
Head First Java™

Table of Contents

Special Upgrade Offer

A Note Regarding Supplemental Files

What they’re saying about Head First

Praise for Head First Java

Praise for other Head First books co-authored by Kathy and Bert

Creators of the Head First series

How to Use This Book: Intro

Who is this book for?

Who should probably back away from this book?

We know what you’re thinking

And we know what your brain is thinking

Metacognition: thinking about thinking

Here’s what WE did

Here’s what YOU can do to bend your brain into submission

What you need for this book

Last-minute things you need to know

Technical Editors

Other people to : credit

Just when you thought there wouldn’t be any more acknowledgements

1. Dive in A Quick Dip: Breaking the Surface

The Way Java Works

What you’ll do in Java

A very brief history of Java

Code structure in Java

Anatomy of a class

Writing a class with a main

What can you say in the main method?

Looping and looping and...

Simple boolean tests

Example of a while loop

Conditional branching

Coding a Serious Business Application

Monday morning at Bob’s

Phrase-O-Matic

How it works

2. Classes and Objects: A Trip to Objectville

Chair Wars: (or How Objects Can Change Your Life)

In Larry’s cube

At Brad’s laptop at the cafe

Back in Larry’s cube

At Brad’s laptop at the beach

Back in Larry’s cube

At Brad’s laptop on his lawn chair at the Telluride Bluegrass Festival

So, Brad the OO guy got the chair, right?

What about the Amoeba rotate()?

The suspense is killing me. Who got the chair?

When you design a class, think about the objects that will be created from that class type. Think about

A class is not an object. (but it’s used to construct them)

Making your first object

Making and testing Movie objects

Quick! Get out of main!

The two uses of main:

The Guessing Game

Running the Guessing Game

3. Primitives and References: Know Your Variables

Declaring a variable

“I’d like a double mocha, no, make it an int.”

You really don’t want to spill that...

Back away from that keyword!

This table reserved

Controlling your Dog object

An object reference is just another variable value

Life on the garbage-collectible heap

Life and death on the heap

An array is like a tray of cups

Arrays are objects too

Make an array of Dogs

What’s missing?

Control your Dog (with a reference variable)

What happens if the Dog is in a Dog array?

A Dog example

4. Methods Use Instance Variables: How Objects Behave

Remember: a class describes what an object knows and what an object does

Can every object of that type have different method behavior?

The size affects the bark

You can send things to a method

You can get things back from a method

You can send more than one thing to a method

Calling a two-parameter method, and sending it two arguments

You can pass variables into a method, as long as the variable type matches the parameter type

Java is pass-by-value. That means pass-by-copy

Cool things you can do with parameters and return types

Encapsulation

Do it or risk humiliation and ridicule

Hide the data

Encapsulating the GoodDog class

How do objects in an array behave?

Declaring and initializing instance variables

The difference between instance and local variables

Comparing variables (primitives or references)

5. Writing a Program: Extra-Strength Methods

Let’s build a Battleship-style game: “Sink a Dot Com”

part of a game interaction

First, a high-level design

The “Simple Dot Com Game” a gentler introduction

Developing a Class

The three things we’ll write for each class:

Writing the method implementations

Writing test code for the SimpleDotCom class

Based on this prepcode:

Here’s what we should test:

Test code for the SimpleDotCom class

The checkYourself() method

Just the new stuff

Prepcode for the SimpleDotComGame class

The game’s main() method

random() and getUserInput()

One last class: GameHelper

Let’s play

What’s this? A bug?

More about for loops

Regular (non-enhanced) for loops

Trips through a loop

Difference between for and while

The enhanced for loop

Casting primitives

6. Get to Know the Java API: Using the Java Library

In our last chapter, we left you with the cliff-hanger. A bug

How it’s supposed to look

How the bug looks

So what happened?

How do we fix it ?

Option one is too clunky

Option two is a little better, but still pretty clunky

Wake up and smell the library

Some things you can do with ArrayList

Comparing ArrayList to a regular array

Comparing ArrayList to a regular array

Let’s fix the DotCom code

New and improved DotCom class

Let’s build the REAL game: “Sink a Dot Com”

part of a game interaction

What needs to change?

Who does what in the DotComBust game (and when)

Prep code for the real DotComBust class

The final version of the DotCom class

Super Powerful Boolean Expressions

Using the Library (the Java API)

How to play with the API

7. Inheritance and Polymorphism: Better Living in Objectville

Chair Wars Revisited...

What about the Amoeba rotate()?

Understanding Inheritance

An inheritance example:

Let’s design the inheritance tree for an Animal simulation program

Using inheritance to avoid duplicating code in subclasses

Do all animals eat the same way?

Which methods should we override?

Looking for more inheritance opportunities

Which method is called?

Designing an Inheritance Tree

Using IS-A and HAS-A

But wait! There’s more!

How do you know if you’ve got your inheritance right?

When designing with inheritance, are you using or abusing?

So what does all this inheritance really buy you?

Inheritance lets you guarantee that all classes grouped under a certain supertype have all the methods that the supertype has.

Keeping the contract: rules for overriding

Overloading a method

8. Interfaces and Abstract Classes: Serious Polymorphism

Did we forget about something when we designed this?

The compiler won’t let you instantiate an abstract class

Abstract vs. Concrete

Abstract methods

You MUST implement all abstract methods

Polymorphism in action

Uh-oh, now we need to keep Cats, too

What about non-Animals? Why not make a class generic enough to take anything?

So what’s in this ultra-super-megaclass Object?

Using polymorphic references of type Object has a price...

When a Dog won’t act like a Dog

Objects don’t bark

Get in touch with your inner Object

What if you need to change the contract?

Let’s explore some design options for reusing some of our existing classes in a PetShop program

Interface to the rescue!

Making and Implementing the Pet interface

9. Constructors and Garbage Collection: Life and Death of an Object

The Stack and the Heap: where things live

Methods are stacked

A stack scenario

What about local variables that are objects?

If local variables live on the stack, where do instance variables live?

The miracle of object creation

Construct a Duck

Initializing the state of a new Duck

Using the constructor to initialize important Duck state

Make it easy to make a Duck

Be sure you have a no-arg constructor

Doesn’t the compiler always make a no-arg constructor for you? No!

Nanoreview: four things to remember about constructors

Wait a minute... we never DID talk about superclasses and inheritance and how that all fits in with constructors

The role of superclass constructors in an object’s life

Making a Hippo means making the Animal and Object parts too...

How do you invoke a superclass constructor?

Can the child exist before the parents?

Superclass constructors with arguments

Invoking one overloaded constructor from another

Now we know how an object is born, but how long does an object live?

What about reference variables?

10. Numbers and Statics: Numbers Matter

MATH methods: as close as you’ll ever get to a global method

The difference between regular (non-static) and static methods

What it means to have a class with static methods

Static methods can’t use non-static (instance) variables!

Static methods can’t use non-static methods, either!

Static variable: value is the same for ALL instances of the class

Initializing a static variable

static final variables are constants

final isn’t just for static variables...

Math methods

Wrapping a primitive

Before Java 5.0, YOU had to do the work...

Autoboxing: blurring the line between primitive and object

Autoboxing works almost everywhere

But wait! There’s more! Wrappers have static utility methods too!

And now in reverse... turning a primitive number into a String

Number formatting

Formatting deconstructed...

The percent (%) says, “insert argument here” (and format it using these instructions)

The format String uses its own little language syntax

The format specifier

The only required specifier is for TYPE

What happens if I have more than one argument?

So much for numbers, what about dates?

Working with Dates

Moving backward and forward in time

Getting an object that extends Calendar

Working with Calendar objects

Highlights of the Calendar API

Even more Statics!... static imports

11. Exception Handling: Risky Behavior

Let’s make a Music Machine

The finished BeatBox looks something like this:

We’ll start with the basics

The JavaSound API

First we need a Sequencer

Something’s wrong!

What happens when a method you want to call (probably in a class you didn’t write) is risky?

Methods in Java use exceptions to tell the calling code, “Something Bad Happened. I failed.”

The compiler needs to know that YOU know you’re calling a risky method

An exception is an object... of type Exception

If it’s your code that catches the exception, then whose code throws it?

Flow control in try/catch blocks

Finally: for the things you want to do no matter what

Did we mention that a method can throw more than one exception?

Catching multiple exceptions

Exceptions are polymorphic

Multiple catch blocks must be ordered from smallest to biggest

You can’t put bigger baskets above smaller baskets

When you don’t want to handle an exception...

Ducking (by declaring) only delays the inevitable

Getting back to our music code...

Exception Rules

Making actual sound

Your very first sound player app

Making a MidiEvent (song data)

MIDI message: the heart of a MidiEvent

Change a message

Version 2: Using command-line args to experiment with sounds

12. Getting GUI: A Very Graphic Story

It all starts with a window

Put widgets in the window

Your first GUI: a button on a frame

But nothing happens when I click it...

Getting a user event

Listeners, Sources, and Events

Getting back to graphics...

Make your own drawing widget

Fun things to do in paintComponent()

Behind every good Graphics reference is a Graphics2D object

Because life’s too short to paint the circle a solid color when there’s a gradient blend waiting for you

We can get an event. We can paint graphics. But can we paint graphics when we get an event?

GUI layouts: putting more than one widget on a frame

Let’s try it with TWO buttons

So now we need FOUR widgets

And we need to get TWO events

How do you get action events for two different buttons, when each button needs to do something different?

How do you get action events for two different buttons, when each button needs to do something different?

Inner class to the rescue!

An inner class instance must be tied to an outer class instance

How to make an instance of an inner class

Using an inner class for animation

Listening for a non-GUI event

An easier way to make messages / events

Example: how to use the new static makeEvent() method

13. Using Swing: Work on Your Swing

Swing components

Components can be nested

Layout Managers

How does the layout manager decide?

Different layout managers have different policies

The Big Three layout managers: border, flow, and box

Playing with Swing components

Making the BeatBox

14. Serialization and File I/O: Saving Objects

Capture the Beat

Saving State

Writing a serialized object to a file

Data moves in streams from one place to another

What really happens to an object when it’s serialized?

But what exactly IS an object’s state? What needs to be saved?

If you want your class to be serializable, implement Serializable

Deserialization: restoring an object

What happens during deserialization?

Saving and restoring the game characters

The GameCharacter class

Writing a String to a Text File

Text File Example: e-Flashcards

Quiz Card Builder (code outline)

The java.io.File class

Reading from a Text File

Quiz Card Player (code outline)

Parsing with String split()

Version ID: A Big Serialization Gotcha

Using the serialVersionUID

Saving a BeatBox pattern

Restoring a BeatBox pattern

15. Networking and Threads: Make a Connection

Real-time Beat Box Chat

Connecting, Sending, and Receiving

Make a network Socket connection

A TCP port is just a number. A 16-bit number that identifies a specific program on the server

To read data from a Socket, use a BufferedReader

To write data to a Socket, use a PrintWriter

The DailyAdviceClient

DailyAdviceClient code

Writing a simple server

DailyAdviceServer code

Writing a Chat Client

Java has multiple threads but only one Thread class

What does it mean to have more than one call stack?

Every Thread needs a job to do. A method to put on the new thread stack

To make a job for your thread, implement the Runnable interface

The Thread Scheduler

Putting a thread to sleep

Using sleep to make our program more predictable

Making and starting two threads

What will happen?

Um, yes. There IS a dark side

Threads can lead to concurrency ‘issues’

The Ryan and Monica problem, in code

The Ryan and Monica example

We need the makeWithdrawal () method to run as one atomic thing

Using an object’s lock

The dreaded “Lost Update” problem

Let’s run this code...

Make the increment() method atomic. Synchronize it!

The deadly side of synchronization

New and improved SimpleChatClient

The really really simple Chat Server

16. Collections and Generics: Data structures

Tracking song popularity on your jukebox

Here’s what you have so far, without the sort:

But the ArrayList class does NOT have a sort() method!

ArrayList is not the only collection

You could use a TreeSet... Or you could use the Collections.sort() method

Adding Collections.sort() to the Jukebox code

But now you need Song objects, not just simple Strings

Changing the Jukebox code to use Songs instead of Strings

It won’t compile!

The sort() method declaration

Generics means more type-safety

Learning generics

Using generic CLASSES

Using type parameters with ArrayList

Using generic METHODS

Here’s where it gets weird...

Revisiting the sort() method

In generics, “extends” means “extends or implements”

Finally we know what’s wrong...

The Song class needs to implement Comparable

The new, improved, comparable Song class

We can sort the list, but...

Using a custom Comparator

Updating the Jukebox to use a Comparator

Uh-oh. The sorting all works, but now we have duplicates...

We need a Set instead of a List

The Collection API (part of it)

Using a HashSet instead of ArrayList

What makes two objects equal?

How a HashSet checks for duplicates: hashCode() and equals()

The Song class with overridden hashCode() and equals()

And if we want the set to stay sorted, we’ve got TreeSet

What you MUST know about TreeSet...

TreeSet elements MUST be comparable

We’ve seen Lists and Sets, now we’ll use a Map

Finally, back to generics

Using polymorphic arguments and generics

But will it work with ArrayList<Dog> ?

What could happen if it were allowed...

Wildcards to the rescue

Alternate syntax for doing the same thing

17. Package, Jars and Deployment: Release Your Code

Deploying your application

Imagine this scenario...

Separate source code and class files

Put your Java in a JAR

Running (executing) the JAR

Put your classes in packages!

Packages prevent class name conflicts

Preventing package name conflicts

Compiling and running with packages

The -d flag is even cooler than we said

Making an executable JAR with packages

So where did the manifest file go?

Java Web Start

The .jnlp file

18. Remote Deployment with RMI: Distributed Computing

Method calls are always between two objects on the same heap

What if you want to invoke a method on an object running on another machine?

Object A, running on Little, wants to call a method on Object B, running on Big

But you can’t do that

The role of the ‘helpers’

Java RMI gives you the client and service helper objects!

How does the client get the stub object?

How does the client get the stub class?

Be sure each machine has the class files it needs

Yeah, but who really uses RMI?

What about Servlets?

A very simple Servlet

HTML page with a link to this servlet

Just for fun, let’s make the Phrase-O-Matic work as a servlet

Phrase-O-Matic code, servlet-friendly

Enterprise JavaBeans: RMI on steroids

For our final trick... a little Jini

Adaptive discovery in action

Self-healing network in action

Final Project: the Universal Service browser

A. Final Code Kitchen

Final BeatBox client program

Final BeatBox server program

B. The Top Ten Topics that almost made it into the Real Book...

#10 Bit Manipulation

Why do you care?

#9 Immutability

Why do you care that Strings are Immutable?

Why do you care that Wrappers are Immutable?

#8 Assertions

#7 Block Scope

#6 Linked Invocations

#5 Anonymous and Static Nested Classes

#4 Access Levels and Access Modifiers (Who Sees What)

#3 String and StringBuffer/StringBuilder Methods

#2 Multidimensional Arrays

And the number one topic that didn’t quite make it in...

#1 Enumerations (also called Enumerated Types or Enums)

C. This isn’t goodbye

Index

Special Upgrade Offer

 Head First Java™

Kathy Sierra

Bert Bates

[image: image with no caption]

Beijing • Boston • Farnham • Sebastopol • Tokyo

To our brains, for always being there (despite shaky evidence)

 Special Upgrade Offer

If you purchased this ebook directly from oreilly.com
 , you have the following benefits:

	DRM-free ebooks — use your ebooks across devices without restrictions or limitations

	Multiple formats — use on your laptop, tablet, or phone

	Lifetime access, with free updates

	Dropbox syncing — your files, anywhere

If you purchased this ebook from another retailer, you can upgrade your ebook to take advantage of all these benefits for just $4.99. Click here
 to access your ebook upgrade.

Please note that upgrade offers are not available from sample content.

 A Note Regarding Supplemental Files

Supplemental files and examples for this book can be found at http://examples.oreilly.com/9780596009205/
 . Please use a standard desktop web browser to access these files, as they may not be accessible from all ereader devices.

All code files or examples referenced in the book will be available online. For physical books that ship with an accompanying disc, whenever possible, we’ve posted all CD/DVD content. Note that while we provide as much of the media content as we are able via free download, we are sometimes limited by licensing restrictions. Please direct any questions or concerns to
booktech@oreilly.com

 .

 What they’re saying about
Head First

	

 [image:]

	
Amazon named Head First Java a Top Ten Editor’s Choice for Computer Books of 2003 (first edition)

	

 [image:]

	
Software Development Magazine named Head First Java a finalist for the 14th Annual Jolt Cola/Product Excellence Awards

“Kathy and Bert’s ‘Head First Java’ transforms the printed page into the closest thing to a GUI you’ve ever seen. In a wry, hip manner, the authors make learning Java an engaging ‘what’re they gonna do next?’ experience.”

—

Warren Keuffel, Software Development Magazine

“...the only way to decide the worth of a tutorial is to decide how well it teaches. Head First Java excels at teaching. OK, I thought it was silly... then I realized that I was thoroughly learning the topics as I went through the book.”

“The style of Head First Java made learning, well, easier.”

—

slashdot (honestpuck’s review)

“Beyond the engaging style that drags you forward from know-nothing into exalted Java warrior status, Head First Java covers a huge amount of practical matters that other texts leave as the dreaded “exercise for the reader...” It’s clever, wry, hip and practical — there aren’t a lot of textbooks that can make that claim and live up to it while also teaching you about object serialization and network launch protocols.”

—

Dr. Dan Russell, Director of User Sciences and Experience Research IBM Almaden Research Center (and teaches Artificial Intelligence at Stanford University)

“It’s fast, irreverent, fun, and engaging. Be careful — you might actually learn something!”

—

Ken Arnold, former Senior Engineer at Sun Microsystems Co-author (with James Gosling, creator of Java), “The Java Programming Language”

“Java technology is everywhere — If you develop software and haven’t learned Java, it’s definitely time to dive in — Head First.”

—

Scott McNealy, Sun Microsystems Chairman, President and CEO

“Head First Java is like Monty Python meets the gang of four... the text is broken up so well by puzzles and stories, quizzes and examples, that you cover ground like no computer book before.”

—

Douglas Rowe, Columbia Java Users Group

 Praise for
Head First

 Java

“Read Head First Java and you will once again experience fun in learning...For people who like to learn new programming languages, and do not come from a computer science or programming background, this book is a gem... This is one book that makes learning a complex computer language fun. I hope that there are more authors who are willing to break out of the same old mold of ‘traditional’ writing styles. Learning computer languages should be fun, not onerous.”

—

Judith Taylor, Southeast Ohio Macromedia User Group

“If you want to
learn

 Java, look no further: welcome to the first GUI-based technical book! This perfectly-executed, ground-breaking format delivers benefits other Java texts simply can’t... Prepare yourself for a truly remarkable ride through Java land.”

—

Neil R. Bauman, Captain & CEO, Geek Cruises (www.GeekCruises.com
)

“If you’re relatively new to programming and you are interested in Java, here’s your book...Covering everything from objects to creating graphical user interfaces (GUI), exception (error) handling to networking (sockets) and multithreading, even packaging up your pile of classes into one installation file, this book is quite complete...If you like the style...I’m certain you’ll love the book and, like me, hope that the Head First series will expand to many other subjects!”

—

LinuxQuestions.org

“I was ADDICTED to the book’s short stories, annotated code, mock interviews, and brain exercises.”

—

Michael Yuan, author, Enterprise J2ME

“‘Head First Java’... gives new meaning to their marketing phrase `There’s an O Reilly for that.` I picked this up because several others I respect had described it in terms like ‘revolutionary’ and a described a radically different approach to the textbook. They were (are) right... In typical O’Reilly fashion, they’ve taken a scientific and well considered approach. The result is funny, irreverent, topical, interactive, and brilliant...Reading this book is like sitting in the speakers lounge at a view conference, learning from – and laughing with – peers... If you want to UNDERSTAND Java, go buy this book.”

—

Andrew Pollack, www.thenorth.com

“If anyone in the world is familiar with the concept of ‘Head First,’ it would be me. This book is so good, I’d marry it on TV!”

—

Rick Rockwell, Comedian The original FOX Television “Who Wants to Marry a Millionaire” groom

“This stuff is so fricking good it makes me wanna WEEP! I’m stunned.”

—

Floyd Jones, Senior Technical Writer/Poolboy, BEA

“A few days ago I received my copy of Head First Java by Kathy Sierra and Bert Bates. I’m only part way through the book, but what’s amazed me is that even in my sleep-deprived state that first evening, I found myself thinking, ‘OK, just one more page, then I’ll go to bed.’“

—

Joe Litton

 Praise for other
Head First

 books co-authored by Kathy and Bert

	

 [image:]

	
Amazon named Head First Servlets a Top Ten Editor’s Choice for Computer Books of 2004 (first edition)

	

 [image:]

	
Software Development Magazine named Head First Servlets and Head First Design Patterns finalists for the 15th Annual Product Excellence Awards

“I feel like a thousand pounds of books have just been lifted off of my head.”

—

Ward Cunningham, inventor of the Wiki and founder of the Hillside Group

“I laughed, I cried, it moved me.”

—

Dan Steinberg, Editor-in-Chief, java.net

“My first reaction was to roll on the floor laughing. After I picked myself up, I realized that not only is the book technically accurate, it is the easiest to understand introduction to design patterns that I have seen.”

—

Dr. Timothy A. Budd, Associate Professor of Computer Science at Oregon State University; author of more than a dozen books including
C++ for Java Programmers

“Just the right tone for the geeked-out, casual-cool guru coder in all of us. The right reference for practical development strategies — gets my brain going without having to slog through a bunch of tired stale professor-speak.”

—

Travis Kalanick, Founder of Scour and Red Swoosh Member of the MIT TR100

“FINALLY - a Java book written the way I would’a wrote it if I were me. Seriously though - this book absolutely blows away every other software book I’ve ever read... A good book is very difficult to write... you have to take a lot of time to make things unfold in a natural, “reader oriented” sequence. It’s a lot of work. Most authors clearly aren’t up to the challenge. Congratulations to the Head First EJB team for a first class job!

—

Wally Flint

“I could not have imagined a person smiling while studying an IT book! Using Head First EJB materials, I got a great score (91%) and set a world record as the youngest SCBCD, 14 years.”

—

Afsah Shafquat (world’s youngest SCBCD)

“This Head First Servlets book is as good as the Head First EJB book, which made me laugh AND gave me 97% on the exam!”

—

Jef Cumps, J2EE consultant, Cronos

Other related books from O’Reilly

	Ant: The Definitive Guide

	Better, Faster, Lighter Java™

	Enterprise JavaBeans™ 3.0

	Hibernate: A Developer’s Notebook

	Java™ 1.5 Tiger: A Developer’s Notebook

	Java™ Cookbook

	Java™ in a Nutshell

	Java™ Network Programming

	Java™ Servlet & JSP Cookbook

	Java™ Swing

	JavaServer™ Faces

	JavaServer Pages™

	Programming Jakarta Struts

	Tomcat: The Definitive Guide

Other books in O’Reilly’s Head First series

	Head First Java™

	Head First Object-Oriented Analysis and Design (OOA&D)

	Head Rush Ajax

	Head First HTML with CSS and XHTML

	Head First Design Patterns

	Head First EJB™

	Head First PMP

	Head First SQL

	Head First Software Development

	Head First C#

	Head First JavaScript

	Head First Programming (2008)

	Head First Ajax (2008)

	Head First Physics (2008)

	Head First Statistics (2008)

	Head First Ruby on Rails (2008)

	Head First PHP & MySQL (2008)

 Creators of the Head First series

 [image: image with no caption]

Kathy

 has been interested in learning theory since her days as a game designer (she wrote games for Virgin, MGM, and Amblin’). She developed much of the Head First format while teaching New Media Authoring for UCLA Extension’s Entertainment Studies program. More recently, she’s been a master trainer for Sun Microsystems, teaching Sun’s Java instructors how to teach the latest Java technologies, and a lead developer of several of Sun’s Java programmer and developer certification exams. Together with Bert Bates, she has been actively using the concepts in Head First Java to teach hundreds of trainers, developers and even non-programmers. She is also the founder of one of the largest Java community websites in the world, javaranch.com, and the Creating Passionate Users blog.

Along with this book, Kathy co-authored Head First Servlets, Head First EJB, and Head First Design Patterns.

In her spare time she enjoys her new Icelandic horse, skiing, running, and the speed of light.

kathy@wickedlysmart.com

Bert

 is a software developer and architect, but a decade-long stint in artificial intelligence drove his interest in learning theory and technology-based training. He’s been teaching programming to clients ever since. Recently, he’s been a member of the development team for several of Sun’s Java Certification exams.

He spent the first decade of his software career travelling the world to help broadcast clients like Radio New Zealand, the Weather Channel, and the Arts & Entertainment Network (A & E). One of his all-time favorite projects was building a full rail system simulation for Union Pacific Railroad.

Bert is a hopelessly addicted Go player, and has been working on a Go program for way too long. He’s a fair guitar player, now trying his hand at banjo, and likes to spend time skiing, running, and trying to train (or learn from) his Icelandic horse Andi.

Bert co-authored the same books as Kathy, and is hard at work on the next batch of books (check the blog for updates).

You can sometimes catch him on the IGS Go server (under the login
jackStraw

).

terrapin@wickedlysmart.com

Although Kathy and Bert try to answer as much email as they can, the volume of mail and their travel schedule makes that difficult. The best (quickest) way to get technical help with the book is at the
very

 active Java beginners forum at javaranch.com.

 How to Use This Book: Intro

 [image: image with no caption]

 Who is this book for?

If you can answer “yes” to

all

 of these:

	

Have you done some programming?

	

Do you want to learn Java?

	

Do you prefer stimulating dinner party conversation to dry, dull, technical lectures?

this book is for you.

 Note

This is NOT a reference book. Head First Java is a book designed for
learning

 , not an encyclopedia of Java facts.

 Who should probably back away from this book?

If you can answer “yes” to any

one

 of these:

	

Is your programming background limited to HTML only, with no scripting language experience?

(If you’ve done anything with looping, or if/then logic, you’ll do fine with this book, but HTML tagging alone might not be enough.)

	

Are you a kick-butt C++ programmer looking for a
reference

 book?

	

Are you afraid to try something different? Would you rather have a root canal than mix stripes with plaid? Do you believe that a technical book can’t be serious if there’s a picture of a duck in the memory management section?

this book is

not

 for you.

 [image: image with no caption]

[note from marketing: who took out the part about how this book is for anyone with a valid credit card? And what about that “Give the Gift of Java” holiday promotion we discussed... -Fred]

 We know what you’re thinking

“How can
this

 be a serious Java programming book?”

“What’s with all the graphics?”

“Can I actually
learn

 it this way?”

“Do I smell pizza?”

 [image: image with no caption]

 And we know what your
brain

 is thinking

Your brain craves novelty. It’s always searching, scanning,
waiting

 for something unusual. It was built that way, and it helps you stay alive.

Today, you’re less likely to be a tiger snack. But your brain’s still looking. You just never know.

So what does your brain do with all the routine, ordinary, normal things you encounter? Everything it
can

 to stop them from interfering with the brain’s
real

 job — recording things that
matter

 . It doesn’t bother saving the boring things; they never make it past the “this is obviously not important” filter.

How does your brain
know

 what’s important? Suppose you’re out for a day hike and a tiger jumps in front of you, what happens inside your head?

Neurons fire. Emotions crank up.
Chemicals surge

 .

And that’s how your brain knows...

 [image: image with no caption]

This must be important! Don’t forget it!

But imagine you’re at home, or in a library. It’s a safe, warm, tiger-free zone. You’re studying. Getting ready for an exam. Or trying to learn some tough technical topic your boss thinks will take a week, ten days at the most.

Just one problem. Your brain’s trying to do you a big favor. It’s trying to make sure that this
obviously

 non-important content doesn’t clutter up scarce resources. Resources that are better spent storing the really
big

 things. Like tigers. Like the danger of fire. Like how you should never again snowboard in shorts.

 [image: image with no caption]

And there’s no simple way to tell your brain, “Hey brain, thank you very much, but no matter how dull this book is, and how little I’m registering on the emotional richter scale right now, I really
do

 want you to keep this stuff around.”

We think of a “Head First Java” reader as a learner
 .

So what does it take to
learn

 something? First, you have to
get

 it, then make sure you don’t
forget

 it. It’s not about pushing facts into your head. Based on the latest research in cognitive science, neurobiology, and educational psychology,
learning

 takes a lot more than text on a page. We know what turns your brain on.

Some of the Head First learning principles:

 [image: image with no caption]

Make it visual.

 Images are far more memorable than words alone, and make learning much more effective (Up to 89% improvement in recall and transfer studies). It also makes things more understandable.
Put the words within or near the graphics

 they relate to, rather than on the bottom or on another page, and learners will be up to
twice

 as likely to solve problems related to the content.

 [image: image with no caption]

Use a conversational and personalized style

 . In recent studies, students performed up to 40% better on post-learning tests if the content spoke directly to the reader, using a first-person, conversational style rather than taking a formal tone. Tell stories instead of lecturing. Use casual language. Don’t take yourself too seriously. Which would
you

 pay more attention to: a stimulating dinner party companion, or a lecture?

 [image: image with no caption]

Get the learner to think more deeply.

 In other words, unless you actively flex your neurons, nothing much happens in your head. A reader has to be motivated, engaged, curious, and inspired to solve problems, draw conclusions, and generate new knowledge. And for that, you need challenges, exercises, and thought-provoking questions, and activities that involve both sides of the brain, and multiple senses.

 [image: image with no caption]

Get — and keep — the reader’s attention.

 We’ve all had the “I really want to learn this but I can’t stay awake past page one” experience. Your brain pays attention to things that are out of the ordinary, interesting, strange, eye-catching, unexpected. Learning a new, tough, technical topic doesn’t have to be boring. Your brain will learn much more quickly if it’s not.

 [image: image with no caption]

Touch their emotions.

 We now know that your ability to remember something is largely dependent on its emotional content. You remember what you care about. You remember when you feel something. No we’re not talking heart-wrenching stories about a boy and his dog. We’re talking emotions like surprise, curiosity, fun, “what the...?”, and the feeling of “I Rule!” that comes when you solve a puzzle, learn something everybody else thinks is hard, or realize you know something that “I’m more technical than thou” Bob from engineering
doesn’t

 .

 Metacognition: thinking about thinking

If you really want to learn, and you want to learn more quickly and more deeply, pay attention to how you pay attention. Think about how you think. Learn how you learn.

Most of us did not take courses on metacognition or learning theory when we were growing up. We were
expected

 to learn, but rarely
taught

 to learn.

But we assume that if you’re holding this book, you want to learn Java. And you probably don’t want to spend a lot of time.

To get the most from this book, or
any

 book or learning experience, take responsibility for your brain. Your brain on
that

 content.

The trick is to get your brain to see the new material you’re learning as Really Important. Crucial to your well-being. As important as a tiger. Otherwise, you’re in for a constant battle, with your brain doing its best to keep the new content from sticking.

 [image: image with no caption]

So just how
DO

 you get your brain to treat Java like it was a hungry tiger?

There’s the slow, tedious way, or the faster, more effective way. The slow way is about sheer repetition. You obviously know that you
are

 able to learn and remember even the dullest of topics, if you keep pounding on the same thing. With enough repetition, your brain says, “This doesn’t
feel

 important to him, but he keeps looking at the same thing
over

 and
over

 and
over

 , so I suppose it must be.”

The faster way is to do

anything that increases brain activity,

 especially different
types

 of brain activity. The things on the previous page are a big part of the solution, and they’re all things that have been proven to help your brain work in your favor. For example, studies show that putting words
within

 the pictures they describe (as opposed to somewhere else in the page, like a caption or in the body text) causes your brain to try to makes sense of how the words and picture relate, and this causes more neurons to fire. More neurons firing = more chances for your brain to
get

 that this is something worth paying attention to, and possibly recording.

A conversational style helps because people tend to pay more attention when they perceive that they’re in a conversation, since they’re expected to follow along and hold up their end. The amazing thing is, your brain doesn’t necessarily
care

 that the “conversation” is between you and a book! On the other hand, if the writing style is formal and dry, your brain perceives it the same way you experience being lectured to while sitting in a roomful of passive attendees. No need to stay awake.

But pictures and conversational style are just the beginning.

 Here’s what WE did

We used

pictures

 , because your brain is tuned for visuals, not text. As far as your brain’s concerned, a picture really
is

 worth 1024 words. And when text and pictures work together, we embedded the text
in

 the pictures because your brain works more effectively when the text is
within

 the thing the text refers to, as opposed to in a caption or buried in the text somewhere.

 [image: image with no caption]

We used

repetition

 , saying the same thing in different ways and with different media types, and
multiple senses

 , to increase the chance that the content gets coded into more than one area of your brain.

 [image: image with no caption]

We used concepts and pictures in

unexpected

 ways because your brain is tuned for novelty, and we used pictures and ideas with at least
some

emotional

content

 , because your brain is tuned to pay attention to the biochemistry of emotions. That which causes you to
feel

 something is more likely to be remembered, even if that feeling is nothing more than a little

humor

 ,

surprise

 , or

interest.

We used a personalized,

conversational style

 , because your brain is tuned to pay more attention when it believes you’re in a conversation than if it thinks you’re passively listening to a presentation. Your brain does this even when you’re
reading

 .

 [image: image with no caption]

We included more than 50

exercises

 , because your brain is tuned to learn and remember more when you

do

 things than when you
read

 about things. And we made the exercises challenging-yet-do-able, because that’s what most
people

 prefer.

 [image: image with no caption]

We used

multiple learning styles

 , because
you

 might prefer step-by-step procedures, while someone else wants to understand the big picture first, while someone else just wants to see a code example. But regardless of your own learning preference,
everyone

 benefits from seeing the same content represented in multiple ways.

 [image: image with no caption]

We include content for

both sides of your brain

 , because the more of your brain you engage, the more likely you are to learn and remember, and the longer you can stay focused. Since working one side of the brain often means giving the other side a chance to rest, you can be more productive at learning for a longer period of time.

 [image: image with no caption]

And we included

stories

 and exercises that present

more than one point of view,

 because your brain is tuned to learn more deeply when it’s forced to make evaluations and judgements.

We included

challenges

 , with exercises, and by asking

questions

 that don’t always have a straight answer, because your brain is tuned to learn and remember when it has to
work

 at something (just as you can’t get your
body

 in shape by watching people at the gym). But we did our best to make sure that when you’re working hard, it’s on the
right

 things. That

you’re not spending one extra dendrite

 processing a hard-to-understand example, or parsing difficult, jargon-laden, or extremely terse text.

 [image: image with no caption]

We used an

80/20

 approach. We assume that if you’re going for a PhD in Java, this won’t be your only book. So we don’t talk about
everything

 . Just the stuff you’ll actually
use

 .

 Here’s what YOU can do to bend your brain into submission

 [image: image with no caption]

cut this out and stick it on your refridgerator.

So, we did our part. The rest is up to you. These tips are a starting point; Listen to your brain and figure out what works for you and what doesn’t. Try new things.

	

Slow down. The more you understand, the less you have to memorize.

Don’t just
read

 . Stop and think. When the book asks you a question, don’t just skip to the answer. Imagine that someone really
is

 asking the question. The more deeply you force your brain to think, the better chance you have of learning and remembering.

	

Do the exercises. Write your own notes.

We put them in, but if we did them for you, that would be like having someone else do your workouts for you. And don’t just
look

 at the exercises.
Use a pencil.

 There’s plenty of evidence that physical activity
while

 learning can increase the learning.

	

Read the “There are No Dumb Questions”

That means all of them. They’re not optional side-bars — they’re part of the core content! Sometimes the questions are more useful than the answers.

	

Don’t do all your reading in one place.

Stand-up, stretch, move around, change chairs, change rooms. It’ll help your brain
feel

 something, and keeps your learning from being too connected to a particular place.

	

Make this the last thing you read before bed. Or at least the last
challenging

 thing.

Part of the learning (especially the transfer to long-term memory) happens
after

 you put the book down. Your brain needs time on its own, to do more processing. If you put in something new during that processing-time, some of what you just learned will be lost.

	

Drink water. Lots of it.

Your brain works best in a nice bath of fluid. Dehydration (which can happen before you ever feel thirsty) decreases cognitive function.

	

Talk about it. Out loud.

Speaking activates a different part of the brain. If you’re trying to understand something, or increase your chance of remembering it later, say it out loud. Better still, try to explain it out loud to someone else. You’ll learn more quickly, and you might uncover ideas you hadn’t known were there when you were reading about it.

	

Listen to your brain.

Pay attention to whether your brain is getting overloaded. If you find yourself starting to skim the surface or forget what you just read, it’s time for a break. Once you go past a certain point, you won’t learn faster by trying to shove more in, and you might even hurt the process.

	

Feel something!

Your brain needs to know that this
matters

 . Get involved with the stories. Make up your own captions for the photos. Groaning over a bad joke is
still

 better than feeling nothing at all.

	

Type and run the code.

Type and run the code examples. Then you can experiment with changing and improving the code (or breaking it, which is sometimes the best way to figure out what’s really happening). For long examples or Ready-bake code, you can download the source files from wickedlysmart.com

 What you need for this book

You do
not

 need any other development tool, such as an Integrated Development Environment (IDE). We strongly recommend that you
not

 use anything but a basic text editor until you complete this book (and
especially

 not until after Chapter 16
). An IDE can protect you from some of the details that really matter, so you’re much better off learning from the command-line and then, once you really understand what’s happening, move to a tool that automates some of the process.

 Note

If you are using Java 6, don’t worry! For the most part Java 6 added only a few minor additions to the API. In other words, this book is for you if you’re using Java 5 or Java 6.

Setting Up Java

	If you don’t already have a
1.5

 or greater
Java 2 Standard Edition SDK

 (Software Development Kit), you need it. If you’re on Linux, Windows, or Solaris, you can get it for free from java.sun.com (Sun’s website for Java developers). It usually takes no more than two clicks from the main page to get to the J2SE downloads page. Get the latest
non-beta

 version posted. The SDK includes everything you need to compile and run Java.

 [image: image with no caption]

If you’re running Mac OS X 10.4, the Java SDK is already installed. It’s part of OS X, and you don’t have to do
anything

 else. If you’re on an earlier version of OS X, you have an earlier version of Java that will work for 95% of the code in this book.

Note: This book is based on Java 1.5, but for stunningly unclear marketing reasons, shortly before release, Sun renamed it Java 5, while still keeping “1.5” as the version number for the developer’s kit. So, if you see Java 1.5 or Java 5 or Java 5.0, or “Tiger” (version 5’s original code-name),
they all mean the same thing.

 There was never a Java 3.0 or 4.0 — it jumped from version 1.4 to 5.0, but you will still find places where it’s called 1.5 instead of 5. Don’t ask. (Oh, and just to make it more entertaining, Java 5 and the Mac OS X 10.4 were both given the same code-name of “Tiger”, and since OS X 10.4 is the version of the Mac OS you need to run Java 5, you’ll hear people talk about “Tiger on Tiger”. It just means Java 5 on OS X 10.4).

 [image: image with no caption]

	The SDK does
not

 include the
API documentation,

 and you need that! Go back to java.sun. com and get the J2SE API documentation. You can also access the API docs online, without downloading them, but that’s a pain. Trust us, it’s worth the download.

	You need a
text editor

 . Virtually any text editor will do (vi, emacs, pico), including the GUI ones that come with most operating systems. Notepad, Wordpad, TextEdit, etc. all work, as long as you make sure they don’t append a “.txt” on to the end of your source code.

	Once you’ve downloaded and unpacked/zipped/whatever (depends on which version and for which OS), you need to add an entry to your
PATH

 environment variable that points to the /bin directory inside the main Java directory. For example, if the J2SDK puts a directory on your drive called “j2sdk1.5.0”, look inside that directory and you’ll find the “bin” directory where the Java binaries (the tools) live. The bin directory is the one you need a PATH to, so that when you type:

% javac

at the command-line, your terminal will know how to find the
javac

 compiler.

Note: if you have trouble with your installation, we recommend you go to javaranch.com, and join the Java-Beginning forum! Actually, you should do that whether you have trouble or not.

 [image: image with no caption]

Note: much of the code from this book is available at wickedlysmart.com

 Last-minute things you need to know

This is a learning experience, not a reference book. We deliberately stripped out everything that might get in the way of
learning

 whatever it is we’re working on at that point in the book. And the first time through, you need to begin at the beginning, because the book makes assumptions about what you’ve already seen and learned.

We use simple UML-
like

 diagrams.

If we’d used
pure

 UML, you’d be seeing something that
looks

 like Java, but with syntax that’s just plain
wrong

 . So we use a simplified version of UML that doesn’t conflict with Java syntax. If you don’t already know UML, you won’t have to worry about learning Java
and

 UML at the same time.

 [image: image with no caption]

We don’t worry about organizing and packaging your own code until the end of the book.

In this book, you can get on with the business of learning Java, without stressing over some of the organizational or administrative details of developing Java programs. You
will

 , in the real world, need to know — and use — these details, so we cover them in depth. But we save them for the end of the book (Chapter 17
). Relax while you ease into Java, gently.

 [image: image with no caption]

You should do ALL of the “Sharpen your pencil” activities

The end-of-chapter exercises are mandatory; puzzles are optional. Answers for both are at the end of each chapter.

One thing you need to know about the puzzles —
they’re puzzles

 . As in logic puzzles, brain teasers, crossword puzzles, etc. The
exercises

 are here to help you practice what you’ve learned, and you should do them all. The puzzles are a different story, and some of them are quite challenging in a
puzzle

 way. These puzzles are meant for
puzzlers

 , and you probably already know if you are one. If you’re not sure, we suggest you give some of them a try, but whatever happens, don’t be discouraged if you
can’t

 solve a puzzle or if you simply can’t be bothered to take the time to work them out.

 [image: image with no caption]

Activities marked with the Exercise (running shoe) logo are mandatory! Don’t skip them if you’re serious about learning Java.

The ‘Sharpen Your Pencil’ exercises don’t have answers.

Not printed in the book, anyway. For some of them, there
is

 no right answer, and for the others, part of the learning experience for the Sharpen activities is for
you

 to decide if and when your answers are right. (Some of our
suggested

 answers are available on wickedlysmart.com)

 [image: image with no caption]

If you see the Puzzle logo, the activity is optional, and if you don’t like twisty logic or crossword puzzles, you won’t like these either.

The code examples are as lean as possible

It’s frustrating to wade through 200 lines of code looking for the two lines you need to understand. Most examples in this book are shown within the smallest possible context, so that the part you’re trying to learn is clear and simple. So don’t expect the code to be robust, or even complete. That’s
your

 assignment for after you finish the book. The book examples are written specifically for
learning

 , and aren’t always fully-functional.

 Technical Editors

“Credit goes to all, but mistakes are the sole reponsibility of the author...”. Does anyone really believe that? See the two people on this page? If you find technical problems, it’s probably
their

 fault. :)

 [image: image with no caption]

Jess

 works at Hewlett-Packard on the Self-Healing Services Team. She has a Bachelor’s in Computer Engineering from Villanova University, has her SCJP 1.4 and SCWCD certifications, and is literally months away from receiving her Masters in Software Engineering at Drexel University (whew!)

When she’s not working, studying or motoring in her MINI Cooper S, Jess can be found fighting her cat for yarn as she completes her latest knitting or crochet project (anybody want a hat?) She is originally from Salt Lake City, Utah (no, she’s not Mormon... yes, you were too going to ask) and is currently living near Philadelphia with her husband, Mendra, and two cats: Chai and Sake.

You can catch her moderating technical forums at javaranch.com.

 [image: image with no caption]

Valentin

 Valentin Crettaz has a Masters degree in Information and Computer Science from the Swiss Federal Institute of Technology in Lausanne (EPFL). He has worked as a software engineer with SRI International (Menlo Park, CA) and as a principal engineer in the Software Engineering Laboratory of EPFL.

Valentin is the co-founder and CTO of Condris Technologies, a company specializing in the development of software architecture solutions.

His research and development interests include aspect-oriented technologies, design and architectural patterns, web services, and software architecture. Besides taking care of his wife, gardening, reading, and doing some sport, Valentin moderates the SCBCD and SCDJWS forums at Javaranch.com. He holds the SCJP, SCJD, SCBCD, SCWCD, and SCDJWS certifications. He has also had the opportunity to serve as a co-author for Whizlabs SCBCD Exam Simulator.

(We’re still in shock from seeing him in a
tie

 .)

 Other people to
 [image:]

 : credit

At O’Reilly:

Our biggest thanks to
Mike Loukides

 at O’Reilly, for taking a chance on this, and helping to shape the Head First concept into a book (and
series

). As this second edition goes to print there are now five Head First books, and he’s been with us all the way. To
Tim O’Reilly

 , for his willingness to launch into something
completely

 new and different. Thanks to the clever
Kyle Hart

 for figuring out how Head First fits into the world, and for launching the series. Finally, to
Edie Freedman

 for designing the Head First “emphasize the
head

 ” cover.

Our intrepid beta testers and reviewer team:

 [image: image with no caption]

 Note

Some of our Java expert reviewers...

Our top honors and thanks go to the director of our javaranch tech review team,
Johannes de Jong.

 This is your fifth time around with us on a Head First book, and we’re thrilled you’re still speaking to us.
Jeff Cumps

 is on his third book with us now and relentless about finding areas where we needed to be more clear or correct.

 [image: image with no caption]

Corey McGlone

 , you rock. And we think you give the clearest explanations on javaranch. You’ll probably notice we stole one or two of them.
Jason Menard

 saved our technical butts on more than a few details, and
Thomas Paul

 , as always, gave us expert feedback and found the subtle Java issues the rest of us missed.
Jane Griscti

 has her Java chops (and knows a thing or two about
writing

) and it was great to have her helping on the new edition along with long-time javarancher
Barry Gaunt

 .

 [image: image with no caption]

Marilyn de Queiroz

 gave us excellent help on
both

 editions of the book.
Chris Jones

 ,
John Nyquist, James Cubeta, Terri Cubeta,

 and
Ira Becker

 gave us a ton of help on the first edition.

 [image: image with no caption]

Special thanks to a few of the Head Firsters who’ve been helping us from the beginning:
Angelo Celeste

 ,
Mikalai Zaikin,

 and
Thomas Duff

 (twduff.com). And thanks to our terrific agent, David Rogelberg of StudioB (but seriously, what about the
movie

 rights?)

 [image: image with no caption]

 Just when you thought there wouldn’t be any more acknowledgements[1
]

More Java technical experts who helped out on the first edition (in pseudo-random order):

Emiko Hori, Michael Taupitz, Mike Gallihugh, Manish Hatwalne, James Chegwidden, Shweta Mathur, Mohamed Mazahim, John Paverd, Joseph Bih, Skulrat Patanavanich, Sunil Palicha, Suddhasatwa Ghosh, Ramki Srinivasan, Alfred Raouf, Angelo Celeste, Mikalai Zaikin, John Zoetebier, Jim Pleger, Barry Gaunt, and Mark Dielen.

The first edition puzzle team:

Dirk Schreckmann, Mary “JavaCross Champion” Leners, Rodney J. Woodruff, Gavin Bong, and Jason Menard. Javaranch is lucky to have you all helping out.

Other co-conspirators to thank:

Paul Wheaton

 , the javaranch Trail Boss for supporting thousands of Java learners.
Solveig Haugland

 , mistress of J2EE and author of “Dating Design Patterns”.

Authors
Dori Smith

 and
Tom Negrino (backupbrain.com)

 , for helping us navigate the tech book world.

Our Head First partners in crime,
Eric Freeman and Beth Freeman

 (authors of Head First Design Patterns), for giving us the Bawls™ to finish this on time.

Sherry Dorris

 , for the things that really matter.

Brave Early Adopters of the Head First series:

Joe Litton, Ross P. Goldberg, Dominic Da Silva, honestpuck, Danny Bromberg, Stephen Lepp, Elton Hughes, Eric Christensen, Vulinh Nguyen, Mark Rau, Abdulhaf, Nathan Oliphant, Michael Bradly, Alex Darrow, Michael Fischer, Sarah Nottingham, Tim Allen, Bob Thomas, and Mike Bibby (the first).

[1
]
 The large number of acknowledgements is because we’re testing the theory that everyone mentioned in a book acknowledgement will buy at least one copy, probably more, what with relatives and everything. If you’d like to be in the acknowledgement of our
next

 book, and you have a large family, write to us.

 Chapter 1. Dive in A Quick Dip: Breaking the Surface

 [image: image with no caption]

Java takes you to new places.

 From its humble release to the public as the (wimpy) version 1.02, Java seduced programmers with its friendly syntax, object-oriented features, memory management, and best of all — the promise of portability. The lure of
write-once/run-anywhere

 is just too strong. A devoted following exploded, as programmers fought against bugs, limitations, and, oh yeah, the fact that it was dog slow. But that was ages ago. If you’re just starting in Java,
you’re lucky

 . Some of us had to walk five miles in the snow, uphill both ways (barefoot), to get even the most trivial applet to work. But
you

 , why,
you

 get to ride the
sleeker, faster, much more powerful

 Java of today.

 [image: image with no caption]

 The Way Java Works

The goal is to write one application (in this example, an interactive party invitation) and have it work on whatever device your friends have.

 [image: image with no caption]

 [image: image with no caption]

 What you’ll do in Java

You’ll type a source code file, compile it using the javac compiler, then run the compiled bytecode on a Java virtual machine.

 [image: image with no caption]

 [image: image with no caption]

 Note

(Note: this is not meant to be a tutorial... you’ll be writing real code in a moment, but for now, we just want you to get a feel for how it all fits together.)

 A very brief history of Java

 [image: image with no caption]

 [image: image with no caption]

 [image: image with no caption]

Sharpen your pencil

Look how easy it is to write Java.

Try to guess what each line of code is doing... (answers are on the next page).

 [image: image with no caption]

	

Q:

	

Q: I see Java 2 and Java 5.0, but was there a Java 3 and 4? And why is it Java 5.
0

 but not Java 2.
0

 ?

	
A:

	

A:

 The joys of marketing... when the version of Java shifted from 1.1 to 1.2, the changes to Java were so dramatic that the marketers decided we needed a whole new “name”, so they started calling it

Java 2

 , even though the actual version of Java was 1.2. But versions 1.3 and 1.4 were still considered

Java 2

 . There never
was

 a Java 3 or 4. Beginning with Java version 1.5, the marketers decided once again that the changes were so dramatic that a new name was needed (and most developers agreed), so they looked at the options. The next number in the name sequence would be “3”, but calling Java 1.5

Java 3

 seemed more confusing, so they decided to name it

Java 5.0

 to match the “5” in version “1.5”.

So, the original Java, versions 1.02 (the first official release) through 1.1, were just “Java”. Versions 1.2, 1.3, and 1.4 were “Java 2”. And beginning with version 1.5, Java is called “Java 5.0”. But you’ll also see it called “Java 5” (without the “.0”) and “Tiger” (its original code-name). We have no idea what will happen with the
next

 release...

Sharpen your pencil answers

Look how easy it is to write Java.

Don’t worry about whether you understand any of this yet!

Everything here is explained in great detail in the book, most within the first 40 pages). If Java resembles a language you’ve used in the past, some of this will be simple. If not, don’t worry about it.
We’ll get there...

 [image: image with no caption]

 Code structure in Java

 [image: image with no caption]

Put a class in a source file.

Put methods in a class.

Put statements in a method.

What goes in a source file?

A source code file (with the
.java

 extension) holds one

class

 definition. The class represents a
piece

 of your program, although a very tiny application might need just a single class. The class must go within a pair of curly braces.

 [image: image with no caption]

What goes in a class?

A class has one or more

methods

 . In the Dog class, the

bark

 method will hold instructions for how the Dog should bark. Your methods must be declared
inside

 a class (in other words, within the curly braces of the class).

 [image: image with no caption]

What goes in a method?

Within the curly braces of a method, write your instructions for how that method should be performed. Method
code

 is basically a set of statements, and for now you can think of a method kind of like a function or procedure.

 [image: image with no caption]

 Anatomy of a class

When the JVM starts running, it looks for the class you give it at the command line. Then it starts looking for a specially-written method that looks exactly like:

public static void main (String[] args) {
 // your code goes here
}

Next, the JVM runs everything between the curly braces { } of your main method. Every Java application has to have at least one
class

 , and at least one
main

 method (not one main per
class

 ; just one main per
application

).

 [image: image with no caption]

 Note

Don’t worry about memorizing anything right now... this chapter is just to get you started.

 Writing a class with a main

 In Java, everything goes in a
class

 . You’ll type your source code file (with a
.java

 extension), then compile it into a new class file (with a
.class

 extension). When you run your program, you’re really running a
class

 .

Running a program means telling the Java Virtual Machine (JVM) to “Load the

MyFirstApp

 class, then start executing its

main()

 method. Keep running ‘til all the code in main is finished.”

In Chapter 2
 , we go deeper into the whole
class

 thing, but for now, all you need to think is,

how do I write Java code so that it will run?

 And it all begins with
main()

 .

The
main()

 method is where your program starts running.

No matter how big your program is (in other words, no matter how many
classes

 your program uses), there’s got to be a
main()

 method to get the ball rolling.

 [image: image with no caption]

 [image: image with no caption]

 What can you say in the main method?

 Once you’re inside main (or
any

 method), the fun begins. You can say all the normal things that you say in most programming languages to

make the computer do something.

Your code can tell the JVM to:

 [image: image with no caption]

	

do something

Statements

 : declarations, assignments, method calls, etc.
int x = 3;
String name = "Dirk";
x = x * 17;
System.out.print("x is " + x);
double d = Math.random();
// this is a comment

	

do something again and again

Loops

 :
for

 and
while

while (x > 12) {
 x = x - 1;
}
for (int x = 0; x < 10; x = x + 1) {
 System.out.print("x is now " + x);
}

	

do something under this condition

Branching

 :
if/else

 tests
if (x == 10) {
 System.out.print("x must be 10");
} else {
 System.out.print("x isn't 10");
}
if ((x < 3) & (name.equals("Dirk"))) {
 System.out.println("Gently");
}
System.out.print("this line runs no matter what");

Syntax Fun

 [image:]

 Each statement must end in a semicolon.

x = x + 1
;

 [image:]

 A single-line comment begins with two forward slashes.

x = 22;

// this line disturbs me

 [image:]

 Most white space doesn’t matter.

x = 3 ;

 [image:]

 Variables are declared with a
name

 and a
type

 (you’ll learn about all the Java
types

 in Chapter 3
).

int weight;
//
type:

 int,
name:

 weight

 [image:]

 Classes and methods must be defined within a pair of curly braces.

public void go()
{

 // amazing code here

}

 [image: image with no caption]

 Looping and looping and...

 Java has three standard looping constructs:
while

 ,
do-while

 , and
for

 . You’ll get the full loop scoop later in the book, but not for awhile, so let’s do
while

 for now.

The syntax (not to mention logic) is so simple you’re probably asleep already. As long as some condition is true, you do everything inside the loop
block

 . The loop block is bounded by a pair of curly braces, so whatever you want to repeat needs to be inside that block.

The key to a loop is the
conditional test

 . In Java, a conditional test is an expression that results in a
boolean

 value — in other words, something that is either

true

 or

false

 .

If you say something like, “While
iceCreamInTheTub is true

 , keep scooping”, you have a clear boolean test. There either
is

 ice cream in the tub or there
isn’t

 . But if you were to say, “While
Bob

 keep scooping”, you don’t have a real test. To make that work, you’d have to change it to something like, “While Bob is snoring...” or “While Bob is
not

 wearing plaid...”

 Simple boolean tests

You can do a simple boolean test by checking the value of a variable, using a
comparison operator

 including:

<

 (less than)

>

 (greater than)

==

 (equality) (yes, that’s
two

 equals signs)

Notice the difference between the
assignment

 operator (a
single

 equals sign) and the
equals

 operator (
two

 equals signs). Lots of programmers accidentally type

=

 when they
want

==

 . (But not you.)

int x = 4; // assign 4 to x
while (x > 3) {
 // loop code
will

 run because
 // x
is

 greater than 3
 x = x - 1; // or we'd loop forever
}
int z = 27; //
while (z == 17) {
 // loop code will
not

 run because
 // z is
not

 equal to 17
}

There are no Dumb Questions

	

Q:

	

Q: Why does everything have to be in a class?

	
A:

	

A:

 Java is an object-oriented (OO) language. It’s not like the old days when you had steam-driven compilers and wrote one monolithic source file with a pile of procedures. In Chapter 2
 you’ll learn that a class is a blueprint for an object, and that nearly everything in Java is an object.

	

Q:

	

Q: Do I have to put a main in every class I write?

	
A:

	

A:

 Nope. A Java program might use dozens of classes (even hundreds), but you might only have
one

 with a main method — the one that starts the program running. You might write test classes, though, that have main methods for testing your
other

 classes.

	

Q:

	

Q: In my other language I can do a boolean test on an integer. In Java, can I say something like:

int x = 1;

while (x){ }

	
A:

	

A:

 No. A
boolean

 and an
integer

 are not compatible types in Java. Since the result of a conditional test
must

 be a boolean, the only variable you can directly test (without using a comparison operator) is a boolean
 . For example, you can say:

boolean isHot = true;

while(isHot) { }

 Example of a while
 loop

 [image: image with no caption]

Bullet Points

	Statements end in a semicolon ;

	Code blocks are defined by a pair of curly braces
{ }

	Declare an
int

 variable with a name and a type:
int x;

	The
assignment

 operator is
one

 equals sign
=

	The
equals

 operator uses
two

 equals signs
==

	A
while

 loop runs everything within its block (defined by curly braces) as long as the
conditional test

 is

true

 .

	If the conditional test is

false

 , the
while

 loop code block won’t run, and execution will move down to the code immediately
after

 the loop block.

	Put a boolean test inside parentheses:
while
(x == 4)

 { }

 Conditional branching

 In Java, an
if

 test is basically the same as the boolean test in a
while

 loop – except instead of saying, “

while

 there’s still beer...”, you’ll say, “

if

 there’s still beer...”

 [image: image with no caption]

The code above executes the line that prints “x must be 3” only if the condition (
x

 is equal to 3) is true. Regardless of whether it’s true, though, the line that prints, “This runs no matter what” will run. So depending on the value of
x

 , either one statement or two will print out.

But we can add an
else

 to the condition, so that we can say something like, “
If

 there’s still beer, keep coding,
else

 (otherwise) get more beer, and then continue on...”

 [image: image with no caption]

 System.out.print vs. System.out.println

If you’ve been paying attention (of course you have) then you’ve noticed us switching between
print

 and
println.

Did you spot the difference?

System.out.

println

 inserts a newline (think of print

ln

 as
print

new

line

 while System.out.

print

 keeps printing to the
same

 line. If you want each thing you print out to be on its own line, use print
ln

 . If you want everything to stick together on one line, use print.

Sharpen your pencil

Given the output:

% java DooBee

DooBeeDooBeeDo

Fill in the missing code:

public class DooBee {

 public static void main (String[] args) {

 int x = 1;

 while (x < _____) {

 System.out._________(“Doo”);

 System.out._________(“Bee”);

 x = x + 1;

 }

 if (x == ______) {

 System.out.print(“Do”);

 }

 }

}

 Coding a Serious Business Application

 Let’s put all your new Java skills to good use with something practical. We need a class with a
main()

 , an
int

 and a
String

 variable, a
while

 loop, and an
if

 test. A little more polish, and you’ll be building that business back-end in no time. But
before

 you look at the code on this page, think for a moment about how
you

 would code that classic children’s favorite, “99 bottles of beer.”

 [image: image with no caption]

public class BeerSong {
 public static void main (String[] args) {
 int beerNum = 99;
 String word = "bottles";

 while (beerNum > 0) {

 if (beerNum == 1) {
 word = "bottle"; // singular, as in ONE bottle.
 }

 System.out.println(beerNum + " " + word + " of beer on the wall");
 System.out.println(beerNum + " " + word + " of beer.");
 System.out.println("Take one down.");
 System.out.println("Pass it around.");
 beerNum = beerNum - 1;

 if (beerNum > 0) {
 System.out.println(beerNum + " " + word + " of beer on the wall");
 } else {
 System.out.println("No more bottles of beer on the wall");
 } // end else
 } // end while loop
 } // end main method
} // end class

There’s still one little flaw in our code. It compiles and runs, but the output isn’t 100% perfect. See if you can spot the flaw, and fix it.

 Monday morning at Bob’s

Bob’s alarm clock rings at 8:30 Monday morning, just like every other weekday. But Bob had a wild weekend, and reaches for the SNOOZE button. And that’s when the action starts, and the Java-enabled appliances come to life.

 [image: image with no caption]

First, the alarm clock sends a message to the coffee maker[2
]
 “Hey, the geek’s sleeping in again, delay the coffee 12 minutes.”

The coffee maker sends a message to the Motorola™ toaster, “Hold the toast, Bob’s snoozing.”

 [image: image with no caption]

The alarm clock then sends a message to Bob’s Nokia Navigator™ cell phone, “Call Bob’s 9 o’clock and tell him we’re running a little late.”

 [image: image with no caption]

Finally, the alarm clock sends a message to Sam’s (Sam is the dog) wireless collar, with the too-familiar signal that means, “Get the paper, but don’t expect a walk.”

 [image: image with no caption]

A few minutes later, the alarm goes off again. And
again

 Bob hits SNOOZE and the appliances start chattering. Finally, the alarm rings a third time. But just as Bob reaches for the snooze button, the clock sends the “jump and bark” signal to Sam’s collar. Shocked to full consciousness, Bob rises, grateful that his Java skills and a little trip to Radio Shack™ have enhanced the daily routines of his life.

His toast is toasted.

His coffee steams.

His paper awaits.

 [image: image with no caption]

Just another wonderful morning in

The Java-Enabled House

 .

You

can have a Java-enabled home

 . Stick with a sensible solution using Java, Ethernet, and Jini technology. Beware of imitations using other so-called “plug and play” (which actually means “plug and play with it for the next three days trying to get it to work”) or “portable” platforms. Bob’s sister Betty tried one of those
others

 , and the results were, well, not very appealing, or safe. Bit of a shame about her dog, too...

	

 [image:]

	
Could this story be true? Yes and no. While there
are

 versions of Java running in devices including PDAs, cell phones (
especially

 cell phones), pagers, rings, smart cards, and more –you might not find a Java toaster or dog collar. But even if you can’t find a Java-enabled version of your favorite gadget, you can still run it as if it
were

 a Java device by controlling it through some other interface (say, your laptop) that
is

 running Java. This is known as the Jini
surrogate architecture

 . Yes you
can

 have that geek dream home.

 [image: image with no caption]

 OK, so the beer song wasn’t
really

 a serious business application. Still need something practical to show the boss? Check out the Phrase-O-Matic code.

 Note

note: when you type this into an editor, let the code do its own word/line-wrapping! Never hit the return key when you’re typing a String (a thing between “quotes”) or it won’t compile. So the hyphens you see on this page are real, and you can type them, but don’t hit the return key until AFTER you’ve closed a String.

public class PhraseOMatic {

public static void main (String[] args) {

	
 // make three sets of words to choose from. Add your own!

String[] wordListOne = {"24/7","multi-

Tier","30,000 foot","B-to-B","win-win","frontend",

"web-based","pervasive", "smart", "sixsigma","

critical-path", "dynamic"};

String[] wordListTwo = {"empowered", "sticky",

"value-added", "oriented", "centric", "distributed",

"clustered", "branded","outside-the-box", "positioned",

"networked", "focused", "leveraged", "aligned",

"targeted", "shared", "cooperative", "accelerated"};

String[] wordListThree = {"process", "tippingpoint",

"solution", "architecture", "core competency",

"strategy", "mindshare", "portal", "space", "vision",

"paradigm", "mission"};

	

// find out how many words are in each list

int oneLength = wordListOne.length;

int twoLength = wordListTwo.length;

int threeLength = wordListThree.length;

	

// generate three random numbers

int rand1 = (int) (Math.random() * oneLength);

int rand2 = (int) (Math.random() * twoLength);

int rand3 = (int) (Math.random() * threeLength);

	
 // now build a phrase

String phrase = wordListOne[rand1] + " " +

wordListTwo[rand2] + " " + wordListThree[rand3];

	
 // print out the phrase

System.out.println("What we need is a " + phrase);

}

}

 Phrase-O-Matic

 How it works

 In a nutshell, the program makes three lists of words, then randomly picks one word from each of the three lists, and prints out the result. Don’t worry if you don’t understand
exactly

 what’s happening in each line. For gosh sakes, you’ve got the whole book ahead of you, so relax. This is just a quick look from a 30,000 foot outside-the-box targeted leveraged paradigm.

	The first step is to create three String arrays – the containers that will hold all the words. Declaring and creating an array is easy; here’s a small one:

String[] pets = {"Fido", "Zeus", "Bin"};

Each word is in quotes (as all good Strings must be) and separated by commas.

	For each of the three lists (arrays), the goal is to pick a random word, so we have to know how many words are in each list. If there are 14 words in a list, then we need a random number between 0 and 13 (Java arrays are zero-based, so the first word is at position 0, the second word position 1, and the last word is position 13 in a 14-element array). Quite handily, a Java array is more than happy to tell you its length. You just have to ask. In the pets array, we’d say:

int x = pets.length;

and

x

 would now hold the value 3.

	We need three random numbers. Java ships out-of-the-box, off-the-shelf, shrink-wrapped, and core competent with a set of math methods (for now, think of them as functions). The

random()

 method returns a random number between 0 and not-quite-1, so we have to multiply it by the number of elements (the array length) in the list we’re using. We have to force the result to be an integer (no decimals allowed!) so we put in a cast (you’ll get the details in Chapter 4
). It’s the same as if we had any floating point number that we wanted to convert to an integer:

int x = (int) 24.6;

	Now we get to build the phrase, by picking a word from each of the three lists, and smooshing them together (also inserting spaces between words). We use the “

+

 ” operator, which
concatenates

 (we prefer the more technical ‘
smooshes

 ’) the String objects together. To get an element from an array, you give the array the index number (position) of the thing you want using:

String s = pets[0]; // s is now the String "Fido"

s = s + " " + "is a dog"; // s is now "Fido is a dog"

	Finally, we print the phrase to the command-line and... voila!
We’re in marketing

 .

 what we need here is a...

pervasive targeted process

dynamic outside-the-box tipping-point

smart distributed core competency

24/7 empowered mindshare

30,000 foot win-win vision

six-sigma networked portal

Fireside chat

 [image: image with no caption]

 Tonight’s Talk:
The compiler and the JVM battle over the question, “Who’s more important?”

	

The Java Virtual Machine

	

The Compiler

	
What, are you kidding?

HELLO

 . I
am

 Java. I’m the guy who actually makes a program
run

 . The compiler just gives you a
file

 . That’s it. Just a file. You can print it out and use it for wall paper, kindling, lining the bird cage what
ever

 , but the file doesn’t
do

 anything unless I’m there to run it.

	

	
	
I don’t appreciate that tone.

	
And that’s another thing, the compiler has no sense of humor. Then again, if
you

 had to spend all day checking nit-picky little syntax violations...

	

	
	
Excuse me, but without
me,

 what exactly would you run? There’s a
reason

 Java was designed to use a bytecode compiler, for your information. If Java were a purely interpreted language, where — at runtime — the virtual machine had to translate straight-from-a-text-editor source code, a Java program would run at a ludicrously glacial pace. Java’s had a challenging enough time convincing people that it’s finally fast and powerful enough for most jobs.

	
I’m not saying you’re, like,
completely

 useless. But really, what is it that you do? Seriously. I have no idea. A programmer could just write bytecode by hand, and I’d take it. You might be out of a job soon, buddy.

	

	
	
Excuse me, but that’s quite an ignorant (not to mention
arrogant

) perspective. While it
is

 true that —
theoretically —

 you can run any properly formatted bytecode even if it didn’t come out of a Java compiler, in practice that’s absurd. A programmer writing bytecode by hand is like doing your word processing by writing raw postscript. And I would appreciate it if you would
not

 refer to me as “buddy.”

	
(I rest my case on the humor thing.) But you still didn’t answer my question, what
do

 you actually do?

	

	
	
Remember that Java is a strongly-typed language, and that means I can’t allow variables to hold data of the wrong type. This is a crucial safety feature, and I’m able to stop the vast majority of violations before they ever get to you. And I also —

	
But some still get through! I can throw Class-CastExceptions and sometimes I get people trying to put the wrong type of thing in an array that was declared to hold something else, and —

	

	
	
Excuse me, but I wasn’t done. And yes, there
are

 some datatype exceptions that can emerge at runtime, but some of those have to be allowed to support one of Java’s other important features — dynamic binding. At runtime, a Java program can include new objects that weren’t even
known

 to the original programmer, so I have to allow a certain amount of flexibility. But my job is to stop anything that would never —
could

 never — succeed at runtime. Usually I can tell when something won’t work, for example, if a programmer accidentally tried to use a Button object as a Socket connection, I would detect that and thus protect him from causing harm at runtime.

	
OK. Sure. But what about
security

 ? Look at all the security stuff I do, and you’re like, what, checking for
semicolons

 ? Oooohhh big security risk! Thank goodness for you!

	

	
	
Excuse me, but I am the first line of defense, as they say. The datatype violations I previously described could wreak havoc in a program if they were allowed to manifest. I am also the one who prevents access violations, such as code trying to invoke a private method, or change a method that – for security reasons – must never be changed. I stop people from touching code they’re not meant to see, including code trying to access another class’ critical data. It would take hours, perhaps days even, to describe the significance of my work.

	
Whatever. I have to do that same stuff
too

 , though, just to make sure nobody snuck in after you and changed the bytecode before running it.

	

	
	
Of course, but as I indicated previously, if I didn’t prevent what amounts to perhaps 99% of the potential problems, you would grind to a halt. And it looks like we’re out of time, so we’ll have to revisit this in a later chat.

	
Oh, you can count on it.
Buddy

 .

	

Code Magnets

 [image: image with no caption]

Exercise

A working Java program is all scrambled up on the fridge. Can you rearrange the code snippets to make a working Java program that produces the output listed below? Some of the curly braces fell on the floor and they were too small to pick up, so feel free to add as many of those as you need!

 [image: image with no caption]

BE the compiler

 [image: image with no caption]

Exercise

Each of the Java files on this page represents a complete source file. Your job is to play compiler and determine whether each of these files will compile. If they won’t compile, how would you fix them?

A

class Exercise1b {
 public static void main(String [] args) {
 int x = 1;
 while (x < 10) {
 if (x > 3) {
 System.out.println("big x");
 }
 }
 }
}

B

public static void main(String [] args) {
 int x = 5;
 while (x > 1) {
 x = x - 1;
 if (x < 3) {
 System.out.println("small x");
 }
 }
}

C

class Exercise1b {
 int x = 5;
 while (x > 1) {
 x = x - 1;
 if (x < 3) {
 System.out.println("small x");
 }
 }
}

JavaCross 7.0

 Let’s give your right brain something to do.

It’s your standard crossword, but almost all of the solution words are from Chapter 1
 . Just to keep you awake, we also threw in a few (non-Java) words from the high-tech world.

Across

4. Command-line invoker

6. Back again?

8. Can’t go both ways

9. Acronym for your laptop’s power

12. number variable type

13. Acronym for a chip

14. Say something

18. Quite a crew of characters

19. Announce a new class or method

21. What’s a prompt good for?

 [image: image with no caption]

Down

1. Not an integer (or _____ your boat)

2. Come back empty-handed

3. Open house

5. ‘Things’ holders

7. Until attitudes improve

10. Source code consumer

11. Can’t pin it down

13. Dept. of LAN jockeys

15. Shocking modifier

16. Just gotta have one

17. How to get things done

20. Bytecode consumer

Mixed Messages

A short Java program is listed below. One block of the program is missing. Your challenge is to
match the candidate block of code

 (on the left),
with the outpu

 t that you’d see if the block were inserted. Not all the lines of output will be used, and some of the lines of output might be used more than once. Draw lines connecting the candidate blocks of code with their matching command-line output. (The answers are at the end of the chapter).

 [image: image with no caption]

Pool Puzzle

 [image: image with no caption]

 Your

job

 is to take code snippets from the pool and place them into the blank lines in the code. You may
not

 use the same snippet more than once, and you won’t need to use all the snippets. Your

goal

 is to make a class that will compile and run and produce the output listed. Don’t be fooled — this one’s harder than it looks.

Output

 [image: image with no caption]

Note: Each snippet from the pool can be used only once!

 [image: image with no caption]

class PoolPuzzleOne {
 public static void main(String [] args) {
 int x = 0;

 while (__________) {

 if (x < 1) {

 }

 if (__________) {

 }
 if (x == 1) {

 }
 if (___________) {

 }
 System.out.println("");

 }
 }
}

Exercise Solutions

Code Magnets:

class Shuffle1 {
 public static void main(String [] args) {

 int x = 3;
 while (x > 0) {

 if (x > 2) {
 System.out.print("a");
 }

 x = x - 1;
 System.out.print("-");

 if (x == 2) {
 System.out.print("b c");
 }

 if (x == 1) {
 System.out.print("d");
 x = x - 1;
 }
 }
 }
}

 [image: image with no caption]

A

class Exercise1b {
 public static void main(String [] args) {
 int x = 1;
 while (x < 10) {

x = x + 1;

 if (x > 3) {
 System.out.println("big x");
 }
 }
 }
}

This will compile and run (no output), but without a line added to the program, it would run forever in an infinite ‘while’ loop!

B

class Foo {

 public static void main(String [] args) {
 int x = 5;
 while (x > 1) {
 x = x - 1;
 if (x < 3) {
 System.out.println("small x");
 }
 }

}

}

This file won’t compile without a class declaration, and don’t forget
 the matching curly brace !

C

class Exercise1b {
 public static void main(String [] args) {

 int x = 5;
 while (x > 1) {
 x = x - 1;
 if (x < 3) {
 System.out.println("small x");
 }
 }

}

}

The ‘while’ loop code must be inside a method. It can’t just be hanging out inside the class.

class PoolPuzzleOne {
 public static void main(String [] args) {
 int x = 0;

 while (X < 4) {

 System.out.print("a");

 if (x < 1) {
 System.out.print(" ");

 }
 System.out.print("n");

 if (X > 1

) {

 System.out.print(" oyster");

 x = x + 2;

 }
 if (x == 1

) {

 System.out.print("noys");

 }
 if (X < 1

) {

 System.out.print("oise");

 }
 System.out.println("");

 X = X + 1;

 }
 }
}

 [image: image with no caption]

 [image: image with no caption]

[2
]

IP multicast

 if you’re gonna be all picky about protocol

 Chapter 2. Classes and Objects: A Trip to Objectville

 [image: image with no caption]

I was told there would be objects.

 In Chapter 1
 , we put all of our code in the main() method. That’s not exactly object-oriented. In fact, that’s not object-oriented
at

all

 . Well, we did
use

 a few objects, like the String arrays for the Phrase-O-Matic, but we didn’t actually develop any of our own object
types

 . So now we’ve got to leave that procedural world behind, get the heck out of main(), and start making some objects of our own. We’ll look at what makes object-oriented (OO) development in Java so much fun. We’ll look at the difference between a
class

 and an
object

 . We’ll look at how objects can give you a better life (at least the programming part of your life. Not much we can do about your fashion sense). Warning: once you get to Objectville, you might never go back. Send us a postcard.

 Chair Wars: (or How Objects Can Change Your Life)

 Once upon a time in a software shop, two programmers were given the same spec and told to “build it”. The Really Annoying Project Manager forced the two coders to compete, by promising that whoever delivers first gets one of those cool Aeron™ chairs all the Silicon Valley guys have. Larry, the procedural programmer, and Brad, the OO guy, both knew this would be a piece of cake.

Larry, sitting in his cube, thought to himself, “What are the things this program has to
do

 ? What

procedures

 do we need?”. And he answered himself, “
rotate

 and
playSound

 .” So off he went to build the procedures. After all, what
is

 a program if not a pile of procedures?

 [image: image with no caption]

Brad, meanwhile, kicked back at the cafe and thought to himself, “What are the

things

 in this program... who are the key
players

 ?” He first thought of
The Shapes

 . Of course, there were other objects he thought of like the User, the Sound, and the Clicking event. But he already had a library of code for those pieces, so he focused on building Shapes. Read on to see how Brad and Larry built their programs, and for the answer to your burning question,

“So, who got the Aeron?”

 [image: image with no caption]

 In Larry’s cube

As he had done a gazillion times before, Larry set about writing his
Important Procedures

 . He wrote
rotate

 and
playSound

 in no time.

rotate(shapeNum) {

// make the shape rotate 360°

}

playSound(shapeNum) {

// use shapeNum to lookup which

// AIF sound to play, and play it

}

 At Brad’s laptop at the cafe

Brad wrote a

class

 for each of the three shapes

 [image: image with no caption]

 Larry thought he’d nailed it. He could almost feel the rolled steel of the Aeron beneath his...

 But wait! There’s been a spec change

“OK,
technically

 you were first, Larry,” said the Manager, “but we have to add just one tiny thing to the program. It’ll be no problem for crack programmers like you two.”

“If I had a dime for every time I’ve heard that one”

 , thought Larry, knowing that spec-change-no-problem was a fantasy.
“And yet Brad looks strangely serene. What’s up with that?”

 Still, Larry held tight to his core belief that the OO way, while cute, was just slow. And that if you wanted to change his mind, you’d have to pry it from his cold, dead, carpal-tunnelled hands.

 [image: image with no caption]

 Back in Larry’s cube

The rotate procedure would still work; the code used a lookup table to match a shapeNum to an actual shape graphic. But

playSound would have to change.

 And what the heck is a .hif file?

playSound(shapeNum) {

// if the shape is not an amoeba,

// use shapeNum to lookup which

// AIF sound to play, and play it

// else

// play amoeba .hif sound

}

It turned out not to be such a big deal, but

it still made him queasy to touch previously-tested code

 . Of
all

 people,
he

 should know that no matter what the project manager says,

the spec always changes

 .

 At Brad’s laptop at the beach

Brad smiled, sipped his margarita, and
wrote one new class

 . Sometimes the thing he loved most about OO was that he didn’t have to touch code he’d already tested and delivered. “Flexibility, extensibility,...” he mused, reflecting on the benefits of OO.

 [image: image with no caption]

 Larry snuck in just moments ahead of Brad

 (Hah! So much for that foofy OO nonsense). But the smirk on Larry’s face melted when the Really Annoying Project Manager said (with that tone of disappointment), “Oh, no,
that’s

 not how the amoeba is supposed to rotate...”

Turns out, both programmers had written their rotate code like this:

	

determine the rectangle that surrounds the shape

	

calculate the center of that rectangle, and rotate the shape around that point.

 [image: image with no caption]

But the amoeba shape was supposed to rotate around a point on one
end

 , like a clock hand.

“I’m toast.” thought Larry, visualizing charred Wonderbread™. “Although, hmmmm. I could just add another if/else to the rotate procedure, and then just hard-code the rotation point code for the amoeba. That probably won’t break anything.” But the little voice at the back of his head said,
“Big Mistake. Do you honestly think the spec won’t change again?”

 [image: image with no caption]

 [image: image with no caption]

 Back in Larry’s cube

He figured he better add rotation point arguments to the rotate procedure.

A lot of code was affected

 . Testing, recompiling, the whole nine yards all over again. Things that used to work, didn’t.

rotate(shapeNum, xPt, yPt) {

// if the shape is not an amoeba,

// calculate the center point

// based on a rectangle,

// then rotate

// else

// use the xPt and yPt as

// the rotation point offset

// and then rotate

}

 At Brad’s laptop on his lawn chair at the Telluride Bluegrass Festival

Without missing a beat, Brad modified the rotate
method

 , but only in the Amoeba class.

He never touched the tested, working, compiled code

 for the other parts of the program. To give the Amoeba a rotation point, he added an
attribute

 that all Amoebas would have. He modified, tested, and delivered (wirelessly) the revised program during a single Bela Fleck set.

 [image: image with no caption]

 So, Brad the OO guy got the chair, right?

Not so fast.

 Larry found a flaw in Brad’s approach. And, since he was sure that if he got the chair he’d also get Lucy in accounting, he had to turn this thing around.

LARRY:

 You’ve got duplicated code! The rotate procedure is in all four Shape things.

BRAD:

 It’s a

method

 , not a
procedure

 . And they’re

classes

 , not
things

 .

LARRY:

 Whatever. It’s a stupid design. You have to maintain
four

 different rotate “methods”. How can that ever be good?

BRAD:

 Oh, I guess you didn’t see the final design. Let me show you how OO
inheritance

 works, Larry.

 [image: image with no caption]

 [image: image with no caption]

 [image: image with no caption]

 [image: image with no caption]

You can read this as,
“Square inherits from Shape”

 ,
“Circle inherits from Shape”

 , and so on. I removed rotate() and playSound() from the other shapes, so now there’s only one copy to maintain.

The Shape class is called the
superclass

 of the other four classes. The other four are the
subclasses

 of Shape. The subclasses inherit the methods of the superclass. In other words,
if the Shape class has the functionality, then the subclasses automatically get that same functionality.

 What about the Amoeba rotate()?

LARRY:

 Wasn’t that the whole problem here — that the amoeba shape had a completely different rotate and playSound procedure?

BRAD: Method.

LARRY:

 Whatever. How can amoeba do something different if it “inherits” its functionality from the Shape class?

 [image: image with no caption]

BRAD:

 That’s the last step. The Amoeba class
overrides

 the methods of the Shape class. Then at runtime, the JVM knows exactly which rotate() method to run when someone tells the Amoeba to rotate.

 [image: image with no caption]

 [image: image with no caption]

LARRY:

 How do you “tell” an Amoeba to do something? Don’t you have to call the procedure, sorry —
method,

 and then tell it
which

 thing to rotate?

BRAD:

 That’s the really cool thing about OO. When it’s time for, say, the triangle to rotate, the program code invokes (calls) the rotate() method
on the triangle object

 . The rest of the program really doesn’t know or care
how

 the triangle does it. And when you need to add something new to the program, you just write a new class for the new object type, so the
new objects will have their own behavior.

 [image: image with no caption]

 The suspense is killing me. Who got the chair?

 [image: image with no caption]

Amy from the second floor.

(unbeknownst to all, the Project Manager had given the spec to
three

 programmers.)

What do you like about OO?

“It helps me design in a more natural way. Things have a way of evolving.”

— Joy, 27, software architect

“Not messing around with code I’ve already tested, just to add a new feature.”

— Brad, 32, programmer

“I like that the data and the methods that operate on that data are together in one class.”

— Josh, 22, beer drinker

“Reusing code in other applications. When I write a new class, I can make it flexible enough to be used in something new, later.”

— Chris, 39, project manager

“I can’t believe Chris just said that. He hasn’t written a line of code in 5 years.”

— Daryl, 44, works for Chris

“Besides the chair?”

— Amy, 34, programmer

 Brain Power

Time to pump some neurons.

You just read a story bout a procedural programmer going head-to-head with an OO programmer. You got a quick overview of some key OO concepts including classes, methods, and attributes. We’ll spend the rest of the chapter looking at classes and objects (we’ll return to inheritance and overriding in later chapters).

Based on what you’ve seen so far (and what you may know from a previous OO language you’ve worked with), take a moment to think about these questions:

What are the fundamental things you need to think about when you design a Java class? What are the questions you need to ask yourself? If you could design a checklist to use when you’re designing a class, what would be on the checklist?

 Metacognitive Tip

 [image: image with no caption]

If you’re stuck on an exercise, try talking about it out loud. Speaking (and hearing) activates a different part of your brain. Although it works best if you have another person to discuss it with, pets work too. That’s how our dog learned polymorphism.

 When you design a class, think about the objects that will be created from that class type. Think about

	

things the object knows

	

things the object does

 [image: image with no caption]

 Things an object knows about itself are called

	

instance variables

 Things an object can do are called

	

methods

Things an object

knows

 about itself are called
instance variables

 . They represent an object’s state (the data), and can have unique values for each object of that type.

 [image: image with no caption]

Think of instance as another way of saying object.

Things an object can

do

 are called
methods

 . When you design a class, you think about the data an object will need to know about itself, and you also design the methods that operate on that data. It’s common for an object to have methods that read or write the values of the instance variables. For example, Alarm objects have an instance variable to hold the alarmTime, and two methods for getting and setting the alarmTime.

So objects have instance variables and methods, but those instance variables and methods are designed as part of the class.

Sharpen your pencil

Fill in what a television object might need to know and do.

 [image: image with no caption]

What’s the difference between a class and an object?

 [image: image with no caption]

 A class is not an object. (but it’s used to construct them)

A class is a

blueprint

for an object

 . It tells the virtual machine
how

 to make an object of that particular type. Each object made from that class can have its own values for the instance variables of that class. For example, you might use the Button class to make dozens of different buttons, and each button might have its own color, size, shape, label, and so on.

 [image: image with no caption]

Look at it this way...

 [image: image with no caption]

An object is like one entry in your address book.

One analogy for objects is a packet of unused Rolodex™ cards. Each card has the same blank fields (the instance variables). When you fill out a card you are creating an instance (object), and the entries you make on that card represent its state.

The methods of the class are the things you do to a particular card; getName(), changeName(), setName() could all be methods for class Rolodex.

So, each card can
do

 the same things (getName(), changeName(), etc.), but each card
knows

 things unique to that particular card.

 Making your first object

 The Dot Operator (.)

The dot operator (.) gives you access to an object’s state and behavior (instance variables and methods).

// make a new object

Dog d = new Dog();

// tell it to bark by using the

// dot operator on the

// variable
d

 to call bark()

d.bark();

// set its size using the

// dot operator

d.size = 40;

So what does it take to create and use an object? You need
two

 classes. One class for the type of object you want to use (Dog, AlarmClock, Television, etc.) and another class to
test

 your new class. The
tester

 class is where you put the main method, and in that main() method you create and access objects of your new class type. The tester class has only one job: to
try out

 the methods and variables of your new object class type.

From this point forward in the book, you’ll see two classes in many of our examples. One will be the
real

 class – the class whose objects we really want to use, and the other class will be the
tester

 class, which we call
<whateverYourClassNameIs>

TestDrive

 . For example, if we make a

Bungee

 class, we’ll need a

BungeeTestDrive

 class as well. Only the
<someClassName>

TestDrive

 class will have a main() method, and its sole purpose is to create objects of your new type (the not-the-tester class), and then use the dot operator (.) to access the methods and variables of the new objects. This will all be made stunningly clear by the following examples. No,
really.

	

Write your class

 [image: image with no caption]

	

Write a tester (TestDrive) class

 [image: image with no caption]

	

In your tester, make an object and access the object’s variables and methods

 [image: image with no caption]

If you already have some OO savvy, you’ll know we’re not using encapsulation. We’ll get there in Chapter 4
 .

 Making and testing Movie objects

 [image: image with no caption]

class Movie {

String title;

String genre;

int rating;

void playIt() {

System.out.println("Playing the movie");

}

}

public class MovieTestDrive {

public static void main(String[] args) {

Movie one = new Movie();

one.title = "Gone with the Stock";

one.genre = "Tragic";

one.rating = -2;

Movie two = new Movie();

two.title = "Lost in Cubicle Space";

two.genre = "Comedy";

two.rating = 5;

two.playIt();

Movie three = new Movie();

three.title = "Byte Club";

three.genre = "Tragic but ultimately uplifting";

three.rating = 127;

}

}

Sharpen your pencil

 [image: image with no caption]

The MovieTestDrive class creates objects (instances) of the Movie class and uses the dot operator (.) to set the instance variables to a specific value. The MovieTestDrive class also invokes (calls) a method on one of the objects. Fill in the chart to the right with the values the three objects have at the end of main().

 [image: image with no caption]

 [image: image with no caption]

 Quick! Get out of main!

 As long as you’re in main(), you’re not really in Objectville. It’s fine for a test program to run within the main method, but in a true OO application, you need objects talking to other objects, as opposed to a static main() method creating and testing objects.

 The two uses of main:

	

to test your real class

	

to launch/start your Java application

A real Java application is nothing but objects talking to other objects. In this case,
talking

 means objects calling methods on one another. On the previous page, and in Chapter 4
 , we look at using a main() method from a separate TestDrive class to create and test the methods and variables of another class. In Chapter 6
 we look at using a class with a main() method to start the ball rolling on a
real

 Java application (by making objects and then turning those objects loose to interact with other objects, etc.)

As a ‘sneak preview’, though, of how a real Java application might behave, here’s a little example. Because we’re still at the earliest stages of learning Java, we’re working with a small toolkit, so you’ll find this program a little clunky and inefficient. You might want to think about what you could do to improve it, and in later chapters that’s exactly what we’ll do. Don’t worry if some of the code is confusing; the key point of this example is that objects talk to objects.

 [image: image with no caption]

 The Guessing Game

 [image: image with no caption]

Summary:

The guessing game involves a ‘game’ object and three ‘player’ objects. The game generates a random number between 0 and 9, and the three player objects try to guess it. (We didn’t say it was a really
exciting

 game.)

Classes:

GuessGame.class Player.class GameLauncher.class

The Logic:

1) The GameLauncher class is where the application starts; it has the main() method.

2) In the main() method, a GuessGame object is created, and its startGame() method is called.

3) The GuessGame object’s startGame() method is where the entire game plays out. It creates three players, then “thinks” of a random number (the target for the players to guess). It then asks each player to guess, checks the result, and either prints out information about the winning player(s) or asks them to guess again.

 [image: image with no caption]

 [image: image with no caption]

 Running the Guessing Game

public class Player {
 int number = 0; // where the guess goes

 public void guess() {
 number = (int) (Math.random() * 10);
 System.out.println("I'm guessing "
 + number);
 }
}

public class GameLauncher {
 public static void main (String[] args) {
 GuessGame game = new GuessGame();
 game.startGame();
 }
}

Java takes out the Garbage

 Each time an object is created in Java, it goes into an area of memory known as
The Heap

 . All objects — no matter when, where, or how they’re created – live on the heap. But it’s not just any old memory heap; the Java heap is actually called the
Garbage-Collectible Heap.

 When you create an object, Java allocates memory space on the heap according to how much that particular object needs. An object with, say, 15 instance variables, will probably need more space than an object with only two instance variables. But what happens when you need to reclaim that space? How do you get an object out of the heap when you’re done with it? Java manages that memory for you! When the JVM can ‘see’ that an object can never be used again, that object becomes
eligible for garbage collection.

 And if you’re running low on memory, the Garbage Collector will run, throw out the unreachable objects, and free up the space, so that the space can be reused. In later chapters you’ll learn more about how this works.

Output (it will be different each time you run it)

 [image: image with no caption]

There are no Dumb Questions

	

Q:

	

Q: What if I need global variables and methods? How do I do that if everything has to go in a class?

	
A:

	

A:

 There isn’t a concept of ‘global’ variables and methods in a Java OO program. In practical use, however, there are times when you want a method (or a constant) to be available to any code running in any part of your program. Think of the random()
 method in the Phrase-O-Matic app; it’s a method that should be callable from anywhere. Or what about a constant like
pi

 ? You’ll learn in Chapter 10
 that marking a method as public
 and static
 makes it behave much like a ‘global’. Any code, in any class of your application, can access a public static method. And if you mark a variable as public
 , static
 , and final
 – you have essentially made a globally-available
constant

 .

	

Q:

	

Q: Then how is this object-oriented if you can still make global functions and global data?

	
A:

	

A:

 First of all, everything in Java goes in a class. So the constant for
pi

 and the method for random()
 , although both public and static, are defined within the Math
 class. And you must keep in mind that these static (global-like) things are the exception rather than the rule in Java. They represent a very special case, where you don’t have multiple instances/objects.

	

Q:

	

Q: What

is

a Java program? What do you actually

deliver

?

	
A:

	

A:

 A Java program is a pile of classes (or at least
one

 class). In a Java application,
one

 of the classes must have a main method, used to start-up the program. So as a programmer, you write one or more classes. And those classes are what you deliver. If the end-user doesn’t have a JVM, then you’ll also need to include that with your application’s classes, so that they can run your program. There are a number of installer programs that let you bundle your classes with a variety of JVM’s (say, for different platforms), and put it all on a CD-ROM. Then the end-user can install the correct version of the JVM (assuming they don’t already have it on their machine.)

	

Q:

	

Q: What if I have a hundred classes? Or a thousand? Isn’t that a big pain to deliver all those individual files? Can I bundle them into one

Application Thing

?

	
A:

	

A:

 Yes, it would be a big pain to deliver a huge bunch of individual files to your end-users, but you won’t have to. You can put all of your application files into a Java Archive –
a .jar file

 – that’s based on the pkzip format. In the jar file, you can include a simple text file formatted as something called a
manifest

 , that defines which class in that jar holds the main() method that should run.

 [image: image with no caption]

Bullet Points

	Object-oriented programming lets you extend a program without having to touch previously-tested, working code.

	All Java code is defined in a
class

 .

	A class describes how to make an object of that class type.
A class is like a blueprint.

	An object can take care of itself; you don’t have to know or care
how

 the object does it.

	An object
knows

 things and
does

 things.

	Things an object knows about itself are called
instance variables

 . They represent the
state

 of an object.

	Things an object does are called
methods

 .

They represent the
behavior

 of an object.

	When you create a class, you may also want to create a separate test class which you’ll use to create objects of your new class type.

	A class can
inherit

 instance variables and methods from a more abstract
superclass

 .

	At runtime, a Java program is nothing more than objects ‘talking’ to other objects.

BE the Compiler

 [image: image with no caption]

Exercise

Each of the Java files on this page represents a complete source file. Your job is to play compiler and determine whether each of these files will compile. If they won’t compile, how would you fix them, and if they do compile, what would be their output?

A

class TapeDeck {

 boolean canRecord = false;

 void playTape() {
 System.out.println("tape playing");
 }

 void recordTape() {
 System.out.println("tape recording");
 }
}

class TapeDeckTestDrive {
 public static void main(String [] args) {

 t.canRecord = true;
 t.playTape();

 if (t.canRecord == true) {
 t.recordTape();

 }
 }
}

B

class DVDPlayer {

 boolean canRecord = false;

 void recordDVD() {
 System.out.println("DVD recording");
 }
}

class DVDPlayerTestDrive {
 public static void main(String [] args) {

 DVDPlayer d = new DVDPlayer();
 d.canRecord = true;
 d.playDVD();

 if (d.canRecord == true) {
 d.recordDVD();

 }
 }
}

Code Magnets

 [image: image with no caption]

Exercise

A Java program is all scrambled up on the fridge. Can you reconstruct the code snippets to make a working Java program that produces the output listed below? Some of the curly braces fell on the floor and they were too small to pick up, so feel free to add as many of those as you need.

 [image: image with no caption]

 [image: image with no caption]

Pool Puzzle

 [image: image with no caption]

 Your

job

 is to take code snippets from the pool and place them into the blank lines in the code. You
may

 use the same snippet more than once, and you won’t need to use all the snippets. Your

goal

 is to make classes that will compile and run and produce the output listed. Some of the exercises and puzzles in this book might have more than one correct answer. If you find another correct answer, give yourself bonus points!

 [image: image with no caption]

Bonus Question !

If the last line of output was
24

 instead of
10

 how would you complete the puzzle ?

	
public class EchoTestDrive {
 public static void main(String [] args) {
 Echo e1 = new Echo();

 int x = 0;
 while (___________) {
 e1.hello();

 if (____________) {
 e2.count = e2.count + 1;
 }
 if (____________) {
 e2.count = e2.count + e1.count;
 }
 x = x + 1;
 }
 System.out.println(e2.count);
 }
}

	
class ____________ {
 int _________ = 0;
 void ___________ {
 System.out.println("helloooo... ");
 }
}

Note: Each snippet from the pool can be used more than once!

 [image: image with no caption]

Who am I?

 [image: image with no caption]

 A bunch of Java components, in full costume, are playing a party game, “Who am I?” They give you a clue, and you try to guess who they are, based on what they say. Assume they always tell the truth about themselves. If they happen to say something that could be true for more than one of them, choose all for whom that sentence can apply. Fill in the blanks next to the sentence with the names of one or more attendees. The first one’s on us.

 [image: image with no caption]

Tonight’s attendees:

	

Class

	

Method

	

Object

	

Instance variable

	

I am compiled from a .java file.

	
__class

My instance variable values can be different from my buddy’s values.

I behave like a template.

I like to do stuff.

I can have many methods.

I represent ‘state’.

I have behaviors.

I am located in objects.

I live on the heap.

I am used to create object instances.

My state can change.

I declare methods.

I can change at runtime.

Exercise solutions

 [image: image with no caption]

Exercise

Code Magnets:

class DrumKit {

 boolean topHat = true;
 boolean snare = true;

 void playTopHat() {
 System.out.println("ding ding da-ding");
 }

 void playSnare() {
 System.out.println("bang bang ba-bang");
 }
}

class DrumKitTestDrive {
 public static void main(String [] args) {

 DrumKit d = new DrumKit();
 d.playSnare();
 d.snare = false;
 d.playTopHat();

 if (d.snare == true) {
 d.playSnare();
 }
 }
}

 [image: image with no caption]

Be the Compiler:

A

 [image: image with no caption]

B

 [image: image with no caption]

Puzzle Solutions

Pool Puzzle

public class EchoTestDrive {
 public static void main(String [] args) {
 Echo e1 = new Echo();
 Echo e2 = new Echo(); // the correct answer

 - or -

 Echo e2 = e1; // is the bonus answer!

 int x = 0;
 while (x < 4

) {
 e1.hello();
 e1.count = e1.count + 1;

 if (x == 3) {
 e2.count = e2.count + 1;
 }
 if (x > 0

) {
 e2.count = e2.count + e1.count;
 }
 x = x + 1;
 }
 System.out.println(e2.count);
 }
}

 class Echo

 {
 int count

 = 0;
 void hello()

 {
 System.out.println("helloooo... ");
 }
}

 [image: image with no caption]

Who am I?

	

I am compiled from a .java file.

	
class

	

My instance variable values can be different from my buddy’s values.

	
object

	

I behave like a template.

	
class

	

I like to do stuff.

	
object, method

	

I can have many methods.

	
class, object

	

I represent ‘state’.

	
instance variable

	

I have behaviors.

	
object, class

	

I am located in objects.

	
method, instance variable

	

I live on the heap.

	
object

	

I am used to create object instances.

	
class

	

My state can change.

	
object, instance variable

	

I declare methods.

	
class

	

I can change at runtime.

	
object, instance variable

Note: both classes and objects are said to have state and behavior. They’re defined in the class, but the object is also said to ‘have’ them. Right now, we don’t care where they technically live.

 Chapter 3. Primitives and References: Know Your Variables

 [image: image with no caption]

Variables come in two flavors: primitive and reference.

 So far you’ve used variables in two places — as object
state

 (instance variables), and as
local

 variables (variables declared within a
method

). Later, we’ll use variables as
arguments

 (values sent to a method by the calling code), and as
return types

 (values sent back to the caller of the method). You’ve seen variables declared as simple
primitive

 integer values (type int
). You’ve seen variables declared as something more
complex

 like a String or an array. But
there’s gotta be more to life

 than integers, Strings, and arrays. What if you have a PetOwner object with a Dog instance variable? Or a Car with an Engine? In this chapter we’ll unwrap the mysteries of Java types and look at what you can
declare

 as a variable, what you can
put

 in a variable, and what you can
do

 with a variable. And we’ll finally see what life is
truly

 like on the garbage-collectible heap.

 Declaring a variable

Java cares about type.

 It won’t let you do something bizarre and dangerous like stuff a Giraffe reference into a Rabbit variable — what happens when someone tries to ask the so-called
Rabbit

 to hop()
 ? And it won’t let you put a floating point number into an integer variable, unless you
acknowledge to the compiler

 that you know you might lose precision (like, everything after the decimal point).

The compiler can spot most problems:

Rabbit hopper = new Giraffe();

Don’t expect that to compile.
Thankfully

 .

For all this type-safety to work, you must declare the type of your variable. Is it an integer? a Dog? A single character? Variables come in two flavors:

primitive

 and

object reference

 . Primitives hold fundamental values (think: simple bit patterns) including integers, booleans, and floating point numbers. Object references hold, well,
references

 to
objects

 (gee, didn’t
that

 clear it up.)

We’ll look at primitives first and then move on to what an object reference really means. But regardless of the type, you must follow two declaration rules:

 [image: image with no caption]

	

variables must have a type

Besides a type, a variable needs a name, so that you can use that name in code.

	

variables must have a name

 [image: image with no caption]

Note: When you see a statement like: “an object of
type

 X”, think of
type

 and
class

 as synonyms. (We’ll refine that a little more in later chapters.)

 “I’d like a double mocha, no, make it an int.”

 When you think of Java variables, think of cups. Coffee cups, tea cups, giant cups that hold lots and lots of beer, those big cups the popcorn comes in at the movies, cups with curvy, sexy handles, and cups with metallic trim that you learned can never, ever go in the microwave.

A variable is just a cup. A container. It

holds

something.

It has a size, and a type. In this chapter, we’re going to look first at the variables (cups) that hold
primitives

 , then a little later we’ll look at cups that hold
references to objects

 . Stay with us here on the whole cup analogy — as simple as it is right now, it’ll give us a common way to look at things when the discussion gets more complex. And that’ll happen soon.

Primitives are like the cups they have at the coffeehouse. If you’ve been to a Starbucks, you know what we’re talking about here. They come in different sizes, and each has a name like ‘short’, ‘tall’, and, “I’d like a ‘grande’ mocha half-caff with extra whipped cream”.

You might see the cups displayed on the counter, so you can order appropriately:

 [image: image with no caption]

And in Java, primitives come in different sizes, and those sizes have names. When you declare a variable in Java, you must declare it with a specific type. The four containers here are for the four integer primitives in Java.

 [image: image with no caption]

Each cup holds a value, so for Java primitives, rather than saying, “I’d like a tall french roast”, you say to the compiler, “I’d like an int variable with the number 90 please.” Except for one tiny difference... in Java you also have to give your cup a
name

 . So it’s actually, “I’d like an int please, with the value of 2486, and name the variable

height

 .” Each primitive variable has a fixed number of bits (cup size). The sizes for the six numeric primitives in Java are shown below:

 [image: image with no caption]

Primitive Types

	
Type

	
Bit Depth

	
Value Range

boolean and char

	
boolean

	
(JVM-specific)

	

true

 or

false

	
char

	
16 bits

	
0 to 65535

numeric (all are signed)

integer

	
byte

	
8 bits

	
-128 to 127

	
short

	
16 bits

	
-32768 to 32767

	
int

	
32 bits

	
-2147483648 to 2147483647 long

	
64

	
bits

	
-huge to huge

floating point

	
float

	
32 bits

	
varies

	
double

	
64 bits

	
varies

Primitive declarations with assignments:

int x;

x = 234;

byte b = 89;

boolean isFun = true;

double d = 3456.98;

char c = ‘f’;

int z = x;

boolean isPunkRock;

isPunkRock = false;

boolean powerOn;

powerOn = isFun;

long big = 3456789;

float f = 32.5f;

 Note

Note the ‘f’. Gotta have that with a float, because Java thinks anything with a floating point is a double, unless you use ‘f’.

 You really don’t want to spill that...

Be sure the value can fit into the variable.

 [image: image with no caption]

You can’t put a large value into a small cup.

Well, OK, you can, but you’ll lose some. You’ll get, as we say,
spillage

 . The compiler tries to help prevent this if it can tell from your code that something’s not going to fit in the container (variable/cup) you’re using.

For example, you can’t pour an int-full of stuff into a byte-sized container, as follows:

int x = 24;
byte b = x;
//won't work!!

Why doesn’t this work, you ask? After all, the value of
x

 is 24, and 24 is definitely small enough to fit into a byte.
You

 know that, and
we

 know that, but all the compiler cares about is that you’re trying to put a big thing into a small thing, and there’s the
possibility

 of spilling. Don’t expect the compiler to know what the value of
x

 is, even if you happen to be able to see it literally in your code.

You can assign a value to a variable in one of several ways including:

	type a
literal

 value after the equals sign (x=

12

 , isGood =

true

 , etc.)

	assign the value of one variable to another (x = y)

	use an expression combining the two (x = y +

43

)

In the examples below, the literal values are in bold italics:

Sharpen your pencil

The compiler won’t let you put a value from a large cup into a small one. But what about the other way — pouring a small cup into a big one?

No problem.

Based on what you know about the size and type of the primitive variables, see if you can figure out which of these are legal and which aren’t. We haven’t covered all the rules yet, so on some of these you’ll have to use your best judgment.

Tip:

 The compiler always errs on the side of safety.

From the following list,

Circle

 the statements that would be legal if these lines were in a single method:

	

int x = 34.5;

	

boolean boo = x;

	

int g = 17;

	

int y = g;

	

y = y + 10;

	

short s;

	

s = y;

	

byte b = 3;

	

byte v = b;

	

short n = 12;

	

v = n;

	

byte k = 128;

	

int size =

32;

	
declare an int named size, assign it the value 32

	

char initial =

'j';

	
declare a char named
initial

 , assign it the value
‘j’

	

double d =

456.709;

	
declare a double named
d

 , assign it the value
456.709

	

boolean isCrazy;

	
declare a boolean named
isCrazy

 (no assignment)

	

isCrazy =

true

 ;

	
assign the value
true

 to the previously-declared
isCrazy

	

int y = x +

456

 ;

	
declare an int named
y

 , assign it the value that is the sum of whatever
x

 is now plus
456

 Back away from that keyword!

 You know you need a name and a type for your variables.

You already know the primitive types.

But what can you use as names?

 The rules are simple. You can name a class, method, or variable according to the following rules (the real rules are slightly more flexible, but these will keep you safe):

	

It must start with a letter, underscore (_), or dollar sign ($). You can’t start a name with a number.

	

After the first character, you can use numbers as well. Just don’t start it with a number.

	

It can be anything you like, subject to those two rules, just so long as it isn’t one of Java’s reserved words.

Reserved words are keywords (and other things) that the compiler recognizes. And if you really want to play confuse-a-compiler, then just
try

 using a reserved word as a name.

You’ve already seen some reserved words when we looked at writing our first main class:

public static void

 Note

don’t use any of these for your own names.

And the primitive types are reserved as well:

boolean char byte short int long float double

But there are a lot more we haven’t discussed yet. Even if you don’t need to know what they mean, you still need to know you can’t use ‘em yourself.

Do not–

under any circumstances

–try to memorize these now.

 To make room for these in your head, you’d probably have to lose something else. Like where your car is parked. Don’t worry, by the end of the book you’ll have most of them down cold.

Make it Stick

 [image: image with no caption]

The eight primitive types are:

b

 oolean
c

 har
b

 yte
s

 hort
i

 nt
l

 ong
f

 loat
d

 ouble

And here’s a mnemonic for remembering them:

B

 e
C

 areful!
B

 ears
S

 houldn’t
I

 ngest
L

 arge
F

 urry
D

 ogs

If you make up your own, it’ll stick even better.

B_ C_ B_ S_ I_ L_ F_ D_

 [image: image with no caption]

 This table reserved

	
boolean

	
byte

	
char

	
double

	
float

	
int

	
long

	
short

	
public

	
private

	
protected

	
abstract

	
final

	
native

	
static

	
strictfp

	
synchronized

	
transient

	
volatile

	
if

	
else

	
do

	
while

	
switch

	
case

	
default

	
for

	
break

	
continue

	
assert

	
class

	
extends

	
implements

	
import

	
instanceof

	
interface

	
new

	
package

	
super

	
this

	
catch

	
finally

	
try

	
throw

	
throws

	
return

	
void

	
const

	
goto

	
enum

Java’s keywords and other reserved words (in no useful order). If you use these for names, the compiler will be very,
very

 upset.

 Controlling your Dog object

 You know how to declare a primitive variable and assign it a value. But now what about non-primitive variables? In other words,
what about objects?

	

There is actually no such thing as an object variable.

	

There’s only an object reference variable.

	

An object reference variable holds bits that represent a way to
access

 an object.

	

It doesn’t hold the object itself, but it holds something like a pointer. Or an address. Except, in Java we don’t really know
what

 is inside a reference variable. We
do

 know that whatever it is, it represents one and only one object. And the JVM knows how to use the reference to get to the object.

You can’t stuff an object into a variable. We often think of it that way... we say things like, “I passed the String to the System.out. println() method.” Or, “The method returns a Dog”, or, “I put a new Foo object into the variable named myFoo.”

But that’s not what happens. There aren’t giant expandable cups that can grow to the size of any object. Objects live in one place and one place only — the garbage collectible heap! (You’ll learn more about that later in this chapter.)

Although a primitive variable is full of bits representing the actual

value

 of the variable, an object reference variable is full of bits representing

a way to get to the object.

You use the dot operator (.) on a reference variable to say, “use the thing
before

 the dot to get me the thing
after

 the dot.” For example:

myDog.bark();

means, “use the object referenced by the variable myDog to invoke the bark() method.” When you use the dot operator on an object reference variable, think of it like pressing a button on the remote control for that object.

 [image: image with no caption]

Think of a Dog reference
 variable as a Dog remote control
 . You use it to get the object to do something (invoke methods).

 [image: image with no caption]

 An object reference is just another variable value

Something that goes in a cup. Only this time, the value is a remote control.

Primitive Variable

byte x = 7;

The bits representing 7 go into the variable. (00000111).

 [image: image with no caption]

Reference Variable

Dog myDog = new Dog();

The bits representing a way to get to the Dog object go into the variable.

The Dog object itself does not go into the variable!

 [image: image with no caption]

 Note

With primitive variables, the value of the variable is... the
value

 (5, -26.7, ‘a’).

With reference variables, the value of the variable is...
bits representing a way to get to a specific object.

You don’t know (or care) how any particular JVM implements object references. Sure, they might be a pointer to a pointer to... but even if you
know

 , you still can’t use the bits for anything other than accessing an object.

We don’t care how many 1’s and 0’s there are in a reference variable.It’s up to each JVM and the phase of the moon.

The 3 steps of object declaration, creation and assignment

 [image: image with no caption]

	Declare a reference variable

Dog myDog = new Dog();

Tells the JVM to allocate space for a reference variable. The reference variable is, forever, of type Dog. In other words, a remote control that has buttons to control a Dog, but not a Cat or a Button or a Socket.

 [image: image with no caption]

	Create an object

Dog myDog = new Dog();

Tells the JVM to allocate space for a new Dog object on the heap (we’ll learn a lot more about that process, especially in Chapter 9
 .)

 [image: image with no caption]

	Link the object and the reference

Dog myDog = new Dog();

Assigns the new Dog to the reference variable myDog. In other words, programs the remote control.

 [image: image with no caption]

There are no Dumb Questions

	

Q:

	

Q: How big is a reference variable?

	
A:

	

A:

 You don’t know. Unless you’re cozy with someone on the JVM’s development team, you don’t know how a reference is represented. There are pointers in there somewhere, but you can’t access them. You won’t need to. (OK, if you insist, you might as well just imagine it to be a 64-bit value.) But when you’re talking about memory allocation issues, your Big Concern should be about how many
objects

 (as opposed to object
references

) you’re creating, and how big
they

 (the
objects

) really are.

	

Q:

	

Q: So, does that mean that all object references are the same size, regardless of the size of the actual objects to which they refer?

	
A:

	

A:

 Yep. All references for a given JVM will be the same size regardless of the objects they reference, but each JVM might have a different way of representing references, so references on one JVM may be smaller or larger than references on another JVM.

	

Q:

	

Q: Can I do arithmetic on a reference variable, increment it, you know – C stuff?

	
A:

	

A:

 Nope. Say it with me again, “Java is not C.”

Java Exposed

This week’s interview: Object Reference

HeadFirst:

 So, tell us, what’s life like for an object reference?

Reference:

 Pretty simple, really. I’m a remote control and I can be programmed to control different objects.

HeadFirst:

 Do you mean different objects even while you’re running? Like, can you refer to a Dog and then five minutes later refer to a Car?

Reference:

 Of course not. Once I’m declared, that’s it. If I’m a Dog remote control then I’ll never be able to point (oops – my bad, we’re not supposed to say
point

) I mean
refer

 to anything but a Dog.

HeadFirst:

 Does that mean you can refer to only one Dog?

Reference:

 No. I can be referring to one Dog, and then five minutes later I can refer to some
other

 Dog. As long as it’s a Dog, I can be redirected (like reprogramming your remote to a different TV) to it. Unless... no never mind.

HeadFirst:

 No, tell me. What were you gonna say?

Reference:

 I don’t think you want to get into this now, but I’ll just give you the short version – if I’m marked as final
 , then once I am assigned a Dog, I can never be reprogrammed to anything else but
that

 one and only Dog. In other words, no other object can be assigned to me.

HeadFirst:

 You’re right, we don’t want to talk about that now. OK, so unless you’re final
 , then you can refer to one Dog and then refer to a different Dog later. Can you ever refer to
nothing at all

 ? Is it possible to not be programmed to anything?

Reference:

 Yes, but it disturbs me to talk about it.

HeadFirst:

 Why is that?

Reference:

 Because it means I’m null
 , and that’s upsetting to me.

HeadFirst:

 You mean, because then you have no value?

Reference:

 Oh, null

is

 a value. I’m still a remote control, but it’s like you brought home a new universal remote control and you don’t have a TV. I’m not programmed to control anything. They can press my buttons all day long, but nothing good happens. I just feel so... useless. A waste of bits. Granted, not that many bits, but still. And that’s not the worst part. If I am the only reference to a particular object, and then I’m set to null
 (deprogrammed), it means that now
nobody

 can get to that object I had been referring to.

HeadFirst:

 And that’s bad because...

Reference:

 You have to
ask

 ? Here I’ve developed a relationship with this object, an intimate connection, and then the tie is suddenly, cruelly, severed. And I will never see that object again, because now it’s eligible for [producer, cue tragic music]
garbage collection

 . Sniff. But do you think programmers ever consider
that

 ? Snif. Why,
why

 can’t I be a primitive?
I hate being a reference.

 The responsibility, all the broken attachments...

 Life on the garbage-collectible heap

Book b = new Book();

Book c = new Book();

 Declare two Book reference variables. Create two new Book objects. Assign the Book objects to the reference variables.

The two Book objects are now living on the heap.

References: 2

Objects: 2

 [image: image with no caption]

Book d = c;

Declare a new Book reference variable. Rather than creating a new, third Book object, assign the value of variable

c

 to variable

d

 . But what does this mean? It’s like saying, “Take the bits in

c

 , make a copy of them, and stick that copy into

d

 .”

Both
c

 and
d

 refer to the same object.

The
c

 and
d

 variables hold two different copies of the same value. Two remotes programmed to one TV.

References: 3

Objects: 2

 [image: image with no caption]

c = b;

Assign the value of variable

b

 to variable

c

 . By now you know what this means. The bits inside variable

b

 are copied, and that new copy is stuffed into variable

c

 .

Both b and c refer to the same object.

References: 3

Objects: 2

 [image: image with no caption]

 Life and death on the heap

Book b = new Book();

Book c = new Book();

 Declare two Book reference variables. Create two new Book objects. Assign the Book objects to the reference variables.

The two book objects are now living on the heap.

Active References: 2

Reachable Objects: 2

 [image: image with no caption]

b = c;

Assign the value of variable

c

 to variable

b

 . The bits inside variable

c

 are copied, and that new copy is stuffed into variable

b

 . Both variables hold identical values.

Both b and c refer to the same object. Object 1 is abandoned and eligible for Garbage Collection (GC).

Active References: 2

Reachable Objects: 1

Abandoned Objects: 1

The first object that

b

 referenced, Object 1, has no more references. It’s
unreachable

 .

 [image: image with no caption]

c = null;

Assign the value null
 to variable

c

 . This makes

c

 a
null reference

 , meaning it doesn’t refer to anything. But it’s still a reference variable, and another Book object can still be assigned to it.

Object 2 still has an active reference (b), and as long as it does, the object is not eligible for GC.

Active References: 1

null

 References: 1

Reachable Objects: 1

Abandoned Objects: 1

 [image: image with no caption]

 An array is like a tray of cups

	

 Declare an int array variable. An array variable is a remote control to an array object.

int[] nums;

	Create a new int array with a length of 7, and assign it to the previously-declared int[]
 variable nums

nums = new int[7];

	Give each element in the array an int value.

Remember, elements in an int
array

 are just int
variables

 .

 [image: image with no caption]

 [image: image with no caption]

 Arrays are objects too

The Java standard library includes lots of sophisticated data structures including maps, trees, and sets (see Appendix B
), but arrays are great when you just want a quick, ordered, efficient list of things. Arrays give you fast random access by letting you use an index position to get to any element in the array.

Every element in an array is just a variable. In other words, one of the eight primitive variable types (think: Large Furry Dog) or a reference variable. Anything you would put in a
variable

 of that type can be assigned to an
array element

 of that type. So in an array of type int (int[]), each element can hold an int. In a Dog array (Dog[]) each element can hold... a Dog? No, remember that a reference variable just holds a reference (a remote control), not the object itself. So in a Dog array, each element can hold a
remote control

 to a Dog. Of course, we still have to make the Dog objects... and you’ll see all that on the next page.

Be sure to notice one key thing in the picture above –
the array is an object, even though it’s an array of primitives.

Arrays are always objects, whether they’re declared to hold primitives or object references.

 But you can have an array object that’s declared to
hold

 primitive values. In other words, the array object can have
elements

 which are primitives, but the array itself is
never

 a primitive. Regardless of what the array holds, the array itself is always an object!

 Make an array of Dogs

	

 Declare a Dog array variable

Dog[] pets;

	Create a new Dog array with a length of 7, and assign it to the previously-declared Dog[]
 variable pets

pets = new Dog[7];

 What’s missing?

Dogs! We have an array of Dog

references

 ,
but no actual Dog

objects

!

 [image: image with no caption]

	Create new Dog objects, and assign them to the array elements.

Remember, elements in a Dog
array

 are just Dog reference
variables

 . We still need Dogs!

pets[0] = new Dog();

pets[1] = new Dog();

Sharpen your pencil

What is the current value of pets[2]? ___________

What code would make pets[3] refer to one of the two existing Dog objects? _______________________

 [image: image with no caption]

 [image: image with no caption]

Java cares about type.

Once you’ve declared an array, you can’t put anything in it except things that are of the declared array type.

For example, you can’t put a Cat into a Dog array (it would be pretty awful if someone thinks that only Dogs are in the array, so they ask each one to bark, and then to their horror discover there’s a cat lurking.) And you can’t stick a double
 into an int
 array (spillage, remember?). You can, however, put a byte
 into an int
 array, because a byte
 will always fit into an int
 -sized cup.

This is known as an
implicit widening. We’ll get into the details later, for now just remember that the compiler won’t let you put the wrong thing in an array, based on the array’s declared type.

 Control your Dog (with a reference variable)

Dog fido = new Dog();

fido.name = "Fido";

We created a Dog object and used the dot operator on the reference variable

fido

 to access the name variable.[3
]

We can use the

fido

 reference to get the dog to bark() or eat() or chaseCat().

fido.bark();

fido.chaseCat();

 [image: image with no caption]

 What happens if the Dog is in a Dog array?

We know we can access the Dog’s instance variables and methods using the dot operator, but
on what?

When the Dog is in an array, we don’t have an actual variable name (like

fido

). Instead we use array notation and push the remote control button (dot operator) on an object at a particular index (position) in the array:

Dog[] myDogs = new Dog[3];

myDogs[0] = new Dog();

myDogs[0].name = "Fido";

myDogs[0].bark();

 [image: image with no caption]

 A Dog example

 [image: image with no caption]

 [image: image with no caption]

Bullet Points

	Variables come in two flavors: primitive and reference.

	Variables must always be declared with a name and a type.

	A primitive variable value is the bits representing the value (5, ‘a’, true, 3.1416, etc.).

	A reference variable value is the bits representing a way to get to an object on the heap.

	A reference variable is like a remote control. Using the dot operator (.) on a reference variable is like pressing a button on the remote control to access a method or instance variable.

	A reference variable has a value of null
 when it is not referencing any object.

	An array is always an object, even if the array is declared to hold primitives. There is no such thing as a primitive array, only an array that
holds

 primitives.

BE the compiler

 [image: image with no caption]

Exercise

Each of the Java files on this page represents a complete source file. Your job is to play compiler and determine whether each of these files will compile and run without exception. If they won’t, how would you fix them?

A

class Books {
 String title;
 String author;
}

class BooksTestDrive {
 public static void main(String [] args) {

 Books [] myBooks = new Books[3];
 int x = 0;
 myBooks[0].title = "The Grapes of Java";
 myBooks[1].title = "The Java Gatsby";
 myBooks[2].title = "The Java Cookbook";
 myBooks[0].author = "bob";
 myBooks[1].author = "sue";
 myBooks[2].author = "ian";

 while (x < 3) {
 System.out.print(myBooks[x].title);
 System.out.print(" by ");
 System.out.println(myBooks[x].author);
 x = x + 1;
 }
 }
}

B

class Hobbits {

 String name;

 public static void main(String [] args) {

 Hobbits [] h = new Hobbits[3];
 int z = 0;

 while (z < 4) {
 z = z + 1;
 h[z] = new Hobbits();
 h[z].name = "bilbo";
 if (z == 1) {
 h[z].name = "frodo";
 }
 if (z == 2) {
 h[z].name = "sam";
 }
 System.out.print(h[z].name + " is a ");
 System.out.println("good Hobbit name");
 }
 }
}

Code Magnets

 [image: image with no caption]

Exercise

A working Java program is all scrambled up on the fridge. Can you reconstruct the code snippets to make a working Java program that produces the output listed below? Some of the curly braces fell on the floor and they were too small to pick up, so feel free to add as many of those as you need!

 [image: image with no caption]

 [image: image with no caption]

Pool Puzzle

 [image: image with no caption]

 Your

job

 is to take code snippets from the pool and place them into the blank lines in the code. You
may

 use the same snippet more than once, and you won’t need to use all the snippets. Your

goal

 is to make a class that will compile and run and produce the output listed.

 [image: image with no caption]

Bonus Question!

For extra bonus points, use snippets from the pool to fill in the missing output (above).

 [image: image with no caption]

class Triangle {
 double area;
 int height;
 int length;
 public static void main(String [] args) {

 while (__________) {

 ________.height = (x + 1) * 2;
 ________.length = x + 4;

 System.out.print("triangle "+x+", area");
 System.out.println(" = " + _______.area);

 }

 x = 27;
 Triangle t5 = ta[2];
 ta[2].area = 343;
 System.out.print("y = " + y);
 System.out.println(", t5 area = "+ t5.area);
 }
 void setArea() {
 ____________ = (height * length) / 2;
 }
}

 Note

(Sometimes we don’t use a separate test class, because we’re trying to save space on the page)

Note: Each snippet from the pool can be used more than once!

A Heap o’ Trouble

A short Java program is listed to the right. When ‘// do stuff’ is reached, some objects and some reference variables will have been created. Your task is to determine which of the reference variables refer to which objects. Not all the reference variables will be used, and some objects might be referred to more than once. Draw lines connecting the reference variables with their matching objects.

Tip:

 Unless you’re way smarter than we are, you probably need to draw diagrams like the ones in Life on the garbage-collectible heap
 –Make an array of Dogs
 of this chapter. Use a pencil so you can draw and then erase reference links (the arrows going from a reference remote control to an object).

	
class HeapQuiz {
 int id = 0;
 public static void main(String [] args) {
 int x = 0;
 HeapQuiz [] hq = new HeapQuiz[5];
 while (x < 3) {
 hq[x] = new HeapQuiz();
 hq[x].id = x;
 x = x + 1;
 }
 hq[3] = hq[1];
 hq[4] = hq[1];
 hq[3] = null;
 hq[4] = hq[0];
 hq[0] = hq[3];
 hq[3] = hq[2];
 hq[2] = hq[0];
 // do stuff
 }
}

Reference Variables:

 [image: image with no caption]

HeapQuiz Objects:

 [image: image with no caption]

 Note

match each reference variable with matching object(s)

You might not have to use every reference.

Five-Minute Mystery

 [image: image with no caption]

The case of the pilfered references

It was a dark and stormy night. Tawny strolled into the programmers’ bullpen like she owned the place. She knew that all the programmers would still be hard at work, and she wanted help. She needed a new method added to the pivotal class that was to be loaded into the client’s new top-secret Java-enabled cell phone. Heap space in the cell phone’s memory was as tight as Tawny’s top, and everyone knew it. The normally raucous buzz in the bullpen fell to silence as Tawny eased her way to the white board. She sketched a quick overview of the new method’s functionality and slowly scanned the room. “Well boys, it’s crunch time”, she purred. “Whoever creates the most memory efficient version of this method is coming with me to the client’s launch party on Maui tomorrow... to help me install the new software.”

The next morning Tawny glided into the bullpen wearing her short Aloha dress. “Gentlemen”, she smiled, “the plane leaves in a few hours, show me what you’ve got!”. Bob went first; as he began to sketch his design on the white board Tawny said, “Let’s get to the point Bob, show me how you handled updating the list of contact objects.” Bob quickly drew a code fragment on the board:

Contact [] ca = new Contact[10];
while (x < 10) { // make 10 contact objects
 ca[x] = new Contact();
 x = x + 1;
}
// do complicated Contact list updating stuff with ca

“Tawny I know we’re tight on memory, but your spec said that we had to be able to access individual contact information for all ten allowable contacts, this was the best scheme I could cook up”, said Bob. Kent was next, already imagining coconut cocktails with Tawny, “Bob,” he said, “your solution’s a bit kludgy don’t you think?” Kent smirked, “Take a look at this baby”:

Contact refc;
while (x < 10) { // make 10 contact objects
 refc = new Contact();
 x = x + 1;
}
// do complicated Contact list updating stuff with refc

“I saved a bunch of reference variables worth of memory, Bob-o-rino, so put away your sunscreen”, mocked Kent. “Not so fast Kent!”, said Tawny, “you’ve saved a little memory, but Bob’s coming with me.”.

Why did Tawny choose Bob’s method over Kent’s, when Kent’s used less memory?

Exercise Solutions

Code Magnets:

class TestArrays {
 public static void main(String [] args) {
 int [] index = new int[4];
 index[0] = 1;
 index[1] = 3;
 index[2] = 0;
 index[3] = 2;
 String [] islands = new String[4];
 islands[0] = "Bermuda";
 islands[1] = "Fiji";
 islands[2] = "Azores";
 islands[3] = "Cozumel";
 int y = 0;
 int ref;
 while (y < 4) {
 ref = index[y];
 System.out.print("island = ");
 System.out.println(islands[ref]);
 y = y + 1;
 }
 }
}

 [image: image with no caption]

A

 [image: image with no caption]

B

 [image: image with no caption]

Puzzle Solutions

class Triangle {
 double area;
 int height;
 int length;
 public static void main(String [] args) {
 int x = 0;

 Triangle [] ta = new Triangle[4];

 while (x < 4

) {
 ta[x] = new Triangle();

 ta[x].

height = (x + 1) * 2;
 ta[x].

length = x + 4;
 ta[x].setArea();

 System.out.print("triangle "+x+", area");
 System.out.println(" = " + ta[x].

area);
 x = x + 1;

 }
 int y = x;

 x = 27;
 Triangle t5 = ta[2];
 ta[2].area = 343;
 System.out.print("y = " + y);
 System.out.println(", t5 area = "+ t5.area);
 }
 void setArea() {
 area

 = (height * length) / 2;
 }
}

 [image: image with no caption]

The case of the pilfered references

Tawny could see that Kent’s method had a serious flaw. It’s true that he didn’t use as many reference variables as Bob, but there was no way to access any but the last of the Contact objects that his method created. With each trip through the loop, he was assigning a new object to the one reference variable, so the previously referenced object was abandoned on the heap –
unreachable

 . Without access to nine of the ten objects created, Kent’s method was useless.

(The software was a huge success and the client gave Tawny and Bob an extra week in Hawaii. We’d like to tell you that by finishing this book you too will get stuff like that.)

 [image: image with no caption]

[3
]
 Yes we know we’re not demonstrating encapsulation here, but we’re trying to keep it simple. For now. We’ll do encapsulation in Chapter 4
 .

 Chapter 4. Methods Use Instance Variables: How Objects Behave

 [image: image with no caption]

State affects behavior, behavior affects state.

 We know that objects have
state

 and
behavior

 , represented by
instance variables

 and
methods

 . But until now, we haven’t looked at how state and behavior are
related

 . We already know that each instance of a class (each object of a particular type) can have its own unique values for its instance variables. Dog A can have a
name

 “Fido” and a
weight

 of 70 pounds. Dog B is “Killer” and weighs 9 pounds. And if the Dog class has a method makeNoise(), well, don’t you think a 70-pound dog barks a bit deeper than the little 9-pounder? (Assuming that annoying yippy sound can be considered a
bark

 .) Fortunately, that’s the whole point of an object — it has
behavior

 that acts on its
state

 . In other words,

methods use instance variable values

 . Like, “if dog is less than 14 pounds, make yippy sound, else...” or “increase weight by 5”.

Let’s go change some state.

 Remember: a class describes what an object knows
 and what an object does

A class is the blueprint for an object.

 When you write a class, you’re describing how the JVM should make an object of that type. You already know that every object of that type can have different
instance variable

 values. But what about the methods?

 [image: image with no caption]

 Can every object of that type have different method behavior?

Well...

sort of.

 *

Every instance of a particular class has the same methods, but the methods can
behave

 differently based on the value of the instance variables.

The Song class has two instance variables,
title

 and
artist

 . The play() method plays a song, but the instance you call play() on will play the song represented by the value of the
title

 instance variable for that instance. So, if you call the play() method on one instance you’ll hear the song “Politik”, while another instance plays “Darkstar”. The method code, however, is the same.

void play() {

soundPlayer.playSound(title);

}

 [image: image with no caption]

Song t2 = new Song();

t2.setArtist("Travis");

t2.setTitle("Sing");

Song s3 = new Song();

s3.setArtist("Sex Pistols");

s3.setTitle("My Way");

 The size affects the bark

 A small Dog’s bark is different from a big Dog’s bark.

The Dog class has an instance variable
size

 , that the
bark()

 method uses to decide what kind of bark sound to make.

 [image: image with no caption]

 [image: image with no caption]

 [image: image with no caption]

 You can send things to a method

 Just as you expect from any programming language, you can pass values into your methods. You might, for example, want to tell a Dog object how many times to bark by calling:

d.bark(3);

Depending on your programming background and personal preferences,
you

 might use the term
arguments

 or perhaps
parameters

 for the values passed into a method. Although there
are

 formal computer science distinctions that people who wear lab coats and who will almost certainly not read this book, make, we have bigger fish to fry in this book. So
you

 can call them whatever you like (arguments, donuts, hairballs, etc.) but we’re doing it like this:

A method uses
 parameters. A caller passes
 arguments.

Arguments are the things you pass into the methods. An

argument

 (a value like 2, “Foo”, or a reference to a Dog) lands face-down into a... wait for it...

parameter

 . And a parameter is nothing more than a local variable. A variable with a type and a name, that can be used inside the body of the method.

But here’s the important part:
If a method takes a parameter, you

must

pass it something.

 And that something must be a value of the appropriate type.

 [image: image with no caption]

 You can get things
back

 from a method

 Methods can return values. Every method is declared with a return type, but until now we’ve made all of our methods with a

void

 return type, which means they don’t give anything back.

void go() {

}

But we can declare a method to give a specific type of value back to the caller, such as:

int giveSecret() {

return 42;

}

If you declare a method to return a value, you
must

 return a value of the declared type! (Or a value that is
compatible

 with the declared type. We’ll get into that more when we talk about polymorphism in Chapter 7
 and Chapter 8
 .)

 [image: image with no caption]

The compiler won’t let you return the wrong type of thing.

Whatever you
say

 you’ll give back, you
better

 give back!

 [image: image with no caption]

 Note

The bits representing 42 are returned from the giveSecret() method, and land in the variable named theSecret
 .

 You can send more than one thing to a method

 Methods can have multiple parameters. Separate them with commas when you declare them, and separate the arguments with commas when you pass them. Most importantly, if a method has parameters, you
must

 pass arguments of the right type and order.

 Calling a two-parameter method, and sending it two arguments

 [image: image with no caption]

 You can pass variables into a method, as long as the variable type matches the parameter type

 [image: image with no caption]

 Java is pass-by-value
 . That means pass-by-copy

 [image: image with no caption]

	

 Declare an int variable and assign it the value ‘7’. The bit pattern for 7 goes into the variable named x.

 [image: image with no caption]

	Declare a method with an int parameter named z.

 [image: image with no caption]

	Call the go() method, passing the variable x as the argument. The bits in x are copied, and the copy lands in z.

 [image: image with no caption]

	Change the value of z inside the method. The value of x doesn’t change! The argument passed to the z parameter was only a copy
 of x.

The method can’t change the bits that were in the calling variable x.

 [image: image with no caption]

There are no Dumb Questions

	

Q:

	

Q: What happens if the argument you want to pass is an object instead of a primitive?

	
A:

	

A:

 You’ll learn more about this in later chapters, but you already
know

 the answer. Java passes
everything

 by value.

Everything

 . But...
value

 means
bits inside the variable

 . And remember, you don’t stuff objects into variables; the variable is a remote control —
a reference to an object

 . So if you pass a reference to an object into a method, you’re passing a
copy of the remote control

 . Stay tuned, though, we’ll have lots more to say about this.

	

Q:

	

Q: Can a method declare multiple return values? Or is there some way to return more than one value?

	
A:

	

A:

 Sort of. A method can declare only one return value. BUT... if you want to return, say, three int values, then the declared return type can be an int
array

 . Stuff those ints into the array, and pass it on back. It’s a little more involved to return multiple values with different types; we’ll be talking about that in a later chapter when we talk about ArrayList.

	

Q:

	

Q: Do I have to return the exact type I declared?

	
A:

	

A:

 You can return anything that can be
implicitly

 promoted to that type. So, you can pass a byte where an int is expected. The caller won’t care, because the byte fits just fine into the int the caller will use for assigning the result. You must use an
explicit

 cast when the declared type is
smaller

 than what you’re trying to return.

	

Q:

	

Q: Do I have to do something with the return value of a method? Can I just ignore it?

	
A:

	

A:

 Java doesn’t require you to acknowledge a return value. You might want to call a method with a non-void return type, even though you don’t care about the return value. In this case, you’re calling the method for the work it does
inside

 the method, rather than for what the method gives
returns

 . In Java, you don’t have to assign or use the return value.

 Note

 [image: image with no caption]

Reminder: Java cares about type!

You can’t return a Giraffe when the return type is declared as a Rabbit. Same thing with parameters. You can’t pass a Giraffe into a method that takes a Rabbit.

Bullet Points

	Classes define what an object knows and what an object does.

	Things an object knows are its
instance variables

 (state).

	Things an object does are its
methods

 (behavior).

	Methods can use instance variables so that objects of the same type can behave differently.

	A method can have parameters, which means you can pass one or more values in to the method.

	The number and type of values you pass in must match the order and type of the parameters declared by the method.

	Values passed in and out of methods can be implicitly promoted to a larger type or explicitly cast to a smaller type.

	The value you pass as an argument to a method can be a literal value (2, ‘c’, etc.) or a variable of the declared parameter type (for example,
x

 where
x

 is an int variable). (There are other things you can pass as arguments, but we’re not there yet.)

	A method
must

 declare a return type. A void return type means the method doesn’t return anything.

	If a method declares a non-void return type, it
must

 return a value compatible with the declared return type.

 Cool things you can do with parameters and return types

 Now that we’ve seen how parameters and return types work, it’s time to put them to good use:
Getters

 and
Setters

 . If you’re into being all formal about it, you might prefer to call them
Accessors

 and
Mutators

 . But that’s a waste of perfectly good syllables. Besides, Getters and Setters fits the Java naming convention, so that’s what we’ll call them.

Getters and Setters let you, well,
get and set things

 . Instance variable values, usually. A Getter’s sole purpose in life is to send back, as a return value, the value of whatever it is that particular Getter is supposed to be Getting. And by now, it’s probably no surprise that a Setter lives and breathes for the chance to take an argument value and use it to
set

 the value of an instance variable.

 [image: image with no caption]

class ElectricGuitar {

String brand;

int numOfPickups;

boolean rockStarUsesIt;

String getBrand() {

return brand;

}

void setBrand(String aBrand) {

brand = aBrand;

}

int getNumOfPickups() {

return numOfPickups;

}

void setNumOfPickups(int num) {

numOfPickups = num;

}

boolean getRockStarUsesIt() {

return rockStarUsesIt;

}

void setRockStarUsesIt(boolean yesOrNo) {

rockStarUsesIt = yesOrNo;

}

}

 [image: image with no caption]

 Encapsulation

 Do it or risk humiliation and ridicule

 Until this most important moment, we’ve been committing one of the worst OO faux pas (and we’re not talking minor violation like showing up without the ‘B’ in BYOB). No, we’re talking Faux Pas with a capital ‘F’. And ‘P’.

Our shameful transgression?

Exposing our data!

Here we are, just humming along without a care in the world leaving our data out there for
anyone

 to see and even touch.

 [image: image with no caption]

You may have already experienced that vaguely unsettling feeling that comes with leaving your instance variables exposed.

Exposed means reachable with the dot operator, as in:

theCat.height = 27;

Think about this idea of using our remote control to make a direct change to the Cat object’s size instance variable. In the hands of the wrong person, a reference variable (remote control) is quite a dangerous weapon. Because what’s to prevent:

 [image: image with no caption]

This would be a Bad Thing. We need to build setter methods for all the instance variables, and find a way to force other code to call the setters rather than access the data directly.

 Note

By forcing everybody to call a setter method, we can protect the cat from unacceptable size changes.

 [image: image with no caption]

 Hide the data

 Yes it
is

 that simple to go from an implementation that’s just begging for bad data to one that protects your data
and

 protects your right to modify your implementation later.

OK, so how exactly do you
hide

 the data? With the

public

 and

private

 access modifiers. You’re familiar with

public

 –we use it with every main method.

Here’s an encapsulation
starter

 rule of thumb (all standard disclaimers about rules of thumb are in effect): mark your instance variables

private

 and provide

public

 getters and setters for access control. When you have more design and coding savvy in Java, you will probably do things a little differently, but for now, this approach will keep you safe.

 Note

Mark instance variables private.

Mark getters and setters public.

“Sadly, Bill forgot to encapsulate his Cat class and ended up with a flat cat.”

(overheard at the water cooler).

Java Exposed

This week’s interview: An Object gets candid about encapsulation.

HeadFirst:

 What’s the big deal about encapsulation?

Object:

 OK, you know that dream where you’re giving a talk to 500 people when you suddenly realize– you’re
naked

 ?

HeadFirst:

 Yeah, we’ve had that one. It’s right up there with the one about the Pilates machine and... no, we won’t go there. OK, so you feel naked. But other than being a little exposed, is there any danger?

Object:

 Is there any danger? Is there any
danger

 ? [starts laughing] Hey, did all you other instances hear that,
“Is there any danger?”

 he asks? [falls on the floor laughing]

HeadFirst:

 What’s funny about that? Seems like a reasonable question.

Object:

 OK, I’ll explain it. It’s [bursts out laughing again, uncontrollably]

HeadFirst:

 Can I get you anything? Water?

Object:

 Whew! Oh boy. No I’m fine, really. I’ll be serious. Deep breath. OK, go on.

HeadFirst:

 So what does encapsulation protect you from?

Object:

 Encapsulation puts a force-field around my instance variables, so nobody can set them to, let’s say, something
inappropriate

 .

HeadFirst:

 Can you give me an example?

Object:

 Doesn’t take a PhD here. Most instance variable values are coded with certain assumptions about the boundaries of the values. Like, think of all the things that would break if negative numbers were allowed. Number of bathrooms in an office. Velocity of an airplane. Birthdays. Barbell weight. Cell phone numbers. Microwave oven power.

HeadFirst:

 I see what you mean. So how does encapsulation let you set boundaries?

Object:

 By forcing other code to go through setter methods. That way, the setter method can validate the parameter and decide if it’s do-able. Maybe the method will reject it and do nothing, or maybe it’ll throw an Exception (like if it’s a null social security number for a credit card application), or maybe the method will round the parameter sent in to the nearest acceptable value. The point is, you can do whatever you want in the setter method, whereas you can’t do
anything

 if your instance variables are public.

HeadFirst:

 But sometimes I see setter methods that simply set the value without checking anything. If you have an instance variable that doesn’t have a boundary, doesn’t that setter method create unnecessary overhead? A performance hit?

Object:

 The point to setters (and getters, too) is that

you can change your mind later, without breaking anybody else’s code!

 Imagine if half the people in your company used your class with public instance variables, and one day you suddenly realized, “Oops– there’s something I didn’t plan for with that value, I’m going to have to switch to a setter method.” You break everyone’s code. The cool thing about encapsulation is that
you get to change your mind.

 And nobody gets hurt. The performance gain from using variables directly is so miniscule and would rarely —
if ever

 — be worth it.

 Encapsulating the GoodDog class

 [image: image with no caption]

 Note

Even though the methods don’t really add new functionality, the cool thing is that you can change your mind later. you can come back and make a method safer, faster, better.

 Note

Any place where a particular value can be used, a method call that returns that type can be used.

instead of:

int x = 3 + 24;

you can say:

int x = 3 + one.getSize();

 How do objects in an array behave?

 Just like any other object. The only difference is how you
get

 to them. In other words, how you get the remote control. Let’s try calling methods on Dog objects in an array.

	Declare and create a Dog array, to hold 7 Dog references.

Dog[] pets;

pets = new Dog[7];

 [image: image with no caption]

	Create two new Dog objects, and assign them to the first two array elements.

pets[0] = new Dog();

pets[1] = new Dog();

	Call methods on the two Dog objects.

pets[0].setSize(30);

int x = pets[0].getSize();

pets[1].setSize(8);

 [image: image with no caption]

 Declaring and initializing instance variables

 You already know that a variable declaration needs at least a name and a type:

int size;

String name;

And you know that you can initialize (assign a value) to the variable at the same time:

int size = 420;

String name = "Donny";

But when you don’t initialize an instance variable, what happens when you call a getter method? In other words, what is the
value

 of an instance variable
before

 you initialize it?

 [image: image with no caption]

 Note

Instance variables always get a default value. If you don’t explicitly assign a value to an instance variable, or you don’t call a setter method, the instance variable still has a value!

	

integers

	

0

	

floating points

	

0.0

	

booleans

	

false

	

references

	

null

 [image: image with no caption]

 Note

You don’t have to initialize instance variables, because they always have a default value. Number primitives (including char) get 0, booleans get false, and object reference variables get null.

(Remember, null just means a remote control that isn’t controlling / programmed to anything. A reference, but no actual object.)

 The difference between instance and local variables

	

Instance

 variables are declared inside a class
 but not within a method.
class Horse {
 private double
height

 = 15.2;
 private String
breed;

 // more code...
}

	

Local

 variables are declared within a method
 .
class AddThing {
 int a;
 int b = 12;

 public int add() {
 int
total

 = a + b;
 return total;
 }
}

	

Local

 variables MUST be initialized
 before use!

 [image: image with no caption]

 [image: image with no caption]

Local variables do NOT get a default value! The compiler complains if you try to use a local variable before
 the variable is initialized.

There are no Dumb Questions

	

Q:

	

Q: What about method parameters? How do the rules about local variables apply to them?

	
A:

	

A:

 Method parameters are virtually the same as local variables — they’re declared
inside

 the method (well, technically they’re declared in the
argument list

 of the method rather than within the
body

 of the method, but they’re still local variables as opposed to instance variables). But method parameters will never be uninitialized, so you’ll never get a compiler error telling you that a parameter variable might not have been initialized.

But that’s because the compiler will give you an error if you try to invoke a method without sending arguments that the method needs. So parameters are ALWAYS initialized, because the compiler guarantees that methods are always called with arguments that match the parameters declared for the method, and the arguments are assigned (automatically) to the parameters.

 Comparing variables (primitives or references)

 Sometimes you want to know if two
primitives

 are the same. That’s easy enough, just use the == operator. Sometimes you want to know if two reference variables refer to a single object on the heap. Easy as well, just use the == operator. But sometimes you want to know if two
objects

 are equal. And for that, you need the .equals() method. The idea of equality for objects depends on the type of object. For example, if two different String objects have the same characters (say, “expeditious”), they are meaningfully equivalent, regardless of whether they are two distinct objects on the heap. But what about a Dog? Do you want to treat two Dogs as being equal if they happen to have the same size and weight? Probably not. So whether two different objects should be treated as equal depends on what makes sense for that particular object type. We’ll explore the notion of object equality again in later chapters (and Appendix B
), but for now, we need to understand that the == operator is used
only

 to compare the bits in two variables.
What

 those bits represent doesn’t matter. The bits are either the same, or they’re not.

 Note

Use == to compare two primitives, or to see if two references refer to the same object.

Use the equals() method to see if two different objects are equal.

(Such as two different String objects that both represent the characters in “Fred”)

To compare two primitives, use the == operator

The == operator can be used to compare two variables of any kind, and it simply compares the bits.

if (a == b) {...} looks at the bits in a and b and returns true if the bit pattern is the same (although it doesn’t care about the size of the variable, so all the extra zeroes on the left end don’t matter).

int a = 3;

byte b = 3;

if (a == b) { // true }

 [image: image with no caption]

To see if two references are the same (which means they refer to the same object on the heap) use the == operator

Remember, the == operator cares only about the pattern of bits in the variable. The rules are the same whether the variable is a reference or primitive. So the == operator returns true if two reference variables refer to the same object! In that case, we don’t know what the bit pattern is (because it’s dependent on the JVM, and hidden from us) but we
do

 know that whatever it looks like,
it will be the same for two references to a single object

 .

Foo a = new Foo();

Foo b = new Foo();

Foo c = a;

if (a == b) { // false }

if (a == c) { // true }

if (b == c) { // false }

 [image: image with no caption]

 [image: image with no caption]

Make it Stick

 [image: image with no caption]

Roses are red, this poem is choppy, passing by value is passing by copy.

Oh, like you can do better? Try it. Replace our dumb second line with your own. Better yet, replace the whole thing with your own words and you’ll
never

 forget it.

Sharpen your pencil

What’s legal?

Given the method below, which of the method calls listed on the right are legal?

Put a checkmark next to the ones that are legal. (Some statements are there to assign values used in the method calls).

 [image: image with no caption]

int calcArea(int height, int width) {

return height * width;

}

int a = calcArea(7, 12);

short c = 7;

calcArea(c,15);

int d = calcArea(57);

calcArea(2,3);

long t = 42;

int f = calcArea(t,17);

int g = calcArea();

calcArea();

byte h = calcArea(4,20);

int j = calcArea(2,3,5);

BE the compiler

 [image: image with no caption]

Exercise

Each of the Java files on this page represents a complete source file. Your job is to play compiler and determine whether each of these files will compile. If they won’t compile, how would you fix them, and if they do compile, what would be their output?

A

class XCopy {

 public static void main(String [] args) {

 int orig = 42;

 XCopy x = new XCopy();

 int y = x.go(orig);

 System.out.println(orig + " " + y);
 }

 int go(int arg) {

 arg = arg * 2;

 return arg;
 }
}

B

class Clock {
 String time;

 void setTime(String t) {
 time = t;
 }

 void getTime() {
 return time;
 }
}

class ClockTestDrive {
 public static void main(String [] args) {

 Clock c = new Clock();

 c.setTime("1245");
 String tod = c.getTime();
 System.out.println("time: " + tod);
 }
}

Who am I?

 [image: image with no caption]

Exercise

 [image: image with no caption]

A bunch of Java components, in full costume, are playing a party game, “Who am I?” They give you a clue, and you try to guess who they are, based on what they say. Assume they always tell the truth about themselves. If they happen to say something that could be true for more than one guy, then write down all for whom that sentence applies. Fill in the blanks next to the sentence with the names of one or more attendees.

Tonight’s attendees:

instance variable, argument, return, getter, setter, encapsulation, public, private, pass by value, method

	

A class can have any number of these.

A method can have only one of these.

This can be implicitly promoted.

I prefer my instance variables private.

It really means ‘make a copy’.

Only setters should update these.

A method can have many of these.

I return something by definition.

I shouldn’t be used with instance variables.

I can have many arguments.

By definition, I take one argument.

These help create encapsulation.

I always fly solo.

Mixed Messages

A short Java program is listed to your right. Two blocks of the program are missing. Your challenge is to
match the candidate blocks of code

 (below),
with the outpu

 t that you’d see if the blocks were inserted.

Not all the lines of output will be used, and some of the lines of output might be used more than once. Draw lines connecting the candidate blocks of code with their matching command-line output.

 [image: image with no caption]

 [image: image with no caption]

Pool Puzzle

 [image: image with no caption]

 Your

job

 is to take code snippets from the pool and place them into the blank lines in the code. You may
not

 use the same snippet more than once, and you won’t need to use all the snippets. Your

goal

 is to make a class that will compile and run and produce the output listed.

 [image: image with no caption]

Note: Each snippet from the pool can be used only once!

 [image: image with no caption]

public class Puzzle4 {
 public static void main(String [] args) {

 int y = 1;
 int x = 0;
 int result = 0;
 while (x < 6) {

 y = y * 10;

 }
 x = 6;
 while (x > 0) {

 result = result + ___________________
 }
 System.out.println("result " + result);
 }
}
class ___________ {
 int ivar;
 ________ ______ doStuff(int _________) {
 if (ivar > 100) {
 return _________________________
 } else {
 return _________________________
 }
 }
}

Five-Minute Mystery

 [image: image with no caption]

Fast Times in Stim-City

When Buchanan jammed his twitch-gun into Jai’s side, Jai froze. Jai knew that Buchanan was as stupid as he was ugly and he didn’t want to spook the big guy. Buchanan ordered Jai into his boss’s office, but Jai’d done nothing wrong, (lately), so he figured a little chat with Buchanan’s boss Leveler couldn’t be too bad. He’d been moving lots of neural-stimmers in the west side lately and he figured Leveler would be pleased. Black market stimmers weren’t the best money pump around, but they were pretty harmless. Most of the stim-junkies he’d seen tapped out after a while and got back to life, maybe just a little less focused than before.

Leveler’s ‘office’ was a skungy looking skimmer, but once Buchanan shoved him in, Jai could see that it’d been modified to provide all the extra speed and armor that a local boss like Leveler could hope for. “Jai my boy”, hissed Leveler, “pleasure to see you again”. “Likewise I’m sure...”, said Jai, sensing the malice behind Leveler’s greeting, “We should be square Leveler, have I missed something?” “Ha! You’re making it look pretty good Jai, your volume is up, but I’ve been experiencing, shall we say, a little ‘breach’ lately...” said Leveler.

Jai winced involuntarily, he’d been a top drawer jack-hacker in his day. Anytime someone figured out how to break a street-jack’s security, unwanted attention turned toward Jai. “No way it’s me man”, said Jai, “not worth the downside. I’m retired from hacking, I just move my stuff and mind my own business”. “Yeah, yeah”, laughed Leveler, “I’m sure you’re clean on this one, but I’ll be losing big margins until this new jack-hacker is shut out!” “Well, best of luck Leveler, maybe you could just drop me here and I’ll go move a few more ‘units’ for you before I wrap up today”, said Jai.

“I’m afraid it’s not that easy Jai, Buchanan here tells me that word is you’re current on J37NE”, insinuated Leveler. “Neural Edition? sure I play around a bit, so what?”, Jai responded feeling a little queasy. “Neural edition’s how I let the stim-junkies know where the next drop will be”, explained Leveler. “Trouble is, some stim-junkie’s stayed straight long enough to figure out how to hack into my WareHousing database.” “I need a quick thinker like yourself Jai, to take a look at my StimDrop J37NE class; methods, instance variables, the whole enchilada, and figure out how they’re getting in. It should...”, “HEY!”, exclaimed Buchanan, “I don’t want no scum hacker like Jai nosin’ around my code!” “Easy big guy”, Jai saw his chance, “I’m sure you did a top rate job with your access modi... “Don’t tell me - bit twiddler!”, shouted Buchanan, “I left all of those junkie level methods public, so they could access the drop site data, but I marked all the critical WareHousing methods private. Nobody on the outside can access those methods buddy, nobody!”

“I think I can spot your leak Leveler, what say we drop Buchanan here off at the corner and take a cruise around the block”, suggested Jai. Buchanan reached for his twitch-gun but Leveler’s stunner was already on Buchanan’s neck, “Let it go Buchanan”, sneered Leveler, “Drop the twitcher and step outside, I think Jai and I have some plans to make”.

What did Jai suspect?

Will he get out of Leveler’s skimmer with all his bones intact?

Exercise Solutions

A

Class ‘XCopy’ compiles and runs as it stands ! The output is: ‘42 84’. Remember Java is pass by value, (which means pass by copy), the variable ‘orig’ is not changed by the go() method.

B

 [image: image with no caption]

	
A class can have any number of these.

	

instance variables, getter, setter, method

	
A method can have only one of these.

	

return

	
This can be implicitly promoted.

	

return, argument

	
I prefer my instance variables private.

	

encapsulation

	
It really means ‘make a copy’.

	

pass by value

	
Only setters should update these.

	

instance variables

	
A method can have many of these.

	

argument

	
I return something by definition.

	

getter

	
I shouldn’t be used with instance variables

	

public

	
I can have many arguments.

	

method

	
By definition, I take one argument.

	

setter

	
These help create encapsulation.

	

getter, setter, public, private

	
I always fly solo.

	

return

Puzzle Solutions

public class Puzzle4 {
 public static void main(String [] args) {

Puzzle4b [] obs = new Puzzle4b[6];

 int y = 1;
 int x = 0;
 int result = 0;
 while (x < 6) {

obs[x] = new Puzzle4b();

obs[x] . ivar = y;

 y = y * 10;

x = x + 1;

 }
 x = 6;
 while (x > 0) {

x = x - 1;

 result = result +
obs[x].doStuff(x);

 }
 System.out.println("result " + result);
 }
}
class
Puzzle4b

 {
 int ivar;

public int

 doStuff(int
factor

) {
 if (ivar > 100) {
 return
ivar * factor;

 } else {
 return
ivar * (5 - factor);

 }
 }
}

Output

 [image: image with no caption]

Answer to the 5-minute mystery...

Jai knew that Buchanan wasn’t the sharpest pencil in the box. When Jai heard Buchanan talk about his code, Buchanan never mentioned his instance variables. Jai suspected that while Buchanan did in fact handle his methods correctly, he failed to mark his instance variables private
 . That slip up could have easily cost Leveler thousands.

 [image: image with no caption]

 Chapter 5. Writing a Program: Extra-Strength Methods

 [image: image with no caption]

Let’s put some muscle in our methods.

 We dabbled with variables, played with a few objects, and wrote a little code. But we were weak. We need more tools. Like
operators

 . We need more operators so we can do something a little more interesting than, say,
bark

 . And
loops

 . We need loops, but what’s with the wimpy
while

 loops? We need

for

 loops if we’re really serious. Might be useful to
generate random numbers

 . And
turn a

String into an int

 , yeah, that would be cool. Better learn that too. And why don’t we learn it all by
building

 something real, to see what it’s like to write (and test) a program from scratch.
Maybe a game

 , like Battleships. That’s a heavy-lifting task, so it’ll take
two

 chapters to finish. We’ll build a simple version in this chapter, and then build a more powerful deluxe version in Chapter 6
 .

 Let’s build a Battleship-style game: “Sink a Dot Com”

 It’s you against the computer, but unlike the real Battleship game, in this one you don’t place any ships of your own. Instead, your job is to sink the computer’s ships in the fewest number of guesses.

Oh, and we aren’t sinking ships. We’re killing Dot Coms. (Thus establishing business relevancy so you can expense the cost of this book).

Goal

 : Sink all of the computer’s Dot Coms in the fewest number of guesses. You’re given a rating or level, based on how well you perform.

Setup

 : When the game program is launched, the computer places three Dot Coms on a
virtual 7 x 7 grid

 . When that’s complete, the game asks for your first guess.

How you play:

 We haven’t learned to build a GUI yet, so this version works at the command-line. The computer will prompt you to enter a guess (a cell), that you’ll type at the command-line as “A3”, “C5”, etc.). In response to your guess, you’ll see a result at the command-line, either “Hit”, “Miss”, or “You sunk Pets. com” (or whatever the lucky Dot Com of the day is). When you’ve sent all three Dot Coms to that big 404 in the sky, the game ends by printing out your rating.

 [image: image with no caption]

You’re going to build the Sink a Dot Com game, with a 7 x 7 grid and three Dot Coms. Each Dot Com takes up three cells.

 part of a game interaction

 [image: image with no caption]

 First, a high-level design

We know we’ll need classes and methods, but what should they be? To answer that, we need more information about what the game should do.

First, we need to figure out the general flow of the game. Here’s the basic idea:

	User starts the game

	Game creates three Dot Coms

	Game places the three Dot Coms onto a virtual grid

	Game play begins

Repeat the following until there are no more Dot Coms:

 [image: image with no caption]

	Game finishes

Give the user a rating based on the number of guesses.

 [image: image with no caption]

Now we have an idea of the kinds of things the program needs to do. The next step is figuring out what kind of
objects

 we’ll need to do the work. Remember, think like Brad rather than Larry; focus first on the

things

 in the program rather than the

procedures

 .

 The “Simple Dot Com Game” a gentler introduction

It looks like we’re gonna need at least two classes, a Game class and a DotCom class. But before we build the full monty

Sink a Dot Com

 game, we’ll start with a stripped-down, simplified version,

Simple Dot Com Game.

 We’ll build the simple version in
this

 chapter, followed by the deluxe version that we build in the
next

 chapter.

Everything is simpler in this game. Instead of a 2-D grid, we hide the Dot Com in just a single
row.

 And instead of
three

 Dot Coms, we use
one

 .

The goal is the same, though, so the game still needs to make a DotCom instance, assign it a location somewhere in the row, get user input, and when all of the DotCom’s cells have been hit, the game is over. This simplified version of the game gives us a big head start on building the full game. If we can get this small one working, we can scale it up to the more complex one later.

 [image: image with no caption]

In this simple version, the game class has no instance variables, and all the game code is in the main() method. In other words, when the program is launched and main() begins to run, it will make the one and only DotCom instance, pick a location for it (three consecutive cells on the single virtual seven-cell row), ask the user for a guess, check the guess, and repeat until all three cells have been hit.

Keep in mind that the virtual row is...
virtual

 . In other words, it doesn’t exist anywhere in the program. As long as both the game and the user know that the DotCom is hidden in three consecutive cells out of a possible seven (starting at zero), the row itself doesn’t have to be represented in code. You might be tempted to build an array of seven ints and then assign the DotCom to three of the seven elements in the array, but you don’t need to. All we need is an array that holds just the three cells the DotCom occupies.

	

Game starts

 , and creates ONE DotCom and gives it a location on three cells in the single row of seven cells.

Instead of “A2”, “C4”, and so on, the locations are just integers (for example: 1,2,3 are the cell locations in this picture):

 [image: image with no caption]

	

Game play begins

 . Prompt user for a guess, then check to see if it hit any of the DotCom’s three cells. If a hit, increment the numOfHits variable.

	

Game finishes

 when all three cells have been hit (the numOfHits variable value is 3), and tells the user how many guesses it took to sink the DotCom.

A complete game interaction

 [image: image with no caption]

 Developing a Class

 As a programmer, you probably have a methodology/process/approach to writing code. Well, so do we. Our sequence is designed to help you see (and learn) what we’re thinking as we work through coding a class. It isn’t necessarily the way we (or
you)

 write code in the Real World. In the Real World, of course, you’ll follow the approach your personal preferences, project, or employer dictate. We, however, can do pretty much whatever we want. And when we create a Java class as a “learning experience”, we usually do it like this:

	Figure out what the class is supposed to
do

 .

	List the
instance variables and methods

 .

	Write
prepcode

 for the methods. (You’ll see this in just a moment.)

	Write
test code

 for the methods.

	

Implement

 the class.

	

Test

 the methods.

	

Debug

 and
reimplement

 as needed.

	Express gratitude that we don’t have to test our so-called
learning experience

 app on actual live users.

 Brain Power

Flex those dendrites.

How would you decide which class or classes to build

first

 ,
when you’re writing a program? Assuming that all but the tiniest programs need more than one class (if you’re following good OO principles and not having

one

class do many different jobs), where do you start?

 The three things we’ll write for each class:

 [image: image with no caption]

This bar is displayed on the next set of pages to tell you which part you’re working on. For example, if you see this picture at the top of a page, it means you’re working on prepcode for the SimpleDotCom class.

 [image: image with no caption]

prep code

A form of pseudocode, to help you focus on the logic without stressing about syntax.

test code

A class or methods that will test the real code and validate that it’s doing the right thing.

real code

The actual implementation of the class. This is where we write real Java code.

 Note

To Do:

SimpleDotCom class

	write prep code

	write test code

	write final Java code

SimpleDotComGame class

	write prep code

	write test code [no]

	write final Java code

 [image: image with no caption]

You’ll get the idea of how prepcode (our version of pseudocode) works as you read through this example. It’s sort of half-way between real Java code and a plain English description of the class. Most prepcode includes three parts: instance variable declarations, method declarations, method logic. The most important part of prepcode is the method logic, because it defines
what

 has to happen, which we later translate into
how

 , when we actually write the method code.

DECLARE

 an
int array

 to hold the location cells. Call it
locationCells

 .

DECLARE

 an
int

 to hold the number of hits. Call it
numOfHits

 and

SET

 it to 0.

DECLARE

 a
checkYourself()

 method that takes a
String

 for the user’s guess (“1”, “3”, etc.), checks it, and returns a result representing a “hit”, “miss”, or “kill”.

DECLARE

 a
setLocationCells()

 setter method that takes an
int array

 (which has the three cell locations as
ints

 (2,3,4, etc.).

 [image: image with no caption]

 Writing the method implementations

 let’s write the real method code now, and get this puppy working

 Before we start coding the methods, though, let’s back up and write some code to
test

 the methods. That’s right, we’re writing the test code
before

 there’s anything to test!

The concept of writing the test code first is one of the practices of Extreme Programming (XP), and it can make it easier (and faster) for you to write your code. We’re not necessarily saying you should use XP, but we do like the part about writing tests first. And XP just
sounds

 cool.

 [image: image with no caption]

Extreme Programming (XP)

Extreme Programming(XP) is a newcomer to the software development methodology world. Considered by many to be “the way programmers really want to work”, XP emerged in the late 90’s and has been adopted by companies ranging from the two-person garage shop to the Ford Motor Company. The thrust of XP is that the customer gets what he wants, when he wants it, even when the spec changes late in the game.

XP is based on a set of proven practices that are all designed to work together, although many folks do pick and choose, and adopt only a portion of XP’s rules. These practices include things like:

Make small, but frequent, releases.

Develop in iteration cycles.

Don’t put in anything that’s not in the spec (no matter how tempted you are to put in functionality “for the future”).

Write the test code
first

 .

No killer schedules; work regular hours.

Refactor (improve the code) whenever and wherever you notice the opportunity.

Don’t release anything until it passes all the tests.

Set realistic schedules, based around small releases.

Keep it simple.

Program in pairs, and move people around so that everybody knows pretty much everything about the code.

 Writing test code for the SimpleDotCom class

We need to write test code that can make a SimpleDotCom object and run its methods. For the SimpleDotCom class, we really care about only the
checkYourself()

 method, although we
will

 have to implement the
setLocationCells()

 method in order to get the
checkYourself()

 method to run correctly.

Take a good look at the prepcode below for the
checkYourself()

 method (the
setLocationCells()

 method is a no-brainer setter method, so we’re not worried about it, but in a ‘real’ application we might want a more robust ‘setter’ method, which we
would

 want to test).

Then ask yourself, “If the checkYourself() method were implemented, what test code could I write that would prove to me the method is working correctly?”

 Based on this prepcode:

METHOD

String checkYourself(String userGuess)

GET

 the user guess as a String parameter

CONVERT

 the user guess to an
int

REPEAT

 with each of the location cells in the
int

 array

 //

COMPARE

 the user guess to the location cell

IF

 the user guess matches

INCREMENT

 the number of hits

// FIND OUT

 if it was the last location cell:

IF

 number of hits is 3,

RETURN

 “Kill” as the result

ELSE

 it was not a kill, so

RETURN

 “Hit”

 END IF

ELSE

 the user guess did not match, so

RETURN

 “Miss”

 END IF

 END REPEAT

END METHOD

 Here’s what we should test:

	Instantiate a SimpleDotCom object.

	Assign it a location (an array of 3 ints, like {2,3,4}).

	Create a String to represent a user guess (“2”, “0”, etc.).

	Invoke the checkYourself() method passing it the fake user guess.

	Print out the result to see if it’s correct (“passed” or “failed”).

There are no Dumb Questions

	

Q:

	

Q: Maybe I’m missing something here, but how exactly do you run a test on something that doesn’t yet exist!?

	
A:

	

A:

 You don’t. We never said you start by
running

 the test; you start by
writing

 the test. At the time you write the test code, you won’t have anything to run it against, so you probably won’t be able to compile it until you write ‘stub’ code that can compile, but that will always cause the test to fail (like, return null.)

	

Q:

	

Q: Then I still don’t see the point. Why not wait until the code is written, and then whip out the test code?

	
A:

	

A:

 The act of thinking through (and writing) the test code helps clarify your thoughts about what the method itself needs to do.

As soon as your implementation code is done, you already have test code just waiting to validate it. Besides, you
know

 if you don’t do it now, you’ll
never

 do it. There’s always something more interesting to do.

Ideally, write a little test code, then write
only

 the implementation code you need in order to pass that test. Then write a little
more

 test code and write
only

 the new implementation code needed to pass
that

 new test. At each test iteration, you run
all

 the previously-written tests, so that you always prove that your latest code additions don’t break previously-tested code.

 Test code for the SimpleDotCom class

 [image: image with no caption]

Sharpen your pencil

In the next couple of pages we implement the SimpleDotCom class, and then later we return to the test class. Looking at our test code above, what else should be added? What are we
not

 testing in this code, that we
should

 be testing for? Write your ideas (or lines of code) below:

 The checkYourself() method

 There isn’t a perfect mapping from prepcode to javacode; you’ll see a few adjustments. The prepcode gave us a much better idea of
what

 the code needs to do, and now we have to find the Java code that can do the
how

 .

In the back of your mind, be thinking about parts of this code you might want (or need) to improve. The numbers
 [image:]

 are for things (syntax and language features) you haven’t seen yet. They’re explained on the opposite page.

 [image: image with no caption]

 Just the new stuff

 The things we haven’t seen before are on this page. Stop worrying! The rest of the details are at the end of the chapter. This is just enough to let you keep going.

 [image: image with no caption]

There are no Dumb Questions

	

Q:

	

Q: What happens in Integer. parseInt() if the thing you pass isn’t a number? And does it recognize spelled-out numbers, like “three”?

	
A:

	

A:

 Integer.parseInt() works only on Strings that represent the ascii values for digits (0,1,2,3,4,5,6,7,8,9). If you try to parse something like “two” or “blurp”, the code will blow up at runtime. (By
blow up

 , we actually mean
throw an exception

 , but we don’t talk about exceptions until the Exceptions chapter. So for now,
blow up

 is close enough.)

	

Q:

	

Q: In the beginning of the book, there was an example of a

for

loop that was really different from this one — are there two different styles of

for

loops?

	
A:

	

A:

 Yes! From the first version of Java there has been a single kind of
for

 loop (explained later in this chapter) that looks like this:

for (int i = 0; i < 10; i++) {

 // do something 10 times

}

You can use this format for any kind of loop you need. But... beginning with Java 5.0 (Tiger), you can also use the
enhanced

 for loop (that’s the official description) when your loop needs to iterate over the elements in an array (or
another

 kind of collection, as you’ll see in the
next

 chapter). You can always use the plain old for loop to iterate over an array, but the
enhanced

 for loop makes it easier.

 Final code for SimpleDotCom and SimpleDotComTester

public class
SimpleDotComTestDrive

 {

 public static void
main

 (String[] args) {
 SimpleDotCom dot = new SimpleDotCom();
 int[] locations = {2,3,4};
 dot.setLocationCells(locations);
 String userGuess = "2";
 String result = dot.checkYourself(userGuess);
 }
}

public class
SimpleDotCom {

 int[] locationCells;
 int numOfHits = 0;

 public void
setLocationCells

(int[] locs) {
 locationCells = locs;
 }

 public String
checkYourself

(String stringGuess) {
 int guess = Integer.parseInt(stringGuess);
 String result = "miss";
 for (int cell : locationCells) {
 if (guess == cell) {
 result = "hit";
 numOfHits++;
 break;
 }
 } // out of the loop

 if (numOfHits ==
 locationCells.length) {
 result = "kill";
 }
 System.out.println(result);
 return result;
 } // close method
} // close class

There’s a little bug lurking here. It compiles and runs, but sometimes... don’t worry about it for now, but we
will

 have to face it a little later.

 Note

What should we see when we run this code?

The test code makes a SimpleDotCom object and gives it a location at 2,3,4. Then it sends a fake user guess of “2” into the checkYouself() method. If the code is working correctly, we should see the result print out:

java SimpleDotComTestDrive

hit

passed

Sharpen your pencil

We built the test class, and the SimpleDotCom class. But we still haven’t made the actual
game.

 Given the code on the opposite page, and the spec for the actual game, write in your ideas for prepcode for the game class. We’ve given you a few lines here and there to get you started. The actual game code is on the next page, so

don’t turn the page until you do this exercise!

You should have somewhere between 12 and 18 lines (including the ones we wrote, but
not

 including lines that have only a curly brace).

METHOD

public static void main (String [] args)

DECLARE

 an int variable to hold the number of user guesses, named
numOfGuesses

COMPUTE

 a random number between 0 and 4 that will be the starting location cell position

WHILE

 the dot com is still alive :

GET

 user input from the command line

The SimpleDotComGame needs to do this:

	Make the single SimpleDotCom Object.

	Make a location for it (three consecutive cells on a single row of seven virtual cells).

	Ask the user for a guess.

	Check the guess.

	Repeat until the dot com is dead .

	Tell the user how many guesses it took.

A complete game interaction

 [image: image with no caption]

 Prepcode for the SimpleDotComGame class

 Everything happens in main()

 There are some things you’ll have to take on faith. For example, we have one line of prepcode that says, “GET user input from command-line”. Let me tell you, that’s a little more than we want to implement from scratch right now. But happily, we’re using OO. And that means you get to ask some
other

 class/object to do something for you, without worrying about

how

 it does it. When you write prepcode, you should assume that
somehow

 you’ll be able to do whatever you need to do, so you can put all your brainpower into working out the logic.

public static void main (String [] args)

DECLARE

 an int variable to hold the number of user guesses, named
numOfGuesses,

 set it to 0.

MAKE

 a new SimpleDotCom instance

COMPUTE

 a random number between 0 and 4 that will be the starting location cell position

MAKE

 an int array with 3 ints using the randomly-generated number, that number incremented by 1, and that number incremented by 2 (example: 3,4,5)

INVOKE

 the
setLocationCells()

 method on the SimpleDotCom instance

DECLARE

 a boolean variable representing the state of the game, named
isAlive.

SET

 it to true

WHILE

 the dot com is still alive (isAlive == true) :

GET

 user input from the command line

// CHECK

 the user guess

INVOKE

 the
checkYourself()

 method on the SimpleDotCom instance

INCREMENT

numOfGuesses

 variable

// CHECK

 for dot com death

IF

 result is “kill”

SET

isAlive

 to false (which means we won’t enter the loop again)

PRINT

 the number of user guesses

 END IF

 END WHILE

END METHOD

 Metacognitive Tip

 [image: image with no caption]

Don’t work one part of the brain for too long a stretch at one time. Working just the left side of the brain for more than 30 minutes is like working just your left
arm

 for 30 minutes. Give each side of your brain a break by switching sides at regular intervals. When you shift to one side, the other side gets to rest and recover.

Left-brain activities include things like step-by-step sequences, logical problem-solving, and analysis, while the right-brain kicks in for metaphors, creative problem-solving, pattern-matching, and visualizing.

Bullet Points

	
 Your Java program should start with a high-level design.

	Typically you’ll write three things when you create a new class:

	

prepcode

	

testcode

	

real (Java) code

	Prepcode should describe
what

 to do, not
how

 to do it. Implementation comes later.

	Use the prepcode to help design the test code.

	Write test code
before

 you implement the methods.

	Choose
for

 loops over
while

 loops when you know how many times you want to repeat the loop code.

	Use the pre/post
increment

 operator to add 1 to a variable (x++;)

	Use the pre/post
decrement

 to subtract 1 from a variable (x--;)

	Use

Integer.parseInt()

 to get the int value of a String.

	

Integer.parseInt()

 works only if the String represents a digit (“0”,”1”,”2”, etc.)

	Use
break

 to leave a loop early (i.e. even if the boolean test condition is still true).

 [image: image with no caption]

 The game’s main() method

Just as you did with the SimpleDotCom class, be thinking about parts of this code you might want (or need) to improve. The numbered things
 [image:]

 are for stuff we want to point out. They’re explained on the opposite page. Oh, if you’re wondering why we skipped the test code phase for this class, we don’t need a test class for the game. It has only one method, so what would you do in your test code? Make a separate class that would call main() on this class? We didn’t bother.

 [image: image with no caption]

 random() and getUserInput()

 Two things that need a bit more explaining, are on this page. This is just a quick look to keep you going; more details on the GameHelper class are at the end of this chapter.

	Make a random number

 [image: image with no caption]

	Getting user input using the GameHelper class

 [image: image with no caption]

 One last class: GameHelper

We made the

dot com

class.

We made the

game

class.

All that’s left is the

helper

class

 — the one with the getUserInput() method. The code to get command-line input is more than we want to explain right now. It opens up way too many topics best left for later. (Later, as in Chapter 14
 .)

 [image: image with no caption]

Just copy[4
]
 the code below and compile it into a class named GameHelper. Drop all three classes (SimpleDotCom, SimpleDotComGame, GameHelper) into the same directory, and make it your working directory.

Whenever you see the
 [image:]

 logo, you’re seeing code that you have to type as-is and take on faith. Trust it. You’ll learn how that code works
later

 .

Ready-bake Code

import java.io.;

public class GameHelper {

public String getUserInput(String prompt) {

String inputLine = null;

System.out.print(prompt + " ");

try {

BufferedReader is = new BufferedReader(

new InputStreamReader(System.in));

inputLine = is.readLine();

if (inputLine.length() == 0) return null;

} catch (IOException e) {

System.out.println("IOException: " + e);

}

return inputLine;

}

}

 Let’s play

Here’s what happens when we run it and enter the numbers 1,2,3,4,5,6. Lookin’ good.

 A complete game interaction

(your mileage may vary)

 [image: image with no caption]

 What’s this? A bug?

 Gasp!

Here’s what happens when we enter 1,1,1.

 A different game interaction

(yikes)

 [image: image with no caption]

Sharpen your pencil

 [image: image with no caption]

It’s a cliff-hanger!

Will we

find

 the bug?

Will we

fix

 the bug?

Stay tuned for the next chapter, where we answer these questions and more...

And in the meantime, see if you can come up with ideas for what went wrong and how to fix it.

 More about for
 loops

 We’ve covered all the game code for
this

 chapter (but we’ll pick it up again to finish the deluxe version of the game in the next chapter). We didn’t want to interrupt your work with some of the details and background info, so we put it back here. We’ll start with the details of for loops, and if you’re a C++ programmer, you can just skim these last few pages...

 Regular (non-enhanced) for loops

 [image: image with no caption]

What it means in plain English:

 “Repeat 100 times.”

How the compiler sees it:

* create a variable
i

 and set it to 0.

* repeat while
i

 is less than 100.

* at the end of each loop iteration, add 1 to
i

Part One:

initialization

Use this part to declare and initialize a variable to use within the loop body. You’ll most often use this variable as a counter. You can actually initialize more than one variable here, but we’ll get to that later in the book.

Part Two:

boolean test

This is where the conditional test goes. Whatever’s in there, it
must

 resolve to a boolean value (you know,

true

 or

false

). You can have a test, like (x >= 4), or you can even invoke a method that returns a boolean.

Part Three:

iteration expression

In this part, put one or more things you want to happen with each trip through the loop. Keep in mind that this stuff happens at the
end

 of each loop.

repeat for 100 reps:

 [image: image with no caption]

 Trips through a loop

for (int i = 0; i < 8; i++) {

System.out.println(i);

}

System.out.println("done");

 [image: image with no caption]

 Difference between for
 and while

 A
while

 loop has only the boolean test; it doesn’t have a built-in initialization or iteration expression. A
while

 loop is good when you don’t know how many times to loop and just want to keep going while some condition is true. But if you
know

 how many times to loop (e.g. the length of an array, 7 times, etc.), a
for

 loop is cleaner. Here’s the loop above rewritten using
while:

 [image: image with no caption]

output:

 [image: image with no caption]

	

++ --

Pre and Post Increment/Decrement Operator

The shortcut for adding or subtracting 1 from a variable.

x++;

is the same as:

x = x + 1;

They both mean the same thing in this context: “add 1 to the current value of x” or “
increment

 x by 1” And:

x--;

is the same as:

x = x - 1;

Of course that’s never the whole story. The placement of the operator (either before or after the variable) can affect the result. Putting the operator
before

 the variable (for example, ++x), means, “
first

 , increment x by 1, and
then

 use this new value of x.” This only matters when the ++x is part of some larger expression rather than just in a single statement.

int x = 0; int z = ++x;

produces: x is 1, z is 1

But putting the ++
after

 the x give you a different result:

int x = 0; int z = x++;

produces: x is 1, but

z is 0

 ! z gets the value of x and
then

 x is incremented.

 The enhanced
 for loop

Beginning with Java 5.0 (Tiger), the Java language has a second kind of
for

 loop called the
enhanced for

 , that makes it easier to iterate over all the elements in an array or other kinds of collections (you’ll learn about
other

 collections in the next chapter). That’s really all that the enhanced for gives you — a simpler way to walk through all the elements in the collection, but since it’s the most common use of a
for

 loop, it was worth adding it to the language. We’ll revisit the
enhanced for loop

 in the next chapter, when we talk about collections that
aren’t

 arrays.

 [image: image with no caption]

What it means in plain English:

 “For each element in nameArray, assign the element to the ‘name’ variable, and run the body of the loop.”

How the compiler sees it:

* Create a String variable called
name

 and set it to null.

* Assign the first value in
nameArray

 to name.

* Run the body of the loop (the code block bounded by curly braces).

* Assign the next value in
nameArray

 to name.

* Repeat while
there are still elements in the array.

 Note

Note: depending on the programming language they’ve used in the past, some people refer to the enhanced for as the “for each” or the “for in” loop, because that’s how it reads: “for EACH thing IN the collection...”

Part One:

iteration variable declaration

Use this part to declare and initialize a variable to use within the loop body. With each iteration of the loop, this variable will hold a different element from the collection. The type of this variable must be compatible with the elements in the array! For example, you can’t declare an
int

 iteration variable to use with a
String[]

 array.

Part Two:

the actual collection

This must be a reference to an array or other collection. Again, don’t worry about the
other

 non-array kinds of collections yet — you’ll see them in the next chapter.

Converting a String to an int

int guess = Integer.parseInt(stringGuess);

 The user types his guess at the command-line, when the game prompts him. That guess comes in as a String (“2”, “0”, etc.), and the game passes that String into the checkYourself() method.

But the cell locations are simply ints in an array, and you can’t compare an int to a String.

For example,

this won’t work:

String num = “2”;

int x = 2;

if (x == num) // horrible explosion!

Trying to compile that makes the compiler laugh and mock you:

operator == cannot be applied to

int,java.lang.String

if (x == num) { }

^

So to get around the whole apples and oranges thing, we have to make the
String

 “2” into the
int

 2. Built into the Java class library is a class called Integer (that’s right, an Integer
class

 , not the int
primitive

), and one of its jobs is to take Strings that
represent

 numbers and convert them into
actual

 numbers.

 [image: image with no caption]

 Casting primitives

 [image: image with no caption]

In Chapter 3
 we talked about the sizes of the various primitives, and how you can’t shove a big thing directly into a small thing:

long y = 42;

int x = y;

// won't compile

A
long

 is bigger than an
int

 and the compiler can’t be sure where that
long

 has been. It might have been out drinking with the other longs, and taking on really big values. To force the compiler to jam the value of a bigger primitive variable into a smaller one, you can use the
cast

 operator. It looks like this:

long y = 42;

// so far so good

int x = (int) y;

// x = 42 cool!

Putting in the cast tells the compiler to take the value of y, chop it down to int size, and set x equal to whatever is left. If the value of y was bigger than the maximum value of x, then what’s left will be a weird (but calculable[5
]
) number:

long y = 40002;

// 40002 exceeds the 16-bit limit of a short

short x = (short) y;

// x now equals -25534!

Still, the point is that the compiler lets you do it. And let’s say you have a floating point number, and you just want to get at the whole number (
int

) part of it:

float f = 3.14f;

int x = (int) f;

// x will equal 3

And don’t even
think

 about casting anything to a boolean or vice versa — just walk away.

BE the JVM

 [image: image with no caption]

Exercise

The Java file on this page represents a complete source file. Your job is to play JVM and determine what would be the output when the program runs?

 [image: image with no caption]

Code Magnets

 [image: image with no caption]

Exercise

A working Java program is all scrambled up on the fridge. Can you reconstruct the code snippets to make a working Java program that produces the output listed below? Some of the curly braces fell on the floor and they were too small to pick up, so feel free to add as many of those as you need!

 [image: image with no caption]

 [image: image with no caption]

JavaCross

 [image: image with no caption]

 How does a crossword puzzle help you learn Java? Well, all of the words
are

 Java related. In addition, the clues provide metaphors, puns, and the like. These mental twists and turns burn alternate routes to Java knowledge, right into your brain!

Across

1. Fancy computer word for build

4. Multi-part loop

6. Test first

7. 32 bits

10. Method’s answer

11. Prepcode-esque

13. Change

15. The big toolkit

17. An array unit

18. Instance or local

20. Automatic toolkit

22. Looks like a primitive, but..

25. Un-castable

26. Math method

28. Converter method

29. Leave early

Down

2. Increment type

3. Class’s workhorse

5. Pre is a type of _____

6. For’s iteration ______

7. Establish first value

8. While or For

9. Update an instance variable

12. Towards blastoff

14. A cycle

16. Talkative package

19. Method messenger (abbrev.)

21. As if

23. Add after

24. Pi house

26. Compile it and ____

27. ++ quantity

Mixed Messages

A short Java program is listed below. One block of the program is missing! Your challenge is to match the candidate block of code (on the left), with the output that you’d see if the block were inserted. Not all the lines of output will be used, and some of the lines of output might be used more than once. Draw lines connecting the candidate blocks of code with their matching command-line output.

 [image: image with no caption]

Exercise Solutions

 [image: image with no caption]

 [image: image with no caption]

Puzzle Solutions

 [image: image with no caption]

[4
]
 We know how much you enjoy typing, but for those rare moments when you’d rather do something else, we’ve made the Ready-bake Code available on wickedlysmart.com.

[5
]

It involves sign bits, binary, ‘two’s complement’ and other geekery, all of which are discussed at the beginning of Appendix B
 .

 Chapter 6. Get to Know the Java API: Using the Java Library

 [image: image with no caption]

Java ships with hundreds of pre-built classes.

 You don’t have to reinvent the wheel if you know how to find what you need in the Java library, known as the
Java API

 .
You’ve got better things to do

 . If you’re going to write code, you might as well write
only

 the parts that are truly custom for your application. You know those programmers who walk out the door each night at 5 PM? The ones who don’t even show
up

 until 10 AM?
They use the Java API.

 And about eight pages from now, so will you. The core Java library is a giant pile of classes just waiting for you to use like building blocks, to assemble your own program out of largely pre-built code. The Ready-bake Java we use in this book is code you don’t have to create from scratch, but you still have to type it. The Java API is full of code you don’t even have to
type

 . All you need to do is learn to use it.

 In our last chapter, we left you with the cliff-hanger. A bug

 How it’s supposed to look

Here’s what happens when we run it and enter the numbers 1,2,3,4,5,6. Lookin’ good.

 A complete game interaction

(your mileage may vary)

 [image: image with no caption]

 How the bug looks

Here’s what happens when we enter 2,2,2.

 A different game interaction

(yikes)

 [image: image with no caption]

In the current version, once you get a hit, you can simply repeat that hit two more times for the kill!

 So what happened?

 [image: image with no caption]

 How do we fix it ?

We need a way to know whether a cell has already been hit. Let’s run through some possibilities, but first, we’ll look at what we know so far...

We have a virtual row of 7 cells, and a DotCom will occupy three consecutive cells somewhere in that row. This virtual row shows a DotCom placed at cell locations 4,5 and 6.

 [image: image with no caption]

The DotCom has an instance variable — an int array — that holds that DotCom object’s cell locations.

 [image: image with no caption]

 Note

	

Option one

We could make a second array, and each time the user makes a hit, we store that hit in the second array, and then check that array each time we get a hit, to see if that cell has been hit before.

 [image: image with no caption]

 Option one is too clunky

Option one seems like more work than you’d expect. It means that each time the user makes a hit, you have to change the state of the
second

 array (the ‘hitCells’ array), oh -- but first you have to CHECK the ‘hitCells’ array to see if that cell has already been hit anyway. It would work, but there’s got to be something better...

 Note

	

Option two

We could just keep the one original array, but change the value of any hit cells to -1. That way, we only have ONE array to check and manipulate

 [image: image with no caption]

 Option two is a little better, but still pretty clunky

Option two is a little less clunky than option one, but it’s not very efficient. You’d still have to loop through all three slots (index positions) in the array, even if one or more are already invalid because they’ve been ‘hit’ (and have a -1 value). There has to be something better...

 Note

	

Option three

We delete each cell location as it gets hit, and then modify the array to be smaller. Except arrays can’t change their size, so we have to make a
new

 array and copy the remaining cells from the old array into the new smaller array.

 [image: image with no caption]

Option three would be much better if the array could shrink, so that we wouldn’t have to make a new smaller array, copy the remaining values in, and reassign the reference.

 [image: image with no caption]

 [image: image with no caption]

 Wake up and smell the library

As if by magic, there really
is

 such a thing.

But it’s not an array, it’s an
ArrayList

 .

A class in the core Java library (the API).

The Java Standard Edition (which is what you have unless you’re working on the Micro Edition for small devices and believe me,
you’d know

) ships with hundreds of pre-built classes. Just like our Ready-Bake code except that these built-in classes are already compiled.

That means no typing

 .

Just use ‘em.

	

ArrayList

	

add(Object elem)

	
	
Adds the object parameter to the list.

	

remove(int index)

	
	
Removes the object at the index parameter.

	

remove(Object elem)

	
	
Removes this object (if it’s in the ArrayList).

	

contains(Object elem)

	
	
Returns ‘true’ if there’s a match for the object parameter

	

isEmpty()

	
	
Returns ‘true’ if the list has no elements

	

indexOf(Object elem)

	
	
Returns either the index of the object parameter, or -1

	

size()

	
	
Returns the number of elements currently in the list

	

get(int index)

	
	
Returns the object currently at the index parameter

 Note

One of a gazillion classes in the Java library.

You can use it in your code as if you wrote it yourself.

 Note

(Note: the add(Object elem) method actually looks a little stranger than the one we’ve shown here... we’ll get to the real one later in the book. For now, just think of it as an add() method that takes the object you want to add.)

 Note

This is just a sample of SOME of the methods in ArrayList.

 Some things you can do with ArrayList

 [image: image with no caption]

Sharpen your pencil

 Fill in the rest of the table below by looking at the ArrayList code on the left and putting in what you think the code might be if it were using a regular array instead. We don’t expect you to get all of them exactly right, so just make your best guess.

 [image: image with no caption]

There are no Dumb Questions

	

Q:

	

Q: So ArrayList is cool, but how would I know it exists?

	
A:

	

A:

 The question is really, “How do I
know

 what’s in the API?” and that’s the key to your success as a Java programmer. Not to mention your key to being as lazy as possible while still managing to build software. You might be amazed at how much time you can save when somebody else has already done most of the heavy lifting, and all you have to do is step in and create the fun part.

But we digress... the short answer is that you spend some time learning what’s in the core API. The long answer is at the end of this chapter, where you’ll learn
how

 to do that.

	

Q:

	

Q: But that’s a pretty big issue. Not only do I need to know that the Java library comes with ArrayList, but more importantly I have to know that ArrayList is the thing that can do what I want! So how do I go from a need-to-do-something to a-way-to-do-it using the API?

	
A:

	

A:

 Now you’re really at the heart of it. By the time you’ve finished this book, you’ll have a good grasp of the language, and the rest of your learning curve really is about knowing how to get from a problem to a solution, with you writing the least amount of code. If you can be patient for a few more pages, we start talking about it at the end of this chapter.

Java Exposed

This week’s interview: ArrayList, on arrays

HeadFirst:

 So, ArrayLists are like arrays, right?

ArrayList:

 In their dreams!

I

 am an
object

 thank you very much.

HeadFirst:

 If I’m not mistaken, arrays are objects too. They live on the heap right there with all the other objects.

ArrayList:

 Sure arrays go on the heap,

duh

 , but an array is still a wanna-be ArrayList. A poser. Objects have state
and

 behavior, right? We’re clear on that. But have you actually tried calling a method on an array?

HeadFirst:

 Now that you mention it, can’t say I have. But what method would I call, anyway? I only care about calling methods on the stuff I put
in

 the array, not the array itself. And I can use array syntax when I want to put things in and take things out of the array.

ArrayList:

 Is that so? You mean to tell me you actually
removed

 something from an array? (Sheesh, where do they
train

 you guys? McJava’s?)

HeadFirst:

 Of
course

 I take something out of the array. I say Dog d = dogArray[1] and I get the Dog object at index 1 out of the array.

ArrayList:

 Allright, I’ll try to speak slowly so you can follow along. You were
not

 , I repeat
not

 , removing that Dog from the array. All you did was make a copy of the
reference to the Dog

 and assign it to another Dog variable.

HeadFirst:

 Oh, I see what you’re saying. No I didn’t actually remove the Dog object from the array. It’s still there. But I can just set its reference to null, I guess.

ArrayList:

 But I’m a first-class object, so I have methods and I can actually, you know,
do

 things like remove the Dog’s reference from myself, not just set it to null. And I can change my size,
dynamically

 (look it up). Just try to get an
array

 to do that!

HeadFirst:

 Gee, hate to bring this up, but the rumor is that you’re nothing more than a glorified but less-efficient array. That in fact you’re just a wrapper for an array, adding extra methods for things like resizing that I would have had to write myself. And while we’re at it,
you can’t even hold primitives

 ! Isn’t that a big limitation?

ArrayList:

 I can’t
believe

 you buy into that urban legend. No, I am
not

 just a less-efficient array. I will admit that there are a few
extremely

 rare situations where an array might be just a tad, I repeat,
tad

 bit faster for certain things. But is it worth the
miniscule

 performance gain to give up all this
power

 ? Still, look at all this
flexibility

 . And as for the primitives, of
course

 you can put a primitive in an ArrayList, as long as it’s wrapped in a primitive wrapper class (you’ll see a lot more on that in Chapter 10
). And as of Java 5.0, that wrapping (and unwrapping when you take the primitive out again) happens automatically. And allright, I’ll
acknowledge

 that yes, if you’re using an ArrayList of
primitives

 , it probably is faster with an array, because of all the wrapping and unwrapping, but still... who really uses primitives
these

 days?

Oh, look at the time!
I’m late for Pilates

 . We’ll have to do this again sometime.

 Comparing ArrayList to a regular array

 [image: image with no caption]

Notice how with ArrayList, you’re working with an object of type ArrayList, so you’re just invoking regular old methods on a regular old object, using the regular old dot operator.

With an
array

 , you use
special array syntax

 (like myList[0] = foo) that you won’t use anywhere else except with arrays. Even though an array
is

 an object, it lives in its own special world and you can’t invoke any methods on it, although you can access its one and only instance variable,
length

 .

 Comparing ArrayList to a regular array

	

A plain old array has to know its size at the time it’s created.

But for ArrayList, you just make an object of type ArrayList. Every time. It never needs to know how big it should be, because it grows and shrinks as objects are added or removed.

 [image: image with no caption]

	

To put an object in a regular array, you must assign it to a specific location.

(An index from 0 to one less than the length of the array.)

 [image: image with no caption]

If that index is outside the boundaries of the array (like, the array was declared with a size of 2, and now you’re trying to assign something to index 3), it blows up at runtime.

With ArrayList, you can specify an index using the
add(anInt, anObject)

 method, or you can just keep saying
add(anObject)

 and the ArrayList will keep growing to make room for the new thing.

 [image: image with no caption]

	

Arrays use array syntax that’s not used anywhere else in Java.

But ArrayLists are plain old Java objects, so they have no special syntax.

 [image: image with no caption]

	

ArrayLists in Java 5.0 are parameterized.

We just said that unlike arrays, ArrayLists have no special syntax. But they
do

 use something special that was added to Java 5.0 Tiger —

parameterized types

 .

 [image: image with no caption]

Prior to Java 5.0, there was no way to declare the
type

 of things that would go in the ArrayList, so to the compiler, all ArrayLists were simply heterogenous collections of objects. But now, using the <typeGoesHere> syntax, we can declare and create an ArrayList that knows (and restricts) the types of objects it can hold. We’ll look at the details of parameterized types in ArrayLists in the Collections chapter, so for now, don’t think too much about the angle bracket <> syntax you see when we use ArrayLists. Just know that it’s a way to force the compiler to allow only a specific type of object
(the type in angle brackets)

 in the ArrayList.

 Let’s fix the DotCom code

Remember, this is how the buggy version looks:

 [image: image with no caption]

 New and improved DotCom class

 [image: image with no caption]

 [image: image with no caption]

 Let’s build the REAL game: “Sink a Dot Com”

 We’ve been working on the ‘simple’ version, but now let’s build the real one. Instead of a single row, we’ll use a grid. And instead of one DotCom, we’ll use three.

Goal

 : Sink all of the computer’s Dot Coms in the fewest number of guesses. You’re given a rating level based on how well you perform.

Setup

 : When the game program is launched, the computer places three Dot Coms, randomly, on the
virtual 7 x 7 grid

 . When that’s complete, the game asks for your first guess.

How you play:

 We haven’t learned to build a GUI yet, so this version works at the command-line. The computer will prompt you to enter a guess (a cell), which you’ll type at the command-line (as “A3”, “C5”, etc.). In response to your guess, you’ll see a result at the command-line, either “hit”, “miss”, or “You sunk Pets.com” (or whatever the lucky Dot Com of the day is). When you’ve sent all three Dot Coms to that big 404 in the sky, the game ends by printing out your rating.

 [image: image with no caption]

You’re going to build the Sink a Dot Com game, with a 7 x 7 grid and three Dot Coms. Each Dot Com takes up three cells.

 part of a game interaction

 [image: image with no caption]

 What needs to change?

We have three classes that need to change: the DotCom class (which is now called DotCom instead of SimpleDotCom), the game class (DotComBust) and the game helper class (which we won’t worry about now).

	

DotCom class

	

Add a

name

variable

 to hold the name of the DotCom (“Pets. com”, “Go2.com”, etc.) so each DotCom can print its name when it’s killed (see the output screen on the opposite page).

	

DotComBust class (the game)

	

Create

three

DotComs instead of one.

	

Give each of the three DotComs a

name

 . Call a setter method on each DotCom instance, so that the DotCom can assign the name to its name instance variable.

	

Put the DotComs on a grid rather than just a single row, and do it for all three DotComs.

This step is now way more complex than before, if we’re going to place the DotComs randomly. Since we’re not here to mess with the math, we put the algorithm for giving the DotComs a location into the GameHelper (Ready-bake) class.

	

Check each user guess

with all three DotComs

 ,
instead of just one.

	

Keep playing the game

 (i.e accepting user guesses and checking them with the remaining DotComs)

until there are no more live DotComs.

	

Get out of main.

 We kept the simple one in main just to... keep it simple. But that’s not what we want for the
real

 game.

 [image: image with no caption]

 Who does what in the DotComBust game (and when)

 [image: image with no caption]

 Prep code for the real
 DotComBust class

 [image: image with no caption]

The DotComBust class has three main jobs: set up the game, play the game until the DotComs are dead, and end the game. Although we could map those three jobs directly into three methods, we split the middle job (play the game) into
two

 methods, to keep the granularity smaller. Smaller methods (meaning smaller chunks of functionality) help us test, debug, and modify the code more easily.

Variable Declarations

DECLARE

 and instantiate the
GameHelper

 instance variable, named
helper.

DECLARE

 and instantiate an
ArrayList

 to hold the list of DotComs (initially three) Call it
dotComsList

 .

DECLARE

 an int variable to hold the number of user guesses (so that we can give the user a score at the end of the game). Name it
numOfGuesses

 and set it to 0.

Method Declarations

DECLARE

 a
setUpGame()

 method to create and initialize the DotCom objects with names and locations. Display brief instructions to the user.

DECLARE

 a
startPlaying()

 method that asks the player for guesses and calls the checkUserGuess() method until all the DotCom objects are removed from play.

DECLARE

 a
checkUserGuess()

 method that loops through all remaining DotCom objects and calls each DotCom object’s checkYourself() method.

DECLARE

 a
finishGame()

 method that prints a message about the user’s performance, based on how many guesses it took to sink all of the DotCom objects.

Method Implementations

METHOD

 :

void setUpGame()

// make three DotCom objects and name them

CREATE

 three DotCom objects.

SET

 a name for each DotCom.

ADD

 the DotComs to the
dotComsList

 (the ArrayList).

REPEAT

 with each of the DotCom objects in the
dotComsList

 array

CALL

 the
placeDotCom()

 method on the helper object, to get a randomly-selected

 location for this DotCom (three cells, vertically or horizontally aligned, on a 7 X 7 grid).

SET

 the location for each DotCom based on the result of the
placeDotCom()

 call.

 END REPEAT

END METHOD

METHOD

 :

void startPlaying()

REPEAT

 while any DotComs exist

GET

 user input by calling the helper
getUserInput()

 method

EVALUATE

 the user’s guess by
checkUserGuess()

 method

 END REPEAT

END METHOD

METHOD

 :

void checkUserGuess(String userGuess)

// find out if there’s a hit (and kill) on any DotCom

INCREMENT

 the number of user guesses in the
numOfGuesses

 variable

SET

 the local
result

 variable (a
String

) to “miss”, assuming that the user’s guess will be a miss.

REPEAT

 with each of the DotObjects in the
dotComsList

 array

EVALUATE

 the user’s guess by calling the DotCom object’s
checkYourself()

 method

SET

 the result variable to “hit” or “kill” if appropriate

IF

 the result is “kill”,

REMOVE

 the DotCom from the
dotComsList

 END REPEAT

DISPLAY

 the
result

 value to the user

END METHOD

METHOD

 :

void finishGame()

DISPLAY

 a generic “game over” message, then:

IF

 number of user guesses is small,

DISPLAY

 a congratulations message

ELSE

DISPLAY

 an insulting one

 END IF

END METHOD

Sharpen your pencil

How should we go from prep code to the final code? First we start with test code, and then test and build up our methods bit by bit. We won’t keep showing you test code in this book, so now it’s up to you to think about what you’d need to know to test these methods. And which method do you test and write first? See if you can work out some prep code for a set of tests. Prep code or even bullet points are good enough for this exercise, but if you want to try to write the
real

 test code (in Java), knock yourself out.

 [image: image with no caption]

Sharpen your pencil

Annotate the code yourself!

Match the annotations at the bottom of each page with the numbers in the code. Write the number in the slot in front of the corresponding annotation.

You’ll use each annotation just once, and you’ll need all of the annotations.

 [image: image with no caption]

Whatever you do, DON’T turn the page!

Not until you’ve finished this exercise.

Our version is on the next page.

 [image: image with no caption]

 [image: image with no caption]

 The final version of the DotCom class

 [image: image with no caption]

 Super Powerful Boolean Expressions

 So far, when we’ve used boolean expressions for our loops or if
 tests, they’ve been pretty simple. We will be using more powerful boolean expressions in some of the Ready-Bake code you’re about to see, and even though we know you wouldn’t peek, we thought this would be a good time to discuss how to energize your expressions.

‘And’ and ‘Or’ Operators (&&, ||)

Let’s say you’re writing a chooseCamera() method, with lots of rules about which camera to select. Maybe you can choose cameras ranging from $50 to $1000, but in some cases you want to limit the price range more precisely. You want to say something like:

‘If the price
range

 is between $300

and

 $400 then choose X.’

if (price >= 300 && price < 400) {
 camera = "X";
}

Let’s say that of the ten camera brands available, you have some logic that applies to only a
few

 of the list:

if (brand.equals("A") || brand.equals("B")) {
 // do stuff for only brand A or brand B
}

Boolean expressions can get really big and complicated:

if ((zoomType.equals("optical") &&
 (zoomDegree >= 3 && zoomDegree <= 8)) ||
 (zoomType.equals("digital") &&
 (zoomDegree >= 5 && zoomDegree <= 12))) {
 // do appropriate zoom stuff
}

If you want to get
really

 technical, you might wonder about the
precedence

 of these operators. Instead of becoming an expert in the arcane world of precedence, we recommend that you

use parentheses

 to make your code clear.

Not equals (!= and !)

Let’s say that you have a logic like, “of the ten available camera models, a certain thing is
true for all but one

 .“

if (model != 2000) {
 // do non-model 2000 stuff
}

or for comparing objects like strings...

 if (!brand.equals("X")) {
 // do non-brand X stuff
}

Short Circuit Operators (&& , ||)

The operators we’ve looked at so far, && and ||, are known as

short circuit

 operators. In the case of &&, the expression will be true only if
both

 sides of the && are true. So if the JVM sees that the left side of a && expression is false, it stops right there! Doesn’t even bother to look at the right side.

Similarly, with ||, the expression will be true if
either

 side is true, so if the JVM sees that the left side is true, it declares the entire statement to be true and doesn’t bother to check the right side.

Why is this great? Let’s say that you have a reference variable and you’re not sure whether it’s been assigned to an object. If you try to call a method using this null reference variable (i.e. no object has been assigned), you’ll get a NullPointerException. So, try this:

if (refVar != null &&
 refVar.isValidType()) {
 // do 'got a valid type' stuff
}

Non Short Circuit Operators (& , |)

When used in boolean expressions, the & and | operators act like their && and || counterparts, except that they force the JVM to
always

 check
both

 sides of the expression. Typically, & and | are used in another context, for manipulating bits.

Ready-bake Code

 This is the helper class for the game. Besides the user input method (that prompts the user and reads input from the command-line), the helper’s Big Service is to create the cell locations for the DotComs. If we were you, we’d just back away slowly from this code, except to type it in and compile it. We tried to keep it fairly small so you wouldn’t have to type so much, but that means it isn’t the most readable code. And remember, you won’t be able to compile the DotComBust game class until you have this class.

 [image: image with no caption]

 [image: image with no caption]

 Note

Note: For extra credit, you might try ‘un-commenting’ the System.out.print(ln)’s in the placeDotCom() method, just to watch it work! These print statements will let you “cheat“ by giving you the location of the DotComs, but it will help you test it.

 Using the Library (the Java API)

 You made it all the way through the DotComBust game, thanks to the help of ArrayList. And now, as promised, it’s time to learn how to fool around in the Java library.

In the Java API, classes are grouped into packages.

 [image: image with no caption]

To use a class in the API, you have to know which package
 the class is in.

Every class in the Java library belongs to a package. The package has a name, like
javax.swing

 (a package that holds some of the Swing GUI classes you’ll learn about soon). ArrayList is in the package called
java.util

 , which surprise surprise, holds a pile of
utility

 classes. You’ll learn a lot more about packages in Chapter 17
 , including how to put your
own

 classes into your
own

 packages. For now though, we’re just looking to
use

 some of the classes that come with Java.

Using a class from the API, in your own code, is simple. You just treat the class as though you wrote it yourself... as though you compiled it, and there it sits, waiting for you to use it. With one big difference: somewhere in your code you have to indicate the
full

 name of the library class you want to use, and that means package name + class name.

Even if you didn’t know it,

you’ve already been using classes from a package.

 System (System.out.println), String, and Math (Math.random()), all belong to the
java.lang

 package.

You have to know the full
 name[6
]
 of the class you want to use in your code.

ArrayList is not the
full

 name of ArrayList, just as ‘Kathy’ isn’t a full name (unless it’s like Madonna or Cher, but we won’t go there). The full name of ArrayList is actually:

 [image: image with no caption]

There are no Dumb Questions

	

Q:

	

Q: Why does there have to be a full name? Is that the only purpose of a package?

	
A:

	

A:

 Packages are important for three main reasons. First, they help the overall organization of a project or library. Rather than just having one horrendously large pile of classes, they’re all grouped into packages for specific kinds of functionality (like GUI, or data structures, or database stuff, etc.)

Second, packages give you a name-scoping, to help prevent collisions if you and 12 other programmers in your company all decide to make a class with the same name. If you have a class named Set and someone else (including the Java API) has a class named Set, you need some way to tell the JVM
which

 Set class you’re trying to use.

Third, packages provide a level of security, because you can restrict the code you write so that only other classes in the same package can access it. You’ll learn all about that in Chapter 17
 .

	

Q:

	

Q: OK, back to the name collision thing. How does a full name really help? What’s to prevent two people from giving a class the same package name?

	
A:

	

A:

 Java has a naming convention that usually prevents this from happening, as long as developers adhere to it. We’ll get into that in more detail in Chapter 17
 .

You have to tell Java which ArrayList you want to use. You have two options:

	

IMPORT

Put an import statement at the top of your source code file:

import java.util.ArrayList;

public class MyClass {... }

OR

	

TYPE

Type the full name everywhere in your code. Each time you use it.
Anywhere

 you use it.

When you declare and/or instantiate it:

java.util.ArrayList<Dog> list = new java.util.ArrayList<Dog>();

When you use it as an argument type:

public void go(java.util.ArrayList<Dog> list) { }

When you use it as a return type:

public java.util.ArrayList<Dog> foo() {...}

Bullet Points

	

ArrayList

 is a class in the Java API.

	To put something into an ArrayList, use
add().

	To remove something from an ArrayList use
remove().

	To find out where something is (and if it is) in an ArrayList, use i
ndexOf().

	To find out if an ArrayList is empty, use
isEmpty().

	To get the size (number of elements) in an ArrayList, use the
size()

method

 .

	To get the
length

 (number of elements) in a regular old array, remember, you use the length
variable

 .

	An ArrayList
resizes dynamically

 to whatever size is needed. It grows when objects are added, and it
shrinks

 when objects are removed.

	You declare the type of the array using a
type parameter

 , which is a type name in angle brackets. Example: ArrayList<Button> means the ArrayList will be able to hold only objects of type Button (or subclasses of Button as you’ll learn in the next couple of chapters).

	Although an ArrayList holds objects and not primitives, the compiler will automatically “wrap” (and “unwrap” when you take it out) a primitive into an Object, and place that object in the ArrayList instead of the primitive. (More on this feature later in the book.)

	Classes are grouped into packages.

	A class has a full name, which is a combination of the package name and the class name. Class ArrayList is really java.util.ArrayList.

	To use a class in a package other than java. lang, you must tell Java the full name of the class.

	You use either an import statement at the top of your source code, or you can type the full name every place you use the class in your code.

Where’d that ‘x’ come from?

(or, what does it mean when a package starts with javax?)

 [image: image with no caption]

In the first and second versions of Java (1.02 and 1.1), all classes that shipped with Java (in other words, the standard library) were in packages that began with

java

 . There was always

java.lang

 , of course — the one you don’t have to import. And there was

java.net, java.io, java.util

 (although there was no such thing as ArrayList way back then), and a few others, including the

java.awt

 package that held GUI-related classes.

Looming on the horizon, though, were other packages not included in the standard library. These classes were known as

extensions,

 and came in two main flavors:
standard

 , and
not

 standard. Standard extensions were those that Sun considered official, as opposed to experimental, early access, or beta packages that might or might not ever see the light of day.

Standard extensions, by convention, all began with an ‘x’ appended to the regular

java

 package starter. The mother of all standard extensions was the Swing library. It included several packages, all of which began with

javax.swing

 .

But standard extensions can get promoted to first-class, ships-with-Java, standard-out-of-the-box library packages. And that’s what happened to Swing, beginning with version 1.2 (which eventually became the first version dubbed ‘Java 2’).

“Cool”, everyone thought (including us). “Now everyone who has Java will have the Swing classes, and we won’t have to figure out how to get those classes installed with our end-users.”

Trouble was lurking beneath the surface, however, because when packages get promoted, well of COURSE they have to start with

java

 , not

javax

 . Everyone KNOWS that packages in the standard library don’t have that “x”, and that only extensions have the “x”. So, just (and we mean just) before version 1.2 went final, Sun changed the package names and deleted the “x” (among other changes). Books were printed and in stores featuring Swing code with the new names. Naming conventions were intact. All was right with the Java world.

Except the 20,000 or so screaming developers who realized that with that simple name change came disaster! All of their Swing-using code had to be changed! The horror! Think of all those import statements that started with

javax

 ...

And in the final hour, desperate, as their hopes grew thin, the developers convinced Sun to “screw the convention, save our code”. The rest is history. So when you see a package in the library that begins with

javax

 , you know it started life as an extension, and then got a promotion.

There are no Dumb Questions

	

Q:

	

Q: Does import
 make my class bigger? Does it actually compile the imported class or package into
my

 code?

	
A:

	

A:

 Perhaps you’re a C programmer? An import
 is not the same as an include
 . So the answer is no and no. Repeat after me: “an import
 statement saves you from typing.” That’s really it. You don’t have to worry about your code becoming bloated, or slower, from too many imports. An import
 is simply the way you give Java the
full name of a class

 .

	

Q:

	

Q: OK, how come I never had to import the String class? Or System?

	
A:

	

A:

 Remember, you get the java.lang package sort of “pre-imported” for free. Because the classes in java.lang are so fundamental, you don’t have to use the full name. There is only one java.lang.String class, and one java.lang.System class, and Java darn well knows where to find them.

	

Q:

	

Q: Do I have to put my own classes into packages? How do I do that?

Can

I do that?

	
A:

	

A:

 In the real world (which you should try to avoid), yes, you
will

 want to put your classes into packages. We’ll get into that in detail in Chapter 17
 . For now, we won’t put our code examples in a package.

Make it Stick

Roses are red, apples are ripe, if you don’t import you’ll just have to type

 [image: image with no caption]

You must tell Java the full name of every class you use

 , unless that class is in the java.lang package. An import
 statement for the class or package at the top of your source code is the easy way. Otherwise, you have to type the full name of the class, everywhere you use it!

One more time, in the unlikely event that you don’t already have this down:

 [image: image with no caption]

 How to play with the API

Two things you want to know:

	

What classes are in the library?

	

Once you find a class, how do you know what it can do?

	

Browse a Book

 [image: image with no caption]

	

Use the HTML API docs

 [image: image with no caption]

“Good to know there’s an ArrayList in the java.util package. But by myself, how would
I

have figured that out?”

— Julia, 31, hand model

 [image: image with no caption]

	

Browse a Book

 [image: image with no caption]

Flipping through a reference book is the best way to find out what’s in the Java library. You can easily stumble on a class that looks useful, just by browsing pages.

 [image: image with no caption]

	

Use the HTML API docs

Java comes with a fabulous set of online docs called, strangely, the Java API. They’re part of a larger set called the Java 5 Standard Edition Documentation (which, depending on what day of the week you look, Sun may be referring to as “Java 2 Standard Edition 5.0”), and you have to download the docs separately; they don’t come shrink-wrapped with the Java 5 download. If you have a high-speed internet connection, or tons of patience, you can also browse them at java.sun.com. Trust us, you probably want these on your hard drive.

The API docs are the best reference for getting more details about a class and its methods. Let’s say you were browsing through the reference book and found a class called Calendar, in java.util. The book tells you a little about it, enough to know that this is indeed what you want to use, but you still need to know more about the methods.

The reference book, for example, tells you what the methods take, as arguments, and what they return. Look at ArrayList, for example. In the reference book, you’ll find the method indexOf(), that we used in the DotCom class. But if all you knew is that there is a method called indexOf() that takes an object and returns the index (an int) of that object, you still need to know one crucial thing: what happens if the object is not in the ArrayList? Looking at the method signature alone won’t tell you how that works. But the API docs will (most of the time, anyway). The API docs tell you that the indexOf() method returns a -1 if the object parameter is not in the ArrayList. That’s how we knew we could use it both as a way to check if an object is even in the ArrayList, and to get its index at the same time, if the object was there. But without the API docs, we might have thought that the indexOf() method would blow up if the object wasn’t in the ArrayList.

 [image: image with no caption]

Code Magnets

 [image: image with no caption]

Exercise

Can you reconstruct the code snippets to make a working Java program that produces the output listed below?
NOTE:

 To do this exercise, you need one NEW piece of info — if you look in the API for ArrayList, you’ll find a
second

 add method that takes two arguments:

add(int index, Object o)

It lets you specify to the ArrayList
where

 to put the object you’re adding.

 [image: image with no caption]

 [image: image with no caption]

JavaCross 7.0

 How does this crossword puzzle help you learn Java? Well, all of the words
are

 Java related (except one red herring).

Hint:

 When in doubt, remember ArrayList.

 [image: image with no caption]

Across

1. I can’t behave

6. Or, in the courtroom

7. Where it’s at baby

9. A fork’s origin

12. Grow an ArrayList

13. Wholly massive

14. Value copy

16. Not an object

17. An array on steroids

19. Extent

21. 19’s counterpart

22. Spanish geek snacks (Note: This has nothing to do with Java.)

23. For lazy fingers

24. Where packages roam

Down

2. Where the Java action is.

3. Addressable unit

4. 2nd smallest

5. Fractional default

8. Library’s grandest

10. Must be low density

11. He’s in there somewhere

15. As if

16. dearth method

18. What shopping and arrays have in common

20. Library acronym

21. What goes around

More Hints:

	
Across

1. 8 varieties

7. Think ArrayList

16. Common primitive

21. Array’s extent

22. Not about Java - Spanish appetizers

	
Down

2. What’s overridable?

3. Think ArrayList

4. & 10. Primitive

16. Think ArrayList

18. He’s making a ______

Exercise Solutions

 [image: image with no caption]

JavaCross answers

 [image: image with no caption]

Sharpen your pencil

Write your OWN set of clues! Look at each word, and try to write your own clues. Try making them easier, or harder, or more technical than the ones we have.

Across

1. ___________________________________

6. ___________________________________

7. ___________________________________

9. ___________________________________

12. ___________________________________

13. ___________________________________

14. ___________________________________

16. ___________________________________

17. ___________________________________

19. ___________________________________

21. ___________________________________

22. ___________________________________

23. ___________________________________

24. ___________________________________

Down

2. ___________________________________

3. ___________________________________

4. ___________________________________

5. ___________________________________

8. ___________________________________

10. ___________________________________

11. ___________________________________

15. ___________________________________

16. ___________________________________

18. ___________________________________

20. ___________________________________

21. ___________________________________

[6
]
 Unless the class is in the java.lang package.

 Chapter 7. Inheritance and Polymorphism: Better Living in Objectville

 [image: image with no caption]

Plan your programs with the future in mind.

 If there were a way to write Java code such that you could take more vacations, how much would it be worth to you? What if you could write code that someone
else

 could extend,
easily

 ? And if you could write code that was flexible, for those pesky last-minute spec changes, would that be something you’re interested in? Then this is your lucky day. For just three easy payments of 60 minutes time, you can have all this. When you get on the Polymorphism Plan, you’ll learn the 5 steps to better class design, the 3 tricks to polymorphism, the 8 ways to make flexible code, and if you act now — a bonus lesson on the 4 tips for exploiting inheritance. Don’t delay, an offer this good will give you the design freedom and programming flexibility you deserve. It’s quick, it’s easy, and it’s available now. Start today, and we’ll throw in an extra level of abstraction!

 Chair Wars Revisited...

Remember way back in Chapter 2
 , when Larry (procedural guy) and Brad (OO guy) were vying for the Aeron chair? Let’s look at a few pieces of that story to review the basics of inheritance.

LARRY:

 You’ve got duplicated code! The rotate procedure is in all four Shape things. It’s a stupid design. You have to maintain four different rotate “methods”. How can that ever be good?

BRAD:

 Oh, I guess you didn’t see the final design. Let me show you how OO
inheritance

 works, Larry.

 [image: image with no caption]

You can read this as,
“Square inherits from Shape”

 ,
“Circle inherits from Shape”

 , and so on. I removed rotate() and playSound() from the other shapes, so now there’s only one copy to maintain.

The Shape class is called the
superclass

 of the other four classes. The other four are the
subclasses

 of Shape. The subclasses inherit the methods of the superclass. In other words,
if the Shape class has the functionality, then the subclasses automatically get that same functionality.

 What about the Amoeba rotate()?

LARRY:

 Wasn’t that the whole problem here — that the amoeba shape had a completely different rotate and playSound procedure?

How can amoeba do something different if it
inherits

 its functionality from the Shape class?

 [image: image with no caption]

BRAD:

 That’s the last step. The Amoeba class

overrides

 the methods of the Shape class. Then at runtime, the JVM knows exactly which
rotate()

 method to run when someone tells the Amoeba to rotate.

 [image: image with no caption]

 Brain Power

How would you represent a house cat and a tiger, in an inheritance structure. Is a domestic cat a specialized version of a tiger? Which would be the subclass and which would be the superclass? Or are they both subclasses to some
other

 class?

 [image: image with no caption]

How would you design an inheritance structure? What methods would be overridden?

Think about it.
Before

 you turn the page.

 Understanding Inheritance

When you design with inheritance, you put common code in a class and then tell other more specific classes that the common (more abstract) class is their superclass. When one class inherits from another,
the subclass inherits from the superclass.

In Java, we say that the
subclass

extends

the superclass

 . An inheritance relationship means that the subclass inherits the
members

 of the superclass. When we say “members of a class” we mean the instance variables and methods. For example, if PantherMan is a subclass of SuperHero, the PantherMan class automatically inherits the instance variables and methods common to all superheroes including suit
 , tights
 , specialPower
 , useSpecialPowers()
 , and so on. But the PantherMan
subclass can add new methods and instance variables

 of its own, and it
can override the methods it inherits from the superclass

 SuperHero.

 [image: image with no caption]

FriedEggMan doesn’t need any behavior that’s unique, so he doesn’t override any methods. The methods and instance variables in SuperHero are sufficient. PantherMan, though, has specific requirements for his suit and special powers, so useSpecialPower()
 and putOnSuit()
 are both overridden in the PantherMan class.

Instance variables are not overridden

 because they don’t need to be. They don’t define any special behavior, so a subclass can give an inherited instance variable any value it chooses. PantherMan can set his inherited tights
 to purple, while FriedEggMan sets his to white.

 An inheritance example:

public class Doctor {

 boolean worksAtHospital;

 void treatPatient() {
 // perform a checkup
 }
}

public class FamilyDoctor extends Doctor {

 boolean makesHouseCalls;
 void giveAdvice() {
 // give homespun advice
 }
}

public class Surgeon extends Doctor{

 void treatPatient() {
 // perform surgery
 }

 void makeIncision() {
 // make incision (yikes!)
 }
}

 [image: image with no caption]

Sharpen your pencil

 [image: image with no caption]

 How many instance variables does Surgeon have? _____

How many instance variables does FamilyDoctor have? _____

How many methods does Doctor have? _____

How many methods does Surgeon have? _____

How many methods does FamilyDoctor have? _____

Can a FamilyDoctor do treatPatient()? _____

Can a FamilyDoctor do makeIncision()? _____

 Let’s design the inheritance tree for an Animal simulation program

 Imagine you’re asked to design a simulation program that lets the user throw a bunch of different animals into an environment to see what happens. We don’t have to code the thing now, we’re mostly interested in the design.

We’ve been given a list of
some

 of the animals that will be in the program, but not all. We know that each animal will be represented by an object, and that the objects will move around in the environment, doing whatever it is that each particular type is programmed to do.

And we want other programmers to be able to add new kinds of animals to the program at any time.

First we have to figure out the common, abstract characteristics that all animals have, and build those characteristics into a class that all animal classes can extend.

	Look for objects that have common attributes and behaviors.

What do these six types have in common? This helps you to abstract out behaviors. (step 2)

How are these types related? This helps you to define the inheritance tree relationships (step 4-5)

 [image: image with no caption]

 Using inheritance to avoid duplicating code in subclasses

We have five

instance variables

 :

picture

 – the file name representing the JPEG of this animal

food

 – the type of food this animal eats. Right now, there can be only two values:
meat

 or
grass

 .

hunger

 – an int representing the hunger level of the animal. It changes depending on when (and how much) the animal eats.

boundaries

 – values representing the height and width of the ‘space’ (for example, 640 x 480) that the animals will roam around in.

location

 – the X and Y coordinates for where the animal is in the space.

We have four

methods

:

makeNoise

 () – behavior for when the animal is supposed to make noise.

eat()

 – behavior for when the animal encounters its preferred food source,
meat

 or
grass

 .

sleep()

 – behavior for when the animal is considered asleep.

roam()

 – behavior for when the animal is not eating or sleeping (probably just wandering around waiting to bump into a food source or a boundary).

 [image: image with no caption]

	Design a class that represents the common state and behavior.

These objects are all animals, so we’ll make a common superclass called Animal.

We’ll put in methods and instance variables that all animals might need.

 Do all animals eat the same way?

Assume that we all agree on one thing: the instance variables will work for
all

 Animal types. A lion will have his own value for picture, food (we’re thinking
meat

), hunger, boundaries, and location. A hippo will have different
values

 for his instance variables, but he’ll still have the same variables that the other Animal types have. Same with dog, tiger, and so on. But what about
behavior

 ?

 Which methods should we override?

Does a lion make the same
noise

 as a dog? Does a cat
eat

 like a hippo? Maybe in
your

 version, but in ours, eating and making noise are Animal-type-specific. We can’t figure out how to code those methods in such a way that they’d work for any animal. OK, that’s not true. We could write the makeNoise() method, for example, so that all it does is play a sound file defined in an instance variable for that type, but that’s not very specialized. Some animals might make different noises for different situations (like one for eating, and another when bumping into an enemy, etc.)

So just as with the Amoeba overriding the Shape class rotate() method, to get more amoeba-specific (in other words,
unique

) behavior, we’ll have to do the same for our Animal subclasses.

	Decide if a subclass needs behaviors (method implementations) that are specific to that particular subclass type.

Looking at the Animal class, we decide that eat() and makeNoise() should be overridden by the individual subclasses.

 [image: image with no caption]

 [image: image with no caption]

 Looking for more inheritance opportunities

The class hierarchy is starting to shape up. We have each subclass override the
makeNoise()

 and
eat()

 methods, so that there’s no mistaking a Dog bark from a Cat meow (quite insulting to both parties). And a Hippo won’t eat like a Lion.

But perhaps there’s more we can do. We have to look at the subclasses of Animal, and see if two or more can be grouped together in some way, and given code that’s common to only
that

 new group. Wolf and Dog have similarities. So do Lion, Tiger, and Cat.

	Look for more opportunities to use abstraction, by finding two or more subclasses that might need common behavior.

We look at our classes and see that Wolf and Dog might have some behavior in common, and the same goes for Lion, Tiger, and Cat.

 [image: image with no caption]

	Finish the class hierarchy

Since animals already have an organizational hierarchy (the whole kingdom, genus, phylum thing), we can use the level that makes the most sense for class design. We’ll use the biological “families” to organize the animals by making a Feline class and a Canine class.

We decide that Canines could use a common roam() method, because they tend to move in packs. We also see that Felines could use a common roam() method, because they tend to avoid others of their own kind. We’ll let Hippo continue to use its inherited roam() method — the generic one it gets from Animal.

So we’re done with the design for now; we’ll come back to it later in the chapter.

 [image: image with no caption]

 Which method is called?

 The Wolf class has four methods. One inherited from Animal, one inherited from Canine (which is actually an overridden version of a method in class Animal), and two overridden in the Wolf class. When you create a Wolf object and assign it to a variable, you can use the dot operator on that reference variable to invoke all four methods. But which
version

 of those methods gets called?

 [image: image with no caption]

When you call a method on an object reference, you’re calling the most specific version of the method for that object type.

In other words,

the lowest one wins!

“Lowest” meaning lowest on the inheritance tree. Canine is lower than Animal, and Wolf is lower than Canine, so invoking a method on a reference to a Wolf object means the JVM starts looking first in the Wolf class. If the JVM doesn’t find a version of the method in the Wolf class, it starts walking back up the inheritance hierarchy until it finds a match.

 Designing an Inheritance Tree

 [image: image with no caption]

Sharpen your pencil

Draw an inheritance diagram here.

Find the relationship that make sense. Fill in the last two columns

	
Class

	
Superclasses

	
Subclasses

	
Musician

	
	

	
Rock Star

	
	

	
Fan

	
	

	
Bass Player

	
	

	
Concert Pianist

	
	

Hint: not everything can be connected to something else. Hint: you’re allowed to add or change the classes listed.

There are no Dumb Questions

	

Q:

	

Q: You said that the JVM starts walking up the inheritance tree, starting at the class type you invoked the method on (like the Wolf example on the previous page). But what happens if the JVM doesn’t ever find a match?

	
A:

	

A:

 Good question! But you don’t have to worry about that. The compiler guarantees that a particular method is callable for a specific reference type, but it doesn’t say (or care) from which
class

 that method actually comes from at runtime. With the Wolf example, the compiler checks for a sleep() method, but doesn’t care that sleep() is actually defined in (and inherited from) class Animal. Remember that if a class
inherits

 a method, it
has

 the method.

Where

 the inherited method is defined (in other words, in which superclass it is defined) makes no difference to the compiler. But at runtime,
the JVM will always pick the right one

 . And the right one means,

the most specific version for that particular object.

 Using IS-A and HAS-A

 Remember that when one class inherits from another, we say that the subclass
extends

 the superclass. When you want to know if one thing should extend another, apply the IS-A test.

Triangle IS-A Shape, yeah, that works.

Cat IS-A Feline, that works too.

Surgeon IS-A Doctor, still good.

Tub extends Bathroom, sounds reasonable.

Until you apply the IS-A test.

To know if you’ve designed your types correctly, ask, “Does it make sense to say type X IS-A type Y?” If it doesn’t, you know there’s something wrong with the design, so if we apply the IS-A test, Tub IS-A Bathroom is definitely false.

What if we reverse it to Bathroom extends Tub? That still doesn’t work, Bathroom IS-A Tub doesn’t work.

Tub and Bathroom
are

 related, but not through inheritance. Tub and Bathroom are joined by a HAS-A relationship. Does it make sense to say “Bathroom HAS-A Tub”? If yes, then it means that Bathroom has a Tub instance variable. In other words, Bathroom has a
reference

 to a Tub, but Bathroom does not
extend

 Tub and vice-versa.

 [image: image with no caption]

 [image: image with no caption]

Bathroom HAS-A Tub and Tub HAS-A Bubbles. But nobody inherits from (extends) anybody else.

 But wait! There’s more!

The IS-A test works
anywhere

 in the inheritance tree. If your inheritance tree is well-designed, the IS-A test should make sense when you ask
any

 subclass if it IS-A
any

 of its supertypes.

If class B extends class A, class B IS-A class A.

This is true anywhere in the inheritance tree. If class C extends class B, class C passes the IS-A test for both B and A.

Canine extends Animal

Wolf extends Canine

Wolf extends Animal

Canine IS-A Animal

Wolf IS-A Canine

Wolf IS-A Animal

 [image: image with no caption]

With an inheritance tree like the one shown here, you’re
always

 allowed to say
“Wolf extends Animal”

 or “
Wolf IS-A Animal”

 . It makes no difference if Animal is the superclass of the superclass of Wolf. In fact,
as long as Animal is

somewhere

in the inheritance hierarchy above Wolf, Wolf IS-A Animal will always be true.

The structure of the Animal inheritance tree says to the world:

“Wolf IS-A Canine, so Wolf can do anything a Canine can do. And Wolf IS-A Animal, so Wolf can do anything an Animal can do.”

It makes no difference if Wolf overrides some of the methods in Animal or Canine. As far as the world (of other code) is concerned, a Wolf can do those four methods.
How

 he does them, or
in which class they’re overridden

 makes no difference. A Wolf can makeNoise(), eat(), sleep(), and roam() because a Wolf extends from class Animal.

Make it Stick

Roses are red, violets are blue.

Square

is-a

Shape

 ,
the reverse isn’t true.

Roses are red, violets are dear.

Beer

is-a

Drink

 ,
but not all

drinks

are

beer

 .

OK, your turn. Make one that shows the oneway-ness of the IS-A relationship. Remember, if X

extends

 Y, X

IS-A

 Y must make sense.

 How do you know if you’ve got your inheritance right?

There’s obviously more to it than what we’ve covered so far, but we’ll look at a lot more OO issues in the next chapter (where we eventually refine and improve on some of the design work we did in
this

 chapter).

For now, though, a good guideline is to use the IS-A test. If “X IS-A Y” makes sense, both classes (X and Y) should probably live in the same inheritance hierarchy. Chances are, they have the same or overlapping behaviors.

Keep in mind that the inheritance IS-A relationship works in only one direction!

Triangle IS-A Shape makes sense, so you can have Triangle extend Shape.

But the reverse — Shape IS-A Triangle — does
not

 make sense, so Shape should not extend Triangle. Remember that the IS-A relationship implies that if X IS-A Y, then X can do anything a Y can do (and possibly more).

Sharpen your pencil

Put a check next to the relationships that make sense.

	

Oven extends Kitchen

	

Guitar extends Instrument

	

Person extends Employee

	

Ferrari extends Engine

	

FriedEgg extends Food

	

Beagle extends Pet

	

Container extends Jar

	

Metal extends Titanium

	

GratefulDead extends Band

	

Blonde extends Smart

	

Beverage extends Martini

Hint: apply the IS-A test

There are no Dumb Questions

	

Q:

	

Q: So we see how a subclass gets to inherit a superclass method, but what if the superclass wants to use the subclass version of the method?

	
A:

	

A:

 A superclass won’t necessarily
know

 about any of its subclasses. You might write a class and much later someone else comes along and extends it. But even if the superclass creator does know about (and wants to use) a subclass version of a method, there’s no sort of
reverse

 or
backwards

 inheritance. Think about it, children inherit from parents, not the other way around.

	

Q:

	

Q: In a subclass, what if I want to use BOTH the superclass version and my overriding subclass version of a method? In other words, I don’t want to completely

replace

the superclass version, I just want to add more stuff to it.

	
A:

	

A:

 You can do this! And it’s an important design feature. Think of the word “extends” as meaning, “I want to
extend

 the functionality of the superclass”.

 [image: image with no caption]

You can design your superclass methods in such a way that they contain method implementations that will work for any subclass, even though the subclasses may still need to ‘append’ more code. In your subclass overriding method, you can call the superclass version using the keyword

super

 . It’s like saying, “first go run the superclass version, then come back and finish with my own code...”

 Who gets the Porsche, who gets the porcelain?

(how to know what a subclass can inherit from its superclass)

 [image: image with no caption]

A subclass inherits members of the superclass. Members include instance variables and methods, although later in this book we’ll look at other inherited members. A superclass can choose whether or not it wants a subclass to inherit a particular member by the level of access the particular member is given.

There are four access levels that we’ll cover in this book. Moving from most restrictive to least, the four access levels are:

 [image: image with no caption]

Access levels control

who sees what,

 and are crucial to having well-designed, robust Java code. For now we’ll focus just on public and private. The rules are simple for those two:

public

 members

are

 inherited

private

 members are

not

 inherited

When a subclass inherits a member, it is

as if the subclass defined the member itself

 . In the Shape example, Square inherited the rotate()
 and playSound()
 methods and to the outside world (other code) the Square class simply
has

 a rotate()
 and playSound()
 method.

The members of a class include the variables and methods defined in the class plus anything inherited from a superclass.

Note: get more details about default and protected in Chapter 17
 (deployment) and Appendix B
 .

 When designing with inheritance, are you using or abusing?

Although some of the reasons behind these rules won’t be revealed until later in this book, for now, simply
knowing

 a few rules will help you build a better inheritance design.

DO

 use inheritance when one class is a more specific type of a superclass. Example: Willow
is a

 more specific type of Tree, so Willow
extends

 Tree makes sense.

DO

 consider inheritance when you have behavior (implemented code) that should be shared among multiple classes of the same general type. Example: Square, Circle, and Triangle all need to rotate and play sound, so putting that functionality in a superclass Shape might make sense, and makes for easier maintenance and extensibility. Be aware, however, that while inheritance is one of the key features of object-oriented programming, it’s not necessarily the best way to achieve behavior reuse. It’ll get you started, and often it’s the right design choice, but design patterns will help you see other more subtle and flexible options. If you don’t know about design patterns, a good follow-on to this book would be
Head First Design Patterns.

DO NOT

 use inheritance just so that you can reuse code from another class, if the relationship between the superclass and subclass violate either of the above two rules. For example, imagine you wrote special printing code in the Alarm class and now you need printing code in the Piano class, so you have Piano extend Alarm so that Piano inherits the printing code. That makes no sense! A Piano is
not

 a more specific type of Alarm. (So the printing code should be in a Printer class, that all printable objects can take advantage of via a HAS-A relationship.)

DO NOT

 use inheritance if the subclass and superclass do not pass the IS-A test. Always ask yourself if the subclass IS-A more specific type of the superclass. Example: Tea IS-A Beverage makes sense. Beverage IS-A Tea does not.

Bullet Points

	A subclass
extends

 a superclass.

	A subclass inherits all
public

 instance variables and methods of the superclass, but does not inherit the
private

 instance variables and methods of the superclass.

	Inherited methods
can

 be overridden; instance variables
cannot

 be overridden (although they can be
redefined

 in the subclass, but that’s not the same thing, and there’s almost never a need to do it.)

	Use the IS-A test to verify that your inheritance hierarchy is valid. If X
extends

 Y, then X
IS-A

 Y must make sense.

	The IS-A relationship works in only one direction. A Hippo is an Animal, but not all Animals are Hippos.

	When a method is overridden in a subclass, and that method is invoked on an instance of the subclass, the overridden version of the method is called. (
The lowest one wins

 .)

	If class B extends A, and C extends B, class B IS-A class A, and class C IS-A class B, and class C also IS-A class A.

 So what does all this inheritance really buy you?

 You get a lot of OO mileage by designing with inheritance. You can get rid of duplicate code by abstracting out the behavior common to a group of classes, and sticking that code in a superclass. That way, when you need to modify it, you have only one place to update, and
the change is magically reflected in all the classes that inherit that behavior.

 Well, there’s no magic involved, but it
is

 pretty simple: make the change and compile the class again. That’s it.
You don’t have to touch the subclasses!

Just deliver the newly-changed superclass, and all classes that extend it will automatically use the new version.

A Java program is nothing but a pile of classes, so the subclasses don’t have to be recompiled in order to use the new version of the superclass. As long as the superclass doesn’t
break

 anything for the subclass, everything’s fine. (We’ll discuss what the word ‘break’ means in this context, later in the book. For now, think of it as modifying something in the superclass that the subclass is depending on, like a particular method’s arguments or return type, or method name, etc.)

	

You avoid duplicate code.

Put common code in one place, and let the subclasses inherit that code from a superclass. When you want to change that behavior, you have to modify it in only one place, and everybody else (i.e. all the subclasses) see the change.

	

You define a common protocol for a group of classes.

 [image: image with no caption]

 Inheritance lets you guarantee that all classes grouped under a certain supertype have all the methods that the supertype has.[7
]

 In other words, you define a common protocol for a set of classes related through inheritance

 When you define methods in a superclass, that can be inherited by subclasses, you’re announcing a kind of protocol to other code that says, “All my subtypes (i.e. subclasses) can do these things, with these methods that look like this...”

In other words, you establish a
contract

 .

Class Animal establishes a common protocol for all Animal subtypes:

 [image: image with no caption]

And remember, when we say
any Animal

 , we mean Animal
and any class that extends from Animal

 . Which again means,
any class that has Animal somewhere above it in the inheritance hierarchy

 .

But we’re not even at the really cool part yet, because we saved the best —
polymorphism

 — for last.

When you define a supertype for a group of classes,
any subclass of that supertype can be substituted where the supertype is expected.

Say, what?

Don’t worry, we’re nowhere near done explaining it. Two pages from now, you’ll be an expert.

And I care because...

Because you get to take advantage of polymorphism.

Which matters to me because...

Because you get to refer to a subclass object using a reference declared as the supertype.

And that means to me...

You get to write really flexible code. Code that’s cleaner (more efficient, simpler). Code that’s not just easier to
develop

 , but also much, much easier to
extend

 , in ways you never imagined at the time you originally wrote your code.

That means you can take that tropical vacation while your co-workers update the program, and your co-workers might not even need your source code.

You’ll see how it works on the next page.

We don’t know about you, but personally, we find the whole tropical vacation thing particularly motivating.

 [image: image with no caption]

To see how polymorphism works, we have to step back and look at the way we normally declare a reference and create an object...

The 3 steps of object declaration and assignment

 [image: image with no caption]

	Declare a reference variable

Dog myDog = new Dog();

Tells the JVM to allocate space for a reference variable. The reference variable is, forever, of type Dog. In other words, a remote control that has buttons to control a Dog, but not a Cat or a Button or a Socket.

 [image: image with no caption]

	Create an object

Dog myDog = new Dog();

Tells the JVM to allocate space for a new Dog object on the garbage collectible heap.

 [image: image with no caption]

	Link the object and the reference
Dog myDog = new Dog();

Assigns the new Dog to the reference variable myDog. In other words,

program the remote control.

 [image: image with no caption]

The important point is that the reference type AND the object type are the same.

In this example, both are Dog
 .

 [image: image with no caption]

But with polymorphism, the reference and the object can be
different

 .

Animal

 myDog = new Dog

();

 [image: image with no caption]

With polymorphism, the reference type can be a superclass of the actual object type.

 [image: image with no caption]

When you declare a reference variable, any object that passes the IS-A test for the declared type of the reference variable can be assigned to that reference. In other words, anything that
extends

 the declared reference variable type can be
assigned

 to the reference variable.

This lets you do things like make polymorphic arrays.

OK, OK maybe an example will help.

 [image: image with no caption]

But wait! There’s more!

You can have polymorphic arguments
 and return
 types.

If you can declare a reference variable of a supertype, say, Animal, and assign a subclass object to it, say, Dog, think of how that might work when the reference is an argument to a method...

 [image: image with no caption]

 [image: image with no caption]

 With polymorphism, you can write code that doesn’t have to change when you introduce new subclass types into the program

 Remember that Vet class? If you write that Vet class using arguments declared as type
Animal

 , your code can handle any Animal
subclass

 . That means if others want to take advantage of your Vet class, all they have to do is make sure
their

 new Animal types extend class Animal. The Vet methods will still work, even though the Vet class was written without any knowledge of the new Animal subtypes the Vet will be working on.

 Brain Power

Why is polymorphism guaranteed to work this way? Why is it always safe to assume that any
subclass

 type will have the methods you think you’re calling on the
superclass

 type (the superclass reference type you’re using the dot operator on)?

There are no Dumb Questions

	

Q:

	

Q: Are there any practical limits on the levels of subclassing? How deep can you go?

	
A:

	

A:

 If you look in the Java API, you’ll see that most inheritance hierarchies are wide but not deep. Most are no more than one or two levels deep, although there are exceptions (especially in the GUI classes). You’ll come to realize that it usually makes more sense to keep your inheritance trees shallow, but there isn’t a hard limit (well, not one that you’d ever run into).

	

Q:

	

Q: Hey, I just thought of something... if you don’t have access to the source code for a class, but you want to change the way a method of that class works, could you use subclassing to do that? To extend the “bad” class and override the method with your own better code?

	
A:

	

A:

 Yep. That’s one cool feature of OO, and sometimes it saves you from having to rewrite the class from scratch, or track down the programmer who hid the source code.

	

Q:

	

Q: Can you extend

any

class? Or is it like class members where if the class is private you can’t inherit it...

	
A:

	

A:

 There’s no such thing as a private class, except in a very special case called an
inner

 class, that we haven’t looked at yet. But there
are

 three things that can prevent a class from being subclassed.

The first is access control. Even though a class
can’t

 be marked private
 , a class
can

 be non-public (what you get if you don’t declare the class as public
). A non-public class can be subclassed only by classes in the same package as the class. Classes in a different package won’t be able to subclass (or even
use

 , for that matter) the non-public class.

The second thing that stops a class from being subclassed is the keyword modifier final
 . A final class means that it’s the end of the inheritance line. Nobody, ever, can extend a final class.

The third issue is that if a class has only private
 constructors (we’ll look at constructors in Chapter 9
), it can’t be subclassed.

	

Q:

	

Q: Why would you ever want to make a final class? What advantage would there be in preventing a class from being subclassed?

	
A:

	

A:

 Typically, you won’t make your classes final. But if you need security — the security of knowing that the methods will always work the way that you wrote them (because they can’t be overridden), a final class will give you that. A lot of classes in the Java API are final for that reason. The String class, for example, is final because, well, imagine the havoc if somebody came along and changed the way Strings behave!

	

Q:

	

Q: Can you make a

method

final, without making the whole

class

final?

	
A:

	

A:

 If you want to protect a specific method from being overridden, mark the
method

 with the final
 modifier. Mark the whole
class

 as final if you want to guarantee that
none

 of the methods in that class will ever be overridden.

 Keeping the contract: rules for overriding

 When you override a method from a superclass, you’re agreeing to fulfill the contract. The contract that says, for example, “I take no arguments and I return a boolean.” In other words, the arguments and return types of your overriding method must look to the outside world
exactly

 like the overridden method in the superclass.

The methods

are

the contract.

If polymorphism is going to work, the Toaster’s version of the overridden method from Appliance has to work at runtime. Remember, the compiler looks at the reference type to decide whether you can call a particular method on that reference. With an Appliance reference to a Toaster, the compiler cares only if class
Appliance

 has the method you’re invoking on an Appliance reference. But at runtime, the JVM looks not at the
reference

 type (Appliance) but at the actual
Toaster

 object on the heap. So if the compiler has already
approved

 the method call, the only way it can work is if the overriding method has the same arguments and return types. Otherwise, someone with an Appliance reference will call turnOn() as a noarg method, even though there’s a version in Toaster that takes an int. Which one is called at runtime? The one in Appliance. In other words,

the turnOn(int level) method in Toaster is not an override!

 [image: image with no caption]

	

Arguments must be the same, and return types must be compatible.

The contract of superclass defines how other code can use a method. Whatever the superclass takes as an argument, the subclass overriding the method must use that same argument. And whatever the superclass declares as a return type, the overriding method must declare either the same type, or a subclass type. Remember, a subclass object is guaranteed to be able to do anything its superclass declares, so it’s safe to return a subclass where the superclass is expected.

	

The method can’t be less accessible.

That means the access level must be the same, or friendlier. That means you can’t, for example, override a public method and make it private. What a shock that would be to the code invoking what it thinks (at compile time) is a public method, if suddenly at runtime the JVM slammed the door shut because the overriding version called at runtime is private!

So far we’ve learned about two access levels: private and public. The other two are in the deployment chapter (Release your Code) and Appendix B
 . There’s also another rule about overriding related to exception handling, but we’ll wait until the chapter on exceptions (Risky Behavior) to cover that.

 [image: image with no caption]

 Overload
 ing a method

 Method overloading is nothing more than having two methods with the same name but different argument lists. Period. There’s no polymorphism involved with overloaded methods!

Overloading lets you make multiple versions of a method, with different argument lists, for convenience to the callers. For example, if you have a method that takes only an int, the calling code has to convert, say, a double into an int before calling your method. But if you overloaded the method with another version that takes a double, then you’ve made things easier for the caller. You’ll see more of this when we look into constructors in the object lifecycle chapter.

Since an overloading method isn’t trying to fulfill the polymorphism contract defined by its superclass, overloaded methods have much more flexibility.

	

The return types can be different.

You’re free to change the return types in overloaded methods, as long as the argument lists are different.

	

You can’t change ONLY the return type.

If only the return type is different, it’s not a valid over
load

 — the compiler will assume you’re trying to over
ride

 the method. And even
that

 won’t be legal unless the return type is a subtype of the return type declared in the superclass. To overload a method, you MUST change the argument list, although you
can

 change the return type to anything.

	

You can vary the access levels in any direction.

You’re free to overload a method with a method that’s more restrictive. It doesn’t matter, since the new method isn’t obligated to fulfill the contract of the overloaded method.

An overloaded method is just a different method that happens to have the same method name. It has nothing to do with inheritance and polymorphism. An overloaded
 method is NOT the same as an overridden
 method.

Legal examples of method overloading:

public class Overloads {

 String uniqueID;

 public
int

 addNums
(int a, int b)

 {
 return a + b;
 }

 public
double

 addNums
(double a, double b)

 {
 return a + b;
 }

 public void setUniqueID
(String theID)

 {
 // lots of validation code, and then:
 uniqueID = theID;
 }

 public void setUniqueID
(int ssNumber)

 {
 String numString = "" + ssNumber;
 setUniqueID(numString);
 }
}

Mixed Messages

 [image: image with no caption]

Exercise

A short Java program is listed below. One block of the program is missing! Your challenge is to match the candidate block of code (on the left), with the output that you’d see if the block were inserted. Not all the lines of output will be used, and some of the lines of output might be used more than once. Draw lines connecting the candidate blocks of code with their matching command-line output.

 [image: image with no caption]

the program:

 [image: image with no caption]

 [image: image with no caption]

BE the Compiler

 [image: image with no caption]

Exercise

Which of the A-B pairs of methods listed on the right, if inserted into the classes on the left, would compile and produce the output shown? (The A method inserted into class Monster, the B method inserted into class Vampire.)

 [image: image with no caption]

 [image: image with no caption]

Pool Puzzle

 [image: image with no caption]

 Your

job

 is to take code snippets from the pool and place them into the blank lines in the code. You may use the same snippet more than once, and you might not need to use all the snippets. Your

goal

 is to make a set of classes that will compile and run together as a program. Don’t be fooled – this one’s harder than it looks.

public class Rowboat ________ ________ {
 public ___________ rowTheBoat() {
 System.out.print("stroke natasha");
 }
}

public class ________ {
 private int __________ ;
 _______ void _________ (______) {
 length = len;
 }
 public int getLength() {
 ________ _________ ;
 }
 public ___________ move() {
 System.out.print("___________");
 }
}

public class TestBoats {
 ______ ______ _______ main(String[] args){
 _________ b1 = new Boat();
 Sailboat b2 = new __________();
 Rowboat ________ = new Rowboat();
 b2.setLength(32);
 b1.__________();
 b3.__________();
 _______.move();
 }
}

public class __________ ________ Boat {
 public _______ _________() {
 System.out.print("___________");
 }
}

 [image: image with no caption]

 [image: image with no caption]

BE the Compiler

 [image: image with no caption]

Set 1 will work.

Exercise Solutions

Set 2 will not compile because of Vampire’s return type (int).

The Vampire’s frighten() method (B) is not a legal override OR overload of Monster’s frighten() method. Changing ONLY the return type is not enough to make a valid overload, and since an int is not compatible with a boolean, the method is not a valid override. (Remember, if you change ONLY the return type, it must be to a return type that is compatible with the superclass version’s return type, and then it’s an over
ride

 .

Sets 3 and 4 will compile, but produce:

arrrgh

breath fire

arrrgh

Remember, class Vampire did not over
ride

 class Monster’s frighten() method. (The frighten() method in Vampire’s set 4 takes a byte, not an int.)

Mixed Messages

 [image: image with no caption]

 [image: image with no caption]

public class Rowboat
extends Boat

 {
 public
void

 rowTheBoat() {
 System.out.print("stroke natasha");
 }
}
public class
Boat

 {
 private int
length ;

public

 void
setLength (int len)

 {
 length = len;
 }
 public int getLength() {

return length ;

 }
 public
void

 move() {
 System.out.print
("drift ");

 }
}

public class TestBoats {

 public static void

 main(String[] args){

 Boat

 b1 = new Boat();
 Sailboat b2 = new
Sailboat

();
 Rowboat
b3

 = new Rowboat();
 b2.setLength(32);
 b1.
move

();
 b3.
move

();

b2

.move();
 }
}
public class
Sailboat extends

 Boat {
 public
void move

() {
 System.out.print(
"hoist sail "

);
 }
}

 [image: image with no caption]

[7
]
 When we say “all the methods” we mean “all the
inheritable

 methods”, which for now actually means, “all the
public

 methods”, although later we’ll refine that definition a bit more.

 Chapter 8. Interfaces and Abstract Classes: Serious Polymorphism

 [image: image with no caption]

Inheritance is just the beginning.

 To exploit polymorphism, we need interfaces (and not the GUI kind). We need to go beyond simple inheritance to a level of flexibility and extensibility you can get only by designing and coding to interface specifications. Some of the coolest parts of Java wouldn’t even be possible without interfaces, so even if you don’t design with them yourself, you still have to use them. But you’ll
want

 to design with them. You’ll
need

 to design with them.

You’ll

wonder how you ever lived without them

 . What’s an interface? It’s a 100% abstract class. What’s an abstract class? It’s a class that can’t be instantiated. What’s that good for? You’ll see in just a few moments. But if you think about the end of the last chapter, and how we used polymorphic arguments so that a single Vet method could take Animal subclasses of all types, well, that was just scratching the surface. Interfaces are the

poly

 in polymorphism. The

ab

 in abstract. The

caffeine

 in Java.

 Did we forget about something when we designed this?

The class structure isn’t too bad. We’ve designed it so that duplicate code is kept to a minimum, and we’ve overridden the methods that we think should have subclass-specific implementations. We’ve made it nice and flexible from a polymorphic perspective, because we can design Animal-using programs with Animal arguments (and array declarations), so that any Animal subtype —

including those we never imagined at the time we wrote our code

 — can be passed in and used at runtime. We’ve put the common protocol for all Animals (the four methods that we want the world to know all Animals have) in the Animal superclass, and we’re ready to start making new Lions and Tigers and Hippos.

 [image: image with no caption]

We know we can say:

Wolf aWolf = new Wolf();

 [image: image with no caption]

And we know we can say:

Animal aHippo = new Hippo();

 [image: image with no caption]

But here’s where it gets weird:

Animal anim = new Animal

();

 [image: image with no caption]

What does a new Animal() object
look

 like?

 [image: image with no caption]

What are the instance variable values?

Some classes just should

not

 be instantiated!

It makes sense to create a Wolf object or a Hippo object or a Tiger object, but what exactly
is

 an Animal object? What shape is it? What color, size, number of legs...

Trying to create an object of type Animal is like
a nightmare Star Trek™ transporter accident.

 The one where somewhere in the beam-me--up process something bad happened to the buffer.

But how do we deal with this? We
need

 an Animal class, for inheritance and polymorphism. But we want programmers to instantiate only the less abstract
subclasses

 of class Animal, not Animal itself. We want Tiger objects and Lion objects,

not Animal objects

 .

Fortunately, there’s a simple way to prevent a class from ever being instantiated. In other words, to stop anyone from saying “

new

 ” on that type. By marking the class as

abstract

 , the compiler will stop any code, anywhere, from ever creating an instance of that type.

You can still use that abstract type as a reference type. In fact,that’s a big part of why you have that abstract class in the first place (to use it as a polymorphic argument or return type, or to make a polymorphic array).

When you’re designing your class inheritance structure, you have to decide which classes are
abstract

 and which are
concrete

 . Concrete classes are those that are specific enough to be instantiated. A
concrete

 class just means that it’s OK to make objects of that type.

Making a class abstract is easy — put the keyword

abstract

 before the class declaration:

abstract

 class Canine extends Animal {

public void roam() { }

}

 The compiler won’t let you instantiate an abstract class

 An abstract class means that nobody can ever make a new instance of that class. You can still use that abstract class as a declared reference type, for the purpose of polymorphism, but you don’t have to worry about somebody making objects of that type. The compiler
guarantees

 it.

 [image: image with no caption]

An
abstract class

 has virtually[8
]
 no use, no value, no purpose in life, unless it is
extended.

With an abstract class, the guys doing the work at runtime are
instances of a subclass

 of your abstract class.

 Abstract vs. Concrete

 A class that’s not abstract is called a
concrete

 class. In the Animal inheritance tree, if we make Animal, Canine, and Feline abstract, that leaves Hippo, Wolf, Dog, Tiger, Lion, and Cat as the concrete subclasses.

Flip through the Java API and you’ll find a lot of abstract classes, especially in the GUI library. What does a GUI Component look like? The Component class is the superclass of GUI-related classes for things like buttons, text areas, scrollbars, dialog boxes, you name it. You don’t make an instance of a generic
Component

 and put it on the screen, you make a JButton. In other words, you instantiate only a
concrete subclass

 of Component, but never Component itself.

 [image: image with no caption]

 Brain Power

 [image: image with no caption]

abstract or concrete?

How do you know when a class should be abstract?

Wine

 is probably abstract. But what about

Red

 and

White

 ? Again probably abstract (for some of us, anyway). But at what point in the hierarchy do things become concrete?

Do you make

PinotNoir

 concrete, or is it abstract too? It looks like the Camelot Vineyards 1997 Pinot Noir is probably concrete no matter what. But how do you know for sure?

Look at the Animal inheritance tree above. Do the choices we’ve made for which classes are abstract and which are concrete seem appropriate? Would you change anything about the Animal inheritance tree (other than adding more Animals, of course)?

 Abstract methods

 Besides classes, you can mark
methods

 abstract, too. An abstract class means the class must be
extended

 ; an abstract method means the method must be
overridden

 . You might decide that some (or all) behaviors in an abstract class don’t make any sense unless they’re implemented by a more specific subclass. In other words, you can’t think of any generic method implementation that could possibly be useful for subclasses. What would a generic
eat()

 method look like?

An abstract method has no body!

Because you’ve already decided there isn’t any code that would make sense in the abstract method, you won’t put in a method body. So no curly braces — just end the declaration with a semicolon.

 [image: image with no caption]

 [image: image with no caption]

If you declare an abstract
method

 , you MUST mark the
class

 abstract as well. You can’t have an abstract method in a non-abstract class.

If you put even a single abstract method in a class, you have to make the class abstract. But you
can

 mix both abstract and non-abstract methods in the abstract class.

There are no Dumb Questions

	

Q:

	

Q: What is the

point

of an abstract method? I thought the whole point of an abstract class was to have common code that could be inherited by subclasses.

	
A:

	

A:

 Inheritable method implementations (in other words, methods with actual
bodies

) are A Good Thing to put in a superclass.
When it makes sense.

 And in an abstract class, it often
doesn’t

 make sense, because you can’t come up with any generic code that subclasses would find useful. The point of an abstract method is that even though you haven’t put in any actual method code, you’ve still defined part of the
protocol

 for a group of subtypes (subclasses).

	

Q:

	

Q: Which is good because...

	
A:

	

A:

 Polymorphism! Remember, what you want is the ability to use a superclass type (often abstract) as a method argument, return type, or array type. That way, you get to add new subtypes (like a new Animal subclass) to your program without having to rewrite (or add) new methods to deal with those new types. Imagine how you’d have to change the Vet class, if it didn’t use Animal as its argument type for methods. You’d have to have a separate method for every single Animal subclass! One that takes a Lion, one that takes a Wolf, one that takes a... you get the idea. So with an abstract method, you’re saying, “All subtypes of this type have THIS method.” for the benefit of polymorphism.

 You MUST implement all abstract methods

 [image: image with no caption]

Implementing

 an abstract method is just like
overriding

 a method.

Abstract methods don’t have a body; they exist solely for polymorphism. That means the first concrete class in the inheritance tree must implement
all

 abstract methods.

You can, however, pass the buck by being abstract yourself. If both Animal and Canine are abstract, for example, and both have abstract methods, class Canine does not have to implement the abstract methods from Animal. But as soon as we get to the first concrete subclass, like Dog, that subclass must implement
all

 of the abstract methods from both Animal and Canine.

But remember that an abstract class can have both abstract and
non

 -abstract methods, so Canine, for example, could implement an abstract method from Animal, so that Dog didn’t have to. But if Canine says nothing about the abstract methods from Animal, Dog has to implement all of Animal’s abstract methods.

When we say “you must implement the abstract method”, that means you
must provide a body.

 That means you must create a non-abstract method in your class with the same method signature (name and arguments) and a return type that is compatible with the declared return type of the abstract method. What you put
in

 that method is up to you. All Java cares about is that the method is
there

 , in your concrete subclass.

Sharpen your pencil

Abstract vs. Concrete Classes

Let’s put all this abstract rhetoric into some concrete use. In the middle column we’ve listed some classes. Your job is to imagine applications where the listed class might be concrete, and applications where the listed class might be abstract. We took a shot at the first few to get you going. For example, class Tree would be abstract in a tree nursery program, where differences between an Oak and an Aspen matter. But in a golf simulation program, Tree might be a concrete class (perhaps a subclass of Obstacle), because the program doesn’t care about or distinguish between different types of trees. (There’s no one right answer; it depends on your design.)

	
Concrete

	
Sample class

	
Abstract

	

golf course simulation

	
Tree

	

tree nursery application

House

	

architect application

	

satellite photo application

	
Town

Football Player

	

coaching application

Chair

Customer

Sales Order

Book

Store

Supplier

Golf Club

Carburetor

Oven

 Polymorphism in action

 Let’s say that we want to write our
own

 kind of list class, one that will hold Dog objects, but pretend for a moment that we don’t know about the ArrayList class. For the first pass, we’ll give it just an
add()

 method. We’ll use a simple Dog array (Dog []) to keep the added Dog objects, and give it a length of 5. When we reach the limit of 5 Dog objects, you can still call the
add()

 method but it won’t do anything. If we’re
not

 at the limit, the
add()

 method puts the Dog in the array at the next available index position, then increments that next available index (nextIndex).

Building our own Dog-specific list

(Perhaps the world’s worst attempt at making our own ArrayList kind of class, from scratch.)

 [image: image with no caption]

 Uh-oh, now we need to keep Cats, too

We have a few options here:

1) Make a separate class, MyCatList, to hold Cat objects. Pretty clunky.

2) Make a single class, DogAndCatList, that keeps two different arrays as instance variables and has two different add() methods: addCat(Cat c) and addDog(Dog d). Another clunky solution.

3) Make heterogeneous AnimalList class, that takes
any

 kind of Animal subclass (since we know that if the spec changed to add Cats, sooner or later we’ll have some
other

 kind of animal added as well). We like this option best, so let’s change our class to make it more generic, to take Animals instead of just Dogs. We’ve highlighted the key changes (the logic is the same, of course, but the type has changed from Dog to Animal everywhere in the code.

Building our own Animal
 -specific list

 [image: image with no caption]

 What about non-Animals? Why not make a class generic enough to take anything
 ?

 You know where this is heading. We want to change the type of the array, along with the
add()

 method argument, to something
above

 Animal. Something even
more

 generic,
more

 abstract than Animal. But how can we do it? We don’t
have

 a superclass for Animal.

Then again, maybe we do...

Remember those methods of ArrayList? Look how the remove, contains, and indexOf method all use an object of type...

Object!

 [image: image with no caption]

(These are just a few of the methods in ArrayList...there are many more.)

 Note

Many of the ArrayList methods use the ultimate polymorphic type, Object. Since every class in Java is a subclass of Object, these ArrayList methods can take anything!

(Note: as of Java 5.0, the get() and add() methods actually look a little different than the ones shown here, but for now this is the way to think about it. We’ll get into the full story a little later.)

Every class in Java extends class Object.

Class Object is the mother of all classes; it’s the superclass of
everything

 .

Even if you take advantage of polymorphism, you still have to create a class with methods that take and return
your

 polymorphic type. Without a common superclass for everything in Java, there’d be no way for the developers of Java to create classes with methods that could take
your

 custom types...
types they never knew about when they wrote the ArrayList class

 .

So you were making subclasses of class Object from the very beginning and you didn’t even know it.

Every class you write extends Object,

 without your ever having to say it. But you can think of it as though a class you write looks like this:

public class Dog
extends Object

 { }

But wait a minute, Dog
already

 extends something,
Canine

 . That’s OK. The compiler will make
Canine

 extend Object instead. Except
Canine

 extends Animal. No problem, then the compiler will just make
Animal

 extend Object.

Any class that doesn’t explicitly extend another class, implicitly extends Object.

So, since Dog extends Canine, it doesn’t
directly

 extend Object (although it does extend it indirectly), and the same is true for Canine, but Animal
does

 directly extend Object.

 So what’s in this ultra-super-megaclass Object?

 If you were Java, what behavior would you want
every

 object to have? Hmmmm... let’s see... how about a method that lets you find out if one object is equal to another object? What about a method that can tell you the actual class type of that object? Maybe a method that gives you a hashcode for the object, so you can use the object in hashtables (we’ll talk about Java’s hashtables in Chapter 16
). Oh, here’s a good one — a method that prints out a String message for that object.

And what do you know? As if by magic, class Object does indeed have methods for those four things. That’s not all, though, but these are the ones we really care about.

 [image: image with no caption]

	

equals(Object o)

 [image: image with no caption]

Tells you if two objects are considered ‘equal’.

	

getClass()

 [image: image with no caption]

Gives you back the class that object was instantiated from.

	

hashCode()

 [image: image with no caption]

Prints out a hashcode for the object (for now, think of it as a unique ID).

	

toString()

 [image: image with no caption]

Prints out a String message with the name of the class and some other number we rarely care about.

There are no Dumb Questions

	

Q:

	

Q: Is class Object abstract?

	
A:

	

A:

 No. Well, not in the formal Java sense anyway. Object is a non-abstract class because it’s got method implementation code that all classes can inherit and use out-of-the-box, without having to override the methods.

	

Q:

	

Q: Then

can

you override the methods in Object?

	
A:

	

A:

 Some of them. But some of them are marked final
 , which means you can’t override them. You’re encouraged (strongly) to override hashCode(), equals(), and toString() in your own classes, and you’ll learn how to do that a little later in the book. But some of the methods, like getClass(), do things that must work in a specific, guaranteed way.

	

Q:

	

Q: If ArrayList methods are generic enough to use Object, then what does it mean to say ArrayList<DotCom>? I thought I was restricting the ArrayList to hold only DotCom objects?

	
A:

	

A:

 You
were

 restricting it. Prior to Java 5.0, ArrayLists couldn’t be restricted. They were all essentially what you get in Java 5.0 today if you write ArrayList<Object>. In other words,

an ArrayList restricted to anything that’s an Object,

 which means
any

 object in Java, instantiated from
any

 class type! We’ll cover the details of this new <type> syntax later in the book.

	

Q:

	

Q: OK, back to class Object being non-abstract (so I guess that means it’s concrete), HOW can you let somebody make an Object object? Isn’t that just as weird as making an Animal object?

	
A:

	

A:

 Good question! Why is it acceptable to make a new Object instance? Because sometimes you just want a generic object to use as, well, as an object. A
lightweight

 object. By far, the most common use of an instance of type Object is for thread synchronization (which you’ll learn about in Chapter 15
). For now, just stick that on the back burner and assume that you will rarely make objects of type Object, even though you
can

 .

	

Q:

	

Q: So is it fair to say that the main purpose for type Object is so that you can use it for a polymorphic argument and return type? Like in ArrayList?

	
A:

	

A:

 The Object class serves
two

 main purposes: to act as a polymorphic type for methods that need to work on any class that you or anyone else makes, and to provide
real

 method code that all objects in Java need at runtime (and putting them in class Object means all other classes inherit them). Some of the most important methods in Object are related to threads, and we’ll see those later in the book.

	

Q:

	

Q: If it’s so good to use polymorphic types, why don’t you just make ALL your methods take and return type Object?

	
A:

	

A:

 Ahhhh... think about what would happen. For one thing, you would defeat the whole point of ‘type-safety’, one of Java’s greatest protection mechanisms for your code. With type-safety, Java guarantees that you won’t ask the wrong object to do something you
meant

 to ask of another object type. Like, ask a
Ferrari

 (which you think is a
Toaster

) to
cook itself.

But the truth is, you
don’t

 have to worry about that fiery Ferrari scenario, even if you
do

 use Object references for everything. Because when objects are referred to by an Object reference type, Java
thinks

 it’s referring to an instance of type Object. And that means the only methods you’re allowed to call on that object are the ones declared in class Object! So if you were to say:

Object o = new Ferrari(); o.goFast(); //Not legal!

You wouldn’t even make it past the compiler.

Because Java is a strongly-typed language, the compiler checks to make sure that you’re calling a method on an object that’s actually capable of
responding

 . In other words, you can call a method on an object reference
only

 if the class of the reference type actually
has

 the method. We’ll cover this in much greater detail a little later, so don’t worry if the picture isn’t crystal clear.

 Using polymorphic references of type Object has a price...

 Before you run off and start using type Object for all your ultra-flexible argument and return types, you need to consider a little issue of using type Object as a reference. And keep in mind that we’re not talking about making instances of type Object; we’re talking about making instances of some other type, but using a reference of type Object.

When you put an object into an ArrayList
<Dog>

 , it goes in as a Dog, and comes out as a Dog:

 [image: image with no caption]

But what happens when you declare it as ArrayList
<Object>

 ? If you want to make an ArrayList that will literally take
any

 kind of Object, you declare it like this:

 [image: image with no caption]

But what happens when you try to get the Dog object and assign it to a Dog reference?

 [image: image with no caption]

Everything comes out of an ArrayList<Object> as a reference of type

Object

, regardless of what the actual object is, or what the reference type was when you added the object to the list.

 [image: image with no caption]

 When a Dog won’t act like a Dog

The problem with having everything treated polymorphically as an Object is that the objects
appear

 to lose (but not permanently) their true essence.
The Dog appears to lose its dogness

 . Let’s see what happens when we pass a Dog to a method that returns a reference to the same Dog object, but declares the return type as type Object rather than Dog.

 [image: image with no caption]

 [image: image with no caption]

 Objects don’t bark

So now we know that when an object is referenced by a variable declared as type Object, it can’t be assigned to a variable declared with the actual object’s type. And we know that this can happen when a return type or argument is declared as type Object, as would be the case, for example, when the object is put into an ArrayList of type Object using ArrayList<Object>. But what are the implications of this? Is it a problem to have to use an Object reference variable to refer to a Dog object? Let’s try to call Dog methods on our Dog-That-Compiler-Thinks-Is-An-Object:

 [image: image with no caption]

 [image: image with no caption]

 Note

The compiler decides whether you can call a method based on the reference
 type, not the actual object type.

Even if you
know

 the object is capable (“...but it really

is

 a Dog, honest...”), the compiler sees it only as a generic Object. For all the compiler knows, you put a Button object out there. Or a Microwave object. Or some other thing that really doesn’t know how to bark.

The compiler checks the class of the
reference

 type — not the
object

 type — to see if you can call a method using that reference.

 [image: image with no caption]

 [image: image with no caption]

 Get in touch with your inner Object

 An object contains
everything

 it inherits from each of its superclasses. That means
every

 object — regardless of its actual class type — is
also

 an instance of class Object.That means any object in Java can be treated not just as a Dog, Button, or Snowboard, but also as an Object. When you say

new Snowboard()

 , you get a single object on the heap — a Snowboard object — but that Snowboard wraps itself around an inner core representing the Object (capital “O”) portion of itself.

 [image: image with no caption]

	

When you put an object in an ArrayList<Object>, you can treat it only as an Object, regardless of the type it was when you put it in.

	

When you get a reference from an ArrayList<Object>, the reference is always of type
Object

 .

	

That means you get an Object remote control.

‘Polymorphism’ means ‘many forms’.

You can treat a Snowboard as a Snowboard or as an Object.

If a reference is like a remote control, the remote control takes on more and more buttons as you move down the inheritance tree. A remote control (reference) of type Object has only a few buttons — the buttons for the exposed methods of class Object. But a remote control of type Snowboard includes all the buttons from class Object, plus any new buttons (for new methods) of class Snowboard. The more specific the class, the more buttons it may have.

Of course that’s not always true; a subclass might not add any new methods, but simply override the methods of its superclass. The key point is that even if the
object

 is of type Snowboard, an Object
reference

 to the Snowboard object can’t see the Snowboard-specific methods.

 [image: image with no caption]

 [image: image with no caption]

Casting an object reference back to its
real

 type.

 [image: image with no caption]

It’s really still a Dog
object

 , but if you want to call Dog-specific methods, you need a
reference

 declared as type Dog. If you’re
sure*

 the object is really a Dog, you can make a new Dog reference to it by copying the Object reference, and forcing that copy to go into a Dog reference variable, using a cast (Dog). You can use the new
Dog

 reference to call
Dog

 methods.

 [image: image with no caption]

*If you’re
not

 sure it’s a Dog, you can use the

instanceof

 operator to check. Because if you’re wrong when you do the cast, you’ll get a ClassCastException at runtime and come to a grinding halt.

if (o instanceof Dog) {

Dog d = (Dog) o;

}

So now you’ve seen how much Java cares about the methods in the class of the reference
 variable.

You can call a method on an object
only

 if the class of the reference variable has that method.

Think of the public methods in your class as your contract, your promise to the outside world about the things you can do.

 [image: image with no caption]

When you write a class, you almost always
expose

 some of the methods to code outside the class. To
expose

 a method means you make a method
accessible

 , usually by marking it public.

Imagine this scenario: you’re writing code for a small business accounting program. A custom application for “Simon’s Surf Shop”. The good reuser that you are, you found an Account class that appears to meet your needs perfectly, according to its documentation, anyway. Each account instance represents an individual customer’s account with the store. So there you are minding your own business invoking the
credit()

 and
debit()

 methods on an account object when you realize you need to get a balance on an account. No problem — there’s a
getBalance()

 method that should do nicely.

 [image: image with no caption]

Except... when you invoke the
getBalance()

 method, the whole thing blows up at runtime. Forget the documentation, the class does not have that method. Yikes!

But that won’t happen to you, because everytime you use the dot operator on a reference (a.doStuff()), the compiler looks at the
reference

 type (the type ‘a’ was declared to be) and checks that class to guarantee the class has the method, and that the method does indeed take the argument you’re passing and return the kind of value you’re expecting to get back.

Just remember that the compiler checks the class of the

reference

variable, not the class of the actual

object

at the other end of the reference.

 What if you need to change the contract?

 OK, pretend you’re a Dog. Your Dog class isn’t the
only

 contract that defines who you are. Remember, you inherit accessible (which usually means
public

) methods from all of your superclasses.

True, your Dog class defines a contract.

But not
all

 of your contract.

Everything in class

Canine

is part of your contract.

Everything in class

Animal

is part of your contract.

Everything in class

Object

is part of your contract.

According to the IS-A test, you
are

 each of those things — Canine, Animal, and Object.

But what if the person who designed your class had in mind the Animal simulation program, and now he wants to use you (class Dog) for a Science Fair Tutorial on Animal objects.

That’s OK, you’re probably reusable for that.

But what if later he wants to use you for a PetShop program?
You don’t have any

Pet

behaviors.

 A Pet needs methods like
beFriendly()

 and
play()

 .

OK, now pretend you’re the Dog class programmer. No problem, right? Just add some more methods to the Dog class. You won’t be breaking anyone else’s code by
adding

 methods, since you aren’t touching the
existing

 methods that someone else’s code might be calling on Dog objects.

Can you see any drawbacks to that approach (adding Pet methods to the Dog class)?

 Brain Power

Think about what
YOU

 would do if
YOU

 were the Dog class programmer and needed to modify the Dog so that it could do Pet things, too. We know that simply adding new Pet behaviors (methods) to the Dog class will work, and won’t break anyone else’s code.

But... this is a PetShop program. It has more than just Dogs! And what if someone wants to use your Dog class for a program that has wild Dogs? What do you think your options might be, and without worrying about how Java handles things, just try to imagine how you’d like to solve the problem of modifying some of your Animal classes to include Pet behaviors.

Stop right now and think about it,
before you look at the next page

 where we begin to reveal everything.

(thus rendering the whole exercise completely useless, robbing you of your One Big Chance to burn some brain calories)

 Let’s explore some design options for reusing some of our existing classes in a PetShop program

 On the next few pages, we’re going to walk through some possibilities. We’re not yet worried about whether Java can actually
do

 what we come up with. We’ll cross that bridge once we have a good idea of some of the tradeoffs.

 Note

	

Option one

We take the easy path, and put pet methods in class Animal.

Pros:

 [image: image with no caption]

All the Animals will instantly inherit the pet behaviors. We won’t have to touch the existing Animal subclasses at all, and any Animal subclasses created in the future will also get to take advantage of inheriting those methods. That way, class Animal can be used as the polymorphic type in any program that wants to treat the Animals as pets

Cons:

So... when was the last time you saw a Hippo at a pet shop? Lion? Wolf? Could be dangerous to give non-pets pet methods.

Also, we almost certainly WILL have to touch the pet classes like Dog and Cat, because (in our house, anyway) Dogs and Cats tend to implement pet behaviors VERY differently.

	

Option two

We start with Option One, putting the pet methods in class Animal, but we make the methods abstract, forcing the Animal subclasses to override them.

Pros:

That would give us all the benefits of Option One, but without the drawback of having non-pet Animals running around with pet methods (like beFriendly()). All Animal classes would have the method (because it’s in class Animal), but because it’s abstract the non-pet Animal classes won’t inherit any functionality. All classes MUST override the methods, but they can make the methods “do-nothings”.

 [image: image with no caption]

Cons:

Because the pet methods in the Animal class are all abstract, the concrete Animal subclasses are forced to implement all of them. (Remember, all abstract methods MUST be implemented by the first concrete subclass down the inheritance tree.) What a waste of time! You have to sit there and type in each and every pet method into each and every concrete nonpet class, and all future subclasses as well. And while this does solve the problem of non-pets actually DOING pet things (as they would if they inherited pet functionality from class Animal), the contract is bad. Every non-pet class would be announcing to the world that it, too, has those pet methods, even though the methods wouldn’t actually DO anything when called.

This approach doesn’t look good at all. It just seems wrong to stuff everything into class Animal that more than one Animal type might need, UNLESS it applies to ALL Animal subclasses.

	

Option three

Put the pet methods ONLY in the classes where they belong.

Pros:

No more worries about Hippos greeting you at the door or licking your face. The methods are where they belong, and ONLY where they belong. Dogs can implement the methods and Cats can implement the methods, but nobody else has to know about them.

Cons:

Two Big Problems with this approach. First off, you’d have to agree to a protocol, and all programmers of pet Animal classes now and in the future would have to KNOW about the protocol. By protocol, we mean the exact methods that we’ve decided all pets should have. The pet contract without anything to back it up. But what if one of the programmers gets it just a tiny bit wrong? Like, a method takes a String when it was supposed to take an int? Or they named it doFriendly() instead of beFriendly()? Since it isn’t in a contract, the compiler has no way to check you to see if you’ve implemented the methods correctly. Someone could easily come along to use the pet Animal classes and find that not all of them work quite right.

 [image: image with no caption]

And second, you don’t get to use polymorphism for the pet methods. Every class that needs to use pet behaviors would have to know about each and every class! In other words, you can’t use Animal as the polymorphic type now, because the compiler won’t let you call a Pet method on an Animal reference (even if it’s really a Dog object) because class Animal doesn’t have the method.

So what we REALLY need is:

	

 [image:]

	
A way to have pet behavior in
just

 the pet classes

	

 [image:]

	
A way to guarantee that all pet classes have all of the same methods defined (same name, same arguments, same return types, no missing methods, etc.), without having to cross your fingers and hope all the programmers get it right.

	

 [image:]

	
A way to take advantage of polymorphism so that all pets can have their pet methods called, without having to use arguments, return types, and arrays for each and every pet class.

It looks like we need TWO
 superclasses at the top

 [image: image with no caption]

 There’s just one problem with the “two superclasses” approach...

It’s called “multiple inheritance” and it can be a Really Bad Thing.

That is, if it were possible to do in Java.

But it isn’t, because multiple inheritance has a problem known as The Deadly Diamond of Death.

Deadly Diamond of Death

 [image: image with no caption]

A language that allows the Deadly Diamond of Death can lead to some ugly complexities, because you have to have special rules to deal with the potential ambiguities. And extra rules means extra work for you both in
learning

 those rules and watching out for those “special cases”. Java is supposed to be
simple

 , with consistent rules that don’t blow up under some scenarios. So Java (unlike C++) protects you from having to think about the Deadly Diamond of Death. But that brings us back to the original problem!
How do we handle the Animal/Pet thing?

 Interface to the rescue!

 Java gives you a solution. An
interface

 . Not a
GUI

 interface, not the generic use of the
word

 interface as in, “That’s the public interface for the Button class API,” but the Java
keyword

interface

 .

A Java interface solves your multiple inheritance problem by giving you much of the polymorphic
benefits

 of multiple inheritance without the pain and suffering from the Deadly Diamond of Death (DDD).

The way in which interfaces side-step the DDD is surprisingly simple:

make all the methods abstract!

 That way, the subclass

must

 implement the methods (remember, abstract methods
must

 be implemented by the first concrete subclass), so at runtime the JVM isn’t confused about
which

 of the two inherited versions it’s supposed to call.

 [image: image with no caption]

To DEFINE
 an interface:

 [image: image with no caption]

To IMPLEMENT
 an interface:

 [image: image with no caption]

 Making and Implementing the Pet interface

 [image: image with no caption]

There are no Dumb Questions

	

Q:

	

Q: Wait a minute, interfaces don’t really give you multiple inheritance, because you can’t put any implementation code in them. If all the methods are abstract, what does an interface really buy you?

	
A:

	

A:

 Polymorphism, polymorphism, polymorphism. Interfaces are the ultimate in flexibility, because if you use interfaces instead of concrete subclasses (or even abstract superclass types) as arguments and return types, you can pass anything that implements that interface. And think about it — with an interface, a class doesn’t have to come from just one inheritance tree. A class can extend one class, and implement an interface. But another class might implement the same interface, yet come from a completely different inheritance tree! So you get to treat an object by the role it plays, rather than by the class type from which it was instantiated.

In fact, if you wrote your code to use interfaces, you wouldn’t even have to give anyone a superclass that they had to extend. You could just give them the interface and say, “Here,’ I don’t care what kind of class inheritance structure you come from, just implement this interface and you’ll be good to go.”

The fact that you can’t put in implementation code turns out not to be a problem for most good designs, because most interface methods wouldn’t make sense if implemented in a generic way. In other words, most interface methods would need to be overridden even if the methods weren’t
forced

 to be abstract.

Classes from
different

 inheritance trees can implement the
same

 interface.

 [image: image with no caption]

When you use a
class

 as a polymorphic type (like an array of type Animal or a method that takes a Canine argument), the objects you can stick in that type must be from the same inheritance tree. But not just anywhere in the inheritance tree; the objects must be from a class that is a subclass of the polymorphic type. An argument of type Canine can accept a Wolf and a Dog, but not a Cat or a Hippo.

But when you use an

interface

 as a polymorphic type (like an array of Pets), the objects can be from
anywhere

 in the inheritance tree. The only requirement is that the objects are from a class that
implements

 the interface. Allowing classes in different inheritance trees to implement a common interface is crucial in the Java API. Do you want an object to be able to save its state to a file? Implement the Serializable interface. Do you need objects to run their methods in a separate thread of execution? Implement Runnable. You get the idea. You’ll learn more about Serializable and Runnable in later chapters, but for now, remember that classes from
any

 place in the inheritance tree might need to implement those interfaces. Nearly
any

 class might want to be saveable or runnable.

Better still, a class can implement
multiple

 interfaces!

A Dog object IS-A Canine, and IS-A Animal, and IS-A Object, all through inheritance. But a Dog IS-A Pet through interface implementation, and the Dog might implement other interfaces as well. You could say:

public class Dog extends Animal implements

Pet, Saveable, Paintable { ... }

Make it Stick

 [image: image with no caption]

Roses are red, violets are blue.

Extend

 only
one

 ,
but
implement two.

Java weighs in on family values:

Single Parents Only!!

 A Java class can have only

one

 parent (superclass), and that parent class defines who you
are

 . But you can implement multiple interfaces, and those interfaces define
roles you can play

 .

How do you know whether to make a class, a subclass, an
abstract

 class, or an interface?

	Make a class that doesn’t extend anything (other than Object) when your new class doesn’t pass the IS-A test for any other type.

	Make a subclass (in other words, extend a class) only when you need to make a more specific
 version of a class and need to override or add new behaviors.

	Use an abstract class when you want to define a template
 for a group of subclasses, and you have at least some implementation code that all subclasses could use. Make the class abstract when you want to guarantee that nobody can make objects of that type.

	Use an interface when you want to define a role
 that other classes can play, regardless of where those classes are in the inheritance tree.

Invoking the superclass version of a method

	

Q:

	

Q: What if you make a concrete subclass and you need to override a method, but you want the behavior in the superclass version of the method? In other words, what if you don’t need to

replace

the method with an override, but you just want to

add

to it with some additional specific code.

	
A:

	

A:

 Ahhh... think about the meaning of the word ‘extends’. One area of good OO design looks at how to design concrete code that’s
meant

 to be overridden. In other words, you write method code in, say, an abstract class, that does work that’s generic enough to support typical concrete implementations. But, the concrete code isn’t enough to handle
all

 of the subclass-specific work. So the subclass overrides the method and
extends

 it by adding the rest of the code. The keyword super lets you invoke a superclass version of an overridden method, from within the subclass.

 [image: image with no caption]

 [image: image with no caption]

Bullet Points

	
 When you don’t want a class to be instantiated (in other words, you don’t want anyone to make a new object of that class type) mark the class with the

abstract

 keyword.

	An abstract class can have both abstract and non-abstract methods.

	If a class has even
one

 abstract method, the class must be marked abstract.

	An abstract method has no body, and the declaration ends with a semicolon (no curly braces).

	All abstract methods must be implemented in the first concrete subclass in the inheritance tree.

	Every class in Java is either a direct or indirect subclass of class
Object

 (java.lang.Object).

	Methods can be declared with Object arguments and/or return types.

	You can call methods on an object
only

 if the methods are in the class (or interface) used as the
reference

 variable type, regardless of the actual
object

 type. So, a reference variable of type Object can be used only to call methods defined in class Object, regardless of the type of the object to which the reference refers.

	A reference variable of type Object can’t be assigned to any other reference type without a
cast

 . A cast can be used to assign a reference variable of one type to a reference variable of a subtype, but at runtime the cast will fail if the object on the heap is NOT of a type compatible with the cast.

Example:

Dog d =

(Dog)

x.getObject(aDog);

	All objects come out of an ArrayList<Object> as type Object (meaning, they can be referenced only by an Object reference variable, unless you use a
cast

).

	Multiple inheritance is not allowed in Java, because of the problems associated with the “Deadly Diamond of Death”. That means you can extend only one class (i.e. you can have only one immediate superclass).

	An interface is like a 100% pure abstract class. It defines
only

 abstract methods.

	Create an interface using the

interface

 keyword instead of the word

class

 .

	Implement an interface using the keyword

implements

 Example:

Dog implements Pet

	Your class can implement multiple interfaces.

	A class that implements an interface
must

 implement all the methods of the interface, since

all interface methods are implicitly public and abstract

 .

	To invoke the superclass version of a method from a subclass that’s overridden the method, use the

super

 keyword. Example:

super

.runReport();

	

Q:

	

Q: There’s still something strange here... you never explained how it is that ArrayList<Dog> gives back Dog references that don’t need to be cast, yet the ArrayList class uses Object in its methods, not Dog (or DotCom or anything else). What’s the special trick going on when you say ArrayList<Dog>?

	
A:

	

A:

 You’re right for calling it a special trick. In fact it is a special trick that ArrayList<Dog> gives back Dogs without you having to do any cast, since it looks like ArrayList methods don’t know anything about Dogs, or any type besides Object.

The short answer is that
the compiler puts in the cast for you!

 When you say ArrayList<Dog>, there is no special class that has methods to take and return Dog objects, but instead the <Dog> is a signal to the compiler that you want the compiler to let you put ONLY Dog objects in and to stop you if you try to add any other type to the list. And since the compiler stops you from adding anything but Dogs to the ArrayList, the compiler also knows that it’s safe to cast anything that comes out of that ArrayList to a Dog reference. In other words, using ArrayList<Dog> saves you from having to cast the Dog you get back. But it’s much more important than that... because remember, a cast can fail at runtime, and wouldn’t you rather have your errors happen at compile time rather than, say, when your customer is using it for something critical?

But there’s a lot more to this story, and we’ll get into all the details in the Collections chapter.

Exercise

 Here’s your chance to demonstrate your artistic abilities. On the left you’ll find sets of class and interface declarations. Your job is to draw the associated class diagrams on the right. We did the first one for you. Use a dashed line for “implements” and a solid line for “extends”.

 [image: image with no caption]

Exercise

 On the left you’ll find sets of class diagrams. Your job is to turn these into valid Java declarations. We did number 1 for you (and it was a tough one).

 [image: image with no caption]

 Key

 [image: image with no caption]

Pool Puzzle

 [image: image with no caption]

 Your

job

 is to take code snippets from the pool and place them into the blank lines in the code and output. You
may

 use the same snippet more than once, and you won’t need to use all the snippets. Your

goal

 is to make a set of classes that will compile and run and produce the output listed.

____________ Nose {

}

abstract class Picasso implements ______{

 return 7;
 }
}

class _________ ________ __________ { }

class _________ ________ __________ {

 return 5;
 }
}

public ___________ ________ extends Clowns {

 public static void main(String [] args) {

 i[0] = new __________
 i[1] = new __________
 i[2] = new __________
 for(int x = 0; x < 3; x++) {
 System.out.println(__________________
 + " " + _______.getClass());
 }
 }
}

 [image: image with no caption]

Note: Each snippet from the pool can be used more than once!

 [image: image with no caption]

Exercise Solutions

What’s the Picture ?

 [image: image with no caption]

What’s the Declaration ?

	

2)

	
public abstract class Top { }

public class Tip extends Top { }

	

3)

	
public abstract class Fee { }

public abstract class Fi extends Fee { }

	

4)

	
public interface Foo { }

public class Bar implements Foo { }

public class Baz extends Bar { }

	

5)

	
public interface Zeta { }

public class Alpha implements Zeta { }

public interface Beta { }

public class Delta extends Alpha implements Beta { }

 [image: image with no caption]

interface

 Nose {

public int iMethod() ;

}
abstract class Picasso implements
Nose

 {

public int iMethod() {

 return 7;
 }
}
class
Clowns extends Picasso

 { }

class
Acts extends Picasso

 {

public int iMethod() {

 return 5;
 }
}

public
class Of76

 extends Clowns {
 public static void main(String [] args) {

Nose [] i = new Nose [3] ;

 i[0] = new
Acts() ;

 i[1] = new
Clowns() ;

 i[2] = new
Of76() ;

 for(int x = 0; x < 3; x++) {
 System.out.println(
i [x] . iMethod()

 + " " +
i [x]

.getClass());
 }
 }
}

 [image: image with no caption]

[8
]
 There is an exception to this — an abstract class can have static members (see Chapter 10
).

 Chapter 9. Constructors and Garbage Collection: Life and Death of an Object

 [image: image with no caption]

Objects are born and objects die.

 You’re in charge of an object’s lifecycle. You decide when and how to
construct

 it. You decide when to
destroy

 it. Except you don’t actually
destroy

 the object yourself, you simply
abandon

 it. But once it’s abandoned, the heartless
Garbage Collector (gc)

 can vaporize it, reclaiming the memory that object was using. If you’re gonna write Java, you’re gonna create objects. Sooner or later, you’re gonna have to let some of them go, or risk running out of RAM. In this chapter we look at how objects are created, where they live while they’re alive, and how to keep or abandon them efficiently. That means we’ll talk about the heap, the stack, scope, constructors, super constructors, null references, and more. Warning: this chapter contains material about object death that some may find disturbing. Best not to get too attached.

 The Stack and the Heap: where things live

 Before we can understand what really happens when you create an object, we have to step back a bit. We need to learn more about where everything lives (and for how long) in Java. That means we need to learn more about the Stack and the Heap. In Java, we (programmers) care about two areas of memory — the one where objects live (the heap), and the one where method invocations and local variables live (the stack). When a JVM starts up, it gets a chunk of memory from the underlying OS, and uses it to run your Java program. How
much

 memory, and whether or not you can tweak it, is dependent on which version of the JVM (and on which platform) you’re running. But usually you
won’t

 have anything to say about it. And with good programming, you probably won’t care (more on that a little later).

The Stack

Where method invocations and local variables live

 [image: image with no caption]

We know that all
objects

 live on the garbage-collectible heap, but we haven’t yet looked at where
variables

 live. And where a variable lives depends on what
kind

 of variable it is. And by “kind”, we don’t mean
type

 (i.e. primitive or object reference). The two
kinds

 of variables whose lives we care about now are
instance

 variables and
local

 variables. Local variables are also known as
stack

 variables, which is a big clue for where they live.

The Heap

Where ALL
 objects live

 [image: image with no caption]

 Note

Instance Variables

Instance variables are declared inside a

class

but

not

inside a method

 . They represent the “fields” that each individual object has (which can be filled with different values for each instance of the class). Instance variables live inside the object they belong to.

 [image: image with no caption]

Local Variables

Local variables are declared inside a

method,

including method parameters.

 They’re temporary, and live only as long as the method is on the stack (in other words, as long as the method has not reached the closing curly brace).

 [image: image with no caption]

 Methods are stacked

 When you call a method, the method lands on the top of a call stack. That new thing that’s actually pushed onto the stack is the stack
frame

 , and it holds the state of the method including which line of code is executing, and the values of all local variables.

The method at the
top

 of the stack is always the currently-running method for that stack (for now, assume there’s only one stack,but in Chapter 14
 we’ll add more.) A method stays on the stack until the method hits its closing curly brace (which means the method’s done). If method
foo()

 calls method
bar()

 , method
bar()

 is stacked on top of method
foo()

 .

A call stack with two methods

 [image: image with no caption]

The method on the top of the stack is always the currently-executing method.

public void doStuff() {

boolean b = true;

go(4);

}

public void go(int x) {

int z = x + 24;

crazy();

// imagine more code here

}

public void crazy() {

char c = 'a';

}

 A stack scenario

The code on the left is a snippet (we don’t care what the rest of the class looks like) with three methods. The first method (
doStuff()

) calls the second method (
go()

), and the second method calls the third (
crazy()

). Each method declares one local variable within the body of the method, and method
go()

 also declares a parameter variable (which means
go()

 has two local variables).

	Code from another class calls
doStuff()

 , and
doStuff()

 goes into a stack frame at the top of the stack.The boolean variable named ‘
b

 ’ goes on the
doStuff()

 stack frame.

 [image: image with no caption]

	

doStuff()

 calls
go()

 ,
go()

 is pushed on top of the stack. Variables ‘
x

 ’ and ‘
z

 ’ are in the
go()

 stack frame.

 [image: image with no caption]

	

go()

 calls
crazy()

 ,
crazy()

 is now on the top of the stack, with variable ‘
c

 ’ in the frame.

 [image: image with no caption]

	

crazy()

 completes, and its stack frame is popped off the stack. Execution goes back to the
go()

 method, and picks up at the line following the call to
crazy()

 .

 [image: image with no caption]

 What about local variables that are objects
 ?

Remember, a non-primitive variable holds a
reference

 to an object, not the object itself. You already know where objects live — on the heap. It doesn’t matter where they’re declared or created.

If the local variable is a reference to an object, only the variable (the reference/remote control) goes on the stack

 .

The object itself still goes in the heap.

public class StackRef {

public void foof() {

barf();

}

public void barf() {

Duck d = new Duck(24);

}

}

 [image: image with no caption]

There are no Dumb Questions

	

Q:

	

Q: One more time, WHY are we learning the whole stack/heap thing? How does this help me? Do I really need to learn about it?

	
A:

	

A:

 Knowing the fundamentals of the Java Stack and Heap is crucial if you want to understand variable scope, object creation issues, memory management, threads, and exception handling. We cover threads and exception handling in later chapters but the others you’ll learn in this one. You do not need to know anything about
how

 the Stack and Heap are implemented in any particular JVM and/or platform. Everything you need to know about the Stack and Heap is on this page and the previous one. If you nail these pages, all the other topics that depend on your knowing this stuff will go much, much, much easier. Once again, some day you will SO thank us for shoving Stacks and Heaps down your throat.

Bullet Points

	Java has two areas of memory we care about: the Stack and the Heap.

	Instance variables are variables declared inside a class but outside any method.

	Local variables are variables declared inside a method or method parameter.

	All local variables live on the stack, in the frame corresponding to the method where the variables are declared.

	Object reference variables work just like primitive variables — if the reference is declared as a local variable, it goes on the stack.

	All objects live in the heap, regardless of whether the reference is a local or instance variable.

 If local
 variables live on the stack, where do instance
 variables live?

 When you say new CellPhone(), Java has to make space on the Heap for that CellPhone. But how
much

 space? Enough for the object, which means enough to house all of the object’s instance variables. That’s right, instance variables live on the Heap, inside the object they belong to.

 [image: image with no caption]

Object with two primitive instance variables. Space for the variables lives in the object.

Remember that the
values

 of an object’s instance variables live inside the object. If the instance variables are all primitives, Java makes space for the instance variables based on the primitive type. An int needs 32 bits, a long 64 bits, etc. Java doesn’t care about the value inside primitive variables; the bit-size of an int variable is the same (32 bits) whether the value of the int is 32,000,000 or 32.

But what if the instance variables are
objects

 ? What if CellPhone HAS-A Antenna? In other words, CellPhone has a reference variable of type Antenna.

 [image: image with no caption]

Object with one non-primitive instance variable — a reference to an Antenna object, but no actual Antenna object This is what you get if you declare the variable but don’t initialize it with an actual Antenna object.

When the new object has instance variables that are object references rather than primitives, the real question is: does the object need space for all of the objects it holds references to? The answer is,
not exactly.

 No matter what, Java has to make space for the instance variable
values

 . But remember that a reference variable value is not the whole
object

 , but merely a
remote control

 to the object. So if CellPhone has an instance variable declared as the non-primitive type Antenna, Java makes space within the CellPhone object only for the Antenna’s
remote control

 (i.e. reference variable) but not the Antenna
object

 .

public class CellPhone {
 private Antenna ant;
}

Well then when does the Antenna
object

 get space on the Heap? First we have to find out
when

 the Antenna object itself is created. That depends on the instance variable declaration. If the instance variable is declared but no object is assigned to it, then only the space for the reference variable (the remote control) is created.

private Antenna ant;

 [image: image with no caption]

Object with one non-primitive instance variable, and the Antenna variable is assigned a new Antenna object.

No actual Antenna object is made on the heap unless or until the reference variable is assigned a new Antenna object.

private Antenna ant = new Antenna();

public class CellPhone {
 private Antenna ant = new Antenna();
}

 The miracle of object creation

 Now that you know where variables and objects live, we can dive into the mysterious world of object creation. Remember the three steps of object declaration and assignment: declare a reference variable, create an object, and assign the object to the reference.

But until now, step two — where a miracle occurs and the new object is “born” — has remained a Big Mystery. Prepare to learn the facts of object life.
Hope you’re not squeamish.

Review the 3 steps of object declaration, creation and assignment:

 [image: image with no caption]

Are we calling a method named Duck()? Because it sure
looks

 like it.

 [image: image with no caption]

No.

We’re calling the Duck
constructor

 .

A constructor
does

 look and feel a lot like a method, but it’s not a method. It’s got the code that runs when you say

new

 . In other words,
the code that runs when you instantiate an object

 .

The only way to invoke a constructor is with the keyword

new

 followed by the class name. The JVM finds that class and invokes the constructor in that class. (OK, technically this isn’t the
only

 way to invoke a constructor. But it’s the only way to do it from
outside

 a constructor. You
can

 call a constructor from within another constructor, with restrictions, but we’ll get into all that later in the chapter.)

 Note

A

constructor has the code that runs when you instantiate an object. In other words, the code that runs when you say

new

on a class type.

Every class you create has a constructor, even if you don’t write it yourself.

But where is the constructor?

If we didn’t write it, who did?

You can write a constructor for your class (we’re about to do that), but if you don’t,

the compiler writes one for you!

Here’s what the compiler’s default constructor looks like:

public Duck() {

}

Notice something missing? How is this different from a method?

 [image: image with no caption]

 Construct a Duck

 The key feature of a constructor is that it runs
before

 the object can be assigned to a reference. That means you get a chance to step in and do things to get the object ready for use. In other words, before anyone can use the remote control for an object, the object has a chance to help construct itself. In our Duck constructor, we’re not doing anything useful, but it still demonstrates the sequence of events.

 [image: image with no caption]

The constructor gives you a chance to step into the middle of

new

 .

 [image: image with no caption]

Sharpen your pencil

A constructor lets you jump into the middle of the object creation step — into the middle of

new

 . Can you imagine conditions where that would be useful? Which of these might be useful in a Car class constructor, if the Car is part of a Racing Game? Check off the ones that you came up with a scenario for.

	Increment a counter to track how many objects of this class type have been made.

	Assign runtime-specific state (data about what’s happening NOW).

	Assign values to the object’s important instance variables.

	Get and save a reference to the object that’s
creating

 the new object.

	Add the object to an ArrayList.

	Create HAS-A objects.

	__ (your idea here)

 Initializing the state of a new Duck

Most people use constructors to initialize the state of an object. In other words, to make and assign values to the object’s instance variables.

public Duck() {

size = 34;

}

That’s all well and good when the Duck class
developer

 knows how big the Duck object should be. But what if we want the programmer who is
using

 Duck to decide how big a particular Duck should be?

Imagine the Duck has a size instance variable, and you want the programmer using your Duck class to set the size of the new Duck. How could you do it?

Well, you could add a setSize() setter method to the class. But that leaves the Duck temporarily without a size[9
]
 , and forces the Duck user to write
two

 statements — one to create the Duck, and one to call the setSize() method. The code below uses a setter method to set the initial size of the new Duck.

 [image: image with no caption]

There are no Dumb Questions

	

Q:

	

Q: Why do you need to write a constructor if the compiler writes one for you?

	
A:

	

A:

 If you need code to help initialize your object and get it ready for use, you’ll have to write your own constructor. You might, for example, be dependent on input from the user before you can finish making the object ready. There’s another reason you might have to write a constructor, even if you don’t need any constructor code yourself. It has to do with your superclass constructor, and we’ll talk about that in a few minutes.

	

Q:

	

Q: How can you tell a constructor from a method? Can you also have a method that’s the same name as the class?

	
A:

	

A:

 Java lets you declare a method with the same name as your class. That doesn’t make it a constructor, though. The thing that separates a method from a constructor is the return type. Methods
must

 have a return type, but constructors
cannot

 have a return type.

	

Q:

	

Q: Are constructors inherited? If you don’t provide a constructor but your superclass does, do you get the superclass constructor instead of the default?

	
A:

	

A:

 Nope. Constructors are not inherited. We’ll look at that in just a few pages.

 Using the constructor to initialize important Duck state[10
]

If an object shouldn’t be used until one or more parts of its state (instance variables) have been initialized, don’t let anyone get ahold of a Duck object until you’re finished initializing! It’s usually way too risky to let someone make — and get a reference to — a new Duck object that isn’t quite ready for use until that someone turns around and calls the
setSize()

 method. How will the Duck-user even
know

 that he’s required to call the setter method after making the new Duck?

The best place to put initialization code is in the constructor. And all you need to do is make a constructor with arguments.

 [image: image with no caption]

 [image: image with no caption]

 Make it easy to make a Duck

 Be sure you have a no-arg constructor

What happens if the Duck constructor takes an argument? Think about it. On the previous page, there’s only
one

 Duck constructor — and it takes an int argument for the
size

 of the Duck. That might not be a big problem, but it does make it harder for a programmer to create a new Duck object, especially if the programmer doesn’t
know

 what the size of a Duck should be. Wouldn’t it be helpful to have a default size for a Duck, so that if the user doesn’t know an appropriate size, he can still make a Duck that works?

Imagine that you want Duck users to have TWO options for making a Duck — one where they supply the Duck size (as the constructor argument) and one where they don’t specify a size and thus get your default
 Duck size.

You can’t do this cleanly with just a single constructor. Remember, if a method (or constructor — same rules) has a parameter, you
must

 pass an appropriate argument when you invoke that method or constructor. You can’t just say, “If someone doesn’t pass anything to the constructor, then use the default size”, because they won’t even be able to compile without sending an int argument to the constructor call. You
could

 do something clunky like this:

 [image: image with no caption]

 Note

You really want TWO ways to make a new Duck:

public class Duck2 {

int size;

public Duck2() {

// supply default size

size = 27;

}

public Duck2(int duckSize) {

// use duckSize parameter

size = duckSize;

}

}

To make a Duck when you know the size:

Duck2 d = new Duck2(15);

To make a Duck when you do

not

know the size:

Duck2 d2 = new Duck2();

So this two-options-to-make-a-Duck idea needs
two

 constructors. One that takes an int and one that doesn’t.

If you have more than one constructor in a class, it means you have

overloaded

constructors.

But that means the programmer making a new Duck object has to
know

 that passing a “0” is the protocol for getting the default Duck size. Pretty ugly. What if the other programmer doesn’t know that? Or what if he really
does

 want a zero-size Duck? (Assuming a zero-sized Duck is allowed. If you don’t want zero-sized Duck objects, put validation code in the constructor to prevent it.) The point is, it might not always be possible to distinguish between a genuine “I want zero for the size” constructor argument and a “I’m sending zero so you’ll give me the default size, whatever that is” constructor argument.

 Doesn’t the compiler always
 make a no-arg constructor for you? No
 !

You might think that if you write
only

 a constructor with arguments, the compiler will see that you don’t have a no-arg constructor, and stick one in for you. But that’s not how it works. The compiler gets involved with constructor-making
only if you don’t say anything at all about constructors

 .

If you write a constructor that takes arguments, and you still want a no-arg constructor, you’ll have to build the no-arg constructor yourself!

 [image: image with no caption]

As soon as you provide a constructor, ANY kind of constructor, the compiler backs off and says, “OK Buddy, looks like you’re in charge of constructors now.”

If you have more than one constructor in a class, the constructors MUST have different argument lists.

The argument list includes the order and types of the arguments. As long as they’re different, you can have more than one constructor. You can do this with methods as well, but we’ll get to that in another chapter.

Overloaded
 constructors means you have more than one constructor in your class.

To compile, each constructor must have a
different

 argument list!

The class below is legal because all five constructors have different argument lists. If you had two constructors that took only an int, for example, the class wouldn’t compile. What you name the parameter variable doesn’t count. It’s the variable
type

 (int, Dog, etc.) and
order

 that matters. You
can

 have two constructors that have identical types,

as long as the order is different

 . A constructor that takes a String followed by an int, is
not

 the same as one that takes an int followed by a String.

 Note

Five different constructors means five different ways to make a new mushroom.

 [image: image with no caption]

Bullet Points

	Instance variables live within the object they belong to, on the Heap.

	If the instance variable is a reference to an object, both the reference and the object it refers to are on the Heap.

	A constructor is the code that runs when you say

new

 on a class type.

	A constructor must have the same name as the class, and must
not

 have a return type.

	You can use a constructor to initialize the state (i.e. the instance variables) of the object being constructed.

	If you don’t put a constructor in your class, the compiler will put in a default constructor.

	The default constructor is always a no-arg constructor.

	If you put a constructor — any constructor — in your class, the compiler will not build the default constructor.

	If you want a no-arg constructor, and you’ve already put in a constructor with arguments, you’ll have to build the no-arg constructor yourself.

	Always provide a no-arg constructor if you can, to make it easy for programmers to make a working object. Supply default values.

	Overloaded constructors means you have more than one constructor in your class.

	Overloaded constructors must have different argument lists.

	You cannot have two constructors with the same argument lists. An argument list includes the order and/or type of arguments.

	Instance variables are assigned a default value, even when you don’t explicitly assign one. The default values are 0/0.0/false for primitives, and null for references.

Sharpen your pencil

Match the

new Duck()

 call with the constructor that runs when that Duck is instantiated. We did the easy one to get you started.

 [image: image with no caption]

	

Q:

	

Q: Earlier you said that it’s good to have a no-argument constructor so that if people call the no-arg constructor, we can supply default values for the “missing” arguments. But aren’t there times when it’s impossible to come up with defaults? Are there times when you should not have a no-arg constructor in your class?

	
A:

	

A:

 You’re right. There are times when a no-arg constructor doesn’t make sense. You’ll see this in the Java API — some classes don’t have a no-arg constructor. The Color class, for example, represents a... color. Color objects are used to, for example, set or change the color of a screen font or GUI button. When you make a Color instance, that instance is of a particular color (you know, Death-by-Chocolate Brown, Blue-Screen-of-Death Blue, Scandalous Red, etc.). If you make a Color object, you must specify the color in some way.

Color c = new Color(3,45,200);

(We’re using three ints for RGB values here. We’ll get into using Color later, in the Swing chapters.) Otherwise, what would you get? The Java API programmers
could

 have decided that if you call a no-arg Color constructor you’ll get a lovely shade of mauve. But good taste prevailed.

If you try to make a Color without supplying an argument:

Color c = new Color();

The compiler freaks out because it can’t find a matching noarg constructor in the Color class.

 [image: image with no caption]

 Nanoreview: four things to remember about constructors

	A constructor is the code that runs when somebody says

new

 on a class type
Duck d = new Duck

();

	A constructor must have the same name as the class, and
no

 return type
public Duck

(int size) { }

	If you don’t put a constructor in your class, the compiler puts in a default constructor. The default constructor is always a no-arg constructor.
public Duck() { }

	You can have more than one constructor in your class, as long as the argument lists are different. Having more than one constructor in a class means you have overloaded
 constructors.

public Duck() { }

public Duck(int size) { }

public Duck(String name) { }

public Duck(String name, int size) { }

Brain Power

What about superclasses?

When you make a Dog, should the Canine constructor run too?

If the superclass is abstract, should it even have a constructor?

We’ll look at this on the next few pages, so stop now and think about the implications of constructors and superclasses.

There are no Dumb Questions

	

Q:

	

Q: Do constructors have to be

public

?

	
A:

	

A:

 No. Constructors can be

public

 ,

protected

 ,

private

 , or
default

 (which means no access modifier at all). We’ll look more at
default

 access in Chapter 16
 and Appendix B
 .

	

Q:

	

Q: How could a private constructor ever be useful? Nobody could ever call it, so nobody could ever make a new object!

	
A:

	

A:

 But that’s not exactly right. Marking something

private

 doesn’t mean
nobody

 can access it, it just means that
nobody outside the class

 can access it. Bet you’re thinking “Catch 22”. Only code from the
same

 class as the class-with-private-constructor can make a new object from that class, but without first making an object, how do you ever get to run code from that class in the first place? How do you ever get to anything in that class?
Patience grasshopper.

 We’ll get there in the next chapter.

Doing all the Brain Barbells has been shown to produce a 42% increase in neuron size. And you know what they say, “Big neurons...”

 Wait a minute... we never DID talk about superclasses and inheritance and how that all fits in with constructors

 Here’s where it gets fun. Remember from the last chapter, the part where we looked at the Snowboard object wrapping around an inner core representing the Object portion of the Snowboard class? The Big Point there was that every object holds not just its
own

 declared instance variables, but also
everything from its superclasses

 (which, at a minimum, means class Object, since
every

 class extends Object).

So when an object is created (because somebody said

new

 ; there is

no other way

 to create an object other than someone, somewhere saying

new

 on the class type), the object gets space for
all

 the instance variables, from all the way up the inheritance tree. Think about it for a moment... a superclass might have setter methods encapsulating a private variable. But that variable has to live
somewhere

 . When an object is created, it’s almost as though
multiple

 objects materialize — the object being new’d and one object per each superclass. Conceptually, though, it’s much better to think of it like the picture below, where the object being created has
layers

 of itself representing each superclass.

 [image: image with no caption]

 [image: image with no caption]

 The role of superclass constructors in an object’s life

All the constructors in an object’s inheritance tree must run when you make a new object.

Let that sink in.

That means every superclass has a constructor (because every class has a constructor), and each constructor up the hierarchy runs at the time an object of a subclass is created.

Saying

new

 is a Big Deal. It starts the whole constructor chain reaction. And yes, even abstract classes have constructors. Although you can never say new on an abstract class, an abstract class is still a superclass, so its constructor runs when someone makes an instance of a concrete subclass.

The super constructors run to build out the superclass parts of the object. Remember, a subclass might inherit methods that depend on superclass state (in other words, the value of instance variables in the superclass). For an object to be fully-formed, all the superclass parts of itself must be fully-formed, and that’s why the super constructor
must

 run. All instance variables from every class in the inheritance tree have to be declared and initialized. Even if Animal has instance variables that Hippo doesn’t inherit (if the variables are private, for example), the Hippo still depends on the Animal methods that
use

 those variables.

 [image: image with no caption]

When a constructor runs, it immediately calls its superclass constructor, all the way up the chain until you get to the class Object constructor.

On the next few pages, you’ll learn how superclass constructors are called, and how you can call them yourself. You’ll also learn what to do if your superclass constructor has arguments!

A new Hippo object also IS-A Animal and IS-A Object. If you want to make a Hippo, you must also make the Animal and Object parts of the Hippo.

This all happens in a process called Constructor Chaining.

 Making a Hippo means making the Animal and Object parts too...

public class Animal {

public Animal() {

System.out.println("Making an Animal");

}

}

public class Hippo extends Animal {

public Hippo() {

System.out.println("Making a Hippo");

}

}

public class TestHippo {

public static void main (String[] args) {

System.out.println("Starting...");

Hippo h = new Hippo();

}

}

Sharpen your pencil

What’s the real output? Given the code on the left, what prints out when you run TestHippo? A or B?

(the answer is at the bottom of the page)

	

 [image: image with no caption]

	

 [image: image with no caption]

	Code from another class says

new Hippo()

 and the
Hippo()

 constructor goes into a stack frame at the top of the stack.

 [image: image with no caption]

	

Hippo()

 invokes the superclass constructor which pushes the
Animal()

 constructor onto the top of the stack.

 [image: image with no caption]

	

Animal()

 invokes the superclass constructor which pushes the
Object()

 constructor onto the top of the stack, since Object is the superclass of Animal.

 [image: image with no caption]

	

Object()

 completes, and its stack frame is popped off the stack. Execution goes back to the
Animal()

 constructor, and picks up at the line following Animal’s call to its superclass constructor

 [image: image with no caption]

The first one, A. The Hippo() constructor is invoked first, but it’s the Animal constructor that finishes first.

How

 do you invoke a superclass constructor?

You might think that somewhere in, say, a Duck constructor, if Duck extends Animal you’d call Animal(). But that’s not how it works:

 [image: image with no caption]

The only way to call a super constructor is by calling

super().

 That’s right —

super()

 calls the

super constructor.

 [image: image with no caption]

 Note

And how is it that we’ve gotten away without doing it?

You probably figured that out.

Our good friend the compiler puts in a call to

super()

if you don’t.

So the compiler gets involved in constructor-making in
two

 ways:

	

If you

don’t

provide a constructor

The compiler puts one in that looks like:

public ClassName() {

super();

}

	

If you

do

provide a constructor but you do

not

put in the call to super()

The compiler will put a call to super() in each of your overloaded constructors.[11
]
 The compiler-supplied call looks like:

super();

It always looks like that. The compiler-inserted call to
super()

 is always a no-arg call. If the superclass has overloaded constructors, only the no-arg one is called.

A call to
super()

 in your constructor puts the superclass constructor on the top of the Stack. And what do you think that superclass constructor does?
Calls its superclass constructor.

 And so it goes until the Object constructor is on the top of the Stack. Once
Object(

) finishes, it’s popped off the Stack and the next thing down the Stack (the subclass constructor that called
Object()

) is now on top.
That

 constructor finishes and so it goes until the original constructor is on the top of the Stack, where
it

 can now finish.

 Can the child exist before the parents?

If you think of a superclass as the parent to the subclass child, you can figure out which has to exist first.

The superclass parts of an object have to be fully-formed (completely built) before the subclass parts can be constructed

 . Remember, the subclass object might depend on things it inherits from the superclass, so it’s important that those inherited things be finished. No way around it. The superclass constructor must finish before its subclass constructor.

Look at the Stack series in Making a Hippo means making the Animal and Object parts too...
 again, and you can see that while the Hippo constructor is the
first

 to be invoked (it’s the first thing on the Stack), it’s the
last

 one to complete! Each subclass constructor immediately invokes its own superclass constructor, until the Object constructor is on the top of the Stack. Then Object’s constructor completes and we bounce back down the Stack to Animal’s constructor. Only after Animal’s constructor completes do we finally come back down to finish the rest of the Hippo constructor. For that reason:

 [image: image with no caption]

The call to super() must be the first statement in each constructor!*

 Note

Possible constructors for class Boop

 [image: image with no caption]

 Superclass constructors with arguments

What if the superclass constructor has arguments? Can you pass something in to the
super()

 call? Of course. If you couldn’t, you’d never be able to extend a class that didn’t have a no-arg constructor. Imagine this scenario: all animals have a name. There’s a
getName()

 method in class Animal that returns the value of the
name

 instance variable. The instance variable is marked private, but the subclass (in this case, Hippo) inherits the
getName()

 method. So here’s the problem: Hippo has a
getName()

 method (through inheritance), but does not have the
name

 instance variable. Hippo has to depend on the Animal part of himself to keep the name instance variable, and return it when someone calls
getName()

 on a Hippo object. But... how does the Animal part get the name? The only reference Hippo has to the Animal part of himself is through
super()

 , so that’s the place where Hippo sends the Hippo’s name up to the Animal part of himself, so that the Animal part can store it in the private
name

 instance variable.

 [image: image with no caption]

 [image: image with no caption]

 [image: image with no caption]

 [image: image with no caption]

 Invoking one overloaded constructor from another

 What if you have overloaded constructors that, with the exception of handling different argument types, all do the same thing? You know that you don’t want
duplicate

 code sitting in each of the constructors (pain to maintain, etc.), so you’d like to put the bulk of the constructor code (including the call to super()) in only
one

 of the overloaded constructors. You want whichever constructor is first invoked to call The Real Constructor and let The Real Constructor finish the job of construction. It’s simple: just say
this()

 . Or
this(aString)

 . Or
this(27, x)

 . In other words, just imagine that the keyword
this

 is a reference to
the current object

You can say
this()

 only within a constructor, and it must be the first statement in the constructor!

But that’s a problem, isn’t it? Earlier we said that super() must be the first statement in the constructor. Well, that means you get a choice.

Every constructor can have a call to super() or this(), but never both!

 Note

Use this
 () to call a constructor from another overloaded constructor in the same class.

The call to this() can be used only in a constructor, and must be the first
 statement in a constructor.

A constructor can have a call to super() OR this(), but never both!

 [image: image with no caption]

Sharpen your pencil

Some of the constructors in the SonOfBoo class will not compile. See if you can recognize which constructors are not legal. Match the compiler errors with the SonOfBoo constructors that caused them, by drawing a line from the compiler error to the “bad” constructor.

public class Boo {

public Boo(int i) { }

public Boo(String s) { }

public Boo(String s, int i) { }

}

class SonOfBoo extends Boo {

public SonOfBoo() {

super("boo");

}

public SonOfBoo(int i) {

super("Fred");

}

public SonOfBoo(String s) {

super(42);

}

public SonOfBoo(int i, String s) {

}

public SonOfBoo(String a, String b, String c) {

super(a,b);

}

public SonOfBoo(int i, int j) {

super("man", j);

}

public SonOfBoo(int i, int x, int y) {

super(i, "star");

}

}

Make it Stick

Roses are red, violets are blue.

 [image: image with no caption]

Your parents come first

 ,
way before you

 .

The superclass parts of an object must be fully-formed before the new subclass object can exist. Just like there’s no way
you

 could have been born
before

 your parents.

 [image: image with no caption]

 Now we know how an object is born, but how long does an object live?

 An
object’s

 life depends entirely on the life of references referring to it. If the reference is considered “alive”, the object is still alive on the Heap. If the reference dies (and we’ll look at what that means in just a moment), the object will die.

So if an object’s life depends on the reference variable’s life, how long does a

variable

live?

That depends on whether the variable is a
local

 variable or an
instance

 variable. The code below shows the life of a local variable. In the example, the variable is a primitive, but variable lifetime is the same whether it’s a primitive or reference variable.

 [image: image with no caption]

 Note

	

A local
 variable lives only within the method that declared the variable.

public void read() {

int s = 42;

// 's' can be used only

// within this method.

// When this method ends,

// 's' disappears completely.

}

Variable ‘
s

 ’ can be used
only

 within the
read()

 method. In other words,

the variable is in scope only within its own method

 . No other code in the class (or any other class) can see ‘
s

 ’.

	

An instance
 variable lives as long as the object does. If the object is still alive, so are its instance variables.

public class Life {

int size;

public void setSize(int s) {

size = s;

// 's' disappears at the

// end of this method,

// but 'size' can be used

// anywhere in the class

}

}

Variable ‘
s

 ’ (this time a method parameter) is in scope only within the setSize() method. But instance variable size is scoped to the life of the
object

 as opposed to the life of the
method

 .

The difference between
life

 and
scope

 for local variables:

Life

A local variable is
alive

 as long as its Stack frame is on the Stack. In other words,
until the method completes

 .

Scope

A local variable is in
scope

 only within the method in which the variable was declared. When its own method calls another, the variable is alive, but not in scope until its method resumes.

You can use a variable only when it is in scope

 .

public void doStuff() {

boolean b = true;

go(4);

}

public void go(int x) {

int z = x + 24;

crazy();

// imagine more code here

}

public void crazy() {

char c = 'a';

}

	
doStuff()

goes on the Stack. Variable ‘b’ is alive and in scope.

 [image: image with no caption]

	

go()

plops on top of the Stack. ‘x’ and ‘z’ are alive and in scope, and ‘b’ is alive but

not

in scope.

 [image: image with no caption]

	

crazy()

is pushed onto the Stack, with ‘c’ now alive and in scope. The other three variables are alive but out of scope.

 [image: image with no caption]

	

crazy()

completes and is popped off the Stack, so ‘c’ is out of scope

and dead

 .
When go() resumes where it left off, ‘x’ and ‘z’ are both alive and back in scope. Variable ‘b’ is still alive but out of scope (until go() completes).

 [image: image with no caption]

While a local variable is alive, its state persists. As long as method doStuff() is on the Stack, for example, the ‘b’ variable keeps its value. But the ‘b’ variable can be used only while doStuff()’s Stack frame is at the top. In other words, you can use a local variable
only

 while that local variable’s method is actually running (as opposed to waiting for higher Stack frames to complete).

 What about reference variables?

 The rules are the same for primitives and references. A reference variable can be used only when it’s in scope, which means you can’t use an object’s remote control unless you’ve got a reference variable that’s in scope. The
real

 question is,

“How does

variable

life affect

object

life?”

An object is alive as long as there are live references to it. If a reference variable goes out of scope but is still alive, the object it
refers

 to is still alive on the Heap. And then you have to ask... “What happens when the Stack frame holding the reference gets popped off the Stack at the end of the method?”

If that was the
only

 live reference to the object, the object is now abandoned on the Heap. The reference variable disintegrated with the Stack frame, so the abandoned object is now,
officially

 , toast. The trick is to know the point at which an object becomes

eligible for garbage collection

 .

Once an object is eligible for garbage collection (GC), you don’t have to worry about reclaiming the memory that object was using. If your program gets low on memory, GC will destroy some or all of the eligible objects, to keep you from running out of RAM. You can still run out of memory, but
not

 before all eligible objects have been hauled off to the dump. Your job is to make sure that you abandon objects (i.e, make them eligible for GC) when you’re done with them, so that the garbage collector has something to reclaim. If you hang on to objects, GC can’t help you and you run the risk of your program dying a painful out-of-memory death.

An object’s life has no value, no meaning, no point, unless somebody has a reference to it.

If you can’t get to it, you can’t ask it to do anything and it’s just a big fat waste of bits.

But if an object is unreachable, the Garbage Collector will figure that out. Sooner or later, that object’s goin’ down.

 Note

 [image: image with no caption]

An object becomes eligible for GC when its last live reference disappears.

Three ways to get rid of an object’s reference:

	The reference goes out of scope, permanently

 [image: image with no caption]

	The reference is assigned another object

 [image: image with no caption]

	The reference is explicitly set to null

 [image: image with no caption]

Object-killer #1

Reference goes out of scope, permanently.

 [image: image with no caption]

public class StackRef {

public void foof() {

barf();

}

public void barf() {

Duck d = new Duck();

}

}

 [image: image with no caption]

	

foof()

is pushed onto the Stack, no variables are declared.

 [image: image with no caption]

	

barf()

is pushed onto the Stack, where it declares a reference variable, and creates a new object assigned to that reference. The object is created on the Heap, and the reference is alive and in scope.

 [image: image with no caption]

	

barf()

completes and pops off the Stack. Its frame disintegrates, so ‘d’ is now dead and gone. Execution returns to

foof()

, but

foof()

can’t use ‘d’.

 [image: image with no caption]

Object-killer #2

Assign the reference to another object

 [image: image with no caption]

public class ReRef {

Duck d = new Duck();

public void go() {

d = new Duck();

}

}

 [image: image with no caption]

The new Duck goes on the Heap, referenced by ‘d’. Since ‘d’ is an instance variable, the Duck will live as long as the ReRef object that instantiated it is alive. Unless...

 [image: image with no caption]

‘d’ is assigned a new Duck object, leaving the original (first) Duck object abandoned. That first Duck is now as good as dead.

 [image: image with no caption]

Object-killer #3

Explicitly set the reference to null

 [image: image with no caption]

public class ReRef {

Duck d = new Duck();

public void go() {

d = null;

}

}

 [image: image with no caption]

The new Duck goes on the Heap, referenced by ‘d’. Since ‘d’ is an instance variable, the Duck will live as long as the ReRef object that instantiated it is alive. Unless...

 [image: image with no caption]

‘d’ is set to null, which is just like having a remote control that isn’t programmed to anything. You’re not even allowed to use the dot operator on ‘d’ until it’s reprogrammed (assigned an object).

 Note

The meaning of null

When you set a reference to

null

 , you’re deprogramming the remote control. In other words, you’ve got a remote control, but no TV at the other end. A null reference has bits representing ‘null’ (
we

 don’t know or care what those bits are, as long as the JVM knows).

If you have an unprogrammed remote control, in the real world, the buttons don’t do anything when you press them. But in Java, you can’t press the buttons (i.e. use the dot operator) on a null reference, because the JVM knows (this is a runtime issue, not a compiler error) that you’re expecting a bark but there’s no Dog there to do it!

If you use the dot operator on a null reference, you’ll get a NullPointerException at runtime.

 You’ll learn all about Exceptions in the Risky Behavior chapter.

Fireside Chats

 Tonight’s Talk:
An instance variable and a local variable discuss life and death (with remarkable civility)

 [image: image with no caption]

	

Instance Variable

	

Local Variable

	
I’d like to go first, because I tend to be more important to a program than a local variable. I’m there to support an object, usually throughout the object’s entire life. After all, what’s an object without
state

 ? And what is state? Values kept in

instance variables

 .

	

	
	
I appreciate your point of view, and I certainly appreciate the value of object state and all, but I don’t want folks to be misled. Local variables are
really

 important. To use your phrase, “After all, what’s an object without
behavior

 ?” And what is behavior? Algorithms in methods. And you can bet your bits there’ll be some
local variables

 in there to make those algorithms work.

	
No, don’t get me wrong, I do understand your role in a method, it’s just that your life is so short. So temporary. That’s why they call you guys “temporary variables”.

	

	
	
Within the local-variable community, the phrase “temporary variable” is considered derogatory. We prefer “local”, “stack”, “automatic”, or “Scope-challenged”.

	
My apologies. I understand completely.

	

	
	
Anyway, it’s true that we don’t have a long life, and it’s not a particularly
good

 life either. First, we’re shoved into a Stack frame with all the other local variables. And then, if the method we’re part of calls another method, another frame is pushed on top of us. And if
that

 method calls
another

 method... and so on. Sometimes we have to wait forever for all the other methods on top of the Stack to complete so that our method can run again.

	
I never really thought about it like that. What are you doing while the other methods are running and you’re waiting for your frame to be the top of the Stack again?

	

	
	
Nothing. Nothing at all. It’s like being in stasis — that thing they do to people in science fiction movies when they have to travel long distances. Suspended animation, really. We just sit there on hold. As long as our frame is still there, we’re safe and the value we hold is secure, but it’s a mixed blessing when our frame gets to run again. On the one hand, we get to be active again. On the other hand, the clock starts ticking again on our short lives. The more time our method spends running, the closer we get to the end of the method. We
all

 know what happens then.

	
We saw an educational video about it once. Looks like a pretty brutal ending. I mean, when that method hits its ending curly brace, the frame is literally
blown

 off the Stack! Now
that’s

 gotta hurt.

	

	
	
Tell me about it. In computer science they use the term
popped

 as in “the frame was popped off the Stack”. That makes it sound fun, or maybe like an extreme sport. But, well, you saw the footage. So why don’t we talk about you? I know what my little Stack frame looks like, but where do
you

 live?

	
I live on the Heap, with the objects. Well, not
with

 the objects, actually
in

 an object. The object whose state I store. I have to admit life can be pretty luxurious on the Heap. A lot of us feel guilty, especially around the holidays.

	

	
	
But you don’t
always

 live as long as the object who declared you, right? Say there’s a Dog object with a Collar instance variable. Imagine
you’re

 an instance variable of the
Collar

 object, maybe a reference to a Buckle or something, sitting there all happy inside the
Collar

 object who’s all happy inside the
Dog

 object. But... what happens if the Dog wants a new Collar, or
nulls

 out its Collar instance variable? That makes the Collar object eligible for GC. So... if
you’re

 an instance variable inside the Collar, and the whole
Collar

 is abandoned, what happens to
you

 ?

	
OK, hypothetically, yes, if I’m an instance variable of the Collar and the Collar gets GC’d, then the Collar’s instance variables would indeed be tossed out like so many pizza boxes. But I was told that this almost never happens.

	

	
	
And you believed it? That’s what they say to keep us motivated and productive. But aren’t you forgetting something else? What if you’re an instance variable inside an object, and that object is referenced
only

 by a
local

 variable? If I’m the only reference to the object you’re in, when I go, you’re coming with me. Like it or not, our fates may be connected. So I say we forget about all this and go get drunk while we still can. Carpe RAM and all that.

	
They let us
drink

 ?

	

BE the Garbage Collector

 [image: image with no caption]

Exercise

Which of the lines of code on the right, if added to the class on the left at point A, would cause exactly one additional object to be eligible for the Garbage Collector? (Assume that point A (//call more methods) will execute for a long time, giving the Garbage Collector time to do its stuff.)

 [image: image with no caption]

Popular Objects

 [image: image with no caption]

Exercise

In this code example, several new objects are created. Your challenge is to find the object that is ‘most popular’, i.e. the one that has the most reference variables referring to it. Then list how
many

 total references there are for that object, and what they are! We’ll start by pointing out one of the new objects, and its reference variable.

Good Luck !

 [image: image with no caption]

Five-Minute Mystery

 [image: image with no caption]

“We’ve run the simulation four times, and the main module’s temperature consistently drifts out of nominal towards cold”, Sarah said, exasperated. “We installed the new temp-bots last week. The readings on the radiator bots, designed to cool the living quarters, seem to be within spec, so we’ve focused our analysis on the heat retention bots, the bots that help to warm the quarters.” Tom sighed, at first it had seemed that nano-technology was going to really put them ahead of schedule. Now, with only five weeks left until launch, some of the orbiter’s key life support systems were still not passing the simulation gauntlet.

“What ratios are you simulating?”, Tom asked.

“Well if I see where you’re going, we already thought of that”, Sarah replied. “Mission control will not sign off on critical systems if we run them out of spec. We are required to run the v3 radiator bot’s SimUnits in a 2:1 ratio with the v2 radiator’s SimUnits”, Sarah continued. “Overall, the ratio of retention bots to radiator bots is supposed to run 4:3.”

“How’s power consumption Sarah?”, Tom asked. Sarah paused, “Well that’s another thing, power consumption is running higher than anticipated. We’ve got a team tracking that down too, but because the nanos are wireless it’s been hard to isolate the power consumption of the radiators from the retention bots.” “Overall power consumption ratios”, Sarah continued, “are designed to run 3:2 with the radiators pulling more power from the wireless grid.”

“OK Sarah”, Tom said “Let’s take a look at some of the simulation initiation code. We’ve got to find this problem, and find it quick!”

import java.util.*;
class V2Radiator {
 V2Radiator(ArrayList list) {
 for(int x=0; x<5; x++) {
 list.add(new SimUnit("V2Radiator"));
 }
 }
}

class V3Radiator extends V2Radiator {
 V3Radiator(ArrayList lglist) {
 super(lglist);
 for(int g=0; g<10; g++) {
 lglist.add(new SimUnit("V3Radiator"));
 }
 }
}

class RetentionBot {
 RetentionBot(ArrayList rlist) {
 rlist.add(new SimUnit("Retention"));
 }
}
public class TestLifeSupportSim {
 public static void main(String [] args) {
 ArrayList aList = new ArrayList();
 V2Radiator v2 = new V2Radiator(aList);
 V3Radiator v3 = new V3Radiator(aList);
 for(int z=0; z<20; z++) {
 RetentionBot ret = new RetentionBot(aList);
 }
 }
}

class SimUnit {
 String botType;
 SimUnit(String type) {
 botType = type;
 }
 int powerUse() {
 if ("Retention".equals(botType)) {
 return 2;
 } else {
 return 4;
 }
 }
}

Tom gave the code a quick look and a small smile creeped across his lips. I think I’ve found the problem Sarah, and I bet I know by what percentage your power usage readings are off too!

What did Tom suspect? How could he guess the power readings errors, and what few lines of code could you add to help debug this program?

G.C.

	
1

	

copyGC = null;

	
No - this line attempts to access a variable that is out of scope.

	
2

	

gc2 = null;

	
OK - gc2 was the only reference variable referring to that object.

	
3

	

newGC = gc3;

	
No - another out of scope variable.

	
4

	

gc1 = null;

	
OK - gc1 had the only reference because newGC is out of scope.

	
5

	

newGC = null;

	
No - newGC is out of scope.

	
6

	

gc4 = null;

	
No - gc3 is still referring to that object.

	
7

	

gc3 = gc2;

	
No - gc4 is still referring to that object.

	
8

	

gc1 = gc4;

	
OK - Reassigning the only reference to that object.

	
9

	

gc3 = null;

	
No - gc4 is still referring to that object.

Popular Objects

It probably wasn’t too hard to figure out that the Honey object first referred to by the honeyPot variable is by far the most ‘popular’ object in this class. But maybe it was a little trickier to see that all of the variables that point from the code to the Honey object refer to the

same object

 ! There are a total of 12 active references to this object right before the main() method completes. The
k.kh

 variable is valid for a while, but k gets nulled at the end. Since
r.k

 still refers to the Kit object,
r.k.kh

 (although never explicity declared), refers to the object!

 [image: image with no caption]

Five-Minute Mystery Solution

 [image: image with no caption]

Tom noticed that the constructor for the V2Radiator class took an ArrayList. That meant that every time the
V3

 Radiator constructor was called, it passed an ArrayList in its super() call to the
V2

 Radiator constructor. That meant that an extra five V2Radiator SimUnits were created. If Tom was right, total power use would have been 120, not the 100 that Sarah’s expected ratios predicted.

Since all the Bot classes create SimUnits, writing a constructor for the SimUnit class, that printed out a line everytime a SimUnit was created, would have quickly highlighted the problem!

[9
]
 Instance variables do have a default value. 0 or 0.0 for numeric primitives, false for booleans, and null for references.

[10
]
 Not to imply that not all Duck state is not unimportant.

[11
]
 Unless the constructor calls another overloaded constructor (you’ll see that in a few pages).

 Chapter 10. Numbers and Statics: Numbers Matter

 [image: image with no caption]

Do the Math.

 But there’s more to working with numbers than just doing primitive arithmetic. You might want to get the absolute value of a number, or round a number, or find the larger of two numbers. You might want your numbers to print with exactly two decimal places, or you might want to put commas into your large numbers to make them easier to read. And what about working with dates? You might want to print dates in a variety of ways, or even
manipulate

 dates to say things like, “add three weeks to today’s date”. And what about parsing a String into a number? Or turning a number into a String? You’re in luck. The Java API is full of handy number-tweaking methods ready and easy to use. But most of them are
static

 , so we’ll start by learning what it means for a variable or method to be static, including constants in Java — static
final

 variables.

 MATH methods: as close as you’ll ever get to a
global

 method

 Except there’s no global
anything

 in Java. But think about this: what if you have a method whose behavior doesn’t depend on an instance variable value. Take the round() method in the Math class, for example. It does the same thing every time — rounds a floating point number(the argument to the method) to the nearest integer. Every time. If you had 10,000 instances of class Math, and ran the round(42.2) method, you’d get an integer value of 42. Every time. In other words, the method acts on the argument, but is never affected by an instance variable state. The only value that changes the way the round() method runs is the argument passed to the method!

Doesn’t it seem like a waste of perfectly good heap space to make an instance of class Math simply to run the round() method? And what about
other

 Math methods like min(), which takes two numerical primitives and returns the smaller of the two. Or max(). Or abs(), which returns the absolute value of a number.

These methods never use instance variable values

 . In fact the Math class doesn’t
have

 any instance variables. So there’s nothing to be gained by making an instance of class Math. So guess what? You don’t have to. As a matter of fact, you can’t.

 Note

Methods in the Math class don’t use any instance variable values. And because the methods are ‘static’, you don’t need to have an instance
 of Math. All you need is the Math class
 .

 [image: image with no caption]

If you try to make an instance of class Math:

Math mathObject = new Math();

You’ll get this error:

 [image: image with no caption]

 The difference between regular (non-static) and static methods

Java is object-oriented, but once in a while you have a special case, typically a utility method (like the Math methods), where there is no need to have an instance of the class. The keyword

static

 lets a method run

without any instance of the class

 . A static method means “behavior not dependent on an instance variable, so no instance/object is required. Just the class.”

 [image: image with no caption]

 [image: image with no caption]

Call a static method using a class name

 [image: image with no caption]

Call a non-static method using a reference variable name

 [image: image with no caption]

 What it means to have a class with static methods

Often (although not always), a class with static methods is not meant to be instantiated. In Chapter 8
 we talked about abstract classes, and how marking a class with the

abstract

 modifier makes it impossible for anyone to say ‘new’ on that class type. In other words,

it’s impossible to instantiate an abstract class.

But you can restrict other code from instantiating a
non

 -abstract class by marking the constructor

private

 . Remember, a
method

 marked private means that only code from within the class can invoke the method. A
constructor

 marked private means essentially the same thing — only code from within the class can invoke the constructor. Nobody can say ‘new’ from
outside

 the class. That’s how it works with the Math class, for example. The constructor is private, you cannot make a new instance of Math. The compiler knows that your code doesn’t have access to that private constructor.

This does
not

 mean that a class with one or more static methods should never be instantiated. In fact, every class you put a main() method in is a class with a static method in it!

Typically, you make a main() method so that you can launch or test another class, nearly always by instantiating a class in main, and then invoking a method on that new instance.

So you’re free to combine static and non-static methods in a class, although even a single non-static method means there must be
some

 way to make an instance of the class. The only ways to get a new object are through ‘new’ or deserialization (or something called the Java Reflection API that we don’t go into). No other way. But exactly
who

 says new can be an interesting question, and one we’ll look at a little later in this chapter.

 Static methods can’t use non-static (instance) variables!

 Note

If you try to use an instance variable from inside a static method, the compiler thinks, “I don’t know

which

object’s instance variable you’re talking about!”

If you have ten Duck objects on the heap, a static method doesn’t know about

any

of them.

Static methods run without knowing about any particular instance of the static method’s class. And as you saw on the previous pages, there might not even
be

 any instances of that class. Since a static method is called using the
class

 (

Math

 . random()) as opposed to an
instance reference

 (

t2

 .play()), a static method can’t refer to any instance variables of the class. The static method doesn’t know
which

 instance’s variable value to use.

If you try to compile this code:

 [image: image with no caption]

You’ll get this error:

 [image: image with no caption]

 [image: image with no caption]

 Static methods can’t use non-static methods
 , either!

 What do non-static methods do?

They usually use instance variable state to affect the behavior of the method.

 A getName() method returns the value of the name variable. Whose name? The object used to invoke the getName() method.

This won’t compile:

 [image: image with no caption]

There are no Dumb Questions

	

Q:

	

Q: What if you try to call a non-static method from a static method, but the non-static method doesn’t use any instance variables. Will the compiler allow that?

	
A:

	

A:

 No. The compiler knows that whether you do or do not use instance variables in a non-static method, you
can

 . And think about the implications... if you were allowed to compile a scenario like that, then what happens if in the future you want to change the implementation of that non-static method so that one day it
does

 use an instance variable? Or worse, what happens if a subclass
overrides

 the method and uses an instance variable in the overriding version?

	

Q:

	

Q: I could swear I’ve seen code that calls a static method using a reference variable instead of the class name.

	
A:

	

A:

 You
can

 do that, but as your mother always told you, “Just because it’s legal doesn’t mean it’s good.” Although it
works

 to call a static method using any instance of the class, it makes for misleading (less-readable) code. You
can

 say,

Duck d = new Duck();

String[] s = {};

d.main(s);

This code is legal, but the compiler just resolves it back to the real class anyway (“OK,
d

 is of type Duck, and main() is static, so I’ll call the static main() in class Duck”). In other words, using
d

 to invoke main() doesn’t imply that main() will have any special knowledge of the object that
d

 is referencing. It’s just an alternate
way

 to invoke a static method, but the method is still static!

 Static variable: value is the same for ALL instances of the class

The static duckCount variable is initialized ONLY when the class is first loaded, NOT each time a new instance is made.

 [image: image with no caption]

No, that wouldn’t work because duckCount is an instance variable, and starts at 0 for each Duck. You could try calling a method in some other class, but that’s kludgey. You need a class that’s got only a single copy of the variable, and all instances share that one copy.

That’s what a static variable gives you: a value shared by all instances of a class. In other words, one value per
class

 , instead of one value per
instance

 .

 [image: image with no caption]

 [image: image with no caption]

 [image: image with no caption]

Static variables are shared.

All instances of the same class share a single copy of the static variables.

instance variables: 1 per
instance

static variables: 1 per
class

 Brain Barbell

Earlier in this chapter, we saw that a private constructor means that the class can’t be instantiated from code running outside the class. In other words, only code from within the class can make a new instance of a class with a private constructor. (There’s a kind of chicken-and-egg problem here.)

What if you want to write a class in such a way that only ONE instance of it can be created, and anyone who wants to use an instance of the class will always use that one, single instance?

 Initializing a static variable

 Static variables are initialized when a
class is loaded

 . A class is loaded because the JVM decides it’s time to load it. Typically, the JVM loads a class because somebody’s trying to make a new instance of the class, for the first time, or use a static method or variable of the class. As a programmer, you also have the option of telling the JVM to load a class, but you’re not likely to need to do that. In nearly all cases, you’re better off letting the JVM decide when to
load

 the class.

And there are two guarantees about static initialization:

Static variables in a class are initialized before any
object

 of that class can be created.

Static variables in a class are initialized before any
static method

 of the class runs.

 Note

All static variables in a class are initialized before any object of that class can be created.

 [image: image with no caption]

Static variables are initialized when the class is loaded. If you don’t explicitly initialize a static variable (by assigning it a value at the time you declare it), it gets a default value, so int variables are initialized to zero, which means we didn’t need to explicitly say “playerCount = 0”. Declaring, but not initializing, a static variable means the static variable will get the default value for that variable type, in exactly the same way that instance variables are given default values when declared.

 [image: image with no caption]

 static final
 variables are constants

 A variable marked

final

 means that — once initialized — it can never change. In other words, the value of the static final variable will stay the same as long as the class is loaded. Look up Math.PI in the API, and you’ll find:

public static final double PI = 3.141592653589793;

The variable is marked

public

 so that any code can access it. The variable is marked

static

 so that you don’t need an instance of class Math (which, remember, you’re not allowed to create).

The variable is marked

final

 because PI doesn’t change (as far as Java is concerned).

There is no other way to designate a variable as a constant, but there is a naming convention that helps you to recognize one.

Constant variable names should be in all caps!

 Note

A static initializer is a block of code that runs when a class is loaded, before any other code can use the class, so it’s a great place to initialize a static
 final variable.

class Foo {

final static int X;

static {

X = 42;

}

}

Initialize a
final

 static variable:

	

At the time you declare it:

 [image: image with no caption]

OR

	

In a static initializer:

 [image: image with no caption]

If you don’t give a value to a final variable in one of those two places:

 [image: image with no caption]

The compiler will catch it:

 [image: image with no caption]

 final isn’t just for static variables...

 You can use the keyword

final

 to modify non-static variables too, including instance variables, local variables, and even method parameters. In each case, it means the same thing: the value can’t be changed. But you can also use final to stop someone from overriding a method or making a subclass.

A final variable means you can’t change its value.

A final method means you can’t override the method.

A final class means you can’t extend the class (i.e. you can’t make a subclass).

non-static final variables

 [image: image with no caption]

final

method

class Poof {

final void calcWhuffie() {

// important things

// that must never be overridden

}

}

final

class

final class MyMostPerfectClass {

// cannot be extended

}

 [image: image with no caption]

There are no Dumb Questions

	

Q:

	

Q: A static method can’t access a non-static variable. But can a non-static method access a static variable?

	
A:

	

A:

 Of course. A non-static method in a class can always call a static method in the class or access a static variable of the class.

	

Q:

	

Q: Why would I want to make a class final? Doesn’t that defeat the whole purpose of OO?

	
A:

	

A:

 Yes and no. A typical reason for making a class final is for security. You can’t, for example, make a subclass of the String class. Imagine the havoc if someone extended the String class and substituted their own String subclass objects, polymorphically, where String objects are expected. If you need to count on a particular implementation of the methods in a class, make the class final.

	

Q:

	

Q: Isn’t it redundant to have to mark the methods final if the class is final?

	
A:

	

A:

 If the class is final, you don’t need to mark the methods final. Think about it — if a class is final it can never be subclassed, so none of the methods can ever be overridden.

On the other hand, if you
do

 want to allow others to extend your class, and you want them to be able to override some, but not all, of the methods, then don’t mark the class final but go in and selectively mark specific methods as final. A final method means that a subclass can’t override that particular method.

Bullet Points

	A

static method

 should be called using the class name rather than an object reference variable:

Math.random()

 vs.
myFoo.go()

	A static method can be invoked without any instances of the method’s class on the heap.

	A static method is good for a utility method that does not (and will never) depend on a particular instance variable value.

	A static method is not associated with a particular instance — only the class — so it cannot access any instance variable values of its class. It wouldn’t know
which

 instance’s values to use.

	A static method cannot access a non-static method, since non-static methods are usually associated with instance variable state.

	If you have a class with only static methods, and you do not want the class to be instantiated, you can mark the constructor private.

	A

static variable

 is a variable shared by all members of a given class. There is only one copy of a static variable in a class, rather than one copy per each individual instance for instance variables.

	A static method can access a static variable.

	To make a constant in Java, mark a variable as both static and final.

	A final static variable must be assigned a value either at the time it is declared, or in a static initializer.

static {

DOG_CODE = 420;

}

	The naming convention for constants (final static variables) is to make the name all uppercase.

	A final variable value cannot be changed once it has been assigned.

	Assigning a value to a final
instance

 variable must be either at the time it is declared, or in the constructor.

	A final method cannot be overridden.

	A final class cannot be extended (subclassed).

Sharpen your pencil

What’s Legal?

Given everything you’ve just learned about static and final, which of these would compile?

 [image: image with no caption]

	

public class Foo {

static int x;

public void go() {

System.out.println(x);

}

}

	

public class Foo2 {

int x;

public static void go() {

System.out.println(x);

}

}

	

public class Foo3 {

final int x;

public void go() {

System.out.println(x);

}

}

	

public class Foo4 {

static final int x = 12;

public void go() {

System.out.println(x);

}

}

	

public class Foo5 {

static final int x = 12;

public void go(final int x) {

System.out.println(x);

}

}

	

public class Foo6 {

int x = 12;

public static void go(final int x) {

System.out.println(x);

}

}

 Math methods

 Now that we know how static methods work, let’s look at some static methods in class Math. This isn’t all of them, just the highlights. Check your API for the rest including sqrt(), tan(), ceil(), floor(), and asin().

Math.random()

	Returns a double between 0.0 through (but not including) 1.0.

double r1 = Math.random();

int r2 = (int) (Math.random() * 5);

Math.abs()

	Returns a double that is the absolute value of the argument. The method is overloaded, so if you pass it an int it returns an int. Pass it a double it returns a double.

int x = Math.abs(-240); // returns 240

double d = Math.abs(240.45); // returns 240.45

Math.round()

	Returns an int or a long (depending on whether the argument is a float or a double) rounded to the nearest integer value.

 [image: image with no caption]

Math.min()

	Returns a value that is the minimum of the two arguments. The method is overloaded to take ints, longs, floats, or doubles.

int x = Math.min(24,240); // returns 24

double y = Math.min(90876.5, 90876.49); // returns 90876.49

Math.max()

	Returns a value that is the maximum of the two arguments. The method is overloaded to take ints, longs, floats, or doubles.

int x = Math.max(24,240); // returns 240

double y = Math.max(90876.5, 90876.49); // returns 90876.5

 Wrapping a primitive

 Sometimes you want to treat a primitive like an object. For example, in all versions of Java prior to 5.0, you cannot put a primitive directly into a collection like ArrayList or HashMap:

 [image: image with no caption]

There’s a wrapper class for every primitive type, and since the wrapper classes are in the java. lang package, you don’t need to import them. You can recognize wrapper classes because each one is named after the primitive type it wraps, but with the first letter capitalized to follow the class naming convention.

Oh yeah, for reasons absolutely nobody on the planet is certain of, the API designers decided not to map the names
exactly

 from primitive type to class type. You’ll see what we mean:

 [image: image with no caption]

 [image: image with no caption]

 Note

When you need to treat a primitive like an object, wrap it. If you’re using any version of Java before 5.0, you’ll do this when you need to store a primitive value inside a collection like ArrayList or HashMap.

 [image: image with no caption]

Note: the picture at the top is a chocolate in a foil wrapper. Get it? Wrapper? Some people think it looks like a baked potato, but that works too.

 Before Java 5.0, YOU
 had to do the work...

 [image: image with no caption]

 She’s right. In all versions of Java prior to 5.0, primitives were primitives and object references were object references, and they were NEVER treated interchangeably. It was always up to you, the programmer, to do the wrapping and unwrapping. There was no way to pass a primitive to a method expecting an object reference, and no way to assign the result of a method returning an object reference directly to a primitive variable — even when the returned reference is to an Integer and the primitive variable is an int. There was simply no relationship between an Integer and an int, other than the fact that Integer has an instance variable of type int (to hold the primitive the Integer wraps). All the work was up to you.

An ArrayList of primitive ints

Without

 autoboxing (Java versions before 5.0)

 [image: image with no caption]

 Autoboxing: blurring the line between primitive and object

The autoboxing feature added to Java 5.0 does the conversion from primitive to wrapper object
automatically!

Let’s see what happens when we want to make an ArrayList to hold ints.

An ArrayList of primitive ints

With

 autoboxing (Java versions 5.0 or greater)

 [image: image with no caption]

	

Q:

	

Q: Why not declare an ArrayList<int> if you want to hold ints?

	
A:

	

A:

 Because...
you can’t.

 Remember, the rule for generic types is that you can specify only class or interface types,
not primitives

 . So ArrayList<int> will not compile. But as you can see from the code above, it doesn’t really matter, since the compiler lets you put ints into the ArrayList<Integer>. In fact, there’s really no way to
prevent

 you from putting primitives into an ArrayList where the type of the list is the type of that primitive’s wrapper, if you’re using a Java 5.0-compliant compiler, since autoboxing will happen automatically. So, you can put boolean primitives in an ArrayList<Boolean> and chars into an ArrayList<Character>.

 Autoboxing works almost everywhere

Autoboxing lets you do more than just the obvious wrapping and unwrapping to use primitives in a collection... it also lets you use either a primitive or its wrapper type virtually anywhere one or the other is expected. Think about that!

Fun with autoboxing

Method arguments

	If a method takes a wrapper type, you can pass a reference to a wrapper or a primitive of the matching type. And of course the reverse is true — if a method takes a primitive, you can pass in either a compatible primitive or a reference to a wrapper of that primitive type.

 [image: image with no caption]

Return values

	If a method declares a primitive return type, you can return either a compatible primitive or a reference to the wrapper of that primitive type. And if a method declares a wrapper return type, you can return either a reference to the wrapper type or a primitive of the matching type.

 [image: image with no caption]

Boolean expressions

	Any place a boolean value is expected, you can use either an expression that evaluates to a boolean (4 > 2), or a primitive boolean, or a reference to a Boolean wrapper.

 [image: image with no caption]

Operations on numbers

	This is probably the strangest one — yes, you can now use a wrapper type as an operand in operations where the primitive type is expected. That means you can apply, say, the increment operator against a reference to an Integer object!

But don’t worry — this is just a compiler trick. The language wasn’t modified to make the operators work on objects; the compiler simply converts the object to its primitive type before the operation. It sure looks weird, though.

Integer i = new Integer(42); i++;

And that means you can also do things like:

Integer j = new Integer(5);

Integer k = j + 3;

 [image: image with no caption]

Assignments

	You can assign either a wrapper or primitive to a variable declared as a matching wrapper or primitive. For example, a primitive int variable can be assigned to an Integer reference variable, and vice-versa — a reference to an Integer object can be assigned to a variable declared as an int primitive.

 [image: image with no caption]

Sharpen your pencil

Will this code compile? Will it run? If it runs, what will it do?

Take your time and think about this one; it brings up an implication of autoboxing that we didn’t talk about.

You’ll have to go to your compiler to find the answers. (Yes, we’re forcing you to experiment, for your own good of course.)

public class TestBox {

Integer i;

int j;

public static void main (String[] args) {

TestBox t = new TestBox();

t.go();

}

public void go() {

j=i;

System.out.println(j);

System.out.println(i);

}

}

 But wait! There’s more! Wrappers have static utility methods too!

 Besides acting like a normal class, the wrappers have a bunch of really useful static methods. We’ve used one in this book before — Integer.parseInt().

The parse methods take a String and give you back a primitive value.

Converting a String to a primitive value is easy:

 [image: image with no caption]

But if you try to do this:

 [image: image with no caption]

You’ll get a runtime exception:

 [image: image with no caption]

Every method or constructor that parses a String can throw a NumberFormatException. It’s a runtime exception, so you don’t have to handle or declare it. But you might want to.

(We’ll talk about Exceptions in the next chapter.)

 And now in reverse... turning a primitive number into a String

There are several ways to turn a number into a String. The easiest is to simply concatenate the number to an existing String.

 [image: image with no caption]

 [image: image with no caption]

 Number formatting

 In Java, formatting numbers and dates doesn’t have to be coupled with I/O. Think about it. One of the most typical ways to display numbers to a user is through a GUI. You put Strings into a scrolling text area, or maybe a table. If formatting was built only into print statements, you’d never be able to format a number into a nice String to display in a GUI. Before Java 5.0, most formatting was handled through classes in the java.text package that we won’t even look at in this version of the book, now that things have changed.

In Java 5.0, the Java team added more powerful and flexible formatting through a Formatter class in java.util. But you don’t need to create and call methods on the Formatter class yourself, because Java 5.0 added convenience methods to some of the I/O classes (including printf()) and the String class. So it’s a simple matter of calling a static String.format() method and passing it the thing you want formatted along with formatting instructions.

Of course, you do have to know how to supply the formatting instructions, and that takes a little effort unless you’re familiar with the

printf()

 function in C/C++. Fortunately, even if you
don’t

 know printf() you can simply follow recipes for the most basic things (that we’re showing in this chapter). But you
will

 want to learn how to format if you want to mix and match to get
anything

 you want.

We’ll start here with a basic example, then look at how it works. (Note: we’ll revisit formatting again in the I/O chapter.)

Formatting a number to use commas

 [image: image with no caption]

 Formatting deconstructed...

 At the most basic level, formatting consists of two main parts (there is more, but we’ll start with this to keep it cleaner):

	

Formatting instructions

You use special format specifiers that describe how the argument should be formatted.

 Note

Note: if you already know printf() from c/C++, you can probably just skim the next few pages. Otherwise, read carefully!

	

The argument to be formatted.

Although there can be more than one argument, we’ll start with just one. The argument type can’t be just
anything

 ... it has to be something that can be formatted using the format specifiers in the formatting instructions. For example, if your formatting instructions specify a
floating point number

 , you can’t pass in a Dog or even a String that looks like a floating point number.

 [image: image with no caption]

What do these instructions actually say?

“Take the second argument to this method, and format it as a
d

 ecimal integer and insert
commas

 .”

How do they say that?

On the next page we’ll look in more detail at what the syntax “%, d” actually means, but for starters, any time you see the percent sign (%) in a format String (which is always the first argument to a format() method), think of it as representing a variable, and the variable is the other argument to the method. The rest of the characters after the percent sign describe the formatting instructions for the argument.

 The percent (%) says, “insert argument here” (and format it using these instructions)

The first argument to a format() method is called the format String, and it can actually include characters that you just want printed as-is, without extra formatting. When you see the % sign, though, think of the percent sign as a variable that represents the other argument to the method.

 [image: image with no caption]

The “%” sign tells the formatter to insert the other method argument (the second argument to format(), the number) here, AND format it using the “.2f” characters after the percent sign. Then the rest of the format String, “bugs to fix”, is added to the final output.

Adding a comma

 [image: image with no caption]

 The format String uses its own little language syntax

 [image: image with no caption]

You obviously can’t put just
anything

 after the “%” sign. The syntax for what goes after the percent sign follows very specific rules, and describes how to format the argument that gets inserted at that point in the result (formatted) String.

You’ve already seen two examples:

%, d

 means “insert commas and format the number as a decimal integer.”

and

%.2f

 means “format the number as a floating point with a precision of two decimal places.”

and

%,.2f

 means “insert commas and format the number as a floating point with a precision of two decimal places.”

The real question is really, “How do I know what to put after the percent sign to get it to do what I want?” And that includes knowing the symbols (like “d” for decimal and “f” for floating point) as well as the order in which the instructions must be placed following the percent sign. For example, if you put the comma after the “d” like this: “%d,” instead of “%,d” it won’t work!

Or will it? What do you think this will do:

String.format("I have %.2f, bugs to fix.", 476578.09876);

(We’ll answer that on the next page.)

 The format specifier

 Everything after the percent sign up to and including the type indicator (like “d” or “f”) are part of the formatting instructions. After the type indicator, the formatter assumes the next set of characters are meant to be part of the output String, until or unless it hits another percent (%) sign. Hmmmm... is that even possible? Can you have more than one formatted argument variable? Put that thought on hold for right now; we’ll come back to it in a few minutes. For now, let’s look at the syntax for the format specifiers — the things that go after the percent (%) sign and describe how the argument should be formatted.

A format specifier can have up to five different parts (not including the “%”). Everything in brackets [] below is optional, so only the percent (%) and the type are required. But the order is also mandatory, so any parts you DO use must go in this order.

 [image: image with no caption]

 The only required specifier is for TYPE

Although type is the only required specifier, remember that if you
do

 put in anything else, type must always come last! There are more than a dozen different type modifiers (not including dates and times; they have their own set), but most of the time you’ll probably use %d (decimal) or %f (floating point). And typically you’ll combine %f with a precision indicator to set the number of decimal places you want in your output.

The TYPE is mandatory, everything else is optional.

 Note

You must include a type in your format instructions, and if you specify things besides type, the type must always come last
 .

Most of the time, you’ll probably format numbers using either “d” for decimal or “f” for floating point.

 [image: image with no caption]

The argument must be compatible with an int, so that means only byte, short, int, and char (or their wrapper types).

 [image: image with no caption]

The argument must be of a floating point type, so that means only a float or double (primitive or wrapper) as well as something called BigDecimal (which we don’t look at in this book).

 [image: image with no caption]

The argument must be a byte, short, int, long (including both primitive and wrapper types), and BigInteger.

 [image: image with no caption]

The argument must be a byte, short, char, or int (including both primitive and wrapper types).

 What happens if I have more than one argument?

 Imagine you want a String that looks like this:

“The rank is

20,456,654

 out of

100,567,890.24

 .”

But the numbers are coming from variables. What do you do? You simply add
two

 arguments after the format String (first argument), so that means your call to format() will have three arguments instead of two. And inside that first argument (the format String), you’ll have two different format specifiers (two things that start with “%”). The first format specifier will insert the second argument to the method, and the second format specifier will insert the third argument to the method. In other words, the variable insertions in the format String use the order in which the other arguments are passed into the format() method.

 [image: image with no caption]

As you’ll see when we get to date formatting, you might actually want to apply different formatting specifiers to the same argument. That’s probably hard to imagine until you see how
date

 formatting (as opposed to the
number

 formating we’ve been doing) works. Just know that in a minute, you’ll see how to be more specific about which format specifiers are applied to which arguments.

	

Q:

	

Q: Um, there’s something REALLY strange going on here. Just how many arguments

can

I pass? I mean, how many overloaded format() methods are IN the String class? So, what happens if I want to pass, say, ten different arguments to be formatted for a single output String?

	
A:

	

A:

 Good catch. Yes, there
is

 something strange (or at least new and different) going on, and no there are
not

 a bunch of overloaded format() methods to take a different number of possible arguments. In order to support this new formatting (printf-like) API in Java, the language needed another new feature —
variable argument lists

 (called
varargs

 for short). We’ll talk about varargs only in the appendix because outside of formatting, you probably won’t use them much in a well-designed system.

 So much for numbers, what about dates?

 Imagine you want a String that looks like this: “Sunday, Nov 28 2004”

Nothing special there, you say? Well, imagine that all you have to start with is a variable of type Date — A Java class that can represent a timestamp, and now you want to take that object (as opposed to a number) and send it through the formatter.

The main difference between number and date formatting is that date formats use a two-character type that starts with “t” (as opposed to the single character “f” or “d”, for example). The examples below should give you a good idea of how it works:

 [image: image with no caption]

 [image: image with no caption]

	

Day of the week, month and day %t

	

A %t

B %t

d

There isn’t a single format specifier that will do exactly what we want, so we have to combine three of them for day of the week (%tA), month (%tB), and day of the month (%td).

 [image: image with no caption]

 Note

But that means we have to pass the Date object in three times, one for each part of the format that we want. In other words, the %tA will give us just the day of the week, but then have to do it again to get just the month and again for the day.of the month.

	

Same as above, but without duplicating the arguments

	

%tA %t

B %t

d

Date today = new Date();
String.format("%tA, %<tB %<td",today);

 Note

You can think of this as kind of like calling three different getter methods on the Date object, to get three different pieces of data from it.

 Note

The angle-bracket “<” is just another flag in the specifier that tells the formatter to “use the previous argument again.” So it saves you from repeating the arguments, and instead you format the same argument three different ways.

 Working with Dates

 [image: image with no caption]

You need to do more with dates than just get
today’s

 date. You need your programs to adjust dates, find elapsed times, prioritize schedules, heck, make schedules. You need industrial strength date manipulation capabilities.

You could make your own date routines of course... (and don’t forget about leap years!) And, ouch, those occasional, pesky leap-
seconds

 . Wow, this could get complicated. The good news is that the Java API is rich with classes that can help you manipulate dates. Sometimes it feels a little
too

 rich...

 Moving backward and forward in time

 Let’s say your company’s work schedule is Monday through Friday. You’ve been assigned the task of figuring out the last work day in each calendar month this year...

It seems that java.util.Date is actually... out of date

Earlier we used java.util.Date to find today’s date, so it seems logical that this class would be a good place to start looking for some handy date manipulation capabilities, but when you check out the API you’ll find that most of Date’s methods have been deprecated!

 Note

For a time-stamp of “now”, use Date. But for everything else, use Calendar.

The Date class is still great for getting a “time stamp” — an object that represents the current date and time, so use it when you want to say, “give me NOW”.

The good news is that the API recommends
java.util.Calendar

 instead, so let’s take a look:

Use java.util.Calendar for your date manipulation

The designers of the Calendar API wanted to think globally, literally. The basic idea is that when you want to work with dates, you ask for a Calendar (through a static method of the Calendar class that you’ll see on the next page), and the JVM hands you back an instance of a concrete subclass of Calendar. (Calendar is actually an abstract class, so you’re always working with a concrete subclass.)

More interesting, though, is that the
kind

 of calendar you get back will be
appropriate for your locale.

 Much of the world uses the Gregorian calendar, but if you’re in an area that doesn’t use a Gregorian calendar you can get Java libraries to handle other calendars such as Buddhist, or Islamic or Japanese.

The standard Java API ships with
java.util.GregorianCalendar

 , so that’s what we’ll be using here. For the most part, though, you don’t even have to think about the kind of Calendar subclass you’re using, and instead focus only on the methods of the Calendar class.

 Getting an object that extends Calendar

How in the world do you get an “instance” of an abstract class? Well you don’t of course, this won’t work:

This WON’T work:

 [image: image with no caption]

Instead, use the static “getInstance()” method:

 [image: image with no caption]

 [image: image with no caption]

You can’t get an instance of Calendar, but you can get an instance of a concrete Calendar subclass.

Obviously you can’t get an instance of Calendar, because Calendar is abstract. But you’re still free to call static methods on Calendar, since
static

 methods are called on the
class

 , rather than on a particular instance. So you call the static getInstance() on Calendar and it gives you back... an instance of a concrete subclass. Something that extends Calendar (which means it can be polymorphically assigned to Calendar) and which — by contract — can respond to the methods of class Calendar.

In most of the world, and by default for most versions of Java, you’ll be getting back a
java.util.GregorianCalendar

 instance.

 Working with Calendar objects

 There are several key concepts you’ll need to understand in order to work with Calendar objects:

	

Fields hold

state

 - A Calendar object has many fields that are used to represent aspects of its ultimate state, its date and time. For instance, you can get and set a Calendar’s
year

 or
month

 .

	

Dates and Times can be

incremented

 - The Calendar class has methods that allow you to add and subtract values from various fields, for example “add one to the month”, or “subtract three years”.

	

Dates and Times can be represented in

milliseconds

-

 The Calendar class lets you convert your dates into and out of a millisecond representation. (Specifically, the number of milliseconds that have occured since January 1st, 1970.) This allows you to perform precise calculations such as “elapsed time between two times” or “add 63 hours and 23 minutes and 12 seconds to this time”.

An example of working with a Calendar object:

 [image: image with no caption]

 [image: image with no caption]

This output confirms how millis, add, roll, and set work.

 Highlights of the Calendar API

We just worked through using a few of the fields and methods in the Calendar class. This is a big API, so we’re showing only a few of the most common fields and methods that you’ll use. Once you get a few of these it should be pretty easy to bend the rest of this API to your will.

 [image: image with no caption]

 Even more Statics!... static imports

 New to Java 5.0... a real mixed blessing. Some people love this idea, some people hate it. Static imports exist only to save you some typing. If you hate to type, you might just like this feature. The downside to static imports is that - if you’re not careful - using them can make your code a lot harder to read.

The basic idea is that whenever you’re using a static class, a static variable, or an enum (more on those later), you can import them, and save yourself some typing.

Use Carefully: static imports can make your code confusing to read

Some old-fashioned code:

import java.lang.Math;
class NoStatic {
 public static void main(String [] args) {

System

.out.println("sqrt " +
Math

.sqrt(2.0));

System

.out.println("tan " +
Math

.tan(60));
 }
}

Same code, with static imports:

 [image: image with no caption]

Caveats & Gotchas

	If you’re only going to use a static member a few times, we think you should avoid static imports, to help keep the code more readable.

	If you’re going to use a static member a lot, (like doing lots of Math calculations), then it’s probably OK to use the static import.

	Notice that you can use wildcards (.*), in your static import declaration.

	A big issue with static imports is that it’s not too hard to create naming conflicts. For example, if you have two different classes with an “add()” method, how will you and the compiler know which one to use?

Fireside Chats

 [image: image with no caption]

Tonight’s Talk:
An instance variable takes cheap shots at a static variable

	

Instance Variable

	

Static Variable

	
I don’t even know why we’re doing this. Everyone knows static variables are just used for constants. And how many of those are there? I think the whole API must have, what, four? And it’s not like anybody ever uses them.

	

	
	
You really should check your facts. When was the last time you looked at the API? It’s frickin’ loaded with statics! It even has entire classes dedicated to holding constant values. There’s a class called SwingConstants, for example, that’s just full of them.

	
Full of it. Yeah, you can say that again. OK, so there are a few in the Swing library, but everybody knows Swing is just a special case.

	

	
	
It might be a special case, but it’s a really important one! And what about the Color class? What a pain if you had to remember the RGB values to make the standard colors? But the color class already has constants defined for blue, purple, white, red, etc. Very handy.

	
Ok, but besides a few GUI things, give me an example of just one static variable that anyone would actually use. In the real world.

	

	
	
How’s System.out for starters? The out in System.out is a static variable of the System class. You personally don’t make a new instance of the System, you just ask the System class for its out variable.

	
Well, that’s another special case. And nobody uses that except for debugging anyway.

	

	
	
Oh, like debugging isn’t important?

And here’s something that probably never crossed your narrow mind — let’s face it, static variables are more efficient. One per class instead of one per instance. The memory savings might be huge!

	
Um, aren’t you forgetting something?

	

	
	
What?

	
Static variables are about as un-OO as it gets!! Gee why not just go take a giant backwards step and do some procedural programming while we’re at it.

	

	
	
What do you mean
un-

 OO?

	
You’re like a global variable, and any programmer worth his PDA knows that’s usually a Bad Thing.

	

	
	
I am NOT a global variable. There’s no such thing. I live in a class! That’s pretty OO you know, a CLASS. I’m not just sitting out there in space somewhere; I’m a natural part of the state of an object; the only difference is that I’m shared by all instances of a class. Very efficient.

	
Yeah you live in a class, but they don’t call it
Class

 -Oriented programming. That’s just stupid. You’re a relic. Something to help the old-timers make the leap to java.

	

	
	
Alright just stop right there. THAT is definitely not true. Some static variables are absolutely crucial to a system. And even the ones that aren’t crucial sure are handy.

	
Well, OK, every once in a while sure, it makes sense to use a static, but let me tell you, abuse of static variables (and methods) is the mark of an immature OO programmer. A designer should be thinking about
object

 state, not
class

 state.

	

	
	
Why do you say that? And what’s wrong with static methods?

	
Static methods are the worst things of all, because it usually means the programmer is thinking procedurally instead of about objects doing things based on their unique object state.

	

	
	
Sure, I know that objects should be the focus of an OO design, but just because there are some clueless programmers out there... don’t throw the baby out with the bytecode. There’s a time and place for statics, and when you need one, nothing else beats it.

	
Riiiiiight. Whatever you need to tell yourself...

	

BE the compiler

 [image: image with no caption]

Exercise

The Java file on this page represents a complete program. Your job is to play compiler and determine whether this file will compile. If it won’t compile, how would you fix it, and if it does compile, what would be its output?

class StaticSuper{

 static {
 System.out.println("super static block");
 }

 StaticSuper{
 System.out.println(
 "super constructor");
 }
}

public class StaticTests extends StaticSuper {
 static int rand;

 static {
 rand = (int) (Math.random() * 6);
 System.out.println("static block " + rand);
 }

 StaticTests() {
 System.out.println("constructor");
 }

 public static void main(String [] args) {
 System.out.println("in main");
 StaticTests st = new StaticTests();
 }
}

If it compiles, which of these is the output?

Possible Output

 [image: image with no caption]

Possible Output

 [image: image with no caption]

True or False

 This chapter explored the wonderful, static, world of Java. Your job is to decide whether each of the following statements is true or false.

 [image: image with no caption]

Exercise

	To use the Math class, the first step is to make an instance of it.

	You can mark a constructor with the

static

 keyword.

	Static methods don’t have access to instance variable state of the ‘this’ object.

	It is good practice to call a static method using a reference variable.

	Static variables could be used to count the instances of a class.

	Constructors are called before static variables are initialized.

	MAX_SIZE would be a good name for a static final variable.

	A static initializer block runs before a class’s constructor runs.

	If a class is marked final, all of its methods must be marked final.

	A final method can only be overridden if its class is extended.

	There is no wrapper class for boolean primitives.

	A wrapper is used when you want to treat a primitive like an object.

	The parseXxx methods always return a String.

	Formatting classes (which are decoupled from I/O), are in the java.format package.

Lunar Code Magnets

 [image: image with no caption]

 This one might actually be useful! In addition to what you’ve learned in the last few pages about manipulating dates, you’ll need a little more information... First, full moons happen every 29.52 days or so. Second, there was a full moon on Jan. 7th, 2004. Your job is to reconstruct the code snippets to make a working Java program that produces the output listed below (plus more full moon dates). (You might not need all of the magnets, and add all the curly braces you need.) Oh, by the way, your output will be different if you don’t live in the mountain time zone.

 [image: image with no caption]

 [image: image with no caption]

Exercise Solutions

BE the compiler

StaticSuper
()

 {
 System.out.println(
 "super constructor");
}

StaticSuper is a constructor, and must have () in its signature. Notice that as the output below demonstrates, the static blocks for both classes run before either of the constructors run.

Possible Output

 [image: image with no caption]

True or False

	
1.

	
To use the Math class, the first step is to make an instance of it.

	

False

	
2.

	
You can mark a constructor with the keyword ‘static’.

	

False

	
3.

	
Static methods don’t have access to an object’s instance variables.

	

True

	
4.

	
It is good practice to call a static method using a reference variable.

	

False

	
5.

	
Static variables could be used to count the instances of a class.

	

True

	
6.

	
Constructors are called before static variables are initialized.

	

False

	
7.

	
MAX_SIZE would be a good name for a static final variable.

	

True

	
8.

	
A static initializer block runs before a class’s constructor runs.

	

True

	
9.

	
If a class is marked final, all of its methods must be marked final.

	

False

	
10.

	
A final method can only be overridden if its class is extended.

	

False

	
11.

	
There is no wrapper class for boolean primitives.

	

False

	
12.

	
A wrapper is used when you want to treat a primitive like an object.

	

True

	
13.

	
The parseXxx methods always return a String.

	

False

	
14.

	
Formatting classes (which are decoupled from I/O), are in the java.format package.

	

False

Exercise Solutions

 [image: image with no caption]

import java.util.*;

import static java.lang.System.out;

class FullMoons {

static int DAY_IM = 1000 * 60 * 60 * 24;

public static void main(String [] args) {

Calendar c = Calendar.getInstance();

c.set(2004,0,7,15,40);

long day1 = c.getTimeInMillis();

for (int x = 0; x < 60; x++) {

day1 += (DAY_IM * 29.52)

c.setTimeInMillis(day1);

out.println(String.format("full moon on %tc", c));

}

}

}

 [image: image with no caption]

Notes on the Lunar Code Magnet:

You might discover that a few of the dates produced by this program are off by a day. This astronomical stuff is a little tricky, and if we made it perfect, it would be too complex to make an exercise here.

Hint: one problem you might try to solve is based on differences in time zones. Can you spot the issue?

 Chapter 11. Exception Handling: Risky Behavior

 [image: image with no caption]

Stuff happens. The file isn’t there. The server is down.

 No matter how good a programmer you are, you can’t control everything. Things can go wrong.
Very

 wrong. When you write a risky method, you need code to handle the bad things that might happen. But how do you
know

 when a method is risky? And where do you put the code to
handle

 the

exceptional

 situation? So far in this book, we haven’t
really

 taken any risks. We’ve certainly had things go wrong at runtime, but the problems were mostly flaws in our own code. Bugs. And those we should fix at development time. No, the problem-handling code we’re talking about here is for code that you
can’t

 guaranatee will work at runtime. Code that expects the file to be in the right directory, the server to be running, or the Thread to stay asleep. And we have to do this
now

 . Because in
this

 chapter, we’re going to build something that uses the risky JavaSound API. We’re going to build a MIDI Music Player.

 Let’s make a Music Machine

 Over the next three chapters, we’ll build a few different sound applications, including a BeatBox Drum Machine. In fact, before the book is done, we’ll have a multi-player version so you can send your drum loops to another player, kind of like a chat room. You’re going to write the whole thing, although you can choose to use Ready-bake code for the GUI parts. OK, so not every IT department is looking for a new BeatBox server, but we’re doing this to
learn

 more about
Java

 . Building a BeatBox is just a way to have fun
while

 we’re learning Java.

 The finished BeatBox looks something like this:

 [image: image with no caption]

Put checkmarks in the boxes for each of the 16 ‘beats’. For example, on beat 1 (of 16) the Bass drum and the Maracas will play, on beat 2 nothing, and on beat 3 the Maracas and Closed Hi-Hat... you get the idea. When you hit ‘Start’, it plays your pattern in a loop until you hit ‘Stop’. At any time, you can “capture” one of your own patterns by sending it to the BeatBox server (which means any other players can listen to it). You can also load any of the incoming patterns by clicking on the message that goes with it.

 We’ll start with the basics

 Obviously we’ve got a few things to learn before the whole program is finished, including how to build a Swing GUI, how to
connect

 to another machine via networking, and a little I/O so we can
send

 something to the other machine.

Oh yeah, and the JavaSound API.
That’s

 where we’ll start in this chapter. For now, you can forget the GUI, forget the networking and the I/O, and focus only on getting some MIDI-generated sound to come out of your computer. And don’t worry if you don’t know a thing about MIDI, or a thing about reading or making music. Everything you need to learn is covered here. You can almost smell the record deal.

 The JavaSound API

JavaSound is a collection of classes and interfaces added to Java starting with version 1.3. These aren’t special add-ons; they’re part of the standard J2SE class library. JavaSound is split into two parts: MIDI and Sampled. We use only MIDI in this book. MIDI stands for Musical Instrument Digital Interface, and is a standard protocol for getting different kinds of electronic sound equipment to communicate. But for our BeatBox app, you can think of MIDI as
a kind of sheet music

 that you feed into some device you can think of like a high-tech ‘player piano’. In other words, MIDI data doesn’t actually include any
sound

 , but it does include the
instructions

 that a MIDI-reading instrument can play back. Or for another analogy, you can think of a MIDI file like an HTML document, and the instrument that renders the MIDI file (i.e.
plays

 it) is like the Web browser.

 [image: image with no caption]

MIDI data says
what

 to do (play middle C, and here’s how hard to hit it, and here’s how long to hold it, etc.) but it doesn’t say anything at all about the actual
sound

 you hear. MIDI doesn’t know how to make a flute, piano, or Jimi Hendrix guitar sound. For the actual sound, we need an instrument (a MIDI device) that can read and play a MIDI file. But the device is usually more like an
entire band or orchestra

 of instruments. And that instrument might be a physical device, like the electronic keyboard synthesizers the rock musicians play, or it could even be an instrument built entirely in software, living in your computer.

For our BeatBox, we use only the built-in, software-only instrument that you get with Java. It’s called a
synthesizer

 (some folks refer to it as a
software synth

) because it
creates

 sound. Sound that you
hear

 .

 First we need a Sequencer

Before we can get any sound to play, we need a Sequencer object. The sequencer is the object that takes all the MIDI data and sends it to the right instruments. It’s the thing that
plays

 the music. A sequencer can do a lot of different things, but in this book, we’re using it strictly as a playback device. Like a CD-player on your stereo, but with a few added features. The Sequencer class is in the javax.sound.midi package (part of the standard Java library as of version 1.3). So let’s start by making sure we can make (or get) a Sequencer object.

 [image: image with no caption]

 Something’s wrong!

 [image: image with no caption]

 What happens when a method you want to call (probably in a class you didn’t write) is risky?

	

Let’s say you want to call a method in a class that you didn’t write.

 [image: image with no caption]

	

That method does something risky, something that might not work at runtime.

 [image: image with no caption]

	

You need to
know

 that the method you’re calling is risky.

 [image: image with no caption]

	

You then write code that can handle the failure if it
does

 happen. You need to be prepared, just in case.

 [image: image with no caption]

 Methods in Java use
exceptions

 to tell the calling code, “Something Bad Happened. I failed.”

 Java’s exception-handling mechanism is a clean, well-lighted way to handle “exceptional situations” that pop up at runtime; it lets you put all your error-handling code in one easy-to-read place. It’s based on you
knowing

 that the method you’re calling is risky (i.e. that the method
might

 generate an exception), so that you can write code to deal with that possibility. If you
know

 you might get an exception when you call a particular method, you can be
prepared

 for — possibly even
recover

 from — the problem that caused the exception.

So, how
do

 you know if a method throws an exception? You find a

throws

 clause in the risky method’s declaration.

The

getSequencer()

method takes a risk. It can fail at runtime. So it must ‘declare’ the risk you take when you call it.

 [image: image with no caption]

 The compiler needs to know that YOU know you’re calling a risky method

 If you wrap the risky code in something called a
try/catch

 , the compiler will relax.

A try/catch block tells the compiler that you
know

 an exceptional thing could happen in the method you’re calling, and that you’re prepared to handle it. That compiler doesn’t care
how

 you handle it; it cares only that you say you’re taking care of it.

 Note

Dear Compiler,

I know I’m taking a risk here, but don’t you think it’s worth it? What should I do?

signed, geeky in Waikiki

Dear geeky,

Life is short (especially on the heap). Take the risk.
try

 it. But just in case things don’t work out, be sure to
catch

 any problems before all hell breaks loose.

 [image: image with no caption]

 An exception is an object... of type Exception

 [image: image with no caption]

Which is fortunate, because it would be much harder to remember if exceptions were of type Broccoli.

Remember from your polymorphism chapters that an object of type Exception
can

 be an instance of any
subclass

 of Exception.

Because an
Exception

 is an object, what you
catch

 is an object. In the following code, the

catch

 argument is declared as type Exception, and the parameter reference variable is
ex

 .

 [image: image with no caption]

 [image: image with no caption]

What you write in a catch block depends on the exception that was thrown. For example, if a server is down you might use the catch block to try another server. If the file isn’t there, you might ask the user for help finding it.

 If it’s your code that catches
 the exception, then whose code throws
 it?

 You’ll spend much more of your Java coding time
handling

 exceptions than you’ll spend
creating

 and
throwing

 them yourself. For now, just know that when your code
calls

 a risky method — a method that declares an exception — it’s the risky method that
throws

 the exception back to
you

 , the caller.

In reality, it might be you who wrote both classes. It really doesn’t matter who writes the code... what matters is knowing which method
throws

 the exception and which method
catches

 it.

When somebody writes code that could throw an exception, they must
declare

 the exception.

 [image: image with no caption]

	

Risky, exception-throwing code:

 [image: image with no caption]

 Note

One method will catch
 what another method throws
 . An exception is always thrown back to the caller.

The method that throws has to declare
 that it might throw the exception.

	

Your code that

calls

the risky method:

 [image: image with no caption]

The compiler checks for everything except RuntimeExceptions.

The compiler guarantees:

	If you
throw

 an exception in your code you
must

 declare it using the
throws

 keyword in your method declaration.

	If you
call

 a method that throws an exception (in other words, a method that
declares

 it throws an exception), you must
acknowledge

 that you’re aware of the exception possibility. One way to satisfy the compiler is to wrap the call in a try/catch. (There’s a second way we’ll look at a little later in this chapter.)

 [image: image with no caption]

There are no Dumb Questions

	

Q:

	

Q: Wait just a minute! How come this is the FIRST time we’ve had to try/catch an Exception? What about the exceptions I’ve already gotten like NullPointerException and the exception for DivideByZero. I even got a NumberFormatException from the Integer.parseInt() method. How come we didn’t have to catch those?

	
A:

	

A:

 The compiler cares about all subclasses of Exception,
unless

 they are a special type, RuntimeException. Any exception class that extends RuntimeException gets a free pass. RuntimeExceptions can be thrown anywhere, with or without throws declarations or try/catch blocks. The compiler doesn’t bother checking whether a method declares that it throws a RuntimeException, or whether the caller acknowledges that they might get that exception at runtime.

	

Q:

	

Q: I’ll bite. WHY doesn’t the compiler care about those runtime exceptions? Aren’t they just as likely to bring the whole show to a stop?

	
A:

	

A:

 Most RuntimeExceptions come from a problem in your code logic, rather than a condition that fails at runtime in ways that you cannot predict or prevent. You
cannot

 guarantee the file is there. You
cannot

 guarantee the server is up. But you
can

 make sure your code doesn’t index off the end of an array (that’s what the .length attribute is for).

You WANT RuntimeExceptions to happen at development and testing time. You don’t want to code in a try/catch, for example, and have the overhead that goes with it, to catch something that shouldn’t happen in the first place.

A try/catch is for handling exceptional situations, not flaws in your code. Use your catch blocks to try to recover from situations you can’t guarantee will succeed. Or at the very least, print out a message to the user and a stack trace, so somebody can figure out what happened.

Bullet Points

	

 A method can throw an exception when something fails at runtime.

	An exception is always an object of type Exception. (Which, as you remember from the polymorphism chapters means the object is from a class that has Exception somewhere up its inheritance tree.)

	The compiler does NOT pay attention to exceptions that are of type
RuntimeException

 . A RuntimeException does not have to be declared or wrapped in a try/catch (although you’re free to do either or both of those things)

	All Exceptions the compiler cares about are called ‘checked exceptions’ which really means
compiler

 -checked exceptions. Only RuntimeExceptions are excluded from compiler checking. All other exceptions must be acknowledged in your code, according to the rules.

	A method throws an exception with the keyword

throw

 , followed by a new exception object:

throw new NoCaffeineException();

	Methods that
might

 throw a checked exception

must

 announce it with a

throws Exception

 declaration.

	If your code calls a checked-exception-throwing method, it must reassure the compiler that precautions have been taken.

	If you’re prepared to handle the exception, wrap the call in a try/catch, and put your exception handling/recovery code in the catch block.

	If you’re not prepared to handle the exception, you can still make the compiler happy by officially ‘ducking’ the exception. We’ll talk about ducking a little later in this chapter.

 Metacognitive Tip

If you’re trying to learn something new, make that the
last

 thing you try to learn before going to sleep. So, once you put this book down (assuming you can tear yourself away from it) don’t read anything else more challenging than the back of a Cheerios™ box. Your brain needs time to process what you’ve read and learned. That could take a few
hours

 . If you try to shove something new in right on top of your Java, some of the Java might not ‘stick.’

Of course, this doesn’t rule out learning a physical skill. Working on your latest Ballroom KickBoxing routine probably won’t affect your Java learning.

For the best results, read this book (or at least look at the pictures) right before going to sleep.

 [image: image with no caption]

Sharpen your pencil

Which of these do you think might throw an exception that the compiler would care about? We’re only looking for the things that you can’t control in your code. We did the first one.

(Because it was the easiest.)

	
	
Things you want to do

	
What might go wrong

	

 [image:]

	
connect to a remote server

	
the server is down

	
__

	
access an array beyond its length

__

	
display a window on the screen

__

	
retrieve data from a database

__

	
see if a text file is where you
think

 it is

__

	
create a new file

__

	
read a character from the command-line

 Flow control in try/catch blocks

 When you call a risky method, one of two things can happen. The risky method either succeeds, and the try block completes, or the risky method throws an exception back to your calling method.

If the try

succeeds

(doRiskyThing() does
not

 throw an exception)

 [image: image with no caption]

If the try

fails

(because doRiskyThing()
does

 throw an exception)

 [image: image with no caption]

 Finally: for the things you want to do
no matter what

 If you try to cook something, you start by turning on the oven.

If the thing you try is a complete
failure

 ,

you have to turn off the oven.

If the thing you try
succeeds

 ,

you have to turn off the oven.

You have to turn off the oven no matter what!

A finally block is where you put code that must run regardless of an exception.

try {

 turnOvenOn();
 x.bake();

} catch

 (BakingException ex) {
 ex.printStackTrace();

} finally {

 turnOvenOff();

}

Without finally, you have to put the turnOvenOff() in
both

 the try and the catch because

you have to turn off the oven no matter what.

 A finally block lets you put all your important cleanup code in
one

 place instead of duplicating it like this:

try {

 turnOvenOn();
 x.bake();
 turnOvenOff();

} catch

 (BakingException ex)
{

 ex.printStackTrace();
 turnOvenOff();

}

 [image: image with no caption]

If the try block fails (an exception),

flow

control immediately moves to the catch block.

When the catch block completes, the finally

block runs. When the finally block completes,

the rest of the method continues on.

If the try block succeeds (no exception),

flow control skips over the catch block and

moves to the finally block. When the finally

block completes, the rest of the method

continues on.

If the try or catch block has a return

statement, finally will still run!

Flow

jumps to the finally, then back to the return.

Sharpen your pencil

Flow Control

Look at the code to the left. What do you think the output of this program would be? What do you think it would be if the third line of the program were changed to:

String test = "yes";

?

Assume ScaryException extends Exception.

 [image: image with no caption]

When test = “yes”: start try - start risky - scary exception - finally - end of main

When test = “no”: start try - start risky - end risky - end try - finally - end of main

 Did we mention that a method can throw more than one exception?

 A method can throw multiple exceptions if it darn well needs to. But a method’s declaration must declare
all

 the checked exceptions it can throw (although if two or more exceptions have a common superclass, the method can declare just the superclass.)

 Catching multiple exceptions

The compiler will make sure that you’ve handled
all

 the checked exceptions thrown by the method you’re calling. Stack the
catch

 blocks under the
try

 , one after the other. Sometimes the order in which you stack the catch blocks matters, but we’ll get to that a little later.

 [image: image with no caption]

 Exceptions are polymorphic

 Exceptions are objects, remember. There’s nothing all that special about one, except that it is
a thing that can be

thrown

 . So like all good objects, Exceptions can be referred to polymorphically. A LingerieException
object

 , for example, could be assigned to a ClothingException
reference

 . A PantsException could be assigned to an Exception reference. You get the idea. The benefit for exceptions is that a method doesn’t have to explicitly declare every possible exception it might throw; it can declare a superclass of the exceptions. Same thing with catch blocks — you don’t have to write a catch for each possible exception as long as the catch (or catches) you have can handle any exception thrown.

 [image: image with no caption]

	

You can DECLARE exceptions using a supertype of the exceptions you throw.

 [image: image with no caption]

	

You can CATCH exceptions using a supertype of the exception thrown.

 [image: image with no caption]

Just because you CAN catch everything with one big super polymorphic catch, doesn’t always mean you SHOULD.

You
could

 write your exception-handling code so that you specify only
one

 catch block, using the supertype Exception in the catch clause, so that you’ll be able to catch
any

 exception that might be thrown.

 [image: image with no caption]

Write a different catch block for each exception that you need to handle uniquely.

For example, if your code deals with (or recovers from) a TeeShirtException differently than it handles a LingerieException, write a catch block for each. But if you treat all other types of ClothingException in the same way, then add a ClothingException catch to handle the rest.

 [image: image with no caption]

 Multiple catch blocks must be ordered from smallest to biggest

 [image: image with no caption]

 [image: image with no caption]

 The higher up the inheritance tree, the bigger the catch ‘basket’. As you move down the inheritance tree, toward more and more specialized Exception classes, the catch ‘basket’ is smaller. It’s just plain old polymorphism.

A ShirtException catch is big enough to take a TeeShirtException or a DressShirtException (and any future subclass of anything that extends ShirtException). A ClothingException is even bigger (i.e. there are more things that can be referenced using a ClothingException type). It can take an exception of type ClothingException(duh), and any ClothingException subclasses: PantsException, UniformException, LingerieException, and ShirtException. The mother of all catch arguments is type
Exception

 ; it will catch
any

 exception, including runtime (unchecked) exceptions, so you probably won’t use it outside of testing.

 You can’t put bigger baskets above smaller baskets

Well, you
can

 but it won’t compile. Catch blocks are not like overloaded methods where the best match is picked. With catch blocks, the JVM simply starts at the first one and works its way down until it finds a catch that’s broad enough (in other words, high enough on the inheritance tree) to handle the exception. If your first catch block is

catch(Exception ex)

 , the compiler knows there’s no point in adding any others — they’ll never be reached.

 [image: image with no caption]

 [image: image with no caption]

Siblings can be in any order, because they can’t catch one another’s exceptions.

You could put ShirtException above LingerieException and nobody would mind. Because even though ShirtException is a bigger (broader) type because it can catch other classes (its own subclasses), ShirtException can’t catch a LingerieException so there’s no problem.

Sharpen your pencil

Assume the try/catch block here is legally coded. Your task is to draw two different class diagrams that can accurately reflect the Exception classes. In other words, what class inheritance structures would make the try/ catch blocks in the sample code legal?

try {

 x.doRisky();

} catch(AlphaEx a) {

 // recovery from AlphaEx

} catch(BetaEx b) {

 // recovery from BetaEx

} catch(GammaEx c) {

 // recovery from GammaEx

} catch(DeltaEx d) {

 // recovery from DeltaEx

}

Your task is to create two different
legal

 try / catch structures (similar to the one above left), to accurately represent the class diagram shown on the left. Assume ALL of these exceptions might be thrown by the method with the try block.

 [image: image with no caption]

 When you don’t want to handle an exception...

 [image: image with no caption]

If you don’t want to handle an exception, you can

duck it by declaring it.

When you call a risky method, the compiler needs you to acknowledge it. Most of the time, that means wrapping the risky call in a try/ catch. But you have another alternative, simply
duck

 it and let the method that called
you

 catch the exception.

It’s easy — all you have to do is
declare

 that
you

 throw the exceptions. Even though, technically,
you

 aren’t the one doing the throwing, it doesn’t matter. You’re still the one letting the exception whiz right on by.

But if you duck an exception, then you don’t have a try/catch, so what happens when the risky method (doLaundry())
does

 throw the exception?

 [image: image with no caption]

When a method throws an exception, that method is popped off the stack immediately, and the exception is thrown to the next method down the stack — the
caller

 . But if the
caller

 is a
ducker

 , then there’s no catch for it so the
caller

 pops off the stack immediately, and the exception is thrown to the next method and so on... where does it end? You’ll see a little later.

 [image: image with no caption]

 Ducking (by declaring) only delays the inevitable

Sooner or later, somebody has to deal with it. But what if main() ducks the exception?

 [image: image with no caption]

	doLaundry() throws a ClothingException

 [image: image with no caption]

main() calls foo()

foo() calls doLaundry()

doLaundry() is running and throws a ClothingException

	foo() ducks the exception

 [image: image with no caption]

doLaundry() pops off the stack immediately and the exception is thrown back to foo().

But foo() doesn’t have a try/catch, so...

	main() ducks the exception

 [image: image with no caption]

foo() pops off the stack and the exception is thrown back to main(). But main() doesn’t have a try/catch so the exception is thrown back to... who? What? There’s nobody left but the JVM, and it’s thinking, “Don’t expect ME to get you out of this.”

	The JVM shuts down

 Note

 [image: image with no caption]

We’re using the tee-shirt to represent a Clothing Exception. We know, we know... you would have preferred the blue jeans.

Handle or Declare. It’s the law.

So now we’ve seen both ways to satisfy the compiler when you call a risky (exception-throwing) method.

	

HANDLE

Wrap the risky call in a try/catch

 [image: image with no caption]

	

DECLARE (duck it)

Declare that YOUR method throws the same exceptions as the risky method you’re calling.

 [image: image with no caption]

But now this means that whoever calls the foo() method has to follow the Handle or Declare law. If foo() ducks the exception (by declaring it), and main() calls foo(), then main() has to deal with the exception.

 [image: image with no caption]

 Getting back to our music code...

 Now that you’ve completely forgotten, we started this chapter with a first look at some JavaSound code. We created a Sequencer object but it wouldn’t compile because the method Midi.getSequencer() declares a checked exception (MidiUnavailableException). But we can fix that now by wrapping the call in a try/catch.

 [image: image with no caption]

 Exception Rules

	

You cannot have a catch or finally without a try

void go() {
 Foo f = new Foo();
 f.foof();
 catch(FooException ex) { }
}

 Note

NOT LEGAL! Where’s the try?

	

You cannot put code between the try and the catch

 [image: image with no caption]

	

A try MUST be followed by either a catch or a finally

try {
 x.doStuff();
} finally {
 // cleanup
}

 Note

LEGAL because you have a finally, even though there’s no catch. But you cannot have a try by itself.

	

A try with only a finally (no catch) must still declare the exception.

void go() throws FooException {
 try {
 x.doStuff();
 } finally { }
}

 Note

A try without a catch doesn’t satisfy the handle or declare law

Code Kitchen

 [image: image with no caption]

 You don’t have to do it yourself, but it’s a lot more fun if you do.

The rest of this chapter is optional; you can use Ready-bake code for all the music apps.

But if you want to learn more about JavaSound, turn the page.

 Making actual sound

 Remember near the beginning of the chapter, we looked at how MIDI data holds the instructions for
what

 should be played (and
how

 it should be played) and we also said that MIDI data doesn’t actually
create any sound that you hear.

 For sound to come out of the speakers, the MIDI data has to be sent through some kind of MIDI device that takes the MIDI instructions and renders them in sound, either by triggering a hardware instrument or a ‘virtual’ instrument (software synthesizer). In this book, we’re using only software devices, so here’s how it works in JavaSound:

You need FOUR things:

 [image: image with no caption]

And you need FIVE steps:

	Get a
Sequencer

 and open it
Sequencer player = MidiSystem.getSequencer();
player.open();

	Make a new
Sequence

Sequence seq = new Sequence(timing,4);

	Get a new
Track

 from the Sequence
Track t = seq.createTrack();

	Fill the Track with
MidiEvents

 and give the Sequence to the Sequencer
t.add(myMidiEvent1);
player.setSequence(seq);

 [image: image with no caption]

 Your very first sound player app

Type it in and run it. You’ll hear the sound of someone playing a single note on a piano! (OK, maybe not some
one

 , but some
thing

 .)

 [image: image with no caption]

 Making a MidiEvent (song data)

A MidiEvent is an instruction for part of a song. A series of MidiEvents is kind of like sheet music, or a player piano roll. Most of the MidiEvents we care about describe

a thing to do

 and the

moment in time to do it

 . The moment in time part matters, since timing is everything in music. This note follows this note and so on. And because MidiEvents are so detailed, you have to say at what moment to
start

 playing the note (a NOTE ON event) and at what moment to
stop

 playing the notes (NOTE OFF event). So you can imagine that firing the “stop playing note G” (NOTE OFF message)
before

 the “start playing Note G” (NOTE ON) message wouldn’t work.

The MIDI instruction actually goes into a Message object; the MidiEvent is a combination of the Message plus the moment in time when that message should ‘fire’. In other words, the Message might say, “Start playing Middle C” while the MidiEvent would say, “Trigger this message at beat 4”.

So we always need a Message and a MidiEvent.

The Message says
what

 to do, and the MidiEvent says
when

 to do it.

 Note

A MidiEvent says what
 to do and when
 to do it.

Every instruction must include the timing
 for that instruction.

In other words, at which beat
 that thing should happen.

	Make a
Message

ShortMessage a = new ShortMessage();

	Put the
Instruction

 in the Message

 [image: image with no caption]

	Make a new
MidiEvent

 using the Message

 [image: image with no caption]

	Add the MidiEvent to the
Track

 [image: image with no caption]

 MIDI message: the heart of a MidiEvent

A MIDI message holds the part of the event that says
what

 to do. The actual instruction you want the sequencer to execute. The first argument of an instruction is always the type of the message.The values you pass to the other three arguments depend on the type of message. For example, a message of type 144 means “NOTE ON”. But in order to carry out a NOTE ON, the sequencer needs to know a few things. Imagine the sequencer saying, “OK, I’ll play a note, but
which channel

 ? In other words, do you want me to play a Drum note or a Piano note? And
which note

 ? Middle-C? D Sharp? And while we’re at it, at
which velocity

 should I play the note?

To make a MIDI message, make a ShortMessage instance and invoke setMessage(), passing in the four arguments for the message. But remember, the message says only
what

 to do, so you still need to stuff the message into an event that adds
when

 that message should ‘fire’.

Anatomy of a message

The first argument to setMessage() always represents the message ‘type’, while the other three arguments represent different things depending on the message type.

 [image: image with no caption]

	

Message type

 [image: image with no caption]

 Note

The

Message

says what to do, the

MidiEvent

says when to do it.

	

Channel

Think of a channel like a musician in a band. Channel 1 is musician 1 (the keyboard player), channel 9 is the drummer, etc.

	

Note to play

A number from 0 to 127, going from low to high notes.

 [image: image with no caption]

	

Velocity

How fast and hard did you press the key? 0 is so soft you probably won’t hear anything, but 100 is a good default.

 [image: image with no caption]

 Change a message

Now that you know what’s in a Midi message, you can start experimenting. You can change the note that’s played, how long the note is held, add more notes, and even change the instrument.

	

Change the note

Try a number between 0 and 127 in the note on and note off messages.
a.setMessage(144, 1,

20

, 100);

 [image: image with no caption]

	

Change the duration of the note

Change the note off event (not the message) so that it happens at an earlier or later beat.
b.setMessage(128, 1, 44, 100);
MidiEvent noteOff = new MidiEvent(b,

3

);

 [image: image with no caption]

	

Change the instrument

Add a new message, BEFORE the note-playing message, that sets the instrument in channel 1 to something other than the default piano. The change-instrument message is ‘192’, and the third argument represents the actual instrument (try a number between 0 and 127)

 [image: image with no caption]

 [image: image with no caption]

 Version 2: Using command-line args to experiment with sounds

This version still plays just a single note, but you get to use command-line arguments to change the instrument and note. Experiment by passing in two int values from 0 to 127. The first int sets the instrument, the second int sets the note to play.

import javax.sound.midi.*;

public class MiniMusicCmdLine { // this is the first one

 public static void main(String[] args) {
 MiniMusicCmdLine mini = new MiniMusicCmdLine();
 if (args.length < 2) {
 System.out.println("Don't forget the instrument and note args");
 } else {
 int instrument = Integer.parseInt(args[0]);
 int note = Integer.parseInt(args[1]);
 mini.play(instrument, note);
 }
 } // close main

 public void play(int instrument, int note) {

 try {

 Sequencer player = MidiSystem.getSequencer();
 player.open();
 Sequence seq = new Sequence(Sequence.PPQ, 4);
 Track track = seq.createTrack();

 MidiEvent event = null;

 ShortMessage first = new ShortMessage();
 first.setMessage(192, 1, instrument, 0);
 MidiEvent changeInstrument = new MidiEvent(first, 1);
 track.add(changeInstrument);

 ShortMessage a = new ShortMessage();
 a.setMessage(144, 1, note, 100);
 MidiEvent noteOn = new MidiEvent(a, 1);
 track.add(noteOn);

 ShortMessage b = new ShortMessage();
 b.setMessage(128, 1, note, 100);
 MidiEvent noteOff = new MidiEvent(b, 16);
 track.add(noteOff);
 player.setSequence(seq);
 player.start();

 } catch (Exception ex) {ex.printStackTrace();}
 } //close play
} // close class

 [image: image with no caption]

Run it with two int args from 0 to 127. Try these for starters:

Where we’re headed with the rest of the CodeKitchens

Chapter 15
 : the goal

When we’re done, we’ll have a working BeatBox that’s also a Drum Chat Client. We’ll need to learn about GUIs (including event handling), I/O, networking, and threads. The next three chapters (Chapter 12
 , Chapter 13
 , and Chapter 14
) will get us there.

 [image: image with no caption]

Chapter 12
 : MIDI events

This CodeKitchen lets us build a little “music video” (bit of a stretch to call it that...) that draws random rectangles to the beat of the MIDI music. We’ll learn how to construct and play a lot of MIDI events (instead of just a couple, as we do in the current chapter).

 [image: image with no caption]

Chapter 13
 : Stand-alone BeatBox

Now we’ll actually build the real BeatBox, GUI and all. But it’s limited — as soon as you change a pattern, the previous one is lost. There’s no Save and Restore feature, and it doesn’t communicate with the network. (But you can still use it to work on your drum pattern skills.)

 [image: image with no caption]

Chapter 14
 : Save and Restore

You’ve made the perfect pattern, and now you can save it to a file, and reload it when you want to play it again. This gets us ready for the final version (Chapter 15
), where instead of writing the pattern to a file, we send it over a network to the chat server.

 [image: image with no caption]

True or False

 This chapter explored the wonderful world of exceptions. Your job is to decide whether each of the following exception-related statements is true or false.

 [image: image with no caption]

Exercise

	A try block must be followed by a catch
and

 a finally block.

	If you write a method that might cause a compiler-checked exception, you
must

 wrap that risky code in a try / catch block.

	Catch blocks can be polymorphic.

	Only ‘compiler checked’ exceptions can be caught.

	If you define a try / catch block, a matching finally block is optional.

	If you define a try block, you can pair it with a matching catch or finally block, or both.

	If you write a method that declares that it can throw a compiler-checked exception, you must also wrap the exception throwing code in a try / catch block.

	The main() method in your program must handle all unhandled exceptions thrown to it.

	A single try block can have many different catch blocks.

	A method can only throw one kind of exception.

	A finally block will run regardless of whether an exception is thrown.

	A finally block can exist without a try block.

	A try block can exist by itself, without a catch block or a finally block.

	Handling an exception is sometimes referred to as ‘ducking’.

	The order of catch blocks never matters.

	A method with a try block and a finally block, can optionally declare the exception.

	Runtime exceptions must be
handled

 or
declared

 .

Code Magnets

 [image: image with no caption]

Exercise

A working Java program is scrambled up on the fridge. Can you reconstruct all the code snippets to make a working Java program that produces the output listed below? Some of the curly braces fell on the floor and they were too small to pick up, so feel free to add as many of those as you need!

 [image: image with no caption]

 [image: image with no caption]

JavaCross 7.0

 [image: image with no caption]

 You know what to do!

Across

1. To give value

4. Flew off the top

6. All this and more!

8. Start

10. The family tree

13. No ducking

15. Problem objects

18. One of Java’s ‘49’

20. Class hierarchy

21. Too hot to handle

24. Common primitive

25. Code recipe

27. Unruly method action

28. No Picasso here

29. Start a chain of events

Down

2. Currently usable

3. Template’s creation

4. Don’t show the kids

5. Mostly static API class

7. Not about behavior

9. The template

11. Roll another one off the line

12. Javac saw it coming

14. Attempt risk

16. Automatic acquisition

17. Changing method

19. Announce a duck

22. Deal with it

23. Create bad news

26. One of my roles

More Hints:

Across

6. A Java child

8. Start a method

13. Instead of declare

20. Also a type of collection

21. Quack

27. Starts a problem

28. Not Abstract

Down

2. Or a mouthwash

3. For ______ (not example)

5. Numbers . . .

9. Only public or default

16. _____ the family fortune

17. Not a ‘getter’

Exercise Solutions

True or False

1. False, either or both.

2. False, you can declare the exception.

3. True.

4. False, runtime exception can be caught.

5. True.

6. True, both are acceptable.

7. False, the declaration is sufficient.

8. False, but if it doesn’t the JVM may shut down.

9. True.

10. False.

11. True. It’s often used to clean-up partially completed tasks.

12. False.

13. False.

14. False, ducking is synonymous with declaring.

15. False, broadest exceptions must be caught by the last catch blocks.

16. False, if you don’t have a catch block, you
must

 declare.

17. False.

Code Magnets

class MyEx extends Exception { }

public class ExTestDrive {

 public static void main(String [] args) {
 String test = args[0];
 try {

 System.out.print("t");

 doRisky(test);

 System.out.print("o");

 } catch (MyEx e) {

 System.out.print("a");

 } finally {

 System.out.print("w");
 }
 System.out.println("s");
 }

 static void doRisky(String t) throws MyEx {
 System.out.print("h");

 if ("yes".equals(t)) {

 throw new MyEx();
 }

 System.out.print("r");
 }
}

 [image: image with no caption]

JavaCross Answers

 [image: image with no caption]

 Chapter 12. Getting GUI: A Very Graphic Story

 [image: image with no caption]

Face it, you need to make GUIs.

 If you’re building applications that other people are going to use, you
need

 a graphical interface. If you’re building programs for yourself, you
want

 a graphical interface. Even if you believe that the rest of your natural life will be spent writing server-side code, where the client user interface is a web page, sooner or later you’ll need to write tools, and you’ll want a graphical interface. Sure, command-line apps are retro, but not in a good way. They’re weak, inflexible, and unfriendly. We’ll spend two chapters working on GUIs, and learn key Java language features along the way including
Event Handling

 and
Inner Classes

 . In this chapter, we’ll put a button on the screen, and make it do something when you click it. We’ll paint on the screen, we’ll display a jpeg image, and we’ll even do some animation.

 It all starts with a window

 A JFrame is the object that represents a window on the screen. It’s where you put all the interface things like buttons, checkboxes, text fields, and so on. It can have an honest-to-goodness menu bar with menu items. And it has all the little windowing icons for whatever platform you’re on, for minimizing, maximizing, and closing the window.

“If I see one more command-line app, you’re fired.”

 [image: image with no caption]

The JFrame looks different depending on the platform you’re on. This is a JFrame on Mac OS X:

 [image: image with no caption]

a JFrame with a menu bar and two ‘widgets’ (a button and a radio button)

 Put widgets in the window

Once you have a JFrame, you can put things (‘widgets’) in it by adding them to the JFrame. There are a ton of Swing components you can add; look for them in the javax.swing package. The most common include JButton, JRadioButton, JCheckBox, JLabel, JList, JScrollPane, JSlider, JTextArea, JTextField, and JTable. Most are really simple to use, but some (like JTable) can be a bit more complicated.

Making a GUI is easy:

	Make a frame (a JFrame)

JFrame frame = new JFrame();

	Make a widget (button, text field, etc.)

JButton button = new JButton("click me");

	Add the widget to the frame

frame.getContentPane().add(button);

 Note

You don’t add things to the frame directly
 . Think of the frame as the trim around the window, and you add things to the window pane.

	Display it (give it a size and make it visible)

frame.setSize(300,300);

frame.setVisible(true);

 Your first GUI: a button on a frame

 [image: image with no caption]

Let’s see what happens when we run it:

%java SimpleGui1

 [image: image with no caption]

Whoa! That’s a Really Big Button.

The button fills all the available space in the frame. Later we’ll learn to control where (and how big) the button is on the frame.

There are no Dumb Questions

	

Q:

	

Q: Will a button look like a Windows button when you run on Windows?

	
A:

	

A:

 If you want it to. You can choose from a few “look and feels” — classes in the core library that control what the interface looks like. In most cases you can choose between at least two different looks: the standard Java look and feel, also known as

Metal

 , and the native look and feel for your platform. The Mac OS X screens in this book use either the OS X

Aqua

 look and feel, or the

Metal

 look and feel.

	

Q:

	

Q: Can I make a program look like Aqua all the time? Even when it’s running under Windows?

	
A:

	

A:

 Nope. Not all look and feels are available on every platform. If you want to be safe, you can either explicitly set the look and feel to Metal, so that you know exactly what you get regardless of where the app is running, or don’t specify a look and feel and accept the defaults.

	

Q:

	

Q: I heard Swing was dog-slow and that nobody uses it.

	
A:

	

A:

 This was true in the past, but isn’t a given anymore. On weak machines, you might feel the pain of Swing. But on the newer desktops, and with Java version 1.3 and beyond, you might not even notice the difference between a Swing GUI and a native GUI. Swing is used heavily today, in all sorts of applications.

 But nothing happens when I click it...

That’s not exactly true. When you press the button it shows that ‘pressed’ or ‘pushed in’ look (which changes depending on the platform look and feel, but it always does
something

 to show when it’s being pressed).

The real question is, “How do I get the button to do something specific when the user clicks it?”

We need two things:

	A
method

 to be called when the user clicks (the thing you want to happen as a result of the button click).

	A way to
know

 when to trigger that method. In other words, a way to know when the user clicks the button!

 Note

 [image: image with no caption]

When the user clicks, we want to know.

We’re interested in the user-takes-action-on-a-button event.

 Getting a user event

 Imagine you want the text on the button to change from
click me

 to
I’ve been clicked

 when the user presses the button. First we can write a method that changes the text of the button (a quick look through the API will show you the method):

public void changeIt() {

button.setText("I've been clicked!");

}

But
now

 what? How will we
know

 when this method should run?

How will we know when the button is clicked?

In Java, the process of getting and handling a user event is called
event-handling

 . There are many different event types in Java, although most involve GUI user actions. If the user clicks a button, that’s an event. An event that says “The user wants the action of this button to happen.” If it’s a “Slow Tempo” button, the user wants the slow-tempo action to occur. If it’s a Send button on a chat client, the user wants the send-my-message action to happen. So the most straightforward event is when the user clicked the button, indicating they want an action to occur.

With buttons, you usually don’t care about any intermediate events like button-is-being-pressed and button-is-being-released. What you want to say to the button is, “I don’t care how the user plays with the button, how long they hold the mouse over it, how many times they change their mind and roll off before letting go, etc.

Just tell me when the user means business!

 In other words, don’t call me unless the user clicks in a way that indicates he wants the darn button to do what it says it’ll do!”

First, the button needs to know that we care.

 [image: image with no caption]

Second, the button needs a way to call us back when a button-clicked event occurs.

 Brain Power

1) How could you tell a button object that you care about its events? That you’re a concerned listener?

2) How will the button call you back? Assume that there’s no way for you to tell the button the name of your unique method (changeIt()). So what else can we use to reassure the button that we have a specific method it can call when the event happens? [hint: think Pet]

If you care about the button’s events, implement an interface
 that says, “I’m

listening

 for your events.”

A
listener interface

 is the bridge between the
listener

 (you) and
event source

 (the button).

The Swing GUI components are event sources. In Java terms, an event source is an object that can turn user actions (click a mouse, type a key, close a window) into events. And like virtually everything else in Java, an event is represented as an object. An object of some event class. If you scan through the java.awt.event package in the API, you’ll see a bunch of event classes (easy to spot — they all have

Event

 in the name). You’ll find MouseEvent, KeyEvent, WindowEvent, ActionEvent, and several others.

When you implement a listener interface, you give the button a way to call you back. The interface is where the call-back method is declared.

An event

source

 (like a button) creates an

event object

 when the user does something that matters (like
click

 the button). Most of the code you write (and all the code in this book) will
receive

 events rather than
create

 events. In other words, you’ll spend most of your time as an event
listener

 rather than an event
source

 .

Every event type has a matching listener interface. If you want MouseEvents, implement the MouseListener interface. Want WindowEvents? Implement WindowListener. You get the idea. And remember your interface rules — to implement an interface you
declare

 that you implement it (class Dog implements Pet), which means you must
write implementation methods

 for every method in the interface.

Some interfaces have more than one method because the event itself comes in different flavors. If you implement MouseListener, for example, you can get events for mousePressed, mouseReleased, mouseMoved, etc. Each of those mouse events has a separate method in the interface, even though they all take a MouseEvent. If you implement MouseListener, the mousePressed() method is called when the user (you guessed it) presses the mouse. And when the user lets go, the mouseReleased() method is called. So for mouse events, there’s only one event
object

 , MouseEvent, but several different event
methods

 , representing the different
types

 of mouse events.

 [image: image with no caption]

How the listener and source communicate:

 [image: image with no caption]

	
The Listener

	
The Event Source

	
If your class wants to know about a button’s ActionEvents, you implement the ActionListener interface. The button needs to know you’re interested, so you register with the button by calling its addActionListener(this) and passing an ActionListener reference to it (in this case,
you

 are the ActionListener so you pass
this

).The button needs a way to call you back when the event happens, so it calls the method in the listener interface. As an ActionListener, you
must

 implement the interface’s sole method, actionPerformed(). The compiler guarantees it.

	
A button is a source of ActionEvents, so it has to know which objects are interested listeners. The button has an addActionListener() method to give interested objects (listeners) a way to
tell

 the button they’re interested.

When the button’s addActionListener() runs (because a potential listener invoked it), the button takes the parameter (a reference to the listener object) and stores it in a list. When the user clicks the button, the button ‘fires’ the event by calling the actionPerformed() method on each listener in the list.

Getting a button’s ActionEvent

	Implement the ActionListener interface

	Register with the button (tell it you want to listen for events)

	Define the event-handling method (implement the actionPerformed() method from the ActionListener interface)

 [image: image with no caption]

 Listeners, Sources, and Events

 For most of your stellar Java career,
you

 will not be the
source

 of events.

(No matter how much you fancy yourself the center of your social universe.)

Get used to it.

Your job is to be a good listener.

(Which, if you do it sincerely,
can

 improve your social life.)

 [image: image with no caption]

 [image: image with no caption]

 [image: image with no caption]

There are no Dumb Questions

	

Q:

	

Q: Why can’t I be a source of events?

	
A:

	

A:

 You CAN. We just said that
most

 of the time you’ll be the receiver and not the originator of the event (at least in the
early

 days of your brilliant Java career). Most of the events you might care about are ‘fired’ by classes in the Java API, and all you have to do is be a listener for them. You might, however, design a program where you need a custom event, say, StockMarketEvent thrown when your stock market watcher app finds something it deems important. In that case, you’d make the StockWatcher object be an event source, and you’d do the same things a button (or any other source) does — make a listener interface for your custom event, provide a registration method (addStockListener()), and when somebody calls it, add the caller (a listener) to the list of listeners. Then, when a stock event happens, instantiate a StockEvent object (another class you’ll write) and send it to the listeners in your list by calling their stockChanged(StockEvent ev) method. And don’t forget that for every
event

type

 there must be a
matching listener interface

 (so you’ll create a StockListener interface with a stockChanged() method).

	

Q:

	

Q: I don’t see the importance of the event object that’s passed to the event call-back methods. If somebody calls my mousePressed method, what other info would I need?

	
A:

	

A:

 A lot of the time, for most designs, you don’t need the event object. It’s nothing more than a little data carrier, to send along more info about the event. But sometimes you might need to query the event for specific details about the event. For example, if your mousePressed() method is called, you know the mouse was pressed. But what if you want to know exactly where the mouse was pressed? In other words, what if you want to know the X and Y screen coordinates for where the mouse was pressed?

Or sometimes you might want to register the
same

 listener with
multiple

 objects. An onscreen calculator, for example, has 10 numeric keys and since they all do the same thing, you might not want to make a separate listener for every single key. Instead, you might register a single listener with each of the 10 keys, and when you get an event (because your event call-back method is called) you can call a method on the event object to find out
who

 the real event source was. In other words,
which key sent this event

 .

Sharpen your pencil

Each of these widgets (user interface objects) are the source of one or more events. Match the widgets with the events they might cause. Some widgets might be a source of more than one event, and some events can be generated by more than one widget.

	

Widgets

	

Event methods

	
check box

	
windowClosing()

	
text field

	
actionPerformed()

	
scrolling list

	
itemStateChanged()

	
button

	
mousePressed()

	
dialog box

	
keyTyped()

	
radio button

	
mouseExited()

	
menu item

	
focusGained()

 Note

How do you KNOW if an object is an event source?

Look in the API.

OK. Look for what?

A method that starts with ‘add’, ends with ‘Listener’, and takes a listener interface argument. If you see:

addKeyListener(KeyListener k)

you know that a class with this method is a source of KeyEvents. There’s a naming pattern.

 Getting back to graphics...

 Now that we know a little about how events work (we’ll learn more later), let’s get back to putting stuff on the screen. We’ll spend a few minutes playing with some fun ways to get graphic, before returning to event handling.

Three ways to put things on your GUI:

	

Put widgets on a frame

Add buttons, menus, radio buttons, etc.

frame.getContentPane().add(myButton);

The javax.swing package has more than a dozen widget types.

 [image: image with no caption]

	

Draw 2D graphics on a widget

Use a graphics object to paint shapes.

graphics.fillOval(70,70,100,100);

You can paint a lot more than boxes and circles; the Java2D API is full of fun, sophisticated graphics methods.

 [image: image with no caption]

	

Put a JPEG on a widget

You can put your own images on a widget.

graphics.drawImage(myPic,10,10,this);

 [image: image with no caption]

 Make your own drawing widget

 If you want to put your own graphics on the screen, your best bet is to make your own paintable widget. You plop that widget on the frame, just like a button or any other widget, but when it shows up it will have your images on it. You can even make those images move, in an animation, or make the colors on the screen change every time you click a button.

It’s a piece of cake.

Make a subclass of JPanel and override one method, paintComponent().

All of your graphics code goes inside the paintComponent() method. Think of the paintComponent() method as the method called by the system to say, “Hey widget, time to paint yourself.” If you want to draw a circle, the paintComponent() method will have code for drawing a circle. When the frame holding your drawing panel is displayed, paintComponent() is called and your circle appears. If the user iconifies/minimizes the window, the JVM knows the frame needs “repair” when it gets de-iconified, so it calls paintComponent() again. Anytime the JVM thinks the display needs refreshing, your paintComponent() method will be called.

 [image: image with no caption]

One more thing,

you never call this method yourself!

 The argument to this method (a Graphics object) is the actual drawing canvas that gets slapped onto the
real

 display. You can’t get this by yourself; it must be handed to you by the system. You’ll see later, however, that you
can

 ask the system to refresh the display (repaint()), which ultimately leads to paintComponent() being called.

 [image: image with no caption]

 Fun things to do in paintComponent()

 Let’s look at a few more things you can do in paintComponent(). The most fun, though, is when you start experimenting yourself. Try playing with the numbers, and check the API for class Graphics (later we’ll see that there’s even
more

 you can do besides what’s in the Graphics class).

Display a JPEG

 [image: image with no caption]

 [image: image with no caption]

Paint a randomly-colored circle on a black background

 [image: image with no caption]

 [image: image with no caption]

 Behind every good Graphics reference is a Graphics2D
 object

 The argument to paintComponent() is declared as type Graphics (java.awt.Graphics).

public void paintComponent(Graphics

 g) { }

So the parameter ‘g’ IS-A Graphics object. Which means it
could

 be a
subclass

 of Graphics (because of polymorphism). And in fact, it
is

 .

The object referenced by the ‘g’ parameter is actually an instance of the

 Graphics2D
class.

Why do you care? Because there are things you can do with a Graphics2D reference that you can’t do with a Graphics reference. A Graphics2D object can do more than a Graphics object, and it really is a Graphics2D object lurking behind the Graphics reference.

Remember your polymorphism. The compiler decides which methods you can call based on the reference type, not the object type. If you have a Dog object referenced by an Animal reference variable:

Animal a = new Dog();

You CANNOT say:

a.bark();

Even though you know it’s really a Dog back there. The compiler looks at ‘a’, sees that it’s of type Animal, and finds that there’s no remote control button for bark() in the Animal class. But you can still get the object back to the Dog it really
is

 by saying:

Dog d = (Dog) a;

d.bark();

So the bottom line with the Graphics object is this:

If you need to use a method from the Graphics2D class, you can’t
use

 the the paintComponent parameter (‘g’) straight from the method. But you can
cast

 it with a new Graphics2D variable.

Graphics2D g2d = (Graphics2D) g;

 Note

Methods you can call on a Graphics reference:

	drawImage()

	drawLine()

	drawPolygon

	drawRect()

	drawOval()

	fillRect()

	fillRoundRect()

	setColor()

To cast the Graphics2D object to a Graphics2D
reference

 :

Graphics2D g2d = (Graphics2D) g;

Methods you can call on a Graphics2D
 reference:

	fill3DRect()

	draw3DRect()

	rotate()

	scale()

	shear()

	transform()

	setRenderingHints()

(these are not complete method lists, check the API for more)

 Because life’s too short to paint the circle a solid color when there’s a gradient blend waiting for you

 [image: image with no caption]

 [image: image with no caption]

public void paintComponent(Graphics g) {

Graphics2D g2d = (Graphics2D) g;

int red = (int) (Math.random() * 256);

int green = (int) (Math.random() * 256);

int blue = (int) (Math.random() * 256);

Color startColor = new Color(red, green, blue);

red = (int) (Math.random() * 256);

green = (int) (Math.random() * 256);

blue = (int) (Math.random() * 256);

Color endColor = new Color(red, green, blue);

GradientPaint gradient = new GradientPaint(70,70,startColor, 150,150, endColor);

g2d.setPaint(gradient);

g2d.fillOval(70,70,100,100);

}

 Note

this is just like the one above, except it makes random colors for the start and stop colors of the gradient. Try it!

Bullet Points

EVENTS

	To make a GUI, start with a window, usually a JFrame

JFrame frame = new JFrame();

	You can add widgets (buttons, text fields, etc.) to the JFrame using:

frame.getContentPane().add(button);

	Unlike most other components, the JFrame doesn’t let you add to it directly, so you must add to the JFrame’s content pane.

	To make the window (JFrame) display, you must give it a size and tell it be visible:

frame.setSize(300,300);

frame.setVisible(true);

	To know when the user clicks a button (or takes some other action on the user interface) you need to listen for a GUI event.

	To listen for an event, you must register your interest with an event source. An event source is the thing (button, checkbox, etc.) that ‘fires’ an event based on user interaction.

	The listener interface gives the event source a way to call you back, because the interface defines the method(s) the event source will call when an event happens.

	To register for events with a source, call the source’s registration method. Registration methods always take the form of:

add<EventType>Listener

 . To register for a button’s ActionEvents, for example, call:

button.addActionListener(this);

	Implement the listener interface by implementing all of the interface’s event-handling methods. Put your event-handling code in the listener call-back method. For ActionEvents, the method is:

public void actionPerformed(ActionEvent

event) {

button.setText("you clicked!");

}

	The event object passed into the event-handler method carries information about the event, including the source of the event.

GRAPHICS

	You can draw 2D graphics directly on to a widget.

	You can draw a .gif or .jpeg directly on to a widget.

	To draw your own graphics (including a .gif or .jpeg), make a subclass of JPanel and override the paintComponent() method.

	The paintComponent() method is called by the GUI system. YOU NEVER CALL IT YOURSELF. The argument to paintComponent() is a Graphics object that gives you a surface to draw on, which will end up on the screen. You cannot construct that object yourself.

	Typical methods to call on a Graphics object (the paintComponent paramenter) are:

g.setColor(Color.blue);

g.fillRect(20,50,100,120);

	To draw a .jpg, construct an Image using:

Image image = new ImageIcon("catzilla. jpg").getImage();

and draw the image using:

g.drawImage(image,3,4,this);

	The object referenced by the Graphics parameter to paintComponent() is actually an instance of the Graphics2D class. The Graphics 2D class has a variety of methods including:

fill3DRect(), draw3DRect(), rotate(), scale(), shear(), transform()

	To invoke the Graphics2D methods, you must cast the parameter from a Graphics object to a Graphics2D object:

Graphics2D g2d = (Graphics2D) g;

 We can get an event. We can paint graphics. But can we paint graphics
when

 we get an event?

Let’s hook up an event to a change in our drawing panel. We’ll make the circle change colors each time you click the button. Here’s how the program flows:

	The frame is built with the two widgets (your drawing panel and a button). A listener is created and registered with the button. Then the frame is displayed and it just waits for the user to click.

 [image: image with no caption]

	The user clicks the button and the button creates an event object and calls the listener’s event handler.

 [image: image with no caption]

	The event handler calls repaint() on the frame. The system calls paintComponent() on the drawing panel.

	Voila! A new color is painted because paintComponent() runs again, filling the circle with a random color.

 [image: image with no caption]

 GUI layouts: putting more than one widget on a frame

 [image: image with no caption]

 We cover GUI layouts in the
next

 chapter, but we’ll do a quickie lesson here to get you going. By default, a frame has five regions you can add to. You can add only
one

 thing to each region of a frame, but don’t panic! That one thing might be a panel that holds three other things including a panel that holds two more things and... you get the idea. In fact, we were ‘cheating’ when we added a button to the frame using:

 [image: image with no caption]

Sharpen your pencil

Given the pictures in We can get an event. We can paint graphics. But can we paint graphics when we get an event?
 , write the code that adds the button and the panel to the frame.

The circle changes color each time you click the button.

 [image: image with no caption]

 [image: image with no caption]

class MyDrawPanel extends JPanel {

public void paintComponent(Graphics g) {

// Code to fill the oval with a random color

// See page 367 for the code

}

}

 Note

The drawing panel’s paintComponent() method is called every time the user clicks.

 Let’s try it with TWO buttons

The south button will act as it does now, simply calling repaint on the frame. The second button (which we’ll stick in the east region) will change the text on a label. (A label is just text on the screen.)

 So now we need FOUR widgets

 [image: image with no caption]

 And we need to get TWO events

Uh-oh.

Is that even possible? How do you get
two

 events when you have only
one

 actionPerformed() method?

 [image: image with no caption]

 How do you get action events for two different buttons, when each button needs to do something different?

 Note

	

option one

Implement two
 actionPerformed() methods

 [image: image with no caption]

Flaw: You can’t!

 You can’t implement the same method twice in a Java class. It won’t compile. And even if you
could

 , how would the event source know
which

 of the two methods to call?

 Note

	

option two

Register the same listener with both
 buttons.

 [image: image with no caption]

Flaw: this does work, but in most cases it’s not very OO.

 One event handler doing many different things means that you have a single method doing many different things. If you need to change how
one

 source is handled, you have to mess with
everybody’s

 event handler. Sometimes it
is

 a good solution, but usually it hurts maintainability and extensibility.

 How do you get action events for two different buttons, when each button needs to do something different?

 Note

	

option three

Create two separate
 ActionListener classes

 [image: image with no caption]

Flaw: these classes won’t have access to the variables they need to act on, ‘frame’ and ‘label’.

 You could fix it, but you’d have to give each of the listener classes a reference to the main GUI class, so that inside the actionPerformed() methods the listener could use the GUI class reference to access the variables of the GUI class. But that’s breaking encapsulation, so we’d probably need to make getter methods for the gui widgets (getFrame(), getLabel(), etc.). And you’d probably need to add a constructor to the listener class so that you can pass the GUI reference to the listener at the time the listener is instantiated. And, well, it gets messier and more complicated.

There has got to be a better way!

 [image: image with no caption]

 Inner class to the rescue!

 You
can

 have one class nested inside another. It’s easy. Just make sure that the definition for the inner class is
inside

 the curly braces of the outer class.

Simple inner class:

 [image: image with no caption]

 Note

An inner class can use all the methods and variables of the outer class, even the private ones.

The inner class gets to use those variables and methods just as if the methods and variables were declared within the inner class.

An inner class gets a special pass to use the outer class’s stuff.
Even the private stuff.

 And the inner class can use those private variables and methods of the outer class as if the variables and members were defined in the inner class. That’s what’s so handy about inner classes — they have most of the benefits of a normal class, but with special access rights.

Inner class using an outer class variable

 [image: image with no caption]

 An inner
 class instance must be tied to an outer
 class instance[12
]

 Note

An inner object shares a special bond with an outer object.

 [image: image with no caption]

Remember, when we talk about an inner
class

 accessing something in the outer class, we’re really talking about an
instance

 of the inner class accessing something in an
instance

 of the outer class. But
which

 instance?

Can
any

 arbitrary instance of the inner class access the methods and variables of
any

 instance of the outer class?
No!

An
inner

 object must be tied to a specific
outer

 object on the heap.

 [image: image with no caption]

	Make an instance of the outer
 class

 [image: image with no caption]

	Make an instance of the inner
 class, by using the instance of the outer class.

 [image: image with no caption]

	The outer and inner objects are now intimately linked.

 [image: image with no caption]

 How to make an instance of an inner class

If you instantiate an inner class from code
within

 an outer class, the instance of the outer class is the one that the inner object will ‘bond’ with. For example, if code within a method instantiates the inner class, the inner object will bond to the instance whose method is running.

Code in an outer class can instantiate one of its own inner classes, in exactly the same way it instantiates any other class...

new MyInner()

 [image: image with no caption]

 [image: image with no caption]

Side bar

You
can

 instantiate an inner instance from code running
outside

 the outer class, but you have to use a special syntax. Chances are you’ll go through your entire Java life and never need to make an inner class from outside, but just in case you’re interested...

class Foo {

public static void main (String[] args) {

MyOuter outerObj = new MyOuter();

MyOuter.MyInner innerObj = outerObj.new MyInner();

}

}

Now we can get the two-button code working

 [image: image with no caption]

 [image: image with no caption]

Java Exposed

This weeks interview: Instance of an Inner Class

HeadFirst:

 What makes inner classes important?

Inner object:

 Where do I start? We give you a chance to implement the same interface more than once in a class. Remember, you can’t implement a method more than once in a normal Java class. But using
inner

 classes, each inner class can implement the
same

 interface, so you can have all these
different

 implementations of the very same interface methods.

HeadFirst:

 Why would you ever
want

 to implement the same method twice?

Inner object:

 Let’s revisit GUI event handlers. Think about it... if you want
three

 buttons to each have a different event behavior, then use
three

 inner classes, all implementing ActionListener — which means each class gets to implement its own actionPerformed method.

HeadFirst:

 So are event handlers the only reason to use inner classes?

Inner object:

 Oh, gosh no. Event handlers are just an obvious example. Anytime you need a separate class, but still want that class to behave as if it were part of
another

 class, an inner class is the best — and sometimes
only

 — way to do it.

HeadFirst:

 I’m still confused here. If you want the inner class to
behave

 like it belongs to the outer class, why have a separate class in the first place? Why wouldn’t the inner class code just be
in

 the outer class in the first place?

Inner object:

 I just
gave

 you one scenario, where you need more than one implementation of an interface. But even when you’re not using interfaces, you might need two different
classes

 because those classes represent two different
things

 . It’s good OO.

HeadFirst:

 Whoa. Hold on here. I thought a big part of OO design is about reuse and maintenance. You know, the idea that if you have two separate classes, they can each be modified and used independently, as opposed to stuffing it all into one class yada yada yada. But with an
inner

 class, you’re still just working with one
real

 class in the end, right? The enclosing class is the only one that’s reusable and separate from everybody else. Inner classes aren’t exactly reusable. In fact, I’ve heard them called “Reuseless — useless over and over again.”

Inner object:

 Yes it’s true that the inner class is not
as

 reusable, in fact sometimes not reusable at all, because it’s intimately tied to the instance variables and methods of the outer class. But it —

HeadFirst:

 — which only proves my point! If they’re not reusable, why bother with a separate class? I mean, other than the interface issue, which sounds like a workaround to me.

Inner object:

 As I was saying, you need to think about IS-A and polymorphism.

HeadFirst:

 OK. And I’m thinking about them because...

Inner object:

 Because the outer and inner classes might need to pass
different

 IS-A tests! Let’s start with the polymorphic GUI listener example. What’s the declared argument type for the button’s listener registration method? In other words, if you go to the API and check, what kind of
thing

 (class or interface type) do you have to pass to the addActionListener() method?

HeadFirst:

 You have to pass a listener. Something that implements a particular listener interface, in this case ActionListener. Yeah, we know all this. What’s your point?

Inner object:

 My point is that polymorphically, you have a method that takes only one particular
type

 . Something that passes the IS-A test for ActionListener. But — and here’s the big thing — what if your class needs to be an IS-A of something that’s a
class

 type rather than an interface?

HeadFirst:

 Wouldn’t you have your class just
extend

 the class you need to be a part of? Isn’t that the whole point of how subclassing works? If B is a subclass of A, then anywhere an A is expected a B can be used. The whole pass-a-Dog-where-an-Animal-is-the-declared-type thing.

Inner object:

 Yes! Bingo! So now what happens if you need to pass the IS-A test for two different classes? Classes that aren’t in the same inheritance hierarchy?

HeadFirst:

 Oh, well you just... hmmm. I think I’m getting it. You can always
implement

 more than one interface, but you can
extend

 only
one

 class. You can only be one kind of IS-A when it comes to
class

 types.

Inner object:

 Well done! Yes, you can’t be both a Dog and a Button. But if you’re a Dog that needs to sometimes be a Button (in order to pass yourself to methods that take a Button), the Dog class (which extends Animal so it can’t extend Button) can have an
inner

 class that acts on the Dog’s behalf as a Button, by extending Button, and thus wherever a Button is required the Dog can pass his inner Button instead of himself. In other words, instead of saying x.takeButton(this), the Dog object calls x.takeButton(new MyInnerButton()).

HeadFirst:

 Can I get a clear example?

Inner object:

 Remember the drawing panel we used, where we made our own subclass of JPanel? Right now, that class is a separate, non-inner, class. And that’s fine, because the class doesn’t need special access to the instance variables of the main GUI. But what if it did? What if we’re doing an animation on that panel, and it’s getting its coordinates from the main application (say, based on something the user does elsewhere in the GUI). In that case, if we make the drawing panel an inner class, the drawing panel class gets to be a subclass of JPanel, while the outer class is still free to be a subclass of something else.

HeadFirst:

 Yes I see! And the drawing panel isn’t reusable enough to be a separate class anyway, since what it’s actually painting is specific to this one GUI application.

Inner object:

 Yes! You’ve got it!

HeadFirst:

 Good. Then we can move on to the nature of the
relationship

 between you and the outer instance.

Inner object:

 What is it with you people? Not enough sordid gossip in a serious topic like polymorphism?

HeadFirst:

 Hey, you have no idea how much the public is willing to pay for some good old tabloid dirt. So, someone creates you and becomes instantly bonded to the outer object, is that right?

Inner object:

 Yes that’s right. And yes, some have compared it to an arranged marriage. We don’t have a say in which object we’re bonded to.

HeadFirst:

 Alright, I’ll go with the marriage analogy. Can you get a
divorce

 and remarry something
else

 ?

Inner object:

 No, it’s for life.

HeadFirst:

 Whose life? Yours? The outer object? Both?

Inner object:

 Mine. I can’t be tied to any other outer object. My only way out is garbage collection.

HeadFirst:

 What about the outer object? Can it be associated with any other inner objects?

Inner object:

 So now we have it. This is what you
really

 wanted. Yes, yes. My so-called ‘mate’ can have as many inner objects as it wants.

HeadFirst:

 Is that like, serial monogamy? Or can it have them all at the same time?

Inner object:

 All at the same time. There. Satisfied?

HeadFirst:

 Well, it does make sense. And let’s not forget, it was
you

 extolling the virtues of “multiple implementations of the same interface”. So it makes sense that if the outer class has three buttons, it would need three different inner classes (and thus three different inner class objects) to handle the events. Thanks for everything. Here’s a tissue.

 [image: image with no caption]

 Using an inner class for animation

 We saw why inner classes are handy for event listeners, because you get to implement the same event-handling method more than once. But now we’ll look at how useful an inner class is when used as a subclass of something the outer class doesn’t extend. In other words, when the outer class and inner class are in different inheritance trees!

Our goal is to make a simple animation, where the circle moves across the screen from the upper left down to the lower right.

 [image: image with no caption]

There are no Dumb Questions

	

Q:

	

Q: Why are we learning about animation here? I doubt if I’m going to be making games.

	
A:

	

A:

 You might not be making games, but you might be creating simulations, where things change over time to show the results of a process. Or you might be building a visualization tool that, for example, updates a graphic to show how much memory a program is using, or to show you how much traffic is coming through your load-balancing server. Anything that needs to take a set of continuously-changing numbers and translate them into something useful for getting information out of the numbers.

Doesn’t that all sound businesslike? That’s just the “official justification”, of course. The real reason we’re covering it here is just because it’s a simple way to demonstrate another use of inner classes. (And because we just
like

 animation, and our next Head First book is about J2EE and we
know

 we can’t get animation in that one.)

How simple animation works

	Paint an object at a particular x and y coordinate

 [image: image with no caption]

	Repaint the object at a different
 x and y coordinate

 [image: image with no caption]

	Repeat the previous step with changing x and y values for as long as the animation is supposed to continue.

What we really
 want is something like...

 [image: image with no caption]

Sharpen your pencil

But where do we get the new x and y coordinates?

And who calls repaint()?

See if you can
design a simple solution

 to get the ball to animate from the top left of the drawing panel down to the bottom right. Our answer is on the next page, so don’t turn this page until you’re done!

Big Huge Hint: make the drawing panel an inner class.

Another Hint: don’t put any kind of repeat loop in the paintComponent() method.

Write your ideas (or the code) here:

The complete simple animation code

 [image: image with no caption]

Uh-oh. It didn’t move... it
smeared

 .

What did we do wrong?

There’s one little flaw in the paintComponent() method.

We forgot to erase
 what was already there! So we got trails.

 [image: image with no caption]

Not exactly the look we were going for.

To fix it, all we have to do is fill in the entire panel with the background color, before painting the circle each time. The code below adds two lines at the start of the method: one to set the color to white (the background color of the drawing panel) and the other to fill the entire panel rectangle with that color. In English, the code below says, “Fill a rectangle starting at x and y of 0 (0 pixels from the left and 0 pixels from the top) and make it as wide and as high as the panel is currently.

 [image: image with no caption]

Sharpen your pencil (optional, just for fun)

 [image: image with no caption]

What changes would you make to the x and y coordinates to produce the animations below? (assume the first one example moves in 3 pixel increments)

 [image: image with no caption]

Code Kitchen

 [image: image with no caption]

Let’s make a music video. We’ll use Java-generated random graphics that keep time with the music beats.

Along the way we’ll register (and listen for) a new kind of non-GUI event, triggered by the music itself.

Remember, this part is all optional. But we think it’s good for you. And you’ll like it. And you can use it to impress people.

(Ok, sure, it might work only on people who are really easy to impress, but still...)

 Listening for a non-GUI event

 OK, maybe not a music video, but we
will

 make a program that draws random graphics on the screen with the beat of the music. In a nutshell, the program listens for the beat of the music and draws a random graphic rectangle with each beat.

That brings up some new issues for us. So far, we’ve listened for only GUI events, but now we need to listen for a particular kind of MIDI event. Turns out, listening for a non-GUI event is just like listening for GUI events: you implement a listener interface, register the listener with an event source, then sit back and wait for the event source to call your event-handler method (the method defined in the listener interface).

The simplest way to listen for the beat of the music would be to register and listen for the actual MIDI events, so that whenever the sequencer gets the event, our code will get it too and can draw the graphic. But... there’s a problem. A bug, actually, that won’t let us listen for the MIDI events
we’re

 making (the ones for NOTE ON).

So we have to do a little work-around. There is another type of MIDI event we can listen for, called a ControllerEvent. Our solution is to register for ControllerEvents, and then make sure that for every NOTE ON event, there’s a matching ControllerEvent fired at the same ‘beat’. How do we make sure the ControllerEvent is fired at the same time? We add it to the track just like the other events! In other words, our music sequence goes like this:

BEAT 1 - NOTE ON, CONTROLLER EVENT

BEAT 2 - NOTE OFF

BEAT 3 - NOTE ON, CONTROLLER EVENT

BEAT 4 - NOTE OFF

and so on.

Before we dive into the full program, though, let’s make it a little easier to make and add MIDI messages/events since in
this

 program, we’re gonna make a lot of them.

What the music art program needs to do:

	Make a series of MIDI messages/ events to play random notes on a piano (or whatever instrument you choose)

	Register a listener for the events

	Start the sequencer playing

	Each time the listener’s event handler method is called, draw a random rectangle on the drawing panel, and call repaint.

We’ll build it in three iterations:

	Version One: Code that simplifies making and adding MIDI events, since we’ll be making a lot of them.

	Version Two: Register and listen for the events, but without graphics. Prints a message at the command-line with each beat.

	Version Three: The real deal. Adds graphics to version two.

 An easier way to make messages / events

Right now, making and adding messages and events to a track is tedious. For each message, we have to make the message instance (in this case, ShortMessage), call setMessage(), make a MidiEvent for the message, and add the event to the track. In last chapter’s code, we went through each step for every message. That means eight lines of code just to make a note play and then stop playing! Four lines to add a NOTE ON event, and four lines to add a NOTE OFF event.

ShortMessage a = new ShortMessage();

a.setMessage(144, 1, note, 100);

MidiEvent noteOn = new MidiEvent(a, 1);

track.add(noteOn);

ShortMessage b = new ShortMessage();

b.setMessage(128, 1, note, 100);

MidiEvent noteOff = new MidiEvent(b, 16);

track.add(noteOff);

Things that have to happen for each event:

	Make a message instance

ShortMessage first = new ShortMessage();

	Call setMessage() with the instructions

first.setMessage(192, 1, instrument, 0)

	Make a MidiEvent instance for the message

MidiEvent noteOn = new MidiEvent(first, 1);

	Add the event to the track

track.add(noteOn);

Let’s build a static utility method that makes a message and returns a MidiEvent

 [image: image with no caption]

 Example: how to use the new static makeEvent() method

There’s no event handling or graphics here, just a sequence of 15 notes that go up the scale. The point of this code is simply to learn how to use our new makeEvent() method. The code for the next two versions is much smaller and simpler thanks to this method.

 [image: image with no caption]

 Version Two: registering and getting ControllerEvents

 [image: image with no caption]

 Version Three: drawing graphics in time with the music

This final version builds on version two by adding the GUI parts. We build a frame, add a drawing panel to it, and each time we get an event, we draw a new rectangle and repaint the screen. The only other change from version two is that the notes play randomly as opposed to simply moving up the scale.

The most important change to the code (besides building a simple GUI) is that we make the drawing panel implement the ControllerEventListener rather than the program itself. So when the drawing panel (an inner class) gets the event, it knows how to take care of itself by drawing the rectangle.

Complete code for this version is on the next page.

The drawing panel inner class:

 [image: image with no caption]

Sharpen your pencil

This is the complete code listing for Version Three. It builds directly on Version Two. Try to annotate it yourself, without looking at the previous pages.

import javax.sound.midi.*;

import java.io.*;

import javax.swing.*;

import java.awt.*;

public class MiniMusicPlayer3 {

static JFrame f = new JFrame("My First Music Video");

static MyDrawPanel ml;

public static void main(String[] args) {

MiniMusicPlayer3 mini = new MiniMusicPlayer3();

mini.go();

} // close method

public void setUpGui() {

ml = new MyDrawPanel();

f.setContentPane(ml);

f.setBounds(30,30, 300,300);

f.setVisible(true);

} // close method

public void go() {

setUpGui();

try {

Sequencer sequencer = MidiSystem.getSequencer();

sequencer.open();

sequencer.addControllerEventListener(ml, new int[] {127});

Sequence seq = new Sequence(Sequence.PPQ, 4);

Track track = seq.createTrack();

int r = 0;

for (int i = 0; i < 60; i+= 4) {

r = (int) ((Math.random() * 50) + 1);

track.add(makeEvent(144,1,r,100,i));

track.add(makeEvent(176,1,127,0,i));

track.add(makeEvent(128,1,r,100,i + 2));

} // end loop

sequencer.setSequence(seq);

sequencer.start();

sequencer.setTempoInBPM(120);

} catch (Exception ex) {ex.printStackTrace();}

} // close method

public MidiEvent makeEvent(int comd, int chan, int one, int two, int tick) {

MidiEvent event = null;

try {

ShortMessage a = new ShortMessage();

a.setMessage(comd, chan, one, two);

event = new MidiEvent(a, tick);

}catch(Exception e) { }

return event;

} // close method

class MyDrawPanel extends JPanel implements ControllerEventListener {

boolean msg = false;

public void controlChange(ShortMessage event) {

msg = true;

repaint();

}

public void paintComponent(Graphics g) {

if (msg) {

int r = (int) (Math.random() * 250);

int gr = (int) (Math.random() * 250);

int b = (int) (Math.random() * 250);

g.setColor(new Color(r,gr,b));

int ht = (int) ((Math.random() * 120) + 10);

int width = (int) ((Math.random() * 120) + 10);

int x = (int) ((Math.random() * 40) + 10);

int y = (int) ((Math.random() * 40) + 10);

g.fillRect(x,y,ht, width);

msg = false;

} // close if

} // close method

} // close inner class

} // close class

Who am I?

 [image: image with no caption]

 [image: image with no caption]

 A bunch of Java hot-shots, in full costume, are playing the party game “Who am I?” They give you a clue, and you try to guess who they are, based on what they say. Assume they always tell the truth about themselves. If they happen to say something that could be true for more than one guy, then write down all for whom that sentence applies. Fill in the blanks next to the sentence with the names of one or more attendees.

Tonight’s attendees:

Any of the charming personalities from this chapter just might show up!

	

I got the whole GUI, in my hands.

Every event type has one of these.

The listener’s key method.

This method gives JFrame its size.

You add code to this method but never call it.

When the user actually does something, it’s an _____ .

Most of these are event sources.

I carry data back to the listener.

An addXxxListener() method says an object is an _____ .

How a listener signs up.

The method where all the graphics code goes.

I’m typically bound to an instance.

The ‘g’ in (Graphics g), is really of class.

The method that gets paintComponent() rolling.

The package where most of the Swingers reside.

BE the compiler

 [image: image with no caption]

The Java file on this page represents a complete source file. Your job is to play compiler and determine whether this file will compile. If it won’t compile, how would you fix it, and if it does compile, what would it do?

import javax.swing.*;
import java.awt.event.*;
import java.awt.*;

class InnerButton {

 JFrame frame;
 JButton b;

 public static void main(String [] args) {
 InnerButton gui = new InnerButton();
 gui.go();
 }

 public void go() {
 frame = new JFrame();
 frame.setDefaultCloseOperation(
 JFrame.EXIT_ON_CLOSE);

 b = new JButton("A");
 b.addActionListener();

 frame.getContentPane().add(
 BorderLayout.SOUTH, b);
 frame.setSize(200,100);
 frame.setVisible(true);
 }

 class BListener extends ActionListener {
 public void actionPerformed(ActionEvent e) {
 if (b.getText().equals("A")) {
 b.setText("B");
 } else {
 b.setText("A");
 }
 }
 }
}

Pool Puzzle

 [image: image with no caption]

 Your

job

 is to take code snippets from the pool and place them into the blank lines in the code. You
may

 use the same snippet more than once, and you won’t need to use all the snippets. Your

goal

 is to make a class that will compile and run and produce the output listed.

Output

The Amazing, Shrinking, Blue Rectangle. This program will produce a blue rectangle that will shrink and shrink and disappear into a field of white.

 [image: image with no caption]

import javax.swing.*;
import java.awt.*;
public class Animate {
 int x = 1;
 int y = 1;
 public static void main (String[] args) {
 Animate gui = new Animate ();
 gui.go();
 }
 public void go() {
 JFrame _________ = new JFrame();
 frame.setDefaultCloseOperation(
 JFrame.EXIT_ON_CLOSE);
 ______________________________________;
 _________.getContentPane().add(drawP);
 __________________________;
 _________.setVisible(true);
 for (int i=0; i<124; _______________) {
 _____________________;
 _____________________;
 try {
 Thread.sleep(50);
 } catch(Exception ex) { }
 }
 }
 class MyDrawP extends JPanel {
 public void paintComponent (Graphics
 _________) {
 __________________________________;
 __________________________________;
 __________________________________;
 __________________________________;
 }
 }
}

Note: Each snippet from the pool can be used more than once!

 [image: image with no caption]

Exercise Solutions

Who am I?

	
I got the whole GUI, in my hands.

	
JFrame

	
Every event type has one of these.

	
listener interface

	
The listener’s key method.

	
actionPerformed()

	
This method gives JFrame its size.

	
setSize()

	
You add code to this method but never call it.

	
paintComponent()

	
When the user actually does something, it’s an ____

	
event

	
Most of these are event sources.

	
swing components

	
I carry data back to the listener.

	
event object

	
An addXxxListener() method says an object is an ___

	
event source

	
How a listener signs up.

	
addActionListener()

	
The method where all the graphics code goes.

	
paintComponent()

	
I’m typically bound to an instance.

	
inner class

	
The ‘g’ in (Graphics g), is really of this class.

	
Graphics2D

	
The method that gets paintComponent() rolling.

	
repaint()

	
The package where most of the Swingers reside.

	
javax.swing

BE the compiler

 [image: image with no caption]

Pool Puzzle

import javax.swing.*;
import java.awt.*;
public class Animate {
 int x = 1;
 int y = 1;
 public static void main (String[] args) {
 Animate gui = new Animate ();
 gui.go();
 }
 public void go() {
 JFrame frame

 = new JFrame();
 frame.setDefaultCloseOperation(
 JFrame.EXIT_ON_CLOSE);
 MyDrawP drawP = new MyDrawP();

 frame

.getContentPane().add(drawP);
 frame.setSize(500,270);

 frame

.setVisible(true);
 for (int i = 0; i < 124; i++,y++,x++

) {
 x++;

 drawP.repaint();

 try {
 Thread.sleep(50);
 } catch(Exception ex) { }
 }
 }
 class MyDrawP extends JPanel {
 public void paintComponent(Graphics g) {
 g.setColor(Color.white);

 g.fillRect(0,0,500,250);

 g.setColor(Color.blue);

 g.fillRect(x,y,500-x*2,250-y*2);

 }
 }
}

The Amazing, Shrinking, Blue Rectangle.

 [image: image with no caption]

[12
]
 There’s an exception to this, for a very special case — an inner class defined within a static method. But we’re not going there, and you might go your entire Java life without ever encountering one of these.

 Chapter 13. Using Swing: Work on Your Swing

 [image: image with no caption]

Swing is easy.

 Unless you actually
care

 where things end up on the screen. Swing code
looks

 easy, but then you compile it, run it, look at it and think, “hey,
that’s

 not supposed to go
there

 .” The thing that makes it
easy

 to
code

 is the thing that makes it
hard

 to
control

 — the
Layout Manager

 . Layout Manager objects control the size and location of the widgets in a Java GUI. They do a ton of work on your behalf, but you won’t always like the results. You want two buttons to be the same size, but they aren’t. You want the text field to be three inches long, but it’s nine. Or one. And
under

 the label instead of
next

 to it. But with a little work, you can get layout managers to submit to your will. In this chapter, we’ll work on our Swing and in addition to layout managers, we’ll learn more about widgets. We’ll make them, display them (where
we

 choose), and use them in a program. It’s not looking too good for Suzy.

 Swing components

Component

 is the more correct term for what we’ve been calling a
widget

 . The
things

 you put in a GUI.
The things a user sees and interacts with

 . Text fields, buttons, scrollable lists, radio buttons, etc. are all components. In fact, they all extend

javax.swing.JComponent

 .

 Note

A widget is technically a Swing Component.
 Almost every thing you can stick in a GUI extends from javax.swing.JComponent.

 Components can be nested

In Swing, virtually
all

 components are capable of holding other components. In other words,
you can stick just about anything into anything else

 . But most of the time, you’ll add
user interactive

 components such as buttons and lists into
background

 components such as frames and panels. Although it’s
possible

 to put, say, a panel inside a button, that’s pretty weird, and won’t win you any usability awards.

With the exception of JFrame, though, the distinction between
interactive

 components and
background

 components is artificial. A JPanel, for example, is usually used as a background for grouping other components, but even a JPanel can be interactive. Just as with other components, you can register for the JPanel’s events including mouse clicks and keystrokes.

Four steps to making a GUI (review)

	Make a window (a JFrame)

JFrame frame = new JFrame();

	Make a component (button, text field, etc.)

JButton button = new JButton("click me");

	Add the component to the frame

frame.getContentPane().add(BorderLayout.EAST, button);

	Display it (give it a size and make it visible)

frame.setSize(300,300);

frame.setVisible(true);

Put interactive components:

 [image: image with no caption]

Into background components:

 [image: image with no caption]

 Layout Managers

 A layout manager is a Java object associated with a particular component, almost always a
background

 component. The layout manager controls the components contained
within

 the component the layout manager is associated with. In other words, if a frame holds a panel, and the panel holds a button, the panel’s layout manager controls the size and placement of the button, while the frame’s layout manager controls the size and placement of the panel. The button, on the other hand, doesn’t need a layout manager because the button isn’t holding other components.

 [image: image with no caption]

If a panel holds five things, even if those five things each have their own layout managers, the size and location of the five things in the panel are all controlled by the panel’s layout manager. If those five things, in turn, hold
other

 things, then those
other

 things are placed according to the layout manager of the thing holding them.

When we say
hold

 we really mean
add

 as in, a panel
holds

 a button because the button was
added

 to the panel using something like:

myPanel.add(button);

Layout managers come in several flavors, and each background component can have its own layout manager. Layout managers have their own policies to follow when building a layout. For example, one layout manager might insist that all components in a panel must be the same size, arranged in a grid, while another layout manager might let each component choose its own size, but stack them vertically. Here’s an example of nested layouts:

JPanel panelA = new JPanel();

JPanel panelB = new JPanel();

panelB.add(new JButton("button 1"));

panelB.add(new JButton("button 2"));

panelB.add(new JButton("button 3"));

panelA.add(panelB);

 [image: image with no caption]

 How does the layout manager decide?

Different layout managers have different policies for arranging components (like, arrange in a grid, make them all the same size, stack them vertically, etc.) but the components being layed out do get at least
some

 small say in the matter. In general, the process of laying out a background component looks something like this:

A layout scenario:

	Make a panel and add three buttons to it.

	The panel’s layout manager asks each button how big that button prefers to be.

	The panel’s layout manager uses its layout policies to decide whether it should respect all, part, or none of the buttons’ preferences.

	Add the panel to a frame.

	The frame’s layout manager asks the panel how big the panel prefers to be.

	The frame’s layout manager uses its layout policies to decide whether it should respect all, part, or none of the panel’s preferences.

 [image: image with no caption]

 Different layout managers have different policies

Some layout managers respect the size the component wants to be. If the button wants to be 30 pixels by 50 pixels, that’s what the layout manager allocates for that button. Other layout managers respect only part of the component’s preferred size. If the button wants to be 30 pixels by 50 pixels, it’ll be 30 pixels by however wide the button’s background
panel

 is. Still other layout managers respect the preference of only the
largest

 of the components being layed out, and the rest of the components in that panel are all made that same size. In some cases, the work of the layout manager can get very complex, but most of the time you can figure out what the layout manager will probably do, once you get to know that layout manager’s policies.

 The Big Three layout managers: border, flow, and box

BorderLayout

A BorderLayout manager divides a background component into five regions. You can add only one component per region to a background controlled by a BorderLayout manager. Components laid out by this manager usually don’t get to have their preferred size.
BorderLayout is the default layout

manager for a frame!

 [image: image with no caption]

FlowLayout

A FlowLayout manager acts kind of like a word processor, except with components instead of words. Each component is the size it wants to be, and they’re laid out left to right in the order that they’re added, with “word-wrap” turned on. So when a component won’t fit horizontally, it drops to the next “line” in the layout.
FlowLayout is the

default layout manager for a panel!

 [image: image with no caption]

BoxLayout

A BoxLayout manager is like FlowLayout in that each component gets to have its own size, and the components are placed in the order in which they’re added. But, unlike FlowLayout, a BoxLayout manager can stack the components vertically (or horizontally, but usually we’re just concerned with vertically). It’s like a FlowLayout but instead of having automatic ‘component wrapping’, you can insert a sort of ‘component return key’ and

force

 the components to start a new line.

 [image: image with no caption]

BorderLayout cares about five regions:

east, west, north, south, and center

 [image: image with no caption]

Let’s add a button to the east
 region:

 [image: image with no caption]

 Brain Barbell

How did the BorderLayout manager come up with this size for the button?

What are the factors the layout manager has to consider?

Why isn’t it wider or taller?

 [image: image with no caption]

Watch what happens when we give the button more characters...

 [image: image with no caption]

 [image: image with no caption]

 [image: image with no caption]

 [image: image with no caption]

 [image: image with no caption]

The button gets its preferred width, but not height.

 [image: image with no caption]

Let’s try a button in the NORTH region

public void go() {
 JFrame frame = new JFrame();

JButton button = new JButton("There is no spoon...");

 frame.getContentPane().add(BorderLayout.

NORTH

, button);
 frame.setSize(200,200);
 frame.setVisible(true);
}

 [image: image with no caption]

Now let’s make the button ask to be taller

How do we do that? The button is already as wide as it can ever be — as wide as the frame. But we can try to make it taller by giving it a bigger font.

 [image: image with no caption]

 [image: image with no caption]

 [image: image with no caption]

But what happens in the center
 region?

The center region gets whatever’s left!

(except in one special case we’ll look at later)

public void go() {
 JFrame frame = new JFrame();

 JButton east = new JButton("East");
 JButton west = new JButton("West");
 JButton north = new JButton("North");
 JButton south = new JButton("South");
 JButton center = new JButton("Center");

 frame.getContentPane().add(BorderLayout.EAST, east);
 frame.getContentPane().add(BorderLayout.WEST, west);
 frame.getContentPane().add(BorderLayout.NORTH, north);
 frame.getContentPane().add(BorderLayout.SOUTH, south);
 frame.getContentPane().add(BorderLayout.
CENTER

, center);

 frame.
setSize(300,300

);
 frame.setVisible(true);
}

 [image: image with no caption]

 [image: image with no caption]

FlowLayout cares about the flow
 of the components:

left to right, top to bottom, in the order they were added.

Let’s add a panel to the east region:

A JPanel’s layout manager is FlowLayout, by default. When we add a panel to a frame, the size and placement of the panel is still under the BorderLayout manager’s control. But anything inside the panel (in other words, components added to the panel by calling

panel.add(aComponent)

) are under the panel’s FlowLayout manager’s control. We’ll start by putting an empty panel in the frame’s east region, and on the next pages we’ll add things to the panel.

 [image: image with no caption]

Let’s add a button to the panel

 [image: image with no caption]

 [image: image with no caption]

 [image: image with no caption]

 [image: image with no caption]

What happens if we add TWO buttons to the panel?

 [image: image with no caption]

what we

wanted

 :

 [image: image with no caption]

what we

got

 :

 [image: image with no caption]

Sharpen your pencil

If the code above were modified to the code below, what would the GUI look like?

JButton button = new JButton("shock me");
JButton buttonTwo = new JButton("bliss");
JButton buttonThree = new JButton("huh?");
panel.add(button);
panel.add(buttonTwo);
panel.add(buttonThree);

 [image: image with no caption]

Draw what you think the GUI would look like if you ran the code to the left.

(Then try it!)

BoxLayout to the rescue!

It keeps components stacked, even if there’s room to put them side by side.

 [image: image with no caption]

Unlike FlowLayout, BoxLayout can force a ‘new line’ to make the components wrap to the next line, even if there’s room for them to fit horizontally.

But now you’ll have to change the panel’s layout manager from the default FlowLayout to BoxLayout.

 [image: image with no caption]

 [image: image with no caption]

Notice how the panel is narrower again, because it doesn’t need to fit both buttons horizontally. So the panel told the frame it needed enough room for only the largest button, ‘shock me’.

There are no Dumb Questions

	

Q:

	

Q: How come you can’t add directly to a frame the way you can to a panel?

	
A:

	

A:

 A JFrame is special because it’s where the rubber meets the road in making something appear on the screen. While all your Swing components are pure Java, a JFrame has to connect to the underlying OS in order to access the display. Think of the content pane as a 100% pure Java layer that sits on
top

 of the JFrame. Or think of it as though JFrame is the window frame and the content pane is the... glass. You know, the window
pane

 . And you can even swap the content pane with your own JPanel, to make your JPanel the frame’s content pane, using,

myFrame.setContentPane(myPanel);

	

Q:

	

Q: Can I change the layout manager of the frame? What if I want the frame to use flow instead of border?

	
A:

	

A:

 The easiest way to do this is to make a panel, build the GUI the way you want in the panel, and then make that panel the frame’s content pane using the code in the previous answer (rather than using the default content pane).

	

Q:

	

Q: What if I want a different preferred size? Is there a setSize() method for components?

	
A:

	

A:

 Yes, there is a setSize(), but the layout managers will ignore it. There’s a distinction between the
preferred

size

 of the component and the size
you

 want it to be. The preferred size is based on the size the component actually
needs

 (the component makes that decision for itself). The layout manager calls the component’s getPreferredSize() method, and
that

 method doesn’t
care

 if you’ve previously called setSize() on the component.

	

Q:

	

Q: Can’t I just put things where I want them? Can I turn the layout managers off?

	
A:

	

A:

 Yep. On a component by component basis, you can call

setLayout(null)

 and then it’s up to you to hard-code the exact screen locations and dimensions. In the long run, though, it’s almost always easier to use layout managers.

Bullet Points

	Layout managers control the size and location of components nested within other components.

	When you add a component to another component (sometimes referred to as a
background

 component, but that’s not a technical distinction), the added component is controlled by the layout manager of the
background

 component.

	A layout manager asks components for their preferred size, before making a decision about the layout. Depending on the layout manager’s policies, it might respect all, some, or none of the component’s wishes.

	The BorderLayout manager lets you add a component to one of five regions. You must specify the region when you add the component, using the following syntax:
add(BorderLayout.EAST, panel);

	With BorderLayout, components in the north and south get their preferred height, but not width. Components in the east and west get their preferred width, but not height. The component in the center gets whatever is left over (unless you use

pack()

).

	The pack() method is like shrink-wrap for the components; it uses the full preferred size of the center component, then determines the size of the frame using the center as a starting point, building the rest based on what’s in the other regions.

	FlowLayout places components left to right, top to bottom, in the order they were added, wrapping to a new line of components only when the components won’t fit horizontally.

	FlowLayout gives components their preferred size in both dimensions.

	BoxLayout lets you align components stacked vertically, even if they could fit side-by-side. Like FlowLayout, BoxLayout uses the preferred size of the component in both dimensions.

	BorderLayout is the default layout manager for a frame; FlowLayout is the default for a panel.

	If you want a panel to use something other than flow, you have to call

setLayout()

 on the panel.

 Playing with Swing components

 You’ve learned the basics of layout managers, so now let’s try out a few of the most common components: a text field, scrolling text area, checkbox, and list. We won’t show you the whole darn API for each of these, just a few highlights to get you started.

JTextField

 [image: image with no caption]

Constructors

 [image: image with no caption]

How to use it

	Get text out of it

System.out.println(field.getText());

	Put text in it

field.setText("whatever");

field.setText("");

 Note

This clears the field

	Get an ActionEvent when the user presses return or enter

 Note

You can also register for key events if you really want to hear about it every time the user presses a key.

field.addActionListener(myActionListener);

	Select/Highlight the text in the field

field.selectAll();

	Put the cursor back in the field (so the user can just start typing)

field.requestFocus();

JTextArea

 [image: image with no caption]

Unlike JTextField, JTextArea can have more than one line of text. It takes a little configuration to make one, because it doesn’t come out of the box with scroll bars or line wrapping. To make a JTextArea scroll, you have to stick it in a ScrollPane. A ScrollPane is an object that really loves to scroll, and will take care of the text area’s scrolling needs.

Constructor

 [image: image with no caption]

How to use it

	Make it have a vertical scrollbar only

 [image: image with no caption]

	Replace the text that’s in it

text.setText("Not all who are lost are wandering");

	Append to the text that’s in it

text.append("button clicked");

	Select/Highlight the text in the field

text.selectAll();

	Put the cursor back in the field (so the user can just start typing)

text.requestFocus();

JTextArea example

 [image: image with no caption]

 [image: image with no caption]

JCheckBox

 [image: image with no caption]

Constructor

JCheckBox check = new JCheckBox("Goes to 11");

How to use it

	Listen for an item event (when it’s selected or deselected)

check.addItemListener(this);

	Handle the event (and find out whether or not it’s selected)

public void itemStateChanged(ItemEvent ev) {

String onOrOff = "off";

if (check.isSelected()) onOrOff = "on";

System.out.println("Check box is " + onOrOff);

}

	Select or deselect it in code

check.setSelected(true);

check.setSelected(false);

There are no Dumb Questions

	

Q:

	

Q: Aren’t the layout managers just more trouble than they’re worth? If I have to go to all this trouble, I might as well just hard-code the size and coordinates for where everything should go.

	
A:

	

A:

 Getting the exact layout you want from a layout manager can be a challenge. But think about what the layout manager is really doing for you. Even the seemingly simple task of figuring out where things should go on the screen can be complex. For example, the layout manager takes care of keeping your components from overlapping one another. In other words, it knows how to manage the spacing between components (and between the edge of the frame). Sure you can do that yourself, but what happens if you want components to be very tightly packed? You might get them placed just right, by hand, but that’s only good for your JVM!

Why? Because the components can be slightly different from platform to platform, especially if they use the underlying platform’s native ‘look and feel’. Subtle things like the bevel of the buttons can be different in such a way that components that line up neatly on one platform suddenly squish together on another.

And we’re still not at the really Big Thing that layout managers do. Think about what happens when the user resizes the window! Or your GUI is dynamic, where components come and go. If you had to keep track of re-laying out all the components every time there’s a change in the size or contents of a background component...yikes!

JList

 [image: image with no caption]

 Note

JList constructor takes an array of any object type. They don’t have to be Strings, but a String representation will appear in the list.

Constructor

String [] listEntries = {"alpha", "beta", "gamma", "delta",

"epsilon", "zeta", "eta", "theta "};

JList list = new JList(listEntries);

How to use it

	Make it have a vertical scrollbar

 Note

This is just like with JTextArea -- you make a JScrollPane (and give it the list), then add the scroll pane (NOT the list) to the panel.

JScrollPane scroller = new JScrollPane(list);

scroller.setVerticalScrollBarPolicy(ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS);

scroller.setHorizontalScrollBarPolicy(ScrollPaneConstants.HORIZONTAL_SCROLLBAR_NEVER);

panel.add(scroller);

	Set the number of lines to show before scrolling

list.setVisibleRowCount(4);

	Restrict the user to selecting only ONE thing at a time

list.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);

	Register for list selection events

list.addListSelectionListener(this);

	Handle events (find out which thing in the list was selected)

 [image: image with no caption]

Code Kitchen

 [image: image with no caption]

This part’s optional. We’re making the full BeatBox, GUI and all. In the Saving Objects chapter, we’ll learn how to save and restore drum patterns. Finally, in the networking chapter (Make a Connection), we’ll turn the BeatBox into a working chat client.

 Making the BeatBox

This is the full code listing for this version of the BeatBox, with buttons for starting, stopping, and changing the tempo. The code listing is complete, and fully-annotated, but here’s the overview:

	Build a GUI that has 256 checkboxes (JCheckBox) that start out unchecked, 16 labels (JLabel) for the instrument names, and four buttons.

	Register an ActionListener for each of the four buttons. We don’t need listeners for the individual checkboxes, because we aren’t trying to change the pattern sound dynamically (i.e. as soon as the user checks a box). Instead, we wait until the user hits the ‘start’ button, and then walk through all 256 checkboxes to get their state and make a MIDI track.

	Set-up the MIDI system (you’ve done this before) including getting a Sequencer, making a Sequence, and creating a track. We are using a sequencer method that’s new to Java 5.0, setLoopCount(). This method allows you to specify how many times you want a sequence to loop. We’re also using the sequence’s tempo factor to adjust the tempo up or down, and maintain the new tempo from one iteration of the loop to the next.

	When the user hits ‘start’, the real action begins. The event-handling method for the ‘start’ button calls the buildTrackAndStart() method. In that method, we walk through all 256 checkboxes (one row at a time, a single instrument across all 16 beats) to get their state, then use the information to build a MIDI track (using the handy makeEvent() method we used in the previous chapter). Once the track is built, we start the sequencer, which keeps playing (because we’re looping it) until the user hits ‘stop’.

 [image: image with no caption]

 [image: image with no caption]

Exercise

Which code goes with which layout?

Five of the six screens below were made from one of the code fragments on the opposite page. Match each of the five code fragments with the layout that fragment would produce.

 [image: image with no caption]

Code Fragments

	

D

	

JFrame frame = new JFrame();

JPanel panel = new JPanel();

panel.setBackground(Color.darkGray);

JButton button = new JButton("tesuji");

JButton buttonTwo = new JButton("watari");

frame.getContentPane().add(BorderLayout.NORTH,panel);

panel.add(buttonTwo);

frame.getContentPane().add(BorderLayout.CENTER,button);

	

B

	

JFrame frame = new JFrame();

JPanel panel = new JPanel();

panel.setBackground(Color.darkGray);

JButton button = new JButton("tesuji");

JButton buttonTwo = new JButton("watari");

panel.add(buttonTwo);

frame.getContentPane().add(BorderLayout.CENTER,button);

frame.getContentPane().add(BorderLayout.EAST, panel);

	

C

	

JFrame frame = new JFrame();

JPanel panel = new JPanel();

panel.setBackground(Color.darkGray);

JButton button = new JButton("tesuji");

JButton buttonTwo = new JButton("watari");

panel.add(buttonTwo);

frame.getContentPane().add(BorderLayout.CENTER,button);

	

A

	

JFrame frame = new JFrame();

JPanel panel = new JPanel();

panel.setBackground(Color.darkGray);

JButton button = new JButton("tesuji");

JButton buttonTwo = new JButton("watari");

panel.add(button);

frame.getContentPane().add(BorderLayout.NORTH,buttonTwo);

frame.getContentPane().add(BorderLayout.EAST, panel);

	

E

	

JFrame frame = new JFrame();

JPanel panel = new JPanel();

panel.setBackground(Color.darkGray);

JButton button = new JButton("tesuji");

JButton buttonTwo = new JButton("watari");

frame.getContentPane().add(BorderLayout.SOUTH,panel);

panel.add(buttonTwo);

frame.getContentPane().add(BorderLayout.NORTH,button);

GUI-Cross 7.0

 You can do it.

 [image: image with no caption]

Across

1. Artist’s sandbox

4. Border’s catchall

5. Java look

9. Generic waiter

11. A happening

12. Apply a widget

15. JPanel’s default

16. Polymorphic test

17. Shake it baby

21. Lots to say

23. Choose many

25. Button’s pal

26. Home of actionPerformed

Down

2. Swing’s dad

3. Frame’s purview

5. Help’s home

6. More fun than text

7. Component slang

8. Romulin command

9. Arrange

10. Border’s top

13. Manager’s rules

14. Source’s behavior

15. Border by default

18. User’s behavior

19. Inner’s squeeze

20. Backstage widget

22. Mac look

24. Border’s right

Exercise Solutions

	

1

	

 [image:]

	

C

	

JFrame frame = new JFrame();

JPanel panel = new JPanel();

panel.setBackground(Color.darkGray);

JButton button = new JButton("tesuji");

JButton buttonTwo = new JButton("watari");

panel.add(buttonTwo);

frame.getContentPane().add(BorderLayout.CENTER,button);

	

2

	

 [image:]

	

D

	

JFrame frame = new JFrame();

JPanel panel = new JPanel();

panel.setBackground(Color.darkGray);

JButton button = new JButton("tesuji");

JButton buttonTwo = new JButton("watari");

frame.getContentPane().add(BorderLayout.NORTH,panel);

panel.add(buttonTwo);

frame.getContentPane().add(BorderLayout.CENTER,button);

	

3

	

 [image:]

	

E

	

JFrame frame = new JFrame();

JPanel panel = new JPanel();

panel.setBackground(Color.darkGray);

JButton button = new JButton("tesuji");

JButton buttonTwo = new JButton("watari");

frame.getContentPane().add(BorderLayout.SOUTH,panel);

panel.add(buttonTwo);

frame.getContentPane().add(BorderLayout.NORTH,button);

	

4

	

 [image:]

	

A

	

JFrame frame = new JFrame();

JPanel panel = new JPanel();

panel.setBackground(Color.darkGray);

JButton button = new JButton("tesuji");

JButton buttonTwo = new JButton("watari");

panel.add(button);

frame.getContentPane().add(BorderLayout.NORTH,buttonTwo);

frame.getContentPane().add(BorderLayout.EAST, panel);

	

6

	

 [image:]

	

B

	

JFrame frame = new JFrame();

JPanel panel = new JPanel();

panel.setBackground(Color.darkGray);

JButton button = new JButton("tesuji");

JButton buttonTwo = new JButton("watari");

panel.add(buttonTwo);

frame.getContentPane().add(BorderLayout.CENTER,button);

frame.getContentPane().add(BorderLayout.EAST, panel);

Puzzle Answers GUI-Cross 7.0

 [image: image with no caption]

 Chapter 14. Serialization and File I/O: Saving Objects

 [image: image with no caption]

Objects can be flattened and inflated.

 Objects have state and behavior.
Behavior

 lives in the
class

 , but
state

 lives within each individual
object

 . So what happens when it’s time to
save

 the state of an object? If you’re writing a game, you’re gonna need a Save/ Restore Game feature. If you’re writing an app that creates charts, you’re gonna need a Save/ Open File feature. If your program needs to save state,
you can do it the hard way

 , interrogating each object, then painstakingly writing the value of each instance variable to a file, in a format you create. Or,
you can do it the easy OO way

 — you simply freeze-dry/flatten/persist/ dehydrate the object itself, and reconstitute/inflate/restore/rehydrate it to get it back. But you’ll still have to do it the hard way
sometimes

 , especially when the file your app saves has to be read by some other non-Java application, so we’ll look at both in this chapter.

 Capture the Beat

You’ve
made

 the perfect pattern. You want to
save

 the pattern. You could grab a piece of paper and start scribbling it down, but instead you hit the

Save

 button (or choose Save from the File menu). Then you give it a name, pick a directory, and exhale knowing that your masterpiece won’t go out the window with the blue screen of death.

You have lots of options for how to save the state of your Java program, and what you choose will probably depend on how you plan to
use

 the saved state. Here are the options we’ll be looking at in this chapter.

If your data will be used by only the Java program that generated it:

	

Use serialization

Write a file that holds flattened (serialized) objects. Then have your program read the serialized objects from the file and inflate them back into living, breathing, heap-inhabiting objects.

 [image: image with no caption]

If your data will be used by
other

 programs:

	

Write a plain text
 file

Write a file, with delimiters that other programs can parse. For example, a tab-delimited file that a spreadsheet or database application can use.

These aren’t the only options, of course. You can save data in any format you choose. Instead of writing characters, for example, you can write your data as bytes. Or you can write out any kind of Java primitive
as

 a Java primitive — there are methods to write ints, longs, booleans, etc. But regardless of the method you use, the fundamental I/O techniques are pretty much the same: write some data to
something

 , and usually that something is either a file on disk or a stream coming from a network connection. Reading the data is the same process in reverse: read some data from either a file on disk or a network connection. And of course everything we talk about in this part is for times when you aren’t using an actual database.

 Saving State

Imagine you have a program, say, a fantasy adventure game, that takes more than one session to complete. As the game progresses, characters in the game become stronger, weaker, smarter, etc., and gather and use (and lose) weapons. You don’t want to start from scratch each time you launch the game — it took you forever to get your characters in top shape for a spectacular battle. So, you need a way to save the state of the characters, and a way to restore the state when you resume the game. And since you’re also the game programmer, you want the whole save and restore thing to be as easy (and foolproof) as possible.

 Note

	

Option one

Write the three serialized character objects to a file

Create a file and write three serialized character objects. The file won’t make sense if you try to read it as text:

 [image: image with no caption]

 Note

	

Option two

Write a plain text file

Create a file and write three lines of text, one per character, separating the pieces of state with commas:

50,Elf,bow, sword,dust

200,Troll,bare hands,big ax

120,Magician,spells,invisibility

Imagine you have three game characters to save...

 [image: image with no caption]

 Note

The serialized file is much harder for humans to read, but it’s much easier (and safer) for your program to restore the three objects from serialization than from reading in the object’s variable values that were saved to a text file. For example, imagine all the ways in which you could accidentally read back the values in the wrong order.! The type might become “dust” instead of “Elf”, while the Elf becomes a weapon...

 Writing a serialized object to a file

 Here are the steps for serializing (saving) an object. Don’t bother memorizing all this; we’ll go into more detail later in this chapter.

	

Make a FileOutputStream

 [image: image with no caption]

	

Make an ObjectOutputStream

 [image: image with no caption]

	

Write
 the object

 [image: image with no caption]

	

Close
 the ObjectOutputStream

 [image: image with no caption]

 Data moves in streams from one place to another

 [image: image with no caption]

Connection
 streams represent a connection to a source or destination (file, socket, etc.) while chain
 streams can’t connect on their own and must be chained to a connection stream.

The Java I/O API has

connection

 streams, that represent connections to destinations and sources such as files or network sockets, and

chain

 streams that work only if chained to other streams.

Often, it takes at least two streams hooked together to do something useful —
one

 to represent the connection and
another

 to call methods on. Why two? Because
connection

 streams are usually too low-level. FileOutputStream (a connection stream), for example, has methods for writing
bytes

 . But we don’t want to write
bytes

 ! We want to write
objects

 , so we need a higher-level
chain

 stream.

OK, then why not have just a single stream that does
exactly

 what you want? One that lets you write objects but underneath converts them to bytes? Think good OO. Each class does
one

 thing well. FileOutputStreams write bytes to a file. ObjectOutputStreams turn objects into data that can be written to a stream. So we make a FileOutputStream that lets us write to a file, and we hook an ObjectOutputStream (a chain stream) on the end of it. When we call writeObject() on the ObjectOutputStream, the object gets pumped into the stream and then moves to the FileOutputStream where it ultimately gets written as bytes to a file.

The ability to mix and match different combinations of connection and chain streams gives you tremendous flexibility! If you were forced to use only a
single

 stream class, you’d be at the mercy of the API designers, hoping they’d thought of
everything

 you might ever want to do. But with chaining, you can patch together your own
custom

 chains.

 [image: image with no caption]

 What really happens to an object when it’s serialized?

	

Object on the heap

 [image: image with no caption]

Objects on the heap have state — the value of the object’s instance variables. These values make one instance of a class different from another instance of the same class.

	

Object serialized

 [image: image with no caption]

Serialized objects
save the values of the instance variables

 , so that an identical instance (object) can be brought back to life on the heap.

 [image: image with no caption]

 But what exactly IS
 an object’s state? What needs to be saved?

Now it starts to get interesting. Easy enough to save the
primitive

 values 37 and 70. But what if an object has an instance variable that’s an object
reference

 ? What about an object that has five instance variables that are object references? What if those object instance variables themselves have instance variables?

Think about it. What part of an object is potentially unique? Imagine what needs to be restored in order to get an object that’s identical to the one that was saved. It will have a different memory location, of course, but we don’t care about that. All we care about is that out there on the heap, we’ll get an object that has the same state the object had when it was saved.

 Brain Barbell

What has to happen for the Car object to be saved in such a way that it can be restored back to its original state?

Think of what — and how — you might need to save the Car.

And what happens if an Engine object has a reference to a Carburetor? And what’s inside the Tire [] array object?

The Car object has two instance variables that reference two other objects.

 [image: image with no caption]

What does it take to save a Car object?

When an object is serialized, all the objects it refers to from instance variables are
also

 serialized. And all the objects
those

 objects refer to are serialized. And all the objects
those

 objects refer to are serialized... and the best part is, it happens automatically!

 Note

Serialization saves the entire object graph. All objects referenced by instance variables, starting with the object being serialized.

This Kennel object has a reference to a Dog [] array object. The Dog [] holds references to two Dog objects. Each Dog object holds a reference to a String and a Collar object. The String objects have a collection of characters and the Collar objects have an int.

 [image: image with no caption]

 If you want your class to be serializable, implement Serializable

 The Serializable interface is known as a
marker

 or
tag

 interface, because the interface doesn’t have any methods to implement. Its sole purpose is to announce that the class implementing it is, well,
serializable

 . In other words, objects of that type are saveable through the serialization mechanism. If any superclass of a class is serializable, the subclass is automatically serializable even if the subclass doesn’t explicitly declare
implements Serializable

 . (This is how interfaces always
work

 . If your superclass “IS-A” Serializable, you are too).

 [image: image with no caption]

Serialization is all or nothing.

Can you imagine what would happen if some of the object’s state didn’t save correctly?

 [image: image with no caption]

Either the entire object graph is serialized correctly or serialization fails.

You can’t serialize a Pond object if its Duck instance variable refuses to be serialized (by not implementing Serializable).

 [image: image with no caption]

 [image: image with no caption]

 [image: image with no caption]

Mark an instance variable as transient
 if it can’t (or shouldn’t) be saved.

If you want an instance variable to be skipped by the serialization process, mark the variable with the

transient

 keyword.

 [image: image with no caption]

If you have an instance variable that can’t be saved because it isn’t serializable, you can mark that variable with the transient keyword and the serialization process will skip right over it.

So why would a variable not be serializable? It could be that the class designer simply
forgot

 to make the class implement Serializable. Or it might be because the object relies on runtime-specific information that simply can’t be saved. Although most things in the Java class libraries are serializable, you can’t save things like network connections, threads, or file objects. They’re all dependent on (and specific to) a particular runtime ‘experience’. In other words, they’re instantiated in a way that’s unique to a particular run of your program, on a particular platform, in a particular JVM. Once the program shuts down, there’s no way to bring those things back to life in any meaningful way; they have to be created from scratch each time.

There are no Dumb Questions

	

Q:

	

Q: If serialization is so important, why isn’t it the default for all classes? Why doesn’t class Object implement Serializable, and then all subclasses will be automatically Serializable.

	
A:

	

A:

 Even though most classes will, and should, implement Serializable, you always have a choice. And you must make a conscious decision on a class-by-class basis, for each class you design, to ‘enable’ serialization by implementing Serializable.

First of all, if serialization were the default, how would you turn it off? Interfaces indicate functionality, not a
lack

 of functionality, so the model of polymorphism wouldn’t work correctly if you had to say, “implements NonSerializable” to tell the world that you cannot be saved.

	

Q:

	

Q: Why would I ever write a class that

wasn’t

serializable?

	
A:

	

A:

 There are very few reasons, but you might, for example, have a security issue where you don’t want a password object stored. Or you might have an object that makes no sense to save, because its key instance variables are themselves not serializable, so there’s no useful way for you to make
your

 class serializable.

	

Q:

	

Q: If a class I’m using isn’t serializable, but there’s no good reason (except that the designer just forgot or was stupid), can I subclass the ‘bad’ class and make the

subclass

serializable?

	
A:

	

A:

 Yes! If the class itself is extendable (i.e. not final), you can make a serializable subclass, and just substitute the subclass everywhere your code is expecting the superclass type. (Remember, polymorphism allows this.) Which brings up another interesting issue: what does it
mean

 if the superclass is not serializable?

	

Q:

	

Q: You brought it up: what

does

it mean to have a serializable subclass of a non-serializable superclass?

	
A:

	

A:

 First we have to look at what happens when a class is deserialized, (we’ll talk about that on the next few pages). In a nutshell, when an object is deserialized and its superclass is
not

 serializable, the superclass constructor will run just as though a new object of that type were being created. If there’s no decent reason for a class to not be serializable, making a serializable subclass might be a good solution.

	

Q:

	

Q: Whoa! I just realized something big... if you make a variable ‘transient’, this means the variable’s value is skipped over during serialization. Then what happens to it? We solve the problem of having a non-serializable instance variable by making the instance variable transient, but don’t we NEED that variable when the object is brought back to life? In other words, isn’t the whole point of serialization to preserve an object’s state?

	
A:

	

A:

 Yes, this is an issue, but fortunately there’s a solution. If you serialize an object, a transient reference instance variable will be brought back as
null

 , regardless of the value it had at the time it was saved. That means the entire object graph connected to that particular instance variable won’t be saved. This could be bad, obviously, because you probably need a non-null value for that variable.

You have two options:

1) When the object is brought back, reinitialize that null instance variable back to some default state. This works if your deserialized object isn’t dependent on a particular value for that transient variable. In other words, it might be important that the Dog have a Collar, but perhaps all Collar objects are the same so it doesn’t matter if you give the resurrected Dog a brand new Collar; nobody will know the difference.

2) If the value of the transient variable
does

 matter (say, if the color and design of the transient Collar are unique for each Dog) then you need to save the key values of the Collar and use them when the Dog is brought back to essentially re-create a brand new Collar that’s identical to the original.

	

Q:

	

Q: What happens if two objects in the object graph are the same object? Like, if you have two different Cat objects in the Kennel, but both Cats have a reference to the same Owner object. Does the Owner get saved twice? I’m hoping not.

	
A:

	

A:

 Excellent question! Serialization is smart enough to know when two objects in the graph are the same. In that case, only
one

 of the objects is saved, and during deserialization, any references to that single object are restored.

 Deserialization: restoring an object

 The whole point of serializing an object is so that you can restore it back to its original state at some later date, in a different ‘run’ of the JVM (which might not even be the same JVM that was running at the time the object was serialized). Deserialization is a lot like serialization in reverse.

 [image: image with no caption]

	

Make a FileInputStream

 [image: image with no caption]

	

Make an ObjectInputStream

 [image: image with no caption]

	

read
 the objects

Object one = os.readObject();

Object two = os.readObject();

Object three = os.readObject();

 Note

Each time you say readObject(), you get the next object in the stream. So you’ll read them back in the same order in which they were written. You’ll get a big fat exception if you try to read more objects than you wrote.

	

Cast
 the objects

 [image: image with no caption]

	

Close
 the ObjectInputStream

 [image: image with no caption]

 What happens during deserialization?

When an object is deserialized, the JVM attempts to bring the object back to life by making a new object on the heap that has the same state the serialized object had at the time it was serialized. Well, except for the transient variables, which come back either null (for object references) or as default primitive values.

 [image: image with no caption]

	The object is
read

 from the stream.

	The JVM determines (through info stored with the serialized object) the object’s
class type.

	The JVM attempts to
find and load

 the object’s
class

 . If the JVM can’t find and/or load the class, the JVM throws an exception and the deserialization fails.

	A new object is given space on the heap, but the
serialized object’s constructor does NOT run

 ! Obviously, if the constructor ran, it would restore the state of the object back to its original ‘new’ state, and that’s not what we want. We want the object to be restored to the state it had
when it was serialized

 , not when it was first created.

	If the object has a non-serializable class somewhere up its inheritance tree, the
constructor for that non-serializable class will run

 along with any constructors above that (even if they’re serializable). Once the constructor chaining begins, you can’t stop it, which means all superclasses, beginning with the first non-serializable one, will reinitialize their state.

	The object’s i
nstance variables are given the values from the serialized state

 . Transient variables are given a value of null for object references and defaults (0, false, etc.) for primitives.

There are no Dumb Questions

	

Q:

	

Q: Why doesn’t the class get saved as part of the object? That way you don’t have the problem with whether the class can be found.

	
A:

	

A:

 Sure, they could have made serialization work that way. But what a tremendous waste and overhead. And while it might not be such a hardship when you’re using serialization to write objects to a file on a local hard drive, serialization is also used to send objects over a network connection. If a class was bundled with each serialized (shippable) object, bandwidth would become a much larger problem than it already is.

For objects serialized to ship over a network, though, there actually
is

 a mechanism where the serialized object can be ‘stamped’ with a URL for where its class can be found. This is used in Java’s Remote Method Invocation (RMI) so that you can send a serialized object as part of, say, a method argument, and if the JVM receiving the call doesn’t have the class, it can use the URL to fetch the class from the network and load it, all automatically. (We’ll talk about RMI in Chapter 17
 .)

	

Q:

	

Q: What about static variables? Are they serialized?

	
A:

	

A:

 Nope. Remember, static means “one per class” not “one per object”. Static variables are not saved, and when an object is deserialized, it will have whatever static variable its class
currently

 has. The moral: don’t make serializable objects dependent on a dynamically-changing static variable! It might not be the same when the object comes back.

 Saving and restoring the game characters

 [image: image with no caption]

 [image: image with no caption]

 The GameCharacter class

import java.io.*;

public class GameCharacter implements Serializable {

int power;

String type;

String[] weapons;

public GameCharacter(int p, String t, String[] w) {

power = p;

type = t;

weapons = w;

}

public int getPower() {

return power;

}

public String getType() {

return type;

}

public String getWeapons() {

String weaponList = "";

for (int i = 0; i < weapons.length; i++) {

weaponList += weapons[i] + " ";

}

return weaponList;

}

}

 Note

This is a basic class just for testing Serialization, and we don’t have an actual game, but we’ll leave that to you to experiment.

Object Serialization

Bullet Points

	You can save an object’s state by serializing the object.

	To serialize an object, you need an ObjectOutputStream (from the java.io package)

	Streams are either connection streams or chain streams

	Connection streams can represent a connection to a source or destination, typically a file, network socket connection, or the console.

	Chain streams cannot connect to a source or destination and must be chained to a connection (or other) stream.

	To serialize an object to a file, make a FileOuputStream and chain it into an ObjectOutputStream.

	To serialize an object, call
writeObject(theObject)

 on the ObjectOutputStream. You do not need to call methods on the FileOutputStream.

	To be serialized, an object must implement the Serializable interface. If a superclass of the class implements Serializable, the subclass will automatically be serializable even if it does not specifically declare
implements Serializable

 .

	When an object is serialized, its entire object graph is serialized. That means any objects referenced by the serialized object’s instance variables are serialized, and any objects referenced by those objects...and so on.

	If any object in the graph is not serializable, an exception will be thrown at runtime, unless the instance variable referring to the object is skipped.

	Mark an instance variable with the
transient

 keyword if you want serialization to skip that variable. The variable will be restored as null (for object references) or default values (for primitives).

	During deserialization, the class of all objects in the graph must be available to the JVM.

	You read objects in (using readObject()) in the order in which they were originally written.

	The return type of readObject() is type Object, so deserialized objects must be cast to their real type.

	Static variables are not serialized! It doesn’t make sense to save a static variable value as part of a specific object’s state, since all objects of that type share only a single value — the one in the class.

 Writing a String to a Text File

 Saving objects, through serialization, is the easiest way to save and restore data between runnings of a Java program. But sometimes you need to save data to a plain old text file. Imagine your Java program has to write data to a simple text file that some other (perhaps non-Java) program needs to read. You might, for example, have a servlet (Java code running within your web server) that takes form data the user typed into a browser, and writes it to a text file that somebody else loads into a spreadsheet for analysis.

Writing text data (a String, actually) is similar to writing an object, except you write a String instead of an object, and you use a FileWriter instead of a FileOutputStream (and you don’t chain it to an ObjectOutputStream).

 [image: image with no caption]

To write a serialized object:

objectOutputStream.writeObject(someObject);

To write a String:

fileWriter.write("My first String to save");

 [image: image with no caption]

 Text File Example: e-Flashcards

 Remember those flashcards you used in school? Where you had a question on one side and the answer on the back? They aren’t much help when you’re trying to understand something, but nothing beats ‘em for raw drill-and-practice and rote memorization.
When you have to burn in a fact.

 And they’re also great for trivia games.

 [image: image with no caption]

We’re going to make an electronic version that has three classes:

1)

QuizCardBuilder

 , a simple authoring tool for creating and saving a set of e-Flashcards.

2)

QuizCardPlayer

 , a playback engine that can load a flashcard set and play it for the user.

3)

QuizCard

 , a simple class representing card data. We’ll walk through the code for the builder and the player, and have you make the QuizCard class yourself, using this

 [image: image with no caption]

 [image: image with no caption]

 [image: image with no caption]

 Quiz Card Builder (code outline)

 [image: image with no caption]

 [image: image with no caption]

 The java.io.File
 class

 The java.io.File class
represents

 a file on disk, but doesn’t actually represent the
contents

 of the file. What? Think of a File object as something more like a
pathname

 of a file (or even a
directory

) rather than The Actual File Itself. The File class does not, for example, have methods for reading and writing. One VERY useful thing about a File object is that it offers a much safer way to represent a file than just using a String file name. For example, most classes that take a String file name in their constructor (like FileWriter or FileInputStream) can take a File object instead. You can construct a File object, verify that you’ve got a valid path, etc. and then give that File object to the FileWriter or FileInputStream.

 [image: image with no caption]

Some things you can do with a File object:

	

Make a File object representing an existing file

File f = new File("MyCode.txt");

	

Make a new directory

File dir = new File("Chapter7");

dir.mkdir();

	

List the contents of a directory

if (dir.isDirectory()) {

String[] dirContents = dir.list();

for (int i = 0; i < dirContents.length; i++) {

System.out.println(dirContents[i]);

}

}

	

Get the absolute path of a file or directory

System.out.println(dir.getAbsolutePath());

	

Delete a file or directory (returns true if successful)

boolean isDeleted = f.delete();

 Note

A File object represents the name and path of a file or directory on disk, for example:

/Users/Kathy/Data/GameFile.txt

But it does NOT represent, or give you access to, the data
in

 the file!

 [image: image with no caption]

The beauty of buffers

If there were no buffers, it would be like shopping without a cart. You’d have to carry each thing out to your car, one soup can or toilet paper roll at a time.

 [image: image with no caption]

 [image: image with no caption]

buffers give you a temporary holding place to group things until the holder (like the cart) is full. You get to make far fewer trips when you use a buffer.

 [image: image with no caption]

The cool thing about buffers is that they’re
much

 more efficient than working without them. You can write to a file using FileWriter alone, by calling write(someString), but FileWriter writes each and every thing you pass to the file each and every time. That’s overhead you don’t want or need, since every trip to the disk is a Big Deal compared to manipulating data in memory. By chaining a BufferedWriter onto a FileWriter, the BufferedWriter will hold all the stuff you write to it until it’s full.
Only when the buffer is full

will the FileWriter actually be told to write to the file on disk.

If you do want to send data
before

 the buffer is full, you do have control.

Just Flush It

 . Calls to writer.flush() say, “send whatever’s in the buffer,

now

 !”

 Reading from a Text File

 Reading text from a file is simple, but this time we’ll use a File object to represent the file, a FileReader to do the actual reading, and a BufferedReader to make the reading more efficient.

The read happens by reading lines in a
while

 loop, ending the loop when the result of a readLine() is null. That’s the most common style for reading data (pretty much anything that’s not a Serialized object): read stuff in a while loop (actually a while loop
test

), terminating when there’s nothing left to read (which we know because the result of whatever read method we’re using is null).

 [image: image with no caption]

 [image: image with no caption]

 Quiz Card Player (code outline)

public class QuizCardPlayer {

 public void
go()

 {

 // build and display gui

 }

 class
NextCardListener

 implements ActionListener {

 public void actionPerformed(ActionEvent ev) {

 // if this is a question, show the answer, otherwise show next question

 // set a flag for whether we're viewing a question or answer

 }

 }

 class
OpenMenuListener

 implements ActionListener {

 public void actionPerformed(ActionEvent ev) {

 // bring up a file dialog box

 // let the user navigate to and choose a card set to open

 }

 }

 private void
loadFile(File file)

 {

 // must build an ArrayList of cards, by reading them from a text file

 // called from the OpenMenuListener event handler, reads the file one line at a time

 // and tells the makeCard() method to make a new card out of the line

 // (one line in the file holds both the question and answer, separated by a "/")

 }

 private void
makeCard(String lineToParse)

 {

 // called by the loadFile method, takes a line from the text file

 // and parses into two pieces — question and answer — and creates a new QuizCard

 // and adds it to the ArrayList called CardList

 }

}

 [image: image with no caption]

 Parsing with String split()

Imagine you have a flashcard like this:

 [image: image with no caption]

Saved in a question file like this:

 [image: image with no caption]

How do you separate the question and answer?

When you read the file, the question and answer are smooshed together in one line, separated by a forward slash “/” (because that’s how we wrote the file in the QuizCardBuilder code).

String split() lets you break a String into pieces.

The split() method says, “give me a separator, and I’ll break out all the pieces of this String for you and put them in a String array.”

 [image: image with no caption]

 [image: image with no caption]

There are no Dumb Questions

	

Q:

	

Q: OK, I look in the API and there are about five million classes in the java.io package. How the heck do you know which ones to use?

	
A:

	

A:

 The I/O API uses the modular ‘chaining’ concept so that you can hook together connection streams and chain streams (also called ‘filter’ streams) in a wide range of combinations to get just about anything you could want.

The chains don’t have to stop at two levels; you can hook multiple chain streams to one another to get just the right amount of processing you need.

Most of the time, though, you’ll use the same small handful of classes. If you’re writing text files, BufferedReader and BufferedWriter (chained to FileReader and FileWriter) are probably all you need. If you’re writing serialized objects, you can use ObjectOutputStream and ObjectInputStream (chained to FileInputStream and FileOutputStream).

In other words, 90% of what you might typically do with Java I/O can use what we’ve already covered.

	

Q:

	

Q: What about the new I/O nio classes added in 1.4?

	
A:

	

A:

 The java.nio classes bring a big performance improvement and take greater advantage of native capabilities of the machine your program is running on. One of the key new features of nio is that you have direct control of buffers. Another new feature is nonblocking I/O, which means your I/O code doesn’t just sit there, waiting, if there’s nothing to read or write. Some of the existing classes (including FileInputStream and FileOutputStream) take advantage of some of the new features, under the covers. The nio classes are more complicated to use, however, so unless you
really

 need the new features, you might want to stick with the simpler versions we’ve used here. Plus, if you’re not careful, nio can lead to a performance
loss

 . Non-nio I/O is probably right for 90% of what you’ll normally do, especially if you’re just getting started in Java.

But you
can

 ease your way into the nio classes, by using FileInputStream and accessing its
channel

 through the getChannel() method (added to FileInputStream as of version 1.4).

Make it Stick

 [image: image with no caption]

Roses are first, violets are next.

Readers

 and
Writers

 are only for text.

Bullet Points

	To write a text file, start with a FileWriter connection stream.

	Chain the FileWriter to a BufferedWriter for efficiency.

	A File object represents a file at a particular path, but does not represent the actual contents of the file.

	With a File object you can create, traverse, and delete directories.

	Most streams that can use a String filename can use a File object as well, and a File object can be safer to use.

	To read a text file, start with a FileReader connection stream.

	Chain the FileReader to a BufferedReader for efficiency.

	To parse a text file, you need to be sure the file is written with some way to recognize the different elements. A common approach is to use some kind of character to separate the individual pieces.

	Use the String split() method to split a String up into individual tokens. A String with one separator will have two tokens, one on each side of the separator.
The separator doesn’t count as a token.

 Version ID: A Big Serialization Gotcha

 Now you’ve seen that I/O in Java is actually pretty simple, especially if you stick to the most common connection/chain combinations. But there’s one issue you might
really

 care about.

Version Control is crucial!

If you serialize an object, you must have the class in order to deserialize and use the object. OK, that’s obvious. But what might be less obvious is what happens if you

change the class

 in the meantime? Yikes. Imagine trying to bring back a Dog object when one of its instance variables (non-transient) has changed from a double to a String. That violates Java’s type-safe sensibilities in a Big Way. But that’s not the only change that might hurt compatibility. Think about the following:

Changes to a class that can hurt deserialization:

Deleting an instance variable

Changing the declared type of an instance variable

Changing a non-transient instance variable to transient

Moving a class up or down the inheritance hierarchy

Changing a class (anywhere in the object graph) from Serializable to not Serializable (by removing ‘implements Serializable’ from a class declaration)

Changing an instance variable to static

Changes to a class that are usually OK:

Adding new instance variables to the class (existing objects will deserialize with default values for the instance variables they didn’t have when they were serialized)

Adding classes to the inheritance tree

Removing classes from the inheritance tree

Changing the access level of an instance variable has no effect on the ability of deserialization to assign a value to the variable

Changing an instance variable from transient to non-transient (previously-serialized objects will simply have a default value for the previously-transient variables)

	You write a Dog class

 [image: image with no caption]

	You serialize a Dog object using that class

 [image: image with no caption]

	You change the Dog class

 [image: image with no caption]

	You deserialize a Dog object using the changed class

 [image: image with no caption]

	Serialization fails!!

The JVM says, “you can’t teach an old Dog new code”.

 Using the serialVersionUID

 Each time an object is serialized, the object (including every object in its graph) is ‘stamped’ with a version ID number for the object’s class. The ID is called the serialVersionUID, and it’s computed based on information about the class structure. As an object is being deserialized, if the class has changed since the object was serialized, the class could have a different serialVersionUID, and deserialization will fail! But you can control this.

If you think there is ANY possibility that your class might
evolve

 , put a serial version ID in your class.

When Java tries to deserialize an object, it compares the serialized object’s serialVersionUID with that of the class the JVM is using for deserializing the object. For example, if a Dog instance was serialized with an ID of, say 23 (in reality a serialVersionUID is much longer), when the JVM deserializes the Dog object it will first compare the Dog object serialVersionUID with the Dog class serialVersionUID. If the two numbers don’t match, the JVM assumes the class is not compatible with the previously-serialized object, and you’ll get an exception during deserialization.

So, the solution is to put a serialVersionUID in your class, and then as the class evolves, the serialVersionUID will remain the same and the JVM will say, “OK, cool, the class is compatible with this serialized object.” even though the class has actually changed.

This works
only

 if you’re careful with your class changes! In other words,
you

 are taking responsibility for any issues that come up when an older object is brought back to life with a newer class.

To get a serialVersionUID for a class, use the serialver tool that ships with your Java development kit.

 [image: image with no caption]

When you think your class might evolve after someone has serialized objects from it...

	Use the serialver command-line tool to get the version ID for your class

 [image: image with no caption]

	Paste the output into your class

 [image: image with no caption]

	Be sure that when you make changes to the class, you take responsibility in your code for the consequences of the changes you made to the class! For example, be sure that your new Dog class can deal with an old Dog being deserialized with default values for instance variables added to the class
after

 the Dog was serialized.

Code Kitchen

 [image: image with no caption]

Let’s make the BeatBox save and restore our favorite pattern

 Saving a BeatBox pattern

Remember, in the BeatBox, a drum pattern is nothing more than a bunch of checkboxes. When it’s time to play the sequence, the code walks through the checkboxes to figure out which drums sounds are playing at each of the 16 beats. So to save a pattern, all we need to do is save the state of the checkboxes.

We can make a simple boolean array, holding the state of each of the 256 checkboxes. An array object is serializable as long as the things
in

 the array are serializable, so we’ll have no trouble saving an array of booleans.

To load a pattern back in, we read the single boolean array object (deserialize it), and restore the checkboxes. Most of the code you’ve already seen, in the Code Kitchen where we built the BeatBox GUI, so in this chapter, we look at only the save and restore code.

This CodeKitchen gets us ready for the next chapter, where instead of writing the pattern to a
file

 , we send it over the
network

 to the server. And instead of loading a pattern
in

 from a file, we get patterns from the
server

 , each time a participant sends one to the server.

Serializing a pattern

 [image: image with no caption]

 Restoring a BeatBox pattern

This is pretty much the save in reverse... read the boolean array and use it to restore the state of the GUI checkboxes. It all happens when the user hits the “restore” ‘button.

Restoring a pattern

 [image: image with no caption]

Sharpen your pencil

This version has a huge limitation! When you hit the “serializeIt” button, it serializes automatically, to a file named “Checkbox.ser” (which gets created if it doesn’t exist). But each time you save, you overwrite the previously-saved file.

Improve the save and restore feature, by incorporating a JFileChooser so that you can name and save as many different patterns as you like, and load/restore from
any

 of your previously-saved pattern files.

Sharpen your pencil

Can they be saved?

Which of these do you think are, or should be, serializable? If not, why not? Not meaningful? Security risk? Only works for the current execution of the JVM? Make your best guess, without looking it up in the API.

	
Object type

	
Serializable?

	
If not, why not?

	
Object

	
Yes / No

String

	
Yes / No

File

	
Yes / No

Date

	
Yes / No

OutputStream

	
Yes / No

JFrame

	
Yes / No

Integer

	
Yes / No

System

	
Yes / No

 What’s Legal?

Circle the code fragments that would compile (assuming they’re within a legal class).

 [image: image with no caption]

	

FileReader fileReader = new FileReader();

BufferedReader reader = new BufferedReader(fileReader);

	

FileOutputStream f = new FileOutputStream(new File("Foo.ser"));

ObjectOutputStream os = new ObjectOutputStream(f);

	

BufferedReader reader = new BufferedReader(new FileReader(file));

String line = null;

while ((line = reader.readLine()) != null) {

makeCard(line);

}

	

ObjectInputStream is = new ObjectInputStream(new FileOutputStream("Game.ser"));

GameCharacter oneAgain = (GameCharacter) is.readObject();

True or False

 [image: image with no caption]

Exercise

This chapter explored the wonerful world of Java I/O. Your job is to decide whether each of the following I/O-related statements is true or false.

	Serialization is appropriate when saving data for non-Java programs to use.

	Object state can be saved only by using serialization.

	ObjectOutputStream is a class used to save serialized objects.

	Chain streams can be used on their own or with connection streams.

	A single call to writeObject() can cause many objects to be saved.

	All classes are serializable by default.

	The transient modifier allows you to make instance variables serializable.

	If a superclass is not serializable then the subclass can’t be serializable.

	When objects are deserialized, they are read back in last-in, first out sequence.

	When an object is deserialized, its constructor does not run.

	Both serialization and saving to a text file can throw exceptions.

	BufferedWriters can be chained to FileWriters.

	File objects represent files, but not directories.

	You can’t force a buffer to send its data before it’s full.

	Both file readers and file writers can be buffered.

	The String split() method includes separators as tokens in the result array.

	

Any

 change to a class breaks previously serialized objects of that class.

Code Magnets

 [image: image with no caption]

 This one’s tricky, so we promoted it from an Exercise to full Puzzle status. Reconstruct the code snippets to make a working Java program that produces the output listed below. (You might not need all of the magnets, and you may reuse a magnet more than once.)

 [image: image with no caption]

 [image: image with no caption]

Exercise Solutions

	

	Serialization is appropriate when saving data for non-Java programs to use.

	

False

	

	Object state can be saved only by using serialization.

	

False

	

	ObjectOutputStream is a class used to save serialized objects.

	

True

	

	Chain streams can be usedon their own or with connection streams.

	

False

	

	A single call to writeObject() can cause many objects to be saved.

	

True

	

	All classes are serializable by default.

	

False

	

	The transient modifier allows you to make instance variables serializable.

	

False

	

	If a superclass is not serializable then the subclass can’t be serializable.

	

False

	

	When objects are deserialized they are read back in last-in, first out sequence.

	

False

	

	When an object is deserialized, its constructor does not run.

	

True

	

	Both serialization and saving to a text file can throw exceptions.

	

True

	

	BufferedWriters can be chained to FileWriters.

	

True

	

	File objects represent files, but not directories.

	

False

	

	You can’t force a buffer to send its data before it’s full.

	

False

	

	Both file readers and file writers can optionally be buffered.

	

True

	

	The String split() method includes separators as tokens in the result array.

	

False

	

	

Any

 change to a class breaks previously serialized objects of that class.

	

False

 [image: image with no caption]

 [image: image with no caption]

import java.io.*;

class DungeonGame implements Serializable {
 public int x = 3;
 transient long y = 4;
 private short z = 5;
 int getX() {
 return x;
 }
 long getY() {
 return y;
 }
 short getZ() {
 return z;
 }
}

class DungeonTest {
 public static void main(String [] args) {
 DungeonGame d = new DungeonGame();
 System.out.println(d.getX() + d.getY() + d.getZ());
 try {
 FileOutputStream fos = new FileOutputStream("dg.ser");
 ObjectOutputStream oos = new ObjectOutputStream(fos);
 oos.writeObject(d);
 oos.close();
 FileInputStream fis = new FileInputStream("dg.ser");
 ObjectInputStream ois = new ObjectInputStream(fis);
 d = (DungeonGame) ois.readObject();
 ois.close();
 } catch (Exception e) {
 e.printStackTrace();
 }
 System.out.println(d.getX() + d.getY() + d.getZ());
 }
}

 [image: image with no caption]

 Chapter 15. Networking and Threads: Make a Connection

 [image: image with no caption]

Connect with the outside world.

 Your Java program can reach out and touch a program on another machine. It’s easy. All the low-level networking details are taken care of by classes in the java.net library. One of Java’s big benefits is that sending and receiving data over a network is just I/O with a slightly different connection stream at the end of the chain. If you’ve got a BufferedReader, you can
read

 . And the BufferedReader couldn’t care less if the data came out of a file or flew down an ethernet cable. In this chapter we’ll connect to the outside world with sockets. We’ll make
client

 sockets. We’ll make
server

 sockets. We’ll make
clients

 and
servers

 . And we’ll make them talk to each other. Before the chapter’s done, you’ll have a fully-functional, multithreaded chat client. Did we just say
multithreaded

 ? Yes, now you
will

 learn the secret of how to talk to Bob while simultaneously listening to Suzy.

 Real-time Beat Box Chat

 [image: image with no caption]

 You’re working on a computer game. You and your team are doing the sound design for each part of the game. Using a ‘chat’ version of the Beat Box, your team can collaborate — you can send a beat pattern along with your chat message, and everybody in the Beat Box Chat gets it. So you don’t just get to
read

 the other participants’ messages, you get to load and
play

 a beat pattern simply by clicking the message in the incoming messages area.

In this chapter we’re going to learn what it takes to make a chat client like this. We’re even going to learn a little about making a chat
server

 . We’ll save the full Beat Box Chat for the Code Kitchen, but in this chapter you
will

 write a Ludicrously Simple Chat Client and Very Simple Chat Server that send and receive text messages.

 [image: image with no caption]

Chat Program Overview

The Client has to know about the Server.

The Server has to know about ALL the Clients.

 [image: image with no caption]

How it Works:

	Client connects to the server

 [image: image with no caption]

	The server makes a connection and adds the client to the list of participants

 [image: image with no caption]

	Another client connects

 [image: image with no caption]

	Client A sends a message to the chat service

 [image: image with no caption]

	The server distributes the message to ALL participants (including the original sender)

 [image: image with no caption]

 Connecting, Sending, and Receiving

The three things we have to learn to get the client working are :

1) How to establish the initial
connection

 between the client and server

2) How to
send

 messages
to

 the server

3) How to
receive

 messages
from

 the server

There’s a lot of low-level stuff that has to happen for these things to work. But we’re lucky, because the Java API networking package (java.net) makes it a piece of cake for programmers. You’ll see a lot more GUI code than networking and I/O code.

And that’s not all.

Lurking within the simple chat client is a problem we haven’t faced so far in this book: doing two things at the same time. Establishing a connection is a one-time operation (that either works or fails). But after that, a chat participant wants to
send outgoing messages

 and
simultaneously

receive incoming messages

 from the other participants (via the server). Hmmmm... that one’s going to take a little thought, but we’ll get there in just a few pages.

	

Connect

Client connects to the server by establishing a
Socket

 connection.

 [image: image with no caption]

	

Send

Client
sends

 a message to the server

 [image: image with no caption]

	

Receive

Client
gets

 a message from the server

 [image: image with no caption]

 Make a network Socket connection

 To connect to another machine, we need a Socket connection. A Socket (java.net.Socket class) is an object that represents a network connection between two machines. What’s a connection? A
relationship

 between two machines, where
two pieces of software know about each other

 . Most importantly, those two pieces of software know how to
communicate

 with each other. In other words, how to send
bits

 to each other.

We don’t care about the low-level details, thankfully, because they’re handled at a much lower place in the ‘networking stack’. If you don’t know what the ‘networking stack’ is, don’t worry about it. It’s just a way of looking at the layers that information (bits) must travel through to get from a Java program running in a JVM on some OS, to physical hardware (ethernet cables, for example), and back again on some other machine.
Somebody

 has to take care of all the dirty details. But not you. That somebody is a combination of OS-specific software and the Java networking API. The part that you have to worry about is high-level — make that
very

 high-level — and shockingly simple. Ready?

To make a Socket connection, you need to know two
 things about the server: who it is, and which port it’s running on.

In other words,

IP address and TCP port number.

 [image: image with no caption]

A Socket connection means the two machines have information about each other, including network location (IP address) and TCP port.

 A TCP port is just a number. A 16-bit number that identifies a specific program on the server

Well-known TCP port numbers for common server applications

 [image: image with no caption]

Your internet web (HTTP) server runs on port 80. That’s a standard. If you’ve got a Telnet server, its running on port 23. FTP? 20. POP3 mail server? 110. SMTP? 25. The Time server sits at 37. Think of port numbers as unique identifiers. They represent a logical connection to a particular piece of software running on the server. That’s it. You can’t spin your hardware box around and find a TCP port. For one thing, you have 65536 of them on a server (0 - 65535). So they obviously don’t represent a place to plug in physical devices. They’re just a number representing an application.

Without port numbers, the server would have no way of knowing which application a client wanted to connect to. And since each application might have its own unique protocol, think of the trouble you’d have without these identifiers. What if your web browser, for example, landed at the POP3 mail server instead of the HTTP server? The mail server won’t know how to parse an HTTP request! And even if it did, the POP3 server doesn’t know anything about servicing the HTTP request.

When you write a server program, you’ll include code that tells the program which port number you want it to run on (you’ll see how to do this in Java a little later in this chapter). In the Chat program we’re writing in this chapter, we picked 5000. Just because we wanted to. And because it met the criteria that it be a number between 1024 and 65535. Why 1024? Because 0 through 1023 are reserved for the well-known services like the ones we just talked about.

And if you’re writing services (server programs) to run on a company network, you should check with the sys-admins to find out which ports are already taken. Your sys-admins might tell you, for example, that you can’t use any port number below, say, 3000. In any case, if you value your limbs, you won’t assign port numbers with abandon. Unless it’s your
home

 network. In which case you just have to check with your
kids

 .

The TCP port numbers from 0 to 1023 are reserved for well-known services. Don’t use them for your own server programs![13
]

The chat server we’re writing uses port 5000. We just picked a number between 1024 and 65535.

There are no Dumb Questions

	

Q:

	

Q: How do you know the port number of the server program you want to talk to?

	
A:

	

A:

 That depends on whether the program is one of the well-known services. If you’re trying to connect to a well-known service, like the ones on the opposite page (HTTP, SMTP, FTP, etc.) you can look these up on the internet (Google “Well-Known TCP Port”). Or ask your friendly neighborhood sys-admin.

But if the program isn’t one of the well-known services, you need to find out from whoever is deploying the service. Ask him. Or her. Typically, if someone writes a network service and wants others to write clients for it, they’ll publish the IP address, port number, and protocol for the service. For example, if you want to write a client for a GO game server, you can visit one of the GO server sites and find information about how to write a client for that particular server.

	

Q:

	

Q: Can there ever be more than one program running on a single port? In other words, can two applications on the same server have the same port number?

	
A:

	

A:

 No! If you try to bind a program to a port that is already in use, you’ll get a BindException. To
bind

 a program to a port just means starting up a server application and telling it to run on a particular port. Again, you’ll learn more about this when we get to the server part of this chapter.

 [image: image with no caption]

 Brain Barbell

OK, you got a Socket connection. The client and the server know the IP address and TCP port number for each other. Now what? How do you communicate over that connection? In other words, how do you move bits from one to the other? Imagine the kinds of messages your chat client needs to send and receive.

 [image: image with no caption]

 To read data from a Socket, use a BufferedReader

 To communicate over a Socket connection, you use streams. Regular old I/O streams, just like we used in the last chapter. One of the coolest features in Java is that most of your I/O work won’t care what your high-level chain stream is actually connected to. In other words, you can use a BufferedReader just like you did when you were writing to a file, the difference is that the underlying connection stream is connected to a
Socket

 rather than a
File!

 [image: image with no caption]

	

Make a Socket
 connection to the server

 [image: image with no caption]

	

Make an InputStreamReader
 chained to the Socket’s low-level (connection) input stream

 [image: image with no caption]

	

Make a BufferedReader
 and read!

 [image: image with no caption]

 [image: image with no caption]

 To write data to a Socket, use a PrintWriter

 We didn’t use PrintWriter in the last chapter, we used BufferedWriter. We have a choice here, but when you’re writing one String at a time, PrintWriter is the standard choice. And you’ll recognize the two key methods in PrintWriter, print() and println()! Just like good ol’ System.out.

	

Make a Socket
 connection to the server

 [image: image with no caption]

	

Make a PrintWriter
 chained to the Socket’s low-level (connection) output stream

 [image: image with no caption]

	

Write
 (print) something

 [image: image with no caption]

 [image: image with no caption]

 The DailyAdviceClient

 [image: image with no caption]

 Before we start building the Chat app, let’s start with something a little smaller. The Advice Guy is a server program that offers up practical, inspirational tips to get you through those long days of coding.

We’re building a client for The Advice Guy program, which pulls a message from the server each time it connects.

What are you waiting for? Who
knows

 what opportunities you’ve missed without this app.

	

Connect

Client connects to the server and gets an input stream from it

 [image: image with no caption]

	

Read

Client reads a message from the server

 [image: image with no caption]

 DailyAdviceClient code

This program makes a Socket, makes a BufferedReader (with the help of other streams), and reads a single line from the server application (whatever is running at port 4242).

 [image: image with no caption]

Sharpen your pencil

Test your memory of the streams/classes for reading and writing from a Socket. Try not to look at the opposite page!

To

read

 text from a Socket:

 [image: image with no caption]

To

send

 text to a Socket:

 [image: image with no caption]

Sharpen your pencil

Fill in the blanks:

What two pieces of information does the client need in order to make a Socket connection with a server? _____________________ _____________________

Which TCP port numbers are reserved for ‘well-known services’ like HTTP and FTP? _____________________

TRUE or FALSE: The range of valid TCP port numbers can be represented by a short primitive? _____________________

 Writing a simple server

 So what’s it take to write a server application? Just a couple of Sockets. Yes, a couple as in
two

 . A ServerSocket, which waits for client requests (when a client makes a new Socket()) and a plain old Socket socket to use for communication with the client.

How it Works:

	Server application makes a ServerSocket, on a specific port

ServerSocket serverSock = new ServerSocket(4242);

 [image: image with no caption]

This starts the server application listening for client requests coming in for port 4242.

	Client makes a Socket connection to the server application

Socket sock = new Socket("190.165.1.103", 4242);

 [image: image with no caption]

Client knows the IP address and port number (published or given to him by whomever configures the server app to be on that port)

	Server makes a new Socket to communicate with this client

Socket sock = serverSock.accept();

 [image: image with no caption]

The accept() method blocks (just sits there) while it’s waiting for a client Socket connection. When a client finally tries to connect, the method returns a plain old Socket (on a different port) that knows how to communicate with the client (i.e., knows the client’s IP address and port number). The Socket is on a different port than the ServerSocket, so that the ServerSocket can go back to waiting for other clients.

 DailyAdviceServer code

 This program makes a ServerSocket and waits for client requests. When it gets a client request (i.e. client said new Socket() for this application), the server makes a new Socket connection to that client. The server makes a PrintWriter (using the Socket’s output stream) and sends a message to the client.

 [image: image with no caption]

 Brain Barbell

How does the server know how to communicate with the client?

The client knows the IP address and port number of the server, but how is the server able to make a Socket connection with the client (and make input and output streams)?

Think about how / when / where the server gets knowledge about the client.

There are no Dumb Questions

	

Q:

	

Q: The advice server code on the opposite page has a VERY serious limitation — it looks like it can handle only one client at a time!

	
A:

	

A:

 Yes, that’s right. It can’t accept a request from a client until it has finished with the current client and started the next iteration of the infinite loop (where it sits at the accept() call until a request comes in, at which time it makes a Socket with the new client and starts the process over again).

	

Q:

	

Q: Let me rephrase the problem: how can you make a server that can handle multiple clients concurrently??? This would

never

work for a chat server, for instance.

	
A:

	

A:

 Ah, that’s simple, really. Use separate threads, and give each new client Socket to a new thread. We’re just about to learn how to do that!

Bullet Points

	Client and server applications communicate over a Socket connection.

	A Socket represents a connection between two applications which may (or may not) be running on two different physical machines.

	A client must know the IP address (or domain name) and TCP port number of the server application.

	A TCP port is a 16-bit unsigned number assigned to a specific server application. TCP port numbers allow different clients to connect to the same machine but communicate with different applications running on that machine.

	The port numbers from 0 through 1023 are reserved for ‘well-known services’ including HTTP, FTP, SMTP, etc.

	A client connects to a server by making a Server socket

Socket s = new Socket("127.0.0.1", 4200);

	Once connected, a client can get input and output streams from the socket. These are low-level ‘connection’ streams.

sock.getInputStream();

sock.getOutputStream();

	To read text data from the server, create a BufferedReader, chained to an InputStreamReader, which is chained to the input stream from the Socket.

	InputStreamReader is a ‘bridge’ stream that takes in bytes and converts them to text (character) data. It’s used primarily to act as the middle chain between the high-level BufferedReader and the low-level Socket input stream.

	To write text data to the server, create a PrintWriter chained directly to the Socket’s output stream. Call the print() or println() methods to send Strings to the server.

	Servers use a ServerSocket that waits for client requests on a particular port number.

	When a ServerSocket gets a request, it ‘accepts’ the request by making a Socket connection with the client.

 Writing a Chat Client

 We’ll write the Chat client application in two stages. First we’ll make a send-only version that sends messages to the server but doesn’t get to read any of the messages from other participants (an exciting and mysterious twist to the whole chat room concept).

Then we’ll go for the full chat monty and make one that both sends
and

 receives chat messages.

Version One: send-only

 [image: image with no caption]

 Note

Type a message, then press ‘Send’ to send it to the server. We won’t get any messages FROM the server in this version, so there’s no scrolling text area.

Code outline

public class SimpleChatClientA {

JTextField outgoing;

PrintWriter writer;

Socket sock;

public void go() {

// make gui and register a listener with the send button

// call the setUpNetworking() method

}

private void setUpNetworking() {

// make a Socket, then make a PrintWriter

// assign the PrintWriter to writer instance variable

}

public class SendButtonListener implements ActionListener {

public void actionPerformed(ActionEvent ev) {

// get the text from the text field and

// send it to the server using the writer (a PrintWriter)

}

} // close SendButtonListener inner class

} // close outer class

 [image: image with no caption]

 Note

If you want to try this now, type in the Ready-bake chat server code listed at the end of this chapter . First, start the server in one terminal. Next, use another terminal to start this client.

Version Two: send and receive

 [image: image with no caption]

 Note

The Server sends a message to all client participants, as soon as the message is received by the server. When a client sends a message, it doesn’t appear in the incoming message display area until the server sends it to everyone.

Big Question:
HOW

 do you get messages from the server?

Should be easy; when you set up the networking make an input stream as well (probably a BufferedReader). Then read messages using readLine().

Bigger Question:
WHEN

 do you get messages from the server?

Think about that. What are the options?

	

Option One: Poll the server every 20 seconds

Pros:

 Well, it’s do-able

Cons:

 How does the server know what you’ve seen and what you haven’t? The server would have to store the messages, rather than just doing a distribute-and-forget each time it gets one. And why 20 seconds? A delay like this affects usability, but as you reduce the delay, you risk hitting your server needlessly. Inefficient.

	

Option Two: Read something in from the server each time the user sends a message.

Pros:

 Do-able, very easy

Cons: Stupid. Why choose such an arbitrary time to check for messages? What if a user is a lurker and doesn’t send anything?

	

Option Three: Read messages as soon as they’re sent from the server

Pros:

 Most efficient, best usability

Cons: How do you do two things at the same time? Where would you put this code? You’d need a loop somewhere that was always waiting to read from the server. But where would that go? Once you launch the GUI, nothing happens until an event is fired by a GUI component.

 [image: image with no caption]

In Java you really CAN walk and chew gum at the same time.

You know by now that we’re going with option three.

We want something to run continuously, checking for messages from the server, but
without interrupting the user’s ability to interact with the GUI!

 So while the user is happily typing new messages or scrolling through the incoming messages, we want something
behind the scenes

 to keep reading in new input from the server.

That means we finally need a new thread. A new, separate stack.

We want everything we did in the Send-Only version (version one) to work the same way, while a new
process

 runs along side that reads information from the server and displays it in the incoming text area.

Well, not quite. Unless you have multiple processors on your computer, each new Java thread is not actually a separate process running on the OS. But it almost
feels

 as though it is.

Multithreading in Java

Java has multiple threading built right into the fabric of the language. And it’s a snap to make a new thread of execution:

Thread t = new Thread();

t.start();

That’s it. By creating a new Thread
object

 , you’ve launched a separate
thread of execution

 , with its very own call stack.

Except for one problem.

That thread doesn’t actually
do

 anything, so the thread “dies” virtually the instant it’s born. When a thread dies, its new stack disappears again. End of story.

So we’re missing one key component — the thread’s
job

 . In other words, we need the code that you want to have run by a separate thread.

Multiple threading in Java means we have to look at both the
thread

 and the
job

 that’s
run

 by the thread. And we’ll also have to look at the Thread
class

 in the java.lang package. (Remember, java. lang is the package you get imported for free, implicitly, and it’s where the classes most fundamental to the language live, including String and System.)

 Java has multiple threads but only one Thread class

 We can talk about
thread

 with a lower-case ‘t’ and
Thread

 with a capital ‘T’. When you see
thread

 , we’re talking about a separate thread of execution. In other words, a separate call stack. When you see
Thread

 , think of the Java naming convention. What, in Java, starts with a capital letter? Classes and interfaces. In this case,
Thread

 is a class in the java.lang package. A
Thread

 object represents a
thread of execution

 ; you’ll create an instance of class
Thread

 each time you want to start up a new
thread

 of execution.

 [image: image with no caption]

A thread (lower-case ‘t’) is a separate thread of execution. That means a separate call stack. Every Java application starts up a main thread — the thread that puts the main() method on the bottom of the stack. The JVM is responsible for starting the main thread (and other threads, as it chooses, including the garbage collection thread). As a programmer, you can write code to start other threads of your own.

 Note

A thread is a separate ‘thread of execution’. In other words, a separate call stack.

A Thread is a Java class that represents a thread.

To make a thread, make a Thread.

 [image: image with no caption]

Thread (capital ‘T’) is a class that represents a thread of execution. It has methods for starting a thread, joining one thread with another, and putting a thread to sleep. (It has more methods; these are just the crucial ones we need to use now).

 What does it mean to have more than one call stack?

With more than one call stack, you get the
appearance

 of having multiple things happen at the same time. In reality, only a true multiprocessor system can actually do more than one thing at a time, but with Java threads, it can
appear

 that you’re doing several things simultaneously. In other words, execution can move back and forth between stacks so rapidly that you feel as though all stacks are executing at the same time. Remember, Java is just a process running on your underlying OS. So first, Java
itself

 has to be ‘the currently executing process’ on the OS. But once Java gets its turn to execute, exactly
what

 does the JVM
run

 ? Which bytecodes execute? Whatever is on the top of the currently-running stack! And in 100 milliseconds, the currently executing code might switch to a
different

 method on a
different

 stack.

One of the things a thread must do is keep track of which statement (of which method) is currently executing on the thread’s stack.

It might look something like this:

	

	

The JVM calls the main() method.

public static void main(String[] args) {

...

}

	

 [image:]

	

	

main() starts a new thread. The main thread is temporarily frozen while the new thread starts running.

 [image: image with no caption]

	

 [image:]

	

	

The JVM switches between the new thread (user thread A) and the original main thread, until both threads complete.

	

 [image:]

How to launch a new thread:

	

Make a Runnable object (the thread’s job)

Runnable threadJob = new MyRunnable();

Runnable is an interface you’ll learn about on the next page. You’ll write a class that implements the Runnable interface, and that class is where you’ll define the work that a thread will perform. In other words, the method that will be run from the thread’s new call stack.

 [image: image with no caption]

	

Make a Thread object (the worker) and give it a Runnable (the job)

Thread myThread = new Thread(threadJob);

Pass the new Runnable object to the Thread constructor. This tells the new Thread object which method to put on the bottom of the new stack — the Runnable’s run() method.

 [image: image with no caption]

	

Start the Thread

myThread.start();

Nothing happens until you call the Thread’s start() method. That’s when you go from having just a Thread instance to having a new thread of execution. When the new thread starts up, it takes the Runnable object’s run() method and puts it on the bottom of the new thread’s stack.

 [image: image with no caption]

 Every Thread needs a job to do. A method to put on the new thread stack

 [image: image with no caption]

 Note

Runnable is to a Thread what a job is to a worker. A Runnable is the job a thread is supposed to run.

A Runnable holds the method that goes on the bottom of the new thread’s stack: run().

A Thread object needs a job. A job the thread will run when the thread is started. That job is actually the first method that goes on the new thread’s stack, and it must always be a method that looks like this:

public void run() {

// code that will be run by the new thread

}

 Note

The Runnable interface defines only one method, public void run(). (Remember, it’s an interface so the method is public regardless of whether you type it in that way.)

How does the thread know which method to put at the bottom of the stack? Because Runnable defines a contract. Because Runnable is an interface. A thread’s job can be defined in any class that implements the Runnable interface. The thread cares only that you pass the Thread constructor an object of a class that implements Runnable.

When you pass a Runnable to a Thread constructor, you’re really just giving the Thread a way to get to a run() method. You’re giving the Thread its job to do.

 To make a job for your thread, implement the Runnable interface

 [image: image with no caption]

	

 [image: image with no caption]

	

 [image: image with no caption]

 Brain Barbell

What do you think the output will be if you run the ThreadTester class? (we’ll find out in a few pages)

The three states of a new thread

 [image: image with no caption]

 Note

But there’s more. Once the thread becomes runnable, it can move back and forth between runnable, running, and an additional state:
temporarily not runnable

 (also known as ‘blocked’).

Typical runnable/running loop

Typically, a thread moves back and forth between runnable and running, as the JVM thread scheduler selects a thread to run and then kicks it back out so another thread gets a chance.

 [image: image with no caption]

A thread can be made temporarily not-runnable

The thread scheduler can move a running thread into a blocked state, for a variety of reasons. For example, the thread might be executing code to read from a Socket input stream, but there isn’t any data to read. The scheduler will move the thread out of the running state until something becomes available. Or the executing code might have told the thread to put itself to sleep (sleep()). Or the thread might be waiting because it tried to call a method on an object, and that object was ‘locked’. In that case, the thread can’t continue until the object’s lock is freed by the thread that has it.

All of those conditions (and more) cause a thread to become temporarily not-runnable.

 [image: image with no caption]

 The Thread Scheduler

The thread scheduler makes all the decisions about who moves from runnable to running, and about when (and under what circumstances) a thread leaves the running state. The scheduler decides who runs, and for how long, and where the threads go when the scheduler decides to kick them out of the currently-running state.

You can’t control the scheduler. There is no API for calling methods on the scheduler. Most importantly, there are no guarantees about scheduling! (There are a few
almost

 -guarantees, but even those are a little fuzzy.)

The bottom line is this:

do not base your program’s correctness on the scheduler working in a particular way!

 The scheduler implementations are different for different JVM’s, and even running the same program on the same machine can give you different results. One of the worst mistakes new Java programmers make is to test their multi-threaded program on a single machine, and assume the thread scheduler will always work that way, regardless of where the program runs.

So what does this mean for write-once-run-anywhere? It means that to write platform-independent Java code, your multi-threaded program must work no matter
how

 the thread scheduler behaves. That means that you can’t be dependent on, for example, the scheduler making sure all the threads take nice, perfectly fair and equal turns at the running state. Although highly unlikely today, your program might end up running on a JVM with a scheduler that says, “OK thread five, you’re up, and as far as I’m concerned, you can stay here until you’re done, when your run() method completes.”

The secret to almost everything is
sleep

 . That’s right,
sleep

 . Putting a thread to sleep, even for a few milliseconds, forces the currently-running thread to leave the running state, thus giving another thread a chance to run. The thread’s sleep() method does come with
one

 guarantee: a sleeping thread will
not

 become the currently-running thread before the the length of its sleep time has expired. For example, if you tell your thread to sleep for two seconds (2,000 milliseconds), that thread can never become the running thread again until sometime
after

 the two seconds have passed.

 [image: image with no caption]

The thread scheduler makes all the decisions about who runs and who doesn’t. He usually makes the threads take turns, nicely. But there’s no guarantee about that. He might let one thread run to its heart’s content while the other threads ‘starve’.

An example of how unpredictable the scheduler can be...

Running this code on one machine: Produced this output:

public class MyRunnable implements Runnable {

public void run() {

go();

}

public void go() {

doMore();

}

public void doMore() {

System.out.println("top o' the stack");

}

}

class ThreadTestDrive {

public static void main (String[] args) {

Runnable threadJob = new MyRunnable();

Thread myThread = new Thread(threadJob);

myThread.start();

System.out.println("back in main");

}

}

 [image: image with no caption]

How did we end up with different results?

Sometimes it runs like this:

 [image: image with no caption]

And sometimes it runs like this:

 [image: image with no caption]

There are no Dumb Questions

	

Q:

	

Q: I’ve seen examples that don’t use a separate Runnable implementation, but instead just make a subclass of Thread and override the Thread’s run() method. That way, you call the Thread’s no-arg constructor when you make the new thread;

Thread t = new Thread(); // no Runnable

	
A:

	

A:

 Yes, that
is

 another way of making your own thread, but think about it from an OO perspective. What’s the purpose of subclassing? Remember that we’re talking about two different things here — the
Thread

 and the thread’s
job

 . From an OO view, those two are very separate activities, and belong in separate classes. The only time you want to subclass/extend the Thread class, is if you are making a new and more specific type of Thread. In other words, if you think of the Thread as the worker, don’t extend the Thread class unless you need more specific
worker

 behaviors. But if all you need is a new
job

 to be run by a Thread/worker, then implement Runnable in a separate,
job

 -specific (not
worker

 -specific) class.

This is a design issue and not a performance or language issue. It’s perfectly legal to subclass Thread and override the run() method, but it’s rarely a good idea.

	

Q:

	

Q: Can you reuse a Thread object? Can you give it a new job to do and then restart it by calling start() again?

	
A:

	

A:

 No. Once a thread’s run() method has completed, the thread can never be restarted. In fact, at that point the thread moves into a state we haven’t talked about —

dead

 . In the dead state, the thread has finished its run() method and can never be restarted. The Thread object might still be on the heap, as a living object that you can call other methods on (if appropriate), but the Thread object has permanently lost its ‘threadness’. In other words, there is no longer a separate call stack, and the Thread object is no longer a
thread

 . It’s just an object, at that point, like all other objects.

But, there are design patterns for making a pool of threads that you can keep using to perform different jobs. But you don’t do it by restarting() a dead thread.

Bullet Points

	A thread with a lower-case ‘t’ is a separate thread of execution in Java.

	Every thread in Java has its own call stack.

	A Thread with a capital ‘T’ is the java.lang.Thread class. A Thread object represents a thread of execution.

	A Thread needs a job to do. A Thread’s job is an instance of something that implements the Runnable interface.

	The Runnable interface has just a single method, run(). This is the method that goes on the bottom of the new call stack. In other words, it is the first method to run in the new thread.

	To launch a new thread, you need a Runnable to pass to the Thread’s constructor.

	A thread is in the NEW state when you have instantiated a Thread object but have not yet called start().

	When you start a thread (by calling the Thread object’s start() method), a new stack is created, with the Runnable’s run() method on the bottom of the stack. The thread is now in the RUNNABLE state, waiting to be chosen to run.

	A thread is said to be RUNNING when the JVM’s thread scheduler has selected it to be the currently-running thread. On a single-processor machine, there can be only one currently-running thread.

	Sometimes a thread can be moved from the RUNNING state to a BLOCKED (temporarily non-runnable) state. A thread might be blocked because it’s waiting for data from a stream, or because it has gone to sleep, or because it is waiting for an object’s lock.

	Thread scheduling is not guaranteed to work in any particular way, so you cannot be certain that threads will take turns nicely. You can help influence turn-taking by putting your threads to sleep periodically.

 Putting a thread to sleep

 One of the best ways to help your threads take turns is to put them to sleep periodically. All you need to do is call the static sleep() method, passing it the sleep duration, in milliseconds.

For example:

 [image: image with no caption]

Thread.sleep(2000);

will knock a thread out of the running state, and keep it out of the runnable state for two seconds. The thread
can’t

 become the running thread again until after at least two seconds have passed.

A bit unfortunately, the sleep method throws an InterruptedException, a checked exception, so all calls to sleep must be wrapped in a try/catch (or declared). So a sleep call really looks like this:

try {

Thread.sleep(2000);

} catch(InterruptedException ex) {

ex.printStackTrace();

}

Your thread will probably
never

 be interrupted from sleep; the exception is in the API to support a thread communication mechanism that almost nobody uses in the Real World. But, you still have to obey the handle or declare law, so you need to get used to wrapping your sleep() calls in a try/catch.

Now you know that your thread won’t wake up
before

 the specified duration, but is it possible that it will wake up some time
after

 the ‘timer’ has expired? Yes and no. It doesn’t matter, really, because when the thread wakes up,

it always goes back to the runnable state!

 The thread won’t automatically wake up at the designated time and become the currently-running thread. When a thread wakes up, the thread is once again at the mercy of the thread scheduler. Now, for applications that don’t require perfect timing, and that have only a few threads, it might appear as though the thread wakes up and resumes running right on schedule (say, after the 2000 milliseconds). But don’t bet your program on it.

Put your thread to sleep if you want to be sure that other threads get a chance to run.

When the thread wakes up, it always goes back to the runnable state and waits for the thread scheduler to choose it to run again.

 Using sleep to make our program more predictable

Remember our earlier example that kept giving us different results each time we ran it? Look back and study the code and the sample output. Sometimes main had to wait until the new thread finished (and printed “top o’ the stack”), while other times the new thread would be sent back to runnable before it was finished, allowing the main thread to come back in and print out “back in main”. How can we fix that? Stop for a moment and answer this question: “Where can you put a sleep() call, to make sure that “back in main” always prints before “top o’ the stack”?

We’ll wait while you work out an answer (there’s more than one answer that would work).

Figure it out?

 [image: image with no caption]

This is what we want–a consistent order of print statements:

 [image: image with no caption]

 Making and starting
two

 threads

Threads have names. You can give your threads a name of your choosing, or you can accept their default names. But the cool thing about names is that you can use them to tell which thread is running. The following example starts two threads. Each thread has the same job: run in a loop, printing the currently-running thread’s name with each iteration.

 [image: image with no caption]

 What will happen?

Will the threads take turns? Will you see the thread names alternating? How often will they switch? With each iteration? After five iterations?

You already know the answer:
we don’t know!

 It’s up to the scheduler. And on your OS, with your particular JVM, on your CPU, you might get very different results.

Running under OS X 10.2 (Jaguar), with five or fewer iterations, the Alpha thread runs to completion, then the Beta thread runs to completion. Very consistent. Not guaranteed, but very consistent.

But when you up the loop to 25 or more iterations, things start to wobble. The Alpha thread might not get to complete all 25 iterations before the scheduler sends it back to runnable to let the Beta thread have a chance.

 [image: image with no caption]

 [image: image with no caption]

 Um, yes. There IS a dark side

 Threads can lead to concurrency ‘issues’

 Concurrency issues lead to race conditions. Race conditions lead to data corruption. Data corruption leads to fear... you know the rest.

It all comes down to one potentially deadly scenario: two or more threads have access to a single object’s
data

 . In other words, methods executing on two different stacks are both calling, say, getters or setters on a single object on the heap.

It’s a whole ‘left-hand-doesn’t-know-what-the-right-hand-is-doing’ thing. Two threads, without a care in the world, humming along executing their methods, each thread thinking that he is the One True Thread. The only one that matters. After all, when a thread is not running, and in runnable (or blocked) it’s essentially knocked unconscious. When it becomes the currently-running thread again, it doesn’t know that it ever stopped.

Marriage in Trouble.

Can this couple be saved?

Next, on a very special Dr.Steve Show

[Transcript from episode #42]

Welcome to the Dr. Steve show.

 [image: image with no caption]

We’ve got a story today that’s centered around the top two reasons why couples split up — finances and sleep.

Today’s troubled pair, Ryan and Monica, share a bed and a bank account. But not for long if we can’t find a solution. The problem? The classic “two people — one bank account” thing.

 [image: image with no caption]

 Note

Ryan and Monica: victims of the “two people, one account” problem.

Here’s how Monica described it to me:

“Ryan and I agreed that neither of us will overdraw the checking account. So the procedure is, whoever wants to withdraw money must check the balance in the account before making the withdrawal. It all seemed so simple. But suddenly we’re bouncing checks and getting hit with overdraft fees!

I thought it wasn’t possible, I thought our procedure was safe. But then this happened:

Ryan needed $50, so he checked the balance in the account, and saw that it was $100. No problem. So, he plans to withdraw the money.
But first he falls asleep!

 [image: image with no caption]

And that’s where I come in, while Ryan’s still asleep, and now I want to withdraw $100. I check the balance, and it’s $100 (because Ryan’s still asleep and hasn’t yet made his withdrawal), so I think, no problem. So I make the withdrawal, and again no problem. But then Ryan wakes up, completes his withdrawal, and we’re suddenly overdrawn! He didn’t even know that he fell asleep, so he just went ahead and completed his transaction without checking the balance again. You’ve got to help us Dr. Steve!”

Is there a solution? Are they doomed? We can’t stop Ryan from falling asleep, but can we make sure that Monica can’t get her hands on the bank account until after he wakes up?

Take a moment and think about that while we go to a commercial break.

 The Ryan and Monica problem, in code

The following example shows what can happen when
two

 threads (Ryan and Monica) share a
single

 object (the bank account).

The code has two classes, BankAccount, and MonicaAndRyanJob. The MonicaAndRyanJob class implements Runnable, and represents the behavior that Ryan and Monica both have — checking the balance and making withdrawals. But of course, each thread falls asleep
in between

 checking the balance and actually making the withdrawal.

The MonicaAndRyanJob class has an instance variable of type BankAccount., that represents their shared account.

The code works like this:

 [image: image with no caption]

	

Make one instance of RyanAndMonicaJob.

The RyanAndMonicaJob class is the Runnable (the job to do), and since both Monica and Ryan do the same thing (check balance and withdraw money), we need only one instance.

RyanAndMonicaJob theJob = new RyanAndMonicaJob();

	

Make two threads with the same Runnable

(the RyanAndMonicaJob instance)

Thread one = new Thread(theJob);

Thread two = new Thread(theJob);

	

Name and start the threads

one.setName("Ryan");

two.setName("Monica");

one.start();

two.start();

	

Watch both threads execute the run() method

(check the balance and make a withdrawal)

One thread represents Ryan, the other represents Monica. Both threads continually check the balance and then make a withdrawal, but only if it’s safe!

 Note

In the run() method, do exactly what Ryan and Monica would do — check the balance and, if there’s enough money, make the withdrawal.

This should protect against overdrawing the account.

Except... Ryan and Monica always fall asleep after
 they check the balance but before
 they finish the withdrawal.

if (account.getBalance() >= amount) {

try {

Thread.sleep(500);

} catch(InterruptedException ex) {ex.printStackTrace(); }

}

 The Ryan and Monica example

 [image: image with no caption]

 [image: image with no caption]

The makeWithdrawal() method always checks the balance before making a withdrawal, but still we overdraw the account.

Here’s one scenario:

Ryan checks the balance, sees that there’s enough money, and then falls asleep.

Meanwhile, Monica comes in and checks the balance. She, too, sees that there’s enough money. She has no idea that Ryan is going to wake up and complete a withdrawal.

Monica falls asleep.

Ryan wakes up and completes his withdrawal.

Monica wakes up and completes her withdrawal. Big Problem! In between the time when she checked the balance and made the withdrawal, Ryan woke up and pulled money from the account.

Monica’s check of the account was not valid, because Ryan had already checked and was still in the middle of making a withdrawal.

Monica must be stopped from getting into the account until Ryan wakes up and finishes his transaction. And vice-versa.

They need a lock for account access!

The lock works like this:

	There’s a lock associated with the bank account transaction (checking the balance and withdrawing money). There’s only one key, and it stays with the lock until somebody wants to access the account.

 [image: image with no caption]

The bank account transaction is unlocked when nobody is using the account.

	When Ryan wants to access the bank account (to check the balance and withdraw money), he locks the lock and puts the key in his pocket. Now nobody else can access the account, since the key is gone.

 [image: image with no caption]

When Ryan wants to access the account, he secures the lock and takes the key.

	

Ryan keeps the key in his pocket until he finishes the transaction.

 He has the only key, so Monica can’t access the account (or the checkbook) until Ryan unlocks the account and returns the key.

Now, even if Ryan falls asleep after he checks the balance, he has a guarantee that the balance will be the same when he wakes up, because he kept the key while he was asleep!

 [image: image with no caption]

When Ryan is finished, he unlocks the lock and returns the key. Now the key is available for Monica (or Ryan again) to access the account.

 We need the makeWithdrawal () method to run as one atomic
 thing

 [image: image with no caption]

 We need to make sure that once a thread enters the makeWithdrawal() method,
it must be allowed to finish the method

 before any other thread can enter.

In other words, we need to make sure that once a thread has checked the account balance, that thread has a guarantee that it can wake up and finish the withdrawal
before any other thread can check the account balance!

Use the

synchronized

 keyword to modify a method so that only one thread at a time can access it.

That’s how you protect the bank account! You don’t put a lock on the bank account itself; you lock the method that does the banking transaction. That way, one thread gets to complete the whole transaction, start to finish, even if that thread falls asleep in the middle of the method!

So if you don’t lock the bank account, then what exactly
is

 locked? Is it the method? The Runnable object? The thread itself?

We’ll look at that on the next page. In code, though, it’s quite simple — just add the synchronized modifier to your method declaration:

 Note

 [image: image with no caption]

The

synchronized

keyword means that a thread needs a key in order to access the synchronized code.

To protect your data (like the bank account), synchronize the
methods

 that act on that data.

 [image: image with no caption]

 Note

(Note for you physics-savvy readers: yes, the convention of using the word ‘atomic’ here does not reflect the whole subatomic particle thing. Think Newton, not Einstein, when you hear the word ‘atomic’ in the context of threads or transactions. Hey, it’s not OUR convention. If WE were in charge, we’d apply Heisenberg’s Uncertainty Principle to pretty much everything related to threads.)

 Using an object’s lock

Every object has a lock. Most of the time, the lock is unlocked, and you can imagine a virtual key sitting with it. Object locks come into play only when there are synchronized methods. When an object has one or more synchronized methods,

a thread can enter a synchronized method only if the thread can get the key to the object’s lock!

The locks are not per
method

 , they are per
object

 . If an object has two synchronized methods, it does not simply mean that you can’t have two threads entering the same method. It means you can’t have two threads entering
any

 of the synchronized methods.

Think about it. If you have multiple methods that can potentially act on an object’s instance variables, all those methods need to be protected with synchronized.

The goal of synchronization is to protect critical data. But remember, you don’t lock the data itself, you synchronize the methods that
access

 that data.

So what happens when a thread is cranking through its call stack (starting with the run() method) and it suddenly hits a synchronized method? The thread recognizes that it needs a key for that object before it can enter the method. It looks for the key (this is all handled by the JVM; there’s no API in Java for accessing object locks), and if the key is available, the thread grabs the key and enters the method.

From that point forward, the thread hangs on to that key like the thread’s life depends on it. The thread won’t give up the key until it completes the synchronized method. So while that thread is holding the key, no other threads can enter
any

 of that object’s synchronized methods, because the one key for that object won’t be available.

 [image: image with no caption]

 [image: image with no caption]

Every Java object has a lock. A lock has only one key.

Most of the time, the lock is unlocked and nobody cares.

But if an object has synchronized methods, a thread can enter one of the synchronized methods ONLY if the key for the object’s lock is available. In other words, only if another thread hasn’t already grabbed the one key.

 The dreaded “Lost Update” problem

 Here’s another classic concurrency problem, that comes from the database world. It’s closely related to the Ryan and Monica story, but we’ll use this example to illustrate a few more points.

The lost update revolves around one process:

Step 1: Get the balance in the account

int i = balance;

Step 2: Add 1 to that balance

 [image: image with no caption]

Even if we used the more common syntax:

balance++;

 there is no guarantee that the compiled bytecode will be an “atomic process”. In fact, it probably won’t.

In the “Lost Update” problem, we have two threads, both trying to increment the balance. Take a look at the code, and then we’ll look at the real problem:

 [image: image with no caption]

 Let’s run this code...

 [image: image with no caption]

 Note

We lost the last updates that Thread A made! Thread B had previously done a ‘read’ of the value of balance, and when B woke up, it just kept going as if it never missed a beat.

 Make the increment() method atomic. Synchronize it!

 [image: image with no caption]

Synchronizing the increment() method solves the “Lost Update” problem, because it keeps the two steps in the method as one unbreakable unit.

public synchronized

 void increment() {

int i = balance;

balance = i + 1;

}

 Note

Once a thread enters the method, we have to make sure that all the steps in the method complete (as one atomic process) before any other thread can enter the method.

There are no Dumb Questions

	

Q:

	

Q: Sounds like it’s a good idea to synchronize everything, just to be thread-safe.

	
A:

	

A:

 Nope, it’s not a good idea. Synchronization doesn’t come for free. First, a synchronized method has a certain amount of overhead. In other words, when code hits a synchronized method, there’s going to be a performance hit (although typically, you’d never notice it) while the matter of “is the key available?” is resolved.

Second, a synchronized method can slow your program down because synchronization restricts concurrency. In other words, a synchronized method forces other threads to get in line and wait their turn. This might not be a problem in your code, but you have to consider it.

Third, and most frightening, synchronized methods can lead to deadlock! (See The deadly side of synchronization
 .)

A good rule of thumb is to synchronize only the bare minimum that should be synchronized. And in fact, you can synchronize at a granularity that’s even smaller than a method. We don’t use it in the book, but you can use the synchronized keyword to synchronize at the more fine-grained level of one or more statements, rather than at the whole-method level.

 [image: image with no caption]

	Thread A runs for awhile

 [image: image with no caption]

Attempt to enter the increment() method.

The method is synchronized, so
get the key

 for this object Put the value of balance into variable i.

Balance is 0, so i is now 0.

Set the value of balance to the result of i + 1.

Now balance is 1.

Return the key

 (it completed the increment() method).

Re-enter the increment() method and
get the key

 .

Put the value of balance into variable i.

Balance is 1, so i is now 1.

[now thread A is sent back to runnable, but since it has not completed the synchronized method, Thread A keeps the key]

	Thread B is selected to run

 [image: image with no caption]

Attempt to enter the increment() method. The method is synchronized, so we need to get the key.

The key is not available.

[now thread B is sent into a ‘object lock not available’ lounge]

	Thread A runs again, picking up where it left off (remember, it still has the key)

 [image: image with no caption]

Set the value of balance to the result of i + 1. Now balance is 2.

Return the key

 .

[now thread A is sent back to runnable, but since it has completed the increment() method, the thread does NOT hold on to the key]

	Thread B is selected to run

 [image: image with no caption]

Attempt to enter the increment() method. The method is synchronized, so we need to get the key.

This time, the key IS available, get the key.

Put the value of balance into variable i.

[continues to run...]

 The deadly side of synchronization

 Be careful when you use synchronized code, because nothing will bring your program to its knees like thread deadlock. Thread deadlock happens when you have two threads, both of which are holding a key the other thread wants. There’s no way out of this scenario, so the two threads will simply sit and wait. And wait. And wait.

If you’re familiar with databases or other application servers, you might recognize the problem; databases often have a locking mechanism somewhat like synchronization. But a real transaction management system can sometimes deal with deadlock. It might assume, for example, that deadlock might have occurred when two transactions are taking too long to complete. But unlike Java, the application server can do a “transaction rollback” that returns the state of the rolled-back transaction to where it was before the transaction (the atomic part) began.

Java has no mechanism to handle deadlock. It won’t even
know

 deadlock occurred. So it’s up to you to design carefully. If you find yourself writing much multithreaded code, you might want to study “Java Threads” by Scott Oaks and Henry Wong for design tips on avoiding deadlock. One of the most common tips is to pay attention to the order in which your threads are started.

 Note

All it takes for deadlock are two objects and two threads.

 [image: image with no caption]

A simple deadlock scenario:

 [image: image with no caption]

 [image: image with no caption]

 [image: image with no caption]

Bullet Points

	
 The static Thread.sleep() method forces a thread to leave the running state for at least the duration passed to the sleep method. Thread.sleep(200) puts a thread to sleep for 200 milliseconds.

	The sleep() method throws a checked exception (InterruptedException), so all calls to sleep() must be wrapped in a try/catch, or declared.

	You can use sleep() to help make sure all threads get a chance to run, although there’s no guarantee that when a thread wakes up it’ll go to the end of the runnable line. It might, for example, go right back to the front. In most cases, appropriately-timed sleep() calls are all you need to keep your threads switching nicely.

	You can name a thread using the (yet another surprise) setName() method. All threads get a default name, but giving them an explicit name can help you keep track of threads, especially if you’re debugging with print statements.

	You can have serious problems with threads if two or more threads have access to the same object on the heap.

	Two or more threads accessing the same object can lead to data corruption if one thread, for example, leaves the running state while still in the middle of manipulating an object’s critical state.

	To make your objects thread-safe, decide which statements should be treated as one atomic process. In other words, decide which methods must run to completion before another thread enters the same method on the same object.

	Use the keyword

synchronized

 to modify a method declaration, when you want to prevent two threads from entering that method.

	Every object has a single lock, with a single key for that lock. Most of the time we don’t care about that lock; locks come into play only when an object has synchronized methods.

	When a thread attempts to enter a synchronized method, the thread must get the key for the object (the object whose method the thread is trying to run). If the key is not available (because another thread already has it), the thread goes into a kind of waiting lounge, until the key becomes available.

	Even if an object has more than one synchronized method, there is still only one key. Once any thread has entered a synchronized method on that object, no thread can enter any other synchronized method on the same object. This restriction lets you protect your data by synchronizing any method that manipulates the data.

 New and improved SimpleChatClient

 Way back near the beginning of this chapter, we built the SimpleChatClient that could
send

 outgoing messages to the server but couldn’t receive anything. Remember? That’s how we got onto this whole thread topic in the first place, because we needed a way to do two things at once: send messages
to

 the server (interacting with the GUI) while simultaneously reading incoming messages
from

 the server, displaying them in the scrolling text area.

 Note

Yes, there really IS an end to this chapter. But not yet...

 [image: image with no caption]

 The really really simple Chat Server

 You can use this server code for both versions of the Chat Client. Every possible disclaimer ever disclaimed is in effect here. To keep the code stripped down to the bare essentials, we took out a lot of parts that you’d need to make this a real server. In other words, it works, but there are at least a hundred ways to break it. If you want a Really Good Sharpen Your Pencil for after you’ve finished this book, come back and make this server code more robust.

Another possible Sharpen Your Pencil, that you could do right now, is to annotate this code yourself. You’ll understand it much better if you work out what’s happening than if we explained it to you. Then again, this is Ready-bake code, so you really don’t have to understand it at all. It’s here just to support the two versions of the Chat Client.

 Note

To run the chat client, you need two terminals. First, launch this server from one terminal, then launch the client from another terminal

Ready-bake Code

import java.io.*;

import java.net.*;

import java.util.*;

public class VerySimpleChatServer {

ArrayList clientOutputStreams;

public class ClientHandler implements Runnable {

BufferedReader reader;

Socket sock;

public ClientHandler(Socket clientSocket) {

try {

sock = clientSocket;

InputStreamReader isReader = new InputStreamReader(sock.getInputStream());

reader = new BufferedReader(isReader);

} catch(Exception ex) {ex.printStackTrace();}

}

 // close constructor

public void run() {

String message;

try {

while ((message = reader.readLine()) != null) {

System.out.println("read " + message);

tellEveryone(message);

}

 // close while

} catch(Exception ex) {ex.printStackTrace();}

}

 // close run

}

 // close inner class

public static void main (String[] args) {

new VerySimpleChatServer().go();

}

public void go() {

clientOutputStreams = new ArrayList();

try {

ServerSocket serverSock = new ServerSocket(5000);

while(true) {

Socket clientSocket = serverSock.accept();

PrintWriter writer = new PrintWriter(clientSocket.getOutputStream());

clientOutputStreams.add(writer);

Thread t = new Thread(new ClientHandler(clientSocket));

t.start();

System.out.println("got a connection");

}

} catch(Exception ex) {

ex.printStackTrace();

}

}

 // close go

public void tellEveryone(String message) {

Iterator it = clientOutputStreams.iterator();

while(it.hasNext()) {

try {

PrintWriter writer = (PrintWriter) it.next();

writer.println(message);

writer.flush();

} catch(Exception ex) {

ex.printStackTrace();

}

} // end while

}

 // close tellEveryone

}

 // close class

There are no Dumb Questions

	

Q:

	

Q: What about protecting static variable state? If you have static methods that change the static variable state, can you still use synchronization?

	
A:

	

A:

 Yes! Remember that static methods run against the class and not against an individual instance of the class. So you might wonder whose object’s lock would be used on a static method? After all, there might not even
be

 any instances of that class. Fortunately, just as each
object

 has its own lock, each loaded
class

 has a lock. That means that if you have three Dog objects on your heap, you have a total of four Dog-related locks. Three belonging to the three Dog instances, and one belonging to the Dog class itself. When you synchronize a static method, Java uses the lock of the class itself. So if you synchronize two static methods in a single class, a thread will need the class lock to enter
either

 of the methods.

	

Q:

	

Q: What are thread priorities? I’ve heard that’s a way you can control scheduling.

	
A:

	

A:

 Thread priorities
might

 help you influence the scheduler, but they still don’t offer any guarantee. Thread priorities are numerical values that tell the scheduler (if it cares) how important a thread is to you. In general, the scheduler will kick a lower priority thread out of the running state if a higher priority thread suddenly becomes runnable. But... one more time, say it with me now, “there is no guarantee.” We recommend that you use priorities only if you want to influence
performance

 , but never, ever rely on them for program correctness.

	

Q:

	

Q: Why don’t you just synchronize all the getters and setters from the class with the data you’re trying to protect? Like, why couldn’t we have synchronized just the checkBalance() and withdraw() methods from class BankAccount, instead of synchronizing the makeWithdrawal() method from the Runnable’s class?

	
A:

	

A:

 Actually, we
should

 have synchronized those methods, to prevent other threads from accessing those methods in other ways. We didn’t bother, because our example didn’t have any other code accessing the account.

But synchronizing the getters and setters (or in this case the checkBalance() and withdraw()) isn’t enough. Remember, the point of synchronization is to make a specific section of code work ATOMICALLY. In other words, it’s not just the individual methods we care about, it’s methods that require

more than one step to complete

 ! Think about it. If we had not synchronized the makeWithdrawal() method, Ryan would have checked the balance (by calling the synchronized checkBalance()), and then immediately exited the method and returned the key!

Of course he would grab the key again, after he wakes up, so that he can call the synchronized withdraw() method, but this still leaves us with the same problem we had before synchronization! Ryan can check the balance, go to sleep, and Monica can come in and also check the balance before Ryan has a chance to wakes up and completes his withdrawal.

So synchronizing all the access methods is probably a good idea, to prevent other threads from getting in, but you still need to synchronize the methods that have statements that must execute as one atomic unit.

Code Kitchen

 [image: image with no caption]

This is the last version of the BeatBox!

It connects to a simple MusicServer so that you can send and receive beat patterns with other clients.

The code is really long, so the complete listing is actually in Appendix A
 .

Code Magnets

 [image: image with no caption]

Exercise

A working Java program is scrambled up on the fridge. Can you add the code snippets on the next page to the empty classes below, to make a working Java program that produces the output listed? Some of the curly braces fell on the floor and they were too small to pick up, so feel free to add as many of those as you need!

 [image: image with no caption]

Bonus Question:

 Why do you think we used the modifiers we did in the Accum class?

 [image: image with no caption]

 [image: image with no caption]

Exercise Solutions

 [image: image with no caption]

	
Threads from two different classes are updating the same object in a third class, because both threads are accessing a single instance of Accum. The line of code:

private static Accum a = new Accum(); creates a static instance of Accum (remember static means one per class), and the private constructor in Accum means that no one else can make an Accum object. These two techniques (private constructor and static getter method) used together, create what’s known as a ‘Singleton’ - an OO pattern to restrict the number of instances of an object that can exist in an application. (Usually, there’s just a single instance of a Singleton — hence the name), but you can use the pattern to restrict the instance creation in whatever way you choose.)

Five-Minute Mystery

 [image: image with no caption]

Near-miss at the Airlock

As Sarah joined the on-board development team’s design review meeting, she gazed out the portal at sunrise over the Indian Ocean. Even though the ship’s conference room was incredibly claustrophobic, the sight of the growing blue and white crescent overtaking night on the planet below filled Sarah with awe and appreciation.

This morning’s meeting was focused on the control systems for the orbiter’s airlocks. As the final construction phases were nearing their end, the number of spacewalks was scheduled to increase dramatically, and traffic was high both in and out of the ship’s airlocks. “Good morning Sarah”, said Tom, “Your timing is perfect, we’re just starting the detailed design review.”

“As you all know”, said Tom, “Each airlock is outfitted with space-hardened GUI terminals, both inside and out. Whenever spacewalkers are entering or exiting the orbiter they will use these terminals to initiate the airlock sequences.” Sarah nodded, “Tom can you tell us what the method sequences are for entry and exit?” Tom rose, and floated to the whiteboard, “First, here’s the exit sequence method’s pseudocode”, Tom quickly wrote on the board.

orbiterAirlockExitSequence()

 verifyPortalStatus();

 pressurizeAirlock();

 openInnerHatch();

 confirmAirlockOccupied();

 closeInnerHatch();

 decompressAirlock();

 openOuterHatch();

 confirmAirlockVacated();

 closeOuterHatch();

“To ensure that the sequence is not interrupted, we have synchronized all of the methods called by the orbiterAirlockExitSequence() method”, Tom explained. “We’d hate to see a returning spacewalker inadvertently catch a buddy with his space pants down!”

Everyone chuckled as Tom erased the whiteboard, but something didn’t feel right to Sarah and it finally clicked as Tom began to write the entry sequence pseudocode on the whiteboard. “Wait a minute Tom!”, cried Sarah, “I think we’ve got a big flaw in the exit sequence design, let’s go back and revisit it, it could be critical!”

Why did Sarah stop the meeting? What did she suspect?

What did Sarah know?

Sarah realized that in order to ensure that the entire exit sequence would run without interruption the

orbiterAirlockExitSequence
 () method needed to be synchronized. As the design stood, it would be possible for a returning spacewalker to interrupt the Exit Sequence! The Exit Sequence thread couldn’t be interrupted in the middle of any of the lower level method calls, but it
could

 be interrupted in
between

 those calls. Sarah knew that the entire sequence should be run as one atomic unit, and if the orbiterAirlockExitSequence()
 method was synchronized, it could not be interrupted at any point.

[13
]
 Well, you
might

 be able to use one of these, but the sys-admin where you work will probably kill you.

 Chapter 16. Collections and Generics: Data structures

 [image: image with no caption]

Sorting is a snap in Java.

 You have all the tools for collecting and manipulating your data without having to write your own sort algorithms (unless you’re reading this right now sitting in your Computer Science 101 class, in which case, trust us — you are SO going to be writing sort code while the rest of us just call a method in the Java API). The Java Collections Framework has a data structure that should work for virtually anything you’ll ever need to do. Want to keep a list that you can easily keep adding to? Want to find something by name? Want to create a list that automatically takes out all the duplicates? Sort your co-workers by the number of times they’ve stabbed you in the back? Sort your pets by number of tricks learned? It’s all here...

 Tracking song popularity on your jukebox

Congratulations on your new job — managing the automated jukebox system at Lou’s Diner. There’s no Java inside the jukebox itself, but each time someone plays a song, the song data is appended to a simple text file.

 [image: image with no caption]

Your job is to manage the data to track song popularity, generate reports, and manipulate the playlists. You’re not writing the entire app — some of the other software developer/ waiters are involved as well, but you’re responsible for managing and sorting the data inside the Java app. And since Lou has a thing against databases, this is strictly an in-memory data collection. All you get is the file the jukebox keeps adding to. Your job is to take it from there.

You’ve already figured out how to read and parse the file, and so far you’ve been storing the data in an ArrayList.

 [image: image with no caption]

This is the file the jukebox device writes. Your code must read the file, then manipulate the song data.

Challenge #1 Sort the songs in alphabetical order

You have a list of songs in a file, where each line represents one song, and the title and artist are separated with a forward slash. So it should be simple to parse the line, and put all the songs in an ArrayList.

Your boss cares only about the song titles, so for now you can simply make a list that just has the song titles.

But you can see that the list is not in alphabetical order... what can you do?

You know that with an ArrayList, the elements are kept in the order in which they were inserted into the list, so putting them in an ArrayList won’t take care of alphabetizing them, unless... maybe there’s a sort() method in the ArrayList class?

 Here’s what you have so far, without the sort:

 [image: image with no caption]

 [image: image with no caption]

 But the ArrayList class does NOT have a sort() method!

 When you look in ArrayList, there doesn’t seem to be any method related to sorting. Walking up the inheritance hierarchy didn’t help either — it’s clear that

you can’t call a sort method on the ArrayList.

 [image: image with no caption]

 ArrayList is not
 the only collection

 [image: image with no caption]

 Although ArrayList is the one you’ll use most often, there are others for special occasions. Some of the key collection classes include:

 Note

Don’t worry about trying to learn these other ones right now. We’ll go into more details a little later.

	

TreeSet

Keeps the elements sorted and prevents duplicates.

	

HashMap

Lets you store and access elements as name/value pairs.

	

LinkedList

Makes it easy to create structures like stacks or queues.

	

HashSet

Prevents duplicates in the collection, and given an element, can find that element in the collection quickly.

	

LinkedHashMap

Like a regular HashMap, except it can remember the order in which elements (name/value pairs) were inserted, or it can be configured to remember the order in which elements were last accessed.

 You
could

 use a TreeSet... Or you could use the Collections
 .sort() method

 If you put all the Strings (the song titles) into a
TreeSet

 instead of an ArrayList, the Strings would automatically land in the right place, alphabetically sorted. Whenever you printed the list, the elements would always come out in alphabetical order.

And that’s great when you need a
set

 (we’ll talk about sets in a few minutes) or when you know that the list must
always

 stay sorted alphabetically.

On the other hand, if you don’t need the list to stay sorted, TreeSet might be more expensive than you need —

every time you insert into a TreeSet, the TreeSet has to take the time to figure out where in the tree the new element must go.

 With ArrayList, inserts can be blindingly fast because the new element just goes in at the end.

 [image: image with no caption]

	

Q:

	

Q: But you CAN add something to an ArrayList at a specific index instead of just at the end — there’s an overloaded add() method that takes an int along with the element to add. So wouldn’t it be slower than inserting at the end?

	
A:

	

A:

 Yes, it’s slower to insert something in an ArrayList somewhere
other

 than at the end. So using the overloaded add(index, element) method doesn’t work as quickly as calling the add(element) — which puts the added element at the end. But most of the time you use ArrayLists, you won’t need to put something at a specific index.

	

Q:

	

Q: I see there’s a LinkedList class, so wouldn’t

that

be better for doing inserts somewhere in the middle? At least if I remember my Data Structures class from college...

	
A:

	

A:

 Yes, good spot. The LinkedList
can

 be quicker when you insert or remove something from the middle, but for most applications, the difference between middle inserts into a LinkedList and ArrayList is usually not enough to care about unless you’re dealing with a
huge

 number of elements. We’ll look more at LinkedList in a few minutes.

 Note

Note: this is NOT the real Collections class API; we simplified it here by leaving out the generic type information (which you’ll see in a few pages).

 Adding Collections.sort()
 to the Jukebox code

The Collections.sort() method sorts a list of Strings alphabetically.

 [image: image with no caption]

 [image: image with no caption]

 But now you need Song objects, not just simple Strings

Now your boss wants actual Song class instances in the list, not just Strings, so that each Song can have more data. The new jukebox device outputs more information, so this time the file will have
four

 pieces (tokens) instead of just two.

The Song class is really simple, with only one interesting feature — the overridden toString() method. Remember, the toString() method is defined in class Object, so every class in Java inherits the method. And since the toString() method is called on an object when it’s printed (System.out.println(anObject)), you should override it to print something more readable than the default unique identifier code. When you print a list, the toString() method will be called on each object.

 [image: image with no caption]

The new song file holds four attributes instead of just two. And we want ALL of them in our list, so we need to make a Song class with instance variables for all four song attributes.

 [image: image with no caption]

 Changing the Jukebox code to use Songs instead of Strings

Your code changes only a little — the file I/O code is the same, and the parsing is the same (String.split()), except this time there will be
four

 tokens for each song/line, and all four will be used to create a new Song object. And of course the ArrayList will be of type <Song> instead of <String>.

 [image: image with no caption]

 Note

Create a new Song object using the four tokens (which means the four pieces of info in the song file for this line), then add the Song to the list.

 It won’t compile!

Something’s wrong... the Collections class clearly shows there’s a sort() method, that takes a List.

ArrayList is-a List, because ArrayList implements the List interface, so... it
should

 work.

But it doesn’t!

The compiler says it can’t find a sort method that takes an ArrayList<Song>, so maybe it doesn’t like an ArrayList of Song objects? It didn’t mind an ArrayList<String>, so what’s the important difference between Song and String? What’s the difference that’s making the compiler fail?

 [image: image with no caption]

And of course you probably already asked yourself, “What would it be sorting
on

 ?” How would the sort method even
know

 what made one Song greater or less than another Song? Obviously if you want the song’s
title

 to be the value that determines how the songs are sorted, you’ll need some way to tell the sort method that it needs to use the title and not, say, the beats per minute.

We’ll get into all that a few pages from now, but first, let’s find out why the compiler won’t even let us pass a Song ArrayList to the sort() method.

 The sort() method declaration

 [image: image with no caption]

 [image: image with no caption]

 From the API docs (looking up the java.util.Collections class, and scrolling to the sort() method), it looks like the sort() method is declared...
strangely

 . Or at least different from anything we’ve seen so far.

That’s because the sort() method (along with other things in the whole collection framework in Java) makes heavy use of
generics

 . Anytime you see something with angle brackets in Java source code or documentation, it means generics — a feature added to Java 5.0. So it looks like we’ll have to learn how to interpret the documentation before we can figure out why we were able to sort String objects in an ArrayList, but not an ArrayList of Song objects.

 Generics means more type-safety

 We’ll just say it right here —
virtually all of the code you write that deals with generics will be collection-related code.

 Although generics can be used in other ways, the main point of generics is to let you write type-safe collections. In other words, code that makes the compiler stop you from putting a Dog into a list of Ducks.

Before generics (which means before Java 5.0), the compiler could not care less what you put into a collection, because all collection implementations were declared to hold type Object. You could put
anything

 in any ArrayList; it was like all ArrayLists were declared as ArrayList<Object>.

With generics, you can create type-safe collections where more problems are caught at compile-time instead of runtime.

Without generics, the compiler would happily let you put a Pumpkin into an ArrayList that was supposed to hold only Cat objects.

WITHOUT generics

Objects go IN as a reference to SoccerBall, Fish, Guitar, and Car objects

 [image: image with no caption]

Before generics, there was no way to declare the type of an ArrayList, so its add() method took type Object.

And come OUT as a reference of type Object

WITH generics

Objects go IN as a reference to only Fish objects

 [image: image with no caption]

Now with generics, you can put only Fish objects in the ArrayList<Fish>, so the objects come out as Fish references.

You don’t have to worry about someone sticking a Volkswagen in there, or that what you get out won’t really be castable to a Fish reference.

And come out as a reference of type Fish

 Learning generics

Of the dozens of things you could learn about generics, there are really only three that matter to most programmers:

	

Creating instances of generified

classes

(like ArrayList)

When you make an ArrayList, you have to tell it the type of objects you’ll allow in the list, just as you do with plain old arrays.
new ArrayList
<Song>()

	

Declaring and assigning

variables

of generic types

How does polymorphism really work with generic types? If you have an ArrayList<Animal> reference variable, can you assign an ArrayList<Dog> to it? What about a List<Animal> reference? Can you assign an ArrayList<Animal> to it? You’ll see...
List
<Song>

 songList =
 new ArrayList
<Song>()

	

Declaring (and invoking) methods
 that take generic types

If you have a method that takes as a parameter, say, an ArrayList of Animal objects, what does that really mean? Can you also pass it an ArrayList of Dog objects? We’ll look at some subtle and tricky polymorphism issues that are very different from the way you write methods that take plain old arrays.

(This is actually the same point as #2, but that shows you how important we think it is.)
void foo(List
<Song>

 list)

x.foo(songList)

	

Q:

	

Q: But don’t I also need to learn how to create my OWN generic classes? What if I want to make a class type that lets people instantiating the class decide the type of things that class will use?

	
A:

	

A:

 You probably won’t do much of that. Think about it — the API designers made an entire library of collections classes covering most of the data structures you’d need, and virtually the only type of classes that really need to be generic are collection classes. In other words, classes designed to hold other elements, and you want programmers using it to specify what type those elements are when they declare and instantiate the collection class.

Yes, it is possible that you might want to
create

 generic classes, but that’s the exception, so we won’t cover it here. (But you’ll figure it out from the things we
do

 cover, anyway.)

 Using generic CLASSES

 Since ArrayList is our most-used generified type, we’ll start by looking at its documentation. The two key areas to look at in a generified class are:

1) The
class

 declaration

2) The
method

 declarations that let you add elements

Think of “E” as a stand-in for “the type of element you want this collection to hold and return.” (E
 is for E
 lement.)

Understanding ArrayList documentation (
Or, what’s the true meaning of “E”?

)

 [image: image with no caption]

The “E” represents the type used to create an instance of ArrayList. When you see an “E” in the ArrayList documentation, you can do a mental find/replace to exchange it for whatever <type> you use to instantiate ArrayList.

So, new ArrayList<Song> means that “E” becomes “Song”, in any method or variable declaration that uses “E”.

 Using type parameters with ArrayList

 [image: image with no caption]

In other words, the “E” is replaced by the
real

 type (also called the
type parameter

) that you use when you create the ArrayList. And that’s why the add() method for ArrayList won’t let you add anything except objects of a reference type that’s compatible with the type of “E”. So if you make an ArrayList
<String>

 , the add() method suddenly becomes
add(String o)

 . If you make the ArrayList of type
Dog

 , suddenly the add() method becomes
add(Dog o)

 .

	

Q:

	

Q: Is “E” the only thing you can put there? Because the docs for sort used “T”....

	
A:

	

A:

 You can use anything that’s a legal Java identifier. That means anything that you could use for a method or variable name will work as a type parameter. But the convention is to use a single letter (so that’s what you should use), and a further convention is to use “T” unless you’re specifically writing a collection class, where you’d use “E” to represent the “type of the Element the collection will hold”.

 Using generic METHODS

 A generic
class

 means that the
class declaration

 includes a type parameter. A generic
method

 means that the method declaration uses a type parameter in its signature.

You can use type parameters in a method in several different ways:

	

Using a type parameter defined in the class declaration

 [image: image with no caption]

When you declare a type parameter for the class, you can simply use that type any place that you’d use a
real

 class or interface type. The type declared in the method argument is essentially replaced with the type you use when you instantiate the class.

	

Using a type parameter that was NOT defined in the class declaration

 [image: image with no caption]

If the class itself doesn’t use a type parameter, you can still specify one for a method, by declaring it in a really unusual (but available) space —
before the return type

 . This method says that T can be “any type of Animal”.

 Here’s where it gets weird...

 [image: image with no caption]

This:

public
<T extends Animal>

 void takeThing(ArrayList
<T>

 list)

Is NOT the same as this:

public void takeThing(ArrayList
<Animal>

 list)

Both are legal, but they’re
different

 !

The first one, where
<T extends Animal>

 is part of the method declaration, means that any ArrayList declared of a type that is Animal, or one of Animal’s subtypes (like Dog or Cat), is legal. So you could invoke the top method using an ArrayList<Dog>, ArrayList<Cat>, or ArrayList<Animal>.

But... the one on the bottom, where the method argument is (ArrayList<Animal> list) means that
only

 an ArrayList<Animal> is legal. In other words, while the first version takes an ArrayList of any type that is a type of Animal (Animal, Dog, Cat, etc.), the second version takes
only

 an ArrayList of type Animal. Not ArrayList<Dog>, or ArrayList<Cat> but only ArrayList<Animal>.

And yes, it does appear to violate the point of polymorphism. but it will become clear when we revisit this in detail at the end of the chapter. For now, remember that we’re only looking at this because we’re still trying to figure out how to sort() that SongList, and that led us into looking at the API for the sort() method, which had this strange generic type declaration.

For now, all you need to know is that the syntax of the top version is legal, and that it means you can pass in a ArrayList object instantiated as Animal or any Animal subtype.

And now back to our sort() method...

Remember where we were...

 [image: image with no caption]

 [image: image with no caption]

 [image: image with no caption]

 Revisiting the sort() method

 So here we are, trying to read the sort() method docs to find out why it was OK to sort a list of Strings, but not a list of Song objects. And it looks like the answer is...

 [image: image with no caption]

The sort() method can take only lists of Comparable objects.

Song is NOT a subtype of Comparable, so you cannot sort() the list of Songs.

At least not yet...

 [image: image with no caption]

 [image: image with no caption]

public final class String extends Object implements Serializable,

Comparable<String>, CharSequence

 In generics, “extends” means “extends or
 implements”

The Java engineers had to give you a way to put a constraint on a parameterized type, so that you can restrict it to, say, only subclasses of Animal. But you also need to constrain a type to allow only classes that implement a particular interface. So here’s a situation where we need one kind of syntax to work for both situations — inheritance and implementation. In other words, that works for both
extends

 and
implements

 .

And the winning word was...
extends

 . But it really means “is-a”, and works regardless of whether the type on the right is an interface or a class.

In generics, the keyword “extends” really means “is-a”, and works for BOTH classes and interfaces.

 [image: image with no caption]

	

Q:

	

Q: Why didn’t they just make a new keyword,“is”?

	
A:

	

A:

 Adding a new keyword to the language is a REALLY big deal because it risks breaking Java code you wrote in an earlier version. Think about it — you might be using a variable “is” (which we do use in this book to represent input streams). And since you’re not allowed to use keywords as identifiers in your code, that means any earlier code that used the keyword
before

 it was a reserved word, would break. So whenever there’s a chance for the Sun engineers to reuse an existing keyword, as they did here with “extends”, they’ll usually choose that. But sometimes they don’t have a choice...

A few (very few) new keywords
have

 been added to the language, such as

assert

 in Java 1.4 and

enum

 in Java 5.0 (we look at enum in the appendix). And this does break people’s code, however you sometimes have the option of compiling and running a
newer

 version of Java so that it behaves as though it were an older one. You do this by passing a special flag to the compiler or JVM at the command-line, that says, “Yeah, yeah, I KNOW this is Java 1.4, but please pretend it’s really 1.3, because I’m using a variable in my code named
assert

 that I wrote back when you guys said it would OK!#$%”.

(To see if you have a flag available, type
javac

 (for the compiler) or
java

 (for the JVM) at the command-line, without anything else after it, and you should see a list of available options. You’ll learn more about these flags in the chapter on deployment.)

 Finally we know what’s wrong...

 The Song class needs to implement Comparable

 We can pass the ArrayList<Song> to the sort() method only if the Song class implements Comparable, since that’s the way the sort() method was declared. A quick check of the API docs shows the Comparable interface is really simple, with only one method to implement:

The big question is: what makes one song less than, equal to, or greater than another song?

You can’t implement the Comparable interface until you make that decision.

 [image: image with no caption]

And the method documentation for compareTo() says

 [image: image with no caption]

It looks like the compareTo() method will be called on one Song object, passing that Song a reference to a different Song. The Song running the compareTo() method has to figure out if the Song it was passed should be sorted higher, lower, or the same in the list.

Your big job now is to decide what makes one song greater than another, and then implement the compareTo() method to reflect that. A negative number (any negative number) means the Song you were passed is greater than the Song running the method. Returning a positive number says that the Song running the method is greater than the Song passed to the compareTo() method. Returning zero means the Songs are equal (at least for the purpose of sorting... it doesn’t necessarily mean they’re the same object). You might, for example, have two Songs with the same title.

(Which brings up a whole different can of worms we’ll look at later...)

Sharpen your pencil

Write in your idea and pseudo code (or better, REAL code) for implementing the compareTo() method in a way that will sort() the Song objects by title.

Hint: if you’re on the right track, it should take less than 3 lines of code!

 The new, improved, comparable Song class

We decided we want to sort by title, so we implement the compareTo() method to compare the title of the Song passed to the method against the title of the song on which the compareTo() method was invoked. In other words, the song running the method has to decide how its title compares to the title of the method parameter.

Hmmm... we know that the String class must know about alphabetical order, because the sort() method worked on a list of Strings. We know String has a compareTo() method, so why not just call it? That way, we can simply let one title String compare itself to another, and we don’t have to write the comparing/alphabetizing algorithm!

 [image: image with no caption]

 We can sort the list, but...

 There’s a new problem — Lou wants two different views of the song list, one by song title and one by artist!

But when you make a collection element comparable (by having it implement Comparable), you get only one chance to implement the compareTo() method. So what can you do?

The horrible way would be to use a flag variable in the Song class, and then do an
if

 test in compareTo() and give a different result depending on whether the flag is set to use title or artist for the comparison.

But that’s an awful and brittle solution, and there’s something much better. Something built into the API for just this purpose — when you want to sort the same thing in more than one way.

 [image: image with no caption]

Look at the Collections class API again. There’s a second sort() method — and it takes a Comparator.

 [image: image with no caption]

 Using a custom Comparator

An element in a list can compare
itself

 to another of its own type in only one way, using its compareTo() method. But a Comparator is external to the element type you’re comparing — it’s a separate class. So you can make as many of these as you like! Want to compare songs by artist? Make an ArtistComparator. Sort by beats per minute? Make a BPMComparator.

 [image: image with no caption]

If you pass a Comparator to the sort() method, the sort order is determined by the Comparator rather than the element’s own compareTo() method.

Then all you need to do is call the overloaded sort() method that takes the List and the Comparator that will help the sort() method put things in order.

The sort() method that takes a Comparator will use the Comparator instead of the element’s own compareTo() method, when it puts the elements in order. In other words, if your sort() method gets a Comparator, it won’t even
call

 the compareTo() method of the elements in the list. The sort() method will instead invoke the
compare()

 method on the Comparator.

So, the rules are:

	

Invoking the one-argument sort(List o) method means the list element’s compareTo() method determines the order. So the elements in the list MUST implement the Comparable interface.

	

Invoking sort(List o, Comparator c) means the list element’s compareTo() method will NOT be called, and the Comparator’s compare() method will be used instead. That means the elements in the list do NOT need to implement the Comparable interface.

	

Q:

	

Q: So does this mean that if you have a class that doesn’t implement Comparable, and you don’t have the source code, you could still put the things in order by creating a Comparator?

	
A:

	

A:

 That’s right. The other option (if it’s possible) would be to subclass the element and make the subclass implement Comparable.

	

Q:

	

Q: But why doesn’t

every

class implement Comparable?

	
A:

	

A:

 Do you really believe that
everything

 can be ordered? If you have element types that just don’t lend themselves to any kind of natural ordering, then you’d be misleading other programmers if you implement Comparable. And you aren’t taking a huge risk by not implementing Comparable, since a programmer can compare anything in any way that he chooses using his own custom Comparator.

 Updating the Jukebox to use a Comparator

 We did three new things in this code:

1) Created an inner class that implements Comparator (and thus the

compare()

 method that does the work previously done by

compareTo()

).

2) Made an instance of the Comparator inner class.

3) Called the overloaded sort() method, giving it both the song list and the instance of the Comparator inner class.

Note: we also updated the Song class toString() method to print both the song title and the artist. (It prints

title: artist

 regardless of how the list is sorted.)

 [image: image with no caption]

 Note

Note: we’ve made sort-by-title the default sort, by keeping the compareTo() method in Song use the titles. But another way to design this would be to implement both the title sorting and artist sorting as inner Comparator classes, and not have Song implement Comparable at all. That means we’d always use the twoarg version of Collections.sort().

Sharpen your pencil

Reverse Engineer

Assume this code exists in a single file. Your job is to fill in the blanks so the the program will create the output shown.

Note: answers are at the end of the chapter.

import __________________;

public class SortMountains {

 LinkedList______________ mtn = new LinkedList____________();

 class NameCompare ___________________________________ {
 public int compare(Mountain one, Mountain two) {
 return ___________________________;
 }
 }
 class HeightCompare _______________________________ {
 public int compare(Mountain one, Mountain two) {
 return (__________________________);
 }
 }
 public static void main(String [] args) {
 new SortMountains().go();
 }
 public void go() {
 mtn.add(new Mountain("Longs", 14255));
 mtn.add(new Mountain("Elbert", 14433));
 mtn.add(new Mountain("Maroon", 14156));
 mtn.add(new Mountain("Castle", 14265));

 System.out.println("as entered:\n" + mtn);
 NameCompare nc = new NameCompare();
 _________________________________;
 System.out.println("by name:\n" + mtn);
 HeightCompare hc = new HeightCompare();
 _________________________________;
 System.out.println("by height:\n" + mtn);
 }
}

class Mountain {
 __________________;
 _________________;

 ______________________ {
 _________________;
 _________________;
 }
 _________________________ {
 ______________________________;
 }
}

 [image: image with no caption]

Sharpen your pencil

Fill-in-the-blanks

For each of the questions below, fill in the blank with one of the words from the “possible answers” list, to correctly answer the question. Answers are at the end of the chapter.

 [image: image with no caption]

Given the following compilable statement:

Collections.sort(myArrayList);

	
1.

	
What must the class of the objects stored in myArrayList
 implement?

2.

	
What method must the class of the objects stored in myArrayList
 implement?

3.

	
Can the class of the objects stored in myArrayList
 implement both Comparator
 AND Comparable
 ?

Given the following compilable statement:

Collections.sort(myArrayList, myCompare);

	
4.

	
Can the class of the objects stored in myArrayList
 implement Comparable
 ?

5.

	
Can the class of the objects stored in myArrayList
 implement Comparator
 ?

6.

	
Must the class of the objects stored in myArrayList
 implement Comparable
 ?

7.

	
Must the class of the objects stored in myArrayList
 implement Comparator
 ?

8.

	
What must the class of the myCompare
 object implement?

9.

	
What method must the class of the myCompare
 object implement?

 Uh-oh. The sorting all works, but now we have duplicates...

The sorting works great, now we know how to sort on both
title

 (using the Song object’s compareTo() method) and
artist

 (using the Comparator’s compare() method). But there’s a new problem we didn’t notice with a test sample of the jukebox text file —

the sorted list contains duplicates.

It appears that the diner jukebox just keeps writing to the file regardless of whether the same song has already been played (and thus written) to the text file. The SongListMore.txt jukebox text file is a complete record of every song that was played, and might contain the same song multiple times.

 [image: image with no caption]

The SongListMore text file now has duplicates in it, because the jukebox machine is writing every song played, in order. Somebody decided to play “Listen” three times in a row, followed by “Circles”, a song that had been played earlier.

We can’t change the way the text file is written because sometimes we’re going to need all that information. We have to change the java code.

 [image: image with no caption]

 We need a Set
 instead of a List

 From the Collection API, we find three main interfaces,
List

 ,
Set

 , and
Map

 . ArrayList is a
List

 , but it looks like

Set

 is exactly what we need.

	

LIST - when

sequence

matters

Collections that know about

index position.

Lists know where something is in the list. You can have more than one element referencing the same object.

 [image: image with no caption]

	

SET - when

uniqueness

matters

Collections that

do not allow duplicates.

Sets know whether something is already in the collection. You can never have more than one element referencing the same object (or more than one element referencing two objects that are considered equal — we’ll look at what object equality means in a moment).

 [image: image with no caption]

	

MAP - when

finding something by key

matters

Collections that use

key-value pairs.

Maps know the value associated with a given key. You can have two keys that reference the same value, but you cannot have duplicate keys. Although keys are typically String names (so that you can make name/value property lists, for example), a key can be any object.

 [image: image with no caption]

 The Collection API (part of it)

 Notice that the Map interface doesn’t actually extend the Collection interface, but Map is still considered part of the “Collection Framework” (also known as the “Collection API”). So Maps are still collections, even though they don’t include java.util.Collection in their inheritance tree.

(Note: this is not the complete collection API; there are other classes and interfaces, but these are the ones we care most about.)

 [image: image with no caption]

 Key

 [image: image with no caption]

 [image: image with no caption]

 Using a HashSet instead of ArrayList

We added on to the Jukebox to put the songs in a HashSet. (Note: we left out some of the Jukebox code, but you can copy it from earlier versions. And to make it easier to read the output, we went back to the earlier version of the Song’s toString() method, so that it prints only the title instead of title
and

 artist.)

 [image: image with no caption]

 [image: image with no caption]

 What makes two objects equal?

 First, we have to ask — what makes two Song references duplicates? They must be considered

equal

 . Is it simply two references to the very same object, or is it two separate objects that both have the same
title

 ?

This brings up a key issue:
reference

 equality vs.
object

 equality.

 Note

If two objects foo and bar are equal,
foo.equals(bar)

 must be true, and both foo and bar must return the same value from
hashCode()

 . For a Set to treat two objects as duplicates, you must override the hashCode() and equals() methods inherited from class Object, so that you can make two different objects be viewed as equal.

	

Reference equality

Two references, one object on the heap.

Two references that refer to the same object on the heap are equal. Period. If you call the
hashCode()

 method on both references, you’ll get the same result. If you don’t override the hashCode() method, the default behavior (remember, you inherited this from class Object) is that each object will get a unique number (most versions of Java assign a hashcode based on the object’s memory address on the heap, so no two objects will have the same hashcode).

If you want to know if two
references

 are really referring to the same object, use the == operator, which (remember) compares the bits in the variables. If both references point to the same object, the bits will be identical.

 [image: image with no caption]

if (
foo == bar

) {
 // both references are referring
 // to the same object on the heap
}

	

Object equality

Two references, two objects on the heap, but the objects are considered

meaningfully equivalent.

If you want to treat two different Song objects as equal (for example if you decided that two Songs are the same if they have matching
title

 variables), you must override
both

 the
hashCode()

 and
equals()

 methods inherited from class Object.

As we said above, if you
don’t

 override hashCode(), the default behavior (from Object) is to give each object a unique hashcode value. So you must override hashCode() to be sure that two equivalent objects return the same hashcode. But you must also override equals() so that if you call it on
either

 object, passing in the other object, always returns

true

 .

 [image: image with no caption]

if (
foo.equals(bar)

 &&
foo.hashCode() == bar.hashCode()

) {
 // both references are referring to either a
 // a single object, or to two objects that are equal
}

 How a HashSet checks for duplicates: hashCode() and equals()

 When you put an object into a Hashset, it uses the object’s hashcode value to determine where to put the object in the Set. But it also compares the object’s hashcode to the hashcode of all the other objects in the HashSet, and if there’s no matching hashcode, the HashSet assumes that this new object is not a duplicate.

In other words, if the hashcodes are different, the HashSet assumes there’s no way the objects can be equal!

So you must override hashCode() to make sure the objects have the same value.

But two objects with the same hashCode() might
not

 be equal (more on this on the next page), so if the HashSet finds a matching hashcode for two objects — one you’re inserting and one already in the set — the HashSet will then call one of the object’s equals() methods to see if these hashcode-matched objects really
are

 equal.

And if they’re equal, the HashSet knows that the object you’re attempting to add is a duplicate of something in the Set, so the add doesn’t happen.

You don’t get an exception, but the HashSet’s add() method returns a boolean to tell you (if you care) whether the new object was added. So if the add() method returns
false

 , you know the new object was a duplicate of something already in the set.

 [image: image with no caption]

 The Song class with overridden hashCode() and equals()

 [image: image with no caption]

Java Object Law For HashCode() and equals()

The API docs for class Object state the rules you MUST follow:

	

If two objects are equal, they MUST have matching hashcodes.

	

If two objects are equal, calling equals() on either object MUST return true. In other words, if (a.equals(b)) then (b.equals(a)).

	

If two objects have the same hashcode value, they are NOT required to be equal. But if they’re equal, they MUST have the same hashcode value.

	

So, if you override equals(), you MUST override hashCode().

	

The default behavior of hashCode() is to generate a unique integer for each object on the heap. So if you don’t override hashCode() in a class, no two objects of that type can EVER be considered equal.

	

The default behavior of equals() is to do an == comparison. In other words, to test whether the two references refer to a single object on the heap. So if you don’t override equals() in a class, no two objects can EVER be considered equal since references to two different objects will always contain a different bit pattern.

a.equals(b)

 must also mean that
a.hashCode() == b.hashCode()

But
a.hashCode() == b.hashCode()

 does NOT have to mean
a.equals(b)

There are no Dumb Questions

	

Q:

	

Q: How come hashcodes can be the same even if objects aren’t equal?

	
A:

	

A:

 HashSets use hashcodes to store the elements in a way that makes it much faster to access. If you try to find an object in an ArrayList by giving the ArrayList a copy of the object (as opposed to an index value), the ArrayList has to start searching from the beginning, looking at each element in the list to see if it matches. But a HashSet can find an object much more quickly, because it uses the hashcode as a kind of label on the “bucket” where it stored the element. So if you say, “I want you to find an object in the set that’s exactly like this one...” the HashSet gets the hashcode value from the copy of the Song you give it (say, 742), and then the HashSet says, “Oh, I know exactly where the object with hashcode #742 is stored...”, and it goes right to the #742 bucket.

This isn’t the whole story you get in a computer science class, but it’s enough for you to use Hash-Sets effectively. In reality, developing a good hash-code algorithm is the subject of many a PhD thesis, and more than we want to cover in this book.

The point is that hashcodes can be the same without necessarily guaranteeing that the objects are equal, because the “hashing algorithm” used in the hashCode() method might happen to return the same value for multiple objects. And yes, that means that multiple objects would all land in the same bucket in the HashSet (because each bucket represents a single hashcode value), but that’s not the end of the world. It might mean that the Hash-Set is just a little less efficient (or that it’s filled with an extremely large number of elements), but if the HashSet finds more than one object in the same hashcode bucket, the HashSet will simply use the equals() method to see if there’s a perfect match. In other words, hashcode values are sometimes used to narrow down the search, but to find the one exact match, the HashSet still has to take all the objects in that one bucket (the bucket for all objects with the same hashcode) and then call equals() on them to see if the object it’s looking for is in that bucket.

 And if we want the set to stay
 sorted, we’ve got TreeSet

 TreeSet is similar to HashSet in that it prevents duplicates. But it also
keeps

 the list sorted. It works just like the sort() method in that if you make a TreeSet using the set’s no-arg constructor, the TreeSet uses each object’s compareTo() method for the sort. But you have the option of passing a Comparator to the TreeSet constructor, to have the TreeSet use that instead. The downside to TreeSet is that if you don’t
need

 sorting, you’re still paying for it with a small performance hit. But you’ll probably find that the hit is almost impossible to notice for most apps.

 [image: image with no caption]

 What you MUST know about TreeSet...

TreeSet looks easy, but make sure you really understand what you need to do to use it. We thought it was so important that we made it an exercise so you’d
have

 to think about it. Do NOT turn the page until you’ve done this.
We mean it.

Sharpen your pencil

Look at this code. Read it carefully, then answer the questions below. (Note: there are no syntax errors in this code.)

	

import java.util.*;

public class TestTree {

public static void main (String[] args) {

new TestTree().go();

}

public void go() {

Book b1 = new Book("How Cats Work");

Book b2 = new Book("Remix your Body");

Book b3 = new Book("Finding Emo");

TreeSet<Book> tree = new TreeSet<Book>();

tree.add(b1);

tree.add(b2);

tree.add(b3);

System.out.println(tree);

}

}

class Book {

String title;

public Book(String t) {

title = t;

}

}

1). What is the result when you compile this code?

__

2). If it compiles, what is the result when you run the TestTree class?

__

3). If there is a problem (either compile-time or runtime) with this code, how would you fix it?

__

 TreeSet elements MUST be comparable

 TreeSet can’t read the programmer’s mind to figure out how the objects should be sorted. You have to tell the TreeSet
how

 .

To use a TreeSet, one of these things must be true:

	

The elements in the list must be of a type that implements
Comparable

The Book class on the previous page didn’t implement Comparable, so it wouldn’t work at runtime. Think about it, the poor TreeSet’s sole purpose in life is to keep your elements sorted, and once again — it had no idea how to sort Book objects! It doesn’t fail at compile-time, because the TreeSet add() method doesn’t take a Comparable type,The TreeSet add() method takes whatever type you used when you created the TreeSet. In other words, if you say new TreeSet<Book>() the add() method is essentially add(Book). And there’s no requirement that the Book class implement Comparable! But it fails at runtime when you add the second element to the set. That’s the first time the set tries to call one of the object’s compareTo() methods and... can’t.
class Book
implements Comparable

 {
 String title;
 public Book(String t) {
 title = t;
 }

public int compareTo(Object b) {

Book book = (Book) b;

return (title.compareTo(book.title));

}

}

OR

	

You use the TreeSet’s overloaded constructor that takes a
Comparator

TreeSet works a lot like the sort() method — you have a choice of using the element’s compareTo() method, assuming the element type implemented the Comparable interface, OR you can use a custom Comparator that knows how to sort the elements in the set. To use a custom Comparator, you call the TreeSet constructor that takes a Comparator.

public class BookCompare implements Comparator<Book> {

public int compare(Book one, Book two) {

return (one.title.compareTo(two.title));

}

}

class Test {
 public void go() {
 Book b1 = new Book("How Cats Work");
 Book b2 = new Book("Remix your Body");
 Book b3 = new Book("Finding Emo");

BookCompare bCompare = new BookCompare();

TreeSet<Book> tree = new TreeSet<Book>(bCompare);

 tree.add(new Book("How Cats Work");
 tree.add(new Book("Finding Emo");
 tree.add(new Book("Remix your Body");
 System.out.println(tree);
 }
}

 We’ve seen Lists and Sets, now we’ll use a Map

 Lists and Sets are great, but sometimes a Map is the best collection (not Collection with a capital “C” — remember that Maps are part of Java collections but they don’t implement the Collection interface).

Imagine you want a collection that acts like a property list, where you give it a name and it gives you back the value associated with that name. Although keys will often be Strings, they can be any Java object (or, through autoboxing, a primitive).

 [image: image with no caption]

Each element in a Map is actually
 TWO objects — a key
 and a value. You can have duplicate values, but NOT duplicate keys.

Map example

 [image: image with no caption]

 [image: image with no caption]

 Note

When you print a Map, it gives you the key=value, in braces { } instead of the brackets [] you see when you print lists and sets.

 Finally, back to generics

 Remember earlier in the chapter we talked about how methods that take arguments with generic types can be...
weird

 . And we mean weird in the polymorphic sense. If things start to feel strange here, just keep going — it takes a few pages to really tell the whole story.

We’ll start with a reminder on how
array

 arguments work, polymorphically, and then look at doing the same thing with generic lists. The code below compiles and runs without errors:

 Note

If a method argument is an
array

 of Animals, it will also take an array of any Animal subtype.

In other words, if a method is declared as:

void foo(Animal[] a) { }

Assuming Dog extends Animal, you are free to call both:

foo(anAnimalArray); foo(aDogArray);

Here’s how it works with regular
arrays

 :

 [image: image with no caption]

abstract class Animal {
 void eat() {
 System.out.println("animal eating");
 }
}
class Dog extends Animal {
 void bark() { }
}
class Cat extends Animal {
 void meow() { }
}

 Note

The simplified Animal class hierarchy.

 Using polymorphic arguments and generics

So we saw how the whole thing worked with arrays, but will it work the same way when we switch from an array to an ArrayList? Sounds reasonable, doesn’t it?

First, let’s try it with only the Animal ArrayList. We made just a few changes to the go() method:

Passing in just ArrayList<Animal>

 [image: image with no caption]

Compiles and runs just fine

 [image: image with no caption]

 But will it work with ArrayList<Dog> ?

Because of polymorphism, the compiler let us pass a Dog array to a method with an Animal array argument. No problem. And an ArrayList<Animal> can be passed to a method with an ArrayList<Animal> argument. So the big question is, will the ArrayList<Animal> argument accept an ArrayList<Dog>? If it works with arrays, shouldn’t it work here too?

Passing in just ArrayList<Dog>

 [image: image with no caption]

When we compile it:

 [image: image with no caption]

It looked so right, but went so wrong...

 What could happen if it were allowed...

 [image: image with no caption]

Imagine the compiler let you get away with that. It let you pass an ArrayList<Dog
 > to a method declared as:

public void takeAnimals(
ArrayList<Animal

>

 animals) {
 for(Animal a: animals) {
 a.eat();
 }
}

There’s nothing in that method that
looks

 harmful, right? After all, the whole point of polymorphism is that anything an Animal can do (in this case, the eat() method), a Dog can do as well. So what’s the problem with having the method call eat() on each of the Dog references?

Nothing

 . Nothing at all.

There’s nothing wrong with
that

 code. But imagine
this

 code instead:

 [image: image with no caption]

So that’s the problem. There’s certainly nothing wrong with adding a Cat to an ArrayList<Animal>, and that’s the whole point of having an ArrayList of a supertype like Animal — so that you can put all types of animals in a single Animal ArrayList.

But if you passed a Dog ArrayList — one meant to hold ONLY Dogs — to this method that takes an Animal ArrayList, then suddenly you’d end up with a Cat in the Dog list. The compiler knows that if it lets you pass a Dog ArrayList into the method like that, someone could, at runtime, add a Cat to your Dog list. So instead, the compiler just won’t let you take the risk.

If you declare a method to take ArrayList<Animal> it can take ONLY an ArrayList<Animal>, not ArrayList<Dog> or ArrayList<Cat>.

 [image: image with no caption]

Array types are checked again at runtime
 , but collection type checks happen only when you compile

Let’s say you
do

 add a Cat to an array declared as Dog[] (an array that was passed into a method argument declared as Animal[], which is a perfectly legal assignment for arrays).

 [image: image with no caption]

It compiles, but when we run it:

 [image: image with no caption]

 Note

Whew! At least the JVM stopped it.

 [image: image with no caption]

 Wildcards to the rescue

 It looks unusual, but there
is

 a way to create a method argument that can accept an ArrayList of any Animal subtype. The simplest way is to use a
wildcard

 — added to the Java language explicitly for this reason.

 [image: image with no caption]

So now you’re wondering, “What’s the
difference

 ? Don’t you have the same problem as before? The method above isn’t doing anything dangerous — calling a method any Animal subtype is guaranteed to have — but can’t someone still change this to add a Cat to the
animals

 list, even though it’s really an ArrayList<Dog>? And since it’s not checked again at runtime, how is this any different from declaring it without the wildcard?”

And you’d be right for wondering. The answer is NO. When you use the wildcard <?> in your declaration, the compiler won’t let you do anything that adds to the list!

 Note

When you use a wildcard in your method argument, the compiler will STOP you from doing anything that could hurt the list referenced by the method parameter.

You can still invoke methods on the elements in the list, but you cannot add
 elements to the list.

In other words, you can do things
with

 the list elements, but you can’t put
new

 things in the list. So you’re safe at runtime, because the compiler won’t let you do anything that might be horrible at runtime.

So, this is OK inside takeAnimals():

for(Animal a: animals) {
 a.eat();
}

But THIS would not compile:

animals.add(new Cat());

 Alternate syntax for doing the same thing

You probably remember that when we looked at the sort() method, it used a generic type, but with an unusual format where the type parameter was declared before the return type. It’s just a different way of declaring the type parameter, but the results are the same:

This:

public
<T extends Animal>

 void takeThing(ArrayList
<T>

 list)

Does the same thing as this:

public void takeThing(ArrayList
<? extends Animal>

 list)

There are no Dumb Questions

	

Q:

	

Q: If they both do the same thing, why would you use one over the other?

	
A:

	

A:

 It all depends on whether you want to use “T” somewhere else. For example, what if you want the method to have two arguments — both of which are lists of a type that extend Animal? In that case, it’s more efficient to just declare the type parameter once:

public
<T extends Animal>

 void takeThing(ArrayList
<T>

 one, ArrayList
<T>

 two)

Instead of typing:

public void takeThing(ArrayList
<? extends Animal>

 one,
 ArrayList
<? extends Animal>

 two)

BE the compiler, advanced

 [image: image with no caption]

Exercise

Your job is to play compiler and determine which of these statements would compile. But some of this code wasn’t covered in the chapter, so you need to work out the answers based on what you DID learn, applying the “rules” to these new situations. In some cases, you might have to guess, but the point is to come up with a reasonable answer based on what you know so far.

(Note: assume that this code is within a legal class and method.)

Compiles?

	

 [image:]

	

ArrayList<Dog> dogs1 = new ArrayList<Animal>();

	

 [image:]

	

ArrayList<Animal> animals1 = new ArrayList<Dog>();

	

 [image:]

	

List<Animal> list = new ArrayList<Animal>();

	

 [image:]

	

ArrayList<Dog> dogs = new ArrayList<Dog>();

	

 [image:]

	

ArrayList<Animal> animals = dogs;

	

 [image:]

	

List<Dog> dogList = dogs;

	

 [image:]

	

ArrayList<Object> objects = new ArrayList<Object>();

	

 [image:]

	

List<Object> objList = objects;

	

 [image:]

	

ArrayList<Object> objs = new ArrayList<Dog>();

Solution to the “Reverse Engineer” sharpen exercise

 [image: image with no caption]

Exercise Solution

	

Possible Answers:

Comparator,

Comparable,

compareTo(),

compare(),

yes,

no

Given the following compilable statement:

Collections.sort(myArrayList);

	
1.

	
What must the class of the objects stored in myArrayList
 implement?

	

Comparable

	
2.

	
What method must the class of the objects stored in myArrayList
 implement?

	

compareTo()

	
3.

	
Can the class of the objects stored in myArrayList
 implement both Comparator
 AND Comparable
 ?

	

yes

Given the following compilable statement:

Collections.sort(myArrayList, myCompare);

	
4.

	
Can the class of the objects stored in myArrayList
 implement Comparable
 ?

	

yes

	
5.

	
Can the class of the objects stored in myArrayList
 implement Comparator
 ?

	

yes

	
6.

	
Must the class of the objects stored in myArrayList
 implement Comparable
 ?

	

no

	
7.

	
Must the class of the objects stored in myArrayList
 implement Comparator
 ?

	

no

	
8.

	
What must the class of the myCompare
 object implement?

	

Comparator

	
9.

	
What method must the class of the myCompare
 object implement?

	

compare()

BE the compiler solution

Compiles?

	

 [image:]

	

ArrayList<Dog> dogs1 = new ArrayList<Animal>();

	

 [image:]

	

ArrayList<Animal> animals1 = new ArrayList<Dog>();

	

 [image:]

	

List<Animal> list = new ArrayList<Animal>();

	

 [image:]

	

ArrayList<Dog> dogs = new ArrayList<Dog>();

	

 [image:]

	

ArrayList<Animal> animals = dogs;

	

 [image:]

	

List<Dog> dogList = dogs;

	

 [image:]

	

ArrayList<Object> objects = new ArrayList<Object>();

	

 [image:]

	

List<Object> objList = objects;

	

 [image:]

	

ArrayList<Object> objs = new ArrayList<Dog>();

 Chapter 17. Package, Jars and Deployment: Release Your Code

 [image: image with no caption]

It’s time to let go.

 You wrote your code. You tested your code. You refined your code. You told everyone you know that if you never saw a line of code again, that’d be fine. But in the end, you’ve created a work of art. The thing actually runs! But now what?
How

 do you give it to end users?
What

 exactly do you give to end users? What if you don’t even know who your end users are? In these final two chapters, we’ll explore how to organize, package, and deploy your Java code. We’ll look at local, semi-local, and remote deployment options including executable jars, Java Web Start, RMI, and Servlets. In this chapter, we’ll spend most of our time on organizing and packaging your code — things you’ll need to know regardless of your ultimate deployment choice. In the final chapter, we’ll finish with one of the coolest things you can do in Java. Relax. Releasing your code is not saying goodbye. There’s always maintenance...

 Deploying your application

 What exactly
is

 a Java application? In other words, once you’re done with development, what is it that you deliver? Chances are, your end-users don’t have a system identical to yours. More importantly, they don’t have your application. So now it’s time to get your program in shape for deployment into The Outside World. In this chapter, we’ll look at local deployments, including Executable Jars and the part-local/part-remote technology called Java Web Start. In the next chapter, we’ll look at the more remote deployment options, including RMI and Servlets.

 Note

A Java program is a bunch of classes. That’s the output of your development.

The real question is what to do with those classes when you’re done.

 [image: image with no caption]

	

Local

The entire application runs on the end-user’s computer, as a stand-alone, probably GUI, program, deployed as an executable JAR (we’ll look at JAR in a few pages.)

	

Combination of local and remote

The application is distributed with a client portion running on the user’s local system, connected to a server where other parts of the application are running.

	

Remote

The entire Java application runs on a server system, with the client accessing the system through some non-Java means, probably a web browser.

 Brain Barbell

What are the advantages and disadvantages of delivering your Java program as a local, stand-alone application running on the end-user’s computer?

What are the advantages and disadvantages of delivering your Java program as web-based system where the user interacts with a web browser, and the Java code runs as servlets on the server?

But before we really get into the whole deployment thing, let’s take a step back and look at what happens when you’ve finished programming your app and you simply want to pull out the class files to give them to an end-user. What’s really
in

 that working directory?

 Imagine this scenario...

 [image: image with no caption]

Bob’s happily at work on the final pieces of his cool new Java program. After weeks of being in the “I’m-just-one-compile-away” mode, this time he’s really done. The program is a fairly sophisticated GUI app, but since the bulk of it is Swing code, he’s made only nine classes of his own.

At last, it’s time to deliver the program to the client. He figures all he has to do is copy the nine class files, since the client already has the Java API installed. He starts by doing an

ls

 on the directory where all his files are...

 [image: image with no caption]

Whoa! Something strange has happened. Instead of 18 files (nine source code files and nine compiled class files), he sees 31 files, many of which have very strange names like:

Account$FileListener.class

Chart$SaveListener.class

and on it goes. He had completely forgotten that the compiler has to generate class files for all those inner class GUI event listeners he made, and that’s what all the strangely-named classes are.

Now he has to carefully extract all the class files he needs. If he leaves even one of them out, his program won’t work. But it’s tricky since he doesn’t want to accidentally send the client one of his
source

 code files, yet everything is in the same directory in one big mess.

 Separate source code and class files

A single directory with a pile of source code and class files is a mess. It turns out, Bob should have been organizing his files from the beginning, keeping the source code and compiled code separate. In other words, making sure his compiled class files didn’t land in the same directory as his source code.

The key is a combination of directory structure organization and the

-d

compiler option.

But I thought I didn’t have a choice about putting the class files in with the source files. When you compile, they just go there, so what do I do?

There are dozens of ways you can organize your files, and your company might have a specific way they want you to do it. We recommend an organizational scheme that’s become almost standard, though.

 [image: image with no caption]

With this scheme, you create a project directory, and inside that you create a directory called
source

 and a directory called
classes

 . You start by saving your source code (.java files) into the
source

 directory. Then the trick is to compile your code in such a way that the output (the .class files) ends up in the

classes

 directory.

And there’s a nice compiler flag,

-d

 , that lets you do that.

Compiling with the

-d

(directory) flag

 [image: image with no caption]

By using the

-d

 flag,
you

 get to decide which

directory

 the compiled code lands in, rather than accepting the default of class files landing in the same directory as the source code. To compile all the .java files in the source directory, use:

 [image: image with no caption]

Running your code

%cd MyProject/classes

%java MyApp

 Note

run your program from the ‘classes’ directory.

 [image: image with no caption]

(troubleshooting note: everything in this chapter assumes that the current working directory (i.e. the “.”) is in your classpath. If you have explicitly set a classpath environment variable, be certain that it contains the “.”)

 Put your Java in a JAR

 [image: image with no caption]

 A
JAR

 file is a
J

 ava
AR

 chive. It’s based on the pkzip file format, and it lets you bundle all your classes so that instead of presenting your client with 28 class files, you hand over just a single JAR file. If you’re familiar with the tar command on UNIX, you’ll recognize the jar tool commands. (Note: when we say JAR in all caps, we’re referring to the archive
file

 . When we use lowercase, we’re referring to the
jar

tool

 you use to create JAR files.)

The question is, what does the client
do

 with the JAR? How do you get it to
run

 ?

You make the JAR

executable

 .

An executable JAR means the end-user doesn’t have to pull the class files out before running the program. The user can run the app while the class files are still in the JAR. The trick is to create a

manifest

 file, that goes in the JAR and holds information about the files in the JAR. To make a JAR executable, the manifest must tell the JVM
which class has the main() method!

Making an executable JAR

	

Make sure all of your class files are in the classes
 directory

We’re going to refine this in a few pages, but for now, keep all your class files sitting in the directory named ‘classes’.

 [image: image with no caption]

	

Create a manifest.txt file that states which class has the main() method

Make a text file named manifest.txt that has one line:

 [image: image with no caption]

Press the return key after typing the Main-Class line, or your manifest may not work correctly. Put the manifest file into the “classes” directory.

 [image: image with no caption]

	

Run the jar tool to create a JAR file that contains everything in the classes directory, plus the manifest.

%cd MyProject/classes

%jar -cvmf manifest.txt app1.jar *.class

OR

%jar -cvmf manifest.txt app1.jar MyApp.class

 [image: image with no caption]

 [image: image with no caption]

 Note

Most 100% local Java apps are deployed as executable JAR files.

 Running (executing) the JAR

Java (the JVM) is capable of loading a class from a JAR, and calling the main() method of that class. In fact, the entire application can
stay

 in the JAR. Once the ball is rolling (i.e., the main() method starts running), the JVM doesn’t care
where

 your classes come from, as long as it can find them. And one of the places the JVM looks is within any JAR files in the classpath. If it can
see

 a JAR, the JVM will
look

 in that JAR when it needs to find and load a class.

 [image: image with no caption]

Depending on how your operating system is configured, you might even be able to simply double-click the JAR file to launch it. This works on most flavors of Windows, and Mac OS X. You can usually make this happen by selecting the JAR and telling the OS to “Open with...” (or whatever the equivalent is on your operating system).

There are no Dumb Questions

	

Q:

	

Q: Why can’t I just JAR up an entire directory?

	
A:

	

A:

 The JVM looks inside the JAR and expects to find what it needs
right there

 . It won’t go digging into other directories, unless the class is part of a package, and even
then

 the JVM looks only in the directories that match the package statement.

	

Q:

	

Q: What did you just say?

	
A:

	

A:

 You can’t put your class files into some arbitrary directory and JAR them up that way. But if your classes belong to packages, you can JAR up the entire package directory structure. In fact, you
must

 . We’ll explain all this on the next page, so you can relax.

 Put your classes in packages!

 So you’ve written some nicely reusable class files, and you’ve posted them in your internal development library for other programmers to use. While basking in the glow of having just delivered some of the (in your humble opinion) best examples of OO ever conceived, you get a phone call. A frantic one. Two of your classes have the same name as the classes Fred just delivered to the library. And all hell is breaking loose out there, as naming collisions and ambiguities bring development to its knees.

And all because you didn’t use packages! Well, you did use packages, in the sense of using classes in the Java API that are, of course, in packages. But you didn’t put your own classes into packages, and in the Real World, that’s Really Bad.

We’re going to modify the organizational structure from the previous pages, just a little, to put classes into a package, and to JAR the entire package. Pay very close attention to the subtle and picky details. Even the tiniest deviation can stop your code from compiling and/or running.

 [image: image with no caption]

Package structure of the Java API for:

java.text.NumberFormat

java.util.ArrayList

java.awt.FlowLayout

java.awt.event.ActionEvent

java.net.Socket

 Packages prevent class name conflicts

Although packages aren’t just for preventing name collisions, that’s a key feature. You might write a class named Customer and a class named Account and a class named ShoppingCart. And what do you know, half of all developers working in enterprise e-commerce have probably written classes with those names. In an OO world, that’s just dangerous. If part of the point of OO is to write reusable components, developers need to be able to piece together components from a variety of sources, and build something new out of them. Your components have to be able to ‘play well with others’, including those you didn’t write or even know about.

Remember way back in Chapter 6
 when we discussed how a package name is like the full name of a class, technically known as the
fully-qualified name

 . Class ArrayList is really

java.util.ArrayList

 , JButton is really

javax.swing.JButton

 , and Socket is really

java.net.Socket

 . Notice that two of those classes, ArrayList and Socket, both have
java

 as their “first name”. In other words, the first part of their fully-qualified names is “java”. Think of a hierarchy when you think of package structures, and organize your classes accordingly.

 [image: image with no caption]

What does this picture look like to you? Doesn’t it look a whole lot like a directory
 hierarchy?

 [image: image with no caption]

 Note

Packages can prevent name conflicts, but only if you choose a package name that’s guaranteed to be unique. The best way to do that is to preface your packages with your reverse domain name.

 [image: image with no caption]

 Preventing package name conflicts

Putting your class in a package reduces the chances of naming conflicts with other classes, but what’s to stop two programmers from coming up with identical
package

 names? In other words, what’s to stop two programmers, each with a class named Account, from putting the class in a package named shopping.customers? Both classes, in that case, would
still

 have the same name:

shopping.customers.Account

Sun strongly suggests a package naming convention that greatly reduces that risk — prepend every class with your reverse domain name. Remember, domain names are guaranteed to be unique. Two different guys can be named Bartholomew Simpson, but two different domains cannot be named doh.com.

 [image: image with no caption]

To put your class in a package:

 Note

You must
 put a class into a directory structure that matches the package hierarchy.

	

Choose a package name

We’re using
com.headfirstjava

 as our example. The class name is PackageExercise, so the fully-qualified name of the class is now:
com.headfirstjava.PackageExercise

 .

	

Put a package statement in your class

It must be the first statement in the source code file, above any import statements. There can be only one package statement per source code file, so
all classes in a source file must be in the same package

 . That includes inner classes, of course.

 Note

package com.headfirstjava;

import javax.swing.*;

public class PackageExercise {
 // life-altering code here
}

	

Set up a matching directory structure

It’s not enough to
say

 your class is in a package, by merely putting a package statement in the code. Your class isn’t truly in a package until you put the class in a matching directory structure. So, if the fully-qualified class name is com.headfirstjava.PackageExercise, you
must

 put the PackageExercise source code in a directory named
headfirstjava

 , which
must

 be in a directory named
com

 .

It is
possible

 to compile without doing that, but trust us — it’s not worth the other problems you’ll have. Keep your source code in a directory structure that matches the package structure, and you’ll avoid a ton of painful headaches down the road.

 [image: image with no caption]

Set up a matching directory structure for both the source and classes trees.

 Compiling and running with packages

 When your class is in a package, it’s a little trickier to compile and run. The main issue is that both the compiler and JVM have to be capable of finding your class and all of the other classes it uses. For the classes in the core API, that’s never a problem. Java always knows where its own stuff is. But for your classes, the solution of compiling from the same directory where the source files are simply won’t work (or at least not
reliably

). We guarantee, though, that if you follow the structure we describe on this page, you’ll be successful. There are other ways to do it, but this is the one we’ve found the most reliable and the easiest to stick to.

Compiling with the

-d

(directory) flag

 [image: image with no caption]

To compile all the .java files in the com.headfirstjava package, use:

 [image: image with no caption]

Running your code

 [image: image with no caption]

 Note

You MUST give the fully-qualified class name! The JVM will see that, and immediately look inside its current directory (classes) and expect to find a directory named com, where it expects to find a directory named headfirstjava, and in there it expects to find the class. If the class is in the “com” directory, or even in “classes”, it won’t work!

 [image: image with no caption]

 The -d flag is even cooler than we said

Compiling with the

-d

 flag is wonderful because not only does it let you send your compiled class files into a directory other than the one where the source file is, but it also knows to put the class into the correct directory structure for the package the class is in.

But it gets even better!

Let’s say that you have a nice directory structure all set up for your source code. But you haven’t set up a matching directory structure for your classes directory. Not a problem! Compiling with -d tells the compiler to not just
put

 your classes into the correct directory tree, but to
build

 the directories if they don’t exist.

 [image: image with no caption]

 Note

If the package directory structure doesn’t exist under the ‘classes’ directory, the compiler will build the directories if you use the -d flag.

So you don’t actually have to physically create the directories under the ‘classes’ root directory. And in fact, if you let the compiler do it there’s no chance of a typo.

The

-d

flag tells the compiler, “Put the class into its package directory structure, using the class specified after the

-d

as the root directory. But... if the directories aren’t there, create them first and then put the class in the right place!”

There are no Dumb Questions

	

Q:

	

Q: I tried to cd into the directory where my main class was, but now the JVM says it can’t find my class! But it’s right THERE in the current directory!

	
A:

	

A:

 Once your class is in a package, you can’t call it by its ‘short’ name. You MUST specify, at the command-line, the fully-qualified name of the class whose main() method you want to run. But since the fully-qualified name includes the
package

 structure, Java insists that the class be in a matching
directory

 structure. So if at the command-line you say:

%java com.foo.Book

the JVM will look in its current directory (and the rest of its classpath), for a directory named “com”.

It will not look for a class named Book, until it has found a directory named “com” with a directory inside named “foo”.

 Only then will the JVM accept that its found the correct Book class. If it finds a Book class anywhere else, it assumes the class isn’t in the right structure, even if it is! The JVM won’t for example, look back up the directory tree to say, “Oh, I can see that above us is a directory named com, so this must be the right package...”

 Making an executable JAR with packages

 [image: image with no caption]

 When your class is in a package, the package directory structure must be inside the JAR! You can’t just pop your classes in the JAR the way we did pre-packages. And you must be sure that you don’t include any other directories above your package. The first directory of your package (usually com) must be the first directory within the JAR! If you were to accidentally include the directory
above

 the package (e.g. the “classes” directory), the JAR wouldn’t work correctly.

Making an executable JAR

	

Make sure all of your class files are within the correct package structure, under the classes directory.

 [image: image with no caption]

	

Create a manifest.txt file that states which class has the main() method, and be sure to use the fully-qualified class name!

Make a text file named manifest.txt that has a single line:

Main-Class: com.headfirstjava.PackageExercise

Put the manifest file into the classes directory

 [image: image with no caption]

	

Run the jar tool to create a JAR file that contains the package directories plus the manifest

The only thing you need to include is the ‘com’ directory, and the entire package (and all classes) will go into the JAR.

 [image: image with no caption]

 [image: image with no caption]

 So where did the manifest file go?

 Why don’t we look inside the JAR and find out? From the command-line, the jar tool can do more than just create and run a JAR. You can extract the contents of a JAR (just like ‘unzipping’ or ‘untarring’).

Imagine you’ve put the packEx.jar into a directory named Skyler.

jar commands for listing and extracting

	

List the contents of a JAR

 [image: image with no caption]

	

Extract the contents of a JAR (i.e. unjar)

 [image: image with no caption]

 [image: image with no caption]

 Note

META-INF stands for ‘meta information’. The jar tool creates the META-INF directory as well as the MANIFEST.MF file. It also takes the contents of your manifest file, and puts it into the MANIFEST.MF file. So, your manifest
file

 doesn’t go into the JAR, but the
contents

 of it are put into the ‘real’ manifest (MANIFEST.MF).

Sharpen your pencil

 [image: image with no caption]

Given the package/directory structure in this picture, figure out what you should type at the command-line to compile, run, create a JAR, and execute a JAR. Assume we’re using the standard where the package directory structure starts just below
source

 and
classes

 . In other words, the
source

 and
classes

 directories are not part of the package.

Compile:

%cd source

%javac ________________________________

Run:

%cd ___________

%java _________________________________

Create a JAR

%cd ___________

%______________________________________

Execute a JAR

%cd ___________

% _____________________________________

Bonus question: What’s wrong with the package name?

There are no Dumb Questions

	

Q:

	

Q: What happens if you try to run an executable JAR, and the end-user doesn’t have java installed?

	
A:

	

A:

 Nothing will run, since without a JVM, Java code can’t run. The end-user must have Java installed.

	

Q:

	

Q: How can I get Java installed on the end-user’s machine?

Ideally, you can create a custom installer and distribute it along with your application. Several companies offer installer programs ranging from simple to extremely powerful. An installer program could, for example, detect whether or not the end-user has an appropropriate version of Java installed, and if not, install and configure Java before installing your application. Installshield, InstallAnywhere, and DeployDirector all offer Java installer solutions.

Another cool thing about some of the installer programs is that you can even make a deployment CD-ROM that includes installers for all major Java platforms, so... one CD to rule them all. If the user’s running on Solaris, for example, the Solaris version of Java is installed. On Windows, the Windows, version, etc. If you have the budget, this is by far the easiest way for your end-users to get the right version of Java installed and configured.

Bullet Points

	Organize your project so that your source code and class files are not in the same directory.

	A standard organization structure is to create a
project

 directory, and then put a
source

 directory and a
classes

 directory inside the project directory.

	Organizing your classes into packages prevents naming collisions with other classes, if you prepend your reverse domain name on to the front of a class name.

	To put a class in a package, put a package statement at the top of the source code file, before any import statements:

package com.wickedlysmart;

	To be in a package, a class must be in a
directory structure that exactly matches the package structure

 . For a class, com.wickedlysmart.Foo, the Foo class must be in a directory named
wickedlysmart

 , which is in a directory named
com

 .

	To make your compiled class land in the correct package directory structure under the
classes

 directory, use the

-d

 compiler flag:

%

cd source

%
javac -d ../classes com/wickedlysmart/Foo.java

	To run your code, cd to the classes directory, and give the fully-qualified name of your class:

% cd classes

%
java com.wickedlysmart.Foo

	You can bundle your classes into JAR (Java ARchive) files. JAR is based on the pkzip format.

	You can make an executable JAR file by putting a manifest into the JAR that states which class has the main() method. To create a manifest file, make a text file with an entry like the following (for example):

Main-Class: com.wickedlysmart.Foo

	Be sure you hit the return key after typing the Main-Class line, or your manifest file may not work.

	To create a JAR file, type:

jar -cvfm manifest.txt MyJar.jar com

	The entire package directory structure (and
only

 the directories matching the package) must be immediately inside the JAR file.

	To run an executable JAR file, type:

java -jar MyJar.jar

 [image: image with no caption]

 [image: image with no caption]

 Note

End-users launch a Java Web Start app by clicking on a link in a Web page. But once the app downloads, it runs outside the browser, just like any other stand-alone Java application. In fact, a Java Web Start app is just an executable JAR that’s distributed over the Web.

 Java Web Start

With Java Web Start (JWS), your application is launched for the first time from a Web browser (get it?
Web Start

 ?) but it runs as a stand-alone application (well,
almost

), without the constraints of the browser. And once it’s downloaded to the end-user’s machine (which happens the first time the user accesses the browser link that starts the download), it
stays

 there.

Java Web Start is, among other things, a small Java program that lives on the client machine and works much like a browser plug-in (the way, say, Adobe Acrobat Reader opens when your browser gets a .pdf file). This Java program is called the
Java Web Start ‘helper app’

 , and its key purpose is to manage the downloading, updating, and launching (executing) of
your

 JWS apps.

When JWS downloads your application (an executable JAR), it invokes the main() method for your app. After that, the end-user can launch your application directory from the JWS helper app
without

 having to go back through the Web page link.

But that’s not the best part. The amazing thing about JWS is its ability to detect when even a small part of application (say, a single class file) has changed on the server, and — without any end-user intervention — download and integrate the updated code.

There’s still an issue, of course, like how does the end-user
get

 Java and Java Web Start? They need both — Java to run the app, and Java Web Start (a small Java application itself) to handle retrieving and launching the app. But even
that

 has been solved. You can set things up so that if your end-users don’t have JWS, they can download it from Sun. And if they
do

 have JWS, but their version of Java is out-of-date (because you’ve specified in your JWS app that you need a specific version of Java), the Java 2 Standard Edition can be downloaded to the end-user machine.

Best of all, it’s simple to use. You can serve up a JWS app much like any other type of Web resource such as a plain old HTML page or a JPEG image. You set up a Web (HTML) page with a link to your JWS application, and you’re in business.

In the end, your JWS application isn’t much more than an executable JAR that end-users can download from the Web.

How Java Web Start works

	

The client clicks on a Web page link to your JWS application (a .jnlp file).

The Web page link

Click

 [image: image with no caption]

	

The Web server (HTTP) gets the request and sends back a .jnlp file (this is NOT the JAR).

The .jnlp file is an XML document that states the name of the application’s executable JAR file.

 [image: image with no caption]

	

Java Web Start (a small ‘helper app’ on the client) is started up by the browser. The JWS helper app reads the .jnlp file, and asks the server for the MyApp.jar file.

 [image: image with no caption]

	

The Web server ‘serves’ up the requested .jar file.

 [image: image with no caption]

	

Java Web Start gets the JAR and starts the application by calling the specified main() method (just like an executable JAR).

Next time the user wants to run this app, he can open the Java Web Start application and from there launch your app, without even being online.

 [image: image with no caption]

 The .jnlp file

 To make a Java Web Start app, you need to create a .jnlp (Java Network Launch Protocol) file that describes your application. This is the file the JWS app reads and uses to find your JAR and launch the app (by calling the JAR’s main() method). A .jnlp file is a simple XML document that has several different things you can put in, but as a minimum, it should look like this:

 [image: image with no caption]

Steps for making and deploying a Java Web Start app

	

Make an executable JAR for your application.

 [image: image with no caption]

	

Write a .jnlp file.

 [image: image with no caption]

	

Place your JAR and .jnlp files on your Web server.

 [image: image with no caption]

	

Add a new mime type to your Web server.

application/x-java-jnlp-file

This causes the server to send the .jnlp file with the correct header, so that when the browser receives the .jnlp file it knows what it is and knows to start the JWS helper app.

 [image: image with no caption]

	

Create a Web page with a link to your .jnlp file

<HTML>

<BODY>

Launch My Application

</BODY>

</HTML>

 [image: image with no caption]

What’s First?

Look at the sequence of events below, and place them in the order in which they occur in a JWS application.

 [image: image with no caption]

Exercise

 [image: image with no caption]

	

	

	

	

	

	

	

There are no Dumb Questions

	

Q:

	

Q: How is Java Web Start different from an applet?

	
A:

	

A:

 Applets can’t live outside of a Web browser. An applet is downloaded from the Web as part of a Web page rather than simply from a Web page. In other words, to the browser, the applet is just like a JPEG or any other resource. The browser uses either a Java plug-in or the browser’s own built-in Java (far less common today) to run the applet. Applets don’t have the same level of functionality for things such as automatic updating, and they must always be launched from the browser. With JWS applications, once they’re downloaded from the Web, the user doesn’t even have to be using a browser to relaunch the application locally. Instead, the user can start up the JWS helper app, and use it to launch the already-downloaded application again.

	

Q:

	

Q: What are the security restrictions of JWS?

	
A:

	

A:

 JWS apps have several limitations including being restricted from reading and writing to the user’s hard drive. But... JWS has its own API with a special open and save dialog box so that, with the user’s permission, your app can save and read its own files in a special, restricted area of the user’s drive.

Bullet Points

	Java Web Start technology lets you deploy a stand-alone client application from the Web.

	Java Web Start includes a ‘helper app’ that must be installed on the client (along with Java).

	A Java Web Start (JWS) app has two pieces: an executable JAR and a .jnlp file.

	A .jnlp file is a simple XML document that describes your JWS application. It includes tags for specifying the name and location of the JAR, and the name of the class with the main() method.

	When a browser gets a .jnlp file from the server (because the user clicked on a link to the .jnlp file), the browser starts up the JWS helper app.

	The JWS helper app reads the .jnlp file and requests the executable JAR from the Web server.

	When the JWS gets the JAR, it invokes the main() method (specified in the .jnlp file).

True or False

 [image: image with no caption]

Exercise

We explored packaging, deployment, and JWS in this chapter. Your job is to decide whether each of the following statements is true or false.

	The Java compiler has a flag, -d, that lets you decide where your .class files should go.

	A JAR is a standard directory where your .class files should reside.

	When creating a Java Archive you must create a file called jar.mf.

	The supporting file in a Java Archive declares which class has the main() method.

	JAR files must be unzipped before the JVM can use the classes inside.

	At the command line, Java Archives are invoked using the -arch flag.

	Package structures are meaningfully represented using hierarchies.

	Using your company’s domain name is not recommended when naming packages.

	Different classes within a source file can belong to different packages.

	When compiling classes in a package, the -p flag is highly recommended.

	When compiling classes in a package, the full name must mirror the directory tree.

	Judicious use of the -d flag can help to assure that there are no typos in your class tree.

	Extracting a JAR with packages will create a directory called meta-inf.

	Extracting a JAR with packages will create a file called manifest.mf.

	The JWS helper app always runs in conjunction with a browser.

	JWS applications require a .nlp (Network Launch Protocol) file to work properly.

	A JWS’s main method is specified in its JAR file.

Summary-Cross 7.0

 [image: image with no caption]

 Anything in the book is fair game for this one!

Across

6. Won’t travel

9. Don’t split me

10. Release-able

11. Got the key

12. I/O gang

15. Flatten

17. Encapsulated returner

18. Ship this one

21. Make it so

22. I/O sieve

25. Disk leaf

26. Mine is unique

27. GUI’s target

29. Java team

30. Factory

32. For a while

33. Atomic * 8

35. Good as new

37. Pairs event

41. Where do I start

42. A little firewall

Down

1. Pushy widgets

2. ____ of my desire

3. ‘Abandoned’ moniker

4. A chunk

5. Math not trig

6. Be brave

7. Arrange well

8. Swing slang

11. I/O canals

13. Organized release

14. Not for an instance

16. Who’s allowed

19. Efficiency expert

20. Early exit

21. Common wrapper

23. Yes or no

24. Java jackets

26. Not behavior

28. Socket’s suite

30. I/O cleanup

31. Milli-nap

34. Trig method

36. Encaps method

38. JNLP format

39. VB’s final

40. Java branch

Exercise Solutions

 [image: image with no caption]

 [image: image with no caption]

	

True

	
1.

	
The Java compiler has a flag, -d, that lets you decide where your .class files should go.

	

False

	
2.

	
A JAR is a standard directory where your .class files should reside.

	

False

	
3.

	
When creating a Java Archive you must create a file called jar,mf.

	

True

	
4.

	
The supporting file in a Java Archive declares which class has the main() method.

	

False

	
5.

	
JAR files must be unzipped before the JVM can use the classes inside.

	

False

	
6.

	
At the command line, Java Archives are invoked using the -arch flag.

	

True

	
7.

	
Package structures are meaningfully represented using hierarchies.

	

False

	
8.

	
Using your company’s domain name is not recommended when naming packages.

	

False

	
9.

	
Different classes within a source file can belong to different packages.

	

False

	
10.

	
When compiling classes in a package, the -p flag is highly recommended.

	

True

	
11.

	
When compiling classes in a package, the full name must mirror the directory tree.

	

True

	
12.

	
Judicious use of the -d flag can help to assure that there are no typos in your tree.

	

True

	
13.

	
Extracting a JAR with packages will create a directory called meta-inf.

	

True

	
14.

	
Extracting a JAR with packages will create a file called manifest.mf.

	

False

	
15.

	
The JWS helper app always runs in conjunction with a browser.

	

False

	
16.

	
JWS applications require a .nlp (Network Launch Protocol) file to work properly.

	

False

	
17.

	
A JWS’s main method is specified in its JAR file.

Summary-Cross 7.0

 [image: image with no caption]

 Chapter 18. Remote Deployment with RMI: Distributed Computing

 [image: image with no caption]

Being remote doesn’t have to be a bad thing.

 Sure, things
are

 easier when all the parts of your application are in one place, in one heap, with one JVM to rule them all. But that’s not always possible. Or desirable. What if your application handles powerful computations, but the end-users are on a wimpy little Java-enabled device? What if your app needs data from a database, but for security reasons, only code on your server can access the database? Imagine a big e-commerce back-end, that has to run within a transaction-management system? Sometimes, part of your app must run on a server, while another part (usually a client) must run on a
different

 machine. In this chapter, we’ll learn to use Java’s amazingly simple Remote Method Invocation (RMI) technology. We’ll also take a quick peek at Servlets, Enterprise Java Beans (EJB), and Jini, and look at the ways in which EJB and Jini
depend

 on RMI. We’ll end the book by writing one of the coolest things you can make in Java, a
universal service browser

 .

 [image: image with no caption]

 Method calls are always between two objects on the same
 heap

 So far in this book, every method we’ve invoked has been on an object running in the same virtual machine as the caller. In other words, the calling object and the callee (the object we’re invoking the method on) live on the same heap.

 [image: image with no caption]

In most applications, when one object calls a method on another, both objects are on the same heap. In other words, both are running within the same JVM.

class Foo {

void go() {

Bar b = new Bar();

b.doStuff();

}

public static void main (String[] args) {

Foo f = new Foo();

f.go();

}

}

In the code above, we know that the Foo instance referenced by
f

 and the Bar object referenced by
b

 are both on the same heap, run by the same JVM. Remember, the JVM is responsible for stuffing bits into the reference variable that represent
how to get to an object on the heap

 . The JVM always knows where each object is, and how to get to it. But the JVM can know about references on only its
own

 heap! You can’t, for example, have a JVM running on one machine knowing about the heap space of a JVM running on a
different

 machine. In fact, a JVM running on one machine can’t know anything about a different JVM running on the
same

 machine. It makes no difference if the JVMs are on the same or different physical machines; it matters only that the two JVMs are, well, two different invocations of the JVM.

 What if you want to invoke a method on an object running on another machine?

We know how to get information from one machine to another — with Sockets and I/O. We open a Socket connection to another machine, and get an OutputStream and write some data to it.

But what if we actually want to
call a method

 on something running in another machine... another JVM? Of course we could always build our own protocol, and when you send data to a ServerSocket the server could parse it, figure out what you meant, do the work, and send back the result on another stream. What a pain, though. Think how much nicer it would be to just get a reference to the object on the other machine, and call a method.

Imagine two computers...

 [image: image with no caption]

 [image: image with no caption]

Big has something Little wants. Compute power
 .

Little wants to send some data to Big, so that Big can do the heavy computing.

Little wants simply to call a method...

double doCalcUsingDatabase(CalcNumbers numbers)

and get back the result.

But how can Little get a reference
 to an object on Big?

 Object A, running on Little, wants to call a method on Object B, running on Big

The question is, how do we get an object on one machine (which means a different heap/JVM) to call a method on another machine?

 [image: image with no caption]

 But you can’t do that

Well, not directly anyway. You can’t get a reference to something on another heap. If you say:

Dog d = ???

Whatever
d

 is referencing must be in the same heap space as the code running the statement.

But imagine you want to design something that will use Sockets and I/O to communicate your intention (a method invocation on an object running on another machine), yet still
feel

 as though you were making a local method call.

In other words, you want to cause a method invocation on a
remote

 object (i.e., an object in a heap somewhere else), but with code that lets you
pretend

 that you’re invoking a method on a local object. The ease of a plain old everyday method call, but the power of remote method invocation. That’s our goal.

That’s what RMI (Remote Method Invocation) gives you!

But let’s step back and imagine how you would design RMI if you were doing it yourself. Understanding what you’d have to build yourself will help you learn how RMI works.

A design for remote method calls

Create four things: server, client, server helper, client helper

	Create client and server apps. The server app is the
remote service

 that has an object with the method that the client wants to invoke.

 [image: image with no caption]

	Create client and server ‘helpers’. They’ll handle all the low-level networking and I/O details so your client and service can pretend like they’re in the same heap.

 [image: image with no caption]

 The role of the ‘helpers’

The ‘helpers’ are the objects that actually do the communicating. They make it possible for the client to
act

 as though it’s calling a method on a local object. In fact, it
is

 . The client calls a method on the client helper,
as if the client helper were the actual service. The client helper is a proxy for the Real Thing.

In other words, the client object
thinks

 it’s calling a method on the remote service, because the client helper is
pretending

 to be the service object.

Pretending to be the thing with the method the client wants to call!

 Note

Your client object gets to act like it’s making remote method calls. But what it’s really
 doing is calling methods on a heap-local ‘proxy’ object that handles all the low-level details of Sockets and streams.

But the client helper isn’t really the remote service. Although the client helper
acts

 like it (because it has the same method that the service is advertising), the client helper doesn’t have any of the actual method logic the client is expecting. Instead, the client helper contacts the server, transfers information about the method call (e.g., name of the method, arguments, etc.), and waits for a return from the server.

On the server side, the service helper receives the request from the client helper (through a Socket connection), unpacks the information about the call, and then invokes the
real

 method on the
real

 service object. So to the service object, the call is local. It’s coming from the service helper, not a remote client.

The service helper gets the return value from the service, packs it up, and ships it back (over a Socket’s output stream) to the client helper. The client helper unpacks the information and returns the value to the client object.

 [image: image with no caption]

How the method call happens

	Client object calls doBigThing() on the client helper object

 [image: image with no caption]

	Client helper packages up information about the call (arguments, method name, etc.) and ships it over the network to the service helper.

 [image: image with no caption]

	Service helper unpacks the information from the client helper, finds out which method to call (and on which object) and invokes the real
 method on the real
 service object.

 [image: image with no caption]

 Java RMI gives you the client and service helper objects!

 In Java, RMI builds the client and service helper objects for you, and it even knows how to make the client helper look like the Real Service. In other words, RMI knows how to give the client helper object the same methods you want to call on the remote service.

Plus, RMI provides all the runtime infrastructure to make it work, including a lookup service so that the client can find and get the client helper (the proxy for the Real Service).

With RMI, you don’t write
any

 of the networking or I/O code yourself. The client gets to call remote methods (i.e. the ones the Real Service has) just like normal method calls on objects running in the client’s own local JVM.

Almost.

There is one difference between RMI calls and local (normal) method calls. Remember that even though to the client it looks like the method call is local, the client helper sends the method call across the network. So there is networking and I/O. And what do we know about networking and I/O methods?

They’re risky!

They throw exceptions all over the place.

So, the client does have to acknowledge the risk. The client has to acknowledge that when it calls a remote method, even though to the client it’s just a local call to the proxy/helper object, the call
ultimately

 involves Sockets and streams. The client’s original call is
local

 , but the proxy turns it into a
remote

 call. A remote call just means a method that’s invoked on an object on another JVM.
How

 the information about that call gets transferred from one JVM to another depends on the protocol used by the helper objects.

With RMI, you have a choice of protocols: JRMP or IIOP. JRMP is RMI’s ‘native’ protocol, the one made just for Java-to-Java remote calls. IIOP, on the other hand, is the protocol for CORBA (Common Object Request Broker Architecture), and lets you make remote calls on things which aren’t necessarily Java objects. CORBA is usually
much

 more painful than RMI, because if you don’t have Java on both ends, there’s an awful lot of translation and conversion that has to happen.

But thankfully, all we care about is Java-to-Java, so we’re sticking with plain old, remarkably easy RMI.

In RMI, the client helper is a ‘stub’ and the server helper is a ‘skeleton’.

 [image: image with no caption]

Making the Remote Service

This is an
overview

 of the five steps for making the remote service (that runs on the server). Don’t worry, each step is explained in detail over the next few pages.

 [image: image with no caption]

Step one:

Make a
Remote Interface

The remote interface defines the methods that a client can call remotely. It’s what the client will use as the polymorphic class type for your service. Both the Stub and actual service will implement this!

 [image: image with no caption]

Step two:

Make a
Remote Implementation

This is the class that does the Real Work. It has the real implementation of the remote methods defined in the remote interface. It’s the object that the client wants to call methods on.

 [image: image with no caption]

Step three:

Generate the
stubs

 and
skeletons

 using rmic

These are the client and server ‘helpers’. You don’t have to create these classes or ever look at the source code that generates them. It’s all handled automatically when you run the rmic tool that ships with your Java development kit.

 [image: image with no caption]

Step four:

Start the
RMI registry

 (rmiregistry)

The
rmiregistry

 is like the white pages of a phone book. It’s where the user goes to get the proxy (the client stub/helper object).

 [image: image with no caption]

Step five:

Start the
remote service

You have to get the service object up and running. Your service implementation class instantiates an instance of the service and registers it with the RMI registry. Registering it makes the service available for clients.

 [image: image with no caption]

Step one: Make a Remote Interface

 [image: image with no caption]

	

Extend java.rmi.Remote

Remote is a ‘marker’ interface, which means it has no methods. It has special meaning for RMI, though, so you must follow this rule. Notice that we say ‘extends’ here. One interface is allowed to
extend

 another interface.

 [image: image with no caption]

	Declare that all methods
throw a RemoteException

The remote interface is the one the client uses as the polymorphic type for the service. In other words, the client invokes methods on something that implements the remote interface. That something is the stub, of course, and since the stub is doing networking and I/O, all kinds of Bad Things can happen. The client has to acknowledge the risks by handling or declaring the remote exceptions. If the methods in an interface declare exceptions, any code calling methods on a reference of that type (the interface type) must handle or declare the exceptions.

 [image: image with no caption]

	

Be sure arguments and return values are primitives or Serializable

Arguments and return values of a remote method must be either primitive or Serializable. Think about it. Any argument to a remote method has to be packaged up and shipped across the network, and that’s done through Serialization. Same thing with return values. If you use primitives, Strings, and the majority of types in the API (including arrays and collections), you’ll be fine. If you are passing around your own types, just be sure that you make your classes implement Serializable.

 [image: image with no caption]

Step two: Make a Remote Implementation

 [image: image with no caption]

	

Implement the Remote interface

Your service has to implement the remote interface — the one with the methods your client is going to call.

 [image: image with no caption]

	

Extend UnicastRemoteObject

In order to work as a remote service object, your object needs some functionality related to ‘being remote’. The simplest way is to extend UnicastRemoteObject (from the java.rmi.server package) and let that class (your superclass) do the work for you.

public class MyRemoteImpl extends UnicastRemoteObject

 implements MyRemote {

	

Write a no-arg constructor that declares a RemoteException

Your new superclass, UnicastRemoteObject, has one little problem — its constructor throws a RemoteException. The only way to deal with this is to declare a constructor for your remote implementation, just so that you have a place to declare the RemoteException. Remember, when a class is instantiated, its superclass constructor is always called. If your superclass constructor throws an exception, you have no choice but to declare that your
 constructor also throws an exception.

 [image: image with no caption]

	

Register the service with the RMI registry

Now that you’ve got a remote service, you have to make it available to remote clients. You do this by instantiating it and putting it into the RMI registry (which must be running or this line of code fails). When you register the implementation object, the RMI system actually puts the
stub

 in the registry, since that’s what the client really needs. Register your service using the static rebind() method of the java.rmi.Naming class.

 [image: image with no caption]

Step three: generate stubs and skeletons

	

Run rmic on the remote implementation class (not the remote interface)

The rmic tool, that comes with the Java software development kit, takes a service implementation and creates two new classes, the stub and the skeleton. It uses a naming convention that is the name of your remote implementation, with either _Stub or _Skel added to the end. There are other options with rmic, including not generating skeletons, seeing what the source code for these classes looked like, and even using IIOP as the protocol. The way we’re doing it here is the way you’ll usually do it. The classes will land in the current directory (i.e. whatever you did a cd to). Remember,
rmic

 must be able to see your implementation class, so you’ll probably run rmic from the directory where your remote implementation is. (We’re deliberately not using packages here, to make it simpler. In the Real World, you’ll need to account for package directory structures and fully-qualified names).

 [image: image with no caption]

Step four: run rmiregistry

	

Bring up a terminal and start the rmiregistry.

Be sure you start it from a directory that has access to your classes. The simplest way is to start it from your ‘classes’ directory.

 [image: image with no caption]

Step five: start the service

	

Bring up another terminal and start your service

This might be from a main() method in your remote implementation class, or from a separate launcher class. In this simple example, we put the starter code in the implementation class, in a main method that instantiates the object and registers it with RMI registry.

 [image: image with no caption]

Complete code for the server side

 [image: image with no caption]

The Remote interface:

 [image: image with no caption]

The Remote service (the implementation):

 [image: image with no caption]

 How does the client get the stub object
 ?

 The client has to get the stub object, since that’s the thing the client will call methods on. And that’s where the RMI registry comes in. The client does a ‘lookup’, like going to the white pages of a phone book, and essentially says, “Here’s a name, and I’d like the stub that goes with that name.”

 [image: image with no caption]

 [image: image with no caption]

	

Client does a lookup on the RMI registry

Naming.lookup("rmi://127.0.0.1/Remote Hello");

	

RMI registry returns the stub object

(as the return value of the lookup method) and RMI deserializes the stub automatically. You MUST have the stub class (that rmic generated for you) on the client or the stub won’t be deserialized.

	

Client invokes a method on the stub, as though the stub IS the real service

 How does the client get the stub class
 ?

Now we get to the interesting question. Somehow, someway, the client must have the stub class (that you generated earlier using rmic) at the time the client does the lookup, or else the stub won’t be deserialized on the client and the whole thing blows up. In a simple system, you can simply hand-deliver the stub class to the client.

There’s a much cooler way, though, although it’s beyond the scope of this book. But just in case you’re interested, the cooler way is called “dynamic class downloading”. With dynamic class downloading, a stub object (or really any Serialized object) is ‘stamped’ with a URL that tells the RMI system on the client where to find the class file for that object. Then, in the process of deserializing an object, if RMI can’t find the class locally, it uses that URL to do an HTTP Get to retrieve the class file. So you’d need a simple Web server to serve up class files, and you’d also need to change some security parameters on the client. There are a few other tricky issues with dynamic class downloading, but that’s the overview.

Complete client code

 [image: image with no caption]

 Be sure each machine has the class files it needs

 The top three things programmers do wrong with RMI are:

1) Forget to start rmiregistry before starting remote service (when you register the service using Naming.rebind(), the rmiregistry must be running!)

2) Forget to make arguments and return types serializable (you won’t know until runtime; this is not something the compiler will detect.)

3) Forget to give the stub class to the client.

 [image: image with no caption]

 [image: image with no caption]

Sharpen your pencil

What’s First?

 [image: image with no caption]

Look at the sequence of events below, and place them in the order in which they occur in a Java RMI application.

 [image: image with no caption]

	

	

	

	

	

	

	

Bullet Points

	An object on one heap cannot get a normal Java reference to an object on a different heap (which means running on a different JVM)

	Java Remote Method Invocation (RMI) makes it
seem

 like you’re calling a method on a remote object (i.e. an object in a different JVM), but you aren’t.

	When a client calls a method on a remote object, the client is really calling a method on a
proxy

 of the remote object. The proxy is called a ‘stub’.

	A stub is a client helper object that takes care of the low-level networking details (sockets, streams, serialization, etc.) by packaging and sending method calls to the server.

	To build a remote service (in other words, an object that a remote client can ultimately call methods on), you must start with a remote interface.

	A remote interface must extend the java.rmi.Remote interface, and all methods must declare RemoteException.

	Your remote service implements your remote interface.

	Your remote service should extend UnicastRemoteObject. (Technically there are other ways to create a remote object, but extending UnicastRemoteObject is the simplest).

	Your remote service class must have a constructor, and the constructor must declare a RemoteException (because the superclass constructor declares one).

	Your remote service must be instantiated, and the object registered with the RMI registry.

	To register a remote service, use the static Naming.rebind(“Service Name”, serviceInstance);

	The RMI registry must be running on the same machine as the remote service, before you try to register a remote object with the RMI registry.

	The client looks up your remote service using the static Naming.lookup(“rmi://MyHostName/ServiceName”);

	Almost everything related to RMI can throw a RemoteException (checked by the compiler). This includes registering or looking up a service in the registry, and
all

 remote method calls from the client to the stub.

 Yeah, but who really
uses

 RMI?

 [image: image with no caption]

 [image: image with no caption]

 [image: image with no caption]

 [image: image with no caption]

 [image: image with no caption]

 What about Servlets?

 Servlets are Java programs that run on (and with) an HTTP web server. When a client uses a web browser to interact with a web page, a request is sent back to the web server. If the request needs the help of a Java servlet, the web server runs (or calls, if the servlet is already running) the servlet code. Servlet code is simply code that runs on the server, to do work as a result of whatever the client requests (for example, save information to a text file or database on the server). If you’re familiar with CGI scripts written in Perl, you know exactly what we’re talking about. Web developers use CGI scripts or servlets to do everything from sending user-submitted info to a database, to running a web-site’s discussion board.

And even servlets can use RMI!

By far, the most common use of J2EE technology is to mix servlets and EJBs together, where servlets are the client of the EJB. And in that case,
the servlet is using RMI to talk to the EJBs

 . (Although the way you use RMI with EJB is a
little

 different from the process we just looked at.)

	Client fills out a registration form and clicks ‘submit’. The HTTP server (i.e. web server) gets the request, sees that it’s for a servlet, and sends the request to the servlet.

 [image: image with no caption]

	Servlet (Java code) runs, adds data to the database, composes a web page (with custom info) and sends it back to the client where it displays in the browser.

 [image: image with no caption]

Steps for making and running a servlet

	

Find out where your servlets need to be placed.

For these examples, we’ll assume that you already have a web server up and running, and that it’s already configured to support servlets. The most important thing is to find out exactly where your servlet class files have to be placed in order for your server to ‘see’ them. If you have a web site hosted by an ISP, the hosting service can tell you where to put your servlets, just as they’ll tell you where to place your CGI scripts.

 [image: image with no caption]

	

Get the servlets.jar and add it to your classpath

 [image: image with no caption]

Servlets aren’t part of the standard Java libraries; you need the servlets classes packaged into the servlets.jar file. You can download the servlets classes from java.sun.com, or you can get them from your Java-enabled web server (like Apache Tomcat, at the apache. org site). Without these classes, you won’t be able to compile your servlets.

	

Write a servlet class by extending HttpServlet

A servlet is just a Java class that extends HttpServlet (from the javax. servlet.http package). There are other types of servlets you can make, but most of the time we care only about HttpServlet.

public class MyServletA extends HttpServlet { ... }

 [image: image with no caption]

	

Write an HTML page that invokes your servlet

When the user clicks a link that references your servlet, the web server will find the servlet and invoke the appropriate method depending on the HTTP command (GET, POST, etc.)

This is the most amazing servlet.

 [image: image with no caption]

	

Make your servlet and HTML page available to your server

This is completely dependent on your web server (and more specifically, on which
version

 of Java Servlets that you’re using). Your ISP may simply tell you to drop it into a “Servlets” directory on your web site. But if you’re using, say, the latest version of Tomcat, you’ll have a lot more work to do to get the servlet (and web page) into the right location. (We just happen to have a book on this too .)

 [image: image with no caption]

 A very simple Servlet

 [image: image with no caption]

 HTML page with a link to this servlet

<HTML>

<BODY>

This is an amazing servlet.

</BODY>

</HTML>

 [image: image with no caption]

Bullet Points

	Servlets are Java classes that run entirely on (and/or within) an HTTP (web) server.

	Servlets are useful for running code on the server as a result of client interaction with a web page. For example, if a client submits information in a web page form, the servlet can process the information, add it to a database, and send back a customized, confirmation response page.

	To compile a servlet, you need the servlet packages which are in the servlets.jar file. The servlet classes are not part of the Java standard libraries, so you need to download the servlets. jar from java.sun.com or get them from a servlet-capable web server. (Note: the Servlet library is included with the Java 2 Enterprise Edition (J2EE))

	To run a servlet, you must have a web server capable of running servlets, such as the Tomcat server from apache.org.

	Your servlet must be placed in a location that’s specific to your particular web server, so you’ll need to find that out before you try to run your servlets. If you have a web site hosted by an ISP that supports servlets, the ISP will tell you which directory to place your servlets in.

	A typical servlet extends HttpServlet and overrides one or more servlet methods, such as doGet() or doPost().

	The web server starts the servlet and calls the appropriate method (doGet(), etc.) based on the client’s request.

	The servlet can send back a response by getting a PrintWriter output stream from the response parameter of the doGet() method.

	The servlet ‘writes’ out an HTML page, complete with tags).

There are no Dumb Questions

	

Q:

	

Q: What’s a JSP, and how does it relate to servlets?

	
A:

	

A:

 JSP stands for Java Server Pages. In the end, the web server turns a JSP into a servlet, but the difference between a servlet and a JSP is what YOU (the developer) actually create. With a servlet, you write a Java
class

 that contains
HTML

 in the output statements (if you’re sending back an HTML page to the client). But with a JSP, it’s the opposite — you write an
HTML

 page that contains
Java

 code!

This gives you the ability to have dynamic web pages where you write the page as a normal HTML page, except you embed Java code (and other tags that “trigger” Java code at runtime) that gets processed at runtime. In other words, part of the page is customized at runtime when the Java code runs.

The main benefit of JSP over regular servlets is that it’s just a lot easier to write the HTML part of a servlet as a JSP page than to write HTML in the torturous print out statements in the servlet’s response. Imagine a reasonably complex HTML page, and now imagine formatting it within println statements. Yikes!

But for many applications, it isn’t necessary to use JSPs because the servlet doesn’t need to send a dynamic response, or the HTML is simple enough not to be such a big pain. And, there are still many web servers out there that support servlets but do not support JSPs, so you’re stuck.

Another benefit of JSPs is that you can separate the work by having the Java developers write the servlets and the web page developers write the JSPs. That’s the promised benefit, anyway. In reality, there’s still a Java learning curve (and a tag learning curve) for anyone writing a JSP, so to think that an HTML web page designer can bang out JSPs is not realistic. Well, not without tools. But that’s the good news — authoring tools are starting to appear, that help web page designers create JSPs without writing the code from scratch.

	

Q:

	

Q: Is this all you’re gonna say about servlets? After such a
huge

 thing on RMI?

	
A:

	

A:

 Yes. RMI is part of the Java language, and all the classes for RMI are in the standard libraries. Servlets and JSPs are
not

 part of the Java language; they’re considered
standard

extensions

 . You can run RMI on any modern JVM, but Servlets and JSPs require a properly configured web server with a servlet “container”. This is our way of saying, “it’s beyond the scope of this book.” But you can read much more in the lovely
Head First Servlets & JSP

 .

 Just for fun, let’s make the Phrase-O-Matic work as a servlet

 [image: image with no caption]

Now that we told you that we won’t say any more about servlets, we can’t resist servletizing (yes, we
can

 verbify it) the Phrase-O-Matic from Chapter 1
 . A servlet is still just Java. And Java code can call Java code from other classes. So a servlet is free to call a method on the Phrase-O-Matic. All you have to do is drop the Phrase-O-Matic class into the same directory as your servlet, and you’re in business. (The Phrase-O-Matic code is on the next page).

 [image: image with no caption]

 Phrase-O-Matic code, servlet-friendly

This is a slightly different version from the code in chapter one. In the original, we ran the entire thing in a main() method, and we had to rerun the program each time to generate a new phrase at the command-line. In this version, the code simply returns a String (with the phrase) when you invoke the static makePhrase() method. That way, you can call the method from any other code and get back a String with the randomly-composed phrase.

Please note that these long String[] array assignments are a victim of word-processing here — don’t type in the hyphens! Just keep on typing and let your code editor do the wrapping. And whatever you do, don’t hit the return key in the middle of a String (i.e. something between double quotes).

public class PhraseOMatic {

public static String makePhrase() {

// make three sets of words to choose from

String[] wordListOne = {"24/7","multi-Tier","30,000 foot","B-to-B","win-win","front-

end", "web-based","pervasive", "smart", "six-sigma","critical-path", "dynamic"};

String[] wordListTwo = {"empowered", "sticky", "valued-added", "oriented", "centric",

"distributed", "clustered", "branded","outside-the-box", "positioned", "networked", "fo-

cused", "leveraged", "aligned", "targeted", "shared", "cooperative", "accelerated"};

String[] wordListThree = {"process", "tipping point", "solution", "architecture",

"core competency", "strategy", "mindshare", "portal", "space", "vision", "paradigm", "mis-

sion"};

// find out how many words are in each list

int oneLength = wordListOne.length;

int twoLength = wordListTwo.length;

int threeLength = wordListThree.length;

// generate three random numbers, to pull random words from each list

int rand1 = (int) (Math.random() * oneLength);

int rand2 = (int) (Math.random() * twoLength);

int rand3 = (int) (Math.random() * threeLength);

// now build a phrase

String phrase = wordListOne[rand1] + " " + wordListTwo[rand2] + " " +

wordListThree[rand3];

// now return it

return ("What we need is a " + phrase);

}

}

 Enterprise JavaBeans: RMI on steroids

 RMI is great for writing and running remote services. But you wouldn’t run something like an Amazon or eBay on RMI alone. For a large, deadly serious, enterprise application, you need something more. You need something that can handle transactions, heavy concurrency issues (like a gazillion people are hitting your server at once to buy those organic dog kibbles), security (not just anyone should hit your payroll database), and data management. For that, you need an
enterprise application server

 .

In Java, that means a Java 2 Enterprise Edition (J2EE) server. A J2EE server includes both a web server and an Enterprise JavaBeans(EJB) server, so that you can deploy an application that includes both servlets and EJBs. Like servlets, EJB is way beyond the scope of this book, and there’s no way to show “just a little” EJB example with code, but we
will

 take a quick look at how it works. (For a much more detailed treatment of EJB, we can recommend the lively Head First EJB certification study guide.)

 Note

An EJB server adds a bunch of services that you don’t get with straight RMI. Things like transactions, security, concurrency, database management, and networking.

An EJB server steps into the middle of an RMI call and layers in all of the services.

 [image: image with no caption]

 For our final trick... a little Jini

 We love Jini. We think Jini is pretty much the best thing in Java. If EJB is RMI on steroids (with a bunch of managers), Jini is RMI with
wings

 . Pure Java
bliss

 . Like the EJB material, we can’t get into any of the Jini details here, but if you know RMI, you’re three-quarters of the way there. In terms of technology, anyway. In terms of
mindset

 , it’s time to make a big leap. No, it’s time to
fly.

Jini uses RMI (although other protocols can be involved), but gives you a few key features including:

Adaptive discovery

Self-healing networks

With RMI, remember, the client has to know the name and location of the remote service. The client code for the lookup includes the IP address or hostname of the remote service (because that’s where the RMI registry is running)
and

 the logical name the service was registered under.

 [image: image with no caption]

But with Jini, the client has to know only one thing:
the

interface

implemented by the service!

 That’s it.

So how do you find things? The trick revolves around Jini lookup services. Jini lookup services are far more powerful and flexible than the RMI registry. For one thing, Jini lookup services announce themselves to the network,
automatically

 . When a lookup service comes online, it sends a message (using IP multicast) out to the network saying, “I’m here, if anyone’s interested.”

But that’s not all. Let’s say you (a client) come online
after

 the lookup service has already announced itself,
you

 can send a message to the entire network saying, “Are there any lookup services out there?”

Except that you’re not really interested in the lookup service
itself

 — you’re interested in the services that are
registered

 with the lookup service. Things like RMI remote services, other serializable Java objects, and even devices such as printers, cameras, and coffee-makers.

And here’s where it gets even more fun: when a service comes online, it will dynamically discover (and
register

 itself with) any Jini lookup services on the network. When the service registers with the lookup service, the service sends a serialized object to be placed in the lookup service. That serialized object can be a stub to an RMI remote service, a driver for a networked device, or even the whole service itself that (once you get it from the lookup service) runs locally on your machine. And instead of registering by
name

 , the service registers by the
interface

 it implements.

Once you (the client) have a reference to a lookup service, you can say to that lookup service, “Hey, do you have anything that implements ScientificCalculator?” At that point, the lookup service will check its list of registered interfaces, and assuming it finds a match, says back to you, “Yes I
do

 have something that implements that interface. Here’s the serialized object the ScientificCalculator service registered with me.”

 Adaptive discovery in action

	Jini lookup service is launched somewhere on the network, and announces itself using IP multicast.

 [image: image with no caption]

	An already-running Jini service on another machine asks to be registered with this newly-announced lookup service. It registers by capability, rather than by name. In other words, it registers as the service interface it implements. It sends a serialized object to be placed in the lookup service.

 [image: image with no caption]

	A client on the network wants something that implements the ScientificCalculator interface. It has no idea where (or if) that thing exists, so it asks the lookup service.

 [image: image with no caption]

	The lookup service responds, since it does have something registered as a ScientificCalculator interface.

 [image: image with no caption]

 Self-healing network in action

	A Jini Service has asked to register with the lookup service. The lookup service responds with a “lease”. The newly-registered service must keep renewing the lease, or the lookup service assumes the service has gone offline. The lookup service wants always to present an accurate picture to the rest of the network about which services are available.

 [image: image with no caption]

	The service goes offline (somebody shuts it down), so it fails to renew its lease with the lookup service. The lookup service drops it.

 [image: image with no caption]

 Final Project: the Universal Service browser

We’re going to make something that isn’t Jini-enabled, but quite easily could be. It will give you the flavor and feeling of Jini, but using straight RMI. In fact the main difference between our application and a Jini application is how the service is discovered. Instead of the Jini lookup service, which automatically announces itself and lives anywhere on the network, we’re using the RMI registry which must be on the same machine as the remote service, and which does not announce itself automatically.

And instead of our service registering itself automatically with the lookup service,
we

 have to register it in the RMI registry (using Naming.rebind()).

But once the client has found the service in the RMI registry, the rest of the application is almost identical to the way we’d do it in Jini. (The main thing missing is the
lease

 that would let us have a self-healing network if any of the services go down.)

The universal service browser is like a specialized web browser, except instead of HTML pages, the service browser downloads and displays interactive Java GUIs that we’re calling
universal services

 .

 [image: image with no caption]

How it works:

	Client starts up and does a lookup on the RMI registry for the service called “ServiceServer”, and gets back the stub.

 [image: image with no caption]

	Client calls getServiceList() on the stub. The ServiceServer returns an array of services

 [image: image with no caption]

	Client displays the list of services in a GUI

 [image: image with no caption]

	User selects from the list, so client calls the getService() method on the remote service. The remote service returns a serialized object that is an actual service that will run inside the client browser.

 [image: image with no caption]

	Client calls the getGuiPanel() on the serialized service object it just got from the remote service. The GUI for that service is displayed inside the browser, and the user can interact with it locally. At this point, we don’t need the remote service unless/until the user decides to select another service.

 [image: image with no caption]

The classes and interfaces:

	

interface ServiceServer implements Remote

A regular old RMI remote interface for the remote service (the remote service has the method for getting the service list and returning a selected service).

	

class ServiceServerImpl implements ServiceServer

The actual RMI remote service (extends UnicastRemoteObject). Its job is to instantiate and store all the services (the things that will be shipped to the client), and register the server itself (ServiceServerImpl) with the RMI registry.

 [image: image with no caption]

	

class ServiceBrowser

The client. It builds a very simple GUI, does a lookup in the RMI registry to get the ServiceServer stub, then calls a remote method on it to get the list of services to display in the GUI list.

 [image: image with no caption]

	

interface Service

This is the key to everything. This very simple interface has just one method, getGuiPanel(). Every service that gets shipped over to the client must implement this interface. This is what makes the whole thing UNIVERSAL! By implementing this interface, a service can come over even though the client has no idea what the actual class (or classes) are that make up that service. All the client knows is that whatever comes over, it implements the Service interface, so it MUST have a getGuiPanel() method.

The client gets a serialized object as a result of calling getService(selectedSvc) on the ServiceServer stub, and all the client says to that object is, “I don’t know who or what you are, but I DO know that you implement the Service interface, so I know I can call getGuiPanel() on you. And since getGuiPanel() returns a JPanel, I’ll just slap it into the browser GUI and start interacting with it!

	

class DiceService implements Service

Got dice? If not, but you need some, use this service to roll anywhere from 1 to 6 virtual dice for you.

	

class MiniMusicService implements Service

Remember that fabulous little ‘music video’ program from the first GUI Code Kitchen? We’ve turned it into a service, and you can play it over and over and over until your roommates finally leave.

	

class DayOfTheWeekService implements Service

Were you born on a Friday? Type in your birthday and find out.

 [image: image with no caption]

interface ServiceServer (the remote interface)

import java.rmi.*;

public interface ServiceServer extends Remote {

Object[] getServiceList() throws RemoteException;

Service getService(Object serviceKey) throws RemoteException;

}

 Note

A normal RMI remote interface, defines the two methods the remote service will have.

interface Service (what the GUI services implement)

import javax.swing.*;

import java.io.*;

public interface Service extends Serializable {

public JPanel getGuiPanel();

}

 Note

A plain old (i.e. non-remote) interface, that defines the one method that any universal service must have — getGuiPanel(). The interface extends Serializable, so that any class implementing the Service interface will automatically be Serializable.

That’s a must, because the services get shipped over the wire from the server, as a result of the client calling getService() on the remote ServiceServer.

class ServiceServerImpl (the remote implementation)

 [image: image with no caption]

class ServiceBrowser (the client)

 [image: image with no caption]

 [image: image with no caption]

class DiceService (a universal service, implements Service)

 [image: image with no caption]

 [image: image with no caption]

Sharpen your pencil

Think about ways to improve the DiceService. One suggestion: using what you learned in the GUI chapters, make the dice graphical. Use a rectangle, and draw the appropriate number of circles on each one, corresponding to the roll for that particular die.

 [image: image with no caption]

class MiniMusicService (a universal service, implements Service)

 [image: image with no caption]

 [image: image with no caption]

 [image: image with no caption]

class DayOfTheWeekService (a universal service, implements Service)

 [image: image with no caption]

 [image: image with no caption]

 [image: image with no caption]

Congratulations!

You made it to the end.

Of course, there’s still the two appendices.

And the index.

And then there’s the web site...

There’s no escape, really.

 Appendix A. Final Code Kitchen

 [image: image with no caption]

 Finally, the complete version of the BeatBox!

It connects to a simple MusicServer so that you can send and receive beat patterns with other clients.

 Final BeatBox client program

 Most of this code is the same as the code from the CodeKitchens in the previous chapters, so we don’t annotate the whole thing again. The new parts include:

GUI - two new components are added for the text area that displays incoming messages (actually a scrolling list) and the text field.

NETWORKING - just like the SimpleChatClient in this chapter, the BeatBox now connects to the server and gets an input and output stream.

THREADS - again, just like the SimpleChatClient, we start a ‘reader’ class that keeps looking for incoming messages from the server. But instead of just text, the messages coming in include TWO objects: the String message and the serialized ArrayList (the thing that holds the state of all the checkboxes.)

 [image: image with no caption]

 [image: image with no caption]

 [image: image with no caption]

 [image: image with no caption]

 [image: image with no caption]

 [image: image with no caption]

 [image: image with no caption]

Sharpen your pencil

What are some of the ways you can improve this program?

Here are a few ideas to get you started:

1) Once you select a pattern, whatever current pattern was playing is blown away. If that was a new pattern you were working on (or a modification of another one), you’re out of luck. You might want to pop up a dialog box that asks the user if he’d like to save the current pattern.

2) If you fail to type in a command-line argument, you just get an exception when you run it! Put something in the main method that checks to see if you’ve passed in a command-line argument. If the user doesn’t supply one, either pick a default or print out a message that says they need to run it again, but this time with an argument for their screen name.

3) It might be nice to have a feature where you can click a button and it will generate a random pattern for you. You might hit on one you really like. Better yet, have another feature that lets you load in existing ‘foundation’ patterns, like one for jazz, rock, reggae, etc. that the user can add to.

You can find existing patterns on the Head First Java web start.

 Final BeatBox server program

 Most of this code is identical to the SimpleChatServer we made in the Networking and Threads chapter. The only difference, in fact, is that this server receives, and then re-sends, two serialized objects instead of a plain String (although one of the serialized objects happens to
be

 a String).

import java.io.*;

import java.net.*;

import java.util.*;

public class MusicServer {

ArrayList<ObjectOutputStream> clientOutputStreams;

public static void main (String[] args) {

new MusicServer().go();

}

public class ClientHandler implements Runnable {

ObjectInputStream in;

Socket clientSocket;

public ClientHandler(Socket socket) {

try {

clientSocket = socket;

in = new ObjectInputStream(clientSocket.getInputStream());

} catch(Exception ex) {ex.printStackTrace();}

} // close constructor

public void run() {

Object o2 = null;

Object o1 = null;

try {

while ((o1 = in.readObject()) != null) {

o2 = in.readObject();

System.out.println("read two objects");

tellEveryone(o1, o2);

} // close while

} catch(Exception ex) {ex.printStackTrace();}

} // close run

} // close inner class

public void go() {

clientOutputStreams = new ArrayList<ObjectOutputStream>();

try {

ServerSocket serverSock = new ServerSocket(4242);

while(true) {

Socket clientSocket = serverSock.accept();

ObjectOutputStream out = new ObjectOutputStream(clientSocket.getOutputStream());

clientOutputStreams.add(out);

Thread t = new Thread(new ClientHandler(clientSocket));

t.start();

System.out.println("got a connection");

}

}catch(Exception ex) {

ex.printStackTrace();

}

} // close go

public void tellEveryone(Object one, Object two) {

Iterator it = clientOutputStreams.iterator();

while(it.hasNext()) {

try {

ObjectOutputStream out = (ObjectOutputStream) it.next();

out.writeObject(one);

out.writeObject(two);

}catch(Exception ex) {ex.printStackTrace();}

}

} // close tellEveryone

} // close class

 Appendix B. The Top Ten Topics that almost made it into the Real Book...

 [image: image with no caption]

We covered a lot of ground, and you’re almost finished with this book. We’ll miss you, but before we let you go, we wouldn’t feel right about sending you out into JavaLand without a little more preparation. We can’t possibly fit everything you’ll need to know into this relatively small appendix. Actually, we
did

 originally include everything you need to know about Java (not already covered by the other chapters), by reducing the type point size to .00003. It all fit, but nobody could read it. So, we threw most of it away, but kept the best bits for this Top Ten appendix.

This really
is

 the end of the book. Except for the index (a must-read!).

 #10 Bit Manipulation

 Why do you care?

 We’ve talked about the fact that there are 8 bits in a byte, 16 bits in a short, and so on. You might have occasion to turn individual bits on or off. For instance you might find yourself writing code for your new Java enabled toaster, and realize that due to severe memory limitations, certain toaster settings are controlled at the bit level. For easier reading, we’re showing only the last 8 bits in the comments rather than the full 32 for an int).

Bitwise NOT Operator: ~

This operator ‘flips all the bits’ of a primitive.

int x = 10;

 // bits are 00001010

x = ~x;

 // bits are now 11110101

The next three operators compare two primitives on a bit by bit basis, and return a result based on comparing these bits. We’ll use the following example for the next three operators:

int x = 10;

 // bits are 00001010

int y = 6;

 // bits are 00000110

Bitwise AND Operator: &

This operator returns a value whose bits are turned on only if

both

 original bits are turned on:

int a = x & y;

 // bits are 00000010

Bitwise OR Operator: |

This operator returns a value whose bits are turned on only if

either

 of the original bits are turned on:

int a = x | y;

 // bits are 00001110

Bitwise XOR (exclusive OR) Operator:

^

This operator returns a value whose bits are turned on only if

exactly one

 of the original bits are turned on:

int a = x ^ y;

 // bits are 00001100

The Shift Operators

These operators take a single integer primitive and shift (or slide) all of its bits in one direction or another. If you want to dust off your binary math skills, you might realize that shifting bits
left

 effectively
multiplies

 a number by a power of two, and shifting bits
right

 effectively
divides

 a number by a power of two.

We’ll use the following example for the next three operators:

int x = -11;

 // bits are 11110101

Ok, ok, we’ve been putting it off, here is the world’s shortest explanation of storing negative numbers, and
two’s complement.

 Remember, the leftmost bit of an integer number is called the

sign bit

 . A negative integer number in Java
always

 has its sign bit turned
on

 (i.e. set to 1). A positive integer number always has its sign bit turned
off

 (0). Java uses the
two’s complement

 formula to store negative numbers. To change a number’s sign using two’s complement, flip all the bits, then add 1 (with a byte, for example, that would mean adding 00000001 to the flipped value).

Right Shift Operator:

>>

This operator shifts all of a number’s bits right by a certain number, and fills all of the bits on the left side with whatever the original leftmost bit was.
The sign bit does

not

change:

int y = x >> 2;

 // bits are 11111101

Unsigned Right Shift Operator: >>>

Just like the right shift operator BUT it ALWAYS fills the leftmost bits with zeros.
The sign bit

might

change

 :

int y = x >>> 2;

 // bits are 00111101

Left Shift Operator:

<<

Just like the unsigned right shift operator, but in the other direction; the rightmost bits are filled with zeros.
The sign bit

might

change.

int y = x << 2;

 // bits are 11010100

 #9 Immutability

 Why do you care that Strings
 are Immutable?

 When your Java programs start to get big, you’ll inevitably end up with lots and lots of String objects. For security purposes, and for the sake of conserving memory (remember your Java programs can run on teeny Java-enabled cell phones), Strings in Java are immutable. What this means is that when you say:

String s = "0";

for (int x = 1; x < 10; x++) {

s = s + x;

}

What’s actually happening is that you’re creating ten String objects (with values “0”, “01”, “012”, through “0123456789”). In the end
s

 is referring to the String with the value “0123456789”, but at this point there are
ten

 Strings in existence!

Whenever you make a new String, the JVM puts it into a special part of memory called the ‘String Pool’ (sounds refreshing doesn’t it?). If there is already a String in the String Pool with the same value, the JVM doesn’t create a duplicate, it simply refers your reference variable to the existing entry. The JVM can get away with this because Strings are immutable; one reference variable can’t change a String’s value out from under another reference variable referring to the same String.

The other issue with the String pool is that the Garbage Collector
doesn’t go there

 . So in our example, unless by coincidence you later happen to make a String called “01234”, for instance, the first nine Strings created in our
for

 loop will just sit around wasting memory.

How does this save memory?

Well, if you’re not careful,
it doesn’t

 ! But if you understand how String immutability works, than you can sometimes take advantage of it to save memory. If you have to do a lot of String manipulations (like concatenations, etc.), however, there is another class StringBuilder, better suited for that purpose. We’ll talk more about StringBuilder in a few pages.

 Why do you care that Wrappers
 are Immutable?

In the Math chapter we talked about the two main uses of the wrapper classes:

	Wrapping a primitive so it can pretend to be an object.

	Using the static utility methods (for example, Integer.parseInt()).

It’s important to remember that when you create a wrapper object like:

Integer iWrap = new Integer(42);

That’s it for that wrapper object. Its value will
always

 be 42.

There is no setter method for a wrapper object.

 You can, of course, refer
iWrap

 to a
different

 wrapper object, but then you’ll have
two

 objects. Once you create a wrapper object, there’s no way to change the
value

 of that object!

Make it Stick

 [image: image with no caption]

Roses are red, violets are blue.

Strings are immutable, wrappers are too.

Oh look! A bonus Make it Stick.

Right here in the appendix.

 #8 Assertions

 We haven’t talked much about how to debug your Java program while you’re developing it. We believe that you should learn Java at the command line, as we’ve been doing throughout the book. Once you’re a Java pro, if you decide to use an IDE[14
]
 , you might have other debugging tools to use. In the old days, when a Java programmer wanted to debug her code, she’d stick a bunch of System.out.println() statements throughout the program, printing current variable values, and “I got here” messages, to see if the flow control was working properly. (The ready-bake code in Chapter 6
 left some debugging ‘print’ statements in the code.) Then, once the program was working correctly, she’d go through and take all those System. out.println() statements back out again. It was tedious and error prone. But as of Java 1.4 (and 5.0), debugging got a whole lot easier. The answer?

Assertions

Assertions are like System.out.println() statements on steroids. Add them to your code as you would add println statements. The Java 5.0 compiler assumes you’ll be compiling source files that are 5.0 compatible, so as of Java 5.0, compiling with assertions is enabled by default.

At runtime, if you do nothing, the assert statements you added to your code will be ignored by the JVM, and won’t slow down your program. But if you tell the JVM to
enable

 your assertions, they will help you do your debugging, without changing a line of code!

Some folks have complained about having to leave assert statements in their production code, but leaving them in can be really valuable when your code is already deployed in the field. If your client is having trouble, you can instruct the client to run the program with assertions enabled, and have the client send you the output. If the assertions were stripped out of your deployed code, you’d never have that option. And there is almost no downside; when assertions are not enabled, they are completely ignored by the JVM, so there’s no performance hit to worry about.

How to make Assertions work

Add assertion statements to your code wherever you believe that something
must be true

 . For instance:

assert (height > 0);

// if true, program continues normally
// if false, throw an AssertionError

You can add a little more information to the stack trace by saying:

assert (height > 0) : "height = " +
height + " weight = " + weight;

The expression after the colon can be any legal Java expression

that resolves to a non-null value.

 But whatever you do,

don’t create assertions that change an object’s state!

 If you do, enabling assertions at runtime might change how your program performs.

Compiling and running with Assertions

To
compile

 with assertions:

javac TestDriveGame.java

(Notice that no command line options were necessary.)

To
run

 with assertions:

java -ea TestDriveGame

 #7 Block Scope

 In Chapter 9
 , we talked about how local variables live only as long as the method in which they’re declared stays on the stack. But some variables can have even
shorter

 lifespans. Inside of methods, we often create
blocks

 of code. We’ve been doing this all along, but we haven’t explicitly
talked

 in terms of
blocks

 . Typically, blocks of code occur within methods, and are bounded by curly braces { }. Some common examples of code blocks that you’ll recognize include loops (
for

 ,
while

) and conditional expressions (like
if

 statements).

Let’s look at an example:

 [image: image with no caption]

In the previous example,
y

 was a block variable, declared inside a block, and
y

 went out of scope as soon as the for loop ended. Your Java programs will be more debuggable and expandable if you use local variables instead of instance variables, and block variables instead of local variables, whenever possible. The compiler will make sure that you don’t try to use a variable that’s gone out of scope, so you don’t have to worry about runtime meltdowns.

 #6 Linked Invocations

 While you did see a little of this in this book, we tried to keep our syntax as clean and readable as possible. There are, however, many legal shortcuts in Java, that you’ll no doubt be exposed to, especially if you have to read a lot code you didn’t write. One of the more common constructs you will encounter is known as
linked invocations

 . For example:

 StringBuffer sb = new StringBuffer("spring");

 sb = sb.delete(3,6).insert(2,"umme").deleteCharAt(1);

 System.out.println("sb = " + sb);

// result is sb = summer

What in the world is happening in the second line of code? Admittedly, this is a contrived example, but you need to learn how to decipher these.

1 - Work from left to right.

2 - Find the result of the leftmost method call, in this case sb.delete(3,6)
 . If you look up StringBuffer in the API docs, you’ll see that the delete()
 method returns a StringBuffer object. The result of running the delete()
 method is a StringBuffer object with the value “spr”.

3 - The next leftmost method (insert()
)is called on the newly created StringBuffer object “spr”. The result of that method call (the insert()
 method), is
also

 a StringBuffer object (although it doesn’t have to be the same type as the previous method return), and so it goes, the returned object is used to call the next method to the right. In theory, you can link as many methods as you want in a single statement (although it’s rare to see more than three linked methods in a single statement). Without linking, the second line of code from above would be more readable, and look something like this:

sb = sb.delete(3,6);
sb = sb.insert(2,"umme");
sb = sb.deleteCharAt(1);

But here’s a more common, and useful example, that you saw us using, but we thought we’d point it out again here. This is for when your main() method needs to invoke an instance method of the main class, but you don’t need to keep a
reference

 to the instance of the class. In other words, the main() needs to create the instance
only

 so that main() can invoke one of the instance’s
methods

 .

 [image: image with no caption]

 #5 Anonymous and Static Nested Classes

Nested classes come in many flavors

In the GUI event-handling section of the book, we started using inner (nested) classes as a solution for implementing listener interfaces. That’s the most common, practical, and readable form of an inner class — where the class is simply nested within the curly braces of another enclosing class. And remember, it means you need an instance of the outer class in order to get an instance of the inner class, because the inner class is a
member

 of the outer/enclosing class.

But there are other kinds of inner classes including
static

 and
anonymous

 . We’re not going into the details here, but we don’t want you to be thrown by strange syntax when you see it in someone’s code. Because out of virtually anything you can do with the Java language, perhaps nothing produces more bizarre-looking code than anonymous inner classes. But we’ll start with something simpler — static nested classes.

Static nested classes

You already know what static means — something tied to the class, not a particular instance. A static nested class looks just like the non-static classes we used for event listeners, except they’re marked with the keyword static
 .

 [image: image with no caption]

Static nested classes are more like regular non-nested classes in that they don’t enjoy a special relationship with an enclosing outer object. But because static nested classes are still considered a
member

 of the enclosing/outer class, they still get access to any private members of the outer class... but
only the ones that are also static

 . Since the static nested class isn’t connected to an instance of the outer class, it doesn’t have any special way to access the non-static (instance) variables and methods.

The difference between
nested

 and
inner

Any Java class that’s defined within the scope of another class is known as a

nested

 class. It doesn’t matter if it’s anonymous, static, normal, whatever. If it’s inside another class, it’s technically considered a
nested

 class. But
non-static

 nested classes are often referred to as
inner

 classes, which is what we called them earlier in the book. The bottom line: all inner classes are nested classes, but not all nested classes are inner classes.

Anonymous inner classes

Imagine you’re writing some GUI code, and suddenly realize that you need an instance of a class that implements ActionListener. But you realize you don’t
have

 an instance of an ActionListener. Then you realize that you also never wrote a
class

 for that listener. You have two choices at that point:

1) Write an inner class in your code, the way we did in our GUI code, and then instantiate it and pass that instance into the button’s event registration (addActionListener()) method.

OR

2) Create an
anonymous

 inner class and instantiate it, right there, just-in-time.

Literally right where you are at the point you need the listener object

 . That’s right, you create the class and the instance in the place where you’d normally be supplying just the instance. Think about that for a moment — it means you pass the entire
class

 where you’d normally pass only an
instance

 into a method argument!

 [image: image with no caption]

 #4 Access Levels and Access Modifiers (Who Sees What)

 Java has
four

 access
levels

 and
three

 access
modifiers

 . There are only
three

 modifiers because the
default

 (what you get when you don’t use any access modifier)
is

 one of the four access levels.

Access Levels

 (in order of how restrictive they are, from least to most restrictive)

 [image: image with no caption]

Access modifiers

public
protected
private

Most of the time you’ll use only public and private access levels.

public

Use public for classes, constants (static final variables), and methods that you’re exposing to other code (for example getters and setters) and most constructors.

private

Use private for virtually all instance variables, and for methods that you don’t want outside code to call (in other words, methods
used

 by the public methods of your class).

But although you might not use the other two (protected and default), you still need to know what they do because you’ll see them in other code.

default and protected

default

Both protected and default access levels are tied to packages. Default access is simple — it means that only code
within the same package

 can access code with default access. So a default class, for example (which means a class that isn’t explicitly declared as
public

) can be accessed by only classes within the same package as the default class.

But what does it really mean to
access

 a class? Code that does not have access to a class is not allowed to even
think

 about the class. And by think, we mean
use

 the class in code. For example, if you don’t have access to a class, because of access restriction, you aren’t allowed to instantiate the class or even declare it as a type for a variable, argument, or return value. You simply can’t type it into your code at all! If you do, the compiler will complain.

Think about the implications — a default class with public methods means the public methods aren’t really public at all. You can’t access a method if you can’t
see

 the class.

Why would anyone want to restrict access to code within the same package? Typically, packages are designed as a group of classes that work together as a related set. So it might make sense that classes within the same package need to access one another’s code, while as a package, only a small number of classes and methods are exposed to the outside world (i.e. code outside that package).

OK, that’s default. It’s simple — if something has default access (which, remember, means no explicit access modifier!), only code within the same package as the default
thing

 (class, variable, method, inner class) can access that
thing

 .

Then what’s
protected

 for?

protected

Protected access is almost identical to default access, with one exception: it allows subclasses to
inherit

 the protected thing,
even if those subclasses are outside the package of the superclass they extend

 . That’s it. That’s
all

 protected buys you — the ability to let your subclasses be outside your superclass package, yet still
inherit

 pieces of the class, including methods and constructors.

Many developers find very little reason to use protected, but it is used in some designs, and some day you might find it to be exactly what you need. One of the interesting things about protected is that — unlike the other access levels — protected access applies only to
inheritance

 . If a subclass-outside-the-package has a
reference

 to an instance of the superclass (the superclass that has, say, a protected method), the subclass can’t access the protected method using that superclass reference! The only way the subclass can access that method is by
inheriting

 it. In other words, the subclass-outside-the-package doesn’t have
access

 to the protected method, it just
has

 the method, through inheritance.

 #3 String and StringBuffer/StringBuilder Methods

 Two of the most commonly used classes in the Java API are String and StringBuffer (remember from #9 a few pages back, Strings are immutable, so a StringBuffer/StringBuilder can be a lot more efficient if you’re manipulating a String). As of Java 5.0 you should use the String

Builder

 class instead of String

Buffer

 , unless your String manipulations need to be thread-safe, which is not common. Here’s a brief overview of the
key

 methods in these classes:

Both String and StringBuffer/StringBuilder classes have:

	
char charAt(int index);

	
// what char is at a certain position

	
int length();

	
// how long is this

	
String substring(int start, int end);

	
// get a part of this

	
String toString();

	
// what’s the String value of this

To concatenate Strings:

	
String concat(string);

	
// for the String class

	
String append(String);

	
// for StringBuffer & StringBuilder

The String class has:

	
String replace(char old, char new);

	
// replace all occurences of a char

	
String substring(int begin, int end);

	
// get a portion of a String

	
char [] toCharArray();

	
// convert to an array of chars

	
String toLowerCase();

	
// convert all characters to lower case

	
String toUpperCase();

	
// convert all characters to upper case

	
String trim();

	
// remove whitespace from the ends

	
String valueOf(char [])

	
// make a String out of a char array

	
String valueOf(int i)

	
// make a String out of a primitive

// other primitives are supported as well

The StringBuffer & StringBuilder classes have:

	
StringBxxxx delete(int start, int end);

	
// delete a portion

	
StringBxxxx insert(int offset, any primitive or a char []);

	
// insert something

	
StringBxxxx replace(int start, int end, String s);

	
// replace this part with this String

	
StringBxxxx reverse();

	
// reverse the SB from front to back

	
void setCharAt(int index, char ch);

	
// replace a given character

Note: StringB

xxxx

 refers to either String
Buffer

 or String
Builder

 , as appropriate.

 #2 Multidimensional Arrays

 In most languages, if you create, say, a 4 x 2 two-dimensional array, you would visualize a rectangle, 4 elements by 2 elements, with a total of 8 elements. But in Java, such an array would actually be
5

 arrays linked together! In Java, a two dimensional array is simply
an array of arrays.

 (A three dimensional array is an array of arrays of arrays, but we’ll leave that for you to play with.) Here’s how it works

int[][] a2d = new int [4][2];

The JVM creates an array with 4 elements.
Each

 of these four elements is actually a reference variable referring to a (newly created), int array with 2 elements.

 [image: image with no caption]

Working with multidimensional arrays

	To access the second element in the third array: int x = a2d[2][1]; // remember, 0 based!

	To make a one-dimensional reference to one of the sub-arrays: int[] copy = a2d[1];

	Short-cut initialization of a 2 x 3 array: int[][] x = { { 2,3,4 }, { 7,8,9 } };

	To make a 2d array with irregular dimensions:
int[][] y = new int [2][]; // makes only the first array, with a length of 2
y[0] = new int [3]; // makes the first sub-array 3 elements in length
y[1] = new int [5]; // makes the second sub-array 5 elements in length

 And the number one topic that didn’t quite make it in...

 #1 Enumerations (also called Enumerated Types or Enums)

 We’ve talked about constants that are defined in the API, for instance,

JFrame

 .

EXIT_ON_CLOSE

 . You can also create your own constants by marking a variable

static final

 . But sometimes you’ll want to create a set of constant values to represent the

only

 valid values for a variable. This set of valid values is commonly referred to as an
enumeration

 . Before Java 5.0 you could only do a half-baked job of creating an enumeration in Java. As of Java 5.0 you can create full fledged enumerations that will be the envy of all your pre-Java 5.0-using friends.

Who’s in the band?

Let’s say that you’re creating a website for your favorite band, and you want to make sure that all of the comments are directed to a particular band member.

The old way to fake an “enum”:

 [image: image with no caption]

The good news about this technique is that it DOES make the code easier to read. The other good news is that you can’t ever change the value of the fake enums you’ve created; JERRY
 will always be 1
 . The bad news is that there’s no easy or good way to make sure that the value of selectedBandMember
 will always be 1
 , 2
 , or 3
 . If some hard to find piece of code sets selectedBandMember
 equal to 812
 , it’s pretty likely your code will break...

The same situation using a genuine Java 5.0 enum. While this is a very basic enumeration, most enumerations usually
are

 this simple.

A new, official “enum”:

 [image: image with no caption]

Your enum extends java.lang.Enum

When you create an enum, you’re creating a new class, and

you’re implicitly extending

java.lang.Enum

 . You can declare an enum as its own standalone class, in its own source file, or as a member of another class.

Using “if” and “switch” with Enums

Using the enum we just created, we can perform branches in our code using either the if
 or switch
 statement. Also notice that we can compare enum instances using either ==
 or the .equals()
 method. Usually ==
 is considered better style.

 [image: image with no caption]

A really tricked-out version of a similar enum

You can add a bunch of things to your enum like a constructor, methods, variables, and something called a constant-specific class body. They’re not common, but you might run into them:

 [image: image with no caption]

 [image: image with no caption]

Notice that the basic “sing()” method is only called when the enum value has no constantspecific class body.

Five-Minute Mystery

 [image: image with no caption]

A Long Trip Home

Captain Byte of the Flatland starship “Traverser” had received an urgent, Top Secret transmission from headquarters. The message contained 30 heavily encrypted navigational codes that the Traverser would need to successfully plot a course home through enemy sectors. The enemy Hackarians, from a neighboring galaxy, had devised a devilish code-scrambling ray that was capable of creating bogus objects on the heap of the Traverser’s only navigational computer. In addition, the alien ray could alter valid reference variables so that they referred to these bogus objects. The only defense the Traverser crew had against this evil Hackarian ray was to run an inline virus checker which could be imbedded into the Traverser’s state of the art Java 6 code.

Captain Byte gave Ensign Smith the following programming instructions to process the critical navigational codes:

“Put the first five codes in an array of type ParsecKey. Put the last 25 codes in a five by five, two dimensional array of type QuadrantKey. Pass these two arrays into the plotCourse() method of the public final class ShipNavigation. Once the course object is returned run the inline virus checker against all the programs reference variables and then run the NavSim program and bring me the results.”

A few minutes later Ensign Smith returned with the NavSim output. “NavSim output ready for review, sir”, declared Ensign Smith. “Fine”, replied the Captain, “Please review your work”. “Yes sir!”, responded the Ensign, “First I declared and constructed an array of type ParsecKey with the following code; ParsecKey [] p = new ParsecKey[5];, next I declared and constructed an array of type QuadrantKey with the following code: QuadrantKey [] [] q = new QuadrantKey [5] [5]; . Next, I loaded the first 5 codes into the ParsecKey array using a ‘for’ loop, and then I loaded the last 25 codes into the QuadrantKey array using nested ‘for’ loops. Next, I ran the virus checker against all 32 reference variables, 1 for the ParsecKey array, and 5 for its elements, 1 for the QuadrantKey array, and 25 for its elements. Once the virus check returned with no viruses detected, I ran the NavSim program and re-ran the virus checker, just to be safe... Sir ! “

Captain Byte gave the Ensign a cool, long stare and said calmly, “Ensign, you are confined to quarters for endangering the safety of this ship, I don’t want to see your face on this bridge again until you have properly learned your Java! Lieutenant Boolean, take over for the Ensign and do this job correctly!”

Why did the captain confine the Ensign to his quarters?

Five-Minute Mystery Solution

 [image: image with no caption]

A Long Trip Home

Captain Byte knew that in Java, multidimensional arrays are actually arrays of arrays. The five by five QuadrantKey array ‘q’, would actually need a total of 31 reference variables to be able to access all of its components:

1 - reference variable for ‘q’

5 - reference variables for q[0] - q[4]

25 - reference variables for q[0][0] - q[4][4]

The ensign had forgotten the reference variables for the five one dimensional arrays embedded in the ‘q’ array. Any of those five reference variables could have been corrupted by the Hackarian ray, and the ensign’s test would never reveal the problem.

[14
]
 IDE stands for Integrated Development Environment and includes tools such as Eclipse, Borland’s JBuilder, or the open source NetBeans (netbeans.org).

 Appendix C. This isn’t goodbye

Bring your brain over to
wickedlysmart.com

 [image: image with no caption]

 Index

A note on the digital index

A link in an index entry is displayed as the section title in which that entry appears. Because some sections have multiple index markers, it is not unusual for an entry to have several links to the same section. Clicking on any link will take you directly to the place in the text in which the marker appears.

Symbols

&, &&, |. || (boolean operators), Super Powerful Boolean Expressions
 , Why do you care?

&, <<, >>, >>>, ^, |, ~ (bitwise operators), Why do you care?

++ -- (increment/decrement), Just the new stuff
 , Difference between for and while

+ (String concatenation operator), How it works

. (dot operator), Making your first object
 , Controlling your Dog object

reference, Controlling your Dog object

<, <=, ==,!=, >, >= (comparison operators), Comparing variables (primitives or references)
 , More about for loops
 , Super Powerful Boolean Expressions

<, <=, ==, >, >= (comparison operators), Looping and looping and...

A

abandoned objects, Running the Guessing Game
 (see garbage collection)

abstract, Did we forget about something when we designed this?
 , Did we forget about something when we designed this?

class, Did we forget about something when we designed this?

class modifier, Did we forget about something when we designed this?

abstract methods, Abstract methods

declaring, Abstract methods

access, Hide the data
 , Hide the data
 , How do you know if you’ve got your inheritance right?
 , #4 Access Levels and Access Modifiers (Who Sees What)
 , #4 Access Levels and Access Modifiers (Who Sees What)
 , #4 Access Levels and Access Modifiers (Who Sees What)

and inheritance, How do you know if you’ve got your inheritance right?

class modifiers, #4 Access Levels and Access Modifiers (Who Sees What)

method modifiers, Hide the data
 , #4 Access Levels and Access Modifiers (Who Sees What)

variable modifiers, Hide the data
 , #4 Access Levels and Access Modifiers (Who Sees What)

accessors and mutators, Cool things you can do with parameters and return types
 (see getters and setters)

ActionListener interface, Getting a user event
 , Getting a user event

addActionListener(), Getting a user event

advice guy, The DailyAdviceClient
 , DailyAdviceServer code

Aeron™, Chair Wars: (or How Objects Can Change Your Life)

animation, Using an inner class for animation

API, Using the Library (the Java API)
 , How to play with the API
 , But the ArrayList class does NOT have a sort() method!
 , The Collection API (part of it)

ArrayList, But the ArrayList class does NOT have a sort() method!

collections, The Collection API (part of it)

appendix A, Final Code Kitchen
 , Final BeatBox client program
 , Final BeatBox server program

beat box final client, Final BeatBox client program

beat box final server, Final BeatBox server program

appendix B, Why do you care?
 , Why do you care that Strings are Immutable?
 , #8 Assertions
 , #7 Block Scope
 , #6 Linked Invocations
 , #4 Access Levels and Access Modifiers (Who Sees What)
 , #3 String and StringBuffer/StringBuilder Methods
 , #2 Multidimensional Arrays

access levels and modifiers, #4 Access Levels and Access Modifiers (Who Sees What)

assertions, #8 Assertions

bit manipulation, Why do you care?

block scope, #7 Block Scope

immutability, Why do you care that Strings are Immutable?

linked invocations, #6 Linked Invocations

multidimensional arrays, #2 Multidimensional Arrays

String and StringBuffer methods, #3 String and StringBuffer/StringBuilder Methods

apples and oranges, Comparing ArrayList to a regular array

arguments, You can send things to a method
 , You can send more than one thing to a method
 , Java is pass-by-value. That means pass-by-copy
 , In other words, you define a common protocol for a set of classes related through inheritance

method, You can send things to a method
 , You can send more than one thing to a method
 , Java is pass-by-value. That means pass-by-copy

polymorphic, In other words, you define a common protocol for a set of classes related through inheritance

ArrayList, Wake up and smell the library
 , Some things you can do with ArrayList
 , Using the Library (the Java API)
 , What about non-Animals? Why not make a class generic enough to take anything?
 , Using polymorphic references of type Object has a price...
 , Making and Implementing the Pet interface
 , Before Java 5.0, YOU had to do the work...
 , But the ArrayList class does NOT have a sort() method!
 , The Collection API (part of it)

API, But the ArrayList class does NOT have a sort() method!

ArrayList<Object>, Using polymorphic references of type Object has a price...

autoboxing, Before Java 5.0, YOU had to do the work...

casting, Making and Implementing the Pet interface

arrays, How it works
 , How it works
 , An array is like a tray of cups
 , An array is like a tray of cups
 , An array is like a tray of cups
 , An array is like a tray of cups
 , Make an array of Dogs
 , Make an array of Dogs
 , How do objects in an array behave?
 , Some things you can do with ArrayList
 , Some things you can do with ArrayList
 , #2 Multidimensional Arrays

about, How it works
 , An array is like a tray of cups
 , Some things you can do with ArrayList

assigning, An array is like a tray of cups

compared to ArrayList, Some things you can do with ArrayList

creation, Make an array of Dogs

declaring, An array is like a tray of cups

length attribute, How it works

multidimensional, #2 Multidimensional Arrays

objects, of, Make an array of Dogs
 , How do objects in an array behave?

primitives, of, An array is like a tray of cups

assertions, #8 Assertions

assertions, #8 Assertions

assignments, primitive, You really don’t want to spill that...

assignments, reference variables, An object reference is just another variable value
 , Life on the garbage-collectible heap
 , How do objects in an array behave?

atomic code blocks, We need the makeWithdrawal () method to run as one atomic thing

(see also threads)

audio, We’ll start with the basics
 (see midi)

autoboxing, Before Java 5.0, YOU had to do the work...
 , Autoboxing works almost everywhere
 , Autoboxing works almost everywhere

and operators, Autoboxing works almost everywhere

assignments, Autoboxing works almost everywhere

B

bark different, The size affects the bark

bathtub, Using IS-A and HAS-A

beat box, Let’s make a Music Machine
 , Version 2: Using command-line args to experiment with sounds
 , Real-time Beat Box Chat

(see also appendix A)

beer, Coding a Serious Business Application

behavior, The size affects the bark

Bela Fleck, Larry snuck in just moments ahead of Brad

bit shifting, Why do you care?

bitwise operators, Why do you care?

block scope, #7 Block Scope

boolean, “I’d like a double mocha, no, make it an int.”

boolean expressions, Looping and looping and...
 , More about for loops
 , Super Powerful Boolean Expressions

logical, Super Powerful Boolean Expressions

BorderLayout manager, GUI layouts: putting more than one widget on a frame
 , Layout Managers
 , The Big Three layout managers: border, flow, and box

BoxLayout manager, The Big Three layout managers: border, flow, and box

brain barbell, The suspense is killing me. Who got the chair?
 , What about the Amoeba rotate()?
 , With polymorphism, you can write code that doesn’t have to change when you introduce new subclass types into the program

break statement, Just the new stuff

BufferedReader, Reading from a Text File
 , To read data from a Socket, use a BufferedReader

BufferedWriter, The java.io.File class

buffers, The java.io.File class
 , Reading from a Text File

byte, “I’d like a double mocha, no, make it an int.”

bytecode, The Way Java Works

C

Calendar, Moving backward and forward in time
 , Working with Calendar objects

methods, Working with Calendar objects

casting, The enhanced for loop
 , The enhanced for loop
 , Get in touch with your inner Object

explicit primitive, The enhanced for loop

explicit reference, Get in touch with your inner Object

implicit primitive, The enhanced for loop

catch blocks, Flow control in try/catch blocks
 , Did we mention that a method can throw more than one exception?
 , Exceptions are polymorphic
 , Multiple catch blocks must be ordered from smallest to biggest
 , Getting back to our music code...

catching multiple exceptions, Did we mention that a method can throw more than one exception?
 , Exceptions are polymorphic
 , Multiple catch blocks must be ordered from smallest to biggest

catching exceptions, The compiler needs to know that YOU know you’re calling a risky method
 , Flow control in try/catch blocks
 , Did we mention that a method can throw more than one exception?
 , Exceptions are polymorphic
 , Multiple catch blocks must be ordered from smallest to biggest
 , Getting back to our music code...

catch, Getting back to our music code...

catching multiple exceptions, Did we mention that a method can throw more than one exception?
 , Exceptions are polymorphic
 , Multiple catch blocks must be ordered from smallest to biggest

try, The compiler needs to know that YOU know you’re calling a risky method

chair wars, Chair Wars: (or How Objects Can Change Your Life)
 , Chair Wars Revisited...

char, “I’d like a double mocha, no, make it an int.”

chat client, Writing a Chat Client
 , New and improved SimpleChatClient

with threads, New and improved SimpleChatClient

chat server (simple), The really really simple Chat Server

check box (JCheckBox), Playing with Swing components

checked exceptions, If it’s your code that catches the exception, then whose code throws it?

runtime vs., If it’s your code that catches the exception, then whose code throws it?

checking account, Threads can lead to concurrency ‘issues’
 (see Ryan and Monica)

class, When you design a class, think about the objects that will be created from that class type. Think about
 , Running the Guessing Game
 , Cool things you can do with parameters and return types
 , Using the Library (the Java API)
 , Using the Library (the Java API)
 , Did we forget about something when we designed this?
 , Did we forget about something when we designed this?
 , final isn’t just for static variables...

abstract, Did we forget about something when we designed this?

concrete, Did we forget about something when we designed this?

designing, When you design a class, think about the objects that will be created from that class type. Think about
 , Running the Guessing Game
 , Cool things you can do with parameters and return types

final, final isn’t just for static variables...

fully qualified names, Using the Library (the Java API)
 , Using the Library (the Java API)

client/server, Real-time Beat Box Chat

code kitchen, Exception Rules
 , Using an inner class for animation
 , Playing with Swing components
 , Using the serialVersionUID
 , Final Code Kitchen

beat box save and restore, Using the serialVersionUID

final beat box, Final Code Kitchen
 (see appendix A)

making the GUI, Playing with Swing components

music with graphics, Using an inner class for animation

playing sound, Exception Rules

coffee cups, “I’d like a double mocha, no, make it an int.”

collections, Comparing ArrayList to a regular array
 , Comparing ArrayList to a regular array
 , Comparing ArrayList to a regular array
 , Using polymorphic references of type Object has a price...
 , ArrayList is not the only collection
 , ArrayList is not the only collection
 , ArrayList is not the only collection
 , ArrayList is not the only collection
 , ArrayList is not the only collection
 , ArrayList is not the only collection
 , You could use a TreeSet... Or you could use the Collections.sort() method
 , The sort() method declaration
 , We need a Set instead of a List
 , We need a Set instead of a List
 , We need a Set instead of a List
 , The Collection API (part of it)
 , We’ve seen Lists and Sets, now we’ll use a Map

API, The Collection API (part of it)

ArrayList, Comparing ArrayList to a regular array

ArrayList<Object>, Using polymorphic references of type Object has a price...

Collections.sort(), You could use a TreeSet... Or you could use the Collections.sort() method
 , The sort() method declaration

HashMap, ArrayList is not the only collection

HashSet, ArrayList is not the only collection

LinkedHashMap, ArrayList is not the only collection

LinkedList, ArrayList is not the only collection

List, We need a Set instead of a List

Map, We need a Set instead of a List
 , We’ve seen Lists and Sets, now we’ll use a Map

parameterized types, Comparing ArrayList to a regular array

Set, We need a Set instead of a List

TreeSet, ArrayList is not the only collection

Collections.sort(), You could use a TreeSet... Or you could use the Collections.sort() method
 , The sort() method declaration
 , We can sort the list, but...
 , Updating the Jukebox to use a Comparator

Comparator, We can sort the list, but...

compare(), Updating the Jukebox to use a Comparator

Comparable, Revisiting the sort() method
 , The Song class needs to implement Comparable
 , TreeSet elements MUST be comparable
 , TreeSet elements MUST be comparable

and TreeSet, TreeSet elements MUST be comparable

compareTo() method, The Song class needs to implement Comparable

Comparator, We can sort the list, but...
 , TreeSet elements MUST be comparable
 , TreeSet elements MUST be comparable

and TreeSet, TreeSet elements MUST be comparable

compare(), Updating the Jukebox to use a Comparator

compareTo(), The Song class needs to implement Comparable

comparing with ==, Comparing variables (primitives or references)

compiler, The Way Java Works
 , How it works
 , Compiling and running with packages

about, How it works

java -d, Compiling and running with packages

concatenate, How it works

concrete classes, Did we forget about something when we designed this?

conditional expressions, What can you say in the main method?
 , Looping and looping and...
 , Conditional branching

constants, static final variables are constants

constructors, The miracle of object creation
 , Wait a minute... we never DID talk about superclasses and inheritance and how that all fits in with constructors
 , Wait a minute... we never DID talk about superclasses and inheritance and how that all fits in with constructors
 , Invoking one overloaded constructor from another

about, The miracle of object creation

chaining, Wait a minute... we never DID talk about superclasses and inheritance and how that all fits in with constructors

overloaded, Invoking one overloaded constructor from another

superclass, Wait a minute... we never DID talk about superclasses and inheritance and how that all fits in with constructors

contracts, Keeping the contract: rules for overriding
 , What if you need to change the contract?

cups, “I’d like a double mocha, no, make it an int.”

curly braces, What can you say in the main method?

D

daily advice client, The DailyAdviceClient

daily advice server, DailyAdviceServer code

dancing girl, Let’s make a Music Machine

dates, So much for numbers, what about dates?
 , Moving backward and forward in time
 , Moving backward and forward in time
 , Moving backward and forward in time
 , Working with Calendar objects

Calendar, Moving backward and forward in time

formatting, So much for numbers, what about dates?

GregorianCalendar, Moving backward and forward in time

java.util.Date, Moving backward and forward in time

methods, Working with Calendar objects

deadlock, The deadly side of synchronization

deadly diamond of death, Let’s explore some design options for reusing some of our existing classes in a PetShop program

declarations, Declaring a variable
 , Declaring a variable
 , When you don’t want to handle an exception...

about, Declaring a variable

exceptions, When you don’t want to handle an exception...

instance variables, Declaring a variable

default access, #4 Access Levels and Access Modifiers (Who Sees What)

default value, Declaring and initializing instance variables

deployment options, Deploying your application
 , Method calls are always between two objects on the same heap

deserialized objects, Deserialization: restoring an object

(see also serialization)

directory structures, Preventing package name conflicts
 , What about Servlets?

packages, Preventing package name conflicts

servlets, What about Servlets?

doctor, An inheritance example:

dot operator, Controlling your Dog object

reference, Controlling your Dog object

double, “I’d like a double mocha, no, make it an int.”

duck, Construct a Duck
 , What about reference variables?
 , Static methods can’t use non-static (instance) variables!

construct, Construct a Duck

garbage collect, What about reference variables?

ducking exceptions, When you don’t want to handle an exception...

E

EJB, Enterprise JavaBeans: RMI on steroids

encapsulation, Cool things you can do with parameters and return types
 , Do it or risk humiliation and ridicule

about, Cool things you can do with parameters and return types

benefits, Do it or risk humiliation and ridicule

end of book, Final Project: the Universal Service browser

enumerations, #1 Enumerations (also called Enumerated Types or Enums)

enums, #1 Enumerations (also called Enumerated Types or Enums)

equality, What makes two objects equal?
 , How a HashSet checks for duplicates: hashCode() and equals()

and hashCode(), How a HashSet checks for duplicates: hashCode() and equals()

equals(), So what’s in this ultra-super-megaclass Object?
 , So what’s in this ultra-super-megaclass Object?

about, So what’s in this ultra-super-megaclass Object?

Object class, So what’s in this ultra-super-megaclass Object?

equals(), How a HashSet checks for duplicates: hashCode() and equals()

event handling, Getting a user event
 , Getting a user event
 , Listeners, Sources, and Events
 , How to make an instance of an inner class

event object, Listeners, Sources, and Events

listener interface, Getting a user event

using inner classes, How to make an instance of an inner class

event source, Getting a user event

exceptions, Methods in Java use exceptions to tell the calling code, “Something Bad Happened. I failed.”
 , The compiler needs to know that YOU know you’re calling a risky method
 , The compiler needs to know that YOU know you’re calling a risky method
 , If it’s your code that catches the exception, then whose code throws it?
 , If it’s your code that catches the exception, then whose code throws it?
 , If it’s your code that catches the exception, then whose code throws it?
 , Flow control in try/catch blocks
 , Finally: for the things you want to do no matter what
 , Did we mention that a method can throw more than one exception?
 , Multiple catch blocks must be ordered from smallest to biggest
 , When you don’t want to handle an exception...
 , When you don’t want to handle an exception...
 , When you don’t want to handle an exception...
 , Ducking (by declaring) only delays the inevitable
 , Getting back to our music code...
 , Getting back to our music code...
 , Getting back to our music code...
 , Java RMI gives you the client and service helper objects!

about, Methods in Java use exceptions to tell the calling code, “Something Bad Happened. I failed.”
 , If it’s your code that catches the exception, then whose code throws it?
 , Getting back to our music code...

catch, The compiler needs to know that YOU know you’re calling a risky method
 , Getting back to our music code...

catching multiple exceptions, Did we mention that a method can throw more than one exception?
 , Multiple catch blocks must be ordered from smallest to biggest

checked vs. runtime, If it’s your code that catches the exception, then whose code throws it?

declaring, When you don’t want to handle an exception...

ducking, When you don’t want to handle an exception...

finally, Finally: for the things you want to do no matter what

flow control, Flow control in try/catch blocks

handle or declare law, Ducking (by declaring) only delays the inevitable

propagating, When you don’t want to handle an exception...

remote exceptions, Java RMI gives you the client and service helper objects!

throwing, If it’s your code that catches the exception, then whose code throws it?

try, The compiler needs to know that YOU know you’re calling a risky method
 , Getting back to our music code...

executable JAR, Put your Java in a JAR
 , Put your Java in a JAR
 , Making an executable JAR with packages
 , Making an executable JAR with packages

with packages, Making an executable JAR with packages
 , Making an executable JAR with packages

exercises, How it works
 , Running the Guessing Game
 , Running the Guessing Game
 , A Dog example
 , Comparing variables (primitives or references)
 , Comparing variables (primitives or references)
 , Casting primitives
 , Casting primitives
 , Making and Implementing the Pet interface
 , Making and Implementing the Pet interface
 , What about reference variables?
 , What about reference variables?
 , Even more Statics!... static imports
 , Even more Statics!... static imports
 , Even more Statics!... static imports
 , Version 2: Using command-line args to experiment with sounds
 , Version 2: Using command-line args to experiment with sounds
 , Version Three: drawing graphics in time with the music
 , Version Three: drawing graphics in time with the music
 , Making the BeatBox
 , Restoring a BeatBox pattern
 , Restoring a BeatBox pattern
 , The really really simple Chat Server
 , The .jnlp file

be the..., Comparing variables (primitives or references)
 , Casting primitives
 , What about reference variables?
 , Even more Statics!... static imports
 , Version Three: drawing graphics in time with the music

code magnets, How it works
 , Running the Guessing Game
 , A Dog example
 , Casting primitives
 , Even more Statics!... static imports
 , Version 2: Using command-line args to experiment with sounds
 , Restoring a BeatBox pattern
 , The really really simple Chat Server

honeypot, What about reference variables?

true or false, Even more Statics!... static imports
 , Version 2: Using command-line args to experiment with sounds
 , Restoring a BeatBox pattern
 , The .jnlp file

what’s the declaration, Making and Implementing the Pet interface

what’s the picture, Making and Implementing the Pet interface

which layout manager?, Making the BeatBox

who am I, Running the Guessing Game
 , Comparing variables (primitives or references)
 , Version Three: drawing graphics in time with the music

Extreme Programming, let’s write the real method code now, and get this puppy working

F

File, The java.io.File class

File class, The java.io.File class

FileInputStream, Deserialization: restoring an object

(see also I/O)

FileOutputStream, Writing a serialized object to a file

FileReader, Reading from a Text File

(see also I/O)

files, Code structure in Java
 , Writing a serialized object to a file
 , Deserialization: restoring an object
 , Writing a String to a Text File
 , The java.io.File class
 , Reading from a Text File

File class, The java.io.File class

reading from, Deserialization: restoring an object
 , Reading from a Text File

source file structure, Code structure in Java

writing to, Writing a serialized object to a file
 , Writing a String to a Text File

FileWriter, Writing a String to a Text File

final, With polymorphism, you can write code that doesn’t have to change when you introduce new subclass types into the program
 , With polymorphism, you can write code that doesn’t have to change when you introduce new subclass types into the program
 , static final variables are constants
 , static final variables are constants
 , final isn’t just for static variables...
 , final isn’t just for static variables...
 , final isn’t just for static variables...

class, With polymorphism, you can write code that doesn’t have to change when you introduce new subclass types into the program
 , final isn’t just for static variables...

methods, With polymorphism, you can write code that doesn’t have to change when you introduce new subclass types into the program
 , final isn’t just for static variables...

static variables, static final variables are constants

variables, static final variables are constants
 , final isn’t just for static variables...

finally block, Finally: for the things you want to do no matter what

fireside chats, How it works

about, How it works

five minute mystery, Comparing variables (primitives or references)
 (see puzzles)

float, “I’d like a double mocha, no, make it an int.”

flow control, Flow control in try/catch blocks

exceptions, Flow control in try/catch blocks

FlowLayout, The Big Three layout managers: border, flow, and box
 , The Big Three layout managers: border, flow, and box

font, The Big Three layout managers: border, flow, and box

for loops, Just the new stuff

formatting, Number formatting
 , Number formatting
 , Number formatting
 , Formatting deconstructed...
 , What happens if I have more than one argument?
 , So much for numbers, what about dates?

argument, What happens if I have more than one argument?

dates, So much for numbers, what about dates?

format specifiers, Formatting deconstructed...

numbers, Number formatting

printf(), Number formatting

String.format(), Number formatting

fully qualified name, Using the Library (the Java API)
 , Using the Library (the Java API)
 , Put your classes in packages!

packages, Put your classes in packages!

G

garbage collection, Running the Guessing Game
 , Life on the garbage-collectible heap
 , Life and death on the heap
 , Life and death on the heap
 , Life and death on the heap
 , What about reference variables?

about, Running the Guessing Game

eligible objects, What about reference variables?

heap, Life on the garbage-collectible heap
 , Life and death on the heap

nulling references, Life and death on the heap

reassigning references, Life and death on the heap

generics, Generics means more type-safety
 , Using generic CLASSES
 , Using generic METHODS
 , Finally, back to generics
 , Wildcards to the rescue

methods, Using generic METHODS

wildcards, Wildcards to the rescue

getters and setters, Cool things you can do with parameters and return types

ghost town, Everything happens in main()

giraffe, Declaring a variable

girl dreaming, Inner class to the rescue!
 , So where did the manifest file go?

inner classes, Inner class to the rescue!

Java Web Start, So where did the manifest file go?

girl in a tub, Using IS-A and HAS-A

girl who isn’t getting it, So what does all this inheritance really buy you?

graphics, Make your own drawing widget
 , Make your own drawing widget
 , Behind every good Graphics reference is a Graphics2D object

(see also GUI)

Graphics object, Make your own drawing widget

Graphics2D class, Behind every good Graphics reference is a Graphics2D object

GregorianCalendar, Moving backward and forward in time

guessing game, Quick! Get out of main!

GUI, It all starts with a window
 , It all starts with a window
 , It all starts with a window
 , Getting a user event
 , Getting a user event
 , Getting back to graphics...
 , Getting back to graphics...
 , Fun things to do in paintComponent()
 , GUI layouts: putting more than one widget on a frame
 , How to make an instance of an inner class
 , Using an inner class for animation
 , Swing components
 , Swing components
 , Swing components
 , Swing components
 , Swing components
 , Swing components
 , Layout Managers
 , Layout Managers
 , Layout Managers
 , The Big Three layout managers: border, flow, and box
 , The Big Three layout managers: border, flow, and box
 , The Big Three layout managers: border, flow, and box
 , The Big Three layout managers: border, flow, and box
 , The Big Three layout managers: border, flow, and box
 , The Big Three layout managers: border, flow, and box
 , The Big Three layout managers: border, flow, and box
 , Playing with Swing components
 , Playing with Swing components
 , Playing with Swing components

about, It all starts with a window
 , Swing components

animation, Using an inner class for animation

BorderLayout, GUI layouts: putting more than one widget on a frame
 , Layout Managers
 , The Big Three layout managers: border, flow, and box

box layout, The Big Three layout managers: border, flow, and box
 , The Big Three layout managers: border, flow, and box

buttons, The Big Three layout managers: border, flow, and box

components, It all starts with a window
 , Getting back to graphics...
 , Swing components

event handling, Getting a user event
 , How to make an instance of an inner class

flow layout, The Big Three layout managers: border, flow, and box
 , The Big Three layout managers: border, flow, and box

frames, Swing components

graphics, Getting back to graphics...

ImageIcon class, Fun things to do in paintComponent()

JButton, Swing components

JLabel, Swing components

JPanel, Swing components
 , Layout Managers

JTextArea, Playing with Swing components

JTextField, Playing with Swing components

layout managers, Layout Managers

listener interface, Getting a user event

scrolling (JScrollPane), Playing with Swing components

Swing, It all starts with a window

GUI Constants, Playing with Swing components
 , Playing with Swing components

ScrollPaneConstants.HORIZONTAL_SCROLLBAR_NEVER, Playing with Swing components

ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS, Playing with Swing components

GUI methods, Make your own drawing widget
 , Make your own drawing widget
 , Make your own drawing widget
 , Fun things to do in paintComponent()
 , Fun things to do in paintComponent()
 , The Big Three layout managers: border, flow, and box
 , The Big Three layout managers: border, flow, and box

drawImage(), Fun things to do in paintComponent()

fillOval(), Fun things to do in paintComponent()

fillRect(), Make your own drawing widget

gradientPaint(), The Big Three layout managers: border, flow, and box

(see also GUI)

paintComponent(), Make your own drawing widget

setColor(), Make your own drawing widget

setFont(), The Big Three layout managers: border, flow, and box

GUI Widgets, It all starts with a window
 , It all starts with a window
 , It all starts with a window
 , Swing components
 , Swing components
 , Layout Managers
 , Layout Managers
 , The Big Three layout managers: border, flow, and box
 , Playing with Swing components
 , Playing with Swing components
 , Playing with Swing components
 , Playing with Swing components
 , Playing with Swing components
 , Playing with Swing components

JButton, It all starts with a window
 , The Big Three layout managers: border, flow, and box

JCheckBox, Playing with Swing components

JFrame, It all starts with a window
 , Swing components
 , Layout Managers

JList, Playing with Swing components

JPanel, Swing components
 , Layout Managers

JScrollPane, Playing with Swing components
 , Playing with Swing components

JTextArea, Playing with Swing components

JTextField, Playing with Swing components

H

HAS-A, Using IS-A and HAS-A

hashCode(), How a HashSet checks for duplicates: hashCode() and equals()

HashMap, ArrayList is not the only collection
 , The Collection API (part of it)

HashSet, ArrayList is not the only collection
 , The Collection API (part of it)

Hashtable, The Collection API (part of it)

heap, Running the Guessing Game
 , Running the Guessing Game
 , Life on the garbage-collectible heap
 , Life on the garbage-collectible heap
 , Life and death on the heap
 , The Stack and the Heap: where things live

about, Running the Guessing Game
 , Life on the garbage-collectible heap
 , The Stack and the Heap: where things live

garbage collection, Running the Guessing Game
 , Life on the garbage-collectible heap
 , Life and death on the heap

I

I/O, Writing a serialized object to a file
 , Writing a serialized object to a file
 , Writing a serialized object to a file
 , Data moves in streams from one place to another
 , What really happens to an object when it’s serialized?
 , If you want your class to be serializable, implement Serializable
 , If you want your class to be serializable, implement Serializable
 , If you want your class to be serializable, implement Serializable
 , Deserialization: restoring an object
 , Deserialization: restoring an object
 , Deserialization: restoring an object
 , The GameCharacter class
 , Writing a String to a Text File
 , The java.io.File class
 , The java.io.File class
 , Reading from a Text File
 , Version ID: A Big Serialization Gotcha
 , To read data from a Socket, use a BufferedReader
 , To read data from a Socket, use a BufferedReader
 , To read data from a Socket, use a BufferedReader

BufferedReader, Reading from a Text File
 , To read data from a Socket, use a BufferedReader

BufferedWriter, The java.io.File class

buffers, The java.io.File class

deserialization, Deserialization: restoring an object

FileInputStream, Deserialization: restoring an object

FileOutputStream, Writing a serialized object to a file

FileWriter, Writing a String to a Text File

InputStreamReader, To read data from a Socket, use a BufferedReader

ObjectInputStream, Deserialization: restoring an object

ObjectOutputStream, Writing a serialized object to a file
 , If you want your class to be serializable, implement Serializable

serialization, Writing a serialized object to a file
 , What really happens to an object when it’s serialized?
 , If you want your class to be serializable, implement Serializable
 , The GameCharacter class
 , Version ID: A Big Serialization Gotcha

streams, Data moves in streams from one place to another
 , If you want your class to be serializable, implement Serializable

with sockets, To read data from a Socket, use a BufferedReader

if -else, Conditional branching

if statement, Conditional branching

immutability, Strings, Why do you care that Strings are Immutable?

immutability, Why do you care that Strings are Immutable?

implements, Interface to the rescue!

import statement, Using the Library (the Java API)
 , Using the Library (the Java API)

imports, Even more Statics!... static imports

static imports, Even more Statics!... static imports

increment, Just the new stuff

inheritance, So, Brad the OO guy got the chair, right?
 , Chair Wars Revisited...
 , Let’s design the inheritance tree for an Animal simulation program
 , The compiler won’t let you instantiate an abstract class
 , Get in touch with your inner Object
 , Making and Implementing the Pet interface
 , The role of superclass constructors in an object’s life

about, So, Brad the OO guy got the chair, right?
 , Chair Wars Revisited...

and abstract classes, The compiler won’t let you instantiate an abstract class

animals, Let’s design the inheritance tree for an Animal simulation program

IS-A, Get in touch with your inner Object
 , The role of superclass constructors in an object’s life

super, Making and Implementing the Pet interface

initializing, Declaring and initializing instance variables
 , Declaring and initializing instance variables
 , Initializing a static variable

instance variables, Declaring and initializing instance variables

primitives, Declaring and initializing instance variables

static variables, Initializing a static variable

inner class threesome, How to make an instance of an inner class

inner classes, Inner class to the rescue!
 , How to make an instance of an inner class

about, Inner class to the rescue!

events, How to make an instance of an inner class

InputStreamReader, To read data from a Socket, use a BufferedReader

instance variables, When you design a class, think about the objects that will be created from that class type. Think about
 , The size affects the bark
 , Declaring and initializing instance variables
 , Declaring and initializing instance variables
 , Declaring and initializing instance variables
 , The Stack and the Heap: where things live
 , If local variables live on the stack, where do instance variables live?
 , Now we know how an object is born, but how long does an object live?
 , Static methods can’t use non-static (instance) variables!

about, When you design a class, think about the objects that will be created from that class type. Think about
 , The size affects the bark

declaring, Declaring and initializing instance variables

default values, Declaring and initializing instance variables

initializing, Declaring and initializing instance variables

life and scope, Now we know how an object is born, but how long does an object live?

local variables vs., The Stack and the Heap: where things live
 , If local variables live on the stack, where do instance variables live?

static vs., Static methods can’t use non-static (instance) variables!

instantiation, An object reference is just another variable value
 (see objects)

int, Declaring a variable
 , “I’d like a double mocha, no, make it an int.”

primitive, “I’d like a double mocha, no, make it an int.”

Integer, Wrapping a primitive
 (see wrapper)

interfaces, Let’s explore some design options for reusing some of our existing classes in a PetShop program
 , Interface to the rescue!
 , Making and Implementing the Pet interface
 , If you want your class to be serializable, implement Serializable
 , If you want your class to be serializable, implement Serializable
 , If you want your class to be serializable, implement Serializable

about, Let’s explore some design options for reusing some of our existing classes in a PetShop program

for serialization, If you want your class to be serializable, implement Serializable

implementing, Interface to the rescue!
 , If you want your class to be serializable, implement Serializable

implementing multiple, Making and Implementing the Pet interface

java.io.Serializable, If you want your class to be serializable, implement Serializable

IP address, Real-time Beat Box Chat
 (see networking)

IS-A, Using IS-A and HAS-A
 , The role of superclass constructors in an object’s life

J

J2EE, Enterprise JavaBeans: RMI on steroids

JAR files, Put your Java in a JAR
 , Put your Java in a JAR
 , Put your Java in a JAR
 , Making an executable JAR with packages
 , Making an executable JAR with packages
 , So where did the manifest file go?
 , So where did the manifest file go?
 , Java Web Start

basic commands, So where did the manifest file go?

executable, Put your Java in a JAR
 , Making an executable JAR with packages

manifest, Put your Java in a JAR

running executable, Put your Java in a JAR
 , Making an executable JAR with packages

tool, So where did the manifest file go?

with Java Web Start, Java Web Start

Java in a Nutshell, How to play with the API

java sound, We’ll start with the basics
 , Making actual sound

Java Web Start, So where did the manifest file go?
 , Java Web Start
 , The .jnlp file

jnlp file, Java Web Start
 , The .jnlp file

Java, about, A very brief history of Java
 , A very brief history of Java

javac, The Way Java Works
 (see compiler)

Jini, For our final trick... a little Jini

JNLP, Java Web Start
 , The .jnlp file

jnlp file, The .jnlp file

JPEG, Fun things to do in paintComponent()

JVM, The Way Java Works
 , How it works

about, The Way Java Works
 , How it works

JWS, So where did the manifest file go?
 (see Java Web Start)

K

keywords, Back away from that keyword!

L

l, What about reference variables?

layout managers, GUI layouts: putting more than one widget on a frame
 , Layout Managers
 , The Big Three layout managers: border, flow, and box
 , The Big Three layout managers: border, flow, and box
 , The Big Three layout managers: border, flow, and box
 , The Big Three layout managers: border, flow, and box
 , The Big Three layout managers: border, flow, and box
 , The Big Three layout managers: border, flow, and box

BorderLayout, GUI layouts: putting more than one widget on a frame
 , The Big Three layout managers: border, flow, and box
 , The Big Three layout managers: border, flow, and box

BoxLayout, The Big Three layout managers: border, flow, and box
 , The Big Three layout managers: border, flow, and box

FlowLayout, The Big Three layout managers: border, flow, and box
 , The Big Three layout managers: border, flow, and box

lingerie, exceptions, Did we mention that a method can throw more than one exception?

linked invocations, #6 Linked Invocations

LinkedHashMap, ArrayList is not the only collection
 , The Collection API (part of it)

LinkedHashSet, The Collection API (part of it)

LinkedList, ArrayList is not the only collection
 , The Collection API (part of it)

List, We need a Set instead of a List

listeners, Getting a user event

listener interface, Getting a user event

literals, assigning values, You really don’t want to spill that...

primitive, You really don’t want to spill that...

local, The difference between instance and local variables
 , The Stack and the Heap: where things live
 , The Stack and the Heap: where things live
 , Now we know how an object is born, but how long does an object live?

variables, The difference between instance and local variables
 , The Stack and the Heap: where things live
 , The Stack and the Heap: where things live
 , Now we know how an object is born, but how long does an object live?

locks, The Ryan and Monica example
 , The Ryan and Monica example

object, The Ryan and Monica example

threads, The Ryan and Monica example

long, “I’d like a double mocha, no, make it an int.”

loops, What can you say in the main method?
 , Just the new stuff
 , Just the new stuff
 , Difference between for and while

about, What can you say in the main method?

break, Just the new stuff

for, Just the new stuff

while, Difference between for and while

lost update problem, Writing a Chat Client
 (see threads)

M

main(), Writing a class with a main
 , Quick! Get out of main!

make it stick, Back away from that keyword!
 , Comparing variables (primitives or references)
 , Using the Library (the Java API)
 , But wait! There’s more!
 , Making and Implementing the Pet interface
 , Static methods can’t use non-static methods, either!

manifest file, Put your Java in a JAR

Map, We need a Set instead of a List
 , We’ve seen Lists and Sets, now we’ll use a Map

Math class, random() and getUserInput()
 , MATH methods: as close as you’ll ever get to a global method
 , Math methods

methods, MATH methods: as close as you’ll ever get to a global method
 , Math methods

random(), random() and getUserInput()

memory, What about reference variables?

garbage collection, What about reference variables?

metacognitive tip, The suspense is killing me. Who got the chair?
 , Everything happens in main()
 , If it’s your code that catches the exception, then whose code throws it?

methods, What about the Amoeba rotate()?
 , When you design a class, think about the objects that will be created from that class type. Think about
 , You can send things to a method
 , You can get things back from a method
 , You can send more than one thing to a method
 , Java is pass-by-value. That means pass-by-copy
 , Java is pass-by-value. That means pass-by-copy
 , Java is pass-by-value. That means pass-by-copy
 , What about the Amoeba rotate()?
 , Overloading a method
 , Abstract methods
 , Methods are stacked
 , MATH methods: as close as you’ll ever get to a global method
 , final isn’t just for static variables...
 , Using generic METHODS

about, When you design a class, think about the objects that will be created from that class type. Think about
 , Java is pass-by-value. That means pass-by-copy

abstract, Abstract methods

arguments, You can send things to a method
 , You can send more than one thing to a method
 , Java is pass-by-value. That means pass-by-copy

final, final isn’t just for static variables...

generic arguments, Using generic METHODS

on the stack, Methods are stacked

overloading, Overloading a method

overriding, What about the Amoeba rotate()?
 , What about the Amoeba rotate()?

return, You can get things back from a method
 , Java is pass-by-value. That means pass-by-copy

static, MATH methods: as close as you’ll ever get to a global method

midi, We’ll start with the basics
 , Making actual sound
 , Listening for a non-GUI event

midi sequencer, Making actual sound

MINI Cooper, Threads can lead to concurrency ‘issues’

modifiers, Did we forget about something when we designed this?
 , Abstract methods

class, Did we forget about something when we designed this?

method, Abstract methods

multidimensional arrays, #2 Multidimensional Arrays

multiple inheritance, Let’s explore some design options for reusing some of our existing classes in a PetShop program

multiple threads, Writing a Chat Client
 (see threads)

music, We’ll start with the basics
 (see midi)

mystery, Comparing variables (primitives or references)
 (see puzzles)

N

naming, Back away from that keyword!
 , Using the Library (the Java API)
 , Using the Library (the Java API)
 , Put your classes in packages!
 , Put your classes in packages!

(see also RMI)

classes and interfaces, Using the Library (the Java API)
 , Using the Library (the Java API)

collisions, Put your classes in packages!

packages, Put your classes in packages!

networking, Real-time Beat Box Chat
 , Make a network Socket connection
 , Make a network Socket connection

about, Real-time Beat Box Chat

ports, Make a network Socket connection

sockets, Make a network Socket connection

new, An object reference is just another variable value

null, What about reference variables?

reference, What about reference variables?

numbers, Number formatting

formatting, Number formatting

O

Object class, What about non-Animals? Why not make a class generic enough to take anything?
 , How a HashSet checks for duplicates: hashCode() and equals()
 , How a HashSet checks for duplicates: hashCode() and equals()
 , The Song class with overridden hashCode() and equals()

about, What about non-Animals? Why not make a class generic enough to take anything?

equals(), How a HashSet checks for duplicates: hashCode() and equals()

hashCode(), How a HashSet checks for duplicates: hashCode() and equals()

overriding methods, The Song class with overridden hashCode() and equals()

object graph, But what exactly IS an object’s state? What needs to be saved?
 , If you want your class to be serializable, implement Serializable

object references, Controlling your Dog object
 , An object reference is just another variable value
 , An object reference is just another variable value
 , Comparing variables (primitives or references)
 , In other words, you define a common protocol for a set of classes related through inheritance
 , Get in touch with your inner Object
 , What about reference variables?
 , What about reference variables?
 , What makes two objects equal?

assignment, An object reference is just another variable value
 , What about reference variables?

casting, Get in touch with your inner Object

comparing, Comparing variables (primitives or references)

equality, What makes two objects equal?

nulling, What about reference variables?

polymorphism, In other words, you define a common protocol for a set of classes related through inheritance

ObjectOutputStream, Writing a serialized object to a file
 , If you want your class to be serializable, implement Serializable

objects, An object reference is just another variable value
 , An object reference is just another variable value
 , An array is like a tray of cups
 , Make an array of Dogs
 , How do objects in an array behave?
 , So what’s in this ultra-super-megaclass Object?
 , So what’s in this ultra-super-megaclass Object?
 , The miracle of object creation
 , Now we know how an object is born, but how long does an object live?
 , What about reference variables?
 , The Ryan and Monica example
 , What makes two objects equal?
 , How a HashSet checks for duplicates: hashCode() and equals()

about, An object reference is just another variable value

arrays, An array is like a tray of cups
 , Make an array of Dogs
 , How do objects in an array behave?

comparing, So what’s in this ultra-super-megaclass Object?

creation, An object reference is just another variable value
 , The miracle of object creation

eligible for garbage collection, What about reference variables?

equality, What makes two objects equal?

equals(), So what’s in this ultra-super-megaclass Object?
 , How a HashSet checks for duplicates: hashCode() and equals()

life, Now we know how an object is born, but how long does an object live?

locks, The Ryan and Monica example

OO, When you design a class, think about the objects that will be created from that class type. Think about
 , Running the Guessing Game
 , Cool things you can do with parameters and return types
 , Chair Wars Revisited...
 , Chair Wars Revisited...
 , What about the Amoeba rotate()?
 , Using IS-A and HAS-A
 , Using IS-A and HAS-A
 , In other words, you define a common protocol for a set of classes related through inheritance
 , In other words, you define a common protocol for a set of classes related through inheritance
 , Keeping the contract: rules for overriding
 , Overloading a method
 , Polymorphism in action
 , What if you need to change the contract?
 , Let’s explore some design options for reusing some of our existing classes in a PetShop program
 , Let’s explore some design options for reusing some of our existing classes in a PetShop program
 , The role of superclass constructors in an object’s life
 , The role of superclass constructors in an object’s life

contracts, Keeping the contract: rules for overriding
 , What if you need to change the contract?

deadly diamond of death, Let’s explore some design options for reusing some of our existing classes in a PetShop program

design, When you design a class, think about the objects that will be created from that class type. Think about
 , Running the Guessing Game
 , Cool things you can do with parameters and return types
 , Chair Wars Revisited...

HAS-A, Using IS-A and HAS-A

inheritance, Chair Wars Revisited...

interfaces, Let’s explore some design options for reusing some of our existing classes in a PetShop program

IS-A, Using IS-A and HAS-A
 , The role of superclass constructors in an object’s life

overload, Overloading a method

override, What about the Amoeba rotate()?

polymorphism, In other words, you define a common protocol for a set of classes related through inheritance
 , In other words, you define a common protocol for a set of classes related through inheritance
 , Polymorphism in action

superclass, The role of superclass constructors in an object’s life

operators, Looping and looping and...
 , Just the new stuff
 , Difference between for and while
 , Difference between for and while
 , Super Powerful Boolean Expressions
 , Super Powerful Boolean Expressions
 , Autoboxing works almost everywhere
 , Why do you care?
 , Why do you care?

and autoboxing, Autoboxing works almost everywhere

bitwise, Why do you care?

comparison, Super Powerful Boolean Expressions

conditional, Looping and looping and...

decrement, Difference between for and while

increment, Just the new stuff
 , Difference between for and while

logical, Super Powerful Boolean Expressions

shift, Why do you care?

overload, Overloading a method
 , Invoking one overloaded constructor from another

constructors, Invoking one overloaded constructor from another

override, What about the Amoeba rotate()?
 , What about the Amoeba rotate()?
 , In other words, you define a common protocol for a set of classes related through inheritance

about, What about the Amoeba rotate()?
 , What about the Amoeba rotate()?

polymorphism, In other words, you define a common protocol for a set of classes related through inheritance
 (see polymorphism)

P

packages, Using the Library (the Java API)
 , Using the Library (the Java API)
 , Put your classes in packages!
 , Preventing package name conflicts
 , Preventing package name conflicts

directory structure, Preventing package name conflicts

organizing code, Preventing package name conflicts

paintComponent(), Make your own drawing widget

parameter, You can send things to a method
 (see arguments)

parameterized types, Comparing ArrayList to a regular array

parsing an int, Wrapping a primitive
 (see wrapper)

parsing text with String.split(), Parsing with String split()

pass-by-copy, Java is pass-by-value. That means pass-by-copy
 (see pass-by-value)

pass-by-value, Java is pass-by-value. That means pass-by-copy

phrase-o-matic, Monday morning at Bob’s

polymorphism, In other words, you define a common protocol for a set of classes related through inheritance
 , In other words, you define a common protocol for a set of classes related through inheritance
 , Polymorphism in action
 , Using polymorphic references of type Object has a price...
 , Exceptions are polymorphic

abstract classes, Polymorphism in action

and exceptions, Exceptions are polymorphic

arguments and return types, In other words, you define a common protocol for a set of classes related through inheritance

references of type Object, Using polymorphic references of type Object has a price...

pool puzzle, Comparing variables (primitives or references)
 (see puzzles)

ports, Make a network Socket connection

prep code, Developing a Class

primitive casting, The enhanced for loop

explicit primitive, The enhanced for loop

primitives, “I’d like a double mocha, no, make it an int.”
 , “I’d like a double mocha, no, make it an int.”
 , “I’d like a double mocha, no, make it an int.”
 , “I’d like a double mocha, no, make it an int.”
 , “I’d like a double mocha, no, make it an int.”
 , “I’d like a double mocha, no, make it an int.”
 , “I’d like a double mocha, no, make it an int.”
 , “I’d like a double mocha, no, make it an int.”
 , “I’d like a double mocha, no, make it an int.”
 , Back away from that keyword!
 , Comparing variables (primitives or references)
 , Before Java 5.0, YOU had to do the work...

== operator, Comparing variables (primitives or references)

autoboxing, Before Java 5.0, YOU had to do the work...

boolean, “I’d like a double mocha, no, make it an int.”

byte, “I’d like a double mocha, no, make it an int.”

char, “I’d like a double mocha, no, make it an int.”

double, “I’d like a double mocha, no, make it an int.”

float, “I’d like a double mocha, no, make it an int.”

int, “I’d like a double mocha, no, make it an int.”

ranges, “I’d like a double mocha, no, make it an int.”

short, “I’d like a double mocha, no, make it an int.”

type, “I’d like a double mocha, no, make it an int.”

printf(), Number formatting

PrintWriter, To write data to a Socket, use a PrintWriter

private, Hide the data

access modifier, Hide the data

protected, #4 Access Levels and Access Modifiers (Who Sees What)

public, Hide the data
 , #4 Access Levels and Access Modifiers (Who Sees What)

access modifier, Hide the data
 , #4 Access Levels and Access Modifiers (Who Sees What)

puzzles, How it works
 , How it works
 , Running the Guessing Game
 , A Dog example
 , Comparing variables (primitives or references)
 , Comparing variables (primitives or references)
 , Casting primitives
 , How to play with the API
 , Overloading a method
 , Making and Implementing the Pet interface
 , Version 2: Using command-line args to experiment with sounds
 , Version Three: drawing graphics in time with the music
 , Making the BeatBox
 , The really really simple Chat Server
 , The .jnlp file
 , #1 Enumerations (also called Enumerated Types or Enums)

five minute mystery, Comparing variables (primitives or references)
 , The really really simple Chat Server
 , #1 Enumerations (also called Enumerated Types or Enums)

Java cross, How it works
 , Casting primitives
 , How to play with the API
 , Version 2: Using command-line args to experiment with sounds
 , Making the BeatBox
 , The .jnlp file

pool puzzle, How it works
 , Running the Guessing Game
 , A Dog example
 , Comparing variables (primitives or references)
 , Overloading a method
 , Making and Implementing the Pet interface
 , Version Three: drawing graphics in time with the music

Q

quiz card builder, Text File Example: e-Flashcards
 , Text File Example: e-Flashcards

R

rabbit, Declaring a variable

random(), random() and getUserInput()

ready-bake code, One last class: GameHelper
 , Super Powerful Boolean Expressions
 , The really really simple Chat Server

reference variables, Controlling your Dog object
 , Get in touch with your inner Object
 (see object references)

casting, Get in touch with your inner Object

registry, RMI, Java RMI gives you the client and service helper objects!
 , Java RMI gives you the client and service helper objects!
 , How does the client get the stub object?

remote control, Controlling your Dog object
 , Life on the garbage-collectible heap

remote interface, Java RMI gives you the client and service helper objects!
 (see RMI)

reserved words, Back away from that keyword!

return types, You can get things back from a method
 , Java is pass-by-value. That means pass-by-copy
 , In other words, you define a common protocol for a set of classes related through inheritance

about, You can get things back from a method

polymorphic, In other words, you define a common protocol for a set of classes related through inheritance

values, Java is pass-by-value. That means pass-by-copy

risky code, What happens when a method you want to call (probably in a class you didn’t write) is risky?

RMI, Java RMI gives you the client and service helper objects!
 , Java RMI gives you the client and service helper objects!
 , Java RMI gives you the client and service helper objects!
 , Java RMI gives you the client and service helper objects!
 , Java RMI gives you the client and service helper objects!
 , Java RMI gives you the client and service helper objects!
 , Java RMI gives you the client and service helper objects!
 , Java RMI gives you the client and service helper objects!
 , Java RMI gives you the client and service helper objects!
 , Java RMI gives you the client and service helper objects!
 , Java RMI gives you the client and service helper objects!
 , Java RMI gives you the client and service helper objects!
 , Java RMI gives you the client and service helper objects!
 , Java RMI gives you the client and service helper objects!
 , How does the client get the stub object?
 , How does the client get the stub object?
 , How does the client get the stub object?
 , Be sure each machine has the class files it needs
 , For our final trick... a little Jini
 , Final Project: the Universal Service browser

about, Java RMI gives you the client and service helper objects!

client, How does the client get the stub object?
 , Be sure each machine has the class files it needs

compiler, Java RMI gives you the client and service helper objects!

Jini, For our final trick... a little Jini

(see also Jini)

Naming.lookup(), How does the client get the stub object?

Naming.rebind(), Java RMI gives you the client and service helper objects!

(see also RMI)

registry, Java RMI gives you the client and service helper objects!
 , Java RMI gives you the client and service helper objects!
 , How does the client get the stub object?

remote exceptions, Java RMI gives you the client and service helper objects!

remote implementation, Java RMI gives you the client and service helper objects!
 , Java RMI gives you the client and service helper objects!

remote inteface, Java RMI gives you the client and service helper objects!
 , Java RMI gives you the client and service helper objects!

rmic, Java RMI gives you the client and service helper objects!

skeleton, Java RMI gives you the client and service helper objects!

stub, Java RMI gives you the client and service helper objects!

UnicastRemoteObject, Java RMI gives you the client and service helper objects!

universal service browser, Final Project: the Universal Service browser

rmic, Java RMI gives you the client and service helper objects!
 (see RMI)

run(), To make a job for your thread, implement the Runnable interface

overriding in Runnable interface, To make a job for your thread, implement the Runnable interface

Runnable interface, What does it mean to have more than one call stack?
 , Every Thread needs a job to do. A method to put on the new thread stack
 , Every Thread needs a job to do. A method to put on the new thread stack
 , Every Thread needs a job to do. A method to put on the new thread stack
 , To make a job for your thread, implement the Runnable interface

about, Every Thread needs a job to do. A method to put on the new thread stack

run(), Every Thread needs a job to do. A method to put on the new thread stack
 , To make a job for your thread, implement the Runnable interface

threads, Every Thread needs a job to do. A method to put on the new thread stack

runnable thread state, To make a job for your thread, implement the Runnable interface

Ryan and Monica, Threads can lead to concurrency ‘issues’
 , Threads can lead to concurrency ‘issues’

introduction, Threads can lead to concurrency ‘issues’

S

scary objects, Did we forget about something when we designed this?

scheduling threads, To make a job for your thread, implement the Runnable interface

scheduling, To make a job for your thread, implement the Runnable interface

scope, The Stack and the Heap: where things live
 , Now we know how an object is born, but how long does an object live?

variables, The Stack and the Heap: where things live
 , Now we know how an object is born, but how long does an object live?

scrolling (JScrollPane), Playing with Swing components

serialization, Writing a serialized object to a file
 , Writing a serialized object to a file
 , Writing a serialized object to a file
 , What really happens to an object when it’s serialized?
 , But what exactly IS an object’s state? What needs to be saved?
 , If you want your class to be serializable, implement Serializable
 , If you want your class to be serializable, implement Serializable
 , The GameCharacter class
 , Reading from a Text File
 , Reading from a Text File
 , Version ID: A Big Serialization Gotcha
 , Version ID: A Big Serialization Gotcha
 , Version ID: A Big Serialization Gotcha
 , Version ID: A Big Serialization Gotcha
 , Using the serialVersionUID
 , Using the serialVersionUID

deserialization, Version ID: A Big Serialization Gotcha

interface, If you want your class to be serializable, implement Serializable

object graph, But what exactly IS an object’s state? What needs to be saved?

ObjectInputStream, Reading from a Text File
 (see I/O)

objectOutputStream, Writing a serialized object to a file

objects, Version ID: A Big Serialization Gotcha

reading, Reading from a Text File
 (see I/O)

restoring, Version ID: A Big Serialization Gotcha

(see also I/O)

saving, Writing a serialized object to a file

serialVersionUID, Using the serialVersionUID

transient, If you want your class to be serializable, implement Serializable

versioning, Version ID: A Big Serialization Gotcha
 , Using the serialVersionUID

writing, Writing a serialized object to a file

server, Writing a simple server

socket, Writing a simple server

(see also socket)

servlet, What about Servlets?

Set, We need a Set instead of a List
 , How a HashSet checks for duplicates: hashCode() and equals()
 , How a HashSet checks for duplicates: hashCode() and equals()

importance of equals(), How a HashSet checks for duplicates: hashCode() and equals()

importance of hashCode(), How a HashSet checks for duplicates: hashCode() and equals()

short, “I’d like a double mocha, no, make it an int.”

short circuit logical operators, Super Powerful Boolean Expressions

sink a dot com, Let’s build a Battleship-style game: “Sink a Dot Com”
 , Let’s build the REAL game: “Sink a Dot Com”

skeleton, Java RMI gives you the client and service helper objects!
 (see RMI)

sleep(), Putting a thread to sleep

sleeping threads, Putting a thread to sleep

snowboard, Get in touch with your inner Object

socket, Make a network Socket connection
 , Make a network Socket connection
 , Make a network Socket connection
 , Make a network Socket connection
 , To read data from a Socket, use a BufferedReader
 , To read data from a Socket, use a BufferedReader
 , To read data from a Socket, use a BufferedReader
 , To write data to a Socket, use a PrintWriter
 , Writing a simple server

about, Make a network Socket connection

addresses, Make a network Socket connection

creating, To read data from a Socket, use a BufferedReader

I/O, To read data from a Socket, use a BufferedReader

ports, Make a network Socket connection

reading from, To read data from a Socket, use a BufferedReader

server, Writing a simple server

TCP/IP, Make a network Socket connection

writing to, To write data to a Socket, use a PrintWriter

sorting, You could use a TreeSet... Or you could use the Collections.sort() method
 , The sort() method declaration
 , Revisiting the sort() method
 , Revisiting the sort() method
 , The Song class needs to implement Comparable
 , We can sort the list, but...
 , Updating the Jukebox to use a Comparator
 , And if we want the set to stay sorted, we’ve got TreeSet

Collections.sort(), You could use a TreeSet... Or you could use the Collections.sort() method
 , The sort() method declaration
 , Revisiting the sort() method

Comparable interface, Revisiting the sort() method
 , The Song class needs to implement Comparable

Comparator, We can sort the list, but...
 , Updating the Jukebox to use a Comparator

TreeSet, And if we want the set to stay sorted, we’ve got TreeSet

source files, Code structure in Java

structure of, Code structure in Java

specifiers, Formatting deconstructed...
 , The format specifier
 , What happens if I have more than one argument?

argument specifier, What happens if I have more than one argument?

format specifiers, Formatting deconstructed...
 , The format specifier

stack, The Stack and the Heap: where things live
 , The Stack and the Heap: where things live
 , Methods are stacked
 , If it’s your code that catches the exception, then whose code throws it?
 , Java has multiple threads but only one Thread class

heap vs., The Stack and the Heap: where things live

methods on, Methods are stacked

scope, The Stack and the Heap: where things live

threads, Java has multiple threads but only one Thread class

trace, If it’s your code that catches the exception, then whose code throws it?

static, MATH methods: as close as you’ll ever get to a global method
 , MATH methods: as close as you’ll ever get to a global method
 , static final variables are constants
 , static final variables are constants
 , Even more Statics!... static imports
 , #1 Enumerations (also called Enumerated Types or Enums)

enumerated types, #1 Enumerations (also called Enumerated Types or Enums)

initializer, static final variables are constants

Math class methods, MATH methods: as close as you’ll ever get to a global method

methods, MATH methods: as close as you’ll ever get to a global method

static imports, Even more Statics!... static imports

variables, static final variables are constants

streams, Data moves in streams from one place to another

(see also I/O)

String, How it works
 , How it works
 , Number formatting
 , Parsing with String split()
 , Parsing with String split()
 , #3 String and StringBuffer/StringBuilder Methods

arrays, How it works

concatenating, How it works

methods, #3 String and StringBuffer/StringBuilder Methods

parsing, Parsing with String split()

String.format(), Number formatting

String.split(), Parsing with String split()

StringBuffer/StringBuilder, #3 String and StringBuffer/StringBuilder Methods

methods, #3 String and StringBuffer/StringBuilder Methods

stub, Java RMI gives you the client and service helper objects!
 (see RMI)

subclass, So, Brad the OO guy got the chair, right?
 , Chair Wars Revisited...

about, So, Brad the OO guy got the chair, right?
 , Chair Wars Revisited...

super, So, Brad the OO guy got the chair, right?
 , Making and Implementing the Pet interface

about, So, Brad the OO guy got the chair, right?

super constructor, Wait a minute... we never DID talk about superclasses and inheritance and how that all fits in with constructors

superclass, Chair Wars Revisited...
 , Get in touch with your inner Object
 , Making and Implementing the Pet interface

about, Chair Wars Revisited...
 , Get in touch with your inner Object
 , Making and Implementing the Pet interface

Swing, The Big Three layout managers: border, flow, and box
 (see GUI)

synchronized, We need the makeWithdrawal () method to run as one atomic thing

methods, We need the makeWithdrawal () method to run as one atomic thing

(see also threads)

syntax, What can you say in the main method?
 , Simple boolean tests

about, What can you say in the main method?
 , Simple boolean tests

System.out.print(), Conditional branching

System.out.println(), Conditional branching

T

talking head, Abstract methods

TCP ports, Make a network Socket connection

Telluride, Larry snuck in just moments ahead of Brad

testing, let’s write the real method code now, and get this puppy working

extreme programming, let’s write the real method code now, and get this puppy working

text, Writing a String to a Text File
 , Reading from a Text File
 , Parsing with String split()
 , Parsing with String split()

parsing with String.split(), Parsing with String split()
 , Parsing with String split()

read from a file, Reading from a Text File

(see also I/O)

write to a file, Writing a String to a Text File

text area (JTextArea), Playing with Swing components

text field (JTextField), Playing with Swing components

Thread.sleep(), Putting a thread to sleep

threads, Writing a Chat Client
 , Java has multiple threads but only one Thread class
 , What does it mean to have more than one call stack?
 , What does it mean to have more than one call stack?
 , What does it mean to have more than one call stack?
 , Every Thread needs a job to do. A method to put on the new thread stack
 , Every Thread needs a job to do. A method to put on the new thread stack
 , To make a job for your thread, implement the Runnable interface
 , To make a job for your thread, implement the Runnable interface
 , To make a job for your thread, implement the Runnable interface
 , To make a job for your thread, implement the Runnable interface
 , To make a job for your thread, implement the Runnable interface
 , To make a job for your thread, implement the Runnable interface
 , The Thread Scheduler
 , The Thread Scheduler
 , Putting a thread to sleep
 , Threads can lead to concurrency ‘issues’
 , The Ryan and Monica example
 , We need the makeWithdrawal () method to run as one atomic thing
 , The dreaded “Lost Update” problem
 , The deadly side of synchronization
 , The deadly side of synchronization

about, Writing a Chat Client

deadlock, The deadly side of synchronization

locks, The Ryan and Monica example

lost update problem, The dreaded “Lost Update” problem

run(), Every Thread needs a job to do. A method to put on the new thread stack
 , To make a job for your thread, implement the Runnable interface

Runnable, What does it mean to have more than one call stack?
 , Every Thread needs a job to do. A method to put on the new thread stack
 , To make a job for your thread, implement the Runnable interface

Ryan and Monica problem, Threads can lead to concurrency ‘issues’

scheduling, To make a job for your thread, implement the Runnable interface
 , To make a job for your thread, implement the Runnable interface

sleep(), Putting a thread to sleep

stack, Java has multiple threads but only one Thread class

start(), What does it mean to have more than one call stack?

starting, What does it mean to have more than one call stack?

states, To make a job for your thread, implement the Runnable interface
 , To make a job for your thread, implement the Runnable interface

summary, The Thread Scheduler
 , The deadly side of synchronization

synchronized, We need the makeWithdrawal () method to run as one atomic thing

unpredictability, The Thread Scheduler

throw, If it’s your code that catches the exception, then whose code throws it?
 , If it’s your code that catches the exception, then whose code throws it?

exceptions, If it’s your code that catches the exception, then whose code throws it?

throws, If it’s your code that catches the exception, then whose code throws it?

transient, If you want your class to be serializable, implement Serializable

TreeMap, The Collection API (part of it)

TreeSet, ArrayList is not the only collection
 , The Collection API (part of it)
 , And if we want the set to stay sorted, we’ve got TreeSet
 , TreeSet elements MUST be comparable

try, The compiler needs to know that YOU know you’re calling a risky method
 , Flow control in try/catch blocks

blocks, The compiler needs to know that YOU know you’re calling a risky method
 , Flow control in try/catch blocks

type, Declaring a variable
 , Comparing ArrayList to a regular array
 , Using generic CLASSES
 , Using generic METHODS

parameter, Comparing ArrayList to a regular array
 , Using generic CLASSES
 , Using generic METHODS

type-safety, Generics means more type-safety
 , Generics means more type-safety

and generics, Generics means more type-safety

U

universal service browser, Final Project: the Universal Service browser

V

variable declarations, Declaring a variable
 , “I’d like a double mocha, no, make it an int.”
 , Controlling your Dog object
 , Declaring and initializing instance variables

instance, Declaring and initializing instance variables

primitive, “I’d like a double mocha, no, make it an int.”

reference, Controlling your Dog object

variables, Declaring a variable
 , “I’d like a double mocha, no, make it an int.”
 , You really don’t want to spill that...
 , You really don’t want to spill that...
 , Controlling your Dog object
 , Controlling your Dog object
 , An object reference is just another variable value
 , An object reference is just another variable value
 , Declaring and initializing instance variables
 , The difference between instance and local variables
 , In other words, you define a common protocol for a set of classes related through inheritance
 , The Stack and the Heap: where things live
 , The Stack and the Heap: where things live
 , The Stack and the Heap: where things live
 , What about reference variables?
 , What about reference variables?
 , #1 Enumerations (also called Enumerated Types or Enums)

assigning, You really don’t want to spill that...
 , What about reference variables?

declaring, Declaring a variable
 , Controlling your Dog object
 , Declaring and initializing instance variables
 , The Stack and the Heap: where things live

local, The difference between instance and local variables
 , The Stack and the Heap: where things live

nulling, What about reference variables?

primitive, “I’d like a double mocha, no, make it an int.”
 , You really don’t want to spill that...

references, Controlling your Dog object
 , An object reference is just another variable value
 , An object reference is just another variable value
 , In other words, you define a common protocol for a set of classes related through inheritance

scope, The Stack and the Heap: where things live

static, #1 Enumerations (also called Enumerated Types or Enums)
 (see static)

virtual method invocation, Which method is called?

W

web start, So where did the manifest file go?
 (see Java Web Start)

while loops, Looping and looping and...
 , Difference between for and while

wildcard, Wildcards to the rescue

wine, Abstract vs. Concrete

wrapper, The checkYourself() method
 , Just the new stuff
 , The enhanced for loop
 , Wrapping a primitive
 , Before Java 5.0, YOU had to do the work...
 , But wait! There’s more! Wrappers have static utility methods too!

autoboxing, Before Java 5.0, YOU had to do the work...

conversion utilities, But wait! There’s more! Wrappers have static utility methods too!

Integer.parseInt(), The checkYourself() method
 , Just the new stuff
 , The enhanced for loop

writing, Reading from a Text File
 (see I/O)

 About the Authors

Kathy Sierra has been interested in learning theory since her days as a game developer (Virgin, MGM, Amblin'). More recently, she's been a master trainer for Sun Microsystems, teaching Sun's Java instructors how to teach the latest technologies to customers, and a lead developer of several Sun certification exams. Along with her partner Bert Bates, Kathy created the Head First series. She's also the original founder of the Software Development/Jolt Productivity Award-winning javaranch.com, the largest (and friendliest) all-volunteer Java community.

Bert Bates is a 20-year software developer, a Java instructor, and a co-developer of Sun's upcoming EJB exam (Sun Certified Business Component Developer). His background features a long stint in artificial intelligence, with clients like the Weather Channel, A&E Network, Rockwell, and Timken.

 Special Upgrade Offer

If you purchased this ebook from a retailer other than O’Reilly, you can upgrade it for $4.99 at oreilly.com by clicking here
 .

 Head First Java™

Kathy Sierra

Bert Bates

Editor

Mike Loukides

Copyright © 2009 Bert Bates and Kathy Sierra

Head First Java™

Second Edition

by Kathy Sierra and Bert Bates

Copyright © 2003, 2005 by O’Reilly Media, Inc. All rights reserved.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (safaribooksonline.com
). For more information, contact our corporate/institutional sales department: (800) 998-9938 or
corporate@oreilly.com

 .

	

Editor:

	
Mike Loukides

	

Cover Designer:

	
Edie Freedman

	

Interior Designers:

	
Kathy Sierra and Bert Bates

	

Printing History:

	

	
May 2003:

	
First Edition.

	
February 2005:

	
Second Edition.

(You might want to pick up a copy of
both

 editions... for your kids. Think eBay™)

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc., in the United States and other countries. O’Reilly Media, Inc. is independent of Sun Microsystems.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.

Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the authors assume no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

In other words, if you use anything in
Head First Java™

 to, say, run a nuclear power plant or air traffic control system, you’re on your own.

[M] [2016-02-26]

O’Reilly Media

1005 Gravenstein Highway North

Sebastopol
 , CA
 95472

2016-02-26T08:17:48-08:00

OEBPS/Image00188.jpg
Py of

@&\\%"“‘

int

int
foo.go(x) ; void go(int z){ }

OEBPS/Image00431.jpg
public class Duck { A\
int size; (. ctante OO0

public Duck() (
Systen. out..println("Quack”) ; corsbrvtt"
¥

5 i d
public void setSize(int newSize) { o i1 mekho
size = newSize;

3

public class UseADuck {

public static void main (Stringl] args){
Duck d = new Duck() ;
There's 5

ba
Foink in

d.setsize(42); ;:‘; [rit in fh o ey e Duck i

Process: on eation s
el 0 1 e o 2 gt
o

OEBPS/Image00187.jpg
void go(int z){ }@

it

OEBPS/Image00432.jpg
Let the user make a new Duck
and set the Duck's size all in
one call. The call fo new.

The call to the Duck
constructor.

OEBPS/Image00190.jpg

OEBPS/Image00429.jpg
If it Quacks like a
constructor...

OEBPS/Image00189.jpg
* doesp’

3z avent
cven if 5

el ha’.ag W g and
comet

int
void go(int z){

=0;

OEBPS/Image00430.jpg
PFOEOSn CLERg oo A

public Duck() {
System.out.println (“Quack”) ;

}
) ~

Conmsbrott” code:

% java UseADuck

public class UseADuck {

public static void main (String[] args) {
Duck d = new Duck();
) R Thi

) ﬂuhféf:ltfhf Duck

Quack

OEBPS/Image00192.jpg

OEBPS/Image00191.jpg
ElectricGuitar

brand
numOfPickups
rockStarUseslt

Ling these
Nokes U s

getBrand() “:;:?:f:\g;z
setBrand() Talovivg a1
getNumOfPickups() mportart 13
setNumOfPickups() sandard!
getRockStarUseslt()

selRockStarUsesl)

OEBPS/Image00423.jpg
CellPhone object

bl

OEBPS/Image00424.jpg
CellPhone object

OEBPS/Image00184.jpg
void go() {
int foo = 7;
int bar = 3;

. takeTwo (£00, bar) ;

void takeTwo(int x, int y) {

int z =x+y;

System.out.println("Total is * + z);

of 22 Its the same

What's the value added foo ¥
ek et T o i
v

the kakeTwo neb\

OEBPS/Image00427.jpg

OEBPS/Image00183.jpg
void go() 1
TestStuff t = new TestStuff();

t.takeTwo (12, 34);

The argumen
ow:e f duments you pacs land in 4 same

F e b, g e o lands
i b Fiot g "7t rgument 1
the etond parameter, o 50 on
void takeTwo(int x, int y) {

intz=x+y;

System.out.println("Total is " + z);

OEBPS/Image00428.jpg
Where's 4,
[o e
You'd neeq 5 veturn 4,

betueen “pupipn
e Publie” ang

e sam!
T mame T
ase vawe: THES

public Duck() {
// constructor code goes here

OEBPS/Image00186.jpg
int x

7;

OEBPS/Image00425.jpg
CellPhone object ~ Antenna object

OEBPS/Image00185.jpg

OEBPS/Image00426.jpg
lents
5
i
wkerbate OTF

wivatle
ﬁuws heve:

e v

posp e

Joyett
et

Declare a reference
variable

Duck myDuck = new Duck() ;

@ Create anobject
Duck myDuck = new Duck () ;

Duck object

Link the object and
the reference
Duck mybuck ()new Duck () ;

Duck reference

Duck reference

Duck object

OEBPS/Image00199.jpg
vavidbles)
class PoorDog { detlave bwo SR

by “alue
Wk donk assian @
private int size; k7 b
private String name;
will these veburn??
public int getsize() ({&— "t I Ehes
return size;
¥
public String getName() (
return name;

}
}

2 W
public class PoorDogTestDrive { do t\\w;‘
public static void main (String[] args) { 'N‘SNA tomge
PoorDog one = new PoorDog() ; (s

System.out.println("Dog size is " + one.getSize());
System. out.println("Dog name is “ + one.getName());

OEBPS/Image00442.jpg
% java TestHippo
Starting...
Making an Animal

Making a Hippo

OEBPS/Image00198.jpg
o oeer 09 O%ecr

I
Dog Doy Dog Dog Dog Dog

D biect (O«
e 0g array object (Dog[l)

OEBPS/Image00201.jpg
class Foo
public void go0) { Won't compllell You can
int x; detlave * \ithout 3 value,
int z = x + 3; k33 soon 25 4 1)
) WD o USE the eomiler
Sreaks vt

OEBPS/Image00440.jpg
A single
object on
the heap

@J@’@

Snowboard

R

Theve i only ONE bject on the heap here. A
Snowbaard object. But it contains both the
Snowboard parts of itself and the Object parts of
itsell. Al instante variables from both classes have
40 be heve.

OEBPS/Image00200.jpg
% java PoorDogTestDrive

Dog size is 0

Dog name is null

OEBPS/Image00441.jpg
Animal

A single Hippo dbject on the heap

OEBPS/Image00202.jpg
File Edit_Window Hels

% javac Foo.java

Foo.java:4: variable x might
not have been initialized

int z = x + 3;
1 error "

OEBPS/Image00434.jpg
e
ink size;
pubili
& Duck (in
¢ vorsiney ¢ E9 qaramete? e
o e v D
st e

if (newsi:
0 =
size = 27; ohil (/"w‘a

- ik 58 L L
alue X

) else ¢
size = newss i
) Size; e 522 YT o verd
L

OEBPS/Image00435.jpg
OK, let's see here..."You
have the right fo your own
constructor.” Makes sense.

“If you cannot afford a constructor,
one will be provided for you by the
compiler.” Good to know.

OEBPS/Image00193.jpg
Jen says you're
well-encapsulated...

OEBPS/Image00433.jpg
xp ¢
:
.
et

public class Duck {
int size;
public Duck(int duckSize) {
System.out.println("Quack™); |4 Gl bo ek
size = duckSize; & the size instante vaviable

System.out.println(“size is “ + size);

public class UseADuck {

public static void main (Stringl] args) {
__—% Duck d = new Duck(42) ;

A } Pa
s o 355 3 value 4,
e the
T I L W) Constructoy.
one Dotk B et
. ke
&‘;::\; nor % java UseADuck

Quack

size is 42

OEBPS/Image00195.jpg
PURLig woid setNeigutiing nt: ¢
if (ht > 9) {

~u
height = ht; i Pt in chegy,
Soranier ¢

Pinimum ¢34 heigg

OEBPS/Image00438.jpg
Edit_Window Help Stc

cannot resolve symbol
constructor Color ()
location: class
java.awt.Color

Color ¢ = new Color();

1 error

OEBPS/Image00194.jpg
£ el Ve eant

\gbc tnis ha??"‘\

t]
heCat.height = 0

OEBPS/Image00439.jpg
Object has instance variables
entapsilated by access methods.
Thase instance variables are
ereated when any subclass s
instantiated. (These aven't the
REAL Object vaviables, but ve
don't care what they ave since
they're encapsulated)

Snowbaard also has instance
varizbles of its owm, s0 to make
3 Snowbcard object we need
spate for the instance variables
of both classes.

OEBPS/Image00197.jpg
s
Dog Dog Dog

Dog array object (Dog[])
Dog[]

OEBPS/Image00436.jpg
public clase Mushoom (| _—— when you know the siz6 but you
public Mushroom (i 2 don't know i it's magic
(int size) ()
now anybhing

when you don't
ahen you know i€ ¥
W ALV know the size

publi
Lic Mashroon() ()
 magic o nots

! public Mashroom (b
colean isMagi
inese o have the (publ gic) ()
same avi bk 0 2 ic Mushroom (boolean isMagic, i
Sievent order, so (public Mus 5 , int size) ()" Know
s 0K hroom (int size, boole: F L wmw«mt&‘s
3+ an isMagic) ¢ \ nese AND Yorkne”
the size as wel

OEBPS/Image00196.jpg
class GoodDog 1{

GoodDog
- private int size;
w4 size
ne.
ve ©
r:\’\;\,\zw"*‘ public int getSize() {
return size: getSize()

setSize()
bark()

e e 3\'& — public void setsizelint s) {

sekber ™€’ 2

void bark() {
if (size > 60) {

System.out.pr:

intln(“Wooof | Wooof!”);
} else if (size > 14]
System.out.println("Ruff! Ruff!”

} else {

System.out.println(*Yip! Yip!”);

class GoodDogTestDrive {

public static void main (String[] args) (
GoodDog one = new GoodDog () ;

etsize(70);

GoodDog two = new GoodDog ()

two.setsize (8);

System.out.println(“Dog one: “ + one.getSize()

System.out.printin(“Dog two: " + two.getSize());
one.bark () ;

two.bark () ;

OEBPS/Image00437.gif
public class TestDuck {

public static void main(Stringl] args){

int weight = 8

float density = 2.3
String name = “Donald”;

long[] feathers = {1,2,3,4,5,6};
boolean canFly = true;
int airspeed = 22

Duck(] d = new Duck[7];

dro)
ar1)
drz)
ars)
are)
ars)
atel

new

new

new

Duck ()7
Duck (density, weight) ;
Duck (name, feathers) ;
Duck (canFly) ;
Duck (3.3F, aizspeed) ;
Duck (false) ;

Duck (airspeed, density);

class Duck {

int pounds = 6;

float floatability = 2.1F;

String name = “Generic”;

long[] feathers = {1,2,3,4,5,6,7};
boolean canFly = true;

int maxSpeed = 25;

public Duck() {

)

System.out.println(“type 1 duck”);

public Duck (boolean fiy) {

3

canFly = fy;
System.out.println(“type 2 duck”);

public Duck(String n, long(l £) {

)

name = n
feathers = £;
System.out.println(“type 3 duck”);

public Duck(int w, float £) {

)

pounds = w;
floatability = £;
System.out.println(“type 4 duck”);

public Duck (float density, int max) {

)
3

floatability = density:
maxSpeed = max;
System.out.println(“type 5 duck”) ;

OEBPS/Image00166.jpg
Triangle [1ta

Triangle t
tiangle [1ta

area
taarea
taxarea
talx].area

new Triangle(d);
new [] Triangle[4];
new Trianglel4];

talx] = setAreal)
tax = setArea();
talx].setArea();

x=x+1;

tax
X=X42 g
X=X-1 gl

ta = new Triangle()
talx] = new Triangle();
ta.x = new Triangle(;

x<4
x<5

OEBPS/Image00409.jpg
class.
Acts(); extends
Nose(); interface ()
of76(); implements j(x)
Clowns(): iix] class
Picasso(); Siclass

" Tdass Acts

. publicintiMethod(); 7 public class Nose

newNose(3; oy plic int iMethod { } 0f76
public int iMethod () { iMethod(x) Clowns
public it iMethod (){}

Picasso
ilx].iMethod]]

OEBPS/Image00651.jpg
mn W vego
e frame

OEBPS/Image00165.jpg
File Edit_Window Help Bermuda
%$java Triangle

triangle 0, area = 4.0
triangle 1, area = 10.0
triangle 2, area = 18.0

triangle 3, area
7

OEBPS/Image00410.jpg
Muffie

it 5

OEBPS/Image00652.jpg
AP MU, SR
import java.awt.*;
import java.awt.event.*;

public class SimpleGui3C implements ActionListener {
JFrame frame;

public static void main (String[] args) {
SimpleGui3C gui = new SimpleGuilC();
gui.go();

)

public void go() {
frame = new JFrame();
frame. setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE) ;

i)
JButton button = new JButton (“Change colors”); . ine \skener (0
button.addActionListener (this) ; & Qp he butten

MyDrawpanel drawPanel = new MyDrawPanel() ;
£dd the tuo vidaets (bt
£rame.getContentPane () .add (BorderLayout .SOUTH, button) ; (/‘/6» and draving panel) b
£rame.getContentPane () .add (BorderLayout.CENTER, drawpanel) ; ¥ £he tuo region f 1)
frame. setSize (300,300) ; frame
frame. setvVisible (true) ;
)

public void actionPerformed (ActionEvent event) {
frame . repaint () ;

) ieks, ell the frame
| '\ww ?:Jicfuivﬂ That means
ok £0 is called on every

paintComponer

idgek in the frame

OEBPS/Image00168.jpg

OEBPS/Image00407.jpg
ciack |

Clack

extends
implements
class
interface

abstract class

OEBPS/Image00649.jpg
Wait a minute...how
do you put TWO
things on a frame?

OEBPS/Image00167.jpg
hq[0]

hal1]

ha[2]

hq[4]

OEBPS/Image00408.jpg
$java

5 class Acts
7 class Clowns
0£76

OEBPS/Image00650.jpg
SR getonienLE e V) ~soa Dt 1

nd usual® i
This is the. better (@ d {X; a&ﬁm(s

This isy’
Y) to 4;1*@:&», —_—

2 ‘ ¢ one- You're g
miﬁ:‘?‘?on l?m Nwata ?&\EZ i Mm‘o: d
%HERE Tuhith vegor) 1 .
e 20 : ntentPane () .add (BorderLayout.CENTER, button) ;

wen you €311 € ane-ara 82
4 :;Jd (e one W€ S\v\w\dr\ s -
Ke > = T ey m@mt“e Buo=arqument add meth
jor €5 3 vegion (using 3 g 0"
T and the vidget o sy 1) Lfa'l"i:m
east
center

OEBPS/Image00170.gif
class Books

String tit!

String author;
)
class BooksTestDrive (

public static void main(String (] args) {
Books (] myBooks = new Books[3];

int x = 0;

myBooks{0] = new Books(); [Remember: We have to
myBooks{1] = new Books(); | actually make the Books
myBooks[2] = new Books(): | objects |

myBooks[0].title = “The Grapes of Java’;

mySooks(1].title = "The Java Gatsby";
myBooks(2].title = "The Java Cookbook";
myBooks (0] .author = "bob*;
myBooks[1].author = “sue’;

mySocks(2].author = "ian”;

while {x < 3) {
System.out
System.out.print (" by *
System.out .print1n{nyBooks [x] .author);

print (nyBooks[x] . title

x=x+1;

OEBPS/Image00169.jpg
% java
island
island
island
island

il Et Vindow belp Bki

TestArrays
= Fiji

= Cozumel
= Bermuda
= Azores

OEBPS/Image00172.jpg
%$java Triangle
triangle 0, area = 4.0

triangle 1, area = 10.0
triangle 2, area = 18.0
triangle 3, area = 28.0
y = 4, t5 area = 343.0

OEBPS/Image00411.jpg
%java O£76

5 class Acts
7 class Clowns
7 class Of76

OEBPS/Image00171.gif
class Hobbits {
String name;

public
Hobi
int -1
while (z < 2)
iz l;

tatic void main(String (1 arg:
11 h = new Hobbits[3];

{

Remember: arrays start with
element 01

Rlz) = new Hobbits();
hlz).name = *bilbo*;

if (z==1)
hlz] .naze

if (z==2)

hiz) .name =

System.out.p

"£rodo”;

"san”;

[z).name + * is a *);

System.out.println("good Hobbit name’);

OEBPS/Image00412.jpg
.then he said,
*I car't feel my legs!" and
T said *Joe! Stay with me Joel"
But it was... foo late. The garbage
collector came and... he was gone.
Best object I ever had.

OEBPS/Image00643.jpg

OEBPS/Image00644.jpg

OEBPS/Image00405.jpg
Given:

n

2)

3

4

5)

public
public

public
public

public
public
public

public
public
public

public
public
public
public

miblie

What's the Ficture

interface Foo [)
class Bar implements Foo [)

2)
interface Vimn ()

abstract class Vout implements Vinn { }

abstract class Muffie implements Whuffie { }
class Fluffie extends Muffie ()

interface Whuffie { }

class zoop (} P
class Boop extends Zoop { }

class Goop extends Boop { }

class Gamma extends Delta implements Epsilon { }
interface Epsilon {)

interface Beta ()

class Alpha extends Gamma implements Beta {)

lana Delta I ¥

» [

3

5

OEBPS/Image00647.jpg

OEBPS/Image00406.jpg
What's the Peclaration 7

Click 1) public lass Cliek { }
! public ¢lass Clack extends Cliek {)
hr
4 2
Clack
3

4

Bar 5

OEBPS/Image00648.jpg

OEBPS/Image00164.jpg
int ref;

while

v <4

System.out.println(islands(ref]) ;

-1

[

inaexl0)

index(1] = 37
index(2) = 07

sndex(3]

string [] islands = new String[d];

System.out.print(“island = *);

int [

index -

new int(q),

class Testarrays (

public static void main(String []

args) {

OEBPS/Image00403.jpg
o jsses
sbstract class Report (/ hat st
“oid runReport() {
// set-up report
)
void printReport() {
// generic printing
1
}

class BuzzwordsReport extends Report {

void runReport() { all svpertlass 5
super. runReport () ; £ hen tome. ‘patk an
‘buzzwordCompliance () ; ome 008135
printReport () ; do Tie sk

spec

)
void buzzwordCompliance ()

OEBPS/Image00645.jpg
t
aphisLD o)
s rza\H; i:} 3 mere B3NS
‘wasaeradi
ovjat
public void paintComponent (Graphics g) (

Graphics2D g2d = (Graphics2D) g;
cast it 5o ve ean call something that
Graphics2D has but Graphics doesn’t

GradientPaint gradient = new GradientPaint(70,70,Color.blue, 150,150, Color.orange) ;

o stargy, T
bnf.hz\ R "6 coly 'ndmlg\m g E/.,k

T this sets the vird, al
irtual paint brus
g2d.setPaint (gradient) ; 9"3dient instead of arx.:hd ;vit& :

g2d.£110val (70,70,100,100) ;
means ‘il

el
the S010@0 v-;f:;;‘“‘i \Yoad”td on Your

e ol i

OEBPS/Image00163.jpg
R

% java Testhrrays
island = Fiji

island = Cozumel
island = Bernuda
island = Azores

OEBPS/Image00404.jpg
¥ method code inside a

BuzzwordReport subclass says
super. runReport () ;

the vunReportl) method inside

the supertlass Report will vun

super.runReport();

A veferente to the subelass object
(BuzzvordReport) vill alvays call
the subtlass version of an overridden
method. That's polymorphism

But the subtlass code can call
supervunReport() 4o invoke the

superclass version.

buzzwordComplianc()

(overrides
st methd 000

e sipert

Ref
byt auperclass methods

(including the overvidder
vurReportl)

The super keyword is veally a veference

4o the supertlass portion of an object.
When subelass code uses super, as in
superunReport(), the superelass version of
A .

OEBPS/Image00646.jpg
Start the app

OEBPS/Image00177.jpg
class Dog {

int size; e
name.
String name;
bark()

void bark() {
if (size > 60) {
System.out.println("Wooof! Wooof!”);

} else if (size > 14) {

Systen.out.printin(“Ruff! Ruffl”);

}oelse {

System.out.println(“¥ip! Yip!”);

OEBPS/Image00420.jpg

OEBPS/Image00662.jpg

OEBPS/Image00176.jpg
o i \ Song s3.play() ;
C,a\\'”w " s 91 t2.play() ;
<l e

Callng lay0) on i instance
vill cause My Way” 4o play

(but not the Sinatra one)

OEBPS/Image00421.jpg
90) % o
|doSEetFO

OEBPS/Image00179.jpg
R ——

@ Bark Different.

OEBPS/Image00418.jpg

OEBPS/Image00660.jpg
class MyOuterClass {
private int x;

class MyInnerClass {
void go() {

7 u asif
, T 42y & :ft;g ner Class)

} // close inner class

T D ——

OEBPS/Image00178.jpg
SAARE DogTestirive 1

public static void main (String[] args) {
Dog one = new Dog(};
one.size = 70;
Dog two = new Dog(};

LH

Dog three = new Dog(};

two.size

ree.size = 35;

Fie ot Vindow iep Pydess
%3java DogTestDrive

one.bark(};
Wooof! Wooof!
two.bark() ;
vip! Yip!

hree.park(); BE R
Ruff! Ruff!

OEBPS/Image00419.jpg
300) W G
ldosb“()“l

OEBPS/Image00661.jpg

OEBPS/Image00181.jpg
Cute..
but not exactly what T
was expecting.

OEBPS/Image00180.jpg
Dog d = new Dog() ;

Callthe bark method on he bag refer- i
ence, and pass n the value 3 (as the 0-Dark (3) 7
argument o the method). R gt

The bits representing the int
© i3 e diverednto the
bark method.

>
Pavameter &@P“ “The bits land in the rumOfBarks
§ parameter (an in-sized variable).

void bark(int numOfBarks) {
while (numOfBarks > 0] {
System.out.println(“ruff”);

Use the numOfBarks
parameter as a variable in
the method code.

numOfBarks = numOfBarks - 1;

OEBPS/Image00422.jpg
AW 5
W
g (smee \
50 8e2re T8 , s 21
> ceker ¢ the ™ 2

No matte, WHERE the |

bject
evence variable is deelay

red (inside
¥ 35 an instance vayighle
of 3 los) the ey ahays ahays
ays goes on the heap,

3 m

OEBPS/Image00182.jpg
&
S
W

int th;@;c et = life.giveSecret() ;
e S

»
”“s{ni“‘ \
int giveSecret() {
return
} s st it

hpaye

OEBPS/Image00654.jpg
Change Label

This butbon changes the text

side

on the opposi

Change Circle

3¢5 the color

OEBPS/Image00413.jpg

OEBPS/Image00655.jpg
class MyGui implements Actionlistener {
// lots of code here and then:

public void actionPerformed(ActionEvent event) {

frame.repaint () ; FS Bt this s imposible
}

's

public void actionPerformed(ActionEvent event) {
label.setText ("That hurt!”) ;
)

OEBPS/Image00653.jpg
Y

east. \;\»ﬁ’:::t?\ e Ve

v

label will
a0 heve

west | center
draving panel goes
V| inthecenter
south :E
¢olor—thanging
bukton vill 80 here

OEBPS/Image00173.jpg
Refes

HeapQuiz Objects:

OEBPS/Image00416.jpg
IO, VO SRR K Y,

int 3= x4 37 Ty ymmtzr*“d
boolean b = true; the a1 780
= Al ordle

N ave

OEBPS/Image00658.jpg
Wouldn't it be wonderful if you

could have two different listener classes,
but the listener classes could access the
instance variables of the main GUI class,
almost as if the listener classes belonged
to the other class. Then you'd have the best
of both worlds. Yeah, that would be dreamy.
But it's just a fantasy..

OEBPS/Image00417.jpg
S loeal

variables

Gneluing
Parameter x)

OEBPS/Image00659.jpg
class MyOuterClass {

Y
oy ok 0

class MyInnerClass { dass s b
void go() {

b

e
s

OEBPS/Image00175.jpg
Song

instance |y,

variables [arist knows
(state)

setTitle()
methods [setaristy does

(behavior) | play()

OEBPS/Image00414.jpg
i\sn

awv
cole T e et

OEBPS/Image00656.jpg
class MyGui implements Actionlistener {
// declare a bunch of instance variables here

public void go() {
/7 build gui
colorButton = new JButton() ;
labelButton = new JButton() ;
colorButton. addActionListener (this) ; & Keister the same istener
LabelButton.addActionListener (this) ; ¢ Vit both butions
/1 more gui code here ...

)
public void actionPerformed (ActionEvent event) {
if (event.getSource() == colorButton) "
£rame. repaint () ; Query the et L
} else { 1o find ot “‘"‘i ol e
Tabel . setText (“hat hurt!”) ; sl Fived 10 and st

¥ ‘hat to decide ¥

OEBPS/Image00174.jpg
Let's keep those little
variables private, OK?

OEBPS/Image00415.jpg
public class Duck {
int sizei .. Dwk % th

i eante Va0

OEBPS/Image00657.jpg
BASN Myant 1
JFrame frame;
JLabel label;
void qui() (
// code to instantiate the two listeners and register one
// with the color button and the other with the label button
)

} /1 close class

class ColorButtonListener implements ActionListener {
public void actionPerformed (ActionEvent event) {
frame.repaint () ;

N Wor't workl This elass doesn't have a veference to
the ‘Crav:e’ varisble of the MyGui class

)

class LabelButtonListener implements ActionListener {
public void actionPerformed (ActionEvent event) {
label.setText ("That hurt!”) ;

N
) Peoblem This class has no veferente 1o the variable Yabel’

OEBPS/Image00387.jpg

OEBPS/Image00629.jpg
<<interface”
JtemListene’

omEvente)

OEBPS/Image00388.jpg
Arlant b ad. SR AD0e] T k
Dog d = (Dog) 0 task the ohjzzi:aé\me
d.roam() 2Dy

OEBPS/Image00630.jpg
“Button, please add me to
your list of listeners and call

my actionPerformed() method
when the user clicks you."

"OK, you're an ActionListener,
50T know how to call you back
when there's an event -- Tl call
the actionPerformed() method
that T krow you have.”

S
CionPe armealhee

OEBPS/Image00385.jpg
Snowboard S_= new Snowboard() ;

Object © = s;

The Snowboard remote contrl
(veferente) has more buttons than
an Object vemote control. The
Snowbaard vemote tan see the full
Snowboardness of the Srowboard
object. [¢ can access all the methods
in Snowboard, including both the
herited Object methods and the
T R o

The Object veference can see oply the
Object parts of the Snowboard object
[t ean access only the methods of class
Object. [t has fewer buttons than the
Snowboard vemote control.

OEBPS/Image00627.jpg

OEBPS/Image00386.jpg
Wait a minute... what good
is a Dog if it comes out of an
ArrayList<Object> and it car't do
any Dog things? There's gotta be a
way to get the Dog back fo a state
of Dogress...

T hope it doesn't hurt.
And what's 5o wrong with
staying an Object? OK, T can't
fetch, sure, but T can give you
a real nice hashcode.

&

r

Cast the so-called ‘Object’ (but
we know he's actually a Dey to
type Dog, so that you can treat
him lie the Dog he veally is.

OEBPS/Image00628.jpg
Hey button, | eave about

@ what happens to you

your code

“‘t/r;a" o‘o'f?

Roe

@ The user clicked mel

OEBPS/Image00391.jpg

OEBPS/Image00392.jpg

OEBPS/Image00389.jpg

OEBPS/Image00631.jpg
4 shaboment for the packate 83

4 AckionEvert are n

.
=
KT et ‘“f":\:w\% b
antt

public class SimpleGuilB implements ActionListener {

import javax.swing.*: 3 new impor’
import java.awe.event.*; < ki) iener an

JButton button; fan ¥ l
; sskened o
petiorl N everks ol
public static void main (String(] args) { otkon ¥
SimoLeduits gut = pav SIGLGGNIIED (et
qui.go(); pebiorl
}
public void go() (
JFrame frame = new JFrame() ; Twis $Y*
button = new JButton(“click me”) ; et n 0.;\1:*”“\@«{..
~ cesker 120 hgd me £ 1 § oyett Leom
@ — button.addactiontistaner (shis) < o the DS e MusT b;:;,ll
—— o okered!!
ent ¥ GonlA
dass

frame.getContentPane () .add (button) ;
frame. setDefaul tCloseOperation (JFrame . EXIT_ON_CLOSE) ;

frame.setSize(300,300) ; i
frame.setVisible (true) ; mplement the P;g’_“ od.. This is the
' « “*“’"\P‘ o sanding method
chual ever’ "

public void actionPerformed (ActionEvent event) {
button.setText ("I've been clicked!”) ;

, The button calls his method 4o let

OEBPS/Image00390.jpg
Account
debi(double amt)
creditdouble am)

double getBalance()

OEBPS/Image00632.jpg
As a listener, my job is to

implement the inferface,

register with the button, and
provide the event-handling.

- Listener GETS the

{y event
Y

OEBPS/Image00383.jpg
He treats me like an
Object. But T can do so
much more..if orly hed see
me for what T really am.

OEBPS/Image00625.jpg
don't forget to import this
et Jsve eng svimg packagE

button
SimpleGuil (and 3
publ;:h;i:s:tit:z void main (String[] args) { ke 3 frame {he bubbon constructor
T (g pass
0 g
JFrame frame = new JFrame

tton)
wark on the bud
tton = new JButton(“click me”); i, fext you v

JButton button =

i IT_ON_CLOSE) ;
frame. setDefaul tCloseOperation (JFrame . EXIT_ON_

< this line makes the

*ogram auit as soon as yo
close the vindow (v; T

You leave this out if. v
, Just it there on the Seveem fovenee)
(button) ;
.getContentPane () .add
£remd N add the button 4, the Frames
Content pane
frame.setSize (300,300) ;

e e
frame.setVisible(true) ;

Finally, make it i

Bl GF you forget
this step, Bog s

Yo vor't see anybhing when
You vun this eode)

OEBPS/Image00384.jpg
A single object
on the heap.

ccua)
gelass)

hasrCor)
oSting)

Snowboard | Gpouboard inherits methods
HFrom supertlass Object, and

adds four more.

Snowboard
umy
ared)
oot
lossContl)

Sortomt

Theve is only ONE ckjeck on the heap here. A Srowboard
object. But it contains both the Snowboard class pars of
itself and the Obiect class parts of itself

OEBPS/Image00626.jpg
click me

OEBPS/Image00623.jpg

OEBPS/Image00624.jpg
800

File Panic _Deviate

OEBPS/Image00398.jpg
t {..
lic interface Pe
pub.

Use the kgy ‘.heereu,u
insteaq of 4,

OEBPS/Image00640.jpg
e vame 'az;s yeve. Note *

€ vmd 3" g and MY Py
e m;\?aﬂ(a
Yo 0% e Jasd

3&&\5‘»\'1,5(“&;&»\\: ¥o 5&\.«5&,

Nowe
o

public
void
paintc
Inage ima onent (Graphi
ge = cs
new R
Inay

mageicon
S (e e
g
.getTmay
g2

g.draw:
Tna
ge (image, 3

13,4, thi
5

R&

The x,

OEBPS/Image00399.jpg
public cl:
-ass De
og extends Canine imp.le
mplements
Pet {

4 “imglaments” Folloved

by the berbate ame. Note that
uhen you mplemert 0 inteckate Yo

U gk o exbend 3 €355

Use the keywor!

OEBPS/Image00641.jpg

OEBPS/Image00396.jpg
ComboDrive

OEBPS/Image00638.jpg

OEBPS/Image00397.jpg
L A Java interface is like a

100% pure abstract class.

abstract void beFriendly;

inteckate ave
ds in an Y
abstract void play(: Al metho s rat IS
stk 30 3 055 0T g

lemer
ek, MUST im
‘i methods of Peb

OEBPS/Image00639.jpg
ok nes®

fmper: Java.awt.*; e v
i s
mport javax.swing.*; & ou veed
Make 3 bt o Jpanel, 3 i et
class MyDrawPanel ex! ot you tam 3¢ a frame Ju:{ ke
tends JPanel { i mek i e
o fuskomized w08
This is the Big An\mmt Graphits method.

public void
paintCy
ntComponent (Graphics @) { i, il NEVER o .
fou i "l s yourself: The
“Yiee's 3 wee

’\ e cal 208 S
Leesh dvaving <urbate, of bFe Graghits
{ht you maY pant on ”

g.fillRe
ct(20,50,100,100) ; l:'igme that '
g ik wrgt o Famting machie .
ine. You've

)
} what 3
'k o "‘apz To pamg (o2 with a
ek Gith e i b
- in;

g it T

g.setColor (Color.orange)

OEBPS/Image00402.jpg

OEBPS/Image00400.jpg
interfate methods ave implicitly publiz 3y
abstraet, s fyoi in ‘publie’ ang ‘abstract’
is ayez» n 3, €5 pof gy et od

o
style’ he ords in, by g did heve
ok by vl

*ee it, and bee,
eracd et

‘duse we've never
een slaves to fachion.)
thods are
o 221 2" te me endn
i; “elasd here F\“s‘;:faw they ﬂ: g’;q have
s ! \ember:
N —— a Rem
prblic intertace

; mitolons
abstract void beFriendly(); ¢ .,
public abs

i v lay (—/ o bod.
ublic abstract void play() ;

P

}

<ay ‘implements’

the name
o
\ Pet {
 pried ine implements
Dog IS- 1o Pe Dog extends Canine e
and Doy public class Dog

public void beFriendly() {...}

You SAID vou e 5 Pet 5o yau prycr
ooy prrmhéz::m method, 15 M4S
A Lo:er;ﬁ Nobite the iy o2 ¥
instea,

Semicolons
public void roam() {...}

These are just normg]
id eat() {...} S Sk
public voi 3

OEBPS/Image00642.jpg
public void paintComponent (Graphics g) {

/"f

9-6i11Rect (0,0, this.getWidth (), this.getheight(0); Ty, f .y

int red = (int) (Math.random() * 256);

dom() * 256) ;
int green = (int) (Math.ran .)
int blue = (int) (Math.random() * 256) ;

Color randomColor = new Color(red, green, blue);

S Youtan a3

g.setColox (randomColor) ;
g.£i110val(70,70,100,100) ;

e 0 from g g,
els 4] Pixels wige, and

70 from,

(khe

e 72
e 2o

) with latk
el Vi

vas define the (i) upper left

T g relabive bo the panel,for Wherg drawing
starts

7 50 0, 0 means “start O pixels from the
left edge and O pixels From the top edge.” The
other tvo args say, “Make the vidth of Ehis
vectangle as vide as the panel (Ehis width0), and
ke he beight as 4all a the panel (Ehis height*

o,
vePresent fhe R;'B"L,:);xmg in 3 ings

OEBPS/Image00401.jpg
Clas RoboDog gogqy'y
Come from the pro
inberitance dree, but i, o1
9ets bo be o Pog

OEBPS/Image00633.gif
As an event source, my job is to
accept registrations (from listeners),
get events from the user. and

call the listener's event-handling
method (when the user clicks me)

Source SENDS
the event

OEBPS/Image00394.jpg

OEBPS/Image00636.jpg
Number of Head
First Java books
mistakenly
bought by coffee
house baristas.

enarts
Tousines
o agnits

OEBPS/Image00395.jpg
a\nskv;vk

e e
w::\»t\'b\ass A\ ?3::;:; M
Nu&;\\k}\cw 4 \\/ »

o o

sz, B P

AND Pet, s " ogls

the methods of both -
The non-pet. Arinal
don't hay " s
Pet gw;? any inherited

OEBPS/Image00637.jpg

OEBPS/Image00634.jpg
Hey, what about me? I'm a player too, you
know! As an evert object, T'm the argument
to the event call-back method (from the
interface) and my job is to carry data about
the event back o the listener.

Event object
HOLDS DATA
about the event

Sorr o

OEBPS/Image00393.jpg

OEBPS/Image00635.jpg

OEBPS/Image00371.jpg
Cat c = new Cat();
System.out.println(c.getClass () ;

Fie Eot iniow o Fort

$ java TestObject

class Cat

OEBPS/Image00372.jpg
Cat c = new Cat();
System.out.println(c.hashCode()) ;

T i Vi o

% java TestObject

8202111

OEBPS/Image00365.jpg
T have wonderful news,

mother. Joe finally implemented

all his abstract methods! Now

everything is working just the
way we planned..

OEBPS/Image00607.jpg
M

OEBPS/Image00849.jpg

OEBPS/Image00366.jpg
S avvay
@ public class MyDogList { Vse a plain 94 D:va

& pehind the stene
private Dog [] dogs = new Dog[5];

MyDogList
=0;) ment Lhis eath
Dol dogs private int nextIndex = 0; ¢—— ¢l intreme
intnextindex Lime 3 new Doy is added
add(Dog d) JET id add (D¢ qa {
prbtie ot adifbes 1§ we've ok alveady at the limit
'3dd the Doy

if (nextIndex < dogs.length) () 'l doos avedy
nd print 3 message

dogs [nextIndex] = d;

System.out.println("Dog added at “ + nextIndex);
tIndex+t;

.,

t,
) next indey Z S us the

OEBPS/Image00608.jpg

OEBPS/Image00850.jpg
main thread another thread
started by the code

OEBPS/Image00363.jpg
public abstract void eat();

No method body! ; /\
Tod ik vith a semicelon

OEBPS/Image00605.jpg
128 means
NOTE OFF

OEBPS/Image00847.jpg
import java.io.®;

import java.net. b shreams (2
import javax.swing.*; mports for the W

import java.awt.*; gi‘h (e net) nd the
import java.awt.event.*; stuff

),
aio);

public class SimpleChatClienta {

JTextField outgoin
Printiriter writer;
socket sock;

public void goO) {
JFrame frame = new JFrame (“Ludicrously Simple Chat Client”)
JPanel mainPanel = new JPanel();

outgoing = new JTextField(20); Ming nEw
JButton sendButton = new JButton (“Send”) ; build the aﬁl‘h"&;c&m o
sendButton. addActionListener (new SendButtonListener()); here, and ot

mainPanel.add (outgoing) ; N erking or /0

mainPanel. add (sendButton) ;
£rame.getContentPane () . add (BorderLayout .CENTER, mainPanel) ;
setUpNetworking () ;

£rame. setSize (400,500) ;

frame.setVisible (true) ;

} /7 close go we've using localhost. 5

You Can test the cliont

private void setUpNetworking() { _3nd server on o por)
b ine

sock = new Socket(“127.0.0.1", 5000) ; This is wheve we make the Sotket
writer = new PrintWriter (sock.getOutputStream()); '\ "oy ke (it called
System.out.println (“networking established”) ; Trom the o) method vight before
} catch(I0Exception ex) { Taving The app QU
ex.printStackTrace () ; diselayieg
)

} // close setUpNetworking

public class SendButtonListener implements ActionListener {
public void actionPerformed (ActionEvent ev) {

try (
writer. println(outgoing.getText()); Now we actully do the writing
weiter.fush() ; Remember, the writer is chained to
the output stream From the Sotket,
} catch(Exception ex) { 50 whenever ve do a printn0), it goes
ex.printstackTrace () ; over the network to the server!

}
outgoing. setText (“) ;
outgoing. requestFocus () ;
3
} // close SendButtonListener inner class

public static void main(string() args) {
new SimpleChatClientA().go() ;

)

e —

OEBPS/Image00364.jpg
Tt really sucks to
be an abstract method.
You dorit have a body.

OEBPS/Image00606.jpg

OEBPS/Image00848.jpg
o111
13 e that one more tine, 1 toke

intoming
messages

ik was DANST

outgoing message

OEBPS/Image00369.jpg
boolean equals()
Class getClass()
Int hashCode()
String tostring()

sk SOME of the methods

8 dlass Obigek

YourCiasshere

Every elass you write inherits all the
methods of lass Object. The classes

Youke written inherited methods you
didn't even know you had

OEBPS/Image00611.jpg
first.setMessage (192, 1, 102, 0);
\

OEBPS/Image00370.jpg
Dog a = new Dog () ;
cat ¢ = new Cat();

if (a.equals(c)) {
System.out.println(“true”) ;
} else {

System.out.println(“false”)

]

T ot i T S

% java TestObject

false

OEBPS/Image00612.jpg
File Edit_Window

%java MiniMusicCmdLine 102 30

Aftenuate

%java MiniMusicCmdLine 80 20

%java MiniMusicCmdLine 40 70

OEBPS/Image00367.jpg
, we
Dont gan- T ¢ making 3
public class MyAnimalList { Arimal ootk vET Animal
new Lype
L ey oyt ake vew
private Animal(] animals = new Animal[5]; . e jou Lan g
Frivate int nestinder - 0; e T sract T
ST instant 1 avray 90)e!
|MyAnimaltist public void add (Animal a) (Jou CAN make]‘_D“Zh;t e
P if (nextIndex < animals.length) Setlaved o 10
rarsho aninals(nextIndex] = a;
System.out.println(“Animal added at “ + nextIndex);
adi(animal) nextIndexts;

public class AnimalTestDrive(
public static void main (String[] args) {
MyAnimalList list = new MyAnimallist();
Dog a = new Dog() ;
cat c = new Cat();
list.add(a);
list.add(c);

i ot i T T

% java AnimalTestDrive

Animal added at 0

Animal added at 1

OEBPS/Image00609.jpg

OEBPS/Image00851.jpg
Thread

Thread

void oin()
void start)

statc void sieep()

java.lang.Thread
Slacl

OEBPS/Image00368.jpg
boolean remove(Object elem)
o oves one instance of he 0BleC, speciedinthe
P ameter. eturms e e e mont was in the st

boolean contains(@Blect elem)
s e theres a mateh 0° the object parameter:
poolean isEmpty)

eturns true!if the st has n° elements.

int inde)(ﬂﬂDhie:l elem)

Returns either the index of e object parameter of 1+

object getlint index)

Returns the element at this position in the ist

boolean add(Object elem)
adds the element to the st (returns ‘rue)-

1/ more

OEBPS/Image00610.jpg

OEBPS/Image00852.jpg
the active thread

me

main thread

OEBPS/Image00603.jpg
rack.add(:

,cm;‘\

A Teatk holds all the MidEvert abjeeks. The Seapence orgpnizes
them attording bo when cach event is supposed to happem and then
fhe Sequenter plays them bak in hat order. You ean have lots of
et hapering at the exack same momert in Lime, For examle,

Jou might vank b notes played amultancoudly, or even diffevent
 wnents playing different sounds 3t the same time

OEBPS/Image00845.jpg
(vemember, these String

import 3ava.io.%; . bec the mports s wa,d/ura\v?ﬁ* V‘g

import java.net.*; the tode “Mp{». {d dle
it vekurn in The mi

public class DailyAdviceServer { daly adice comes from this 33 26" Ghringl) 2

string[] advicelist = {“Take smaller bites”, “Go for the tight jeans. No they do NOT
make you look fat.”, “One word: inappropriate”, “Just for today, be honest. Tell your
boss what you *really* think”, “You might want to rethink that haircut.”};

public void go0) (

o ServerSatket maes 4,

- RPlication stey’ £y "
et o = e et ok PSS, B, s

< inko a permanent loop, e K

The ser g ko 2 POl s

Vg for an

- the accept method blocks (just sits Ehere) wnbil 3
hiteltrue) vequest comes in, and Ehen the method veburns a
Socket sock = serverSock.accept() ; Sotket. (on some anonymous port) for communicating

with the client

PrintWriter writer = new PrintWriter(sock.getOutputStream()) ;
String advice = getAdvice() ;
writer.println(advice) ;
writer.close() ;
System.out.println(advice) ;

)

now we use the Soeket. ¢, ettion 4,

ke ‘onnettion the clien
affifhz;"fimrti' and send it Cprinin)y ‘;’s{ef‘:g
e done it et e Sothet b

} catch (ToException ex) {
ex.printstackTrace () ;
)
} /1 close go

private String getAdvice() {
int random = (int) (Math.random() ¥ adviceList.length);
return adviceList([random];

)

public static void main(String(] args) {
DailyAdviceServer server = new DailyAdviceServer () ;
server.go() ;

OEBPS/Image00604.jpg
R\
e o

100) ;
1, 41,
setMessage (144,

a.

\
The last 3 Vary depe,
on

Q@
AR
X0 o

3 nding on the message
e This i3 pork

message, 5o
ther args e for things the Seuencer neeg,
"o i order b plag 3 1ot

OEBPS/Image00846.jpg
© O O Ludicrously Simple Chat Client
(send)

OEBPS/Image00843.jpg
Sotkek

GerverSotke®

OEBPS/Image00844.jpg
CerverSotket (A0
et dler

Sotkek I for
he

%

Sotket

OEBPS/Image00382.jpg
Dog oo™

Object

The method yau've calling on 3
veferente MUST be in the class of
that vefevente type. Doesn't matter
what the ackual object s

oqual)
gelClassl)

heshCode()
tosirng)

©o.hashCode () ;

The “o” veference was detlaved as t
Object, so you can call methods wﬂ?
‘those methods ave in tlass Object.

OEBPS/Image00376.jpg
NO!l Won't eompilell When you use AvvayList<Object>, the get() method
veburns type Object. The Compiler knows only that the object inherits From
Object. (somewheve in its inhevitante tree) but it doesn’t know it's a Dog!l

Dog d = myDogArrayList.get(0);

OEBPS/Image00618.jpg
)

System.out.print(

System.out.print (),
doRisky (test) ;

System.out.print (“o");

class MyEx extends Exception (}

public class ExTestDrive (

system.out.print ("W

if (vyegn

System.out.print (“a®};
throw new MyEx():

static void doRisky(String t)

-equals(e)) ¢

throws MyEx {

System.out.print (*h*);

¢

Supiic static void main(scring U args)

string test = args(0]:

OEBPS/Image00860.jpg
valang P33
isin the
Romndble 210 S50 ort

‘[<o you dor

public class MyRunnable implements Runnable (

public void run() (
9007 S Rumable s anly ene method 4o

, implement: public vid vun) (with o

avauments). This is where ut the

oo (R
b is the method that goes at. the botbom

N e ot e sk, o o bt

public void datore() {

System.out.println(“top o’ the stack");
)

into the new
class ThreadTester { Pass he new Runnable nstance o

or. This tells the thvead

strut! the nev
public static void main (String(] args) (Thead o™ b on the bot :m
whak methed £ O 7 e method
stk In other vords,
Runnable threadJob = new MyRunnable() ;

s theead vill von
Thread myTnread — new Thread(threaadob); the nev

myThread .start(); R X
1) You won't et 2 new thread of exetu

Sraten.out printin (hack in main ;] sfaat(g 7 the T it o b you
ret veally a theead until you starg. is
5 ! it 3 hread bl o stort i Bl {31

Thvead instanc, Tke amy obho
but i won't have any rea] e on), other object,

OEBPS/Image00377.jpg
The objects go IN
as SoccerBall,
Fish, Guitar, and
Car.

But they come
OUT as though
they were of type
Object.

ArrayList<Object>

Lol
2222

Objects come out of
an ArrayList<Object>
acting like they're
generic instances

of class Object. The
Compiler cannot
assume the object
that comes out is of
any type other than
Object.

OEBPS/Image00619.gif

OEBPS/Image00861.jpg
main thread

OEBPS/Image00374.jpg
ArrayList
yList<Dog> myDoghrraylist - new Arraylist<dog>() ;€ W] AvvayList declaved
¥ 4o hold Dog abjects

Dog abog = new Dog () ; €—Make a Doy
nyDoghrrayList. add (aDog) ; é—hdd the Des b te It
Dog d = myDogArrayL X o the Dog fram the st 10 3 new Dos referente variable
aYLLSt G0t (0); € ety of it ot o the gek) method dclves 2 Doy veburr
e e you wed hreayList<De)

OEBPS/Image00616.jpg
800

Bass Drum
Closed Hi-Hat
‘Open Hi-Hat
Acoustic Snare.
Crash Cymbal
Hand Clap
High Tom

Hi Bongo
Maracas
Whistle

Low Conga
Cowbell
Vibraslap
Low-mid Tom
High Agogo.

‘Open Hi Congal

Cyber BeatBox

1

Crestore)

OEBPS/Image00858.jpg
run()

OEBPS/Image00375.jpg
Make an Avraylist detlared
£ hold any ype of Object
Dog aDog = new Dog() ; —Make 3 Doy \\ i o i)
myDogArrayList.add (aDog) ; e— Add the Doy to the list

ArrayList<Object> myDogArrayList = new ArrayList<Object>(); &

OEBPS/Image00617.jpg
% java ExTestdrive no
throws

OEBPS/Image00859.jpg
AllT need is a real job.
Just give me a Runnable
and Tl get to work!

OEBPS/Image00380.jpg
-
Object Oog o

When you get an object veference from
an AvvayList<Object> (or any method
that declaves Object as the veturn type),
it comes btk as a polymorphic. vefevence
type of Object. So you have an Object
veferente £o (in this case) a Dog instance.

OEBPS/Image00622.jpg
Wou! This looks great.
T guess presentation
really is everything.

T heard your
ex-wife could only cook
command-line meals.

OEBPS/Image00381.jpg
has 8
Object o = al.get (index) ; e, Qs OO

s B et o 1
int i = o.hashCode(); & *;{_m.,m*‘w *

o.bark () ;
Wor't compilel —* € Lot do thidl The Objeck class has no idea vhat

it means to bark(). Even though YOU know it's
veally a Do at that index, the compiler doesn't.

OEBPS/Image00378.jpg
I dorit know what you're
talking about. Sit? Stay?
bark? Hmmmm... T don't
recall knowing those.

OEBPS/Image00620.jpg
Fil.Edt Window Hep Chil

% java ExTestDrive yes
thaws

% java ExTestDrive no
throws

OEBPS/Image00862.jpg
doMore|

new thread

OEBPS/Image00379.jpg
rthod
. hovah T e
public void go() { okl Bren ome Doy
Dog aDog = new Dog () ; This e 0 ehevente 42 the :"'j“ e oh)ukb‘m '

oo & veburne ved ko e O o the ¥€
® Dog sameDog| = gatobject (aD ement veFee \fmtax ar

t means € 407 gt OB

vekerente

public Object getobject (dbject o) { :

return o; v 3 vebevente to the same Doy but 322

' e T ot s ety el Nete
e S,Ky 1o how the get() method works un:; g«.)
::Bhtrayl_vxvoluzcb vather than an Avvaylist<Dey

Tl ot i T R

mpiler doesn't know that the
DogPolyTest.java:10: incompatible types I::; Ef:ﬂm e i
o s e o bl 3 Doy so e vt ek you
B s it ko 3 Doy veberence. (a1
see why on the next page)

Dog sameDog = getObject (aDog) ;
1 error o

public void go() { This works (although it may not be very

Dog aDog = new Dog() ; useful, as you'll sec in 3 moment) because you

600D e ean asign ANYTHING 4o a vefevence JY{W:
) Objeck, since every class passes the [S-A test

for Object. Every object in Java is an instance

of type Object, because every class in Java has

Object at the top of its inheritante tree

public Object getObject (dbject o) {
return o;

OEBPS/Image00621.gif
L

o

N E|W

DIL [E

TIR[E[E

P|O|P [PIE |D

I|N|[V|OIK|E

HIA N

E

AIL|G|OR|I|T|HM

A

E[x[cle[P]T[T[0[N]sS

Y
T

A

C|O|N|C |R|E|T|E

H

ke Y[w[o[r]D

bluTc[k

S|UIBIC L |A|S|S

s

o]

ER|AIRIC

A[SISIT|GINIMIEIN|T

I

T|H[R[O[W[s

A

OEBPS/Image00853.jpg
RUnOEDLe F = new-MyTorescoooly 1
Thread t = new Thread(z): mv learn what

t.start(); his meang i Just
Dog d = new Dog() ; i

OEBPS/Image00614.jpg
600 €00 800 (900

beat one beat two beat three Yoot Lo ...

OEBPS/Image00856.jpg
&
Qa"’able ¥

OEBPS/Image00373.jpg
Cat ¢ = new Cat();
System.out.println(c. toString()) ;

e Est i T Copeeriaoms

% java Testobject

Cat@7d277¢

OEBPS/Image00615.jpg
CEEEE) Cyber BeatBox

Bass Drum
Closed Hi-Hat
Open Hi-Har
Acoustic Snare.
Crash Cymbal
Hand Clap
High Tom

Hi Bongo
Maracas
Whistle

Low Conga
Cowbell
Vibraslap
Low-mid Tom
High Agogo.
‘Open Hi Congal

OEBPS/Image00857.jpg
Ol

OEBPS/Image00854.jpg
a new thread stavts
and bz:am:s the active
thread

£ smr-t()

e =

main thread user thread A

OEBPS/Image00613.jpg
8080

Cyber BeatBox

Bass Drum
Closed Hi-Hat
Open Hi-Hat
Acoustic Snare
Crash Cymbal
Hand Clap
High Tom

Hi Bongo
Maracas
Whistle

Low Conga
Cowbell
Vibraslap

Low-mid Tom)1

High Agogo

Open Hi Conga [(])

Csan)
(Csop)
(TempoUp)
(“Tempo Down)
(sendrt)

dance beat

Andy: groove #2
Chris: groove2 revised
Nigel: dance beat

OEBPS/Image00855.jpg
x.g0()

| __J‘.’L-)

main thread user thread A

OEBPS/Image00062.gif
static void main (String(

t.println("x must be 3);

system.out.printin(“This runs no m

% java IfTest {/7&4, output
x must be 3
TR s =it B metiar what

er what”)

OEBPS/Image00060.jpg
while (moreBalls == true) {

keepJuggling();
@ |

©

OEBPS/Image00061.gif
public class Loopy {
public static void main (Stringl] args) (
int x = 1;
System.out.println(“Before the Loop”);
while (x < 4) (
System.out.println(“In the loop");
System.out.printin(“Value of x is “ + x);
x=x+ 1

System.out.printin(“This is after the loop”;

'

this
% java Loopy hisis e

Before the Loop L
In the loop

ctpu

Value of x is 1
In the loop

Value of x is 2

In the loop

Value of x is 3

This is after the loop

OEBPS/Image00058.jpg

OEBPS/Image00059.jpg

OEBPS/Image00056.jpg
public class MyFirstipp

public static void nain (String[] args) {

[csmant Systen.out.println("I Rule!”) ;
e Systen.out.printin("The Forld");
ommstmiin)

MyFirstApp.java

|
% Lol

ol

MyFirstApp.class

OEBPS/Image00057.jpg
@ save

MyFirstapp.java

© Compile

javac MyFirstApp.java

©ORun

i o Vi i S
$java MyFirstApp
I Rule!

The World

OEBPS/Image00054.jpg
public class Dog

'statements

OEBPS/Image00055.jpg
this is @ Fhe name of opening curl
pblic s veryone e (Ao his lges TR il brace

fan access /
\ e ¥
\ |public||class|MyFirstApp| arsuments o the method
. ot This method must. be given
N\ Glloer this o O g ameof a2 of String and the

<limer il i e ok amay il be Glled gy g .
8 % 9 brace

~ A / he methog
-

public|[static|void|main| [(String[] args)| [{

System.out.print|(“I Rule!”) B\”‘” dtomert ST

T i semitolor
this says print 4o stanlard avtput end

(defaults to command-line) the String you

} want to print

Closing brate of the main method

I\L\asma brace of the MyFirstApp class

OEBPS/Image00053.jpg
public class Dog {

void bark() {

OEBPS/Image00246.jpg
int i = 0; <—M‘”"t2‘7w%demu and
while (i < 8) (¢ Yhe Comer
System.out.println (i) ;

ikt € M have ¢,

e o et

}
System.out.println (“done”) ;

OEBPS/Image00245.gif
declare int i
setito0

{the boolear,

enter loop
body

Y

print "done”
(jomp below loop)

print the value
of i

L]

increment i
(the teration
expression)

OEBPS/Image00051.jpg
class file

method 1
statement

method 2
statement
statement

OEBPS/Image00248.jpg
Declare an keration varidbl
D gl deme: The colon () o ol b
wheaay) [""‘"/N” (e g
i .
Iy).

for (Stri
(String name : nameArray) (w[)

2
The elements in the " ihevation,

arvay MUS fevent clement
e ?ﬂi,‘;ﬁ,ﬁ,"ﬁfﬁ‘ L e colbion of denents bt yor wirt o evate over
detloed vomge 1, be assaned b the msine thak someuhere cavier {he tode said

e caviable “name€” Shring(J amehveay = {Fred’, “Moey's “Bob');

With he Fivst iterations he vame Laviable has the vaue of
U 7 and with the second o 3 vilue of “Mary' €t

OEBPS/Image00052.jpg
public class Dog (

OEBPS/Image00247.jpg
File Edit_Window Help R

%java Test
0

SoamewN R

done

OEBPS/Image00049.gif
int size = 27;
String name = “Fido";

Pog myDog = new Dog(name, size);
x = size - 5;

if (x < 15) myDog.bark(8);

while (x > 3) {

myDog.play () ;

int[] nunlist = {2,4,6,8);
System.out.print (“Hello®) ;
System.out.print (“Dog: " + name);

String num = "8

int z = Integer.parseInt (num);

ery (
readTheFile (“myFile. txt") ;
y

catch (FileNotFoundException ex) (

System.out.print ("File not found.”);

detlare an inkesgr varidble ramed ‘s’ nd e it the vahe 27

OEBPS/Image00250.jpg
2l

long ——— short
ong can be cast to

bits
%, f side o e lefy
% were
“Ops but you might %, et oft
lose something ﬁ

OEBPS/Image00050.jpg
int size = 27;

String name = "Fido’;

Dog myDog = new Dog(name, size);
x = size - 5;

i€ (x < 15) myDog.bark(8);

while (x> 3)
myDog.play () ;

int[] nunkist = {2,4,6,8);
System.out.print (“Hello®) ;
System.out.print (“Dog: " + name);
String num = “8;

int z = Integer.parseInt (num);

try (
readTheFile (“myFile. txt");
¥
catch (FileNotFoundException ex) (

System.out.print ("File not found

detlre an inkesgr varisble ramed ‘sz’ nd e it the vahe 27
detare 3 shringof charackers vaiale vaned ‘ame nd g the vabe Fido”

dedlre v Dog vrable ‘mfDog’ and mke e rew Doy wing e ard 22
subbratt 5 from 17 (iahe of ‘size!) and assign it to a variable named ¥’

i€ % (1aue of 22) i les than 15, tel the i fo bark 8 times

Keep oo aslorg a5 is et 4hn 3.
el the do o play (haberer THAT means b 3 6oy)

Lhis locks ke the end of the \i — (wﬁ‘ i in { }is dore in the Mi

detlave a st o integers vaviable onList and put 1468 nko the list

pint vt “Helle” probbly ot the tomnand-ne
ot ot "Dy P Tihe i of wane s P Gannand-ToE

detlare 3 charatter string variable 'mon' and v it the vaue of *8"
convert e sting of Charachers '8 ino an achual meric vahe §

byt do something maybe the thing vehe by st garankeed b verk
vead a test Fle named “myFile tet” (or at least TRY o vead the File.)
st be the nd of the "things o by’ s | ges Yo cauld by many Bhings
is mast be where you find aut if the thing you tried did't work.

iF the bhing we tried Ealed,print "l rot nd” ok at the command-lre
ks lie everything in the { 1 is what to do if the ‘bry didn't werk.

OEBPS/Image00249.jpg
inat SNEE 5
ey Lakes 3 String

Integer.parseInt (“3”)

7

a method in the Integer
elass that knows how o
“parse” 3 String inks the
ity

OEBPS/Image00047.jpg
Java 102

250 classes

Stow.

Cute name and
logo. Funto use
Lots of bugs. Ap-
plets are the Big.
Thing.

Java 11

500 classes

Alittle faster.

More capable, friendier.

Becoming very popular.
Better GUI code.

OEBPS/Image00252.jpg
5 Wi vy 1

% java Multifor

1
4
¢

OEBPS/Image00048.jpg
Java 2
(versions 1.2 - 14)

2300 classes

Much aster.
Can (sometimes) run at
native speeds. Serious,
‘powerful. Comes i three.
flavors: Micro Edition 12ME),
Standard Edition (125€) and
Enterprise Edition (J2€E).
Becomes the language of
choice for new enterprise
(especially web-based) and

Java 5.0
(versions 1.5 and up)

3500 classes

More power, easierto
develop with.

Besides adding more than a
thousand additional classes,
Java 5.0 (known as “Tiger')
added major changes to
the language itself, making
it easier (atleastin theory)
for programmers and giving
it new features that were
‘popular in other languages.

OEBPS/Image00251.jpg
Wodaw e O

% java Output
class Output { B

public static void main(String [] args) {

Output o = new Output ();

0.000);
)
void go() LI
2Wix=6
inty = 7

for(int x = 1; x < 8; x++) {
if (x > 4) {
System.out.print (++y + " “);
}
e

System.out.println(* x = * + x); paveOuinnt

1315x=6
break;

OEBPS/Image00244.jpg
¢l lp el Ip

OEBPS/Image00243.jpg
v code f
Peat goes ,

i ere

pokintrement aperator < body)

L
for (int i= 0; i < 100; i+){ '}

b

O

initializhtion boolean test.

OEBPS/Image00045.jpg
Method Party)
0akad_0

1 invokespecial #1 <Method
javalang Object)>

4retum
Method void buidinite()

0w #2 <Class java.awt Frame>

3dwp

4 invokespesia 3 <Method
jovaau Framed)>

OQutput
(code)

o

Compiled code: Party.class

R —
%java Party
000

Party at Tim’s!

=

Virtval
Machines

o

Run the program by
starting the Java Virtual
Machine (JVM) with the
Party.class file. The JVM
translates the bytecode
into something the
underlying platform
understands, and runs
Your Program.

OEBPS/Image00046.jpg
Classes In the Java standard library

3500

3000

2500

2000

1500

1000

500

Java 102

Java 2

(versions 1.2 - 14)

(versions 1.5 and up)

OEBPS/Image00043.jpg
WeoaPay)
0dloat 0
tiokespe-

a#1 <etnod
ivalang Objct
4retm

e : Machines

The compiler creates a
new document, coded
into Java bytecode.

Any device capable of Your friends don't have

running Java will be able aphysical Java Machine,
to interpret/transiate Dt fhey 3l have a

this file into something Uirttiallas mehine

it can run. The compiled (implementedin
bytecode i platform- software) running inside
independent. their electronic gadgets.

The virtual machine reads
Bkl ke Bha Evtucadde

OEBPS/Image00044.jpg
importjvaant "
ingortjavaautesent’
ass Pary {
pubc voidbudinite) {
Frame = new Frame()

Butonc = new Button(‘Shootme’)
Panel p = new Panel(.

padd(l;

} 1 more coge here.

Source

Type your source code.

Save as: Party.java

$javac Party.java

Compiler

(2]

Compile the Party.java
file by running javac
(the compiler application).
Ifyou don'thave errors,
you'll get a second docu-
ment named Party.class

The compiler-generated
Party.class fle is made up
of bytecodes.

OEBPS/Image00042.jpg
party initation.

Source

Create a source
document. Use an
established protocol
(in this case, the Java
language).

Compiler

2]

Run your document
through a source code
compiler. The compiler
checks for errors and
won'tlet you compile
untilits satisfied that
everything will run
correctly.

OEBPS/Image00257.jpg
Code Magnets:

class MultiFor (
public static void main(String [] args) (
for(int x = 0; x < 4; x++) {

forlint y = 4; y > 2; y=-) {
System.out.println(x + * * + y);

« |What would happen
if this code block came
) before the 'y’ for loop?

e 28 Vit 5 e

ava Multifor

bl
3
3
[
3

OEBPS/Image00256.jpg
Be the JVM:

class Output {

public static void main(String [1 args)
Output o = new Output ();
0.900);
3
void go() (
int y = 7;
for(int x = 1; x < 8 x++) (
vt
i€ (x> 4) (
System.out.print (++y + * “1;
1
if (v > 14) {

System.out.println(* x

" x

break;

Did you remember to factor in the
break statement? How did that
affect the output?

P il W o ol

4 java Output
1315226

OEBPS/Image00040.jpg
Come on, the water's
greatl We'll dive right in and
write some code, then compile and
run it. We're talking syntax, looping
and branching, and a look af what
makes Java so cool. You'll be
coding in no time.

OEBPS/Image00259.jpg
Soit's frue?
We don't have to
build it ourselves?

OEBPS/Image00041.jpg

OEBPS/Image00258.jpg
MEERE Z
Z wi =l<FT
H Z[HFH[<| N w
o | .
= <|afo| [&[Oln]-
of [H |V Hl |z o| |z
Olawle|<[F[Oly| [< lo| [m]
w o o < [= W
o << [H[o B
Z| | Wi < o
w (2 R L e S - T =i 4
ool [Z] [<[|w o
W wy | < | h [GY b4
- [S] = w| (=] <
alawl [Awolalw|slwz|F| OzZw
= o D el z| o] |«
o [F [w] [Fwe<[FRo[Z] =
x| v <
wi Xla |af|w n|n[~ O lor D|Z

Possible output:

Candidates:

15

36

54

60 10

S

18

x-=;

14

12 14

OEBPS/Image00038.jpg
Marilym de
Qe

OEBPS/Image00261.jpg
int

Fi
%java SimpleDotComGame

Edit_Window

enter a number 2
hit
enter a number 2
hit
enter a number 2
kill
You took 3 guesses

OEBPS/Image00039.jpg
Jobn Nyegist Chris Jones

Ira Beckey.
. 5
~

Rodrey
Woodruff

OEBPS/Image00260.jpg
[Fie Edit_Window Hep Smie]
%java SimpleDotComGame
enter a number 1
miss
enter a number 2
miss
enter a number 3
miss
enter a number 4
hit
enter a number 5
hit
enter a number 6
kill

You took 6 guesses

OEBPS/Image00036.jpg

OEBPS/Image00037.jpg
Thomas Pay|

OEBPS/Image00262.jpg
R N UL I ARl e
int guess = Integer.parselnt(stringGuess) ; (— fxﬁf{m String
String result = ‘miss"; € Make a variable o hold 44, vesult we'll

veturn. Put “mise” s the default
Gie. we assume 3

miss”).
for (int cell : locationCells) { — f;mt with cae
Here’s where it € Contire e 9 v the aryay
oss weong. Wo guess o thi elem
counted a hit every —3 G, %:;‘:A‘"*
time the user ¥
guessed a cell
location, even if
that location had bresk; € et ait of 4, loop, .
already been hit! o test the othey oy "
} 1/ end if s
We need a way to P
know that when Lof{endior
: :;ov;‘ r:;::: o £ (nmOfHits = locationCalle.length) { €~y 4 ¢y, -
fously hi leb'ssee i we've now dest
previously hit that ety we're now ‘dead
cell. If he has, then Aens (h&‘? mes)and chane bhe
we don’t want to) // end if veslt String to

count it as a hit.
System.out.println (result) ; €~ Display the vesult for the user
Cmiss”, unless it was changed 4o “hit” or “Kill").
return result;

T Reburn the vealt back 4
} // end method the ealling melhest

OEBPS/Image00253.jpg

OEBPS/Image00255.gif
class MixForo {

public static void main(String [] args) {
int x = 0;
int y = 30;

for (int outer
for(int inner

outer < 3; outer++) {
4; inner > 1; inmer--) {

E— Candidate 4o,
y=y H 905 here
if (x == 6) (

break;

}
x=x+3
)
v=y -2
}
System.out.println(x + “ ™ + y);
)
}
Candidates: Possible output:
x = x + 3; 45 6
X =X+ 6; 36 6
x=x+2; 546
xhe; 60 10
18 6
6 14

12 14

OEBPS/Image00254.gif

OEBPS/Image00034.jpg

OEBPS/Image00232.jpg
%java SimpleDotComGame
enter a number 2

hit

enter a number 3

hit

enter a number 4

miss

enter a number 1

kill

You took 4 guesses

OEBPS/Image00035.jpg
Corey Meblore

OEBPS/Image00231.jpg
@ Convertinga
String to an int

d this for loop detlar
%: “eath clement in the ‘locationCells
aveap bake the next element in the arvay

A method in the
nteger class that
Knows how £o “parse”

dass 03 a Shring into the int Tk
o S S 3 St
Integer.parseInt(“3”)
gt s it
ele Ehing meprig. " 50 the
vahe [N]

otationCel.» 2 it

o s it Lo the int varizble ‘el
@ The for loop for (int cell : locationCells) { }
et e
\
D:Lla-;a vanaHeE that will hom{:dgmg 1 e :g:“ﬂu
vom the arvay. Each dime through he | e st A g e)
f“'?.»?'”f}" Gin this ease an int. v.grlaH: - B b;c *& :‘:« A?N‘\:\) :,;aﬁ; o
ell), will hold a diffevent element. fr. o dement W OE T
L clom the ave
arvay, unbl theve are no mor o the BTARE Napker
¢ode does 3 .‘h:ky i3 ¢ elements (or the e of ths ¢

The post-increment
operator

®

break statement

see #4 below)

The ++ means add | to
whatever's there (in other
words, intrement by 1)

numOfHits++
mumOfHitsH is the same (in
this case) as saying umOFHits =
rumOFits + 1, ‘extept slightly
more ebficient.

break;

Gets you out of a loop. [mmediately. Right heve.
N M erations oo botieam ey sart ack ot

OEBPS/Image00033.jpg

OEBPS/Image00031.jpg

OEBPS/Image00224.jpg
SimpleDotCom class

prep code rt code

OEBPS/Image00032.jpg
Jessiea Sant

OEBPS/Image00223.jpg
prep code test code

OEBPS/Image00029.jpg

OEBPS/Image00226.gif
METHOD: String checkYourself(String userGuess)
GET the user guess as a String parameter
CONVERT the user guess to an int
—— REPEAT with each of the location cells in the int array
// COMPARE the user guess 1o the location cell
—IF the user guess matches
INCREMENT the number of hits
// FIND OUT if it was the last location cell
—1IF number of hits is 3, RETURN "l as the result
ELSE it was not a ki, so RETURN'hit”
L—enoF

ELSE the user guess did not match, so RETURN “miss”
L—enD P

—— END REPEAT

END METHOD

METHOD: void setLocationCells(in(] cellLocations)
GET the cell locations as an int array parameter
ASSIGN the cell locations parameter to the cel locations instance variable

END METHOD

OEBPS/Image00030.jpg

OEBPS/Image00225.jpg
SimpleDotCom

int [} locationCells
int numORis

String checkYoursef{Sting guess)
void setlocationCelsint] loc)

OEBPS/Image00027.jpg

OEBPS/Image00228.jpg
public class SimpleDotComTestDrive { . nhiate 3

. g GnleDotC

public static void main (String[] args) { Y
e

SimpleDotCom dot = new SimpleDotCom()

onse! \
int[] locations = {2,3,4}; — L"'LL:Q ﬂchsv\:\(ﬂ
-

dot. setLocationCells (locations) ;

make 3 fake

stri rGuess = “27;
ring userGuess e

String result = dot.checkYourself (userGuess) ;
invoke the check
m»za on the d
obicct, and pase 5

e t5al Pass it the

String testResult = “failed”; Yoursel £()
t

if (result.equals(“hit”)) {

CeRERemNE S TPaRse f bhe Gy) g

! back a “hit it's working

systen.out.println(testResult) ;¢

int out the ¢,
} fl’a:xgd or ;&C\'z:% =

OEBPS/Image00028.jpg
lens
we 2 48
W:od& ed Sawr W M 2

Dog
size
bark()

eatl)
chaseCal()

OEBPS/Image00227.jpg
Oh my! For a minute
there I thought you
werer(t gonna write your
test code first. Whoo!

Don't scare me like that.

OEBPS/Image00025.jpg

OEBPS/Image00230.jpg
GET th

CONVERT

REPEAT

"

INCREMENT

// FIND OUT
h
IF nurt v

RETURN

ELsE

RETURN
ELse

RETURN

AN SURANG DINOETOUENGAE LOREMLY FREANOWIRESY. 1

convert: ;
int guess = !nuqa@puu!nt(ltriwﬂ"” b a: m{éht Sty

String result = “miss"; € "¢ 3 variable Lo holg 4y, vesult well

orn Pt miss” in a5 the default

(ie. we assume 3 “miss”)

@
for (int cell : locationCells) { € repeat i, each ¢el|

B Ehe lotatigncy,
e m— ¥ feseh el ozt of 4y ol::t:),
ompare the e g 4, 4. ’
R clement (cel) iy 1 arvay
ore® Nesctant

ISR € gt ut of e
lo9P, no n
to test the othe, Z”x “
}

if (nunOfHits == locationCells.length) {

we're out of the loop, but let's see if e
result = “kill"; € now 'dead" (hit 3 imes) and change u\:m

vesult String £ “Kill”
) i
System.out.println(result) ; ¢ display the result for the user
(“Miss", unless it was changed to “Hit” o “Kill")
return result;

S veturn the vesult back o
N a od the ¢alling method

OEBPS/Image00026.jpg

OEBPS/Image00229.jpg

OEBPS/Image00023.jpg

OEBPS/Image00024.jpg

OEBPS/Image00242.jpg

OEBPS/Image00020.jpg
BULLET POIN&

OEBPS/Image00235.jpg
DECLARE

MAKE

COMPUTE »

MAKE a1 1t i

INVOKE

DECLARE 11

WHILE ¢

GET user inpus
// CHECK
INVOKE

INCREMENT

IF
SET

PRINT !

e ko tratk how
e vser mkES

public static void main(String(] args) { . . yiakl

int numOfGuesses = 0; ==t p2

GameHelper helper = new GameHelper(); ¢ this is a special tlass we wrote that has
the method for getting user input. for
now, pretend it's part of Java

SimpleDotCom theDotCom = new SimpleDotCom(); <—— ke the dot tom cbjett

int randomum = (int) (ath. @ 0 #5156 make 3 vardom mumber for the Fist
dom cell, and use it to make the eell

o leations amay

int[] locations = (randomNum, randomNum+l, randomNum+2);

vay)
theDotCon. setLocationCells (locations) i (g the dok com its locatiers (the aveay
boolean isAlive = true;

S make a boolean vaviable to track whether the game
is still alive, 40 use in the while loop Lest. vepeat
while game is still alive.
hile(ishlive = true) (€ 0 e
b e ek SO
String guess = helper.getUserInput(“enter a number”) ;&

String result = theDotCon.checkYourself (guess) ;
RUROLGUSSESH (— intrement gues court el in 3 Gy "eterned
1 (ramme et CRIY o s 2 BT s st islve o S G ve vt
Lemtive = faton; € "eenter b o) nd print wsr pns e

'P

OEBPS/Image00021.jpg
/ﬁ%{{i«a

OEBPS/Image00234.jpg
How many
hits did you get
last month?

Fowdy from 740.1 Town —

OEBPS/Image00018.jpg
BE the compiler

OEBPS/Image00237.jpg
it ing
€ Ser ot fhe g Lo pro
An instante we made eavlier, diatever yo, m":'lw»l,hg a3
of a class that ve built to filayed i G0 bere el
help with the game. [£'s called loke 1 mefyog il sk
GameHtelper and you haven't "9 for s o o0t
seen it yet Cyou will

"4
String guess = helper.getUserInput (“enter a number”)

!

. method of the Gamel
- d‘ﬁ‘:ﬁ;ffv-?&:auc & g emiiﬁféiﬁﬂ‘f
get back (7, G- ooy ¥ Tine input, veads it in after the

user hits RETURN, and gives back
the vesult as 3 String

OEBPS/Image00019.jpg
“‘\s \ ‘I“‘e

OEBPS/Image00236.jpg
This is 2 'east), and it fe "
ety o by e G0 The Mathrindon pebd
ype °f the cast Gie. the bype in fhe veburns a ramber o
Farens): Math vandom veburs 3 douple Qﬁ:’ﬁﬂﬁfi i %,,‘;,,,

50w have bo eack i £ be oy it (.
sk e ke b teans 67 feom 015 (160 - FTH
3rd 0 o this case, the cack logs off cask to an mt)

the fraetional part of the doure h’

int randomNum = (int) (Math.rand(,:rm() *8)

We detlare an int vaviable to hold A el thok comes & method of the
Ehe vandom rumber e gct back i d #nechod

OEBPS/Image00016.jpg
T worder how T
can trick my brain
into remembering
this stuff..

OEBPS/Image00239.jpg
Ready-bake
Cade

OEBPS/Image00017.jpg

OEBPS/Image00238.jpg
T pre-cooked
some code 50 you
don't have to make
it yourself.

OEBPS/Image00014.jpg
Does it make sense to
say Tub 15-A Bathroom?
Bathroom 15-A Tub? Or is
it a HAS-A relationship?

OEBPS/Image00241.jpg
L File Edt Wndow Hep Fant
%java SimpleDotComGame

enter a number 1

hit
enter a number 1
hit

enter a number 1
kill

You took 3 guesses

OEBPS/Image00015.jpg

OEBPS/Image00240.jpg
%3java SimpleDotComGame

enter a number 1
miss
enter a number 2
miss
enter a number 3
miss
enter a number 4
hit
enter a number 5
hit
enter a number 6
kill

You took 6 guesses

OEBPS/Image00022.jpg
@)ﬁ"?ﬂm parhell

OEBPS/Image00233.jpg

OEBPS/Image00210.jpg
Fie Eor Vinaow Felo Banro

%3java Puzzled
result 543345

OEBPS/Image00013.jpg
‘Tt really sucks to be an
abstract method. You
don't have a body.

OEBPS/Image00209.jpg
public class M
int counter = 0;
public static void main(String [] args) (

int count = 0;

402017

= new Mi
mda[:] . counter
count = count +
count = count + mda[x] .maybeNew () ;

:].counter +

nicount + * *
+ méa[l].counter) ;

system.out

public int maybeNew (int index) {

if (%

mé = new

md.counter = md.counter + 1;
return 1;
¥

return 0;

OEBPS/Image00212.gif
class Clock
String time;
void setTime(String t) {
tine = t;
)
String gettine() (
return time;

class ClockTestbrive (
public static void main(string (] args) {
Clock ¢ = new Clock(};
C.setTime (*12457);
String tod = c.getTime();
System.out.println(*time: " + tod);

) Note: ‘Getter' methods have a return
type by definition

OEBPS/Image00451.jpg
o public Boop() {

super () ; (\ z;:exe:r(OK becays,
}

{Fd i
£oPer, ac the fir
Boop(dnt i) { tatement

public Bo

) swper;
i =0

! 0
[public Boop S e, OK betays,

)

' Compiler i) ut o
call 4, x: :

P in as {1
i)t st “tatement

Boop (int i
M public P i

aiEaTE

Gnt) BADN Ty,
Qpublic Boop

't ompile]
e 't el
i the cal , L0 below,
size o mything cle

wpmel) s

OEBPS/Image00211.jpg
dostuff(x);

obs.dostuff(x);

obsix] dostuff(factor)
obsix|doStuff(x); ivar + factor;

ar ivar * (2 + factor);
ivar * (5 - factor);
ivar * factor;

Puzzled
Puzzleab int
Puzzleab() short

factor

public
Puzzleab] obs = new Puzzleabls]; Private
Quzzledb (] obs = new Puzzled[s];

\ew Puzzledb(x);
new Puzzledb();
\ew Puzzleab();
new Puzzleab(),

x=x+1;

OEBPS/Image00452.jpg
private String name
Animal(String r)

String getName()

Hippo(String n)

fother Hippo-spe-
cific methods]

OEBPS/Image00009.jpg

OEBPS/Image00445.jpg
Animal ()
l Hippol)

OEBPS/Image00010.jpg
Great. Only

637 more dull, dry,

ks
e
Thig it worthy
savindy

OEBPS/Image00446.jpg

OEBPS/Image00007.jpg

OEBPS/Image00204.jpg
¢is true
bis false

OEBPS/Image00443.jpg
% java TestHippo
Starting...
Making a Hippo
Making an Animal

OEBPS/Image00008.jpg

OEBPS/Image00203.jpg
zevoes O

e

(kneve 3¢ 7
ok

e ekt 99
& we donk €3¢ o

OEBPS/Image00444.jpg

OEBPS/Image00005.jpg
Cathy Sievea
)

«—
Berk Botes

OEBPS/Image00206.jpg

OEBPS/Image00449.jpg
public class Duck extends Animal {

int size;

public Duck (int newSize) {
super () ; ¢ yo

size = newSize;

ot s3y super

OEBPS/Image00006.jpg
I can't believe they
put thatina Java
programming book!

e v

ogpammine

ghat in 3 Jav2

OEBPS/Image00205.jpg
T always
keep my variables
private. If you want to
see them, you have to
talk to my methods.

OEBPS/Image00450.jpg
Eewwww... that
is SO creepy. There's

o way T could have been
born before my parents.
That's just wrong.

OEBPS/Image00003.jpg
BEST

OEBPS/Image00208.jpg
Candidates:

Possible output:

OEBPS/Image00447.jpg
Animal)
l Hippol)

OEBPS/Image00004.jpg
Software
deveLopment
15th annual

product
excellence
ard

OEBPS/Image00207.jpg
KEEP

RIGHT

OEBPS/Image00448.jpg
public class Duck extends Animal {

int size;

public Duck(int newSize) {
~—> Animal() ;
Bh0! size = new)sizj-\Na/ This i,
; ot lega/

}

OEBPS/Image00011.jpg

OEBPS/Image00012.jpg
reeds to eall 5 mote
Ml ve
;tt::‘ e R

duanO
mumvuu

OEBPS/Image00221.jpg
===

OEBPS/Image00220.jpg
SimpleDotComGame

SimpleDotCom

void main

nt [locationCels
it umOfkis

Sting checkYourselSiring guess)

void setLocationCelsfin] loc)

OEBPS/Image00462.jpg

OEBPS/Image00222.jpg
Fil

Edit_Window Help Desto
%$java SimpleDotComGame
enter a number 2

hit

enter a number 3

hit

enter a number 4

miss

enter a number 1

kill

You took 4 guesses

OEBPS/Image00213.jpg
Fil
%java Puzzled
result 543345

Edit_Window_Help_BellyFlos

OEBPS/Image00456.jpg
ANPGRS JEVE: Wk COLOR 1
class Mini extends Car {

o— ke
oy

s Refault Color ard

calls the overloaded Real

this (Color. RED) /¢ (opructar (the one

eall superO).

public Mini() {
}

P"bﬁseﬁﬁ:ﬁf ZL\ This is The Real Constructor that
Super (i does The Real Work of initializing the

// more initialization bject including bhe call fo supert))
}

public Mini (int size) {
this (Color .RED) ;
bt kb Won't workll Can't have
myio 3rd)i the came
s constructor, because th
st be the Fust statonint] "

T ot Vingow Tiop e
javac Mini.java

Mini.java:16: call to super must

be first statement in constructor

super () ;

OEBPS/Image00457.jpg

OEBPS/Image00215.jpg
%.

Tcanlift
SR heavy objects.

OEBPS/Image00454.jpg
public abstract class Animal {

private String name; Al animals Gincluding

subtlasses) have a name

public String getName() {&—fgif,,

return name; iPro mpenyt e that

)

public Animal (String theName) {
name = theName; takes gh

public class Hippo extends Animal {

public Hippo(String name) { strutkor takes 2 name
e Bpee: & Mippe e
¥
, p T the name 4
 rinal concy g Stk £

public class MakeHippo {
public static void main(Stringl] args) (Moke o fiye,
Hippo h = new Hippo (“Buffy”); & "¢ ‘BJ){? i e

NS Hi
System.out.printin(h.getName () ; shracler Then gfr» it

Hi
’ ol e inbeited g e

OEBPS/Image00214.jpg
Candidates:

index < 5

x < 20

index < 5

index < 7

x < 19

index < 1

19 1

141

25 1

20 1

\

20 5

OEBPS/Image00455.jpg
%java MakeHippo

Buffy

OEBPS/Image00217.jpg
e Edit

indow Help Sell

%java DotComBust

Enter a guess A3

miss
Enter
miss
Enter
miss
Enter
hit
Enter
hit
Enter
Ouch!
kill
Enter
miss
Enter
hit
Enter
hit
Enter
Ouch!

a guess

a guess

a guess

a guess

a guess

You sunk

a guess

a guess

a guess

a guess

You sunk

B2

ca

D2

D3

D4

Pets.com

B4

63

(7]

G5
AskMe. com

OEBPS/Image00460.jpg

OEBPS/Image00216.jpg
2 5 B =

7 X7 gid s 2 el
P2

£
|-E

g

&
e

© Pets.com

AslfMe.ch

o 1 2 3 4 5

stavks ot zevo, like Java svvays

OEBPS/Image00461.jpg
W0 o
ldoS{:u“O L

OEBPS/Image00219.jpg
A givtle mE2T

P sark or fns®
Start Avetarde
wsed bo v
(1) o ekion
O —f coruer
> guess (=)
o hit remove loca-
tion cell
Kill
remove.
Dot Com
A diamond
s /Al somd vepresents 3
Dot Coms detision point
alive? =

3] Gisplay user

score/rating

game.
over

OEBPS/Image00458.jpg
File_Edit_Window_Hel

%javac SonOfBoo.java
cannot resolve symbol

symbol : constructor Boo
(java.lang.String, java.la
ng.String)

%javac SonOfBoo.java

cannot resolve symbol

symbol : constructor Boo
(int,java.lang.String)

Fie Eait_Vindow Help Imiolit

%javac SonOfBoo.java

cannot resolve symbol

symbol:constructor Boo ()

OEBPS/Image00218.gif
(

Prompt user for a guess
CA etc) S

Check the user guess against
all Dot Coms to look for a hit,
miss, or kill. Take appropri-
ate action: if a hit, delefe cell
(A2,D4, etc). T a kil delete
Dot Com.

OEBPS/Image00459.jpg
e i
SRR e
s i
'

ad () {
ic void re;
public

. S stopeg 4 to the u.;d/)
int s = 42; Jethod, 2 an't be yeq
sleep() ; a».;mhm else
1}
{
. id sleep ()
N \ N"*“\\!?
) Wl 52
e < eidble: S e
hsee ¢ ctank o
deapl) s e
’s ok in know
= s "t
sleepO)

7

The variy iable 5 alive, but ;,
read() meth,

o only ity 4,
b secp) et
P of the ¢, Stack ang

and vead()
an “"ning agaiy, vead() ¢,
st.u see s’ Me rud() Completes 3,q S Popped off
the Stack, 1 dead, Pishing up g isie

OEBPS/Image00002.jpg
software
déveLopment
14th annual
product
excellence
award

OEBPS/Image00453.jpg
The Animal part of
me eeds to know my name,
50T fake a rame inmy own
Hippo constructor, then pass
the rame to super()

OEBPS/Image00000.jpg
OREILLY®

OEBPS/Image00001.jpg
BEST

OEBPS/Image00868.jpg
main() starts the | The scheduler sends The scheduler lets | The new thread goes
new thread themain thread out the new thread away, because s run()
of running and back run to completion, | completed. The main
forunnable, sothat prining out top o’ | thread once again
the new thread can the sta becomes the running
. thread, and prints *back

. - in main®
Threod myThread.startO)
my Thread start()
T

main thread main thread new thread main thread

time

OEBPS/Image00869.jpg
main() starts the
newthread

TyThread

main thread

The scheduler sends
the main thread out
of running and back
1o runnable, so that
the new thread can
un,

myThvead.stori()

.

main thread

The scheduler lets the|
newthread run for a
ltle while, ot long
enough for the run()
method to complete.

new thread

The scheduler
sends the new
thread back to
runnable.

run()

|
new thread

+ime

03

The scheduler
selects the main
thread to be the
funning thread
again. Main pints
out ‘back in main”

main thread

The new thread retums.
tothe running state:
and prints out “op
the stack”

new thread

OEBPS/Image00866.jpg
Number four, you've had
enough time. Back to runnable.
Number two, looks like youre up!

Oh, row it looks like you're gonna have.
to sleep. Number five, come take his
place. Number two, youre still
sleep

OEBPS/Image00867.jpg
back in main

top o’ the stack

top o’ the stack
back in main
java ThreadT
top o’ the stack
back in main

java Thread

top o’ the stack

back in main
java ThreadTestDrive
top o’ the stack
back in main
java Thread
/q top o’ the stack
back in main
Nokice how ;y:: C,: “;’&“ﬁ:‘ﬁ&:ﬁ:ﬁﬂ v cadTestDri
e
iecad fmshes £ top o’ the stack

back in main

OEBPS/Image00872.jpg
public class MyRunnable implemeénts Runnable {
public void run() {
go0);
)

public void go() {

it —running
: v Gl T e e sorvnt
mrnd-llm(2000) ; th\ . N *‘
} catch(InterruptedException ex) { Bl U\Yea " v e gl
:mmmkhm“ : M"UVWW n tere il b2
’ ok otk in T eonds) betort S8
oy [Qd;« ahnz whx o ealls éoMaYt
: - e’\\—\yw%‘w ol
Tenks

public void doMore() {
System.out.println(“top o’ the stack”);
)
]

class ThreadTestDrive {
public static void main (String[] args) {
Runnable theJob = new MyRunnable () ;
Thread t = new Thread(theJob) ;
t.start();
System.out.println(“back in main”);

OEBPS/Image00870.jpg

OEBPS/Image00871.jpg
% java ThreadTestDrive

back in main
top o’ the stack

% java ThreadTestDrive
back in main

top o’ the stack

% java ThreadTestDrive
back in main

top o’ the stack

% java ThreadTestDrive
back in main

top o’ the stack

% java ThreadTestDrive
back in main

top o’ the stack

OEBPS/Image00864.jpg
RUNNABLE RUNNING

§ 1

Sent back fo runnable
so arother thread can
have a chance

OEBPS/Image00865.jpg
RUNNABLE RUNNING

BLOCKED
A

sleeping, waiting for another thread to finish,
vaiting for data 4o be available on the stream,
waiting for an object’s lock.

OEBPS/Image00863.jpg
Thread t = new Thread(r) ;

NEW

t.start();

RUNNABLE

Selected to run

s is wheve 8 theead
wanks to be

o vaiting o
get started”

Thread t = new Thread(r);
A Thread instance has been
created but not started.

In other words, there is a

Thread object, but no thread

of execution.

t.start();

When you start the thread, it
moves into the runnable state.
This means the thread is ready
to run and just waiting for its
Big Chance to be selected for
execution. At this point, there is
a new call stack for this thread.

This is the state all threads lust
after! To be The Chosen One.
The Currently Running Thread.
Only the JVM thread scheduler
can make that decision. You

can sometimes influence that
decision, but you cannot force a
thread to move from runnable
to running. In the running
state, a thread (and ONLY this
thread) has an active call stack,
and the method on the top of
the stack is executing.

OEBPS/Image00879.jpg
Runnable

BankAccount
int balance

getBalance()
withdraw()

:
RyanAndMonicaJob

un()
makeWithdrawal()

OEBPS/Image00880.jpg
G188 Banxhooount {.

ks with 3
private int balance = 100; < The accomt 3

balance of 1100
public int getBalance () (
return balance;
)
public void withdraw(int amount) (
balance = balance - amount;
)
e
' There will be only ‘"ﬁal‘{i: :ﬁ\y
public class RyanAndMonicaJob implements Runnable (Manand/""‘“‘izo:m oank atcomt Both

one attoun
private BankAccount account = new BankAccount(); & gess this one 3

public static void main (String [] args) (

RyanAndionicadob theJob = new RyanAndionicalob(); ¢ |
rstantiste

Thread one = new Thread(theJob) ; ¢ Runnable (iob)
Thread two = new Thread (theJob) ; &— Make tuo thsy, J
one. setName (“Ryan”) ; Job. That " Ving eath thyes,
two. setName (“Monica”) ; b bl
one staztD; instance va

atcess
riable in ing the
two.start () ; € n the Rummable clzy ¢
}
. throuoh and ries
public void run() { In the vur() methods 3 thead 1:,»{ :tm 5‘\; e the
for (int x = 0; x < 10; x++) { “ sthdraval with each itevs i
‘makeWi thdrawal (10) ; o make 3 Vs Ehe balange onte 393" toiste
if (account.getBalance() < 0) { withdrawal, it M;awn
System.out.println("Overdrawn!”) ; e actount 1% 9"
) there’
} Check the account balance, and if theve's not.)
) encugh money, e st print 8 message ¢ t».u'(L
ke up and comple?
. nough, v g0 Lo slecp, then wake v
private void makeWithdrawal (int amount) /‘ & <t like Ryan did
if (account.getBalance() >= amount) { th withdraval, ot e R

System.out.println(Thread.currentThread() .getName() + “ is about to withdraw”);
try {
System.out.println(Thread.currentThread() .getName () + " is going to sleep”);
Thread.sleep (500) ;
} catch(InterruptedException ex) {ex.printStackTrace(); }
System.out.println(Thread.currentThread() .getName() + “ woke up.”);
account.withdraw (amount) ;
System.out.println(Thread.currentThread() .getName() + * completes the withdrawal) ;
}
else {
System.out.println(“Sorry, not enough for “ + Thread.currentThread() .getName()) ;
¥
) We put in a bunch of

) et s it totements o e e

5 it vuns.

OEBPS/Image00877.jpg

OEBPS/Image00878.jpg
Ryon flls asley 3£

he thetks the balance

bt before he makes the
ithdvaval. When he wakes
up, he immediately makes
the withdrawl ithout.
ehetking the balance 393

OEBPS/Image00881.jpg
Ryan is about to withdraw
Ryan is going to sleep
Monica woke up.

Monica completes the withdrawl
Monica is about to withdraw
Monica is going to sleep
Ryan woke up.

Ryan completes the withdrawl
Ryan is about to withdraw
Ryan is going to sleep
Monica woke up.

Monica completes the withdrawl
Monica is about to withdraw
Monica is going to sleep
Ryan woke up.

Ryan completes the withdrawl
Ryan is about to withdraw
Ryan is going to sleep
Monica woke up.

Monica completes the withdrawl
Sorry, not enough for Monica
Sorry, not enough for Monica
Sorry, not enough for Monica
Sorry, not enough for Monica
Sorry, not enough for Monica
Ryan woke up.

Ryan completes the withdrawl
Overdrawn!

Sorry, not enough for Ryan
Overdrawn!

Sorry, not enough for Ryan
overdrawn!

Sorry, not enough for Ryan
overdrawn!

OEBPS/Image00882.jpg

OEBPS/Image00875.jpg
Wow! Threads are
the greatest thing since the
MINI Cooper! T cart think
of a single downside to using
threads, can you?

OEBPS/Image00876.jpg

OEBPS/Image00873.jpg
ot e S O e M i
pable instante
public static void main(Stringl] args) { e ore Rum
RunThreads runner = new RunThreads() ;
Trread beta = non Thread amery + & 18k buo rcads ith he s Ruable (te
4 same job——we'l Lk more about. the “tuo threads

alpha.setName (“Alpha thread”) ;. 0
beta. setNans ("Beta thread”) ; ¢ and one Runnable” in a few panes)
alpha.start() ; Name the thyesgs

i beta.start(); «— Start the threads
eugh i loobs
Esch Ahwead vill un hough 8
public void zun() { ing iks rame ach time

for (int i = 0; i < 25; i+#) { 7"]
String threadName Thread.currentThread () .getName () ;
System.out.println(threadName + * is running”) ;

OEBPS/Image00874.jpg
File Edit Window Help Certauri

Park of the output when NN
NSNS Il Alpha thread is running
times. Alpha thread is running
Beta thread is running
Alpha thread is running
Beta thread is running
Beta thread is running
Beta thread is running
Beta thread is running
Beta thread is running
Beta thread is running
Beta thread is running
Beta thread is running
Beta thread is running
Beta thread is running
Beta thread is running
Beta thread is running
Beta thread is running
Beta thread is running
Alpha thread is running

OEBPS/Image01074.jpg
Tuseit
for serious B-fo-B,
e-commerce back-
ends, running on J2EE
technology.

OEBPS/Image01075.jpg
We've got an
EJB-based hotel
reservation system.
And EJB uses RMI!

OEBPS/Image01076.jpg
T just can't imagine Me tool How
life without our Jini- did anyone get
enabled home network by? I just love RMT
and applicances. for giving us Jini
technology.

OEBPS/Image01077.jpg
1 B= Flea | B

Exccutable Serviets
e Web Start RMiapp

100% Local Combination 100% Remote

OEBPS/Image01073.jpg
We use it

for our cool T heard your ex-
new decision-support wife still uses

plain sockets.

OEBPS/Image01082.jpg
MyServietA.class

OEBPS/Image01078.jpg
Web Browser
(client) "client requests RegisterServiet"

OEBPS/Image01079.jpg
Web Browser
(client) client requests RegisterServiet”

*here’s @ confirmation page"

i R

OEBPS/Image01080.jpg

OEBPS/Image01081.jpg
D

serviets.jar

OEBPS/Image01063.jpg

OEBPS/Image01064.jpg
ion and Remote

Ramo o Your interkace MUST extend
public interface MyRemote extends Remote { isavmiRemote

All of mote mé m
public string saymello theovs Remotemsceptions 4o Rieriig el "
~_~

import java.mmi ¥; interkate avein

OEBPS/Image01065.jpg
't is the
import java.rmi.*; e sikodion u,,.mulc.mtfgb “objttt
import java.rmi.server.; (ek way to make 3

public class MyRemoteImpl extends UnicastRemoteObject implements MyRemote {

L You have to implement. all th You MUST i)

public String sayHello() { terface methods e . mPlement your.
2 Heyrw; ™ methods, of e s mote intevfacell

i zeturn “Server says, Hey's 0 T dhtoe it vhacel

detlave the RemoteException

public MyRemoteImpl() throws RemoteException { } o superclass construttor (for
e astRemoteObject) declares an exception o
YU mast wrike 3 consbructor, because it mean
public static void main (String(] args) { that your construttor is calling visky code Gts
super constructor)
try (
MyRemote service = new MyRemoteImpl() ;
Naning.rebind (“Remote Hello”, service) ;

} catch(Exception ex) { Make the vemote of o
| SpmineStackTzacen \ rrivegistry um;&?iitﬁhz;: m:"t :1}&‘7';,
me You vegister it o e
3 by z, ‘Ma’é :; t nder is the name clients will

the vmi vegistry,

OEBPS/Image01066.jpg
This must be 4, -
that the :e:w,::; ‘
lookupl) is a statie method of vegistered undey.
the Naming elass

0.1/Remote Hello”);

Naming. lookup (“rmi://127.0

MyRemote service = (MyRemote) e
host name or [P
TV»« have o cast it to the m“m o

The client always uses the interfate, sinte the lookup
vemote lmykmc\f{)bm as the ,,:Qw vebuens type Object.
bype of the sevvice. o fach,

the clent. never needs £o know

bhe actual lass name of your

vemote sevvice

OEBPS/Image01071.jpg

OEBPS/Image01072.jpg
The client gets the stub
fic
the RM)regisiy o

The stub sends the method
callto the server

The dlient invokes 3 ™
onthe stub

The clent does a lookujy The femote servioe i fegis-
the RMI Registy -_ tered with the RM registry
ol senvice (1emote

implementation) is nstantiated

The RMIregistry i started

OEBPS/Image01067.jpg
Skeleton Serpres o

OEBPS/Image01068.jpg
The Naming ¢z,
{-/* mmmﬁ elass (fo doing the

Tookup)
Jo02rmd gk i+ m e

public class MyRemoteClient (
public static void main (String[] args) {
new MyRemoteClient().go();

import java.rmi.

)

bre

jokry 35

e ved

‘Y"Bf‘: ‘;a:‘i Teragk the 63
Ohjects

try { ‘[:

public void go() (

MyRemote service = (MyRemote) Naming.lookup(“rmi://127.0.0.1/Remote Hello");

String s = service.sayHello() ;

Yo need the P addvess

wsed to
or hostname and the name wsed

System.out.println (s bimd/vebind the sevvice

} cateh (Bxception ex) ([looks just like o
ex.printstackTrace(); Call (Ezept it MICZ“Zi; df i cthd
i emoteExceplion) o Icdde the

OEBPS/Image01069.jpg
Don't orsel, he client
uses the interface 4o call
cthods on the stab, The
ki e e
tlass, but the client never Clientclass /Remotelr Stub.cl
cefers & the sub elss Atk
i tode. The cent ahiys
s the vemote merbote
e el
inteface WERE the Re
Gt o‘:‘)et,t ‘MyRemote.class

OEBPS/Image01070.jpg
MyRemotelmpl_Skel.class

MyRemote.class.

Sevver needs both the Stub and Skeleton
elasses, as well as the sevvite and the
vemote interface. [t needs the stub class
betause vemember, the stub is substituted
or the veal sevvite, when the veal service

is bound 4o the RM| vegistry.

OEBPS/Image00472.jpg

OEBPS/Image01118.jpg
800

Cyber Beatbox

Bass Drum m—
Closed Hi-Hat e
Siop

Open Hi-Hat %}
Acoustic Sna Tempo U)
Crash Cymba Crempo down)
Hand Clap e
High Tom —_

; dancebeat &
Hiongo
Maracas
Whistle
Low Conga
Cowbell Andys groove 12
Vibrzsizn Chri: groove? revised €|
Low-mid Tom

Nigel: dan

High Agogo igel: dance beat
Open Hi Cont

Lt
essane agts e
e ot Y1 :}m
.
with Yoo
pattern
“endl¥

ureen

when Yo* W

OEBPS/Image01119.gif
import java.awt.®;
import javax.swing.*;
import java.io.*;

import javax.sound.midi.*;
import java.util.*;

import java.awt.event.*;
import java.net.*;

import javax.swing.event.¥;

public class BeatBoxFinal {

JFrame theFrame.
JPanel mainPanel;

JList incomingList;

JTextField userMessage;

ArrayList<JCheckBox> checkboxList;

int nextNum;

Vector<string> listVector = new Vector<string>();

String userName;

ObjectOutputStream out;

ObjectInputStream in;

HashMap<string, boolean[]> otherSeqsMap = new HashMap<string, boolean(]>();

Sequencer sequencer;
Sequence sequence;
Sequence mySequence = nul:
Track track;

String[] instrumentNames = {“Bass Drum”, “Closed Hi-Hat”, “Open Hi-Hat”,”Acoustic
Snare”, “Crash Cymbal”, “Hand Clap”, “High Tom”, “Hi Bongo”, “Maracas”, “Whistle”,
“Low Conga”, “Cowbell”, “Vibraslap”, “Low-mid Tom”, “High Agogo”, “Open Hi Conga’};

int[] instruments = {3542,

6.38,49,39,50,60,70,72.64,56,58,47,67,63) ;

OEBPS/Image00470.jpg
Trenen DEE O it

g pe 25 bark0
e =
e b T e
ks onsdered 3

OEBPS/Image00712.jpg
=

OEBPS/Image01120.jpg
PUDLAG SERGLO WOLG MELA. ABERLIgL) - SEUN). L
new BeatBoxFinal() .startUp(args[0]); // args[0] is your user ID/screen name

) R, Add 3 command-line argument for your streen name

public void startUp(String name) { % ava BeatBorFinal theFlash
5

userName = name; Exanle
// open connection to the server
try (
Socket sock = new Socket(*127.0.0.17, 4242); Nothing new.. set up the

out = new ObjectOutputStream(sock.getoutputstrean()) ;
in = new ObjectInputStream(sock.getInputStream()) ;
Thread remote = new Thread(new RemoteReader ());
remote. start (
} catch (Exception ex) {
System.out. println("couldn’t connect - you’ll have to play alone.”);

170, and make (and
Hhead.

neborking,

“acd) the veader

)

setUpMidi () ;

buildGUI() ;
} /7 close startup

public void buildGUI((Gl code, nothing new here

theFrame = new JFrame ("Cyber BeatBox");
BorderLayout layout = new BorderLayout () ;

JPanel background = new JPanel (layout) ;

background. setBorder (BorderFactory . createEmptyBorder (10,10,10,10)) ;

checkboxList = new ArrayList<JCheckBox>()

Box buttonBox = new Box (BoxLayout.Y_AXIS) ;
JButton start = new JButton(“Start”) ;
start.addActionListener (new MyStartListener()) ;
buttonBox.add(start) ;

JButton stop = new JButton(“Stop”) ;
stop.addActionListener (new MyStopListener ()) ;
buttonBox. add (stop) ;

JButton upTempo = new JButton (“Tempo Up”) ;
upTempo . addActionListener (new MyUpTempoListener ()) ;
buttonBox. add (upTempo) ;

JButton downTempo = new JButton (“Tempo Down”) ;
downTempo . addActionListener (new MyDownTempoListener ()) ;
buttonBox. add (downTempo) ;

JButton sendIt = new JButton(“sendIt”);
sendIt. addActionListener (new MySendListener ()) ;
buttonBox. add (sendIt) ;

AReEMaRREGE - D PR PLAIE0 §

OEBPS/Image00471.jpg
Uh-oh. The 'd’ varigble
went away vhen the barf)
Stack frame vas blown
off the statk, so the Duck
is abandoned. Garbage—
collttor bait

OEBPS/Image01121.jpg
DUELonRcK . S0 (NEaINasage) |

incomingList = new JList();

incomingList .addListSelectionListener (new MyListSelectionListener()) ;
incomingList. setSelectionMode (ListSelectiontodel . SINGLE_SELECTION) ;
JScrollPane thelist = new JScrollPane (incomingList) ;.

buttonBox.add (theList) ;
incomingList.setListData(listVector) ; // no data to start with
Box nameBox = new Box (BoxLayout.Y_AXIS) ; JList is a component. we haZ;nt
for (int i=0; i < 16; itH) { sed bebore. Thi is here bhe
nameBox. add (new Label (instrumentNames [i])) ; inoming mesanes e diglaye
L nly instead of a novm:
f»lq You just. LOOK at the
background. add (BorderLayout .EAST, buttonBox) ; esangs in bhis O you 0
background. add (BorderLayout .WEST, nameBox) ; CELECT a message from the lis
1o load and play Ehe attached
theFrame. getContentPane () .add (background) ; beat pattern

Gridlayout grid = new GridLayout(16,16);

grid. setvgap (1) ;

grid. setiigap (2) ;

mainPanel = new JPanel (grid) ;
background. add (BorderLayout . CENTER, mainPanel) ;

for (int i <256 e
JCheckBox ¢ = new JCheckBox () ; - ;
c.setSelected(false) ; Nothing el on this page is new
checkboxList. add (c) ;
mainPanel.add (c) ;

} // end loop

theFrame. setBounds (50,50,300,300) ;
theFrame.pack () ;
theFrame. setVisible (true) ;

} // close buildeUr

public void setUpMidi() {
ery
sequencer = MidiSystem.getSequencer () ;
sequencer.open () ;
sequence = new Sequence (Sequence.PPQ,4); i
track = sequence.createTrack () ; et the Seavereer 73k
sequencer . setTempoInBEM(120) ; d make

} catch(Exception e) {e.printStackTrace();}

Ceapentes 3

} // close setUpMidi

OEBPS/Image01114.jpg
FUDLAS SACLEWULL, SRR SR RS v Ly e (OO A SN, Wt e &

MidiEvent event = null;

try {

ShortMessage a =

}catch (Exception e) { }

return event;
)

new ShortMessage() ;
a.setMessage (comd, chan, one, two);
event = new MidiEvent (a,

class MyDrawPanel extends JPanel implements ControllerEventListener {

// only if we got an event do we want to paint

boolean msg = false;

public void controlChange (ShortMessage event)

msg = true;
repaint () ;

public Dimension getPreferredSize() {
return new Dimension(300,300) ;

¥

public void paintComponent (Graphics @) {

if (msg) {

Graphics2D g2 = (Graphics2D) g

int r = (int) (Math.random() * 250) ;
int gr = (int) (Math.random() * 250);
int b = (int) (Math.random() * 250) ;

g.setColor (new Color (z,gr,b));

int ht = (int) ((Math.random() * 120) + 10);
((Math.random() * 120) + 10);

int width = (int)

int x = (int) ((Math.random() * 40) + 10);
(int) ((Math.random() * 40) + 10);

int y

g.fillRect (x,y,ht, width) ;

msg = false;

} // close if
} // close method
} // close inner class
¥ // ciose olans

ou've
+ on bhis ertive pa3E 1o 0
Nobsing 10 0 s Codeitene
s L ety 5,
o warS, T code Yowrsd s DT
ammm??\ »‘Lt\: Eudcftﬁ:\:ze;
o ey avaphie st
the A very O

OEBPS/Image01115.jpg
800 RMI Browser
Day of the Week Service ~)

Month
Day.

Year

OEBPS/Image01116.jpg
ANPOXT JRVAX . SwLng. "
import java.awt.event.;
import java.awt.
import java.io.*
import java.util.*
import java.text.*;

public class DayOfTheWeekService implements Service {

JLabel outputLabel;
JComboBox month; ¢
JTextField day; The Seice inte
JTextField year; hat builds the

e methed

public JPanel getGuiPanel() {
Jpanel panel = new JPanel() ;
JButton button = new JButton("Do it!”);
button.addActionListener (new DoltListener () ;
outputlabel = new Jlabel(“date appears here”) ;
DateFormatSymbols dateStuff = new DateFormatSymbols () ;
month = new JComboBox (dateStuff.getMonths () ;
day = new JTextField(8) ;
year = new JTextField(8) ;
JPanel inputPanel = new JPanel (new GridLayout(3,2));
inputPanel.add (new JLabel (“Month”)) ;
inputPanel .add (month) ;
inputPanel.add (new JLabel (“Day”)) ;
inputPanel .add (day) ;
inputPanel.add (new JLabel (“Year”));
inputPanel .add (year) ;
panel .add (inputPanel) ;
panel.add (button) ;
panel.add (outputLabel) ;
return panel;

)

public class DoItListener implements ActionListener (£ you need 3 veminde®

public void actionPerformed (ActionEvent ev) { Reler o thapter 10 ‘&Yzwmaumg ks
int monthNum = month. getSelectedindex () Refer 2 b and 83k Sl 0,

int dayNum = Integer.parselnt (day.getText()); £ 41 dightly ﬂ‘\ e s

Integer.parselnt (year.getText()); |- " Calenltr %

the

juse - s spetity 3
Calendar ¢ = Calendar.getInstance() ; et Format lets v5 5T ;
c.set (Calendar.MONTH, monthNum) ; i;?mh e date showld P

c.set (Calendar.DAY_OF MONTH, dayNum);
c.set(Calendar.YEAR, yearNum);

Date date = c.getTime() ;

String dayOfWeek = (new SimpleDateFormat(“EEEE")) .format(date) ;
outputLabel . setText (dayOfWeek) ;

OEBPS/Image01117.jpg
Wouldr't it be
dreamy if this were the end
of the book? If there were no
more bullet points or puzzles

or code listings or anything else?
But that's probably just a
fantasy...

OEBPS/Image00464.jpg

OEBPS/Image00706.jpg
Next time
T'm goin' with flow
layout. Then T get
EVERYTHING T

OEBPS/Image00948.gif
SongListMore. txt

Pink Moon/Nick Drake/5/80
Somersault/zero 7/4/84

Shiva Moon/Prem Joshua/6/120
Circles/BT/5/110

Deep Channel/Afro Celts/4/120
Passenger/Headmiz/4/100

Listen/Tahiti 80/5/90
Listen/Tahiti 80/5/90
Listen/Tahiti 80/5/90
Circles/B1/5/110

OEBPS/Image00465.jpg
void go() { ebevence 2 8¢ &

X Life 2= new LifeOi 'y of method

OEBPS/Image00707.jpg

OEBPS/Image00949.jpg
Duplicates O

OEBPS/Image00704.jpg

OEBPS/Image00946.jpg
Possible Answers:
Comparator,
Comparable,
compareTo(),
compare(),

yes,
no

OEBPS/Image00463.jpg
900) W &
ldoS{:mch b

OEBPS/Image00705.jpg
click like you mean it

OEBPS/Image00947.jpg
%$3ava Jukeboxd

[Pink Moon: Nick Drake, Somersault: Zero 7, Shiva Moon: Prem
Joshua, Circles: BT, Deep Channel: Afro Celts, Passenger:
Headmix, Listen: Tahiti 80, Listen: Tahiti 80, Listen: Tahiti
80, Circles: BT]

[Circles: BT, Circles: BT, Deep Channel: Afro Celts, Listen:
Tahiti 80, Listen: Tahiti 80, Listen: Tahiti 80, Passenger:
Headmix, Pink Moon: Nick Drake, Shiva Moon: Prem Joshua,
Somersault: Zero 7]

[Deep Channel: Afro Celts, Circles: BT, Circles: BT, Passenger:
Headmix, Pink Moon: Nick Drake, Shiva Moon: Prem Joshua, Listen:
Tahiti 80, Listen: Tahiti 80, Listen: Tahiti 80, Somersault:
Zero 7]

Before sorting

Nt b ng

Abter sorking wind
the AvtistCompare

Campavator (or
st name).

by

OEBPS/Image00468.jpg
I don't like where
this is headed.

OEBPS/Image00710.gif
I think T'm getting it... if I'm in east or
west, T get my preferred width but the
height is up fo the layout marager. And
if T'm in north or south, it's just the
opposite—T get my preferred height, but
not width.

OEBPS/Image00952.jpg
Collection

\ (interface)

Set List
(interface) (interface)

S

SortedSet
(inter
TreeSet . LinkedHashSet I

HashSet I ArrayList | LInkedLlnI

OEBPS/Image01122.jpg
public void buildIrackAnaStart() {
Arraylist<Integer> trackList = null; // this will hold the instruments for each
sequence. deleteTrack (track) 1 the chetkbares
track = sequence. createTrack () ;

Bulld 3 tratk "u“‘f‘;'“f:\f‘iﬁ at b2
for (int i = 0; 4 <16 ien) (o gt e S B MO T s
instrumert 376 e, bt 18 BT ceeiions
trackList = new ArrayListcInteger>(; [hs [“*Lh\wfnavﬂf\(" ';\:a:;caaw
< in the B¢ Wl explan
for (int 3 = 0; 3 < 16; 340 { Coteahers o 5 b

JCheckBox jc = (JCheckBox) checkboxList.get (s + (16%i));
if (3c.isselected) (
int key = instruments[il;
trackList.add(new Integer (key));
} else (
trackList.add(null) ; // because this slot should be empty in the track
)
} // close imner loop
makeTracks (trackList) ;
} /7 close outer loop
track.add (makeEvent (192,9,1,0,15)); // - so we always go to full 16 beats
try (
sequencer. setSequence (sequence) ;
sequencer. setLoopCount (sequencer . LOOR_CONTINUOUSLY) ;
sequencer. start() ;
sequencer. setTempoInBEM(120) ;
} catch (Exception e) {e.printstackTrace() ;)
} // close nethod

public class MyStartListener implements ActionListener {
public void actionPerformed (ActionEvent a)

but Latrackandstart) ;
} 7/ close actionPerformed QU liskeners
he s Ehe
} /1 close imex class T iy the same 28 e
o v
public class WStopListener implements Actioniistener { "

public void actionPerformed (ActionEvent a)
sequencer. stop () ;.
} 17 close s
} /7 close inner class

tion

formed

public class MyUpTempoListener implements ActionListener {
public void actionPerformed (ActionEvent a)
float tempoFactor = sequencer .getTempoFactor () ;

sequencer. setTempoFactor ((float) (tempoFactor * 1.03)) ;
} // close actionperformed
W7 (.

OEBPS/Image00469.jpg

OEBPS/Image00711.jpg
When yo, fit smcthing
h

in the nor
Components in the center ot

or south, o
5 g Al e vay s
hateer space s ef{ qup) & Be fane, o e e
ed on the frgme dimensions g the €ast and west
%300 in this goge) R wortbe as il ooy
vould be if the o 11
b rens ere empiy
pembe g xd
Componrts 0 £
est gk the thand
- e e
Conponents in the rerth 2

uth gek theie pre

OEBPS/Image00466.jpg
Joned

tife z =
e B o ayetk s B0
hen 21 oprogranmed

N e et

OEBPS/Image00708.jpg
public void go()

i\ forte e
JFrame frame - new JFrame(); M%r’éw “&\l i
JButton button = new JButton("Click This!"); e ko \\otéswn,w
Font bigFont = new Font(“serif’, Font.BOLD, 28) ; Akon

; e b
button. setFont (bigFont) ;

frame.getContentPane () .add (BorderLayout .NORTH, button);
ame . setSize [200,200) ;
rame.setVisible (true) ;

OEBPS/Image00950.jpg

OEBPS/Image00467.jpg
Life z =
new Life() ; e frosk B oy
deprogramme :

— whenz®

OEBPS/Image00709.jpg
The width says the sames bek no¥
fhe bubton is taller: The vorth
vesjon sbretehed atcomod:

e buthon's new preferved height

OEBPS/Image00951.jpg
Duplicate \ﬂﬁf 0K, but NO dupheate keys.

OEBPS/Image00944.jpg
Create a new inner elass that implements
Comparator (noke that its byre
farameter matihes e by we'e ity
L/ Lo compave—in this tase Song objects)
class ArtistCompare implements Comparator<sSong> {
public int compare(Song one, Song two) {
return one.getArtist() .compareTo (two.getArtist()) ;
}

oo woietiotd
5 :

mes 2 String (the arbish) We've lettin ,

) This becames 2 St (the ar N7 o e S i, o iy

on, since Shrin
know how £o alphabetize he:“‘vé: g alveady

" Make an instance of the
ArtistCompare artistCompare = new ArtistCompare(); Comparator imner tlass
Collections.sort(songlist, artistCompare);
Inveke sort0), by it e st
. and 3 vefevence to The pey,
costom Conparator object

OEBPS/Image00703.jpg
T have alot of words
now, so T'd prefer fo be
60 pixels wide and 25
pixels fall.

OEBPS/Image00945.jpg
Fie E:
%java SortMountains

as entered:

[Longs 14255, Elbert 14433, Maroon 14156, Castle 14265]
by name:

[Castle 14265, Elbert 14433, Longs 14255, Maroon 14156]
by height:

[Elbert 14433, Castle 14265, Longs 14255, Maroon 14156]

OEBPS/Image00943.gif
Java.util. Comparator

public interface Comparator<T> (
int compare(T ol, T 02);

)

OEBPS/Image01123.jpg
PHOLLA -OLARE MDOWIIMIPOLI-SLATAT - LD MR LS. A CLODLI S CRIAL: L
public void actionPerformed (ActionEvent a) {
float tempoFactor = sequencer .getTempoFactor () ;
sequencer. setTempoFactor ((float) (tempoFactor * .97)) ;

3

public class MySendListener implements ActionListener {
public void actionPerformed (ActionEvent a) {
// make an arraylist of just the STATE of the checkboxes
boolean(] checkboxState = new boolean[256] ;
for (int i = 0; i < 256; i+) {

JCheckBox check = (JCheckBox) checkboxList.get (i) Clients extert

i (chock. isselocted() { oo ok lie the SmACHETEL G g
checkboxstate[i] = true; Ths s et g 3 Shrng eS80 1 00 wite S
Y T s o e and He DL T 4 e s
String messageTosend = null; (e ks o the stk
try {
out.writeObject (userName + nextNum++ + “: “ + userMessage.getText());

out . writeobject (checkboxState) ;
} catch(Exception ex) (
System.out.println(“Sorry dude. Could mot send it to the server.”);
)
userMessage. setText (“) ;
} // close actionPerformed
} // close imner class

public class MyListSelectionListener implements ListSelectionListener {
public void valueChanged (ListSelectionEvent le) (
if (11e.getValueIsAdjusting()) {

String selected = (String) incomingList.getSelectedValue();

if (selected != null) {
// now go to the map, and change the sequence
boolean(] selectedstate = (boolean(]) otherSeqsMap.get (selected) ;
changeSequence (selectedstate) ;
sequencer. stop () ;
buildTrackAndstart () ;

Th
S 5 3l pg,,
} /7 close valuschanged when i

} // close inner c:

5
the wser g 3 -

election] st

- ;hm: user x;lem ,’,L‘;ﬁ:; on ¢7g piny o;t-ié gt”s -
Called ggporcCiated beat poy o3 e IMMED] 755530
if togte e Seachtap) o, 2 tff{" s iy gy ;,axf/%’

P-
CotSafort f Wl [0 € Tl

bout gelf;

OEBPS/Image01124.jpg
PG DLARN NEIDTENSAE. SEpMEO e Saaahes. | ad in d3t3
- veadin

boolean(] checkboxState = null; tread io0 Cdata will
eleet] o e et
Object obj = null From o sevialized O (o
public void run() { s e b b b 1L
try (Shring mess20® ok state V2
while((obj=in.readObject()) != null) { Aecaflist of ¢

System.out.println(“got an cbject from server”);
System.out.println(obj.getClass()) ;

String nameToshow = (String) ob); (e @ messane .
checkboxState = (boolean(]) in.readobject(); *“ridlize) & LS i we pegq
otherSeqsMap.put (nameToShow, checkboxState) ; zfm and fhe A““’D‘yug o
listVector.add (nameToShow) ; qu ox stafe o "ayList of B ’
incomingList.setListData (listVector) ; o JList :.,,,P”s"f];nd dd ; féan
} // close while Wo-sten (et Adding {,
} catch (Exception ex) {ex.printStackTrace();} ;‘Aﬂ\: [Tiyhy g ke s s
} // close run shioned 4,, v s 3
S List aYList), apg 1 Old=
} // close inner class i whto ,;M Ve,:fi,d 5,? tell e
public class MyPlayMineListener implements ActionListener { 5PaY in the o * Sourte
public void actionPerformed (ActionEvent a) {
if (mySequence null) {
sequence = mySequence; // restore to my original
}
} // close actionperformed This method is ¢alled b
} /1 close inner class something from the e, e usr selecks
ehange the pattern bo fhe IMMEDIATELY
public void changeSequence (boolean[] checkboxState) { < one they selected

for (int i = 0; 1< 256; 1+4) (
JCheckBox check = (JCheckBox) checkboxList.get (i) ;
if (checkboxstate[i]) (
check . setSelected(true) ;
} alse (
check. setSelected (false) ;
Y)c ose loop All the MIDI stubf is exactly the same 3 it

} /7 close changeSequence was in the previous version

public void makeTracks (ArrayList list) {
Tterator it = list.iterator();
for (int i i< 16; a4 {
Integer num = (Integer) it.next();
if (num 1= null) (
int numKey = num.intValue();
track.add (makeEvent (144, 9, mmKey, 100, 1)) ;
track.add (makeEvent (128, 9, mumKey, 100, i + 1)) ;
)
} // close loop
3 77 aleus BARETTRSESLY

OEBPS/Image01107.jpg
MPOEC: IR BWE. T
import javax.swing.*;
import java.rmi.*;
import java.awt.event.¥;

public class ServiceBrowser {

Jpanel mainPanel;
JComboBox servicelist;
ServiceServer server;

public void buildGUI() {
JFrame frame = new JFrame(“RMI Browser”) ;
mainPanel = new JPanel() ;

frame.getContentPane () .add (BorderLayout .CENTER, mainPanel) ; e
S A the RMI veais
Object[] services = getServicesList(); this '“*):a‘:tid ;“s %(S"V‘bi—v:{;(z)
e e wethod 1 on the et
¢

) to the
VTN pad e seies sy o Ot o

servicelist = new JComboBox(services); oo boBox (t?: Qﬁ";h‘; SEE"; e L n the areaY.

make displayat

£rame.getContentPane () .add (BorderLayout .NORTH, serviceList) ;
servicelist.addActionListener (new Mylistlistener()) ;

frame. setSize (500,500) ;
frame.setVisible (true) ;

}

void loadService(Object serviceSelection) {
try (
Service svc = server.getService(serviceSelection);
Here's v
— e ve 3dd the acbua s 4
r has vice 4o th
mainbanel s (eve. getuipanel 01 ; 135 skeled ce (T otpes 1 ooy Ef'&’,‘i’f; e

il bl(e gen istener on the JComboBox).
il vl idata) remote server (the shul for sv:::::‘sa&:mkn iy
} catch(Exception ex) { ééma that was displayed in the fist (‘:;"h i
. ex.printStackTrace () ; ggg e originally got from the server I:h i SI:WE
etServieeLi kgt arc
’ ; st0). The server veturns the actia) xtvvv‘k

sevialized), which is automati
is automatically deser;
ird ve smly cll e ity
€ veult (2 Panel) £o the browsey's

ized (thanks £o Ru))
the sevvice and add
m3inPanel,

OEBPS/Image01108.jpg
FRQACELL PELISETAORIIANEL? %
Object obj = null;
Object[] services = null; stub

nd gt the

Rl looksgs &

try (Dae

©obj = Naming.lookup(“rmi://127.0.0.1/ServiceServer") ;

}

catch (Exception ex) {

ex.printStackTrace () ;

}

server = (ServiceServer) obj; Cast the stub 4, g, vemote

50 that interface

ve an call getSovvgel oy os PO

it
try {

services = server.getServiceList();
} catch(Exception ex) {

ox.printStackTrace() ; \ ze&scrmmw gves us the arvay of Objects,

) hat we display in the JComboBox for the user to
return services; select from.

)

class MyListListener implements ActionListener {
public void actionPerformed (ActionEvent ev) {

Object selection = servicelist.getSelectedItem(); s
a

1 loadService (selection) ; " ve }‘Eu, .‘;‘:cf;g 0‘:065:: \T;{;\ S;, ”
om Ehe Vior l0a
' ﬁdm “detkion bt ade e ctnod
e
public static void main(String[] args) { appeopeiate sevvite. (5€€

new ServiceBrowser () .buildGUI() ; :,, {he previows 733
) Lhe sevite

OEBPS/Image00481.jpg
int x = Math.round(4c.<)/

int y
int z

Math.min (56,12) ;
Math.abs (-343) ;

These methods never e
instance variables, 5o their
ehavior doesn't. peed 4,
know abaut 3 specifi ohject

OEBPS/Image01109.jpg
RMI Browser

600

Rolling Service

™ G 526

OEBPS/Image00482.jpg
%javac TestMath

TestMath.java:3: Math() has private (NS IVENENENG
access in java.lang.Math eonstructon 1

Math mathObject = new Math() ; L;:‘J:;tgl NEVER say

s that the Maty,
rarked private! That

1 error

OEBPS/Image01110.jpg
SHEPINE SRVOR- AU 1
import java.awt.event.*;
import java.io.*;

public class DiceService implements Service {

JLabel label;
JComboBox numOfDice;

public JPanel getGuiPanel() {
JPanel panel = new JPanel();
JButton button = new JButton(“Roll ‘em!”);
String[] choices = {“1”, “27, “3#, 6 Wgn,K W5v};
numOfDice = new JComboBox (choices) ;
label = new JLabel(“dice values here”);
button.addActionListener (new RollEmListener());
panel .add (numOfDice) ; Here's the one importa
panel.add (button) ; Service intunfomnTor nt method! The method of the
et aiiiacs e ket the en the dhent’s s il ahen
return panel; wank i £ sclected and loaded. You ean do wh
in 4he 9et8uPanel) method, s ong o0 o s
lds the actual dice-volimg Gl < 2
public class RollfaListenar inplements ActionListener (
public void actionPerformed (ActionEvent ev) {
// roll the dice
String diceOutput = “";
String selection = (String) numOfDice.getSelectedItem();
int numOfDiceToRoll = Integer.parselnt(selection);
for (int i 0; i < numOfDiceToRoll; i++) {
int r (int) ((Math.random() * 6) + 1);
iceoutpat = (* % + 27
label.setText (diceOutput) ;

}

OEBPS/Image01103.jpg
ServiceServer

getServicesList()
getService()

ServiceServerlmpl

getServicesList()
getService()

OEBPS/Image01104.jpg
ServiceBrowser

main()

OEBPS/Image01105.jpg
getGuiPanel()

WiniMusicService
DayOfTheWeekService | | 9€tGuPanel)

getGuPanel()

OEBPS/Image01106.jpg
SRS JRERTML .S
import java.util.*;
import Jjava.rmi.server.*;

A normal RM

[mglementa

public class ServiceServerImpl extends UnicastRemoteObject implements ServiceServer {

HashMap serviceList;
object in the colle
value object (uhat,

The services | be stored in

ction, you put TWO
o Yl"“w:h) &g -a kzanbeui (ke a String

Has
3 tashMap collction, fnteaq of gty ONE
and 3

3Fperdix B Yor more on Hachifar)

public ServiceServerImpl() throws RemoteException {

setUpServices() ;
)

private void setUpServices() {
serviceList = new HashMap() ;

alize the athud!
ek La\\tdv,\'/l"v':;;l::tggw\:t‘ ¢

When the onstril ¢ e,

s (]
el seice

serviceList.put("Dice Rolling Service", new DiceService());
serviceList.put("Day of the Week Service”, new DayOfTheWeekService()) ;

serviceList.put("Visual Music Service”,

| \Ma\(e the sevvites (Ehe .‘:&m
I ond et them e B
g, vith 3 U8

public Object(] getServiceList() (
System.out.println(“in remote”);
return servicelList.keySet () .toArray() ;

new MiniMusicService()) ;
3\ sevvice

the ey

Client ¢alls his i oy,

‘ S inorder o get list of coyy;
: :h!h v the i}awser Go the wer cam slect :::J&w
oie E1Pe Object (even though . po oty
in the Ha;warn W ::v'tys‘:if &y t».; S
b 't send an aetual Sevviee of

ess the client. asks for it by calling ;:&x:v.:nbﬁd

public Service getService(Object serviceKey) throws RemoteException {

Service theService = (Service) serviceList.get(serviceKey);

return theService;

public static void main (String[] args) (
try (

¢ the key (D 1
is tode use kel
& o th:dtzn{) Lo get the ¢V resy
oregnall 7% the HashMap

Naming. rebind("ServiceServer”, new ServiceServerImpl());

) catch(Exception ex) (
ex.printStackTrace () ;
)

System.out.println("Remote service is running”);

)

OEBPS/Image00475.jpg

OEBPS/Image00717.jpg
T need
to know how big the
button wants to

Based on my font size
and the number of

characters, I want to be 70
pixels wide and 20 pixels tall.

]
2
Controls ? Qg
The panels

FlowLayout manager

OEBPS/Image00959.jpg
T need to know
if your hashcode
values are the same.

i Ohjct y b o
e

e hashCodey ad4 4o the Hash

hashCoqey
Object alveady IN
742 — g o the HashSet

Your hashcodes
are the same, but are il b
YouREALLY equal? Object you've Erying
) 50 o s e

method, eomparing itselé
£o bar, and veburns brue

£ Object alveady IN
title: Circles
il Creles g« the HoshSet

— €quals{ bar)

OEBPS/Image00476.jpg

OEBPS/Image00718.jpg
b b e
JFrame frame - new JFrame ()
JPanel panel = new JPanel();
panel. setBackground (Color.darkGray) ;

w0 buters
JButton button - new JButton(“shock me”); — ma¥e
JButton buttonTwo = new JButton{“bliss”);

panel.add (button) ;

panel . add (buttontvo) ;€44 BOTH 4o f),, Panel

frame.getContentPane () .add (BorderLayout .EAST, panel};
rame. setSize (250,200) ;
frame.setVisible (true);

OEBPS/Image00960.jpg
et (or anfere 87
A i snds i S
Ales 3 Sk

public boolean equals(Object asong) { The GREAT e “jf"%:':" ,;ak

s = (s Song; s have an overvdden €%

el :m::?;(: g 1s(s.getTitla()) & o ﬁgf:;i & owe have todois ak e
) - semateleee T T s eyl to the othersend
public int hashCode () (Same deal h

retuzn title.hashCode () & hahCedel) ,::i hf;e String elass has an overridden

1 allng hashCodel) on s 43 Ngrciir the venlt of

370 k0 are g the SANE eyt g0

Now it works! No duplicates when we
print out the HashSet. But we didn't
call sort0) again, and when we put

the AvrayList into the HashSet, the
HashSet didn't preserve the sort order

i T o

%java Jukebox6

[Pink Moon, Somersault, Shiva Moon, Circles,
Deep Channel, Passenger, Listen, Listen,
Listen, Circles]

[Circles, Circles, Deep Channel, Listen,
Listen, Listen, Passenger, Pink Moon, Shiva
Moon, Somersault]

[Pink Moon, Listen, Shiva Moon, Circles,
Deep Channel, Passenger, Somersault]

OEBPS/Image00473.jpg

OEBPS/Image00715.jpg
8006 800 CocicnR T panel expaneq!
Amp the butbon ot it
\ Preferved size iy both
andd = — dimersions becausc The pael
uses £low layout, and the
Setton s part of the pon
¥ (ot the frame)

OEBPS/Image00957.jpg

OEBPS/Image00474.jpg
Dude, all you
had to do was reset
the reference. Guess
they didn't have memory
management back then,

OEBPS/Image00716.jpg
Ok...I need to
know how big the
panel wants to be..

I have a button now,
50 my layout manager's

gonna have o figure out
how big T need to be.

Conirols >

The frame's
BorderLayout manager

OEBPS/Image00958.jpg
title: Circles

Song

OEBPS/Image00479.gif
public class Honey {
public static void main(String [] args) I

Honey honeyPot = new Honey () ;
Honey [] ha = {honeyPot, honeyPot,
T honeypot, honeyPot) ;

Bees bl = new Bees();
bl.beeka = ha;
Bear [ba = new Beaz[5];
for (int x=0; x < 57 xe4) (
[Honey —————— balx] = new Bear();
i balx] . hunny = honeyPot;

T)
i j';j— Lendsupmil) i i new kico)s

K.kh = honeyPots
_ !

Raccoon r = new Raccoon();

r.rh = honeyPot;
.k = ki

k = null;
4} // end of main

OEBPS/Image00721.jpg
000

OEBPS/Image01111.jpg

OEBPS/Image00480.jpg

OEBPS/Image00722.jpg

OEBPS/Image01112.jpg
800

RMI Browser

Visual Music Service

OEBPS/Image00477.jpg
pun} e elang &G
public static GC doStuff() {
GC newSC = new GC(); 1 copy6C = null;
doStuf£2 (newse) ;

return newcC; 2 ge2 = null;

3 newsC = ge3;

static void main(String (] args) {

4 gol = nu;

new GC() 5
new GC(); 5 neusc

= ge3;

dostut() ; 6 ot = null;

7 ge3 = gez;
// call more methods

public

static void doStuff2(GC copyGC) { 9 ges - null;

GC localGe

coPYGC;

OEBPS/Image00719.jpg
e wark e kkon
are Priad ok ext

other

OEBPS/Image00961.jpg
RHPDLS, JENR R BN,
import java.io.*;
public cla

ArrayList

1lections.
stem.out.p:
TreeSet<Song> songSet = new TreeSet<Song>() ;
songSet.addAll (songList) ;
e erint 1 eengery L W can add 3l the
) using addAl0. (O

songs From the HashGet
we Could have added the

songt indiicually using somgCet,
L hrisebnisn b ey eh:ﬁfgyuxu

BufferedReader
String line
while ((1

Song nextSong
songList.add

OEBPS/Image00478.gif
class Bees {
Honey (] beeHa;

class Raccoon {
Kit k;
Honey rh;

class Kit (
Honey kh;

class Bear {
Honey hunny;

public class Honey {
public static void main(String [] args) {
Honey honeyPot = new Honey () ;
Honey [] ha = (honeyPot, honeyPot, honeyPot, honeyPot];
Bees bl = new Bees();
bl.beeHA = ha;
Bear [] ba = new Bear(5];
for (int x=0; x < 5; x++) {
balx] = new Bear(};
balx].hunny = honeyPot;

3
Here's a ne:

Kit k = new Kit(); .
k.kh = honeyPot; R ob“u'l
Raccoon £ _= new Raccoon();

k{ Here's its reference

r.rh = honeyPot; variable 'r'.
ko= k;
k = null;

} /7 end of main

OEBPS/Image00720.jpg
o=
ar» I
he
i e o
led £o

b

ns side

han

" 1S snaﬂzr

Jiss butto

notite that t&w
the smv e n t».;{ s how
oaorks The butbom 3 ks st bt

OEBPS/Image00962.jpg
alee __y \° \bl 3 S’v
e @

OEBPS/Image00713.jpg
'k have anything
“f{"il"f;';,x 2ok or muth
o i m fhe east vegior

import javax.swing.*; 600 /

import java.awt.*;
public class Panell {

public static void main (String[] args) {
Panell gui = new Panell();
qui.go();

public void go() (
JFrame frame = new JFrame(); -Make the pan o
pansl panel = new JPanel(; oo .;V::LE:?;MW fonsee
panel. setBackground (Color . darkGray) ;
£rame . getContentPane () .add (BorderLayout .EAST, panel) ;
frame.setSize (200,200) ;
frame.setVisible (true) ;

OEBPS/Image00955.jpg
We did't change aetSonas0), 5o it kil puts the songs in an Arvaylist

s

Here we ereate 3 new HashSet
pavameterized to hold Songs

<

HashSet<Song> songSet = new HashSet<Song>() ;

songSet.addAll (songlist) ; ¢— yc.q).

3 tim
Systen.out .println (songSet) ; £ other i bl ‘&:‘*:;2‘6 can
it 4o pop

the HashSet. [Es the same g5 i
50n one at 3 i (exeept, much ;;;ﬂ'i;d e

OEBPS/Image00714.jpg
publie woid gol) 1
JFrame frame = new JFrame () ;

JPanel panel = new JPanel(}; nd add the

panel. setBackground (Color.darkGray) ; hdd k\r; :;:@:"{ *'!'r;‘v ;n:.\‘g;s \ayou% wanager
N ame's

JButton button = new JButton (“shock me”); ‘ZK:L) controls %::,‘::gp;:tl:\?’;*;‘"‘\

manager
panel.add (button) ; é/’? layout, manage"

frame.getContentPane () .add (BorderLayout .EAST, panel};

frame.setSize (250,200) ;
frame.setVisible (true);

OEBPS/Image00956.jpg
ke

%3java Jukebox6 Before sorting
bhe ArrayLi

[Pink Moon, Somersault, Shiva Moon, Circles, Deep Channel,

Passenger, Listen, Listen, Listen, Circles]

Abter sorting
the Avraylist
(by title)

[Circles, Circles, Deep Channel, Listen, Listen, Listen,
Passenger, Pink Moon, Shiva Moon, Somersault]

[Pink Moon, Listen, Shiva Moon, Circles, Listen, Deep Channel, ; _
Passenger, Circles, Listen, Somersault] After putting
inko a HashSet,
and printing the ,
HashSet Cwe didr
2all sork0) again).

The Set.didn't helpl (ot ot s st arder
s o we put the list into
e still have all the dupliates! thences T U0 ot
that one later..)

OEBPS/Image00953.jpg
extends.

implements
HashSet | implementation class
s | interface

OEBPS/Image00954.jpg
Maps don't extend from
g il Collettion, but

heyre still consideved

Map o be part of the

(interface) “collections Framework’
in Java. So a Map is

still veferved to as 2

eollection.

(interface)

TreeMap ' HashMap 'LinkeﬂlehM-p. sthlahle.

OEBPS/Image01113.jpg
ANpOE] JEVEE . SO, JAOL o
import java.io.¥;

import javax.swing.*;
import java.awt.*;

import java.awt.event.*;

public class MiniMusicService implements Service {

site meth
MyDrawPanel myPanel; ‘;::i' df:?\ii 5 Mtp: Z:d
ng, sevvice (4
public JPanel getGuiPanel() { t&i 333,?}\,.5 il everbually

JPanel mainPanel = new JPanel();
e panted)

myPanel = new MyDrawPanel () ; -

JButton playItButton = new JButton(“Play it’);

playItButton.addActionListener (new PlayItListener());

mainPanel.add (myPanel) ;

mainPanel.add(playItButton) ;

return mainPanel;

)

public class PlayItListener implements ActionListener { This is all the music stulf from th
public void actionPerformed(ActionEvent ev) { Code Kitchen in chapter 12, so wez

won't amnotate it agsin h
ey (o

Sequencer sequencer = MidiSystem.getSequencer () ;
sequencer.open () ;

sequencer .addControllerEventListener (myPanel, new int[] {127});
Sequence seq = new Sequence (Sequence.PPQ, 4);
Track track = seq.createTrack();

for (int i = 0; i < 100; i+= 4) {

int rNum = (int) ((Math.random() * 50) + 1);
if (zNum < 38) { // so now only do it if num <38 (75% of the time)
‘track.add (makeEvent (144,1,rNum,100,i)) ;
‘track.add (makeEvent(176,1,127,0,1)) ;
track.add (makeEvent (128,1,rNum,100,i + 2));
)
} // end loop

sequencer . setSequence (seq) ;
sequencer . start () ;
sequencer . setTempoInBEM (220) ;

} catch (Exception ex) {ex.printStackTrace():}

) // close actionperformed
% ot oke- ke GLAES

OEBPS/Image00692.jpg
As a layout manager,
T'm in charge of the size
and placement of your components.
In this GUL, I'm the one who decided
how big these buttons should be, and
where they are relative fo each
other and the frame.

e00

Fie_Panc_Devie

OEBPS/Image01096.jpg
Hmmm.. T

didn't get a lease
renewal from that ore.. it
must be down. Tl drop it. If it

comes back, it will aufomatically
rediscover me.

another machine on the network

/

machine o the petwork another machine on the network

OEBPS/Image01097.jpg
v Day of the Week Service
Dice Rolling Service

Visual Music Service

Choose a serviee from the
list. The RM[remote service
has a getSevvieeList)
method that sends back this
list of serviees

When the user selects one,
the client asks for the
aetual sevvite (DieeRolling,
Day0f Theteek, ete.) to
be sent back from the RMI
vemote service.

ite,
ou seletk 3 55
v‘i‘:’\'\\’s\\ﬂ upihere

OEBPS/Image00690.jpg
e
O choosemd JCheekBox
A JTextField

OEBPS/Image00932.jpg
%javac Jukebox3.java

Jukebox3.java:15: cannot find symbol

method sort(java.util.ArrayList<Song>)
class java.util.Collections

Collections.sort(songlist) ;

1 error

OEBPS/Image01098.jpg
Service Browser
(client)

RMI registry (on server)

OEBPS/Image00691.jpg
JFvame
JPane

OEBPS/Image01099.jpg
Service Browser
(client) getServicelist("

“OK, here’s an array of services”

OEBPS/Image01093.jpg
another machine

bl on the network

—

| Doyou
§ Jini Lookup Service

have anything
that implements
o\ ScientificCaleulator?

—
' Java app

machine on the network

another machine on the network
‘somewhere. ..

OEBPS/Image01094.jpg
Yes, T do
have something,
T'm sending you the

serialized object

another machine on the network

) /

machine on the network

ety another machine on the network

OEBPS/Image01095.jpg
T
register you,

and here’s your .
lease. If you dor't another machine

renew if, Tl drop you

on the network

machine on the network

e another machine on the network

OEBPS/Image00684.jpg
is a listener
T The draving panel is 3

class MyDrawPanel extends JPanel implements ControllerEventlListener (

boolean msg = false; &— W seta Flag to false, and well set it
rue only when we get an event:
public void controlChange (ShortMessaga evant) {
neg = s b
repaint () ; e 9ot an event, so we set the fI
5 b il ety o ety &5

public void paintComponent (Graphics g) (

18 290 L e have o wae 2 fla

because OTHER things might 4ri
and e v £o paind ONLY e S s c&ﬁ,uﬁ?ﬁ'ﬂf il

Graphics2D g2 = (Graphics2D) g

int r = (int) (Math.random() * 250) ;
int gr = (int) (Math.random() * 250);

int b = (int) (Math.random() * 250) ; The vest is code to generate
a vandom color and paint a
g.setColor (new Color (r,gr,b)) ; semi=vandom vectangle.

int Bt = (int) ((Math.random() * 120) + 10);
int width = (int) ((Math.random() * 120) + 10);
int x = (int) ((Math.random() * 40) + 10);

int y = (int) ((Math.random() * 40) + 10);
g.fillRect (x, y, width, ht);

nsg = false;

} // close if
} // close method
R 5, P SR TR

OEBPS/Image00926.jpg
der for T ArvayList i 5
e ' is 3 paehe o subelass of gy,
T ey 0 Ao O you sy et
4 eeate B YCist is automtipict ! For the
dedlare a0 T oF the Ay) “oed for the

public class ArrayList<E> extends AbstractList<E> implements List<E>

public boolean add(E o)

L The bype (the sale of <E>)
3 it
/s the imporkant part] Whatever ‘E" i becomes he bype of the L
B e e i youve aloved ntortoce 36 wel

1o add 4o the AreayList

// more code

OEBPS/Image00685.gif
[

[

OEBPS/Image00927.jpg
THIS code:

ArrayList<String> thisList = new ArrayList<String>

Means ArrayList:

public class ArrayList<E> exfends AbstractList<E> ... {

public boolean add(E o)
// more code

Is treated by the compiler as:

public class ArrayList<String> extends AbstractList<String>... |

public boolean add(String o)
// more code

OEBPS/Image00924.jpg
é ML

2

D
9

OEBPS/Image00683.jpg
vEvents,
We need to listen for ControllerBve

5o e implement the listener interface
import javax.sound.midi.*;
public class MiniMusicPlayer? implements ControllarEventlistener (

public static void main(Stringl] args) (
MiniMusicPlayer? mini = new MiniMusicPlayer2 () ;
mini.go()

)

¢ with the sequenter

Tt Repter b o2 B s b

k T St an it avvay reresrOnd
Sequencer sequencer = MidiSystem.getSequencer () ; L:L{ A o bt 17“‘

sequencer..open () ; one everts

e We want: orh
int[] eventsIWant = {127};
'sequencer.addControllerEventListener (this, eventsIWant);

Sequence seq = new Sequence (Sequence.PPQ, 4) ;
Track track = seq.createTrack() ;
Here's how
for (int i =5; i< 60; i+= &) { e Pick up the beat —_ e i
track.add (makeEvent (144,1,1,100,4)) ; Z;;{Owg C:“l]"’”E"Ev‘f)nt (7 says the :}t
is ControllerEvent) with,)

ven an drgument for
track. add (makeEvent (176,1,127,0,1)) et meber #127. Thi cvent. wil o u s

track.add (nakeBvent (128,1,4,100,4 + 2)); on /7% €3¢ time anote i plavli [\ 05

words, its sole purpose s

} // end loop ire that WE dom aﬁtismzt’*x} will
secquencer. setSequence (seq) L hOTE ON/OFF cvents. Noke that veve
sequencer setTenpolnBRM(220) e NOTE gy harpen ot the SAME ok 35
sequencer . start () So vhen the NOTE ON event

;) happens, we'll ky
} cateh (Exception ex) (ex.printStackTrace() ;} €'l know about, i, begas
} /1 close il 5 et T R ot
om the Contraller-
public void controlChange (ShortMessage event) { The event handler nztkadg:h bt: e get the
System.out.println(la”) ; Al Fuent liskener interface) e St
| e el 4n e com
everts

public MidiEvent makeEvent(int comd, int chan, int one, int two, int tick) {
MidiEvent event = null;
try
ShortMessage a = new ShortMessage() ;
a.setMessage (comd, chan, one, two);
event = new MidiEvent(a, tick);
Code that's different from the previous
)cateh (Exception @) {) version is highlighted in gray. (and we're
return event; not running it all within main() this time)
)
TN I -

OEBPS/Image00925.jpg

OEBPS/Image00688.gif
[

[

OEBPS/Image00930.jpg
L]

Wait... that can't be right. If you can
take a list of Animal, why don't you

just SAY that? What's wrong with just
‘takeThing(ArrayList<Animal> list)>

OEBPS/Image01100.jpg
Service Browser
(client)

)
-

OEBPS/Image00689.jpg
Why worit
the ball go where I want
it to go? (like, smack in Suzy

Smith's face) T've gotta learn
to control it.

OEBPS/Image00931.jpg
This still doesr't
explain why the sort method
failed on an ArrayList of Songs
but worked for an ArrayList of

Strings.

OEBPS/Image01101.jpg
ice Browser Server
5"“"(‘:, ot T “getService(selectedsvc)”
clie

OEBPS/Image00686.jpg
gfillRect(x
gfillRect(x,y,500-x"2,250-y"2)
0.flRect(500°2,250-y72,xy)
X g fillRect(0,0,250,500)
Y+ gfillRect(0,0,500.250) Animate frame = new Animate()
 <ciEi it 5 MyDrawp drawp = new MyDrawP(
Graw drawPpaint) ContentPane drawP = new ContentPane()
gsetColor(white) s
gsetColor(Colorblue) ~ frame £ drawPsetSize(500,270)
g setColor(Colorwhite) Panel el frame setSize(500,270)
panel setSize(500,270)

i+

iy
by X

OEBPS/Image00928.jpg
public class ArrayList<k> extends Abstractlist<k> ... {
ublic boolean add(E o
pubL) You tan e 4, v

the
aeady e gefi e ONLY

3 part of o betause i

the elgec

OEBPS/Image01102.jpg
Service Browser
(client)

* -}

OEBPS/Image00687.gif
import javax.swing.*;

import
import java

ava. aut .event. *;
Wt .

class InnerButton (

Frame frame;

Jeutton b;

Once this code
is fixed, it will

abutton that
toggles between
A and B when you
click

create a GUT with)

public static void main(String [) args) {

qui.gol);

public void gol)
frane = new Jrrame()
frane. setDefaul tClos:
JFra

InnerButton gui = new InmerButton();

eoperati;
e EXIT_ON_CLOSE) ;

iy
tel

The addActionListener()
method takes a class that

plements the ActionLis-
ner interface

b = new JButton("A*)

b.addActionListener |

frame . getContentPane

BorderLayout .S

Erane. setSize(200, 101
frame. setvisible(tru
}

hew Blistener()) ;

(1.2dd(

0

el

class BListener iMplements actionListener

public void action

xformed (Act ionEvent e)

if (b.getText().equals(*A")}

b.setText (5% ;
else
b.setText

2

(

ActionListener is an
interface, interfaces
are implemented, not
extended

OEBPS/Image00929.jpg
PN e A . |

ist<T> list)
Animal> void takeThing (ArrayLists
T extends
public <!

e gy

e declared
eavlier in The method dezlara{v;

OEBPS/Image00923.jpg
| sort

Sorts the specified list into ascending order, according to the natural ordering of its elements. All
elements in the list must implement the comparabie interface. Furthermore, all clemens in the list
‘must be mutually comparabe (that i, 1 . compareTo(e2) Must not thiow a ClassCastException
for any elements 1 and e2 in the list).

OEBPS/Image01085.jpg
pevlel packaRs
e serilet R
: 2y

two of
e need ko import b0 Lt
hese two valﬁ‘g‘;’: y,m\:ad Ehem segars

es = Yo

import java.io.*; Besides 1o
import javax.servlet.*; &—— Remember)
import javax.servlet.http.+; < .tandard llbar

S i ‘normal’ sevvl will ext
public class MyServletA extends HttpServlet { /‘m‘t&mi J;'ﬁmﬂ:.,ff"i
more methods.

lient
Queride e dofiek b mBle el b mebiod O I ri»;;; :
ke T (o com ek data ot of © 806 3 TITC,
et ol e b srd bak 3 T

public void doGet (HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

This tells the server (and browser)
X t n ev) what kind of
‘thing’ is coming back from the server 35 vesult of

response. setContentType (“text/htnl) ; ind (o
is sevvlet v
unning.

sveam o
dbieck gves us an outpt
Printiciter out = response.gethEiter(); | | Formston 3 ot bo the sevver
String message = “If you're reading this, it worked!”;

HTML page The page

out.println ("<HTML><BODY>") ; i
out.println("<HI>" + message + “</HI>") ; W::dﬁmcd Aol liphic bm’: :
S e wien st like any other HTML £as,
e Ehough £his is @ 73%¢ that never €t cp]
4 Mhl wsln other words, theve's o html ile
fkati Dot At

} comewheve with Hhi

OEBPS/Image01086.jpg
What the web page looks Tke:

tliek the lisk —7|
to biger the

sevvle

‘This an amazing servet.

OEBPS/Image00701.jpg
public void gol) (v :
JFrame fram new JFrame();

JButton button = new JButton(“click like you mean it”);
frame.getContentPane () .add (BorderLayout .EAST, button);
frame. setSize (200,200) ;
frame.setVisible (true) ;

OEBPS/Image01087.jpg
TV‘Y my
new web-enabled
phrase-o-matic and you'll
be a slick talker just like
the boss or those guys in
marketing.

OEBPS/Image00702.jpg
First, T ask the
button for its
preferred size.

OEBPS/Image01088.jpg
import java.io.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class KathyServlet extends HttpServiet {
public void doGet (HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

String title = “PhraseOMatic has generated the following phrase.”;

response. setContentType (“text/html”) ;
PrintWriter out = response.getWriter () ;

)| methods on
out . printin ("<HTML><HEAD><TITLE>") ; Seet our serlet ean el nePRE
out.println(“Phraseomatic”) ; another class. s s wve LD
out.println ("</TITLE></HEAD><BODY>") ; the static makePhease | DEE0L o)

out.println("<HI>" + title + “</HI>"); PhraseOMatic ¢lass
out println("<P>” + PhraseoMatic.makePhrase()) ;
out.println("<P>make another phrase</p>") ;
out .printin("</BODY></HTML>") ;

out.close () ;

OEBPS/Image01083.jpg
MyPage.html

OEBPS/Image01084.jpg

OEBPS/Image00695.jpg
one tomgonert
yer -(ng\Dn

OEBPS/Image00937.jpg
-able is an intertace, so this
o e esde T sk b 3 bype trat
implements the Comparable intertace’

public static <T extends Comparable<? super T>> void sort (List<T> list)

[t doesn't matter whether the thing on the vight s
3 tlass or interfate... You still say “extends”

OEBPS/Image00696.jpg
[:] = ;sznh added left
vight, Wrapping £ 3
O ==

e line when neesieq
=D

OEBPS/Image00938.gif
Java.lang.Comparable

public interface Comparable<T> (
int compareTo(T o) ;

)

OEBPS/Image00693.jpg
s 2nel A layout managey
Controls the Size and
/ Placement. of Pape] B

Cbutton 13
Cbutton 23
Cbutton 33

ward ek
o ooyt g gt
-

o 22 78,
orkrds ¢ ko
ok tne

Panel A

Panel A layout manager has NOTHING 4,

53y about. the three buttons. The hicrarch

Fomira s only one level—Panel A's [ayou

pnsaer Controls oly the things added dectly
Panel 4 and does not contral anybhing

nested within those added componerts

OEBPS/Image00935.jpg
public static <T extends Comparable<? super T>> void sort(List<T> list)

4 (gore this part .
This gzs “Whatever ‘T is must .Ey:‘ m’ﬂa{ Juf s ot
be of type Comparable that the type parameter for

Comparable must be of type T

or one of T's supertypes.

fou tan pass :tr, 3 List (or
\s/ubtyr: Fid e AvvayList)
Ehat uses 3 pavameterized ype
that “extends Comparable

OEBPS/Image00694.jpg
Let's see here.. the
first butfon wants fo be
30 pixels wide, and the text field
needs 50, and the frame is 200 pixels
wide and T'm supposed fo arrange
everything vertically...

mandde"

oyt

OEBPS/Image00936.jpg
°0

Un...T just checked the docs for
String, and String doesr't EXTEND
Comparable--it IMPLEMENTS .

Comparable is an interface. So it's nonsense
to say <T extends Comparable>.

OEBPS/Image00699.jpg
import javax.swing.*;

s in javadwt packad®
import java.awt.*; ¢ Borderlayost "5

ot
public class Buttonl {

public static void main (String[] args) {
Buttonl gui = new Buttonl();

gui.go();

}

public void go() (£y the Ve
TFrams frame = new JFrame(); ety

JButton button = new JButton(“click me”) ;
frame. getContentPane () . add (BorderLayout .EAST, button) ;
frame. setSize (200,200) ;
frame. setVisible (true) ;

OEBPS/Image00941.jpg
That's not good enough.
Sometimes I want it to sort
by artist instead of fifle.

o
15

OEBPS/Image01089.jpg
The bean object is mem from
dveck client access Only the server
bean. This

om ackualy alk to the
trimas lie 53y,

lets kjh:)zwzyr do L

“Whoa! This ¢l lient doesn © have

s ot g AT NG bt e ol b bhe bean (e B eanty o b o1 e

e i s o) and e ot E}ﬁ"ff o
provded by the £J HERE, where the e Teri ol

Lypically ar
TP e same JLEE s
erver Gsetuity, dransactios, ste)

|

Here's wheve h
iiiain e EJB serv
el The EOB et i,

sheps

onwing in

D cn...rl E7B server

This i only a small part of the EJ8 picture!

OEBPS/Image00700.jpg
click me

OEBPS/Image00942.jpg
Fle:///Users kathy/Public/docs/api/ index.htm!

ctions _form SE 500 _Caffeinated _d rain|

stacic
<K,V> Map<K,V>

static|gore (List<r> list)
per T>>

OEBPS/Image01090.jpg

OEBPS/Image00697.jpg
comgonents added ¥
o o e per e

OEBPS/Image00939.gif
Retums:
a negative integer, zero, or a
positive integer as this object
is less than, equal to, or greater
than the specified object.

OEBPS/Image01091.jpg
Hey everybody,
Tim here!

another machine on the network

/

Jini Lookup Service

|

machine on the network

another machine on the network
somewhere.

OEBPS/Image00698.jpg

OEBPS/Image00940.jpg
Usually these mateh..we've specifying the type that
k;:-:rylz:z:{ms class tan be compared agamst

mpaved to
class Song implements Comparable<Song> (This means that Sona, objects can be compare
Steing itle; < other Song objects, G- T pugose of sorking

String artist;

fived imeamadd Song o compareTel)
The sork0) method sends 3 Song o cont
String bpm; [‘ b 500 how Ehak Song ompaves &0 the Song on
R which the method vas invoked.
public int compareTo(Song s) { "
return title.compareTo(s.getTitle()); & Simplel We just pass the wor)
} F e en Lo the Btle String abjects
ince we know Shrings have 3
Song(String t, String a, String =, String b) { compareTol) method
title = t;
artist
rating
bpm.

)

public String getTitle((
return tities
! This £ime # vorked. £ prints 4he lst, then calls sort

which pubs the Songs in alphabetical order by title

public String getArtist()

Patuih) artist; N
) %java Jukebox3
public String getRating() {
Patuin rating; [Pink Moon, Somersault, Shiva Moon, Circles, Deep
) Channel, Passenger, Listen]

public String getBpm() {
return bpm;

[Circles, Deep Channel, Listen, Passenger, Pink
) Moon, Shiva Moon, Somersault]

public String toString() {
return title;
)
b

OEBPS/Image01092.jpg
Register
me as something
that implements
ScientificCalculator. Here's a
serialized object that represents
my service. Send if fo
anybody who asks...

— nmﬁur machine on the network
ni Lookup Service

machine on the network

another machine on the network
‘somewhere. ..

OEBPS/Image00933.jpg
JavE . Bha . ®
import java.io.*;

public class Jukebox3 {
ArrayList<Song> songList = new ArrayList<Song>();
public static void main(String() args) {
new Jukebox3 ().go () ;

b
public void go() {
tsongs () ;

breakl It worked £ine when

System.out.println(songList]; Tyisis wheve it & e
Collections.sort (songlist) ;| psced i an Mal\usustn?x t; t‘ zzm
System.out.println(songlist]; (ried o sort an Arvajlist<Sord

}
void getSongs() |
try {
File file = new File(“SongListMore.txt”};
BufferedReader reader = new BufferedReader (new FileReader (file]);
string line = null;
while ((line= reader.readLine()) != null)
addsong (1ine) ;
}
} catch(Exception ex) {
ex.printStackTrace ()

}

void addSong(String lineToParse)
string[] tokens - lineToParse.split(“/”);

Song nextSong = new Song(tokens[0], tokens[l], tokens[2], tokens[31)

songList.add (nextSong) ;

OEBPS/Image00934.jpg
o Smiciies ey
Sorts the

Specilid st s scending omgy,
1 e Ist st inpleney
be.

OEBPS/Image00670.jpg

OEBPS/Image00912.jpg
%java Jukeboxl
[Pink Moon, Somersault
St eem, Gy,

Deep Channel
, Passen
Listen] R

The songlist prints out with the
songs - Ehe arder in which they
weve added to the AveayList Cuhich
s the same order the songs are n
within the original text Ho.

This is definitely NOT alphabetical!

OEBPS/Image00671.jpg
55

Finish

OEBPS/Image00668.jpg
I'm a labell Change Label

Change Circle

OEBPS/Image00910.gif
SongList.txt

Pink Moon/Nick Drake
Somersault/zero 7
Shiva Moon/Prem Joshua
Circles/BT

Deep Channel/Afro Celts
Passenger/Headmix
Listen/Tahiti 80

OEBPS/Image00669.jpg
. im GUI class doesnt
public class TwoButtons { &— f:;\::"fhmmgm vow

srcame £rane;

Tabel 1abel;

public static void main (String[] args) {
TwoButtons gui = new TwoButtons () ;
gui.gol);

public void go() {
frame = new JFrame() ;
frame. setDefaultCloseOperation (JFrame . EXIT_ON CLOSE) ;

JButton labelButton = new JButton(“Change Label”); L tead of pasimd
labelButton. addActionListener (new LabelListener () ; Tkkon's isbener Y€

JButton colorButton = new JButton("Change Circle’); |~y apref”
colorButton. addActionListener (new ColorListener () ;

label = new Jlabel(“I'm a label”);

2 : TuoButtans
MyDrawPanel draweanel = new MyDrawPanel () ; el
£rame.getContentPane () . add (BorderLayout . SOUTH, colorButton) ; i
£rame.getContentPane () . add (BorderLayout .CENTER, drawPanel) ; o
£rame.getContentPane () . add (BorderLayout .EAST, labelButton) ;
£rame.getContentPane () . add (BorderLayout WEST, label) ; LabelListener

abject
£rame. setsize (300,300 ; ColorListerer
£rame. setvisible (true) ; abject

) Now we et o bave

& Two Aekionkiskerer®

(BT) TR A o A R P (T o 3 snale lass

public void actionPerformed (ActionEvent event) {
1abel . setText (“Ouch!”) ;
) N inmer elass kpors

} // close imner class about Jops

class ColorListener implements ActionListener {
public void actionPerformed (ActionEvent event) {

frane.repaint 0/ ¢
: the innex elass 9ts bo use the f,,0

) e s o instance varigble, witpot
et veference o fhe g

aving an
} objec

uter ¢tlass

OEBPS/Image00911.jpg
Hport. Jawa util, g
import java.io.

Well skove the ,’E’“giff; &
public class Jukeboxl { / an heeayList

ArrayList<String> songList = new ArrayList<String>();

public static void main(String(] args) {
new Jukebox1().go();

) e methad tat sarts lsdno B
he tont
public vold go (& Kleand Offmbt_t- ¥
getsongs () the sondl 4
System.out.println(songList);
i
nd
- vead be Fle
oty specia beve st eedd SR
void getSongs() { Nt aadSonsl) il
try {

File file = new File(“SongList.txt”);
BufferedReader reader = new BufferedReader (new FileReader(file));
String line = null;
while ((line= reader.readLine()) != null) {
addSong (Line) ;

¥

} catch(Exception ex) {
ex.printStackTrace () ;
}
)

void addSong (String lineToParse) |
String() tokens - lineToParse.split(“/”);
songList.add (tokens[0]);

OEBPS/Image00672.jpg
DAL e D LR, LR

?m piels from the left,
50 pixels from the top

OEBPS/Image00904.jpg
public class TestThreads { ' class Threadone '

class ThreadTwo

OEBPS/Image00663.jpg

OEBPS/Image00905.jpg
% java TestThreads
one 98098
two 98099

OEBPS/Image00903.jpg
800 Cyber Beatbox

mssonm @OO0@O0CEOCCMO00 m—
Closed i-H e
Siop

Open Hi-Hat %}
Acoustic Sna Tempo U)
Crash Cymba Crempo down)
Hand Clap by

igh Tom - |
s dance beat <«
Hiongo
Mancas @
Whistle
Low Conga
Cowbell Andys groove 12
Vibrzsizn Chri: groove? revised €|
Low-mid Tom

Nigel: dan

High Agogo igel: dance beat
Open Hi Cont

OEBPS/Image00666.jpg
class MyOuter {

MyTnner inner = new MyTaner 0 ;< Make an instaney of the

inner clycs
public void doStuff() (
) REEIR0T fall a mebhod on the
ioner dlas
class MyInner (
void go() .
EEe elass v the
- The method in the inner class v ¢,
) o T e e ol a5 4

} // close inner class belonged fo the inner elass

} // close outer class

OEBPS/Image00908.jpg
Sheesh..and all
this fime T could have just let
Java put things in alphabetical
‘order? Third grade really
sucks. We rever learn
anything useful

OEBPS/Image00667.jpg
MyOuter

MyOuter

MyTnner

OEBPS/Image00909.jpg

OEBPS/Image00664.jpg
W mer 0F

OEBPS/Image00906.jpg
Accum a = Accum.getAccun() ;

“+a.getcount () 7

hread one = new Thread(tl): system.out .println(*two

w ThreadTwo () 7

Threadtwo t2 = me

terruptedBxception ex) {)

} catch(In!

return counter;

Thread tyo

implements Runnable {

} cateh(Interzuptedaxception ex)

= new Aceun()

new Thye,
ad (e2) ;
t2); one.start ()i

Accum a = Accum.getAccum() ; .
public static Accum getAccum() { '

private int counter -

a.updateCounter (1) ;

for(int x=0

private static Accum 2

P X < 99; xus) (

implements Runnable ('
a,updaLeCoun\:erU(lDO) i

System our

TIntIn (“one o

getCount ()

¢ static void main(String (] args) (

lic void runl) {
- new ThreadOne():

Threadone £l =

private Accum() { }

pub]

OEBPS/Image00665.jpg
ks on the hed?
oo The et
ovber's varisbles

OEBPS/Image00907.jpg
bl clann. TagLinteade §
public static void main(String (] args) {
Threadone t1 = new Threadone();
ThreadTwo t2 = new ThreadTwo();
Thread one = new Thread(tl);
Thread two = new Thread(t2);

one.start();

two.start ();

class Accum (
private static Accum a
private int counter =

new Accum() ;

private Accun() () o p graake b

public static Accum getaccum() (
return a;

1

public void updateCounter (int add) {
counter += add;

il

public int getCount() (
return counter;
) 1
class ThreadOne implements Runnable (
Accum a = Accum.getAccum();
public void run() (
for(int x=0; x < 98; x++) {
a.updateCounter (1000) ;
try {
Thread.sleep(50) ;
J catch(InterruptedException ex)
)

System.out.println(“one “+a.getCount());

]

class ThreadTwo implements Runnable {

Accum a

= Accum.gethccun() ;
public void run() (
for(int x=0; x < 99; x++) (
a.updateCounter (1) ;
exy (
Thread.sleep(50);
} catch(InterruptedException ex) {)

)

System.out.println(“two “+a.getCount());

OEBPS/Image00681.jpg
Ihe event ‘tiek’ for

ks
argume WHEN this mess,
%’:r i;fngssi‘ﬂ‘ Fold happen

public static MidiEvent makeEvent(int comd, int chan, int one, int two, int tick) {

MidiEvent event = null; whoo! A method vith five pavameters.

try {
ShortMessage a = new ShortMessage() ;
a.setMessage (comd, chan, one, two); make the ,,

ke the message
avent = new MidiEvent(a, tick);: he methog Ph?me?ifhe G

i, using
}catch (Exception e) { }

etumn event; it event (2 MidiEvent al

1} loaded up with the message)

OEBPS/Image00682.jpg
i s bt s o

& don’{
" forget e
public class MiniMusicPlayerl { Port

public static void main(Stringl] args) {

try (

) 3 sepene
Sequencer sequencer = MidiSystem.getSequencer () ; r__ e (and ¥
sequencer .open () ; =

Sequence seq = new Sequence (Sequence.PPQ, 4) ; ¢— make 3 seqence
Track track = seq.createTrack() ; — and a tratk

for (int i = 5; i < 61; i+= 4) { $~—make 3 bunth of events to make the notes keep
aping up (From iano note 5 to piano note 61)

track.add (makeEvent (144,1,1,100,1)) ; aall
track.add (nakeEvent(128,1,4,100,3 + 20); 0 0T makigth
nd event, the
@dyfmt rebincd o gt bt (e
e track. These ar, eEvent()) 4,

e NOTE
sequencer . setSequence (seq) ; X i NOTE OFF (126) gy = O (1) avd
star

} // end 1oop

sequencer . setTempoInBEM(220) ;
sequencer.start () ;
} catch (Exception ex) {ex.printStackTrace():}
} // close main

it Funning

public static MidiEvent makeEvent(int comd, int chan, int ome, int two, int tick) {
MidiEvent event = null;
try (
ShortMessage a = new ShortMessage ()
a.setiessage (cond, chan, one, two);
event = new MidiEvent(a, tick);

}eatch (Exception e) { }
return event;
i

A P R

OEBPS/Image00679.gif
[]
[J
start finish
[J []
Start finish
ctart Anish

X _13
Y_13

1
start finish
2
[]
start finish
3
etart finish

OEBPS/Image00921.jpg
%javac Jukebox3.java

Jukebox3.java:15: cannot find symbol

symbol : method sort(java.util.ArrayList<Song>)

location: class java.util.Collections
Collections. sort (songList) ;

1 error

OEBPS/Image00680.jpg
98 d9Rs

R

OEBPS/Image00922.jpg
WTF? T have no idea how fo
read the method declaration
on this. It says that sort()
takes a List<T>, but what is
T2 And what is that big thing
before the return type>

OEBPS/Image00673.jpg
g.11llOoval (25,55,100,100) 7
Tzs pixels from the left, 55
pivels from the 4op

(the abject moved a little
down and 1o the vight)

OEBPS/Image00915.jpg
Collectons

java.

| publc it void copylListdesinaton,Lstsurce)

| publicstatic List emptyList(

| ublc statcvcid flit tToF Oject TOFINER)
| publc tatcnt frequency(Cotecton o Oieet 9)

| publicsttic void reverse(Litist)

publcstaic void otatef st s n distance)

| publc satic void shuffle(istis)

| public static
| public static boolet —
| 11 many more met
—

Yt Obiject oldVal, Object newVal)

Hevmn.. Eheve

‘ IS 3 sort()

in the Callections clas [::M
3 List and since Avvaylist “
implements the List intefoee,

C:rayL:s(: 1S-A List. Tha, ks
n
Polymorphism, You ¢an pass an

ArvayList £
ERLY
s ethod declared

OEBPS/Image00674.jpg
class MyDrawPanel extends JPanel {
public void paintComponent (Graphics g) |
g.setColor (Color.orange) ;
g.filloval (x,y,100,100) ;

10 s

) .
e wted 3t 2

oh Lime g o
) !Laa{)\ed, e oval gets 72
i fLevent lotation

OEBPS/Image00916.jpg
MPOrt java.
impc

public class Jukeboxl {

ArrayList<String> songList = new ArrayList<String>();

public static void main(String(] args) {
new Jukeboxl () .gol) ;
)
c void go() { "
Songs () 1 ¢ Collections
: . Call he stati ok the
ystem.out.println(songList) ; 7 ihad, then pe
Collections.sort(songList) ; e ﬁ?ﬁ@a‘m The second \Tlv-‘c ot
System.out.println (songList) ; ; i alvha‘»!bﬁ‘ order!
)
void getSongs() |
try
File file = new File(“SongList.txt”);
BufferedReader reader = new BufferedReader (new FileReader (file));
String Lin null;
while ((line= reader Line()) != null) {
ng(Line) ;
b
) ex)
intStackTrace (]
)
}
/014 addSong (String lineToParse) (
String[] tokens = lineToParse.split(™/”);

songList.add (tokens (0

OEBPS/Image00913.jpg
i{ﬁiﬂiﬁiﬂﬁ'

!

fiir

[oaac o,
" et e i et o e ol it

i e,
s

Geant e echidpostios
prET————]
L e e i s Cobsin o S . e by sl by &0
e G’ b
T etk ine fnder, Collsetione? etends P)
e e e el i o st i B e ke

otz
v sl of e demests o i .

i R
i T —
B T
CEREERIS et st o
e it there’s nothi methods,
e et e ciidposkion ’s nothi

e et e ey "3 heve that

s o g (2% e i vould st

M

|

otz aien)
et e ool ot cccimencs of

i i el

o) |

s o e o b ol

e Comesatamas i cromimton, Lot 1o
e o i L 6 b

s i £

hchs s ey cosinin l o e demcts ' 8 B e ot ol

i'E’!‘iﬁm‘i‘@“ﬂ‘?ﬂ“ﬁ“‘“‘iiﬁi\

T e
ST) | g il e et o s e o e e e of b el & 6

[oe s emy.

s
e capcty of i Ayt s b e Bt cmt e

it i s i vl ALt
AT T A —

OEBPS/Image00914.jpg

OEBPS/Image00677.jpg
PURLLC LU pRlnLi.omponant fetapinlos 9 L
g.setColor (Color.white) ;
g.fillRect (0,0, this.getWidth() , this.getHeight());

g.setColor (Color.green) ; '\
g.fil10val (x,y,40,40) ; 9etWidthO) ang getHeightO) ar
X methods inhevited fyor iy

OEBPS/Image00919.jpg
class song { b
String title; - inskante vavidbles
string artists ¢ B T kes

String rating;
String bpm;

Sor the

Song(String t, String a, String r, String
title = t;
artist = a; The variables ave all set in
rating = r; the eonstruttor when the
bpm new Song is ereated.

}

public String getTitle() {
return title;
)

public String getArtist() {
return artist;
) The getter
Hiog:
public String getRating() {
return rating;
'

public String getBpm() {
return bpm;
)

We overvide toStin

public String toString() { € oubprintly(

return title; When You do a Systemout.
o e Lkiving misen Bt

the file

b) |

methods for

our attributes.

SongObject),

pri

90, betause when you do 3 System.

OEBPS/Image00678.jpg

OEBPS/Image00920.jpg
i ArrayList of Sord
3:::5: i o S

LT

ArrayList<Song> songList = new ArrayList<Song>() ;

go()

getsongs ()

addsong (String lineToParse)

Song nextSong = new Song(tokens[0], tokens[1], tokens[2], tokens[3]);
songList.add (nextSong) ;

OEBPS/Image00675.jpg
import javax.swing.
import java.awt.

public class Sxmplehnxma:,xot: { ance vaviddles n k:‘:
make Lwo In he # an
; ass, for
TR e man G e e civdle

oordinakes

int x
int y

public static void main (String[] args) {
SimpleAnimation gui = new SimpleAnimation ();
gui.go();

)

public void go() {
JFrame frame = new JFrame();
frame. setDefaul tCloseOperation (JFrame.EXIT_ON CLOSE) ;

MyDrawPanel drawpanel = new MyDravPanel();

thing new heve. Make 4
frane.getContentPane () .add (dravpanel) ; 1 Pul then i (e 1, U Midiets
frame.setSize(300,300) ; ane
frame.setVisible (true) ;

This is wheve e for (int i = 0; i< 130; i+r) { "ePeat this 120 Lo
atkion i

Xt inerem
w:; (_::d;:t:huwy

_ snel bo ver
drawPanel . repaint () ; k;\l:’:: T cvcle i

ink el (s0 ve
ACM vew lotation)

try {

Thread.S166p(50) 7| L &————Slow it down 3 |

| Gatan (Exoeption ax) L1 ittle (otherise it will move so

quickly You won't SEE :
3 /A it move). Don't wory
veren't supposed to alveady k Haw
now thi; |
}// close goO) method Hhreads in chaper 15, this Well gt
X33 class MyDrawPanel extends JPanel {
No¥ ot
e public void paintComponent (Graphics g) {
g.setColor (Color.green) ;
g.fil10val (x,y,40,40) ; Use the contip,
ontinually—upgat,
Coordin Pdated x ang
¥ ordinates of the outey. glgee 0)

} // close inner class
} // close outer class

OEBPS/Image00917.jpg
%java Jukeboxl

N

[Pink Moon, Somersault, Shiva Moon, Circles, Deep Before calling
Channel, Passenger, Listen]

sortl)

After callng sortO

[Circles, Deep Channel, Listen, Passenger, Pink
Moon, Shiva Moon, Somersault]

OEBPS/Image00676.jpg

OEBPS/Image00918.gif
‘SongListMore.txt

Pink Moon/Nick Drake/5/80
Somersault/Zero 7/4/84
Shiva Moon/Prem Joshua/6/120
Circles/BT/5/110

Deep Channel/Afro Celts/4/120

OEBPS/Image00890.jpg
53
1 komit 770

Peooddy ek
balance = i + 1; &—

OEBPS/Image00891.jpg
SiAMy TRELAYIC LNpUERaGLE RIODEbS

private int balance; 50 kimes:

cath e T e on

ntrementnd
eath ™ eab

public void run() {
for(int i = 0; i < 50; i+4) { &
increment () ;
System.out.println(“balance is " + balance) ;
)
)

public void increment() {
int i = balance; §
balance = i + 1; Here's the pyei

whatever th
) Tinn e vl
the ‘EMWE KEAD IT Gather 4
RRENT lue is) n adding | £
sxiiio dises HesiBindiost {
public static void main (String[] args) {

TestSync job = new TestSync();

hcond = - pin Tessdtion

Thvaad b« new Bhossdtinbl ¢

a.start();

b.start() ;

OEBPS/Image01142.jpg
Head First

OEBPS/Image00888.jpg
Hey, this object's
‘takeMoney() method is
synchronized. T need to get
this object's key before T
cango .

OEBPS/Image00889.jpg

OEBPS/Image01136.jpg
Assiging an enum value to 3 variable.
aiisets meTeRBRS BB

if (n.equals (Members.JERRY)) System.out.println(“Jerrrry!”); el
if (n Members.BOBBY) System.out.println(“Rat Dog”); &'%U,,Euw
“Rat Do pinted
Members ifName = Members.PHI.
switch (ifName) {
case JERRY: System.out.print(“make it sing “);
case PHIL: System.out.print(“go deep “); S Pop Quiz! What's the output?
case BOBBY: System.out.println(“Cassidy! “);

o IPSED d39p o6

OEBPS/Image01137.jpg
public class HfjEnum {

enum Names { / he torstr

JERRY (“lead guitar”) (public String sings() { ,
return “plaintively”; }
B
BOBBY (“rhythm guitar”) { public String sings()
return “hoarsely”; }
be
PHIL(“bass”);

private String instrument;

Names (String instrument) {
this.instrument =

}

public String getInstrument() {
return this.instrument;

}

public String sings() (
return “occasionally”;

}

instrument;

i

public static void main(String [] args)
for (Names n : Names.values()) (
System.out.print (n);
System.out.print (%, instrument:
System.out.println(®, sings: “ + n.sings());

}

~

“+ n.getInstrument());

e ave the so-called
I:;;ant_sm. ¢ tlass bodies”-
Think of them as overviding the
basic. enum method (in this g
Fhe “singl)" method), i€ sing) s
called on 3 vari

<alue of JERRY or

& This is the enun’s constructor. [t vuns
onte for eath declaved enum value (in
this case it vuns three times).

<« Youll see these methods being called from “main()”.

ith a
uery enum Comes Vi
uilkin “valuesU) method
which s yically used in 3
“for’ loop as shown

OEBPS/Image00892.jpg
@ Thread A runs for awhile

Putthe value of balance into variable i.
Balance is 0, 501 is now 0.

Set the value of balance to the result of i + 1.
Now balance is 1
Put the value of balance into variable i.

[Balanceis 1, soiisnow 1
Set the value of balance to the result of i + 1.
Now balance is 2.

@ Thread B runs for awhile

Put the value of balance into variable i
Balance is 2, 51 is now 2

~
Set the value of balance to the result of i + 1
Now balance is 3.
Putthe value of balance into variable i
Balance is 3, 501 is now 3
[now thread B is sent back to runnable,

before it sets the value of balance to 4]

@ Thread A runs again, picking up where it left off
Put the value of balance into variable i.

~
Balance is 3, so1is now 3.
Set the value of balance to the result of i + 1.
Now balance is 4.
Putthe value of balance into variable i.
[Balanceis 4, soiis now 4.
Set the value of balance to the result of i + 1.

Now balance is 5.

@ Thread B runs again, and picks up exactly where it left off!
Set the value of balance to the result of i + 1

)
Now balance Isﬁ;
<\\(.‘\“ s! |
| e
F Thread A updated it to 5, but
now B tame back and stepped

on top of the update A made,
35 if A's update never happened.

OEBPS/Image01138.jpg
File Eat

findow H

0ot
%java HEJEnum

JERRY, instrument: lead guitar, sings: plaintively
BOBBY, instrument: rhythm guitar, sings: hoarsely

PHIL, instrument: bass, sings: occasionally
%

OEBPS/Image01139.jpg
Don't you know about the web site?
We've got answers to some of the
‘Sharpers, examples, the Code Kitchens,
Ready-bake Code, and daily updates

from the Head First author blogs!

OEBPS/Image00883.jpg

OEBPS/Image00886.jpg

OEBPS/Image00887.jpg
private synchronized void makeWithdrawal (int amount) {

if (account.getBalance() >= amount) {
System.out.println(Thread.currentThread() .getName() + " is about to withdraw”) ;
ey {
System.out.println(Thread.currentThread() .getName () + * is going to sleep”);
Thread. sleep (500) ;
) catch(InterruptedException ex) {ex.printStackTrace(); }
System.out.println(Thread.currentThread() .getName() + woke up.”) ;
account . wi.thdraw (amount)
System.out.println(Thread.currentThread() .getName () + " completes the withdrawl”);
} else {
System.out.println(“Sorry, not enough for “ + Thread.currentThread() .getName()) ;

OEBPS/Image00884.jpg

OEBPS/Image00885.jpg

OEBPS/Image00901.jpg
@ @ TeadAwakesup(stl
holding the 700 key)

and tries to enter a

synchronized method on

object bar, but can't get

that key because B has

it. Agoes to the waiting

lounge, until the bar key is

available (it never will be!)

>

Thread A can't run until

it can get the bar key,
but B is holding the bar
key and B can't run until it
gets the o0 key that Ais
holding and.

OEBPS/Image01129.jpg
class Foo {
public static void main(String [] args) [bouk
. o't tare 3
) new Foo().g900i —_ ‘,énup *:z»l\&gﬁ‘\:::td o er saping
the Foo instarces nce
void go) B v oo a0 3 vefre
// here’s what we REALLY want...

b

OEBPS/Image00902.jpg
R . 1 mea
isport. Java.nat.
import. Java_ueii. ¢
import. Javax. aving.*
import. Java.awe. v |

public class simplechacciient (

Trextazes snocasng:
Trextriela owtgoind:
Butoredrandor zeader;
Sockat sock:

Public static void masn(string(] sron) (

Simpiechaccliont S1ient - sev SimplechacCLiant) ; eyl
et im0 I e
’ U oty et 2, P
iaplabtad Pt 257
i i 0 ¢ Rt

SFrana £rame = nev JFame ("Ludicrously Simple Chat Client’);
Teaned mainpanel = new Panel ()
inconing a5,50) -

incoming. setBditable (Faise) ;
Scrol bane gecroliar = new JScroliFana (incoming) |

croller. setarticalscrol Bacpolcy (Scrol PaneConstants. VERTICAL SCROLLEAR AUWAYS) :
Gceoller. setiiorssontaSorol 1Bacpolicy (serol EaneConstants. HORIZINTAL SCROLLEAR NEVES)
Sutgoing = new ThextPield (20) & =
mtton sandbuteon = now TBution(‘Send) :

Sendbuteon addAstsoniistanes (now Sendbutioniistense)

sainpaned. add (gscrolior) ; e sarking 3 e by
mainpane add (Gutgoing) : e,

imanal s (sandmtiom frog eyt
e et AT 5
Theead saadasizesd = ne Thread (nev Tacemingaadex ()i | 1o/%3 o b i)
zeaderThroad. acart() ; ot o, ditlagng

Y inomng messs tye
£rama. getContentPane (). add BorderLayost CENTER, masnpaned) : “relng Lot i)
20 (600, 500)

)
private void setUpietvorking () (

ey o
sock = new Sosket(1121.0.0.17, 5000);
Tnputstresnasdar streibonder = nev InputstresaResdas (sock Getinputstresn()) :
couder = nev ButforedRondar (seasnReader)

WEiter = now Drinthster (sock gerOutptStress ()

Sraten. o peAntin(ChetuerEing as AL LARST g
e Were virg B SEEG v dready vind
men— oot e by B
‘ B ot 2, ok sremy
| bl thead tn ¥
e e

Public class sendbuttoniistenss inplesents ActionListener (
public void actionperfornad (Actionbvent ov) |
e (
‘writar printin (ontgoing. gatText 0) ;
Veiter Gush0) ¢

Nl e e Whe e i
) exehemtion o ¢ e e
plari it ontints of otk Bl o %,

)
outgotng. setText () ;
utgoing requastrocus

Public class IncomingReader irplamenta Runnable ("
ok the tead doc

ot T
siziog messsier a2 2
- e

e
“hile ((massage = eader.cescline()) = ml) (Gl v oot R
e e Skt
HrerbR iy e Lo ik 3

Yo b haracte
3.1/ cisee e wtha

) catoh(Excoption ex) (ox.printstackTrace() ;)

OEBPS/Image01130.jpg
4 class is Just that=3

it meste
public class FooOuter { ga‘i‘ﬁil;; ithin andther, and

i¢ modifier
static class BarInner { ,gcked vith the skatic moditie
void sayTt() {
System.out.println(‘method of a static inner class”);

Because 5 statie
ie nested elass is. g
e on et of i oter nmmv&f' orfo;
P oF the clas, the came gy v, it S the
'S or attess static vanabfe\/ st

class Test {
public static void main A4String[] args) (
FooOuter.BarInner foo = new FooOuter.BarInner () ;

foo.sayIt();

OEBPS/Image00899.jpg
Thread A enters a
synchronized method
of object foo, and gets

the key. Y

Thread A goes to
N B sleep, holding the
00 key.

n

OEBPS/Image01131.jpg
import java.awt.event.*;
import javai.swing.*;
public class TestAnon (

e made 3 frame 304 304682 e buHm

pubLic statis vosd main (Stringl) args) (need tovedster ¥ “t"” o.at mv\m'*’
e rever m
Jecane frane = new JFcane); T aner e b
utton = new JButt “click”); 5 :
Eoe R Al e
on.addAct. i # "
CEtontistensy (gt tiistanaryi & fmﬁf‘f ey W\m&i mumumm (nd
This skabemert B sbnfrfrnes0 7
publi actionPerforried (Acti e
gty onEvent ev) (r:\fsx ;:E.;Til" I other ‘.«ds,
i ,g.u the L\ass Unat &“‘"“Ekgwe
. e .
Notice that we 52y new hebionligterer0)"” een NEED [T The e ‘::_i{ffff v
; WonCiner s an ke nd 3 Yo stante of the €253

ends down herel can't MAKE an “nstance of it] But s syntax
veally means, “ereate 3 rew clas (vith o rame
e ments the peionListenr iterbate,
) and by the way, here's the .:&muhm of the
L e methods -actionPerkormed()

OEBPS/Image00900.jpg
@ § U"rtone=e
synchronized method
of object bar, and gets

I the key. ?

l Thread B tries to enter

a synchronized method
A of object foo, but can't
get that key (because
Ahas it). B goes to
the waiting lounge, until
the foo key is available.
8 keeps the bar key.

OEBPS/Image01132.jpg
lic & public means any ¢ode anywheve ¢an atcess the public thing (by
pt Dhing’ vt mem s, onble, method enstrutton, ekt |

protected «——— beoteeted works just like default (code in the same package has aceess), EXCEPT it
also allows subtlasses outside the package to inherit the protected thing.
default
f default atcess means that only eode within the same patkage as
the elass with the default thing tan access the default thing

private means that only code within the same class can access the private thing
Keep in mind it means private 4o the class, not private 4o the object One D
£an see another Dog abiject’s private stufh, but a Cat can't see 3 Doy's privates.

private

OEBPS/Image01125.gif
public MidiEvent makeEvent(int comd, int chan, int one, int two, int tick) {
MidiEvent event = nul!
try {
ShortMessage a = new ShortMessage () ;
a.setMessage (comd, chan, one, two);
event = new MidiEvent(a, tick);
}catch (Exception e) { }
return event; ew: Just ke
. Nokhing
} 7/ close makeEvent

e lask vevsion

/7 close class

OEBPS/Image01126.jpg
You mean, there's still
MORE? Doesn't this
book EVER end?

OEBPS/Image01127.jpg

OEBPS/Image01128.jpg
ot of e et blotk
.

void dostuff() { ive method
int 5 = 07 ¢ loal vavable seoped bo the Gl
’ k, and Y s
for(int y = 0 ¥ < 5; y++) { é—— pegimin of a for loop blotk, and ¥

stoped o only he for loop.

X=X+ yig “h“wbm.nw

No problem,
e
end of the for loop block
B E T Y ikl W't compilel
mplel y is out of scope heve! (this i
) Bhe vy ok n some obher avgrage o oSt
d o the method blck,now s s et of ope

OEBPS/Image00893.jpg
vt need to
doStuffO doesn’ iy
ieed, 50 w
3;»4 r‘;::: the whole method.

public void go() {
doStuff () ;

&

) Nows enly these tuo method zalsgre grouped
inte one abonic uni. When you e 15
Sprehronized keyword WITHN « method,
rather thin in 3 method declavafpc

h3ve Lo provide an argument it o 4
oRject whose key the thread roos to get
Although there are ofe, 3¥s o do it yo
il shmest ahaays synchroniag o o Current
et (bhia) Thgh et btk ot
lock i the whole methog WEre Synthronized

OEBPS/Image00894.jpg

OEBPS/Image00897.jpg

OEBPS/Image00898.jpg

OEBPS/Image00895.jpg

OEBPS/Image00896.jpg

OEBPS/Image01133.jpg
h
lav ints go inside €ac!
Plhe cipt lements 423113

324[3.7[0]

int array (int(})

int array (inf[])

1 arrgy, (Gintg))

qdbles
fevente V3¢
A k3 ¥
2
int] int[]int]] intl]

: Remember that 4, i i
= int array object (int[J[) ¢, areay holding »:;::ij (‘:'fn:_ :::YJ:)L{
int|

OEBPS/Image01134.jpg
public static final int JERRY
public static final int BOBBY
public static final int PHIL

// later in the code We've hfing tht by bhe 4im e o

if (selectedpandiembes — gEmry) (“tectedBandMember” has a valid valuel
// do JERRY related stuff

OEBPS/Image01135.jpg
ss dekinoon

as
mple &
oaks like 3.9
T kind :"‘t s BT e
public enum Members { JERRY, BOBBY, PHIL }; Joesnt ¥ ou\ass»“"”w N
public Members selectedBandMember; setid! Vind waled “Members
nomerated e
// later in the code .
The “slectedBandMember” varizbe s of 4ype
if (selectedBandMember == Members.JERRY) (“Members”, and tan ONLY have a value of
// do JERRY/related stuff /\ “JERRY", “BOBBY”, or “PHIL”
}

No need £o worey abat. this variable's vlue! The syntax 4o vefer 4 an enum “inskance”.

OEBPS/Image00067.jpg
Java heve too

OEBPS/Image00309.jpg
We were underpaid,
overworked coders 'til we
tried the Polymorphism Plan. But
‘thanks to the Plan, our future is
bright. Yours can be fool

OEBPS/Image00552.jpg
Amidh packaye

import javax.sound.midi.*; e
« impork the ¥
public class MusicTestl { We need 3 Seauenter doject. |€'s the
public voi waim part of the MIDI device/msbrument
il e wimg, € the thing thats el
equencer sequencer = onces al the MIDI informat into
ncer = MidiSysten.getsequencer () ; ’:?S;a,fmh: A oy
have o ask the

System.out
.println("We got a sequencer”) Ry oo ourselves == e
: MidiSystem o gve v

} 1/ close play

public stati
e - atic void main(String(] args) {
s:
icTestl mt = new MusicTestl();
mt.play() ; i
} // close main

B e

OEBPS/Image00066.jpg
Vavd

OEBPS/Image00308.gif
Lolol=lk < —[=u
w = <
o[=] o] =] —aw=[a[-[>
| o] NC=[
wiolw[=[w=F] L=l |[<
NN < Lo o«
= [=] =[o[<]~ ©
= .- ol [= —
= > =[]l
ENEERD IS
e a > [=]| [~
o W] [al=lo[x[</wlw] [«
= FEENBEE
= -« o
o[s[w[ow] = =
Lo <[o |—

OEBPS/Image00069.jpg
butter here

4

OEBPS/Image00311.jpg

OEBPS/Image00550.jpg
You make a beatbox loap (s [b-|
by putting checkmarks in

8006

sassoum &

beat. drum pattern)
the boxes.

Cyber BeatBox

Closed Hi-Hat (3
Open Hi-Hat P
Acoustic Snare O3 il
Crash Cymbal 3 ¢ X
Hand Clap oue i
L the
Tl dance beat T sttt A youe taTe
Hi Bongo org with Yo
Maracas eat. Y““’"T’
Whistle Wit “Sendl
Low Conga —
Cowbell ndy; groow
Vibrasiap Chiis: groove? revised €
Low-mid Tom intomin
= Nigel: dance beat '3 message.
High Agogo ther piagee g ’; from
e o2 bhe patter, Gy
a

OEBPS/Image00068.jpg
Cams £o\\aY

[\nas Java

OEBPS/Image00310.jpg
Square Girde Triange Amosba
otate() rotae() rotas() rotae()
playSound) playSound() playSound() playSound()

They’re Shapes, and they all rotate and Shape

playSound. Solabstracted out the I

cowmon features and put thew intoa playSound()

new class called Shape.

superclass

shape | Thenlinked the other

rotate()

four shape classes to

paysound | The new Shape class,

ina relationship called

inheritance.

Square.

Gircle

Trisngle

Amosba

Ilooked at what all four
classes have in common.

U

OEBPS/Image00551.jpg
play high C)
Wit it hard

informabion
MIDLKIE 2 Pl be

shord o 3 170 2k vave 7

Yike sheek ™!

MIDI device knows how to
‘vead' a MIDI file and play back
the sound. The device might
be a synthesizer keyboard or
some other kind of instrument.
Usually, a MID insbrument
can play a LOT of diffevent
sounds (piano, drums, vialin,
et2), and all at the same time
So a MIDI File isn't like sheet
masic for just one musiian in
the band — it ¢an hold the
parts for ALL the musitians
playing a particular song,

OEBPS/Image00071.jpg

OEBPS/Image00070.jpg
As I 0[[

OEBPS/Image00312.jpg
superclass

(more abstract)

rottel)
SN | playsound)

Shape

Overriding wethods

Square

subclasses ‘[x
(more specifie)

Gircle Triangle

Amosba

o

1 made the Amoeba class override the
rotatel) and playSound() methods

of the superclass Shape. Overriding
just weans that a subclass redefines
one of its inherited methods when

it needs to change or extend the
behavior of that method.

rotate()
1/ amosba-specifc
i otata code

playSound()
1 amoeba-spacifc
1/sound code

OEBPS/Image00072.jpg

OEBPS/Image00544.jpg
le_Edit_Window Help Electrici
%java StaticTests

super static block
static block 3

in main

super constructor
constructor

OEBPS/Image00545.jpg
i o e ol

% java Fulldoons
£ull moon on Fri Feb 06 04:09

£ull moon on Sat Mar 06 16:38
£ull moon on Mon Apr 05 06:01

2004
2004
2004

OEBPS/Image00303.jpg
Seroll through the
ard sl o G gy 2
verzizé the list in the
VT Tame £ only ¢lzece.
from that yaekag:y ’

® i
it b
Serd e ane €0
and ¢! e tass Lnat il
e

< Yollcll+
Iasa T
oo o
I ooyt
it concurent
inauatconunentiog
o k
imauieggg |7
(e 115
T — 7
FandomAccass

ot

‘Soneawap
‘Soteaser

Cusses
AsstacCotecion
Aosractar
aracitsn
Aniracuie
Sosnacsel

At

Ay

oised

Galengar

Cotectons

Gunency

Bae

[

= O G 2 e
v 12 s comser 5 0rdocs ofa coco:

Fields eried from cls Fva l ABSraciL i

et by the collecon’s eraor

“Consruces a ety it it o

Method Summary
" et e o e e coto el
[Eiies s, 2 stemenes

e

e specitid lement t he specifed

38301 oacscacr extonss > <)
"Appends alof the lmens n the peifiedCollcion o the e of s s in
e e ot they are renamed by the speifi Collction' o

e all oftheclemens n e speifid Collecton o i s, g i he

PR

OEBPS/Image00543.jpg
%java StaticTests
static block 4
in main

super static block

super constructor
constructor

OEBPS/Image00063.gif
class IfTestz {
public static void main (String(l args)
int x = 2;
if (2 == 3)
system.out.println(“x must be 37);

} else
System.out.println(“x is NOT 3");

This runs no matter what”);

System.out.println(

new avtpet

% java Iffest2 /

x is NOT 3
This Tuns no matter what

OEBPS/Image00305.jpg
a.add(o,

2-2dd(1, 7ong. |,

zeror)

public static void printAL(arraylist<string> al) {

if (a.containg (v

e
aadd(vz. gy, 0

}

public static void main (String[] args) {

System.out.print (element + *

}

System.out.println(®

i

a.contains (“three”)) {
a.add(“four”) ;

public class ArrayListMagnet {

if (a.indexOf (“four”)
a.add(4, “4.27);

import java.util.

ArrayList<string> a = new ArrayList<string>();

OEBPS/Image00548.jpg
% java Fullloons

full moon on Fri Feb 06 04:09:35 MST 2004
£ull moon on Sat Mar 06 16:38:23 MST 2004
full moon on Mon Apr 05 06:07:11 MDT 2004

OEBPS/Image00304.jpg
T ot Voo T O

OEBPS/Image00549.jpg
Sure it's risky
but T can handle it if
something goes wrong,

OEBPS/Image00065.jpg
—

Java inside

OEBPS/Image00307.jpg
zero

import java.util.*;

public class ArrayListMagnet (
public static void main (String[] args) {

Arraylist<string> a = new ArrayList<String>();

a.add(0, "zero") ;
a.add(1,"ene") ;

a.add(2, "two") ;

a.add(3, “three”) ;
printaL(a) ;

if (a.contains(“three”)) {
a.add(“four") ;

a.remove(2) ;

Printal(a) ;

if (a.indexOf (“four”)
a.add(4, “4.2");

printaL(a) ;

if (a.contains(“two")) {
a.add("2.2");

printal(a) ;

public static void printAL(ArrayList<String> al) {

for (String element : al) {

System.out.print (element + “ ")
}
I System.out.println(" “);

OEBPS/Image00546.jpg
long dayl = c.getTimeInMillis();

c.set(2004,1,7,15,40) ;

out;

static java.lang.System.

static int DAY_TM = 60 * 60 * 24;

(“full moon OR BEC”, ©));

(“full moon on s, €))i
import java.util.s;

ystem. out

out.println '

(string. format
Calendar c = Calendar.getInstance() ;

lan

static import ja

©.set(2004,0,7,15,40) ;

OEBPS/Image00064.jpg

OEBPS/Image00306.gif

OEBPS/Image00547.jpg
File_Edit_Window Help Cling

$java StaticTests

super static block
static block 3

in main

super constructor

constructor

OEBPS/Image00078.jpg
%java PoolPuzzleOne

a noise
annoys
an oyster

OEBPS/Image00320.jpg
Animal

picture
food
hunger
boundaries
location

—

e bebker overvide these two metheds et

B P eskeNaseD), so that cach aninal fpe cor
Geline ks own specific behavior Sor eating and
e e e, For now, it looks ke sleep()and

Toam(can stay aereric

OEBPS/Image00077.jpg

OEBPS/Image00319.jpg
In the dog
community, barking is an
important part of our cultural
identity. We have a unique sound,
and we want that diversity fo
be recognized and respected.

I'm one bad*ss

plan-eater.

OEBPS/Image00080.jpg
% java Shufflel
a-b c-d

OEBPS/Image00322.jpg
picture
food
hunger
boundaries
location

‘makeNoise()
eat()

sleep()
roam()

makeNoise()
eat()

makeNoise()
eat)

makeNoise()
eat)

‘makeNoise()

makeNoise()

makeNoisel)
eat()

OEBPS/Image00561.jpg
Throwable

gethlessage()
printStackTracel)

Park of the Exception
o vievavehy. They 3
extend tlass Throwable
and inherit two k&Y

mekhods:

Exception

10Ex
ception
IterruptedException

OEBPS/Image00079.jpg
System.outprint(* *);
System.outprint(‘a’);
System.outprint(‘n’);
System.out print(‘an’);

x=x+2;
x=x-
x=x-1;

System.out.print(‘noys);
System.out print(‘oise);
System.outprint(* oyster”);
System.out print(‘annoys’);
System.out.print("noise”);

OEBPS/Image00321.jpg
Animal

picture
food
hunger
boundaries
location

makeNoise()
0

Wolf 3,g Dog are bogy, Canines.

-
it I

) pavbe thevety
T‘v"(b::a s BOZfBH elasses Lou!;i:;:a sk
¥

som

makeNoise()
eat()

akeNose)
eal)

makeNoise()
eat()

makeNose)

makeNoise() | | ga)

eat()

OEBPS/Image00562.jpg
o
// do risky thing s J“UM du\aw:a
od avaymen

o

} catch(Exception ex) {
// try to recover

} N 7 Code opfy
“eplion iy e ¥ on

OEBPS/Image00082.jpg
Fl v P

aan ‘Llojor v

R w o T B

RIAINCH |a| b Vv L

A T N|T o A I
v L moR| [Tl
'sly’s TlemlouT P RIINT

.8 A T A

A I L s M
"sT R IN[6| "ECL|A[RE

] R [T [T

c i H

v o

“clom M AIND

class Test (

public static void main(String [] args) {
int o
int y = 0;
while ((2<5) {

Possible output:

v =% -y 22 46
R 11 34 59
y=v+2

et 2ol 02 14 26 38
R

02 14 36 48

00 11 21 32 42

S (L SR 11 21 32 42 53

x=x+1;
if (y <30 € 00 11 23 36 410
x=x-1

) 02 14 25 36 47

)
v=y+2;

OEBPS/Image00081.jpg
83ava PoolPuzzleOne
a noise

annoys.

an oyster

OEBPS/Image00555.jpg
void moo() {
if (serverDown)
explode () ;

class you)
iy)

OEBPS/Image00556.jpg
My mao()
method il

I wonder if
that method
could blow up...

explode if the
server s down.

o

class you

o didn't write

OEBPS/Image00314.jpg
superclass
(wore abstract)

~

subclasses
(more specific)

> [Fresgn |

SuperHero
b instance variables
specialPower (state, attributes)
useSpeciaiPower() | Wethods
PuIONSuit) (behavior)
Pantherban Overriding

methods

Y

useSpecialPower()
putOnSuit()

OEBPS/Image00553.jpg
his code won't ompile The compiler says theve's an
unweported exteption’ that must be caught or declared.

Fie Edt_Window Holp Saynner \

\\
%3 MusicTestl.
javac MusicTestl.java \,
MusicTestl.java:13: unreported exception javax.sound.midi
MidiUnavailableException; must be caught or declared to be
thrown
Sequencer sequencer = MidiSystem.getSequencer();

1 errors

OEBPS/Image00313.jpg

OEBPS/Image00554.jpg
write S o
n

i TS

your code class you
el didn't write

OEBPS/Image00074.jpg
if (x == 2) (

System.out.print (b c¥);

class Shuffle (

public stat

¢ vold main(String [] args) |

java Shufflel
a-b c-d

OEBPS/Image00316.jpg
superclass

Doctor
worksAtHospi one instance variable
treatPatient () one method

subclasses f K
Surgeon FamilDoctor
Overrides the inherited makesHouseCalls s cne new.

instance variable

weatPatient() method | teatPatent ()
gveAdvice () ‘Adds one new method
Adds one new method | makelncision()

OEBPS/Image00559.jpg
ANPOrE JRTAR SO LAY Y

public class MusicTestl {
public void play() {

try { y
uk the visky hing,
Sequencer sequencer = MidiSystem.getSequencer () ; &— T o blotk
System.out.println(“Successfully got a sequencer”); ™ ° v
} catch(MidiUnavailableException ex) {
System.out .println (“Bummer”) ;
, \
} // close play make ¢ ”
doif 4 lock f,
or
public static void main(String(] args) (Bappeng - CePtions| :m:f t 4,
MusicTestl mt = new MusicTestl(); M""“"‘Vﬂ‘ba Obher wopg,
il 8
nt.play() ; by the <all ¢, EReeption is theo,
} /7 close main Yencer()

N e T

OEBPS/Image00073.jpg

OEBPS/Image00315.jpg
Tinherited my
procedures so I didrit
bother with medical school.
Relax, this won't hurt a bit.
(now where did T put that
power sa...)

OEBPS/Image00560.jpg
T'm gonna
TRY this risky thing
and I'm gonna

CATCH myself if I fall.

OEBPS/Image00076.jpg
class Test {

public static void main(String

int x
int y
while (x <5)

{

0

args) {

Candidate ¢,

99¢5 here

System.out.print(x + "" + y +" ");

x=x+1;

Candidates:
ye=x-y
Y=y+x
Y=y
LECy > 4) (
y=y-1;
)
x=x+1;
¥y x 2}

HER(EVE =
x=x-1;

Possible output:

22

11

02

02

00

il

00

02

46

34

14

14

il

21

il

14

59

26

36

21

32

23

25

38

18

32 42

42 53

36 410

36 47

OEBPS/Image00318.jpg
-

Animal

picture
food
hunger
boundaries
location

makeNoise()
eat()
sleep()
roam()

OEBPS/Image00557.jpg
Now that T
know, T can take
precautions.

your code
you

OEBPS/Image00075.gif

OEBPS/Image00317.jpg

OEBPS/Image00558.jpg
The API does tell you
bt getSequencer)
Eﬂs:qutmtr i o s .

n excepbion

- e sapases geusemetr L £ oo

Obiain the default sequence a:'“" has 4o declare

s e deul scquencer -
throw. might

Returns:
e defaultsequencer

Throws:
(e (s 0 - i the sequ

J1siagsce

Tesource restictions

encer is not available due

exteption —_

OEBPS/Image01059.jpg
try {

MyRemote service =

} catch(Exception ex) {

e el R
g.rebind (“Remote Hello” “2? 0)"
| service) ;

}

e your sevite 3 vame (413t tlients tan u3c
T in e vegstry) and cegster it
o AW vegbey. When you bnd ghe
i deyect, R swaps the series For the
seriie e the stub in he vegstry

OEBPS/Image01060.jpg
SPIts out two
Cola? Classes for 4, ew
dovtsay elas” ¥
Nobee bk Yo ot 2 e ki,
.)

$rmic MyRemoteImpl

MyRemotelmpl_Stub.class
]

MyRemotelmpl_Skel.class

OEBPS/Image01061.jpg
$rmiregistry

OEBPS/Image01062.jpg
$3java MyRemoteImpl

OEBPS/Image00287.jpg
private void checkUserGuess(String userGuess) {

wnotssessesss @
s @

for (DotCom dotComToTest : dotComsList) { 0
result = dotConToTest .checkYourse1t (vsexGuess) @)
if (result.equals(“hit”)) {

break; @
)

if (result.equals(“kill")) (
dotComsList. remove (dotConToTest); @
break

String result

i
} 1/ close for

private void finishGame () (
System.out.println(“All Dot Coms are dead! Your stock is now worthless.”)j
if (numOfGuesses <= 18) {

Syaten.out.peintln(*It enly took you * + nuotGuesses + ~ guasses.s \ @
Bysten-out.-peintla(" You. ot ut before your options sank.f1
} else {

System.out.println(“Took you long enough. “+ numOfGuesses + “ guesses.”);
System.out.println(“Fish are dancing with your options.”.

) se method

public static void main (String[] args) {
DotComBust game = new DotComBust (];
game. setUpGame () ;
game.startPlaying();

R periien @

__vepeat with all DotComs in the list

Print a message dellng the b
— this quy's dead, so Lake him out. of the user how he did in t:g ga:e Z:!:[.iiw

DotCons lst the aet out of the ooy

ement the mumber of quesses the user has made
__assums

__tell the game object
o set up the game

- e it's a ‘wiss) unless told othervise

ame ol otCom o thetk the user guess,
et of e ooy Some play L Uk bostort gy, 3k e Dot o O
€arly ro point in esting MPut and chorgor T K for yogr ’
the others "8 the guecs) _ eveate the game object

he

OEBPS/Image00530.jpg
%»c character
format (“$c”, 42);

he number 42 vepresert

OEBPS/Image00286.jpg
import java.util.my

public class DotComBust (

private GameHelper helper = new GameHelper();
private ArrayList<DotCom> dotComsList = new ArrayList<DotCom>(};
private int numOfGuesses = 0;

private void setUpGame() |
// first make some dot coms and give them locations
DotCom one = new DotCom() ;
one. setName (“Pets.con”) ;
DotCom two = new DotCom();
two. setName (“eToys.con”) ;
DotCom three = new DotCom();
three.setName (“Go2.com”) ;
dotComsList.add (one) ;
dotComsList.add(two) ;
dotComsList.add (three) ;

System.out .printin(“Your goal is to sink three dot cons.”); 1@
System.out .print1n("Pets.com, eToys.com, Go2.com”);
System.out.println(“Try to sink them all in the fewest number of guesses”);

for (DotCom dotComToSet : dotComsList) { @
ArrayList<String> newlocation = helper.placeDotCon(3): (@)
dorContioset. setlocat loncel s (newtocat o) @)

) /7 e :

private void startPlaying() (

while(1dotComsList . 1sEmpty ()} {
String userGuess = helper.getUserinput (“Enter a quess”); @
checkUserGuess (userGuess) ; @)

)

finishGame ()

sk the helper for a DotCom location
.

biize _gebwer input vepeat vith eath DotCom in the |
~

— e vavidbles ¥E ~éall the 5
BT b,ffﬁfﬁ'@‘{f"" on b Doty 0 P Chetklcrucs g
insbructions for from the helpey " Yo% Just got
e , gjve ‘em s long 3¢ the DotCom
ke thve DotCom LR 8 R NOT enty

—tall our owm finishGame methad ~ ~ names, and stick ‘em in

OEBPS/Image00531.jpg
567,890.25 When You have more o e

The rank is 20,456,654 out of 1

whith you

Pass them £0 the formatd)

We added tommas to both variables,
/e added tommas o both varibl rebid

and vestrieted the floating point
number (the second variable) 4o two
decimal places.

OEBPS/Image00289.jpg
private void checkUserGuess(String userGuess) {

P T ——— nerement the

String result = “miss”; g assume it's @ wiss)

sumber of guesses the user has made
unless told othervise
with all DotComs in the list

for(int = = 0; x < dotComsList.size(); x++) | ¢— vepest
dotComsList.get () .checkYourself (userGuess) ; €= yk the DotCom o check the user

result
auess, looking for 3 it (or il

if (result.equals(*hit”)) {

, ﬁ:ﬁ%’tﬁ;’;i early, no point

if (result.equals(“kill")) {
this guy's d

dotConsList . renove (x) ; 3uy's dead, o take him out of th
breaks & DokCons i o ek o o b po

)
} // close for

system.out.println(result); & Pnt the vesult for the wser BRE S i it
} 1/ close method nt & message Lelling the
user how he did in the game

.

private void finishGame () |
System.out.printin("All Dot Coms are dead! Your stock is now worthless.”);
if (numofGuesses <= 18) {
System.out.println ("It only took you ™ + numOfGuesses + “ guesses.”);
System.out.println(® You got out before your options sank.”);
}oelse
System.out.println(*Took you long enough. “+ numOfGuesses + ™ guesses.”);
System.out.println("Fish are dancing with your options”);
}
} 11 close ne

public static void main (String(] args) {
DotComBust game = new DOtCOMBUSE() 7 g— ¢pe,

game. setUpGame (} ; —_—

game.startPlaying(); Lell the game ot
Yo method tll e 9ome object 4, cof P the game
9ame play oo DL o start gy,
et i e, Keeps ading £, 1. 50

OEBPS/Image00528.jpg
%f floating point
format (“%.3£”, 42.000000);

OEBPS/Image00288.jpg
import java.util.*; Detlare and m‘\:}\i\\""‘;
public class DotComBust { Lne varidbles

private GameHelper helper = new Gamelelper();
private ArrayList<DotCom> dotComsList = new ArrayList<DotCom>(};
private int numOfGuesses = 0;

private void setUpGame() {
// first make some dot coms and give them locations
DotCom one = new DotCom();

one.setName (“Pets. com”] ; o
ects,

DotCon two = new DotCom(): Make theee foﬂm o

two. setName (“eToys. con”) ; gve mhna:eul by

DotCom three = new DotCom(); in the frvay

three. setName (“Go2.com”) ;

dotComsList.add (one) ;

dotComsList.add(two) ;

dotComsList.add(three) ; Print brief

instrutions for user.
System.out.println(“Your goal is to sink three dot coms.”);
System.out.println(“Pets.com, eToys.com, Go2.com”);

System.out.println(*Try to sink them all in the fewest number of guesse:

for (DotCom dotComToSet : dotComsList) { é—Repest vith cath DobCom in the list

sk the helper for &
ArrayList<String> newLocation = helper.placeDotCom(3); € DotCom sl::bsa:,hn)
AevayLis ings)-
dotConToSet .setLocationCells (newhocation) s €= gy 1y e
e se: method i
DotCan 10 on this
oy jve it
i =tom It L fro e et you

private void startPlaying() (),
A long a5 the DotCom lisk is NOT emply (the | means NOT, it's
while(!dotComsList.isEmpty () (€ the same as (dotComslist iEmphy() == false).

string userGuess = helper.getUserInput (“Enter a guess”); & et user mput
checkliserGuess (userGuess) i g
our o
v checklhseruess methoq

} // close whil
finishGama (15 € Call our own finishGame method

o T mm—

1}

OEBPS/Image00529.jpg
/%x hexadecimal
format (“Hx", 42);

OEBPS/Image00291.gif
lmport java.io.*
import java.util.*;

public class GameHelper (

private static final String alphabet = “abcdefg”;
private int gridlength = 7;

private int gridsize = 49;

private int [] grid = new int[gridSize];
private int comCount = 0;

public String getUserInput (String prompt) {
String inputline = null;
System.out.print (prompt + *
Try (
BufferedReader is = new BufferedReader (
new InputStreamReader (System.in));
inputLine = is.readLine(};
if (inputline.length()
} catch (IOException e] {
System.out.printin(“IOException: + e);
}
return inputLine.tolowerCase (};

0] return null;

)

public ArrayList<String> placeDotCom(int comSize) {
ArrayList<String> alphaCells = new ArrayList<String>();
// holds “£6' type coords

string temp = null; // temporary String for concat
int (] coords = new int[comSizel; /7 current candidate coords
int attempts = 0; // current attempts counter
boolean success = false; // flag = found a good location ?
int location = 0; // current starting location
comCount++; // nth dot com to place
int iner = 1; /7 set horizontal increment
if ((comCount % 2) { // if odd dot com (place vertically
incr = gridLength; /7 set vertical increment
)
while (!success & attempts++ < 200) // main search loop (32)
location = (int) (Math.random() * gridsizel; /7 get random starting point
//System.out.print (" try " + location);
int x /7 nth position in dotcom to place
success = true; 7/ assume success

while (success && x < comSize) { // look for adjacent unused spots
if (grid[location] — 0] (/7 if not already used

OEBPS/Image00290.jpg
MIPOLE J0FRI Rl

DokCon’s instante variables:
ﬁs — an AveayList of cell locations

public class DotCom {
private ArrayList<String> locationCell;

private String name; — the DotCom's name

- updates
public void satlocationCalls (Arraylist<Serings loc) { G A setber methed that up

DotCom's lotation
locationCells = loc; };:.dom Toestion provided by
+ the Gameltelper placeDotCom()
method.)
public void setName(String n) { ¢— Yeur basic setter method
name = n;
i The AvvayList index0£() method in

ackion] (€ the user quess is one

nbies in the Arvaylist index0f()
public String checkYourself (String userinput] { ;ﬁ":‘m:{‘& ﬁr\:]\]‘—\ﬂ- e stion: |

String result = “miss”; ok, index0FC) vill veburn -
int index - locationCells.indexof (userinputi; &
if (index >= 0) (p— AvrayList's vemovel) method to delete an entry.

locationCells. remove (index) ;

if (locationCells.iskmpty()) (§——u_ Using the isEmpty() method to see i all

result = “kill”; of the locations have been guessed
System.out.println(“Ouch! You sunk “ + name + “ : (“);
} else {

result = “hit”;
) 1/ close if Tl the v vhen 2 Dot Con been sunk
} // close if
return result;
Reburn ‘wie o 0 o1,
} // close method e
V' // close class

OEBPS/Image00532.gif
e otc

String.format (“%tc”, new Date()

The complete date and

Sun Nov 28 1. 1 MST 200

OEBPS/Image00292.jpg
coords [z++] = location; // save location

location += incri // try ‘next’ adjacent
if (location >= gridSize) (// out of bounds - ‘bottom’
success - false; // failure

)
if (x>0 && (location § gridlength == 0)) { // out of bounds - right edge
success = false; // failure
)
} else {
// System.out
success = fals

// found already used location

// failure

} // end while

// turn location into alpha coords

int column =

// System intln("\n")

while (x < comSize) (
grid(coords(x]] = 1; // mark master grid pts. as ‘used’
row = (int) (coords(x) / gridLength); 7/ get row value
column = coords(x] % gridLength; // get mumeric column value

temp = String.valueOf (alphabet.charAt (column}); // convert to alpha

alphaCells.add (temp. concat (Integer. toString (row))
pn

em. out.print ("

hacel

s the stabent
et 4 TR e

stem, out.prin ") s

return alphaCells;

OEBPS/Image00523.jpg
M ¢
Formak soenif flore eharacters 4,
: = ’":L specifiers for Lhe intlude in the Stying 3,
sekers ko inchde v Setond rgument to the' bhe setond avaument '

B Sk et methed (B) formatted and meorteg Araument. 45 be
Seom Format() j, (‘[formatted
T o <

format (“I have %.2f bugs to ﬁx?’, 476578.09876) ;
(Vi

-

PERRSNN 1 have 476578.10 bugs to fix

Notice we Jost i
africe ve lost some of), |

aFter the et me of the umber,
what the w773 Point. Can

Char:

You guess

OEBPS/Image00283.jpg
jt and 1o make Doy,
 irpy! n .
o,
o,

o
oY
Zotes and plas wiy,
2
DotComBust DotCom GameHelper
The game class. ‘The actual The helper class
Makes DotComs, DotCom objects. (Ready-Bake).
gets user input, DotComs know their It knows how to
plays until all Dot- name, location, and accept user com-
Coms are dead how to check a user ‘mand-line input,
‘guess for a match. and make DotCom
fcatons

5 Objects:

Do
DotComBust Do GameHelper
DotCom

Plus 4
ArrayLists: 1 for
the DotComBust
and 1 for each
of the 3 DotCom
objects

OEBPS/Image00526.jpg
% [argument number] [ilags] [width] |.precision]type

7 P T R
We I get to this later This defines the Vou alread:
it lets you

i ndat
AT b NI ke e Ty 2oty
avgument i I;,

“ il Lhis one: w ij\ yae?
- mathint characters the the precision: In d will usually
e (Do oo speial Lrmatt .w@ma il be wed Thab's S words ”; e
sbout it just yet) ! ‘*";.'3; o potkrg Hniimum ¥ ot b themnber 0 S e
Lo ,,,.,hm in TOTAL. [the mumber of detimal I\w s ﬁm pomt
"‘*hmm, to s longer than the Dot forsetfo by
B e morbers vidth 1 1 be wsed ahde B¢
vt M e v

Bham he widh, 1 be
padded vith zevoes.

% [argument number] [flags] [width] [.precision] type

N

format (“%,6.1£”, 42.000)

There's no “argum t 4
'x:afmd n i :2;!2"25&2
t ll the other pietes are {2

OEBPS/Image00527.jpg
%d decimal
format (“%d”,

OEBPS/Image00285.jpg
DotComBust

‘Gamefelper helper
AnayList dotComs_ist
intumOfGuesses

setUpGame()
starPlaying()
checkUserGuess()
finishGame)

OEBPS/Image00524.jpg
format ("I have %,.2f bugs to fix.”, 4

I have 476,578.10 bugs to fix.

imstructions

578.

OEBPS/Image00284.jpg
=== The menl rettod
e pisgaliotid
@ | s et s the
S oyt
o gt

Soranaus

s

rstnvtes

Gonsraper

ortimous (me)

{rionc of Gomeneer,

o ot harwi e

oorcomust T gome o o work
e

The DorCamust object
nstnmares o Arroy st
Tt wil hid e 3 Botom
e

eer

Arvapist obect e
ol Dot objects)

The bercomust obect
creates hree Borcom
ahiects (ond puts them in

v
ohjact ArrayList object fo. e
T, e
T tcombsthjct s e P ——

e e
o e heier sbiect e A B2
R RS R e
e cal o rtorn

reier sbsect for ¢ oarn fora
SofCor (o tha 3 . e for
e Botcom)

preoytst ot

Arvaistobget to

Fidbaicamooects S

DorCombustchiec sk the neper The DesCamBust objectlops though the st
iect fora user guss (the helpr of Do, ok suehare 1o check e wer
g th e nd ¢1s npot From e for march. The Darcom check 14 s
T comner Inel Sereyiorendrenrs a rest (A et S16)

SHES

g e rpo, ek eoch DarCen vyt object to
t Sk o march ars contang 1o borcom s rs
vk ey

OEBPS/Image00525.jpg
But how does it even KNOW
where the instructions end and the
rest of the characters begin? How come
it doesn't print out the *f*in *%.2f"> Or
the "2"2 How does it know that the .2f
was part of the instructions and NOT
part of the String?

OEBPS/Image01052.jpg
MyRemote.java

OEBPS/Image01048.jpg
The Real Sevvice: The elass

€ Liith the methods that do
e veal work. [£ implements
The vemote interface

MyRemotelmpl.java

OEBPS/Image01049.jpg
Runring vmic agginst the actsdl

oite implementation ¢lass

Spits out 4,
Clasis G gy
helper object

Fie Edt_ Window Hop Eat

$rmic MyRemoteImpl

Bl

MyRemotelmpl_Stubclass

MyRemotelmpl_Skel.class

OEBPS/Image01050.jpg
$rmiregistry

OEBPS/Image01051.jpg
%java MyRemoteImpl

OEBPS/Image00298.jpg
IN A NUTSHELL

A De \Lm/; Quick Reference

O'REILLY* David Flanagan

OEBPS/Image00541.jpg
Key Calendar Methods

nt)

add(int field, int amou!
from the calendar’ field.

‘Adds or subtracts time

get(int field)
Returns the value of the given calendar field.

getinstance()
you can specify alocale.

Returns a Calendar,
Key Calendar Fields

getTimelnMillis()
Returns this Calendar’s tme n milis, 25 2 0ng.

DATE / DAY_OF_monTH
Get/set the day of month

HOUR/Hour _OF DAy
Get/set the 12 hour or 24 hour vy
ur value,

MILLISECOND
Get/ set the milliseconds,

roll(int field, boolean up)
‘Adds or subtracts time without changing larger fields.

set(int field, int value)
Sets the value of a given Calendar field.

set(year, month, day, hour, minute) (all ints)
‘A common variety of set to set a complete time-

setTimelnMillis(long millis) MiNuTE
Sets a Calendar's time based on a long mill-time. Get/set the minute,
11 more... MoNTH
et /set the manth,
YEAR

Get/ set the year,

ZONE_OFFSET
Get/ set raw offset of GMT in mils

/I more..,

OEBPS/Image00297.jpg
import

or

OEBPS/Image00542.jpg
wne?

orks

o use
ety b

arn 2

import static java.lang.System.out; /

import static java.lang.Math.

class Withstatic {
public static void main(String [] args) (
out.println(“sqrt “ + sqrt(2.0));

out.println(“tan “ + tan(60));

N\ S

Static impovts in atkion

OEBPS/Image00300.jpg

OEBPS/Image00539.jpg
Jon 1, 200% ak'i?a
vl o
Calendar c = Calendar.getInstance(); ﬁt&?&i s zoro-b
c.set(2004,0,7,15,40) ; Cover 1 o 250 0

onds.

long dayl = c.getTimeInMillis(); k" mount of millisec

4h of mills, then update the time.

dayl += 1000 * 60 * 60; Add an how's
) it's like dayl = dayl +

c.setTimeInMillis(dayl); & (Notice the "=
System.out.println(“new hour “ + c.get(c.HOUR OF_DAY));

c.add (c.DATE, 35); S 7dd 35 days to the date, which

should move us into February.

System.out.println(“add 35 days “ + c.getTime());

c.roll(c.DATE, 35); < “Roll” 35 days onto th
ond

is date. This
System.out.println(“roll 35 days “ + c.getTime()); “volls” the date ahead 35 days, but
DOES NOT ¢thange the month!
c.set(c.DATE, 1); <<=
System.out.println(“set to 1 “ + c.getTime()): We've not inerem,

ot incrementing)
doing a “set” of fhe dorcre St

OEBPS/Image00299.jpg
G Java™ 2 SDK, Standard Edition
‘é@ Documentation

—_—

JAVA Version 140

[[Search Generalinfo API& Language Guide to Features Tool Docs Demos/Tutorial

Yous feedbackis important to us. Please send us comments: Contacting Jova™
Softwese

Search the Documentation Location

Search the online documentation website

OEBPS/Image00540.jpg
new hour 16

add 35 days Wed Feb 11 16:40:41 MST 2004
roll 35 days Tue Feb 17 16:40:41 MST 2004
set to 1 Sun Feb 01 16:40:41 MST 2004

OEBPS/Image00302.jpg
€1a55 name —_—

package name |

elass destrigbion |

methods (and of,
o st g™

N

R

Jave il Currency

Returmed By: o en. Decimalfomat g Cutency(). v o DecimalformatSymbols g1 Curency().
v st Nombeormat. s Curncy(), Cunecy.gelinstance)

Date

javatit

o 1.0
loncablo seralzablc comparable:

Thisclass represents dates and times and les you work with them in & systenvindepen-
dens way. You can create 2 Date by specifying the number of milliscconds from the
epoch (midnight GMT, January 1st, 1970) or the year, month, date, and, opionally, the-
hour, minute, and second. Years ae specified as the number of years since 1900, If you
call the Date constnuctor with no argumens, the Dae i nialized 1o the current time.
and date. The instance methods of the class allow you to get and set the various date
‘and time fieds, 10 compare dates and times, and 1o convert dates o and (rom s
representations. As of Java L1, many of the date methods have been deprecated in
favor of the methods of the Calendar ciss.

() (o] s

{uthc s Dat poents G, Conpae Sl |
/ot s
i Date)
s Daton)
i DateS)
il Dttt et o,
ol Dot et it e, s,)
Dot et ot st ot e, s, o i o
1 opery s e oy popery)
i g goTme(
v slTmetg),
17 sttt
i ok atrjn 0 e
i e baor{ 0o).
13 o comparogva e et
1t g ngorat
2t i compareocict)
1 e et e Ot
5 et ol
bl ol equalsCct)
i hashCodet
o S toSing
/D s
¥ e goate)
i i g
i o gothours)
et gthoutes
et gthont
ot getSocons
{10 1 geTimezoneOfset
e getear)
bl Sl o A
ot o setDatof).
ot i suthourst b
e 1 sethnutes e
bl o subonthy s o

OEBPS/Image00301.jpg

OEBPS/Image00533.gif
Just the time Tetr

String.format (“$tr”, new Date());

OEBPS/Image00534.jpg
MARS LOGAY = nom Uatesii
string.format (“$tA, %tB $td”,today, today, today)
e e
he conma is ot part. of the formatting.. i’

just the chavacter e want printed ater the
Tirst inserted formatted avqument

Sunday, November 28

OEBPS/Image00294.jpg
Java.util.ArrayList
o~~~

\
Package name Jlass wame

OEBPS/Image00537.jpg
Calendar cal = Calendar.getInstance();
This syntax should look familiar at this
boint — we're invoking a static method.

OEBPS/Image00293.jpg

OEBPS/Image00538.jpg
Wait a minute.
If you can't make an

instance of the Calendar
class, what exactly are you
assigning o that Calendar
reference?

OEBPS/Image00296.jpg

OEBPS/Image00535.jpg
Let's see... how many work
days will there be if the
project starts on Feb 27th and
ends on August 5th?

i

OEBPS/Image00295.jpg

OEBPS/Image00536.jpg
K7 The compiler won't allow this

Calendar cal = new Calendar():

OEBPS/Image01055.jpg
tion;
public String sayHello() throws RemoteExcep

B T el e i na be shipped
over the wire from Z:: server back to
Ehe client, 5o it must be Seviglizable

That’s how arge and veturn vlues oot
Packaged up and sent.

OEBPS/Image01056.jpg
MyRemotelmpljava

OEBPS/Image01057.jpg
public class MyRemoteImpl extends UnicastRemoteObject implements MyRemote |
public String sayHello() {

return “Server says, ‘Hey’"; - ¢ Compiler will make sure that
) F«, e mrwgmtga all the methods
// more code in class vom the interfate you implement. [n

) Ehis ease, there's only one

OEBPS/Image01058.jpg
public MyRemotel
mpl () thre You don't have 4o put anything
ey - Lt o Ju;g need @
way bo detlave that Your supertlass
WY ¥ thor throws an excegtion

OEBPS/Image01053.jpg
Your interface has to

Tmounte that 5 o
e method ealls An
e fate cant implontpl
arything bk i n extend
ther interkates: =

ub
public interface MyRemote
Remote extends Remo
te {

OEBPS/Image01054.jpg
eckate is in javarm
ort java.rmi.; &— the Remote intertace
i mp« ATl k7

Y Every vemote method call i

—_— Remote extends Remote { = considered 'visky’. Declavine
PUbLAC Jntentoce N Hello() throws RemoteBxception; ('l D b
public String sayl method forces the client
\ to pay attention and
acknouledae that things
might: nob work.

OEBPS/Image00272.jpg
Arraylist

regular array

st<string> myList = new

String (] myList = new

tring(2];

3 ("whoohoo”) ;

new String (“whoohoo”];

myList(

String b

myList (1

b;

nt_thes:

string o = myList(1];
myList(1) = null;
boole false;

string item : myList)
b.equals(item)) (

isIn = true;

break;

OEBPS/Image00265.jpg
§ e’ in @ particular index in e Ny means that
e el lotation t o 1y, the the OTHER
arvay (otstionCell) has begn it

false false true

£ 3reay helds three vl ve, vesenting
h S RS e b cellin the Dot
el ey S lotation eells amz For example, if the
mhvcsew: u‘\d by e I_I_I_I cell ot index 2 i hit, then set index 2.4,
(his would & ey the WL areay b, s

stance variable o
"T.g DotCom)

OEBPS/Image00508.jpg
“This is stupid. You mean I carit
just make an ArrayList of infs?2? T
have to wrap every single frickir' one in a new
Integer object, then unwrap it when T try
to access that value in the ArrayList?
That's a waste of time and an error
waiting o happen..

OEBPS/Image00750.jpg
esex’ doesnt

16 the Fle “MyGam ey

exist, i will be ereated

/

FileOutputStream fileStream = new FileOutputStream(“MyGame.ser”) ;

'\Mak“mou

nows how 4

tptSires, o
et & SOt tra
iy

n

OEBPS/Image00264.jpg
4 2

6
The arvay iy yum voriable that
&« ho)d: e Do 2ell locifion,
+ a(Cem Aqux the 3 \alues of
5, it Those are 4
fonCell 4
(o | o | 7] |
the DotCom)

he numbers
€ user needs { g,

OEBPS/Image00509.jpg
Make an AreayList (Remenber, before 50 You tould not
e weve lisks of Objects)

public void doNumsOldWay() (
“geiby the TYPE, s al Ay

ArrayList listOfNumbers = new Ar:
rayList () ;
3 4o the i

1 add the primitive
Inkeger first

1listofm
nmbers . add (new Integer(3)); €— 1 G
o wrap it in an

<o you have

Integer one = (I stofNumbers . get (0. < ovt 35 bype
nteger) li get(0); £ iy,
E Comes 2l

int intOne = :
one.intvalue() ; Dbigck, bk You c0n 635
the Objeek bo an Inteser

Finall
ol you can
t of the y,,&ng the primitive

OEBPS/Image00751.jpg
ObjectOut)
putStream os =
8 = new ObjectOutputStream (file
-eStream) ;

0Ob ezwut)vu&,ibrum leks you wrike dojects,
bty ot divckly cometk b2 B 1t
Ot de Lo be fed 8 helper” THS achually
" led ‘¢haiming one <hream to another

OEBPS/Image00267.jpg
locationCells array
BEFORE any cells
have been hit

locationCells array
AFTER cell 5, which
was at index 1 in the
array, has been hit

The arvay sbarks oot with 5 4z

3, and'we loop through afl 3 cells
{postionsin the arvay) Ly io !
£imateh bebueen the wier ucss oy
the cell value 45,).

When cell ‘5’ ;5 hit, we make a new,
malle areay with'only The vemey
iro celllotations, and dssig it 1o e
original locationCells vefevmmes

OEBPS/Image00506.jpg
Primitive

OEBPS/Image00748.gif
isrGameCharacter
“%g88MOTpoworLjava,lang/
String; [weaponst[Ljava/lang/
String;xpatifur [Ljava.lang String;* VA
E{Gxptbowtswordtdustsq” »tTrollug”th
are handstbig axsq”xtMagicianug™tpe
istinvisibility

OEBPS/Image00266.jpg
3 - at a particular cell lotation means that the cell
¢ has alveady been hi, <)

o we've only looking for pop..
" 5 -1 resobive mimbers in fhe arvay A

ationCells
r:smncz variable of
the DotCom)

OEBPS/Image00507.jpg
'y \mmbﬂ

Integer objery

5
tss

OEBPS/Image00749.jpg
GameCharacter

int power
String type
Weapon] weapons

getWeapon()
useWeapon()

increasePower()
I/ more

OEBPS/Image00269.jpg
If only I could find an array
that could shrink when you remove
something. And one that you didn't have
10 loop through to check each element, but
instead you could just ask it if it contains
what you're looking for. And it would let you
get things out of it, without having to know
exactly which slot the things are in.
That would be dreamy. But T know it's
Jjust a fantasy.

OEBPS/Image00512.jpg
int giveNumber () ({
return x;

-

Gre,;\s? ﬁ

(g

OEBPS/Image00268.jpg
The original prepcode for part of the Life would be good if only we could

checkYourself() method: change it to:
REPEAT with cach of the location cels in the int array) REPEAT with each of the remaining location cells
/I COMPARE the user guess to the location cell 1 COMPARE the user guess 1o the location cell
IF the user guess matches IF the user guess maiches
INCREMENT the number of hits =) REMOVEE this cell fiom the array
/I FIND OUT if it was the last location cell 1 FIND OUT if it was the last location cell
IF number of hits is 3, RETURN “kill" —} IF the array is now empty, RETURN “kill
ELSE it was not a kil so RETURNhit" ELSE it was not a kil so RETURN"hit
END IF END IF
ELSE user guess did not match, so RETURN “miss’" ELSE user guess did not match, so RETURN “miss”
END IF END IF

END REPEAT END REPEAT

OEBPS/Image00271.gif
Arraylist

regular array

tring> myL
<String>();

String L3 myList = new Stringl2;

String a = new String

Stving 3 = new Sring(*whoohod');

nyList.add(a);

String b = new String(“Frog”);

String b = new String(*Fro’);

myList.add(b);

int thesize = myList.size();

Object o = myList.get (1)7

boolean isin = myList.contains(b);

OEBPS/Image00510.jpg
Integer:
public void doNumsNewday() { Make an M‘Y“'f of e Y

ArrayList<Integer> listOfNumbers - new ArrayList<Integer>();

istotmasars 213 ot Albhough there is NOT a mekhod in AreayLisk
for addint), the conpier does all the wrapping
int num = listofNumbers.get(0); (boxing) for you In other vords, theve veally [
| an Integer object stored in the AvrayList, but
ou et o “pretend” hat the AvvayList bakes
frd e ol svbomabialy s (o) T
ot et 10 you tan sign the int ugg ArvayListelnteger>)
reetly b a pinitie ithout havng fo oo 1
tVahiel) method on the Ineger dhsct, |

OEBPS/Image00752.jpg
cevializes the obieets vc‘:rmt:d mvmm
and characker Theee and

0s.writeob)

iteObject (chara

os.writeObje cterone) ;

Ject (characterTwo) ; 4{20“, o 1 chare
O e T e “MyGamese”

os.
writeObject (characterThree) ;

OEBPS/Image00270.jpg
@

@

Dor't worry about this

Make one vt vow; € sk means "

ArrayList<Egg> mylist = new ArrayList<Egg>();

Put something in it

Egg s = new Egg(); (- —\
/

new <Eagp angle-bracket Syntat,
y akf‘iﬁ 3 ft of Bag objects’

Synta%,

sk dbigtk €
Arew hees %o 1 dle

[t

betavse

Now the Arvaylist arows 3 "bor”

dbiett
myList.add(s) o hld the By oIEC
\=
g
Put another thing in it Sy
Egg b - new Bgg(); The ArcayList
h Srows again
/ ¢ second Egy object 93in to hold
myList.add(b); !
b
Find out how many things are in it 2 dbjetts o
cayLisk is holding L obi
int theSize = myList.size(): Haff;f)y»md vehuens &
Find out if it contains something The ArvayList DOES mmz)t:ﬁz tﬁ:

boolean isIn = myList.contains (s); K vefererced by ¥ %0 contains(

Find out where something is (i.e. its index)
int idx = myList.indexOf (b);

Find out if it's empty

boolean empty = myList.isEmpty(); & "ehurns false

Remove something from it
myList.remove (s);

4 (means st inder s O)
evenced by ' vas the
ndex0F0 veburns L

AvvayList is zevo-base
and lm the object vek
Setond thing in the lit,

€5 defintely NOT enpy, <, iEmpty()

{ Hey lock — it shrank!

\

b

OEBPS/Image00511.jpg
int

«z,@“
N/

void takeNumber (Integer i) { }

OEBPS/Image00743.jpg
=

watani

OEBPS/Image00504.jpg
int x = 32;
ArrayList list = X
ity x:\: new ArrayList();
This won't work unless You've using Java 50 or
Peaterl] Theve's no add(nt) mekhod in Arraylist
Dot Eakes an intl (RevayList ony has add0) methods
that bake object veferences, not. primitives.)

OEBPS/Image00746.jpg
If T have to read
one more file full of
data, T think Il have to kill him. He
Knows T can save whole objects, but
does he let me? NO, that would be
100 easy. Well, we'll just see how

A. he feels after

OEBPS/Image00505.jpg
Character

Byte Wakeh ot The rames aven't

Short mapped evactly o the primitive
Eypes. The elass names are flly

Integer elled ot

Long

Float

Double

ive the primitive o the
i iraypgr consbrutor. That's it
wrapping a value
int 4 = 288;
Integer iWrap = new Integer (i)
Al the wrappers work
Tike 4his. Boolean has
i boolean/aluel), Character
urrwrapping.aivalue vae s charVaheO, et
S R, & SRS . SRPVEIONTY

OEBPS/Image00747.jpg
VIbI’as\BD
mid Tom =

OEBPS/Image00263.jpg
6

<

"he viy

bual v,
3 elllecatione 4.

DotCan objeet

With the
v the

OEBPS/Image00744.jpg
tesuji

OEBPS/Image00503.jpg
int x = Math.round(-24.8f); // returns -25
int y = Math.round(24.45f); // returns 24

Remember, Floating poin I
L0 be doubles anled T ierdls are assumed

OEBPS/Image00745.gif
fa) =3
o w
Oy |<|a | T|HO Y
ol w < |O>|<| |«
w| |Z|olalFxT w N m
| o 74
zl |F Z| < w)
VW - 0[N jw| 1ODF|wla -
o M H| (X (%)
| <|>O|D2 |+ w x —
2 <O HOZ _
wi o 2| = @ z
Z| < a0 H|u[> [» [
<|2[F Az © -
al |(w| [FH uol</=Slw w<v-
2 |[=wZD T ©
< wl oo Pe|colx| <
o > (0]
Ia O -|>H (0 H o ajw

OEBPS/Image00276.jpg
myList[1]

The arvay brackets [ave specidl
gk used oy for avvays:

OEBPS/Image00519.jpg
' opevator is overloaded
Remenber he ¥ ordbr 8 S

X
double d = 42.5; in Java (the oy ning added 0 2
I 23 eatenator. Arythnd
String doubleString = "/ + d; Sg{{m% (s Skrmaibied

double d = 42.5;
String doubleString = Double.toString(d) ;

Arother vay 4o do ik v
method in elass Doy @ static

OEBPS/Image00761.jpg
UST imflemer®

N er g0t here g
objectoutputStrean. writeobject (myBox) ; Z:ﬁ,:\,\amm) i ko
in the P20 yackager
cevalizable
bl o methods b imlenert bk xhen o,
S S, e b
public class Box implements Serializable { “plements Ceviglizable’s i 52 i
T T o b bt

‘private int width;
private int height;) S these 1o values will be g3,e4
public void setWidth(int w)

width = w;
}

public void setHeight(int h) {
height = h;
)

public static void main (String(] args) {

Box myBox = new Box() ;
myBox. setWidth(50) ;

BYBOX. SStHEiGht (200 |/ erations can Ehvov exteptions /

try (
FileOutputStream fs = new FileOutputStream(“foo.ser”);
ObjectOutputStream os = new ObjectOutputStream(£s) ;

©os.writeObject (myBox) ; Make ap gy
os.close() ; Ny Chained 4, ';J:ﬂwut?u\‘.sém..
} catch(Exception ex) {

: Tell
ex.printStackTrace () ; ell it 4o v
) write the object

OEBPS/Image00275.jpg
o bt o A

A

No index

OEBPS/Image00520.jpg
Yeah,
but how do T make it
look like money? With a dollar
sign and two decimal places
like $56.87 or what if I want
commes like 45,687,890 or
what if I want it in...

Where's my printf
like T have in C2 Ts

rumber formatting part of
the T/O classes?

OEBPS/Image00762.jpg
Eeewww! That
creeps me out just thinking
about it! Like, what if a Dog comes
back with ro weight. Or o ears. Or
the collar comes back size 3 instead
of 30. That just can't be allowed!

OEBPS/Image00278.jpg
of

inskead
e venamed g class DotCom v w20 o0

blic class Dotcom { ’ 3 e mew dvanced version
pubLic class DotCom Sl T b

intl] locationCells;
int numofhits = 0;
public void setLocationCells{int(] locs) {

locationCells = locs;

public String checkYourself (String stringGuess) (
int guess = Integer.parselnt (stringGuess);
String result = “miss”;

for (int cell : locationCells) {

} // out of the loop

if (numOfHits == locationCells.length) {
result = “kill”;

}
System.out .println(result);
return result;

method

OEBPS/Image00517.jpg
Uh—ch. This compiles just fine, but
String t = “two; ot vurtime it blows up. Anything
int y = Integer.parselnt(t); that ean't be parsed as a number
TRBLY, Seintege vill ¢2use a Nomber FormatExéeption

OEBPS/Image00759.jpg

OEBPS/Image00277.jpg
ArrayL1st<String>

The <String> in angle brackets s 2 “type
parameter”. Arvaylisk<String> means simply *

list of Strings”, as opposed 4o AvvayList<Dog>
which means, “a list of Dogs”.

OEBPS/Image00518.jpg
% java Wrappers
Exception in thread “main”

java.lang.NumberFormatException: two

at java.lang.Integer.parselnt(Integer.java:409)
at java.lang.Integer.parseInt(Integer.java:458)
at Wrappers.main(Wrappers.java:9)

OEBPS/Image00760.jpg
When you save the Kennel, all of this is saved!

OEBPS/Image00280.jpg
Ignore 4,
s line £,
import java.util.ArrayList; %" tak shet

public class DotCom {

private ArrayList<String> locationCells;

__ List that holds Shrings
Change Bheint aveay o an A2t
c void setlocationCells (ArrayList<String> loc) { L wame

locationCells = locs —tla

' New a0
the
s quess i in

public String checkYourself (String userinput) Fod ot B 0 B e

Steing result = “miss”s Bl T, Ben nderd

D vebuns 3 -

int index = locationCells.indexOf (userInput) ;

if (index >= 0) { e Findex s greatey ha
210, the yiey gy 0" o el £
LocationCells. remove (index) ; 5 %o vemaue 1~ " debiiely v 4y,

isk is empty, this
if (locationCells.isEmpty()) { ("Eﬂfﬁlﬁum;\,‘f‘gt
result = “Kill”;
} else (
result

“hit”;
}

}
return result;

} & Eiu

OEBPS/Image00279.jpg

OEBPS/Image00282.jpg
%java DotComBust

Enter a guess A3
miss

Enter a guess B2

miss

Enter a guess C4

miss

Enter a guess D2

hit

Enter a guess D3

hit

Enter a guess D4

Ouch! You sunk Pets.com : (
kill

Enter a guess B4

miss

Enter a guess G3

hit

Enter a guess G4

hit

Enter a guess G5

Ouch! You sunk AskMe.com & (

OEBPS/Image00521.jpg
The number to format (e
s

mends)
. ’ it 4o have tor
public class TestForm e

0id main (String(] args)

public

String.format ("%,

d”, 1000000000) ;
—_——
.println(s);

The ormatting instructions for pou to format the
) pecond arsument (which in this ¢ s s
Remember, there are only arguments £o this method

00,000,000 here—the fiest Comma is' INSIDE “the String literal, 5o
1,000,000,

Now we et commas ingep g into the number.

OEBPS/Image00281.jpg
Qo n

th 0%
X7 gvid e
<
E
g
&
[
= Pets.com
Asl?Me.ch
o 1 2 3 4 5 6

NesttlseBmmme daaisnss

OEBPS/Image00522.jpg
Do this to this

0] [©]
format (“%, d”, 1000000000) ;
) T

Use these instructions... on this argument.

OEBPS/Image00753.jpg
oy

Cloig the stream ot the 4ol 13, ones
frdernesth o the Fleoutpetiven, oo th
File) il lose automatically

os.close() ;

OEBPS/Image00754.jpg

OEBPS/Image00515.jpg

OEBPS/Image00757.jpg

OEBPS/Image00516.jpg
No problem to pavse
9" inko L
= won;
Integer.parselnt(s) ;
double d = Double.parseDouble ("420.24") ;

boolean b = Boolean.parseBoolean (“True”) ;

0 15) \aamﬁmam mekhod ignores

TL:: i:i:s of the charatbers in Lhe String

avoument

OEBPS/Image00758.jpg
The instance variable valyes
for vidth and height are -
saved to the file fooser”,

The values ave 5

309m3 with 3 [ittle more
i the IV/M needs Lo vestore
skadrm the object (ke what. 1t
Lhe st

elass £ype is)

tStream(“foo.ser”,
tream fs = new FileOutpu! ot
Ohactutputsirsn os = naw Oopectomputsctemniio
oo wri teob3ect (myFoo)

Make I‘_Fvlzﬂutynﬂ{rﬁm that comnecks
¥ 1o the file Fooser”, then thain an

105 Siie i Mool ORjeetOutputStrem 4o t, and] the

yFoo. setheight (10) 5

ObjectOutputStream 4o write the object.

OEBPS/Image00274.jpg
EyTantidl

<

Needs an index:

OEBPS/Image00513.jpg
(O]
N
if (bool) {

System.out.printin(“true”);

}

OEBPS/Image00755.jpg
destmation

01101001
" { bject is written as byfes
object is flattened (serialized) object iswrittenasbytesto | o
Om.l I mu| 011010010110111001 ot
Object ObjectOutputStream FileOutputStream File

£ ehain Htraam) 13 earPastion Sthean)

OEBPS/Image00273.jpg
N

new String[2] Needs 3 siz

new ArrayList<String>()

No size vesuived (although you can
give it 3 size o you wank 4o).

OEBPS/Image00514.jpg

OEBPS/Image00756.jpg

OEBPS/Image00492.jpg
K Cown®
The S :?t\a\méd ‘i“”
* plass s K
hen £he LB Ly tme 2
public class Duck { |\ l030¢! N 15 made

private int size;
private 'static int duckCount = 0;

public Duck() { Now i will k
AuckCount; <incyg, ') K

ing each {ime

i he Duck ¢ongt,

a

public void setSize(int s) {
size = s;

)

public int getSize()
return size;

)

OEBPS/Image00486.jpg
Song t2 = new Song() ;
t2.play() ;

OEBPS/Image00728.jpg
TText
roxtArea toxt

10 mers 10

ViR A

o
JText
‘extArea (10,20) ;

s Lscts e ¥
20 toumes

OEBPS/Image00487.jpg
” ek
public class Duck { wiich Do

st
Whsst
private int size; =

public static void main (Stringl] args) (\L
System.out println("Size of duck is " + size);
)

H there's 3 Duck o
public void setSize(int s) { ;", heap somewhere, ve
size = 57 lon’t know about. it

)
public int getSize() (
return size;

)

OEBPS/Image00729.jpg
vl
Make 3 Jgﬁwk s oo
et e
sScrollpane scroller = new JScrollane (text) ; Tell the sevoll pane 4o yee onf
text. setlineWrap (EXue) i ¢ T .. line wrapping [@ vertieal sevollbar. e only

scroller.setVerticalScrollBarPolicy (ScrollPaneConstants.VERTICAL SCROLLBAR ALWAYS
scroller.setHorizontalScrollBarPolicy (ScrollPaneConstants . HORIZONTAL SCROLLEAR NEVER) ;

panel .add (scrorfar) ; > Inportantl/
sdd{sczolier).

OEBPS/Image00484.jpg
static method

public §tatic int min(int a, int b
ia(
7)

//return:
turns the lesser of a and b

No instante vavibles:
The method behavior
does't Ehande with
instante vaviable

Math.min(42,36) ;

Use the Class name> vather
than 3 vekevente vaviable

name:

I
0 0Buecry

o

il M0 0p gy

in thic iy)

OEBPS/Image00726.jpg
JTextField field

JTextField field

20 ntii\fm}f&t peekeree

ield-

Twis de
new JTextField(20); iy, tet

new JTextField (“Your name”'

s

20 piels

ﬁ “adth of

OEBPS/Image00485.jpg
Math.min (88,86) ;

OEBPS/Image00727.jpg

OEBPS/Image00490.jpg
{alling getSize()

just postpon
public class Duck { ::e wm.ﬁbk»ge{gu’?) \Ze “

€ Size instance Variable. :
private int size;

public static void main (Stringl] args) {
System.out.println(“Size is * + getSize());
3

public void setSize(int s) {
size = s;

)

public int getSize() {
return size;

% javac Duck.java
Duck.java:6: non-static method

getSize() cannot be referenced
from a static context

System.out.println(“Size
of duck is “ + getSize());:

Roses are red,

e
and known to bloe™ lats
't see
tics can't 5
p e state

instance varia®!

=

OEBPS/Image00732.jpg
800

™ Goes to 11

OEBPS/Image00491.jpg
class Duck {
int duckCount = 0;
public Duck() {
anckComnte; g

¥ M~ duckC,

OEBPS/Image00488.jpg
% javac Duck.java

Duck.java:6: non-static variable
size cannot be referenced from a
static context

System.out.println(“Size
of duck is “ + size);

OEBPS/Image00730.jpg
800

button clicked
button clicked
button clicked

(Just Click It b

OEBPS/Image00489.jpg
T'm sure they're
talking about MY
size variable.

No, I'm pretty sure
they're talking about

MY size variable.

OEBPS/Image00731.jpg
SHUDEY. JTRE s S ¢
import java.awt.
import java.awt.event.*;

public class Texthreal implements ActionListener {
JTexthrea text;

public static void main (String(] args) {
TextAreal gui = new TextAreal() :
qui.go();

public void go() {
JFrame frame = new JFrame() ;
Jpanel panel = new JPanel () ;
JButton button = new JButton(“Just Click It”);
button.addActionListener (this) ;
text = new JTextArea(10,20) ;
text. setLineWrap (true) ;

JScrollPane scroller = new JScrollPane (text);
scroller. setVerticalScrol1BarPolicy (ScrollPaneConstants . VERTICAL SCROLLBAR_ALWAYS) ;
scroller. setHorizontalScrollBarPolicy (ScrollPaneConstants . HORIZONTAL SCROLLEAR NEVER) ;

panel.add(scroller) ;

£rame. getContentPane () .add (BorderLayout .CENTER, panel) ;
£rame.getContentPane () .add (BorderLayout.SOUTH, button) ;

frame. setSize (350,300) ;
frame.setVisible (true) ;
}

public void actionPerformed (ActionEvent ev) {
text.append ("button clicked \n ”);
)
Insert a pev, |
new line 50 the words
separate lin e word
clicked. 04

90 0n 3

¢ €ath time the bufton is
hervise, theyl vun together.

OEBPS/Image00724.jpg

OEBPS/Image00483.jpg
regular (non-static) method

public class Song {; aviable vae atfeets
Iyskanee W0 OO0

String title; ¢ |\ ‘ehavior
public Song(String t), fhod
title = t;

)
public void play() {
SoundPlayer player = new SoundPlayer () ;
player.playSound (title) ;

Song
Song s3.play() ;
s2.play() ;

G//”'sp/ 2
refe, ” Poy) i
ey, - Calling play0)
o o g 9 Play0 on i
2 ,,(,,&:///c,%\" relernce vill e

5.

“My Way” 4o play

OEBPS/Image00725.jpg
ITextField

OEBPS/Image00723.jpg
Ppublic void

— anew
JFrame frame = new JFrame(); & manaer 10 ¢
Jpanel panel = new JPanel(); Change £he Vgt Tk
panel. setBackground (Color .darkGray) of Borlayew
mskante

panel. setLayout (new BoxLayout (panel, BoxLayout.Y AXIS));

(\TTM BoxL_

shock me”) ;

JButton button = new JButton (™ the ewo:Z,"Z‘gj"*'“‘* needs 4o know
JButton BULLONTWO — new JBMLEON(DLS) ! and which gy fe Y73 %t (£, dhe pe)
panel.add(button) ; - use (we us

panel.add (buttonTwo) ; vertieal stack), e AN for
frame.getContentPane () .add (BorderLayout.EAST, panel);

rame . setSize (250,200) ;

£rame . setVisible (true) ;

OEBPS/Image00497.jpg
public class Foo {
public static final int FOO_X = 25;

OEBPS/Image00739.gif

OEBPS/Image00498.jpg
SIGN;
- 1 le BAR

S ebTio statisinnal ol

lic s

pub!

andom() ;
)) Math.
static (= (double
sten
AR
)
)

this code e 35 Soom 35 4, elass
is loaded, p,. e any statie method
5 Called apf g before any siapt
Yariable ¢y, be useq

OEBPS/Image00740.jpg
800

tesuji

OEBPS/Image00495.jpg
class Player {

]

static int playerCount = 0;

private String name;

public Player(String n) {
name = n;

playerCounts+;

public class PlayerTestDrive {

public static void main(String(] args) {

Y The playerCount i intialized when the class is loaded

inibialized it to O, but we don't need
the adz’i:u\l: value for ints. Stammvan/
es.

We explieitly
sinte O is
Jou ek defalt vlues jusk ke nstance varia

Default values for declared bu

i ot e bt wintileed

re the same
Primitive integers (lng, short, ety) o

Primitive floating points (Hlost, double): 0.0
boolean: false

object references:

System.out.println(Player.playerCount) ;

Player one = new Player("Tiger Woods”) ;

System.out.println(Player.playerCount) ;

: N s a static vavisble jst like a static
method—with the tlass name.

OEBPS/Image00737.jpg
This is where it all bappens! Where =8
oo

o ehetkbox state nto MIDI evetss e
3 e

b e st)
et e
et s e Sty
Rt
TETITIRIL Nk b bk

e A I B A

it
IUOR. ey

LD b

o ik = 01 3 <165 341 {6 py e cth o D BENTS o v

hackhox 35 = chackbexiist.gat(s + 1651
1l tsterecsad) | g :
Seadidat 5] - bey —— s
Vet o he Ot s B bt el [s ol
st - o eyt Do it o b oy (e ot
) s s Db, b st &

T p—— N e oty 5t G sk s

Gt b et
e k.55 3005 el s e

ek sttt s g Nt ek bk e ot
=% L1.00905 gt 8 ger§ o 19, Qe D Beron mapl
o T s s e

eance soanpcoun rofersee 1008 commugLn ; 4 Lebs gy b e o
e = (o i g oy
) cxtontbiaption 9" (o pristsaKTEacel)] s

117 Ciose mesiareacisedrace methos
oW PLAY THE i

BTy —
L e
S Frte e
e b S
Yothing special | Am“.

y
[

P —
Pl et s
; By
3 1 ot tanme et
Tic ot
Public clas BTpOLseE inplamants Aoioniistans e B B
ibiic ol sottmmrtorad it a4 P e
okt oo - seqsenoe seepebtotozt
. T mmemaat + 0| ¢

(R pe——
T Tope Faher s

i
e s BT e oo | g
float tempoFactor = sequences.getI a3 L B The.
e K e

} e, o S

1 17 o sonae crses

T

bt e B e s« DR BA m I S0
- e e O T i e

or gme s =0 cae e ¢ S TR

: e et amd 308 b e bk

i€ o 1= 0) 0
i st er, 00, 000 s 0T 01

5 imaxameans (136, : e 0FF v i

. 344 tem b e 1ot

’

e it st i, 15t han, S5 e,k b, 5o
we
T e, S D e
5 Chplads iy methed o 1

RO oot

) Srteasion 0 (e prisstaateioen:

) tose s

OEBPS/Image00496.jpg
File Edt_Window Help Wnat?

% java PlayerTestDrive

0 ¢ before any instances are made

i
N abter o object is ereated

OEBPS/Image00738.jpg
tesuli

tesuli

tesuii

OEBPS/Image00501.jpg
LAY, SO 1 2.
ow You tan't
final int size = 3; 6"V
final int whuffie;

¢thange size

Foof () { , o
whuffie = 42; e~ now you can't thange whutrie
)

void doStuff (final int x) {
// you can’t change x
3

void doMore() {
final int z = 7;
/1 you can't change z

OEBPS/Image00502.jpg
It's all so... so final.
I mean,if I'd known

T wouldr't be able to
change things..

OEBPS/Image00499.jpg
PERLLE DL ane Bae |
public static final double BAR SIGN;

) "o initializg, /

OEBPS/Image00741.jpg
tesuji

OEBPS/Image00500.jpg
% javac Bar.java
Bar.java:1l: variable BAR_SIGN
might not have been initialized

1 error

OEBPS/Image00742.jpg
800

OEBPS/Image00493.jpg

OEBPS/Image00735.jpg
Jd Jcrﬂ,[e
T Y S E— T —" ——

oodoooodoon

#000000000080
Eessaaseeae

BassDrum [
Closed Hi-Hat ()
Open Hi-Hat ()

Start

1

Acoustic Snare (] ooooooooooSrmeete
trshoymbal JOMEOO0C0O0OMOC00000 Tempo Down
HindClap— O 000CC000888088
HighTom MO0O0CB000BCBB000
Hilnge — 0§00 000000888888
Maracas 8886000888886888
Whistle 8880008888888688
lwConga JOO00000000CCCE0

¥0000008EM00d
0000000080000
800000000808

oooEMoooooMano

o000co0o0oooono

Cowbell o
Vibraslap (]
Low-mid Tom (]
High Agogo (]

Open Hi Congal_)

000000000 DODOOOA

OROOCOOOOC

OEBPS/Image00494.jpg
static vaviable: kig
iceCream

i inskante one

OEBPS/Image00736.jpg
e AN
import. Javax. sving.
impart. Jaux v it 1
st Java i+
st 3o, st avent 4

public clasn Beataox (

el masnranels B e e b Brafst
Xerapisacochackdon chectbortise; 4tV

Thes are h s of e b, 3 S
oy o buting he] o o o)
Gymnte, “iana Clapr,

. Bongor, Marscasr, nsstia”, ew Congar,

“Coubeia, “Vibrasisp. “lov-aid fou 3
“opan s Conga®) |

Sat] Smsermante = (35,42,46,38,49,39,50,60,70,72,64,56,

o
Y
B S B orelpr sy
s alidont s AT o b o i
So the mumber 35" is bhe key for "
TR e OB

007,607,601

public vosd BULAGEQ) (
haTrane = naw STEsa(Cyber Beatsox”) -
EhaFrama. sotmacau] e Lose0peration (FFetms EXIT OV CL0SE) -
Borcariayout. 18yout = nee SorderLaYout()
ranel background < o T0anes (Latont) |
Bickarouna.sethordos (BordasTAGkory crescaBptyBoRdes 10,10,10,10)) 1

Checkbortist = nex Accayiist<icheckson o

2o Doekonbor = nev Box (Boxiarout. ¥ AKIS) | Bor e g e
s bt S i

moton start = new ImucsenCstacer): S e conpins &

o e e et

R sabotiontistanes (o WYSRAEASCARSZ) st

Buttansor add (st -

oeson stop = nex Jeuteon tseopr)
Stop-addhctiontsstanas (raw WySteplistenes ()
ficieagmymsion

el

Mutton uptempo = naw Tutton (“Tempo U5
Tempo.adretioniAstanes (hew MyOpTarpaLLataner)
Bittonsor d upempe)

muteon dovntenpo = nev Tmatton (“Tempo bovat)
Gountenpo. adihcesont atenss (new MDOvTRapOLLsteneE ()
burtonior ddanienpo)

Box nusaex « new Box Bexiaout. X AXIS)
Cor e w07 4 <267 10 (

nasabox.add (new Tabed(1nsecumantianas (1)) ¢
)

Sl mre ek o

background.ada (Boxdariayout.EASE, buttontos) e

Eackground. ada (Bordariayons WESE, nasanen) |

Chobcana, getcontentoans) add ackgeosnd)

Gridtayout. grid = new GridLayout (16,160
i seevaap 1)

i saengup)

Fanbaned = sev IPanel (geid)

Bickaround.ada (Bordariayont. CENTER, ainpanel) ¢

L

St T

et s gt
yofi e s

e Gl
re——

harsane. sotmunds (50,50, 300,300)
Eharrana pack (-
) /1 chose mathod 2

[p—
= e
Taquancer = widisystam. gotsoguncors (L[]
equancar open() E
Seoenca = e Sesence soqsanca 250,01 (70
Erack = soquance SreataTrack ()
Seencer satTempoTa B (120) |

LD g ot
Yol
ey

) catch@xcaption o) (o-peinestackieace)
B oo i

OEBPS/Image00733.jpg

OEBPS/Image00734.jpg
ol gk the cvent TWICE €Yo dont

put in this if test

public void valueChanged (ListSelectionEvent lse) {
1£(11se.getvalueIsAdjusting()) {
String selection = (String) list.getSelectedValue(); getSelectedl/sluel) .

tuall
B .out.println(selection) ; Y
, system.out.println(selection) veturns an Object A Int ot

| limited o only String obiects

OEBPS/Image00147.jpg
Dog object

Dog

OEBPS/Image00146.jpg
Dog object

OEBPS/Image00149.jpg
Book

Book

OEBPS/Image00148.jpg

OEBPS/Image00151.jpg
d
wffs

.

OEBPS/Image00150.jpg

OEBPS/Image00152.jpg
| e
aprbase-t

ok gog”

toast
e

Py

ey, heap

o
e,

OEBPS/Image00143.jpg
ct

%e

veferente

OEBPS/Image00145.jpg
Dog

OEBPS/Image00144.gif
1
3
—3 — A~
Dog myDog = new Dog () ;

OEBPS/Image00158.jpg
bark()
eatl)
chaseCal()

OEBPS/Image00157.jpg
Dog array object (Dog[])

Dog[]

OEBPS/Image00160.jpg
ehhng 009 1
String name;
public static void main (String[] args) (

a Dog obje

// ma and

Dog dogl = new Dog ()
dogl.barki();
dogl.name = “Bart”;

Dogl] myDogs = new Dog(31;

and put some dogs in

myDogs[0] = new Dog ()

myDogs (1] = new Dog();
myDogs[2] = dogl;
// now ac t

// referenc
myDogs[0] .name = “Fred”;
myDogs (1] .name = “Marge”;

/1 Hm

s(2] name

System.out.print (“last dog’s name is “);
System.out.println (myDogs (2] .name) ;

// and te
int x = 0;
while(x < mymgs.lenqth)k_\ :
myDogs (] .bark () 1 cable eno
3
xomox b1 :;;f t:f},“ e o
3 avedy
' emerts n B¢

public void bark() {
System.out.println(name + “ says Ruff!”);

OEBPS/Image00159.jpg
&
Dog o’

Dog

OEBPS/Image00162.jpg
%$3java Dog

null says Ruff!

last dog’s name is Bart
Fred says Ruff!

Marge says Ruff!

Bart says Ruff!

OEBPS/Image00161.jpg
chaseCat()

OEBPS/Image00154.jpg
nums [0]
nums[1]
nums[2]
nums[3]
nums[4]
nums[5]
nums [6]

FNE SR

OEBPS/Image00153.jpg
1 e sull ot

Nek ek tpast
(salle as lord 3 ®

vebers o ¥
Py
D &
3
il veferente #:e
(not Vvaybm(d 1o anything) @p

Book

OEBPS/Image00156.jpg
3

Dog Dog Dog Dog Dog Dog Dog

Dog array object (Dog[])

Dogl]

OEBPS/Image00155.jpg
7 ink varizbles
o | 2 3 4 5 b
int it it nt ot et it

int array object (int(])

int(] Nokice that the arvay tself i an object,
even thoush the 7 clements are primitives.

OEBPS/Image00132.jpg

OEBPS/Image00125.jpg
Echo

n x>0 Tester
count x>1 echol) er-en;
count() Echoe2;
? hello() Echoe2=el;

Echo 2 = new Echo();

el.count=el.count + 1;

OEBPS/Image00124.jpg
File _Edit_Window Help Impiode

%java EchoTestDrive

OEBPS/Image00127.jpg
% java DrumKitTestDrive
bang bang ba-bang
ding ding da-ding

OEBPS/Image00126.jpg

OEBPS/Image00129.gif
class DVDPlayer {
boolean canRecord = false;
void recordDVD() (
System.out.println(*DVD recording”
1
void playbVD () {
System.out.printin('DVD playing"):
}
}

class DVDPlayerTestDrive (
public static void main(String [] args) |
DvDPlayer d = new DVDPlayer();
d.canRecord = true;
d.playDvb() ;
if (d.canRecord == true] (
d.recordnvp() ;

)
} The line: d.playDVD(): wouldn't
) compile without a method !

OEBPS/Image00128.gif
class TapeDeck {
boolean canRecord = false;
void playTape(} {
System.out.printin(“tape playing”);
}
void recordTape() (
System.out.println(“tape recording");

}

class TapeDeckTestDrive (
public static void main(String [) args) (

TapeDeck t = new TapeDeck();
t.canRecord = true;
t.playTape();

if (t.canRecord
t.recordTape (] ;

true) (

1
i We've got the template, now we have
) to make an object !

OEBPS/Image00131.jpg

OEBPS/Image00130.jpg
Edit_Window Help_Assimilate

%java EchoTestDrive
helloooo.
helloooo.
helloooo.
helloooo.
10

OEBPS/Image00123.jpg
d.playSnare() ;

Drumkit d = new Drumkit(

Boolean topat = true:

poolean snare = trul

void playsnare() {

System.out.println(*bang bang ba-bang”);

public static void main(string) args) (

a.snare = false:

class DrumkitTestDrive (

class Drumkit (

void playTophar ()
Systen

+OUE.Println(*ding ding da~ding");

OEBPS/Image00136.jpg
o0l @

byte short intlorg float double
99 e

OEBPS/Image00135.jpg
Gﬁﬁﬂ

long int short byte

OEBPS/Image00138.jpg

OEBPS/Image00137.jpg

OEBPS/Image00140.jpg
Dog d = new Dog();
d.bark();

think of this
like this.

OEBPS/Image00139.jpg
No matter what

You hear, do rot, T repeat,

do not let me ingest
another large furry dog.

©
s

OEBPS/Image00142.jpg
an{w:
value

OEBPS/Image00141.jpg
nﬂﬂﬂ

byte short int long reference
8 6 32 64 (bit depth not relevant)

OEBPS/Image00134.jpg
nﬂﬂﬂ

small short tall grande

OEBPS/Image00133.jpg
int count;

type name

OEBPS/Image00111.jpg
class DoglestDrive {
public static void main (String(] args) f

Dog d = new Dog() ; ¢—— "€ a Dog object
d.size = 40 use the dot opevater ()
/dv bark () ; \\ o set the size of the Doy

W" ' and to call its bark() method

OEBPS/Image00110.jpg
class Doglestbrive {
public static void main (String(] args) {
// Dog test code goes here

OEBPS/Image00352.jpg
Boat
return
continue
b1 break
b2 3 length

len

Rowboat
sailboat

subclasses

Testboats extends B
intlen d""h hoist sail
stroke natasha rowTheBoat
intb1 intlength String move’
i void
ntb b public setLength
intb2 S@UCvate getlength

OEBPS/Image00112.jpg

OEBPS/Image00103.jpg
ShoppingCart

catContents

addToCart()
removeFromCart()|
checkOut()

knows

does

Button

Tabel
color knows

setColor() setAlarmTime()
setLabel() does getAlarmTime()
dePress() isAlarmSet()
unDepress() snooze()

knows

does

OEBPS/Image00345.jpg
Appliance

public boolean turOn()

public boolean tumOf)

NOT LeahL!
' vt 3 leod!
et e

the aceess
relreted 743 el

Toaster

private boolean tumOn()

avaument

OEBPS/Image00344.jpg
s 1 NOT 20

ovevide!
Car cranae
Fmerks n 2
erdind ™€

Appliance

boolean tumOn()
boolean twmOff)

Toaster

boolean tumOn(int level)

|

This is actualy a legs

overLOAD, b,

gy wt ot an

OEBPS/Image00105.jpg
Television

instance
variables

methods

OEBPS/Image00347.gif
class A (
int ivar = 7;
void mi{) {
System.out.print (*a’s ml, "};
)
void m2() {
System.out.print (*A’s m2, ");
)
void m3() {
System.out.print (*A’s m3, ");

class B extends A {
void mi() (
System.out.print ("B’s ml, “);

class C extends B (
void m3{) {
System.out.print(*C’'s m3, “+(ivar + 6));

public class Mixed2 (
public static void main(String [] args) (
Aa = newAl;
B b= newB();
e = newcl);
A a2 = new C(); candidate code
qoes here

(three lines)

OEBPS/Image00104.jpg
instance
variables
(state)

wmethods

(behavior)

Song

ttle
artist

setTitle()
setArtst()
play()

knows

does

OEBPS/Image00346.jpg

OEBPS/Image00107.jpg

OEBPS/Image00349.jpg
LA C RlaNS e rarTaeairove 4

public static void main(String (] args)

Monster
maf0] =
mall] =
ma(2] =

for(int

max] .

[1 ma = new Monster([3];
new Vampire();

new Dragon() ;

new Monster();
x=0; x <3 xee) {

frighten(x);

class Monster {

o

)

class Vampire extends Monster {

(5]

class Dragon extends Monster {

boolean frighten(int degree) (

System.out.println(*breath fire*);

return true;

e

% java onsterTestDrive
a bite?

breath fire
arrrgh

[

OEBPS/Image00106.jpg
one class

wany objects

OEBPS/Image00348.gif
code
candidates:

m1,
mi,
m1,
ml,
mi,

m1,

mi,

m3,

m3,

m3,

m3,

m3,

13

13

OEBPS/Image00109.jpg
class Dog {

int size;

String breed;

String name;

void bark()

instanee

Z Variables

a method
y &

D06

size
breed
name

oark()

System.out.println(“Ruff! Ruff!”);

)

OEBPS/Image00351.jpg
UL drift drift hoist sail

OEBPS/Image00108.jpg
o Name _Polly Morfism

Phone _555-0343
eMail Pre@wickedlyswmart

OEBPS/Image00350.jpg
| boolean frighten(int @) (
System.out.println(“arrron’);
0 i
3
boolean frighten(int) {
@ Syotemout.printin(*a bite?”).

return false;

2 boolean frighten(int x) {
System.out.println(*arrrgh”);
return true;

)
int frighten(int £) {
© Systemout.println(*a bite?");

boolean frightenint x) (
3 System.out.println(*arrrgh®);
L S
b
booTean seare it W (
@ Srtemestprinnta biter
return true;

eootean Erigneen(ine =) (
4 System.out.println(“arrrgh”);
O e
3
" boolean frighten(byte b) {
© system.out.printin(a biter)

OEBPS/Image00343.jpg
NOW T get itl If T write
my code using polymorphic arguments,
where T declare the method parameter os a
superclass type, T can pass in any subclass object at
runtime. Cool. Because that also means T can write my
code, go on vacation, and someone else can add new
subclass types fo the program and my methods will
still work... (the only downside is Tm just making life
easier for that idiot Jim).

OEBPS/Image00122.jpg
% java DrumKitTestDrive

bang bang ba-bang
ding ding da-ding

OEBPS/Image00121.jpg
S\ A chassis ke a recipg,
> Objects are like
<ookies,

OEBPS/Image00114.jpg
MOVIE

e
genre
rating

playlt)

OEBPS/Image00356.jpg
A Wolf veference to Wopr ot
Walfeb;zén : Wolf ~— / O o

These two are the same type.

OEBPS/Image00113.jpg

OEBPS/Image00355.jpg
makeNoise()
eatl)

‘makeNoise()
eat()

eall)

picture
food
hunger
boundaries
location

‘makeNoise()
eat()

sleep()
roam()

‘makeNoise()

makeNoise()
eat)

makeNoisel)
eat()

OEBPS/Image00116.jpg

OEBPS/Image00358.jpg
Primal veference b
an Animal cbject

P d
el / imal do?
-
These bwo ave the same type, but
what the heck does an Animal cEJtt{ look like?

OEBPS/Image00115.jpg
file

object 1 | genre
rating

object 2

object 3

OEBPS/Image00357.jpg
Avimal vefevente to

3 Higpo obieck o o

Animal

These 4wo are NOT £he same £ype.

OEBPS/Image00118.jpg

OEBPS/Image00360.jpg
abstract public class Canine extends Animal
{

public void roam() { }
¥

public class MakeCanine {

2
public void o0 { qyicis 0% b“tiﬁ:‘w&“b\aﬁ refernts
et
Canine c; &« a wbtfzsfum\m i sttt
© = new Dog () ; o
= new Canine () ;
¢ = new Canina() € class Canine
s is marked abstrae.

Fie ot Vinaow Fap Geam:

% javac MakeCanine

MakeCanine.java:5: Canine is abstract;
cannot be instantiated

c = new Canine();

OEBPS/Image00117.jpg
GuessGame

insta,
ot “ari
p2 p"*‘ztk\‘;.,
3 Players ~1ee

stariGame()

OEBPS/Image00359.jpg

OEBPS/Image00120.jpg
$java GameLauncher

I'm thinking of a number between 0 and 9...
Number to guess is 7

I'm guessing 1

I'm guessing 9

I'm guessing 9

Player one guessed 1

Player two guessed 9

Player three guessed 9

Players will have to try again.
Number to guess is 7

I'm guessing 3

I'm guessing 0

I'm guessing 9

Player one guessed 3

Player two guessed 0

Player three guessed 9

Players will have to try again.
Number to guess is 7

I'm guessing 7

I'm guessing 5

I'm guessing 0

Player one guessed 7

Player two guessed 5

Player three guessed 0

We have a winner!

Player ome got it right? true
Player two got it right? false
Player three got it right? false
Game is over.

OEBPS/Image00362.jpg
feel like red or
white fonight?

Noir wes a prefty
decent year.

Vineyards 1997 Pinot “

-

OEBPS/Image00119.jpg
public class GuessGame (GuessGame has {hree
P1aver b2 e ot i i
public void startGane() | ereste three Player o
g i st e Ployr ohjcks s
2 Pl : ign them to the thy
R I N o 4 =

int guesspl
int guessp?
int guessp3

; detlave three variables o hold
e & thvee guesses dhe Plf;m e be

boolean pliskight = false; ;
o0 ke fo antaE = Ehlass &— detlare three vaviables to hold a true or

boolean paisRight = false; Bl based on the player’s ansver
int targetNumber = (int) (Math.random() * 10}; make 3 ‘target’ number that the
Systen.out.peintin(*1'm thinking of & nunber between 0 and S...")~ Players have bo guess
while(true) (

System.out.println(“Nunber to guess is * + targetNunber);

Plguess ())

Pyrauesallt f——— call cach player’s quess) method

P3.quess ()

quesspl = pl.number;

System.out. printin(“Player one quessed * + quesspl);

guessp2 = p2.number get cach player’s ques (the vesult of thei

Syecem.out-println (elayer tro uessed * + gueses)s [) mathod o) b sccesimg e

SR number variable of each yLy«

System.out.printin(“Player three guessed * + guessp3);

if (quesspl == targethumber) {

plisRight = true g
; check each player's auess o see if it matches
if (quesep? == targetNumber) { e target mumber. 1£ 2 player is vight,
p2isRight = true; (&m = that Player's‘. variable o be true
' remember, we set it false by
if (quessp3 == targethumber) { y defout)

PlisRight = true;
}

16 (pliskight 11 palsmight [1 pitsvighe) (L 2y on R plaer b OR player hvee i right.

CEhe |
System.out.println(“e have a winner!”);
System.out.println(“Player one got it right? “ + plisRight);
System.out.printin(“Player two got it right? “ + p2isRight);
System.out.println(“elayer three got it right? “ + p3iskight);
System.out .println(“Game is over.”);

otheruise,
Players for

system.out.printin(“Players will have to try again.”);

operator means OR)

stay j
;,,ZQL“"‘;TV and ack the

OEBPS/Image00361.jpg
abstract

OEBPS/Image00354.jpg

OEBPS/Image00353.jpg
code
candidates:

bomi();
c.m2();
ami);

cml();
cm20);
c.m3();

ami();
bom2();
cm3();

a2.mi();

a2.m2();
adoma by

3
}

}

s m2,

m2,
m2
m2
m2,

m2,

s m2,

c's

a's

m3,
m3,
n3,
n3,
m3

m3

m3,

13

OEBPS/Image00089.jpg

OEBPS/Image00331.jpg
Um, what
the heck does
THAT mean?>

OEBPS/Image00088.jpg
Amoeba

olate() {
I/ code o otate an amoeba
i
playSound) {
1lcode o play the new
11 hffie for an amoeba
i

OEBPS/Image00330.jpg
private default protected public

OEBPS/Image00091.jpg
What the spec conveniently
forgot to mention

OEBPS/Image00090.jpg

OEBPS/Image00332.jpg
Animat
Yadve teling the world that
do these four

agy Amimal can
{# at intludes the method

hings. T
avauments and veburn OFES

makeNoise()
eat()

sleep()
roam()

OEBPS/Image00092.jpg
Amoeba

int xPoint

int yPoint

rotate) {
1/ cade torotate an amoeba
Il using amoeba's x and y

}

playSound() {
Ilcode to play the new

11 i file for an amoeba

}

OEBPS/Image00323.jpg
makeNoise()
eat()

sleep()
roam()

make a new Wolf object Wolf w = new Wolf();
calls the version in Wolf w.makeNoise () ;
Canine

calls the version in Canine w.roam();

calls the vevsion in Wolf w.eat();

calls the version in Animal w.sleep();

makeNoise()
eat()

OEBPS/Image00083.jpg
We're going fo
Objectvillel We're
leaving this dusty of

procedural fown for good.
Tl send you a posteard.

OEBPS/Image00325.jpg

OEBPS/Image00324.jpg
superclass
(more abstract)

~ | Clting

subclasses
(more specific)

)

Boxers Shirt

Inheritance Class Diagram

OEBPS/Image00085.jpg

OEBPS/Image00327.jpg

OEBPS/Image00084.jpg
the spec

OEBPS/Image00326.jpg
Bubbles
intradius;
int colorAmt;

OEBPS/Image00087.jpg
— what got added to the spec

OEBPS/Image00329.jpg

OEBPS/Image00086.jpg
Square

rotate() { Circle.
licode o rotate a
} otate(){ Triangle
lcode to otate a
playSound() {) rolate() {
I code o play the 4 Jl code o rotate a iangle
IIfor a square. playSound() { }
1l code o play the
lforacicie | playSound() {
1l code to play the AIF il

—" Ifora tiangle

OEBPS/Image00328.jpg
public void roam() his calls the inhevited version ok
voam{), then tomes batk to do

super.roam() ;
// my own roam stuff Your oW subtlass—specific code

OEBPS/Image00100.jpg

OEBPS/Image00342.jpg
class Vet {

public void giveShot (Animal a) {
The '3’ parameter an

do horrible things to the Animal at take ANY i,
// do horrible things jz':z 3 the drgunent. Ang meefz v:é
// the other end of the ‘a’ parameter mak: *?M:?)Q:t;hgﬁ tells the Anim| ef

©ise0), and whatever Apim,
a.makeNoise () ; o there n Lo pege rtrina s vealy

Nesel) method willyyy, - “ho5e make-

class PetOwner {

pine vord el | The Vet's wsxzt(; szza @ (:Eeiw

(ve it. As long as he obje
e S e gt . 01
Tl s il ek

Vet v = new Vet();
Dog d = newpog); &

Hippo h = new Hippo(); /

v.giveshot(d); ¢ Doy makeNoisel vuns

vegiveshot(h); & Hippe's makeNoisel) runs

OEBPS/Image00099.jpg
I made the Amoeba class override
the rotatel) and playSound()
wethods of the superclass Shape.

Overriding just weans that a
subclass redefines one of its
inherited wmethods when it needs
o0 change or extend the behavior
of that method.

OEBPS/Image00341.jpg
dsi
) In othec W
o ype Prdh M
o aﬁ‘]‘u ok o E1F
noved)
Animal(] animals = new Animal[5];
animals (0] = new Dog() ;
animals [1] = new Cat(); But look what you gt to do-. you can put ANY

[2] = new Wolf(); < subelass of Avimal in the Avimal array!

animals

animals [3] = new Hippo() ;

animals [4] = new Lion(); A beres 4
son g% Folmorph;
v azt:\:fzf' b by o
P bhrough mple),
for (int i = 0; i < animals.length; i+5) (° O A o t:e?"‘Y ard c3ll o,

animals[i].eat(); &
When % is O, a Doy is at index O in the aveay so

you get the Dag's eak) method. When ' i |, You

Q\ aet the Cat's eat0) method

Bae with raanld:

animals(i].roam() ;

OEBPS/Image00102.jpg

OEBPS/Image00101.jpg

OEBPS/Image00334.jpg
1 3
AN S e AN,
Dog myDog = new Dog () ;

OEBPS/Image00333.jpg

OEBPS/Image00094.jpg
Square

rotate()
‘playSound()

Cirtle

rotate()
playSound()

Triangle

rotate()
playSound()

Amoeba

otate()
playSound)

Ilooked at what all four
classes have in common.

<«

OEBPS/Image00336.jpg
Dog object

OEBPS/Image00093.jpg
What Larry wanted o
(figured the chair would impress her)

OEBPS/Image00335.jpg
Dog

OEBPS/Image00096.jpg
o

Shape Then | linked the other
uperel four shape classes to
siperoiass sy | the new Shape class,
ina relationship called

inheritance.

Square Circle Triangle Amoeba

OEBPS/Image00338.jpg
These two are the same type. The veference
variable type is delaved as Dos, and the object
is ereated as new Dog0).

OEBPS/Image00095.gif
They’re Shapes, and they all rotate and
playSound. Solabstracted out the
common features and put them into a

new class called Shape.

-

Shape

rotate()
playSound()

OEBPS/Image00337.jpg
Dog object

OEBPS/Image00098.jpg
superclass
(more abstract)

~

subclasses
(wore specifie)

Overriding wethods

\l Square Cicle

Triangle

A
e |

rotate() (
{1 amoeba-specifc
i rotate code }

playSound() {
1/ amoeb-specic
/50und code)

OEBPS/Image00340.jpg
uh..ope.
Still not geftin it

OEBPS/Image00097.jpg

OEBPS/Image00339.jpg
Animal

These two'are NOT the same type. The
vefevente varizble type i declaved a: Animal,
but the object is eveated as new Doal).

OEBPS/Image00997.jpg
.50 finally seftled on
foo.bar Heisenberg for my
quantum baking class

Why, that's the same name
T was thirking of for my
sub-atomic ironing class!
Guess T'l just have fo come
up with something else.

OEBPS/Image00998.jpg
com.headfirstbooks.Book

package name (\L\ass name

OEBPS/Image00591.jpg

OEBPS/Image00999.jpg
i e
Reverse domain package names e 055 “Bu\,u.é

com.headfirstjava.projects.Chart ¢«— 1 h

Y

Lhe patkage with your veverse Projects.Chart might be a common
):‘:: :::am{fﬂ by a dot (), rame, but adding com headfivstisua
then 3dd your own orgarizational means we have o worvy about oly

hvcbure after that. our own in-house developers,

OEBPS/Image00592.jpg
o had better be 3 big enough ca4zp ¢,
bl 2 xceptins that gl gty

exy (, /\ wight. Brov,

dry () 7 b

st (ChothingEaoamt s cm)) o complain

) e 1 Tecoveryiceds

OEBPS/Image01000.jpg
PackageExercisej

PackageExercise.class

24nonJ4s 260320d

OEBPS/Image00993.jpg
O

Executable
Jar

100% Local Combination 100% Remote

OEBPS/Image00994.jpg
The JUM has to 'see’ the JAK, so
ik must be in your classpath. The
casest vay o make the JAR vishle
e o ke our serks divettory
the plate where the JAR iz

%cd MyProject/classes

$java “jar appl.jar
R for
The _ e wide s S
jar £la WM " ey o Maiw
W S ¥189 tells e st wi gs:‘hk ‘Lmnd o o 88

e givine
IAR insteaq %p 3 Class

ta
3 clase. Clast me. €428

OEBPS/Image00995.jpg

OEBPS/Image00996.jpg
Java

net
N

awt
/

text

wmberFomal i
Sacket

e Fowlayout

f ooy gy

OEBPS/Image00585.jpg

OEBPS/Image00827.jpg
input and output streams
4o and from the Socket

cumzztm\?

OEBPS/Image00586.jpg
\M
Lo
e e o e

i vave
public void foo() throws ReallyBadException { mu for b tnod e Y
o the Vi) ¢ e iy mekhe

// call risky method without a try/catch YO“ are vov twﬂ o
laundry.doLaundry () ; wa»“”’ \ith the extextion
: Yas ko 8¢

OEBPS/Image00828.jpg
ron
hich You 5000 s

mber, W 5
The gort mmitts) Jou Bt

sevver.
ool :::C'; for owe that
,/“‘ po

", 5000) ;
%127.0.0.17,
tSocket = new Socket (“1: 12700
Socket cha

the IP adgres, for
her words, 4):

" in
e one thic goge Funning o
£3n wse thig hey oy

" You
o esting you g 0 ¥
e on 3 singl g i maching,

OEBPS/Image00583.jpg
Fookx

Barex BifEx

BoinkEx

OEBPS/Image00825.jpg
Fort number is ¢)
ore in the mall

4

he spec

[P address is the mall

TP address is like specifying a
particular shopping mall, say,
*Flatirons Marketplace”

Port number s like naming
a specific store, say,
“Bob's €D Shop"

OEBPS/Image00584.jpg
’ just duck it I

OEBPS/Image00826.jpg
fow do these two
achually £alk to
each cher?

Client

Server

OEBPS/Image00589.jpg

OEBPS/Image00831.jpg
destingt;yy
v buffered characters converted to characters bytes from server
buffered |¢
@ characters chained to charactets chained to Qtlotoatt, ¢
BufferedReader InputStreamReader Socket's input stream
Client (ve don't need fo know

Thn et tose)

sowrte

Server

OEBPS/Image01001.jpg
in the sourte divectory! Do NOT ed dovn
red myprogest /souzes & 1 et The o Fle !

tjavac -d ../classes com/headfirstjava/PackageExercise.java

7> i el
Eells the compiler 45 py 4, Now o e L'ﬂl
Complled code (class Floe) e PATH b ot B
g e drctr O sowte e
within the o

bt pack
ructurell Ves L ::q::

OEBPS/Image00590.jpg

OEBPS/Image00832.jpg
{his part's the same 3 it was on The
" ko wrike to the

e e
orteste 0 v Ko ometk b

J sevver, ve

Socket chatSo«
RGE. SR B
ket (*127.0.0
.0.0.1", 5000);

OEBPS/Image01002.jpg
%javac -d ../classes com/headfirstjava/*.jav

fomples cvery e (g

e in this divectory

OEBPS/Image00587.jpg
public class Washer {

Laundry laundry = new Laundry();

public void foo() throws ClothingException (

laundry.doLaundry () ;
}

public static void main (S
Washer a = new Washer();
a.fool);

ing(] args)

throws ClothingException

OEBPS/Image00829.jpg
AR
JAEHAL- Warhem &
e 4 S
e oinh B O O £ S L Y
oo L

pukStreanReader i 3 rida’ bebueen 3 low=
ook seam (e theone oming T the
level characker eom (ke

e we've abter as oW

he BubberedReade
e thain stream

All e have 4o do is ASK the sotket for

an input stream! [ts

3 low=level onnection

stream, but we!
e just gomna thain . £y

something more Lext.

iendly

OEBPS/Image00588.jpg

OEBPS/Image00830.jpg
Chain the BufferedReader 4o the
O v Chained o the low-

npeiStreanReader(s
level eonnection shream we 99t feom the Sotket)

BufferedReade:
z =
String messac readar = new BufferadRae:
ge = reader.readLine() : ader (stream) ;

OEBPS/Image00823.jpg
"r

Socket chatSocket = new Socket(“196.164.1.103”, 5000) ;

Port mumbey

|P addvess for the server

The chat server is at
196.164.1.103, port 5000.
When T eed to talk to him,
that's where T'll send
the message.

This client is at
196.164.1100, port 4242.
When I need to talk to
him, that's where Tl send
the message.

OEBPS/Image00824.jpg
Telnet oMTP

FTP,

-Time

HTTP pops TP

A server tan have up to 65536
iferent, sevver 3pps vurning
ome per port.

OEBPS/Image01003.jpg
b
the

Jour Program from

%cd MyProject/classes ¢ Clisses directory,

%java com.headfirstjava.PackageExercise

OEBPS/Image00986.jpg
¥jJavac -d ../classes *.java

N gava comples AL
sorte Hles in the

eurvent divettory

OEBPS/Image00987.jpg
feom

comgile

THE diectory

l' Y““r »am(}

MyApp.class

OEBPS/Image00602.jpg
M T e etruchions are in the mescae, bt 4he g

Sl Nl s Ehe monent in dime vhen the et
should be triagered. This MidiEvent, says 4, trigger
message 3 at bhe fiet beat (pey s

OEBPS/Image00988.jpg
JAR

OEBPS/Image00989.jpg

OEBPS/Image00983.jpg

OEBPS/Image00984.jpg
But T thought T didrit have
a choice about putting the class
files in with the source files.
When you compile, they just go

there, so what do I do?

OEBPS/Image00985.jpg
scd MyProject/source A
:javz -d ../classes MyApp.java

A & tring s 6l
Eells the compiler £ put. 1 dhe lost gy v
Compiled code (elass EL) the e O

o fhe “lasses divegtery fle ko eom¥

13t one divectory up i

back down ag3in £y the

eurvent working directory.

OEBPS/Image00596.jpg
0T LEGAL 1y, 't
; Code betye, ¢
try:{.dost.\:I [$R3

” he try and
/ the eatey,

OEBPS/Image00838.jpg
Client A

advite = veader veadLine()

Server

OEBPS/Image00597.jpg
But why don't
You just use
Ready-bake code?,

There is NO way
Tim letting Betty win the

code-off this year, so T'm
gonna make it myself from
scratch.

OEBPS/Image00839.jpg
MpOTt Java.io. i ket i in PONC

import java.net.*

public class DailyAdviceClient {

ver s
make a Sotket ‘wxi“:f‘lﬁ"ﬁ: by
public void go0) (. aing on et AT G R et
et R L i eade s v

Socket s = new Socket ("127.0.0.17, 4242);

InputstreanReader streamReader = new InputStreamReader (s.getInputStream(});

EoiEpmadtouten raydpnon g Ryfoutedtansier (bpmnmendon) o dhiin s SubloalRonie b
an InputStreamReader o
he input stream from the
o)

e words,
reader .close () ; &—fhis closes ALL the streams €l 3 Bufferegp! | he time

} catch (T0Exception ex) { me From
ex.printstackTrace () ;

public static void main(String[] args) {
DailyAdviceClient client = new DailyAdviceClient() ;

client.go();

OEBPS/Image00594.jpg
PUHLAC CLabh NABOGS

Laundry laundry = new Laundry();

public void foo() throws ClothingException {
Taundry.dolaundry () 1
}

TROUBLEN g
i e, 30
public © void main (String() args) (bN/.me) kLt S0 g
Washer a - new Washer(); S s L
LR e sc'{jymr&ﬂwwﬁh
Because the fool) method ducks the poneet
ClothingExtcption thrown by dol_aundry0),
main() has £ weap 3.fo0() in 5 try/eateh, '
o main0) has bo detlare that i, 4o,
throws ClothingException '

/

OEBPS/Image00836.jpg
Treat yourself fo
a cold ore! You
deserve it!

Tell your boss
the report will

have fo wait. There's
powder at Aspen!

That shade of
green isn't really
workin for you.

OEBPS/Image00595.jpg
(),

e
o pelem 8 SR
public void play() { WM“’W weae
try { Lateh ot

Sequencer sequencer = MidiSystem.getSequencer ();
System.out.println(“Successfully got a sequencer”);

Th
} catch(MidiUnavailableExcepti b
eption ex) { the g, Momete,
System.out.println (“Bummer”) ; [(‘O&A{F,,(N"QWM "
} Code vy *t Found

} // close play

OEBPS/Image00837.jpg
Make a sotket connettion to
1901651103 at port 4242

@; sotkebgethputStrean)

Client

Fr—

OEBPS/Image00600.jpg
Don';
import javax. sound.midi. s & ® NI o import e

midi package
public class MiniMiniMusicApp {

public static void main(String(] args) {
iniMusicApp mini = new MiniMiniMusicApp();

Min
¥
36
public void play() { ,L,Sm*"‘":\dag-*"’”
A
v o vﬁ:‘w vty &
o
@ Tt s st GeLseuGeT (/ 7
player.open();
sequments 1o e
g bout the (hink
@ seavence seq - new Seqvence (Sequence. PR, 4); Dank wared S L oy hese (i

shruttor-
S~ S:F": ;:;ad\rbak(sequments)
em

O rack ek moangcoestafeacklls: @
Ask the S
equence for 3 Tack. Remember
it - the
Track lives in the Sequence, and the MID| data

lives in
ShortMessage a = new ShortMessage(); the Teack

@ | aseotvessageiied, 1, 41, 100);
ont. oteon = new bidiBvent o, 1) Pub e Mt o e o Th
is mostly Ready-bake code. The ony thing Yol
g tHasg method, and the arauments
M e S s, ery,) e Wit coubri et S A B
track. add (noteOfs) ; arguments on the next page.

player.setSequence(seq)i ¢ Give the Sequente to the Sequenter (like
putting the CD in the CD player)

player.start();

the Ce.
} cateh (Exception ex) { encer (like p,g
ox.printStackTrace () ; © Pushing PLAY)

play

OEBPS/Image00842.jpg
=)

S,,mspmt

OEBPS/Image00990.jpg
datn-Clase: mnpp ¢S Pt Llass
STl o

OEBPS/Image00601.jpg
- neiianaga {1y 1, T
, 44, 100);
s 9P g note 5
e e st W .

ek pa0t)

OEBPS/Image00991.jpg
Main Ciase: My

‘manifest it

manteat tot

OEBPS/Image00598.jpg
The thing that @ The music to be (@) The part of the (@) The actual music

plays the music played...a song. Sequence that information:
holds the actual notes to play,
information how long, etc.
plays has a holds ‘
Sequencer —— Sequence —— Track —

5 5 For this book, we only
need one Track, so just

imagine a music CD

. with only one song. A
== single Track. This Track
= is where all the song
ThiaSequenceiSihe data (MIDI information)
song, the musical piece lives.
The Sequenceris the thing that the Sequencer will
that actually causes a song play. For this book, think —
to be played. Think of it like S the sednence sa
amusic CD player. music CO, but the whole AMIDI event is a message
D plays just one song. that the Sequencer can
understand. A MIDI event
s ity tspoke
e e nglish), “At this moment
s oo "E\ Tt T in time, play middle C, lay
For cp thas o™ oy the =0 it this fast and this hard,
s S o 2 Ty et and hold it for this long.”
inforr ‘&: Teath, 08 9 AMIDI event might
weson e © also say something like,
o the Sev° “Change the current

i G TR ¥

OEBPS/Image00840.jpg
write/draw in the chain of streams the elient
R o T T I——

- S—

OEBPS/Image00992.jpg
no sourte
eode (Jam
in the VAR

OEBPS/Image00599.jpg
Ahhhh. We
forgot to push the

PLAY butfon. You have fo
start() the Sequencer!

Un, hate to break it
1o you, but that's only
FOUR steps.

player.start();

OEBPS/Image00841.jpg
destingtion,

write/draw in the chain of streams the client
Client uses to send something to the server

OEBPS/Image01140.jpg
Head First

2nd Edition
Covers Java 5.0

Learn how threads Joais
can change your life it
— Way,
[t Tl -
- it

Make Java concepts
stick to your brain

Fool around in
the Java Library

Avoid embarassing
00 mistakes

Bend your mind
around 42
Java puzzles

Make attractive
and useful GUIs

O'REILLY® Kathy Sierra & Bert Bates

OEBPS/Image00834.jpg
< prinkin() adds 3 nev ine 3t the end of what it sends.

writer.println(“message to send
send”) ;
4 &he new line

writer.print(“another message”) ;e esn & ads
; 3
print() doest

OEBPS/Image00593.jpg
P
rows C:
Laundry. doLaund: lothingExceptior The aeumw throws &
1 ey () ; :L \«tw.gemy tw .m\amg e
exception focl) method %
dutk the © uqu No bey/eateh

OEBPS/Image00835.jpg
characters bytes to server

M “message..* s ottotoot
Messe- [chaired 1o
PrintWriter Socke's output
stream (we don't need Server

T b the notid claes)

OEBPS/Image00833.jpg
Printiiriter
writer = new
FPrintiriter

(chatSocket.

N RS T

et

Prntiviter acks as ibs own bridae bebween
chavatker data and the bykes it agte Leom the
et low-leve avtput stream By chaiing 3
Drnteker ko the Sockets ke sbream, v
L wike Shrings to the Cotket tomettion

The Socket
gves s
ot ELL
9 i o the Printirite

level conn
the P».he;fﬁ'g:
v constructor.

by

OEBPS/Image00571.jpg
Are you sure No matter what, do NOT let
‘you want to try me forget to turn of f the
this? over! Last time I torched half
‘the neighborhood.

OEBPS/Image00975.jpg
Wouldn't it be dreamy if there were
away o still use polymorphic collection
types as method arguments, so that my
veterinary program could fake Dog lists

and Cat lists? That way I could loop through

the lists and call their immunize() method,
but it would still have o be safe so that you
couldrit add a Cat in fo the Dog list. But T
quess that's just a fantasy..

OEBPS/Image00572.jpg
public class TestExceptions {
public static void main(String [] args) {

String test = *no’;

try (
System.out.println(“start try”);
doRisky (test) ;
System.out.println(“end try");

) catch (ScaryException se) (
System.out.println(“scary exception®);

) finally {
System.out.println(*finally”);

}

System.out.println(“end of main‘);

static void doRisky(String test) throws ScaryException (
System.out.println(*start risky*);
if (“yes”.equals(test)) (
throw new ScaryException();

}
System.out.println(*end risky*);

return;

Output when test = *no*
Output when test = “yes”

OEBPS/Image00976.jpg
public void takeAnimals (ArrayList<? extends Animal> animals) {
for (Animal a: animals) {

aceatls K Remember, the keyword “extends”

J here means cither extends OR
implements depending on the
{_;“:. o T you vant. 4o 4ake
an AvvayList of types that
implement the Pet interface,
You'd declave it as:
AvvayList<? extends Pet>

OEBPS/Image00569.jpg
b .8

@ Foo £
int b
} catch

System.out.println(“failed”);

}

System.out.println(“We made it!”);

x.doRiskyThing () ;
£.getNum() ;

(Exception ex) {

ode in the
Ttk vever

vuns
Fie Eat Vimaon ey Rl

t3ava Tester

We made it!

OEBPS/Image00811.jpg

OEBPS/Image00977.jpg

OEBPS/Image00570.jpg
sk

try { The 1:& ek Asi e b1

—@-Foo £ = x.doRiskyThing(); ¢ ek e
bt “Amx e S0
int b = f.getNun(); & Ry

} catch (Exception ex) {
®—> systen.out.println(“failed); Yoaya zesto:
1 failed

(@—»System.out.println(“We made it!”); (*SANNSTEIE

OEBPS/Image00812.jpg
1y this one.. i bettg o
Sequence g

Shyled:fast and funky, goog for
sequence 12

SYSHO2: K0 iyl g
Oskenfoldish

AV Y0 WSH Toope

messane
3 vtaned messte
A
ikh it

OEBPS/Image00978.jpg
import java.util.™:
public class SortMountains (
LinkedList<Mountain> mtn = new LinkedList<Mountain>();

class NameCompare implements Comparator <Mountain> ¢
public int compare(Mountain one, Mountain two) (
return one.name.compareTo(two.name);
)
)
class HeightCompare implements Comparator <Mountain> (
public int compare(Mountain one, Mountain two) (

return (two.height - ane.height)
) \

} bt list is
public static void main(String [] args) { wotite fhat the »\(va
i s eenaeatas() g8 ()7 D OLECEDING s ¥

¥

public void go()
R e LR
atn add (new Hountedn (“EThertr, 14433)1;
mtn.add (new Mountain(“Maroon”, 14156));
et e sy P

System.out.println(*as entered:\n* + mtn);
NameCompare nc = new NameCompare() ;
Collections.sort(mtn, nc):
System.out.println(*by name:\n* + men);
HeightCompare he = new HeightCompare() ;
Collections.sort(mtn, hc);
System.out.println(*by height:\n" + mtn);

)

class Mountain {

String name; Output:
int hdgm’; File Edit_Window_ ThisOne'sForBob.
T
Mountain(String n, int h) ¢ e
hame = [Longs 14255, Elbert 14433, Marcon 14156, Castle 14265]
height = h;

by name:

}
public String toString() «
return name + * * + height;

[Castle 14265, Elbert 14433, Longs 14255, Maroon 14156]
by height:
[Elbert 14433, Castle 14265, Longs 14255, Maroon 14156]

OEBPS/Image00973.jpg
public void go() {
Dog(] dogs = {new Dog(), new Dog(), new Dog()};
takeAnimals (dogs) ;
]

public void takeAnimals (Animal[] animals) {
animals[0] = new Cat();

] R__We put a new Cat into a Dog arvay. The
compiler allowed it, because it knows that
You might have passed a Cat avvay or Animal
array to the method, so to the compiler it
was possible that this was OK.

OEBPS/Image00974.jpg
%java TestGenericsl
Exception in thread “main” java.la
cat

ArrayStoreException

at TestGenericsl.takeAnimals (TestGenericsl.jav:
at TestGenericsl.go (TestGenericsl.java:12)
at TestGenericsl.main(TestGenericsl.java:5)

OEBPS/Image00563.jpg
calls risky method

your code class with
risky method

OEBPS/Image00805.jpg
This is another innev £lass
inside the BeatBox class

public class MyReadInListener implements ActionListener {

public void actionPerformed (ActionEvent a) {

boolean[] checkboxState = null;

try {
FileInputStream fileln = new FileInputStream(new File(“Checkbox.ser”));

ObjectInputStrean is = new ObjectInputStrean (aleln) ; i
checkboxState = (boolean[]) is.readOb3ect (); €— p,ad the single obyect in &g Ck‘lcb t:c
arvap) and cas it bad
(ex.printstacktrace () /) o ey (vemenber, vead0biect)
a1 of type Obiect

} catch(Exception ex)
vebuens a vekerente

for (int i = 0; i < 256, i++) {
JCheckBox check = (JCheckBox) checkboxList.get (i) ;

if (checkboxState[il) {

check. setselected (true) ; Now vestore the sta
) etse ¢ Chetkboes i bhe Af:ai:‘yfz?t
check. setSelected (false) ; JChetkBox objects (ehetkborList). =
}
)
Sequencessetop ()7 Now stap whatever is currently playins,

buildTrackandstart () ;
and vebuld the sequente using the new
} // close method state of the Lhzt\:\awcx in the AveayList
% FF alaes ALK diich

OEBPS/Image00564.jpg
ww\d A
s ST U B et

s B N o

/ det eclaing)

public void takeRisk() throws BadException {
if (abandonAllHope) {
throw new BadException () ;

creat
' ey,
et o gy P

OEBPS/Image00806.jpg
KEEP

RIGHT

OEBPS/Image00803.jpg
Cyber BeatBox

(600

0

aliee!
e saved
in, and vesets

 patrern i

e tuvren

When You
the

“res

f

ik e
4
" loads h
back
he checkboxe.

be save
attern

5|2

=i
000000000 DODODOO
0OD®WO0O0O00000O®O®OC0)
O®B0O0000000D0OD0ODO0O0
00000000000 DODOO
BOOOOOOOOO0O®O0O®O
0000000000 0®® 000

000000000 DO®WOOOO
0000000000000 00
0000000000000 00
BOOOOO0DOODOO0OO00O00
0000000000000 0®wo
0000000DODODODOO
0000OwWO0000000000
O®R00WOO0000O®WOO0C0
0000000000000 0®w0
0ooonowooooonoog

E
s
8
=

Acoustic Snare
Crash Cymbal

Bass Drum
Closed Hi-Hat
Open Hi-Hat
Hand Clap

Hi Bongo
Maracas
Whistle

Low Conga
Cowbell
Vibraslap
Low-mid Tom
High Agogo
Open Hi Cong:

OEBPS/Image00804.jpg
This is an inner ¢lass inside
the BeatBox code
e T [t all happens when the user ¢Ezks the
public void actionPerformed (ActionEvent @) { €— bubbon and the AttionErent Fives

boolean(] checkboxState = new boolean(2561; €— Make s buols, .
state

o hol
cth checkn "4 the

for (int i = 0; i < 256; it)
JCheckBox check = (JCheckBox) checkboxList.get () i Wik fj,q,,
if (check.isSelected()) { (Areaylis

checkboxState[i] = true; get Jc Xé{f :;‘“‘Wex). and

€ath one, an,
) 3o the Ly gy

9h the cheekboxL_ist

)

oy (
FileOutputStrean fileStream = new FileOutputStream(new File ("Checkbox.ser));
ObjectoutputStream os = new ObjectoutputStrean (fileStream) ;
os.writeobject (checkboxState) ; s
} catch (Bxception ex) { '8 Part’s a piece of cake. ot
ex.printStackTrace() ; write/sevial;

2 the on
, € one boclean arvay!

} // close method
¥ e dnnes dlkaE

OEBPS/Image00567.jpg

OEBPS/Image00809.jpg
Good thing we're
finally at the answers.
T was gettin' kind of

tired of this chapter.

OEBPS/Image00979.jpg

OEBPS/Image00568.jpg

OEBPS/Image00810.jpg
% java DungeonTest
12
8

OEBPS/Image00980.jpg
{¢

OEBPS/Image00565.jpg
P VoL SEQESEIngREsL)
try (
anObject. takeRisk () ;
) catch (BadException ex) {
System.out.println(“Aaargh!”) ;

IF Yo eant vetoer from the exception ot LEAST
ex.printStackTrace () ;

9t a stack trace using the PrintStackTracel) method
e that all exeeptions inherit
}

OEBPS/Image00807.jpg
e

4 java DungeonTest

OEBPS/Image00981.jpg
Deployment options

O Bk e
Executable
Jar Web Start RMI app
100% Local Combination 100% Remote

OEBPS/Image00566.jpg
Exteptions that are NOT subelasses of
RuntimeException ave checked for by
the compiler. They'e called “checked
exteptions”

have b0, and

and detlare Ron

ave NOT ehetked by e

Runtme BT T 1 surise here

Lhwow, €atED

OEBPS/Image00808.jpg
Objectoutputstream oos = new

ObjectOutputStrean (fos) ;

rializable (

lass DungeonGame implements 5€

Fileoutputstrean fos = DSV

can(*dg.ser”) short getz() (

FileOutputStr
return z;

e.printsStackTrace() ;

int getX() {

Object InputStream ois = new

ObjectInputstream(fis) ;
return x;

System.out.pr;ntlnld.getx[)+d.getYU‘d.qetZU)'.

rFileInputStream fis = new

FileInputStream("dg.ser”);

1ong get¥() {

return y;

fos.writeObject (d)
,

(DbungeonGame) ois.readobject () ; '
cos.writeobject (d);

3 main(string [] args) {

public static Vo

bungeonGane & = new DungeonGamel);

OEBPS/Image00982.jpg
It's
finally donel

OEBPS/Image00582.jpg
Size matters when
you have multiple catch
blocks. The ore with the biggest
basket has o be on the botfom.
Otherwise, the ones with
smaller baskets are useless.

OEBPS/Image00964.jpg
$java TestMap

{Skyler=420, Bert=343, Kathy=42}
343

OEBPS/Image00965.jpg
port java.util

tGenericsl (

blic class TestGenerics: .

P public statie vosd main(String(] args) (
new TestGenericsl().go();

Detlare and eveate an Animal arvay,
) (that holds both dogs and ¢ats.
public void go() {

cat(), new Dog()};
imal[] animals = {new Dog(), new >
::;’:? :loq: = {new Dog(), new Dog(), new Dog()}; « Declave and treate a(lzog ma*{
i ¢ s onl he compler
tAkaAnmals(anlm?%S) - Gall takeAnimals0), using both tb.a‘i»ko\: byulg?sw f, ;
akedninals (dogs) o T arvay types a5 arguments won't let you p
}

) . imal() animals) (& The ruil pont is hot dhe bk
e et R ethod can take an imall) or 3 Dogt), snce
for(Animal a: animals Doty S~ Animal. Polymorphism im actic,
a.eat();
VA Renenber, ve can all ONLY. the mebhods delae

d in type

. arimal, sine, the ainals paameter s of 4ype mal arvay,

, 3nd ve didn't do any casting, (What would we ot i £o8
That arvay might hold both Doas and Cats)

OEBPS/Image00580.jpg
ClothingException

Pansbepton |u",.n.s..,.,m SEscopion l ..ma.,..,m l

TeeShinException DressShirtExcoption
7 B

¢ \

,\,\

OEBPS/Image00822.jpg
[String s = veader-veadLine)

OEBPS/Image00966.jpg
A simple hange from Animall] £
ArvayListcAnimals
;;:w;;:yl::;‘@nmp animals = new ArrayList<Animal>();

“ninale. § € We b b add ane at 3 b sine here's v
Srinsls add naw-Bos 11 dortict

syt e there is for arvay ereation

takeAnimals (animals) ; ¢— This is the same code, exept now the “animals”

; variablevefers o an ArvayList instesd of avvay

i takeAnimals (ArrayList<Animal> animals) |
imal a: animals) {

The method now takes an ArvayList
) : instead of an arvay, but. everything clse is

the same Remember, that for lop synt
works for both arrays and ollecbion!

OEBPS/Image00581.jpg
try {

laundry.doLaundry () ;

} catch(ClothingException cex) {

// recovery from ClothingException

} catch(LingerieException lex) {

// recovery from LingerieException

} catch(ShirtException sex) {

// recovery from Shirtl

OEBPS/Image00967.jpg
Fi indow Help. ter

%$java TestGenerics2

animal eating
animal eating
animal eating
animal eating
animal eating
animal eating

OEBPS/Image00963.jpg
lmport java.utlil.®; Hashi ds TWO +,
1ap needs YPe parameters—
: one tor the key and one for the value,

Hashiap<String, Integer> scores = new Hashiap<String, Integer>(;

oublic class Testl

scores.put (“Kathy”, 42); Use b0 instesd of add0), snd mow
scores put (“Bert”, 343); < i 2440, and now of course

kes two arguments (key, viloe)
scores.put (“Skyler”, 420); e

.out.println(scores);

o FrITEIn (320588 9BE("BOTE))5 Thesek)metr bk ey

veburns the value Gin this case, am Inkeoer).

OEBPS/Image00574.jpg
Al exceptions have
Exteption 35 2

Exception
aertass

ClothingException

I0Exception

Patsxcopion | [LngereEscapon_| [ShinEscepton

DressShtErcopton

TosShirtEscoption

OEBPS/Image00816.jpg
Client A

——————— OK yove in.

OEBPS/Image00972.jpg

OEBPS/Image00575.jpg
public void dolaundry() throws ClothingException |

OEBPS/Image00817.jpg
Sevver, ['d like to connect
| 1o the chat sevvice

OEBPS/Image00814.jpg
Client B

OEBPS/Image00573.jpg
public class Laundry {
public void doLaundry() throws PantsException, LingerieException (

// code that could throw either exception

qonk e
) Ty method 82657 o
i WO excerter™
public class Foo {
public void go() {
Laundry laundry = new Laundry(); # doLaundry() throws
PantsException, it lands in the
try { PantsException cateh block.
laundry.doLaundry () ; K«

} catch(PantsException pex) {

// recovery code

} catch(LingerieException lex) {
) thrors

. // recovery code (\\iﬁﬁ i m&u.dmw

) LingerieB?

OEBPS/Image00815.jpg
| Server, ['d like to comneet
4o the chat sevviee

Server

OEBPS/Image00578.jpg
22 (R

laundry.doLaundry ()

§) ceegbions ent
} catch(TeeShirtException tex) { e,...‘l’uﬁ"“*‘v’ A 4\““
Lingeee xtegtior’ sw\d we
om Teeshireexception s YU todes ww
ety u*&"‘b\“b
gilkerert
} catch(LingerieException lex) {
from LingerieException
-
7H\ Al obher 1,
NN thi
} catch(ClothingException cex) { are caught h:""efxcert.m

// recovery from all others

OEBPS/Image00820.jpg
Chent A

Make 3 sotket connettion o
191641103 at yort 5000

1

OEBPS/Image00968.jpg
takeRnimals (animals); €— We know this line worked Fine.

ArrayList<Dog> dogs = new ArrayList<Dog>() ;
dogs.add (new Dog());
dogs.add (new Dog());
takeAnimals (dogs) ; € Will this work now that we changed
*om an array to an AvvayList?

Make 3 Dog Arvaylist and put 3 couple dogs in

Sublic void takeAnimals (ArrayList<Animal> animals) |

for(Animal a: animals) {

OEBPS/Image00579.jpg
ons 3
< b TQ(s\nvt*/ﬁ"‘Yb& o N
et
At ik

catch (TeeShirtException tex)

catch (ShirtException sex)

et
ke (hova?

ha“«zc M“:f;{: and

et

catch (ClothingException cex)

OEBPS/Image00821.jpg
b, Pomrr

writer printin(aMessage)

OEBPS/Image00969.jpg
%$3java TestGenerics3

TestGenerics3.java:21: takeAnimals(java.util.
ArrayList<Animal>) in TestGenerics3 cannot be applied to
(java.util.ArrayList<Dog>)

takeAnimals (dogs) ;

1 error

OEBPS/Image00576.jpg
try { can 3t 3N
Clothi AE"‘”‘

¢ e

iy SAAEY T}
i

B 4 l Wb

} catch(ClothingException cex) {

// recovery code

ean catth Y jon and
o TeeSw ‘“’J‘;m
et

laundry.doLaundry () ;
Bl

} catch(ShirtException sex) {

// recovery code

OEBPS/Image00818.jpg
__ “Who ook the lava lamp
from my dorm voom?”

OEBPS/Image00970.jpg
And T'm supposed fo be OK with this? That
totally screws my animal simulation where the
veterinary program fakes a list of any type of
animal, so that a dog kennel can send a st of dogs,
and a cat kennel can send a list of cats... row
Youre saying T can't do that if I use collections

instead of arrays?

°0

OEBPS/Image00577.jpg
o
laundry.doLaundry () ;

} catch(Exception ex) { ‘“
b block v
// recovery code. .. Retovery from WHAT? This H:Yw el

oo ANY and all exeegtions 2 1%

} o stically know what went vrerd

OEBPS/Image00819.jpg
¢ “Who took the lava lamp
Lrom my dovm voom?”

Client A Servar

Client B

OEBPS/Image00971.jpg
public void takeAnimals(ArrayList<Animal> animals) {

animals.add(new Cat()) /e yiveoll We just stuck a Cat in what

’ might be 8 Dogs—only ArvayList

OEBPS/Image00813.jpg
e Compl
teiercen

3
tomerabons .o,
9 s sent o 3l

00 e eraushy Simple Chat Clent

Con you el me how 0 6% To Sesanechicken
street?

Go eft

You are so kest1!!1!

¢ you spell it Like that one more tine, T'1L tak]

Darkstar
MufFirdan
urSuchALuzer

Hey, what's up M firan?
Who said that?

ly

Sen
end Your message 4o the sevver

OEBPS/Image00791.jpg
question

What is blue + yellow?

answer

green

OEBPS/Image01041.jpg
Client helper preterds
o be the sevvices bt

ﬁai.,., hewp 2] ‘Sft«:a rosy for the

Client dbject thinks
s alking to the
Real Sewvite
ks the el
Welper i the £hind
Tnat can acksally

do the veal work e
ice helper
et e &
e s g
g Is the method ¢
eal Sevvice. on the

OEBPS/Image00792.gif
What is blue + yellow?/green
What is red + blue?/purple

OEBPS/Image01042.jpg

OEBPS/Image00789.jpg
he import

L st

import java.io.*; Der

class ReadAFile {
public static void main (Stringl] args) {

A FileReader is 5 Connettion stream for

- characters, that conn ets
File myFile = new File("MyText.txt"); [A

FileReader fileReader = new FileReader (myFile);

BufferedReader reader = new BufferedReader (fileReader) ; toa
Fikeader 22

Ohain B¢ o o
ke a Shrng varidble & hld 5““”1“:: o 11 00 b:::
B e a5 the lne s e ekient o vead oo WU e
e S Thezawe ey
e gt S
) Bewtler s ol ey
String line = null; eogra™

while ((line = reader.readLine()) !'= null) {
System.out.println(line) ;
) N Ty Read 5 line of fext,

reader.close () ; st;m, Jarable T Whie of o 359 o e
ecause there WAS som, variable'is mot,]
} catch(Exception ex) { line that was Juf fzad wething bo vesd) prin oot Lxg
ex.printStackTrace() ; Or another way of saying it,
) o vead, ead Chem i Bk oy ere e sl s

OEBPS/Image00790.jpg
Eiait S e i

EEE Sl v

A3 o i

HE R Bt
B,

Rt ages coadne e BB Eoravr
ezl s

Fntic weis go) |
11 vt gt
fram - v STame Ol Coxd Py

S e o anel 11
SR T e, sene s, 20

dlslay - e a0

sessonco s
e

i

SEcestisans gscrober < ouw JEceeiibane splay)
e e
s S i erot 4 £l Lraetonot s RORTSOTL SADLTAER VR
Sty
ot i
b iR —

s s - ey Hegusae)
FRPH SR LR,
Pt ket st o cacs seee) s

-
et st comes, sutrssll
R

) 11 cros 30

R R
R vy o e iyt
s S e et e o
s
| R g
15 o the s uesticn st el"T:L““«"-s o

S B ol 2R

etz e oo mure co
S

e s et

v

. stamae st et |

bt e R
SRS L

SRS s e et e

SRl v b g

i s iie i) (
Caesbine - new Arcoisecguizeaet 1

@y
StacoBeats, o - e ettradtosi o il o1

ity Eesbc.costinn()) 1= ki) (

aadiing
rom—
) casepenption et (
ek

et o rcotan's. resa the card ey
e

15 e o sact by shoudon e e caza

v s A
" R
Saesiist.adbteardly o
RSSO,

printe voio showestcard) |
ey - Cha et cacrentesesinie s
s

I S

OEBPS/Image01037.jpg
Y, vimp, iyl m
ﬂnl at thuIﬂbm i

) |awe

Little

OEBPS/Image01038.jpg

OEBPS/Image01039.jpg

OEBPS/Image01040.jpg
Igcliem heap

OEBPS/Image00783.jpg
PR,
T An address is NOT <he
Sheers D “came as the atbudl
o el Fle object is
ot Haneme,cn [lie a sbrect address-
S
ok location of 2 ¥

tieular e, ok it iont
the File kself.

OEBPS/Image00784.jpg
A File dbject
lename “GameFle £t
GameFile.txt

2(;.:151:9% sworddust
190 VI'J('NLme ‘hands big ax
) Magiclan,spells, invisibility

o’& etk does NOT

ke
diveek aceess £o) the
daka mside the !

OEBPS/Image00787.jpg
BufferecWriter writer = new BufferedWriter (new FileWriter(aFile));

OEBPS/Image00788.jpg
A file with two lines of text

What's 2 + 22/4
What's 20+22/42

MyText. txt

OEBPS/Image00785.jpg
SRR
RO
AR

OEBPS/Image00786.jpg
destimation

When the buffer is full, the

String is put into a buffer
Strings are all written o

with other Strings

“Boulder” “Boulder” “Aspen”
is written to| _ “Denver” chained to’

String
2 BufferedWriter
(a chain stream that
works with characters)

‘Aspen Denver Boulder*

FileWriter
File
(a connection stream
that writes characters
as opposed o bytes)

OEBPS/Image01044.jpg
Server heap ﬁ

0
%'Via

Remember, £his & the
etk with the REAL
< Jinod loge. The 89
Trat docs the veal ork!

S

ient po ¥

OEBPS/Image01045.jpg
-]

OEBPS/Image01046.jpg
Server é @

OEBPS/Image01047.jpg
MyRemote.java

OEBPS/Image01043.jpg
*client wants to call a method"

=]
(T B o |

OEBPS/Image00802.jpg
public class Dog {

static final long serialVersionUID =
-6849794470754667710L ;

private String name;
private int size;

// method code here

OEBPS/Image01030.jpg

OEBPS/Image01031.jpg
user dicks a Web page link
browser requests a jnip fie
from the Web server
the Web server sends a jnlp
file o the browser

he Web browser sarts up
the JWS helper app

P requests

e JWS helper 2P
the JAR file

the Web server sends a
JAR
file to the Jws helper app

the JWS helper app invokes
the JAR's main() method

OEBPS/Image00800.jpg
% serialver Dog

Dog: static final long
serialVersionUID = -
5849794470654667210L;

OEBPS/Image01032.gif
S

UIS|E[R

L|o|olp
E X T[RE[ME

FIIILITER

E

2
=
z
w
|
)
z
<
o
-

S|OICIKIE|T

S|YINICH|ROINI ZE D

R

EINIc/alPIs]UILIAITIE

c[Lla[s]s

E[IXEICUT|A

N

RE S [T|O|RE

MP [L|EME NIT

I

K
HIA|T NIE D

B
DIIIRIEC|TIOR]Y

c

AIN|IFIEISIT

PlalclklaleE
BlY[T[E

M

OEBPS/Image00801.jpg
% serialver Dog
Dog: static final long

serialVersionUID = -
5849794470654667210L ;

K___ Based on the version of

Java you're using, this value
might be different.

OEBPS/Image01026.jpg

OEBPS/Image01027.jpg
MyJWSApp.htm

OEBPS/Image01028.jpg
the Web server sends 5 JAR
fie o the JWS heiper app

e Wb browser stas WP
he JWS helper 2P

he JWS helper app invokes

- the JAR's main() method

er requests a
from the Web server

the Web server sends 4
il to the browser

OEBPS/Image01029.gif

OEBPS/Image00794.jpg
aCardPlajer 3Fp

b e e loek‘hv;kiy‘l
S ved m brom

String toTest = "What is blue + yellow?/green’;

The SEEO method {akes the /” and vses it £
String() result = tolest.split("/")ig [" apart the String into (in this case) by

Pites: (Note: spit) is FAR mare poverbul £han
for (string token:result) { what we've wsing it for heve. I¢ can do extrencly
Systen. out.println(token) ; Complex parsing with filters, vildeards, ete.)

: Loop through the are; nd prin
} k’ (P'CQ) In (:va o ity L Print cach foken

tokens: “What blue + yelloy2”

OEBPS/Image00795.jpg

OEBPS/Image00793.jpg
What is blue + yellow? B

token 1 separator token 2

OEBPS/Image00798.jpg
¢lass version D

#7128

Dog.class

OEBPS/Image00799.jpg
.

ot
skamped with
vevsion #343

(’Dog.class

class vevsion ™

ime

OEBPS/Image00796.jpg
D

elass version

#3403

Dog.class

OEBPS/Image00797.jpg

OEBPS/Image01033.jpg
Everyone says long-
distance relationships are hard,
but with RMI, it's easy. No
matter how far apart we really
are, RMI makes it seem like
we're together.

OEBPS/Image01034.jpg
Executable
Jar

100% Local Combination 100% Remote

OEBPS/Image01035.jpg

OEBPS/Image01036.jpg
/%?L

OEBPS/Image00769.jpg
ObjectinputStream os

ne J
W ObjectlnputStream(fileStream)

ObiecklnpukStream lets you <edd o)
O e dvecbly eomett: 03 e
Tk necds ko be chaned o 2 cometkion
e necds % e case 3 FillnpStream

OEBPS/Image01019.jpg

OEBPS/Image00770.jpg
PR LRy = SREEMCORERE L) S value of
GameCharacter troll = (GameCharacter) two; “‘d'g\fjlu s bype Obigtt
GameCharacter magician = (GameCharacter) three;f;it s with Arvd o), so
e 1o cask it bad
e Few it veally

OEBPS/Image01020.jpg

OEBPS/Image00767.jpg
deserializeq
\

sevialized

)

OEBPS/Image01021.jpg
HelloWebStart (the app in the JAR)

OEBPS/Image00768.jpg
file M Game. sex” doesn
e rten

FileInputStream fileStream = new FileInputStream(“MyGame.ser”);

Make 3 Fi,
b b b st File

Comnect 4, 4 existing £l nputStrea,
ile.

OEBPS/Image01022.jpg
Sy the
spetr]
where T 1 on Ehe S e

o
o3

o k2%,
The el LG sark ok, 52

" For
here YU NC on owe ol o 01 T
"fh‘ﬂ ka\brsv g‘; advess \wld: D e B
e 1062 ':"” S mtckwt Leom
<jnlp spec="0.2 1.0" f};ﬁ:{{w/wvw“ #
ve o the
e & ‘s is the lotation of the jnlp ile velabive
=arRo. e T el o Bt nyhyles
Goiable n he voot divectory of the web seriers
Sested in some other divectory

<?xml version="1.0" encoding="utf-8"?>
hyomae

codebase="http://127.0.0.1/~kathy"

<information>)
- might
<title>kathy /title> Be sure 4o inchude all of these ag, or. your 3PP m?b
Vet ork torveethy] The information tags are wed WY
he JWS helper app, mostly for displaying wher

<vendor>Wickedly Smart</vendor>) application.
<homepage href="index.html"/> et 4 velaunth a previously—dowrloaded 3¢

<description>Head First WebStart demo</description>
<icon href="kathys.gif"/>

. yram vithout
<offline-allowed/> This means the user £an vun Your rrog am it}

being comected to the internet. [§ Ehe user is offline,

</information> g e actomatic-updating festure wor't work

<resources> T says that your app neds version |3

<j2se version="1.3+7/> k= of Jawa, or greater
<jar href="MyApp.3ar’/>¢ i,

of
other JAR £ S*etutable JAR/
</resources> o :; f";x:i well, that holg You mi

?ht have
95 used by yo,

other clasies oy
* app-
<application-desc main-class="HelloWebStart”/>

</3nlp> R This is ike the mainfest Main-Class entey... it says
which ¢lass in the JAR has the main() mebhod.

OEBPS/Image01015.jpg
Executable JAR files are nice, but wouldn't
it be dreamy if there were a way to make.
arich, stand-alone client GUT that could

be distributed over the Web? So that you
wouldrit have to press and distribute all those
CD-ROMs. And wouldrit if be just wonderful if
the program could automatically update ifself,
replacing just the pieces that changed?

OEBPS/Image01016.jpg
e

Executable
Jar

Web Start

RMIapp

100% Local

Combination

100% Remote

OEBPS/Image00771.jpg
=0

Cleing the stream ot the fop g, g, one:
sndermcats, e F.:g/,pﬁ?mm Gand the
1) il close automatically,

0s.close () ;

OEBPS/Image01017.jpg

OEBPS/Image00772.jpg
01101001

o1101110
ot

s read by

object is read as bytes

1§ khe VM

)| thvow 20 u,ul‘z@

This steg W e tlass!

car't kind o load

class is found and loaded, saved
instance variables reassigred

011010010110111001

4-| S —
s chaired fo O

FileTnputStream
(a connection stream)

ObjectTnputStream
(a chain stream)

OEBPS/Image01018.jpg

OEBPS/Image00765.jpg
It's hopeless,
then? T'm completely
screwed if the idiot who
wrote the class for my instance
variable forgot to make it
Serializable?

OEBPS/Image00766.jpg
et.*;
import java.ne —
“dont 1ass Chat implements Serializa
- © ient String currentID;
baniert 2L ol » transien
v this O kY Eransient
srsladten String userName;

userName variable
vill be saved s part
of the abject’s stafe
during sevializatio.

// more code
}

OEBPS/Image00763.jpg
e i Ll ot R S

¥ Pond objects can be sevilized
public class Pond implements Serializable (

Class Pond has one instante
avidble; 3 Dtk
public static void main (String[] args) (

Pond myPond = new Pond() ;

oy (
FileOutputStream £s = new FileOutputStream(“Pond.ser”)
Objectoutputstrean os = new ObjectOutputStream(£s) ;

private Duck duck = new Duck(); &——

os.wziteobiect tmypond 1 When vou sevialize myPond (3 P,
os.closa() 7 et s Duck el g
automatically et serpeen
} catch(Exception ex) {
x.printStackrzace ()

¥

]
esl! Duck is not sevializable!
[; oo mplewent S

mplement. Sevializable,
ublic class Duck { !
P /;:d:;flzod;“:ham ;, when you Zvy to sevialize 2
. ond, oiB:t(:, it fails because the
Pcr\’dx uek instance vaviable
tan't be saved.

OEBPS/Image00764.jpg
When you by

e £t Widow Hop Regrel

3 java Pond
1izableExceptic!
ain (Pond.java:

13)

java.io.Notseria
at Pond.m

OEBPS/Image01023.jpg
]

MyApp.jar

OEBPS/Image01024.jpg
MyApp.jnip

OEBPS/Image01025.jpg

OEBPS/Image00780.jpg
e006 Quiz Card Player
What happens if you call
EJBObject.getPrimaryKey() on a
Session bean's remote reference?

QuizCardPlayer

Has a File menu with a "Load" option for loading a
S o R Fronk G e,

OEBPS/Image01008.jpg
manifest.txt

PackageExercise.class

OEBPS/Image00781.jpg
public class QuizCardBuilder {

ic voi including
public void go() [ilds and displays the B, incldn
// build and display gui Eakma and vegjstering event listeners-
i
Innev class

private class NextCardListener implements ActionListener | hen user tits ‘Newt Cavd’ button
public void actionPerformed (ActionEvent ev) | Tv-aeﬁ';::‘m e Lo store that card in
7/ add the current card to the list and lear the textareas fra b and stark 3 new 674
1
1
Inner elass
private class SaveMenuListener implements ActionListener {
public void actionPerformed (ActionEvent ev) |
// bring up a file dialog box

//let the user name and save the set the €ards in the A.‘w::irh:infﬁ &:"lt(a”
) Quantum Mechanies Set, hofp, oy Cike,
‘ Java Rules, etz.) . Triva,
Inner elass
private class NewMenuListener implements ActionListener ! Seom the File
public void actionPerformed (ActionEvent ev) Trggered by 2o :‘;‘L dark
// clear out the card list, and clear out the text areas el m!é’“‘:‘:g(e eav vk the £
“
| b
) s
private void saveFile(File file) (
// iterate through the list of cards, and write each one out to a text file
// in a parseable way (in other words, with clear separations between parts)
i
) Called by the SaveMenListenei

does the ackual File writing,

OEBPS/Image01009.jpg
by,
A ﬁ;\’f 0 ﬁv\d‘j"“
tcd MyProject/classes [f;t mvytmq in

tjar -cvmf manifest.txt packEx.jar com

OEBPS/Image00778.jpg
QuizCard
QuizCard(q, a)

question
answer

getQuestion()
getAnswer()

OEBPS/Image01010.jpg
o
=]

packEx.jar M ’

PackageExercise.class

OEBPS/Image00779.jpg
6006

Which university is featured in the
film "Good Will Hunting"?

MLT

QuizCardBuilder

Has a File menu with a *Save" option for saving
the current set of cards to a text file.

OEBPS/Image01011.jpg
% jar -tf packEx.jar

able File’ 56 i,

of the JAR Fier

% cd Skyler
% jar -tf packEx.jar
META-INF/
META-INF/MANIFEST.MF
com/
com/headfirstjava/
com/headfirstjava/
PackageExercise.class

OEBPS/Image01004.jpg
Iw'ﬂ still compile

rom heve

J

PackageExercise.class PackageExercisejava

OEBPS/Image01005.jpg

OEBPS/Image00782.jpg
B
s

AR oo

e seats oid satn Steingl ssqg) |
"“’mﬁ.‘,ﬂw Bolfaa TR S e

e s g0l |
P

Thi il 1 .,
= new TFcane ("0uiz Car e Jpetial, here N,
R SRR
estioa < ey Sresttea b2 feraliems coge. > Hers,

fren e e

e s
it e

SEccolieany gserolior - new Secrolitan st ion) s

s T M e arscns, Scnoisont i

SR R Ay
pretiiapine
T e
e elgtenny

Sceolirany sorolier - nex Sscrol v aeaunc)y
et R R s, eniens, s v
R L e e R AL SR o

Tutton oasthtton - oaw Jhuttca st Sa)s
caesiis + new Arpilatcuiztare

Jiatal el = now Jiskel Cston
i sl o

E
EEEE
R S e,

B T T———

bl elass NextCardstanas ieplemants Actionlistener |
frterbyrei e

4 3 - v QST asRLGhRTOE), ROE VT

B Sramsh et 4.1 L stones |
LRSS L o uISEoES quanon, prtest), aves.ecTese 15
SR S5 a i s o0

3 Tl
R R e

e
B
private void clearcard() | doa BT
B e
et e

) (N
gz vl satatre g1 | “

engucae et | ks Bl
e cart qvgoestion() + /% ittt to ol s 8 200
EEEERRRLm) MELETEI.
e S i
3 o Broh the v
1 I L it crtsn: s S S0 e BT T
pleeteRtiakis, 1 S i o

0 Sk
PRkt

OEBPS/Image01006.jpg

OEBPS/Image01007.jpg
PackageExercise.class

OEBPS/Image00773.jpg
import java.1o.*;

public class GameSaverTest { Make some charatters

public static void main(String(] args) {
GameCharacter one = new GameCharacter (50,
GameCharacter two = new GameCharacter (200,
GameCharacter three = new GameCharacter(120, "Magician”, new String[] {"sp

", new Stringl] {“bow", “sword”, “dust'});
Troll”, new String[] {"bare hands”, big ax'})
", “invisibility"});

// inagine code that does things with the characters that might change their state values

try {
ObjectOutputStrean os = new ObjectOutputStream(new FileutputStrean("Game.ser”));
0s.writeObject (one) ;
os.writeCbject (two) ;
os.vriteCbject (three) ;
os.close() ;
} cateh (I0Exception ex) (
ex.printStackTrace() ;

}

one
two
three

We sek them to moll so we ean't

<« dbjecks on the heap

actess the

Now vead them back in from the file

try {
ObjectInputStream is = new ObjectInputStream(new FileInputStream(“Game.ser”));

GaneCharacter oneRestore = (GameCharacter) is.readObject () ;
GameCharacter twoRestore = (GameCharacter) is.readObject () ;

GameCharacter threeRestore = (GameCharacter) is.readObject();

ved
out.println("One’s type: " + oneRestore.getType()); Cheek to see. if 1 worke
ioRestore. getType()) ;

ireeRestore.getType () ;

sy
s

} catch (Exception ex) {
ex.printStackTrace() ;
}
1

OEBPS/Image00776.jpg
o kot for FANAEY
tmport Java,do,sy wenest B ¥

class WriteAFile { ' does 7t
public static void main (String(] args) { | o\mz % \mm &
try (
FileWriter writer = new FileWriter (“Foo.txt");
AL he V05 ol

e @
Frryiurn i &
\0reextion

/Lzm writer.write(“hello £00!”);&— The write()
e o -t

weitas. 0108000 6 Cle it when v done!
n You're done
} catch(IOException ex) {

ex.printStackTrace () ;
}

OEBPS/Image01012.jpg
% cd Skyle

.er

% jar =xf packEx.jar

<k skands for Exbract File' and it
works just like unzipping or untarving 1€
o exbract the packExjar, you'll sce
e META-INF divectory and the com

diveckory in Your

torvent, divectory

MANFESTHF

il

OEBPS/Image00777.jpg

OEBPS/Image00774.jpg
Fie £t Vindow Help Resusciate

% java GameSaverTest
One’s type: Elf

Two’s type: Troll

Three’s type: Magician

OEBPS/Image00775.jpg
What the game thavacter data
might look like i you wrote it
out as a human-veadable text file.

80,EIf,bow,sword,dust,
200,Troll bare hands,big ax
120 Maglelan,spells, invisibility

OEBPS/Image01013.jpg
IR Gile inte 2

sy
-

MANIFEST.MF

PackageExercise.class

OEBPS/Image01014.jpg

