of hosts, typically via the installation of a trojan program delivered as a virus (worm). Once installed, the trojan programs—“zombies”—are directed by an attacker’s master program to simultaneously launch an attack against a target. While one attacking host may not suffice to cripple a well-provisioned server, thousands are much more likely to succeed.

A DDoS attack is illustrated in Figure 14.1. Any protocol or application that can perform packet amplification can be used in a DoS attack. For example, a message exploder (which is truly as dangerous as it sounds unless proper security and consent mechanisms are implemented) can cause a single message to be sent to thousands of locations, or the same message sent thousands of times to a single location. Another would be to send a signaling request to establish a session with a high-bandwidth streaming server (such as a video media server) with the media destination set to the host to be attacked. Completely secure and authorized signaling can be used in this attack scenario if there is no corresponding authorization for the flow of media. A solution to this problem is discussed in Chapter 17.

[image:]

Figure 14.1 Distributed denial of service (DDOS) attack.

Additional (external) DoS countermeasures can and should be provided as part of a layered defense. For example, modern firewall and intrusion prevention appliances detect and block many forms of IP, ICMP, and TCP DoS attacks. These security systems are typically deployed at a network perimeter, but they can also be placed in front of LAN segments that host VoIP servers (VoIP server farms) to protect against insider attacks [11]. Emerging, VoIP-aware firewalls and intrusion prevention systems detect and block VoIP-specific DoS attacks. As products mature, advanced voice firewalls will detect and block malformed SIP and media packet headers; set, monitor, and enable thresholds to prevent signaling-based flooding; and provide rate limiting to prevent bandwidth misuse.

Denial of service attacks and prevention are subjects of ongoing research. Internet Denial of Service: Attack and Defense Mechanisms [12] is an excellent resource for anyone who is interested in the principles and mechanics of DoS and DDoS attacks and methods to detect and prevent them.

14.2.2 Man-in-the-Middle

The man-in-the-middle (MitM) is the classic attack and many cryptographic systems are designed to protect themselves against it. The assumption is that the attacker has somehow managed to insert himself between the two hosts. As such, the attacker has the ability to:

• Inspect any packet between the two hosts;

• Modify any packet sent between the two hosts;

• Insert new packets sent to either hosts;

• Prevent any packets sent between the hosts from being received.

An example of a MitM attack is shown in Figure 14.2.

A man-in-the-middle attack is a spoofing or impersonation attack, and can be executed at many levels of the TCP/IP architecture. For example, an attacker can use a laptop with a wireless LAN (WLAN) adapter, a means of signal amplification, and software to impersonate an access point (AP). Since WLAN stations seek out the most powerful signal, they will associate with the attacker’s laptop rather than the real AP for the WLAN. By duping WLAN stations in this fashion, an attacker inserts himself in the middle of all connections made over the WLAN. Attackers can impersonate Ethernet hubs and poorly configured LAN switches in this manner as well.

An attacker can also execute a MitM attack at the application layer, for a specific protocol such as SIP. For example, by sending spoofed ARP packets on a LAN segment, an attacker can “poison” a host’s ARP cache and draw traffic away from a legitimate SIP proxy server to his own impersonating server. By masquerading as a SIP proxy, the attacker can steal user account credentials; monitor, capture, or modify signaling traffic; and redirect and forward calls placed through his proxy to other masquerading systems (e.g., a rogue voice-mail server).

[image:]

Figure 14.2 Man-in-the-middle attack.

A MitM attacker who intercepts a SIP INVITE sent to its outbound proxy server can impersonate the proxy server and route requests maliciously. As another example, a compromised session border controller can be used to very effectively launch very damaging SIP MitM attacks. MitM attacks can also utilize DNS poisoning techniques to draw users and SIP end points away from legitimate servers to impersonating servers.

Cryptographic security measures can protect against certain MitM attacks. Authentication can prevent the attacker from posing as another host. For example, to thwart an attempt to impersonate a SIP proxy server, a UA can authenticate the proxy server before it attempts to place a call. Confidentiality can prevent the attacker from monitoring traffic. For example, the confidentiality provided by a secure tunneling protocol (IPSec or TLS) can provide protection against MitM. Integrity protection can detect when a MitM attacker is attempting to modify packets. For example, when SIP traffic is hashed and signed using a message authentication code, communicating UAs and proxy servers can detect attempts to alter signaling messages.

Many of the attacks described in the remainder of this chapter can be thought of as forms of the MitM attack, as many of them require that the attacker situate himself “between” communicating SIP endpoints and servers.

14.2.3 Replay and Cut-and-Paste Attacks

A replay attack is one in which an attacker captures a valid packet sent between the hosts and resends it to some advantage to himself. Replay attacks are often used to impersonate an authorized user. If an attacker can successfully monitor and capture passwords used in clear text authentication schemes used in such protocols as PPP (PAP), POP3, and telnet, he can later replay the captured password when the PPP, POP3, or telnet server challenges the user for proof of identity. Replay attacks can be prevented by using one-time session tokens (one-time passwords, OTPs), multifactor authentication (e.g., SecurID), timestamps, and message authentication codes. An example replay attack is shown in Figure 14.3.

Capturing and resending packets at the application layer can cause a number of problems if replays are not detected. For example, if an attacker replays a SIP signaling packet used to establish a PSTN call, he can place multiple phone calls when the caller only intended that one be placed, and the victim may incur excessive toll charges. If the attacker replays media packets, he can introduce discontinuities or dropouts in the audio stream.

Replay attacks can wreak havoc on multiparty calls. If RTP is used without authenticating RTCP packets and without sampling SSRCs, an attacker can inject RTCP packets into a multicast group, each with a different SSRC, and force the group size to grow exponentially [13].

A variant on a replay attack is the cut-and-paste attack. In this scenario, an attacker copies part of a captured packet with a generated packet. For example, a security credential can be copied from one request to another, resulting in a successful authorization without the attacker even discovering the user’s password. Cut-and-paste attacks illustrate why credentials must be protected using measures that associate the credential to a particular request or transaction. In Chapters 16 and 17, we discuss how replay protection can be provided in RTP and SIP.

14.2.4 Theft of Service

A theft of service attack can be launched in a number of ways. It can begin with the theft of a credential, shared secret key, or private key that can then be used to utilize resources without paying for them. Alternatively, theft of service can take the form of a redirection attack, in which the content (e.g., a voice message) or service requested by an authorized host or party can be redirected to an unauthorized host or party.

[image:]

Figure 14.3 Call Replay attack.

In a SIP network, theft of service can be initiated for PSTN gateway access or use of a media relay resource. Other shared resources, for example, a video and audio conferencing bridge, can be targets of theft of service attacks.

14.2.5 Eavesdropping

Eavesdropping is a passive, and often difficult to detect, MitM attack in which the attacker copies or listens to communication between two hosts.

VoIP eavesdropping can be performed on signaling and media. Attackers eavesdrop signaling traffic to discover credentials, calling patterns, or identity or other sensitive information. Attackers eavesdrop media traffic to capture, replay, or rebroadcast audio, video, or (text) messaging.

The danger of VoIP eavesdropping depends on the topology and underlying technology (switching systems and communications media) of the IP network used for voice transport. Eavesdropping on packets by tapping into fiber-optic circuits or by breaking into core switches that comprise eavesdropping on the Internet backbone is much more difficult than eavesdropping on traffic in a shared Ethernet segment on an unencrypted wireless link, or by breaking into an access point or broadband access router. Confidentiality measures protect against eavesdropping attacks.

One method to provide confidentiality is called hop-by-hop security. This method uses confidentiality measures on each network over which VoIP signaling and media traffic will be transmitted. For some network hops, confidentiality services specifically provided by underlying media can be used, for example, WiFi Protected Access (WPA) or WPA2 over wireless LAN in a company’s branch office. For other network hops, higher-level secure tunneling protocols can be used. For example, IPSec tunnels can be used to protect traffic from VoIP end points and proxy servers in a company’s branch offices to an enterprise gateway located in the company’s main office. In some cases, organizations may rely on isolation and trust, and not use encryption over an internal network hop. For example, a company may require all VoIP end points to establish a secure tunnel with TLS to connect to a SIP proxy server in its main office. Topology constraints imposed on the company’s internal network may assure that traffic forwarded from the SIP proxy server to other VoIP servers and enterprise gateways uses LAN segments or VLANs with restricted connectivity (e.g., only voice servers may be connected to these segments).

Hop-by-hop security may be sufficient for some, perhaps many enterprise VoIP applications, but it has some noteworthy limitations, especially when individual users and organizations cannot exercise administrative control and implement security measures over every hop. As is the case with remote data access today, this is generally the case for mobile users, users (subscribers) of public VoIP services, such as users with guest credentials on a business partner’s network. In such scenarios, the optimal way to provide not only confidentiality services but authentication and integrity as well is to encrypt traffic from user agent to user agent or end-to-end.

14.2.6 Impersonation

Impersonation is described as a user or host pretending to be another user or host, especially one that the intended victim trusts. For example, in phishing attacks, an attacker tries to lure a targeted user to visit his Web site instead of the user’s online banking site, eBay account maintenance site, or company intranet portal. If the bait is successful, the attacker continues the deception at an impersonation Web site to make the victim disclose his banking information, employee credentials, and other sensitive information.

Impersonation attacks often follow social engineering and replay attacks, using identities and credentials an attacker has “borrowed,” stolen, eavesdropped, or otherwise managed to discover (such as by brute-force cracking of a weak password). The probability of success in impersonation attacks can depend on the way in which identity is being asserted and challenged. For example, organizations that use simple, static passwords for user accounts are generally more vulnerable to impersonation attacks than organizations using multifactor authentication measures or digital certificates.

Address spoofing is a common form of impersonation attack. An address spoofing attack occurs when an attacker’s device masquerades as the IP and/or MAC address of legitimate end point or server. By impersonating an address in this manner, the attacker causes all traffic to be redirected to his device.

14.2.7 Poisoning Attacks (DNS and ARP)

DNS poisoning targets the domain name service application. DNS is often used as the first step in establishing communication, to obtain the numeric IP address associated with a domain name or SIP URI or to resolve an ENUM query. An attack on the DNS can be used in replay, DoS, impersonation, and other attacks.

For example, SIP uses DNS to locate SIP servers for a given host name. If false DNS responses were generated in response to these queries, the SIP requests can be sent to a rogue proxy server.

As it is deployed today, DNS is vulnerable to several types of attacks, at different levels of the domain name system. An attacker can use a virus or spyware to modify the root server or default name servers a host uses to resolve domain names and direct the host to the attacker’s name server, which will return incorrect and malicious responses to any DNS queries. An attacker can use a pharming attack to alter DNS responses that a host or local name server has chosen to store or cache locally, to avoid repeated referrals for a frequently requested domain name or URI. Attackers can even attempt to spoof name servers into transferring a zone file that contains altered DNS resource records.

To combat DNS poisoning, DNS caching can be disabled at end points and local resolvers; alternatively, resolvers can be configured to only cache resource records received from authoritative servers [14]. DNS name server operators can follow secure configuration and change and patch management best practices as recommended by security experts [15] and organizations like SANS [16] to prevent poisoning and incorrect zone transfers.

Another way to combat this attack is to incorporate authentication and integrity measures in the DNS protocol itself such as DNSSec (DNS security [17]). DNS security provides much-needed security services to DNS, including authentication of the origin of DNS data, data integrity protection, and authenticated denial of existence of DNS resource record sets. When DNSSec is deployed, all responses are digitally signed, allowing a DNS resolver to verify that the information it receives is identical to the information maintained by the authoritative DNS server. Private DNS root operators can deploy DNSSec today, but the hierarchical nature of the DNS makes widespread deployment challenging. For example, relying on digital signatures over one or a few levels of name delegation provides incomplete protection. For complete protection, the entire hierarchy must implement signing, beginning at the root of the DNS.

The address resolution protocol (ARP) is a request-response IP-enabled devices use to discover the LAN (or WLAN) MAC address that corresponds to a specified IP address. If an attacker sends forged ARP packets to VoIP end points and server, these systems will modify their local forwarding tables and replace any previous table entry for this IP address with the attacker’s device addresses. The ARP “cache” of these devices is now poisoned, and all future traffic to the target address will now be forwarded to attacker’s device instead of intended device.

14.2.8 Credential and Identity Theft

A credential or identity theft attack provides an attacker with a valid identity and authentication credentials, such as a username and password, a shared secret, or a PIN that provides access to a private key. Any of these can then be used by the attacker to launch other attacks such as theft of service or impersonation.

Attackers can steal credentials over the wire by attacking the signaling protocol. Alternatively, attackers can use viruses, worms, and spyware to install key logging or trojan software that searches computer (and networked storage) for files containing account information. Increasingly, attackers are using phishing attacks. An attacker can place an incoming VoIP call with a forged identity to impersonate a service call and get the information using social engineering.

Credential and identity theft is as much a social condition as it is a technical problem. We have identified many security measures that can be implemented to protect credential data while in transit and at rest. However, security measures alone, including stronger authentication techniques, cannot prevent users from unintentionally disclosing credentials, or prevent unsophisticated users from being deceived by a talented and financially motivated attacker. Disincentives and punitive actions against employees whose credentials are stolen have proven ineffective. Security awareness and public education are often a better investment for organizations seeking to minimize credential theft. Perhaps the most important defense against credential theft is providing strong incentives to employees and users to protect credentials.

14.2.9 Redirection/Hijacking

A redirection is a MitM attack in which one end point of a communication is maliciously changed, usually after identification, authentication, and authorization steps have taken place. For example, a SIP signaling message may contain information about where the associated media should be delivered. If the attacker changes only the media delivery location information but leaves all other information unchanged, the resulting media can be redirected to another host. A redirection attack is shown in Figure 14.4.

Integrity protection prevents such an attack, as any unauthorized changes/modifications to the communication can be detected. A man-in-the-middle can redirect or hijack a SIP call by modifying the Contact header field of a SIP REGISTER request. If the modification is not detected, the REGISTER request will authenticate properly, but SIP requests will now be routed to the UA the attacker has identified as the Contact. Integrity protection measures protect against this form of attack.

Call redirection can be used to steal identity, credentials, or other sensitive information. If an attacker succeeds in forging a SIP Re-INVITE packet and convinces an end point to redirect an existing call to another device, such as a rogue voice application, the attacker can execute a voice equivalent of a phishing attack. Once the caller is redirected, the rogue voice application can try to deceive the caller into revealing a PIN or other personal identifying and sensitive information.

14.2.10 Session Disruption

Session disruption describes any attack that degrades or disrupts an existing signaling or media sessions or a session whose establishment is pending. For example, if an attacker is able to forge failure messages and inject them into the signaling path, he can cause sessions to fail when there is no legitimate reason why they should not continue. Similarly, if an attacker is able to inject disconnect messages, he can cause untimely or premature termination of media sessions. Alternatively, if an attacker introduces bogus packets into the media stream, he can disrupt packet sequence, impede media processing, and disrupt a session. Session disruption can be accomplished in SIP by injecting false signaling packets. For example, when HTTP Digest authentication is being used, an attacker can inject malformed AKCs or CANCELs to cause calls to fail during setup.

[image:]

Figure 14.4 Redirection attack.

Several types of disruption attacks have been demonstrated, including the following.

Delay attacks are those in which an attacker can capture and resend RTP SSRC packets out of sequence to a VoIP end point to force the end point to waste processing cycles resequencing packets and degrade call quality on CPU-challenged devices.

Tear-down attacks allow an attacker to send forged RTP SSRC collision and RTCP BYE to signal a failure condition or force call disconnection.

QoS Modification enables an attacker to alter quality of service information used by underlying protocols to increase latency and jitter. By altering IEEE 802.1Q VLAN tags or IP packet ToS bits, the attacker could disrupt the quality of service engineered for a VoIP network. This attack can be executed as a man-in-the-middle or by modifying a VoIP end-point device configuration.

[image:]

Figure 14.5 Session disruption attack.

Disruption of underlying media allows an attacker to disrupt service provided by IEEE 802.1x-enabled networks by spoofing frames such as EAP-Failure to force end points to disconnect from the network. An attacker can disrupt Voice over WLAN service by disrupting IEEE 802.11 WLAN service using, for example, radio spectrum jamming or a WPA MIC attack. (This latter attack exploits a standard WLAN security measure: a wireless access point will disassociate stations when it receives two invalid frames within 60 seconds, causing loss of network connectivity for 60 seconds. A 1-minute loss of service is hardly tolerable in a voice application.)

14.3 Attack Methods

In the following sections, a number of attack methods will be discussed.

14.3.1 Port Scans

Port scanning is a technique in which an attacker tries to open connections to listening ports on a server. If a particular, well-known port accepts a TCP connection, the attacker can attempt attacks specifically designed to exploit the protocol and application that is likely to be executing on the server. VoIP servers typically use well-known ports, such as port 5060 for SIP. Ports commonly scanned as potential attack vectors include HTTP (80), SMTP (25), Sequel server (SQL, 1433), and DNS (53). Port scanning is so widespread that security administrators can find it hard to determine when their systems are being intentionally targeted.

14.3.2 Malicious Code

Malicious code is an umbrella term that describes any form of software that is installed without authorization, notice, or consent from the computer owner or administrator. Once installed, the activities the malicious code performs are often used to classify the code as virus, worm, spyware, trojan program, or blended threat.

SIP clients and servers that run on general-purpose computing hardware are as susceptible to malicious code attacks as computers used for data applications. Best practices for securing SIP end points and servers thus include secure configuration (hardening), disabling of nonessential services, careful administration of user accounts, timely and complete installation of operating system and application patches, and software updates. Complementary security software such as antivirus, antispyware, host intrusion detection, and software firewalls on SIP systems play an important role in securing SIP services.

14.3.2.1 Viruses

A virus is malicious code that attacks or takes control of a host. A virus needs a transport for it to be spread from host to host and replicate itself. Various communication protocols can be used as transports for viruses. A virus that has its own transport built in is known as a worm.

Viruses can be spread by e-mail attachments, Web pages, instant messages, program macros, hidden files in zipped archives, and many other techniques All can be extremely destructive. Once installed, viruses can erase data files, modify computer settings, or remove critical system files to cripple the host computer.

14.3.2.2 Worms

A worm is a piece of malicious code that is commonly delivered via e-mail. Once a worm installs itself on a host, it seeks to replicate by installing itself on other hosts.

14.3.2.3 Trojans

A trojan is a piece of computer code that masquerades as something innocuous or beneficial, but, in fact, is used to spread viruses, install other malicious programs such as keyloggers, DDoS zombies, remote administration toolkits (also known as root kits), e-mail, and Web and peer-to-peer servers. Trojan programs may modify local computer configuration settings and disable security measures and event logging to hide their presence. Servers installed by trojan programs can be used to send spam, host illicit Web sites and chat rooms, and offer illegal downloads of copyrighted software and music.

14.3.2.4 Spyware

Spyware is similar to a trojan program in that it is installed, without permission, on a host, and then tries to remain undetected. Different kinds of spyware behave differently. Tracking and mining spyware gathers Web browsing and application usage and reports this information back to an ad server over the Internet. This information may be used to feed another spyware component on the infested computer with targeted advertising. Spyware writers can also include keyloggers to obtain passwords, credit card information, and authentication credentials. Various forms of spyware alter browser favorites settings and replace default search engine settings with biased search engines to drive traffic from sites the user intends to visit to a spyware company’s affiliate site. Some modify the browser home page to visit a gambling or pornography Web site when the user launches a browser. Other spyware even modifies a computer’s TCP/IP settings, altering where the PC resolves domain names.

Spyware has quickly become a pandemic on the Internet, and there is every reason to believe that spyware variants will be developed to exploit VoIP systems. Spyware installed on a VoIP phone might monitor a user’s calling patterns, autodial calls to an affiliate merchant’s salesperson, change a user’s default directory assistance number to an affiliate directory provider that charges exorbitant fees, or direct a user’s voicemail to a server that can hold the message hostage. There is also no reason to believe that spyware will not be used to gather personal and credit card information from VoIP systems.

14.3.2.5 Blended Threat

A blended threat combines elements of viruses, worms, trojan programs, and malicious code designed to exploit known server and Internet vulnerabilities to initiate, transmit, and spread an attack A blended threat propagates even more quickly than mass mailing worms by using any propagation path it can find on the computers it infects (e.g., by exploiting common network services such as file sharing, ftp, telnet, and even VPN connections). A blended threat can work its way onto computers as an e-mail attachment. Once it gains administrative control of the infected computer, it may try to disable the computer’s antivirus software and software firewalls and erase event logs.

14.3.3 Buffer Overflow

A buffer overflow is an attack technique that targets an input parameter or value in a program to deliberately cause a software exception condition (failure). For example, in a VoIP signaling protocol, the presence of variable length parameter fields can be exploited for a buffer overflow attack. If a field normally 10 to 20 characters long is fed a 200-character string, there is a possibility that a badly written piece of software may not handle this properly and may crash.

In SIP, a well-written message parser is the best protection against buffer overflow attacks. The University of Oulu in Finland has developed a test suite for both SIP and H.323 systems to test against various types of buffer overflow attacks. The tool is called PROTOS and has a SIP [18] and H.323 [19]. The test suite generates INVITE requests based on the SIP Torture Test draft [20] which is designed to exercise a parser. As an example of a sample torture test message:

INVITE sip:vivekg@chair-dnrc.example.com;unknownparam SIP/2.0 TO: sip:vivekg@

chair-dnrc.example.com; tag = 1918181833n from: “J Rosenberg \\\””<sip:jdrosen@

example.org>

;

tag = 98asjd8 MaX-fOrWaRdS: 0068 Call-ID: wsinv.ndaksdj@192.0.2.1

192.0.2.2;branch=390skdjuw

s : NewFangledHeader: newfangled value continued newfangled value

UnknownHeaderWithUnusualValue: ;;,,;;,; Content-Type: application/sdp Route:

<sip:services.example.com;lr;unknownwith= value;unknown-no-value>

v: SIP/2.0/TCP spindle.example.com; branch = z9hG4bK9ikj8, SIP/2.0/UDP

192.168.255.111; branch=

z9hG4bK30239

m:”Quoted string \”\”” <sip:jdrosen@example.com> ;

newparam =

newvalue ;

secondparam ; q = 0.33

v=0

o=mhandley 29739 7272939 IN IP4 192.0.2.3

s=

c=IN IP4 192.0.2.4

t=0 0

m=audio 49217 RTP/AVP 0 12

m=video 3227 RTP/AVP 31

a=rtpmap:31 LPC

While this test message actually is a completely valid SIP INVITE request, it has many unusual properties such as:

• Lots of line folding;

• An empty header field;

• Extra linear white space (LWS);

• Unknown header fields;

• Unusual header field ordering;

• Parameter with no value.

In addition to this message, the document includes requests with extralong fields. A good SIP parser will be able to handle these messages.

14.3.5 Password Theft/Guessing

If a password is chosen by a human, it will not likely be very random. In cryptographic terms, the password has very low entropy, and is likely to be susceptible to a brute-force or dictionary attack in which commonly used words and word combinations are tried repeatedly until a match is found. Organizations can impose maximum lifetimes on passwords, enforce composition and complexity criteria, and limit reuse of passwords to reduce the possibility of successful dictionary attacks. Long, difficult-to-attack passwords can be generated by a service provider or enterprise, or user chosen passwords validated and rejected until they have a certain level of complexity.

When passwords are used, authentication measures should limit the number of repeated failed attempts. Instead, after a certain number of failures, subsequent attempts should be silently discarded for a period of time.

14.3.6 Tunneling

Tunneling is an attack method by which one protocol rides inside another, often for the purpose of traversing a firewall or other perimeter defenses. Tunneling is extremely common. Port 80, the well-known port for HTTP, is reused for a variety of protocols to pass through firewalls.

It is even possible to tunnel other protocols on top of VoIP protocols. For example, almost any arbitrary protocol can be tunneled on top of a VoIP signaling protocol such as SIP. SIP can also be used to connect a host to the PSTN, effectively acting as a modem on a device which may not otherwise have PSTN connectivity and reachability.

Good protocol and architecture design does not make use of tunneling. Deep packet filtering in firewalls and other content filtering approaches can block tunneling.

14.3.7 Bid Down

A bid-down attack is one in which a man-in-the-middle interferes with the negotiation of a security parameter and succeeds in forcing the other parties to agree to a lower level of security. For example, if a VoIP session initiation gives the option of either an encrypted or unencrypted media session, a bid-down attack would result in the selection of the unencrypted session even if both sides would prefer to establish the encrypted session.

Another example is if a MitM attacker modifies an HTTP Digest challenge and changes it to an HTTP basic challenge. If the UA responds with an HTTP Basic response, the UA has given the attacker the user’s password in clear text. The protection against this is to only use a single authentication or security option and disallow insecure options. SIP UAs should not respond to an HTTP Basic challenge, which would cause this bid down attack to fail.

14.4 Summary

The security techniques discussed in this and subsequent chapters can help protect against many of these attacks. However, some attacks, such as DDoS and identity theft are extremely hard to prevent. Finally, SIP security planning must be integrated with an overall Internet access security plan, as many of these attacks are not unique to SIP.

14.5 Questions

Q14.1 Which type of attack is more difficult to perform, a man-in-the-middle attack or a replay attack? Why?

Q14.2 Describe an eavesdropping attack on SIP and what information might be learned by the attacker.

Q14.3 Give an example of a bid-down attack on SIP. Would most SIP UAs be susceptible to this?

Q14.4 A user is placing and receiving SIP calls while using an open unencrypted WiFi network. Describe how you might launch a MitM attack on this user. What could the user do to protect against this attack?

Q14.5 A SIP proxy has new parser code which has not been thoroughly tested. Describe the type of attack that this server is vulnerable to. Craft an example header field that might be used in such an attack.

References

[1] McClure, S., Kurtz, G., and J. Scambray, Hacking Exposed, 7th ed., New York: Osborne/McGraw-Hill, 2012.

[2] Spitzner, L., Know Your Enemy: Revealing the Security Tools, Tactics, and Motives of the Black Hat Community, Reading, MA: Addison-Wesley, 2002.

[3] Kruse, W. G. II., and J. G. Heiser, Computer Forensics: Incident Response Essentials, Reading, MA: Addison-Wesley, 2002.

[4] Luttgens, J., M. Pepe, and K. Mandia, Incident Response: Investigating Computer Crime, 3rd ed., New York: Osborne/McGraw-Hill, 2014.

[5] CERT® Advisory CA-1998-01, “Smurf IP Denial-of-Service Attacks,” http://www.cert.org/advisories/CA-1998-01.html.

[6] Rosenberg, J., “The RTP DOS Attack and Its Prevention,” IETF Interent-Draft, Work in Progress, June 2003. http://tools.ietf.org/html/draft-rosenberg-mmusic-rtp-denialofservice-00.

[7] Ollman, G., “URL Encoded Attacks,” http://www.cgisecurity.com/lib/URLEmbed-dedAttacks.html.

[8] CERT® Advisory CA-2003-06 “Multiple Vulnerabilities in Implementations of the Session Initiation Protocol (SIP),” http://www.cert.org/advisories/CA-2003-06 . html#vendors.

[9] The Common Vulnerabilities & Exposures List, maintained by The MITRE Organization, http://www.cve.mitre.org/. (CVEs identified for SIP are found at http://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=SIP, CVEs identified for H.323 are found at http://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=H.323.)

[10] “How to Harden the TCP/IP Stack against Denial of Service Attacks in Windows Server,” 2003, http://support.microsoft.com/default.aspx?scid=kb;en-us;324270.

[11] Collier, M., The Value of SIP Security, http://www.networkingpipeline.com/security/22104067

[12] Mirkovic, J., S. Dietrich, D. Dittrich, and P. Reiher. Internet Denial of Service: Attack and Defense Mechanisms, Prentice Hall, PTR, December 2004.

[13] Rosenberg, J., and H. Shulzrinne, RFC 2762, Sampling of the Group Membership in RTP, http://www.ietf.org/rfc/rfc2762.text.

[14] Liu, C., http://www.linuxsecurity.com/resource_files/server_security/securing_an_internet_name_server.pdf

[15] Snyder, J., Domain Name System {DNS} Configuration, Management and Trouble-Shooting, http://www.opus1.com/www/presentations/sanug/index.htm.

[16] SANS March 2005 DNS Poisoning Summary, http://isc.sans.org/presentations/dnspoisoning.php.

[17] DNS Security Extensions, http://www.dnssec.net/.

[18] University of Oulu, Oulu, Finland Electrical and Information Engineering, PROTOS SIP Test-Suite, http://www.ee.oulu.fi/research/ouspg/protos/testing/c07/sip/.

[19] University of Oulu, Oulu, Finland Electrical and Information Engineering, PROTOS H.323 Test-Suite, http://www.ee.oulu.fi/research/ouspg/protos/testing/c07/h2250v4/.

[20] Sparks, R., A. Hawrlyshen, A. Johnston, J. Rosenberg, and H. Schulzrinne, “Session Initiation Protocol Torture Test Messages,” RFC 4475, May 2006.

15

SIP Security and Identity

SIP security is a large and complicated topic, and there are entire books on the topic [1, 2]. This chapter will introduce the basics of security and apply them to the SIP and common applications such as establishing secure multimedia sessions, based on the threats covered in the previous chapter. While the discussion in this chapter will focus on protocol security, it is important to realize that security is an all-encompassing area that needs attention at all levels. For example, besides protocol security, there is physical security, general server security, operating system security, local area network security, password security, and so on. This chapter also introduces SIP identity and privacy.

15.1 Basic Security Concepts

Three important security concepts will be briefly introduced here: authentication, confidentiality, and integrity protection. Authentication is the proof of identity of a party in communication. Authentication is usually performed in a protocol by use of a credential: a shared secret that is known by both parties but not known to others. After authentication is performed, authorization policy can be performed. For example, consider a user attempting to subscribe to the presence of another user. Once authentication has been performed and the user knows who it is that is requesting the presence subscription, the subscription can be authorized or denied, and the level of detail of presence information to be shared can be determined and implemented.

Confidentiality is about keeping a communication exchange private. This privacy usually applies to the content of the information exchanged; that is, a third party should not be able to inspect messages, read text, view presence information, or listen in to exchanged media. However, a third party may be able to determine that two users are exchanging IP packets, and hence make some deductions about users exchanging information. Approaches that attempt to conceal and obfuscate the fact that two users are even communicating over IP are much more difficult and will not be discussed in this book.

Integrity protection is the ability to determine that a message in a communication has not been modified or tampered with between the creator and the viewer. Note that integrity is only useful when combined with authentication Knowing that a packet has not been modified since it was sent by an attacker is not a very useful property.

15.1.1 Encryption

Cryptography is the science of encryption. There are excellent historical texts [3] and technical overviews [4]. Here, only a very high-level view will be provided.

Encryption is a common tool used to provide confidentiality over the Internet. Encryption provides confidentiality by turning plaintext into ciphertext using a key and a mathematical algorithm, known as a cipher. Typically, while the encryption algorithm may be known, the key is kept secret. The plaintext is the input to the encryption algorithm, which could be a protocol message, text message, or media samples. The ciphertext is the output and appears to essentially be random numbers, white noise, or gibberish, which provide no information to a third party monitoring the ciphertext. Without knowing the key, it is very difficult to turn the ciphertext back into plaintext. The key length is chosen to be large so that it is difficult for an attacker to simply try every possible key to decrypt the message. This is known as a brute-force attack. For example, an early encryption algorithm Data Encryption Standard (DES), which used a 56-bit key, was considered secure when it was first used on the Internet. However, today a brute-force attack on this cipher is feasible, as all possible keys can be tried in a relatively short period of time. Stronger encryption algorithms today use much longer keys in the range of 128 bits to 4,096 bits, depending on the type of encryption and use. As advances in computing continue, it is likely that longer key lengths will be needed to provide adequate levels of security.

There are two common encryption algorithms used today on the Internet, and they relate to the way in which keys are used to encrypt and decrypt the data. Symmetric key encryption uses the same key to encrypt and decrypt. This is shown in Figure 15.1. Note that the encryption and decryption algorithms are different, but related mathematically. Some common examples of symmetric ciphers include Advanced Encryption Standard (AES) [5], Triple Data Encryption Standard (3DES) [6], Rivest Cipher 4 (RC4) [7], and so forth. Symmetric key encryption requires a key management protocol to securely distribute the secret key among all parties in a communication. If this key is not kept secret, no confidentiality will be provided. This type of encryption is commonly used today for media encryption such as in the Secure Real-Time Transport Protocol (SRTP), discussed in Chapter 16.

[image:]

Figure 15.1 Symmetric key cryptography.

15.1.2 Public Key Cryptography

Public key cryptography, also known as asymmetric key cryptography, uses one key to encrypt and a different key to decrypt. The pair of keys are known as a public key, which is freely available and known to others, and a private key, which is kept secret. The private and public keys have a mathematical relationship between them, but it is computationally infeasible to derive the private key from the public key if the keys are sufficiently long. Consider two users, Alice and Bob. Alice wants to send a message to Bob that is encrypted so only Bob can decrypt it. Alice creates the message and then encrypts it using Bob’s public key. Bob’s public key could be determined by Alice from a directory listing or database or from having it from a previous exchange with Bob. The resulting message can only be decrypted using Bob’s private key. Since this key is only known to Bob, only Bob can decrypt the message. This is shown in Figure 15.2. An example of public key encryption is Rivest Shamir Adellmann algorithm (RSA) [8]. This type of encryption is commonly used on the Internet today with SIP as part of transmission layer security (TLS), discussed in Section 15.2.2.

15.1.3 Diffie-Hellman Cryptography

Diffie-Hellman [9] is another type of public key cryptography. It is a very clever scheme that allows two parties to generate the same secret key independently. This is done by exchanging a few parameters between the parties, but this secret key is never transmitted from one party to the other. A third party able to view all the messages exchanged is still not able to generate the same secret key. Diffie-Hellman is used in key agreement protocols such as ZRTP [10], discussed in Chapter 16, and can be used by TLS and DTLS, discussed later in this chapter.

[image:]

Figure 15.2 Public key cryptography.

15.1.4 Message Authentication

A common first step to provide authentication of messages is to use a message digest function. A message digest is a one-way mathematical function that produces a fixed length output from a variable length input string. MD5 (message digest 5) and SHA-1 (secure hash 1) are examples of older message digest algorithms while SHA-2 is an example of a modern, secure message digest. There are two important properties of a message digest. The first is that it be very difficult to reverse (i.e., determine the input string based knowing only the message digest output). The other is for it to be difficult to generate two input strings that have the same output message digest. This condition is known as a hash collision and is a method used to try to attack message digest algorithms.

A keyed hashed message authentication code (HMAC) is a message digest function followed by encryption. For example, HMAC-SHA-1 uses the SHA-1 message digest followed by encryption, as shown in Figure 15.3. Note that while SHA-1 is no longer considered a secure hash function in general, its use in HMAC-SHA-1 is still considered secure, due to the encryption that follows the hashing. HMACs can provide message authentication—if both the sender and receiver know the secret key, the sender can calculate the HMAC of a message and send it with the message. The receiver can then do its own calculation of the HMAC using the secret key. If the two HMACs match, the message has not been changed or modified since the sender calculated the HMAC. If the key used is the private key of a public key pair, the HMAC can be used as a digital signature. A receiver can verify that only the holder of the private key could have generated and signed this message.

[image:]

Figure 15.3 HMAC.

15.1.5 Digital Certificates

A digital certificate is a data object that makes assertions about identity. In its simplest form, it contains a public key of a particular identity. A common data format for certificates is known as X.509 [11]. Certificates utilize a chain of trust in which a certificate authority (CA) issues and signs a certificate and the user employs the certificate to prove that a particular public key is associated with an identity. Before issuing and signing a certificate, a CA verifies the identity of the user in the certificate. By proving he knows the private key associated with the public key of the certificate, the user can prove that he has the identity indicated in the certificate.

There are three important issues to be considered when a certificate is used for authentication:

1. Is the certificate trustworthy? For example, Web browsers have a list of CAs they inherently trust, and administrators can add additional trusted CAs. A browser will only trust a certificate issued and signed by a CA that is trusted. Otherwise, anyone could make up a certificate and use it for authentication.

2. Is the certificate valid? The certificate signature can be validated using the CA public key, which needs to be stored locally in the browser. Also, the certificate can be checked for revocation or replacement by consulting a certificate revocation list (CRL) or another certificate validation protocol. A certificate also must be checked to ensure that it has not expired.

3. What identity assertion does the certificate make? In its simplest form, the certificate will assert an identity, such as a DNS name, or a business name or address. A certificate issued by a trustworthy CA that is valid can only be used for authentication if the identity assertion matches the context in which the certificate is used. For example, if a Web browser opens a secure Web (https) connection for example. com, and during the TLS handshake receives a certificate asserting the identity of the Web server as example.net, authentication has not succeeded.

While this section has discussed certificates in terms of their common usage in Web browsing, the SIP usage of certificates is similar to the Web usage and is discussed in Section 15.4.2.

15.2 Security Protocols

This section will cover common security protocols including IPSec, TLS, DTLS, DNSSEC, and S/MIME.

15.2.1 IPSec

IPSec or IP security [12] is a protocol that operates at the IP layer of the protocol stack. As a result, it works with any transport protocol above it in the protocol stack, such as TCP and UDP, and protocols such as SIP and RTP run over it without any changes. In general, an IPSec session needs to be established between hosts on the Internet. Sometimes, this session is called a virtual private network or VPN. IPSec can provide just authentication and integrity protection, or confidentiality and authentication. Key management can be a difficult issue with IPSec since it needs symmetric keys in both hosts. IPSec is commonly used between hosts or between gateways where there is significant traffic exchanged. For example, it is commonly used between an enterprise and a service provider or between enterprise locations. The fact that a single IPSec VPN tunnel can protect both SIP signaling and RTP media for multiple sessions and users is a distinct advantage. However, for general SIP communications, which might go to multiple hosts, establishing multiple VPNs to all hosts prior to sending SIP or RTP is difficult. Also, since IPSec is commonly done in the OS or kernel layer, SIP and other applications often are unaware if they are riding on top of IPSec or if IPSec has been disabled or failed to be setup. As a result, there are advantages for security at layers above the IP layer, as in the next protocol.

15.2.2 TLS

Transport Layer Security (TLS) provides encryption, authentication, and confidentiality at a shim layer between the application and transport layer. TLS runs over TCP transport. TLS is the most commonly used security protocol on the Internet today.

TLS is based on Secure Sockets Layer (SSL), which was developed by Netscape Communications during the early days of the World Wide Web (WWW). The first version of TLS version 1.0 is based on SSL version 3.0. The most recent version of TLS is 1.2 [13], while version 1.3 was under development in the IETF in 2015. Versions of TLS older than 1.2 and all versions of SSL should not be used as they are not considered secure. In addition, older ciphers and hashes should also not be used. Recommendations for how applications should utilize TLS have recently been published [14].

The TLS Record protocol encapsulates higher-level protocols and the signaling messages as well. TLS uses Handshake messages to establish security associations between client and server and define the cryptographic algorithm selection, initial key derivation material, and compression selection; Alert messages to signal errors and session close; and ChangeCipherSpec messages to change the encryption set (CipherSpec) currently in use by TLS session peers. TLS applications use a Version field to make certain they operate the same level of the TLS specification. TLS computes an HMAC for message protection. TLS uses a Pad and Pad length field to support block ciphers. The Pad length tells the receiver how many bytes are Pad data and not actual application data. TLS supports the AES symmetric cipher, along with older ciphers such as RC4 and 3DES ciphers. Cipher suites are negotiated during the TLS Handshake.

The TLS Handshake is performed in two phases. In the first phase, end points agree on the encryption that will secure the connection. At this time, a certificate-based server authentication is always performed (mutual authentication using certificates is optional). TLS assigns an identifier to each session to support situations where the end points agree to suspend and later resume a session. During this phase, end points exchange a Master Key (keying material) that both parties will use to derive session keys for encryption and hash signing. The second phase of the TLS Handshake is optional. During this phase, the client is authenticated.

Client and Server use the secure authenticated tunnel established during Handshake to protect application data they exchange.

The messages used in a TLS Handshake are shown in Table 15.1.

Figure 15.4 illustrates the flow of messages for a representative Handshake exchange.

At any time, the security characteristics can be changed by the client sending a ClientHello message and initiating a new TLS Handshake exchange. TLS continues to send and receive data using the current cipherspec until a Change-CipherSpec message is sent and the cipherspec is updated.

A pre-master secret is either exchanged or generated during TLS Handshake. When RSA mode is used, the pre-master secret is generated by the client and sent encrypted to the server using the server’s public key. When Diffie-Hellman (DH) mode is used, the DH exchange results in the generation of a pre-master secret. Both the client and server generate a master secret from the pre-master secret and the random strings contributed by the client and the server using the pseudo-random function defined in the TLS specification.

TLS allows a transport compression scheme to be negotiated during the TLS Handshake Protocol. The base specification only defines null (no) compression, but two extensions add the DEFLATE and Lempel-Ziv-Stac (LZS) compression methods.

TLS supports many end-point authentication methods. Two end points can authenticate using mutual certificate-based authentication. Proxy servers might use this authentication method to secure SIP signaling. Client-server applications (e.g., Web and e-mail portals) use an alternative form of mutual authentication sometimes called sub-authentication. Conceptually, sub-authentication is subordinate to server authentication: the TLS server authenticates the TLS client after the client has authenticated the server. TLS subauthentication is not confined to using digital certificates; applications may securely use a weaker authentication method such as a username and password because challenges and credentials will be exchanged over the encrypted TLS tunnel. Subauthentication method support depends on the implementation and application, but every popular single and multifactor authentication method has been used with TLS.

Table 15.1

TLS Handshake Protocol Messages

	Message
	Description

	HelloRequest
	Can be sent by a Server to ask the client to begin the TLS Handshake protocol. On opening a TLS connection, a client normally sends a ClientHello without waiting for a HelloRequest from the Server.

	ClientHello
	First message sent by Client to open connection. If used to reestablish an earlier connection, it contains the previous session ID. Also contains the version number of the protocol, timestamp and random sequence, list of supported cipher suites, and list of supported compression suites.

	ServerHello
	Server response to a ClientHello that also contains the protocol version number, timestamp, and random sequence, selected cipher suites and selected compression suites from the list supplied in the ClientHello message.

	ServerCertficate
	Sent by Server after ServerHello. Contains the Server’s certificate, usually an X.509v3 certificate.

	ServerKeyExchange
	Sent by Server after ServerHello if additional information besides the ServerCertificate is needed to exchange or generate a pre-master secret. The format of the message depends on keying mode selected by the Server in the ServerHello message.

	CertificateRequest
	Sent by the Server after ServerHello to request the Client provide a Certificate for authentication.

	ServerHelloDone
	Sent by the Server after the completion of ServerHello and other Server messages which may immediately follow the ServerHello.

	ClientCertificate
	Sent by the Client if the Server requests a client certificate using the CertificateRequest message.

	ClientKeyExchange
	Sent by the Client to complete the generation or exchange of the pre-master secret.

	ChangeCipherSpec
	Sent by client after the ClientKeyExchange and the server after the ServerKeyExchange. It is actually not part of the Handshake protocol but is part of the Record protocol. Message indicates that everything else sent will be encrypted and authenticated.

	Finished
	Sent after a ChangeCipherSpec message which is encrypted using the new master secret.

[image:]

Figure 15.4 TLS Handshake Protocol.

Subauthentication is common in Web applications in which personal, financial, or other important information is exchanged. The mutual authentication is performed using the steps below and illustrated in Figure 15.5.

1. A TLS connection is opened from the client to the server. The server passes the certificate to the client during the TLS Handshake.

2. The client validates the certificate by verifying, for example, that the DN (distinguished name) is the same as the Web server’s domain name, that the certificate has not expired, and that the certificate is signed by one of the trusted CAs maintained by the browser. If the certificate passes this inspection, then the server is authenticated. (Further checks of Certificate Revocation Lists or validation using OCSP or SCVP can also be performed, depending on the application.)

3. The server authenticates the client using a specified subauthentica-tion method, using a form on a Web page that uses POST or HTTP Digest authentication. The details of HTTP Digest authentication, which is also used to authenticate SIP signaling peers, are covered in Section 15.3.2.

[image:]

Figure 15.5 Mutual Authentication on the Web with TLS.

15.2.3 DTLS

Datagram TLS (DTLS) [15] is an adaptation of the TLS protocol that works over a datagram transport protocol, for example, User Datagram Protocol (UDP). DTLS attempts to reconcile two characteristics that make TLS unsuitable for running over UDP. First, the TLS Handshake assumes that TCP provides a reliable transport and has no mechanisms to deal with packet loss and out-of-order delivery. Second, traffic encryption performed within the TLS Record protocol chains cryptographic context (block cipher state or stream cipher keys stream) across records. This means that if a record (datagram) is lost, any records that follow cannot be deciphered. DTLS fixes both these problems by adding a retransmission scheme to handle datagram loss, adding explicit and independent state to each record, and adding sequence numbers and a reordering function to the record protocol. DTLS also adds a fragment length and offset to accommodate the transmission of large Handshake messages (e.g., a ServerCertificate message). Some of these solutions are borrowed from IPSec ESP. An optional replay protection feature duplicates replay detection offered in IPSec AH and ESP.

15.2.4 DNSSEC

DNS security (DNSSEC) [16] is a security protocol that provides authentication and integrity to DNS queries. DNSSEC adds four new resource records listed in Table 15.2. Today, nearly all users of DNS employ it without any security, and must trust DNS servers to give correct answers to queries. Modern DNS resolvers and servers support DNSSEC, and work is continuing to sign various subdomains. DNSSEC does require that the entire DNS hierarchy is signed, so it is not yet available for every top-level or country domain.

Table 15.2

DNSSEC Resource Records

	Record
	Name

	RRSIG
	Resource Record Signature

	DNSKEY
	DNS Public Key

	DS
	Delegation Signer

	NSEC
	Next Secure Record

15.2.5 Secure MIME

Secure MIME or S/MIME (secure multipart Internet mail exchange) is a security protocol developed to secure e-mail. It provides authentication, integrity, and confidentiality services on an end-to-end basis. S/MIME usually uses digital certificates for keying, and the management of these certificates in end points makes deployment difficult. Some examples of how SIP can use S/MIME are later in this chapter. Some of these issues are discussed later in this chapter.

15.3 SIP Security Model

This section will introduce the security model for SIP. Security begins with authentication, and there are a number of ways that a SIP message can be authenticated. One way is if it is received over an IPSec or VPN tunnel that has previously been authenticated. Another method is if it is received over a TLS connection that has been properly authenticated. The method by which TLS can provide SIP authentication will be discussed in Section 15.3.5. SIP messages can also include a digital signature, done using S/MIME. In addition, SIP can utilize HTTP digest authentication for a challenge/response authentication mechanism. This approach, discussed in the next sections, uses a simple shared secret for authentication. Finally, a SIP message received from a trusted server over a trusted network might be considered authenticated.

15.3.1 Basic Authentication

The original SIP specification RFC 2543 allowed HTTP basic authentication, where a 401 or 407 challenge could include:

WWW-Authenticate: Basic realm=”mci.example.com”

and a response to that challenge could include:

Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

The response is simple base64 encoding of the string username:password. Base64 is an encoding method that uses 6 bits per printable character or 65 possible symbols.

Basic authentication results in the cleartext transmission of user credentials, so the password can be easily recovered from the response string. Further, unless it is used with some form of timestamp, basic authentication offers no protection against reply attacks. If a UA retains support for Basic authentication, it could be used by a MitM attacker to obtain the user’s password by generating a falsified Basic authentication challenge to the UA.

Basic authentication was deprecated in the successor specification for SIP, RFC 3261, and should never be used for SIP authentication.

15.3.2 Digest Authentication

SIP borrows digest authentication from HTTP, where it is defined in [17], which replaces (obsoletes) the original specification [18]. Reference [17] adds the SHA-256 and SHA-512/256 hash algorithms for digest authentication. Digest authentication is used to authenticate user agents and may be used to authenticate users to proxies, proxies to users, by use of the Proxy-Authenticate, Proxy-Authorization, WWW-Authenticate, and Authorization header fields.

SIP Digest authentication is shown in Figure 15.6. In this example, one UA issues a SIP digest authentication challenge to another UA by sending a 401 Unauthorized response. This response contains a WWW-Authenticate header field which contains the details of the digest challenge and also the nonce to be used for calculating the message digest. The UA sends an ACK to complete the SIP exchange. If the UA has credentials for the realm specified in the challenge, the request is resent with the credentials in an Authorization header field. Example WWW-Authenticate and Authentication header fields from the SIP specification are:

WWW-Authenticate: Digest realm=”atlanta.example.com”,

domain=”sip:boxesbybob.example.com”,

qop=”auth”, nonce=”84a4cc6f3082121f32b42a2187831a9e”, opaque=””,

stale=FALSE, algorithm=MD5

Authorization: Digest username=”Alice”,

realm=”atlanta.example.com”,

nonce=”84a4cc6f3082121f32b42a2187831a9e”,

response=”7587245234b3434cc3412213e5f113a5432”

The digest response is calculated by applying the hash function to the concatenation of the username, password, nonce, SIP method, and the request-URI. The complete set of parameters is shown in Table 15.3.

[image:]

Figure 15.6 SIP Digest authentication.

Table 15.3

Digest Challenge and Response Parameters

	Parameter
	Meaning

	realm
	Domain challenging

	nonce
	Random string provided in challenge used in response hashing algorithm

	opaque
	String generated by challenger and returned by client

	stale
	Flag used to indicate if nonce is stale (note that no quotes are used)

	algorithm
	Indicates which hash function is to be used (note that no quotes are used)

	Qop
	Quality of protection, either auth for just authentication or auth-int for authentication and integrity

	user
	Username of user

	uri
	Request-URI

	cnonce
	Client-generated nonce, used in client authentication challenges to a proxy

	nc
	Nonce count

	response
	Message digest hash of shared secret

	nextnonce
	Nonce to be used in next authentication

	rspauth
	Response digest

SIP digest authentication offers protection against replay attacks, in which an attacker captures a SIP request and, posing as a calling UA, resends this to a called UA. To protect itself against such attacks the challenger (called UA) must generate unique nonces and expire them as soon as they are used or, alternatively, the challenger may use a timestamp. This appears to require that the challenger keep state for each authentication challenge, which could be used against the challenger by sending a flood of requests that would, in turn, generate a flood of challenges in the hopes of producing a memory overflow or buffer overflow. However, if a challenger uses a systematic method of generating nonces, a challenger can determine in a stateless way if a nonce is a valid one (one it generated) and whether it has expired. For example, a timestamp with some salt encrypted with a private key known only to the challenger could meet this requirement.

As with any challenge/response mechanism, limits should be placed on the number of failed authentication attempts sent by a particular user or from a particular IP address. If this limit is exceeded, additional requests should not be processed for a period of time (alternately, requests can be blocked indefinitely, that is, until an administrator intervenes). A “block incoming requests” timer hampers brute-force attacks but does not mitigate them. The timer can be a fixed value, or it can be increased each time the failed attempts limit is exceeded.

If a responder provides a valid response but uses an invalid or out of date nonce, this can be communicated in the response using the stale flag along with a valid nonce.

This 401 challenge is also utilized by SIP registrar servers and for UA challenges. A proxy server can utilize this mechanism by using a 407 Proxy Authentication Required challenge. Example header fields from the SIP specification are:

Proxy-Authenticate: Digest realm=”atlanta.example.com”,

domain=”sip:ss1.carrier.example.com”, qop=”auth”,

nonce=”c60f3082ee1212b402a21831ae”,

opaque=””, stale=FALSE, algorithm=MD5

Proxy-Authorization: Digest username=”Alice”,

realm=”atlanta.example.com”,

nonce=”c60f3082ee1212b402a21831ae”,

response=”245f23415f11432b3434341c022”

Using the Authentication-Info header field, it is possible to perform mutual authentication and integrity protection across the message bodies using digest. The Authentication-Info header field can be included in a 2xx response as shown in Figure 15.7. An example Authentication-Info header field is shown below:

Authentication-Info: nextnonce=”47364c23432d2e131a5fb210812c”, rspauth=”23432d2e1b34343ee1212b402”

A nextnonce present in an Authentication-Info header field provides the nonce to be used in the next request, which can save another challenge and the associated messages. A rspauth contains an MD5 hash of the server’s shared secret constructed as below, but leaving out the method.

Any SIP method besides ACK and CANCEL can be challenged in this manner. An ACK cannot be challenged because there is never a response to an ACK. As a result, a UA should put the same credentials in an ACK as it did for the original INVITE, and proxies may not challenge the ACK. Although a response is issued to a CANCEL request, a CANCEL cannot be resent since its CSeq count cannot be incremented (the CSeq count in a CANCEL must match the request it is canceling). Also, the single hop nature of CANCEL makes challenges difficult. The only security that can be applied to a CANCEL is for a UA or proxy to try to determine if it came from the same source as the INVITE that it is canceling. As such, a secure system may decide not to accept CANCEL requests unless another authentication method is used.

[image:]

Figure 15.7 SIP Authentication-Info header field example.

A SIP UA may have a keyring with a number of credentials for different servers and services. The realm parameter is used to uniquely identity the credential, and represents a domain. When a digest challenge is received, a UA may use any credential matching the realm in the keyring. RFC 3261 defines an “anonymous” username with no password that may be tried. This allows a service to challenge all requests, but perhaps allow some limited service for anonymous users.

Multiple digest challenges can be performed, for example, in a proxy chain. Note, however, that a UA cannot verify that the challenge comes from the appropriate domain if more than one domain is present.

The algorithm can have the values SHA-512-256, SHA-256, MD5, or AKA, which is authentication with key agreement (AKA), which are described in the following sections. Note that the MD5 message digest hash is no longer considered secure [19] but unfortunately is in wide use for SIP Digest authentication. There is work underway to add more secure hashes to SIP authentication, as well as adding more modern approaches such as OAuth to SIP. SIP Digest using MD5 is considered secure if the underlying transport is TLS.

15.3.2.1 Normal Mode

If the hash algorithm is SHA-512-256, SHA-256, or md5, then the particular hash algorithm is represented in the formulae below as H().

If qop is not present, the response is the hash of the following string:

H(username:realm:password):nonce:H(method:uri)

This is the most commonly used form of SIP digest authentication.

When the qop is set to the value auth-int, digest authentication offers some integrity protection for the messages in either direction. Specifically, header elements and the message body used in the calculation of the WWW-Authenticate and Authorization header field response are protected against modification.

If qop=auth-int, the response is the hash of the following string:

H(username:realm:password):nonce:nc:cnonce:qop:

H(method:uri:H(message-body))

This hash provides integrity over the message body, which is very useful when SDP data is present in a message body, for example. However, if a middle-box such as an SBC or B2BUA is between the challenger and the UA, then any rewriting of the SDP message body could cause this to fail.

If qop=auth, the response is the hash of the following string:

H(username:realm:password):nonce:nc:cnonce:qop:H(method:uri)

Note that it is possible (and in practice, common) to store only the hash of the username, password, realm, and password on the authentication server instead of the actual password itself. This is so that a breach of the password file will not expose users’ passwords.

15.3.2.2 Session Mode

In session mode (e.g., SHA-512-256-Sess, SHA-256-Sess, or MD5-Sess), a session key is calculated during the first challenge/response exchange and reused in all future challenge/responses:

A1 = H(username:realm:password):nonce:cnonce

This value of A1 is calculated once and then used as a session key for the rest of the session.

If qop=auth-int, the response is the hash of the following string:

A1:H(method:uri:H(message-body))

This hash provides integrity over the message body, which is very useful when SDP data is present in a message body, for example.

If qop=auth or if qop is not present, the response is the hash of the following string:

A1:H(method:uri)

Authorization with key agreement (AKA) is a challenge/response mechanism used with a symmetric key. It is used in universal mobile telecommunications system (UMTS) networks. Its usage with HTTP digest is described in RFC 3310 [20].

15.3.3 Pretty Good Privacy

The original SIP specification RFC 2543 defined a way to use pretty good privacy or PGP [21] for SIP privacy, authentication, and integrity. PGP is an encryption scheme invented by Phil Zimmermann for e-mail message security [22]. Its use has been extended to general-purpose desktop encryption and signing. Commercial and freeware applications provide toolkits for signing and encrypting files and archives and for secure deletion.

The original specification included the use of PGP in WWW-Authentication, Authentication header fields. A client (UA) signs digest authentication requests with his private key, and the recipient (for instance, a call server) verifies the UA is who he claims to be by decrypting the request with the user’s public key. In addition, using the Encryption and Response-Key header fields, PGP can be used to generate encrypted SIP message bodies between SIP clients and servers.

The use of PGP has been deprecated in the latest specification in favor of S/MIME, described in the next section. Few SIP implementations surfaced with PGP, partly because the requirement to “canonicalize” or standardize the format of requests over which the PGP signature was computed proved cumbersome and partly because the same public-key administration that has hindered widespread deployment of PGP secured e-mail hinders SIP.

15.3.4 S/MIME

S/MIME (Secure/Multipurpose Internet Mail Extensions) [23] provides a mechanism for providing integrity and confidentiality in SIP messaging. A UA using S/MIME can digitally sign all or part of the message, and the digital signature provides the recipient with the ability to determine if the message has been modified in transit. A message body can be S/MIME-encrypted so that it is not visible along the signaling path or to intermediate systems.

SIP UAs using S/MIME must support RSA as a digital signature algorithm, SHA-1 as a message digest hash, and advanced encryption suite (AES) with 128-bit keys as a message (bulk) encryption algorithm. RFC 3261 specified the 3DES encryption algorithm, but this has been obsoleted by [24], which requires AES instead. Also note that [4] updates the Content-Transfer-Encoding from base64 to 8 bits.

The SIP specification does not discuss how users and organizations acquire certificates. While certificates issued by trusted third parties are preferred, SIP permits the use of self-signed certificates.

S/MIME can be used in the following ways in SIP:

• Encryption of a message body: SDP or other message bodies can be entirely encrypted. This might be used, for example, when keying material is carried in the SDP using the SDP Security Session Descriptions, described in the next chapter.

• Privacy and integrity of the entire SIP message: The entire SIP message or response including the message body can be encrypted and carried as a message body. When received by the other party, the body can be decrypted and compared to the received SIP message.

S/MIME is typically implemented using a toolkit as the S/MIME specification is quite complex and long. This approach is reasonable for PC and laptop soft clients, but does not seem applicable for getting S/MIME support into embedded devices and small footprint devices.

The use of call forwarding makes S/MIME use problematic. If a request is forwarded, the identity of the party that answers the request may be different from the To URI. One solution to this problem is to use redirection (3xx) instead of forwarding. A redirection allows the requestor to fetch the public key of the redirected party then resend the request.

Because of the certificate management and deployment issues, there are few deployments of SIP using S/MIME.

15.3.5 SIP Use of TLS

SIP can utilize TLS on a hop-by-hop basis to secure signaling messages from UAs to proxy and call servers. Consider a SIP session established between two UAs with two proxy servers in between. The SIP messages will go over three hops—UA to proxy, proxy to proxy, and then proxy to UA. Each of these hops is a separate TLS session. Since the negotiation of a secure TLS tunnel is performed independently between the end points of the hop, each UA and proxy end point has its own set of credentials. Different TLS credentials can be used by UAs and proxies; for example, UAs could use any SIP message authentication to authenticate to proxies, but in theory, the proxies could authenticate each other using mutual authentication based on digital (RSA) certificates. Each tunnel in theory can also use different TLS cipher sets to choose different hash and encryption algorithms and key strengths (this is possibly useful in situations where export restrictions are a factor in encryption selection). The resulting end-to-end SIP messaging exchange utilizes TLS for confidentiality and integrity over each hop in the signaling path, but the contents of the SIP messages will be visible to both proxy servers.

SIP utilizes DNS NAPTR records for selecting transport on successive hops. When a SIP URI such as sip:alice@example.com is specified, a DNS NAPTR lookup is performed to see if the example.org domain supports TLS transport. If so, the signaling request is submitted and will have the value TLS specified in the Via header field.

When used in SIP, the TLS handshake proceeds exactly as it does for secure Web transactions. The server (proxy) offers its digital certificate and the UA attempts to verify the server certificate as follows:

1. Verify that the certificate has not expired.

2. Verify that the issuing CA is one the UA trusts.

3. Verify the subjectAltNamecovers the remote address:

4. If this is a request sent by the UA, the subjectAltName should match the address which the request was sent to (the server name resolved by SRV).

5. If this is a response received by the UA, the subjectAltName should match the address in the top Via header field.

6. Verify that the IP address of the other side matches one resolvable using DNS.

TLS SIP requests use the default port 5061. A UA or a proxy examines the Via header field to determine whether TLS transport has been used on previous hops. If the application attempts to use TLS and the setup fails, the application is aware of this.

TLS uses TCP for transport. If any stream based transport is used with SIP, the Content-Length header field is mandatory, as it is the only delimiter between SIP messages in the stream.

If a TCP connection is opened to send a request, the response is sent over that connection. However, to send a request in the other direction, such as an UPDATE or a re-INVITE, a new TCP connection would be opened in the other direction, as shown in Figure 15.8. For SIP over TCP over TLS connections, this is both inefficient and also introduces potential attacks in establishing a new secured connection when a secured one is open. For example, a TLS connection opened by a UA to a proxy server allows mutual authentication if the server provides a certificate and the UA provides a shared secret after a challenge. If a new TLS connection is opened in the reverse direction as shown in Figure 15.8, the server cannot challenge the client for authentication, so this connection is inherently less secure than the connection opened the other way.

[image:]

Figure 15.8 SIP Lack of mutual authentication without TCP connection reuse.

An extension mechanism for connection reuse [25] has been defined to overcome this problem. An initiator of a connection includes a header parameter alias in the Via in the first request sent over the connection, which requests the other side to establish a transport layer alias for reuse. In this manner, any requests or responses to be routed to the IP address and port number in the Via header will instead use the transport alias. This is shown in Figure 15.9. This is only permitted when the TLS connection is mutually authenticated. As such, it is mainly only useful for proxy-to-proxy connections. For UA-to-proxy connections, SIP outbound [26] is needed.

Some call flows and implementation details about the use of TLS with SIP are in [27]. An example user certificate used for testing from [28] is shown in Figure 15.10.

Note that the subjectAltName contains three different identities, one with a SIP URI, another with an IM URI (for instant messaging), and another with a PRES URI (for presence). The im and pres URI schemes are defined in [29]. Note that these other URI schemes are optional and only included if needed.

[image:]

Figure 15.9 SIP connection reuse.

15.3.6 Secure SIP

Secure SIP [27] is a URI scheme sips that is used to request that TLS be used to secure every hop in the signaling path, from the caller to the domain of the called party (callee). An example SIPS URI follows:

sips:c.babbage@calculatingmachine.example.org

Note that this is not equivalent to:

sip:c.babbage@calculatingmachine.example.org;transport=tls

While the latter is allowed, its use is discouraged (it is deprecated in IETF language) in favor of the SIPS URI scheme. Because of the multihop nature of SIP and the use of DNS to select transports by proxy servers, the second URI only provides a guarantee of a single hop of TLS; beyond that hop, the request could be routed over UDP, for example.

While end-to-end TLS is strongly recommended, RFC 3261 made an exception for the last proxy-to-UA hop within a domain to be secured using some other equivalent single-hop transport. However, [27] revoked this exception.

A SIP proxy must support the TLS_RSA_WITH_AES_128_CBC_SHA cipher suite, which is AES cipher block chaining (CBC) mode with 128-bit encryption with SHA-1. Additional cipher suites can be supported. Note that stronger cipher suites are recommended today [14]. The SIP specification

[image:]

Figure 15.10 Example user certificate.

encourages use of mutual TLS authentication. When the SIPS URI scheme is used, either TCP or SCTP may be used, but not UDP. If a UA uses a Secure SIP URI, every hop must have confidentiality and integrity protection.

The following is an example of a complete secure SIP request:

INVITE sips:bob@192.0.2.4 SIP/2.0

Via: SIP/2.0/TLS server10.biloxi.example.com:5061;branch=z9hb4b43

Via: SIP/2.0/TLS bigbox3.atlanta.example.com:5061;branch=z9hG4bK773.1;received=192.0.2.2

Via: SIP/2.0/TLS pc33.atlanta.example.com:5061;branch=z9hG4bKn8;received=192.0.2.1

Max-Forwards: 68

To: Bob <sips:bob@biloxi.example.com>

From: Alice <sips:alice@atlanta.example.com>;tag=1928301774

Call-ID: a84b4c76e66710

CSeq: 314159 INVITE

Contact: <sips:alice@pc33.atlanta.example.com>

Content-Type: application/sdp

Content-Length: ...

Note the presence of the TLS transport token in the Via header fields and the secure SIP URIs in the request-URI and From, To, and Contact header fields.

SIP UAs using SIPS must support SIP outbound, which requires GRUU. The deployment of SIPS is very limited.

15.4 Identity

The concepts of identity and identity verification are key to communications in general and especially to secure communications. SIP identity is more complex than just the URI in the From header field. There are additional header fields such as P-Asserted-Identity and ways of digitally signing SIP messages or parts of SIP messages. In addition, SIP is routinely used in VoIP networks where a telephone number is used as an identity.

15.4.1 Telephone Number Identity

Telephone numbers can be thought of as end-point identifiers in the PSTN. The service of indicating the origination of a PSTN call is known as caller ID. The PSTN is effectively a single trust domain. At the edges of the network, telephone switches introduces caller ID information, which is then transported end to end. This deployment worked well when a single or only a few companies ran the telephone network. In many parts of the world, a single government entity runs the telephone network. In the United States, for most of the last century, the Bell System ran the telephone network.

In today’s deregulated and distributed PSTN with thousands of competing carriers, this trust model is harder to maintain. If a trusted network element introduces telephone calls with invalid or wrong caller ID information, this information can be passed as trusted throughout the network. PSTN operators can only rely on transitive trust and assume that all other PSTN operators are diligent in correctly configuring their subscriber interfaces and protecting their networks from impersonation attacks.

In the PSTN, a telephone number is effectively an address. It provides routing information used directly to find the terminating PSTN switch which provides telephone service for the called party. However, with local number portability (LNP), a telephone number is no longer the exclusive source of routing information in the PSTN. Once geographic number portability is introduced, for instance, the user’s ability to keep a telephone number when moving to a different geographic location, telephone numbers will simply become names and will always require resolution before they can be used for routing.

SIP can use telephone numbers in the user part of a SIP URI or in a tel URI. Note that when a telephone number is used in a SIP URI, the domain part of the URI is often ignored or even replaced as a request is forwarded.

15.4.2 SIP URI Identity

Identity assertion and verification of SIP users (or UA end-point devices) within a single domain can be provided using the same types of user account management applications and databases as organizations today use for data applications. Domain administrators assure that each user (or UA end-point device) within a domain is assigned a unique user name and credentials appropriate for the authentication method employed in the domain. Organizations will in general manage names and identities for other SIP-aware elements including SIP proxies and SIP application servers. Depending on the authentication method used, SIP UAs may require preconfiguration of names, credentials and addresses of SIP proxies. Some implementations may utilize static configuration files, while others may incorporate SIP configuration information into DHCP or an active directory policy that is uploaded to the SIP UA upon successful network logon. Similarly, SIP proxies and SIP application servers may require preconfiguration of policy (as an authorized URI list) and authentication information (such as a server certificate, approved TLS cipher suites as well as names, and credentials) and addresses of other SIP proxies and the URI schema and authorities (SIP domains that can be reached via each SIP proxy).

Having authenticated the user, the SIP server can filter incoming requests over this connection. If the From header in any incoming request does not match the authenticated URI, the proxy server can reject the request with a 403 From Identity Not Valid response as shown in Figure 15.11. The UAs in the domain can be configured to only trust the proxy server to authenticate requests. Any attempt to bypass the proxy servers is rejected with a 305 Use Proxy Server response. Although a SIP request with forged SIP headers (such as Via header fields) can be created, the UA can determine that the certificate is not that of the proxy server and reject the request.

When a SIP domain routes all SIP registrations and requests through a SIP server, all UAs within the SIP domain trust that the From URI represents the authenticated identity, that is, an authorized user in this domain. The SIP domain is a locus of trust that can be extended via the SIP server to other domains. This interdomain scenario is shown in Figure 15.12. The assumption the SIP proxy in the second domain makes in this topology is “if I can verify that a SIP request has come directly and securely from the SIP proxy in the first domain, and I trust that the SIP proxy in the first domain is verifying From URIs within its local SIP domain, then I can trust URIs from this domain.” The SIP proxy in the second domain satisfies the first of these conditions by utilizing mutual certificate-based authentication in TLS and the second of these conditions by utilizing a TLS cipher suite that provides integrity protection to assure that the SIP request and in particular the contents of the From header field are delivered without alteration.

[image:]

Figure 15.11 From header validation within a domain.

[image:]

Figure 15.12 Interdomain SIP.

This approach has a major drawback. Only the first hop SIP proxy from the domain is able to verify the identity directly: all other parties in the SIP request path must trust this SIP proxy. However, only the SIP proxy in the second domain can directly verify the certificate of the first domain server.

For many SIP applications, extending a locus of trust in this manner is insufficient. Two other approaches exist. One is based on transitive trust, and the other uses cryptographic signature mechanisms.

15.4.3 Trust Domains for Asserted Identity

The SIP P-Asserted-Identity [29] mechanism emulates the trust and identity model of the PSTN in a SIP VoIP network. It allows a SIP server that has authenticated a user to insert this user’s identity information in a P-Asserted-Identity SIP header field. A SIP server receiving a request containing an asserted identity bases its decision to accept or refute a P-Asserted-Identity on the trust relationship it has with the SIP server from which it received the request. Simply put, a SIP server will trust P-Asserted-Identity header fields from a set of trusted SIP servers and no others. The administrators of SIP domains determine the set of trusted SIP servers and thus the trust boundaries of the extended trust domain.

Trust in the extended SIP domain is transitive. If a SIP server trusts last hop that processed a SIP request, the asserted identity is kept and can be passed on within the domain of trust. If the last hop that processed the SIP request is not trusted, the asserted identity is ignored and is removed from the request before forwarding within the domain. The From URI in the SIP request is thus the only information that is passed, and local policy at the destination SIP network dictates whether the call is accepted or declined. To illustrate this application of transitive trust, consider the trust relationships and the policies they represent with respect to P-Asserted-Identity shown in Figure 15.13.

In Figure 15.13, A trusts B and C, but D only trusts C. E is not trusted by A, B, C, or D. As such, a request with an asserted identity routed from A to B to C will retain the identity asserted by A. A request routed from A to D will not retain the asserted identity. However, the same request routed from A to C to D will retain the asserted identity, since the request has not crossed any trust boundaries. This dependency on the request path, rather than the identity of the party making the assertion shows the underlying weakness of this mechanism. Other identity assertion mechanisms, discussed in subsequent sections, overcome this limitation.

[image:]

Figure 15.13 Trust domains.

Spec(T) [29] describes a way to assert identity of authenticated users across a network of trusted SIP servers within a SIP administrative domain. All the SIP servers within the administrative domain must implement the private extensions and comply with the behavior prescribed in the Spec(T) specifications, including:

• User authentication method;

• Security mechanisms for intradomain communication;

• How membership in the trust domain is determined;

• Default privacy mechanism within the domain.

All the users and UA end-point devices in the SIP administrative domain explicitly trust SIP servers to correctly and publicly assert the identity of SIP parties and also trust the servers to withhold the identity from disclosure outside the administrative domain when privacy is requested.

A sample set of policies for a secure Spec(T) is described in the following sections.

A UA in a trust domain is configured to only accept incoming requests through a set of trusted proxy servers and must send all outgoing requests to the same proxies: any request not received in this manner can receive a 305 Use Proxy redirection response. (This is a local configuration setting in the UA end-point device.) This device might trust the contents of a P-Asserted-Identity header field over the contents of a From header when presenting CLID to the user or in making call-routing decisions.

The From URI is set by the initiator of a SIP request and may not match the authenticated identity of the user. When a UA that is a part of a trust domain makes a request, a SIP proxy server may insert a P-Asserted-Identity header field of a proxied SIP request. Should the user wish to keep his or her identity private, the UA can invoke the privacy mechanism described in Section 15.4.7. This might also be a policy an (extended) enterprise might wish to enforce across its SIP administrative domain. It is also possible that a UA might have multiple identities within the domain. Using the P-Preferred-Identity header field, the UA can specify which identity a SIP proxy should assert on its behalf. However, this only applies for multiple identities that have the same authentication credentials.

Within a Spec(T) trust domain, SIP proxy servers must authenticate users within the domain. A proxy server may insert a P-Asserted-Identity header field in a request after it has authenticated a user and the request is being proxied within the trust domain. If a SIP request is received by a proxy server from outside the trust domain, any P-Asserted-Identity header fields present will be removed before proxying the request.

UA identity information communicated between proxy servers within a Spec(T) trust domain must be protected from eavesdropping, interception, modification, and replay. Confidentiality and integrity protection measures of security protocols such as TLS or IPSec, with appropriate cipher suites, can satisfy this requirement. Mutual end-point authentication of proxy servers is also recommended.

An example call flow using asserted identity within a Spec(T) trust domain is shown in Figure 15.14.

Some organizations conclude that risk is manageable when transitive trust models like Spec(T) are employed within a single SIP administrative domain. Extended enterprises and more ubiquitous SIP communications may struggle with the risk generally associated with chains of trust, which are only as reliable as the weakest link in the chain. Other organizations may require more reliable interdomain SIP identity verification methods.

[image:]

Figure 15.14 SIP identity within a Trust domain.

15.4.4 Interdomain SIP Identity

Interdomain SIP identity is a more difficult problem to solve than the single domain case. A single trust domain is not assured and, in fact, will be the exception rather than the rule, so a mechanism is defined through which identity assertions can be verified and traced to the source or originating party. SIP users and proxies can apply policy to this identity information based on who is making the assertion and how this is proven. Two mechanisms for interdomain SIP identity assertions, SIP authenticated identity body and enhanced SIP identity, attempt to solve this problem.

15.4.4.1 SIP Authenticated Identity Body

One of the first approaches developed was the SIP authenticated identity body (AIB) [30] uses a S/MIME signature. The signature is computed over the subset of SIP message headers that are relevant to ascertaining the sender’s identity and correlating the sender with the request. A subset of SIP header fields from a SIP message is known as message/sipfrag.

The subset of header fields comprising message/sipfrag is chosen to prevent replay and cut-and-paste attacks. For example, the minimum set of From, Date, Call-ID, and Contact would provide reasonable assurance against these kinds of attacks. The set may also contain the To and CSeq header fields for additional protection. If the optional CSeq header field is included, then a new AIB must be generated and validated for each request sent during a session, as each new request will have an incremented CSeq value. If the CSeq value is not used, then the AIB can be reused within the same session. However, it cannot be used across sessions due to the Call-ID field.

For example, consider the INVITE with AIB from [30]:

INVITE sip:bob@example.net SIP/2.0

Via: SIP/2.0/UDP pc33.example.com;branch=z9hG4bKnashds8

To: Bob <sip:bob@example.net>

From: Alice <sip:alice@example.com>;tag=1928301774

Call-ID: a84b4c76e66710

CSeq: 314159 INVITE

Max-Forwards: 70

Date: Thu, 21 Feb 2002 13:02:03 GMT

Contact: <sip:alice@pc33.example.com>

Content-Type: multipart/mixed; boundary=unique-boundary-1

—unique-boundary-1

Content-Type: application/sdp

Content-Length: 147

v=0

o=UserA 2890844526 2890844526 IN IP4 example.org

s=Session SDP

c=IN IP4 pc33.example.com

t=0 0

m=audio 49172 RTP/AVP 0

a=rtpmap:0 PCMU/8000

—unique-boundary-1

Content-Type: multipart/signed; protocol=”application/pkcs7-signature”; micalg=sha1; boundary=boundary42

Content-Length: 608

—boundary42

Content-Type: message/sipfrag

Content-Disposition: aib; handling=optional

From: Alice <sip:alice@example.com>; tag=1928301774

To: Bob <sip:bob@example.net>

Contact: <sip:alice@pc33.example.com>

Date: Thu, 21 Feb 2002 13:02:03 GMT

Call-ID: a84b4c76e66710

CSeq: 314159 INVITE

—boundary42 Content-Type: application/pkcs7-signature; name=smime.p7s

Content-Transfer-Encoding: base64

Content-Disposition: attachment;

filename=smime.p7s; handling=required

ghyHhHUujhJhjH77n8HHGTrfvbnj756tbB9HG4VQpfyF467GhIGfHfYT6 4VQpfyF- 467GhIGfHfYT6jH77n8HHGghyHhHUujhJh756tbB9HGTrfvbnj n8HHGTrfvhJhjH776t-

bB9HG4VQbnj7567GhIGfHfYT6ghyHhHUujpfyF4

7GhIGfHfYT64VQbnj756

—boundary42— —unique-boundary-1—

The AIB signature in this example covers the From, To, Contact, Date, Call-ID, and CSeq header fields. AIB is rarely used in SIP due to its reliance on S/MIME.

15.4.4.2 Enhanced SIP Identity

The enforcement of enhanced SIP identity in interdomain signaling begins at the SIP server, as it does in the single domain case. An authoritative SIP server authenticates all users in the SIP administrative domain by verifying the URI in the From header field of the request. Authenticated requests are forwarded through the SIP server to proxies or gateways outside the domain. Before doing so, however, the authoritative SIP server signs the request with its private key and appends this signature to the request in a special, additional header field, the Identity header field [31].

SIP does not assume a PKI infrastructure—an additional header field can also be appended to assist in the retrieval of a public certificate. The value of Identity-Info provides a URI that can be used to retrieve the certificate of the server. Identity-Info is included in the integrity protection computation by the authoritative SIP server prior to signing the request.

When the request is received in another trust domain, the processing SIP server can check the certificate chain and verify the authoritative SIP Server’s signature. Every proxy or UA receiving the request can verify the identity and then forward it on to another proxy server or UA, effectively solving the trust problem created when chained proxies rely solely on the first SIP proxy to verify identities “locally.” This solution provides end-to-end asserted identity. A UA that is multiple hops away from the authoritative SIP server can determine who made the identity assertion by checking who signed the Identity header field. The UA can accept or reject the request based on the explicit trust relationship that the UA’s local SIP administrative domain establishes with the SIP administrative domain where the call originated. Although the receiving UA has no way of determining if secure transport has been used at each hop, or if all the previous proxies are trustworthy, the UA can be confident that the asserted identity is authentic if it is able to verify the authoritative SIP server’s signature in the Identity field.

The example SIP request below contains Identity and Identity-Info header fields which were inserted by the proxy2.example.com SIP server:

INVITE sips:bob@biloxi.example.org SIP/2.0

Via: SIP/2.0/TLS pc33.atlanta.example.com;branch=z9hG4bs8

Via: SIP/2.0/TLS proxy2.example.com;branch=z9hG4bKna432

To: Bob <sips:bob@biloxi.example.org>

From: Alice <sips:alice@atlanta.example.com>;tag=932sdf28

Identity:

rtwretwertikp324515p08rgpojq3459ui423jqewrojojertjrt

Fkj5o098145oj234tkjerrgoiueroitowi34ritjewrtjlerjt

;alg=rsa-sha1

Identity-Info: <https://www.atlanta.example.com/sipcert>

Call-ID: 4b4kfc76e66710

CSeq: 141594 INVITE

Max-Forwards: 69

Date: Thu, 21 Feb 2005 13:02:03 GMT

Contact: <sips:alice@pc33.atlanta.example.com>

Content-Type: application/sdp

Content-Length: 147

v=0

o=— 2890844526 2890844526 IN IP4 pc33.atlanta.example.com

s=Session SDP

c=IN IP4 pc33.atlanta.example.com

t=0 0

m=audio 49172 RTP/AVP 0

a=rtpmap:0 PCMU/8000

The set of SIP header fields over which the signature is computed is presented in Table 15.4. The use of the Identity and Identity-Info header field is shown in Figure 15.15. The Identity header field is applicable to any SIP request method with the exception of CANCEL, which may not use this mechanism due to its hop-by-hop nature.

Table 15.4

Set of SIP Header Fields Covered by the Identity Header Field

Request-URI: protects against hijacking

From URI: protects against impersonation

To URI: protects against hijacking

Call-ID: prevents replay between calls

CSeq: prevents replay within a call

Date: prevents replay

Contact URI: prevents hijacking

Entire message body: protects offer/answer SDP media negotiation:

Since the message body is covered, this means that SDP which may include the fingerprint of a DTLS key used by DTLS-SRTP (see next chapter), or the contents of a NOTIFY message body (for example, a certificate fetched using the SIP certificate store) has integrity protection from this identity mechanism.

Computing the signature over the To header field provides integrity protection against a cut-and-paste attack in which a valid Identity signature is used with a request sent to another UA. The Call-ID uniquely identifies the session while the CSeq count identifies the transaction. Within a dialog, each request generated by a UA will have an increasing CSeq number. The Date is provided as a test of staleness, that is, an old Identity header field is not being replayed by an attacker. The Contact URI identifies the actual device making the request.

Some SIP requests (INVITE, SUBSCRIBE, NOTIFY, UPDATE, and REFER) must have a Contact header field. Other requests (OPTIONS, REGISTER, ACK, and INFO) may or may not contain a Contact header field. Certain requests (BYE, MESSAGE, PRACK, and PUBLISH) will never have this header field. If the Contact header field is not present, no value will be used in the hash.

The hash algorithm is specified in the algorithm (alg) parameter in the Identity-Info header field. The only currently defined algorithm is rsasha1, which refers to SHA-1 with RSA encryption using a minimum key length of 1,024 bits. The Identity-Info contains an HTTP or HTTPS URI, which resolves to an application/pkix-certresource.

A UA or proxy that requires the presence of an Identity header field can fail a request that does not contain one by sending out a 428 Use Identity Header Field response, as shown in Figure 15.16.

A UA or proxy that is unable to access the URI in the Identity-Info header field to validate the signature can return a 436 Bad Identity-Info Header Field response. A UA or proxy that is able to access the certificate in the Identity-Info but is unable to validate the certificate can return a 437 Unsupported Certificate response.

[image:]

Figure 15.15 Enhanced SIP identity.

[image:]

Figure 15.16 Failure when enhanced identity is not used.

This enhanced identity scheme can also coexist with the transitive trust mechanism described in Section 15.4.3. For example, when a request containing an identity assertion crosses a trust boundary, the receiving SIP proxy can validate the identity and signature and then add a P-Asserted-Identity header field for use within its own trust domain. This is shown in Figure 15.17.

15.4.4.3 Problems with Enhanced SIP Identity

The Enhanced SIP Identity was standardized by the IETF before there were any implementations of the mechanism. In real-world SIP systems with B2BUAs and SBCs, the mechanism was found to not be useful. It is very common for intermediaries such as a B2BUAs and SBCs to rewrite many of the parts of a SIP message that are covered by the signature. There is currently work underway in the IETF in the STIR Working Group [32] to modify the mechanism to make it deployable, especially when the identity is a telephone number and not a SIP URI. Currently, the changes to RFC 4474 proposed [33] are to remove the CSeq, Call-ID, and Contact header fields, and the message body from the signature, but include any a=fingerprint attributes.

15.4.5 SIP and Certificates

SIP can utilize a public key infrastructure (PKI) to obtain and use certificates for authentication, identity, and signatures. The use of certificates by SIP servers such as proxy servers, redirect servers, and registrar servers was discussed in earlier in this chapter. The use of certificates by SIP servers is identical to their usage in normal secure Web (HTTPS) and electronic commerce applications. This is by design, as this model has proven to be scalable for Web servers and e-commerce servers, and will likely be scalable for SIP servers as well.

Some enterprises have deployed client certificates in user’s laptops. These experiences expose the following problems:

1. A seamless, global PKI infrastructure is unavailable. While organizations can obtain certificates for all their employees from a public CA such as Thawte or Verisign, the CAs used for client certificate issuance are typically operated as an enterprise service, which makes certificate management simpler but makes the certificates usable only within the enterprise. If the certificates were issued by a publicly recognized and trusted CA (one whose root certificate is built into most Web browsers), the inverse is true: clients certificates can be used for any Internet application, but the enterprise must involve the public CA each time a user joins or leaves the extended enterprise and must work within the credentialing framework used by the CA’s registration authority.

[image:]

Figure 15.17 Enhanced SIP Identity between trust domains.

2. Certificate management is resource-consuming. Installation of certificates on user devices, training of users, protection of private keys, and other certificate maintenance issues can increase helpdesk costs. Many PKI-enabled organizations store certificates on separate devices, such as a smart cards or USB dongles. While simplifying some aspects of certificate administration, this introduces problems of managing these devices themselves.

3. The use of a single certificate across a number of applications and usages has proven to be problematic. This is an example of the single sign-on problem, which has proven to be difficult to solve. Many enterprises that have attempted this have gone back to separate authentication systems for separate systems.

4. Management of revoked or expired certificates has proven very troublesome. Certificate Revocation Lists (CRLs) are particularly inefficient in real-time scenarios.

Note that there is an effort launching in 2015 to try to address many of these problems known as Lets Encrypt [34]. It is supported by a number of companies, including Mozilla and the Electronic Frontier Foundation (EFF), and they claim it is a new kind of CA because: “It’s free, automated, and open” [34].

The use of client certificates by SIP UAs is perhaps even more problematic. However, there potentially seems to be considerable value in and hence significant motivation for implementing a SIP certificate service.

The SIP certificate service [35] is an attempt to provide certificate management for UAs. The basic operation is shown in Figure 15.18. In this flow, A1 and A2 utilize the same certificate and private key. When A1 generates a new certificate, it pushes it with a PUBLISH to the credential server. The credential server notifies A2 with a NOTIFY of the new certificate and private key.

There are very few implementations of the SIP Certificate Service, most likely due to the complexity of the certificate service and also lack of demand for S/MIME.

15.4.6 Other Asserted Identity Methods

Other methods for asserting identity are being studied. We briefly consider these in the following sections. Many of these methods are proposals and have no formal status in standards communities at this time.

15.4.6.1 Secure Assertion Markup Language

The Secure Assertion Markup Language (SAML) [36] is an XML-encoded protocol for transferring identity and authorization information. SAML has been developed by OASIS (Organization for the Advancement of Structured Information Standards) [37], a committee that develops standards for e-commerce.

[image:]

Figure 15.18 Basic operation of a SIP certificate service.

SAML has two parts: SAML assertions, which describes the document format, and the SAML protocol, which defines a mechanism for querying and retrieving SAML information. SAML transport can be HTTP, SOAP, or other protocols.

A proposed use of SAML by SIP to assert identity is described in [38]. An example SAML message from this document is shown below:

<Assertion ID=”_a75adf55-01d7-40cc-929f-dbd8372ebdfc”

IssueInstant=”2003-04-17T00:46:02Z” Version=”2.0”

xmlns=”urn:oasis:names:tc:SAML:2.0:assertion”>

<Issuer>

example.org

</Issuer>

<Subject>

<NameID

Format=

“urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress”>

Alice@example.com

</NameID>

<SubjectConfirmation

Method=”urn:oasis:names:tc:SAML:2.0:cm:sender-vouches”/>

</Subject>

<Conditions NotBefore=”2003-04-17T00:46:02Z”

NotOnOrAfter=”2003-04-17T00:51:02Z”>

<AudienceRestriction>

<Audience>

example2.com

</Audience>

</AudienceRestriction>

</Conditions>

<AttributeStatement>

<saml:Attribute

xmlns:x500=

“urn:oasis:names:tc:SAML:2.0:profiles:attribute:X500”

NameFormat=

“urn:oasis:names:tc:SAML:2.0:attrname-format:uri”

Name=”urn:oid:2.5.4.20”

FriendlyName=”telephoneNumber”>

<saml:AttributeValue xsi:type=”xs:string”>

+1-888-555-1212

</saml:AttributeValue>

</saml:Attribute>

</AttributeStatement>

</Assertion>

This example shows an application/saml+xml [39] message body that could be used as part of a trait-based authorization system for SIP [40].

15.4.6.2 Third-Party Identity and Referred-By

The REFER method [41] is a SIP method to request another UA act upon a URI. When used with a SIP or SIPS URI, the resulting action will be to send an INVITE to the destination to establish a new session. The resulting session is being established at the request of a third party. The Referred-By mechanism [42] is a way in which the third party can provide a cryptographically verified token to indicate this. The information in this header field is encrypted to protect against tampering by the third party undertaking the REFER.

A referrer wishing to provide this information includes a Referred-By header field in the REFER. The header field references a message body which is an Authenticated Identity Body, and as such has all the issues associated with AIB.

In Figure 15.19, an unauthenticated Referred-By is included in a REFER triggered request. The recipient requests that the Referred-By be authenticated using a 429 Provide Referrer Identity response. The REFER is then resent with the Referred-By and AIB body.

[image:]

Figure 15.19 Referred-By with an AIB.

15.4.7 Privacy

Thus far, this section has discussed identity and ways in which identity can be asserted and secured through a SIP VoIP network. The rest of this section discusses mechanisms to keep identity private.

A SIP message contains a fair amount of information that a UA may wish to treat as private or sensitive. This includes both SIP URIs present in From and Contact header fields and IP Addresses present in Via, Contact, Call-ID, and SDP.

A UA can influence whether information conveyed in SIP header fields is treated as sensitive. For example, a UA seeking privacy can refrain from including its AOR URI in a From header field and instead use an anonymous header field such as:

From: Anonymous <sip:anonymous@anonymous.invalid>

UA should always pseudorandom string in a Call-ID field instead of an IP address as had been recommended in earlier specifications.

However, a UA cannot always provide complete privacy and still be able to establish communication with another user. The alternative is to employ some kind of anonymizing or privacy-aware intermediary.

One approach to offering privacy and anonymity is to use a back-to-back user agent (B2BUA), which can act as a relay for both the signaling and media and in particular remove various types of identifying information. This form of proxy is similar to an SMTP proxy commonly found on application proxy firewalls. SMTP proxies are commonly used to “normalize” e-mail addresses to hide the details of mail service within an organization. Consider a multinational organization example.org that uses country codes’ fourth-level domain name labels as a naming convention for SMTP servers (us.mail.example.com,uk.mail.example.com). An SMTP proxy can modify mail headers before e-mail is forwarded outside the organization so that all mail appears to come from the generic mail.example.com to prevent mail traffic analysis. SMTP proxies also support methods for hiding IP addresses and rewriting other mail headers from messages before they are forwarded to external SMTP mail hosts.

The Privacy header field [43] provides similar methods and enables a UA to request various levels of privacy from servers within the trust boundary. The levels that can be communicated in the header field are summarized in Table 15.5 and explained in [44].

A B2BUA is only one of several ways to implement UA privacy services. For example, transport addresses obtained using TURN [45] can be used to anonymously receive media.

Table 15.5

SIP Privacy Levels

	Value
	Meaning

	header
	The privacy service should anonymizer SIP headers that contain identifying information such as Contact and Via

	session
	The privacy service should anonymizer identifying information in session descriptions (i.e., SDP bodies)

	user
	Used between proxies to indicate that the UA is not able to provide normal identity privacy.

	none
	None is requested

	critical
	The privacy service must reject the request if the desired level of privacy is not available

	id
	The privacy service should not include P-Asserted-ID identity in the request

	history
	The privacy service should apply privacy to any History-Info header field

15.5 Conclusion

This chapter introduced the basics of SIP security and covered authentication, identity, and privacy. There is still much work to be done in securing SIP in both standards and implementation.

15.6 Questions

Q15.1 What is the difference between symmetric key cryptography and public key cryptography? Give one example of each.

Q15.2 Define a message digest function and one use for it in cryptography.

Q15.3 List the main differences between IPSec and TLS. Give an example of a common usage of each protocol on the Internet today.

Q15.4 What is a digital certificate and is it used by TLS?

Q15.5 Describe how mutual authentication can be achieved between a SIP UA and a SIP proxy. Clearly show how secrets and credentials are being shared.

Q15.6 What are the advantages and disadvantages of TLS and IPSec for securing SIP sessions?

Q15.7 What security functions does DNSSEC provide?

Q15.8 In what way is the SIP P-Asserted-Identity mechanism similar to identity mechanisms in the PSTN?

Q15.9 How does Enhanced SIP Identity work for an interdomain SIP call?

Q15.10 What parts of the signature of an RFC 4474 Enhanced SIP Identity are problematic for B2BUAs and SBCs?

References

[1] Johnston, A., and D. Piscatello, Understanding VoIP Security, Norwood, MA: Artech House, 2006.

[2] Sisalem, D., et al., SIP Security, New York: John Wiley, & Sons, 2009.

[3] Singh, S., The Code Book: The Science of Secrecy from Ancient Egypt to Quantum Cryptography, New York: Anchor, 2000.

[4] Schnier, B., Applied Cryptography: Protocols, Algorithms, and Source Code in C, 2nd ed., New York: John Wiley & Sons, 1996.

[5] Advanced Encryption Standard (AES), “Federal Information Processing Standard 197,” November 2001.

[6] ANSI X3.106, “American National Standard for Information Systems—Data Link Encryption,” American National Standards Institute, 1983.

[7] Rivest, R. L., The RC4 Encryption Algorithm, RSA Data Security, Inc., 1992.

[8] Rivest, R. L., A. Shamir, and L. M. Adleman, “A Method for Obtaining Digital Signatures and Public-Key Cryptosystems,” Communications of the ACM, Vol. 21, No. 2, February 1978, pp. 120–126.

[9] Diffie, W., and M. E. Hellman, “New Directions in Cryptography,” IEEE Transactions on Information Theory, Vol. 22, 1976, pp. 644–684.

[10] Zimmermann, P., A. Johnston, and J. Callas, “ZRTP: Media Path Key Agreement for Secure RTP,” RFC 6189, April 2011.

[11] Housley, R., “Internet X.509 Public Key Infrastructure and CRL Profile,” RFC 2459, November 1998.

[12] Kent, S., and R. Atkinson, “Security Architecture for the Internet Protocol,” RFC 2401, November 1998.

[13] Dierks, T., and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.2,” RFC 5246, August 2008.

[14] Sheffer, Y., R. Holtz, and P. Saint-Andre, “Recommendations for Secure Use of TLS and DTLS,” RFC 7525, 2015.

[15] Rescorla, E., and N. Modadugu, “Datagram Transport Layer Security,” RFC 6347, January 2012.

[16] Arends, R., et al., “DNS Security Introduction and Requirements,” RFC 4033, March 2005.

[17] Shekh-Yusef, R., D. Aherns, and S. Bremer, “HTTP Digest Access Authentication,” Internet-Draft, Work in Progress, 2015.

[18] Franks, J., et al., “HTTP Authentication: Basic and Digest Access Authentication,” RFC 2617, June 1999.

[19] Turner, S., and L. Chen, “Updated Security Considerations for the MD5 Message-Digest and the HMAC-MD5 Algorithms,” RFC 6151, March 2011.

[20] Neimi, A., J. Arkko, and V. Torvinson, “Hypertext Transfer Protocol (HTTP) Digest Authentication Using Authentication and Key Agreement (AKA),” RFC 3310, September 2002.

[21] Callas, J., et al., “PGP Message Exchange Formats,” IETF RFC 4880, November 2007.

[22] Elkins, M., “MIME Security with Pretty Good Privacy (PGP),” RFC 2015, October 1996

[23] Ramsdell, B., and S. Turner, “Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 3.2 Message Specification,” RFC 5751, January 2010.

[24] Peterson, J., “S/MIME Advanced Encryption Standard (AES) Requirement for the Session Initiation Protocol (SIP),” RFC 3853, July 2004.

[25] Gurbani, V., R. Mahy, and B. Tate, “Connection Reuse in the Session Initiation Protocol (SIP),” RFC 5923, June 2010.

[26] Jennings, C., R. Mahy, F. and F. Audet, “Managing Client-Initiated Connections in the Session Initiation Protocol (SIP),” IETF RFC 5626, October 2009.

[27] Audet, F., “The Use of the SIPS URI Scheme in the Session Initiation Protocol (SIP),” RFC 5630, October 2009.

[28] Jennings, C., et al., “Example Call Flows Using Session Initiation Protocol (SIP) Security Mechanisms,” RFC 6216, April 2011.

[29] Jennings, C., J. Peterson, and M. Watson, “Private Extensions to the Session Initiation Protocol (SIP) for Asserted Identity Within Trusted Networks,” RFC 3325, November 2002.

[30] Peterson, J., “Session Initiation Protocol (SIP) Authenticated Identity Body (AIB) Format,” RFC 3893, September 2004.

[31] Peterson, J., “Enhancements for Authenticated Identity Management in the Session Initiation Protocol (SIP),” RFC 4474, August 2006.

[32] IETF STIR Working Group https://tools.ietf.org/wg/stir/.

[33] Peterson, J., C. Jennings, and E. Rescorla, “Authenticated Identity Management in the Session Initiation Protocol (SIP),” IETF Internet-Draft (Work in progress) draft-ietf-stirrfc4474bis, March 2015.

[34] https://letsencrypt.org/.

[35] Jennings, C., and J. Fischl, “Certificate Management Service for SIP,” RFC 6072, February 2011.

[36] Maler, E., R. Philpott, and P. Mishra, “Assertions and Protocol for the OASIS Security Assertion Markup Language (SAML) V1.1,” September 2003.

[37] http://www.oasis-open.org/.

[38] Tschofenig, H., et al., “Using SAML for SIP,” Internet-Draft, work in progress, October 2004.

[39] Hodges, J., “application/saml+xml Media Type Registration,” December 2004, https://www.iana.org/assignments/media-types/application/samlassertion%2Bxml.

[40] Peterson, J. et al., “Trait-Based Authorization Requirements for the Session Initiation Protocol (SIP),” RFC 4484, August 2006.

[41] Sparks, R., “The SIP Refer Method,” RFC 3515, April 2003.

[42] Sparks, R., “The Session Initiation Protocol (SIP) Referred-By Mechanism,” RFC 3892, September 2004.

[43] Peterson, J., “A Privacy Mechanism for the Session Initiation Protocol (SIP),” RFC 3323, November 2002.

[44] Munakata, M., S. Schubert, and T. Ohba, “Guidelines for Using the Privacy Mechanism for SIP,” RFC 5379, February 2010.

[45] Rosenberg, J., R. Mahy, and P. Matthews, “Traversal Using Relays Around NAT (TURN): Relay Extensions to Session Traversal Utilities for NAT (STUN),” RFC 5766, October 2008.

16

Media Security

16.1 Introduction

In the previous chapter, we concentrated on the security of SIP signaling. The security of the signaling is important, but if the media session established through signaling is not secure, VoIP call data or voice conversations are vulnerable to monitoring, replay, and manipulation, including injection and deletion. A secure VoIP that combines signaling and media into a single flow provides media security at little cost beyond the overhead associated with processing encryption. However, such protocols often prove extremely complex to design and implement. By decoupling of the signaling and media with protocols such as SIP and RTP, the individual protocols may be greatly simplified, but end-to-end security measures for signaling and media must be designed separately. The challenge of securing media streams includes:

• Completing a real-time exchange of keys, crypto suite, and parameters without clipping the start of the conversation;

• Performing encryption, decryption, and authentication without introducing significant media latency or extra bandwidth;

• Rekeying without interrupting or adding delay to the session.

Due to the difficulty of solving these problems, the media exchange in a SIP system often provides a lower level of security than the signaling (at least, initially). In this chapter, we consider the use of secure RTP (SRTP) to achieve integrity protection and confidentiality in the media session.

In some cases, media keying material is exchanged over the signaling channel. Multimedia internet keying (MIKEY) and SDP session descriptions fall into this category. Finally, other approaches that use the RTP media path itself to perform the key agreement are covered, such as DTLS-SRTP and ZRTP.

16.2 Secure RTP

Chapter 12 introduced Real-Time Transport Protocol (RTP) [1] and the companion protocol RTP Control Protocol (RTCP).

Secure RTP (SRTP) [2] is a profile extension to RTP that adds confidentiality, authentication, and integrity protection to RTP and RTCP sessions. SRTP takes an RTP stream, and adds encryption and integrity protection before handing the media stream to UDP for transport. SRTP uses symmetric keys and ciphers for media stream encryption, but does not provide any key management or generation functionality. Key management and exchange must be performed out of band from SRTP.

SRTP assumes that the communicating parties have already used a key management protocol to exchange or derive a set of master cryptographic keys for the set of ciphers to be used to protect the media stream. SRTP defines how session keys are generated from master cryptographic keys and how session keys are utilized, or refreshed, during the lifetime of the media session.

SRTP uses the AES cipher in counter mode (CTR, also described as AES-CM in the SRTP specification) for encryption utilizing 128-bit or 256-bit keys. AES-CTR is similar to AES-CBC in that it turns a block cipher like AES into a stream cipher. Unlike AES-CBC, AES-CTR does not require feedback. Instead, the cipher text is produced by performing an exclusive OR (XOR) of an encrypted key stream with the plaintext input. The key stream is an encryption of a counter, initialized with a specific initialization vector (IV) of configurable length. This algorithm allows blocks to be calculated in parallel. The result is then included in the SRTP packet and occupies the same number of bytes. The IV is generated using a 112-bit salting key, the SSRC, and the SRTP packet index number (the RTP packet sequence number, SEQ, plus the rollover counter, ROC). The inclusion of the SSRC in the IV allows the same key to be used for multiple RTP media sessions, as each will have a different SSRC. As such, a single master secret could be used for both directions and for multiple media streams. Alternatively, each media stream in each direction could use a different master secret.

When message authentication is used, a HMAC SHA-1 hash is performed over the packet and added to the end, making the SRTP packet slightly larger than the RTP packet. This can be an issue for implementations that are trying to minimize media bandwidth requirements. Since RTP packets are usually much smaller than the maximum packet size (MTU), fragmentation of SRTP should not be an issue.

[image:]

Figure 16.1 SRTP generation of session keys from master keys.

SRTP can use a number of master keys at the same time. Either communicating party can indicate which master key is to be used to encrypt a datagram in individual SRTP packets using the optional master key indicator (MKI) parameter. However, the MKI is rarely used in real-time communications.

The derivation of session keys from a master key is shown in Figure 16.1. At least one key derivation must be performed to obtain initial session keys. Subsequent key derivations may be performed depending on the cryptographic context of the SRTP stream. A master key and master salt are submitted to functions defined within SRTP to generate the session encryption key, the session salt key, and the authentication key. The session encryption key is used to drive the AES encryption algorithm. The session salt key is used as input to the IV. The authentication key is used for the optional HMAC SHA-1 message authentication function.

Figure 16.2 shows the makeup of an SRTP packet. The RTP header is not encrypted by SRTP. The RTP payload is encrypted. The additional fields optional introduced by SRTP (unshaded) are the master key index (MKI) and authentication tag.

When present, the authentication tag provides integrity protection over the RTP header and payload (the shaded elements in the figure). Because one of the elements protected by the authentication tag is the RTP sequence number, authentication also provides replay protection. When authentication and encryption are applied, encryption is applied before authentication. The SRTP specification recommends a default of 80 bits for the authentication tag. However, the use of shorter (such as 32 bits) and 0-bit authentication tags is also discussed as a practical albeit less desirable implementation measure in applications where policy dictates that bandwidth preservation is to take precedence over strong authentication and in certain wireless applications that use fixed-width data links that are not capable of transferring the additional octet overhead of the authentication tag.

[image:]

Figure 16.2 Secure Real-Time Protocol packet.

The MKI is a variable length field. Its length, value, and use are defined by the key management service. Key management may use MKI for rekeying (refreshing keys). However, a typical point-to-point VoIP or even video-over-IP session will rarely need rekeying during the session. In situations where multiple Master keys are available, key management may use MKI to identify the master key that is to be used within the cryptographic context of a given SRTP stream. The MKI is not protected by the authentication tag.

SRTP is usable for extremely long-lived sessions, such as continuous broadcast video. As such, it defines the maximum lifetime of a master key to be 248 SRTP packets. SRTP defines a mechanism for keeping track of SRTP packets beyond the 16-bit sequence (SEQ) number count defined and signaled in an RTP packet. An additional 32 bits known as the rollover counter (ROC) are defined and can be used to track the packet number. Besides the MKI, SRTP also defines a <from,to> mechanism for key lifetime.

SRTCP is also defined as a Secure RTP Control Protocol. Although RTCP is typically only used to exchange quality reports in a point-to-point session, it is also used for multicast session control. As such, SRTCP message authentication is mandatory in the specification although not particularly useful in VoIP applications.

When message authentication is used, SRTP provides replay protection by keeping track of sequence numbers of received and authenticated SRTP packets. Using this replay list and typically a sliding window approach, SRTP determines whether an arriving packet is both authentic and “never before received.” Conceptually, if the sequence number of an arriving packet matches an index in the replay list, it is deemed a replayed packet and can be discarded without causing any disruption to the session.

16.3 Generation of Media Encryption Keys

Here we describe basic approaches to securing media streams. Some rely on the use of a preshared key (PSK) exchanged in advance of the session, while others use a public key infrastructure (PKI) and utilize public keys for encrypting key material. Another approach is to utilize a secured signaling channel to exchange keys or generate one-time session keys for media encryption and authentication.

All of the scenarios described in this section presume that the UAs have already agreed upon encryption ciphers and key lengths and, thus, concentrate on how keys are exchanged. We discuss how cryptographic context, cipher suites, and configuration parameters can be exchanged securely at the start of a session in a subsequent section.

16.3.1 Preshared Keys

In the preshared keys approach, the UAs have previously exchanged secret keys for a symmetric cryptographic algorithm using an out-of-band method. For example, UAs within a group could be configured with a preshared key through security policy administration software, or as part of a group policy administration performed through active directory or a similar directory service. In some cases, the moderator of a SIP conference call could distribute the shared secret key in a conference invitation. Since the keying material is not carried in the signaling, the signaling protocol does not need to be secured specifically to keep media encryption keys private. Also, since authentication is effectively provided by knowledge of the shared key, the signaling does not need to be authenticated to assure that media encryption keys are not altered. This approach is only useful within a small group, for a specific call, or for a single use of an application. For example, the moderator of a secure SIP conference call may distribute a key to all participants for that single conference call.

In practice, preshared keys have the same characteristics as static passwords, and encrypting successive and multiple sessions using the same pre-shared key is poor design. For example, the longer a moderator uses the same preshared key, the greater the likelihood that the key may be unintentionally disclosed, cracked using a brute-force technique, or otherwise revealed. Once compromised, all media sessions encrypted with that key are vulnerable, including any previously placed calls that the attacker may have recorded. An alternative approach is to use preshared keys as part of the keying material, to generate new keys for each session, and to rekey long sessions based on key entropy. The alternative approach of key mixing makes decryption more difficult than if static keys were used, depending on how this is implemented. Consider 802.11 WPA-PSK [3]. If an attacker can capture the protocol exchanges used for session key derivation, he may be able to run a dictionary or brute force attack on the protocol to deduce the underlying preshared key. Once the attacker has that preshared key, he may be able to retrieve the session key and apply that key to decrypt (past or future) encrypted traffic.

16.3.2 Public Key Encryption

In a simple public key model, Alice and Bob utilize a public key infrastructure (PKI). Bob can use Alice’s public keys to encrypt the RTP media packets. Alice has several options for making her public key available to Bob (and vice versa). She can encode her public key in the signaling path. Alice can publish her public key in a directory, typically as an element of a digital certificate issued by a trusted certificate authority, where Bob and others can retrieve it. In either case, by employing PKI, Bob and others can trust that the certificate (and hence the public key) is truly Alice’s because they trust the certificate authority that issued Alice her certificate.

If public key encryption is used to encrypt successive and multiple media sessions, Alice must protect her private key from disclosure to prevent this solution. This is an improvement over preshared keys, but still not optimal. Moreover, public key encryption and decryption are more computationally intensive than symmetric key encryption and decryption for the same length keys. In practice, a better approach is for authenticated parties to securely negotiate a session key at the time of session setup and utilize the derived keys to encrypt the media for the duration of that session only.

For long-lasting, high-bandwidth sessions, session keys should be changed at regular intervals (a practice known as rekeying) as well, so that an attacker breaking the ciphertext will only expose the session encryption key and not Alice’s private (and hence, authentication) key. The resulting media exposure will also be limited to the part of the session that utilized the key, in short, a much lower exposure.

16.3.3 Authenticated Key Management and Exchange

In authenticated key management, Alice and Bob authenticate themselves, and establish a secure signaling session. Over this secure channel, a set of session keys are exchanged or derived. These keys are then used to generate media encryption keys, which are used to encrypt and sign media packets.

Another option is to transport the keys over a secure SIP connection. As described in the previous chapter, secure SIP (sips) ensures that TLS will be used to cryptographically protect each hop in the signaling path. For example, keys for symmetric encryption of the media stream might be carried in an SDP message body in a SIP message secured by TLS. The original SDP specification [4] defined a k= attribute for the transport of a symmetric key. An example is shown below in which the encryption key is base64 encoded and carried in the SDP in the clear.

v=0

o=- 1313802769 1313803240 IN IP4 206.65.230.170

s=-

c=IN IP4 206.65.230.170

k=base64:9rtj2345kmfgoiew94kj34magposadfo23kdsfalaopqwot

t=0 0

m=audio 64028 RTP/AVP 100 0 8 18 98 101

a=fmtp:101 0-15 a=rtpmap:100 speex/16000

a=rtpmap:98 ilbc/8000

a=rtpmap:101 telephone-event/8000

a=sendrecv

A drawback to this approach is that the keying material is exposed to every proxy server in the exchange and is, as a result, susceptible to a MitM attack. Also, the only information conveyed in the k= field besides the key itself is the encoding used for the key. The set of SRTP options, such as the cipher suite, the key length, and whether both encryption and authentication are to be used, is not conveyed. Due to the limited extensibility of SDP, the k= attribute has now been deprecated and its use is not recommended in the updated SDP specification [5].

The following sections discuss approaches to key management that are usable with SRTP media. In the first approach, extensions to SDP carry keys, cryptographic algorithms, and other parameters needed to configure the secure media session. In the second approach, SDP is used to carry a multimedia keying payload that securely carries the keying material. In the third and fourth approaches, a media path key agreement is performed to generate session keys.

16.4 SDP Security Descriptions

Andreasen, Baugher, and Wing [6] describe a way to use the a=crypto attribute in SDP to carry SRTP keying and configuration information. Along with the keying material, the a=crypto attribute conveys the encryption and integrity protection algorithm, the master key lifetime, the master key index (MKI) number and the number of bits used to encode the MKI. An example is shown here:

a=crypto:1 AES_CM_128_HMAC_SHA1_80 inline:PS1uQCVeeCFCanVmcjkpPywjNWhcYD0mXXt extR|2^20|1:32

The first item in the attribute is a cipher suite. This example shows AES counter mode as the encryption cipher, a 128 bit key length and SHA-1 80 bit as the HMAC authentication algorithm. In the next item, we concatenate the master key and master salt and encode the value using base64 following the in-line: separator. The third item, separated from the keys by a |, indicates that the master key is valid for 220 SRTP packets, and the final item, also separated by a |, specifies the MKI (here, identified as 1, separated from the MKI length of 32 bits by a :. Since the MKI field is optional in SRTP, its presence, and length in bits must be signaled prior to the SRTP session.

Here is a complete session description, including a security description:

v=0

o=jdoe 2890844526 2890842807 IN IP4 10.47.16.5

s=SDP Seminar

i=A Seminar on the session description protocol

u=http://www.example.com/seminars/sdp.pdf

e=j.doe@example.com (Jane Doe)

c=IN IP4 161.44.17.12/127

t=0 0

m=video 51372 RTP/SAVP 31

a=crypto:1 AES_CM_128_HMAC_SHA1_80 inline:d0RmdmcmVCspeEc3QGZiNWpVLFJhQX1cfHA

wJSoj|2^20|1:32

m=audio 49170 RTP/SAVP 0

a=crypto:1 AES_CM_128_HMAC_SHA1_32 inline:NzB4d1BINUAvLEw6UzF3WSJ+PSdFcGdUJSh

pX1Zj|2^20|1:32

This example shows two different master keys, one for audio and the other for video. The video stream uses an 80-bit message authentication code while the audio stream uses a 32-bit message authentication code. Note that the secure RTP session is signaled by the RTP/SAVP (for RTP secure audio video profile) token in each of the media (m=) lines, as defined in [2]. This approach for key exchange requires some other method to protect the keys, for example, S/MIME or TLS. However, if the destination is unable to decrypt the S/MIME, the INVITE will fail.

Note if keying material is carried in SDP over TLS, whether end-to-end integrity protection over the SDP or keying material is needed, or if the keying material could be altered or deleted by intermediaries.

SDP Security Descriptions is one of the most common key management approaches used in SIP today for keying SRTP.

16.5 Multimedia Internet Keying (MIKEY)

Multimedia Internet Keying (MIKEY) [7] is a key exchange protocol developed for the requirements of multimedia session security. There is a profile of MIKEY for SRTP. MIKEY provides its own encryption and integrity protection, so it does not require that the entire SDP message body be encrypted. MIKEY supports a number of key exchange methods, including the preshared key, public key, and Diffie-Hellman key generation. The key exchange method chosen by the initiator must also be supported by the recipient; otherwise, the exchange will fail.

MIKEY uses an offer/answer model and is transported using extensions to SDP defined in [8]. One party sends a MIKEY message to the other party during call setup, for example, in an INVITE message. The responding party answers with a MIKEY reply (e.g., in a 183 Session Progress or a 200 OK response). The exchange allows each UA to generate session keys and begin the encrypted SRTP media session.

MIKEY can be used in either of two ways. The first way is to negotiate separate security associations for each media stream, and the other way is to negotiate a single security association for all media streams communicated over this common session. The relationship between SRTP, MIKEY, and RTP is shown in Figure 16.3.

MIKEY provides its own confidentiality, integrity and authentication services. However, MIKEY requires message authentication to assure that it remains associated with a specific SDP and SIP signaling message. Otherwise, an attacker could cut and paste valid MIKEY messages from other sessions and possibly force key reuse.

[image:]

Figure 16.3 MIKEY.

Consider this SDP offer, in which Alice offers both an audio and video media stream:

v=0

o= -2890844526 2890844526 IN IP4 host.atl.example.com

s=-

c=IN IP4 host.atl.example.com

a=key-mgt:mikey Lkdlf3mdFLKES98fFk:wekDHJQodfje92dv...

t=0 0

m=audio 49170 RTP/SAVP 0 8 97

a=rtpmap:0 PCMU/8000

a=rtpmap:8 PCMA/8000

a=rtpmap:97 iLBC/8000

m=video 51372 RTP/SAVP 31 32

a=rtpmap:31 H261/90000

a=rtpmap:32 MPV/90000

The a=key-mgt SDP attribute extension is defined in [8]. The token mikey indicates that the key management protocol offered is MIKEY. The next element contains the base64 encoded MIKEY offer. If multiple key management protocols are supported, multiple key-mgt attributes can be listed (currently, only MIKEY is defined). Typically, a MIKEY exchange will result in the exchange or derivation of a single session key, used in each direction of the SRTP flow.

A secure RTP session is signaled by the RTP/SAVP(for RTP secure audio video profile) token in each of the media (m=) lines, as defined in [2].

Consider the following sample SDP answer:

v=0

o=bob 2808844564 2808844564 IN IP4 host.example.com

s=-

c=IN IP4 host.example.com

a=key-mgt:mikey 4BjKdfkIjwekjfpo23GoTTe2#$56(fg...

t=0 0

m=audio 49174 RTP/SAVP 0

a=rtpmap:0 PCMU/8000

m=video 49170 RTP/SAVP 32

a=rtpmap:32 MPV/90000

In this answer, Bob accepts both the audio and video streams offers, and provides a MIKEY answer. If Alice accepts the answer, the secure RTP (SRTP) audio and video sessions begin. Note that in this example both media streams use the same master key. This is possible because each RTP session has a unique SSRC that results in a unique IV. If separate keys are to be used for each media stream, the a=key-mgt attribute line will be included after the media lines, as in this example:

v=0

o= - 2890844526 2890844526 IN IP4 host.atl.example.com

s=-

c=IN IP4 host.atl.example.com

t=0 0

m=audio 49170 RTP/SAVP 0 8 97

a=key-mgt:mikey Lkdlf3mdFLKES98fFk:wekDHJQodfje92dv...

a=rtpmap:0 PCMU/8000

a=rtpmap:8 PCMA/8000

a=rtpmap:97 iLBC/8000

m=video 51372 RTP/SAVP 31 32

a=key-mgt:mikey ejhJheiLFekfkeifgj38doiFDk3wjfdg3ed...

a=rtpmap:31 H261/90000 a=rtpmap:32 MPV/90000

MIKEY has not been found to be useful for key management for real-time communication and is not widely used.

16.6 DTLS-SRTP Key Agreement

DTLS-SRTP [9] is a media path key generation approach. A DTLS handshake is performed between the two end points using the same ports that the resulting SRTP session will use. The master secret generated during the handshake is then used to generate the SRTP keys. Note that each set of transport ports will have a separate DTLS handshake and hence will use different keys. A call flow showing DTLS-SRTP is shown in Figure 16.4.

Since DTLS is a client/server protocol, while media sessions are peer-to-peer, during the establishment of a session, one end point will act as the server and the other end point will act as the client (i.e., initiate the handshake with the DTLS Hello). This is negotiated in the SDP offer/answer using the connection-oriented SDP extensions [10]. DTLS relies on certificate authentication to prevent a Man-in-the-Middle (MitM) attack; however, end points rarely have digital certificates that can be validated against a CA or a chain of trust. Instead, DTLS-SRTP uses self-signed certificates. The digital certificates exchanged during the handshake are effectively just naked public keys (no other information in the certificate is used besides the public key). The validation of the public keys is done by sending a hash of the public key over the signaling channel, using the SDP a=fingerprint attribute. There is no explicit indication in the SDP that DTLS-SRTP is used, apart from the a=fingerprint attribute. Unless end-to-end integrity protection of the SDP is used, DTLS-SRTP is vulnerable to MitM attacks.

DTLS-SRTP is the standard key agreement for WebRTC, as discussed in Chapter 20.

[image:]

Figure 16.4 DTLS-SRTP Call flow.

16.7 ZRTP Media Path Key Agreement for VoIP

Secure telephones establish a normal telephone call with another secure telephone, perform key management in-band in the audio channel to negotiate the security parameters, and then switch over to an encrypted session. This approach was first proposed and demonstrated for VoIP by PGP inventor Phil Zimmermann, in his zfone SIP user agent [11]. The protocol to do this media path key agreement, which was first published in 2005, is known as ZRTP [12].

ZRTP is based on Zimmermann’s PGPfone secure telephone developed in 1997. ZRTP uses the same ports used for media to perform key management and to negotiate encryption and authentication keys before switching to SRTP. ZRTP performs a Diffie-Hellman exchange using RTP header extensions.

This key agreement scheme needs protection from an active DH MitM attack in which the attacker inserts himself in the middle of two ZRTP clients and performs separate DH agreements with both clients. Integrity protection using a signed hash can be used to verify that the DH agreement was performed with the other party and not an attacker. If reliance on a PKI infrastructure is a concern, other methods can be considered.

Secure PSTN telephones use a voice authentication digest. A series of digits are generated by each client based on a hash of the DH shared secret. Each party reads the digits to the other party. If either party reads incorrect digits, then the parties have not agreed on a common DH shared secret and they can conclude that a MitM attack is taking place. An attacker who attempts to generate the voice authentication digest will not be able to read out the digits in the voice of the party he attempts to impersonate. Note that this approach works even if the two parties have never spoken before. Each party simply needs to confirm that the voice that read the voice authentication digest is the same voice used for the rest of the conversation. Of course, this approach is subject to the “Rich Little” attack in which an attacker could attempt to change his voice to match the desired voice. ZRTP uses a similar voice authentication digest approach.

In addition to the protection provided by the voice authentication digest, ZRTP uses a long-term shared secret cached from previous sessions to generate the current shared secret. When the voice authentication digest is not used, this cached secret provides a similar level of security as SSH when used in the leap-of-faith mode: as long as there was no active MitM attacker in the initial session between the two parties, the cached secret provides protection against any future MitM attacks. Note that an active MitM attack involves the attacker actually participating in two DH key agreements at the start of the session, as passive eavesdropping alone does not result in a compromised session. However, if the cached secret is lost by either party, the protection goes away and a new shared secret must be generated. This provides the opportunity for a MitM attacker to make it appear that the shared secret has been lost, force a new session, and provide another opportunity to launch an attack.

This approach provides confidentiality for the media session, but not authentication. However, a shared secret generated in the signaling exchange could be mixed in with the DH secret to produce a key to provide confidentiality and authentication.

The choice of performing the key agreement in the media path without relying on the signaling channel is an interesting one. While there are many different signaling protocols for VoIP, including proprietary ones, almost all VoIP systems use RTP for the media. ZRTP approach thus allows secure sessions to be established even when the end points do not share a common signaling protocol and indeed has been used in exactly this way [13].

ZRTP is published as an IETF RFC, but as an Informational document, not a standards track. However, ZRTP has many implementations, both open source stacks and in commercial products and systems [14]. ZRTP can even be implemented in JavaScript and used to provide MitM protection for WebRTC [15]. A call flow showing DTLS-SRTP is shown in Figure 16.5.

[image:]

Figure 16.5 ZRTP Call flow.

16.8 Questions

Q16.1 Which SDP-based keying approach is deprecated (no longer used) and which SDP-based keying approach is widely used?

Q16.2 Why is public key encryption not used for bulk encryption of media packets?

Q16.3 What are the fields in an a=crypto attribute?

Q16.4 Which keying approach uses the a=key-mgt attribute? Is it widely used in real-time communications?

Q16.5 Name two media path key agreement protocols for SRTP.

References

[1] Schulzrinne, H., et al., “RTP: A Transport Protocol for Real-Time Applications,” IETF RFC 3550, July 2003.

[2] Baugher, M., et al., “The Secure Real Time Transport Protocol,” RFC 3711, March 2004.

[3] Moskowitz, B., “Weakness in Passphrase Choice in WPA Interface,” WiFi Network News (WNN), http://wifinetnews.com/archives/002452.html.

[4] Handley, M., and V. Jacobson, “SDP: Session Description Protocol,” RFC 2327, April 1998.

[5] Handley, M., V. Jacobson, and C. Perkins, “SDP: Session Description Protocol,” RFC 4566, July 2006.

[6] Andreasen, F., M. Baugher, and D. Wing, “Session Description Protocol Security Descriptions for Media Streams,” RFC 4568, July 2006.

[7] Arkko, J., et al., “MIKEY: Multimedia Internet KEYing,” RFC 3830, August 2004.

[8] Arkko, J., et al., “Key Management Extensions for Session Description Protocol (SDP) and Real Time Streaming Protocol (RTSP),” RFC 4567, July 2006.

[9] McGrew, D., and E. Rescorla, “Datagram Transport Layer Security (DTLS) Extension to Establish Keys for the Secure Real-time Transport Protocol (SRTP),” RFC 5764, May 2010.

[10] Lennox, J., “Connection-Oriented Media Transport over the Transport Layer Security (TLS) Protocol in the Session Description Protocol (SDP),” RFC 4572, July 2006.

[11] http://www.philzimmermann.com/zfone.

[12] Zimmermann, P., and A. Johnston, “ZRTP: Media Path Key Agreement for Unicast Secure RTP,” RFC 6189, April 2011.

[13] https://jitsi.org/Documentation/ZrtpFAQ.

[14] https://silentcircle.com.

[15] Johnston, A., et al., “Using ZRTP to Secure WebRTC,” Internet-Draft draft-johnston rtcweb-zrtp (Work in progress), April 2014.

17

SIP PSTN Gateway Security

17.1 Introduction

Since the number of VoIP-enabled end points is likely to be significantly less than the number of public switched telephone networks (PSTN) end points for the foreseeable future, interconnection with the PSTN is a key part of any SIP VoIP system. This chapter will focus on some of the issues specific to PSTN interconnection, including gateway security, PSTN (toll) fraud, and telephone number mapping using the DNS.

17.2 PSTN Security Model

Security in the PSTN is primarily achieved through physical isolation rather than cryptographic measures.

Consider PSTN signaling. In the early days of the telephone network, the time division multiplexing (TDM) physical bearer channels also carried tones used for signaling and authentication. Attackers known as “phone phreakers” exploited this multiplexing of signaling and conversations onto a single channel. By mimicking signaling tones, phreakers were able to place free telephone calls. Phreakers quickly developed various tone generation boxes known as “red boxes” and “blue boxes” to manipulate the telephone signaling network.

At the time, long-distance calling was particularly expensive, and telephone network operators quickly recognized that left unchecked, phreaking posed a serious threat to revenue. As a countermeasure to phreaking, telecommunications carriers chose to isolate the signaling channel from the bearer channel. Signaling was carried out of band over a physically separate network that was not accessible to users. Access to the Signaling System #7 (SS7) packet-switched network is very tightly controlled and monitored by telecommunication carriers. The telecommunications carriers are confident that physical security measures are sufficient, so neither encryption nor authentication is used in SS7 networks.

As a further security measure against signaling tampering, the PSTN uses different signaling protocols for trusted and untrusted elements. For trusted elements, network-to-network interfaces (NNI) such as SS7 are used for interconnection. PSTN operators use NNIs within their switch network and in bilateral interconnection with other trusted operators. For untrusted elements, user-to-network interfaces (UNI) such as integrated services digital network (ISDN) are utilized. It is the responsibility of the PSTN operator to validate information received from a UNI before the information is passed along a NNI. This is shown in Figure 17.1.

PSTN switches generate per-call auditing information known as call detail records (CDRs). These are often analyzed in real time to detect fraudulent activities. Unusual calling patterns result in flagged transactions that are investigated carefully. A delay in a few days or weeks in detecting and shutting down fraudulent activity can make the difference between a small and multimillion-dollar loss.

The PSTN network also has protection against denial of service attacks, both malicious and unintentional. For example, television shows, consumer polls, and radio station contests can generate a large simultaneous call volume to a single number. The PSTN utilizes a method known as automatic call gapping (AGC) to deal with these scenarios. Higher-than-typical call volumes are detected and squelched as close to the point of origination by the application of the “busy” or “reorder” treatment. Only a certain number of the calls placed to the gapped number will actually be routed, resulting in traffic squelching.

[image:]

Figure 17.1 UNIs and NNIs in the PSTN.

This approach is also used to limit volume to the PSTN’s emergency calling system, known as E911 in North America. E911 uses a very small number of trunks (switch ports) from each telephone switch, which limits the volume before calls reach the selective router and the public service answering point (PSAP), the call center where operators answer emergency calls.

PSTN security can also be effectively mandated and controlled by legislation. The PSTN uses physical facilities and is bound to a particular geographic location, which places elements of the network under various (as state and municipal) jurisdictions. PSTN service providers are licensed and regulated by various levels of government, as, for example, the U.S. Federal Communications Commission, to a much greater degree than the Internet. In many parts of the world, the PSTN service provider is an official department of the government, known as postal telegraph and telephone (PTT) entity. For example, the use of identity is regulated on the PSTN. In many countries, the PSTN operator is required by law to provide a mechanism by which a caller can prevent the disclosure of his calling party telephone number to the called party, often by dialing a star code prior to dialing the called number. Certain classes of service must be signaled over the PSTN, in addition to the calling party number; for example, in the United States, telephone calls originating from prison pay phones are specially marked in the call signaling over NNIs.

The prevention of unwanted calls has also been shown to be effectively done in the PSTN using legislation. In the United States, telephone subscribers can register with the National Do Not Call Registry [1] and request that the PSTN block unsolicited telephone marketing calls. Businesses that disregard this regulation may receive heavy fines.

17.3 Gateway Security

While a PSTN gateway is essentially a user agent (or a collection of user agents) in a SIP VoIP architecture, there are some unique aspects to its operation, especially with respect to security. These include the following:

• Call usage by a PSTN gateway can generate significant usage and access charges.

• PSTN gateways can serve as points of attack into PSTN Telephone Switches and the Signaling System #7 (SS7) network.

• Handling of calling line ID (CLID) and other identifiers in the PSTN is carefully regulated. In many jurisdictions, PSTN gateway operators that misuse or mishandle CLID could be fined and penalized.

• Telephone hackers and phone phreakers may utilize gateways from the PSTN as an attack vector into a VoIP network.

17.3.1 Gateway Security Architecture

Many of the principles of securing VoIP endpoints in general apply to PSTN gateways. PSTN gateways usually are not operated as a standalone element but usually have a proxy server in front of them. The PSTN gateway usually does not directly authenticate VoIP users. Typically, a screening proxy server is used to challenge and authenticate callers. The SIP Proxy and PSTN gateway are part of the same trust domain and maintain a secure signaling relationship that detects and rejects any messages sent to try to bypass the screening proxy.

An operator of a PSTN gateway service must authenticate users of the service so that PSTN charges can be billed to the appropriate user. However, there are some special cases that require alertness in gateway operators, such as the following:

• Special toll numbers (900 and 976 in the United States) often have extremely high per-minute charges. Many PSTN gateway operators choose to block service to these numbers to avoid billing/charging headaches that can result. In practice, if service to such numbers is offered, PSTN gateway operators should audit calls carefully and thresholds should be set to detect unusual call behavior and throttle excessive call placement to special toll numbers.

• Calls to certain international numbers result in exorbitant toll charges. For example, some Caribbean islands have numbers that look like “normal” North American phone numbers (1+10 digits), but access charges associated with call placement to such numbers are extremely high. PSTN gateway operators should consider screening or blocking of these numbers. As with special toll numbers, PSTN gateway operators should audit international calls carefully and set thresholds should be set to detect unusual call behavior and throttle excessive call placement.

Most PSTN operators employ sophisticated, real-time, fraud detection systems that monitor call detail records and report anomalies. A VoIP system can also utilize such systems to identify calling pattern anomalies. For example, unusually excessive call placement by a normally moderate VoIP user may indicate that the user’s credentials have been stolen.

Fraud detection is not limited to PSTN gateways. Any VoIP aware device in the path can perform antifraud monitoring, generate alarms. Real-time VoIP-aware security systems, like their intrusion prevention system counterparts on data networks, can (temporarily) block service when fraud is suspected. For example, a VoIP-aware firewall or router could detect excessive call placement to a special toll number and block subsequent attempts by the calling party. Misuse detection can also be a passive (offline) activity: a log analysis application can inspect events from SIP proxy servers logs and identify anomalies in calling behavior across an entire organization or subscriber base.

PSTN telephone network elements have long been targets for attackers, primarily due to the centralized nature of the network itself (“attack the nucleus”). The transitive trust security relationships among telecommunications carriers makes attacks against network elements even more attractive because of the potential for escalating an attack beyond the initial target. Again, the PSTN relies heavily on physical security to protect its switching fabric. Network operations centers, remote electronics, and central office switches are commonly protected against unauthorized entry. Physical antitampering measures protect physical cabling (the fiber plant) and equipment cabinets.

PSTN physical security policies are as rigorous as any perhaps excepting the financial industry. These policies are in place to prevent intrusion, abuse, misconfiguration, and the like.

17.3.2 Gateway Types

SIP VoIP gateways fall into two types, based on the level of trust they establish with the PSTN. Enterprise gateways are considered external network elements by telecommunications providers. They do not operate within the trust domain of any telecommunications provider and trust is not extended to them by the PSTN.

As a result, enterprise gateways connect to the PSTN using UNI protocols. Identity information passed from an enterprise gateway to the PSTN is subjected to the same screening and validation by the PSTN service provider as any subscriber identity. A network gateway is considered a trusted element. It is essentially considered part of the PSTN switch network and connects using NNI protocols. Validation and screening of identity information must be done by the network gateway.

These different types of gateways operate under different security policies and are subjected to different attacks. An attack on an enterprise gateway is equivalent to an attack on a UNI to the PSTN, and therefore, it may be possible to disrupt or steal service from a single user or the entire enterprise served by an enterprise gateway. Since the enterprise gateway is not trusted, the scope of the attack is limited to what the enterprise gateway is authorized to do by the PSTN.

An attack on a network gateway is equivalent to an attack on an NNI to the PSTN. Since the network gateway is a trusted element, a successful attack will give an attacker more opportunities to escalate the attack, beyond this single network element and potentially beyond the telecommunications carrier victimized by the initial attack. The attack can expand to include any PSTN element that trusts and interconnects with this gateway. Since a trusted element in the PSTN makes identity assertions, the attacker can make a whole range of spoofed identity assertions, limited only by the geographic range of the interconnected network. (That is, a compromised network gateway interconnected with the U.S. telephone network could make false identity assertions of virtually any U.S. telephone number, but it could not assert international phone numbers as identities.)

17.3.3 Gateways and Caller ID

Identity as presented to end users in the PSTN is known as caller ID or calling line ID (CLID). Caller ID is an important service in the PSTN, used for screening, logging, and other service. Note that caller ID is not used for billing—the PSTN has another identity mechanism known as Automatic Number Identification (ANI), which is never exposed to end users and is used for billing.

Caller ID identity assertions in the global PSTN telephone network rely on transitive trust. An identity asserted by a trusted network element as, for example, a VoIP gateway connected as a network gateway will be trusted by other network elements in the PSTN, regardless of the actual source of the identity assertion.

Some enterprise gateways today are incorrectly interconnected with the PSTN as a network gateway, allowing incorrect identity information to leak into the PSTN.

In cases where the identity has been questionably authenticated or is not verifiable, passing no caller identity is preferable to passing potentially incorrect values. A network gateway must not pass an identity (assertion) to other PSTN network elements unless it has been properly validated. An operator who is not sure if the gateway is trusted or not should assume that the gateway is not trusted and not pass identity information to other PSTN network elements.

VoIP gateways illustrate the inherent weaknesses of transitive trust and perimeter security, as described in earlier chapters. But the CLID-based identity system used by the PSTN is proving to be easily exploited. Caller ID spoofing, or “orange boxing,” is actively pursued by the hacking community, and at least one obvious, albeit disreputable, commercial application exists. It helps telemarketing companies hide their identity from parties they call by displaying a number and identity that is either benign or trusted. How serious is this threat? A Google search of “fake caller id” returns a number of potential service offerings and numerous FAQs and How-Tos.

17.3.4 Caller ID and Privacy

PSTN callers in many areas offer the option of blocking their caller identity. However, in the PSTN, the blocked identity is still available to other telephone switches within the trust domain. The information is conveyed over NNIs but removed before sending over a UNI, as the trust domain is crossed. If a network gateway receives such identity information over an NNI, it must not pass this information to elements within the VoIP network over a UNI. A possible exception to this is if the VoIP network extends the PSTN trust domain into the IP space. If this is the case, then the border element in the IP space that enforces the trust boundary must respect this PSTN identity information, effectively making the VoIP connection an NNI.

Typically, a PSTN gateway will be part of a trust domain and will utilize network asserted identity techniques.

17.3.5 SIP/ISUP Interworking

The signaling function of a PSTN gateway bridges the IP-based and PSTN networks. Gateways use detailed mapping between the two voice signaling protocols to accomplish this. For example, a SIP to PSTN gateway will follow the SIP/ISUP mapping specification [2], and interworking between H.323 and the PSTN will be performed as defined in H.246 [3]. Gateways must be tested to ensure that unusual, malformed, or invalid SIP messages do not propagate into the PSTN network. Special care must be applied to general signaling SIP messages such as INFO [4], which will be described next.

Additional security requirements are imposed on PSTN gateways that support ISUP tunneling [5], in which ISUP messages are encapsulated and carried as MIME attachments. SIP-T is a framework a mechanism that defines how PSTN gateways can pass signaling across an IP network using SIP with complete ISUP transparency, such that when a call originates from one PSTN network, it is routed as SIP and RTP over an IP network and terminated at a UA connected to a second PSTN network, and no ISUP parameters or values are lost along the signaling path.

ISUP tunneling between PSTN gateways is depicted in Figure 17.2. From this architecture, it can be seen that the trust domain of the PSTN is now extended across the IP network. As such, the strongest security measures must be used including:

• Strong end-to-end and hop-by-hop authentication of gateways;

• PSTN Called Caller Party;

• Encryption for confidentiality;

• Integrity protection;

[image:]

Figure 17.2 SIP-T tunneling between PSTN gateways.

Operating an ISUP tunneling gateway network without these safeguards undermines the PSTN’s perimeter security.

ISUP messages are usually transported over the PSTN’s tightly controlled SS7 network. VoIP interworking with ISUP must be managed and controlled very carefully or else significant exploits are possible into the PSTN network. For example, bursts of ISUP messages sent over SIP could be used to tie up all the ports on a PSTN switch, ISUP messages could also be used to launch a DoS attack on the PSTN SS7 network, and faked ISUP messages could be used to generate fraudulent telephone calls and extraneous traffic in the PSTN.

To secure against these attacks, network gateways must only accept authenticated and integrity protected SIP traffic.

17.4 Telephone Number Mapping in the DNS

ENUM [6] utilizes the Internet domain name service (DNS) to map a PSTN telephone number to an Internet address. ENUM promises to help interconnect “islands” of VoIP connectivity. For example, if a VoIP user with one service provider places a call to a VoIP user with a different VoIP provider, today that call would be routed through the PSTN. Both VoIP service providers would utilize gateway ports and perhaps pay PSTN access and termination charges in the process. This is shown in Figure 17.3.

Using ENUM, the originating VoIP service provider would query DNS using the dialed telephone number, discover that this telephone number relates to a VoIP end point, and route the call over the Internet instead. This is shown in Figure 17.4.

[image:]

Figure 17.3 VoIP islands of interconnection.

[image:]

Figure 17.4 VoIP islands use ENUM and the Internet for interconnection.

While ENUM provides the discovery and routing mechanism to enable this scenario, service providers must be willing to exchange VoIP traffic with each other as well. This interconnection of VoIP service providers, called peering or a VoIP federation, creates certain requirements for correct operation, such as:

• The ability to know the identity of the source of the calls;

• The ability to securely exchange signaling;

• The ability to securely exchange media.

When such requirements are satisfied, ENUM is used in the following manner. Starting with a telephone number in the E. 164 international numbering plan format, a domain name is constructed using the following rules:

• Invert the order of the digits.

• Insert dots ‘.’ between each digit.

• Add the top level domain ‘e164.arpa.’

For example, the number 212-555-1212 in the North American Numbering Plan (NANP) in E.164 notation is +1 212 555 1212. Following the three steps above, the domain name obtained is:

2.1.2.1.5.5.5.2.1.2.1.e164.arpa

A query using the dynamic delegation discovery (DDD) system [6] is launched that returns a URI. The usage of ENUM for both SIP [7] and H.323 [8] has been defined. An example SIP AOR used in a ENUM record is as follows:

sip:2125551212@service-provider.example.com

A key requirement for privacy is that an ENUM entry must/may not reveal any more information than the minimum amount of information. For example, the above example SIP URI does not provide any more information than the fact that this telephone number is hosted by a particular service provider or enterprise.

Since ENUM utilizes DNS technology, ENUM is only as secure as the underlying DNS system. With ENUM, the telephone number to URI mapping provided cannot be easily validated in another way, hence, the need for enhanced DNS security. ENUM is likely to be an early adopter of DNSSEC, discussed in Chapter 15.

References

[1] The U.S. National Do Not Call Registry, http://www.donotcall.gov.

[2] Camarillo, G., et al., “Integrated Services Digital Network (ISDN) User Part (ISUP) to Session Initiation Protocol (SIP) Mapping,” RFC 3398, December 2002.

[3] “Interworking of H.Series Multimedia Terminals with H.Series Multimedia Terminals and Voice/Voiceband Terminals on GSTN and ISDN,” ITU-T Recommendation H.246, January 1998.

[4] Holberg, C., E. Burger, and H. Kaplan, “Session Initiation Protocol (SIP) INFO Method and Package Framework,” RFC 6086, October 2000.

[5] Vemuri, A., and J. Peterson, “Session Initiation Protocol for Telephones (SIP-T): Context and Architectures,” RFC 3372, January 2011.

[6] Bradner, S., L. Conway, and K. Fujiwara, “The E.164 to Uniform Resource Identifiers (URI) Dynamic Delegation Discovery System (DDDS) Application (ENUM),” RFC 6116, March 2011.

[7] Peterson, J., “ENUM Service Registration for Session Initiation Protocol (SIP) Addresses-of-Record,” RFC 3764, April 2004.

[8] Levin, O., “Telephone Number Mapping (ENUM) Service Registration for H.323,” RFC 3762, April 2004.

18

Peer-to-Peer SIP

Peer-to-peer (P2P) technologies have been become an important part of Internet applications. This chapter will introduce P2P technologies and ideas developed from file-sharing applications and show how they can be applied to an Internet communications protocol such as SIP. Finally, emerging work in standardizing P2P SIP will be covered including the RELOAD Peer Protocol and Host Identity Protocol (HIP).

18.1 P2P Properties

P2P applications became popular on the Internet with the advent of file-sharing applications. Today P2P concepts are used in other applications such as content delivery, distributed computing, application layer multicast, and also Internet communications. The most important properties of P2P systems are:

• Self-organizing;

• Decentralized control;

• Direct unmediated communication.

A good overview of P2P architectures and how they relate to common P2P applications such as content delivery networks, distributed computing, and communications is in [1].

P2P systems have these properties to varying degrees. For example, some P2P systems still use a centralized server for authentication; others use centralized servers for NAT and firewall traversal or use a hierarchy in which peers at the same level communicate but use other protocols (i.e., client-server) between levels in the hierarchy. The next section will discuss some P2P properties of SIP.

18.2 P2P Properties of SIP

SIP [2], by design, already has many P2P aspects and properties. For example, the only required element in a SIP network is a UA. UAs can communicate directly with peers: other UAs. In fact, all servers, including proxy, registrar, and redirect servers, are optional in the SIP architecture. Compare this to other protocols such as H.323, where a gatekeeper is a required element, or Jabber, where a Jabber server is required; Jabber clients cannot communicate directly with another Jabber client without a server in the middle. Some other fundamental aspects of SIP are also P2P in nature. The dialog identifier—To tag, From tag, and Call-ID—is generated by and under the control of UAs. Servers play no role in its creation. SIP also has P2P call control modes, such as those enabled by the REFER method. Many features that can be implemented by UAs alone using REFER require the use of servers in other telephony architectures. The basic SIP call control model is inherently P2P [3].

However, for all these P2P properties, nearly all SIP deployments use various types of servers. The reason for this is that SIP servers, especially proxy servers, perform very essential roles in discovery, rendezvous, and NAT traversal, as discussed in previous chapters. For example, a SIP UA that uses DHCP and has a dynamic IP address does not have a constant SIP URI that can be used to reach it. While technologies such as dynamic DNS can be used to enable this, sending regular registrations to a SIP proxy is an excellent solution to this. Also, for a SIP UA behind a NAT, the proxy server serves the role of rendezvous server, allowing UAs to discover each other, and exchange candidate addresses for hole punching. Finally, servers must provide fallback for NAT traversal as TURN servers or media relays when hole punching fails.

In addition to proxy servers, many networks also employ B2BUAs as well, which greatly reduce the P2P functionality of SIP. An alternative architecture for SIP, known as simple SIP [4], shows how nearly all features and services can be implemented using P2P approaches and a small set of SIP extensions. This architecture only uses servers for rendezvous functionality. As a result, most SIP exchanges occur over a single SIP hop. Besides simplifying and reducing latency and complexity, this also greatly enhances security. Much of the complexity discussed in the previous chapter on security relate to having proxy servers and B2BUAs in the path between two UAs. For example, if TLS is used in a single hop between UAs, certificates can be used for mutual authentication. In addition, the resulting exchange has end-to-end integrity protection and confidentiality.

If a P2P approach could be developed to replace these discovery, rendezvous, and NAT traversal functions, SIP could be operated in a pure P2P manner, providing all the advantages of P2P systems.

18.3 P2P Overlays

P2P networks form a network known as an overlay, which sits on top of the usual Internet connections. When joining the P2P network, the host, known as a node or a peer, becomes a part of the overlay network. Messages are routed between nodes using overlay routing, which sits on top of normal IP routing. The protocol used to route and map messages across the overlay is known as a peer protocol.

P2P systems need an algorithm for distributing data across the overlay. Often, this is done using a distributed hash table (DHT). For an example of a DHT algorithm used to build a P2P overlay, consider the Chord Protocol [5]. Chord uses a ring architecture, where nodes organize themselves in the overlay using their node number n. If m bits are used for the node number, then there are a maximum of 2^m nodes in the overlay. For Chord, typically m = 160 is used, which can support an enormous number of nodes. A node in the overlay keeps track of the two closest nodes in the overlay: the predecessor node, the closest node with a lower node number; and the successor node, the closest node with a higher node number. Chord provides a distributed database function for nodes in the overlay. Each node stores a small amount of information on behalf of other nodes in the overlay. To locate information in the overlay, the search index for the information (confusingly known as a “key” in Chord even though it has nothing to do with encryption) is hashed to determine the node number of the node responsible for storing this information. For example, to find information about a file or service named “voicemail,” the message digest of the string “voicemail” would be calculated, and the result would point to the node in the overlay where information about this service or file would be located. Chord uses m = 160 and SHA-1 as the hash function, which returns a 160-bit value, so the hash will always return a valid node number in the overlay. Since not every node number in the overlay is occupied by a peer, the actual node responsible will be the successor node to that node location. As a result, a node in the overlay is responsible for storing data about all nodes between its own node number and the node number of the predecessor node. If a new node joins the overlay between the node and its predecessor node, the responsibility will shift, the new node will take over responsibility for the nodes between it and the old predecessor node, and the node will now have the new node as its predecessor.

This distributed database maintains the dynamic mapping between data elements and the Chord node number. The other part of the Chord algorithm is for routing messages between nodes in the overlay. There are two distinct problems:

1. How to find the actual node responsible for a piece of data that is going to be stored or retrieved, given that in most cases there will not be a node in the overlay with that exact node ID. As a result, the problem is to find the nearest node.

2. Having found that node ID, the problem becomes how to contact that node (i.e., node number to IP address resolution).

For the first problem, each node in Chord maintains a small routing table known as a finger table. A finger table is only a small subset of the entire routing table for the overlay. Chord does not attempt to build a complete routing table for the overlay since it would likely be too large and too dynamic to be useful. Instead, each node maintains a finger table with m entries. The table starts with the successor node, and the kth element in the finger table is the actual node in the overlay closest to the 2k + n, where n is node’s number. For example, consider the tiny Chord overlay in Figure 18.1 where m = 8. The Chord finger table for node 27 is shown in Table 18.1.

In this example, node 27 wants to find the content whose location in the overlay is 210. The node consults the finger table and finds the closest node is node 159. Node 27 then queries node 159 for the location of node 210. Node 159 consults its finger table and returns node 202. Node 27 then contacts node 202 directly, who returns node 219. Node 27 then contacts node 215 who responds indicating that it is responsible for node 210. At this point, node 27 can query node 215 for the desired information. Note that this type of routing is known as iterative routing, in that a number of iterations or steps are performed at the source to get to the destination. The source is always in control and can verify routing integrity. An alternative approach is recursive routing where the request goes around the overlay in hops until it gets to the destination. This is typically faster than iterative routing and involves less processing on the source. The differences are shown in Figure 18.2.

[image:]

Figure 18.1 Chord routing example.

Table 18.1

Chord Finger Table forNode 27 in Figure 18.1

	k
	NodeClosest to
	ActualNode

	0
	20 + 27
	89

	1
	21 + 27
	89

	2
	22 + 27
	89

	3
	23 + 27
	89

	4
	24 + 27
	89

	5
	25 + 27
	89

	6
	26 + 27
	128

	7
	27 + 27
	159

This routing method in Chord can be shown to allow messages to be routed across the overlay in the order of log(m) hops. Since this number only grows logarithmically with the size of the overlay, Chord scales very well. In addition, the queries across the overlay, appearing geometrically as chords on a circle, give Chord its name.

[image:]

Figure 18.2 Iterative versus recursive routing on an overlay.

The second aspect of overlay routing is the mapping of Node IDs to IP addresses. Most academic Chord networks assume that all nodes have a public IP address and hence are addressable. They then hash the host IP address (assumed to be unique due to the uniqueness of IP addresses on the Internet) to get the host number. Obviously, for most real Internet applications, the assumption of a public IP address is not realistic, and the IP address cannot be used to generate node IDs. Also, one cannot assume the transitivity of connections across an overlay due to NAT. This is one reason why often recursive routing is used on overlays instead of iterative routing.

On real overlays, during the bootstrap process (an example of which is described for the RELOAD protocol in the next section), a node learns its successor and predecessor nodes and establishes connections to them using the bootstrap server for rendezvous. The node then requests the finger tables of the neighbor elements and copies information about the node ID that it would use to populate its own finger table. For the nodes that should be in the new node’s finger table, the node uses the other node as a rendezvous server so that it can contact the other nodes, perhaps running ICE for hole punching. Once established, this connection is maintained through keep-alives. The node can then request the finger table from this node, and continue in this way until it has a complete finger table and connections established to each of these nodes. As nodes join and leave the overlay, the node will make adjustments to the finger table.

By having nodes in the overlay provide this rendezvous service to other nodes, establishing and maintaining connections, the overlay can work even though nodes are behind NATs.

18.4 RELOAD

The RELOAD (REsource LOcation And Discovery) Protocol [6] is a P2P protocol developed in the P2PSIP working group of the IETF. RELOAD provides a self-organizing overlay network with routing between nodes and service discovery. RELOAD can be used for a number of applications, each of which is defined in separate usage documents. For example, the SIP usage of RELOAD is defined in [7]. In RELOAD, nodes join the overlay by establishing connections to a small number of other nodes in the overlay. Each node in the overlay has a node identifier (Node-ID), which is a 128-bit value used for routing messages across the overlay. Node-IDs are assigned by a centralized enrollment server. The enrollment server also issues credentials (certificates containing the Node-ID) used to authenticate nodes in the overlay. A node joins the overlay using a bootstrap node, a stable node in the overlay with a public IP address that is discoverable based on the name of the overlay. A new node forms new connections to other nodes in the overlay and builds a routing table. The node then actually joins the overlay by inserting itself into the routing tables of surrounding nodes and storing the data associated with that part of the overlay. Information is stored and retrieved in the overlay distributed database using store and fetch requests. The functions of different types of peers in the overlays are discussed in Table 18.2.

RELOAD uses a combination of binary encoding and tag length value (TLV) encoding; messages are routed over TLS or DTLS. Table 18.3 summarizes some of the diverse functions of RELOAD that are grouped together in this protocol.

The SIP usage of RELOAD provides two main functions: registration and rendezvous. The registration function is the ability of a UA to store the mapping between their address of record (AOR) and their Node-ID. This allows another UA in the overlay to do a lookup of their AOR URI to determine their Node-ID. The rendezvous function is to use RELOAD to establish a direct connection between two UAs in the overlay so they can exchange SIP messages. Without NAT, this function would not be needed, and instead the registration function could provide a mapping between an AOR and an IP address and port. However, since many peers will be behind NAT, this rendezvous functionality allows them to perform hole punching using ICE in order to establish a direct TLS or DTLS connection between the UAs. At that point, normal SIP messages including INVITE, ACK, and BYE can be exchanged. To complete the NAT traversal, the SIP exchange can provide rendezvous functionality for the media, and hence ICE will be run again. Both the RELOAD ICE and SIP ICE applications need to have a fallback, and that means TURN transport relay addresses. RELOAD can use different overlay protocols. The current version uses a modified version of Chord.

Table 18.2

Roles in an Overlay

	Peer node
	A full member of the overlay that stores information and routes overlay requests.

	Client node
	Not a full member of the overlay, but it can query the overlay for information.

	Joining peer
	A peer attempting to join the overlay.

	Bootstrap peer
	A stable peer with a public IP address used to join the overlay.

	Admitting peer
	The first peer contacted by joining peer after the bootstrap peer.

	Proxy peer
	A SIP proxy server that is also a peer in the overlay. It helps route SIP messages to and from the outside of the overlay.

	Enrollment server
	Issues credentials used by peers for authentication in the overlay.

Table 18.3

RELOAD Protocol Functions

	Usage layer
	An application that uses RELOAD, such as SIP.

	Message transport
	Provides end-to-end reliability of overlay messages.

	Storage
	Provides database functions for overlay users.

	Topology plug-in
	Supports different topologies based on overlay algorithm.

18.5 Host Identity Protocol

RELOAD as a protocol reimplements many layers of the protocol stack. It provides many transport layer and routing layer services, including reliability and fragmentation. An alternative approach to building an overlay is to reuse the existing parts of the IP stack by inserting shim layers. One example of this is the usage of HIP [8] over an overlay. The protocol stack of HIP is shown in Figure 18.3. The HIP architecture separates the identifier and locator roles of an IP address. An HIP host has a constant host identity, while its IP address can change in real time and over time. The host identity is a public private key pair. HIP uses a Host Identity Tag (HIT) as an identifier. A HIT is a self-certifying identity because it is formed as a prefixed, truncated hash of the public key, ORCHID (Overlay Routable Cryptographic Hash Identifier) [9] as an identifier, which is a 128-bit address that has the same format as an IPv6 address, but is not routable using IPv6. To claim a particular HIT, a host uses the private key associated with the public key of the HIT. The use of an ORCHID means that the IPv6 APIs can be used with HIP without any changes.

[image:]

Figure 18.3 Host Identity Protocol stack.

HIP may one day be run natively as a transport on top of IP. However, today it is tunneled over UDP so that it can traverse NAT.

HIP exchanges messages between hosts by first establishing connections known as HIP associations. An HIP association is secured using an IPSec tunnel, which is keyed using a DH exchange authenticated by the public keys associated with the host HITs. The HIP base exchange is used to signal the HIP association, and is currently being extended to support ICE hole punching for NAT traversal.

HIP needs a way to map an HIT to an IP address used to establish HIP connections. This can be done with either DNS, a registration method (a HIP rendezvous server), or an overlay routing protocol. This usage of HIP is described in [10]. Currently, the IETF HIP working group is working on taking parts of the RELOAD protocol and using them for discovery and rendezvous for HIP. Adding HIP to RELOAD would have the following advantages:

• Since HIP uses ICE, all other protocols that run on top of HIP, including RELOAD, SIP, and RTP would all get the benefits of ICE without having to implement it. For example, consider two peers who need to establish a RELOAD connection, exchange SIP messages, and then exchange RTP media. The RELOAD messages would be run over HIP and ICE would be run to establish the secure HIP association between the hosts; then RELOAD messages could be exchanged. Next, SIP could be sent over the same HIP association and finally RTP, all without having to run ICE again.

• Minimal changes to SIP and RTP would be required to use HIP. HITs would be carried as IPv6 addresses in SIP URIs and in SDP offer/answer exchanges for RTP media negotiation. This allows direct HIP usage for SIP and RTP without major changes to the protocols. The only change is the way URIs are resolved. In normal SIP, routing is based on the host part, and the user part is only resolved within the domain. In P2PSIP with HIP, the entire user and host part of the URI would need to be resolved. One solution to this would be to only use the domain part of the URI—the user part would essentially be ignored. While both a RELOAD and an HIP approach require this change to SIP, RELOAD requires even more extensive changes.

For more details of HIP, see [11].

18.6 Conclusion

P2P SIP is an area with quite a lot of activity, both in industry and in standards. P2P has advantages in some applications and scenarios. Protocols such as RELOAD and HIP will likely be used to implement some of these applications and scenarios.

[image:]

Figure 18.4 Chord overlay for Question Q18.3.

Table 18.4

Chord Finger Table for Node

27 in Figure 18.4

	k
	Closest toNode
	ActualNode

	0
	20 + 27
	53

	1
	21 + 27
	53

	2
	22 + 27
	53

	3
	23 + 27
	53

	4
	24 + 27
	?

	5
	25 + 27
	?

	6
	26 + 27
	?

	7
	27 + 27
	159

Table 18.5

Chord Finger Table for Node180 in Figure 18.4

	k
	Closest toNode
	ActualNode

	0
	20 + 180
	192

	1
	21 + 180
	192

	2
	22 + 180
	?

	3
	23 + 180
	?

	4
	24 + 180
	202

	5
	25 + 180
	?

	6
	26 + 180
	27

	7
	27 + 180
	?

18.7 Questions

Q18.1 List some P2P properties of SIP.

Q18.2 Explain how an overlay uses a DHT.

Q18.3 For the Chord overlay in Figure 18.4, fill in the missing entries in the finger tables of Tables 18.4 and 18.5.

Q18.4 Explain how HITs are self-certifying.

Q18.5 Why does the use of peer protocol require changes in the way a SIP URI is resolved?

References

[1] Camarillo, G., “Peer-to-Peer (P2P) Architecture: Definition, Taxonomies, Examples, and Applicability,” RFC 5694, November 2009.

[2] Rosenberg, J., et al., “SIP: Session Initiation Protocol,” RFC 3261, June 2002.

[3] Mahy, R., et al., “A Call Control and Multi-Party Usage Framework for the Session Initiation Protocol (SIP),” RFC 5850, May 2010.

[4] Sinnreich, H., et al., “Simple SIP Usage Scenario for Applications in the Endpoints,” RFC 5638, September 2009.

[5] Stoica, I., et al., “Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applications,” ACM SIGCOMM 2001, San Diego, CA, August 2001, pp. 149-160.

[6] Jennings, C., et al., “Resource Location and Discovery (RELOAD) Base Protocol,” RFC 6940, January 2014.

[7] Jennings, C., et al., “A SIP Usage for RELOAD,” draft-ietf-p2psip-sip (work in progress), January 2015.

[8] Moskowitz, R., et al., “Host Identity Protocol,” RFC 5201, April 2008.

[9] Nikander, P., J. Laganier, and F. Dupont, “An IPv6 Prefix for Overlay Routable Cryptographic Hash Identifiers (ORCHID),” RFC 4843, April 2007.

[10] Camarillo, G., et al., “HIP BONE: Host Identity Protocol (HIP) Based Overlay Networking Environment,” RFC 6079, January 2011.

[11] Gurtov, A., Host Identity Protocol (HIP): Towards the Secure Mobile Internet, Wiley Series on Communications Networking & Distributed Systems, New York: John Wiley & Sons, 2008.

19

Web Real-Time Communications

Web Real-Time Communications, or WebRTC, brings Internet communications and SIP communications to the World Wide Web. However, WebRTC is about more than just Web browsers. It is evolving into a new media standard that is already being widely used in mobile applications and will likely be the new media stack for SIP User Agents. This chapter will cover this new standard and industry effort, showing how it can be integrated with SIP. For a detailed treatment of WebRTC, see [1].

19.1 Introduction to WebRTC

WebRTC is a standard and an industry effort for real-time communications in Web browsers. The standards are being jointly developed in the W3C WebRTC Working Group [2] and the IETF RTCWEB (Real-Time Communications on the Web) Working Group [3]. The industry effort is known as webrtc.org [4] and is a multiplatform open source project that is widely used in Internet Communication applications.

Prior to WebRTC, if a web site wanted to have voice or video communications, it needed a plug-in or add-on installed on the browser. This had two disadvantages:

• Requires a plug-in or add-on download and install by the user. Browser vendors are attempting to phase out plug-ins and add-ons as they are often used by malicious Web sites to trick users into downloading and installing malware on their computers. In addition, some users are not able to do these installs.

• Requires development specific for each browser type and each browser platform by the developer. Compare this to HTML5 Web development, where the same code runs across any browser running on any platform.

One common approach prior to WebRTC had been to use the Flash plug-in to provide this capability. However, the poor codec selection and low-quality media stack usually resulted in a very poor user experience. Another approach had been to require the user to have a real-time communication application installed and have the browser launch this application when the user clicks on a link. For example, some SIP URI browser plug-ins were developed. The most widely used approach of this kind was the callto URI [5], which is used on some Web sites to launch Skype calls.

WebRTC overcomes these problems by providing a complete audio and video media stack built into the browser. This includes audio and video codecs as well as an advanced media stack that provides features such as echo cancellation, packet loss concealment, and automatic gain control. No download, plug-in, or add-on install is required in a WebRTC-enabled browser. In addition, the developer does not need to use proprietary protocols or development environments, as the JavaScript API (Application Programming Interfaces) are standardized and part of the HTML5 (Hypertext Markup Language) standard. WebRTC defines extensions to the <audio> and <video> HTML tags developed for streaming media, which enable real-time voice and video to be added to any Web page. A Web developer writes code in JavaScript using the WebRTC 1.0 APIs [6] and Media Capture and Streams APIs [7]. An example WebRTC application from [1] can be tried at [8].

At the time of this writing, WebRTC was supported in the Chrome [9], Firefox [10], and Opera [11] browsers, and some support was planned for the Edge browser. On mobile, Android and Firefox OS [12] supports WebRTC.

19.2 WebRTC Basics

The basic WebRTC functionality added to a browser is listed in Table 19.1. WebRTC allows an HTML5 Web page to set up, modify, and tear down audio and video that can flow directly between two browsers. This session is known as a Peer Connection, since it can be established directly between peers (i.e., two browsers). Note that this is a major departure from how browsers worked prior to WebRTC. Prior to WebRTC, a browser only interacted with a Web server or other type of server. Any communication between two browsers was always relayed through a server. For interactive real-time communication, latency must be kept to a minimum, so relaying of the media should be avoided. In order to enable this peer-to-peer connection, WebRTC mandates the use of advanced NAT traversal techniques. Of course, Peer Connections can be established between a browser and a media server or a media mixer or gateway.

Table 19.1

WebRTC Functions

Audio Codecs (Opus and G.711) [13]

Audio gain control and packet loss concealment [13]

Media negotiation [14]

Video Codecs (VP8 and H.264) [15]

WebRTC JavaScript APIs (for establishing PeerConnection) [6]

Media Capture and Streams APIs (for getting access to microphone and camera inputs) [7]

Bandwidth Estimation and Congestion Avoidance Function [16]

In addition to audio and video, WebRTC adds a peer-to-peer data channel. The data channel allows arbitrary data to be sent directly between two browsers. This interesting capability has already been used by developers to build file transfer sites, transport gaming information, and even telemetry data.

19.3 WebRTC Architecture

The most common architecture for WebRTC-enabled communications is the WebRTC triangle [17] shown in Figure 19.1. In this scenario, two Web browsers visit the same Web site and fetch the HTML5 data. Included in the markup is a JavaScript application that calls the WebRTC APIs. If the users decide to establish a media session, Web server makes it happen, and a peer-to-peer media session is established between the two browsers.

As with any Web application, the look, feel, and design of the Web page are totally up to the Web developer. On the Web, the minimum number of things is standardized, which produces the maximum flexibility and control for the developer and designer. WebRTC also follows this Web design and only standardizes the minimum set of functions needed to enable real-time communications. This means that the media exchange is fully standardized, but the signaling is not. Normally, a standardized signaling protocol, such as SIP, is needed for basic interoperability, allowing multiple devices and vendors can be put together to build a working system. For the Web, however, interoperability means that a Web page works/looks the same (or similar) on different browsers. Signaling in Figure 19.1 can be managed by the Web site, and the Web server can ensure that the same signaling is running on both browsers. With WebRTC there is a need for some kind of signaling service that allows the media to be negotiated.

[image:]

Figure 19.1 WebRTC Triangle.

There is also a proposed architecture of the WebRTC trapezoid [17], based on the SIP trapezoid introduced in Section 3.5.1. In this arrangement, the two browsers visit two different Web sites, but these sites have integrated their signaling so that it is possible to establish a Peer Connection directly between the two browsers, as shown in Figure 19.2.

WebRTC deployments today use the triangle, but in the future they may use the trapezoid.

19.4 WebRTC Protocols

The protocols used in WebRTC are listed in Table 19.2. The basic protocols are similar to that in a SIP User Agent stack, although WebRTC mandates the use of STUN, ICE, and TURN for NAT traversal, SRTP for media encryption, and DTLS-SRTP as the key agreement protocol for SRTP. WebRTC 1.0 also uses the same SDP offer/answer exchange used by SIP to negotiate media sessions.

Important WebRTC extensions are listed in Table 19.3.

[image:]

Figure 19.2 WebRTC Trapezoid.

Table 19.2

WebRTC Protocols

	Protocol
	Use

	HTTP (Hypertext Transport Protocol)
	Transport for HTML, JavaScript, and signaling

	WebSocket
	Transport for signaling

	SRTP (Secure Real-time Transport Protocol)
	Encrypted Audio and video media (Chapter 16)

	SDP (Session Description Protocol)
	Negotiation of media sessions (Chapter 13)

	STUN (Session Traversal Utilities for NAT)
	NAT traversal, discovering NAT (Chapter 10)

	TURN (Traversal Using Relays around NAT)
	NAT traversal, media relay (Chapter 10)

	ICE (Interactivity Connectivity Establishment)
	NAT traversal, hole punching (Chapter 10)

	TLS (Transport Layer Security)
	Security of HTML, JavaScript, and signaling (Chapter 15)

	DTLS (Datagram TLS)
	Keying for SRTP, security for data channel (Chapter 15)

	SCTP (Stream Control Transport)
	Transport for data channel (Chapter 1)

Table 19.3

WebRTC Extensions

	Media Extensions
	Extended Secure RTP Profile with Feedback (RTP/SAVPF): requires SRTP encryption and authentication, and also allows early sending of RTCP messages [18]; Multiple media types in an RTP session: audio and video on the same port [19]

	Media Negotiating Extensions
	JavaScript Session Establishment Protocol (JSEP): WebRTC usage of SDP [20]; bundle: SDP extension for negotiating multiple media streams on the same port [21]; media Stream ID (MSID): SDP for labeling media streams with an identifier [22]

	NAT Traversal Extensions
	Trickle ICE: Optimization of ICE for faster connections (Section 10.15)

19.5 SIP Signaling for WebRTC

From the start of the WebRTC effort, there was an interest in using SIP as the signaling protocol. The advantages of using SIP signaling are:

• Easy integration with existing SIP VoIP and video signaling infrastructure for enterprises and service providers. However, note that signaling interoperability is separate from media interoperability. Few existing SIP VoIP and video systems support the full WebRTC media stack, so a media gateway will generally be required.

• Faster development since an existing SIP stack can be used; no need to write custom signaling code. However, note that using SIP limits the flexibility of the Web developer to the capabilities of SIP. Some advanced signaling approaches will not be available.

WebRTC signaling only uses HTTP or WebSocket for transport. Web-Socket [23] provides a bidirectional TCP-like connection that originates as an HTTP request with an HTTP Upgrade:websocket header field as shown in Figure 19.3. WebSocket makes use of subprotocol identifiers. The value of sip has been defined for use in the HTTP Sec-WebSocket-Protocol header in the handshake request. WebSocket provides reliable transport, so the reliable transport procedures in [24] are used. Only a single SIP message is carried in a WebSocket message, so Content-Length is optional. Since the received= parameter in the Via header field is not usable, it is not used over WebSocket transport. If Secure SIP (sips) is used, then secure WebSockets over TLS must be used.

In order for SIP to be used as a signaling protocol for WebRTC, a new Web-Socket transport was developed. [25]. A new Via transport tokens WS and WSS for secure WebSocket (over TLS) were standardized, and also transport=ws and wss URI parameters. An example SIP INVITE sent over WebSocket is shown below. This message was generated by the open source JsSIP stack [26]:

[image:]

Figure 19.3 WebSocket Transport for SIP.

INVITE sip:69dc1c61@tryit.jssip.net SIP/2.0

Via: SIP/2.0/WS c5ogge9ihv1j.invalid;branch=z9hG4bK9584668

Max-Forwards: 69

To: <sip:69dc1c61@tryit.jssip.net>

From: “Alice” <sip:16d71a81@tryit.jssip.net>;tag=98e20scsir

Call-ID: n1q6c024vut5re3p9hr3

CSeq: 3392 INVITE

Contact: <sip:16d71a81@tryit.jssip.net;gr=urn:uuid:0f3cdab0-f79c-43e9-8f48-1a3be32e0ad4>

Session-Expires: 90

Allow: INVITE,ACK,CANCEL,BYE,UPDATE,MESSAGE,OPTIONS

Supported: timer,gruu,ice,outbound

User-Agent: JsSIP 0.6.26

Content-Type: application/sdp

Content-Length: ...

Note the use of the invalid domain name in the Via header field (<random-string>.invalid). This is because the all the SIP signaling messages must first come to the SIP Proxy Server and then be forwarded down the WebSocket tunnel to the User Agent. The use of the path (Section 6.1.21), outbound (Section 10.11.3), and gruu [27] extensions also makes this work correctly.

Interoperating a browser using SIP over WebSocket will most likely need a gateway in the media path. The gateway would terminate the SRTP and DTLS-SRTP and also terminate ICE. The gateway may also transcode the audio or video media. This is shown in Figure 19.4.

[image:]

Figure 19.4 WebRTC interworking with SIP through a gateway.

19.6 Conclusion

WebRTC is becoming increasingly popular for real-time communication both inside and outside of browsers. SIP over WebSocket can be used as a signaling protocol for WebRTC, and can also be used for interdomain signaling (i.e., the trapezoid model). In addition, the media stack used by WebRTC is quickly becoming the industry standard.

References

[1] Johnston, A., and D. Burnett, WebRTC: APIs and RTCWEB Protocols of the HTML5 Real-Time Web, 3rd ed., Digital Codex LLC, St. Louis, MO, 2014.

[2] World Wide Web Consortium (W3C) Web Real-Time Communications (WebRTC) Working Group http://www.w3.org/2011/04/webrtc/.

[3] Internet Engineering Task Force (IETF) Real-Time Communications in the Web (RTC-WEB) Working Group https://tools.ietf.org/wg/rtcweb/.

[4] http://webrtc.org.

[5] Vaha-Sipila, A., “URLs for Telephony,” Internet-Draft draft-antti-telephony-url-00, Work in progress, August 1997.

[6] Bergkvist, A., et al., “WebRTC 1.0: Real-time Communication Between Browsers,” W3C http://www.w3.org/TR/webrtc Work in progress, February 2015.

[7] Burnett, D., A. Bergkvist, C. Jennings, and A. Narayanan, “Media Capture and Streams,” http://www.w3.org/TR/mediacapture-streams, Work in progress, April 2015.

[8] http://demo.webrtcbook.com.

[9] https://www.google.com/chrome.

[10] https://www.mozilla.org/firefox.

[11] http://www.opera.com.

[12] https://www.mozilla.org/firefox/os/.

[13] Valin, JM, and C. Bran, “WebRTC Audio Codec and Processing Requirements,” Internet-Draft draft-ietf-rtcweb-audio, Work in progress, February 2014.

[14] Rosenberg, J., and H. Schulzrinne, “An Offer/Answer Model with Session Description Protocol (SDP),” RFC 3264, June 2002.

[15] Roach, A.B., “WebRTC Video Processing and Codec Requirements,” Internet-Draft draft-ietf-rtcweb-video, Work in progress, March 2015.

[16] IETF RTP Media Congestion Avoidance Techniques (RMCAT) Working Group, https://tools.ietf.org/wg/rmcat/.

[17] Alvestrand, H., “Overview: Real Time Protocols for Browser-based Applications,” Internet-Draft draft-ietf-rtcweb-overview, Work in progress, November 2014.

[18] Ott, J., and E. Carrara, “Extended Secure RTP Profile for Real-time Transport Control Protocol (RTCP)-Based Feedback (RTP/SAVPF),” RFC 5124, February 2008.

[19] Westerlund, M., C. Perkins, and J. Lennox, “Sending Multiple Types of Media in a Single RTP Session,” Internet-Draft draft-ietf-avtcore-multi-media-rtp-session, Work in progress, March 2015.

[20] Uberti, J., C. Jennings, and E. Rescorla, “Javascript Session Establishment Protocol,” Internet-Draft draft-ietf-rtcweb-jsep, Work in progress, March 2015.

[21] Holmberg, C., H. Alvestrand, and C. Jennings, “Negotiating Media Multiplexing Using the Session Description Protocol (SDP),” Internet-Draft draft-ietf-mmusic-sdp-bundle-negotiation, Work in progress, March 2015.

[22] Alvestrand, H., “WebRTC MediaStream Identification in the Session Description Protocol,” Internet-Draft draft-ietf-mmusic-msid, Work in progress, April 2015.

[23] Fette, I. and A. Melnikov, “The WebSocket Protocol,” RFC 6455, December 2011.

[24] Rosenberg, J., et al., “SIP: Session Initiation Protocol,” RFC 3261, June 2002.

[25] Baz Castillo, I., Millan Villegas, J., and V. Pascual, “The WebSocket Protocol as a Transport for the Session Initiation Protocol (SIP),” RFC 7118, January 2014.

[26] http://tryit.jssip.net/.

[27] Rosenberg, J., “Obtaining and Using Globally Routable User Agent URIs (GRUUs) in the Session Initiation Protocol (SIP),” RFC 5627, October 2009.

20

Call Flow Examples

In this chapter, many of the concepts and details presented in the preceding chapters will be illustrated with examples. Each example includes a call flow diagram, a discussion of the example, and the message details. Each message is labeled in the figure with a message number for easy reference. For more examples of the protocol, refer to the SIP specification [1], the SIP call flows [2, [3]] documents, and the SIP service examples document [4].

The purpose of the examples in this chapter is to illustrate aspects of the SIP. The interoperation scenarios with the PSTN and with an H.323 network are not intended to fully define the interworking or to show a complete parameter mapping between the protocols. Likewise, simplifications such as minimal authentication and direct client-to-gateway messaging are used to make the examples more clear.

20.1 SIP Call with Authentication, Proxies, and Record-Route

Figure 20.1 shows a basic SIP call between two SIP user agents involving two proxy servers. Rather than perform a DNS query on the SIP URI of the called party, the calling SIP phone sends the INVITE request to a proxy server for address resolution. The proxy server requires authentication to perform this service and replies with a 407 Proxy Authorization Required response. Using the nonce from the challenge, the caller resends the INVITE with the caller’s username and password credentials. The proxy checks the credentials, and finding them to be correct, performs the DNS lookup on the Request-URI. The INVITE is then forwarded to the proxy server listed in the DNS SRV record that handles the example.org domain. That proxy then looks up the Request-URI and locates a registration for the called party. The INVITE is forwarded to the destination UAS, a Record-Route header having been inserted to ensure that the proxy is present in all future requests by either party. This is because a direct routed SIP message to Ada would be blocked by the firewall.

[image:]

Figure 20.1 SIP-to-SIP call with authentication, proxies, and Record-Route.

The called party receives the INVITE request and sends 180 Ringing and 200 OK responses, which are routed back to the caller using the Via header chain from the initial INVITE. The ACK sent by the caller includes a Route header built from the Record-Route header field in the 200 OK response. This routing skips the first proxy but includes the firewall proxy. The media session begins with the user agents exchanging RTP and RTCP packets.

The call terminates when the called party, Ada, sends a BYE, which includes a Route header generated from the Record-Route header field in the INVITE. Note that the CSeq for the called user agent is initialized to 1000. The acknowledgment of the BYE with a 200 OK response causes both sides to stop sending media packets.

M1

INVITE sip:ada@language.example.org SIP/2.0

Request-URI

Via: SIP/2.0/UDP 12.26.17.91:5060;branch=z9hG4bK454

Max-Forwards: 70

From: Charles Babbage <sip:babbage@analyticalsoc.example.org>;tag=9382

To: sip:ada@language.example.org

Call-ID: f6329a3491e7

CSeq: 1 INVITE

CSeq initialized to 1

Contact: <sip:babbage@client.analyticalsoc.example.org>

Subject: RE: Software

User-Agent: DifferenceEngine/1

Content-Type: application/sdp

Content-Length: 137

v=0

o=Babbage 2890844534 2890844534 IN IP4 12.26.17.91

s=-

t=0 0

c=IN IP4 12.26.17.91

m=audio 49170 RTP/AVP 0

a=rtpmap:0 PCMU/8000

Babbage’s IP address

Port number

Codec info

M2

SIP/2.0 407 Proxy Authentication Required

Via: SIP/2.0/UDP 12.26.17.91:5060;branch=z9hG4bK454

From: Charles Babbage <sip:babbage@analyticalsoc.example.org>;tag=9382

To: <sip:ada@language.example.org>;tag=34q4356g

Call-ID: f6329a3491e7

CSeq: 1 INVITE

Proxy-Authenticate: Digest

Authentication Challenge

realm=”language.example.org”,

nonce=”9c8e88df84f1cec4341ae6e5a359”,

opaque=””, stale=FALSE, algorithm=MD5

M3

ACK sip:ada@language.example.org SIP/2.0

Via: SIP/2.0/UDP 12.26.17.91:5060;branch=z9hG4bK454

Max-Forwards: 70

From: Charles Babbage <sip:babbage@analyticalsoc.example.org>;tag=9382

To: <sip:ada@language.example.org>;tag=34q4356g

Call-ID: f6329a3491e7

CSeq: 1 ACK

CSeq not incremented Method set to ACK

M4

INVITE sip:ada@language.example.org SIP/2.0

INVITE resent with credentials

Via: SIP/2.0/UDP 12.26.17.91:5060;branch=z9hG4bK221

Max-Forwards: 70

From: Charles Babbage <sip:babbage@analyticalsoc.example.org>;tag=9382

To: sip:ada@language.org

Call-ID:f6329a3491e7

Call-ID unchanged

CSeq incremented

CSeq: 2 INVITE

Proxy-Authorization: Digest

username=”Babbage”,

Credentials

realm=”language.example.org”,

nonce=”9c8e88df84f1cec4341ae6e5a359”,

opaque=””, response=”e56131d19580cd833064787ecc”

Contact: <sip:babbage@client.analyticalsoc.example.org>

Subject: RE: Software

User-Agent: DifferenceEngine/1

Content-Type: application/sdp

Content-Length: 137

v=0

o=Babbage 2890844534 2890844534 IN IP4 12.26.17.91

s=-

t=0 0

c=IN IP4 12.26.17.91

m=audio 49170 RTP/AVP 0

a=rtpmap:0 PCMU/8000

M5

SIP/2.0 100 Trying

Credentials accepted

Via: SIP/2.0/UDP 12.26.17.91:5060;branch=z9hG4bK221

From: Charles Babbage <sip:babbage@analyticalsoc.example.org>;tag=9382

To: sip:ada@language.example.org

Call-ID: f6329a3491e7

CSeq: 2 INVITE

M6 DNS Query:

SRV lookup on _udp._sip.language.example.org

M7

DNS Response:

_sip._udp.language.example.org. 300 IN SRV 0 100 5060 proxy.language.

example.org.

proxy.language.example.org. 3600 IN A 10.14.92.1

M8

INVITE sip:ada@language.example.org SIP/2.0

Via: SIP/2.0/UDP 15.16.17.18:5060;branch=z9hG4bK3f31049.1

Via: SIP/2.0/UDP 12.26.17.91:5060;branch=z9hG4bK221

Max-Forwards: 69

From: Charles Babbage <sip:babbage@analyticalsoc.example.org>;tag=9382

To: sip:ada@language.example.org

Call-ID: f6329a3491e7

CSeq: 2 INVITE

Contact: <sip:babbage@client.analyticalsoc.example.org>

Subject: RE: Software

User-Agent: DifferenceEngine/1

Content-Type: application/sdp

Content-Length: 137

v=0

o=Babbage 2890844534 2890844534 IN IP4 12.26.17.91

s=-

t=0 0

c=IN IP4 12.26.17.91

m=audio 49170 RTP/AVP 0

a=rtpmap:0 PCMU/8000

M9

SIP/2.0 100 Trying

Not Forwarded

Via:SIP/2.0/UDP 15.16.17.18:5060;branch=z9hG4bK3f31049.1

Via: SIP/2.0/UDP 12.26.17.91:5060;branch=z9hG4bK221

From: Charles Babbage <sip:babbage@analyticalsoc.example.org>;tag=9382

To: sip:ada@language.example.org

Call-ID: f6329a3491e7

CSeq: 2 INVITE

M10 Location Service Query: ada?

M11 Location Service Response: sip:ada@1.2.3.4

M12

INVITE sip:ada@1.2.3.4 SIP/2.0

Via: SIP/2.0/UDP proxy.language.example.org:5060;branch=z9hG4bK24105.1

Via: SIP/2.0/UDP 15.16.17.18:5060;branch=z9hG4bK3f31049.1

Via: SIP/2.0/UDP 12.26.17.91:5060;branch=z9hG4bK221

Max-Forwards: 68

From: Charles Babbage <sip:babbage@analyticalsoc.example.org>;tag=9382

To: sip:ada@language.example.org

Call-ID: f6329a3491e7

CSeq: 2 INVITE

Contact: <sip:babbage@client.analyticalsoc.example.org>

Subject: RE: Software

User-Agent: DifferenceEngine/1

Record-Route: <sip:10.14.92.1;lr>

Record-route added by proxy

Content-Type: application/sdp

Content-Length: 137

v=0

o=Babbage 2890844534 2890844534 IN IP4 12.26.17.91

s=-

t=0 0

c=IN IP4 12.26.17.91

m=audio 49170 RTP/AVP 0

a=rtpmap:0 PCMU/8000

M13

SIP/2.0 180 Ringing

Via: SIP/2.0/UDP proxy.language.example.org:5060;branch=z9hG4bK24105.1;received=10.14.92.1

Via: SIP/2.0/UDP 15.16.17.18:5060;branch=z9hG4bK3f31049.1

Via: SIP/2.0/UDP 12.26.17.91:5060;branch=z9hG4bK221

From: Charles Babbage <sip:babbage@analyticalsoc.example.org>;tag=9382

To: <sip:ada@language.example.org>;tag=65a3547e3

Tag added by called party

Call-ID: f6329a3491e7

CSeq: 2 INVITE

Contact: sip:ada@drawingroom.language.example.org

Record-Route: <sip:10.14.92.1;lr>

M14

SIP/2.0 180 Ringing

Via: SIP/2.0/UDP 15.16.17.18:5060;branch=z9hG4bK3f31049.1

Via: SIP/2.0/UDP 12.26.17.91:5060;branch=z9hG4bK221

From: Charles Babbage <sip:babbage@analyticalsoc.example.org>;tag=9382

To: <sip:ada@language.org>;tag=65a3547e3

Call-ID: f6329a3491e7

CSeq: 2 INVITE

Contact: sip:ada@drawingroom.language.example.org

Record-Route: <sip:10.14.92.1;lr>

M15

SIP/2.0 180 Ringing

Via: SIP/2.0/UDP 12.26.17.91:5060;branch=z9hG4bK221

From: Charles Babbage <sip:babbage@analyticalsoc.example.org>;tag=9382

To: <sip:ada@language.example.org>;tag=65a3547e3

Call-ID: f6329a3491e7

CSeq: 2 INVITE

M16

SIP/2.0 200 OK

Call accepted

Via: SIP/2.0/UDP 10.14.92.1:5060;branch=z9hG4bK24105.1

Via: SIP/2.0/UDP 15.16.17.18:5060;branch=z9hG4bK3f31049.1

Via: SIP/2.0/UDP 12.26.17.91:5060;branch=z9hG4bK221

From: Charles Babbage <sip:babbage@analyticalsoc.example.org>;tag=9382

To: <sip:ada@language.example.org>;tag=65a3547e3

Call-ID: f6329a3491e7

CSeq: 2 INVITE

Contact: sip:ada@drawingroom.language.example.org

Record-Route: <sip:10.14.92.1;lr>

Content-Type: application/sdp

Content-Length: 126

v=0

o=Ada 2890844536 2890844536 IN IP4 1.2.3.4

s=-

t=0 0

c=IN IP4 1.2.3.4

m=audio 52310 RTP/AVP 0

a=rtpmap:0 PCMU/8000

Ada’s IP address Port number Codec information

M17

SIP/2.0 200 OK

Via: SIP/2.0/UDP 15.16.17.18:5060;branch=z9hG4bK3f31049.1

Via: SIP/2.0/UDP 12.26.17.91:5060;branch=z9hG4bK221

From: Charles Babbage <sip:babbage@analyticalsoc.example.org>;tag=9382

To: <sip:ada@language.example.org>;tag=65a3547e3

Call-ID: f6329a3491e7

CSeq: 2 INVITE

Contact: sip:ada@drawingroom.language.example.org

Record-Route: <sip:10.14.92.1;lr>

Content-Type: application/sdp

Content-Length: 126

v=0

o=Ada 2890844536 2890844536 IN IP4 1.2.3.4

s=-

t=0 0

c=IN IP4 1.2.3.4

m=audio 52310 RTP/AVP 0

a=rtpmap:0 PCMU/8000

M18

SIP/2.0 200 OK

Via: SIP/2.0/UDP 12.26.17.91:5060;branch=z9hG4bK221

From: Charles Babbage <sip:babbage@analyticalsoc.example.org>;tag=9382

To: <sip:ada@language.example.org>;tag=65a3547e3

Call-ID: f6329a3491e7

CSeq: 2 INVITE

Contact: sip:ada@drawingroom.language.example.org

Record-Route: <sip:10.14.92.1;lr>

Content-Type: application/sdp

Content-Length: 126

v=0

o=Ada 2890844536 2890844536 IN IP4 1.2.3.4

s=-

t=0 0

c=IN IP4 1.2.3.4

m=audio 52310 RTP/AVP 0

a=rtpmap:0 PCMU/8000

M19

ACK sip:ada@drawingroom.language.example.org SIP/2.0

Sent to ALG

Via: SIP/2.0/UDP 12.26.17.91:5060;branch=z9hG4bK789

Max-Forwards: 70

From: Charles Babbage <sip:babbage@analyticalsoc.example.org>;tag=9382

To: <sip:ada@language.example.org>;tag=65a3547e3

Call-ID: f6329a3491e7

CSeq: 2 ACK

Route: <sip:10.14.92.1;lr>

M20

ACK sip:ada@drawingroom.language.example.org SIP/2.0

Via: SIP/2.0/UDP 10.14.92.1:5060;branch=z9hG4bK24105.1

Via: SIP/2.0/UDP 12.26.17.91:5060;branch=z9hG4bK789

Max-Forwards: 69

From: Charles Babbage <sip:babbage@analyticalsoc.example.org>;tag=9382

To: <sip:ada@language.example.org>;tag=65a3547e3

Call-ID: f6329a3491e7

CSeq: 2 INVITE

M21

BYE sip:babbage@client.analyticalsoc.example.org SIP/2.0

Via: SIP/2.0/UDP 1.2.3.4:5060;branch=z9hG4bK543

Max-Forwards: 70

From: Ada Lovelace <sip:ada@language.example.org>;tag=65a3547e3

To: Charles Babbage <sip:babbage@analyticalsoc.example.org>;tag=9382

Call-ID: f6329a3491e7

CSeq: 1000 BYE

Route: <sip:10.14.92.1;lr>

CSeq initialized to 1000

From Record-Route header

M22

BYE sip:babbage@client.analyticalsoc.example.org SIP/2.0

Via: SIP/2.0/UDP 10.14.92.1:5060;branch=z9hG4bK24105.1

Via: SIP/2.0/UDP 1.2.3.4:5060;branch=z9hG4bK543

Max-Forwards: 69

From: Ada Lovelace <sip:ada@language.example.org>;tag=65a3547e3

To: Charles Babbage <sip:babbage@analyticalsoc.example.org>;tag=9382

Call-ID: f6329a3491e7

CSeq: 1000 BYE

M23

SIP/2.0 200 OK

Via: SIP/2.0/UDP 10.14.92.1:5060;branch= z9hG4bK24105.1

Via: SIP/2.0/UDP 1.2.3.4:5060;branch=z9hG4bK543

From: Ada Lovelace <sip:ada@language.example.org>;tag=65a3547e3

To: Charles Babbage <sip:babbage@analyticalsoc.example.org>;tag=9382

Call-ID: f6329a3491e7

CSeq: 1000 BYE

M24

SIP/2.0 200 OK

Via: SIP/2.0/UDP 1.2.3.4:5060;branch=z9hG4bK543

From: Ada Lovelace <sip:ada@language.example.org>;tag=65a3547e3

To: Charles Babbage <sip:babbage@analyticalsoc.example.org>;tag=9382

Call-ID: f6329a3491e7

CSeq: 1000 BYE

20.2 SIP Call with Stateless and Stateful Proxies with Called Party Busy

Figure 20.2 shows an example of a SIP with a stateless proxy server and a state-ful proxy server. The call is not completed because called party is busy. The called user agent initially sends a 180 Ringing response but then sends a 600 Busy Everywhere response containing a Retry-After header to indicate that the call is being rejected. The stateful proxy returns a 100 Trying response to the INVITE, and also acknowledges the 600 Busy Everywhere response with an ACK. The stateless proxy does not send a 100 Trying and forwards the 600 Busy Everywhere and the ACK sent by the caller user agent. Also note that the initial INVITE does not contain a message body.

[image:]

Figure 20.2 SIP call example with stateless and stateful proxies with busy called party.

M1

INVITE sip:schockley@transistor.example.com SIP/2.0

Via: SIP/2.0/UDP discrete.sampling.example.org:5060;branch=z9hG4bK5654

Max-Forwards: 70

From: Shannon <sip:shannon@sampling.example.org>;tag=cgdf4

To: Schockley <sip:shockley@transistor.example.com>

Call-ID: 83727119273913

CSeq: 1 INVITE

Contact: <sip:Shannon@discrete.sampling.example.org>

Date: Sat, 8 Jul 2000 08:23:00 GMT

Content-Length: 0

Optional date header Optional Content-Length header

M2

INVITE sip:schockley@transistor.example.com SIP/2.0

Stateless proxy does not send 100

Via: SIP/2.0/UDP 9.8.7.6:5060;branch=z9hG4bK1.1

Via: SIP/2.0/UDP discrete.sampling.example.org:5060;branch=z9hG4bK5654

Max-Forwards: 69

From: Shannon <sip:shannon@sampling.example.org>

To: Schockley <sip:shockley@transistor.example.com>

Call-ID: 83727119273913

CSeq: 1 INVITE

Contact: <sip:Shannon@discrete.sampling.example.org>

Date: Sat, 8 Jul 2000 08:23:00 GMT

Content-Length: 0

M3

SIP/2.0 100 Trying

Stateful proxy does send 100

Via: SIP/2.0/UDP 9.8.7.6:5060;branch=z9hG4bK1.1

Via: SIP/2.0/UDP discrete.sampling.example.org:5060;branch=z9hG4bK5654

From: Shannon <sip:shannon@sampling.example.org>;tag=cgdf4

To: Schockley <sip:shockley@transistor.example.com>

Call-ID: 83727119273913

CSeq: 1 INVITE

Content-Length: 0

M4

INVITE sip:schockley@transistor.example.com SIP/2.0

Via: SIP/2.0/UDP 10.9.8.7:52103;branch=z9hG4bkff7d.1

Via: SIP/2.0/UDP 9.8.7.6:5060;branch=z9hG4bK1.1

Via: SIP/2.0/UDP discrete.sampling.example.org:5060;branch=z9hG4bK5654

Max-Forwards: 68

From: Shannon <sip:shannon@sampling.example.org>;tag=cgdf4

To: Schockley <sip:shockley@transistor.example.com>

Call-ID: 83727119273913

CSeq: 1 INVITE

Contact: <sip:Shannon@discrete.example.sampling.org>

Date: Sat, 8 Jul 2000 08:23:00 GMT

Content-Length: 0

M5

SIP/2.0 180 Ringing

Via: SIP/2.0/UDP 10.9.8.7:52103;branch=z9hG4bKff7d.1

Via: SIP/2.0/UDP 9.8.7.6:5060;branch=z9hG4bK1.1

Via: SIP/2.0/UDP discrete.sampling.example.org:5060;branch=z9hG4bK5654

From: Shannon <sip:shannon@sampling.example.org>;tag=cgdf4

To: Schockley <sip:shockley@transistor.example.com>;tag=1

Call-ID: 83727119273913

CSeq: 1 INVITE

Contact: <sip:shockley@4.5.6.7>

Content-Length: 0

M6

SIP/2.0 180 Ringing

Via: SIP/2.0/UDP 9.8.7.6:5060;branch=z9hG4bK1.1

Via: SIP/2.0/UDP discrete.sampling.example.org:5060;branch=z9hG4bK5654

From: Shannon <sip:shannon@sampling.example.org>;tag=cgdf4

To: Schockley <sip:shockley@transistor.example.com>;tag=1

Call-ID: 83727119273913

CSeq: 1 INVITE

Contact: <sip:shockley@4.5.6.7>

Content-Length: 0

M7

SIP/2.0 180 Ringing

Via: SIP/2.0/UDP discrete.sampling.example.org:5060;branch=z9hG4bK5654

From: Shannon <sip:shannon@sampling.example.org>;tag=cgdf4

To: Schockley <sip:shockley@transistor.example.com>;tag=1

Call-ID: 83727119273913

CSeq: 1 INVITE

Contact: <sip:shockley@4.5.6.7>

Content-Length: 0

M8

SIP/2.0 600 Busy Everywhere

Schockley is busy

Via: SIP/2.0/UDP 10.9.8.7:52103;branch=z9hG4bKff7d.1

Via: SIP/2.0/UDP 9.8.7.6:5060;branch=z9hG4bK1.1

Via: SIP/2.0/UDP discrete.sampling.example.org:5060;branch=z9hG4bK5654

From: Shannon <sip:shannon@sampling.example.org>;tag=cgdf4

To: Schockley <sip:shockley@transistor.example.com>;tag=1

Call-ID: 83727119273913

CSeq: 1 INVITE

Retry-After: Sun, 9 Jul 2000 11:59:00 GMT

Content-Length: 0

M9

ACK sip:schockley@transistor.example.com SIP/2.0

Stateful proxy does ACK

Via: SIP/2.0/UDP 10.9.8.7:52103;branch=z9hG4bK5f7e.1

Max-Forwards: 70

From: Shannon <sip:shannon@sampling.example.org>;tag=cgdf4

To: Schockley <sip:shockley@transistor.example.com>;tag=1

Call-ID: 83727119273913

CSeq: 1 ACK

Content-Length: 0

M10

SIP/2.0 600 Busy Everywhere

Via: SIP/2.0/UDP 9.8.7.6:5060;branch=z9hG4bK1.1

Via: SIP/2.0/UDP discrete.sampling.example.org:5060;branch=z9hG4bK5654

From: Shannon <sip:shannon@sampling.example.org>;tag=cgdf4

To: Schockley <sip:shockley@transistor.example.com>;tag=1

Call-ID: 83727119273913

CSeq: 1 INVITE

Retry-After: Sun, 9 Jul 2000 11:59:00 GMT

Content-Length: 0

Call Flow Examples 163

M11

SIP/2.0 600 Busy Everywhere

Stateless proxy does not ACK response

Via: SIP/2.0/UDP discrete.sampling.example.org:5060;branch=z9hG4bK5654

From: Shannon <sip:shannon@sampling.example.org>;tag=cgdf4

To: Schockley <sip:shockley@transistor.example.com>;tag=1

Call-ID: 83727119273913

CSeq: 1 INVITE

Retry-After: Sun, 9 Jul 2000 11:59:00 GMT

Content-Length: 0

M12

ACK sip:schockley@transistor.example.com SIP/2.0

Via: SIP/2.0/UDP discrete.sampling.example.org:5060;branch=z9hG4bK5654

Max-Forwards: 70

From: Shannon <sip:shannon@sampling.example.org>;tag=cgdf4

To: Schockley <sip:shockley@transistor.example.com>;tag=1

Call-ID: 83727119273913

CSeq: 1 ACK

Content-Length: 0

M13

ACK sip:schockley@transistor.example.com SIP/2.0

Via: SIP/2.0/UDP 9.8.7.6:5060;branch=z9hG4bK5.1

Via: SIP/2.0/UDP discrete.sampling.example.org:5060;branch=z9hG4bK5654

Max-Forwards: 69

From: Shannon <sip:shannon@sampling.example.org>;tag=cgdf4

To: Schockley <sip:shockley@transistor.example.com>;tag=1

Call-ID: 83727119273913

CSeq: 1 ACK

Content-Length: 0

20.3 SIP to PSTN Call Through Gateway

In the example shown in Figure 20.3, the calling SIP phone places a telephone call to the PSTN through a PSTN gateway. The SIP phone collects the dialed digits and puts them into a SIP URI used in the Request-URI and the To header. The caller may have dialed either the globalized phone number 1-202555-1313 or they may have just dialed a local number 555-1313, and the SIP phone added the assumed country code and area code to produce the globalized URI using the built-in dial plan. The SIP phone has been preconfigured with the IP address of the PSTN gateway, so it is able to send the INVITE directly to gw.carrier.example.com. The gateway initiates the call into the PSTN by selecting an SS7 ISUP trunk to the next telephone switch in the PSTN. The dialed digits from the INVITE are mapped into the ISUP IAM. The ISUP Address Complete Message (ACM) is sent back by the PSTN to indicate that the trunk has been seized. Progress tones are generated in the one-way audio path established in the PSTN. In this example, ring tone is generated by the far endtelephone switch. The gateway maps the ACM to the 183 Session Progress response containing SDP indicating the RTP port that the gateway will bridge the audio from the PSTN. Upon reception of the 183, the caller’s UAC begins receiving the RTP packets sent from the gateway and presents the audio to the caller so they know that the call is progressing in the PSTN.

[image:]

Figure 20.3 SIP to PSTN call flow through gateway.

The call completes when the called party answers the telephone, which causes the telephone switch to send an Answer Message (ANM) to the gateway. The gateway then cuts the PSTN audio connection through in both directions and sends a 200 OK response to the caller. Because the RTP media path is already established, the gateway echoes the SDP in the 183 but causes no changes to the RTP connection. The UAC sends an ACK to complete the SIP signaling exchange. Because there is no equivalent message in ISUP, the gateway absorbs the ACK.

The call terminates when the caller sends the BYE to the gateway. The gateway maps the BYE to the ISUP Release message or REL. The gateway sends the 200 OK to the BYE and receives an RLC from the PSTN. These two messages have no dependency on each other; if, for some reason, either the SIP or PSTN network does not respond properly, one does not want resources held in the other network as a result.

M1

INVITE sip:+12025551313@gw.carrier.example.com;user=phone SIP/2.0

Via: SIP/2.0/UDP 8.19.19.06:5060;branch=z9hG4bK4545

Max-Forwards: 70

From: <sip:filo.farnsworth@television.example.com>;tag=12

To: <sip:+12025551313@gw.carrier.example.com;user=phone>

CSeq: 1 INVITE

Supported: 100rel

Contact: sip:filo.farnsworth@studio.television.example.com

Content-Type: application/sdp

Content-Length: 154

v=0

o=FF 2890844535 2890844535 IN IP4 8.19.19.06

s=-

t=0 0

c=IN IP4 8.19.19.06

m=audio 5004 RTP/AVP 0 8

a=rtpmap:0 PCMU/8000

a=rtpmap:8 PCMA/8000

Two alternative codecs, PCM µ-Law orPCM A-Law

M2

IAM

CdPN=202-555-1313, NPI=E.164,

NOA=National

Gateway maps telephone into called party number

M3 ACM

M4

SIP/2.0 183 Session Progress

Via: SIP/2.0/UDP 8.19.19.06:5060;branch=z9hG4bK4545

From: <sip:filo.farnsworth@television.example.com>;tag=12

To: <sip:+12025551313@gw.carrier.example.com;user=phone>;tag=37

Call-ID: 49235243082018498

Tag and brackets

CSeq: 1 INVITE

RSeq: 08071

Contact: <sip:50.60.70.80>

Content-Type: application/sdp

Content-Length: 139

v=0

o=Port1723 2890844535 2890844535 IN IP4 50.60.70.80

s=-

t=0 0

c=IN IP4 50.60.70.80

m=audio 62002 RTP/AVP 0

Gateway selects µ-Law codec

a=rtpmap:0 PCMU/8000

M5

PRACK sip:50.60.70.80 SIP/2.0

Via: SIP/2.0/UDP 8.19.19.06:5060;branch=z9hG4bK454

Max-Forwards: 70

From: <sip:filo.farnsworth@television.example.com>;tag=37

To: <sip:+12025551313@gw.carrier.example.com;user=phone>;tag=12

Call-ID: 49235243082018498

CSeq: 2 PRACK

Contact: sip:filo.farnsworth@studio.television.example.com

RAck: 08071 1 INVITE

Content-Length: 0

M6

SIP/2.0 200 OK

Via: SIP/2.0/UDP 8.19.19.06:5060;branch=z9hG4bK454

From: <sip:filo.farnsworth@television.example.com>;tag=37

To: <sip:+12025551313@gw.carrier.example.com;user=phone>;tag=12

Call-ID: 49235243082018498

CSeq: 2 PRACK

M7 ANM

M8

SIP/2.0 200 OK

Via: SIP/2.0/UDP 8.19.19.06:5060;branch=z9hG4bK4545

From: <sip:filo.farnsworth@television.example.com>;tag=12

To: <sip:+12025551313@gw.carrier.example.com;user=phone>;tag=37

Call-ID: 49235243082018498

CSeq: 1 INVITE

Contact: <sip:50.60.70.80>

Content-Type: application/sdp

Content-Length: 139

v=0

o=Port1723 2890844535 2890844535 IN IP4 50.60.70.80

s=-

t=0 0

c=IN IP4 50.60.70.80

m=audio 62002 RTP/AVP 0

a=rtpmap:0 PCMU/8000

M9

ACK sip:50.60.70.80 SIP/2.0

Via: SIP/2.0/UDP 8.19.19.06:5060;branch=z9hG4bKfgrw

Max-Forwards: 70

From: <sip:filo.farnsworth@television.example.com>;tag=12

To: <sip:+12025551313@gw.carrier.example.com;user=phone>;tag=37

Call-ID: 49235243082018498

CSeq: 1 ACK

M10

BYE sip:50.60.70.80 SIP/2.0

Via: SIP/2.0/UDP 8.19.19.06:5060;branch=z9hG4bK321

Max-Forwards: 70

From: <sip:filo.farnsworth@television.example.com>;tag=12

To: <sip:+12025551313@gw.carrier.example.com;user=phone>;tag=37

Call-ID: 49235243082018498

CSeq: 3 BYE

CSeq incremented

M11 REL

CauseCode=16 Normal Clearing

M12

SIP/2.0 200 OK

Via: SIP/2.0/UDP 8.19.19.06:5060;branch=z9hG4bK321

From: <sip:filo.farnsworth@television.example.com>;tag=12

To: <sip:+12025551313@gw.carrier.example.com;user=phone>;tag=37

Call-ID: 49235243082018498

CSeq: 3 BYE

M13 RLC

20.4 PSTN to SIP Call Through Gateway

Figure 20.4 shows a call originating from a telephone in the PSTN that terminates on a SIP phone in the Internet. The compact form of SIP is used throughout the example. Note that there is no compact form for CSeq or Max-Forwards.

M1

Setup

CdPN=6512345, NPI=E.164,XXXXXXX

NOA=International

Dialed telephone number

CgPN=4567890, NPI=E.164,

NOA=International

PSTN caller’s number

M2

INVITE sip:+6512345@incoming.example.com;user=phone SIP/2.0

v: SIP/2.0/UDP 65.3.4.1:5060;branch=z9hG4bK343

Compact form of headers includes tags

Max-Forwards: 70

f: <sip:+45.67890@incoming.example.com;user=phone>;tag=6a589b1

t: <sip:+65.12345@incoming.example.com;user=phone>

i: a3-65-99-1d

CSeq: 1 INVITE

m: 65.3.4.1

[image:]

Figure 20.4 PSTN to SIP call flow through gateway.

c: application/sdp

l: 126

v=0

o=- 2890844535 2890844535 IN IP4 65.3.4.1

s=-

t=0 0

c=IN IP4 65.3.4.1

m=audio 62432 RTP/AVP 0

a=rtpmap:0 PCMU/8000

M3

SIP/2.0 100 Trying

v: SIP/2.0/UDP 65.3.4.1:5060;branch=z9hG4bK343

f: <sip:+45.67890@incoming.example.com;user=phone>;tag=6a589b1

t: sip:+65.12345@incoming.example.com;user=phone

i: a3-65-99-1d

CSeq: 1 INVITE

M4

Service Query: +65-12345

M5

Location Service Response:

sip:user@home.example.com

Number maps to SIP URI

M6

INVITE sip:user@home.example.com SIP/2.0

v: SIP/2.0/UDP 176.5.8.2:5060;branch=z9hG4bK942834822.1

v: SIP/2.0/UDP 65.3.4.1:5060;branch=z9hG4bK343

Max-Forwards: 69

f: <sip:+45.67890@incoming.example.com;user=phone>;tag=6a589b1

t: sip:+65.12345@incoming.example.com;user=phone

i: a3-65-99-1d

CSeq: 1 INVITE

m: 65.3.4.1

c: application/sdp

l: 126

v=0

o=- 2890844535 2890844535 IN IP4 65.3.4.1

s=-

t=0 0

c=IN IP4 65.3.4.1

m=audio 62432 RTP/AVP 0

a=rtpmap:0 PCMU/8000

M7

SIP/2.0 180 Ringing

v: SIP/2.0/UDP 176.5.8.2:5060;branch=z9hG4bK942834822.1

v: SIP/2.0/UDP 65.3.4.1:5060;branch=z9hG4bK343

f: <sip:+45.67890@incoming.example.com;user=phone>;tag=6a589b1

t: <sip:+65.12345@incoming.example.com;user=phone>;tag=8657

i: a3-65-99-1d

m: sip:user@client.home.example.com

CSeq: 1 INVITE

M8

SIP/2.0 180 Ringing

v: SIP/2.0/UDP 65.3.4.1:5060;branch=z9hG4bK343

f: <sip:+45.67890@incoming.example.com;user=phone>;tag=6a589b1

t: <sip:+65.12345@incoming.example.com;user=phone>;tag=8657

i: a3-65-99-1d

CSeq: 1 INVITE

M9 Alerting

M10

SIP/2.0 200 OK

v: SIP/2.0/UDP 176.5.8.2:5060;branch=z9hG4bK942834822.1

v: SIP/2.0/UDP 65.3.4.1:5060;branch=z9hG4bK343

f: <sip:+45.67890@incoming.example.com;user=phone>;tag=6a589b1

t: <sip:+65.12345@incoming.example.com;user=phone>;tag=8657

i: a3-65-99-1d

CSeq: 1 INVITE

m: sip:user@client.home.example.com

c: application/sdp

l: 125

v=0

o=- 2890844565 2890844565 IN IP4 7.8.9.10

s=-

t=0 0

c=IN IP4 7.8.9.10

m=audio 5004 RTP/AVP 0

a=rtpmap:0 PCMU/8000

M11

SIP/2.0 200 OK

v: SIP/2.0/UDP 65.3.4.1:5060;branch=z9hG4bK343

f: <sip:+45.67890@incoming.example.com;user=phone>;tag=6a589b1

t: <sip:+65.12345@incoming.example.com;user=phone>;tag=8657

i: a3-65-99-1d

CSeq: 1 INVITE

m: sip:user@home.example.com

c: application/sdp

l: 125

v=0

o=- 2890844565 2890844565 IN IP4 7.8.9.10

s=-

t=0 0

c=IN IP4 7.8.9.10

m=audio 5004 RTP/AVP 0

a=rtpmap:0 PCMU/8000

M12

Connect

M13

ACK sip:user@home.example.com SIP/2.0

v: SIP/2.0/UDP 65.3.4.1:5060;branch=z9hG4bK453

Max-Forwards: 70

f: <sip+45.67890@incoming.example.com;user=phone>;tag=6a589b1

t: <sip+65.12345@incoming.example.com;user=phone>;tag=8657

i: a3-65-99-1d

CSeq: 1 ACK

20.5 Parallel Search

In this example the caller receives multiple possible locations for the called party from a redirect server. Instead of trying the locations one at a time, the user agent implements a parallel search for the called party by simultaneously sending the INVITE to three different locations, as shown in Figure 20.5. The SIP specification gives an example of this behavior in a proxy server, which is called a forking proxy.

In this example the first location responds with a 404 Not Found response. The second location responds with a 180 Ringing response, while the third location returns a 180 Ringing response and then a 200 OK response. The caller then sends an ACK to the third location to establish the call. Because one successful response has been received, a CANCEL is sent to the second location to terminate the search. The second location sends a 200 OK to the CANCEL and a 487 Request Terminated to the INVITE. This example shows some customized reason phrases in messages M7, M10, and M11.

M1

INVITE sip:faraday@effect.example.org SIP/2.0

Via: SIP/2.0/UDP kings.cambridge.example.org:60000;branch=z9hG4bK3 ;received=7.9.18.12

Port 60000 is used

[image:]

Figure 20.5 Parallel search example call flow.

Max-Forwards: 70

From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.example.org>; tag=4

To: <sip:faraday@effect.example.org>

Call-ID: mNjdwWjkBfWrd@7.9.18.12

CSeq: 54 INVITE

Contact:<sip:james.maxwell@kings.cambridge.example.org>

Content-Type: application/sdp

Content-Length: 129

v=0

o=max 2890844521 2890844521 IN IP4 7.9.18.12

s=-

t=0 0

c=IN IP4 7.9.18.12

m=audio 32166 RTP/AVP 96

a=rtpmap:96 iLBC/8000

CSeq initialized to 54

M2

SIP/2.0 300 Multiple locations

Redirect server returns three locations Via: SIP/2.0/UDP kings.cambridge.example.org:60000;branch=z9hG4bK3;received=7.9.18.12

From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.example.org> ;tag=4

To:<sip:faraday@effect.example.org>;tag=1024

Call-ID: mNjdwWjkBfWrd@7.9.18.12

CSeq: 54 INVITE

Contact:<sip:faraday@lab.royalsoc.example.org>

Contact:<sip:+44.555.1212@sip-phone.effect.example.org;user=phone>

Contact: <sip:michael.faraday@commonroom.example.org>

M3

ACK sip:faraday@effect.example.org

Via: SIP/2.0/UDP kings.cambridge.example.org:60000;branch=z9hG4bK3

Max-Forwards: 70

From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.example.org> ;tag=4

To: <sip:faraday@effect.example.org>;tag=1024

Call-ID: mNjdwWjkBfWrd@7.9.18.12

CSeq: 54 INVITE

M4

INVITE sip:faraday@lab.royalsoc.example.org SIP/2.0

Via: SIP/2.0/UDP kings.cambridge.example.org:60000;branch=z9hG4bK1

Max-Forwards: 70

From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.example.org> ;tag=5

To: <sip:faraday@effect.example.org>

Call-ID: mNjdwWjkBfWrd@7.9.18.12

Tag is not copied Call-ID unchanged CSeq incremented

CSeq: 55 INVITE

Contact: <sip:james.maxwell@kings.cambridge.example.org>

Content-Type: application/sdp

Content-Length: 129

v=0

o=max 2890844521 2890844521 IN IP4 7.9.18.12

s=-

t=0 0

c=IN IP4 7.9.18.12

m=audio 32166 RTP/AVP 96

a=rtpmap:96 iLBC/8000

M5

INVITE sip:+44.555.1212@sip-phone.effect.example.org;user=phone SIP/2.0

Via: SIP/2.0/UDP kings.cambridge.example.org:60000;branch=z9hG4bK2

Max-Forwards: 70

From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.example.org> ;tag=5

To: <sip:faraday@effect.example.org>

Call-ID: mNjdwWjkBfWrd@7.9.18.12

CSeq: 55 INVITE

Contact: <sip:james.maxwell@kings.cambridge.example.org>

Content-Type: application/sdp

Content-Length: 129

v=0

o=max 2890844521 2890844521 IN IP4 7.9.18.12

s=-

t=0 0

c=IN IP4 7.9.18.12

m=audio 32166 RTP/AVP 96

a=rtpmap:96 iLBC/8000

M6

INVITE sip:faraday@commonroom.club.example.org SIP/2.0

Via: SIP/2.0/UDP kings.cambridge.example.org:60000;branch=z9hG4bK3

Max-Forwards: 70

From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.example.org> ;tag=5

To: <sip:faraday@effect.example.org>

Call-ID: mNjdwWjkBfWrd@7.9.18.12

CSeq: 55 INVITE

Contact: <sip:james.maxwell@kings.cambridge.example.org>

Content-Type: application/sdp

Content-Length: 129

v=0

o=max 2890844521 2890844521 IN IP4 7.9.18.12

s=-

t=0 0

c=IN IP4 7.9.18.12

m=audio 32166 RTP/AVP 96

a=rtpmap:96 iLBC/8000

M7

SIP/2.0 404 The member you have requested is not available

Via: SIP/2.0/UDP kings.cambridge.example.org:60000;branch=z9hG4bK1;received=7.9.18.12

From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.example.org> ;tag=5

To: <sip:faraday@effect.example.org>;tag=f6

Call-ID: mNjdwWjkBfWrd@7.9.18.12

CSeq: 55 INVITE

M8

ACK sip:faraday@lab.royalsoc.example.org SIP/2.0

Via: SIP/2.0/UDP kings.cambridge.example.org:60000z9hG4bK1

Max-Forwards: 70

From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.example.org> ;tag=5

To: <sip:faraday@effect.example.org>;tag=f6

Call-ID: mNjdwWjkBfWrd@7.9.18.12

CSeq: 55 ACK

M9

SIP/2.0 180 Ringing

Via: SIP/2.0/UDP kings.cambridge.example.org:60000;branch=z9hG4bK2;received=7.9.18.12

From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.example.org> ;tag=5

To: <sip:faraday@effect.example.org>;tag=6321

Call-ID: mNjdwWjkBfWrd@7.9.18.12

Contact: <sip:+44.555.1212@sip-phone.effect.org>

CSeq: 55 INVITE

M10

SIP/2.0 180 Please wait while we locate Mr. Faraday ;received=7.9.18.12

Via: SIP/2.0/UDP kings.cambridge.example.org:60000;branch=z9hG4bK3

From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.example.org> ;tag=5

To: <sip:faraday@effect.example.org>;tag=531

Call-ID: mNjdwWjkBfWrd@7.9.18.12

Contact: <sip:faraday@commonroom.club.example.org>

CSeq: 55 INVITE

M11

SIP/2.0 200 Mr. Faraday at your service?

Via: SIP/2.0/UDP kings.cambridge.example.org:60000;branch=z9hG4bK3;received=7.9.18.12

From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.example.org> ;tag=5

To: <sip:faraday@effect.example.org>;tag=531

Call-ID: mNjdwWjkBfWrd@7.9.18.12

CSeq: 55 INVITE

User-Agent: PDV/v4

Contact: <sip:faraday@commonroom.club.example.org>

Content-Type: application/sdp

Content-Length: 131

v=0

o=max 2890844521 2890844521 IN IP4 6.22.17.89

t=0 0

c=IN IP4 6.22.17.89

m=audio 43782 RTP/AVP 4

a=rtpmap:4 DVI/8000

M12

ACK sip:faraday@commonroom.club.example.org;user=ip SIP/2.0

Via: SIP/2.0/UDP kings.cambridge.example.org:60000;branch=z9hG4bK3

Max-Forwards: 70

From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.example.org> ;tag=5

To: <sip:faraday@effect.example.org>;tag=531

Call-ID: mNjdwWjkBfWrd@7.9.18.12

CSeq: 55 ACK

M13

CANCEL sip:+44.555.1212@sip-phone.effect.example.org;user=phone SIP/2.0

Via: SIP/2.0/UDP kings.cambridge.example.org:60000;branch=z9hG4bK2 Max-Forwards: 70

Cancels search

From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.example.org> ;tag=5

To: <sip:faraday@effect.example.org>;tag=6321

Call-ID: mNjdwWjkBfWrd@7.9.18.12

CSeq: 55 CANCEL

CSeq not incremented Method set to CANCEL

M14

SIP/2.0 200 OK

CANCEL acknowledged Via: SIP/2.0/UDP kings.cambridge.example.org:60000;branch=z9hG4bK2;received=7.9.18.12

From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.example.org> ;tag=5

To: <sip:faraday@effect.example.org>;tag=6321

Call-ID: mNjdwWjkBfWrd@7.9.18.12

CSeq: 55 CANCEL

M15

SIP/2.0 487 Request Terminated

Final response to INVITE Via: SIP/2.0/UDP kings.cambridge.example.org:60000;branch=z9hG4bK2

;received=7.9.18.12

From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.example.org> ;tag=5

To: <sip:faraday@effect.example.org>;tag=6321

Call-ID: mNjdwWjkBfWrd@7.9.18.12

CSeq: 55 INVITE

M16

ACK SIP/2.0

Via: SIP/2.0/UDP kings.cambridge.example.org:60000;branch=z9hG4bK2

From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.example.org> ;tag=5

To: <sip:faraday@effect.example.org>;tag=6321

Call-ID: mNjdwWjkBfWrd@7.9.18.12

CSeq: 55 ACK

20.6 Call Setup with Proxy Server

This section contains the complete message flow shown in Figure 2.2.

M1

INVITE sip:werner.heisenberg@munich.example.org SIP/2.0

Via: SIP/2.0/UDP 100.101.102.103:5060;branch=z9hG4bKmp17a

Max-Forwards: 70

To: Heisenberg <sip:werner.heisenberg@munich.example.org>

From: E. Schrodinger <sip:schrod5244@aol.example.com>;tag=42

Call-ID: 4827311-391-32934

CSeq: 1 INVITE

Subject: Where are you exactly?

Contact: <sip:schrod5244@pc33.aol.example.com>

Content-Type: application/sdp

Content-Length: 159

v=0

o=schrod5244 2890844526 2890844526 IN IP4 100.101.102.103

s=Phone Call

t=0 0

c=IN IP4 100.101.102.103

m=audio 49170 RTP/AVP 0

a=rtpmap:0 PCMU/8000

M2

INVITE sip:werner.heisenberg@200.201.202.203 SIP/2.0

Via: SIP/2.0/UDP proxy.munich.de:5060;branch=z9hG4bK83842.1

Via: SIP/2.0/UDP 100.101.102.103:5060;branch=z9hG4bKmp17a

Max-Forwards: 69

To: Heisenberg <sip:werner.heisenberg@munich.example.org>

From: E. Schrodinger <sip:schrod5244@aol.example.com>;tag=42

Call-ID: 4827311-391-32934

CSeq: 1 INVITE

Contact: <sip:schrod5244@pc33.aol.example.com>

Content-Type: application/sdp

Content-Length: 159

v=0

o=schrod5244 2890844526 2890844526 IN IP4 100.101.102.103

s=Phone Call

c=IN IP4 100.101.102.103

t=0 0

m=audio 49172 RTP/AVP 0

a=rtpmap:0 PCMU/8000

M3

SIP/2.0 180 Ringing

Via: SIP/2.0/UDP proxy.munich.example.org:5060;branch=z9hG4bK83842.1;received=100.101.102.105

Via: SIP/2.0/UDP 100.101.102.103:5060;branch=z9hG4bKmp17a

To: Heisenberg <sip:werner.heisenberg@munich.example.org>;tag=314159

From: E. Schrodinger <sip:schrod5244@aol.example.com>;tag=42

Call-ID: 4827311-391-32934

CSeq: 1 INVITE

Contact: <sip:werner.heisenberg@200.201.202.203>

Content-Length: 0

M4

SIP/2.0 180 Ringing

Via: SIP/2.0/UDP 100.101.102.103:5060;branch=z9hG4bKmp17a

To: Heisenberg <sip:werner.heisenberg@munich.example.org>;tag=314159

From: E. Schrodinger <sip:schrod5244@aol.example.com>;tag=42

Call-ID: 4827311-391-32934

CSeq: 1 INVITE

Contact: <sip:werner.heisenberg@200.201.202.203>

Content-Length: 0

M5

SIP/2.0 200 OK

Via: SIP/2.0/UDP proxy.munich.de:5060;branch=z9hG4bK83842.1;received=100.101.102.105

Via: SIP/2.0/UDP 100.101.102.103:5060;branch=z9hG4bKmp17a

To: Heisenberg7 <sip:werner.heisenberg@munich.example.org>;tag=314159

From: E. Schrodinger <sip:schrod5244@aol.example.com>;tag=42

Call-ID: 4827311-391-32934

CSeq: 1 INVITE

Contact: <sip:werner.heisenberg@200.201.202.203>

Content-Type: application/sdp

Content-Length: 159

v=0

o=heisenberg 2890844526 2890844526 IN IP4 200.201.202.203

s=Phone Call

c=IN IP4 200.201.202.203

t=0 0

m=audio 49172 RTP/AVP 0

a=rtpmap:0 PCMU/8000

M6

SIP/2.0 200 OK

Via: SIP/2.0/UDP 100.101.102.103:5060;branch=z9hG4bKmp17a

To: Heisenberg <sip:werner.heisenberg@munich.example.org>;tag=314159

From: E. Schrodinger <sip:schrod5244@aol.example.com>;tag=42

Call-ID: 4827311-391-32934

CSeq: 1 INVITE

Contact: sip:werner.heisenberg@200.201.202.203

Content-Type: application/sdp

Content-Length: 159

v=0

o=heisenberg 2890844526 2890844526 IN IP4 200.201.202.203

c=IN IP4 200.201.202.203

t=0 0

m=audio 49170 RTP/AVP 0

a=rtpmap:0 PCMU/8000

M7

ACK sip:werner.heisenberg@200.201.202.203 SIP/2.0

Via: SIP/2.0/UDP 100.101.102.103:5060;branch=z9hG4bKka42

Max-Forwards: 70

To: Heisenberg <sip:werner.heisenberg@munich.example.org>;tag=314159

From: E. Schrodinger <sip:schrod5244@aol.example.com>;tag=42

Call-ID: 4827311-391-32934

CSeq: 1 ACK

Content-Length: 0

M8

BYE sip:schrod5244@pc33.aol.com SIP/2.0

Via: SIP/2.0/UDP 200.201.202.203:5060;branch=z9hG4bK4332

Max-Forwards: 70

To: E. Schrodinger <sip:schrod5244@aol.example.com>;tag=42

From: Heisenberg <sip:werner.heisenberg@munich.example.org>;tag=314159

Call-ID: 4827311-391-32934

CSeq: 2000 BYE

Content-Length: 0

M9

SIP/2.0 200 OK

Via: SIP/2.0/UDP 200.201.202.203:5060;branch=z9hG4bK4332

To: E. Schrodinger <sip:schrod5244@aol.example.com>;tag=42

From: Heisenberg <sip:werner.heisenberg@munich.example.org>;tag=314159

Call-ID: 4827311-391-32934

CSeq: 2000 BYE

Content-Length: 0

20.7 SIP Presence and Instant Message Example

This section contains the call flow details of Figure 2.4.

M1

SUBSCRIBE sip:poisson@probability.example.org SIP/2.0

Via SIP/2.0/TCP lecturehall21.example.org:5060;branch=z9hG4bK348471123

Max-Forwards: 70

To: M. Poisson <sip:poisson@probability.example.org>

From: P. L. Chebychev <sip:chebychev@example.org>;tag=21171

Call-ID: 58dkfj34924lk34452k592520

CSeq: 3412 SUBSCRIBE

Allow-Events: presence

Allow: ACK, INVITE, CANCEL, BYE, NOTIFY, SUBSCRIBE, MESSAGE

Contact: <sip:pafnuty@lecturehall21.example.org;transport=tcp>

Event: presence

Content-Length: 0

M2

SIP/2.0 202 Accepted

Via SIP/2.0/TCP lecturehall21.example.org:5060;branch=z9hG4bK348471123;received=19.34.3.1

To: M. Poisson <sip:poisson@probability.example.org>;tag=25140

From: P. L. Chebychev <sip:chebychev@example.org>;tag=21171

Call-ID: 58dkfj34924lk34452k592520

CSeq: 3412 SUBSCRIBE

Allow-Events: presence

Allow: ACK, INVITE, CANCEL, BYE, NOTIFY, SUBSCRIBE, MESSAGE

Contact: <sip:s.poisson@dist.probability.org;transport=tcp>

Event: presence

Expires: 3600

Content-Length: 0

M3

NOTIFY sip:pafnuty@lecturehall21.example.org SIP/2.0

Via SIP/2.0/TCP dist.probablilty.example.org:5060;branch=z9hG4bK4321

Max-Forwards: 70

To: P. L. Chebychev <sip:chebychev@example.org>;tag=21171

From: M. Poisson <sip:poisson@probability.example.org>;tag=25140

Call-ID: 58dkfj34924lk34452k592520

CSeq: 1026 NOTIFY

Allow: ACK, INVITE, CANCEL, BYE, NOTIFY, SUBSCRIBE, MESSAGE

Allow-Events: dialog

Contact: <sip:s.poisson@dist.probability.example.org;transport=tcp>

Subscription-State: active;expires=3600

Event: presence

Content-Type: application/pidf+xml

Content-Length: ...

<?xml version=”1.0” encoding=”UTF-8”?>

<presence xmlns=”urn:ietf:params:xml:ns:pidf”

entity=”sip:poisson@probability.example.org”>

<tuple id=”452426775”>

<status>

<basic>closed</basic>

</status>

</tuple>

</presence>

M4

SIP/2.0 200 OK

Via SIP/2.0/TCP dist.probablilty.example.org:5060;branch=z9hG4bK4321;received=24.32.1.3

To: P. L. Chebychev <sip:chebychev@example.org>;tag=21171

From: M. Poisson <sip:poisson@probability.example.org>;tag=25140

Call-ID: 58dkfj34924lk34452k592520

CSeq: 1026 NOTIFY

Content-Length: 0

M5

NOTIFY sip:pafnuty@lecturehall21.example.org SIP/2.0

Via SIP/2.0/TCP dist.probablilty.example.org:5060;branch=z9hG4bK334241

Max-Forwards: 70

To: P. L. Chebychev <sip:chebychev@example.org>;tag=21171

From: M. Poisson <sip:poisson@probability.example.org>;tag=25140

Call-ID: 58dkfj34924lk34452k592520

CSeq: 1027 NOTIFY

Allow: ACK, INVITE, CANCEL, BYE, NOTIFY, SUBSCRIBE, MESSAGE

Allow-Events: presence

Contact: <sip:s.possion@dist.probability.example.org;transport=tcp>

Subscription-State: active;expires=1800

Event: presence

Content-Type: application/pidf+xml

Content-Length: 325

<?xml version=”1.0” encoding=”UTF-8”?>

<presence xmlns=”urn:ietf:params:xml:ns:pidf”

entity=”sip:poisson@probability.example.org”>

<tuple id=”452426775”>

<status>

<basic>open</basic>

</status>

<contact>sip:s.possion@dist.probability.example.org;transport=tcp</contact>

</tuple>

</presence>

M6

SIP/2.0 200 OK

Via SIP/2.0/TCP dist.probablilty.org:5060;branch=z9hG4bK334241;received=24.32.1.3

To: P. L. Chebychev <sip:chebychev@example.org>;tag=21171

From: M. Poisson <sip:poisson@probability.example.org>;tag=25140

Call-ID: 58dkfj34924lk34452k592520

CSeq: 1027 NOTIFY

Content-Length: 0

M7

MESSAGE sip:s.poisson@dist.probability.example.org SIP/2.0

Via SIP/2.0/TCP lecturehall21.academy.ru:5060 ;branch=z9hG4bK3gtr2

Max-Forwards: 70

To: M. Poisson <sip:s.possion@dist.probability.example.org> From: P. L. Chebychev <sip:chebychev@example.org>;tag=4542Call-ID: 9dkei93vjq1ei3

CSeq: 15 MESSAGE

Allow: ACK, INVITE, CANCEL, BYE, NOTIFY, SUBSCRIBE, MESSAGE

Content-Type: text/plain

Content-Length: 9

Hi There!

M8

SIP/2.0 200 OK

Via SIP/2.0/TCP lecturehall21.example.org:5060;branch=z9hG4bK3gtr2;received=19.34.3.1

To: M. Poisson <sip:s.possion@dist.probability.example.org>;tag=2321

From: P. L. Chebychev <sip:chebychev@example.org>;tag=4542

Call-ID: 9dkei93vjq1ei3

CSeq: 15 MESSAGE

Content-Length: 0

M9

MESSAGE sip:chebychev@example.org SIP/2.0

Via SIP/2.0/TCP dist.probablilty.org:5060;branch=z9hG4bK4526245

Max-Forwards: 70

To: P. L. Chebychev <sip:chebychev@example.org>

From: M. Poisson <sip:s.possion@dist.probability.example.org>;tag=14083

Call-ID: lk34452k592520

CSeq: 2321 MESSAGE

Allow: ACK, INVITE, CANCEL, BYE, NOTIFY, SUBSCRIBE, MESSAGE

Content-Type: text/plain

Content-Length: 30

Well, hello there to you, too!

M10

SIP/2.0 200 OK

Via SIP/2.0/TCP dist.probablilty.example.org:5060;branch=z9hG4bK4526245;received=24.32.1.3

To: P. L. Chebychev <sip:chebychev@example.org>;tag=mc3bg5q77wms

From: M. Poisson <sip:s.possion@dist.probability.example.org>;tag=14083

Call-ID: lk34452k592520

CSeq: 2321 MESSAGE

Content-Length: 0

References

[1] Rosenberg, J., et al., “SIP: Session Initiation Protocol,” RFC 3261, June 2002.

[2] Johnston, A., et al., “Session Initiation Protocol (SIP) Basic Call Flow Examples,” BCP 75, RFC 3665, December 2003.

[3] Johnston, A., et al., “Session Initiation Protocol (SIP) Public Switched Telephone Network (PSTN) Call Flows,” BCP 76, RFC 3666, December 2003.

[4] Johnston, A., et al., “Session Initiation Protocol Service Examples,” BCP 144, RFC 5359, October 2008.

21

Future Directions

SIP is still an evolving protocol and the SIP ecosystem continues to grow within the service provider and vendor communities. This chapter will discuss some future areas of work in SIP-related working groups in the IETF. Instead of attempting to list and discuss a snapshot of current activity in the IETF, the reader should gather the information directly from the IETF. Table 21.1 lists the most important SIP-related working groups. Note that the closed SIP [1] and SIPPING [2] working groups are not listed as they have been replaced by the SIPCORE [3] and DISPATCH [4] working groups, respectively. The charter page for each working group lists the deliverables of the group along with RFCs (finished documents) and Internet Drafts (works in progress). Only Internet Drafts that have been adopted as official work group items are listed on these Web pages—these are the documents most likely to become RFCs in the near future. The Web page also contains information about joining the working group e-mail list, which discusses the listed set of Internet Drafts. Finally, one can search the IETF Internet Draft archives for documents relating to SIP at http://www.ietf.org. However, be warned: Not every document will be published as an RFC—always consult someone familiar with the working group activity before assuming that an Internet Draft not listed on a working group charter page is likely to become an Internet standard.

The following sections will discuss some active topics of standardization and development in SIP-related working groups including: bug fixes and clarification of RFC 3261, additional extensions to SIP, more work on SIP identity, interdomain SIP, emergency calling, P2P and HIP, security, and better feature interoperability.

Table 21.1

SIP-Related IETF Working Groups

	Working Group
	Area

	SIPCORE
	Session Initiation Protocol Core: Maintenance and development of core SIP

	DISPATCH
	Dispatch: Examine proposals for new SIP work

	ECRIT
	Emergency Context Resolution: Emergency Calling with Internet Technologies

	P2PSIP
	Peer-to-Peer SIP: Peer protocol and SIP usage of P2P overlays

	STIR
	Secure Telephone Identifiers Revisited: Certs for telephone numbers and Enhanced Identity fixes

	STRAW
	SIP Traversal Required for Applications to Work: B2BUA guidelines

	STOX
	SIP to XMPP: Interworking for presence and IM

	INSIPID
	INtermediary-safe SIP session ID: Session ID through B2BUAs

	MMUSIC
	Multiparty Multimedia Session Control – SDP, ICE, and extensions

	TRAM
	TURN Revised and Modernized: extensions to STUN and TURN for NAT traversal

21.1 Bug Fixes and Clarifications

In the SIPCORE working group in the IETF, there will be continuing discussion about bug fixes and clarifications to the base specification RFC 3261. There is a database of errata on the specification [5]. Some of these may find their way into Internet Drafts that will eventually update RFC 3261. In addition there has been discussion in the past about progressing SIP from Proposed Standard to Internet Standard in the IETF standards ladder. This would require extensive documentation of existing interoperability and also a major rewrite of the base specification. Currently, this work is not underway, but this could change in the future. For the status on this and other changes to the core SIP, visit the IETF SIPCORE working group’s charter page [3].

21.2 More Extensions

There continues to be new SIP extensions being proposed to the IETF. Some extensions add new functionality and features to the protocol, reflecting the continued deployment of the protocol. Fixes and clarifications to the core SIP are done in SIPCORE, while the DISPATCH working group is used to help plan future SIP extension working groups.

21.3 Better Identity

Identity continues to be an active area of discussion. Most deployed systems use P-Asserted-Identity, which provides only the same level of identity assurance as the PSTN. Enhanced SIP identity [6] provides a better identity assurance, but has been very slow to deploy. One possible reason is the integrity protection of the SDP message body used to negotiate the media session. Many service providers and intermediaries modify the SDP information for “media steering” (NAT traversal) or media quality monitoring. Some proposals to allow these intermediaries to perform this function without compromising security have been made. In addition, enhanced SIP identity is mainly only useful for email style identities—when telephone numbers (E.164 numbers) are used, the properties are greatly reduced. The Secure Telephone Identity Revisited (STIR) working group is working on fixes to both of these problems [7].

21.4 SIP and WebRTC

With the continued rollout of WebRTC, SIP will be used both as a browser signaling protocol using Websocket transport, but also as a trunking and interconnection protocol. SIP stacks written in JavaScript may even be used outside of browsers as providers look for ways to simplify and streamline their operations and rollout of new features.

21.5 Making Features Work Better

Many telephony features have been defined for SIP including those discussed in Chapter 9. Features in SIP have been designed based on the Internet model of end-to-end control. However, most deployments have Back-to-Back-User Agents (B2BUAs) that limit this end-to-end control, and many deployments have multiple B2BUAs between UAs. Getting SIP features and services to work in these architectures has proven to be difficult. To provide guidance to B2BUA makers, the SIP Traversal Required for Applications to Work (STRAW) working group [8] is defining what a B2BUA should do to enable services and applications to work properly through them.

21.6 IPv6 Transition

All Internet applications and protocols are moving towards transitioning away from IPv4 to IPv6. For services rolling out on mobile or in Asia, IPv6 support is not optional. While the standards for SIP to transition to IPv6 were written many years ago, there are still updates being proposed and worked on in both the IETF (SIPCORE WG) and the SIP Forum (IPv6 Task Group).

21.7 More SIP Trunking

Today’s SIP trunking seeks to replicate PSTN trunking by providing voice-only services and features. At the time of this writing, SIPconnect version 2.0 [9] is currently under development by the SIP Forum which includes secure media and multimedia capabilities.

21.8 Security Deployment

Many current SIP deployments use minimal security or no media security at all. As deployable methods to securely key SRTP are used, hopefully secure media will become the norm. Making secure media deployable in an incremental way means utilizing best effort encryption, which was discussed in Chapter 15. As is the case with WebRTC, support for SRTP will hopefully become mandatory in SIP deployments.

21.9 Better Interoperability

SIP is continually improving its interoperability. While certified testing of the SIP is unlikely to ever occur due to the wide variety of applications and uses, certification testing of particular applications (e.g. SIP trunking using SIPcon-nect) and architectures (e.g., IMS) is likely to occur. For new developers, regularly attending SIPit SIP interoperability test events [10] is still the best way to ensure your product or service will interoperate with others.

References

[1] https://datatracker.ietf.org/wg/sip/history/.

[2] https://datatracker.ietf.org/wg/sipping/history/.

[3] https://datatracker.ietf.org/wg/sipcore/charter/.

[4] https://datatracker.ietf.org/wg/dispatch/charter/.

[5] http://www.rfc-editor.org/errata_search.php?rfc=3261

[6] Peterson, J., and C. Jennings, “Enhancements for Authenticated Identity Management in the Session Initiation Protocol (SIP),” RFC 4474, August 2006.

[7] https://datatracker.ietf.org/wg/stir/charter/.

[8] https://datatracker.ietf.org/wg/straw/charter/.

[9] http://www.sipforum.org/sipconnect.

[10] http://www.sipit.net/.

Appendix

Augmented Backus-Naur Form (ABNF) and Extensible Markup Language (XML) are used to represent nearly all the protocols discussed in this book. However, syntax is explained in this book by example rather than using ABNF rules or XML schemas or DTDs. This appendix provides an introduction to help when reading the actual RFC specifications.

A.1 ABNF Rules

Augmented Backus-Naur Form is a computer science meta-syntax used to define many Internet protocols including SIP. It defines how text messages are parsed and was initially defined in RFC 822; the latest version is defined in RFC 5234 [1]. ABNF uses a 7-bit ASCII character set and defines rules for matching character strings.

For example:

Message = Request / Response

defines a rule named Message in terms of two other rules Request and Response. The “/” indicates an alternative, meaning that a message can be either a request or a response. A basic rule in ABNF has the form:

Name = elements; Comment CRLF

where Name is the name of the rule, and the elements follow after the equal sign. Comments begin after a semicolon (;) and continue until the end of the line, terminated with a carriage return line feed (CRLF). Elements can be simple strings. For example:

Element1 = “test”

Element2 = “Test”

Element3 = “TEST”

Rules defined using literal strings are actually case-insensitive. As a result Element1, Element2, and Element3 are all equivalent. A relatively new ABNF extension [2] allows case sensitivity to be specified. For example,

Element4 = %s “test”

Element5 = %s “Test”

Element6 = %s “TEST”

would only match a string that has that exact case, while Element7, Element7, and Element9 are equivalent to Element1, Element2, and Element3 and hence equivalent.

Element7 = %i “test”

Element8 = %i “Test”

Element9 = %i “TEST”

Terminals, or individual ASCII characters, in ABNF can be expressed using a percent sign and are often encoded in hexadecimal. For example:

value1 = %x61 ; a value2 = %x65 ; A

Rule value1 matches the lowercase a, while value2 matches uppercase A. Value ranges can be defined using a dash:

Digit = %x30-39 ; Digits “0” through “9”

Concatenation in ABNF is done by listing rules together:

Element5 = value1 value2 ; aA

Groupings in ABNF are enclosed by parenthesis () and are treated as a single element. Optional rules are enclosed by square brackets []. Rules can be invoked numerous times as shown in Table A.1.

The precedence rules of ABNF are given in Table A.2. For example:

“a” / “b” “c” matches “a” or “bc” but not “ac” (“a” / “b”) “c” matches “ac” or “bc” but not “a” *(“a” “b”) “c” matches “ababc” but not “aaabc”

Table A.3 has an example ABNF, which is a simplified version of the host rule in SIP.

This rule allows a host to be either a domain name or an IPv4 address or IPv6 address. For example, ese.wustl.example matches this rule but ese..example does not. For IPv4 addresses, any four sets of three digits separated by a “.” will match the rule IPv4address.

Table A.1

ABNF Examples of Repetition

	2*3 Rule
	Rule appears between two and three times

	*4 Rule
	Rule can appear up to four times

	3 Rule
	Rule must appear three times

	*Rule
	Rule can appear any number of times including zero times

Table A.2

ABNF Order of Precedence

Strings, Names formation

Comment

Value range

Repetition

Grouping, optional

Concatenation

Alternative

Table A.3

ABNF Example for host

	host
	= hostname/IPv4address/IPv6ref

	hostname
	= *(domainlabel “.”) toplabel [“.”]

	domainlabel
	= alphanum/ alphanum *(alphanum / “-”) alphanum

	toplabel
	= ALPHA / ALPHA *(alphanum / “-”) alphanum

	IPv4address
	= 1*3DIGIT “.” 1*3DIGIT “.” 1*3DIGIT “.” 1*3DIGIT

	IPv6ref
	= “[“ IPv6address “]”

	IPv6address
	= hexpart [“:” IPv4address]

	hexpart
	= hexseq / hexseq “::” [hexseq] / “::” [hexseq]

	hexseq
	= hex4 *(“:” hex4)

	hex4
	= 1*4HEXDIG

	alphanum
	= ALPHA / DIGIT

	ALPHA
	= %x41-5A / %x61-7A ; A-Z / a-z

	DIGIT
	= %x30-39 ; 0-9

	HEXDIG
	= DIGIT / “A” / “B” / “C” / “D” / “E” / “F”

A.2 Introduction to XML

XML [3] is a simplification of the Standardized Generalized Markup Language (SGML). It is very similar to the Hypertext Markup Language (HTML) used to represent documents on the World Wide Web (WWW). While SIP does not use XML encoding, many bodies used with SIP do. XML is standardized by the World Wide Web Consortium (W3C). Elements in XML are known as tags or elements and are enclosed in <>. Here is an example tag, which contains a single value:

<tag>value</tag>

For every element opened in XML (<tag> in the above example), the tag must be closed (</tag>). An XML document is said to be well-formed if every opened tag is also closed. The value, which is enclosed by the open and closed tags, is the value associated with that element. In addition to values, elements can also have attributes inside the <>. For example:

<tag attribute=”another value”>value</tag>

is the same as the previous element but with the addition of the information in the attribute. Attribute values can be enclosed in either double quotes (“) or single quotes (‘). Elements can also be opened and closed at the same time:

<tag attribute=’information’ />

This element has no value but does have the single attribute, which is enclosed in single quotes. Elements can also be enclosed in other elements:

<address>

<number>402</number>

<street>Wildwood Ave</street>

</address>

In this example, the <number> and <street> elements are subelements inside the <address> element.

XML documents can be validated by another document, which indicates what elements, information, and attributes may be present. Two common methods of defining XML documents are XML schema and a document type definition (DTD). Both schema and DTD are XML documents. A complete XML document begins with an XML declaration, which indicates the current version of XML (1.0) and the encoding (commonly UTF-8):

<?xml version=”1.0” encoding=”UTF-8”>

Table A.4 shows some common entity values in XML. Comments begin with <!-- and end with -->. XML documents usually use the file extension .xml. XML is commonly used for encoding information in SIP message bodies. A key advantage of XML over, for example, ABNF, is that a general purpose XML parser can be used to parse and validate an XML document. XML documents can also be used to write IETF Internet Drafts using the XML document format [4] and the XML2RFC tool [5].

Table A.4

Entity Values in XML

	Value
	Meaning

	&
	ampersand

	<
	less than

	>
	greater than

	&apos
	apostrophe

	"
	quotation mark

	
	escaped value $20 space

Namespaces are an XML extension used to manage XML extensions while avoiding name collisions. For example, it is common for elements to define a namespace using the xmlns attribute. Additional namespace attributes can also be defined. If a particular namespace is not understood, it can be ignored by the XML parser. For example,

<presence xmlns=”urn:ietf:params:xml:ns:pidf” xmlns:dm=”urn:ietf :params:xml:ns:pidf:data-model”

xmlns:cipid=”urn:ietf:params:xml:ns:pidf:cipid” xmlns:caps=”u rn:ietf:params:xml:ns:pidf:caps”

entity=”pres:someone@example.com”>

<tuple id=”34g45sfde”>

<status>

<basic>open</basic>

</status>

<contact>sip:someone@pc29.example.com</contact>

<caps:servcaps>

<caps:audio>true</caps:audio>

<caps:video>true</caps:video>

</caps:servcaps>

</tuple>

</presence>

This presence element has a default namespace, which is the IETF URN for PIDF, and three other namespaces of dm, cipid, and caps. The subelements tuple, status, and contacts are all defined in the default namespace, while the elements servcaps, audio, and video are defined in the caps namespace.

Note that the line breaks and indentation tabs often shown with XML are optional, but are a good idea to help with the readability of XML. XML elements and values are case sensitive.

References

[1] Crocker, D., and P. Overell, “Augmented BNF for Syntax Specifications: ABNF,” STD 68, RFC 5234, January 2008.

[2] Kyzivat, P., “Case-Sensitive String Support in ABNF,” RFC 7405, December 2014.

[3] World Wide Web Consortium, “Extensible Markup Language (XML) 1.0,” W3C XML, February 1998.

[4] Rose, M., “Writing I-Ds and RFCs Using XML,” RFC 2629, June 1999.

[5] http://xml2rfc.ietf.org/.

About the Author

Alan B. Johnston is a distinguished engineer at Avaya, and a contributing author of more than a dozen IETF standard RFC specifications, including the SIP specification, RFC 3261, and the ZRTP media security protocol. He holds a doctorate in electrical and electronic engineering from Lehigh University, and bachelors of engineering from the University of Melbourne in Australia. He serves on the Board of Directors of the SIP Forum. He has over a dozen years of experience in SIP, VoIP, and Internet Communications, and is currently active in WebRTC, Web Real-Time Communications. Besides serving as an adjunct instructor at Washington University in St. Louis and an adjunct professor at Illinois Institute of Technology, Chicago, he has authored several best-selling technical books on SIP, security, and WebRTC. He holds several U.S. and European patents and has recently written his first novel, a techno thriller Counting from Zero about cybercrime. He is an acknowledged expert in his field and has traveled the world, speaking and lecturing to industry and government on technical topics. In his spare time, he enjoys riding off-road motorcycles and mentoring a robotics team. Follow him on Twitter @alanbjohnston.

Index

100 Trying, 107, 116–17

180 Ringing, 27–28, 34, 62, 63, 102, 117

181 Call is Being Forwarded, 117

182 Call Queued, 117

183 Session Progress, 117–18

199 Early Dialog Terminated, 118

200 OK, 28–29, 31, 35, 41–43, 62, 63, 76, 91–92, 98, 118–19

202 Accepted, 93–94, 96, 119

205 No Notification, 119

300 Multiple Choices, 130

301 Moved Permanently, 120

302 Moved Temporarily, 45–46, 120

306 Use Proxy, 120

380 Alternative Services, 120

400 Bad Request, 121

400 Client Error, 52

401 Unauthorized, 121, 358

402 Payment Required, 121

403 Forbidden, 122

403 From Identity Not Valid, 368, 369

404 Not Found, 52, 122, 134

405 Method Not Allowed, 122

406 Not Acceptable, 122

407 Proxy Authentication Required, 122–23

408 Request Timeout, 123

409 Conflict, 123

410 Gone, 123

411 Length Required, 123

412 Conditional Response Failed, 93, 124

413 Request Entity Too Large, 109, 124

414 Request-URI Too Long, 124

415 Unsupported Media Type, 124

416 unsupported URI Scheme, 124

417 Unknown Resource Priority, 125

420 Bad Extension, 125

421 Extension Required, 125

422 Session Timer Interval Too Small, 125

423 Interval Too Brief, 125–26

424 Bad Location Information, 126

428 use Identity Header, 126

429 Provide Referror Identity, 126

430 Flow Failed, 126

433 Anonymity Disallowed, 126–27

436 Bad Identity-Info Header, 127

437 Unsupported Certificate, 127

438 Invalid Identity Header, 127

439 First Hop Lacks Outbound Support, 127

440 Max Breadth Exceeded, 127

469 Bad Info Package, 128

470 Consent Needed, 128

480 Temporarily Unavailable, 128

481 Dialog/Transaction Does Not Exist, 52, 89, 99, 128

482 Loop Detected, 128–29

483 Too Many Hops, 129

484 Address Incomplete, 129–30

485 Ambiguous, 130

486 Busy Here, 130, 134

487 Request Terminated, 83, 131

488 Not Acceptable Here, 131

489 Bad Event, 131

491 Request Pending, 131

493 Request Undecipherable, 131

494 Security Agreement Required, 128, 132

498 Wrong Phase of the Moon, 52

500 Server Internal Error, 133

501 Not Implemented, 52, 63, 133

502 Bad Gateway, 133

503 Service Unavailable, 133

504 Gateway Timeout, 133

505 Version Not Supported, 133–34

513 Message Too Large, 134

580 Preconditions Failure, 134

600 Busy Everywhere, 134

603 Decline, 134

604 Does Not Exist Anywhere, 134

606 Not Acceptable, 135

Accept header, 139–40

Accept-Contact header, 155–56

Accept-Encoding header, 140

Accept-Language header, 141

Accept-Resource-Priority, 170

ACK message, 29–30, 45, 52, 66, 76, 80–82

Acknowledgement of messages, 66

Address and port-dependent mapping (APDM), 253

Address complete message (ACM), 453–54

Address of record (AOR), 32, 64, 78, 185, 425

Address resolution protocol (ARP), 333

Address resource records (AAAA), 14–15

Address-dependent mapping (ADM), 253

Admission confirmation (ACF), 282

Admission request (ARQ), 282

Alert-Info header, 141

Allow header, 52, 141–42

Allow-Events header, 142

American Registry for Internet Numbers (ARIN), 4

Answer-Mode header, 142

Application layer, 9

Application layer gateway (ALG), 258

Application sequencing, 239–40

Asserted identity, 370–73, 381–84

Attacks, 323

bid down, 340–41

buffer overflow, 338–40

cut-and-paste, 330

denial of service, 323–28

eavesdropping, 331–332

identity theft, 333–34

impersonation, 332

malicious code, 337–38

man-in-the-middle, 328, 334

password, 340

poisoning, 332–33

port scans, 336–37

redirection/hijacking, 334, 335

replay, 329–30

session disruption, 334–36

theft of service, 330–31

tunneling, 340

Attributes field, 310–12

Audio codecs, 296–97

Audio conferencing, 299–300

Audio multiplexing, 299

Augmented Backus-Naur Form (ABNF), 11, 477–79

Authenticated identity body (AIB), 373–74

Authentication

basic, 355–56

call flow, 441–49

digest, 356–61

key management, 396–97

Authentication-Info header, 170

Authorization header, 156

Automatic call gapping (ACG), 408–9

Back-to-back user agent (B2BUA), 53–54, 385, 420, 475

Bandwidth field, 309

Base station (BS), 37

Bid down attack, 340–41

Binary Floor Control Protocol (BFCP), 234, 236, 238

Blended threat, 338

Brute-force attack, 346

Bug fixes, 474

Buffer overflow, 338–40

BYE message, 30–31, 36, 44, 80

Call data flood, 325

Call detail record (CDR), 284, 408

Call hold, 316

Call flow

parallel search, 460–66

presence/IM, 468–72

PSTN-to-SIP, 457–60

SIP-to-PSTN, 453–56

SIP-to-SIP, 441–49

with proxy, 449–52, 466–68

Call Signaling Control Functions (CSCF), 191–92

Called party busy, 449–52

Caller ID, 412–13

Calling line ID (CLID), 412–13

Call-ID header, 25, 34, 51, 76, 142–43

Call-Info header, 156

CANCEL message, 66, 82–85

Centralized Conference Manipulation Protocol (CCMP), 238

Certificate authority (CA), 349

Certificate, security, 349, 379–81, 382

Chord protocol, 421–24

Circuit-associated signaling (CAS), 277–78

Client error responses, 120–32

Command sequence (CSeq) header, 26, 34, 51, 67–68, 102, 144–45

Common Profile for Instant Messaging (CPIM), 214–16

Compression, 294–95

Conditional event notification, 310

Conferencing, 237–39, 299–300

Confidentiality, 345–46

Connection data field, 308

Connection reuse, 264

Contact header, 28, 37, 38, 53, 143–44

Contact Information Presence Data (CIPD), 201–2

Content-Disposition header, 176

Content-Encoding header, 108, 175–76

Content-Language header, 176

Content-Length header, 45, 108, 176

Content-Type header, 176–77

Control packet flood, 325

Conversational text, 300

Credential theft, 333–34

Cut-and-paste attack, 330

Datagram Congestion Control Protocol (DCCP), 5, 9, 249

Datagram TLS (DTLS), 354

Data/link layer, protocol stack, 2–3

Date header, 145–46

Delay attack, 335

Delivery notification, IM, 215–16

Denial of service (DoS), 323–28

Diffie-Hellman cryptography, 347–48

Digest authentication, 335, 356–61

normal mode, 360

session mode, 360–61

Digital certificate, 349

DISPATCH message, 474

DISPATCH working group, 473, 474

Disruption attack, 335–36

Distributed DoS, 326–28

Distributed hash table (DHT), 421

DNS resource record, 14

DNS security (DNSSEC), 354–55

Domain Name Service (DNS), 12–14

address resource records, 14–15

DNS resolvers, 16–17

NAPTR, 16

number mapping, 414–16

poisoning attack, 332–33

resource records, 14

service resource records (SRV), 15–16

DTLS-SRTP key agreement, 401–2

Dual-tone multifrequency (DTMF),291, 300–1

Dynamic Host Configuration Protocol (DHCP), 326, 420

Dynamic payload, 316–17

Eavesdropping, 331–32

Email field, 308

Emergency services, 229

Encapsulation, 279, 413

Encryption, 346–47

Encryption header, 146

Encryption key field, 309

End point-independent mapping (EIM), 252

Enhanced SIP identity, 374–79

Entity-tag (etag), 210

ENUM protocol, 13, 414

Error-Info header, 170

Event header, 156–57

Event state compositor (ESC), 52, 90

Expires header, 86, 91–92, 146

Exploitation attack, 326

Extensible Markup Language (XML), 200–2, 205, 208, 479–81

Extensible Messaging and Presence Protocol (XMPP), 197–99, 214, 221–23

Extension Option tags, 152

Extensions, new, 474

Facsimile, 236–37

Feature-Caps header, 147

File Transfer Protocol (FTP), 258

Filtering, 208–10, 255–56

Flooding attack, 324–26

Flow-Timer header, 171

Focus, 237–38

Forking proxy server, 59–61, 83

From header, 25, 28, 34, 76, 146–47

Gateway, 54–56, 227–28, 453–60

Gateway security, 407

architecture, 410–11

caller ID, 412–13

gateway types, 411–12

number mapping, 414–16

operation, 409–10

SIP/ISUP, 413–14

Geolocation header, 147

Geolocation-Error header, 171

Geolocation-Routing header, 147–48

Global error response, 134–35

Global open standards, 17–18

Globally Routable User Agent URI (GRUU), 79

H.323, 280–85

Hairpinning, 253–54

Hashed message authentication code (HMAC), 348

Header field

defined, 139

IMS, 192

INVITE, 25–27

message body, 175–77

request, 155–69

request and response, 139–55

response, 169–75

Hide header, 157

Hijacking, 334

History-Info header, 148

Hole punching, 266–70, 420

Host Identity Protocol (HIP), 184, 249, 426–28

Hypertext Markup Language (HTML), 19, 20

Identity, 367

asserted identity, 370–73, 381–84

certificates, 379–81

future directions, 474–75

interdomain SIP, 373–79

privacy and 384–85, 409

SIP URI, 368–70

telephone number, 367–68

trust domains, 370–73

Identity header, 157

Identity theft, 333–34

Identity-Info header, 157

Impersonation, 332

INFO message, 99–100

Information response, 116–18

Info-Package header, 158

In-Reply-To header, 157–58

Instant Message Delivery Notification (IMDN), 213, 215–16, 217

Instant messaging (IM)

call flow, 468–72

example, 39–44

history of, 197–99

URLs, 107

with SIMPLE, 212–21

Integrated Services Digital Network (ISDN), 227, 230

Integrity protection, 346

Intelligent Multimedia Core Subsystem (IMS), 183

Interactive connectivity establishment (ICE), 271–72

Interdomain SIP identity, 373–79

International SIP Forum, 19

Internet Assigned Names Association (IANA), 19

Internet Architecture Board (IAB), 262

Internet Control Message Protocol (ICMP), 10

Internet Corporation for Assigned Names and Numbers (ICANN), 19

Internet Engineering Task Force (IETF), 18–19, 473–74

Internet Group Management Protocol (IGMP), 10

Internet Multicast Backbone Network (IMBN), 10

Internet multimedia protocol stack

application layer, 9

data/link layer, 2

multicast, 10–11

network layer, 3–4

physical layer, 2

transport layer, 4–9

utility applications, 9–10

Internet names, 11

Internet Protocol v4 (IPv4), 3

Internet Protocol (IPv6), 3, 192, 475

Interoperability, 476

Interworking, SIMPLE, 222–23

Internet Assigned Number Association (IANA), 4

Internet Research Task Force (IRTF), 19

Internet Service Provider (ISP), 4

Internet standards process, 18–19

INVITE message, 24–27, 33–34, 75–78, 59–60, 94, 95, 96, 186–89

IP address pooling, 254

IP mobility, 183–84

IP Multimedia Subsystem (IMS)

application sequencing, 239

header fields, 192

SIP mobility and, 191–92

IP Security (IPSec), 350

ISDN signaling, 278

ISDN user part (ISUP), 17, 100, 278

Jabber, 198, 221–23, 420

Jingle, 222

Join header, 158–59

Malicious code, 337–38

Man-in-the-middle, 328, 334

Mapping

examples, 256–58

filtering modes, 255–56

refreshing memory, 255

types of, 252154

Master key indicator (MKI), 393–94, 397–98

Max-Breadth header, 161–62

Max-Forwards header, 25, 26, 61, 129, 162

Media description field, 310

Media encryption key, 394–95

authenticated key, 396–97

PKI, 396

preshared key, 395

Media gateway (MG), 280

Media gateway control (MGC), 279–80

Media NAT traversal, 265–66

Media security, 391–92

DTLS-SRTP, 401–2

encryption keys, 394–97

MIKEY, 398–401

SDP, 397–98

SRTP, 392–94

ZRTP, 402–4

Message. See Response messages; Request messages

Message authentication, 348

Message body, 108–10

Message body header field, 175–77

Message composition indication, 216–17

Message digest, 348

Message header, 175–77

MESSAGE message, 43, 97–99, 213–16

Message Session Relay Protocol (MSRP), 213, 219–21

Message transport, 44

UDP, 44–45

SCTP, 47

TCP, 45–46

TLS, 46–47

Method parameter, 105

MIME-Version header, 177

Min-Expires header, 171

Min-SE header, 171

Mixer, 238

Multicast transport, 10–11, 68–69

Multimedia Internet Keying (MIKEY), 398–401

Multipart Internet Mail Extensions (MIME), 109–10

Multiple recipient messages, 218–19

Mobile IP, 183–84

Mobility

IMS and SIP, 192–92

SIP, 184–90

Multiple recipient message, 218–19

Naming authority pointer resource records (NAPTR), 16

National Emergency Number Association (NENA), 229

Network Address Translation (NAT), 4, 247

advantages/disadvantages, 248–49

basic properties, 259–60

hole punching, 266–70

ICE, 271–72

introduction, 247–48

mapping examples, 256–58

media transversal, 265–66

operation, 250–51

SIP and, 258–59, 262–65

STUN protocol, 260–62

TURN protocol, 270–71

types of, 251–55

UNSAF requirements, 262

Network layer, 3–4

Network-to-network interface, 408

Non-SIP Conference Control, 238–39

NOTIFY message, 41–43, 87, 89–90, 94, 199–200

Offer answer model, 313–16

Open Mobile Alliance (OMA)

Open Settlements Protocol (OSP), 161

OPTIONS message, 85–86

Organization header, 148

Origin field, 307–8

Outbound call, 264–65

Overlay network, 421–24

Page mode instant messaging, 213–14

Parallel search, 460–66

Partial publication, 210–12

Password theft, 340

Path header, 148–49

Payload type (PT), 316–17

Peer-to-peer (P2P) technology

HIP, 426–27

overlays, 421–24

properties, 419–21

RELOAD, 424–26

Permission-Missing header, 172

Personal mobility, 184–90

Physical layer, 2

Policy-Contact header, 148

Policy-ID header, 159

Poisoning attack, 332–33

Port assignment, NAT, 254

Port scan, 336–37

Postal telegraph and telephone (PTT), 409

PRACK message, 100–2

Presence

call flow AND, 468–72

IM and, 197–99, 468–72

with SIMPLE, 199–212

Presence agent (PA), 52–53

Presence Information Data Format (PDIF), 200–1, 210–12

Presence URL, 107

Preshared key, 395

Pretty good privacy (PGP), 329, 361

Priv-Answer-Mode header, 149

Priority header, 159

Privacy, 384–85

Privacy header, 159

Protocol version field, 307

Proxy server

call setup, 31–37, 441–49, 466–68

overview, 57–61

Proxy-Authenticate header, 172

Proxy-Authorization header, 159–60

Proxy-Require header, 160–61

Public key infrastructure (PKI), 347, 379–81, 394, 396

Public switched telephone network (PTSN)

caller ID, 412–13

gateway security, 409–16

gateway services, 227–30

H.323, 280–85

MGC, 279–80

number identity, 367–68

number mapping, 414–16

PSTN to SIP call, 457–60

security model, 407–9

signaling, 277–78

SIP/ISUP, 278–79, 413–14

SIP-T, 278–79

trunking, 229–32

PUBLISH message, 52, 90–93

P-Asserted-Identity header, 161

P-OSP-Auth-Token, 161

P-Preferred Identity header, 161

Quality of Service (QoS), 335–36

Race condition, 84

RAck header, 101, 167

Real-Time Transport Protocol (RTP)

audio video profiles, 295–99

compression, 294–95

conferencing, 299–300

overview, 287–92

RTCP, 292–94

symmetric, 265–66

transport, 300–1

Reason header, 162

Record-Route call flow, 441–49

Record-Route header, 149–50

Recv-Info header, 150

Redirect server, 61–63

Redirection attack, 334, 335

Redirection response, 62, 119–20

REFER method, 93–97, 383–84

Refer-Events-At header, 172

Referred-By header, 126, 163

Refer-Sub header, 150

Refer-To header, 94–95, 162–63

Regional internet registry (RIR), 4

REGISTER message, 37–39, 55–56, 68, 78–80, 129, 185–86

Registrar server, 63–64

Registration, 37–39

Reject-Contact header, 165

Reliability, 66–68

RELOAD (REsource LOcation And Discovery), 424–26

Replaces header, 164–65

Replay attack, 329–30

Request header field, 155–69

Request and response header field, 139–55

Request for Comments (RFC), 18–19

Request-Disposition header, 165

Require header, 128, 166

Réseaux IP Européens Network Coordination Centre (RIP ENCC), 4

Resolver, 16–17

Resource record, 14

Resource-Priority header, 125, 166

Response header field, 169–75

Response messages, 115–16

client error, 120–32

global error, 134–35

informational, 116–18

redirection, 119–20

server error, 132–34

success, 118–19

Response-Key header, 166

Request and response header fields, 139–55

Request header fields, 155–69

Request messages, 75

ACK, 29–30, 45, 52, 66, 76, 80–82

BYE, 30–31, 36, 44, 80

CANCEL, 66, 82–85

INFO, 99–100

INVITE, 24–27, 33–34, 75–78, 59–60, 94, 95, 96, 186–89

MESSAGE, 43, 97–99, 213–16

NOTIFY, 41–43, 87, 89–90, 94, 199–200

OPTIONS, 85–86

PRACK, 100–2

PUBLISH, 52, 90–93

REFER, 93–97, 383–84

REGISTER, 37–39, 55–56, 68, 78–80, 129, 185–86

SUBSCRIBE, 39–40, 86–89, 199, 205–8

UPDATE, 102–4

Resource list server (RLS), 203, 205

Resource lists, 202–8

Response header fields, 75, 139–55

Retry-After header, 128, 133, 134, 150–51

Rich Presence Information Data (RPID), 202

Robust header compression (ROHC), 295

Route header, 167

RSeq header, 101, 174–75

RTCP extended report (RTCP–XR), 294

RTP Control Protocol (RTCP), 191, 292–94, 265, 266

Secure Assertion Markup Language (SAML), 381, 383

Secure audio and video profile (SAVP), 295

Secure MIME (S/MIME), 131, 355, 361–62

Secure RTP (SRTP), 392–94

Secure SIP, 365–67

Security, 345–46

Diffie-Hellman, 347–48

digital certificate, 349q

encryption, 346–47

future directions, 476

message authentication, 348

public key, 347

See also Identity; Media security; Security model, SIP; Security protocols

Security model, SIP, 355

basic authentication, 355–56

digest authentication, 356–61

PGP, 361

secure SIP, 365

S/MIME, 361–62

TLS, 362–65

Security protocols

DNSSEC, 354–55

DTLS, 354

IPSec, 350

S/MIME, 355

TLS, 350–54

Security-Client header, 167–68

Security-Server header, 172–73

Security-Verify header, 168

Self-fixing approach, 266

Server error response, 132–34

Server header, 173

Servers, 56

proxy, 57–61

redirect, 61–63

registrar, 63–64

Service delivery platform (SDP), 241

Service examples, 232–33

Service mobility, 183

Service resource record (SRV), 15–16

Service-oriented architecture (SOA), 241

Service-Route header, 173

Servlet, 241

Session Border Controller (SBC), 54

Session Description Protocol (SDP), 52

extensions, 312–13

offer answer, 313–16, 317

overview, 305–12

payloads, 316–17

Session disruption, 334–36

Session establishment, 23–31

Session field, 308

Session Initiation Protocol (SIP), 1, 19–20

Session mode instant messaging, 219–21

Session-Expires header, 61, 125, 146, 168

Session-ID header, 151

Signaling compression, 192

Signaling protocols, 1–2

SIMPLE (SIP for Instant Messaging Leveraging Extensions), 198

IM with, 212–21

interworking with, 222–23

presence with, 199–212

Simple Mail Transfer Protocol (SMTP), 20

SIP application flood, 325

SIP for telephones (SIP–T), 278–79

SIP outbound call, 264–65

SIPCORE working group, 473, 474

SIP-ETag header, 173

SIP-If-Match header, 168

Spyware, 338

Standardized General Markup Language (SGML), 479

Standards

global open, 17–18

Internet process, 18–19

XMPP, 222

Stateful proxy, 58–59, 116, 449–52

Stateless proxy, 58, 449–52

Static payload, 316

Stream Control Transmission Protocol (SCTP) , 4–5, 9, 47, 249

STUN protocol, 259, 260–62, 264, 266

Subject header, 151

SUBSCRIBE message, 39–40, 86–89, 199, 205–8

Subscription-State header, 41, 42, 90, 169

Success responses, 118–19

Supported header, 52, 151

Suppress-If-Match header, 169

Symmetric RTP, 265–66

Symmetric SIP, 263

Tag, 107–8

Target-Dialog header, 169

Tear-down attack, 335

Telephone number

identity, 367–68

mapping, 414–16

URL, 106–7

Telephone Routing over IP (TRIP), 56

Terminal mobility, 183–84

Text over IP (ToIP), 300

Theft of service, 330–31

Third Generation Partnership Project (3GPP), 183, 191–93

Third-party identity, 383–84

Time division multiplexing (TDM), 407

Time field, 309

Timestamp header, 152–53

To header, 25, 28, 32, 34, 76, 153

Transaction stateful proxy, 58–59

Transmission control protocol (TCP), 5–7, 45–46

Transport layer, 4–9

Transport Layer Security (TLS), 8

authentication, 362–65

handshake, 350–53

transport, 45–46

security, 350–54

Transport port number, 7–8

Transport protocol selection, 47–49

Trigger-Consent header, 169

Trojan, 337–38

Trunking, 229–32, 476

Tunneling, 413–14

Tunneling attack, 340

TURN (traversal using relays around NAT), 270–71, 420

UPDATE message, 102–4

Uniform Resource Indicator (URI), 12

addressing, 104–6

identity, 368–69

overview, 64–66

SDP, 308

secure SIP and, 365–67

SIP call, 31–37

Uniform Resource Locator (URL), 11–12

instant messaging, 107

presence, 107

telephone, 106–7

Uniform Resource Name (URN), 12, 229

Unilateral Self-Address Fixing (UNSAF), 262

Unsupported header, 17

User agent (UA), 51–54

User-Agent header, 154

User datagram protocol (UDP), 8, 16, 44–45, 354

User parameter, 105

User-to-network interface, 408

User-to-User header, 154

Utility applications, 9–10

Via header, 25, 26, 28, 30, 34–35, 154–55

Video, 234–36

Video codecs, 298–99

Video multiplexing, 299

Videoconferencing, 299–300

Video Relay Service (VRS), 236

Virus, 337

Voice over IP (VoIP), 402–4

Voice over LTE (VoLTE), 183, 191

Voicemail, 233–34

Warning code, 174–75

Warning header, 174

Web Real-Time Communications (WebRTC), 297

architecture, 433–34

basics, 431–33

protocols, 434–36

SIP signaling, 436–38, 475

Wi-Fi Protected Access (WPA), 331

Worldwide Web Consortium (W3C), 19

Worm, 337

WWW-Authenticate header, 174, 175

ZRTP, 348, 402–4

images/00102.gif
SIP Prone A Proy Server
1920321 1920588
| TLS Connsctian 1 openad from 192.0321:3244 0 19205435061

i INVITE i
h »
le 7 Authonticetion Reguired i
1 Server can
; oS R
f INVTE Wi
! . L
i i
i i
! !
| TS Comasion20pras rom 120373 pns e o VEBATE
I wnare | soreamr
et
]
el

3 a0

images/00101.gif
Calling H:323 Terminal H323 Gatekeeper Callod H.328 Tormina
ARD

ACF |

Sotp feststart
Call Praceeding

|

. S—

f AR i
i ACF |
Nlring |

Connect fastStar]
WasterSiaveDeterminationAck

OpenLogicalChannslAck

OpenLogicalChannelAck
OpentogicalChanne!

I XN IEX X I

OpenLogicalChannelAck
RTP Medis Set

}

Y | [v |

images/00071.gif
Key

|

Digest i
SHA-1 ———» Encryption

Message HMAC Output
.

images/00070.gif
SVUNBincingMequest — STUN Binding Request

e - o |

|swcezassans | soucwwisamn
Destnsion? MAZLEID

e

Exturnat

images/00073.gif
—_— —_—
SIP Phone A Proxy Server SIP Phone C SIP Phone B
| | | |
! | le Msiorse
| | w0
| | I mAccepe _|
! ! oo
i nsforsP_ ok)
}&»{ INVITE Referred-By: B8 [
| INVITE 1 |

i

! ack 428 Provide Referrer MY worievizn |
e ACK — m "
| | b REFER |
| | Mo Accopted |
| | NVTE Rt BB ABE poriey]
i

160 Ringing

2 o e
IYVITE Roforrod-Bz8 AIB o I3
| ———

|
i
i
i
i

images/00072.gif
(O |

J

Jane Presence server
! SUBSCRIBE Expires:0 |
!

! 200 0K]
| NOTIFY SIP-ETag: xyz |
| 200 0K |
|
1

SUBSCRIBE Suppress-lf-Match:xyz Expires:0
—_—

204 No Natification |

NOTIFY SIP-ETag: pdg

200 0K

!
!

!

|

! 200 0K

!

I

1
——————

|
|
SUBSCRIBE Suppressif-Match:xyz_Expires:0
"y
i
|
i
|
i
|
[
I
|

SUBSCRIBE Suppress-If-Match:pdg Expires:0

|
1
|
|
| 204 No Natification |

images/00075.gif
Timestamp

SSACt

Payboed,

MKT

Auth, Tog.

images/00108.gif
Telophons - | | €b 1P Notwork 4> ™

Network 1 =
SPYOP i SPVaP
Tolaphana .
f]
N
Talophons 1
g

Tolsphone
Notwork 3

>\

Talophono

images/00074.gif
REGISTER
id=1
instance=314

o /;IP Py Samr\
—)

/ SIP Registrar
Server

siP Pvnw Server2

ser Agent FEGISTER
User Agent —
A itz A
| sstoncote
|
|
|
i |

e

5 ema | Extermal

images/00107.gif
—
uAC UAS
| INVIE Supported:el100 CSeq: 1 IN\4TE
I
i 100 Trying |
I+ 1
1 1
I X 180 Ringing CSeq: 1 INVITE RSeq: 314
]
! R
i 180 Ringing RSeq: 314 1y
* 1
| PRACK CSeq: 2 PRACK RAck: 3141 INyITE
I 1
I 2000KCSeq: 2PRACK !
] 1
| 2000KCSeq: 1INVITE |
' ACK CSeq: 1 ACK _i
]
I

Media Session !

>

images/00077.gif
.

-

RN o)
Al AT GdgoProy | Eigs P2 Regiarfrony
| REGISTERfowid1 REGISTER flow-id | |

I owTmerst 7
Ok gy P00k PowTnerl |
oo avos sntevory 80 seconds |

| Fap s sty 0 e

REGISTER flow-id 2 |

JREGISTER flwid 2|
| 200 0K Fow Tmeriso

200 0K FlowTimers0 e

sim

Kacp aives natsem 1w | viTE
1 1 430 Flow Failed !
Sotomtonittommin] 2 Ittmensastomz
e DU, S—
L 200K |
i ' mox
| | Ak
Lo | |
] |

images/00110.gif
——
Vigenere Proxy Server

! INVITE |

‘r—ﬂ‘ INVITE
———————

| | 183(NVITE) i

I, 183(NVITE) e

-

I I

I PRACK |

™ PRACK |
—"

! I 200{PRACK) 1

| 20 (PRACK) 1

———————

! |

| UPDATE !

I UPDATE i
|

I I

} | 2000KWUPDATE |
—1

| 2000k(uPDATE) ! 1

I | L ZOOKINVITE) |

| 200 OK (INVITE) o~ 1

[

i ACK |

> ACK

d
! I L |
I I

|

i

Media Session
———————P

images/00076.gif
W)) J

Event state

Murasaki cumplositnr

PUBLISH {pidf}
200 OK SIP-ETag: xyz

.

PUBLISH SIP-If-MaKch:xyZ (pidf-diff)
$SIP-200 OK SIP-ETag: pdgq

X

PUBLISH SIP-If-Match:pdg (pidf-diff1
412 Conditional Requast Failed

PUBLISH (pidf1)
200 OK SIP-ETag: abc

1y 1y vy 1Y

! W

images/00109.gif
(o (o
SIP Phans A Prowy Server Proxy Server SIP Phone 8

Az

S—p— :‘mﬂ%mw"w

o——c - rr——" e sty sgrars
1o e A iy s
[w3 Hisers vead o ansara

INVTE gare o

INVITE Idonsit: A ldarity- o hfcort

images/00079.gif
I

ACKM1B

Redirect S —
edirect Server
SMI“\'NVITE faraday@effiect. org M1 | Sﬁny" Common
- acioty
e Room
M2 ! ! !
i ACKM3 i ! i
I g | |
| INVITE feraday@iabroyalsoc.org M| !
1| INVITE +44.565.1212@sigphane example.org M5 i
i INVITE faraday@commonroom,club.gb M6 N}
1 404M7 ! |
—— |
|
| ACK M8 | |
—_———————> |
| 180 M9. |
« |
i 180 M10 I
€ |
! 20M11 |
= 1
ACKM12 I
I >
| RTP Metia 1 |
‘ 1 ’ 1
i CANCEL M13 |
I |
L 200 0K M14 !
I
| |
le 487 M15 |
| |
|

images/00104.gif
At SiPfocus
(conference server]
v

RTP Matia Session

NOTIFY (UA3 Joins Conforence)
200 0K

200K >
j—

| |
> INVITE]
I 20K Contastisfocus |
i ACK |
e
. memedaseson |
NOTIFY (UA2 Joins Conference ————
Mmook | SUBSCRIBEEventconference |
Wk e
| 200K
L] 5
NOTIFY (UAY in Conference)
T 1
W I 200K]
[I |
| INVITE | |
| W0 0K Contactisfocus |
i ATK i |
T —
T WP MedieSewian | '
——— |
! |
NOTIFY (UA3 Joins Conference) | !

images/00078.gif
2
g

L soveroloDono | partofthe negotinion

(O]
Server
Client proposes TLS i Clisnthallo
optons
] Sorveral | Sarvar selocts TLS options
] Conteato | Sarvo sondsis
H ServerKeyExhange public key certificate
i ContifcatoRoquost | Server concluds its

Certicato |

Cliant’s pub kay H

encrypted i servers | ClinoyExchange

public oy | ContcaroVerity

Ciont ts saverto | Session nfo encrypted w/

check tha sctvated | i private ey

optons i ChangoCiphorspes || Server acivates the neqatite
| herdpee | optons

Server lets clent check the
! Applcation Data | actvated options
Secure data axchange |

| Jication Data |
. L L LI P R—

images/00103.gif
Network o Network Network 1o Network

nataca oo
N N
Tolaphonn Tooptona Tagphone
e — k2 NekS)t Networ
nafacs nafacs
) / \ iy
Tolsphona Tosphona2
- g

images/00106.gif
Dateway lelephone

- PSN g,
-—

Acces:
ooy FSTH

latory latency.

-
— -
@ LN Ao Core Access AN

— s> B
Codes LAN IﬂmncvA ’ N Codec:
el — ncy
Pocketzson [— sutarg

\atency latancy

images/00105.gif
IM Cliant 1 IM Client 2
| MESSAGE !
I MESSAGE
i 1 200 0K |
i 200 0K I
h
! o__J
!
|
1

MESSAGE
MESSAGE
200 0K |
i 200 0K

1 >
H

cover.jpeg
Alan B. Johnston

SIP

Understanding the
. Session Initiation

images/00060.gif
Source123328:4219 _ §
Destinationt 273325678
——

Sourcel 192.168.0.1:1234
Destination1 2.73.3.2:5678
. m32
-
\
[

'
| Source2' 223284219
| Destination2623385678 -
|
|

52399
€ Pt

T
|
Internal | External

images/00062.gif
200 0K

p o —

Manya Ad hoc list server
! SUBSCRIBE (create list) |
I 200 0K I
-~
! NOTIFY !
€ {
| 200 0K |
[»i
I |
| . |
< : :
! SUBSCRIBE (add Margaret to list, remﬂ/e Maria)
| 200 0K
€
! NOTIFY
€
|
1

images/00061.gif
siP
° ° -«—
WebServer A SIP Proxy

SIPB2BUA

HTTP or sip
HTTPS.

===
SRIP Media RTP LEH
<> |

(Peer Connection)

—
Browser A Media
(WebRTC Enablad) Gateway

images/00064.gif
L J \

Babbage Praxy Sarver Firewall/Proxy Ada
12261791 15181718 1074921 1234

| INVITE ada@language expmple.org M1 !

_am | H

DNS.
| ACKM3 1 s

|
‘—)I 1
INVITE ada@language exmple.org M4 |
S ngugs banoi s W)

-

L1l Tousim Location
1 Service

! INVITE M8 1 !
}Tu sdazMi0 |

L ada@1 234

| —

| I INVITEMIZ
1
|
|

1 180M13 |
180 M14 | —

180 15 | ——
’<—| 20m17 k
20M18 o
i ACKM1S |

| !
! Media Session |

200M16 !

images/00063.gif
Sourcel’ 233284218 - ¥
Destination 2.73.3.2:5678
Source! 192.180.1:1234

Dostaton! 213325618 __ _ 27332

UL _— Source? 23329214
Ui Destination2 623895678

R TOE0T NAT
192.1680.1 i -
Source2 19218801124 53379
Destination2 623.9.9:5678

Sourced 23282194 L

Rl
Destinafion3 23999875 Lo

Sourced 192.168.0.1:1234
Destination3 623999876

;
\
‘
i
=
I

Internal External

images/00066.gif
233284219 _ §
127332578

Sourcal 192.1680.1:1234
Destination] 273325678

== 2132
LLH] _— Source? 73329219
U Destination? 623995678
NAT
19216801 T —
Sourcez 11880112 3337 ™

Sourced 192.168.0.1:1234
Destination3 623399876

Source3' 23287322 L)

Destination3 23989875 oo

|
i Destination? 623.9.9:5678
|
|
|

|
| Internal External

images/00065.gif
L L]
| J

Jane Presence server
! SUBSCRIBE (create filter) |

200 0K

NOTIFY

200 0K

I
I
I
I
i
I
i :
1 SUBSCRIBE (madify filter)

200 0K
NOTIFY

200 0K

i
I
I
i
I
I
i ;
! SUBSCRIBE (remove filter}

200 0K
NOTIFY

200 0K

images/00068.gif
°) (o) U
— — e
Shannon Statoless Proxy Stateful Proxy Schockley
sampling.exempleorg 9878 10387 51321
1 1 1 1
i 1] 1
I INVITE M1 1 1 1
7L INvmEM? ! '
1 INITEMS 1
| 1 100 M3
f r 180 M5 1
| B 180 M§
i 180 M7 I Ee— 600ME 1
P Ewe— s00M10]
600 M1 -~ ACK
i 1 I
I ACK M12 1 1
|

images/00067.gif
Frivate key

' '

Plsin toxt Cphertoxt pupc Cishertaxt Plaintoxt

> | Encryption ey > Decryption >

images/00069.gif
Sourcel 192.168.0.1:1234
Destination1 623.9.9:5678

=
o » (340 > —
19216801 NAT 23328 73329 62399
| Sowcezisziesntize | Source? 2332931224
| Destination26239.99876 i Destination2 62.3.9.9:9876
| |
| |
i i
< >
|
|

T
Internal | External

images/00092.gif
Ol

1 INVITE
I 100 Tryn

e g Gagsion Progre
Te 3 SassionProgress et Session Progress |

| RTP Early Madia Sessian
I
iymadis |
ocaivadis payc | MK ik

L 1 ACK |

INVITE

S
uaz Prosy server iy

Early media son
from the PSTN

can be ringback
tone or recorded
announcements

images/00091.gif
200 0K {SDP Answer with chosen candidate)

User Agent STUNSerer STUN Server User Agemt
| STUNRequest ! !
Gaharng L STONResponse >} | |
candidato | !
s INVITE (SDP Offer with ICE Candidates) N

i STUNRequost | Gathering ICE

STUN Responsa, ::ﬂf.“:‘;

200 0K (S0P Answer with ICE Candidates) |
ACK. 4
‘STUN Connectivity Checks .3

Holo Punching STUN Gonnoctiviy Ghocks 1" Hole Punching
RTP Media Sossion)j
UPDATE {SOP Offer with chosen candidste) 4
i
H

images/00094.gif
Media
Gateway
Controller
(w6ch

SIP ss7

Y,

PSTN

b

> 2
L b Media
" Gateway Gateway
S (MB) M6)

Telephons

images/00093.gif
Master key Master salt

SRTP Key
Derivation

Session Session Session

encryption sajt key authorization
key key

images/00096.gif
> e SIE I “«> s

Enferrse sorver Service provider
sarver

images/00095.gif
—_— E
SIP Phone A SIP Phone B
|
I

INVITE

401 Unauthorized WWW-Authenticate: nonce
i

ACK

1
I
1
i
——

Shared secret | INVITE Authorization: response |

it e EEE—

o ! - | Shared secret
1200 OK Authentication-Info: respanse-suth sont
R I EE—

! AcK |
1 ‘ Media Sessian ’ }
1 1

images/00098.gif
Telephone

images/00097.gif

images/00011.gif
U
| ——— | ———
100.101.102.103 200.201.202.203
' BYE !

UDP Datagram

Source IP: 100.101.102.103
Source Port: 42172
Destination IP: 200.201.202.203
Destination Port: 5060

¢ 200 0K
UDP Datagram
Source |P: 200.201.202.203
Source Port; 60134
Destination IP: 100.101.102.103
Destination Port: 5060

images/00100.gif
Frosyserver [re—— w
3 e P s vor s " zisnergiersd
| pa—r] |
f‘—'r_g—mmﬂ_q
! moc L_mx_.‘

— Ak |

resting focoris
ore ——

| PR S 1 message, tenhangs up
I A H | i UAY
e 200k
| E— URzianotregsers snd
subsebos o gt MW!

|

|

|

!

|

1

< TP Mt oxson N ivininta™ |
h |
| |
i |
3

S S Wlidtiniia

— WOl

a0k
| SUBSCRIE Eventmessage surmry
|QUaSCHISE Bentmussage sunmar
i

a—
[T——
——

Message Waling ndcsion
e o

images/00010.gif
e =it
Chebychev Poisson
i SUBSCRIBE 0
—_—
! 2000K !

H NOTIFY (offline) i
-
I 1

200 0K
I
|
|
|
|
| NOTIFY {anline)

! 200 0K !
— ™

|
|
! MESSAGE

! 200 0K !
-~

MESSAGE
I |

1 200 0K
I 1

images/00099.gif
o)
Schridinger Proxy Server Hoisanberg
! INVITE 1 |
— wmE !
! 180 Ringil]
I 180 Ringing ! L]
— T a0k |
i 200 0K e——
! ACK ! !
——— ACK |
I)
ZRTP Hello 1 1
ssagosaresent g ChPHelo |
inmedia path after | ZRTP HelloACK 1
signaling completes F——zprp o >
e
1 ZRTP HelloACK. | scrtcingersce
| ZRTP Commit | asinitator and
‘sends Commit
54%1: message to start
Schradinger and ZRTP DHPari2 m::l;l‘;“an ey
Hi be
oo stp | Secure ATP {SRTP) Media Session i
master secret and
gonsrato STP i ZRTP Confirm !
keys ! ZRTP ConfACK 1

images/00013.gif
SIP proxy SIPPBX PSTN
— \ f = 7
L
‘ Pl

S\Pvldeu SIP/PSTN
shono SIP netwark ateway
.
L B
. x T Hm
jr —— SIP/H.323 network
— gateway
SIF phone . .

‘Wireless SIP ——
phone SIPPC

images/00012.gif
et '
| —— | ——
100.101.102.103 200.201.202.203

! Qpen TCP Connection !
—

I Source IP: 100.101.102.103 !
: Source Port: 42172 :
| Destination IP: 200.201.202.203 |
: Destination Port: 5060 :
i INVITE H
Sent in TCP stream

302 Temporarily Maved
Sent in TCP stream

1
1
|
1
|
1
ACK »1
1
|
|

Sent in TCP stream

1
I
I
1
1
1
L
1
1
: Close TCP Connection

images/00015.gif
Location
senvice
{dstabase)

==
1

Non-SIP / \ Non-S1P

o °

Redirectiregistrar Proxy server
sip A seer
siP sip

User Agent User Agent

images/00014.gif
Originating service

povder g S

Application server 1

== SIP ° J
{ TR I —
Application server 2
— il
| TP — v&’
- .
A1
RTP
Applicetion server:
s [ppcaton sarvar
sip
Application server 1
[

Application server 2
Terminating service
orovider serves

images/00080.gif
NAT Mapping Discovery and

AT Exchange of candidetes via
Rendozvous Sorver
[)
i =
! L
H i
i Hole Punching Atampts |
e
| |]
| i Rendonaous
- | SenorSTN
<« ERD ! Server
| i
| —
J -

Host B NATB

images/00082.gif
UA validates
cortfcatoof
proxy server

Proryvalides.
U2 1sing
SIP Digest
suthentcation
chalknge

=)

Proxy Server1

1 TLS Connaction oponed | '
Prowy sands |
| 407 Authentication Required | TLS Handsheke |
! ACK | |

—_——
i Y i |
INVITE Proxy-Autharization e Cmr |

100 Tying

1 INVITE |

| i s

images/00081.gif
Sourcel 192.168.0.1:1234 Sourcel’ 23.3.2.3:4213
Destination{ 273.3.2:31212 Destination1 273.3.231212

i -

—_—
18216801 NAT 23329

Fiter Rule:
23284219 ¢ 273324

Source2 10.0.1.13:5678 Source2 27332:31212
Destination22332.9:4218 Destination223.3.2.94219

X

100113 NAT 27332

Filter Rule:
2722271917 ¢ 213904219

images/00084.gif
From iortitysot10 C

Grodantials of A sont

Grodantals are vaid
but rojectad cuo 1o
From identty

8 rejects atamptta
bypasa Posy server

SIP Phons A

o TVATC TTOM ROACEr

———

I
b
|
i
h
H

e

LS for SIP
INVITE From:€.

407 Proxy Authorization Required Proxy-Authenticate:

T ———]
oY SUTMOTEATON,

ACK

403 Invalid From Header

ALK
LS for SIP

Proxy Server

—_——
INVITE From:A Proxy-Authorization: user=A response
———— T

SIP Phone B

INVITE

A4

305 Use Proxy

Y.

ACK

N

images/00083.gif
)

Sender Relay
| MESSAGE (Hello Everybody)_|
[l Ll LY
] 0K

MESSAGE (Hello Everybody)| | | HHF
00K 1 Y
| Mzssnszmuunmwnm;il (T}

L 00K |

i MESSAGE (Hello Evel‘mﬂ!x]i
|
=

00K

i
! MESSAGE (Helo Everybody) |
e
i 200K

s

images/00087.gif
|

H
4l |

—_— —
uAt Proxy server u
|
iMA INVITE (MSRP Dffer} |
] 100 Trying d
e 1 J0OK(MSRPAnswen |
| 200 OK(MSRP Answer) 1
|
| i |
L Ak ATK |
| i |
| MSRP SEND ol
‘H MSRP 200 0K |
{
le MSRP SEND |
1
! MSRP 200 0K]
| ! |
| | BYE |
! BYE o
e |
I 00K | 200K |
|

l

images/00085.gif
Sourcel 192168.0.1:1234 Sourcel’ 23.3.2.3:4219

Destination! 2733231212 Destination 2733231212
CT =-—
Em—
J -—
e— e

B
19216801 NAT 22329

Filter Rule:
233284219 &+

Source? 10.0.1.13:5678 Source? 273325732
Destination2 233.2.9.4219 Destination2 23.3.2.94219
-—

- X

100.1.13 NAT 27332

Filter Rule:
2722211917 <> 2139 64719

images/00089.gif
UAT Proxy Server 1 UA2
i INVITE | !
T AONeaton Reauited” | 7 gy |
Noncois | ACK | cominsanonce |
usedto INVITE Proxy-Authorization:{_ | |
calculate 1 roxy- u \orization: INVITE |
message | 100 Trying ek
digestof | WK
Y DR S— i
and password| ACK
includedin I—’{*}
thenow |]

h
wme) 1

images/00088.gif
Sourcel 192.168.0.1:11234 Sourcel” 23.3.2.9:7876

Destination! 2733.2:31212 Destination1 2.733.2:31212
CT ==
_—
1921 NAT23.329
Fitter Rule:

28328942196 27332

Source2 10.0.1.13:5678 Source? 273.3.26732
Destination2 23.3.2.9:4219 Destination2 23.3.2.9:
— ==
X
100.1.13 NAT27332
Filter Rule:

27227291719 &5 2337 §-F

images/00090.gif
Keying material (pre-
shared key, public
keys, or DH key

MIKEY

Mester key Master salt

SRTP Key
Derivation

l l \4
Session Session Session

encryption saltkey authorization
key key

RTP packets Encrypted SRTP

packets
SRTP
> Encryption >

images/00002.jpeg
N>
3
HouSE

BOSTON | LONDON
artechhouse com

images/00001.gif
Layer 5; Application

Layer 4 Transport
Layer 3: Network

Layer 2 DatafLink

Layer 1: Physical

RTP

s

TP

Capper

Ethornet

SIP
oms
uop

Fiber

PPP

Wireless.

images/00004.gif
L

TP clent TCP server
I, DATAseq=100,2000ctets |
I DATAseq=300,200octets |
i
Ciient ACKs both | ACK, 500=500 |
segments T ——

'« DATAsoq=500, 200 octets |

|
DATA sag=700, 200 octets | .
X220 sogmentis lost

ACK, seq=700)

T |
1 DATA seg=700, 200 octets I Lackof ACK for
i | segment causes
| | retransmission

H H

images/00003.gif
TCP client TCP server
! SYN !
F >
| SYN/ACK |
=
! ACK !
: Data Exchange :
1 1
1 FIN i
1 |
e ACK [
! FIN !
' ACK :

images/00006.gif
= p——
‘liii [EHp
o — o —
Tesla Marcani

! INVITE !

! 180 Ringing !

' 200 0K '

i i

1 ACK |

T "

! (Media Session , !

I I

'_ BYE |

! 200 0K !

_)

images/00005.gif
TCP clent TCP server
DATA |
! DATA i
-—
Recaivar's buffer fills | ACK, window=0 {
Sender stops
i | sending
1 |
1
| |
f ACK, wintow=1000 i
Receiver's buffter ————————————>]
now has space 1 DATA | Sender resumes

sending data

images/00008.gif
o)

A —

- r— T—
Heisenberg Proxy server

] REGISTER |

| it

i 200 0K |

1 1

1 1

1 1

1 1

1 1

i REGISTER !

I

200 0K

-

images/00007.gif
Schradinger Proxy server Heisenberg
i INVITE | !
I INVITE
] | 180 Ringing I
! 180 Ringing N—Lg—'l
-

' 000K B
0 ACK):
1 1
! <« Media Session > !
1 1
i i
i BYE

1 200 0K |

< R

images/00009.gif
(B

SIP Caller SIPIPSTN Gateway ISUP Telephane Teleghane

818185 6070 Swich ot
| INVITE sip:+ 120255 13138lgw corrercxamle.com M1 | 1
i 1AM M2] — i
: I ... 1L
I AL) 1 1
i 1
| PRAGKMS | ! !
0 M f] f
o | |
| o RTP Motin | Ring Tone | 1
P, A,
' i ANM M7 h 1
I 20M8 ——— |
i |
1 ACKM3 i i 1
| |
| RIPMadia | PCMSpaach | AnalogSpoech !
Lah >
I BYEMI | | |
RELM11 | !
i mownz Hangup i
— RLCMI3]

PR
I |

images/00031.gif
SIP Phons A ProxyServer

. SIP Phone B
SR— - i

e

| ¢ 07 Prosy AutorastonRoquiad Prosy Autrntidis nenco

NUITE ety g ecant

St [T aex |
227 OO Jr—
[e DS s | et

iy

\ e
i fe TstoHTes |

P — —

1200 0K botant T lctonokest i

images/00030.gif
°)

Forking Proxy Carol Bob

1
{ INVITE

| INVITE
i 180 Ringing

1

180 Ringing o
inging

180 Ringing I T

Media Session

images/00033.gif
L LH] L
UAC UAS
INVITE (No SDP) N
180 Ringing
200 OK (SDP Offer)

ACK (SDP Answer)

e

I

Media Session

images/00032.gif
S — [S S S
b
5 ol 2 P
e gl & 5|8
8 Els E|8
B 5|8]
&
wl w| w w
o o
S| 5| = 5
2| 2 = H
i -J I I N U N S . S
= £
) .
g E
2
28
H
R

images/00035.gif
> S

UAS Proxy Server

200 OK (end-to-end)

ACK {end-to-end)
o

410 Gone (hop-by-hop)
ACK thop-by-hop)

410 Gone (hop-by-hop)
ACK (hop-by-hop)

images/00034.gif

images/00037.gif
[FH {_EH]
) W)
UAs Proxy Server UAC

Request (end-to-end)
tnttthendindh s

Response (end-to-end}

1

Request (hop-by-hop)

Response (hop-by-hap}

Request (end-to-end)

Response {end-to-end)

Request (hop-by-hop}

Response (hop-by-hop)

images/00036.gif
E—

SIP Phons A Proxy Servar
1920320 120588
| TLS Cannocton 1 opanad from 1920.321:3244 ta 19205 435061

»
! INVITE 1
h »
[7 Auherticaton Requied |
e | s
! > Chnton

vire

i -’ e
! |
| |
! TLS Comerton 1 eusad ez
= >
"‘ UPDATE 1 Authenicated
b ok 1 comactonrause
| »

images/00029.gif
—
Schradinger
! INVITE CSeq: |

302 Moved CSeq: |
le— 7 |

ACK CSeq: |

Heisenberg

i
INVITE CSeq: 543 INVITE
200 OK CSeq:

ACK CSeq:

Media Session

J

~_1_ ¥ ~ | v

I
! BYE CSeq:
I 200 OK CSeq:
T
1

I
I
I
]
|
)
|
I
I
]
le

images/00020.jpeg
Parameter _Specification _Example Comman Usage

cause I 450 causasZ6 Veiremal
comp FIG 3436 comp=sigcony Sigeomy compress on used
content- RFCAZ0 content— Wedia server contro

type typesaucio

delay RIC 4290 Qelay=10 Media serv ol
Quration RfC 4740 duration=60 IMedia server control

ar 4 ar Globally routable UA UAI
local RFC 4240 local-en Modia sorver contro

1r RFC 3261 1r Loose route parameter used in

route and recers route

maddr RFC 3261 medds 2.2.4 Mukticast address

method FFC3Z51 mechod=TNVITS Used to escape amethod into a LRI
o 13 5 SIP outbound

paran(nl FCAM0 paraml=ctoday’ Media sever control[17)

vlay RFCA0 play-uRl Wedia server control 17

repeat RG240 repeat=f Wedia server control [17]
stacons- 5049 sigconp-id Sigeomp 10 [12]

target RRCA20 target=TRO Wedia server control [17)
target RRCAI5 target=URT Voiemail [13]

el FIC 3261 te1=224 Time o live for a malticast address
transpors RFC 3261 transpors=tep Tansport protocol

user RFC 3261 usersphore Telephone digits in user parl
voicexnl RFCAM0 voicexml=URI Media server control [11

images/00022.gif
LI
4 5|5 &5
EEEHR
FE §
Ll
— EEERE E E
L]

images/00021.gif
ggds g g
— EEERE b= i
gs 4 8 8
| T JoR——
FEoom o &

images/00024.gif
F

Caller

|
% INVITE |
——————
L—|7 | 180 Ringing |
- 1
| 180 Ringing I 2 !
1 | —
| |
! ! 200 0K 1
r
! 487 |
? | —
i ACK
I
I ? T
A S

No Media Session

images/00023.gif
L e

Schringor oy sonar isonberg
! b i
e
; L wwme !
| T —
I
b o I
—
! acx ' !
— I A
e | ;]
g

e Clntielo | DILS ClientHallo i

e Honanake | DTLS Servertello, Crtfcato, GentficatsRequoss, ServertilloDane

s th me 1

! DTLS CertificatsVrify. ChangaCiperSpec '

]

1 DILS ChangsCiperSpac |

R Lk

I | lsenbergand

< Secure AP (SRTP) Media Session ! SErsnrcuin
| SATP maser searet

wnd tanarate SATP lave

images/00026.gif
\ Destination

Source

|terative routing

images/00025.gif
Calling H323 Terminal H.323 Gatekeeper Cr T
| RTP Moia Sossion |
:_ EdSessinConmand E
i EndSossionCommand I
T >
! RO |
i | DCF H

——————

"‘ ALC !
1

i DRQ | H
oC > i

i

H

i
—
f i
!

images/00017.gif
Location
DNS server senice

ws | !
SIP
° —> (o
Proxy server Proxy server
SV \:w

>

[

e e
ser Raoat User Agent

images/00016.gif
[o—] o] w
SIP Phone A Proxy Server Praxy Server SIP Prone B

TS forsip

T
P g oint

e |

o
| VT Prow Adhorcao P oo oy
Nsorse - 0Ty
Wi Al |
TLS for SIP 1 |
PEITITEN, |
iy Dl |
e e s a1 }

images/00019.gif
UL L
|

U_J U
Schrddinger Redirect server Heisenberg
| INVITE ! !
I | i
i 302 Moved ' i

i
I 1 I
i i i
I ACK i |
S — |
i i i
i i i
| INVITE i
; >
i)
:< 200 0K ‘
I I
ACK .
I I
I Medis Session |
I S EEE—]
i

N BYE

|
;
i 200 0K
I

Y

images/00018.gif
U (o] U U

Sarkovski Farking Proxy Agent42 Agent?
! INVITE H ! !
] INVITE H

] INVITE |

1 180Ringing]

I E—

] 180 Ringing |

N 100 Trying
h

i
i
1
|
i
1 i
1 180Ringing 1
i

L 180 Ringing §
!

1 200 0K |

1
| |
1 200 0K |
|
e CANCEL |

ACK
Media Session

Y y_

200 0K

W

47 Request Terminated

|

ACK
_ e

images/00122.gif
Alice Bob Carol

0
I Media Session I
I I
I
I

|

| INVITE Join:A-B
1
1

. [
NVITE isf
Contactisfocus | 180 Ringing
| ——
| 200 0K |
>
i ACK i
1 200 OK Contactisfocus,

ACK

|

I
1
I Media Session I Media Session
1

l

images/00121.gif
Redirection Attacker
modifies signaling so
resulting media session
is redirected to

the Attacker
Modified
signaling g -
-— - L
—_— I C—
—_— Party B
Media I
Session
L

——
Attacker

images/00124.gif
o)

$IP Phone A Praxy Server Proxy Server $IP Phone B

sonvrcartwrtied | LS for SIP | |

" neasten) | |

| REGISTER__,| |
svarodseratsont | _ 301 Unauthorized WWW-Authenticate: nonce |

{“ResISTER Autharizgtion: esponse T

| REGISTER Avthorizgy

O
le—200K___| 1407 Proxy Authorizafion Requirec
|J7LS Connection Kept Up ATK

| | INVITE Proxy-Authenticate
INVITE acaptod

secause trauses
TLS comection
prviously
autentcsod.

images/00123.gif
ENUM Database

ENM_——
Lookip
siP
SIP ValP - » SIPVOIP
Natwark 1 Network3

SIP UA 1 QAP UA 2

images/00051.gif
L_EH
) ¥

—_—
N Visited
Bowldltch registrar/proxy Laplace

Media Session

DHCP Request
DHCP ACK

|

|

REGISTER
200 0K

li

INVITE

200 0K

T

Yy I

ACK

New Media Session

|

|

images/00050.gif
STUNServer o NAT traversa

(o (o
Web Server TURN Server

n% \ms

WebRTC M
(Peer Connection)
e ——
Browser A Browser B

(WebRTC Enabled] (WebRTC Enabled)

images/00053.gif
nar Routar Routsr

13
unk
Psical

seme
Ve miimn
Sarce P a1
i Sarceposnzy

| orsapeaim ey
ot ey

Ethenat b

un
Pryss

SIPProxy Sarer

Frmmer
T
s e
e e

SPwTng

Do 001
prsnwm

Distpun 1

AT R—

images/00130.gif

images/00052.gif
Data: Yersion: 3 (Ond) Berial Humber: 01:199:00:71102:33190:33
Stanatire ALGoTithm. sEAlWiCERSAERCryDtion

Tssuer: C-US, ST-California, L-San Joss, C-sipit, OT-Sipit Test Certiticate
suthority

Validity Mot Befors: reb 3 16:49:34 2005 GKI Not AfSer ¢ Feb 3 15:49:34 2008 G
Subjact: C-US, ST-California, L-San Joss, O-sipit. ON-fluffydexample.com
Subect Public Key Tnfe:

Public Key Algorithn: IsaEncryption

RSA Public Key: (102¢ bit)

odulua (1034 bit)

003casab9bigL dorse:dh: 15536 cor00 a8 361as: bI1ecsdds s a2 b9 :Sbras 2
P S S P P
124.55:08159 63 DLAL.Zh.5E.23:99.48:9585:60 05,64 14:12 aT; D A1.45:97, 15147135
9c166185:27:5c 481 601CR: Za184:06162:08111:99 142114139 178108105190 145: a6:79:2Lebc]
52:88.58:03: 5,00 :66:66:67

Exponent: 6553 (UX10001| XS09vS extersicns:
X509v2 Subject Altermative Name: URZizip:fluffyGexanple.com,
URLim:EluEsydaxanple.con, Ul:pres: flutfysaxansle.com
K505v2 Basic Corstraints: CA:FALSE

x509v2 Subjact Key Ifencifier

Signature Algorithm: shalVichRSAZncryption

S0145.49: 60:01:47: 02,045 6047 40:81. 2. 70:c0:05: 005375 25544:45.50:0¢142:37:74:90:15
(5£EEI630,67:31,£0.29: dos0n: 2108 5 R0:5C. 08 adea0 e 0%: e 142 5511100 4L o,
81k sdbictsle: s o584 2de77166:12:09160: da B Cins 0B e Sirad:0dadsO8 5015213

1521981 £6:60,5£: 0. b1 £o: a13:53 56 11 4,2 4.
e

images/00129.gif
Packets
“tunneled”to Indirect routed
“care-of"address Mobile IP packets

router

. _ ™

Direct routed

Roaming packets Home
terminal terminal

images/00055.gif
STUN Server
For NAT travers:
Signaling
) «—> (o) (e)

Wab Server A Web Server 3 TURN Server

HTTPor NV Nﬂms

WebRTC Media Sessi

Cannection)
.—
m——
Browser A Browser B
(WebRTC Enabled)

(WebRTC Enabled)

images/00054.gif
SON Telephone SIPPSTN
e el ProxyServer Databaso S|P Phone

| Sotup CdPn-46512345 M1 | i H :
T L INVITEsip as1zMsGhcoming sxamplacom M2 |
i J00M3 — 1
14— sur@home.exampla.com M5
Pl

i
}

| | INVITE user@home.axample.com Me
R
] L oy '

i

180 M8 |

1
I
|
|
I
|
I
|
I
|
| 20M10

M

| AeringMs_

Connect M12 !

i Aok
| et
| PCMSpeech 1 ATP Media
e 2 et

¥

images/00057.gif
Sourcer’X L
Destingtion] Y1:y1 Cm—
Sourcol Xx HostY1
Destination’ Y13
(T (R
Source2Xx
. Dostination? Y22
_—
HostX NAT X1, X2 _—
' 1 Sowrcerxz 1
1 | Destination2 Y2y2
i | —
i 1
|

Host Y2

! Internal ! External

images/00126.gif
Attacker

forgas a BYE
todisrupt
session
BYE z
INVITE
—»
2000K INVITE .
EiE —
ACK Q Intemet a0k
= 200 0
BYE - AK —
& o ek
Attack 200 0K ~_
Subject —» (ﬂﬂgﬂe
(Hangs up
dus to

iected BYE)

images/00056.gif
Now Media Session

(o ° i)
New Visited 01d Visited
Bowdich registrarfproxy registrarfproxy tajace
! Mea Session |
- >
| DHOPRequest | | i
| DHCPACK | ! i
H REGISTER d i |
i |
| 2000K | H |
h] | |
| INVITERsplaces | |
- Y INVITE Replaces h
| 100Trying —_—
f 1 000K i
UL S

i 200K ! R i
« H |
| AcK i ! |
— = ACK |
e
E | BYE |
—
| BYE | |
e |
I 200K | |

L.
1 1 200 0K i
! ! |
i |

W

images/00125.gif
)
s
H
|
ol E
& o
w <
gl x dl.
HEE e 8
£ 5
e H
H
ol ¥ 3
£ - 3
MRME e
HNEIe %
HERIEEEERE
2 B
) £ :

images/00059.gif
source XXX
_ — Destination X2':x2'
- cm———

Host X 3%

- NAT X1, X2
L
\J Source X1':x1°

—— Destination Z:2
Host 7

images/00128.gif
Kay Rey

| !

Plein text Cphartext pupje Ciphertaxt Plain text

> | Encryption s > | Decryption >

images/00058.gif
Browser
1

I
1
I
|
|
|
I
1
|
'

!
| si
i
|
|

{

J

ignaling received over WebSocket

J

(o

Web Server

HTTP GET http://example.com !

HTTP 200 0K i

HTTP GET Upgradewebsacket Sec-WebSocket-Protocolsiy

HTTP 101 Switching Protocols

i
|
i
1
i
|
Signaling sent over WebSocket |
|
i
h
i
!

images/00127.gif
Pickup

Called
|
I
!

INVITE Replaces:Called;earl
200 0K
ACK
Media Session

1
I

180 Ringin,

CANCEL

200 0K
487
ACK

=)
Caller
1
1
I
I
)
I
I
|
|
I
1
I
1
1
i
e
I
!
1
I
I
|
|
I
I
I
I
I
I
I
;

images/00049.gif
L

SIP servlets

SIP serviet
container

SIP
—

SIP proxy server
sIP
SIP
L

o

e
User Agent

User Agent

images/00111.gif
=

packets Attack
Attack packets ——
packets / ok

packets
—
«— Q Intamet - =
— >
S =
Attack ; =

Attack ——

S e
\ Attack \

packets

subject

images/00113.gif
-—
>
Party A MitM Party B
Attacker
(all traffic between
Aand B goes

through Attacker)

images/00112.gif
UAC

! INVITE

]

| 182 3 Ahead of you !
: 1822 Ahead of you :
I 1
I 182 1 Ahead of you |
P> |
| 200 0K |
e -
I]
I ACK [

Media Session

images/00040.gif
e 200 0K

|

NOTIFY

T

2000K

N

U °) v .
Presentity Event State Compositor Watcher 1 Watcher 2

! PUBLISH | | !
r NOTIFY | !
i 200 0K > i
j—— 200 0K | |

e
| i NOTIFY * |

>
| i 200K |
| o
| i ' |
| | | |
| PUBLISH | | |
| — NOTIFY | !
! 2000K i !
i |
| |
| |
| |
| |
| |
| |
| |
| |
| |
I !

images/00042.gif
—— — =
Alesandra Proxy server Florence
| MESSAGE (cpimimdn | ,
| positiva-delivary | MESSAGE (cpimimdn |
| “Grazie,Florence’) | positive-delivery |
T Grezie Fiorence”) |
Alesandra le— 10 TV9§ 2000K d
typos ‘Gracie, o MOOK e
Forencel” i | i
| | MESSAGE (cpimimdn) | “Grezie,
|« MESSAGE (cpim imdn) { Forencel”

Positva delivery w is renderet
notification is 200K | to Florence
renderedto | T >
Allocandra

images/00119.gif
UAC UAS
INVITE (SDP Offer 1)

606 Not Acceptable
ACK
INVITE (SDP Offer 2)
200 OK (SDP Answer)
ACK

!

H

]

Media Session

|

images/00041.gif
Relowski Scheerbuis-Ritter
] REFER ! 1

| INVITE |
| 202 Accepted

B0 Ringing 1

| NOTIFY(Tying | 1
’<—¢ 1
! 200 0K ! !
f | 200 0K |
| NOTIFY(Successy (€ |
; ACK !
| 200 0K %’u
I
1

images/00118.gif
= haplay Attackar
_ {Captures valid
i

packets and
resends them}
Replay
packet
Valid +
- el Valid -
rgckers packets
!
e \ Internet -—
subject <— S

images/00044.gif
[C J ° J 8!

SIP Prone A Praxy Sarvr Procy Sarver e —
Sove corverod L TLS f0rSIP |
"T’

|
|
07 Proy Autorizsion Reired Pony Autenicate: ronce

. ack i

sacretsent o pre i
= THVITE Proxy-Aulprization:response. i
PR t

heador Taldwitin
o

[—1 P 1 TN
h HVIE denit:Aldon i Inf: gt

! 10Tying ety sineurs

1 iSRS vead o osuro

| < otiieat >} WTecmerona

' 00K Comere- Ty g lgghumn/nmﬁ

!]

| Vakcated identiy i LS fos S

! mapse noP-

} et P INVITE P-Assardon A
!

images/00043.gif
— — e
Chebychev Paisson Web Server
REFER ! !
HTTP GET I
202 Accepted I 200 0K I
NOTIFY (Trying) |

NOTIFY (Success)
200 0K

|

1

1

1

I I
| 200 0K |
i i
1 I
) 1
1 I
I

|

images/00120.gif
Presence server

SUBSCRIBE
200 0K
NOTIFY SIP-ETag: xyz
200 0K

SUBSCRIBE Suppress-|{-Match:xyz
204 No Notification

SUBSCRIBE Suppress-Ii-Match:xyz
200 0K
NOTIFY SIP-ETag: pdq
200 0K

o)

images/00046.gif
Application
|

Transport
I
Host Identity Protocol HIP
Shim Layer
|
IP
|
Data/Link

|
Physical

images/00115.gif
o™
Telophons . Telephone
Network 1 Network2
siP

.

SIP UA 1

Network @

siP

SIP UA 2

images/00045.gif
Transferor Transferee Transfer Target

Media Sessian i

| |
! |
b 1
| |
1 g
! 200K |
I 1
! ACK |
v l
Megia Session |
h d
| REFER | |
"] INVITE Replaces
| 202 Accepted
— 200K |
| NOTIFY (Trying) fe———
D — ACK |
1 200 0K ——
i 1 MediaSession |
NOTIFY (Success) |]
| 200K | |
! BYE |
€ |
200K
>
| BYE | 1
> i
1
|
1
1

images/00114.gif
e w

| Acm
100 Trying ——

L}
- Telophone
Caller Gateway switch
|_INVITE sipS15512@gwoxample.com |
[W Adoress ncompiote " | AN |
I ACK | !
—
| INVITE sip314555121@pwexample.com |
[Adress Incomplete il |
h ACK | i
| INVITE sip3 155512120 g
I sip: owexample.com st |
S
|
i
|
|
|

images/00048.gif
Instant

e=rr message
o ~ sonico _
Sender
iy
Figure 81 IV architecture.
Presonce
senvico

<> instant
Inbox
Inbox
ua
Watcher
Watchar
UA

images/00117.gif
Usar Agent Proxy Server

1 Media Session
h
!

INVITE | |
s INVITE |
| INVITE i

INVITE !

l«———————————— 491 Request Pending |
- -
491 Request Pending | 1
e 1] [

] ACK
—
ACK | i
| Em— I
I |
| 491 Requestpending | 491 RoquestPending |
1]
! ACK ! AcK i
: | : i
I i I
i ! INVITE |
! INVITE ! 1
[E——
!
! 200 0K | !
I ——]
|] 200K |
————
i ! ACK |
|

images/00047.gif
Visited Home
Bowditch registrar/praxy registrar/proxy Laplace
| DHCP Request | | |
b i i
H DHCP ACK. | | |
|
} REGISTER ! | }
i 200K } i
1

! REGISTER i 1
_— i
i M0k i !
| 1 i INVITE i
i | I 1
| ! | 02 Moved !
i ! | E—
H | 1 ALK |
i ! 1
| ! INVITE i
| INVITE Ind i
e

i | i
! 200 0K | |
! | 200K |
| ———>
! ' ATk !
[i
1 Media Session !

l

images/00116.gif
o

P r— .
X o e
|) e
H K
| NOTIFY Ever credamtel iy A Corta Type hek i cert Privecskey, Garh

s je— ST
‘SuBscReE el | oo
pioseanetint | oo Aotz roy At oo |

T T —— |

w0 i
™ LAY Bt by A G s New A
|_nswse | |
| PUBLIN Evneceterl Cntor e pptcntonich e mm.um e
s erdeet. |7y Baer et el P Adi i e

PUBLISH evreeradari roey A rsgora Crtr Ty

Cdetalpenet |y gsoaman ety Com: papi

o e s excarcNswPratiorh, New CarA 'S
R S—
i | NP Evtcradontl oA Cortr T m.x HowPriso, NewCars

coaPrimakogh, MwCars

00K by smare wated

images/00039.gif
°))
——— —_—
Watcher Proxy Servar Presentity

SUBSCRIBE !

1
SUBSCRIBE |
H 200 0K |

———
200 0K o ——

NOTIFY
200 0K

NOTIFY
200K

SUBSCRIBE
2000K
NOTIFY
200 0K

N N . N . .
v | 1y ¥y I vy | ____

images/00038.gif
W e o

uac Proxy Server uAs
INVITE CSeq: 1 INVITE | !
1 INVITE CSeq: 1 INVITE |

100 CSeq: 1 INVITE

100 CSeq: 1 INVITE !

r
CANCEL CSeq: 1 CANCEL _ |]
200 CSeq: 1 INVITE 1
200CSeq: 1 CANCEL | €———————————1
1 CANCEL CSeq: 1 CANCEL
200 CSeq: 1 INVITE

1 200 CSeq: 1 CANCEL

|
ACK CSeg: 1 ACK
BYE CSeq: 21 BYE

1
1
1
1
1
1
1
1

]
1 |
| 1
I I
1 1
: I
T >
: :
) a
I 200 OK CSeq: 21 BYE I
1 1

