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Foreword



Kyle Simpson is a thorough pragmatist.


I can’t think of higher praise than this. To me, these are two of the
most important qualities that a software developer must have. That’s
right: must, not should. Kyle’s keen ability to tease apart layers
of the JavaScript programming language and present them in
understandable and meaningful portions is second to none.


ES6 & Beyond will be familiar to readers of the You Don’t Know JS
series: they can expect to be deeply immersed in everything from the
obvious, to the very subtle—revealing semantics that were either
taken for granted or never even considered. Until now, the You Don’t
Know JS book series has covered material that has at least some degree
of familiarity to its readers. They have either seen or heard about the
subject matter; they may even have experience with it. This volume
covers material that only a very small portion of the JavaScript
developer community has been exposed to: the evolutionary changes to the
language introduced in the ECMAScript 2015 Language Specification.


Over the last couple years, I’ve witnessed Kyle’s tireless efforts to
familiarize himself with this material to a level of expertise that is
rivaled by only a handful of his professional peers. That’s quite a
feat, considering that at the time of this writing, the language
specification document hasn’t been formally published! But what I’ve
said is true, and I’ve read every word that Kyle’s written for this
book. I’ve followed every change, and each time, the content only gets
better and provides yet a deeper level of understanding.


This book is about shaking up your sense of understanding by exposing
you to the new and unknown. The intention is to evolve your knowledge in
step with your tools by bestowing you with new capabilities. It exists
to give you the confidence to fully embrace the next major era of
JavaScript programming.

Rick Waldron (@rwaldron), Open Web Engineer at
Bocoup Ecma/TC39 Representative for jQuery



Preface



I’m sure you noticed, but “JS” in the series title is not an abbreviation for words used to curse about JavaScript, though cursing at the language’s quirks is something we can probably all identify with!


From the earliest days of the Web, JavaScript has been a foundational technology that drives interactive experience around the content we consume. While flickering mouse trails and annoying pop-up prompts may be where JavaScript started, nearly two decades later, the technology and capability of JavaScript has grown many orders of magnitude, and few doubt its importance at the heart of the world’s most widely available software platform: the Web.


But as a language, it has perpetually been a target for a great deal of criticism, owing partly to its heritage but even more to its design philosophy. Even the name evokes, as Brendan Eich once put it, “dumb kid brother” status next to its more mature older brother Java. But the name is merely an accident of politics and marketing. The two languages are vastly different in many important ways. “JavaScript” is as related to “Java” as “Carnival” is to “Car.”


Because JavaScript borrows concepts and syntax idioms from several languages, including proud C-style procedural roots as well as subtle, less obvious Scheme/Lisp-style functional roots, it is exceedingly approachable to a broad audience of developers, even those with little to no programming experience. The “Hello World” of JavaScript is so simple that the language is inviting and easy to get comfortable with in early exposure.


While JavaScript is perhaps one of the easiest languages to get up and running with, its eccentricities make solid mastery of the language a vastly less common occurrence than in many other languages. Where it takes a pretty in-depth knowledge of a language like C or C++ to write a full-scale program, full-scale production JavaScript can, and often does, barely scratch the surface of what the language can do.


Sophisticated concepts that are deeply rooted into the language tend instead to surface themselves in seemingly simplistic ways, such as passing around functions as callbacks, which encourages the JavaScript developer to just use the language as-is and not worry too much about what’s going on under the hood.


It is simultaneously a simple, easy-to-use language that has broad appeal, and a complex and nuanced collection of language mechanics that without careful study will elude true understanding even for the most seasoned of JavaScript developers.


Therein lies the paradox of JavaScript, the Achilles’ heel of the language, the challenge we are presently addressing. Because JavaScript can be used without understanding, the understanding of the language is often never attained.








Mission


If at every point that you encounter a surprise or frustration in JavaScript, your response is to add it to the blacklist (as some are accustomed to doing), you soon will be relegated to a hollow shell of the richness of JavaScript.


While this subset has been famously dubbed “The Good Parts,” I would implore you, dear reader, to instead consider it the “The Easy Parts,” “The Safe Parts,” or even “The Incomplete Parts.”


This You Don’t Know JS series offers a contrary challenge: learn and deeply understand all of JavaScript, even and especially “The Tough Parts.”


Here, we address head-on the tendency of JS developers to learn “just enough” to get by, without ever forcing themselves to learn exactly how and why the language behaves the way it does. Furthermore, we eschew the common advice to retreat when the road gets rough.


I am not content, nor should you be, at stopping once something just works and not really knowing why. I gently challenge you to journey down that bumpy “road less traveled” and embrace all that JavaScript is and can do. With that knowledge, no technique, no framework, no popular buzzword acronym of the week will be beyond your understanding.


These books each take on specific core parts of the language that are most commonly misunderstood or under-understood, and dive very deep and exhaustively into them. You should come away from reading with a firm confidence in your understanding, not just of the theoretical, but the practical “what you need to know” bits.


The JavaScript you know right now is probably parts handed down to you by others who’ve been burned by incomplete understanding. That JavaScript is but a shadow of the true language. You don’t really know JavaScript yet, but if you dig into this series, you will. Read on, my friends. JavaScript awaits you.

















Review


JavaScript is awesome. It’s easy to learn partially, and much harder to learn completely (or even sufficiently). When developers encounter confusion, they usually blame the language instead of their lack of understanding. These books aim to fix that, inspiring a strong appreciation for the language you can now, and should, deeply know.

Note

Many of the examples in this book assume modern (and future-reaching) JavaScript engine environments, such as ES6. Some code may not work as described if run in older (pre-ES6) engines.



















Conventions Used in This Book


The following typographical conventions are used in this book:


	Italic

	
Indicates new terms, URLs, email addresses, filenames, and file extensions.



	Constant width

	
Used for program listings, as well as within paragraphs to refer to program elements such as variable or function names, databases, data types, environment variables, statements, and keywords.



	Constant width bold

	
Shows commands or other text that should be typed literally by the user.



	Constant width italic

	
Shows text that should be replaced with user-supplied values or by values determined by context.





Tip

This element signifies a tip or suggestion.



Note

This element signifies a general note.



Warning

This element indicates a warning or caution.



















Using Code Examples


Supplemental material (code examples, exercises, etc.) is available for download at http://bit.ly/ydkjs-es6beyond-code.


This book is here to help you get your job done. In general, if example code is offered with this book, you may use it in your programs and documentation. You do not need to contact us for permission unless you’re reproducing a significant portion of the code. For example, writing a program that uses several chunks of code from this book does not require permission. Selling or distributing a CD-ROM of examples from O’Reilly books does require permission. Answering a question by citing this book and quoting example code does not require permission. Incorporating a significant amount of example code from this book into your product’s documentation does require permission.


We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For example: “You Don’t Know JavaScript: ES6 & Beyond by Kyle Simpson (O’Reilly). Copyright 2016 Getify Solutions, Inc., 978-1-491-90424-4.”


If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us at permissions@oreilly.com.

















Safari® Books Online

Note

Safari Books Online is an on-demand digital library that delivers expert content in both book and video form from the world’s leading authors in technology and business.




Technology professionals, software developers, web designers, and business and creative professionals use Safari Books Online as their primary resource for research, problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government, education, and individuals.


Members have access to thousands of books, training videos, and prepublication manuscripts in one fully searchable database from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more information about Safari Books Online, please visit us online.

















How to Contact Us


Please address comments and questions concerning this book to the publisher:


  	O’Reilly Media, Inc.

  	1005 Gravenstein Highway North

  	Sebastopol, CA 95472

  	800-998-9938 (in the United States or Canada)

  	707-829-0515 (international or local)

  	707-829-0104 (fax)




We have a web page for this book, where we list errata, examples, and any additional information. You can access this page at http://bit.ly/ydkjs-es6-beyond.


To comment or ask technical questions about this book, send email to bookquestions@oreilly.com.


For more information about our books, courses, conferences, and news, see our website at http://www.oreilly.com.


Find us on Facebook: http://facebook.com/oreilly


Follow us on Twitter: http://twitter.com/oreillymedia


Watch us on YouTube: http://www.youtube.com/oreillymedia












Chapter 1. ES? Now & Future



Before you dive into this book, you should have a solid working
proficiency over JavaScript up to the most recent standard (at the time
of this writing), which is commonly called ES5 (technically ES 5.1).
Here, we plan to talk squarely about the upcoming ES6, as well as cast
our vision beyond to understand how JS will evolve moving forward.


If you are still looking for confidence with JavaScript, I highly
recommend you read the other titles in this series first:



	
Up & Going: Are you new to programming and JS? This is the roadmap
you need to consult as you start your learning journey.



	
Scope & Closures: Did you know that JS lexical scope is based on
compiler (not interpreter!) semantics? Can you explain how closures are
a direct result of lexical scope and functions as values?



	
this & Object Prototypes: Can you recite the four simple rules for
how this is bound? Have you been muddling through fake “classes” in JS
instead of adopting the simpler “behavior delegation” design pattern?
Ever heard of objects linked to other objects (OLOO)?



	
Types & Grammar: Do you know the built-in types in JS, and more
importantly, do you know how to properly and safely use coercion between
types? How comfortable are you with the nuances of JS grammar/syntax?



	
Async & Performance: Are you still using callbacks to manage your
asynchrony? Can you explain what a promise is and why/how it solves
“callback hell”? Do you know how to use generators to improve the
legibility of async code? What exactly constitutes mature optimization
of JS programs and individual operations?






If you’ve already read all those titles and you feel pretty comfortable
with the topics they cover, it’s time we dive into the evolution of JS
to explore all the changes coming not only soon but farther over the
horizon.


Unlike ES5, ES6 is not just a modest set of new APIs added to the
language. It incorporates a whole slew of new syntactic forms, some of
which may take quite a bit of getting used to. There’s also a variety of
new organization forms and new API helpers for various data types.


ES6 is a radical jump forward for the language. Even if you think you
know JS in ES5, ES6 is full of new stuff you don’t know yet, so get
ready! This book explores all the major themes of ES6 that you need to
get up to speed on, and even gives you a glimpse of future features
coming down the track that you should be aware of.

Warning

All code in this book assumes an ES6+ environment. At the
time of this writing, ES6 support varies quite a bit in browsers and JS
environments (like Node.js), so your mileage may vary.










Versioning


The JavaScript standard is referred to officially as “ECMAScript”
(abbreviated “ES”), and up until just recently has been versioned
entirely by ordinal number (i.e., “5” for “5th edition”).


The earliest versions, ES1 and ES2, were not widely known or
implemented. ES3 was the first widespread baseline for JavaScript, and
constitutes the JavaScript standard for browsers like IE6-8 and older
Android 2.x mobile browsers. For political reasons beyond what we’ll
cover here, the ill-fated ES4 never came about.


In 2009, ES5 was officially finalized (later ES5.1 in 2011), and settled
as the widespread standard for JS for the modern revolution and
explosion of browsers, such as Firefox, Chrome, Opera, Safari, and many
others.


Leading up to the expected next version of JS (slipped from 2013 to
2014 and then 2015), the obvious and common label in discourse has been
ES6.


However, late into the ES6 specification timeline, suggestions have
surfaced that versioning may in the future switch to a year-based
schema, such as ES2016 (aka ES7) to refer to whatever version of the
specification is finalized before the end of 2016. Some disagree, but
ES6 will likely maintain its dominant mindshare over the late-change
substitute ES2015. However, ES2016 may in fact signal the new year-based
schema.


It has also been observed that the pace of JS evolution is much faster
even than single-year versioning. As soon as an idea begins to progress
through standards discussions, browsers start prototyping the feature,
and early adopters start experimenting with the code.


Usually well before there’s an official stamp of approval, a feature is
de facto standardized by virtue of this early engine/tooling
prototyping. So it’s also valid to consider the future of JS versioning
to be per-feature rather than per-arbitrary-collection-of-major-features
(as it is now) or even per-year (as it may become).


The takeaway is that the version labels stop being as important, and
JavaScript starts to be seen more as an evergreen, living standard. The
best way to cope with this is to stop thinking about your code base as
being “ES6-based,” for instance, and instead consider it feature by
feature for support.

















Transpiling


Made even worse by the rapid evolution of features, a problem arises for
JS developers who at once may both strongly desire to use new features
while at the same time being slapped with the reality that their
sites/apps may need to support older browsers without such support.


The way ES5 appears to have played out in the broader industry, the
typical mindset was that code bases waited to adopt ES5 until most if
not all pre-ES5 environments had fallen out of their support spectrum.
As a result, many are just recently (at the time of this writing)
starting to adopt things like strict mode, which landed in ES5 over
five years ago.


It’s widely considered to be a harmful approach for the future of the JS
ecosystem to wait around and trail the specification by so many years.
All those responsible for evolving the language desire for developers to
begin basing their code on the new features and patterns as soon as they
stabilize in specification form and browsers have a chance to implement
them.


So how do we resolve this seeming contradiction? The answer is tooling,
specifically a technique called transpiling (transformation +
compiling). Roughly, the idea is to use a special tool to transform your
ES6 code into equivalent (or close!) matches that work in ES5
environments.


For example, consider shorthand property definitions (see “Object Literal Extensions” in Chapter 2). Here’s the ES6 form:


var foo = [1,2,3];

var obj = {
    foo     // means `foo: foo`
};

obj.foo;    // [1,2,3]


But (roughly) here’s how that transpiles:


var foo = [1,2,3];

var obj = {
    foo: foo
};

obj.foo;    // [1,2,3]


This is a minor but pleasant transformation that lets us shorten the
foo: foo in an object literal declaration to just foo, if the names
are the same.


Transpilers perform these transformations for you, usually in a build
workflow step similar to how you perform linting, minification, and
other similar operations.










Shims/Polyfills


Not all new ES6 features need a transpiler. Polyfills (aka shims) are a
pattern for defining equivalent behavior from a newer environment into
an older environment, when possible. Syntax cannot be polyfilled, but
APIs often can be.


For example, Object.is(..) is a new utility for checking strict
equality of two values but without the nuanced exceptions that === has
for NaN and -0 values. The polyfill for Object.is(..) is pretty
easy:


if (!Object.is) {
    Object.is = function(v1, v2) {
        // test for `-0`
        if (v1 === 0 && v2 === 0) {
            return 1 / v1 === 1 / v2;
        }
        // test for `NaN`
        if (v1 !== v1) {
            return v2 !== v2;
        }
        // everything else
        return v1 === v2;
    };
}

Tip

Pay attention to the outer if statement guard wrapped around
the polyfill. This is an important detail, which means the snippet only
defines its fallback behavior for older environments where the API in
question isn’t already defined; it would be very rare that you’d want to
overwrite an existing API.




There’s a great collection of ES6 shims called “ES6 Shim” that you should definitely
adopt as a standard part of any new JS project!


It is assumed that JS will continue to evolve constantly, with browsers
rolling out support for features continually rather than in large
chunks. So the best strategy for keeping updated as it evolves is to
just introduce polyfill shims into your code base, and a transpiler step
into your build workflow, right now and get used to that new reality.


If you decide to keep the status quo and just wait around for all
browsers without a feature supported to go away before you start using
the feature, you’re always going to be way behind. You’ll sadly be
missing out on all the innovations designed to make writing JavaScript
more effective, efficient, and robust.
























Review


ES6 (some may try to call it ES2015) is just landing as of the time of
this writing, and it has lots of new stuff you need to learn!


But it’s even more important to shift your mindset to align with the new
way that JavaScript is going to evolve. It’s not just waiting around for
years for some official document to get a vote of approval, as many have
done in the past.


Now, JavaScript features land in browsers as they become ready, and it’s
up to you whether you’ll get on the train early or whether you’ll be
playing costly catch-up games years from now.


Whatever labels that future JavaScript adopts, it’s going to move a lot
quicker than it ever has before. Transpilers and shims/polyfills are
important tools to keep you on the forefront of where the language is
headed.


If there’s any narrative important to understand about the new reality
for JavaScript, it’s that all JS developers are strongly implored to
move from the trailing edge of the curve to the leading edge. And
learning ES6 is where that all starts!












Chapter 2. Syntax



If you’ve been writing JS for any length of time, odds are the syntax is
pretty familiar to you. There are certainly many quirks, but overall
it’s a fairly reasonable and straightforward syntax that draws many
similarities from other languages.


However, ES6 adds quite a few new syntactic forms that take some getting
used to. In this chapter, we’ll tour through them to find out what’s in
store.

Tip

At the time of this writing, some of the features discussed in
this book have been implemented in various browsers (Firefox, Chrome,
etc.), but some have only been partially implemented and many others
have not been implemented at all. Your experience may be mixed trying
these examples directly. If so, try them out with transpilers, as most
of these features are covered by those tools.


ES6Fiddle is a great, easy-to-use playground for trying out ES6, as is the online REPL for the Babel transpiler.










Block-Scoped Declarations


You’re probably aware that the fundamental unit of variable scoping in
JavaScript has always been the function. If you needed to create a
block of scope, the most prevalent way to do so other than a regular
function declaration was the immediately invoked function expression
(IIFE). For example:


var a = 2;

(function IIFE(){
    var a = 3;
    console.log( a );   // 3
})();

console.log( a );       // 2










let Declarations


However, we can now create declarations that are bound to any block,
called (unsurprisingly) block scoping. This means all we need is a
pair of { .. } to create a scope. Instead of using var, which always
declares variables attached to the enclosing function (or global, if top
level) scope, use let:


var a = 2;

{
    let a = 3;
    console.log( a );   // 3
}

console.log( a );       // 2


It’s not very common or idiomatic thus far in JS to use a standalone
{ .. } block, but it’s always been valid. And developers from other
languages that have block scoping will readily recognize that pattern.


I believe this is the best way to create block-scoped variables, with a
dedicated { .. } block. Moreover, you should always put the let
declaration(s) at the very top of that block. If you have more than one
to declare, I’d recommend using just one let.


Stylistically, I even prefer to put the let on the same line as the
opening {, to make it clearer that this block is only for the purpose
of declaring the scope for those variables.


{   let a = 2, b, c;
    // ..
}


Now, that’s going to look strange and it’s not likely going to match the
recommendations given in most other ES6 literature. But I have reasons
for my madness.


There’s another experimental (not standardized) form of the let
declaration called the let-block, which looks like:


let (a = 2, b, c) {
    // ..
}


That form is what I call explicit block scoping, whereas the
let .. declaration form that mirrors var is more implicit, as it
kind of hijacks whatever { .. } pair it’s found in. Generally
developers find explicit mechanisms a bit more preferable than
implicit mechanisms, and I claim this is one of those cases.


If you compare the previous two snippet forms, they’re very similar, and
in my opinion both qualify stylistically as explicit block scoping.
Unfortunately, the let (..) { .. } form, the most explicit of the
options, was not adopted in ES6. That may be revisited post-ES6, but for
now the former option is our best bet, I think.


To reinforce the implicit nature of let .. declarations, consider
these usages:


let a = 2;

if (a > 1) {
    let b = a * 3;
    console.log( b );       // 6

    for (let i = a; i <= b; i++) {
        let j = i + 10;
        console.log( j );
    }
    // 12 13 14 15 16

    let c = a + b;
    console.log( c );       // 8
}


Quick quiz without looking back at that snippet: which variable(s) exist
only inside the if statement, and which variable(s) exist only inside
the for loop?


The answers: the if statement contains b and c block-scoped
variables, and the for loop contains i and j block-scoped
variables.


Did you have to think about it for a moment? Does it surprise you that
i isn’t added to the enclosing if statement scope? That mental pause
and questioning—I call it a “mental tax”—comes from the fact that
this let mechanism is not only new to us, but it’s also implicit.


There’s also a hazard in the let c = .. declaration appearing so far
down in the scope. Unlike traditional var-declared variables, which
are attached to the entire enclosing function scope regardless of where
they appear, let declarations attach to the block scope but are not
initialized until they appear in the block.


Accessing a let-declared variable earlier than its let ..
declaration/initialization causes an error, whereas with var
declarations the ordering doesn’t matter (except stylistically).


Consider:


{
    console.log( a );   // undefined
    console.log( b );   // ReferenceError!

    var a;
    let b;
}

Warning

This ReferenceError from accessing too-early let-declared
references is technically called a Temporal Dead Zone (TDZ) error—you’re accessing a variable that’s been declared but not yet
initialized. This will not be the only time we see TDZ errors—they
crop up in several places in ES6. Also, note that “initialized” doesn’t
require explicitly assigning a value in your code, as let b; is
totally valid. A variable that’s not given an assignment at declaration
time is assumed to have been assigned the undefined value, so let b;
is the same as let b = undefined;. Explicit assignment or not, you
cannot access b until the let b statement is run.




One last gotcha: typeof behaves differently with TDZ variables than it
does with undeclared (or declared!) variables. For example:


{
    // `a` is not declared
    if (typeof a === "undefined") {
        console.log( "cool" );
    }

    // `b` is declared, but in its TDZ
    if (typeof b === "undefined") {     // ReferenceError!
        // ..
    }

    // ..

    let b;
}


The a is not declared, so typeof is the only safe way to check for
its existence or not. But typeof b throws the TDZ error because
farther down in the code there happens to be a let b declaration.
Oops.


Now it should be clearer why I insist that let declarations should all
be at the top of their scope. That totally avoids the accidental errors
of accessing too early. It also makes it more explicit when you look
at the start of a block, any block, what variables it contains.


Your blocks (if statements, while loops, etc.) don’t have to share
their original behavior with scoping behavior.


This explicitness on your part, which is up to you to maintain with
discipline, will save you lots of refactor headaches and footguns down
the line.

Note

For more information on let and block scoping, see Chapter 3
of the Scope & Closures title of this series.














let + for


The only exception I’d make to the preference for the explicit form of
let declaration blocking is a let that appears in the header of a
for loop. The reason may seem nuanced, but I believe it to be one of
the more important ES6 features.


Consider:


var funcs = [];

for (let i = 0; i < 5; i++) {
    funcs.push( function(){
        console.log( i );
    } );
}

funcs[3]();     // 3


The let i in the for header declares an i not just for the for
loop itself, but it redeclares a new i for each iteration of the loop.
That means that closures created inside the loop iteration close over
those per-iteration variables the way you’d expect.


If you tried that same snippet but with var i in the for loop
header, you’d get 5 instead of 3, because there’d only be one i in
the outer scope that was closed over, instead of a new i for each
iteration’s function to close over.


You could also have accomplished the same thing slightly more verbosely:


var funcs = [];

for (var i = 0; i < 5; i++) {
    let j = i;
    funcs.push( function(){
        console.log( j );
    } );
}

funcs[3]();     // 3


Here, we forcibly create a new j for each iteration, and then the
closure works the same way. I prefer the former approach; that extra
special capability is why I endorse the for (let .. ) .. form. It
could be argued that it’s somewhat more implicit, but it’s explicit
enough, and useful enough, for my tastes.


let also works the same way with for..in and for..of loops (see “for..of Loops”).






















const Declarations


There’s one other form of block-scoped declaration to consider: the
const, which creates constants.


What exactly is a constant? It’s a variable that’s read-only after its
initial value is set. Consider:


{
    const a = 2;
    console.log( a );   // 2

    a = 3;              // TypeError!
}


You are not allowed to change the value the variable holds once it’s
been set, at declaration time. A const declaration must have an
explicit initialization. If you wanted a constant with the undefined
value, you’d have to declare const a = undefined to get it.


Constants are not a restriction on the value itself, but on the
variable’s assignment of that value. In other words, the value is not
frozen or immutable because of const, just the assignment of it. If
the value is complex, such as an object or array, the contents of the
value can still be modified:


{
    const a = [1,2,3];
    a.push( 4 );
    console.log( a );       // [1,2,3,4]

    a = 42;                 // TypeError!
}


The a variable doesn’t actually hold a constant array; rather, it
holds a constant reference to the array. The array itself is freely
mutable.

Warning

Assigning an object or array as a constant means that value
will not be able to be garbage collected until that constant’s lexical
scope goes away, as the reference to the value can never be unset. That
may be desirable, but be careful if it’s not your intent!




Essentially, const declarations enforce what we’ve stylistically
signaled with our code for years, where we declared a variable name of
all uppercase letters and assigned it some literal value that we took
care never to change. There’s no enforcement on a var assignment, but
there is now with a const assignment, which can help you catch
unintended changes.


const can be used with variable declarations of for, for..in, and for..of loops (see “for..of Loops”). However, an error will be thrown if there’s any attempt to reassign, such as the typical i++ clause of a for loop.












const Or Not


There’s some rumored assumptions that a const could be more
optimizable by the JS engine in certain scenarios than a let or var
would be. Theoretically, the engine more easily knows the variable’s
value/type will never change, so it can eliminate some possible
tracking.


Whether const really helps here or this is just our own fantasies and
intuitions, the much more important decision to make is if you intend
constant behavior or not. Remember: one of the most important roles for
source code is to communicate clearly, not only to you, but your future
self and other code collaborators, what your intent is.


Some developers prefer to start out every variable declaration as a
const and then relax a declaration back to a let if it becomes
necessary for its value to change in the code. This is an interesting
perspective, but it’s not clear that it genuinely improves the
readability or reason-ability of code.


It’s not really a protection, as many believe, because any later
developer who wants to change a value of a const can just blindly
change const to let on the declaration. At best, it protects
accidental change. But again, other than our intuitions and
sensibilities, there doesn’t appear to be an objective and clear measure of
what constitutes “accidents” or prevention thereof. Similar mindsets
exist around type enforcement.


My advice: to avoid potentially confusing code, only use const for
variables that you’re intentionally and obviously signaling will not
change. In other words, don’t rely on const for code behavior, but
instead use it as a tool for signaling intent, when intent can be
signaled clearly.






















Block-Scoped Functions


Starting with ES6, function declarations that occur inside of blocks are
now specified to be scoped to that block. Prior to ES6, the
specification did not call for this, but many implementations did it
anyway. So now the specification meets reality.


Consider:


{
    foo();                  // works!

    function foo() {
        // ..
    }
}

foo();                      // ReferenceError


The foo() function is declared inside the { .. } block, and as of
ES6 is block-scoped there. So it’s not available outside that block. But
also note that it is “hoisted” within the block, as opposed to let
declarations, which suffer the TDZ error trap mentioned earlier.


Block-scoping of function declarations could be a problem if you’ve ever
written code like this before, and relied on the old legacy
non-block-scoped behavior:


if (something) {
    function foo() {
        console.log( "1" );
    }
}
else {
    function foo() {
        console.log( "2" );
    }
}

foo();      // ??


In pre-ES6 environments, foo() would print "2" regardless of the
value of something, because both function declarations were hoisted
out of the blocks, and the second one always wins.


In ES6, that last line throws a ReferenceError.
























Spread/Rest


ES6 introduces a new ... operator that’s typically referred to as the
spread or rest operator, depending on where/how it’s used. Let’s
take a look:


function foo(x,y,z) {
    console.log( x, y, z );
}

foo( ...[1,2,3] );              // 1 2 3


When ... is used in front of an array (actually, any iterable, which
we cover in Chapter 3), it acts to “spread” it out into its individual
values.


You’ll typically see that usage as is shown in that previous snippet,
when spreading out an array as a set of arguments to a function call. In
this usage, ... acts to give us a simpler syntactic replacement for
the apply(..) method, which we would typically have used pre-ES6 as:


foo.apply( null, [1,2,3] );     // 1 2 3


But ... can be used to spread out/expand a value in other contexts as
well, such as inside another array declaration:


var a = [2,3,4];
var b = [ 1, ...a, 5 ];

console.log( b );                   // [1,2,3,4,5]


In this usage, ... is basically replacing concat(..), as it behaves
like [1].concat( a, [5] ) here.


The other common usage of ... can be seen as essentially the opposite;
instead of spreading a value out, the ... gathers a set of values
together into an array. Consider:


function foo(x, y, ...z) {
    console.log( x, y, z );
}

foo( 1, 2, 3, 4, 5 );           // 1 2 [3,4,5]


The ...z in this snippet is essentially saying: “gather the rest of
the arguments (if any) into an array called z.” Because x was
assigned 1, and y was assigned 2, the rest of the arguments 3,
4, and 5 were gathered into z.


Of course, if you don’t have any named parameters, the ... gathers all
arguments:


function foo(...args) {
    console.log( args );
}

foo( 1, 2, 3, 4, 5);            // [1,2,3,4,5]

Note

The ...args in the foo(..) function declaration is usually
called “rest parameters,” because you’re collecting the rest of the
parameters. I prefer “gather,” because it’s more descriptive of what it
does rather than what it contains.




The best part about this usage is that it provides a very solid
alternative to using the long-since-deprecated arguments array—actually, it’s not really an array, but an array-like object. Because
args (or whatever you call it—a lot of people prefer r or rest)
is a real array, we can get rid of lots of silly pre-ES6 tricks we
jumped through to make arguments into something we can treat as an
array.


Consider:


// doing things the new ES6 way
function foo(...args) {
    // `args` is already a real array

    // discard first element in `args`
    args.shift();

    // pass along all of `args` as arguments
    // to `console.log(..)`
    console.log( ...args );
}

// doing things the old-school pre-ES6 way
function bar() {
    // turn `arguments` into a real array
    var args = Array.prototype.slice.call( arguments );

    // add some elements on the end
    args.push( 4, 5 );

    // filter out odd numbers
    args = args.filter( function(v){
        return v % 2 == 0;
    } );

    // pass along all of `args` as arguments
    // to `foo(..)`
    foo.apply( null, args );
}

bar( 0, 1, 2, 3 );                  // 2 4


The ...args in the foo(..) function declaration gathers arguments,
and the ...args in the console.log(..) call spreads them out. That’s
a good illustration of the symmetric but opposite uses of the ...
operator.


Besides the ... usage in a function declaration, there’s another case
where ... is used for gathering values, and we’ll look at it in “Too Many, Too Few, Just Enough” later in this chapter.

















Default Parameter Values


Perhaps one of the most common idioms in JavaScript relates to setting a
default value for a function parameter. The way we’ve done this for
years should look quite familiar:


function foo(x,y) {
    x = x || 11;
    y = y || 31;

    console.log( x + y );
}

foo();              // 42
foo( 5, 6 );        // 11
foo( 5 );           // 36
foo( null, 6 );     // 17


Of course, if you’ve used this pattern before, you know that it’s both
helpful and a little bit dangerous if, for example, you need to be able
to pass in what would otherwise be considered a falsy value for one of
the parameters. Consider:


foo( 0, 42 );       // 53 <-- Oops, not 42


Why? Because the 0 is falsy, and so the x || 11 results in 11, not
the directly passed in 0.


To fix this gotcha, some people will instead write the check more
verbosely like this:


function foo(x,y) {
    x = (x !== undefined) ? x : 11;
    y = (y !== undefined) ? y : 31;

    console.log( x + y );
}

foo( 0, 42 );           // 42
foo( undefined, 6 );    // 17


Of course, that means any value except undefined can be directly
passed in. However, undefined will be assumed to signal, “I didn’t
pass this in.” That works great unless you actually need to be able to
pass undefined in.


In that case, you could test to see if the argument is actually omitted,
by it actually not being present in the arguments array, perhaps like
this:


function foo(x,y) {
    x = (0 in arguments) ? x : 11;
    y = (1 in arguments) ? y : 31;

    console.log( x + y );
}

foo( 5 );               // 36
foo( 5, undefined );    // NaN


But how would you omit the first x argument without the ability to
pass in any kind of value (not even undefined) that signals “I’m
omitting this argument”?


foo(,5) is tempting, but it’s invalid syntax. foo.apply(null,[,5])
seems like it should do the trick, but apply(..)’s quirks here mean
the arguments are treated as [undefined,5], which of course
doesn’t omit.


If you investigate further, you’ll find you can only omit arguments on
the end (i.e., righthand side) by simply passing fewer arguments than
“expected,” but you cannot omit arguments in the middle or at the
beginning of the arguments list. It’s just not possible.


There’s a principle applied to JavaScript’s design here that is
important to remember: undefined means missing. That is, there’s no
difference between undefined and missing, at least as far as
function arguments go.

Note

There are, confusingly, other places in JS where this particular
design principle doesn’t apply, such as for arrays with empty slots. See
the Types & Grammar title of this series for more information.




With all this in mind, we can now examine a nice helpful syntax added as of
ES6 to streamline the assignment of default values to missing arguments:


function foo(x = 11, y = 31) {
    console.log( x + y );
}

foo();                  // 42
foo( 5, 6 );            // 11
foo( 0, 42 );           // 42

foo( 5 );               // 36
foo( 5, undefined );    // 36 <-- `undefined` is missing
foo( 5, null );         // 5  <-- null coerces to `0`

foo( undefined, 6 );    // 17 <-- `undefined` is missing
foo( null, 6 );         // 6  <-- null coerces to `0`


Notice the results and how they imply both subtle differences and
similarities to the earlier approaches.


x = 11 in a function declaration is more like
x !== undefined ? x : 11 than the much more common idiom x || 11, so
you’ll need to be careful in converting your pre-ES6 code to this ES6
default parameter value syntax.

Note

A rest/gather parameter (see “Spread/Rest”) cannot have a
default value. So, while function foo(...vals=[1,2,3]) { might seem like an
intriguing capability, it’s not valid syntax. You’ll need to continue to
apply that sort of logic manually if necessary.












Default Value Expressions


Function default values can be more than just simple values like 31;
they can be any valid expression, even a function call:


function bar(val) {
    console.log( "bar called!" );
    return y + val;
}

function foo(x = y + 3, z = bar( x )) {
    console.log( x, z );
}

var y = 5;
foo();                              // "bar called"
                                    // 8 13
foo( 10 );                          // "bar called"
                                    // 10 15
y = 6;
foo( undefined, 10 );               // 9 10


As you can see, the default value expressions are lazily evaluated,
meaning they’re only run if and when they’re needed—that is, when a
parameter’s argument is omitted or is undefined.


It’s a subtle detail, but the formal parameters in a function
declaration are in their own scope (think of it as a scope bubble-wrapped around just the ( .. ) of the function declaration), not in
the function body’s scope. That means a reference to an identifier in a
default value expression first matches the formal parameters’ scope
before looking to an outer scope. See the Scope & Closures title of
this series for more information.


Consider:


var w = 1, z = 2;

function foo( x = w + 1, y = x + 1, z = z + 1 ) {
    console.log( x, y, z );
}

foo();                  // ReferenceError


The w in the w + 1 default value expression looks for w in the
formal parameters’ scope, but does not find it, so the outer scope’s w
is used. Next, the x in the x + 1 default value expression finds x
in the formal parameters’ scope, and luckily x has already been
initialized, so the assignment to y works fine.


However, the z in z + 1 finds z as a
not-yet-initialized-at-that-moment parameter variable, so it never tries
to find the z from the outer scope.


As we mentioned in “let Declarations” earlier in this
chapter, ES6 has a TDZ, which prevents a variable from being accessed in
its uninitialized state. As such, the z + 1 default value expression
throws a TDZ ReferenceError error.


Though it’s not necessarily a good idea for code clarity, a default
value expression can even be an inline function expression call—commonly referred to as an immediately invoked function expression
(IIFE):


function foo( x =
    (function(v){ return v + 11; })( 31 )
) {
    console.log( x );
}

foo();          // 42


There will very rarely be any cases where an IIFE (or any other executed
inline function expression) will be appropriate for default value
expressions. If you find yourself tempted to do this, take a step back
and reevaluate!

Warning

If the IIFE had tried to access the x identifier and had
not declared its own x, this would also have been a TDZ error, just as
discussed before.




The default value expression in the previous snippet is an IIFE in that
in the sense that it’s a function that’s executed right inline, via
(31). If we had left that part off, the default value assigned to x
would have just been a function reference itself, perhaps like a default
callback. There will probably be cases where that pattern will be quite
useful, such as:


function ajax(url, cb = function(){}) {
    // ..
}

ajax( "http://some.url.1" );


In this case, we essentially want to default cb to be a no-op empty
function call if not otherwise specified. The function expression is
just a function reference, not a function call itself (no invoking ()
on the end of it), which accomplishes that goal.


Since the early days of JS, there’s been a little-known but useful quirk
available to us: Function.prototype is itself an empty no-op function.
So, the declaration could have been cb = Function.prototype and saved
the inline function expression creation.
























Destructuring


ES6 introduces a new syntactic feature called destructuring, which may
be a little less confusing if you instead think of it as a structured
assignment. To understand this meaning, consider:


function foo() {
    return [1,2,3];
}

var tmp = foo(),
    a = tmp[0], b = tmp[1], c = tmp[2];

console.log( a, b, c );             // 1 2 3


As you can see, we created a manual assignment of the values in the
array that foo() returns to individual variables a, b, and c,
and to do so we (unfortunately) needed the tmp variable.


Similarly, we can do the following with objects:


function bar() {
    return {
        x: 4,
        y: 5,
        z: 6
    };
}

var tmp = bar(),
    x = tmp.x, y = tmp.y, z = tmp.z;

console.log( x, y, z );             // 4 5 6


The tmp.x property value is assigned to the x variable, and likewise
for tmp.y to y and tmp.z to z.


Manually assigning indexed values from an array or properties from an object can be thought of as structured assignment. ES6 adds a dedicated syntax for destructuring, specifically array destructuring and object destructuring. This syntax eliminates the need for the tmp variable in the previous snippets, making them much cleaner. Consider:


var [ a, b, c ] = foo();
var { x: x, y: y, z: z } = bar();

console.log( a, b, c );             // 1 2 3
console.log( x, y, z );             // 4 5 6


You’re likely more accustomed to seeing syntax like [a,b,c] on the
righthand side of an = assignment, as the value being assigned.


Destructuring symmetrically flips that pattern, so that [a,b,c] on the
lefthand side of the = assignment is treated as a kind of “pattern”
for decomposing the righthand side array value into separate variable
assignments.


Similarly, { x: x, y: y, z: z } specifies a “pattern” to decompose the
object value from bar() into separate variable assignments.










Object Property Assignment Pattern


Let’s dig into that { x: x, .. } syntax from the previous snippet. If
the property name being matched is the same as the variable you want to
declare, you can actually shorten the syntax:


var { x, y, z } = bar();

console.log( x, y, z );             // 4 5 6


Pretty cool, right?


But is { x, .. } leaving off the x: part or leaving off the : x
part? We’re actually leaving off the x: part
when we use the shorter syntax. That may not seem like an important
detail, but you’ll understand its importance in just a moment.


If you can write the shorter form, why would you ever write out the
longer form? Because that longer form actually allows you to assign a
property to a different variable name, which can sometimes be quite
useful:


var { x: bam, y: baz, z: bap } = bar();

console.log( bam, baz, bap );       // 4 5 6
console.log( x, y, z );             // ReferenceError


There’s a subtle but super-important quirk to understand about this
variation of the object destructuring form. To illustrate why it can be
a gotcha you need to be careful of, let’s consider the “pattern” of how
normal object literals are specified:


var X = 10, Y = 20;

var o = { a: X, b: Y };

console.log( o.a, o.b );            // 10 20


In { a: X, b: Y }, we know that a is the object property, and X is
the source value that gets assigned to it. In other words, the syntactic
pattern is target: source, or more obviously, property-alias: value.
We intuitively understand this because it’s the same as = assignment,
where the pattern is target = source.


However, when you use object destructuring assignment—that is,
putting the { .. } object literal-looking syntax on the lefthand side
of the = operator—you invert that target: source pattern.


Recall:


var { x: bam, y: baz, z: bap } = bar();


The syntactic pattern here is source: target (or
value: variable-alias). x: bam means the x property is the source
value and bam is the target variable to assign to. In other words,
object literals are target <-- source, and object destructuring
assignments are source --> target. See how that’s flipped?


There’s another way to think about this syntax though, which may help
ease the confusion. Consider:


var aa = 10, bb = 20;

var o = { x: aa, y: bb };
var     { x: AA, y: BB } = o;

console.log( AA, BB );              // 10 20


In the { x: aa, y: bb } line, the x and y represent the object
properties. In the { x: AA, y: BB } line, the x and y also
represent the object properties.


Recall how earlier I asserted that { x, .. } was leaving off the x:
part? In those two lines, if you erase the x: and y: parts in that
snippet, you’re left only with aa, bb and AA, BB, which in
effect—only conceptually, not actually—are assignments from aa to AA and from bb to BB.


So, that symmetry may help to explain why the syntactic pattern was
intentionally flipped for this ES6 feature.

Note

I would have preferred the syntax to be { AA: x , BB: y } for
the destructuring assignment, as that would have preserved consistency
of the more familiar target: source pattern for both usages. Alas, I’m
having to train my brain for the inversion, as some readers may also
have to do.



















Not Just Declarations


So far, we’ve used destructuring assignment with var declarations (of
course, they could also use let and const), but destructuring is a
general assignment operation, not just a declaration.


Consider:


var a, b, c, x, y, z;

[a,b,c] = foo();
( { x, y, z } = bar() );

console.log( a, b, c );             // 1 2 3
console.log( x, y, z );             // 4 5 6


The variables can already be declared, and then the destructuring only
does assignments, exactly as we’ve already seen.

Note

For the object destructuring form specifically, when leaving off
a var/let/const declarator, we had to surround the whole
assignment expression in ( ), because otherwise the { .. } on the
lefthand side as the first element in the statement is taken to be a
block statement instead of an object.




In fact, the assignment expressions (a, y, etc.) don’t actually need
to be just variable identifiers. Anything that’s a valid assignment
expression is allowed. For example:


var o = {};

[o.a, o.b, o.c] = foo();
( { x: o.x, y: o.y, z: o.z } = bar() );

console.log( o.a, o.b, o.c );       // 1 2 3
console.log( o.x, o.y, o.z );       // 4 5 6


You can even use computed property expressions in the destructuring.
Consider:


var which = "x",
    o = {};

( { [which]: o[which] } = bar() );

console.log( o.x );                 // 4


The [which]: part is the computed property, which results in x—the property to destructure from the object in question as the source of
the assignment. The o[which] part is just a normal object key
reference, which equates to o.x as the target of the assignment.


You can use the general assignments to create object
mappings/transformations, such as:


var o1 = { a: 1, b: 2, c: 3 },
    o2 = {};

( { a: o2.x, b: o2.y, c: o2.z } = o1 );

console.log( o2.x, o2.y, o2.z );    // 1 2 3


Or you can map an object to an array, such as:


var o1 = { a: 1, b: 2, c: 3 },
    a2 = [];

( { a: a2[0], b: a2[1], c: a2[2] } = o1 );

console.log( a2 );                  // [1,2,3]


Or the other way around:


var a1 = [ 1, 2, 3 ],
    o2 = {};

[ o2.a, o2.b, o2.c ] = a1;

console.log( o2.a, o2.b, o2.c );    // 1 2 3


Or you could reorder one array to another:


var a1 = [ 1, 2, 3 ],
    a2 = [];

[ a2[2], a2[0], a2[1] ] = a1;

console.log( a2 );                  // [2,3,1]


You can even solve the traditional “swap two variables” task without a
temporary variable:


var x = 10, y = 20;

[ y, x ] = [ x, y ];

console.log( x, y );                // 20 10

Warning

Be careful: you shouldn’t mix in declaration with
assignment unless you want all of the assignment expressions also to
be treated as declarations. Otherwise, you’ll get syntax errors. That’s
why in the earlier example I had to do var a2 = [] separately from the
[ a2[0], .. ] = .. destructuring assignment. It wouldn’t make any
sense to try var [ a2[0], .. ] = .., because a2[0] isn’t a valid
declaration identifier; it also obviously couldn’t implicitly create a
var a2 = [] declaration.



















Repeated Assignments


The object destructuring form allows a source property (holding any value type) to be listed multiple times. For example:


var { a: X, a: Y } = { a: 1 };

X;  // 1
Y;  // 1


That also means you can both destructure a sub-object/array property and also capture the sub-object/array’s value itself. Consider:


var { a: { x: X, x: Y }, a } = { a: { x: 1 } };

X;  // 1
Y;  // 1
a;  // { x: 1 }

( { a: X, a: Y, a: [ Z ] } = { a: [ 1 ] } );

X.push( 2 );
Y[0] = 10;

X;  // [10,2]
Y;  // [10,2]
Z;  // 1


A word of caution about destructuring: it may be tempting to list destructuring assignments all on a single line as has been done thus far in our discussion. However, it’s a much better idea to spread destructuring assignment patterns over multiple lines, using proper indentation—much like you would in JSON or with an object literal value—for readability’s sake.


// harder to read:
var { a: { b: [ c, d ], e: { f } }, g } = obj;

// better:
var {
    a: {
        b: [ c, d ],
        e: { f }
    },
    g
} = obj;


Remember: the purpose of destructuring is not just less typing, but more declarative readability.












Destructuring Assignment Expressions


The assignment expression with object or array destructuring has as its
completion value the full righthand object/array value. Consider:


var o = { a:1, b:2, c:3 },
    a, b, c, p;

p = { a, b, c } = o;

console.log( a, b, c );         // 1 2 3
p === o;                        // true


In the previous snippet, p was assigned the o object reference, not
one of the a, b, or c values. The same is true of array
destructuring:


var o = [1,2,3],
    a, b, c, p;

p = { a, b, c } = o;

console.log( a, b, c );         // 1 2 3
p === o;                        // true


By carrying the object/array value through as the completion, you can
chain destructuring assignment expressions together:


var o = { a:1, b:2, c:3 },
    p = [4,5,6],
    a, b, c, x, y, z;

( {a} = {b,c} = o );
[x,y] = [z] = p;

console.log( a, b, c );         // 1 2 3
console.log( x, y, z );         // 4 5 4






















Too Many, Too Few, Just Enough


With both array destructuring assignment and object destructuring
assignment, you do not have to assign all the values that are present.
For example:


var [,b] = foo();
var { x, z } = bar();

console.log( b, x, z );             // 2 4 6


The 1 and 3 values that came back from foo() are discarded, as is
the 5 value from bar().


Similarly, if you try to assign more values than are present in the
value you’re destructuring/decomposing, you get graceful fallback to
undefined, as you’d expect:


var [,,c,d] = foo();
var { w, z } = bar();

console.log( c, z );                // 3 6
console.log( d, w );                // undefined undefined


This behavior follows symmetrically from the earlier stated “undefined
is missing” principle.


We examined the ... operator earlier in this chapter, and saw that it
can sometimes be used to spread an array value out into its separate
values, and sometimes it can be used to do the opposite: to gather a set
of values together into an array.


In addition to the gather/rest usage in function declarations, ... can
perform the same behavior in destructuring assignments. To illustrate,
let’s recall a snippet from earlier in this chapter:


var a = [2,3,4];
var b = [ 1, ...a, 5 ];

console.log( b );                   // [1,2,3,4,5]


Here we see that ...a is spreading a out, because it appears in the
array [ .. ] value position. If ...a appears in an array
destructuring position, it performs the gather behavior:


var a = [2,3,4];
var [ b, ...c ] = a;

console.log( b, c );                // 2 [3,4]


The var [ .. ] = a destructuring assignment spreads a out to be
assigned to the pattern described inside the [ .. ]. The first part
names b for the first value in a (2). But then ...c gathers the
rest of the values (3 and 4) into an array and calls it c.

Note

We’ve seen how ... works with arrays, but what about with
objects? It’s not an ES6 feature, but see Chapter 8 for discussion of a
possible “beyond ES6” feature where ... works with spreading or
gathering objects.



















Default Value Assignment


Both forms of destructuring can offer a default value option for an
assignment, using the = syntax similar to the default function
argument values discussed earlier.


Consider:


var [ a = 3, b = 6, c = 9, d = 12 ] = foo();
var { x = 5, y = 10, z = 15, w = 20 } = bar();

console.log( a, b, c, d );          // 1 2 3 12
console.log( x, y, z, w );          // 4 5 6 20


You can combine the default value assignment with the alternative
assignment expression syntax covered earlier. For example:


var { x, y, z, w: WW = 20 } = bar();

console.log( x, y, z, WW );         // 4 5 6 20


Be careful about confusing yourself (or other developers who read your
code) if you use an object or array as the default value in a destructuring.
You can create some really hard-to-understand code:


var x = 200, y = 300, z = 100;
var o1 = { x: { y: 42 }, z: { y: z } };

( { y: x = { y: y } } = o1 );
( { z: y = { y: z } } = o1 );
( { x: z = { y: x } } = o1 );


Can you tell from that snippet what values x, y, and z have at the
end? Takes a moment of pondering, I would imagine. I’ll end the
suspense:


console.log( x.y, y.y, z.y );       // 300 100 42


The takeaway here: destructuring is great and can be very useful, but
it’s also a sharp sword that can cause injury (to someone’s brain) if
used unwisely.

















Nested Destructuring


If the values you’re destructuring have nested objects or arrays, you
can destructure those nested values as well:


var a1 = [ 1, [2, 3, 4], 5 ];
var o1 = { x: { y: { z: 6 } } };

var [ a, [ b, c, d ], e ] = a1;
var { x: { y: { z: w } } } = o1;

console.log( a, b, c, d, e );       // 1 2 3 4 5
console.log( w );                   // 6


Nested destructuring can be a simple way to flatten out object
namespaces. For example:


var App = {
    model: {
        User: function(){ .. }
    }
};

// instead of:
// var User = App.model.User;

var { model: { User } } = App;

















Destructuring Parameters


In the following snippet, can you spot the assignment?


function foo(x) {
    console.log( x );
}

foo( 42 );


The assignment is kinda hidden: 42 (the argument) is assigned to x
(the parameter) when foo(42) is executed. If parameter/argument
pairing is an assignment, then it stands to reason that it’s an
assignment that could be destructured, right? Of course!


Consider array destructuring for parameters:


function foo( [ x, y ] ) {
    console.log( x, y );
}

foo( [ 1, 2 ] );                    // 1 2
foo( [ 1 ] );                       // 1 undefined
foo( [] );                          // undefined undefined


Object destructuring for parameters works, too:


function foo( { x, y } ) {
    console.log( x, y );
}

foo( { y: 1, x: 2 } );              // 2 1
foo( { y: 42 } );                   // undefined 42
foo( {} );                          // undefined undefined


This technique is an approximation of named arguments (a long requested
feature for JS!), in that the properties on the object map to the
destructured parameters of the same names. That also means that we get
optional parameters (in any position) for free; as you can see, leaving
off the x “parameter” worked as we’d expect.


Of course, all the previously discussed variations of destructuring are
available to us with parameter destructuring, including nested
destructuring, default values, and more. Destructuring also mixes fine
with other ES6 function parameter capabilities, like default parameter
values and rest/gather parameters.


Consider these quick illustrations (certainly not exhaustive of the
possible variations):


function f1([ x=2, y=3, z ]) { .. }
function f2([ x, y, ...z], w) { .. }
function f3([ x, y, ...z], ...w) { .. }

function f4({ x: X, y }) { .. }
function f5({ x: X = 10, y = 20 }) { .. }
function f6({ x = 10 } = {}, { y } = { y: 10 }) { .. }


Let’s take one example from this snippet and examine it, for
illustration purposes:


function f3([ x, y, ...z], ...w) {
    console.log( x, y, z, w );
}

f3( [] );                           // undefined undefined [] []
f3( [1,2,3,4], 5, 6 );              // 1 2 [3,4] [5,6]


There are two ... operators in use here, and they’re both gathering
values in arrays (z and w), though ...z gathers from the rest of
the values left over in the first array argument, while ...w gathers
from the rest of the main arguments left over after the first.












Destructuring Defaults + Parameter Defaults


There’s one subtle point you should be particularly careful to notice—the difference in behavior between a destructuring default value and a
function parameter default value. For example:


function f6({ x = 10 } = {}, { y } = { y: 10 }) {
    console.log( x, y );
}

f6();                               // 10 10


At first, it would seem that we’ve declared a default value of 10 for
both the x and y parameters, but in two different ways. However,
these two different approaches will behave differently in certain cases,
and the difference is awfully subtle.


Consider:


f6( {}, {} );                       // 10 undefined


Wait, why did that happen? It’s pretty clear that named parameter x is
defaulting to 10 if not passed as a property of that same name in the
first argument’s object.


But what about y being undefined? The { y: 10 } value is an object
as a function parameter default value, not a destructuring default
value. As such, it only applies if the second argument is not passed at
all, or is passed as undefined.


In the previous snippet, we are passing a second argument ({}), so
the default { y: 10 } value is not used, and the { y } destructuring
occurs against the passed-in {} empty object value.


Now, compare { y } = { y: 10 } to { x = 10 } = {}.


For the x’s form usage, if the first function argument is omitted or
undefined, the {} empty object default applies. Then, whatever value
is in the first argument position—either the default {} or whatever
you passed in—is destructured with the { x = 10 }, which checks to
see if an x property is found, and if not found (or undefined), the
10 default value is applied to the x named parameter.


Deep breath. Read back over those last few paragraphs a couple of times.
Let’s review via code:


function f6({ x = 10 } = {}, { y } = { y: 10 }) {
    console.log( x, y );
}

f6();                               // 10 10
f6( undefined, undefined );         // 10 10
f6( {}, undefined );                // 10 10

f6( {}, {} );                       // 10 undefined
f6( undefined, {} );                // 10 undefined

f6( { x: 2 }, { y: 3 } );           // 2 3


It would generally seem that the defaulting behavior of the x
parameter is probably the more desirable and sensible case compared to
that of y. As such, it’s important to understand why and how
{ x = 10 } = {} form is different from { y } = { y: 10 } form.


If that’s still a bit fuzzy, go back and read it again, and play with
this yourself. Your future self will thank you for taking the time to
get this very subtle gotcha nuance detail straight.

















Nested Defaults: Destructured and Restructured


Although it may at first be difficult to grasp, an interesting idiom
emerges for setting defaults for a nested object’s properties: using
object destructuring along with what I’d call restructuring.


Consider a set of defaults in a nested object structure, like the
following:


// taken from:
// http://es-discourse.com/t/partial-default-arguments/120/7

var defaults = {
    options: {
        remove: true,
        enable: false,
        instance: {}
    },
    log: {
        warn: true,
        error: true
    }
};


Now, let’s say you have an object called config, which has some
of these applied, but perhaps not all, and you’d like to set all the
defaults into this object in the missing spots, but not override
specific settings already present:


var config = {
    options: {
        remove: false,
        instance: null
    }
};


You can of course do so manually, as you might have done in the past:


config.options = config.options || {};
config.options.remove = (config.options.remove !== undefined) ?
    config.options.remove : defaults.options.remove;
config.options.enable = (config.options.enable !== undefined) ?
    config.options.enable : defaults.options.enable;
...


Yuck.


Others may prefer the assign-overwrite approach to this task. You might
be tempted by the ES6 Object.assign(..) utility (see Chapter 6) to
clone the properties first from defaults and then overwritten with the
cloned properties from config, as so:


config = Object.assign( {}, defaults, config );


That looks way nicer, huh? But there’s a major problem!
Object.assign(..) is shallow, which means when it copies
defaults.options, it just copies that object reference, not deep
cloning that object’s properties to a config.options object.
Object.assign(..) would need to be applied (sort of “recursively”) at
all levels of your object’s tree to get the deep cloning you’re
expecting.

Note

Many JS utility libraries/frameworks provide their own option
for deep cloning of an object, but those approaches and their gotchas
are beyond our scope to discuss here.




So let’s examine if ES6 object destructuring with defaults can help at
all:


config.options = config.options || {};
config.log = config.log || {};
{
    options: {
        remove: config.options.remove = default.options.remove,
        enable: config.options.enable = default.options.enable,
        instance: config.options.instance =
                      default.options.instance
    } = {},
    log: {
        warn: config.log.warn = default.log.warn,
        error: config.log.error = default.log.error
    } = {}
} = config;


Not as nice as the false promise of Object.assign(..) (being that it’s
shallow only), but it’s better than the manual approach by a fair bit, I
think. It is still unfortunately verbose and repetitive, though.


The previous snippet’s approach works because I’m hacking the
destructuring and defaults mechanism to do the property === undefined
checks and assignment decisions for me. It’s a trick in that I’m
destructuring config (see the = config at the end of the snippet),
but I’m reassigning all the destructured values right back into
config, with the config.options.enable assignment references.


Still too much, though. Let’s see if we can make anything better.


The following trick works best if you know that all the various
properties you’re destructuring are uniquely named. You can still do it
even if that’s not the case, but it’s not as nice—you’ll have to do
the destructuring in stages, or create unique local variables as
temporary aliases.


If we fully destructure all the properties into top-level variables, we
can then immediately restructure to reconstitute the original nested
object structure.


But all those temporary variables hanging around would pollute scope.
So, let’s use block scoping (see “Block-Scoped Declarations” earlier in
this chapter) with a general { } enclosing block:


// merge `defaults` into `config`
{
    // destructure (with default value assignments)
    let {
        options: {
            remove = defaults.options.remove,
            enable = defaults.options.enable,
            instance = defaults.options.instance
        } = {},
        log: {
            warn = defaults.log.warn,
            error = defaults.log.error
        } = {}
    } = config;

    // restructure
    config = {
        options: { remove, enable, instance },
        log: { warn, error }
    };
}


That seems a fair bit nicer, huh?

Note

You could also accomplish the scope enclosure with an arrow IIFE
instead of the general { } block and let declarations. Your
destructuring assignments/defaults would be in the parameter list and
your restructuring would be the return statement in the function body.




The { warn, error } syntax in the restructuring part may look new to
you; that’s called “concise properties” and we cover it in the next
section!





























Object Literal Extensions


ES6 adds a number of important convenience extensions to the humble
{ .. } object literal.










Concise Properties


You’re certainly familiar with declaring object literals in this form:


var x = 2, y = 3,
    o = {
        x: x,
        y: y
    };


If it’s always felt redundant to say x: x all over, there’s good news.
If you need to define a property that is the same name as a lexical
identifier, you can shorten it from x: x to x. Consider:


var x = 2, y = 3,
    o = {
        x,
        y
    };

















Concise Methods


In a similar spirit to concise properties we just examined, functions
attached to properties in object literals also have a concise form, for
convenience.


The old way:


var o = {
    x: function(){
        // ..
    },
    y: function(){
        // ..
    }
}


And as of ES6:


var o = {
    x() {
        // ..
    },
    y() {
        // ..
    }
}

Warning

While x() { .. } seems to just be shorthand for
x: function(){ .. }, concise methods have special behaviors that their
older counterparts don’t; specifically, the allowance for super (see
“Object super” later in this chapter).




Generators (see Chapter 4) also have a concise method form:


var o = {
    *foo() { .. }
};












Concisely Unnamed


While that convenience shorthand is quite attractive, there’s a subtle
gotcha to be aware of. To illustrate, let’s examine pre-ES6 code like
the following, which you might try to refactor to use concise methods:


function runSomething(o) {
    var x = Math.random(),
        y = Math.random();

    return o.something( x, y );
}

runSomething( {
    something: function something(x,y) {
        if (x > y) {
            // recursively call with `x`
            // and `y` swapped
            return something( y, x );
        }

        return y - x;
    }
} );


This obviously silly code just generates two random numbers and
subtracts the smaller from the bigger. But what’s important here isn’t
what it does, but rather how it’s defined. Let’s focus on the object
literal and function definition, as we see here:


runSomething( {
    something: function something(x,y) {
        // ..
    }
} );


Why do we say both something: and function something? Isn’t that
redundant? Actually, no, both are needed for different purposes. The
property something is how we can call o.something(..), sort of like
its public name. But the second something is a lexical name to refer
to the function from inside itself, for recursion purposes.


Can you see why the line return something(y,x) needs the name
something to refer to the function? There’s no lexical name for the
object, such that it could have said return o.something(y,x) or
something of that sort.


That’s actually a pretty common practice when the object literal does
have an identifying name, such as:


var controller = {
    makeRequest: function(..){
        // ..
        controller.makeRequest(..);
    }
};


Is this a good idea? Perhaps, perhaps not. You’re assuming that the name
controller will always point to the object in question. But it very
well may not—the makeRequest(..) function doesn’t control the outer
code and so can’t force that to be the case. This could come back to
bite you.


Others prefer to use this to define such things:


var controller = {
    makeRequest: function(..){
        // ..
        this.makeRequest(..);
    }
};


That looks fine, and should work if you always invoke the method as
controller.makeRequest(..). But you now have a this binding gotcha
if you do something like:


btn.addEventListener( "click", controller.makeRequest, false );


Of course, you can solve that by passing
controller.makeRequest.bind(controller) as the handler reference to
bind the event to. But yuck—it isn’t very appealing.


Or what if your inner this.makeRequest(..) call needs to be made from
a nested function? You’ll have another this binding hazard, which
people will often solve with the hacky var self = this, such as:


var controller = {
    makeRequest: function(..){
        var self = this;

        btn.addEventListener( "click", function(){
            // ..
            self.makeRequest(..);
        }, false );
    }
};


More yuck.

Note

For more information on this binding rules and gotchas, see
Chapters 1–2 of the this & Object Prototypes title of this series.




OK, what does all this have to do with concise methods? Recall our
something(..) method definition:


runSomething( {
    something: function something(x,y) {
        // ..
    }
} );


The second something here provides a super convenient lexical
identifier that will always point to the function itself, giving us the
perfect reference for recursion, event binding/unbinding, and so on—no messing around with this or trying to use an untrustable object
reference.


Great!


So, now we try to refactor that function reference to this ES6 concise
method form:


runSomething( {
    something(x,y) {
        if (x > y) {
            return something( y, x );
        }

        return y - x;
    }
} );


Seems fine at first glance, except this code will break. The
return something(..) call will not find a something identifier, so
you’ll get a ReferenceError. Oops. But why?


The above ES6 snippet is interpreted as meaning:


runSomething( {
    something: function(x,y){
        if (x > y) {
            return something( y, x );
        }

        return y - x;
    }
} );


Look closely. Do you see the problem? The concise method definition
implies something: function(x,y). See how the second something we
were relying on has been omitted? In other words, concise methods imply
anonymous function expressions.


Yeah, yuck.

Note

You may be tempted to think that => arrow functions are a good
solution here, but they’re equally insufficient, as they’re also
anonymous function expressions. We’ll cover them in “Arrow Functions”
later in this chapter.




The partially redeeming news is that our something(x,y) concise method
won’t be totally anonymous. See “Function Names” in Chapter 7 for
information about ES6 function name inference rules. That won’t help us
for our recursion, but it helps with debugging at least.


So what are we left to conclude about concise methods? They’re short and
sweet, and a nice convenience. But you should only use them if you’re
never going to need them to do recursion or event binding/unbinding.
Otherwise, stick to your old-school something: function something(..)
method definitions.


A lot of your methods are probably going to benefit from concise method
definitions, so that’s great news! Just be careful of the few where
there’s an un-naming hazard.

















ES5 Getter/Setter


Technically, ES5 defined getter/setter literals forms, but they didn’t
seem to get used much, mostly due to the lack of transpilers to handle
that new syntax (the only major new syntax added in ES5, really). So
while it’s not a new ES6 feature, we’ll briefly refresh on that form, as
it’s probably going to be much more useful with ES6 going forward.


Consider:


var o = {
    __id: 10,
    get id() { return this.__id++; },
    set id(v) { this.__id = v; }
}

o.id;           // 10
o.id;           // 11
o.id = 20;
o.id;           // 20

// and:
o.__id;         // 21
o.__id;         // 21--still!


These getter and setter literal forms are also present in classes; see
Chapter 3.

Warning

It may not be obvious, but the setter literal must have
exactly one declared parameter; omitting it or listing others is illegal
syntax. The single required parameter can use destructuring and
defaults (e.g., set id({ id: v = 0 }) { .. }), but the gather/rest
... is not allowed (set id(...v) { .. }).
























Computed Property Names


You’ve probably been in a situation like the following snippet, where
you have one or more property names that come from some sort of
expression and thus can’t be put into the object literal:


var prefix = "user_";

var o = {
    baz: function(..){ .. }
};

o[ prefix + "foo" ] = function(..){ .. };
o[ prefix + "bar" ] = function(..){ .. };
..


ES6 adds a syntax to the object literal definition that allows you to
specify an expression that should be computed, whose result is the
property name assigned. Consider:


var prefix = "user_";

var o = {
    baz: function(..){ .. },
    [ prefix + "foo" ]: function(..){ .. },
    [ prefix + "bar" ]: function(..){ .. }
    ..
};


Any valid expression can appear inside the [ .. ] that sits in the
property name position of the object literal definition.


Probably the most common use of computed property names will be with
Symbols (which we cover in “Symbols” later in this chapter), such as:


var o = {
    [Symbol.toStringTag]: "really cool thing",
    ..
};


Symbol.toStringTag is a special built-in value, which we evaluate with
the [ .. ] syntax, so we can assign the "really cool thing" value to
the special property name.


Computed property names can also appear as the name of a concise method
or a concise generator:


var o = {
    ["f" + "oo"]() { .. }   // computed concise method
    *["b" + "ar"]() { .. }  // computed concise generator
};

















Setting [[Prototype]]


We won’t cover prototypes in detail here, so for more information, see
the this & Object Prototypes title of this series.


Sometimes it will be helpful to assign the [[Prototype]] of an object
at the same time you’re declaring its object literal. The following has
been a nonstandard extension in many JS engines for a while, but is
standardized as of ES6:


var o1 = {
    // ..
};

var o2 = {
    __proto__: o1,
    // ..
};


o2 is declared with a normal object literal, but it’s also
[[Prototype]]-linked to o1. The __proto__ property name here can
also be a string "__proto__", but note that it cannot be the result
of a computed property name (see the previous section).


__proto__ is controversial, to say the least. It’s a decades-old
proprietary extension to JS that is finally standardized, somewhat
begrudgingly it seems, in ES6. Many developers feel it shouldn’t ever be
used. In fact, it’s in “Annex B” of ES6, which is the section that lists
things JS feels it has to standardize for compatibility reasons only.

Warning

Though I’m narrowly endorsing __proto__ as a key in an
object literal definition, I definitely do not endorse using it in its
object property form, like o.__proto__. That form is both a getter and
setter (again for compatibility reasons), but there are definitely
better options. See the this & Object Prototypes title of this series
for more information.




For setting the [[Prototype]] of an existing object, you can use the
ES6 utility Object.setPrototypeOf(..). Consider:


var o1 = {
    // ..
};

var o2 = {
    // ..
};

Object.setPrototypeOf( o2, o1 );







































Note

We’ll discuss Object again in Chapter 6.
“Object.setPrototypeOf(..) Static Function” provides additional
details on Object.setPrototypeOf(..). Also see “Object.assign(..) Static Function” for another form that relates o2 prototypically to
o1.



















Object super


super is typically thought of as being only related to classes.
However, due to JS’s classless-objects-with-prototypes nature, super
is equally effective, and nearly the same in behavior, with plain
objects’ concise methods.


Consider:


var o1 = {
    foo() {
        console.log( "o1:foo" );
    }
};

var o2 = {
    foo() {
        super.foo();
        console.log( "o2:foo" );
    }
};

Object.setPrototypeOf( o2, o1 );

o2.foo();       // o1:foo
                // o2:foo

Warning

super is only allowed in concise methods, not regular
function expression properties. It also is only allowed in super.XXX
form (for property/method access), not in super() form.




The super reference in the o2.foo() method is locked statically to
o2, and specifically to the [[Prototype]] of o2. super here
would basically be Object.getPrototypeOf(o2)—resolves to o1 of
course—which is how it finds and calls o1.foo().


For complete details on super, see “Classes” in Chapter 3.
























Template Literals


At the very outset of this section, I’m going to have to call out the
name of this ES6 feature as being awfully… misleading, depending on
your experiences with what the word template means.


Many developers think of templates as being reusable renderable pieces
of text, such as the capability provided by most template engines
(Mustache, Handlebars, etc.). ES6’s use of the word template would
imply something similar, like a way to declare inline template literals
that can be re-rendered. However, that’s not at all the right way to
think about this feature.


So, before we go on, I’m renaming it to what it should have been called:
interpolated string literals (or interpoliterals for short).


You’re already well aware of declaring string literals with " or '
delimiters, and you also know that these are not smart strings (as
some languages have), where the contents would be parsed for
interpolation expressions.


However, ES6 introduces a new type of string literal, using the `
backtick as the delimiter. These string literals allow basic string
interpolation expressions to be embedded, which are then automatically
parsed and evaluated.


Here’s the old pre-ES6 way:


var name = "Kyle";

var greeting = "Hello " + name + "!";

console.log( greeting );            // "Hello Kyle!"
console.log( typeof greeting );     // "string"


Now, consider the new ES6 way:


var name = "Kyle";

var greeting = `Hello ${name}!`;

console.log( greeting );            // "Hello Kyle!"
console.log( typeof greeting );     // "string"


As you can see, we used the `..` around a series of characters,
which are interpreted as a string literal, but any expressions of the
form ${..} are parsed and evaluated inline immediately. The fancy term
for such parsing and evaluating is interpolation (much more accurate
than templating).


The result of the interpolated string literal expression is just a plain
old normal string, assigned to the greeting variable.

Warning

typeof greeting == "string" illustrates why it’s important
not to think of these entities as special template values, as you cannot
assign the unevaluated form of the literal to something and reuse it.
The `..` string literal is more like an IIFE in the sense that it’s
automatically evaluated inline. The result of a `..` string literal
is, simply, just a string.




One really nice benefit of interpolated string literals is they are
allowed to split across multiple lines:


var text =
`Now is the time for all good men
to come to the aid of their
country!`;

console.log( text );
// Now is the time for all good men
// to come to the aid of their
// country!


The line breaks (newlines) in the interpolated string literal were preserved in the string value.


Unless appearing as explicit escape sequences in the literal value, the value of the \r carriage return character (code point U+000D) or the value of the \r\n carriage return + line feed sequence (code points U+000D and U+000A) are both normalized to a \n line feed character (code point U+000A). Don’t worry though; this normalization is rare and would likely only happen if copy-pasting text into your JS file.










Interpolated Expressions


Any valid expression is allowed to appear inside ${..} in an
interpolated string literal, including function calls, inline function
expression calls, and even other interpolated string literals!


Consider:


function upper(s) {
    return s.toUpperCase();
}

var who = "reader";

var text =
`A very ${upper( "warm" )} welcome
to all of you ${upper( `${who}s` )}!`;

console.log( text );
// A very WARM welcome
// to all of you READERS!


Here, the inner `${who}s` interpolated string literal was a little
bit nicer convenience for us when combining the who variable with the
"s" string, as opposed to who + "s". There will be cases where
nesting interpolated string literals is helpful, but be wary if you find
yourself doing that kind of thing often, or if you find yourself nesting
several levels deep.


If that’s the case, the odds are good that your string value production
could benefit from some abstractions.

Warning

As a word of caution, be very careful about the readability
of your code with such newfound power. Just like with default value
expressions and destructuring assignment expressions, just because you
can do something doesn’t mean you should do it. Never go so
overboard with new ES6 tricks that your code becomes more clever than
you or your other team members.














Expression Scope


One quick note about the scope that is used to resolve variables in
expressions. I mentioned earlier that an interpolated string literal is
kind of like an IIFE, and it turns out thinking about it like that
explains the scoping behavior as well.


Consider:


function foo(str) {
    var name = "foo";
    console.log( str );
}

function bar() {
    var name = "bar";
    foo( `Hello from ${name}!` );
}

var name = "global";

bar();                  // "Hello from bar!"


At the moment the `..` string literal is expressed, inside the
bar() function, the scope available to it finds bar()’s name
variable with value "bar". Neither the global name nor foo(..)’s
name matter. In other words, an interpolated string literal is just
lexically scoped where it appears, not dynamically scoped in any way.






















Tagged Template Literals


Again, renaming the feature for sanity sake: tagged string literals.


To be honest, this is one of the cooler tricks that ES6 offers. It may
seem a little strange, and perhaps not all that generally practical at
first. But once you’ve spent some time with it, tagged string literals
may just surprise you in their usefulness.


For example:


function foo(strings, ...values) {
    console.log( strings );
    console.log( values );
}

var desc = "awesome";

foo`Everything is ${desc}!`;
// [ "Everything is ", "!"]
// [ "awesome" ]


Let’s take a moment to consider what’s happening in the previous
snippet. First, the most jarring thing that jumps out is
foo`Everything…`;. That doesn’t look like anything we’ve seen
before. What is it?


It’s essentially a special kind of function call that doesn’t need the
( .. ). The tag—the foo part before the `..` string literal—is a function value that should be called. Actually, it can be any
expression that results in a function, even a function call that returns
another function, like:


function bar() {
    return function foo(strings, ...values) {
        console.log( strings );
        console.log( values );
    }
}

var desc = "awesome";

bar()`Everything is ${desc}!`;
// [ "Everything is ", "!"]
// [ "awesome" ]


But what gets passed to the foo(..) function when invoked as a tag for
a string literal?


The first argument—we called it strings—is an array of all the
plain strings (the stuff between any interpolated expressions). We get
two values in the strings array: "Everything is " and "!".


For convenience sake in our example, we then gather up all subsequent
arguments into an array called values using the ... gather/rest
operator (see “Spread/Rest” earlier in this chapter), though
you could of course have left them as individually named parameters
following the strings parameter.


The argument(s) gathered into our values array are the results of the
already-evaluated interpolation expressions found in the string literal.
So obviously the only element in values in our example is "awesome".


You can think of these two arrays as: the values in values are the
separators if you were to splice them in between the values in
strings, and then if you joined everything together, you’d get the
complete interpolated string value.


A tagged string literal is like a processing step after the
interpolation expressions are evaluated but before the final string value is
compiled, allowing you more control over generating the string from the
literal.


Typically, the string literal tag function (foo(..) in the previous
snippets) should compute an appropriate string value and return it, so
that you can use the tagged string literal as a value just like untagged
string literals:


function tag(strings, ...values) {
    return strings.reduce( function(s,v,idx){
        return s + (idx > 0 ? values[idx-1] : "") + v;
    }, "" );
}

var desc = "awesome";

var text = tag`Everything is ${desc}!`;

console.log( text );            // Everything is awesome!


In this snippet, tag(..) is a pass-through operation, in that it
doesn’t perform any special modifications, but just uses reduce(..) to loop over and splice/interleave strings and values together the same way an
untagged string literal would have done.


So what are some practical uses? There are many advanced ones that are
beyond our scope to discuss here. But here’s a simple idea that formats
numbers as U.S. dollars (sort of like basic localization):


function dollabillsyall(strings, ...values) {
    return strings.reduce( function(s,v,idx){
        if (idx > 0) {
            if (typeof values[idx-1] == "number") {
                // look, also using interpolated
                // string literals!
                s += `$${values[idx-1].toFixed( 2 )}`;
            }
            else {
                s += values[idx-1];
            }
        }

        return s + v;
    }, "" );
}

var amt1 = 11.99,
    amt2 = amt1 * 1.08,
    name = "Kyle";

var text = dollabillsyall
`Thanks for your purchase, ${name}! Your
product cost was ${amt1}, which with tax
comes out to ${amt2}.`

console.log( text );
// Thanks for your purchase, Kyle! Your
// product cost was $11.99, which with tax
// comes out to $12.95.


If a number value is encountered in the values array, we put "$"
in front of it and format it to two decimal places with toFixed(2).
Otherwise, we let the value pass-through untouched.












Raw Strings


In the previous snippets, our tag functions receive the first argument
we called strings, which is an array. But there’s an additional bit of
data included: the raw unprocessed versions of all the strings. You can
access those raw string values using the .raw property, like this:


function showraw(strings, ...values) {
    console.log( strings );
    console.log( strings.raw );
}

showraw`Hello\nWorld`;
// [ "Hello
// World" ]
// [ "Hello\nWorld" ]


The raw version of the value preserves the raw escaped \n sequence (the \ and the n are separate characters), while the processed version considers it a single newline character. However, the earlier mentioned line-ending normalization is applied to both values.


ES6 comes with a built-in function that can be used as a string literal
tag: String.raw(..). It simply passes through the raw versions of the
strings:


console.log( `Hello\nWorld` );
// Hello
// World


console.log( String.raw`Hello\nWorld` );
// Hello\nWorld

String.raw`Hello\nWorld`.length;
// 12


Other uses for string literal tags include special processing for
internationalization, localization, and more!





























Arrow Functions


We’ve touched on this binding complications with functions earlier in
this chapter, and they’re covered at length in the this & Object
Prototypes title of this series. It’s important to understand the
frustrations that this-based programming with normal functions brings,
because that is the primary motivation for the new ES6 => arrow
function feature.


Let’s first illustrate what an arrow function looks like, as compared to
normal functions:


function foo(x,y) {
    return x + y;
}

// versus

var foo = (x,y) => x + y;


The arrow function definition consists of a parameter list (of zero or
more parameters, and surrounding ( .. ) if there’s not exactly one
parameter), followed by the => marker, followed by a function body.


So, in the previous snippet, the arrow function is just the
(x,y) => x + y part, and that function reference happens to be
assigned to the variable foo.


The body only needs to be enclosed by { .. } if there’s more than one
expression, or if the body consists of a non-expression statement. If
there’s only one expression, and you omit the surrounding { .. },
there’s an implied return in front of the expression, as illustrated
in the previous snippet.


Here’s some other arrow function variations to consider:


var f1 = () => 12;
var f2 = x => x * 2;
var f3 = (x,y) => {
    var z = x * 2 + y;
    y++;
    x *= 3;
    return (x + y + z) / 2;
};


Arrow functions are always function expressions; there is no arrow
function declaration. It also should be clear that they are anonymous
function expressions—they have no named reference for the purposes of
recursion or event binding/unbinding—though “Function Names” in
Chapter 7 will describe ES6’s function name inference rules for
debugging purposes.

Note

All the capabilities of normal function parameters are available
to arrow functions, including default values, destructuring, rest
parameters, and so on.




Arrow functions have a nice, shorter syntax, which makes them on the
surface very attractive for writing terser code. Indeed, nearly all
literature on ES6 (other than the titles in this series) seems to
immediately and exclusively adopt the arrow function as “the new
function.”


It is telling that nearly all examples in our discussion of arrow functions
are short single statement utilities, such as those passed as callbacks
to various utilities. For example:


var a = [1,2,3,4,5];

a = a.map( v => v * 2 );

console.log( a );               // [2,4,6,8,10]


In those cases, where you have such inline function expressions, and
they fit the pattern of computing a quick calculation in a single
statement and returning that result, arrow functions indeed look to be
an attractive and lightweight alternative to the more verbose function
keyword and syntax.


Most people tend to ooh and aah at nice terse examples like that, as I
imagine you just did!


However, I would caution you that it would seem to me somewhat a
misapplication of this feature to use arrow function syntax with
otherwise normal, multistatement functions, especially those that would
otherwise be naturally expressed as function declarations.


Recall the dollabillsyall(..) string literal tag function from earlier
in this chapter—let’s change it to use => syntax:


var dollabillsyall = (strings, ...values) =>
    strings.reduce( (s,v,idx) => {
        if (idx > 0) {
            if (typeof values[idx-1] == "number") {
                // look, also using interpolated
                // string literals!
                s += `$${values[idx-1].toFixed( 2 )}`;
            }
            else {
                s += values[idx-1];
            }
        }

        return s + v;
    }, "" );


In this example, the only modifications I made were the removal of
function, return, and some { .. }, and then the insertion of =>
and a var. Is this a significant improvement in the readability of the
code? Meh.


I’d actually argue that the lack of return and outer { .. }
partially obscures the fact that the reduce(..) call is the only
statement in the dollabillsyall(..) function and that its result is
the intended result of the call. Also, the trained eye, which is so used
to hunting for the word function in code to find scope boundaries, now
needs to look for the => marker, which can definitely be harder to
find in the thick of the code.


While not a hard-and-fast rule, I’d say that the readability gains from
=> arrow function conversion are inversely proportional to the length
of the function being converted. The longer the function, the less =>
helps; the shorter the function, the more => can shine.


I think it’s probably more sensible and reasonable to adopt => for the
places in code where you do need short inline function expressions, but
leave your normal-length main functions as is.










Not Just Shorter Syntax, But this


Most of the popular attention toward => has been on saving those
precious keystrokes by dropping function, return, and { .. } from
your code.


But there’s a big detail we’ve skipped over so far. I said at the
beginning of the section that => functions are closely related to
this binding behavior. In fact, => arrow functions are primarily
designed to alter this behavior in a specific way, solving a
particular and common pain point with this-aware coding.


The saving of keystrokes is a red herring, a misleading sideshow at
best.


Let’s revisit another example from earlier in this chapter:


var controller = {
    makeRequest: function(..){
        var self = this;

        btn.addEventListener( "click", function(){
            // ..
            self.makeRequest(..);
        }, false );
    }
};


We used the var self = this hack, and then referenced
self.makeRequest(..), because inside the callback function we’re
passing to addEventListener(..), the this binding will not be the
same as it is in makeRequest(..) itself. In other words, because
this bindings are dynamic, we fall back to the predictability of
lexical scope via the self variable.


Herein we finally can see the primary design characteristic of =>
arrow functions. Inside arrow functions, the this binding is not
dynamic, but is instead lexical. In the previous snippet, if we used an
arrow function for the callback, this will be predictably what we
wanted it to be.


Consider:


var controller = {
    makeRequest: function(..){
        btn.addEventListener( "click", () => {
            // ..
            this.makeRequest(..);
        }, false );
    }
};


Lexical this in the arrow function callback in the previous snippet
now points to the same value as in the enclosing makeRequest(..)
function. In other words, => is a syntactic stand-in for
var self = this.


In cases where var self = this (or, alternatively, a function
.bind(this) call) would normally be helpful, => arrow functions are
a nicer alternative operating on the same principle. Sounds great,
right?


Not quite so simple.


If => replaces var self = this or .bind(this) and it helps, guess
what happens if you use => with a this-aware function that doesn’t
need var self = this to work? You might be able to guess that it’s
going to mess things up. Yeah.


Consider:


var controller = {
    makeRequest: (..) => {
        // ..
        this.helper(..);
    },
    helper: (..) => {
        // ..
    }
};

controller.makeRequest(..);


Although we invoke as controller.makeRequest(..), the this.helper
reference fails, because this here doesn’t point to controller as it
normally would. Where does it point? It lexically inherits this from
the surrounding scope. In this previous snippet, that’s the global
scope, where this points to the global object. Ugh.


In addition to lexical this, arrow functions also have lexical
arguments—they don’t have their own arguments array but instead
inherit from their parent—as well as lexical super and new.target
(see “Classes” in Chapter 3).


So now we can conclude a more nuanced set of rules for when => is
appropriate and when it is not:



	
If you have a short, single-statement inline function expression,
where the only statement is a return of some computed value, and
that function doesn’t already make a this reference inside it, and
there’s no self-reference (recursion, event binding/unbinding), and
you don’t reasonably expect the function to ever be that way, you can
probably safely refactor it to be an => arrow function.



	
If you have an inner function expression that’s relying on a
var self = this hack or a .bind(this) call on it in the enclosing
function to ensure proper this binding, that inner function expression
can probably safely become an => arrow function.







	
If you have an inner function expression that’s relying on something
like var args = Array.prototype.slice.call(arguments) in the enclosing
function to make a lexical copy of arguments, that inner function
expression can probably safely become an => arrow function.



	
For everything else—normal function declarations, longer
multistatement function expressions, functions that need a lexical name
identifier self-reference (recursion, etc.), and any other function that
doesn’t fit the previous characteristics—you should probably avoid
=> function syntax.






Bottom line: => is about lexical binding of this, arguments, and
super. These are intentional features designed to fix some common
problems, not bugs, quirks, or mistakes in ES6.


Don’t believe any hype that => is primarily, or even mostly, about
fewer keystrokes. Whether you save keystrokes or waste them, you should
know exactly what you are intentionally doing with every character
typed.

Tip

If you have a function that for any of these articulated reasons
is not a good match for an => arrow function, but it’s being declared
as part of an object literal, recall from “Concise Methods” earlier in
this chapter that there’s another option for shorter function syntax.




If you prefer a visual decision chart for how/why to pick an arrow
function:



[image: ydnk 0101]



























for..of Loops


Joining the for and for..in loops from the JavaScript we’re all
familiar with, ES6 adds a for..of loop, which loops over the set of
values produced by an iterator.


The value you loop over with for..of must be an iterable, or it must
be a value that can be coerced/boxed to an object (see the Types &
Grammar title of this series) that is an iterable. An iterable is
simply an object that is able to produce an iterator, which the loop
then uses.


Let’s compare for..of to for..in to illustrate the difference:


var a = ["a","b","c","d","e"];

for (var idx in a) {
    console.log( idx );
}
// 0 1 2 3 4

for (var val of a) {
    console.log( val );
}
// "a" "b" "c" "d" "e"


As you can see, for..in loops over the keys/indexes in the a array,
while for..of loops over the values in a.


Here’s the pre-ES6 version of the for..of from that previous snippet:


var a = ["a","b","c","d","e"],
    k = Object.keys( a );

for (var val, i = 0; i < k.length; i++) {
    val = a[ k[i] ];
    console.log( val );
}
// "a" "b" "c" "d" "e"


And here’s the ES6 but non-for..of equivalent, which also gives a
glimpse at manually iterating an iterator (see “Iterators” in Chapter 3):


var a = ["a","b","c","d","e"];

for (var val, ret, it = a[Symbol.iterator]();
    (ret = it.next()) && !ret.done;
) {
    val = ret.value;
    console.log( val );
}
// "a" "b" "c" "d" "e"


Under the covers, the for..of loop asks the iterable for an iterator
(using the built-in Symbol.iterator; see “Well-Known Symbols” in
Chapter 7), then it repeatedly calls the iterator and assigns its
produced value to the loop iteration variable.


Standard built-in values in JavaScript that are by default iterables (or
provide them) include:



	
Arrays



	
Strings



	
Generators (see Chapter 3)



	
Collections / TypedArrays (see Chapter 5)





Warning

Plain objects are not by default suitable for for..of
looping. That’s because they don’t have a default iterator, which is
intentional, not a mistake. However, we won’t go any further into those
nuanced reasonings here. In “Iterators” in Chapter 3, we’ll see how to
define iterators for our own objects, which lets for..of loop over any
object to get a set of values we define.




Here’s how to loop over the characters in a primitive string:


for (var c of "hello") {
    console.log( c );
}
// "h" "e" "l" "l" "o"


The "hello" primitive string value is coerced/boxed to the String object wrapper equivalent, which is an iterable by default.


In for (XYZ of ABC).., the XYZ clause can either be an assignment
expression or a declaration, identical to that same clause in for and
for..in loops. So you can do stuff like this:


var o = {};

for (o.a of [1,2,3]) {
    console.log( o.a );
}
// 1 2 3

for ({x: o.a} of [ {x: 1}, {x: 2}, {x: 3} ]) {
  console.log( o.a );
}
// 1 2 3


for..of loops can be prematurely stopped, just like other loops, with
break, continue, return (if in a function), and thrown exceptions.
In any of these cases, the iterator’s return(..) function is
automatically called (if one exists) to let the iterator perform cleanup
tasks, if necessary.

Note

See “Iterators” in Chapter 3 for more complete coverage on
iterables and iterators.



















Regular Expressions


Let’s face it: regular expressions haven’t changed much in JS in a long
time. So it’s a great thing that they’ve finally learned a couple of new
tricks in ES6. We’ll briefly cover the additions here, but the overall
topic of regular expressions is so dense that you’ll need to turn to
chapters/books dedicated to it (of which there are many!) if you need a
refresher.










Unicode Flag


We’ll cover the topic of Unicode in more detail in “Unicode” later in
this chapter. Here, we’ll just look briefly at the new u flag for ES6+
regular expressions, which turns on Unicode matching for that
expression.


JavaScript strings are typically interpreted as sequences of 16-bit
characters, which correspond to the characters in the Basic
Multilingual Plane (BMP). But there are many
UTF-16 characters that fall outside this range, and so strings may have
these multibyte characters in them.


Prior to ES6, regular expressions could only be matched based on BMP
characters, which means that those extended characters were treated as
two separate characters for matching purposes. This is often not ideal.


So, as of ES6, the u flag tells a regular expression to process a
string with the interpretation of Unicode (UTF-16) characters, such that
such an extended character will be matched as a single entity.

Warning

Despite the name implication, “UTF-16” doesn’t strictly mean
16 bits. Modern Unicode uses 21 bits, and standards like UTF-8 and
UTF-16 refer roughly to how many bits are used in the representation of
a character.




An example (straight from the ES6 specification): 𝄞 the musical symbol
G-clef) is Unicode point U+1D11E (0x1D11E).


If this character appears in a regular expression pattern (like /𝄞/),
the standard BMP interpretation would be that it’s two separate
characters (0xD834 and 0xDD1E) to match with. But the new ES6
Unicode-aware mode means that /𝄞/u (or the escaped Unicode form
/\u{1D11E}/u) will match "𝄞" in a string as a single matched
character.


You might be wondering why this matters? In non-Unicode BMP mode, the
pattern is treated as two separate characters, but would still find the
match in a string with the "𝄞" character in it, as you can see if you
try:


/𝄞/.test( "𝄞-clef" );           // true


The length of the match is what matters. For example:


/^.-clef/ .test( "𝄞-clef" );        // false
/^.-clef/u.test( "𝄞-clef" );        // true


The ^.-clef in the pattern says to match only a single character at
the beginning before the normal "-clef" text. In standard BMP mode,
the match fails (two characters), but with u Unicode mode flagged on,
the match succeeds (one character).


It’s also important to note that u makes quantifiers like + and *
apply to the entire Unicode code point as a single character, not just
the lower surrogate (aka rightmost half of the symbol) of the
character. The same goes for Unicode characters appearing in character
classes, like /[💩-💫]/u.

Note

There’s plenty more nitty-gritty details about u behavior in
regular expressions, which Mathias Bynens has written extensively about.



















Sticky Flag


Another flag mode added to ES6 regular expressions is y, which is
often called “sticky mode.” Sticky essentially means the regular
expression has a virtual anchor at its beginning that keeps it rooted to
matching at only the position indicated by the regular expression’s
lastIndex property.


To illustrate, let’s consider two regular expressions—the first without
sticky mode and the second with:


var re1 = /foo/,
    str = "++foo++";

re1.lastIndex;          // 0
re1.test( str );        // true
re1.lastIndex;          // 0--not updated

re1.lastIndex = 4;
re1.test( str );        // true--ignored `lastIndex`
re1.lastIndex;          // 4--not updated


Three things to observe about this snippet:



	
test(..) doesn’t pay any attention to lastIndex’s value, and
always just performs its match from the beginning of the input string.



	
Because our pattern does not have a ^ start-of-input anchor, the
search for "foo" is free to move ahead through the whole string
looking for a match.



	
lastIndex is not updated by test(..).






Now, let’s try a sticky mode regular expression:


var re2 = /foo/y,    // <-- notice the `y` sticky flag
    str = "++foo++";

re2.lastIndex;       // 0
re2.test( str );     // false--"foo" not found at `0`
re2.lastIndex;       // 0

re2.lastIndex = 2;
re2.test( str );     // true
re2.lastIndex;       // 5--updated to after previous match

re2.test( str );     // false
re2.lastIndex;       // 0--reset after previous match failure


And so our new observations about sticky mode:



	
test(..) uses lastIndex as the exact and only position in str to
look to make a match. There is no moving ahead to look for the match—it’s either there at the lastIndex position or not.



	
If a match is made, test(..) updates lastIndex to point to the
character immediately following the match. If a match fails, test(..)
resets lastIndex back to 0.






Normal nonsticky patterns that aren’t otherwise ^-rooted to the
start-of-input are free to move ahead in the input string looking for a
match. But sticky mode restricts the pattern to matching just at the
position of lastIndex.


As I suggested at the beginning of this section, another way of looking
at this is that y implies a virtual anchor at the beginning of the
pattern that is relative (aka constrains the start of the match) to
exactly the lastIndex position.

Warning

In previous literature on the topic, it has alternatively
been asserted that this behavior is like y implying a ^
(start-of-input) anchor in the pattern. This is inaccurate. We’ll
explain in further detail in “Anchored Sticky”.














Sticky Positioning


It may seem strangely limiting that to use y for repeated matches, you
have to manually ensure lastIndex is in the exact right position, as
it has no move-ahead capability for matching.


Here’s one possible scenario: if you know that the match you care about
is always going to be at a position that’s a multiple of a number (e.g.,
0, 10, 20, etc.), you can just construct a limited pattern
matching what you care about, but then manually set lastIndex each
time before matching to those fixed positions.


Consider:


var re = /f../y,
    str = "foo       far       fad";

str.match( re );        // ["foo"]

re.lastIndex = 10;
str.match( re );        // ["far"]

re.lastIndex = 20;
str.match( re );        // ["fad"]


However, if you’re parsing a string that isn’t formatted in fixed
positions like that, figuring out what to set lastIndex to before each
match is likely going to be untenable.


There’s a saving nuance to consider here. y requires that lastIndex
be in the exact position for a match to occur. But it doesn’t strictly
require that you manually set lastIndex.


Instead, you can construct your expressions in such a way that they
capture in each main match everything before and after the thing you
care about, up to right before the next thing you’ll care to match.


Because lastIndex will set to the next character beyond the end of a
match, if you’ve matched everything up to that point, lastIndex will
always be in the correct position for the y pattern to start from the
next time.

Warning

If you can’t predict the structure of the input string in a
sufficiently patterned way like that, this technique may not be suitable
and you may not be able to use y.




Having structured string input is likely the most practical scenario
where y will be capable of performing repeated matching throughout a
string. Consider:


var re = /\d+\.\s(.*?)(?:\s|$)/y
    str = "1. foo 2. bar 3. baz";

str.match( re );        // [ "1. foo ", "foo" ]

re.lastIndex;           // 7--correct position!
str.match( re );        // [ "2. bar ", "bar" ]

re.lastIndex;           // 14--correct position!
str.match( re );        // ["3. baz", "baz"]


This works because I knew something ahead of time about the structure of
the input string: there is always a numeral prefix like "1. " before
the desired match ("foo", etc.), and either a space after it, or the
end of the string ($ anchor). So the regular expression I constructed
captures all of that in each main match, and then I use a matching group
( ) so that the stuff I really care about is separated out for
convenience.


After the first match ("1. foo "), the lastIndex is 7, which is
already the position needed to start the next match, for "2. bar ",
and so on.


If you’re going to use y sticky mode for repeated matches, you’ll
probably want to look for opportunities to have lastIndex
automatically positioned as we’ve just demonstrated.

















Sticky Versus Global


Some readers may be aware that you can emulate something like this
lastIndex-relative matching with the g global match flag and the
exec(..) method, as so:


var re = /o+./g,        // <-- look, `g`!
    str = "foot book more";

re.exec( str );         // ["oot"]
re.lastIndex;           // 4

re.exec( str );         // ["ook"]
re.lastIndex;           // 9

re.exec( str );         // ["or"]
re.lastIndex;           // 13

re.exec( str );         // null--no more matches!
re.lastIndex;           // 0--starts over now!


While it’s true that g pattern matches with exec(..) start their
matching from lastIndex’s current value, and also update lastIndex
after each match (or failure), this is not the same thing as y’s
behavior.


Notice in the previous snippet that "ook", located at position 6,
was matched and found by the second exec(..) call, even though at the
time, lastIndex was 4 (from the end of the previous match). Why?
Because as we said earlier, nonsticky matches are free to move ahead in
their matching. A sticky mode expression would have failed here, because
it would not be allowed to move ahead.


In addition to perhaps undesired move-ahead matching behavior, another
downside to just using g instead of y is that g changes the
behavior of some matching methods, like str.match(re).


Consider:


var re = /o+./g,        // <-- look, `g`!
    str = "foot book more";

str.match( re );        // ["oot","ook","or"]


See how all the matches were returned at once? Sometimes that’s OK, but
sometimes that’s not what you want.


The y sticky flag will give you one-at-a-time progressive matching
with utilities like test(..) and match(..). Just make sure the
lastIndex is always in the right position for each match!

















Anchored Sticky


As we warned earlier, it’s inaccurate to think of sticky mode as
implying a pattern starts with ^. The ^ anchor has a distinct
meaning in regular expressions, which is not altered by sticky mode.
^ is an anchor that always refers to the beginning of the input, and
is not in any way relative to lastIndex.


Besides poor/inaccurate documentation on this topic, the confusion is
unfortunately strengthened further because an older pre-ES6 experiment
with sticky mode in Firefox did make ^ relative to lastIndex, so
that behavior has been around for years.


ES6 elected not to do it that way. ^ in a pattern means start-of-input
absolutely and only.


As a consequence, a pattern like /^foo/y will always and only find a
"foo" match at the beginning of a string, if it’s allowed to match
there. If lastIndex is not 0, the match will fail. Consider:


var re = /^foo/y,
    str = "foo";

re.test( str );         // true
re.test( str );         // false
re.lastIndex;           // 0--reset after failure

re.lastIndex = 1;
re.test( str );         // false--failed for positioning
re.lastIndex;           // 0--reset after failure


Bottom line: y plus ^ plus lastIndex > 0 is an incompatible
combination that will always cause a failed match.

Note

While y does not alter the meaning of ^ in any way, the m
multiline mode does, such that ^ means start-of-input or start of
text after a newline. So, if you combine y and m flags together for
a pattern, you can find multiple ^-rooted matches in a string. But
remember: because it’s y sticky, you’ll have to make sure lastIndex
is pointing at the correct new line position (likely by matching to the
end of the line) each subsequent time, or no subsequent matches will be
made.
























Regular Expression flags


Prior to ES6, if you wanted to examine a regular expression object to
see what flags it had applied, you needed to parse them out—ironically, probably with another regular expression—from the content
of the source property, such as:


var re = /foo/ig;

re.toString();          // "/foo/ig"

var flags = re.toString().match( /\/([gim]*)$/ )[1];

flags;                  // "ig"


As of ES6, you can now get these values directly, with the new flags
property:


var re = /foo/ig;

re.flags;               // "gi"


It’s a small nuance, but the ES6 specification calls for the
expression’s flags to be listed in this order: "gimuy", regardless of
what order the original pattern was specified with. That’s the reason for the
difference between /ig and "gi".


No, the order of flags specified or listed doesn’t matter.


Another tweak from ES6 is that the RegExp(..) constructor is now
flags-aware if you pass it an existing regular expression:


var re1 = /foo*/y;
re1.source;                         // "foo*"
re1.flags;                          // "y"

var re2 = new RegExp( re1 );
re2.source;                         // "foo*"
re2.flags;                          // "y"

var re3 = new RegExp( re1, "ig" );
re3.source;                         // "foo*"
re3.flags;                          // "gi"


Prior to ES6, the re3 construction would throw an error, but as of ES6
you can override the flags when duplicating.
























Number Literal Extensions


Prior to ES5, number literals looked like the following—the octal
form was not officially specified, only allowed as an extension that
browsers had come to de facto agreement on:


var dec = 42,
    oct = 052,
    hex = 0x2a;

Note

Though you are specifying a number in different bases, the
number’s mathematic value is what is stored, and the default output
interpretation is always base-10. The three variables in the previous
snippet all have the 42 value stored in them.




To further illustrate that 052 was a nonstandard form extension,
consider:


Number( "42" );             // 42
Number( "052" );            // 52
Number( "0x2a" );           // 42


ES5 continued to permit the browser-extended octal form (including such
inconsistencies), except that in strict mode, the octal literal (052)
form is disallowed. This restriction was done mainly because many
developers had the habit (from other languages) of seemingly innocuously
prefixing otherwise base-10 numbers with `0`s for code alignment
purposes, and then running into the accidental fact that they’d changed
the number value entirely!


ES6 continues the legacy of changes/variations to how number literals
outside base-10 numbers can be represented. There’s now an official
octal form, an amended hexadecimal form, and a brand-new binary form.
For web compatibility reasons, the old octal 052 form will continue to
be legal (though unspecified) in nonstrict mode, but should really
never be used anymore.


Here are the new ES6 number literal forms:


var dec = 42,
    oct = 0o52,         // or `0O52` :(
    hex = 0x2a,         // or `0X2a` :/
    bin = 0b101010;     // or `0B101010` :/


The only decimal form allowed is base-10. Octal, hexadecimal, and binary
are all integer forms.


And the string representations of these forms are all able to be
coerced/converted to their number equivalent:


Number( "42" );         // 42
Number( "0o52" );       // 42
Number( "0x2a" );       // 42
Number( "0b101010" );   // 42


Though not strictly new to ES6, it’s a little-known fact that you can
actually go the opposite direction of conversion (well, sort of):


var a = 42;

a.toString();           // "42"--also `a.toString( 10 )`
a.toString( 8 );        // "52"
a.toString( 16 );       // "2a"
a.toString( 2 );        // "101010"


In fact, you can represent a number this way in any base from 2 to
36, though it’d be rare that you’d go outside the standard bases: 2,
8, 10, and 16.

















Unicode


Let me just say that this section is not an exhaustive
everything-you-ever-wanted-to-know-about-Unicode resource. I want to
cover what you need to know that’s changing for Unicode in ES6, but we
won’t go much deeper than that. Mathias Bynens has written/spoken extensively and
brilliantly about JS and Unicode (see
https://mathiasbynens.be/notes/javascript-unicode and
http://fluentconf.com/javascript-html-2015/public/content/2015/02/18-javascript-loves-unicode).


The Unicode characters that range from 0x0000 to 0xFFFF contain all
the standard printed characters (in various languages) that you’re
likely to have seen or interacted with. This group of characters is
called the Basic Multilingual Plane (BMP). The BMP even contains fun
symbols like this cool snowman: ☃ (U+2603).


There are lots of other extended Unicode characters beyond this BMP set,
which range up to 0x10FFFF. These symbols are often referred to as
astral symbols, as that’s the name given to the set of 16 planes
(e.g., layers/groupings) of characters beyond the BMP. Examples of
astral symbols include 𝄞 U+1D11E) and 💩 U+1F4A9).


Prior to ES6, JavaScript strings could specify Unicode characters using
Unicode escaping, such as:


var snowman = "\u2603";
console.log( snowman );         // "☃"


However, the \uXXXX Unicode escaping only supports four hexadecimal
characters, so you can only represent the BMP set of characters in this
way. To represent an astral character using Unicode escaping prior to
ES6, you need to use a surrogate pair—basically two specially
calculated Unicode-escaped characters side by side, which JS interprets
together as a single astral character:


var gclef = "\uD834\uDD1E";
console.log( gclef );           // "𝄞"


As of ES6, we now have a new form for Unicode escaping (in strings and
regular expressions), called Unicode code point escaping:


var gclef = "\u{1D11E}";
console.log( gclef );           // "𝄞"


As you can see, the difference is the presence of the { } in the
escape sequence, which allows it to contain any number of hexadecimal
characters. Because you only need six to represent the highest possible
code point value in Unicode (i.e., 0x10FFFF), this is sufficient.










Unicode-Aware String Operations


By default, JavaScript string operations and methods are not sensitive
to astral symbols in string values. So, they treat each BMP character
individually, even the two surrogate halves that make up an otherwise
single astral character. Consider:


var snowman = "☃";
snowman.length;                 // 1

var gclef = "𝄞";
gclef.length;                   // 2


So, how do we accurately calculate the length of such a string? In this
scenario, the following trick will work:


var gclef = "𝄞";

[...gclef].length;              // 1
Array.from( gclef ).length;     // 1


Recall from “for..of Loops” earlier in this chapter that
ES6 strings have built-in iterators. This iterator happens to be
Unicode-aware, meaning it will automatically output an astral symbol as
a single value. We take advantage of that using the ... spread
operator in an array literal, which creates an array of the string’s
symbols. Then we just inspect the length of that resultant array. ES6’s
Array.from(..) does basically the same thing as [...XYZ], but we’ll
cover that utility in detail in Chapter 6.

Warning

It should be noted that constructing and exhausting an
iterator just to get the length of a string is quite expensive on
performance, relatively speaking, compared to what a theoretically
optimized native utility/property would do.




Unfortunately, the full answer is not as simple or straightforward. In
addition to the surrogate pairs (which the string iterator takes care
of), there are special Unicode code points that behave in other special
ways, which is much harder to account for. For example, there’s a set of
code points that modify the previous adjacent character, known as
Combining Diacritical Marks.


Consider these two string outputs:


console.log( s1 );              // "é"
console.log( s2 );              // "é"


They look the same, but they’re not! Here’s how we created s1 and
s2:


var s1 = "\xE9",
    s2 = "e\u0301";


As you can probably guess, our previous length trick doesn’t work with
s2:


[...s1].length;                 // 1
[...s2].length;                 // 2


So what can we do? In this case, we can perform a Unicode
normalization on the value before inquiring about its length, using the
ES6 String#normalize(..) utility (which we’ll cover more in Chapter 6):


var s1 = "\xE9",
    s2 = "e\u0301";

s1.normalize().length;          // 1
s2.normalize().length;          // 1

s1 === s2;                      // false
s1 === s2.normalize();          // true


Essentially, normalize(..) takes a sequence like "e\u0301" and
normalizes it to "\xE9". Normalization can even combine multiple
adjacent combining marks if there’s a suitable Unicode character they
combine to:


var s1 = "o\u0302\u0300",
    s2 = s1.normalize(),
    s3 = "ồ";

s1.length;                      // 3
s2.length;                      // 1
s3.length;                      // 1

s2 === s3;                      // true


Unfortunately, normalization isn’t fully perfect here, either. If you
have multiple combining marks modifying a single character, you may not
get the length count you’d expect, because there may not be a single
defined normalized character that represents the combination of all the
marks. For example:


var s1 = "e\u0301\u0330";

console.log( s1 );              // "ḛ́"

s1.normalize().length;          // 2


The further you go down this rabbit hole, the more you realize that it’s
difficult to get one precise definition for “length.” What we see
visually rendered as a single character—more precisely called a
grapheme—doesn’t always strictly relate to a single “character” in
the program processing sense.

Tip

If you want to see just how deep this rabbit hole goes, check out
the “Grapheme Cluster Boundaries” algorithm.



















Character Positioning


Similar to length complications, what does it actually mean to ask,
“what is the character at position 2?” The naive pre-ES6 answer comes from charAt(..), which will not respect the atomicity of
an astral character, nor will it take into account combining marks.


Consider:


var s1 = "abc\u0301d",
    s2 = "ab\u0107d",
    s3 = "ab\u{1d49e}d";

console.log( s1 );              // "abćd"
console.log( s2 );              // "abćd"
console.log( s3 );              // "ab𝒞d"

s1.charAt( 2 );                 // "c"
s2.charAt( 2 );                 // "ć"
s3.charAt( 2 );                 // "" <-- unprintable surrogate
s3.charAt( 3 );                 // "" <-- unprintable surrogate


So, is ES6 giving us a Unicode-aware version of charAt(..)?
Unfortunately, no. At the time of this writing, there’s a proposal for
such a utility that’s under consideration for post-ES6.


But with what we explored in the previous section (and of course with
the limitations noted thereof!), we can hack an ES6 answer:


var s1 = "abc\u0301d",
    s2 = "ab\u0107d",
    s3 = "ab\u{1d49e}d";

[...s1.normalize()][2];         // "ć"
[...s2.normalize()][2];         // "ć"
[...s3.normalize()][2];         // "𝒞"

Warning

Reminder of an earlier warning: constructing and exhausting
an iterator each time you want to get at a single character is… very
not ideal, performance-wise. Let’s hope we get a built-in and optimized
utility for this soon, post-ES6.




What about a Unicode-aware version of the charCodeAt(..) utility? ES6
gives us codePointAt(..):


var s1 = "abc\u0301d",
    s2 = "ab\u0107d",
    s3 = "ab\u{1d49e}d";

s1.normalize().codePointAt( 2 ).toString( 16 );
// "107"

s2.normalize().codePointAt( 2 ).toString( 16 );
// "107"

s3.normalize().codePointAt( 2 ).toString( 16 );
// "1d49e"


What about the other direction? A Unicode-aware version of
String.fromCharCode(..) is ES6’s String.fromCodePoint(..):


String.fromCodePoint( 0x107 );      // "ć"

String.fromCodePoint( 0x1d49e );    // "𝒞"


So wait, can we just combine String.fromCodePoint(..) and
codePointAt(..) to get a better version of a Unicode-aware
charAt(..) from earlier? Yep!


var s1 = "abc\u0301d",
    s2 = "ab\u0107d",
    s3 = "ab\u{1d49e}d";

String.fromCodePoint( s1.normalize().codePointAt( 2 ) );
// "ć"

String.fromCodePoint( s2.normalize().codePointAt( 2 ) );
// "ć"

String.fromCodePoint( s3.normalize().codePointAt( 2 ) );
// "𝒞"


There’s quite a few other string methods we haven’t addressed here,
including toUpperCase(), toLowerCase(), substring(..),
indexOf(..), slice(..), and a dozen others. None of these have been
changed or augmented for full Unicode awareness, so you should be very
careful—probably just avoid them!—when working with strings
containing astral symbols.


There are also several string methods that use regular expressions for
their behavior, like replace(..) and match(..). Thankfully, ES6
brings Unicode awareness to regular expressions, as we covered in
“Unicode Flag”.


OK, there we have it! JavaScript’s Unicode string support is
significantly better over pre-ES6 (though still not perfect) with the
various additions we’ve just covered.

















Unicode Identifier Names


Unicode can also be used in identifier names (variables, properties,
etc.). Prior to ES6, you could do this with Unicode-escapes, like:


var \u03A9 = 42;

// same as: var Ω = 42;


As of ES6, you can also use the earlier explained code point escape
syntax:

var \u{2B400} = 42;

// same as: var  = 42;


There’s a complex set of rules around exactly which Unicode characters
are allowed. Furthermore, some are allowed only if they’re not the first
character of the identifier name.

Note

Mathias Bynens has a great post on all the
nitty-gritty details.




The reasons for using such unusual characters in identifier names are
rather rare and academic. You typically won’t be best served by writing
code that relies on these esoteric capabilities.
























Symbols


With ES6, for the first time in quite a while, a new primitive type has
been added to JavaScript: the symbol. Unlike the other primitive
types, however, symbols don’t have a literal form.


Here’s how you create a symbol:


var sym = Symbol( "some optional description" );

typeof sym;     // "symbol"


Some things to note:



	
You cannot and should not use new with Symbol(..). It’s not a
constructor, nor are you producing an object.



	
The parameter passed to Symbol(..) is optional. If passed, it should
be a string that gives a friendly description for the symbol’s purpose.



	
The typeof output is a new value ("symbol") that is the primary
way to identify a symbol.






The description, if provided, is solely used for the stringification
representation of the symbol:


sym.toString();     // "Symbol(some optional description)"


Similar to how primitive string values are not instances of String,
symbols are also not instances of Symbol. If, for some reason, you
want to construct a boxed wrapper object form of a symbol value, you can
do the following:


sym instanceof Symbol;      // false

var symObj = Object( sym );
symObj instanceof Symbol;   // true

symObj.valueOf() === sym;   // true

Note

symObj in this snippet is interchangeable with sym; either
form can be used in all places symbols are utilized. There’s not much
reason to use the boxed wrapper object form (symObj) instead of the
primitive form (sym). Keeping with similar advice for other
primitives, it’s probably best to prefer sym over symObj.




The internal value of a symbol itself—referred to as its name—is
hidden from the code and cannot be obtained. You can think of this
symbol value as an automatically generated, unique (within your
application) string value.


But if the value is hidden and unobtainable, what’s the point of having
a symbol at all?


The main point of a symbol is to create a string-like value that can’t
collide with any other value. So, for example, consider using a symbol
as a constant representing an event name:


const EVT_LOGIN = Symbol( "event.login" );


You’d then use EVT_LOGIN in place of a generic string literal like
"event.login":


evthub.listen( EVT_LOGIN, function(data){
    // ..
} );


The benefit here is that EVT_LOGIN holds a value that cannot be
duplicated (accidentally or otherwise) by any other value, so it is
impossible for there to be any confusion of which event is being
dispatched or handled.

Note

Under the covers, the evthub utility assumed in the previous
snippet would almost certainly be using the symbol value from the
EVT_LOGIN argument directly as the property/key in some internal
object (hash) that tracks event handlers. If evthub instead needed to
use the symbol value as a real string, it would need to explicitly
coerce with String(..) or toString(), as implicit string coercion of
symbols is not allowed.




You may use a symbol directly as a property name/key in an object, such
as a special property you want to treat as hidden or meta in usage.
It’s important to know that although you intend to treat it as such, it
is not actually a hidden or untouchable property.


Consider this module that implements the singleton pattern behavior—that is, it only allows itself to be created once:


const INSTANCE = Symbol( "instance" );

function HappyFace() {
    if (HappyFace[INSTANCE]) return HappyFace[INSTANCE];

    function smile() { .. }

    return HappyFace[INSTANCE] = {
        smile: smile
    };
}

var me = HappyFace(),
    you = HappyFace();

me === you;			// true


The INSTANCE symbol value here is a special, almost hidden, meta-like
property stored statically on the HappyFace() function object.


It could alternatively have been a plain old property like __instance,
and the behavior would have been identical. The usage of a symbol simply
improves the metaprogramming style, keeping this INSTANCE property set
apart from any other normal properties.










Symbol Registry


One mild downside to using symbols as in the last few examples is that
the EVT_LOGIN and INSTANCE variables had to be stored in an outer
scope (perhaps even the global scope), or otherwise somehow stored in a
publicly available location, so that all parts of the code that need to
use the symbols can access them.


To aid in organizing code with access to these symbols, you can create
symbol values with the global symbol registry. For example:


const EVT_LOGIN = Symbol.for( "event.login" );

console.log( EVT_LOGIN );       // Symbol(event.login)


And:


function HappyFace() {
    const INSTANCE = Symbol.for( "instance" );

    if (HappyFace[INSTANCE]) return HappyFace[INSTANCE];

    // ..

    return HappyFace[INSTANCE] = { .. };
}


Symbol.for(..) looks in the global symbol registry to see if a symbol
is already stored with the provided description text, and returns it if
so. If not, it creates one to return. In other words, the global symbol
registry treats symbol values, by description text, as singletons
themselves.


But that also means that any part of your application can retrieve the
symbol from the registry using Symbol.for(..), as long as the matching
description name is used.


Ironically, symbols are basically intended to replace the use of magic
strings (arbitrary string values given special meaning) in your
application. But you precisely use magic description string values to
uniquely identify/locate them in the global symbol registry!


To avoid accidental collisions, you’ll probably want to make your symbol
descriptions quite unique. One easy way of doing that is to include
prefix/context/namespacing information in them.


For example, consider a utility such as the following:


function extractValues(str) {
    var key = Symbol.for( "extractValues.parse" ),
        re = extractValues[key] ||
            /[^=&]+?=([^&]+?)(?=&|$)/g,
        values = [], match;

    while (match = re.exec( str )) {
        values.push( match[1] );
    }

    return values;
}


We use the magic string value "extractValues.parse" because it’s quite
unlikely that any other symbol in the registry would ever collide with
that description.


If a user of this utility wants to override the parsing regular
expression, they can also use the symbol registry:


extractValues[Symbol.for( "extractValues.parse" )] =
    /..some pattern../g;

extractValues( "..some string.." );


Aside from the assistance the symbol registry provides in globally
storing these values, everything we’re seeing here could have been done
by just actually using the magic string "extractValues.parse" as the
key, rather than the symbol. The improvements exist at the
metaprogramming level more than the functional level.


You may have occasion to use a symbol value that has been stored in the
registry to look up what description text (key) it’s stored under. For
example, you may need to signal to another part of your application how
to locate a symbol in the registry because you cannot pass the symbol
value itself.


You can retrieve a registered symbol’s description text (key) using
Symbol.keyFor(..):


var s = Symbol.for( "something cool" );

var desc = Symbol.keyFor( s );
console.log( desc );            // "something cool"

// get the symbol from the registry again
var s2 = Symbol.for( desc );

s2 === s;                       // true

















Symbols as Object Properties


If a symbol is used as a property/key of an object, it’s stored in a
special way so that the property will not show up in a normal
enumeration of the object’s properties:


var o = {
    foo: 42,
    [ Symbol( "bar" ) ]: "hello world",
    baz: true
};

Object.getOwnPropertyNames( o );    // [ "foo","baz" ]


To retrieve an object’s symbol properties:


Object.getOwnPropertySymbols( o );  // [ Symbol(bar) ]


This makes it clear that a property symbol is not actually hidden or
inaccessible, as you can always see it in the
Object.getOwnPropertySymbols(..) list.












Built-In Symbols


ES6 comes with a number of predefined built-in symbols that expose
various meta behaviors on JavaScript object values. However, these
symbols are not registered in the global symbol registry, as one might
expect.


Instead, they’re stored as properties on the Symbol function object.
For example, in “for..of Loops” earlier in this chapter, we
introduced the Symbol.iterator value:


var a = [1,2,3];

a[Symbol.iterator];         // native function


The specification uses the @@ prefix notation to refer to the built-in
symbols, the most common ones being: @@iterator, @@toStringTag,
@@toPrimitive. Several others are defined as well, though they
probably won’t be used as often.

Note

See “Well-Known Symbols” in Chapter 7 for detailed information
about how these built-in symbols are used for meta programming purposes.































Review


ES6 adds a heap of new syntax forms to JavaScript, so there’s plenty to
learn!


Most of these are designed to ease the pain points of common programming
idioms, such as setting default values to function parameters and
gathering the “rest” of the parameters into an array. Destructuring is a
powerful tool for more concisely expressing assignments of values from
arrays and nested objects.


While features like => arrow functions appear to also be all about
shorter and nicer-looking syntax, they actually have very specific
behaviors that you should intentionally use only in appropriate
situations.


Expanded Unicode support, new tricks for regular expressions, and even a
new primitive symbol type round out the syntactic evolution of ES6.












Chapter 3. Organization



It’s one thing to write JS code, but it’s another to properly organize it. Utilizing common patterns for organization and reuse goes a long way to improving the readability and understandability of your code. Remember: code is at least as much about communicating to other developers as it is about feeding the computer instructions.


ES6 has several important features that help significantly improve these patterns, including iterators, generators, modules, and classes.








Iterators


An iterator is a structured pattern for pulling information from a
source in one-at-a-time fashion. This pattern has been found in programming for a long time. And to be sure, JS developers have been ad
hoc designing and implementing iterators in JS programs since before
anyone can remember, so it’s not at all a new topic.


What ES6 has done is introduce an implicit standardized interface for
iterators. Many of the built-in data structures in JavaScript will now
expose an iterator implementing this standard. And you can also
construct your own iterators adhering to the same standard, for maximal
interoperability.


Iterators are a way of organizing ordered, sequential, pull-based
consumption of data.


For example, you may implement a utility that produces a new unique
identifier each time it’s requested. Or you may produce an infinite
series of values that rotate through a fixed list, in round-robin
fashion. Or you could attach an iterator to a database query result to
pull out new rows one at a time.


Although they have not commonly been used in JS in such a manner,
iterators can also be thought of as controlling behavior one step at a
time. This can be illustrated quite clearly when considering generators
(see “Generators” later in this chapter), though you can certainly do
the same without generators.










Interfaces


At the time of this writing, ES6 section 25.1.1.2 details the Iterator interface as having the following requirement:


Iterator [required]
    next() {method}: retrieves next IteratorResult


There are two optional members that some iterators are extended with:


Iterator [optional]
    return() {method}: stops iterator and returns IteratorResult
    throw() {method}: signals error and returns IteratorResult


The IteratorResult interface is specified as:


IteratorResult
    value {property}: current iteration value or final return
        value (optional if `undefined`)
    done {property}: boolean, indicates completion status

Note

I call these interfaces implicit not because they’re not
explicitly called out in the specification—they are!—but because
they’re not exposed as direct objects accessible to code. JavaScript
does not, in ES6, support any notion of “interfaces,” so adherence for
your own code is purely conventional. However, wherever JS expects an
iterator—a for..of loop, for instance—what you provide must
adhere to these interfaces or the code will fail.




There’s also an Iterable interface, which describes objects that must
be able to produce iterators:


Iterable
    @@iterator() {method}: produces an Iterator


If you recall from “Built-In Symbols” in Chapter 2, @@iterator is the
special built-in symbol representing the method that can produce
iterator(s) for the object.












IteratorResult


The IteratorResult interface specifies that the return value from any
iterator operation will be an object of the form:


{ value: .. , done: true / false }


Built-in iterators will always return values of this form, but more
properties are, of course, allowed to be present on the return value, as
necessary.


For example, a custom iterator may add additional metadata to the result
object (e.g., where the data came from, how long it took to retrieve,
cache expiration length, frequency for the appropriate next request,
etc.).

Note

Technically, value is optional if it would otherwise be
considered absent or unset, such as in the case of the value undefined. Because accessing res.value will produce undefined
whether it’s present with that value or absent entirely, the
presence/absence of the property is more an implementation detail or an
optimization (or both), rather than a functional issue.
























next() Iteration


Let’s look at an array, which is an iterable, and the iterator it can
produce to consume its values:


var arr = [1,2,3];

var it = arr[Symbol.iterator]();

it.next();      // { value: 1, done: false }
it.next();      // { value: 2, done: false }
it.next();      // { value: 3, done: false }

it.next();      // { value: undefined, done: true }


Each time the method located at Symbol.iterator (see Chapter 2 and Chapter 7)
is invoked on this arr value, it will produce a new fresh iterator.
Most structures will do the same, including all the built-in data
structures in JS.


However, a structure like an event queue consumer might only ever
produce a single iterator (singleton pattern). Or a structure might only
allow one unique iterator at a time, requiring the current one to be
completed before a new one can be created.


The it iterator in the previous snippet doesn’t report done: true
when you receive the 3 value. You have to call next() again, in
essence going beyond the end of the array’s values, to get the complete
signal done: true. It may not be clear why until later in this
section, but that design decision will typically be considered a best
practice.


Primitive string values are also iterables by default:


var greeting = "hello world";

var it = greeting[Symbol.iterator]();

it.next();      // { value: "h", done: false }
it.next();      // { value: "e", done: false }
..

Note

Technically, the primitive value itself isn’t iterable, but
thanks to “boxing”, "hello world" is coerced/converted to its String
object wrapper form, which is an iterable. See the Types & Grammar
title of this series for more information.




ES6 also includes several new data structures, called collections (see
Chapter 5). These collections are not only iterables themselves, but
they also provide API method(s) to generate an iterator, such as:


var m = new Map();
m.set( "foo", 42 );
m.set( { cool: true }, "hello world" );

var it1 = m[Symbol.iterator]();
var it2 = m.entries();

it1.next();     // { value: [ "foo", 42 ], done: false }
it2.next();     // { value: [ "foo", 42 ], done: false }
..


The next(..) method of an iterator can optionally take one or more
arguments. The built-in iterators mostly do not exercise this
capability, though a generator’s iterator definitely does (see
“Generators” later in this chapter).


By general convention, including all the built-in iterators, calling
next(..) on an iterator that’s already been exhausted is not an error,
but will simply continue to return the result
{ value: undefined, done: true }.

















Optional: return(..) and throw(..)


The optional methods on the iterator interface—return(..) and
throw(..)—are not implemented on most of the built-in iterators.
However, they definitely do mean something in the context of generators,
so see “Generators” for more specific information.


return(..) is defined as sending a signal to an iterator that the
consuming code is complete and will not be pulling any more values from
it. This signal can be used to notify the producer (the iterator
responding to next(..) calls) to perform any cleanup it may need to
do, such as releasing/closing network, database, or file handle
resources.


If an iterator has a return(..) present and any condition occurs that
can automatically be interpreted as abnormal or early termination of
consuming the iterator, return(..) will automatically be called. You
can call return(..) manually as well.


return(..) will return an IteratorResult object just like next(..)
does. In general, the optional value you send to return(..) would be
sent back as value in this IteratorResult, though there are nuanced
cases where that might not be true.


throw(..) is used to signal an exception/error to an iterator, which
possibly may be used differently by the iterator than the completion
signal implied by return(..). It does not necessarily imply a complete
stop of the iterator as return(..) generally does.


For example, with generator iterators, throw(..) actually injects a
thrown exception into the generator’s paused execution context, which
can be caught with a try..catch. An uncaught throw(..) exception
would end up abnormally aborting the generator’s iterator.

Note

By general convention, an iterator should not produce any more
results after having called return(..) or throw(..).



















Iterator Loop


As we covered in “for..of Loops” in Chapter 2, the ES6 for..of
loop directly consumes a conforming iterable.


If an iterator is also an iterable, it can be used directly with the
for..of loop. You make an iterator an iterable by giving it a
Symbol.iterator method that simply returns the iterator itself:


var it = {
    // make the `it` iterator an iterable
    [Symbol.iterator]() { return this; },

    next() { .. },
    ..
};

it[Symbol.iterator]() === it;       // true


Now we can consume the it iterator with a for..of loop:


for (var v of it) {
    console.log( v );
}


To fully understand how such a loop works, recall the for equivalent of a for..of loop from Chapter 2:


for (var v, res; (res = it.next()) && !res.done; ) {
    v = res.value;
    console.log( v );
}


If you look closely, you’ll see that it.next() is called before each
iteration, and then res.done is consulted. If res.done is true, the expression evaluates to false and the iteration doesn’t occur.


Recall earlier that we suggested iterators should in general not return
done: true along with the final intended value from the iterator. Now
you can see why.


If an iterator returned { done: true, value: 42 }, the for..of loop
would completely discard the 42 value and it’d be lost. For
this reason, assuming that your iterator may be consumed by patterns
like the for..of loop or its manual for equivalent, you should probably
wait to return done: true for signaling completion until after you’ve
already returned all relevant iteration values.

Warning

You can, of course, intentionally design your iterator to
return some relevant value at the same time as returning done: true.
But don’t do this unless you’ve documented that as the case, and thus
implicitly forced consumers of your iterator to use a different pattern
for iteration than is implied by for..of or its manual equivalent as we
depicted.



















Custom Iterators


In addition to the standard built-in iterators, you can make your own!
All it takes to make them interoperate with ES6’s consumption facilities
(e.g., the for..of loop and the ... operator) is to adhere to the
proper interface(s).


Let’s try constructing an iterator that produces the infinite series of
numbers in the Fibonacci sequence:


var Fib = {
    [Symbol.iterator]() {
        var n1 = 1, n2 = 1;

        return {
            // make the iterator an iterable
            [Symbol.iterator]() { return this; },

            next() {
                var current = n2;
                n2 = n1;
                n1 = n1 + current;
                return { value: current, done: false };
            },

            return(v) {
                console.log(
                    "Fibonacci sequence abandoned."
                );
                return { value: v, done: true };
            }
        };
    }
};

for (var v of Fib) {
    console.log( v );

    if (v > 50) break;
}
// 1 1 2 3 5 8 13 21 34 55
// Fibonacci sequence abandoned.

Warning

If we hadn’t inserted the break condition, this for..of
loop would have run forever, which is probably not the desired result in
terms of breaking your program!




The Fib[Symbol.iterator]() method when called returns the iterator
object with next() and return(..) methods on it. State is maintained
via n1 and n2 variables, which are kept by the closure.


Let’s next consider an iterator that is designed to run through a
series (aka a queue) of actions, one item at a time:


var tasks = {
    [Symbol.iterator]() {
        var steps = this.actions.slice();

        return {
            // make the iterator an iterable
            [Symbol.iterator]() { return this; },

            next(...args) {
                if (steps.length > 0) {
                    let res = steps.shift()( ...args );
                    return { value: res, done: false };
                }
                else {
                    return { done: true }
                }
            },

            return(v) {
                steps.length = 0;
                return { value: v, done: true };
            }
        };
    },
    actions: []
};


The iterator on tasks steps through functions found in the actions
array property, if any, and executes them one at a time, passing in
whatever arguments you pass to next(..), and returning any return
value to you in the standard IteratorResult object.


Here’s how we could could use this tasks queue:


tasks.actions.push(
    function step1(x){
        console.log( "step 1:", x );
        return x * 2;
    },
    function step2(x,y){
        console.log( "step 2:", x, y );
        return x + (y * 2);
    },
    function step3(x,y,z){
        console.log( "step 3:", x, y, z );
        return (x * y) + z;
    }
);

var it = tasks[Symbol.iterator]();

it.next( 10 );          // step 1: 10
                        // { value:   20, done: false }

it.next( 20, 50 );      // step 2: 20 50
                        // { value:  120, done: false }

it.next( 20, 50, 120 ); // step 3: 20 50 120
                        // { value: 1120, done: false }

it.next();              // { done: true }


This particular usage reinforces that iterators can be a pattern for
organizing functionality, not just data. It’s also reminiscent of what
we’ll see with generators in the next section.


You could even get creative and define an iterator that represents meta
operations on a single piece of data. For example, we could define an
iterator for numbers that by default ranges from 0 up to (or down to,
for negative numbers) the number in question.


Consider:


if (!Number.prototype[Symbol.iterator]) {
    Object.defineProperty(
        Number.prototype,
        Symbol.iterator,
        {
            writable: true,
            configurable: true,
            enumerable: false,
            value: function iterator(){
                var i, inc, done = false, top = +this;

                // iterate positively or negatively?
                inc = 1 * (top < 0 ? -1 : 1);

                return {
                    // make the iterator itself an iterable!
                    [Symbol.iterator](){ return this; },

                    next() {
                        if (!done) {
                            // initial iteration always 0
                            if (i == null) {
                                i = 0;
                            }
                            // iterating positively
                            else if (top >= 0) {
                                i = Math.min(top,i + inc);
                            }
                            // iterating negatively
                            else {
                                i = Math.max(top,i + inc);
                            }

                            // done after this iteration?
                            if (i == top) done = true;

                            return { value: i, done: false };
                        }
                        else {
                            return { done: true };
                        }
                    }
                };
            }
        }
    );
}


Now, what tricks does this creativity afford us?


for (var i of 3) {
    console.log( i );
}
// 0 1 2 3

[...-3];                // [0,-1,-2,-3]


Those are some fun tricks, though the practical utility is somewhat
debatable. But then again, one might wonder why ES6 didn’t just ship
with such a minor but delightful feature easter egg!


I’d be remiss if I didn’t at least remind you that extending native
prototypes as I’m doing in the previous snippet is something you should
only do with caution and awareness of potential hazards.


In this case, the chances that you’ll have a collision with other code
or even a future JS feature is probably exceedingly low. But just beware
of the slight possibility. And document what you’re doing verbosely for
posterity’s sake.

Note

I’ve expounded on this particular technique in this blog post if you want more
details. And this comment even suggests a similar trick but for making string character ranges.



















Iterator Consumption


We’ve already shown consuming an iterator item by item with the
for..of loop. But there are other ES6 structures that can consume
iterators.


Let’s consider the iterator attached to this array (though any iterator
we choose would have the following behaviors):


var a = [1,2,3,4,5];


The ... spread operator fully exhausts an iterator. Consider:


function foo(x,y,z,w,p) {
    console.log( x + y + z + w + p );
}

foo( ...a );            // 15


... can also spread an iterator inside an array:


var b = [ 0, ...a, 6 ];
b;                      // [0,1,2,3,4,5,6]


Array destructuring (see “Destructuring” in Chapter 2) can partially or
completely (if paired with a ... rest/gather operator) consume an
iterator:


var it = a[Symbol.iterator]();

var [x,y] = it;
// take just the first two elements from `it`
var [z, ...w] = it;
// take the third, then the rest all at once

// is `it` fully exhausted? Yep.
it.next();              // { value: undefined, done: true }

x;                      // 1
y;                      // 2
z;                      // 3
w;                      // [4,5]
























Generators


All functions run to completion, right? In other words, once a function
starts running, it finishes before anything else can interrupt.


At least that’s how it’s been for the whole history of JavaScript up to
this point. As of ES6, a new somewhat exotic form of function is being
introduced, called a generator. A generator can pause itself in
mid-execution, and can be resumed either right away or at a later time.
So it clearly does not hold the run-to-completion guarantee that normal
functions do.


Moreover, each pause/resume cycle in mid-execution is an opportunity for
two-way message passing, where the generator can return a value, and the
controlling code that resumes it can send a value back in.


As with iterators in the previous section, there are multiple ways to
think about what a generator is, or rather what it’s most useful for.
There’s no one right answer, but we’ll try to consider several angles.

Note

See the Async & Performance title of this series for more
information about generators, and also see Chapter 4 of this current
title.












Syntax


The generator function is declared with this new syntax:


function *foo() {
    // ..
}


The position of the * is not functionally relevant. The same
declaration could be written as any of the following:


function *foo()  { .. }
function* foo()  { .. }
function * foo() { .. }
function*foo()   { .. }
..


The only difference here is stylistic preference. Most other
literature seems to prefer function* foo(..) { .. }. I prefer
function *foo(..) { .. }, so that’s how I’ll present them for the rest
of this title.


My reason is purely didactic in nature. In this text, when referring to
a generator function, I will use *foo(..), as opposed to foo(..) for
a normal function. I observe that *foo(..) more closely matches the
* positioning of function *foo(..) { .. }.


Moreover, as we saw in Chapter 2 with concise methods, there’s a concise
generator form in object literals:


var a = {
    *foo() { .. }
};


I would say that with concise generators, *foo() { .. } is rather more
natural than * foo() { .. }. So that further argues for matching the
consistency with *foo().


Consistency eases understanding and learning.












Executing a Generator


Though a generator is declared with *, you still execute it like a
normal function:


foo();


You can still pass it arguments, as in:


function *foo(x,y) {
    // ..
}

foo( 5, 10 );


The major difference is that executing a generator, like foo(5,10),
doesn’t actually run the code in the generator. Instead, it produces an
iterator that will control the generator to execute its code.


We’ll come back to this later in “Iterator Control”, but briefly:


function *foo() {
    // ..
}

var it = foo();

// to start/advanced `*foo()`, call
// `it.next(..)`

















yield


Generators also have a new keyword you can use inside them, to signal
the pause point: yield. Consider:


function *foo() {
    var x = 10;
    var y = 20;

    yield;

    var z = x + y;
}


In this *foo() generator, the operations on the first two lines would
run at the beginning, then yield would pause the generator. If and
when resumed, the last line of *foo() would run. yield can appear
any number of times (or not at all, technically!) in a generator.


You can even put yield inside a loop, and it can represent a repeated
pause point. In fact, a loop that never completes just means a generator
that never completes, which is completely valid, and sometimes entirely
what you need.


yield is not just a pause point. It’s an expression that sends out a
value when pausing the generator. Here’s a while..true loop in a
generator that for each iteration yields a new random number:


function *foo() {
    while (true) {
        yield Math.random();
    }
}


The yield .. expression not only sends a value—yield without a
value is the same as yield undefined—but also receives (i.e., is
replaced by) the eventual resumption value. Consider:


function *foo() {
    var x = yield 10;
    console.log( x );
}


This generator will first yield out the value 10 when pausing
itself. When you resume the generator—using the it.next(..) we
referred to earlier—whatever value (if any) you resume with will
replace/complete the whole yield 10 expression, meaning that the value
will be assigned to the x variable.


A yield .. expression can appear anywhere a normal expression can. For
example:


function *foo() {
    var arr = [ yield 1, yield 2, yield 3 ];
    console.log( arr, yield 4 );
}


*foo() here has four yield .. expressions. Each yield results in
the generator pausing to wait for a resumption value that’s then used in
the various expression contexts.


yield is not technically an operator, though when used like yield 1
it sure looks like it. Because yield can be used all by itself as in
var x = yield;, thinking of it as an operator can sometimes be
confusing.


Technically, yield .. is of the same “expression precedence”—similar conceptually to operator precedence—as an assignment
expression like a = 3. That means yield .. can basically appear
anywhere a = 3 can validly appear.


Let’s illustrate the symmetry:


var a, b;

a = 3;                  // valid
b = 2 + a = 3;          // invalid
b = 2 + (a = 3);        // valid

yield 3;                // valid
a = 2 + yield 3;        // invalid
a = 2 + (yield 3);      // valid

Note

If you think about it, it makes a sort of conceptual sense that
a yield .. expression would behave similar to an assignment
expression. When a paused yield expression is resumed, it’s
completed/replaced by the resumption value in a way that’s not terribly
dissimilar from being “assigned” that value.




The takeaway: if you need yield .. to appear in a position where an
assignment like a = 3 would not itself be allowed, it needs to be
wrapped in a ( ).


Because of the low precedence of the yield keyword, almost any
expression after a yield .. will be computed first before being sent
with yield. Only the ... spread operator and the , comma operator
have lower precedence, meaning they’d bind after the yield has been
evaluated.


So just like with multiple operators in normal statements, another case
where ( ) might be needed is to override (elevate) the low precedence
of yield, such as the difference between these expressions:


yield 2 + 3;            // same as `yield (2 + 3)`

(yield 2) + 3;          // `yield 2` first, then `+ 3`


Just like = assignment, yield is also “right-associative,” which
means that multiple yield expressions in succession are treated as
having been ( .. ) grouped from right to left. So,
yield yield yield 3 is treated as yield (yield (yield 3)). A
“left-associative” interpretation like ((yield) yield) yield 3 would
make no sense.


Just like with operators, it’s a good idea to use ( .. ) grouping,
even if not strictly required, to disambiguate your intent if yield is
combined with other operators or yields.

Note

See the Types & Grammar title of this series for more
information about operator precedence and associativity.



















yield *


In the same way that the * makes a function declaration into
function * generator declaration, a * makes yield into yield *,
which is a very different mechanism, called yield delegation.
Grammatically, yield *.. will behave the same as a yield .., as
discussed in the previous section.


yield * .. requires an iterable; it then invokes that iterable’s
iterator, and delegates its own host generator’s control to that
iterator until it’s exhausted. Consider:


function *foo() {
    yield *[1,2,3];
}

Note

As with the * position in a generator’s declaration (discussed
earlier), the * positioning in yield * expressions is stylistically
up to you. Most other literature prefers yield* .., but I prefer
yield *.., for very symmetrical reasons as already discussed.




The [1,2,3] value produces an iterator that will step through its
values, so the *foo() generator will yield those values out as it’s
consumed. Another way to illustrate the behavior is in yield delegating
to another generator:


function *foo() {
    yield 1;
    yield 2;
    yield 3;
}

function *bar() {
    yield *foo();
}


The iterator produced when *bar() calls *foo() is delegated to via
yield *, meaning whatever value(s) *foo() produces will be produced
by *bar().


Whereas with yield .. the completion value of the expression comes
from resuming the generator with it.next(..), the completion value of
the yield *.. expression comes from the return value (if any) from the
delegated-to iterator.


Built-in iterators generally don’t have return values, as we covered at
the end of “Iterator Loop” earlier in this chapter. But if
you define your own custom iterator (or generator), you can design it to
return a value, which yield *.. would capture:


function *foo() {
    yield 1;
    yield 2;
    yield 3;
    return 4;
}

function *bar() {
    var x = yield *foo();
    console.log( "x:", x );
}

for (var v of bar()) {
    console.log( v );
}
// 1 2 3
// x: 4


While the 1, 2, and 3 values are yielded out of *foo() and
then out of *bar(), the 4 value returned from *foo() is the
completion value of the yield *foo() expression, which then gets
assigned to x.


Because yield * can call another generator (by way of delegating to
its iterator), it can also perform a sort of generator recursion by
calling itself:


function *foo(x) {
    if (x < 3) {
        x = yield *foo( x + 1 );
    }
    return x * 2;
}

foo( 1 );


The result from foo(1) and then calling the iterator’s next() to run
it through its recursive steps will be 24. The first *foo(..) run
has x at value 1, which is x < 3. x + 1 is passed recursively to
*foo(..), so x is then 2. One more recursive call results in x
of 3.


Now, because x < 3 fails, the recursion stops, and return 3 * 2
gives 6 back to the previous call’s yield *.. expression, which is
then assigned to x. Another return 6 * 2 returns 12 back to the
previous call’s x. Finally 12 * 2, or 24, is returned from the
completed run of the *foo(..) generator.






















Iterator Control


Earlier, we briefly introduced the concept that generators are
controlled by iterators. Let’s fully dig into that now.


Recall the recursive *foo(..) from the previous section. Here’s how
we’d run it:


function *foo(x) {
    if (x < 3) {
        x = yield *foo( x + 1 );
    }
    return x * 2;
}

var it = foo( 1 );
it.next();              // { value: 24, done: true }


In this case, the generator doesn’t really ever pause, as there’s no
yield .. expression. Instead, yield * just keeps the current
iteration step going via the recursive call. So, just one call to the
iterator’s next() function fully runs the generator.


Now let’s consider a generator that will have multiple steps and thus
multiple produced values:


function *foo() {
    yield 1;
    yield 2;
    yield 3;
}


We already know we can consume an iterator, even one attached to a
generator like *foo(), with a for..of loop:


for (var v of foo()) {
    console.log( v );
}
// 1 2 3

Note

The for..of loop requires an iterable. A generator function
reference (like foo) by itself is not an iterable; you must execute it
with foo() to get the iterator (which is also an iterable, as we
explained earlier in this chapter). You could theoretically extend the
GeneratorPrototype (the prototype of all generator functions) with a
Symbol.iterator function that essentially just does return this().
That would make the foo reference itself an iterable, which means
for (var v of foo) { .. } (notice no () on foo) will work.




Let’s instead iterate the generator manually:


function *foo() {
    yield 1;
    yield 2;
    yield 3;
}

var it = foo();

it.next();              // { value: 1, done: false }
it.next();              // { value: 2, done: false }
it.next();              // { value: 3, done: false }

it.next();              // { value: undefined, done: true }


If you look closely, there are three yield statements and four
next() calls. That may seem like a strange mismatch. In fact, there
will always be one more next() call than yield expression, assuming
all are evaluated and the generator is fully run to completion.


But if you look at it from the opposite perspective (inside-out instead
of outside-in), the matching between yield and next() makes more
sense.


Recall that the yield .. expression will be completed by the value you
resume the generator with. That means the argument you pass to
next(..) completes whatever yield .. expression is currently paused
waiting for a completion.


Let’s illustrate this perspective this way:


function *foo() {
    var x = yield 1;
    var y = yield 2;
    var z = yield 3;
    console.log( x, y, z );
}


In this snippet, each yield .. is sending a value out (1, 2, 3),
but more directly, it’s pausing the generator to wait for a value. In
other words, it’s almost like asking the question, “What value should I
use here? I’ll wait to hear back.”


Now, here’s how we control *foo() to start it up:


var it = foo();

it.next();              // { value: 1, done: false }


That first next() call is starting up the generator from its initial
paused state, and running it to the first yield. At the moment you
call that first next(), there’s no yield .. expression waiting for a
completion. If you passed a value to that first next() call, it would
currently just be thrown away, because no yield is waiting to receive
such a value.

Note

An early proposal for the “beyond ES6” timeframe would let you
access a value passed to an initial next(..) call via a separate meta
property (see Chapter 7) inside the generator.




Now, let’s answer the currently pending question, “What value should I
assign to x?” We’ll answer it by sending a value to the next
next(..) call:


it.next( "foo" );       // { value: 2, done: false }


Now, the x will have the value "foo", but we’ve also asked a new
question, “What value should I assign to y?” And we answer:


it.next( "bar" );       // { value: 3, done: false }


Answer given, another question asked. Final answer:


it.next( "baz" );       // "foo" "bar" "baz"
                        // { value: undefined, done: true }


Now it should be clearer how each yield .. “question” is answered by
the next next(..) call, and so the “extra” next() call we observed
is always just the initial one that starts everything going.


Let’s put all those steps together:


var it = foo();

// start up the generator
it.next();              // { value: 1, done: false }

// answer first question
it.next( "foo" );       // { value: 2, done: false }

// answer second question
it.next( "bar" );       // { value: 3, done: false }

// answer third question
it.next( "baz" );       // "foo" "bar" "baz"
                        // { value: undefined, done: true }


You can think of a generator as a producer of values, in which case each
iteration is simply producing a value to be consumed.


But in a more general sense, perhaps it’s appropriate to think of
generators as controlled, progressive code execution, much like the
tasks queue example from the earlier section “Custom Iterators”.

Note

That perspective is exactly the motivation for how we’ll revisit
generators in Chapter 4. Specifically, there’s no reason that next(..)
has to be called right away after the previous next(..) finishes.
While the generator’s inner execution context is paused, the rest of the
program continues unblocked, including the ability for asynchronous
actions to control when the generator is resumed.



















Early Completion


As we covered earlier in this chapter, the iterator attached to a
generator supports the optional return(..) and throw(..) methods.
Both of them have the effect of aborting a paused generator immediately.


Consider:


function *foo() {
    yield 1;
    yield 2;
    yield 3;
}

var it = foo();

it.next();              // { value: 1, done: false }

it.return( 42 );        // { value: 42, done: true }

it.next();              // { value: undefined, done: true }


return(x) is kind of like forcing a return x to be processed at
exactly that moment, such that you get the specified value right back.
Once a generator is completed, either normally or early as shown, it no
longer processes any code or returns any values.


In addition to return(..) being callable manually, it’s also called
automatically at the end of iteration by any of the ES6 constructs that
consume iterators, such as the for..of loop and the ... spread
operator.


The purpose of this capability is to notify the generator if
the controlling code is no longer going to iterate over it anymore, so
that it can perhaps do any cleanup tasks (freeing up resources,
resetting status, etc.). Identical to a normal function cleanup pattern,
the main way to accomplish this is to use a finally clause:


function *foo() {
    try {
        yield 1;
        yield 2;
        yield 3;
    }
    finally {
        console.log( "cleanup!" );
    }
}

for (var v of foo()) {
    console.log( v );
}
// 1 2 3
// cleanup!

var it = foo();

it.next();              // { value: 1, done: false }
it.return( 42 );        // cleanup!
                        // { value: 42, done: true }

Warning

Do not put a yield statement inside the finally clause!
It’s valid and legal, but it’s a really terrible idea. It acts in a
sense as deferring the completion of the return(..) call you made, as
any yield .. expressions in the finally clause are respected to
pause and send messages; you don’t immediately get a completed generator
as expected. There’s basically no good reason to opt in to that crazy
bad part, so avoid doing so!




In addition to the previous snippet showing how return(..) aborts the
generator while still triggering the finally clause, it also
demonstrates that a generator produces a whole new iterator each time
it’s called. In fact, you can use multiple iterators attached to the
same generator concurrently:


function *foo() {
    yield 1;
    yield 2;
    yield 3;
}

var it1 = foo();
it1.next();             // { value: 1, done: false }
it1.next();             // { value: 2, done: false }

var it2 = foo();
it2.next();             // { value: 1, done: false }

it1.next();             // { value: 3, done: false }

it2.next();             // { value: 2, done: false }
it2.next();             // { value: 3, done: false }

it2.next();             // { value: undefined, done: true }
it1.next();             // { value: undefined, done: true }












Early Abort


Instead of calling return(..), you can call throw(..). Just like
return(x) is essentially injecting a return x into the generator at
its current pause point, calling throw(x) is essentially like
injecting a throw x at the pause point.


Other than the exception behavior (we cover what that means to try
clauses in the next section), throw(..) produces the same sort of
early completion that aborts the generator’s run at its current pause
point. For example:


function *foo() {
    yield 1;
    yield 2;
    yield 3;
}

var it = foo();

it.next();              // { value: 1, done: false }

try {
    it.throw( "Oops!" );
}
catch (err) {
    console.log( err ); // Exception: Oops!
}

it.next();              // { value: undefined, done: true }


Because throw(..) basically injects a throw .. in replacement of the
yield 1 line of the generator, and nothing handles this exception, it
immediately propagates back out to the calling code, which handles it
with a try..catch.


Unlike return(..), the iterator’s throw(..) method is never called
automatically.


Of course, though not shown in the previous snippet, if a try..finally
clause was waiting inside the generator when you call throw(..), the
finally clause would be given a chance to complete before the
exception is propagated back to the calling code.






















Error Handling


As we’ve already hinted, error handling with generators can be expressed
with try..catch, which works in both inbound and outbound directions:


function *foo() {
    try {
        yield 1;
    }
    catch (err) {
        console.log( err );
    }

    yield 2;

    throw "Hello!";
}

var it = foo();

it.next();              // { value: 1, done: false }

try {
    it.throw( "Hi!" );  // Hi!
                        // { value: 2, done: false }
    it.next();

    console.log( "never gets here" );
}
catch (err) {
    console.log( err ); // Hello!
}


Errors can also propagate in both directions through yield *
delegation:


function *foo() {
    try {
        yield 1;
    }
    catch (err) {
        console.log( err );
    }

    yield 2;

    throw "foo: e2";
}

function *bar() {
    try {
        yield *foo();

        console.log( "never gets here" );
    }
    catch (err) {
        console.log( err );
    }
}

var it = bar();

try {
    it.next();          // { value: 1, done: false }

    it.throw( "e1" );   // e1
                        // { value: 2, done: false }

    it.next();          // foo: e2
                        // { value: undefined, done: true }
}
catch (err) {
    console.log( "never gets here" );
}

it.next();              // { value: undefined, done: true }


When *foo() calls yield 1, the 1 value passes through *bar()
untouched, as we’ve already seen.


But what’s most interesting about this snippet is that when *foo()
calls throw "foo: e2", this error propagates to *bar() and is
immediately caught by *bar()’s try..catch block. The error doesn’t
pass through *bar() like the 1 value did.


*bar()’s catch then does a normal output of err ("foo: e2") and
then *bar() finishes normally, which is why the
{ value: undefined, done: true } iterator result comes back from
it.next().


If *bar() didn’t have a try..catch around the yield *..
expression, the error would of course propagate all the way out, and on
the way through it still would complete (abort) *bar().

















Transpiling a Generator


Is it possible to represent a generator’s capabilities prior to ES6? It
turns out it is, and there are several great tools that do so, including
most notably Facebook’s Regenerator tool.


But just to better understand generators, let’s try our hand at manually
converting. Basically, we’re going to create a simple closure-based
state machine.


We’ll keep our source generator really simple:


function *foo() {
    var x = yield 42;
    console.log( x );
}


To start, we’ll need a function called foo() that we can execute,
which needs to return an iterator:


function foo() {
    // ..

    return {
        next: function(v) {
            // ..
        }

        // we'll skip `return(..)` and `throw(..)`
    };
}


Now, we need some inner variable to keep track of where we are in the
steps of our “generator"’s logic. We’ll call it state. There will be
three states: 0 initially, 1 while waiting to fulfill the yield
expression, and 2 once the generator is complete.


Each time next(..) is called, we need to process the next step, and
then increment state. For convenience, we’ll put each step into a
case clause of a switch statement, and we’ll hold that in an inner
function called nextState(..) that next(..) can call. Also, because
x is a variable across the overall scope of the “generator,” it needs
to live outside the nextState(..) function.


Here it is all together (obviously somewhat simplified, to keep the
conceptual illustration clearer):


function foo() {
    function nextState(v) {
        switch (state) {
            case 0:
                state++;

                // the `yield` expression
                return 42;
            case 1:
                state++;

                // `yield` expression fulfilled
                x = v;
                console.log( x );

                // the implicit `return`
                return undefined;

            // no need to handle state `2`
        }
    }

    var state = 0, x;

    return {
        next: function(v) {
            var ret = nextState( v );

            return { value: ret, done: (state == 2) };
        }

        // we'll skip `return(..)` and `throw(..)`
    };
}


And finally, let’s test our pre-ES6 “generator”:


var it = foo();

it.next();              // { value: 42, done: false }

it.next( 10 );          // 10
                        // { value: undefined, done: true }


Not bad, huh? Hopefully this exercise solidifies in your mind that
generators are actually just simple syntax for state machine logic. That
makes them widely applicable.

















Generator Uses


So, now that we much more deeply understand how generators work, what
are they useful for?


We’ve seen two major patterns:


	Producing a series of values

	
This usage can be simple (e.g., random
strings or incremented numbers), or it can represent more structured
data access (e.g., iterating over rows returned from a database query).


Either way, we use the iterator to control a generator so that some
logic can be invoked for each call to next(..). Normal iterators on
data structures merely pull values without any controlling logic.



	Queue of tasks to perform serially

	
This usage often represents flow
control for the steps in an algorithm, where each step requires
retrieval of data from some external source. The fulfillment of each
piece of data may be immediate, or may be asynchronously delayed.


From the perspective of the code inside the generator, the details of
sync or async at a yield point are entirely opaque. Moreover, these
details are intentionally abstracted away, such as not to obscure the
natural sequential expression of steps with such implementation
complications. Abstraction also means the implementations can be
swapped/refactored often without touching the code in the generator at
all.






When generators are viewed in light of these uses, they become a lot
more than just a different or nicer syntax for a manual state machine.
They are a powerful abstraction tool for organizing and controlling
orderly production and consumption of data.
























Modules


I don’t think it’s an exaggeration to suggest that the single most
important code organization pattern in all of JavaScript is, and always
has been, the module. For myself, and I think for a large cross-section
of the community, the module pattern drives the vast majority of code.










The Old Way


The traditional module pattern is based on an outer function with inner
variables and functions, and a returned “public API” with methods that
have closure over the inner data and capabilities. It’s often expressed
like this:


function Hello(name) {
    function greeting() {
        console.log( "Hello " + name + "!" );
    }

    // public API
    return {
        greeting: greeting
    };
}

var me = Hello( "Kyle" );
me.greeting();          // Hello Kyle!


This Hello(..) module can produce multiple instances by being called
subsequent times. Sometimes, a module is only called for as a singleton
(i.e., it just needs one instance), in which case a slight variation on
the previous snippet, using an IIFE, is common:


var me = (function Hello(name){
    function greeting() {
        console.log( "Hello " + name + "!" );
    }

    // public API
    return {
        greeting: greeting
    };
})( "Kyle" );

me.greeting();          // Hello Kyle!


This pattern is tried and tested. It’s also flexible enough to have a
wide assortment of variations for a number of different scenarios.


One of the most common is the Asynchronous Module Definition (AMD), and
another is the Universal Module Definition (UMD). We won’t cover the
particulars of these patterns and techniques here, but they’re explained
extensively in many places online.

















Moving Forward


As of ES6, we no longer need to rely on the enclosing function and
closure to provide us with module support. ES6 modules have first class
syntactic and functional support.


Before we get into the specific syntax, it’s important to understand
some fairly significant conceptual differences with ES6 modules compared
to how you may have dealt with modules in the past:



	
ES6 uses file-based modules, meaning one module per file. At this
time, there is no standardized way of combining multiple modules into a
single file.


That means that if you are going to load ES6 modules directly into a
browser web application, you will be loading them individually, not as a
large bundle in a single file as has been common in performance
optimization efforts.


It’s expected that the contemporaneous advent of HTTP/2 will
significantly mitigate any such performance concerns, as it operates on
a persistent socket connection and thus can very efficiently load many
smaller files in parallel and interleaved with one another.



	
The API of an ES6 module is static. That is, you define statically what all the
top-level exports are on your module’s public API, and those cannot be
amended later.


Some uses are accustomed to being able to provide dynamic API
definitions, where methods can be added/removed/replaced in response to
runtime conditions. Either these uses will have to change to fit with
ES6 static APIs, or they will have to restrain the dynamic changes to
properties/methods of a second-level object.



	
ES6 modules are singletons. That is, there’s only one instance of the module, which
maintains its state. Every time you import that module into another
module, you get a reference to the one centralized instance. If you want
to be able to produce multiple module instances, your module will need
to provide some sort of factory to do it.



	
The properties and methods you expose on a module’s public API are not
just normal assignments of values or references. They are actual bindings
(almost like pointers) to the identifiers in your inner module definition.


In pre-ES6 modules, if you put a property on your public API that holds
a primitive value like a number or string, that property assignment was
by value-copy, and any internal update of a corresponding variable would
be separate and not affect the public copy on the API object.


With ES6, exporting a local private variable, even if it currently holds
a primitive string/number/etc., exports a binding to the variable. If the
module changes the variable’s value, the external import binding now
resolves to that new value.



	
Importing a module is the same thing as statically requesting it to load
(if it hasn’t already). If you’re in a browser, that implies a blocking load
over the network. If you’re on a server (i.e., Node.js), it’s a blocking load
from the filesystem.


However, don’t panic about the performance implications. Because ES6
modules have static definitions, the import requirements can be
statically scanned, and loads will happen preemptively, even before
you’ve used the module.


ES6 doesn’t actually specify or handle the mechanics of how these load
requests work. There’s a separate notion of a Module Loader, where each
hosting environment (browser, Node.js, etc.) provides a default Loader
appropriate to the environment. The importing of a module uses a string
value to represent where to get the module (URL, file path, etc.), but
this value is opaque in your program and only meaningful to the Loader
itself.


You can define your own custom Loader if you want more fine-grained
control than the default Loader affords—which is basically none, as
it’s totally hidden from your program’s code.






As you can see, ES6 modules will serve the overall use case of
organizing code with encapsulation, controlling public APIs, and
referencing dependency imports. But they have a very particular way of
doing so, and that may or may not fit very closely with how you’ve
already been doing modules for years.












CommonJS


There’s a similar, but not fully compatible, module syntax called
CommonJS, which is familiar to those in the Node.js ecosystem.


For lack of a more tactful way to say this, in the long run, ES6 modules
essentially are bound to supercede all previous formats and standards
for modules, even CommonJS, as they are built on syntactic support in
the language. This will, in time, inevitably win out as the superior
approach, if for no other reason than ubiquity.


We face a fairly long road to get to that point, though. There are
literally hundreds of thousands of CommonJS style modules in the
server-side JavaScript world, and 10 times that many modules of varying
format standards (UMD, AMD, ad hoc) in the browser world. It will take
many years for the transitions to make any significant progress.


In the interim, module transpilers/converters will be an absolute
necessity. You might as well just get used to that new reality. Whether
you author in regular modules, AMD, UMD, CommonJS, or ES6, these tools
will have to parse and convert to a format that is suitable for whatever
environment your code will run in.


For Node.js, that probably means (for now) that the target is CommonJS.
For the browser, it’s probably UMD or AMD. Expect lots of flux on this
over the next few years as these tools mature and best practices emerge.


From here on out, my best advice on modules is this: whatever format
you’ve been religiously attached to with strong affinity, also develop
an appreciation for and understanding of ES6 modules, such as they are,
and let your other module tendencies fade. They are the future of
modules in JS, even if that reality is a bit of a ways off.






















The New Way


The two main new keywords that enable ES6 modules are import and
export. There’s lots of nuance to the
syntax, so let’s take a deeper look.

Warning

An important detail that’s easy to overlook: both import
and export must always appear in the top-level scope of their
respective usage. For example, you cannot put either an import or
export inside an if conditional; they must appear outside of all
blocks and functions.














Exporting API Members


The export keyword is either put in front of a declaration, or used as
an operator (of sorts) with a special list of bindings to export.
Consider:


export function foo() {
    // ..
}

export var awesome = 42;

var bar = [1,2,3];
export { bar };


Another way of expressing the same exports:


function foo() {
    // ..
}

var awesome = 42;
var bar = [1,2,3];

export { foo, awesome, bar };


These are all called named exports, as you are in effect exporting the
name bindings of the variables/functions/etc.


Anything you don’t label with export stays private inside the scope
of the module. That is, although something like var bar = .. looks
like it’s declaring at the top-level global scope, the top-level scope
is actually the module itself; there is no global scope in modules.

Note

Modules do still have access to window and all the “globals”
that hang off it, just not as lexical top-level scope. However, you
really should stay away from the globals in your modules if at all
possible.




You can also “rename” (aka alias) a module member during named export:


function foo() { .. }

export { foo as bar };


When this module is imported, only the bar member name is available to
import; foo stays hidden inside the module.


Module exports are not just normal assignments of values or references,
as you’re accustomed to with the = assignment operator. Actually, when
you export something, you’re exporting a binding (kinda like a pointer)
to that thing (variable, etc.).


Within your module, if you change the value of a variable you already
exported a binding to, even if it’s already been imported (see the next
section), the imported binding will resolve to the current (updated)
value.


Consider:


var awesome = 42;
export { awesome };

// later
awesome = 100;


When this module is imported, regardless of whether that’s before or
after the awesome = 100 setting, once that assignment has happened,
the imported binding resolves to the 100 value, not 42.


That’s because the binding is, in essence, a reference to, or a pointer
to, the awesome variable itself, rather than a copy of its value. This
is a mostly unprecedented concept for JS introduced with ES6 module
bindings.


Though you can clearly use export multiple times inside a module’s
definition, ES6 definitely prefers the approach that a module has a
single export, which is known as a default export. In the words of
some members of the TC39 committee, you’re “rewarded with simpler
import syntax” if you follow that pattern, and conversely “penalized”
with more verbose syntax if you don’t.


A default export sets a particular exported binding to be the default
when importing the module. The name of the binding is literally
default. As you’ll see later, when importing module bindings you can
also rename them, as you commonly will with a default export.


There can only be one default per module definition. We’ll cover
import in the next section, and you’ll see how the import syntax is
more concise if the module has a default export.


There’s a subtle nuance to default export syntax that you should pay
close attention to. Compare these two snippets:


function foo(..) {
    // ..
}

export default foo;


And this one:


function foo(..) {
    // ..
}

export { foo as default };


In the first snippet, you are exporting a binding to the function
expression value at that moment, not to the identifier foo. In other
words, export default .. takes an expression. If you later assign
foo to a different value inside your module, the module import still
reveals the function originally exported, not the new value.


By the way, the first snippet could also have been written as:


export default function foo(..) {
    // ..
}

Warning

Although the function foo.. part here is technically a
function expression, for the purposes of the internal scope of the
module, it’s treated like a function declaration, in that the foo name
is bound in the module’s top-level scope (often called “hoisting”). The
same is true for export default class Foo... However, while you can
do export var foo = .., you currently cannot do
export default var foo = .. (or let or const), in a frustrating
case of inconsistency. At the time of this writing, there’s already
discussion of adding that capability in soon, post-ES6, for consistency’s
sake.




Recall the second snippet again:


function foo(..) {
    // ..
}

export { foo as default };


In this version of the module export, the default export binding is
actually to the foo identifier rather than its value, so you get the
previously described binding behavior (i.e., if you later change foo’s
value, the value seen on the import side will also be updated).


Be very careful of this subtle gotcha in default export syntax,
especially if your logic calls for export values to be updated. If you
never plan to update a default export’s value, export default .. is
fine. If you do plan to update the value, you must use
export { .. as default }. Either way, make sure to comment your code
to explain your intent!


Because there can only be one default per module, you may be tempted
to design your module with one default export of an object with all your
API methods on it, such as:


export default {
    foo() { .. },
    bar() { .. },
    ..
};


That pattern seems to map closely to how a lot of developers have
already structured their pre-ES6 modules, so it seems like a natural
approach. Unfortunately, it has some downsides and is officially
discouraged.


In particular, the JS engine cannot statically analyze the contents of a
plain object, which means it cannot do some optimizations for static
import performance. The advantage of having each member individually
and explicitly exported is that the engine can do the static analysis
and optimization.


If your API has more than one member already, it seems like these
principles—one default export per module, and all API members as
named exports—are in conflict, doesn’t it? But you can have a
single default export as well as other named exports; they are not
mutually exclusive.


So, instead of this (discouraged) pattern:


export default function foo() { .. }

foo.bar = function() { .. };
foo.baz = function() { .. };


You can do:


export default function foo() { .. }

export function bar() { .. }
export function baz() { .. }

Note

In this previous snippet, I used the name foo for the function
that default labels. That foo name, however, is ignored for the
purposes of export—default is actually the exported name. When you
import this default binding, you can give it whatever name you want, as
you’ll see in the next section.




Alternatively, some will prefer:


function foo() { .. }
function bar() { .. }
function baz() { .. }

export { foo as default, bar, baz, .. };


The effects of mixing default and named exports will be more clear when
we cover import shortly. But essentially it means that the most
concise default import form would only retrieve the foo() function.
The user could additionally manually list bar and baz as named
imports, if they want them.


You can probably imagine how tedious that’s going to be for consumers of
your module if you have lots of named export bindings. There is a
wildcard import form where you import all of a module’s exports within a
single namespace object, but there’s no way to wildcard import to
top-level bindings.


Again, the ES6 module mechanism is intentionally designed to discourage
modules with lots of exports; relatively speaking, it’s desired that
such approaches be a little more difficult, as a sort of social
engineering to encourage simple module design in favor of large/complex
module design.


I would probably recommend that you avoid mixing default export with named
exports, especially if you have a large API and refactoring to separate
modules isn’t practical or desired. In that case, just use all named
exports, and document that consumers of your module should probably use
the import * as .. (namespace import, discussed in the next section)
approach to bring the whole API in at once on a single namespace.


We mentioned this earlier, but let’s come back to it in more detail.
Other than the export default ... form that exports an expression
value binding, all other export forms are exporting bindings to local
identifiers. For those bindings, if you change the value of a variable
inside a module after exporting, the external imported binding will
access the updated value:


var foo = 42;
export { foo as default };

export var bar = "hello world";

foo = 10;
bar = "cool";


When you import this module, the default and bar exports will be
bound to the local variables foo and bar, meaning they will reveal
the updated 10 and "cool" values. The values at time of export are
irrelevant. The values at time of import are irrelevant. The bindings
are live links, so all that matters is what the current value is when
you access the binding.

Warning

Two-way bindings are not allowed. If you import a foo from
a module, and try to change the value of your imported foo variable,
an error will be thrown! We’ll revisit that in the next section.




You can also re-export another module’s exports, such as:


export { foo, bar } from "baz";
export { foo as FOO, bar as BAR } from "baz";
export * from "baz";


Those forms are similar to just first importing from the "baz" module
then listing its members explicitly for export from your module.
However, in these forms, the members of the "baz" module are never
imported to your module’s local scope; they sort of pass through
untouched.

















Importing API Members


To import a module, unsurprisingly you use the import statement. Just
as export has several nuanced variations, so does import, so spend
plenty of time considering the following issues and experimenting with
your options.


If you want to import certain specific named members of a module’s API
into your top-level scope, you use this syntax:


import { foo, bar, baz } from "foo";

Warning

The { .. } syntax here may look like an object literal, or
even an object destructuring syntax. However, its form is special just
for modules, so be careful not to confuse it with other { .. }
patterns elsewhere.




The "foo" string is called a module specifier. Because the whole
goal is statically analyzable syntax, the module specifier must be a
string literal; it cannot be a variable holding the string value.


From the perspective of your ES6 code and the JS engine itself, the
contents of this string literal are completely opaque and meaningless.
The module loader will interpret this string as an instruction of where
to find the desired module, either as a URL path or a local filesystem path.


The foo, bar, and baz identifiers listed must match named exports
on the module’s API (static analysis and error assertion apply). They
are bound as top-level identifiers in your current scope:


import { foo } from "foo";

foo();


You can rename the bound identifiers imported, as:


import { foo as theFooFunc } from "foo";

theFooFunc();


If the module has just a default export that you want to import and bind
to an identifier, you can opt to skip the { .. } surrounding syntax
for that binding. The import in this preferred case gets the nicest
and most concise of the import syntax forms:


import foo from "foo";

// or:
import { default as foo } from "foo";

Note

As explained in the previous section, the default keyword in a
module’s export specifies a named export where the name is actually
default, as is illustrated by the second more verbose syntax option.
The renaming from default to, in this case, foo, is explicit in the
latter syntax and is identical yet implicit in the former syntax.




You can also import a default export along with other named exports, if
the module has such a definition. Recall this module definition from
earlier:


export default function foo() { .. }

export function bar() { .. }
export function baz() { .. }


To import that module’s default export and its two named exports:


import FOOFN, { bar, baz as BAZ } from "foo";

FOOFN();
bar();
BAZ();


The strongly suggested approach from ES6’s module philosophy is that you
only import the specific bindings from a module that you need. If a
module provides 10 API methods, but you only need two of them, some
believe it wasteful to bring in the entire set of API bindings.


One benefit, besides code being more explicit, is that narrow imports
make static analysis and error detection (accidentally using the wrong
binding name, for instance) more robust.


Of course, that’s just the standard position influenced by ES6 design
philosophy; there’s nothing that requires adherence to that approach.


Many developers would be quick to point out that such approaches can be
more tedious, requiring you to regularly revisit and update your
import statement(s) each time you realize you need something else from
a module. The trade-off is in exchange for convenience.


In that light, the preference might be to import everything from the
module into a single namespace, rather than importing individual
members, each directly into the scope. Fortunately, the import
statement has a syntax variation that can support this style of module
consumption, called namespace import.


Consider a "foo" module exported as:


export function bar() { .. }
export var x = 42;
export function baz() { .. }


You can import that entire API to a single module namespace binding:


import * as foo from "foo";

foo.bar();
foo.x;          // 42
foo.baz();

Note

The * as .. clause requires the * wildcard. In other words,
you cannot do something like import { bar, x } as foo from "foo" to
bring in only part of the API but still bind to the foo namespace. I
would have liked something like that, but for ES6 it’s all or nothing
with the namespace import.




If the module you’re importing with * as .. has a default export, it
is named default in the namespace specified. You can additionally name
the default import outside of the namespace binding, as a top-level
identifier. Consider a "world" module exported as:


export default function foo() { .. }
export function bar() { .. }
export function baz() { .. }


And this import:


import foofn, * as hello from "world";

foofn();
hello.default();
hello.bar();
hello.baz();


While this syntax is valid, it can be rather confusing that one method
of the module (the default export) is bound at the top-level of your
scope, whereas the rest of the named exports (and one called default)
are bound as properties on a differently named (hello) identifier
namespace.


As I mentioned earlier, my suggestion would be to avoid designing your
module exports in this way, to reduce the chances that your module’s
users will suffer these strange quirks.


All imported bindings are immutable and/or read-only. Consider the
previous import; all of these subsequent assignment attempts will throw
TypeErrors:


import foofn, * as hello from "world";

foofn = 42;         // (runtime) TypeError!
hello.default = 42; // (runtime) TypeError!
hello.bar = 42;     // (runtime) TypeError!
hello.baz = 42;     // (runtime) TypeError!


Recall earlier in “Exporting API Members” that we talked
about how the bar and baz bindings are bound to the actual
identifiers inside the "world" module. That means if the module
changes those values, hello.bar and hello.baz now reference the
updated values.


But the immutable/read-only nature of your local imported bindings
enforces that you cannot change them from the imported bindings, hence
the TypeErrors. That’s pretty important, because without those
protections, your changes would end up affecting all other consumers of
the module (remember: singleton), which could create some very
surprising side effects!


Moreover, though a module can change its API members from the inside,
you should be very cautious of intentionally designing your modules in
that fashion. ES6 modules are intended to be static, so deviations
from that principle should be rare and should be carefully and verbosely
documented.

Warning

There are module design philosophies where you actually
intend to let a consumer change the value of a property on your API, or
module APIs designed to be “extended” by having other “plug-ins” added
to the API namespace. As we just asserted, ES6 module APIs should be
thought of and designed as static and unchangeable, which strongly
restricts and discourages these alternative module design patterns. You
can get around these limitations by exporting a plain object, which of
course can then be changed at will. But be careful and think twice
before going down that road.




Declarations that occur as a result of an import are “hoisted” (see
the Scope & Closures title of this series). Consider:


foo();

import { foo } from "foo";


foo() can run because not only did the static resolution of the
import .. statement figure out what foo is during compilation, but
it also “hoisted” the declaration to the top of the module’s scope, thus
making it available throughout the module.


Finally, the most basic form of the import looks like this:


import "foo";


This form does not actually import any of the module’s bindings into
your scope. It loads (if not already loaded), compiles (if not already
compiled), and evaluates (if not already run) the "foo" module.


In general, that sort of import is probably not going to be terribly
useful. There may be niche cases where a module’s definition has side
effects (such as assigning things to the window/global object). You
could also envision using import "foo" as a sort of preload for a
module that may be needed later.






















Circular Module Dependency


A imports B. B imports A. How does this actually work?


I’ll state off the bat that designing systems with intentional circular
dependency is generally something I try to avoid. That having been said,
I recognize there are reasons people do this and it can solve some
sticky design situations.


Let’s consider how ES6 handles this. First, module "A":


import bar from "B";

export default function foo(x) {
    if (x > 10) return bar( x - 1 );
    return x * 2;
}


Now, module "B":


import foo from "A";

export default function bar(y) {
    if (y > 5) return foo( y / 2 );
    return y * 3;
}


These two functions, foo(..) and bar(..), would work as standard
function declarations if they were in the same scope, because the
declarations are “hoisted” to the whole scope and thus available to each
other regardless of authoring order.


With modules, you have declarations in entirely different scopes, so ES6
has to do extra work to help make these circular references work.


In a rough conceptual sense, this is how circular import dependencies
are validated and resolved:



	
If the "A" module is loaded first, the first step is to scan the
file and analyze all the exports, so it can register all those bindings
available for import. Then it processes the import .. from "B", which
signals that it needs to go fetch "B".



	
Once the engine loads "B", it does the same analysis of its export
bindings. When it sees the import .. from "A", it knows the API of
"A" already, so it can verify the import is valid. Now that it knows
the "B" API, it can also validate the import .. from "B" in the
waiting "A" module.






In essence, the mutual imports, along with the static verification
that’s done to validate both import statements, virtually composes the
two separate module scopes (via the bindings), such that foo(..) can
call bar(..) and vice versa. This is symmetric to if they had
originally been declared in the same scope.


Now let’s try using the two modules together. First, we’ll try
foo(..):


import foo from "foo";
foo( 25 );              // 11


Or we can try bar(..):


import bar from "bar";
bar( 25 );              // 11.5


By the time either the foo(25) or bar(25) calls are executed, all
the analysis/compilation of all modules has completed. That means
foo(..) internally knows directly about bar(..) and bar(..)
internally knows directly about foo(..).


If all we need is to interact with foo(..), then we only need to
import the "foo" module. Likewise with bar(..) and the "bar"
module.


Of course, we can import and use both of them if we want to:


import foo from "foo";
import bar from "bar";

foo( 25 );              // 11
bar( 25 );              // 11.5


The static loading semantics of the import statement mean a
"foo" and "bar" that mutually depend on each other via import will
ensure that both are loaded, parsed, and compiled before either of them
runs. So their circular dependency is statically resolved and this works
as you’d expect.

















Module Loading


We asserted at the beginning of “Modules” that the import
statement uses a separate mechanism, provided by the hosting environment
(browser, Node.js, etc.), to actually resolve the module specifier
string into some useful instruction for finding and loading the desired
module. That mechanism is the system Module Loader.


The default module loader provided by the environment will interpret a
module specifier as a URL if in the browser, and (generally) as a local
filesystem path if on a server such as Node.js. The default behavior is
to assume the loaded file is authored in the ES6 standard module format.


Moreover, you will be able to load a module into the browser via an HTML
tag, similar to how current script programs are loaded. At the time of
this writing, it’s not fully clear if this tag will be
<script type="module"> or <module>. ES6 doesn’t control that
decision, but discussions in the appropriate standards bodies are
already well along in parallel of ES6.


Whatever the tag looks like, you can be sure that under the covers it
will use the default loader (or a customized one you’ve prespecified,
as we’ll discuss in the next section).


Just like the tag you’ll use in markup, the module loader itself is not
specified by ES6. It is a separate, parallel standard controlled currently by the WHATWG
browser standards group.


At the time of this writing, the following discussions reflect an early
pass at the API design, and things are likely to change.












Loading Modules Outside of Modules


One use for interacting directly with the module loader is if a
non-module needs to load a module. Consider:


// normal script loaded in browser via `<script>`,
// `import` is illegal here

Reflect.Loader.import( "foo" ) // returns a promise for `"foo"`
.then( function(foo){
    foo.bar();
} );


The Reflect.Loader.import(..) utility imports the entire module onto
the named parameter (as a namespace), just like the import * as foo ..
namespace import we discussed earlier.

Note

The Reflect.Loader.import(..) utility returns a promise that
is fulfilled once the module is ready. To import multiple modules, you
can compose promises from multiple Reflect.Loader.import(..) calls
using Promise.all([ .. ]). For more information about Promises, see
“Promises” in Chapter 4.




You can also use Reflect.Loader.import(..) in a real module to
dynamically/conditionally load a module, where import itself would not
work. You might, for instance, choose to load a module containing a
polyfill for some ES7+ feature if a feature test reveals it’s not
defined by the current engine.


For performance reasons, you’ll want to avoid dynamic loading whenever
possible, as it hampers the ability of the JS engine to fire off early
fetches from its static analysis.

















Customized Loading


Another use for directly interacting with the module loader is if you
want to customize its behavior through configuration or even
redefinition.


At the time of this writing, there’s a polyfill for the module loader
API being developed.
While details are scarce and highly subject to change, we can explore
what possibilities may eventually land.


The Reflect.Loader.import(..) call may support a second argument for
specifying various options to customize the import/load task. For
example:


Reflect.Loader.import( "foo", { address: "/path/to/foo.js" } )
.then( function(foo){
    // ..
} )


It’s also expected that a customization will be provided (through some
means) for hooking into the process of loading a module, where a
translation/transpilation could occur after load but before the engine
compiles the module.


For example, you could load something that’s not already an
ES6-compliant module format (e.g., CoffeeScript, TypeScript, CommonJS,
AMD). Your translation step could then convert it to an ES6-compliant
module for the engine to then process.





























Classes


From nearly the beginning of JavaScript, syntax and development patterns
have all strived (read: struggled) to put on a facade of supporting
class-oriented development. With things like new and instanceof and
a .constructor property, who couldn’t help but be teased that JS
had classes hidden somewhere inside its prototype system?


Of course, JS “classes” aren’t nearly the same as classical classes. The
differences are well documented, so I won’t belabor that point any
further here.

Note

To learn more about the patterns used in JS to fake “classes,”
and an alternative view of prototypes called “delegation,” see the
second half of the this & Object Prototypes title of this series.












class


Although JS’s prototype mechanism doesn’t work like traditional classes,
that doesn’t stop the strong tide of demand on the language to extend
the syntactic sugar so that expressing “classes” looks more like real
classes. Enter the ES6 class keyword and its associated mechanism.


This feature is the result of a highly contentious and drawn-out debate,
and represents a smaller subset compromise from several strongly opposed
views on how to approach JS classes. Most developers who want full
classes in JS will find parts of the new syntax quite inviting, but will
find important bits still missing. Don’t worry, though. TC39 is already
working on additional features to augment classes in the post-ES6
timeframe.


At the heart of the new ES6 class mechanism is the class keyword,
which identifies a block where the contents define the members of a
function’s prototype. Consider:


class Foo {
    constructor(a,b) {
        this.x = a;
        this.y = b;
    }

    gimmeXY() {
        return this.x * this.y;
    }
}


Some things to note:



	
class Foo implies creating a (special) function of the name Foo,
much like you did pre-ES6.



	
constructor(..) identifies the signature of that Foo(..) function,
as well as its body contents.



	
Class methods use the same “concise method” syntax available to object
literals, as discussed in Chapter 2. This also includes the concise
generator form as discussed earlier in this chapter, as well as the ES5
getter/setter syntax. However, class methods are non-enumerable whereas object methods are by default enumerable.



	
Unlike object literals, there are no commas separating members in a
class body! In fact, they’re not even allowed.






The class syntax definition in the previous snippet can be roughly
thought of as this pre-ES6 equivalent, which probably will look fairly
familiar to those who’ve done prototype-style coding before:


function Foo(a,b) {
    this.x = a;
    this.y = b;
}

Foo.prototype.gimmeXY = function() {
    return this.x * this.y;
}


In either the pre-ES6 form or the new ES6 class form, this “class” can
now be instantiated and used just as you’d expect:


var f = new Foo( 5, 15 );

f.x;                        // 5
f.y;                        // 15
f.gimmeXY();                // 75


Caution! Though class Foo seems much like function Foo(), there are
important differences:



	
A Foo(..) call of class Foo must be made with new, as the
pre-ES6 option of Foo.call( obj ) will not work.



	
While function Foo is “hoisted” (see the Scope & Closures title of
this series), class Foo is not; the extends .. clause specifies an
expression that cannot be “hoisted.” So, you must declare a class
before you can instantiate it.



	
class Foo in the top global scope creates a lexical Foo identifier
in that scope, but unlike function Foo does not create a global object
property of that name.






The established instanceof operator still works with ES6 classes,
because class just creates a constructor function of the same name.
However, ES6 introduces a way to customize how instanceof works, using
Symbol.hasInstance (see “Well-Known Symbols” in Chapter 7).


Another way of thinking about class, which I find more convenient, is
as a macro that is used to automatically populate a prototype
object. Optionally, it also wires up the [[Prototype]] relationship if
using extends (see the next section).


An ES6 class isn’t really an entity itself, but a meta concept that
wraps around other concrete entities, such as functions and properties,
and ties them together.

Tip

In addition to the declaration form, a class can also be an
expression, as in: var x = class Y { .. }. This is primarily useful
for passing a class definition (technically, the constructor itself) as
a function argument or assigning it to an object property.



















extends and super


ES6 classes also have syntactic sugar for establishing the
[[Prototype]] delegation link between two function prototypes—commonly mislabeled “inheritance” or confusingly labeled “prototype
inheritance”—using the class-oriented familiar terminology extends:


class Bar extends Foo {
    constructor(a,b,c) {
        super( a, b );
        this.z = c;
    }

    gimmeXYZ() {
        return super.gimmeXY() * this.z;
    }
}

var b = new Bar( 5, 15, 25 );

b.x;                        // 5
b.y;                        // 15
b.z;                        // 25
b.gimmeXYZ();               // 1875


A significant new addition is super, which is actually something not
directly possible pre-ES6 (without some unfortunate hack trade-offs). In the
constructor, super automatically refers to the “parent constructor,”
which in the previous example is Foo(..). In a method, it refers to
the “parent object,” such that you can then make a property/method
access off it, such as super.gimmeXY().


Bar extends Foo of course means to link the [[Prototype]] of
Bar.prototype to Foo.prototype. So, super in a method like
gimmeXYZ() specifically means Foo.prototype, whereas super means
Foo when used in the Bar constructor.

Note

super is not limited to class declarations. It also works in
object literals, in much the same way we’re discussing here. See “Object super” in Chapter 2 for more information.














There Be super Dragons


It is not insignificant to note that super behaves differently
depending on where it appears. In fairness, most of the time, that won’t
be a problem. But surprises await if you deviate from a narrow norm.


There may be cases where in the constructor you would want to reference
the Foo.prototype, such as to directly access one of its
properties/methods. However, super in the constructor cannot be used
in that way; super.prototype will not work. super(..) means roughly
to call new Foo(..), but isn’t actually a usable reference to Foo
itself.


Symmetrically, you may want to reference the Foo(..) function from
inside a nonconstructor method. super.constructor will point at
Foo(..) the function, but beware that this function can only be
invoked with new. new super.constructor(..) would be valid, but it
wouldn’t be terribly useful in most cases, because you can’t make that
call use or reference the current this object context, which is likely
what you’d want.


Also, super looks like it might be driven by a function’s context just
like this—that is, that they’d both be dynamically bound. However,
super is not dynamic like this is. When a constructor or method
makes a super reference inside it at declaration time (in the class
body), that super is statically bound to that specific class
hierarchy, and cannot be overridden (at least in ES6).


What does that mean? It means that if you’re in the habit of taking a
method from one “class” and “borrowing” it for another class by
overriding its this, say with call(..) or apply(..), that may very
well create surprises if the method you’re borrowing has a super in
it. Consider this class hierarchy:


class ParentA {
    constructor() { this.id = "a"; }
    foo() { console.log( "ParentA:", this.id ); }
}

class ParentB {
    constructor() { this.id = "b"; }
    foo() { console.log( "ParentB:", this.id ); }
}

class ChildA extends ParentA {
    foo() {
        super.foo();
        console.log( "ChildA:", this.id );
    }
}

class ChildB extends ParentB {
    foo() {
        super.foo();
        console.log( "ChildB:", this.id );
    }
}

var a = new ChildA();
a.foo();                    // ParentA: a
                            // ChildA: a
var b = new ChildB();       // ParentB: b
b.foo();                    // ChildB: b


All seems fairly natural and expected in this previous snippet. However,
if you try to borrow b.foo() and use it in the context of a—by
virtue of dynamic this binding, such borrowing is quite common and
used in many different ways, including mixins most notably—you may
find this result an ugly surprise:


// borrow `b.foo()` to use in `a` context
b.foo.call( a );            // ParentB: a
                            // ChildB: a


As you can see, the this.id reference was dynamically rebound so that
: a is reported in both cases instead of : b. But b.foo()’s
super.foo() reference wasn’t dynamically rebound, so it still reported
ParentB instead of the expected ParentA.


Because b.foo() references super, it is statically bound to the
ChildB/ParentB hierarchy and cannot be used against the
ChildA/ParentA hierarchy. There is no ES6 solution to this
limitation.


super seems to work intuitively if you have a static class hierarchy
with no cross-pollination. But in all fairness, one of the main benefits
of doing this-aware coding is exactly that sort of flexibility.
Simply, class + super requires you to avoid such techniques.


The choice boils down to narrowing your object design to these static
hierarchies—class, extends, and super will be quite nice—or
dropping all attempts to “fake” classes and instead embrace dynamic and
flexible, classless objects and [[Prototype]] delegation (see the
this & Object Prototypes title of this series).

















Subclass Constructor


Constructors are not required for classes or subclasses; a default
constructor is substituted in both cases if omitted. However, the
default substituted constructor is different for a direct class versus
an extended class.


Specifically, the default subclass constructor automatically calls the
parent constructor, and passes along any arguments. In other words, you
could think of the default subclass constructor sort of like this:


constructor(...args) {
    super(...args);
}


This is an important detail to note. Not all class languages have the
subclass constructor automatically call the parent constructor. C++
does, but Java does not. But more importantly, in pre-ES6 classes, such
automatic “parent constructor” calling does not happen. Be careful when
converting to the ES6 class if you’ve been relying on such calls not
happening.


Another perhaps surprising deviation/limitation of ES6 subclass
constructors: in a constructor of a subclass, you cannot access this
until super(..) has been called. The reason is nuanced and
complicated, but it boils down to the fact that the parent constructor
is actually the one creating/initializing your instance’s this.
Pre-ES6, it works oppositely; the this object is created by the
“subclass constructor,” and then you call a “parent constructor” with
the context of the “subclass” this.


Let’s illustrate. This works pre-ES6:


function Foo() {
    this.a = 1;
}

function Bar() {
    this.b = 2;
    Foo.call( this );
}

// `Bar` "extends" `Foo`
Bar.prototype = Object.create( Foo.prototype );


But this ES6 equivalent is not allowed:


class Foo {
    constructor() { this.a = 1; }
}

class Bar extends Foo {
    constructor() {
        this.b = 2;         // not allowed before `super()`
        super();            // to fix swap these two statements
    }
}


In this case, the fix is simple. Just swap the two statements in the
subclass Bar constructor. However, if you’ve been relying pre-ES6 on
being able to skip calling the “parent constructor,” beware because that
won’t be allowed anymore.

















extending Natives


One of the most heralded benefits to the new class and extend design
is the ability to (finally!) subclass the built-in natives, like
Array. Consider:


class MyCoolArray extends Array {
    first() { return this[0]; }
    last() { return this[this.length - 1]; }
}

var a = new MyCoolArray( 1, 2, 3 );

a.length;                   // 3
a;                          // [1,2,3]

a.first();                  // 1
a.last();                   // 3


Prior to ES6, a fake “subclass” of Array using manual object creation
and linking to Array.prototype only partially worked. It missed out on
the special behaviors of a real array, such as the automatically
updating length property. ES6 subclasses should fully work with
“inherited” and augmented behaviors as expected!


Another common pre-ES6 “subclass” limitation is with the Error object,
in creating custom error “subclasses.” When genuine Error objects are
created, they automatically capture special stack information,
including the line number and file where the error is created. Pre-ES6
custom error “subclasses” have no such special behavior, which severely
limits their usefulness.


ES6 to the rescue:


class Oops extends Error {
    constructor(reason) {
        this.oops = reason;
    }
}

// later:
var ouch = new Oops( "I messed up!" );
throw ouch;


The ouch custom error object in this previous snippet will behave like
any other genuine error object, including capturing stack. That’s a
big improvement!






















new.target


ES6 introduces a new concept called a meta property (see Chapter 7),
in the form of new.target.


If that looks strange, it is; pairing a keyword with a . and a
property name is definitely an out-of-the-ordinary pattern for JS.


new.target is a new “magical” value available in all functions, though
in normal functions it will always be undefined. In any constructor,
new.target always points at the constructor that new actually
directly invoked, even if the constructor is in a parent class and was
delegated to by a super(..) call from a child constructor. Consider:


class Foo {
    constructor() {
        console.log( "Foo: ", new.target.name );
    }
}

class Bar extends Foo {
    constructor() {
        super();
        console.log( "Bar: ", new.target.name );
    }
    baz() {
        console.log( "baz: ", new.target );
    }
}

var a = new Foo();
// Foo: Foo

var b = new Bar();
// Foo: Bar   <-- respects the `new` call-site
// Bar: Bar

b.baz();
// baz: undefined


The new.target meta property doesn’t have much purpose in class
constructors, except accessing a static property/method (see the next
section).


If new.target is undefined, you know the function was not called
with new. You can then force a new invocation if that’s necessary.

















static


When a subclass Bar extends a parent class Foo, we already observed
that Bar.prototype is [[Prototype]]-linked to Foo.prototype. But
additionally, Bar() is [[Prototype]]-linked to Foo(). That part
may not have such an obvious reasoning.


However, it’s quite useful in the case where you declare static
methods (not just properties) for a class, as these are added directly to that
class’s function object, not to the function object’s prototype
object. Consider:


class Foo {
    static cool() { console.log( "cool" ); }
    wow() { console.log( "wow" ); }
}

class Bar extends Foo {
    static awesome() {
        super.cool();
        console.log( "awesome" );
    }
    neat() {
        super.wow();
        console.log( "neat" );
    }
}

Foo.cool();                 // "cool"
Bar.cool();                 // "cool"
Bar.awesome();              // "cool"
                            // "awesome"

var b = new Bar();
b.neat();                   // "wow"
                            // "neat"

b.awesome;                  // undefined
b.cool;                     // undefined


Be careful not to get confused that static members are on the class’s
prototype chain. They’re actually on the dual/parallel chain between the
function constructors.












Symbol.species Constructor Getter


One place where static can be useful is in setting the
Symbol.species getter (known internally in the specification as
@@species) for a derived (child) class. This capability allows a child
class to signal to a parent class what constructor should be used—when not intending the child class’s constructor itself—if any parent
class method needs to vend a new instance.


For example, many methods on Array create and return a new Array
instance. If you define a derived class from Array, but you want those
methods to continue to vend actual Array instances instead of from your
derived class, this works:


class MyCoolArray extends Array {
    // force `species` to be parent constructor
    static get [Symbol.species]() { return Array; }
}

var a = new MyCoolArray( 1, 2, 3 ),
    b = a.map( function(v){ return v * 2; } );

b instanceof MyCoolArray;   // false
b instanceof Array;         // true


To illustrate how a parent class method can use a child’s species
declaration somewhat like Array#map(..) is doing, consider:


class Foo {
    // defer `species` to derived constructor
    static get [Symbol.species]() { return this; }
    spawn() {
        return new this.constructor[Symbol.species]();
    }
}

class Bar extends Foo {
    // force `species` to be parent constructor
    static get [Symbol.species]() { return Foo; }
}

var a = new Foo();
var b = a.spawn();
b instanceof Foo;                   // true

var x = new Bar();
var y = x.spawn();
y instanceof Bar;                   // false
y instanceof Foo;                   // true


The parent class Symbol.species does return this to defer to any
derived class, as you’d normally expect. Bar then overrides to
manually declare Foo to be used for such instance creation. Of course,
a derived class can still vend instances of itself using
new this.constructor(..).





























Review


ES6 introduces several new features that aid in code organization:



	
Iterators provide sequential access to data or operations. They can be
consumed by new language features like for..of and ....



	
Generators are locally pause/resume capable functions controlled by an
iterator. They can be used to programmatically (and interactively,
through yield/next(..) message passing) generate values to be
consumed via iteration.



	
Modules allow private encapsulation of implementation details with a
publicly exported API. Module definitions are file-based, singleton
instances, and statically resolved at compile time.



	
Classes provide cleaner syntax around prototype-based coding. The
addition of super also solves tricky issues with relative references
in the [[Prototype]] chain.






These new tools should be your first stop when trying to improve the
architecture of your JS projects by embracing ES6.












Chapter 4. Async Flow Control



It’s no secret if you’ve written any significant amount of JavaScript
that asynchronous programming is a required skill. The primary mechanism
for managing asynchrony has been the function callback.


However, ES6 adds a new feature that helps address significant
shortcomings in the callbacks-only approach to async: Promises. In
addition, we can revisit generators (from the previous chapter) and see
a pattern for combining the two that’s a major step forward in async
flow control programming in JavaScript.








Promises


Let’s clear up some misconceptions: Promises are not about replacing
callbacks. Promises provide a trustable intermediary—that is, between
your calling code and the async code that will perform the task—to
manage callbacks.


Another way of thinking about a Promise is as an event listener, upon
which you can register to listen for an event that lets you know when a
task has completed. It’s an event that will only ever fire once, but it
can be thought of as an event nonetheless.


Promises can be chained together, which can sequence a series of
asychronously completing steps. Together with higher-level abstractions
like the all(..) method (in classic terms, a “gate”) and the
race(..) method (in classic terms, a “latch”), promise chains provide
an approximation of async flow control.


Yet another way of conceptualizing a Promise is that it’s a future
value, a time-independent container wrapped around a value. This
container can be reasoned about identically whether the underlying value
is final or not. Observing the resolution of a Promise extracts this
value once available. In other words, a Promise is said to be the async
version of a sync function’s return value.


A Promise can only have one of two possible resolution outcomes:
fulfilled or rejected, with an optional single value. If a Promise is
fulfilled, the final value is called a fulfillment. If it’s rejected,
the final value is called a reason (as in, a “reason for rejection”).
Promises can only be resolved (fulfillment or rejection) once. Any
further attempts to fulfill or reject are simply ignored. Thus, once a
Promise is resolved, it’s an immutable value that cannot be changed.


Clearly, there are several different ways to think about what a Promise
is. No single perspective is fully sufficient, but each provides a
separate aspect of the whole. The big takeaway is that they offer a
significant improvement over callbacks-only async, namely that they
provide order, predictability, and trustability.










Making and Using Promises


To construct a promise instance, use the Promise(..) constructor:


var p = new Promise( function(resolve,reject){
    // ..
} );


The two parameters provided to the Promise(..) constructor are
functions, and are generally named resolve(..) and reject(..),
respectively. They are used as:



	
If you call reject(..), the promise is rejected, and if any value is
passed to reject(..), it is set as the reason for rejection.



	
If you call resolve(..) with no value, or any nonpromise value, the
promise is fulfilled.



	
If you call resolve(..) and pass another promise, this promise
simply adopts the state—whether immediate or eventual—of the
passed promise (either fulfillment or rejection).






Here’s how you’d typically use a promise to refactor a callback-reliant
function call. If you start out with an ajax(..) utility that expects
to be able to call an error-first style callback:


function ajax(url,cb) {
    // make request, eventually call `cb(..)`
}

// ..

ajax( "http://some.url.1", function handler(err,contents){
    if (err) {
        // handle ajax error
    }
    else {
        // handle `contents` success
    }
} );


You can convert it to:


function ajax(url) {
    return new Promise( function pr(resolve,reject){
        // make request, eventually call
        // either `resolve(..)` or `reject(..)`
    } );
}

// ..

ajax( "http://some.url.1" )
.then(
    function fulfilled(contents){
        // handle `contents` success
    },
    function rejected(reason){
        // handle ajax error reason
    }
);


Promises have a then(..) method that accepts one or two callback
functions. The first function (if present) is treated as the handler to
call if the promise is fulfilled successfully. The second function (if
present) is treated as the handler to call if the promise is rejected
explicitly, or if any error/exception is caught during resolution.


If one of the arguments is omitted or otherwise not a valid function—typically you’ll use null instead—a default placeholder equivalent
is used. The default success callback passes its fulfillment value along
and the default error callback propagates its rejection reason along.


The shorthand for calling then(null,handleRejection) is
catch(handleRejection).


Both then(..) and catch(..) automatically construct and return
another promise instance, which is wired to receive the resolution from
whatever the return value is from the original promise’s fulfillment or
rejection handler (whichever is actually called). Consider:


ajax( "http://some.url.1" )
.then(
    function fulfilled(contents){
        return contents.toUpperCase();
    },
    function rejected(reason){
        return "DEFAULT VALUE";
    }
)
.then( function fulfilled(data){
    // handle data from original promise's
    // handlers
} );


In this snippet, we’re returning an immediate value from either
fulfilled(..) or rejected(..), which then is received on the next
event turn in the second then(..)’s fulfilled(..). If we instead
return a new promise, that new promise is subsumed and adopted as the
resolution:


ajax( "http://some.url.1" )
.then(
    function fulfilled(contents){
        return ajax(
            "http://some.url.2?v=" + contents
        );
    },
    function rejected(reason){
        return ajax(
            "http://backup.url.3?err=" + reason
        );
    }
)
.then( function fulfilled(contents){
    // `contents` comes from the subsequent
    // `ajax(..)` call, whichever it was
} );


It’s important to note that an exception (or rejected promise) in the
first fulfilled(..) will not result in the first rejected(..)
being called, as that handler only responds to the resolution of the
first original promise. Instead, the second promise, which the second
then(..) is called against, receives that rejection.


In this previous snippet, we are not listening for that rejection, which
means it will be silently held onto for future observation. If you never
observe it by calling a then(..) or catch(..), then it will go
unhandled. Some browser developer consoles may detect these unhandled
rejections and report them, but this is not reliably guaranteed; you
should always observe promise rejections.

Note

This was just a brief overview of Promise theory and behavior.
For a much more in-depth exploration, see Chapter 3 of the Async &
Performance title of this series.



















Thenables


Promises are genuine instances of the Promise(..) constructor.
However, there are promise-like objects called thenables that
generally can interoperate with the Promise mechanisms.


Any object (or function) with a then(..) function on it is assumed to
be a thenable. Any place where the Promise mechanisms can accept and
adopt the state of a genuine promise, they can also handle a thenable.


Thenables are basically a general label for any promise-like value that
may have been created by some other system than the actual Promise(..)
constructor. In that perspective, a thenable is generally less trustable
than a genuine Promise. Consider this misbehaving thenable, for example:


var th = {
    then: function thener( fulfilled ) {
        // call `fulfilled(..)` once every 100ms forever
        setInterval( fulfilled, 100 );
    }
};


If you received that thenable and chained it with th.then(..), you’d
likely be surprised that your fulfillment handler is called repeatedly,
when normal Promises are supposed to only ever be resolved once.


Generally, if you’re receiving what purports to be a promise or thenable
back from some other system, you shouldn’t just trust it blindly. In the
next section, we’ll see a utility included with ES6 Promises that helps
address this trust concern.


But to further understand the perils of this issue, consider that any
object in any piece of code that’s ever been defined to have a method
on it called then(..) can be potentially confused as a thenable—if
used with Promises, of course—regardless of if that thing was ever
intended to even remotely be related to Promise-style async coding.


Prior to ES6, there was never any special reservation made on methods
called then(..), and as you can imagine there’s been at least a few
cases where that method name has been chosen prior to Promises ever
showing up on the radar screen. The most likely case of mistaken
thenable will be async libraries that use then(..) but which are not
strictly Promises-compliant—there are several out in the wild.


The onus will be on you to guard against directly using values with the
Promise mechanism that would be incorrectly assumed to be a thenable.

















Promise API


The Promise API also provides some static methods for working with
Promises.


Promise.resolve(..) creates a promise resolved to the value passed in.
Let’s compare how it works to the more manual approach:


var p1 = Promise.resolve( 42 );

var p2 = new Promise( function pr(resolve){
    resolve( 42 );
} );


p1 and p2 will have essentially identical behavior. The same goes
for resolving with a promise:


var theP = ajax( .. );

var p1 = Promise.resolve( theP );

var p2 = new Promise( function pr(resolve){
    resolve( theP );
} );

Tip

Promise.resolve(..) is the solution to the thenable trust issue
raised in the previous section. Any value that you are not already
certain is a trustable promise—even if it could be an immediate value—can be normalized by passing it to Promise.resolve(..). If the
value is already a recognizable promise or thenable, its
state/resolution will simply be adopted, insulating you from
misbehavior. If it’s instead an immediate value, it will be “wrapped” in
a genuine promise, thereby normalizing its behavior to be async.




Promise.reject(..) creates an immediately rejected promise, the same
as its Promise(..) constructor counterpart:


var p1 = Promise.reject( "Oops" );

var p2 = new Promise( function pr(resolve,reject){
    reject( "Oops" );
} );


While resolve(..) and Promise.resolve(..) can accept a promise and
adopt its state/resolution, reject(..) and Promise.reject(..) do not
differentiate what value they receive. So, if you reject with a promise
or thenable, the promise/thenable itself will be set as the rejection
reason, not its underlying value.


Promise.all([ .. ]) accepts an array of one or more values (e.g.,
immediate values, promises, thenables). It returns a promise back that
will be fulfilled if all the values fulfill, or reject immediately once
the first of any of them rejects.


Starting with these values/promises:


var p1 = Promise.resolve( 42 );
var p2 = new Promise( function pr(resolve){
    setTimeout( function(){
        resolve( 43 );
    }, 100 );
} );
var v3 = 44;
var p4 = new Promise( function pr(resolve,reject){
    setTimeout( function(){
        reject( "Oops" );
    }, 10 );
} );


Let’s consider how Promise.all([ .. ]) works with combinations of
those values:


Promise.all( [p1,p2,v3] )
.then( function fulfilled(vals){
    console.log( vals );            // [42,43,44]
} );

Promise.all( [p1,p2,v3,p4] )
.then(
    function fulfilled(vals){
        // never gets here
    },
    function rejected(reason){
        console.log( reason );      // Oops
    }
);


While Promise.all([ .. ]) waits for all fulfillments (or the first
rejection), Promise.race([ .. ]) waits only for either the first
fulfillment or rejection. Consider:


// NOTE: re-setup all test values to
// avoid timing issues misleading you!

Promise.race( [p2,p1,v3] )
.then( function fulfilled(val){
    console.log( val );             // 42
} );

Promise.race( [p2,p4] )
.then(
    function fulfilled(val){
        // never gets here
    },
    function rejected(reason){
        console.log( reason );      // Oops
    }
);

Warning

While Promise.all([]) will fulfill right away (with no
values), Promise.race([]) will hang forever. This is a strange
inconsistency, and speaks to the suggestion that you should never use
these methods with empty arrays.


























Generators + Promises


It is possible to express a series of promises in a chain to represent
the async flow control of your program. Consider:


step1()
.then(
    step2,
    step2Failed
)
.then(
    function(msg) {
        return Promise.all( [
            step3a( msg ),
            step3b( msg ),
            step3c( msg )
        ] )
    }
)
.then(step4);


However, there’s a much better option for expressing async flow control,
and it will probably be much more preferable in terms of coding style
than long promise chains. We can use what we learned in Chapter 3 about
generators to express our async flow control.


The important pattern to recognize: a generator can yield a promise, and
that promise can then be wired to resume the generator with its
fulfillment value.


Consider the previous snippet’s async flow control expressed with a
generator:


function *main() {
    var ret = yield step1();

    try {
        ret = yield step2( ret );
    }
    catch (err) {
        ret = yield step2Failed( err );
    }

    ret = yield Promise.all( [
        step3a( ret ),
        step3b( ret ),
        step3c( ret )
    ] );

    yield step4( ret );
}


On the surface, this snippet may seem more verbose than the promise
chain equivalent in the earlier snippet. However, it offers a much more
attractive—and more importantly, a more understandable and
reason-able—synchronous-looking coding style (with = assignment of
“return” values, etc.) That’s especially true in that try..catch error
handling can be used across those hidden async boundaries.


Why are we using Promises with the generator? It’s certainly possible to
do async generator coding without Promises.


Promises are a trustable system that uninverts the inversion of control
of normal callbacks or thunks (see the Async & Performance title of
this series). So, combining the trustability of Promises and the
synchronicity of code in generators effectively addresses all the major
deficiencies of callbacks. Also, utilities like Promise.all([ .. ])
are a nice, clean way to express concurrency at a generator’s single
yield step.


So how does this magic work? We’re going to need a runner that can run
our generator, receive a yielded promise, and wire it up to resume the
generator with either the fulfillment success value, or throw an error
into the generator with the rejection reason.


Many async-capable utilities/libraries have such a “runner”; for
example, Q.spawn(..) and my asynquence’s runner(..) plug-in. But
here’s a stand-alone runner to illustrate how the process works:


function run(gen) {
    var args = [].slice.call( arguments, 1), it;

    it = gen.apply( this, args );

    return Promise.resolve()
        .then( function handleNext(value){
            var next = it.next( value );

            return (function handleResult(next){
                if (next.done) {
                    return next.value;
                }
                else {
                    return Promise.resolve( next.value )
                        .then(
                            handleNext,
                            function handleErr(err) {
                                return Promise.resolve(
                                    it.throw( err )
                                )
                                .then( handleResult );
                            }
                        );
                }
            })( next );
        } );
}

Note

For a more prolifically commented version of this utility, see
the Async & Performance title of this series. Also, the run utilities
provided with various async libraries are often more powerful/capable
than what we’ve shown here. For example, asynquence’s runner(..) can
handle yielded promises, sequences, thunks, and immediate
(nonpromise) values, giving you ultimate flexibility.




So now running *main() as listed in the earlier snippet is as easy as:


run( main )
.then(
    function fulfilled(){
        // `*main()` completed successfully
    },
    function rejected(reason){
        // Oops, something went wrong
    }
);


Essentially, anywhere that you have more than two asynchronous steps of
flow control logic in your program, you can and should use a
promise-yielding generator driven by a run utility to express the flow
control in a synchronous fashion. This will make for much easier to
understand and maintain code.


This yield-a-promise-resume-the-generator pattern is going to be so
common and so powerful, the next version of JavaScript is almost
certainly going to introduce a new function type that will do it
automatically without needing the run utility. We’ll cover
async functions (as they’re expected to be called) in Chapter 8.

















Review


As JavaScript continues to mature and grow in its widespread adoption,
asynchronous programming is more and more of a central concern.
Callbacks are not fully sufficient for these tasks, and totally fall
down the more sophisticated the need.


Thankfully, ES6 adds Promises to address one of the major shortcomings
of callbacks: lack of trust in predictable behavior. Promises represent
the future completion value from a potentially async task, normalizing
behavior across sync and async boundaries.


But it’s the combination of Promises with generators that fully realizes
the benefits of rearranging our async flow control code to de-emphasize
and abstract away that ugly callback soup (aka “hell”).


Right now, we can manage these interactions with the aide of various
async libraries’ runners, but JavaScript is eventually going to support
this interaction pattern with dedicated syntax alone!












Chapter 5. Collections



Structured collection and access to data is a critical component of just
about any JS program. From the beginning of the language up to this
point, the array and the object have been our primary mechanism for
creating data structures. Of course, many higher-level data structures
have been built on top of these, as user-land libraries.


As of ES6, some of the most useful (and performance-optimizing!) data
structure abstractions have been added as native components of the
language.


We’ll start this chapter first by looking at TypedArrays, which were
technically contemporary to ES5 efforts several years ago, but only standardized as companions to WebGL and not JavaScript itself. As of ES6,
these have been adopted directly by the language specification, which
gives them first-class status.


Maps are like objects (key/value pairs), but instead of just a string for the key, you can use any value—even another object or map! Sets are similar to arrays (lists of values), but the values are unique; if you add a duplicate, it’s ignored. There are also weak (in relation to memory/garbage collection) counterparts: WeakMap and WeakSet.








TypedArrays


As we cover in the Types & Grammar title of this series, JS does have
a set of built-in types, like number and string. It’d be tempting to
look at a feature named “typed array” and assume it means an array of a
specific type of values, like an array of only strings.


However, typed arrays are really more about providing structured access
to binary data using array-like semantics (indexed access, etc.). The
“type” in the name refers to a “view” layered on type of the bucket of
bits, which is essentially a mapping of whether the bits should be
viewed as an array of 8-bit signed integers, 16-bit signed integers, and
so on.


How do you construct such a bit-bucket? It’s called a “buffer,” and you
construct it most directly with the ArrayBuffer(..) constructor:


var buf = new ArrayBuffer( 32 );
buf.byteLength;                         // 32


buf is now a binary buffer that is 32-bytes long (256-bits), that’s
pre-initialized to all 0s. A buffer by itself doesn’t really allow you
any interaction exception for checking its byteLength property.

Tip

Several web platform features use or return array buffers, such
as FileReader#readAsArrayBuffer(..), XMLHttpRequest#send(..), and
ImageData (canvas data).




But on top of this array buffer, you can then layer a “view,” which
comes in the form of a typed array. Consider:


var arr = new Uint16Array( buf );
arr.length;                         // 16


arr is a typed array of 16-bit unsigned integers mapped over the
256-bit buf buffer, meaning you get 16 elements.










Endianness


It’s very important to understand that the arr is mapped using the
endian-setting (big-endian or little-endian) of the platform the JS is
running on. This can be an issue if the binary data is created with one
endianness but interpreted on a platform with the opposite endianness.


Endian means if the low-order byte (collection of 8-bits) of a
multi-byte number—such as the 16-bit unsigned ints we created in the
earlier snippet—is on the right or the left of the number’s bytes.


For example, let’s imagine the base-10 number 3085, which takes
16-bits to represent. If you have just one 16-bit number container, it’d
be represented in binary as 0000110000001101 (hexadecimal 0c0d)
regardless of endianness.


But if 3085 was represented with two 8-bit numbers, the endianness
would significantly affect its storage in memory:



	
0000110000001101 / 0c0d (big-endian)



	
0000110100001100 / 0d0c (little-endian)






If you received the bits of 3085 as 0000110100001100 from a
little-endian system, but you layered a view on top of it in a
big-endian system, you’d instead see value 3340 (base-10) and 0d0c
(base-16).


Little-endian is the most common representation on the Web these days,
but there are definitely browsers where that’s not true. It’s important
that you understand the endianness of both the producer and consumer of
a chunk of binary data.


From MDN, here’s a quick way to test the endianness of your JavaScript:


var littleEndian = (function() {
    var buffer = new ArrayBuffer( 2 );
    new DataView( buffer ).setInt16( 0, 256, true );
    return new Int16Array( buffer )[0] === 256;
})();


littleEndian will be true or false; for most browsers, it should
return true. This test uses DataView(..), which allows more
low-level, fine-grained control over accessing (setting/getting) the
bits from the view you layer over the buffer. The third parameter of the
setInt16(..) method in the previous snippet is for telling the
DataView what endianness you’re wanting it to use for that operation.

Warning

Do not confuse endianness of underlying binary storage in
array buffers with how a given number is represented when exposed in a
JS program. For example, (3085).toString(2) returns "110000001101",
which with an assumed leading four "0"s appears to be the big-endian
representation. In fact, this representation is based on a single 16-bit
view, not a view of two 8-bit bytes. The DataView test above is the
best way to determine endianness for your JS environment.



















Multiple Views


A single buffer can have multiple views attached to it, such as:


var buf = new ArrayBuffer( 2 );

var view8 = new Uint8Array( buf );
var view16 = new Uint16Array( buf );

view16[0] = 3085;
view8[0];                       // 13
view8[1];                       // 12

view8[0].toString( 16 );        // "d"
view8[1].toString( 16 );        // "c"

// swap (as if endian!)
var tmp = view8[0];
view8[0] = view8[1];
view8[1] = tmp;

view16[0];                      // 3340


The typed array constructors have multiple signature variations. We’ve
shown so far only passing them an existing buffer. However, that form
also takes two extra parameters: byteOffset and length. In other
words, you can start the typed array view at a location other than 0
and you can make it span less than the full length of the buffer.


If the buffer of binary data includes data in nonuniform size/location,
this technique can be quite useful.


For example, consider a binary buffer that has a 2-byte number (aka
“word”) at the beginning, followed by two 1-byte numbers, followed by a
32-bit floating-point number. Here’s how you can access that data with
multiple views on the same buffer, offsets, and lengths:


var first = new Uint16Array( buf, 0, 2 )[0],
    second = new Uint8Array( buf, 2, 1 )[0],
    third = new Uint8Array( buf, 3, 1 )[0],
    fourth = new Float32Array( buf, 4, 4 )[0];

















Typed Array Constructors


In addition to the (buffer,[offset, [length]]) form examined in the
previous section, typed array constructors also support these forms:



	
[constructor\](length): Creates a new view over a new buffer of
length bytes



	
[constructor\](typedArr): Creates a new view and buffer, and copies
the contents from the typedArr view



	
[constructor\](obj): Creates a new view and buffer, and iterates over
the array-like or object obj to copy its contents






The following typed array constructors are available as of ES6:



	
Int8Array (8-bit signed integers), Uint8Array (8-bit unsigned
integers)



	
Uint8ClampedArray (8-bit unsigned integers, each value clamped on
setting to the 0-255 range)







	
Int16Array (16-bit signed integers), Uint16Array (16-bit unsigned
integers)



	
Int32Array (32-bit signed integers), Uint32Array (32-bit unsigned
integers)



	
Float32Array (32-bit floating point, IEEE-754)



	
Float64Array (64-bit floating point, IEEE-754)






Instances of typed array constructors are almost the same as regular
native arrays. Some differences include having a fixed length and the
values all being of the same “type.”


However, they share most of the same prototype methods. As such, you
likely will be able to use them as regular arrays without needing to
convert.


For example:


var a = new Int32Array( 3 );
a[0] = 10;
a[1] = 20;
a[2] = 30;

a.map( function(v){
    console.log( v );
} );
// 10 20 30

a.join( "-" );
// "10-20-30"

Warning

You can’t use certain Array.prototype methods with
TypedArrays that don’t make sense, such as the mutators (splice(..),
push(..), etc.) and concat(..).




Be aware that the elements in TypedArrays really are constrained to the
declared bit sizes. If you have a Uint8Array and try to assign
something larger than an 8-bit value into one of its elements, the value
wraps around so as to stay within the bit length.


This could cause problems if you were trying to, for instance, square
all the values in a TypedArray. Consider:


var a = new Uint8Array( 3 );
a[0] = 10;
a[1] = 20;
a[2] = 30;

var b = a.map( function(v){
    return v * v;
} );

b;              // [100, 144, 132]


The 20 and 30 values, when squared, resulted in bit overflow. To get
around such a limitation, you can use the TypedArray#from(..)
function:


var a = new Uint8Array( 3 );
a[0] = 10;
a[1] = 20;
a[2] = 30;

var b = Uint16Array.from( a, function(v){
    return v * v;
} );

b;              // [100, 400, 900]


See “Array.from(..) Static Function” in Chapter 6 for more
information about the Array.from(..) that is shared with TypedArrays.
Specifically, “Mapping” explains the mapping function
accepted as its second argument.


One interesting behavior to consider is that TypedArrays have a
sort(..) method much like regular arrays, but this one defaults to
numeric sort comparisons instead of coercing values to strings for
lexicographic comparison. For example:


var a = [ 10, 1, 2, ];
a.sort();                               // [1,10,2]

var b = new Uint8Array( [ 10, 1, 2 ] );
b.sort();                               // [1,2,10]


The TypedArray#sort(..) takes an optional compare function argument
just like Array#sort(..), which works in exactly the same way.
























Maps


If you have a lot of JS experience, you know that objects are the
primary mechanism for creating unordered key/value-pair data structures,
otherwise known as maps. However, the major drawback with
objects-as-maps is the inability to use a nonstring value as the key.


For example, consider:


var m = {};

var x = { id: 1 },
    y = { id: 2 };

m[x] = "foo";
m[y] = "bar";

m[x];                           // "bar"
m[y];                           // "bar"


What’s going on here? The two objects x and y both stringify to
"[object Object]", so only that one key is being set in m.


Some have implemented fake maps by maintaining a parallel array of
non-string keys alongside an array of the values, such as:


var keys = [], vals = [];

var x = { id: 1 },
    y = { id: 2 };

keys.push( x );
vals.push( "foo" );

keys.push( y );
vals.push( "bar" );

keys[0] === x;                  // true
vals[0];                        // "foo"

keys[1] === y;                  // true
vals[1];                        // "bar"


Of course, you wouldn’t want to manage those parallel arrays yourself,
so you could define a data structure with methods that automatically do
the management under the covers. Besides having to do that work
yourself, the main drawback is that access is no longer O(1)
time-complexity, but instead is O(n).


But as of ES6, there’s no longer any need to do this! Just use
Map(..):


var m = new Map();

var x = { id: 1 },
    y = { id: 2 };

m.set( x, "foo" );
m.set( y, "bar" );

m.get( x );                     // "foo"
m.get( y );                     // "bar"


The only drawback is that you can’t use the [ ] bracket access syntax
for setting and retrieving values. But get(..) and set(..) work
perfectly suitably instead.


To delete an element from a map, don’t use the delete operator, but
instead use the delete(..) method:


m.set( x, "foo" );
m.set( y, "bar" );

m.delete( y );


You can clear the entire map’s contents with clear(). To get the length of a map (i.e., the number of keys), use the size property (not length):


m.set( x, "foo" );
m.set( y, "bar" );
m.size;                         // 2

m.clear();
m.size;                         // 0


The Map(..) constructor can also receive an iterable (see “Iterators”
in Chapter 3), which must produce a list of arrays, where the first item
in each array is the key and the second item is the value. This format
for iteration is identical to that produced by the entries() method,
explained in the next section. That makes it easy to make a copy of a
map:


var m2 = new Map( m.entries() );

// same as:
var m2 = new Map( m );


Because a map instance is an iterable, and its default iterator is the
same as entries(), the second shorter form is preferable.


Of course, you can just manually specify an entries list (array of key/value arrays) in the Map(..) constructor form:


var x = { id: 1 },
    y = { id: 2 };

var m = new Map( [
    [ x, "foo" ],
    [ y, "bar" ]
] );

m.get( x );                     // "foo"
m.get( y );                     // "bar"










Map Values


To get the list of values from a map, use values(..), which returns an
iterator. In Chapters 2 and 3, we covered various ways to process an
iterator sequentially (like an array), such as the ... spread operator
and the for..of loop. Also, “Creating Arrays and Subtypes” in Chapter 6 covers the
Array.from(..) method in detail. Consider:


var m = new Map();

var x = { id: 1 },
    y = { id: 2 };

m.set( x, "foo" );
m.set( y, "bar" );

var vals = [ ...m.values() ];

vals;                           // ["foo","bar"]
Array.from( m.values() );       // ["foo","bar"]


As discussed in the previous section, you can iterate over a map’s
entries using entries() (or the default map iterator). Consider:


var m = new Map();

var x = { id: 1 },
    y = { id: 2 };

m.set( x, "foo" );
m.set( y, "bar" );

var vals = [ ...m.entries() ];

vals[0][0] === x;               // true
vals[0][1];                     // "foo"

vals[1][0] === y;               // true
vals[1][1];                     // "bar"

















Map Keys


To get the list of keys, use keys(), which returns an iterator over
the keys in the map:


var m = new Map();

var x = { id: 1 },
    y = { id: 2 };

m.set( x, "foo" );
m.set( y, "bar" );

var keys = [ ...m.keys() ];

keys[0] === x;                  // true
keys[1] === y;                  // true


To determine if a map has a given key, use has(..):


var m = new Map();

var x = { id: 1 },
    y = { id: 2 };

m.set( x, "foo" );

m.has( x );                     // true
m.has( y );                     // false


Maps essentially let you associate some extra piece of information (the
value) with an object (the key) without actually putting that
information on the object itself.


While you can use any kind of value as a key for a map, you typically
will use objects, as strings and other primitives are already eligible
as keys of normal objects. In other words, you’ll probably want to
continue to use normal objects for maps unless some or all of the keys
need to be objects, in which case map is more appropriate.

Warning

If you use an object as a map key and that object is later discarded (all references unset) in attempt to have garbage collection (GC) reclaim its memory, the map itself will still retain its entry. You will need to remove the entry from the map for it to be GC-eligible. In the next section, we’ll see WeakMaps as a better option for object keys and GC.


























WeakMaps


WeakMaps are a variation on maps, which has most of the same external
behavior but differs underneath in how the memory allocation
(specifically its GC) works.


WeakMaps take (only) objects as keys. Those objects are held weakly,
which means if the object itself is GC’d, the entry in the WeakMap is
also removed. This isn’t observable behavior, though, as the only way an
object can be GC’d is if there’s no more references to it, but once
there are no more references to it—you have no object reference to
check if it exists in the WeakMap.


Otherwise, the API for WeakMap is similar, though more limited:


var m = new WeakMap();

var x = { id: 1 },
    y = { id: 2 };

m.set( x, "foo" );

m.has( x );                     // true
m.has( y );                     // false


WeakMaps do not have a size property or clear() method, nor do they
expose any iterators over their keys, values, or entries. So even if you
unset the x reference, which will remove its entry from m upon GC,
there is no way to tell. You’ll just have to take JavaScript’s word for
it!


Just like Maps, WeakMaps let you soft-associate information with an
object. But they are particularly useful if the object is not one you
completely control, such as a DOM element. If the object you’re using as
a map key can be deleted and should be GC-eligible when it is, then a
WeakMap is a more appropriate option.


It’s important to note that a WeakMap only holds its keys weakly, not
its values. Consider:


var m = new WeakMap();

var x = { id: 1 },
    y = { id: 2 },
    z = { id: 3 },
    w = { id: 4 };

m.set( x, y );

x = null;                       // { id: 1 } is GC-eligible
y = null;                       // { id: 2 } is GC-eligible
                                // only because { id: 1 } is

m.set( z, w );

w = null;                       // { id: 4 } is not GC-eligible


For this reason, WeakMaps are in my opinion better named “WeakKeyMaps.”

















Sets


A set is a collection of unique values (duplicates are ignored).


The API for a set is similar to map. The add(..) method takes
the place of the set(..) method (somewhat ironically), and there is no
get(..) method.


Consider:


var s = new Set();

var x = { id: 1 },
    y = { id: 2 };

s.add( x );
s.add( y );
s.add( x );

s.size;                         // 2

s.delete( y );
s.size;                         // 1

s.clear();
s.size;                         // 0


The Set(..) constructor form is similar to Map(..), in that it can receive an iterable, like another set or simply an array of values. However, unlike how Map(..) expects an entries list (array of key/value arrays), Set(..) expects a values list (array of values):


var x = { id: 1 },
    y = { id: 2 };

var s = new Set( [x,y] );


A set doesn’t need a get(..) because you don’t retrieve a value from a
set, but rather test if it is present or not, using has(..):


var s = new Set();

var x = { id: 1 },
    y = { id: 2 };

s.add( x );

s.has( x );                     // true
s.has( y );                     // false

Note

The comparison algorithm in has(..) is almost
identical to Object.is(..) (see Chapter 6), except that -0 and 0
are treated as the same rather than distinct.












Set Iterators


Sets have the same iterator methods as maps. Their behavior is different
for sets, but symmetric with the behavior of map iterators. Consider:


var s = new Set();

var x = { id: 1 },
    y = { id: 2 };

s.add( x ).add( y );

var keys = [ ...s.keys() ],
    vals = [ ...s.values() ],
    entries = [ ...s.entries() ];

keys[0] === x;
keys[1] === y;

vals[0] === x;
vals[1] === y;

entries[0][0] === x;
entries[0][1] === x;
entries[1][0] === y;
entries[1][1] === y;


The keys() and values() iterators both yield a list of the unique
values in the set. The entries() iterator yields a list of entry
arrays, where both items of the array are the unique set value. The
default iterator for a set is its values() iterator.


The inherent uniqueness of a set is its most useful trait. For example:


var s = new Set( [1,2,3,4,"1",2,4,"5"] ),
    uniques = [ ...s ];

uniques;                        // [1,2,3,4,"1","5"]


Set uniqueness does not allow coercion, so 1 and "1" are considered distinct values.
























WeakSets


Whereas a WeakMap holds its keys weakly (but its values strongly), a
WeakSet holds its values weakly (there aren’t really keys).


var s = new WeakSet();

var x = { id: 1 },
    y = { id: 2 };

s.add( x );
s.add( y );

x = null;                       // `x` is GC-eligible
y = null;                       // `y` is GC-eligible

Warning

WeakSet values must be objects, not primitive values as is
allowed with sets.



















Review


ES6 defines a number of useful collections that make working with data
in structured ways more efficient and effective.


TypedArrays provide “view”s of binary data buffers that align with
various integer types, like 8-bit unsigned integers and 32-bit floats.
The array access to binary data makes operations much easier to express
and maintain, which enables you to more easily work with complex data
like video, audio, canvas data, and so on.


Maps are key-value pairs where the key can be an object instead of just
a string/primitive. Sets are unique lists of values (of any type).


WeakMaps are maps where the key (object) is weakly held, so that GC is
free to collect the entry if it’s the last reference to an object.
WeakSets are sets where the value is weakly held, again so that GC can
remove the entry if it’s the last reference to that object.












Chapter 6. API Additions



From conversions of values to mathematic calculations, ES6 adds many
static properties and methods to various built-in natives and objects to
help with common tasks. In addition, instances of some of the natives
have new capabilities via various new prototype methods.

Note

Most of these features can be faithfully polyfilled. We will not
dive into such details here, but check out “ES6 Shim” for standards-compliant
shims/polyfills.










Array


One of the most commonly extended features in JS by various user
libraries is the Array type. It should be no surprise that ES6 adds a
number of helpers to Array, both static and prototype (instance).










Array.of(..) Static Function


There’s a well-known gotcha with the Array(..) constructor, which is
that if there’s only one argument passed, and that argument is a number,
instead of making an array of one element with that number value in it,
it constructs an empty array with a length property equal to the
number. This action produces the unfortunate and quirky “empty slots”
behavior that’s reviled about JS arrays.


Array.of(..) replaces Array(..) as the preferred function-form
constructor for arrays, because Array.of(..) does not have that
special single-number-argument case. Consider:


var a = Array( 3 );
a.length;                       // 3
a[0];                           // undefined

var b = Array.of( 3 );
b.length;                       // 1
b[0];                           // 3

var c = Array.of( 1, 2, 3 );
c.length;                       // 3
c;                              // [1,2,3]


Under what circumstances would you want to use Array.of(..) instead of
just creating an array with literal syntax, like c = [1,2,3]? There’s
two possible cases.


If you have a callback that’s supposed to wrap argument(s) passed to it
in an array, Array.of(..) fits the bill perfectly. That’s probably not
terribly common, but it may scratch an itch for you.


The other scenario is if you subclass Array (see “Classes” in Chapter 3) and want to be able to create and initialize elements in an instance
of your subclass, such as:


class MyCoolArray extends Array {
    sum() {
        return this.reduce( function reducer(acc,curr){
            return acc + curr;
        }, 0 );
    }
}

var x = new MyCoolArray( 3 );
x.length;                       // 3--oops!
x.sum();                        // 0--oops!

var y = [3];                    // Array, not MyCoolArray
y.length;                       // 1
y.sum();                        // `sum` is not a function

var z = MyCoolArray.of( 3 );
z.length;                       // 1
z.sum();                        // 3


You can’t just (easily) create a constructor for MyCoolArray that
overrides the behavior of the Array parent constructor, because that
constructor is necessary to actually create a well-behaving array value
(initializing the this). The “inherited” static of(..) method on the
MyCoolArray subclass provides a nice solution.

















Array.from(..) Static Function


An “array-like object” in JavaScript is an object that has a length
property on it, specifically with an integer value of zero or higher.


These values have been notoriously frustrating to work with in JS; it’s
been quite common to need to transform them into an actual array, so
that the various Array.prototype methods (map(..), indexOf(..),
etc.) are available to use with it. That process usually looks like:


// array-like object
var arrLike = {
    length: 3,
    0: "foo",
    1: "bar"
};

var arr = Array.prototype.slice.call( arrLike );


Another common task where slice(..) is often used is in duplicating a
real array:


var arr2 = arr.slice();


In both cases, the new ES6 Array.from(..) method can be a more
understandable and graceful—if also less verbose—approach:


var arr = Array.from( arrLike );

var arrCopy = Array.from( arr );


Array.from(..) looks to see if the first argument is an iterable (see
“Iterators” in Chapter 3), and if so, it uses the iterator to produce
values to “copy” into the returned array. Because real arrays have an
iterator for those values, that iterator is automatically used.


But if you pass an array-like object as the first argument to
Array.from(..), it behaves basically the same as slice() (no
arguments!) or apply(..) does, which is that it simply loops over the
value, accessing numerically named properties from 0 up to whatever
the value of length is.


Consider:


var arrLike = {
    length: 4,
    2: "foo"
};

Array.from( arrLike );
// [ undefined, undefined, "foo", undefined ]


Because positions 0, 1, and 3 didn’t exist on arrLike, the
result was the undefined value for each of those slots.


You could produce a similar outcome like this:


var emptySlotsArr = [];
emptySlotsArr.length = 4;
emptySlotsArr[2] = "foo";

Array.from( emptySlotsArr );
// [ undefined, undefined, "foo", undefined ]












Avoiding Empty Slots


There’s a subtle but important difference in the previous snippet
between the emptySlotsArr and the result of the Array.from(..) call.
Array.from(..) never produces empty slots.


Prior to ES6, if you wanted to produce an array initialized to a certain
length with actual undefined values in each slot (no empty slots!),
you had to do extra work:


var a = Array( 4 );
// four empty slots!

var b = Array.apply( null, { length: 4 } );
// four `undefined` values


But Array.from(..) now makes this easier:


var c = Array.from( { length: 4 } );
// four `undefined` values

Warning

Using an empty slot array like a in the previous snippets
would work with some array functions, but others ignore empty slots
(like map(..), etc.). You should never intentionally work with empty
slots, as it will almost certainly lead to strange/unpredictable
behavior in your programs.



















Mapping


The Array.from(..) utility has another helpful trick up its sleeve.
The second argument, if provided, is a mapping callback (almost the same
as the regular Array#map(..) expects), which is called to map/transform
each value from the source to the returned target. Consider:


var arrLike = {
    length: 4,
    2: "foo"
};

Array.from( arrLike, function mapper(val,idx){
    if (typeof val == "string") {
        return val.toUpperCase();
    }
    else {
        return idx;
    }
} );
// [ 0, 1, "FOO", 3 ]

Note

As with other array methods that take callbacks,
Array.from(..) takes an optional third argument that if set will
specify the this binding for the callback passed as the second
argument. Otherwise, this will be undefined.




See “TypedArrays” in Chapter 5 for an example of using Array.from(..)
in translating values from an array of 8-bit values to an array of
16-bit values.






















Creating Arrays and Subtypes


In the last couple of sections, we’ve discussed Array.of(..) and
Array.from(..), both of which create a new array in a similar way to a
constructor. But what do they do in subclasses? Do they create instances
of the base Array or the derived subclass?


class MyCoolArray extends Array {
    ..
}

MyCoolArray.from( [1, 2] ) instanceof MyCoolArray;  // true

Array.from(
    MyCoolArray.from( [1, 2] )
) instanceof MyCoolArray;                           // false


Both of(..) and from(..) use the constructor that they’re accessed
from to construct the array. So if you use the base Array.of(..)
you’ll get an Array instance, but if you use MyCoolArray.of(..),
you’ll get a MyCoolArray instance.


In “Classes” in Chapter 3, we covered the @@species setting that all
the built-in classes (like Array) have defined, which is used by any
prototype methods if they create a new instance. slice(..) is a great
example:


var x = new MyCoolArray( 1, 2, 3 );

x.slice( 1 ) instanceof MyCoolArray;                // true


Generally, that default behavior will probably be desired, but as we
discussed in Chapter 3, you can override if you want:


class MyCoolArray extends Array {
    // force `species` to be parent constructor
    static get [Symbol.species]() { return Array; }
}

var x = new MyCoolArray( 1, 2, 3 );

x.slice( 1 ) instanceof MyCoolArray;                // false
x.slice( 1 ) instanceof Array;                      // true


It’s important to note that the @@species setting is only used for the
prototype methods, like slice(..). It’s not used by of(..) and
from(..); they both just use the this binding (whatever constructor
is used to make the reference). Consider:


class MyCoolArray extends Array {
    // force `species` to be parent constructor
    static get [Symbol.species]() { return Array; }
}

var x = new MyCoolArray( 1, 2, 3 );

MyCoolArray.from( x ) instanceof MyCoolArray;       // true
MyCoolArray.of( [2, 3] ) instanceof MyCoolArray;    // true

















copyWithin(..) Prototype Method


Array#copyWithin(..) is a new mutator method available to all arrays
(including typed arrays; see Chapter 5). copyWithin(..) copies a
portion of an array to another location in the same array, overwriting
whatever was there before.


The arguments are target (the index to copy to), start (the
inclusive index to start the copying from), and optionally end (the
exclusive index to stop copying). If any of the arguments are negative,
they’re taken to be relative from the end of the array.


Consider:


[1,2,3,4,5].copyWithin( 3, 0 );         // [1,2,3,1,2]

[1,2,3,4,5].copyWithin( 3, 0, 1 );      // [1,2,3,1,5]

[1,2,3,4,5].copyWithin( 0, -2 );        // [4,5,3,4,5]

[1,2,3,4,5].copyWithin( 0, -2, -1 );    // [4,2,3,4,5]


The copyWithin(..) method does not extend the array’s length, as the
first example in the previous snippet shows. Copying simply stops when
the end of the array is reached.


Contrary to what you might think, the copying doesn’t always go in
left-to-right (ascending index) order. It’s possible this would result
in repeatedly copying an already copied value if the from and target
ranges overlap, which is presumably not desired behavior.


So internally, the algorithm avoids this case by copying in reverse
order to avoid that gotcha. Consider:


[1,2,3,4,5].copyWithin( 2, 1 );     // ???


If the algorithm was strictly moving left to right, then the 2 should
be copied to overwrite the 3, then that copied 2 should be copied
to overwrite 4, then that copied 2 should be copied to overwrite
5, and you’d end up with [1,2,2,2,2].


Instead, the copying algorithm reverses direction and copies 4 to
overwrite 5, then copies 3 to overwrite 4, then copies 2 to
overwrite 3, and the final result is [1,2,2,3,4]. That’s probably
more “correct” in terms of expectation, but it can be confusing if
you’re only thinking about the copying algorithm in a naive
left-to-right fashion.

















fill(..) Prototype Method


Filling an existing array entirely (or partially) with a specified value
is natively supported as of ES6 with the Array#fill(..) method:


var a = Array( 4 ).fill( undefined );
a;
// [undefined,undefined,undefined,undefined]


fill(..) optionally takes start and end parameters, which indicate
a subset portion of the array to fill, such as:


var a = [ null, null, null, null ].fill( 42, 1, 3 );

a;                                  // [null,42,42,null]

















find(..) Prototype Method


The most common way to search for a value in an array has generally been
the indexOf(..) method, which returns the index the value is found at
or -1 if not found:


var a = [1,2,3,4,5];

(a.indexOf( 3 ) != -1);             // true
(a.indexOf( 7 ) != -1);             // false

(a.indexOf( "2" ) != -1);           // false


The indexOf(..) comparison requires a strict === match, so a search
for "2" fails to find a value of 2, and vice versa. There’s no way
to override the matching algorithm for indexOf(..). It’s also
unfortunate/ungraceful to have to make the manual comparison to the -1
value.

Tip

See the Types & Grammar title of this series for an interesting
(and controversially confusing) technique to work around the -1
ugliness with the ~ operator.




Since ES5, the most common workaround to have control over the matching
logic has been the some(..) method. It works by calling a function
callback for each element, until one of those calls returns a
true/truthy value, and then it stops. Because you get to define the
callback function, you have full control over how a match is made:


var a = [1,2,3,4,5];

a.some( function matcher(v){
    return v == "2";
} );                                // true

a.some( function matcher(v){
    return v == 7;
} );                                // false


But the downside to this approach is that you only get the
true/false indicating if a suitably matched value was found, but not
what the actual matched value was.


ES6’s find(..) addresses this. It works basically the same as
some(..), except that once the callback returns a true/truthy value,
the actual array value is returned:


var a = [1,2,3,4,5];

a.find( function matcher(v){
    return v == "2";
} );                                // 2

a.find( function matcher(v){
    return v == 7;                  // undefined
});


Using a custom matcher(..) function also lets you match against
complex values like objects:


var points = [
    { x: 10, y: 20 },
    { x: 20, y: 30 },
    { x: 30, y: 40 },
    { x: 40, y: 50 },
    { x: 50, y: 60 }
];

points.find( function matcher(point) {
    return (
        point.x % 3 == 0 &&
        point.y % 4 == 0
    );
} );                                // { x: 30, y: 40 }

Note

As with other array methods that take callbacks, find(..)
takes an optional second argument that if set will specify the this
binding for the callback passed as the first argument. Otherwise, this
will be undefined.



















findIndex(..) Prototype Method


While the previous section illustrates how some(..) yields a boolean
result for a search of an array, and find(..) yields the matched value
itself from the array search, there’s also a need to find the
positional index of the matched value.


indexOf(..) does that, but there’s no control over its matching logic;
it always uses === strict equality. So ES6’s findIndex(..) is the
answer:


var points = [
    { x: 10, y: 20 },
    { x: 20, y: 30 },
    { x: 30, y: 40 },
    { x: 40, y: 50 },
    { x: 50, y: 60 }
];

points.findIndex( function matcher(point) {
    return (
        point.x % 3 == 0 &&
        point.y % 4 == 0
    );
} );                                // 2

points.findIndex( function matcher(point) {
    return (
        point.x % 6 == 0 &&
        point.y % 7 == 0
    );
} );                                // -1


Don’t use findIndex(..) != -1 (the way it’s always been done with
indexOf(..)) to get a boolean from the search, because some(..)
already yields the true/false you want. And don’t do
a[ a.findIndex(..) ] to get the matched value, because that’s what
find(..) accomplishes. And finally, use indexOf(..) if you need the
index of a strict match, or findIndex(..) if you need the index of a
more customized match.

Note

As with other array methods that take callbacks, find(..)
takes an optional second argument that if set will specify the this
binding for the callback passed as the first argument. Otherwise, this
will be undefined.



















entries(), values(), keys() Prototype Methods


In Chapter 3, we illustrated how data structures can provide a patterned
item-by-item enumeration of their values, via an iterator. We then
expounded on this approach in Chapter 5, as we explored how the new ES6
collections (Map, Set, etc.) provide several methods for producing
different kinds of iterations.


Because it’s not new to ES6, Array might not be thought of
traditionally as a “collection,” but it is one in the sense that it
provides these same iterator methods: entries(), values(), and
keys(). Consider:


var a = [1,2,3];

[...a.values()];                    // [1,2,3]
[...a.keys()];                      // [0,1,2]
[...a.entries()];                   // [ [0,1], [1,2], [2,3] ]

[...a[Symbol.iterator]()];          // [1,2,3]


Just like with Set, the default Array iterator is the same as what
values() returns.


In “String Inspection Functions”, we illustrated how
Array.from(..) treats empty slots in an array as just being present
slots with undefined in them. That’s actually because under the
covers, the array iterators behave that way:


var a = [];
a.length = 3;
a[1] = 2;

[...a.values()];    // [undefined,2,undefined]
[...a.keys()];      // [0,1,2]
[...a.entries()];   // [ [0,undefined], [1,2], [2,undefined] ]
























Object


A few additional static helpers have been added to Object.
Traditionally, functions of this sort have been seen as focused on the
behaviors/capabilities of object values.


However, starting with ES6, Object static functions will also be for
general-purpose global APIs of any sort that don’t already belong more
naturally in some other location (i.e., Array.from(..)).










Object.is(..) Static Function


The Object.is(..) static function makes value comparisons in an even
more strict fashion than the === comparison.


Object.is(..) invokes the underlying SameValue algorithm (ES6 spec,
section 7.2.9). The SameValue algorithm is basically the same as the
=== Strict Equality Comparison Algorithm (ES6 spec, section 7.2.13),
with two important exceptions.


Consider:


var x = NaN, y = 0, z = -0;

x === x;                            // false
y === z;                            // true

Object.is( x, x );                  // true
Object.is( y, z );                  // false


You should continue to use === for strict equality comparisons;
Object.is(..) shouldn’t be thought of as a replacement for the
operator. However, in cases where you’re trying to strictly identify a
NaN or -0 value, Object.is(..) is now the preferred option.

Note

ES6 also adds a Number.isNaN(..) utility (discussed later in
this chapter), which may be a slightly more convenient test; you may
prefer Number.isNaN(x) over Object.is(x,NaN). You can accurately
test for -0 with a clumsy x == 0 && 1 / x === -Infinity, but in this
case Object.is(x,-0) is much better.



















Object.getOwnPropertySymbols(..) Static Function


“Symbols” in Chapter 2 discusses the new Symbol primitive
value type in ES6.


Symbols are likely going to be mostly used as special (meta) properties
on objects. So the Object.getOwnPropertySymbols(..) utility was
introduced, which retrieves only the symbol properties directly on an
object:


var o = {
    foo: 42,
    [ Symbol( "bar" ) ]: "hello world",
    baz: true
};

Object.getOwnPropertySymbols( o );  // [ Symbol(bar) ]

















Object.setPrototypeOf(..) Static Function


Also in Chapter 2, we mentioned the Object.setPrototypeOf(..) utility,
which (unsurprisingly) sets the [[Prototype]] of an object for the
purposes of behavior delegation (see the this & Object Prototypes
title of this series). Consider:


var o1 = {
    foo() { console.log( "foo" ); }
};
var o2 = {
    // .. o2's definition ..
};

Object.setPrototypeOf( o2, o1 );

// delegates to `o1.foo()`
o2.foo();                           // foo


Alternatively:


var o1 = {
    foo() { console.log( "foo" ); }
};

var o2 = Object.setPrototypeOf( {
    // .. o2's definition ..
}, o1 );

// delegates to `o1.foo()`
o2.foo();                           // foo


In both previous snippets, the relationship between o2 and o1
appears at the end of the o2 definition. More commonly, the
relationship between an o2 and o1 is specified at the top of the
o2 definition, as it is with classes, and also with __proto__ in
object literals (see “Setting [[Prototype]]” in Chapter 2).

Warning

Setting a [[Prototype]] right after object creation is
reasonable, as shown. But changing it much later is generally not a good
idea and will usually lead to more confusion than clarity.



















Object.assign(..) Static Function


Many JavaScript libraries/frameworks provide utilities for
copying/mixing one object’s properties into another (e.g., jQuery’s
extend(..)). There are various nuanced differences between these
different utilities, such as whether a property with value undefined
is ignored or not.


ES6 adds Object.assign(..), which is a simplified version of these
algorithms. The first argument is the target, and any other arguments
passed are the sources, which will be processed in listed order. For
each source, its enumerable and own (e.g., not “inherited”) keys, including
symbols, are copied as if by plain = assignment. Object.assign(..)
returns the target object.


Consider this object setup:


var target = {},
    o1 = { a: 1 }, o2 = { b: 2 },
    o3 = { c: 3 }, o4 = { d: 4 };

// set up read-only property
Object.defineProperty( o3, "e", {
    value: 5,
    enumerable: true,
    writable: false,
    configurable: false
} );

// set up non-enumerable property
Object.defineProperty( o3, "f", {
    value: 6,
    enumerable: false
} );

o3[ Symbol( "g" ) ] = 7;

// set up non-enumerable symbol
Object.defineProperty( o3, Symbol( "h" ), {
    value: 8,
    enumerable: false
} );

Object.setPrototypeOf( o3, o4 );


Only the properties a, b, c, e, and Symbol("g") will be copied to target:


Object.assign( target, o1, o2, o3 );

target.a;                           // 1
target.b;                           // 2
target.c;                           // 3

Object.getOwnPropertyDescriptor( target, "e" );
// { value: 5, writable: true, enumerable: true,
//   configurable: true }

Object.getOwnPropertySymbols( target );
// [Symbol("g")]


The d, f, and Symbol("h") properties are omitted from copying; non-enumerable properties and non-owned properties are all excluded from the assignment. Also, e is copied as a normal property assignment, not duplicated as a read-only property.


In an earlier section, we showed using setPrototypeOf(..) to set up a
[[Prototype]] relationship between an o2 and o1 object. There’s
another form that leverages Object.assign(..):


var o1 = {
    foo() { console.log( "foo" ); }
};

var o2 = Object.assign(
    Object.create( o1 ),
    {
        // .. o2's definition ..
    }
);

// delegates to `o1.foo()`
o2.foo();                           // foo

Note

Object.create(..) is the ES5 standard utility that creates an
empty object that is [[Prototype]]-linked. See the this & Object
Prototypes title of this series for more information.


























Math


ES6 adds several new mathematic utilities that fill in holes or aid with
common operations. All of these can be manually calculated, but most of
them are now defined natively so that in some cases the JS engine can
either more optimally perform the calculations, or perform them with
better decimal precision than their manual counterparts.


It’s likely that asm.js/transpiled JS code (see the Async &
Performance title of this series) is the more likely consumer of many
of these utilities rather than direct developers.


Trigonometry:


	cosh(..)

	
Hyperbolic cosine



	acosh(..)

	
Hyperbolic arccosine



	sinh(..)

	
Hyperbolic sine



	asinh(..)

	
Hyperbolic arcsine



	tanh(..)

	
Hyperbolic tangent



	atanh(..)

	
Hyperbolic arctangent



	hypot(..)

	
The squareroot of the sum of the squares (i.e., the
generalized Pythagorean theorem)






Arithmetic:


	cbrt(..)

	
Cube root



	clz32(..)

	
Count leading zeros in 32-bit binary representation



	expm1(..)

	
The same as exp(x) - 1



	log2(..)

	
Binary logarithm (log base 2)



	log10(..)

	
Log base 10



	log1p(..)

	
The same as log(x + 1)



	imul(..)

	
32-bit integer multiplication of two numbers






Meta:


	sign(..)

	
Returns the sign of the number



	trunc(..)

	
Returns only the integer part of a number



	fround(..)

	
Rounds to nearest 32-bit (single precision) floating-point value





















Number


Importantly, for your program to properly work, it must accurately
handle numbers. ES6 adds some additional properties and functions to
assist with common numeric operations.


Two additions to Number are just references to the pre-existing
globals: Number.parseInt(..) and Number.parseFloat(..).










Static Properties


ES6 adds some helpful numeric constants as static properties:


	Number.EPSILON

	
The minimum value between any two numbers: 2^-52
(see Chapter 2 of the Types & Grammar title of this series regarding
using this value as a tolerance for imprecision in floating-point
arithmetic)



	Number.MAX_SAFE_INTEGER

	
The highest integer that can “safely” be
represented unambiguously in a JS number value: 2^53 - 1



	Number.MIN_SAFE_INTEGER

	
The lowest integer that can “safely” be
represented unambiguously in a JS number value: -(2^53 - 1) or
(-2)^53 + 1





Note

See Chapter 2 of the Types & Grammar title of this series for
more information about “safe” integers.



















Number.isNaN(..) Static Function


The standard global isNaN(..) utility has been broken since its
inception, in that it returns true for things that are not numbers,
not just for the actual NaN value, because it coerces the argument to
a number type (which can falsely result in a NaN). ES6 adds a fixed
utility Number.isNaN(..) that works as it should:


var a = NaN, b = "NaN", c = 42;

isNaN( a );                         // true
isNaN( b );                         // true--oops!
isNaN( c );                         // false

Number.isNaN( a );                  // true
Number.isNaN( b );                  // false--fixed!
Number.isNaN( c );                  // false

















Number.isFinite(..) Static Function


There’s a temptation to look at a function name like isFinite(..) and
assume it’s simply “not infinite”. That’s not quite correct, though.
There’s more nuance to this new ES6 utility. Consider:


var a = NaN, b = Infinity, c = 42;

Number.isFinite( a );               // false
Number.isFinite( b );               // false

Number.isFinite( c );               // true


The standard global isFinite(..) coerces its argument, but
Number.isFinite(..) omits the coercive behavior:


var a = "42";

isFinite( a );                      // true
Number.isFinite( a );               // false


You may still prefer the coercion, in which case using the global
isFinite(..) is a valid choice. Alternatively, and perhaps more
sensibly, you can use Number.isFinite(+x), which explicitly coerces
x to a number before passing it in (see Chapter 4 of the Types &
Grammar title of this series).

















Integer-Related Static Functions


JavaScript number valuess are always floating point (IEE-754). So the
notion of determining if a number is an “integer” is not about checking
its type, because JS makes no such distinction.


Instead, you need to check if there’s any nonzero decimal portion of
the value. The easiest way to do that has commonly been:


x === Math.floor( x );


ES6 adds a Number.isInteger(..) helper utility that potentially can
determine this quality slightly more efficiently:


Number.isInteger( 4 );              // true
Number.isInteger( 4.2 );            // false

Note

In JavaScript, there’s no difference between 4, 4., 4.0,
or 4.0000. All of these would be considered an “integer,” and would
thus yield true from Number.isInteger(..).




In addition, Number.isInteger(..) filters out some clearly not-integer
values that x === Math.floor(x) could potentially mix up:


Number.isInteger( NaN );            // false
Number.isInteger( Infinity );       // false


Working with “integers” is sometimes an important bit of information, as
it can simplify certain kinds of algorithms. JS code by itself will not
run faster just from filtering for only integers, but there are
optimization techniques the engine can take (e.g., asm.js) when only
integers are being used.


Because of Number.isInteger(..)’s handling of NaN and Infinity
values, defining a isFloat(..) utility would not be just as simple as
!Number.isInteger(..). You’d need to do something like:


function isFloat(x) {
    return Number.isFinite( x ) && !Number.isInteger( x );
}

isFloat( 4.2 );                     // true
isFloat( 4 );                       // false

isFloat( NaN );                     // false
isFloat( Infinity );                // false

Note

It may seem strange, but Infinity should neither be considered
an integer nor a float.




ES6 also defines a Number.isSafeInteger(..) utility, which checks to
make sure the value is both an integer and within the range of
Number.MIN_SAFE_INTEGER-Number.MAX_SAFE_INTEGER (inclusive).


var x = Math.pow( 2, 53 ),
    y = Math.pow( -2, 53 );

Number.isSafeInteger( x - 1 );      // true
Number.isSafeInteger( y + 1 );      // true

Number.isSafeInteger( x );          // false
Number.isSafeInteger( y );          // false
























String


Strings already have quite a few helpers prior to ES6, but even more
have been added to the mix.










Unicode Functions


“Unicode-Aware String Operations” in Chapter 2 discusses
String.fromCodePoint(..), String#codePointAt(..), and
String#normalize(..) in detail. They have been added to improve
Unicode support in JS string values.


String.fromCodePoint( 0x1d49e );            // "𝒞"
"ab𝒞d.codePointAt( 2 ).toString( 16 );     // "1d49e"


The normalize(..) string prototype method is used to perform Unicode
normalizations that either combine characters with adjacent “combining
marks” or decompose combined characters.


Generally, the normalization won’t create a visible effect on the
contents of the string, but will change the contents of the string,
which can affect how things like the length property are reported, as
well as how character access by position behaves:


var s1 = "e\u0301";
s1.length;                          // 2

var s2 = s1.normalize();
s2.length;                          // 1
s2 === "\xE9";                      // true


normalize(..) takes an optional argument that specifies the
normalization form to use. This argument must be one of the following
four values: "NFC" (default), "NFD", "NFKC", or "NFKD".

Note

Normalization forms and their effects on strings is well beyond
the scope of what we’ll discuss here. See “Unicode Normalization Forms” for more information.



















String.raw(..) Static Function


The String.raw(..) utility is provided as a built-in tag function to
use with template string literals (see Chapter 2) for obtaining the raw
string value without any processing of escape sequences.


This function will almost never be called manually, but will be used
with tagged template literals:


var str = "bc";

String.raw`\ta${str}d\xE9`;
// "\tabcd\xE9", not "  abcdé"


In the resultant string, \ and t are separate raw characters, not
the one escape sequence character \t. The same is true of the
Unicode escape sequence.

















repeat(..) Prototype Function


In languages like Python and Ruby, you can repeat a string as:


"foo" * 3;                          // "foofoofoo"


That doesn’t work in JS, because * multiplication is only defined for
numbers, and thus "foo" coerces to the NaN number.


However, ES6 defines a string prototype method repeat(..) to
accomplish the task:


"foo".repeat( 3 );                  // "foofoofoo"

















String Inspection Functions


In addition to String#indexOf(..) and String#lastIndexOf(..) from
prior to ES6, three new methods for searching/inspection have been
added: startsWith(..), endsWidth(..), and includes(..).


var palindrome = "step on no pets";

palindrome.startsWith( "step on" ); // true
palindrome.startsWith( "on", 5 );   // true

palindrome.endsWith( "no pets" );   // true
palindrome.endsWith( "no", 10 );    // true

palindrome.includes( "on" );        // true
palindrome.includes( "on", 6 );     // false


For all the string search/inspection methods, if you look for an empty
string "", it will either be found at the beginning or the end of the
string.

Warning

These methods will not by default accept a regular expression
for the search string. See “Regular Expression Symbols” in Chapter 7 for
information about disabling the isRegExp check that is performed on
this first argument.


























Review


ES6 adds many extra API helpers on the various built-in native objects:



	
Array adds of(..) and from(..) static functions, as well as
prototype functions like copyWithin(..) and fill(..).



	
Object adds static functions like is(..) and assign(..).



	
Math adds static functions like acosh(..) and clz32(..).



	
Number adds static properties like Number.EPSILON, as well as
static functions like Number.isFinite(..).



	
String adds static functions like String.fromCodePoint(..) and
String.raw(..), as well as prototype functions like repeat(..) and
includes(..).






Most of these additions can be polyfilled (see ES6 Shim), and were
inspired by utilities in common JS libraries/frameworks.












Chapter 7. Meta Programming



Meta programming is programming where the operation targets the behavior
of the program itself. In other words, it’s programming the programming
of your program. Yeah, a mouthful, huh?


For example, if you probe the relationship between one object a and
another b—are they [[Prototype]] linked?—using
a.isPrototype(b), this is commonly referred to as introspection, a
form of meta programming. Macros (which don’t exist in JS, yet)—where
the code modifies itself at compile time—are another obvious example
of meta programming. Enumerating the keys of an object with a for..in
loop, or checking if an object is an instance of a “class
constructor,” are other common meta programming tasks.


Meta programming focuses on one or more of the following: code
inspecting itself, code modifying itself, or code modifying default
language behavior so other code is affected.


The goal of meta programming is to leverage the language’s own intrinsic
capabilities to make the rest of your code more descriptive, expressive,
and/or flexible. Because of the meta nature of meta programming, it’s
somewhat difficult to put a more precise definition on it than that. The
best way to understand meta programming is to see it through examples.


ES6 adds several new forms/features for meta programming on top of what
JS already had.








Function Names


There are cases where your code may want to introspect on itself and ask
what the name of some function is. If you ask what a function’s name is,
the answer is surprisingly somewhat ambiguous. Consider:


function daz() {
    // ..
}

var obj = {
    foo: function() {
        // ..
    },
    bar: function baz() {
        // ..
    },
    bam: daz,
    zim() {
        // ..
    }
};


In this previous snippet, “what is the name of obj.foo()" is slightly
nuanced. Is it "foo", "", or undefined? And what about obj.bar()—is it named "bar" or "baz"? Is obj.bam() named "bam" or
"daz"? What about obj.zim()?


Moreover, what about functions that are passed as callbacks, like:


function foo(cb) {
    // what is the name of `cb()` here?
}

foo( function(){
    // I'm anonymous!
} );


There are quite a few ways that functions can be expressed in programs,
and it’s not always clear and unambiguous what the “name” of that
function should be.


More importantly, we need to distinguish whether the “name” of a
function refers to its name property—yes, functions have a property
called name—or whether it refers to the lexical binding name, such
as bar in function bar() { .. }.


The lexical binding name is what you use for things like recursion:


function foo(i) {
    if (i < 10) return foo( i * 2 );
    return i;
}


The name property is what you’d use for meta programming purposes, so
that’s what we’ll focus on in this discussion.


The confusion comes because by default, the lexical name a function has
(if any) is also set as its name property. Actually, there was no
official requirement for that behavior by the ES5 (and prior)
specifications. The setting of the name property was nonstandard but
still fairly reliable. As of ES6, it has been standardized.

Tip

If a function has a name value assigned, that’s typically the
name used in stack traces in developer tools.












Inferences


But what happens to the name property if a function has no lexical
name?


As of ES6, there are now inference rules that can determine a sensible
name property value to assign a function even if that function doesn’t
have a lexical name to use.


Consider:


var abc = function() {
    // ..
};

abc.name;               // "abc"


Had we given the function a lexical name like
abc = function def() { .. }, the name property would of course be
"def". But in the absence of the lexical name, intuitively the "abc"
name seems appropriate.


Here are other forms that will infer a name (or not) in ES6:


(function(){ .. });                 // name:
(function*(){ .. });                // name:
window.foo = function(){ .. };      // name:

class Awesome {
    constructor() { .. }            // name: Awesome
    funny() { .. }                  // name: funny
}

var c = class Awesome { .. };       // name: Awesome

var o = {
    foo() { .. },                   // name: foo
    *bar() { .. },                  // name: bar
    baz: () => { .. },              // name: baz
    bam: function(){ .. },          // name: bam
    get qux() { .. },               // name: get qux
    set fuz() { .. },               // name: set fuz
    ["b" + "iz"]:
        function(){ .. },           // name: biz
    [Symbol( "buz" )]:
        function(){ .. }            // name: [buz]
};

var x = o.foo.bind( o );            // name: bound foo
(function(){ .. }).bind( o );       // name: bound

export default function() { .. }    // name: default

var y = new Function();             // name: anonymous
var GeneratorFunction =
    function*(){}.__proto__.constructor;
var z = new GeneratorFunction();    // name: anonymous


The name property is not writable by default, but it is configurable,
meaning you can use Object.defineProperty(..) to manually change it if
so desired.
























Meta Properties


In “new.target” in Chapter 3, we introduced a concept new
to JS in ES6: the meta property. As the name suggests, meta properties
are intended to provide special meta information in the form of a
property access that would otherwise not have been possible.


In the case of new.target, the keyword new serves as the context for
a property access. Clearly new is itself not an object, which makes
this capability special. However, when new.target is used inside a
constructor call (a function/method invoked with new), new becomes a
virtual context, so that new.target can refer to the target
constructor that new invoked.


This is a clear example of a meta programming operation, as the intent
is to determine from inside a constructor call what the original new
target was, generally for the purposes of introspection (examining
typing/structure) or static property access.


For example, you may want to have different behavior in a constructor
depending on if it’s directly invoked or invoked via a child class:


class Parent {
    constructor() {
        if (new.target === Parent) {
            console.log( "Parent instantiated" );
        }
        else {
            console.log( "A child instantiated" );
        }
    }
}

class Child extends Parent {}

var a = new Parent();
// Parent instantiated

var b = new Child();
// A child instantiated


There’s a slight nuance here, which is that the constructor() inside
the Parent class definition is actually given the lexical name of the
class (Parent), even though the syntax implies that the class is a
separate entity from the constructor.

Warning

As with all meta programming techniques, be careful of
creating code that’s too clever for your future self or others
maintaining your code to understand. Use these tricks with caution.



















Well-Known Symbols


In “Symbols” in Chapter 2, we covered the new ES6 primitive
type symbol. In addition to symbols you can define in your own
program, JS predefines a number of built-in symbols, referred to as
Well-Known Symbols (WKS).


These symbol values are defined primarily to expose special meta
properties that are being exposed to your JS programs to give you more
control over JS’s behavior.


We’ll briefly introduce each and discuss their purpose.










Symbol.iterator


In Chapters 2 and 3, we introduced and used the @@iterator symbol,
automatically used by ... spreads and for..of loops. We also saw
@@iterator as defined on the new ES6 collections as defined in Chapter 5.


Symbol.iterator represents the special location (property) on any
object where the language mechanisms automatically look to find a method
that will construct an iterator instance for consuming that object’s
values. Many objects come with a default one defined.


However, we can define our own iterator logic for any object value by
setting the Symbol.iterator property, even if that’s overriding the
default iterator. The meta programming aspect is that we are defining
behavior that other parts of JS (namely, operators and looping
constructs) use when processing an object value we define.


Consider:


var arr = [4,5,6,7,8,9];

for (var v of arr) {
    console.log( v );
}
// 4 5 6 7 8 9

// define iterator that only produces values
// from odd indexes
arr[Symbol.iterator] = function*() {
    var idx = 1;
    do {
        yield this[idx];
    } while ((idx += 2) < this.length);
};

for (var v of arr) {
    console.log( v );
}
// 5 7 9

















Symbol.toStringTag and Symbol.hasInstance


One of the most common meta programming tasks is to introspect on a
value to find out what kind it is, usually to decide what operations
are appropriate to perform on it. With objects, the two most common
inspection techniques are toString() and instanceof.


Consider:


function Foo() {}

var a = new Foo();

a.toString();               // [object Object]
a instanceof Foo;           // true


As of ES6, you can control the behavior of these operations:


function Foo(greeting) {
    this.greeting = greeting;
}

Foo.prototype[Symbol.toStringTag] = "Foo";

Object.defineProperty( Foo, Symbol.hasInstance, {
    value: function(inst) {
        return inst.greeting == "hello";
    }
} );

var a = new Foo( "hello" ),
    b = new Foo( "world" );

b[Symbol.toStringTag] = "cool";

a.toString();               // [object Foo]
String( b );                // [object cool]

a instanceof Foo;           // true
b instanceof Foo;           // false


The @@toStringTag symbol on the prototype (or instance itself)
specifies a string value to use in the [object ___] stringification.


The @@hasInstance symbol is a method on the constructor function which
receives the instance object value and lets you decide by returning
true or false if the value should be considered an instance or not.

Note

To set @@hasInstance on a function, you must use
Object.defineProperty(..), as the default one on Function.prototype
is writable: false. See the this & Object Prototypes title of this
series for more information.



















Symbol.species


In “Classes” in Chapter 3, we introduced the @@species symbol, which
controls which constructor is used by built-in methods of a class that
needs to spawn new instances.


The most common example is when subclassing Array and wanting to
define which constructor (Array(..) or your subclass) inherited
methods like slice(..) should use. By default, slice(..) called on
an instance of a subclass of Array would produce a new instance of
that subclass, which is frankly what you’ll likely often want.


However, you can meta program by overriding a class’s default
@@species definition:


class Cool {
    // defer `@@species` to derived constructor
    static get [Symbol.species]() { return this; }

    again() {
        return new this.constructor[Symbol.species]();
    }
}

class Fun extends Cool {}

class Awesome extends Cool {
    // force `@@species` to be parent constructor
    static get [Symbol.species]() { return Cool; }
}

var a = new Fun(),
    b = new Awesome(),
    c = a.again(),
    d = b.again();

c instanceof Fun;           // true
d instanceof Awesome;       // false
d instanceof Cool;          // true


The Symbol.species setting defaults on the built-in native
constructors to the return this behavior as illustrated in the
previous snippet in the Cool definition. It has no default on user
classes, but as shown that behavior is easy to emulate.


If you need to define methods that generate new instances, use the meta
programming of the new this.constructor[Symbol.species](..) pattern
instead of the hard-wiring of new this.constructor(..) or
new XYZ(..). Derived classes will then be able to customize
Symbol.species to control which constructor vends those instances.

















Symbol.toPrimitive


In the Types & Grammar title of this series, we discussed the
ToPrimitive abstract coercion operation, which is used when an object
must be coerced to a primitive value for some operation (such as ==
comparison or + addition). Prior to ES6, there was no way to control
this behavior.


As of ES6, the @@toPrimitive symbol as a property on any object value
can customize that ToPrimitive coercion by specifying a method.


Consider:


var arr = [1,2,3,4,5];

arr + 10;               // 1,2,3,4,510

arr[Symbol.toPrimitive] = function(hint) {
    if (hint == "default" || hint == "number") {
        // sum all numbers
        return this.reduce( function(acc,curr){
            return acc + curr;
        }, 0 );
    }
};

arr + 10;               // 25


The Symbol.toPrimitive method will be provided with a hint of
"string", "number", or "default" (which should be interpreted as
"number"), depending on what type the operation invoking ToPrimitive
is expecting. In the previous snippet, the additive + operation has no
hint ("default" is passed). A multiplicative * operation would hint
"number" and a String(arr) would hint "string".

Warning

The == operator will invoke the ToPrimitive operation
with no hint—the @@toPrimitive method, if any is called with hint
"default"—on an object if the other value being compared is not an
object. However, if both comparison values are objects, the behavior of
== is identical to ===, which is that the references themselves are
directly compared. In this case, @@toPrimitive is not invoked at all.
See the Types & Grammar title of this series for more information
about coercion and the abstract operations.



















Regular Expression Symbols


There are four well-known symbols that can be overridden for regular
expression objects, which control how those regular expressions are used
by the four corresponding String.prototype functions of the same name:



	
@@match: The Symbol.match value of a regular expression is the
method used to match all or part of a string value with the given
regular expression. It’s used by String.prototype.match(..) if you
pass it a regular expression for the pattern matching.






The default algorithm for matching is laid out in section 21.2.5.6 of
the ES6 specification.
You could override this default algorithm and provide extra regex
features, such as look-behind assertions.


Symbol.match is also used by the isRegExp abstract operation (see
the note in “String Inspection Functions” in Chapter 6) to determine if
an object is intended to be used as a regular expression. To force this
check to fail for an object so it’s not treated as a regular expression,
set the Symbol.match value to false (or something falsy). *
@@replace: The Symbol.replace value of a regular expression is the
method used by String.prototype.replace(..) to replace within a string
one or all occurrences of character sequences that match the given
regular expression pattern.


The default algorithm for replacing is laid out in section 21.2.5.8 of
the ES6 specification.


One cool use for overriding the default algorithm is to provide
additional replacer argument options, such as supporting
"abaca".replace(/a/g,[1,2,3]) producing "1b2c3" by consuming the
iterable for successive replacement values. * @@search: The
Symbol.search value of a regular expression is the method used by
String.prototype.search(..) to search for a substring within another
string as matched by the given regular expression.


The default algorithm for searching is laid out in section 21.2.5.9 of
the ES6 specification.
* @@split: The Symbol.split value of a regular expression is the
method used by String.prototype.split(..) to split a string into
substrings at the location(s) of the delimiter as matched by the given
regular expression.


The default algorithm for splitting is laid out in section 21.2.5.11 of
the ES6 specification.


Overriding the built-in regular expression algorithms is not for the
faint of heart! JS ships with a highly optimized regular expression
engine, so your own user code will likely be a lot slower. This kind of
meta programming is neat and powerful, but it should only be used in
cases where it’s really necessary or beneficial.

















Symbol.isConcatSpreadable


The @@isConcatSpreadable symbol can be defined as a boolean property
(Symbol.isConcatSpreadable) on any object (like an array or other
iterable) to indicate if it should be spread out if passed to an array
concat(..).


Consider:


var a = [1,2,3],
    b = [4,5,6];

b[Symbol.isConcatSpreadable] = false;

[].concat( a, b );      // [1,2,3,[4,5,6]]

















Symbol.unscopables


The @@unscopables symbol can be defined as an object property
(Symbol.unscopables) on any object to indicate which properties can
and cannot be exposed as lexical variables in a with statement.


Consider:


var o = { a:1, b:2, c:3 },
    a = 10, b = 20, c = 30;

o[Symbol.unscopables] = {
    a: false,
    b: true,
    c: false
};

with (o) {
    console.log( a, b, c );     // 1 20 3
}


A true in the @@unscopables object indicates the property should be
unscopable, and thus filtered out from the lexical scope variables.
false means it’s OK to be included in the lexical scope variables.

Warning

The with statement is disallowed entirely in strict mode,
and as such should be considered deprecated from the language. Don’t use
it. See the Scope & Closures title of this series for more
information. Because with should be avoided, the @@unscopables
symbol is also moot.


























Proxies


One of the most obviously meta programming features added to ES6 is the
Proxy feature.


A proxy is a special kind of object you create that “wraps”—or sits
in front of—another normal object. You can register special handlers
(aka traps) on the proxy object, which are called when various
operations are performed against the proxy. These handlers have the
opportunity to perform extra logic in addition to forwarding the
operations on to the original target/wrapped object.


One example of the kind of trap handler you can define on a proxy is
get that intercepts the [[Get]] operation—performed when you try
to access a property on an object. Consider:


var obj = { a: 1 },
    handlers = {
        get(target,key,context) {
            // note: target === obj,
            // context === pobj
            console.log( "accessing: ", key );
            return Reflect.get(
                target, key, context
            );
        }
    },
    pobj = new Proxy( obj, handlers );

obj.a;
// 1

pobj.a;
// accessing: a
// 1


We declare a get(..) handler as a named method on the handler object
(second argument to Proxy(..)), that receives a reference to the
target object (obj), the key property name ("a"), and the
self/receiver/proxy (pobj).


After the console.log(..) tracing statement, we “forward” the
operation onto obj via Reflect.get(..). We will cover the Reflect
API in the next section, but note that each available proxy trap has a
corresponding Reflect function of the same name.


These mappings are symmetric on purpose. The proxy handlers each
intercept when a respective meta programming task is performed, and the
Reflect utilities each perform the respective meta programming task on
an object. Each proxy handler has a default definition that
automatically calls the corresponding Reflect utility. You will almost
certainly use both Proxy and Reflect in tandem.


Here’s a list of handlers you can define on a proxy for a target
object/function, and how/when they are triggered:


	get(..)

	
Via [[Get]], a property is accessed on the proxy
(Reflect.get(..), . property operator, or [ .. ] property
operator)



	set(..)

	
Via [[Set]], a property value is set on the proxy
(Reflect.set(..), the = assignment operator, or destructuring
assignment if it targets an object property)



	deleteProperty(..)

	
Via [[Delete]], a property is deleted from the
proxy (Reflect.deleteProperty(..) or delete)



	apply(..) (if target is a function)

	
Via [[Call]], the proxy is
invoked as a normal function/method (Reflect.apply(..), call(..),
apply(..), or the (..) call operator)



	construct(..) (if target is a constructor function)

	
Via
[[Construct]], the proxy is invoked as a constructor function
(Reflect.construct(..) or new)



	getOwnPropertyDescriptor(..)

	
Via [[GetOwnProperty]], a property
descriptor is retrieved from the proxy
(Object.getOwnPropertyDescriptor(..) or
Reflect.getOwnPropertyDescriptor(..))



	defineProperty(..)

	
Via [[DefineOwnProperty]], a property
descriptor is set on the proxy (Object.defineProperty(..) or
Reflect.defineProperty(..))



	getPrototypeOf(..)

	
Via [[GetPrototypeOf]], the [[Prototype]] of
the proxy is retrieved (Object.getPrototypeOf(..),
Reflect.getPrototypeOf(..), __proto__, Object#isPrototypeOf(..),
or instanceof)



	setPrototypeOf(..)

	
Via [[SetPrototypeOf]], the [[Prototype]] of
the proxy is set (Object.setPrototypeOf(..),
Reflect.setPrototypeOf(..), or __proto__)



	preventExtensions(..)

	
Via [[PreventExtensions]], the proxy is
made non-extensible (Object.preventExtensions(..) or
Reflect.preventExtensions(..))



	isExtensible(..)

	
Via [[IsExtensible]], the extensibility of the
proxy is probed (Object.isExtensible(..) or
Reflect.isExtensible(..))



	ownKeys(..)

	
Via [[OwnPropertyKeys]], the set of owned properties
and/or owned symbol properties of the proxy is retrieved
(Object.keys(..), Object.getOwnPropertyNames(..),
Object.getOwnSymbolProperties(..), Reflect.ownKeys(..), or
JSON.stringify(..))



	enumerate(..)

	
Via [[Enumerate]], an iterator is requested for the
proxy’s enumerable owned and “inherited” properties
(Reflect.enumerate(..) or for..in)



	has(..)

	
Via [[HasProperty]], the proxy is probed to see if it has
an owned or “inherited” property (Reflect.has(..),
Object#hasOwnProperty(..), or "prop" in obj)





Tip

For more information about each of these meta programming tasks,
see “Reflect API” later in this chapter.




In addition to the notations in the preceding list about actions that
will trigger the various traps, some traps are triggered indirectly by
the default actions of another trap. For example:


var handlers = {
        getOwnPropertyDescriptor(target,prop) {
            console.log(
                "getOwnPropertyDescriptor"
            );
            return Object.getOwnPropertyDescriptor(
                target, prop
            );
        },
        defineProperty(target,prop,desc){
            console.log( "defineProperty" );
            return Object.defineProperty(
                target, prop, desc
            );
        }
    },
    proxy = new Proxy( {}, handlers );

proxy.a = 2;
// getOwnPropertyDescriptor
// defineProperty


The getOwnPropertyDescriptor(..) and defineProperty(..) handlers are
triggered by the default set(..) handler’s steps when setting a
property value (whether newly adding or updating). If you also define
your own set(..) handler, you may or may not make the corresponding
calls against context (not target!), which would trigger these proxy
traps.










Proxy Limitations


These meta programming handlers trap a wide array of fundamental
operations you can perform against an object. However, there are some
operations that are not (yet, at least) available to intercept.


For example, none of these operations are trapped and forwarded from
pobj proxy to obj target:


var obj = { a:1, b:2 },
    handlers = { .. },
    pobj = new Proxy( obj, handlers );

typeof obj;
String( obj );
obj + "";
obj == pobj;
obj === pobj


Perhaps in the future, more of these underlying fundamental operations
in the language will be interceptable, giving us even more power to
extend JavaScript from within itself.

Warning

There are certain invariants—behaviors that cannot be
overridden—that apply to the use of proxy handlers. For example, the
result from the isExtensible(..) handler is always coerced to a
boolean. These invariants restrict some of your ability to customize
behaviors with proxies, but they do so only to prevent you from creating
strange and unusual (or inconsistent) behavior. The conditions for these
invariants are complicated so we won’t fully go into them here, but this post does a
great job of covering them.



















Revocable Proxies


A regular proxy always traps for the target object, and cannot be
modified after creation—as long as a reference is kept to the proxy,
proxying remains possible. However, there may be cases where you want to
create a proxy that can be disabled when you want to stop allowing it to proxy. The solution is to create a revocable proxy:


var obj = { a: 1 },
    handlers = {
        get(target,key,context) {
            // note: target === obj,
            // context === pobj
            console.log( "accessing: ", key );
            return target[key];
        }
    },
    { proxy: pobj, revoke: prevoke } =
        Proxy.revocable( obj, handlers );

pobj.a;
// accessing: a
// 1

// later:
prevoke();

pobj.a;
// TypeError


A revocable proxy is created with Proxy.revocable(..), which is a
regular function, not a constructor like Proxy(..). Otherwise, it
takes the same two arguments: target and handlers.


The return value of Proxy.revocable(..) is not the proxy itself as
with new Proxy(..). Instead, it’s an object with two properties:
proxy and revoke—we used object destructuring (see
“Destructuring” in Chapter 2) to assign these properties to pobj and
prevoke() variables, respectively.


Once a revocable proxy is revoked, any attempts to access it (trigger
any of its traps) will throw a TypeError.


An example of using a revocable proxy might be handing out a proxy to another party in your application that manages data in your model, instead of giving them a reference to the real model object itself. If your model object changes or is replaced, you want to invalidate the proxy you handed out so the other party knows (via the errors!) to request an updated reference to the model.

















Using Proxies


The meta programming benefits of these Proxy handlers should be obvious.
We can almost fully intercept (and thus override) the behavior of
objects, meaning we can extend object behavior beyond core JS in some
very powerful ways. We’ll look at a few example patterns to explore the
possibilities.












Proxy First, Proxy Last


As we mentioned earlier, you typically think of a proxy as “wrapping”
the target object. In that sense, the proxy becomes the primary object the code interfaces with, and the actual target object remains
hidden/protected.


You might do this because you want to pass the object somewhere that
can’t be fully “trusted,” and so you need to enforce special rules
around its access rather than passing the object itself.


Consider:


var messages = [],
    handlers = {
        get(target,key) {
            // string value?
            if (typeof target[key] == "string") {
                // filter out punctuation
                return target[key]
                    .replace( /[^\w]/g, "" );
            }

            // pass everything else through
            return target[key];
        },
        set(target,key,val) {
            // only set unique strings, lowercased
            if (typeof val == "string") {
                val = val.toLowerCase();
                if (target.indexOf( val ) == -1) {
                    target.push(
                        val.toLowerCase()
                    );
                }
            }
            return true;
        }
    },
    messages_proxy =
        new Proxy( messages, handlers );

// elsewhere:
messages_proxy.push(
    "heLLo...", 42, "wOrlD!!", "WoRld!!"
);

messages_proxy.forEach( function(val){
    console.log(val);
} );
// hello world

messages.forEach( function(val){
    console.log(val);
} );
// hello... world!!


I call this proxy first design, as we interact first (primarily,
entirely) with the proxy.


We enforce some special rules on interacting with messages_proxy that
aren’t enforced for messages itself. We only add elements if the value
is a string and is also unique; we also lowercase the value. When
retrieving values from messages_proxy, we filter out any punctuation
in the strings.


Alternatively, we can completely invert this pattern, where the target
interacts with the proxy instead of the proxy interacting with the
target. Thus, code really only interacts with the main object. The
easiest way to accomplish this fallback is to have the proxy object in
the [[Prototype]] chain of the main object.


Consider:


var handlers = {
        get(target,key,context) {
            return function() {
                context.speak(key + "!");
            };
        }
    },
    catchall = new Proxy( {}, handlers ),
    greeter = {
        speak(who = "someone") {
            console.log( "hello", who );
        }
    };

// set up `greeter` to fall back to `catchall`
Object.setPrototypeOf( greeter, catchall );

greeter.speak();                // hello someone
greeter.speak( "world" );       // hello world

greeter.everyone();             // hello everyone!


We interact directly with greeter instead of catchall. When we call
speak(..), it’s found on greeter and used directly. But when we try
to access a method like everyone(), that function doesn’t exist on
greeter.


The default object property behavior is to check up the [[Prototype]]
chain (see the this & Object Prototypes title of this series), so
catchall is consulted for an everyone property. The proxy get()
handler then kicks in and returns a function that calls speak(..) with
the name of the property being accessed ("everyone").


I call this pattern proxy last, as the proxy is used only as a last
resort.

















“No Such Property/Method”


A common complaint about JS is that objects aren’t by default very
defensive in the situation where you try to access or set a property
that doesn’t already exist. You may wish to predefine all the
properties/methods for an object, and have an error thrown if a
nonexistent property name is subsequently used.


We can accomplish this with a proxy, either in proxy first or proxy
last design. Let’s consider both.


var obj = {
        a: 1,
        foo() {
            console.log( "a:", this.a );
        }
    },
    handlers = {
        get(target,key,context) {
            if (Reflect.has( target, key )) {
                return Reflect.get(
                    target, key, context
                );
            }
            else {
                throw "No such property/method!";
            }
        },
        set(target,key,val,context) {
            if (Reflect.has( target, key )) {
                return Reflect.set(
                    target, key, val, context
                );
            }
            else {
                throw "No such property/method!";
            }
        }
    },
    pobj = new Proxy( obj, handlers );

pobj.a = 3;
pobj.foo();         // a: 3

pobj.b = 4;         // Error: No such property/method!
pobj.bar();         // Error: No such property/method!


For both get(..) and set(..), we only forward the operation if the
target object’s property already exists; an error is thrown otherwise. The
proxy object (pobj) is the main object code should interact with, as
it intercepts these actions to provide the protections.


Now, let’s consider inverting with proxy last design:


var handlers = {
        get() {
            throw "No such property/method!";
        },
        set() {
            throw "No such property/method!";
        }
    },
    pobj = new Proxy( {}, handlers ),
    obj = {
        a: 1,
        foo() {
            console.log( "a:", this.a );
        }
    };

// set up `obj` to fall back to `pobj`
Object.setPrototypeOf( obj, pobj );

obj.a = 3;
obj.foo();          // a: 3

obj.b = 4;          // Error: No such property/method!
obj.bar();          // Error: No such property/method!


The proxy last design here is a fair bit simpler with respect to how
the handlers are defined. Instead of needing to intercept the [[Get]]
and [[Set]] operations and only forward them if the target property
exists, we instead rely on the fact that if either [[Get]] or
[[Set]] get to our pobj fallback, the action has already traversed
the whole [[Prototype]] chain and not found a matching property. We
are free at that point to unconditionally throw the error. Cool, huh?

















Proxy Hacking the [[Prototype]] Chain


The [[Get]] operation is the primary channel by which the
[[Prototype]] mechanism is invoked. When a property is not found on
the immediate object, [[Get]] automatically hands off the operation to
the [[Prototype]] object.


That means you can use the get(..) trap of a proxy to emulate or
extend the notion of this [[Prototype]] mechanism.


The first hack we’ll consider is creating two objects that are
circularly linked via [[Prototype]] (or, at least it appears that
way!). You cannot actually create a real circular [[Prototype]] chain,
as the engine will throw an error. But a proxy can fake it!


Consider:


var handlers = {
        get(target,key,context) {
            if (Reflect.has( target, key )) {
                return Reflect.get(
                    target, key, context
                );
            }
            // fake circular `[[Prototype]]`
            else {
                return Reflect.get(
                    target[
                        Symbol.for( "[[Prototype]]" )
                    ],
                    key,
                    context
                );
            }
        }
    },
    obj1 = new Proxy(
        {
            name: "obj-1",
            foo() {
                console.log( "foo:", this.name );
            }
        },
        handlers
    ),
    obj2 = Object.assign(
        Object.create( obj1 ),
        {
            name: "obj-2",
            bar() {
                console.log( "bar:", this.name );
                this.foo();
            }
        }
    );

// fake circular `[[Prototype]]` link
obj1[ Symbol.for( "[[Prototype]]" ) ] = obj2;

obj1.bar();
// bar: obj-1 <-- through proxy faking [[Prototype]]
// foo: obj-1 <-- `this` context still preserved

obj2.foo();
// foo: obj-2 <-- through [[Prototype]]

Note

We didn’t need to proxy/forward [[Set]] in this example, so we
kept things simpler. To be fully [[Prototype]] emulation compliant,
you’d want to implement a set(..) handler that searches the
[[Prototype]] chain for a matching property and respects its
descriptor behavior (e.g., set, writable). See the this & Object
Prototypes title of this series.




In the previous snippet, obj2 is [[Prototype]] linked to obj1 by
virtue of the Object.create(..) statement. But to create the reverse
(circular) linkage, we create property on obj1 at the symbol location
Symbol.for("[[Prototype]]") (see “Symbols” in Chapter 2). This symbol
may look sort of special/magical, but it isn’t. It just allows me a
conveniently named hook that semantically appears related to the task
I’m performing.


Then, the proxy’s get(..) handler looks first to see if a requested
key is on the proxy. If not, the operation is manually handed off to
the object reference stored in the Symbol.for("[[Prototype]]")
location of target.


One important advantage of this pattern is that the definitions of
obj1 and obj2 are mostly not intruded by the setting up of this
circular relationship between them. Although the previous snippet has
all the steps intertwined for brevity’s sake, if you look closely, the
proxy handler logic is entirely generic (doesn’t know about obj1 or
obj2 specifically). So, that logic could be pulled out into a simple
helper that wires them up, like a setCircularPrototypeOf(..) for
example. We’ll leave that as an exercise for the reader.


Now that we’ve seen how we can use get(..) to emulate a
[[Prototype]] link, let’s push the hackery a bit further. Instead of a
circular [[Prototype]], what about multiple [[Prototype]] linkages
(aka “multiple inheritance”)? This turns out to be fairly
straightforward:


var obj1 = {
        name: "obj-1",
        foo() {
            console.log( "obj1.foo:", this.name );
        },
    },
    obj2 = {
        name: "obj-2",
        foo() {
            console.log( "obj2.foo:", this.name );
        },
        bar() {
            console.log( "obj2.bar:", this.name );
        }
    },
    handlers = {
        get(target,key,context) {
            if (Reflect.has( target, key )) {
                return Reflect.get(
                    target, key, context
                );
            }
            // fake multiple `[[Prototype]]`
            else {
                for (var P of target[
                    Symbol.for( "[[Prototype]]" )
                ]) {
                    if (Reflect.has( P, key )) {
                        return Reflect.get(
                            P, key, context
                        );
                    }
                }
            }
        }
    },
    obj3 = new Proxy(
        {
            name: "obj-3",
            baz() {
                this.foo();
                this.bar();
            }
        },
        handlers
    );

// fake multiple `[[Prototype]]` links
obj3[ Symbol.for( "[[Prototype]]" ) ] = [
    obj1, obj2
];

obj3.baz();
// obj1.foo: obj-3
// obj2.bar: obj-3

Note

As mentioned in the note after the earlier circular
[[Prototype]] example, we didn’t implement the set(..) handler, but
it would be necessary for a complete solution that emulates [[Set]]
actions as normal [[Prototype]]s behave.




obj3 is set up to multiple-delegate to both obj1 and obj2. In
obj3.baz(), the this.foo() call ends up pulling foo() from obj1
(first-come, first-served, even though there’s also a foo() on
obj2). If we reordered the linkage as obj2, obj1, the obj2.foo()
would have been found and used.


But as is, the this.bar() call doesn’t find a bar() on obj1, so it
falls over to check obj2, where it finds a match.


obj1 and obj2 represent two parallel [[Prototype]] chains of
obj3. obj1 and/or obj2 could themselves have normal
[[Prototype]] delegation to other objects, or either could themself be
a proxy (like obj3 is) that can multiple-delegate.


Just as with the circular [[Prototype]] example earlier, the
definitions of obj1, obj2, and obj3 are almost entirely separate
from the generic proxy logic that handles the multiple-delegation. It
would be trivial to define a utility like setPrototypesOf(..) (notice
the “s”!) that takes a main object and a list of objects to fake the
multiple [[Prototype]] linkage to. Again, we’ll leave that as an
exercise for the reader.


Hopefully the power of proxies is now becoming clearer after these
various examples. There are many other powerful meta programming tasks
that proxies enable.





























Reflect API


The Reflect object is a plain object (like Math), not a
function/constructor like the other built-in natives.


It holds static functions that correspond to various meta programming
tasks you can control. These functions correspond one-to-one with
the handler methods (traps) that proxies can define.


Some of the functions will look familiar as functions of the same names
on Object:



	
Reflect.getOwnPropertyDescriptor(..)



	
Reflect.defineProperty(..)



	
Reflect.getPrototypeOf(..)



	
Reflect.setPrototypeOf(..)



	
Reflect.preventExtensions(..)



	
Reflect.isExtensible(..)






These utilities in general behave the same as their Object.*
counterparts. However, one difference is that the Object.*
counterparts attempt to coerce their first argument (the target object)
to an object if it’s not already one. The Reflect.* methods simply
throw an error in that case.


An object’s keys can be accessed/inspected using these utilities:


	Reflect.ownKeys(..)

	
Returns the list of all owned keys (not
“inherited”), as returned by both Object.getOwnPropertyNames(..) and
Object.getOwnPropertySymbols(..). See “Property Ordering”
for information about the order of keys.



	Reflect.enumerate(..)

	
Returns an iterator that produces the set of
all nonsymbol keys (owned and “inherited”) that are enumerable (see
the this & Object Prototypes title of this series). Essentially, this
set of keys is the same as those processed by a for..in loop. See “Property Ordering” for information about the order of
keys.



	Reflect.has(..)

	
Essentially the same as the in operator for
checking if a property is on an object or its [[Prototype]] chain. For
example, Reflect.has(o,"foo") essentially performs "foo" in o.






Function calls and constructor invocations can be performed manually,
separate of the normal syntax (e.g., (..) and new) using these
utilities:


	Reflect.apply(..)

	
For example,
Reflect.apply(foo,thisObj,[42,"bar"]) calls the foo(..) function
with thisObj as its this, and passes in the 42 and "bar"
arguments.



	Reflect.construct(..)

	
For example,
Reflect.construct(foo,[42,"bar"]) essentially calls
new foo(42,"bar").






Object property access, setting, and deletion can be performed manually
using these utilities:


	Reflect.get(..)

	
For example, Reflect.get(o,"foo") retrieves
o.foo.



	Reflect.set(..)

	
For example, Reflect.set(o,"foo",42) essentially
performs o.foo = 42.



	Reflect.deleteProperty(..)

	
For example,
Reflect.deleteProperty(o,"foo") essentially performs delete o.foo.






The meta programming capabilities of Reflect give you programmatic
equivalents to emulate various syntactic features, exposing previously
hidden-only abstract operations. For example, you can use these
capabilities to extend features and APIs for domain specific languages
(DSLs).










Property Ordering


Prior to ES6, the order used to list an object’s keys/properties was
implementation dependent and undefined by the specification. Generally,
most engines have enumerated them in creation order, though developers
have been strongly encouraged not to ever rely on this ordering.


As of ES6, the order for listing owned properties is now defined (ES6
specification, section 9.1.12) by the [[OwnPropertyKeys]] algorithm,
which produces all owned properties (strings or symbols), regardless of
enumerability. This ordering is only guaranteed for
Reflect.ownKeys(..) (and by extension,
Object.getOwnPropertyNames(..) and
Object.getOwnPropertySymbols(..)).


The ordering is:


	
First, enumerate any owned properties that are integer indexes, in
ascending numeric order.



	
Next, enumerate the rest of the owned string property names in
creation order.



	
Finally, enumerate owned symbol properties in creation order.







Consider:


var o = {};

o[Symbol("c")] = "yay";
o[2] = true;
o[1] = true;
o.b = "awesome";
o.a = "cool";

Reflect.ownKeys( o );               // [1,2,"b","a",Symbol(c)]
Object.getOwnPropertyNames( o );    // [1,2,"b","a"]
Object.getOwnPropertySymbols( o );  // [Symbol(c)]


On the other hand, the [[Enumerate]] algorithm (ES6 specification,
section 9.1.11) produces only enumerable properties, from the target
object as well as its [[Prototype]] chain. It is used by both
Reflect.enumerate(..) and for..in. The observable ordering is
implementation dependent and not controlled by the specification.


By contrast, Object.keys(..) invokes the [[OwnPropertyKeys]]
algorithm to get a list of all owned keys. However, it filters out
non-enumerable properties and then reorders the list to match legacy
implementation-dependent behavior, specifically with
JSON.stringify(..) and for..in. So, by extension the ordering also
matches that of Reflect.enumerate(..).


In other words, all four mechanisms (Reflect.enumerate(..),
Object.keys(..), for..in, and JSON.stringify(..)) will match with
the same implementation-dependent ordering, though they technically get
there in different ways.


Implementations are allowed to match these four to the ordering of
[[OwnPropertyKeys]], but are not required to. Nevertheless, you will
likely observe the following ordering behavior from them:


var o = { a: 1, b: 2 };
var p = Object.create( o );
p.c = 3;
p.d = 4;

for (var prop of Reflect.enumerate( p )) {
    console.log( prop );
}
// c d a b

for (var prop in p) {
    console.log( prop );
}
// c d a b

JSON.stringify( p );
// {"c":3,"d":4}

Object.keys( p );
// ["c","d"]


Boiling this all down: as of ES6, Reflect.ownKeys(..),
Object.getOwnPropertyNames(..), and Object.getOwnPropertySymbols(..)
all have predictable and reliable ordering guaranteed by the
specification. So it’s safe to build code that relies on this ordering.


Reflect.enumerate(..), Object.keys(..), and for..in (as well as
JSON.stringification(..) by extension) continue to share an observable
ordering with each other, as they always have. But that ordering will
not necessarily be the same as that of Reflect.ownKeys(..). Care
should still be taken in relying on their implementation-dependent
ordering.
























Feature Testing


What is a feature test? It’s a test you run to determine if a
feature is available or not. Sometimes, the test is not just for
existence, but for conformance to specified behavior—features can
exist but be buggy.


This is a meta programming technique, to test the environment your
program runs in to then determine how your program should behave.


The most common use of feature tests in JS is checking for the existence
of an API and if it’s not present, defining a polyfill (see Chapter 1).
For example:


if (!Number.isNaN) {
    Number.isNaN = function(x) {
        return x !== x;
    };
}


The if statement in this snippet is meta programming: we’re probing
our program and its runtime environment to determine if and how we
should proceed.


But what about testing for features that involve new syntax?


You might try something like:


try {
    a = () => {};
    ARROW_FUNCS_ENABLED = true;
}
catch (err) {
    ARROW_FUNCS_ENABLED = false;
}


Unfortunately, this doesn’t work, because our JS programs are compiled.
Thus, the engine will choke on the () => {} syntax if it is not
already supporting ES6 arrow functions. Having a syntax error in your
program prevents it from running, which prevents your program from
subsequently responding differently if the feature is supported or not.


To meta program with feature tests around syntax-related features, we
need a way to insulate the test from the initial compile step our
program runs through. For instance, if we could store the code for the
test in a string, then the JS engine wouldn’t by default try to compile
the contents of that string, until we asked it to.


Did your mind just jump to using eval(..)?


Not so fast. See the Scope & Closures title of this series for why
eval(..) is a bad idea. But there’s another option with less
downsides: the Function(..) constructor.


Consider:


try {
    new Function( "( () => {} )" );
    ARROW_FUNCS_ENABLED = true;
}
catch (err) {
    ARROW_FUNCS_ENABLED = false;
}


OK, so now we’re meta programming by determining if a feature like arrow
functions can compile in the current engine or not. You might then
wonder, what would we do with this information?


With existence checks for APIs, and defining fallback API polyfills,
there’s a clear path for what to do with either test success or failure.
But what can we do with the information we get from
ARROW_FUNCS_ENABLED being true or false?


Because the syntax can’t appear in a file if the engine doesn’t support
that feature, you can’t just have different functions defined in the
file with and without the syntax in question.


What you can do is use the test to determine which of a set of JS files
you should load. For example, if you had a set of these feature tests in
a bootstrapper for your JS application, it could then test the
environment to determine if your ES6 code can be loaded and run
directly, or if you need to load a transpiled version of your code (see
Chapter 1).


This technique is called split delivery.


It recognizes the reality that your ES6 authored JS programs will
sometimes be able to entirely run “natively” in ES6+ browsers, but other
times need transpilation to run in pre-ES6 browsers. If you always load
and use the transpiled code, even in the new ES6-compliant environments,
you’re running suboptimal code at least some of the time. This is not
ideal.


Split delivery is more complicated and sophisticated, but it represents
a more mature and robust approach to bridging the gap between the code
you write and the feature support in browsers your programs must run in.










FeatureTests.io


Defining feature tests for all of the ES6+ syntax, as well as the
semantic behaviors, is a daunting task you probably don’t want to tackle
yourself. Because these tests require dynamic compilation
(new Function(..)), there’s some unfortunate performance cost.


Moreover, running these tests every single time your app runs is
probably wasteful, as on average a user’s browser only updates once in a
several week period at most, and even then, new features aren’t
necessarily showing up with every update.


Finally, managing the list of feature tests that apply to your specific
code base—rarely will your programs use the entirety of ES6—is
unruly and error-prone.


FeatureTests.io offers
solutions to these frustrations.


You can load the service’s library into your page, and it loads the
latest test definitions and runs all the feature tests. It does so using
background processing with Web Workers, if possible, to reduce the
performance overhead. It also uses LocalStorage persistence to cache the
results in a way that can be shared across all sites you visit which use
the service, which drastically reduces how often the tests need to run
on each browser instance.


You get runtime feature tests in each of your users’ browsers, and you
can use those tests results dynamically to serve users the most
appropriate code (no more, no less) for their environments.


Moreover, the service provides tools and APIs to scan your files to
determine what features you need, so you can fully automate your split
delivery build processes.


FeatureTests.io makes it practical to use feature tests for all parts of
ES6 and beyond to make sure that only the best code is ever loaded and
run for any given environment.
























Tail Call Optimization (TCO)


Normally, when a function call is made from inside another function, a
second stack frame is allocated to separately manage the
variables/state of that other function invocation. Not only does this
allocation cost some processing time, but it also takes up some extra
memory.


A call stack chain typically has at most 10-15 jumps from one function
to another and another. In those scenarios, the memory usage is not
likely any kind of practical problem.


However, when you consider recursive programming (a function calling
itself repeatedly)—or mutual recursion with two or more functions
calling each other—the call stack could easily be hundreds,
thousands, or more levels deep. You can probably see the problems that
could cause, if memory usage grows unbounded.


JavaScript engines have to set an arbitrary limit to prevent such
programming techniques from crashing by running the browser and device
out of memory. That’s why we get the frustrating “RangeError: Maximum
call stack size exceeded” thrown if the limit is hit.

Warning

The limit of call stack depth is not controlled by the
specification. It’s implementation dependent, and will vary between
browsers and devices. You should never code with strong assumptions of
exact observable limits, as they may very well change from release to
release.




Certain patterns of function calls, called tail calls, can be
optimized in a way to avoid the extra allocation of stack frames. If the
extra allocation can be avoided, there’s no reason to arbitrarily limit
the call stack depth, so the engines can let them run unbounded.


A tail call is a return statement with a function call, where nothing has to happen after the call except returning its value.


This optimization can only be applied in strict mode. Yet another reason to always write all your code as strict!


Here’s a function call that is not in tail position:


"use strict";

function foo(x) {
    return x * 2;
}

function bar(x) {
    // not a tail call
    return 1 + foo( x );
}

bar( 10 );              // 21


1 + .. has to be performed after the foo(x) call completes, so the
state of that bar(..) invocation needs to be preserved.


But the following snippet demonstrates calls to foo(..) and bar(..)
where both are in tail position, as they’re the last thing to happen
in their code path (other than the return):


"use strict";

function foo(x) {
    return x * 2;
}

function bar(x) {
    x = x + 1;
    if (x > 10) {
        return foo( x );
    }
    else {
        return bar( x + 1 );
    }
}

bar( 5 );               // 24
bar( 15 );              // 32


In this program, bar(..) is clearly recursive, but foo(..) is just a
regular function call. In both cases, the function calls are in proper
tail position. The x + 1 is evaluated before the bar(..) call, and
whenever that call finishes, all that happens is the return.


Proper Tail Calls (PTC) of these forms can be optimized—called Tail
Call Optimization (TCO)—so that the extra stack frame allocation is
unnecessary. Instead of creating a new stack frame for the next function
call, the engine just reuses the existing stack frame. That works
because a function doesn’t need to preserve any of the current state, as
nothing happens with that state after the PTC.


TCO means there’s practically no limit to how deep the call stack can
be. That trick slightly improves regular function calls in normal
programs, but more importantly opens the door to using recursion for
program expression even if the call stack could be tens of thousands of
calls deep.


We’re no longer relegated to simply theorizing about recursion for
problem solving, but can actually use it in real JavaScript programs!


As of ES6, all PTC should be optimizable in this way, recursion or not.










Tail Call Rewrite


The hitch, however, is that only PTC can be optimized; non-PTC will
still work of course, but will cause stack frame allocation as they
always did. You’ll have to be careful about structuring your functions
with PTC if you expect the optimizations to kick in.


If you have a function that’s not written with PTC, you may find the
need to manually rearrange your code to be eligible for TCO.


Consider:


"use strict";

function foo(x) {
    if (x <= 1) return 1;
    return (x / 2) + foo( x - 1 );
}

foo( 123456 );          // RangeError


The call to foo(x-1) isn’t a PTC because its result has to be added to
(x / 2) before returning.


However, to make this code eligible for TCO in an ES6 engine, we can
rewrite it as follows:


"use strict";

var foo = (function(){
    function _foo(acc,x) {
        if (x <= 1) return acc;
        return _foo( (x / 2) + acc, x - 1 );
    }

    return function(x) {
        return _foo( 1, x );
    };
})();

foo( 123456 );          // 3810376848.5


If you run the previous snippet in an ES6 engine that implements TCO,
you’ll get the 3810376848.5 answer as shown. However, it’ll still fail
with a RangeError in non-TCO engines.

















Non-TCO Optimizations


There are other techniques to rewrite the code so that the call stack
isn’t growing with each call.


One such technique is called trampolining, which amounts to having
each partial result represented as a function that either returns
another partial result function or the final result. Then you can simply
loop until you stop getting a function, and you’ll have the result.
Consider:


"use strict";

function trampoline( res ) {
    while (typeof res == "function") {
        res = res();
    }
    return res;
}

var foo = (function(){
    function _foo(acc,x) {
        if (x <= 1) return acc;
        return function partial(){
            return _foo( (x / 2) + acc, x - 1 );
        };
    }

    return function(x) {
        return trampoline( _foo( 1, x ) );
    };
})();

foo( 123456 );          // 3810376848.5


This reworking required minimal changes to factor out the recursion into
the loop in trampoline(..):


	
First, we wrapped the return _foo .. line in the return partial() { .. function expression.



	
Then we wrapped the _foo(1,x) call in the trampoline(..) call.







The reason this technique doesn’t suffer the call stack limitation is
that each of those inner partial(..) functions is just returned back
to the while loop in trampoline(..), which runs it and then loop
iterates again. In other words, partial(..) doesn’t recursively call
itself, it just returns another function. The stack depth remains
constant, so it can run as long as it needs to.


Trampolining expressed in this way uses the closure that the inner
partial() function has over the x and acc variables to keep the
state from iteration to iteration. The advantage is that the looping
logic is pulled out into a reusable trampoline(..) utility function,
which many libraries provide versions of. You can reuse trampoline(..)
multiple times in your program with different trampolined algorithms.


Of course, if you really wanted to deeply optimize (and the reusability
wasn’t a concern), you could discard the closure state and inline the
state tracking of acc into just one function’s scope along with a
loop. This technique is generally called recursion unrolling:


"use strict";

function foo(x) {
    var acc = 1;
    while (x > 1) {
        acc = (x / 2) + acc;
        x = x - 1;
    }
    return acc;
}

foo( 123456 );          // 3810376848.5


This expression of the algorithm is simpler to read, and will likely
perform the best (strictly speaking) of the various forms we’ve
explored. That may seem like a clear winner, and you may wonder why you
would ever try the other approaches.


There are some reasons why you might not want to always manually unroll
your recursions:



	
Instead of factoring out the trampolining (loop) logic for
reusability, we’ve inlined it. This works great when there’s only one
example to consider, but as soon as you have a half dozen or more of
these in your program, there’s a good chance you’ll want some reusability
to keep things shorter and more manageable.



	
The example here is deliberately simple enough to illustrate the
different forms. In practice, there are many more complications in
recursion algorithms, such as mutual recursion (more than just one
function calling itself).






The farther you go down this rabbit hole, the more manual and intricate
the unrolling optimizations are. You’ll quickly lose all the perceived
value of readability. The primary advantage of recursion, even in the
PTC form, is that it preserves the algorithm readability, and offloads
the performance optimization to the engine.


If you write your algorithms with PTC, the ES6 engine will apply TCO to
let your code run in constant stack depth (by reusing stack frames). You
get the readability of recursion with most of the performance benefits
and no limitations of run length.

















Meta?


What does TCO have to do with meta programming?


As we covered in “Feature Testing” earlier, you can
determine at runtime what features an engine supports. This includes
TCO, though determining it is quite brute force. Consider:


"use strict";

try {
    (function foo(x){
        if (x < 5E5) return foo( x + 1 );
    })( 1 );

    TCO_ENABLED = true;
}
catch (err) {
    TCO_ENABLED = false;
}


In a non-TCO engine, the recursive loop will fail out eventually,
throwing an exception caught by the try..catch. Otherwise, the loop
completes easily thanks to TCO.


Yuck, right?


But how could meta programming around the TCO feature (or rather, the
lack thereof) benefit our code? The simple answer is that you could use
such a feature test to decide to load a version of your application’s
code that uses recursion, or an alternative one that’s been
converted/transpiled to not need recursion.












Self-Adjusting Code


But here’s another way of looking at the problem:


"use strict";

function foo(x) {
    function _foo() {
        if (x > 1) {
            acc = acc + (x / 2);
            x = x - 1;
            return _foo();
        }
    }

    var acc = 1;

    while (x > 1) {
        try {
            _foo();
        }
        catch (err) { }
    }

    return acc;
}

foo( 123456 );          // 3810376848.5


This algorithm works by attempting to do as much of the work with
recursion as possible, but keeping track of the progress via scoped
variables x and acc. If the entire problem can be solved with
recursion without an error, great. If the engine kills the recursion at
some point, we simply catch that with the try..catch and then try
again, picking up where we left off.


I consider this a form of meta programming in that you are probing
during runtime the ability of the engine to fully (recursively) finish
the task, and working around any (non-TCO) engine limitations that may
restrict you.


At first (or even second!) glance, my bet is this code seems much uglier
to you compared to some of the earlier versions. It also runs a fair bit
slower (on larger runs in a non-TCO environment).


The primary advantage, other than it being able to complete any size
task even in non-TCO engines, is that this “solution” to the recursion
stack limitation is much more flexible than the trampolining or manual
unrolling techniques shown previously.


Essentially, _foo() in this case is a sort of stand-in for practically
any recursive task, even mutual recursion. The rest is the boilerplate
that should work for just about any algorithm.


The only “catch” is that to be able to resume in the event of a
recursion limit being hit, the state of the recursion must be in scoped
variables that exist outside the recursive function(s). We did that by
leaving x and acc outside of the _foo() function, instead of
passing them as arguments to _foo() as earlier.


Almost any recursive algorithm can be adapted to work this way. That
means it’s the most widely applicable way of leveraging TCO with
recursion in your programs, with minimal rewriting.


This approach still uses a PTC, meaning this code will
progressively enhance from running using the loop many times
(recursion batches) in an older browser to fully leveraging TCO’d
recursion in an ES6+ environment. I think that’s pretty cool!





























Review


Meta programming is when you turn the logic of your program to focus on
itself (or its runtime environment), either to inspect its own structure
or to modify it. The primary value of meta programming is to extend the
normal mechanisms of the language to provide additional capabilities.


Prior to ES6, JavaScript already had quite a bit of meta programming
capability, but ES6 significantly ramps that up with several new
features.


From function name inferences for anonymous functions to meta properties
that give you information about things like how a constructor was
invoked, you can inspect the program structure while it runs more than
ever before. Well-Known Symbols let you override intrinsic behaviors,
such as coercion of an object to a primitive value. Proxies can
intercept and customize various low-level operations on objects, and
Reflect provides utilities to emulate them.


Feature testing, even for subtle semantic behaviors like Tail Call
Optimization, shifts the meta programming focus from your program to the
JS engine capabilities itself. By knowing more about what the
environment can do, your programs can adjust themselves to the best fit
as they run.


Should you meta program? My advice is: first focus on learning how the
core mechanics of the language really work. But once you fully know what
JS itself can do, it’s time to start leveraging these powerful meta
programming capabilities to push the language further!












Chapter 8. Beyond ES6



At the time of this writing, the final draft of ES6 (ECMAScript 2015)
is shortly headed toward its final official vote of approval by ECMA.
But even as ES6 is being finalized, the TC39 committee is already hard
at work at on features for ES7/2016 and beyond.


As we discussed in Chapter 1, it’s expected that the cadence of progress
for JS is going to accelerate from updating once every several years to
having an official version update once per year (hence the year-based
naming). That alone is going to radically change how JS developers learn
about and keep up with the language.


But even more importantly, the committee is actually going to work
feature by feature. As soon as a feature is spec-complete and has its
kinks worked out through implementation experiments in a few browsers,
that feature will be considered stable enough to start using. We’re all
strongly encouraged to adopt features once they’re ready instead of
waiting for some official standards vote. If you haven’t already learned
ES6, the time is past due to get on board!


As the time of this writing, a list of future proposals and their status
can be seen here.


Transpilers and polyfills are how we’ll bridge to these new features
even before all browsers we support have implemented them. Babel,
Traceur, and several other major transpilers already have support for
some of the post-ES6 features that are most likely to stabilize.


With that in mind, it’s already time for us to look at some of them.
Let’s jump in!

Warning

These features are all in various stages of development.
While they’re likely to land, and probably will look similar, take the
contents of this chapter with more than a few grains of salt. This
chapter will evolve in future editions of this title as these (and
other!) features finalize.










async functions


In “Generators + Promises” in Chapter 4, we mentioned that there’s a
proposal for direct syntactic support for the pattern of generators
yielding promises to a runner-like utility that will resume it on
promise completion. Let’s take a brief look at that proposed feature,
called async function.


Recall this generator example from Chapter 4:


run( function *main() {
    var ret = yield step1();

    try {
        ret = yield step2( ret );
    }
    catch (err) {
        ret = yield step2Failed( err );
    }

    ret = yield Promise.all([
        step3a( ret ),
        step3b( ret ),
        step3c( ret )
    ]);

    yield step4( ret );
} )
.then(
    function fulfilled(){
        // `*main()` completed successfully
    },
    function rejected(reason){
        // Oops, something went wrong
    }
);


The proposed async function syntax can express this same flow control
logic without needing the run(..) utility, because JS will
automatically know how to look for promises to wait and resume.
Consider:


async function main() {
    var ret = await step1();

    try {
        ret = await step2( ret );
    }
    catch (err) {
        ret = await step2Failed( err );
    }

    ret = await Promise.all( [
        step3a( ret ),
        step3b( ret ),
        step3c( ret )
    ] );

    await step4( ret );
}

main()
.then(
    function fulfilled(){
        // `main()` completed successfully
    },
    function rejected(reason){
        // Oops, something went wrong
    }
);


Instead of the function *main() { .. declaration, we declare with the
async function main() { .. form. And instead of yielding a promise,
we await the promise. The call to run the function main() actually
returns a promise that we can directly observe. That’s the equivalent to
the promise we get back from a run(main) call.


Do you see the symmetry? async function is essentially syntactic sugar
for the generators + promises + run(..) pattern; under the covers, it
operates the same!


If you’re a C# developer and this async/await looks familiar, it’s
because this feature is directly inspired by C#’s feature. It’s nice to
see language precedence informing convergence!


Babel, Traceur, and other transpilers already have early support for the
current status of async functions, so you can start using them
already. However, in the next section, we’ll see why you
perhaps shouldn’t jump on that ship quite yet.

Note

There’s also a proposal for async function*, which would be
called an “async generator.” You can both yield and await in the
same code, and even combine those operations in the same statement:
x = await yield y. The “async generator” proposal seems to be more in
flux—namely, its return value is not fully worked out yet. Some feel
it should be an observable, which is kind of like the combination of
an iterator and a promise. For now, we won’t go further into that topic,
but stay tuned as it evolves.












Caveats


One unresolved point of contention with async function is that because
it only returns a promise, there’s no way from the outside to cancel
an async function instance that’s currently running. This can be a
problem if the async operation is resource-intensive, and you want to
free up the resources as soon as you’re sure the result won’t be needed.


For example:


async function request(url) {
    var resp = await (
        new Promise( function(resolve,reject){
            var xhr = new XMLHttpRequest();
            xhr.open( "GET", url );
            xhr.onreadystatechange = function(){
                if (xhr.readyState == 4) {
                    if (xhr.status == 200) {
                        resolve( xhr );
                    }
                    else {
                        reject( xhr.statusText );
                    }
                }
            };
            xhr.send();
        } )
    );

    return resp.responseText;
}

var pr = request( "http://some.url.1" );

pr.then(
    function fulfilled(responseText){
        // ajax success
    },
    function rejected(reason){
        // Oops, something went wrong
    }
);


This request(..) that I’ve conceived is somewhat like the fetch(..)
utility that’s recently been proposed for inclusion into the web
platform. So the concern is, what happens if you want to use the pr
value to somehow indicate that you want to cancel a long-running Ajax
request, for example?


Promises are not cancelable (at the time of writing, anyway). In my
opinion, as well as many others, they never should be (see the Async &
Performance title of this series). And even if a promise did have a
cancel() method on it, does that necessarily mean that calling
pr.cancel() should actually propagate a cancelation signal all the way
back up the promise chain to the async function?


Several possible resolutions to this debate have surfaced:



	
async functions won’t be cancelable at all (status quo)



	
A “cancel token” can be passed to an async function at call time



	
Return value changes to a cancelable-promise type that’s added



	
Return value changes to something else nonpromise (e.g., observable,
or control token with promise and cancel capabilities)






At the time of this writing, async functions return regular promises,
so it’s less likely that the return value will entirely change. But it’s
too early to tell where things will land. Keep an eye on this
discussion.
























Object.observe(..)


One of the holy grails of front-end web development is data binding—listening for updates to a data object and syncing the DOM
representation of that data. Most JS frameworks provide some mechanism
for these sorts of operations.


It appears likely that post-ES6, we’ll see support added directly to the
language, via a utility called Object.observe(..). Essentially, the
idea is that you can set up a listener to observe an object’s changes,
and have a callback called any time a change occurs. You can then update
the DOM accordingly, for instance.


There are six types of changes that you can observe:



	
add



	
update



	
delete



	
reconfigure



	
setPrototype



	
preventExtensions






By default, you’ll be notified of all these change types, but you can
filter down to only the ones you care about.


Consider:


var obj = { a: 1, b: 2 };

Object.observe(
    obj,
    function(changes){
        for (var change of changes) {
            console.log( change );
        }
    },
    [ "add", "update", "delete" ]
);

obj.c = 3;
// { name: "c", object: obj, type: "add" }

obj.a = 42;
// { name: "a", object: obj, type: "update", oldValue: 1 }

delete obj.b;
// { name: "b", object: obj, type: "delete", oldValue: 2 }


In addition to the main "add", "update", and "delete" change
types:



	
The "reconfigure" change event is fired if one of the object’s
properties is reconfigured with Object.defineProperty(..), such as
changing its writable attribute. See the this & Object Prototypes
title of this series for more information.



	
The "preventExtensions" change event is fired if the object is made
non-extensible via Object.preventExtensions(..).






Because both Object.seal(..) and Object.freeze(..) also imply
Object.preventExtensions(..), they’ll also fire its corresponding
change event. In addition, "reconfigure" change events will also be
fired for each property on the object. * The "setPrototype" change
event is fired if the [[Prototype]] of an object is changed, either by
setting it with the __proto__ setter, or using
Object.setPrototypeOf(..).


Notice that these change events are notified immediately after said
change. Don’t confuse this with proxies (see Chapter 7) where you can
intercept the actions before they occur. Object observation lets you
respond after a change (or set of changes) occurs.










Custom Change Events


In addition to the six built-in change event types, you can also listen
for and fire custom change events.


Consider:


function observer(changes){
    for (var change of changes) {
        if (change.type == "recalc") {
            change.object.c =
                change.object.oldValue +
                change.object.a +
                change.object.b;
        }
    }
}

function changeObj(a,b) {
    var notifier = Object.getNotifier( obj );

    obj.a = a * 2;
    obj.b = b * 3;

    // queue up change events into a set
    notifier.notify( {
        type: "recalc",
        name: "c",
        oldValue: obj.c
    } );
}

var obj = { a: 1, b: 2, c: 3 };

Object.observe(
    obj,
    observer,
    ["recalc"]
);

changeObj( 3, 11 );

obj.a;          // 12
obj.b;          // 30
obj.c;          // 3


The change set ("recalc" custom event) has been queued for delivery to
the observer, but not delivered yet, which is why obj.c is still 3.


The changes are by default delivered at the end of the current event
loop (see the Async & Performance title of this series). If you want
to deliver them immediately, use
Object.deliverChangeRecords(observer). Once the change events are
delivered, you can observe obj.c updated as expected:


obj.c;          // 42


In the previous example, we called notifier.notify(..) with the
complete change event record. An alternative form for queuing change
records is to use performChange(..), which separates specifying the
type of the event from the rest of event record’s properties (via a
function callback). Consider:


notifier.performChange( "recalc", function(){
    return {
        name: "c",
        // `this` is the object under observation
        oldValue: this.c
    };
} );


In certain circumstances, this separation of concerns may map more
cleanly to your usage pattern.

















Ending Observation


Just like with normal event listeners, you may wish to stop observing an
object’s change events. For that, you use Object.unobserve(..).


For example:


var obj = { a: 1, b: 2 };

Object.observe( obj, function observer(changes) {
    for (var change of changes) {
        if (change.type == "setPrototype") {
            Object.unobserve(
                change.object, observer
            );
            break;
        }
    }
} );


In this trivial example, we listen for change events until we see the
"setPrototype" event come through, at which time we stop observing any
more change events.
























Exponentiation Operator


An operator has been proposed for JavaScript to perform exponentiation
in the same way that Math.pow(..) does. Consider:


var a = 2;

a ** 4;         // Math.pow( a, 4 ) == 16

a **= 3;        // a = Math.pow( a, 3 )
a;              // 8

Note

** is essentially the same as it appears in Python, Ruby,
Perl, and others.



















Objects Properties and ...


As we saw in “Too Many, Too Few, Just Enough” in Chapter 2,
the ... operator is pretty obvious in how it relates to spreading or
gathering arrays. But what about objects?


Such a feature was considered for ES6, but was deferred to be considered
after ES6 (aka “ES7” or “ES2016” or …). Here’s how it might work in
that “beyond ES6” timeframe:


var o1 = { a: 1, b: 2 },
    o2 = { c: 3 },
    o3 = { ...o1, ...o2, d: 4 };

console.log( o3.a, o3.b, o3.c, o3.d );
// 1 2 3 4


The ... operator might also be used to gather an object’s destructured
properties back into an object:


var o1 = { b: 2, c: 3, d: 4 };
var { b, ...o2 } = o1;

console.log( b, o2.c, o2.d );       // 2 3 4


Here, the ...o2 re-gathers the destructured c and d properties
back into an o2 object (o2 does not have a b property like o1
does).


Again, these are just proposals under consideration beyond ES6. But
it’ll be cool if they do land.

















Array#includes(..)


One extremely common task JS developers need to perform is searching for
a value inside an array of values. The way this has always been done is:


var vals = [ "foo", "bar", 42, "baz" ];

if (vals.indexOf( 42 ) >= 0) {
    // found it!
}


The reason for the >= 0 check is because indexOf(..) returns a
numeric value of 0 or greater if found, or -1 if not found. In other
words, we’re using an index-returning function in a boolean context. But
because -1 is truthy instead of falsy, we have to be more manual with
our checks.


In the Types & Grammar title of this series, I explored another
pattern that I slightly prefer:


var vals = [ "foo", "bar", 42, "baz" ];

if (~vals.indexOf( 42 )) {
    // found it!
}


The ~ operator here conforms the return value of indexOf(..) to a
value range that is suitably boolean coercible. That is, -1 produces
0 (falsy), and anything else produces a nonzero (truthy) value, which
is what we for deciding if we found the value or not.


While I think that’s an improvement, others strongly disagree. However,
no one can argue that indexOf(..)’s searching logic is perfect. It
fails to find NaN values in the array, for example.


So a proposal has surfaced and gained a lot of support for adding a real
boolean-returning array search method, called includes(..):


var vals = [ "foo", "bar", 42, "baz" ];

if (vals.includes( 42 )) {
    // found it!
}

Note

Array#includes(..) uses matching logic that will find NaN
values, but will not distinguish between -0 and 0 (see the Types &
Grammar title of this series). If you don’t care about -0 values in
your programs, this will likely be exactly what you’re hoping for. If
you do care about -0, you’ll need to do your own searching logic,
likely using the Object.is(..) utility (see Chapter 6).



















SIMD


We cover Single Instruction, Multiple Data (SIMD) in more detail in the
Async & Performance title of this series, but it bears a brief mention
here, as it’s one of the next likely features to land in a future JS.


The SIMD API exposes various low-level (CPU) instructions that can
operate on more than a single number value at a time. For example,
you’ll be able to specify two vectors of 4 or 8 numbers each, and
multiply the respective elements all at once (data parallelism!).


Consider:


var v1 = SIMD.float32x4( 3.14159, 21.0, 32.3, 55.55 );
var v2 = SIMD.float32x4( 2.1, 3.2, 4.3, 5.4 );

SIMD.float32x4.mul( v1, v2 );
// [ 6.597339, 67.2, 138.89, 299.97 ]


SIMD will include several other operations besides mul(..) (multiplication), such as sub(), div(), abs(), neg(), sqrt(), and many more.


Parallel math operations are critical for the next generations of high performance JS applications.

















WebAssembly (WASM)


Brendan Eich made a late-breaking announcement near the completion of the first edition of this title that has the potential to significantly impact the future path of JavaScript: WebAssembly (WASM). We will not be able to cover WASM in detail here, as it’s extremely early at the time of this writing. But this title would be incomplete without at least a brief mention of it.


One of the strongest pressures on the recent (and near future) design changes of the JS language has been the desire that it become a more suitable target for transpilation/cross-compilation from other languages (like C/C++, ClojureScript, etc.). Obviously, performance of code running as JavaScript has been a primary concern.


As discussed in the Async & Performance title of this series, a few years ago a group of developers at Mozilla introduced an idea to JavaScript called ASM.js. ASM.js is a subset of valid JS that most significantly restricts certain actions that make code hard for the JS engine to optimize. The result is that ASM.js-compatible code running in an ASM-aware engine can run remarkably faster, nearly on par with native optimized C equivalents. Many viewed ASM.js as the most likely backbone on which performance-hungry applications would ride in JavaScript.


In other words, all roads to running code in the browser lead through JavaScript.


That is, until the WASM announcement. WASM provides an alternate path for other languages to target the browser’s runtime environment without having to first pass through JavaScript. Essentially, if WASM takes off, JS engines will gain an extra capability to execute a binary format of code that can be seen as somewhat similar to a bytecode (like that which runs on the JVM).


WASM proposes a format for a binary representation of a highly compressed AST (syntax tree) of code, which can then give instructions directly to the JS engine and its underpinnings, without having to be parsed by JS, or even behave by the rules of JS. Languages like C or C++ can be compiled directly to the WASM format instead of ASM.js, and gain an extra speed advantage by skipping the JS parsing.


The near term goal for WASM is to have parity with ASM.js and indeed JS. But eventually, it’s expected that WASM will grow new capabilities that surpass anything JS could do. For example, the pressure for JS to evolve radical features like threads—a change that would certainly send major shockwaves through the JS ecosystem—has a more hopeful future as a future WASM extension, relieving the pressure to change JS.


In fact, this new roadmap opens up many new roads for many languages to target the web runtime. That’s an exciting new future path for the web platform!


What does it mean for JS? Will JS become irrelevant or “die”? Absolutely not. ASM.js will likely not see much of a future beyond the next couple of years, but the majority of JS is quite safely anchored in the web platform story.


Proponents of WASM suggest its success will mean that the design of JS will be protected from pressures that would have eventually stretched it beyond assumed breaking points of reasonability. It is projected that WASM will become the preferred target for high-performance parts of applications, as authored in any of a myriad of different languages.


Interestingly, JavaScript is one of the languages less likely to target WASM in the future. There may be future changes that carve out subsets of JS that might be tenable for such targeting, but that path doesn’t seem high on the priority list.


While JS likely won’t be much of a WASM funnel, JS code and WASM code will be able to interoperate in the most significant ways, just as naturally as current module interactions. You can imagine calling a JS function like foo() and having that actually invoke a WASM function of that name with the power to run well outside the constraints of the rest of your JS.


Things that are currently written in JS will probably continue to always be written in JS, at least for the foreseeable future. Things that are transpiled to JS will probably eventually at least consider targeting WASM instead. For things that need the utmost in performance with minimal tolerance for layers of abstraction, the likely choice will be to find a suitable non-JS language to author in, and then targeting WASM.


There’s a good chance that this shift will be slow, and will be years in the making. WASM landing in all the major browser platforms is probably a few years out at best. In the meantime, the WASM project has an early polyfill to demonstrate proof-of-concept for its basic tenets.


But as time goes on, and as WASM learns new non-JS tricks, it’s not too much a stretch of imagination to see some currently-JS things being refactored to a WASM-targetable language. For example, the performance-sensitive parts of frameworks, game engines, and other heavily used tools might very well benefit from such a shift. Developers using these tools in their web applications likely won’t notice much difference in usage or integration, but will just automatically take advantage of the performance and capabilities.


What’s certain is that the more real WASM becomes over time, the more it means to the trajectory and design of JavaScript. It’s perhaps one of the most important “beyond ES6” topics that developers should keep an eye on.

















Review


If all the other books in this series essentially propose this
challenge, “you (may) not know JS (as much as you thought),” this book
has instead suggested, “you don’t know JS anymore.” The book has covered
a ton of new stuff added to the language in ES6. It’s an exciting
collection of new language features and paradigms that will forever
improve our JS programs.


But JS is not done with ES6! Not even close. There’s already quite a few
features in various stages of development for the “beyond ES6”
timeframe. In this chapter, we briefly looked at some of the most likely
candidates to land in JS very soon.


async functions are powerful syntactic sugar on top of the generators
+ promises pattern (see Chapter 4). Object.observe(..) adds direct
native support for observing object change events, which is critical for
implementing data binding. The ** exponentiation operator, ... for
object properties, and Array#includes(..) are all simple but helpful
improvements to existing mechanisms. Finally, SIMD ushers in a new era
in the evolution of high-performance JS.


Cliché as it sounds, the future of JS is really bright! The challenge of
this series, and indeed of this book, is incumbent on every reader now.
What are you waiting for? It’s time to get learning and exploring!
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